

Programming C#

Jesse Liberty
Publisher: O'Reilly
First Edition July 2001
ISBN: 0-596-00117-7, 680 pages

The goal of C# is to serve as a high-performance language for .NET development—one that is simple,
safe, object-oriented, and Internet-centric. Programming C# teaches this new language in a way that
experienced programmers will appreciate—by grounding its application firmly in the context of
Microsoft's .NET platform and the development of desktop and Internet applications.

 2

Programming C#

 3

Preface ..11
About This Book ...11
How the Book Is Organized ...11
Who This Book Is For ...13
C# Versus Visual Basic .NET ...13
C# Versus Java ...14
C# versus C++...14
Conventions Used in This Book ..14
Support ..15
We'd Like to Hear from You...15
Acknowledgements ...16

Part I: The C# Language ..17
Chapter 1. C# and the .NET Framework ...17

1.1 The .NET Platform..17
1.2 The .NET Framework ..17
1.3 Compilation and the MSIL ..19
1.4 The C# Language...19

Chapter 2. Getting Started:"Hello World" ...21
2.1 Classes, Objects, and Types ..21
2.2 Developing "Hello World"..26

Just In Time Compilation ..29
2.3 Using the Visual Studio .NET Debugger..29

Chapter 3. C# Language Fundamentals ..33
3.1 Types ..33

The Stack and the Heap ...34
3.2 Variables and Constants..36

WriteLine()..36
3.3 Expressions ..42
3.4 Whitespace ...42
3.5 Statements ...43

Statement Blocks ...46
All Operators Are Not Created Equal..47
Whitespace and Braces ..53

3.6 Operators ..56
Short-Circuit Evaluation ..61

3.7 Namespaces ...63
3.8 Preprocessor Directives ...65

Chapter 4. Classes and Objects..69
4.1 Defining Classes ...69
4.2 Creating Objects...73
4.3 Using Static Members...78

Static Methods to Access Static Fields ..82
4.4 Destroying Objects ..82

How Finalize Works...82
4.5 Passing Parameters...84
4.6 Overloading Methods and Constructors ..89

 4

4.7 Encapsulating Data with Properties ..91
4.8 Readonly Fields ...94

Chapter 5. Inheritance and Polymorphism ..97
5.1 Specialization and Generalization..97

About the Unified Modeling Language ...97
5.2 Inheritance ...99
5.3 Polymorphism ..102
5.4 Abstract Classes ...107
5.5 The Root of all Classes: Object ..110
5.6 Boxing and Unboxing Types ..112
5.7 Nesting Classes...114

Chapter 6. Operator Overloading ..117
6.1 Using the operator Keyword..117
6.2 Supporting Other .NET Languages..118
6.3 Creating Useful Operators ..118
6.4 Logical Pairs ...118
6.5 The Equals Operator ...118
6.6 Conversion Operators...119

Chapter 7. Structs ..125
7.1 Defining Structs ..125
7.2 Creating Structs..127

Chapter 8. Interfaces...131
Mix Ins...131

8.1 Implementing an Interface ..131
8.2 Accessing Interface Methods ...141
8.3 Overriding Interface Implementations ..147
8.4 Explicit Interface Implementation ...150

Chapter 9. Arrays, Indexers, and Collections..159
9.1 Arrays ...159
9.2 The foreach Statement ..162
9.3 Indexers...175
9.4 Collection Interfaces ...182
9.5 Array Lists ...187
9.6 Queues ...197
9.7 Stacks ...199
9.8 Dictionaries...202

Load Factor...204
Chapter 10. Strings and Regular Expressions ..209

10.1 Strings ...209
Delimiter Limitations ..222

10.2 Regular Expressions ...222
Chapter 11. Handling Exceptions..233

11.1 Throwing and Catching Exceptions ..233
11.2 Exception Objects..241
11.3 Custom Exceptions ...244
11.4 Rethrowing Exceptions ..246

Chapter 12. Delegates and Events ...251
12.1 Delegates..251

Programming C#

 5

12.2 Events ..268
Part II: Programming with C# ...277
Chapter 13. Building Windows Applications..277

13.1 Creating a Simple Windows Form...278
13.2 Creating a Windows Form Application ..289
13.3 XML Documentation Comments ..309
13.4 Deploying an Application ..311

Chapter 14. Accessing Data with ADO.NET ...321
14.1 Relational Databases and SQL ...321
14.2 The ADO.Net Object Model ..324
14.3 Getting Started with ADO.NET ...325
14.4 Using ADO Managed Providers...328
14.5 Working with Data-Bound Controls..330
14.6 Changing Database Records ...340
14.7 ADO.NET and XML...353

Chapter 15. ProgrammingWeb Applications with Web Forms355
15.1 Understanding Web Forms ..355
15.2 Creating a Web Form ...358
15.3 Adding Controls..361
15.4 Data Binding ..362
15.5 Responding to Postback Events ...369
15.6 ASP.NET and C# ..371

Chapter 16. Programming Web Services ..373
16.1 SOAP, WSDL, and Discovery...373
16.2 Building a Web Service ...374

WSDL and Namespaces ..375
16.3 Creating the Proxy ..379

Part III: C# and the .NET CLR ...385
Chapter 17. Assemblies and Versioning ..385

17.1 PE Files ..385
17.2 Metadata ...385
17.3 Security Boundary...385
17.4 Versioning...385
17.5 Manifests...386
17.6 Multi-Module Assemblies ..387
17.7 Private Assemblies ..395
17.8 Shared Assemblies..395

Public Key Encryption ...397
Chapter 18. Attributes and Reflection...401

18.1 Attributes ..401
18.2 Intrinsic Attributes ..401
18.3 Custom Attributes ...403
18.4 Reflection ..407
18.5 Reflection Emit ...416

Chapter 19. Marshaling and Remoting...437
19.1 Application Domains...438
19.2 Context ..446
19.3 Remoting...448

 6

Chapter 20. Threads and Synchronization ..457
20.1 Threads..457
20.2 Synchronization..465
20.3 Race Conditions and Deadlocks ...474

Chapter 21. Streams ...477
21.1 Files and Directories ...477
21.2 Reading and Writing Data ..487
21.3 Asynchronous I/O..493
21.4 Network I/O ...497
21.5 Web Streams...513
21.6 Serialization ...516
21.7 Isolated Storage ..523

Chapter 22. Programming .NET and COM..527
22.1 Importing ActiveX Controls ...527
22.2 Importing COM Components...534
22.3 Exporting .NET Components ...541
22.4 P/Invoke..543
22.5 Pointers ...545

Appendix A. C# Keywords..551
Colophon ...558

Programming C#

 7

Programming C#

Preface
 About This Book
 How the Book Is Organized
 Who This Book Is For
 C# Versus Visual Basic .NET
 C# Versus Java
 C# versus C++
 Conventions Used in This Book
 Support
 We'd Like to Hear from You
 Acknowledgements

I: The C# Language

1. C# and the .NET Framework
 1.1 The .NET Platform
 1.2 The .NET Framework
 1.3 Compilation and the MSIL
 1.4 The C# Language

2. Getting Started:"Hello World"
 2.1 Classes, Objects, and Types
 2.2 Developing "Hello World"
 2.3 Using the Visual Studio .NET Debugger

3. C# Language Fundamentals
 3.1 Types
 3.2 Variables and Constants
 3.3 Expressions
 3.4 Whitespace
 3.5 Statements
 3.6 Operators
 3.7 Namespaces
 3.8 Preprocessor Directives

4. Classes and Objects
 4.1 Defining Classes
 4.2 Creating Objects
 4.3 Using Static Members
 4.4 Destroying Objects
 4.5 Passing Parameters
 4.6 Overloading Methods and Constructors
 4.7 Encapsulating Data with Properties
 4.8 Readonly Fields

5. Inheritance and Polymorphism
 5.1 Specialization and Generalization
 5.2 Inheritance

 8

 5.3 Polymorphism
 5.4 Abstract Classes
 5.5 The Root of all Classes: Object
 5.6 Boxing and Unboxing Types
 5.7 Nesting Classes

6. Operator Overloading
 6.1 Using the operator Keyword
 6.2 Supporting Other .NET Languages
 6.3 Creating Useful Operators
 6.4 Logical Pairs
 6.5 The Equals Operator
 6.6 Conversion Operators

7. Structs
 7.1 Defining Structs
 7.2 Creating Structs

8. Interfaces
 8.1 Implementing an Interface
 8.2 Accessing Interface Methods
 8.3 Overriding Interface Implementations
 8.4 Explicit Interface Implementation

9. Arrays, Indexers, and Collections
 9.1 Arrays
 9.2 The foreach Statement
 9.3 Indexers
 9.4 Collection Interfaces
 9.5 Array Lists
 9.6 Queues
 9.7 Stacks
 9.8 Dictionaries

10. Strings and Regular Expressions
 10.1 Strings
 10.2 Regular Expressions

11. Handling Exceptions
 11.1 Throwing and Catching Exceptions
 11.2 Exception Objects
 11.3 Custom Exceptions
 11.4 Rethrowing Exceptions

12. Delegates and Events
 12.1 Delegates
 12.2 Events

II: Programming with C#

Programming C#

 9

13. Building Windows Applications
 13.1 Creating a Simple Windows Form
 13.2 Creating a Windows Form Application
 13.3 XML Documentation Comments
 13.4 Deploying an Application

14. Accessing Data with ADO.NET
 14.1 Relational Databases and SQL
 14.2 The ADO.Net Object Model
 14.3 Getting Started with ADO.NET
 14.4 Using ADO Managed Providers
 14.5 Working with Data-Bound Controls
 14.6 Changing Database Records
 14.7 ADO.NET and XML

15. ProgrammingWeb Applications with Web Forms
 15.1 Understanding Web Forms
 15.2 Creating a Web Form
 15.3 Adding Controls
 15.4 Data Binding
 15.5 Responding to Postback Events
 15.6 ASP.NET and C#

16. Programming Web Services
 16.1 SOAP, WSDL, and Discovery
 16.2 Building a Web Service
 16.3 Creating the Proxy

III: C# and the .NET CLR

17. Assemblies and Versioning
 17.1 PE Files
 17.2 Metadata
 17.3 Security Boundary
 17.4 Versioning
 17.5 Manifests
 17.6 Multi-Module Assemblies
 17.7 Private Assemblies
 17.8 Shared Assemblies

18. Attributes and Reflection
 18.1 Attributes
 18.2 Intrinsic Attributes
 18.3 Custom Attributes
 18.4 Reflection
 18.5 Reflection Emit

19. Marshaling and Remoting
 19.1 Application Domains
 19.2 Context

 10

 19.3 Remoting

20. Threads and Synchronization
 20.1 Threads
 20.2 Synchronization
 20.3 Race Conditions and Deadlocks

21. Streams
 21.1 Files and Directories
 21.2 Reading and Writing Data
 21.3 Asynchronous I/O
 21.4 Network I/O
 21.5 Web Streams
 21.6 Serialization
 21.7 Isolated Storage

22. Programming .NET and COM
 22.1 Importing ActiveX Controls
 22.2 Importing COM Components
 22.3 Exporting .NET Components
 22.4 P/Invoke
 22.5 Pointers

A. C# Keywords

Colophon

Programming C#

 11

Preface

Every 10 years or so a new approach to programming hits like a tsunami. In the early 1980s, the new
technologies were Unix, which could be run on a desktop, and a powerful new language called C,
developed by AT&T. The early 90's brought Windows and C++. Each of these developments
represented a sea change in the way you approached programming. .NET and C# are the next wave,
and this book is intended to help you ride it.

Microsoft has `bet the company' on .NET. When a company of their size and influence spends billions
of dollars and reorganizes its entire corporate structure to support a new platform, it is reasonable for
programmers to take notice. It turns out that .NET represents a major change in the way you'll think
about programming. It is, in short, a new development platform designed to facilitate object-oriented
Internet development. The programming language of choice for this object-oriented Internet-centric
platform is C# which builds on the lessons learned from C (high performance), C++ (object-oriented
structure), Java (security), and Visual Basic (rapid development) to create a new language ideally
suited for developing component-based n-tier distributed web applications.

About This Book

This book is a tutorial, both on C# and on writing .NET applications with C#. Part I focuses on the
details of the language. If you are already proficient in a programming language, you may be able to
skim this section, but be sure to read through Chapter 1, which provides an overview of the language
and the .NET platform. If you are new to programming, you'll want to read the book as the King of
Hearts instructed the White Rabbit: "Begin at the beginning, and go on till you come to the end: then
stop."[1]

[1] Alice's Adventures in Wonderland by Lewis Carroll.

How the Book Is Organized

Part I of this book concentrates on the C# language. Part II details how to write .NET programs, and
Part III describes how to use C# with the .NET Common Language Runtime library.

Part I

Chapter 1, introduces you to the C# language and the .NET platform.

Chapter 2 demonstrates a simple program, to provide a context for what follows, and introduces you
to the Visual Studio IDE and a number of C# language concepts.

Chapter 3, presents the basics of the language, from built-in data types to keywords.

Classes define new types and allow the programmer to extend the language so that you can better
model the problem you're trying to solve. Chapter 4, explains the components that form the heart and
soul of C#.

Classes can be complex representations and abstractions of things in the real world. Chapter 5,
discusses how classes relate and interact.

Chapter 6, teaches you how to add operators to your user-defined types.

Chapter 7 and Chapter 8 introduce Structs and Interfaces, respectively, both close cousins to
classes. Structs are lightweight objects, more restricted than classes, that make fewer demands on the
operating system and on memory. Interfaces are contracts; they describe how a class will work so that
other programmers can interact with your objects in well-defined ways.

 12

Object-oriented programs often create a great many objects. It is convenient to group these objects
and manipulate them together, and C# provides extensive support for collections. Chapter 9,
explores the collection classes provided by the Base Class Library and how to create your own
collection types as well.

Chapter 10 discusses how you can use C# to manipulate text Strings and Regular Expressions. Most
Windows and web programs interact with the user, and strings play a vital role in the user interface.

Chapter 11, explains how to deal with exceptions, which provide an object-oriented mechanism for
handling life's little emergencies.

Both Windows and web applications are event-driven. In C#, events are first-class members of the
language. Chapter 12, focuses on how events are managed, and how delegates, object-oriented
type-safe callback mechanisms, are used to support event handling.

Part II

This section and the next will be of interest to all readers, no matter how much experience you may
already have with other programming languages. These sections explore the details of the .NET
platform.

Part II details how to write .NET programs: both desktop applications with Windows Forms and web
applications with Web Forms. In addition, Part II describes database interactivity and how to create
web services.

On top of this infrastructure sits a high-level abstraction of the operating system, designed to facilitate
object-oriented software development. This top tier includes ASP.NET and Windows Forms. ASP.NET
includes both Web Forms, for rapid development of web applications, and Web Services, for creating
web objects with no user interface.

C# provides a Rapid Application Development (RAD) model similar to that previously available only in
Visual Basic. Chapter 13, describes how to use this RAD model to create professional-quality
Windows programs using the Windows Forms development environment.

Whether intended for the Web or for the desktop, most applications depend on the manipulation and
management of large amounts of data. Chapter 14, explains the ADO.NET layer of the .NET
Framework and explains how to interact with Microsoft SQL Server and other data providers.

Chapter 15 combines the RAD techniques demonstrated in Chapter 13 with the data techniques
from Chapter 14 to demonstrate Building Web Applications with Web Forms.

Not all applications have a user interface. Chapter 16 focuses on the second half of ASP.NET
technology: Web Services. A web service is a distributed application that provides functionality via
standard web protocols, most commonly XML and HTTP.

Part III

A runtime is an environment in which programs are executed. The Common Language Runtime (CLR)
is the heart of .NET. It includes a data typing system which is enforced throughout the platform and
which is common to all languages developed for .NET. The CLR is responsible for processes such as
memory management and reference counting of objects.

Another key feature of the .NET CLR is garbage collection. Unlike with traditional C/C++ programming,
in C# the developer is not responsible for destroying objects. Endless hours spent searching for
memory leaks are a thing of the past; the CLR cleans up after you when your objects are no longer in

Programming C#

 13

use. The CLR's garbage collector checks the heap for unreferenced objects and frees the memory
used by these objects.

The .NET platform and class library extends upward into the middle-level platform, where you find an
infrastructure of supporting classes, including types for interprocess communication, XML, threading,
I/O, security, diagnostics, and so on. The middle tier also includes the data-access components
collectively referred to as ADO.NET that are discussed in Chapter 14.

Part III of this book discusses the relationship of C# to the Common Language Runtime and the
Base Class Library.

Chapter 17, distinguishes between private and public assemblies and describes how assemblies are
created and managed. In .NET, an assembly is a collection of files that appears to the user to be a
single DLL or executable. An assembly is the basic unit of reuse, versioning, security, and deployment.

.NET assemblies include extensive metadata about classes, methods, properties, events, and so forth.
This metadata is compiled into the program and retrieved programmatically through reflection.
Chapter 18, explores how to add metadata to your code, how to create custom attributes, and how to
access this metadata through reflection. It goes on to discuss dynamic invocation, in which methods
are invoked with late (runtime) binding, and ends with a demonstration of reflection emit, an advanced
technique for building self-modifying code.

The .NET Framework was designed to support web-based and distributed applications. Components
created in C# may reside within other processes on the same machine or on other machines across
the network or across the Internet. Marshaling is the technique of interacting with objects that aren't
really there, while remoting comprises techniques for communicating with such objects. Chapter 19,
elaborates.

The Base Class Libraries provide extensive support for asynchronous I/O and other classes that make
explicit manipulation of threads unnecessary. However, C# does provide extensive support for
Threads and Synchronization, discussed in Chapter 20.

Chapter 21 discusses Streams, a mechanism not only for interacting with the user but also for
retrieving data across the Internet. This chapter includes full coverage of C# support for serialization:
the ability to write an object graph to disk and read it back again.

Chapter 22, explores interoperability—the ability to interact with COM components created outside
the managed environment of the .NET Framework. It is possible to call components from C#
applications into COM and to call components from COM into C#. Chapter 22 describes how this is
done.

The book concludes with an appendix of C# Keywords.

Who This Book Is For

This book was written for programmers who want to develop applications for the .NET platform. No
doubt, many of you already have experience in C++, Java, or Visual Basic (VB). Other readers may
have experience with other programming languages, and some readers may have no specific
programming experience, but perhaps have been working with HTML and other web technologies.
This book is written for all of you, though if you have no programming experience at all, you may find
some of it tough going.

C# Versus Visual Basic .NET

The premise of the .NET Framework is that all languages are created equal. To paraphrase George
Orwell, however, some languages are more equal than others. C# is an excellent language for .NET

 14

development. You will find it is an extremely versatile, robust and well-designed language. It is also
currently the language most often used in articles and tutorials about .NET programming.

It is likely that many VB programmers will choose to learn C#, rather than upgrading their skills to
VB .NET. This would not be surprising because the transition from VB6 to VB .NET is, arguably, nearly
as difficult as from VB6 to C#—and, whether it's fair or not, historically, C-family programmers have
had higher earning potential than VB programmers. As a practical matter, VB programmers have
never gotten the respect or compensation they deserve, and C# offers a wonderful chance to make a
potentially lucrative transition.

In any case, if you do have VB experience, welcome! This book was designed with you in mind too,
and I've tried to make the conversion easy.

C# Versus Java

Java Programmers may look at C# with a mixture of trepidation, glee, and resentment. It has been
suggested that C# is somehow a "rip-off" of Java. I won't comment on the religious war between
Microsoft and the "anyone but Microsoft" crowd except to acknowledge that C# certainly learned a
great deal from Java. But then Java learned a great deal from C++, which owed its syntax to C, which
in turn was built on lessons learned in other languages. We all stand on the shoulders of giants.

C# offers an easy transition for Java programmers; the syntax is very similar and the semantics are
familiar and comfortable. Java programmers will probably want to focus on the differences between
Java and C# in order to use the C# language effectively. I've tried to provide a series of markers along
the way (see the notes to Java programmers within the chapters).

C# versus C++

While it is possible to program in .NET with C++, it isn't easy or natural. Frankly, having worked for ten
years as a C++ programmer and written a dozen books on the subject, I'd rather have my teeth drilled
than work with managed C++. Perhaps it is just that C# is so much friendlier. In any case, once I saw
C# I never looked back.

Be careful, though; there are a number of small traps along the way, and I've been careful to mark
these with flashing lights and yellow cones. You'll find notes for C++ programmers throughout the
book.

Conventions Used in This Book

The following font conventions are used in this book:

Italic is used for:

• Pathnames, filenames, and program names.
• Internet addresses, such as domain names and URLs.
• New terms where they are defined.

Constant Width is used for:

• Command lines and options that should be typed verbatim.
• Names and keywords in program examples, including method names, variable names, and

class names.

Constant Width Italic is used for replaceable items, such as variables or optional elements, within
syntax lines or code.

Programming C#

 15

Constant Width Bold is used for emphasis within program code.

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about
the topic at hand.

This is a warning. It helps you solve and avoid annoying
problems.

Support

As part of my responsibilities as author, I provide ongoing support for my books through my web site.
You can also obtain the source code for all of the examples in Programming C# at my site:

http://www.LibertyAssociates.com

On this web site, you'll also find access to a book-support discussion group and a section set aside for
questions about C#. Before you post a question, however, please check to see if there is an FAQ
(Frequently Asked Questions) list or an errata file. If you check these files and still have a question,
then please go ahead and post to the discussion center.

The most effective way to get help is to ask a very precise question or even to create a very small
program that illustrates your area of concern or confusion. You may also want to check the various
newsgroups and discussion centers on the Internet. Microsoft offers a wide array of newsgroups, and
Developmentor (http://www.develop.com) has a wonderful .NET email discussion list as does
Charles Carroll at http://www.asplists.com.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list examples, errata, and any plans for future editions.
You can access this information at:

http://www.oreilly.com/catalog/progcsharp

You can also send messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To comment on the book, send email to:

 16

bookquestions@oreilly.com

For more information about this book and others, as well as additional technical articles and
discussion on the C# and the .NET Framework, see the O'Reilly & Associates web site:

http://www.oreilly.com

and the O'Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

Acknowledgements

To ensure that Programming C# is accurate, complete and targeted at the needs and interests of
professional programmers, I enlisted the help of some of the brightest programmers I know, including
Donald Xie, Dan Hurwitz, Seth Weiss, Sue Lynch, Cliff Gerald, and Tom Petr. Jim Culbert not only
reviewed the book and made extensive suggestions, but continually pointed me back at the practical
needs of working programmers. Jim's contributions to this book cannot be overstated.

Mike Woodring of Developmentor taught me more about the CLR in a week than I could have learned
on my own in six months. A number of folks at Microsoft and O'Reilly helped me wrestle with the twin
beasts of C# and .NET, including (but not limited to) Eric Gunnerson, Rob Howard, Piet Obermeyer,
Jonathan Hawkins, Peter Drayton, Brad Merrill, and Ben Albahari. Susan Warren may be one of the
most amazing programmers I've ever met; her help and guidance is deeply appreciated.

John Osborn signed me to O'Reilly, for which I will forever be in his debt. Valerie Quercia, Brian
McDonald, Jeff Holcomb, Claire Cloutier, and Tatiana Diaz helped make this book better than what I'd
written. Rob Romano created a number of the illustrations and improved the others.

Al Stevens and Eric Gunnerson reviewed the manuscript and saved me from a series of embarrassing
errors and omissions. I am deeply grateful.

Programming C#

 17

Part I: The C# Language

Chapter 1. C# and the .NET Framework

The goal of C# is to provide a simple, safe, modern, object-oriented, Internet-centric, high-
performance language for .NET development. C# is a new language, but it draws on the lessons
learned over the past three decades. In much the way that you can see in young children the features
and personalities of their parents and grandparents, you can easily see in C# the influence of Java,
C++, Visual Basic (VB), and other languages.

The focus of this book is the C# language and its use as a tool for programming on the .NET platform.
In my primers on C++,[1] I advocate learning the language first, without regard to Windows or Unix
programming. With C# that approach would be pointless. You learn C# specifically to create .NET
applications; pretending otherwise would miss the point of the language. Thus, this book does not
consider C# in a vacuum but places the language firmly in the context of Microsoft's .NET platform and
in the development of desktop and Internet applications.

[1] See Sams Teach Yourself C++ in 21 Days, also by Jesse Liberty.

This chapter introduces both the C# language and the .NET platform, including the .NET Framework.

1.1 The .NET Platform

When Microsoft announced C# in July 2000, its unveiling was part of a much larger event: the
announcement of the .NET platform. The .NET platform is, in essence, a new development framework
that provides a fresh application programming interface (API) to the services and APIs of classic
Windows operating systems, especially Windows 2000, while bringing together a number of disparate
technologies that emerged from Microsoft during the late 1990s. Among the latter are COM+
component services, the ASP web development framework, a commitment to XML and object-oriented
design, support for new web services protocols such as SOAP, WSDL, and UDDI, and a focus on the
Internet, all integrated within the DNA architecture.

Microsoft says it is devoting 80% of its research and development budget to .NET and its associated
technologies. The results of this commitment to date are impressive. For one thing, the scope of .NET
is huge. The platform consists of four separate product groups:

• A set of languages, including C# and Visual Basic .NET; a set of development tools, including
Visual Studio .NET; a comprehensive class library for building web services and web and
Windows applications; as well as the Common Language Runtime (CLR) to execute objects
built within this framework.

• A set of .NET Enterprise Servers, formerly known as SQL Server 2000, Exchange 2000,
BizTalk 2000, and so on, that provide specialized functionality for relational data storage,
email, B2B commerce, etc.

• An offering of commercial web services, recently announced as Project Hailstorm; for a fee,
developers can use these services in building applications that require knowledge of user
identity, etc.

• New .NET-enabled non-PC devices, from cell phones to game boxes.

1.2 The .NET Framework

Microsoft .NET supports not only language independence, but also language integration. This means
that you can inherit from classes, catch exceptions, and take advantage of polymorphism across
different languages. The .NET Framework makes this possible with a specification called the Common
Type System (CTS) that all .NET components must obey. For example, everything in .NET is an
object of a specific class that derives from the root class called System.Object. The CTS supports

 18

the general concept of classes, interfaces, delegates (which support callbacks), reference types, and
value types.

Additionally, .NET includes a Common Language Specification (CLS), which provides a series of basic
rules that are required for language integration. The CLS determines the minimum requirements for
being a .NET language. Compilers that conform to the CLS create objects that can interoperate with
one another. The entire Framework Class Library (FCL) can be used by any language that conforms
to the CLS.

The .NET Framework sits on top of the operating system, which can be any flavor of Windows,[2] and
consists of a number of components. Currently, the .NET Framework consists of:

[2] Because of the architecture of the CLR, the operating system can be potentially any flavor of Unix or another operating system
altogether.

• Four official languages: C#, VB .NET, Managed C++, and JScript .NET
• The Common Language Runtime (CLR), an object-oriented platform for Windows and web

development that all these languages share
• A number of related class libraries, collectively known as the Framework Class Library (FCL).

Figure 1-1 breaks down the .NET Framework into its system architectural components.

Figure 1-1. NET Framework architecture

The most important component of the .NET Framework is the CLR, which provides the environment in
which programs are executed. The CLR includes a virtual machine, analogous in many ways to the
Java virtual machine. At a high level, the CLR activates objects, performs security checks on them,
lays them out in memory, executes them, and garbage-collects them. (The Common Type System is
also part of the CLR.)

In Figure 1-1, the layer on top of the CLR is a set of framework base classes, followed by an
additional layer of data and XML classes, plus another layer of classes intended for web services, web
forms, and Windows forms. Collectively, these classes are known as the Framework Class Library
(FCL), one of the largest class libraries in history and one that provides an object-oriented API to all
the functionality that the .NET platform encapsulates. With more than 5,000 classes, the FCL
facilitates rapid development of desktop, client/server, and other web services and applications.

The set of framework base classes, the lowest level of the FCL, is similar to the set of classes in Java.
These classes support rudimentary input and output, string manipulation, security management,
network communication, thread management, text manipulation, reflection and collections functionality,
etc.

Programming C#

 19

Above this level is a tier of classes that extend the base classes to support data management and
XML manipulation. The data classes support persistent management of data that is maintained on
backend databases. These classes include the Structured Query Language (SQL) classes to let you
manipulate persistent data stores through a standard SQL interface. Additionally, a set of classes
called ADO.NET allows you to manipulate persistent data. The .NET Framework also supports a
number of classes to let you manipulate XML data and perform XML searching and translations.

Extending the framework base classes and the data and XML classes is a tier of classes geared
toward building applications using three different technologies: Web Services, Web Forms, and
Windows Forms. Web Services include a number of classes that support the development of
lightweight distributed components, which will work even in the face of firewalls and NAT software.
Because Web Services employ standard HTTP and SOAP as underlying communications protocols,
these components support plug-and-play across cyberspace.

Web Forms and Windows Forms allow you to apply Rapid Application Development techniques to
building web and Windows applications. Simply drag and drop controls onto your form, double-click a
control, and write the code to respond to the associated event.

For a more detailed description of the .NET Framework, see .NET Framework Essentials, by Thuan
Thai and Hoag Lam (published by O'Reilly & Associates, 2001).

1.3 Compilation and the MSIL

In .NET, programs are not compiled into executable files; they are compiled into Microsoft
Intermediate Language (MSIL) files, which the CLR then executes. The MSIL (often shortened to IL)
files that C# produces are identical to the IL files that other .NET languages produce; the platform is
language-agnostic. A key fact about the CLR is that it is common; the same runtime supports
development in C# as well as in VB .NET.

C# code is compiled into IL when you build your project. The IL is saved in a file on disk. When you
run your program, the IL is compiled again, using the Just In Time (JIT) compiler (a process often
called JIT'ing). The result is machine code, executed by the machine's processor.

The standard JIT compiler runs on demand. When a method is called, the JIT compiler analyzes the IL
and produces highly efficient machine code, which runs very fast. The JIT compiler is smart enough to
recognize when the code has already been compiled, so as the application runs, compilation happens
only as needed. As .NET applications run, they tend to become faster and faster, as the already-
compiled code is reused.

The CLS means that all .NET languages produce very similar IL code. As a result, objects created in
one language can be accessed and derived from another. Thus it is possible to create a base class in
VB .NET and derive from it in C#.

1.4 The C# Language

The C# language is disarmingly simple, with only about 80 keywords and a dozen built-in datatypes,
but C# is highly expressive when it comes to implementing modern programming concepts. C#
includes all the support for structured, component-based, object-oriented programming that one
expects of a modern language built on the shoulders of C++ and Java.

The C# language was developed by a small team led by two distinguished Microsoft engineers,
Anders Hejlsberg and Scott Wiltamuth. Hejlsberg is also known for creating Turbo Pascal, a popular
language for PC programming, and for leading the team that designed Borland Delphi, one of the first
successful integrated development environments for client/server programming.

At the heart of any object-oriented language is its support for defining and working with classes.
Classes define new types, allowing you to extend the language to better model the problem you are

 20

trying to solve. C# contains keywords for declaring new classes and their methods and properties, and
for implementing encapsulation, inheritance, and polymorphism, the three pillars of object-oriented
programming.

In C# everything pertaining to a class declaration is found in the declaration itself. C# class definitions
do not require separate header files or Interface Definition Language (IDL) files. Moreover, C#
supports a new XML style of inline documentation that greatly simplifies the creation of online and print
reference documentation for an application.

C# also supports interfaces, a means of making a contract with a class for services that the interface
stipulates. In C#, a class can inherit from only a single parent, but a class can implement multiple
interfaces. When it implements an interface, a C# class in effect promises to provide the functionality
the interface specifies.

C# also provides support for structs, a concept whose meaning has changed significantly from C++. In
C#, a struct is a restricted, lightweight type that, when instantiated, makes fewer demands on the
operating system and on memory than a conventional class does. A struct can't inherit from a class or
be inherited from, but a struct can implement an interface.

C# provides component-oriented features, such as properties, events, and declarative constructs
(called attributes). Component-oriented programming is supported by the CLR's support for storing
metadata with the code for the class. The metadata describes the class, including its methods and
properties, as well as its security needs and other attributes, such as whether it can be serialized; the
code contains the logic necessary to carry out its functions. A compiled class is thus a self-contained
unit; therefore, a hosting environment that knows how to read a class' metadata and code needs no
other information to make use of it. Using C# and the CLR, it is possible to add custom metadata to a
class by creating custom attributes. Likewise, it is possible to read class metadata using CLR types
that support reflection.

An assembly is a collection of files that appear to the programmer to be a single dynamic link library
(DLL) or executable (EXE). In .NET, an assembly is the basic unit of reuse, versioning, security, and
deployment. The CLR provides a number of classes for manipulating assemblies.

A final note about C# is that it also provides support for directly accessing memory using C++ style
pointers and keywords for bracketing such operations as unsafe, and for warning the CLR garbage
collector not to collect objects referenced by pointers until they are released.

Programming C#

 21

Chapter 2. Getting Started:"Hello World"

It is a time-honored tradition to start a programming book with a "Hello World" program. In this chapter,
we will create, compile, and run a simple "Hello World" program written in C#. The analysis of this brief
program will introduce key features of the C# language.

Example 2-1 illustrates the fundamental elements of a very elementary C# program.

Example 2-1. A simple "Hello World" program in C#
class HelloWorld
{
 static void Main()
 {
 // Use the system console object
 System.Console.WriteLine("Hello World");
 }
}

Compiling and running HelloWorld displays the words "Hello World" at the console. Let's take a
closer look at this simple program.

2.1 Classes, Objects, and Types

The essence of object-oriented programming is the creation of new types. A type represents a thing.
Sometimes the thing is abstract, such as a data table or a thread; sometimes it is more tangible, such
as a button in a window. A type defines the thing's general properties and behaviors.

If your program uses three instances of a button type in a window—say, an OK, a Cancel, and a Help
button—each instance will share certain properties and behaviors. Each, for example, will have a size
(though it might differ from that of its companions), a position (though again, it will almost certainly
differ in its position from the others), and a text label (e.g., "OK", "Cancel," and "Help"). Likewise, all
three buttons will have common behaviors, such as the ability to be drawn, activated, pressed, and so
forth. Thus, the details might differ among the individual buttons, but they are all of the same type.

As in many object-oriented programming languages, in C# a type is defined by a class, while the
individual instances of that class are known as objects. Later chapters will explain that there are other
types in C# besides classes, including enums, structs, and delegates, but for now the focus is on
classes.

The "Hello World" program declares a single type: the HelloWorld class. To define a C# type, you
declare it as a class using the class keyword, give it a name—in this case, HelloWorld—and then
define its properties and behaviors. The property and behavior definitions of a C# class must be
enclosed by open and closed braces ({}).

C++ programmers take note: there is no semicolon after the
closing brace.

2.1.1 Methods

A class has both properties and behaviors. Behaviors are defined with member methods; properties
are discussed in Chapter 3.

 22

A method is a function owned by your class. In fact, member methods are sometimes called member
functions. The member methods define what your class can do or how it behaves. Typically, methods
are given action names, such as WriteLine() or AddNumbers(). In the case shown here, however,
the class method has a special name, Main(), which doesn't describe an action but does designate
to the Common Language Runtime (CLR) that this is the main, or first method, for your class.

Unlike C++, Main is capitalized in C# and can return int or void.

The CLR calls Main() when your program starts. Main()is the entry point for your program, and
every C# program must have a Main() method.[1]

[1] It is technically possible to have multiple Main()methods in C#; in that case you use the /main compiler directive to tell C# which
class contains the Main()method that should serve as the entry point to the program.

Method declarations are a contract between the creator of the method and the consumer (user) of the
method. It is possible, even likely, that the creator and consumer will be the same programmer, but
this does not have to be so; it is possible that one member of a development team creates the method
and another programmer consumes (or uses) it.

To declare a method, you specify a return value type followed by a name. Method declarations also
require parentheses, whether the method accepts parameters or not. For example:

int myMethod(int size);

declares a method named myMethod that takes one parameter: an integer which will be referred to
within the method as size. My method returns an integer value. The return value type tells the
consumer of the method what kind of data the method will return when it finishes running.

Some methods do not return a value at all; these are said to return void, which is specified by the
void keyword. For example:

void myVoidMethod();

declares a method that returns void and takes no parameters. In C# you must always declare a
return type or void.

2.1.2 Comments

A C# program can also contain comments. Take a look at the first line after the opening brace:

// Use the system console object

The text begins with two forward slash marks (//). These designate a comment. A comment is a note
to the programmer and does not affect how the program runs. C# supports three types of comments.

The first type, shown here, indicates that all text to the right of the comment mark is to be considered a
comment, until the end of that line. This is known as a C++ style comment.

The second type of comment, known as a C-Style comment , begins with an open comment mark (/*)
and ends with a closed comment mark (*/). This allows comments to span more than one line without
having to have // characters at the beginning of each comment line, as shown in Example 2-2.

Example 2-2. Illustrating multiline comments
class Hello
{

Programming C#

 23

 static void Main()
 {
 /* Use the system console object
 as explained in the text in chapter 2 */
 System.Console.WriteLine("Hello World");
 }
}

It is possible to nest C++ style comments within C-style comments. For this reason, it is common to
use C++ style comments whenever possible, and to reserve the C-style comments for "commenting-
out" blocks of code.

The third and final type of comment that C# supports is used to associate external XML-based
documentation with your code, and is illustrated in Chapter 13.

2.1.3 Console Applications

"Hello World" is an example of a console program. A console application has no user interface (UI);
there are no list boxes, buttons, windows, and so forth. Text input and output is handled through the
standard console (typically a command or DOS window on your PC). Sticking to console applications
for now helps simplify the early examples in this book, and keeps the focus on the language itself. In
later chapters, we'll turn our attention to Windows and web applications, and at that time we'll focus on
the Visual Studio .NET UI design tools.

All that the Main() method does in this simple example is write the text "Hello World" to the monitor.
The monitor is managed by an object named Console. This Console object has a method
WriteLine() which takes a string (a set of characters) and writes it to the standard output. When
you run this program, a command or DOS screen will pop up on your computer monitor and display
the words "Hello World."

You invoke a method with the dot operator (.). Thus, to call the Console object's
WriteLine()method, you write Console.WriteLine(...), filling in the string to be printed.

2.1.4 Namespaces

Console is only one of a tremendous number of useful types that are part of the .NET Framework
Class Library (FCL). Each class has a name, and thus the FCL contains thousands of names, such as
ArrayList, Dictionary, FileSelector, DataError, Event, and so on. Names and names;
hundreds, thousands, even tens of thousands of names.

This presents a problem. No developer can possibly memorize all the names that the .NET Framework
uses, and sooner or later you are likely to create an object and give it a name that has already been
used. What will happen if you develop your own Dictionary class, only to discover that it conflicts
with the Dictionary class that .NET provides? Remember, each class in C# must have a unique
name.

You certainly could rename your Dictionary class mySpecialDictionary, for example, but that
is a losing battle. New Dictionary types are likely to be developed, and distinguishing between their
type names and yours would be a nightmare.

The solution to this problem is to create a namespace. A namespace restricts a name's scope, making
it meaningful only within the defined namespace.

Assume that I tell you that Jim is an engineer. The word "engineer" is used for many things in English,
and can cause confusion. Does he design buildings? Write software? Run a train?

 24

In English I might clarify by saying "he's a scientist," or "he's a train engineer." A C# programmer could
tell you that Jim is a science.engineer rather than a train.engineer. The namespace (in this
case, science or train) restricts the scope of the word which follows. It creates a "space" in which
that name is meaningful.

Further, it might happen that Jim is not just any kind of science.engineer. Perhaps Jim graduated
from MIT with a degree in software engineering, not civil engineering (are civil engineers especially
polite?). Thus, the object that is Jim might be defined more specifically as a
science.software.engineer. This classification implies that the namespace software is
meaningful within the namespace science, and that engineer in this context is meaningful within
the namespace software. If later you learn that Charlotte is a
transportation.train.engineer, you will not be confused as to what kind of engineer she is.
The two uses of engineer can coexist, each within its own namespace.

Similarly, if you learn that .NET has a Dictionary class within its System.Collections
namespace, and that I have also created a Dictionary class within a
ProgCSharp.DataStructures namespace, there is no conflict because each exists in its own
namespace.

In Example 2-1, the Console object's name is restricted to the System namespace by using the
code:

System.Console.WriteLine()

2.1.5 The Dot Operator (.)

In Example 2-1, the dot operator (.) is used both to access a method (and data) in a class (in this
case, the method WriteLine()), and to restrict the class name to a specific namespace (in this
case, to locate Console within the System namespace). This works well because in both cases we
are "drilling down" to find the exact thing we want. The top level is the System namespace (which
contains all the System objects that the Framework provides); the Console type exists within that
namespace, and the WriteLine() method is a member function of the Console type.

In many cases, namespaces are divided into subspaces. For example, the System namespace
contains a number of subnamespaces such as Configuration , Collections, Data, and so forth,
while the Collections namespace itself is divided into multiple subnamespaces.

Namespaces can help you organize and compartmentalize your types. When you write a complex C#
program, you might want to create your own namespace hierarchy, and there is no limit to how deep
this hierarchy can be. The goal of namespaces is to help you divide and conquer the complexity of
your object hierarchy.

2.1.6 The using Keyword

Rather than writing the word System before Console, you could specify that you will be using types
from the System namespace by writing the statement:

using System;

at the top of the listing, as shown in Example 2-3.

Example 2-3. The using keyword
using System;
class Hello

Programming C#

 25

{
 static void Main()
 {
 //Console from the System namespace
 Console.WriteLine("Hello World");
 }
}

Notice that the using System statement is placed before the HelloWorld class definition.

Although you can designate that you are using the System namespace, unlike with some languages
you cannot designate that you are using the System.Console object. Example 2-4 will not compile.

Example 2-4. Code that does not compile (not legal C#)
using System.Console;
class Hello
{
 static void Main()
 {
 //Console from the System namespace
 WriteLine("Hello World");
 }
}

This generates the compile error:

error CS0138: A using namespace directive can only be applied to namespaces;
'System.Console' is a class not a namespace

The using idiom can save a great deal of typing, but it can undermine the advantages of namespaces
by polluting the namespace with many undifferentiated names. A common solution is to use the
using keyword with the built-in namespaces and with your own corporate namespaces, but perhaps
not with third-party components.

2.1.7 Case Sensitivity

C# is case-sensitive, which means that writeLine is not the same as WriteLine, which in turn is
not the same as WRITELINE. Unfortunately, unlike in Visual Basic (VB), the C# development
environment will not fix your case mistakes; if you write the same word twice with different cases, you
might introduce a tricky-to-find bug into your program.

To prevent such a time-wasting and energy-depleting mistake, you should develop conventions for
naming your variables, functions, constants, and so forth. The convention in this book is to name
variables with camel notation (e.g., someVariableName), and to name functions, constants, and
properties with Pascal notation (e.g., SomeFunction).

The only difference between camel and Pascal notation is that in
Pascal notation, names begin with an uppercase letter.

 26

2.1.8 The static Keyword

The Main() method shown in Example 2-1 has one more designation. Just before the return type
declaration void (which, you will remember, indicates that the method does not return a value) you'll
find the keyword static:

static void Main()

The static keyword indicates that you can invoke Main()without first creating an object of type
Hello. This somewhat complex issue will be considered in much greater detail in subsequent
chapters. One of the problems with learning a new computer language is you must use some of the
advanced features before you fully understand them. For now, you can treat the declaration of the
Main() method as tantamount to magic.

2.2 Developing "Hello World"

There are at least two ways to enter, compile, and run the programs in this book: use the Visual
Studio .NET Integrated Development Environment (IDE), or use a text editor and a command-line
compiler (along with some additional command-line tools to be introduced later).

Although you can develop software outside Visual Studio .NET, the IDE provides enormous
advantages. These include indentation support, Intellisense word completion, color coding, and
integration with the help files. Most important, the IDE includes a powerful debugger and a wealth of
other tools.

Although this book tacitly assumes that you'll be using Visual Studio .NET, the tutorials focus more on
the language and the platform than on the tools. You can copy all the examples into a text editor such
as Windows Notepad or Emacs, save them as text files, and compile them with the C# command-line
compiler that is distributed with the .NET Framework SDK. Note that some examples in later chapters
use Visual Studio .NET tools for creating Windows Forms and Web Forms, but even these you can
write by hand in Notepad if you are determined to do things the hard way.

2.2.1 Editing "Hello World"

To create the "Hello World" program in the IDE, select Visual Studio .NET from your Start menu or a
desktop icon, and then choose File New Project from the menu toolbar. This will invoke the
New Project window (if you are using Visual Studio for the first time, the New Project window might
appear without further prompting). Figure 2-1 shows the New Project window.

Figure 2-1. Creating a C# console application in Visual Studio .NET

Programming C#

 27

To open your application, select Visual C# Projects in the Project Type window and select Console
Application in the Template window. You can now enter a name for the project and select a directory
in which to store your files. Click OK, and a new window will appear in which you can enter the code in
Example 2-1, as shown in Figure 2-2.

Figure 2-2. The editor opened to your new project

Notice that Visual Studio .NET creates a namespace based on the project name you've provided
(HelloWorld), and adds a using System statement because nearly every program you write will
need types from the System namespace.

Visual Studio .NET creates a class named Class1, which you are free to rename. When you rename
the class, be sure to rename the file as well (Class1.cs). To reproduce Example 2-1, for instance,
you change the name of Class1 to HelloWorld, and rename the Class1.cs file (listed in the Solution
Explorer window) to HelloWorld.cs.

 28

Finally, Visual Studio .NET creates a program skeleton, complete with a TODO comment to get you
started. To reproduce Example 2-1, remove the arguments (string[] args) and comments from
the Main() method. Then copy the following two lines into the body of Main():

// Use the system console object
System.Console.WriteLine("Hello World");

If you are not using Visual Studio .NET, open Notepad, type in the code from Example 2-1, and save
the file as a text file named Hello.cs.

2.2.2 Compiling and Running "Hello World"

There are many ways to compile and run the "Hello World" program from within Visual Studio .NET.
Typically you can accomplish every task by choosing commands from the Visual Studio .NET menu
toolbar, by using buttons, and, in many cases, by using key-combination shortcuts.

For example, to compile the "Hello World" program, press Ctrl-Shift-B or choose Build Build
Solution. As an alternative, you can click the Build button on the Build button bar. The Build button
icon is shown in Figure 2-3.

Figure 2-3. Build button icon

To run the "Hello World" program without the debugger you can press Ctrl-F5 on your keyboard,
choose Debug Start Without Debugging from the IDE menu toolbar, or press the Start
Without Debugging button on the IDE Build toolbar, as shown in Figure 2-4. You can run the program
without first explicitly building it; depending on how your options are set (Tools Options) the IDE
will save the file, build it, and run it, possibly asking you for permission at each step.

Figure 2-4. Start without debugging button

I strongly recommend that you spend some time exploring the
Visual Studio .NET development environment. This is your
principal tool as a .NET developer, and you want to learn to use it
well. Time invested up front in getting comfortable with Visual
Studio .NET will pay for itself many times over in the coming
months. Go ahead, put the book down and look at it. I'll wait for
you.

To compile and run the "Hello World" program using the C# command-line compiler:

1. Save Example 2-1 as the file hello.cs.
2. Open a command window (Start->Run and type in cmd).
3. From the command line, enter:

csc hello.cs

This step will build the executable (EXE) file. If the program contains errors, the compiler will
report them in the command window.

4. To run the program, enter:

Programming C#

 29

Hello

You should see the venerable words "Hello World" appear in your command window.

Just In Time Compilation

Compiling Hello.cs using csc creates an executable (EXE) file. Keep in mind,
however, that the .exe file contains op-codes written in Microsoft
Intermediate Language (MSIL), which is introduced in Chapter 1.

Interestingly, if you had written this application in VB .NET or any other
language compliant with the .NET Common Language Specification, you
would have compiled it into the same MSIL. By design Intermediate
Language (IL) code created from different languages is virtually
indistinguishable; which is the point of having a common language
specification in the first place.

In addition to producing the IL code (which is similar in spirit to Java's byte-
code), the compiler creates a read-only segment of the .exe file in which it
inserts a standard Win32 executable header. The compiler designates an
entry point within the read-only segment; the operating system loader jumps
to that entry point when you run the program, just as it would for any
Windows program.

The operating system cannot execute the IL code, however, and that entry
point does nothing but jump to the .NET Just In Time (JIT) compiler (also
introduced in Chapter 1). The JIT produces native CPU instructions, as you
might find in a normal .exe. The key feature of a JIT compiler, however, is
that functions are compiled only as they are used, Just In Time for
execution.

2.3 Using the Visual Studio .NET Debugger

Arguably, the single most important tool in any development environment is the debugger. The Visual
Studio debugger is very powerful, and it will be well worth whatever time you put into learning how to
use it well. That said, the fundamentals of debugging are very simple. The three key skills are:

• How to set a breakpoint and how to run to that breakpoint
• How to step into and over method calls
• How to examine and modify the value of variables, member data, and so forth

This chapter does not reiterate the entire debugger documentation, but these skills are so fundamental
that it does provide a crash (pardon the expression) course.

The debugger can accomplish the same thing in many ways—typically via menu choices, buttons, and
so forth. The simplest way to set a breakpoint is to click in the lefthand margin. The IDE will mark your
breakpoint with a red dot, as shown in Figure 2-5.

Figure 2-5. A breakpoint

 30

Discussing the debugger requires code examples. The code
shown here is from Chapter 5, and you are not expected to
understand how it works yet (though if you program in C++ or
Java, you'll probably understand the gist of it).

To run the debugger you can choose Debug->Start or just press F5. The program will compile and
run to the breakpoint, at which time it will stop and a yellow arrow will indicate the next statement for
execution, as in Figure 2-6.

Figure 2-6. The breakpoint hit

After you've hit your breakpoint it is easy to examine the values of various objects. For example, you
can find the value of the variable i just by putting the cursor over it and waiting a moment, as shown in
Figure 2-7.

Figure 2-7. Showing a value

The debugger IDE also provides a number of very useful windows, such as a Locals window which
displays the values of all the local variables (see Figure 2-8).

Figure 2-8. Locals window

Intrinsic types such as integers simply show their value (see i above), but objects show their type and
have a plus (+) sign. You can expand these objects to see their internal data, as shown in Figure 2-9.
You'll learn more about objects and their internal data in upcoming chapters.

Figure 2-9. Locals window object expanded

Programming C#

 31

You can step into the next method by pressing F11. Doing so steps into the DrawWindow() method
of the WindowClass, as shown in Figure 2-10.

Figure 2-10. Stepping into a method

You can see that the next execution statement is now WriteLine in DrawWindow(). The autos
window has updated to show the current state of the objects.

There is much more to learn about the debugger, but this brief introduction should get you started.
You can answer many programming questions by writing short demonstration programs and
examining them in the debugger. A good debugger is, in some ways, the single most powerful
teaching tool for a programming language.

 32

Programming C#

 33

Chapter 3. C# Language Fundamentals

Chapter 2 demonstrates a very simple C# program. Nonetheless, there is sufficient complexity in
creating even that little program that some of the pertinent details had to be skipped over. The current
chapter illuminates these details by delving more deeply into the syntax and structure of the C#
language itself.

This chapter discusses the type system in C#, drawing a distinction between built-in types (int, bool,
etc.) versus user-defined types (types you create as classes and interfaces). The chapter also covers
programming fundamentals such as how to create and use variables and constants. It then goes on to
introduce enumerations, strings, identifiers, expressions, and statements.

The second part of the chapter explains and demonstrates the use of branching, using the if,
switch, while, do...while, for, and foreach statements. Also discussed are operators,
including the assignment, logical, relational, and mathematical operators. This is followed by an
introduction to namespaces and a short tutorial on the C# precompiler.

Although C# is principally concerned with the creation and manipulation of objects, it is best to start
with the fundamental building blocks: the elements from which objects are created. These include the
built-in types that are an intrinsic part of the C# language as well as the syntactic elements of C#.

3.1 Types

C# is a strongly typed language. In a strongly typed language you must declare the type of each
object you create (e.g., integers, floats, strings, windows, buttons, etc.) and the compiler will help you
prevent bugs by enforcing that only data of the right type is assigned to those objects. The type of an
object signals to the compiler the size of that object (e.g., int indicates an object of 4 bytes) and its
capabilities (e.g., buttons can be drawn, pressed, and so forth).

Like C++ and Java, C# divides types into two sets: intrinsic (built-in) types that the language offers and
user-defined types that the programmer defines.

C# also divides the set of types into two other categories: value types and reference types.[1] The
principal difference between value and reference types is the manner in which their values are stored
in memory. A value type holds its actual value in memory allocated on the stack (or it is allocated as
part of a larger reference type object). The address of a reference type variable sits on the stack, but
the actual object is stored on the heap.

[1] All the intrinsic types are value types except for Object (discussed in Chapter 5) and String (discussed in Chapter 10). All user-
defined types are reference types except for structs (discussed in Chapter 7).

If you have a very large object, putting it on the heap has many advantages. Chapter 4 discusses the
various advantages and disadvantages of working with reference types; the current chapter focuses
on the intrinsic value types available in C#.

C# also supports C++ style pointer types, but these are rarely used, and only when working with
unmanaged code. Unmanaged code is code created outside of the .NET platform, such as COM
objects. Working with COM objects is discussed in Chapter 22.

3.1.1 Working with Built-in Types

The C# language offers the usual cornucopia of intrinsic (built-in) types one expects in a modern
language, each of which maps to an underlying type supported by the .NET Common Language
Specification (CLS). Mapping the C# primitive types to the underlying .NET type ensures that objects
created in C# can be used interchangeably with objects created in any other language compliant with
the .NET CLS, such as VB .NET.

 34

Each type has a specific and unchanging size. Unlike with C++, a C# int is always 4 bytes because it
maps to an Int32 in the .NET CLS. Table 3-1 lists the built-in value types offered by C#.

Table 3-1. C# built-in value types

Type Size (in
bytes)

.NET
Type Description

byte 1 Byte Unsigned (values 0-255).
char 1 Char Unicode characters.
bool 1 Boolean true or false.
sbyte 1 Sbyte Signed (values -128 to 127).
short 2 Int16 Signed (short) (values -32,768 to 32,767).
ushort 2 Uint16 Unsigned (short) (values 0 to 65,535).
int 4 Int32 Signed integer values between -2,147,483,647 and 2,147,483,647.
uint 4 Uint32 Unsigned integer values between 0 and 4,294,967,295.

float 4 Single Floating point number. Holds the values from approximately +/-1.5 *
10-45 to approximate +/-3.4 * 1038 with 7 significant figures.

double 8 Double
Double-precision floating point; holds the values from approximately
+/-5.0 * 10-324 to approximate +/-1.7 * 10308 with 15-16 significant
figures.

decimal 8 Decimal
Fixed-precision up to 28 digits and the position of the decimal point.
This is typically used in financial calculations. Requires the suffix "m"
or "M."

long 8 Int64 Signed integers ranging from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

ulong 8 Uint64 Unsigned integers ranging from 0 to 0xffffffffffffffff.

C and C++ programmers take note: Boolean variables can only
have the values true or false. Integer values do not equate to
Boolean values in C# and there is no implicit conversion.

In addition to these primitive types, C# has two other value types: enum (considered later in this
chapter) and struct (see Chapter 4). Chapter 4 also discusses other subtleties of value types
such as forcing value types to act as reference types through a process known as boxing, and that
value types do not "inherit."

The Stack and the Heap

A stack is a data structure used to store items on a last-in first-out basis (like
a stack of dishes at the buffet line in a restaurant). The stack refers to an
area of memory supported by the processor, on which the local variables are
stored.

In C#, value types (e.g., integers) are allocated on the stack—an area of
memory is set aside for their value, and this area is referred to by the name
of the variable.

Reference types (e.g., objects) are allocated on the heap. When an object is
allocated on the heap its address is returned, and that address is assigned

Programming C#

 35

to a reference.

The garbage collector destroys objects on the stack sometime after the
stack frame they are declared within ends. Typically a stack frame is defined
by a function. Thus, if you declare a local variable within a function (as
explained later in this chapter) the object will be marked for garbage
collection after the function ends.

Objects on the heap are garbage collected sometime after the final
reference to them is destroyed.

3.1.1.1 Choosing a built-in type

Typically you decide which size integer to use (short, int, or long) based on the magnitude of the
value you want to store. For example, a ushort can only hold values from 0 through 65,535, while a
ulong can hold values from 0 through 4,294,967,295.

That said, memory is fairly cheap, and programmer time is increasingly expensive; most of the time
you'll simply declare your variables to be of type int, unless there is a good reason to do otherwise.

The signed types are the numeric types of choice of most programmers unless they have a good
reason to use an unsigned value.

Although you might be tempted to use an unsigned short to double the positive values of a signed
short (moving the maximum positive value from 32,767 up to 65,535), it is easier and preferable to
use a signed integer (with a maximum value of 2,147,483,647).

It is better to use an unsigned variable when the fact that the value must be positive is an inherent
characteristic of the data. For example, if you had a variable to hold a person's age, you would use an
unsigned int because an age cannot be negative.

Float, double, and decimal offer varying degrees of size and precision. For most small fractional
numbers, float is fine. Note that the compiler assumes that any number with a decimal point is a
double unless you tell it otherwise. To assign a literal float, follow the number with the letter f.
(Assigning values to literals is discussed in detail later in this chapter.)

float someFloat = 57f;

The char type represents a Unicode character. char literals can be simple, Unicode, or escape
characters enclosed by single quote marks. For example, A is a simple character while \u0041 is a
Unicode character. Escape characters are special two-character tokens in which the first character is a
backslash. For example, \t is a horizontal tab. The common escape characters are shown in Table
3-2.

Table 3-2. Common escape characters
Char Meaning

\' Single quote
\" Double quote
\\ Backslash
\0 Null
\a Alert

 36

\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab

3.1.1.2 Converting built-in types

Objects of one type can be converted into objects of another type either implicitly or explicitly. Implicit
conversions happen automatically; the compiler takes care of it for you. Explicit conversions happen
when you "cast" a value to a different type. The semantics of an explicit conversion are "Hey! Compiler!
I know what I'm doing." This is sometimes called "hitting it with the big hammer" and can be very
useful or very painful, depending on whether your thumb is in the way of the nail.

Implicit conversions happen automatically and are guaranteed not to lose information. For example,
you can implicitly cast from a short int (2 bytes) to an int (4 bytes) implicitly. No matter what
value is in the short, it will not be lost when converting to an int:

short x = 5;
int y = x; // implicit conversion

If you convert the other way, however, you certainly can lose information. If the value in the int is
greater than 32,767 it will be truncated in the conversion. The compiler will not perform an implicit
conversion from int to short:

short x;
int y = 500;
x = y; // won't compile

You must explicitly convert using the cast operator:

short x;
int y = 500;
x = (short) y; // OK

All of the intrinsic types define their own conversion rules. At times it is convenient to define
conversion rules for your user-defined types, as discussed in Chapter 5.

3.2 Variables and Constants

A variable is a storage location with a type. In the preceding examples, both x and y are variables.
Variables can have values assigned to them, and that value can be changed programmatically.

WriteLine()

The .Net Framework provides a useful method for writing output to the
screen. The details of this method, System.Console.WriteLine(), will
become clearer as we progress through the book, but the fundamentals are
straightforward. You call the method as shown in Example 3-3, passing in
a string that you want printed to the console (the screen) and, optionally,

Programming C#

 37

parameters that will be substituted. In the following example:

System.Console.WriteLine("After assignment, myInt: {0}",
myInt);

the string "After assignment, myInt:" is printed as is, followed by the
value in the variable myInt. The location of the substitution parameter {0}
specifies where the value of the first output variable, myInt, will be
displayed, in this case at the end of the string. We'll see a great deal more
about Writeline() in coming chapters.

You create a variable by declaring its type and then giving it a name. You can initialize the variable
when you declare it, and you can assign a new value to that variable at any time, changing the value
held in the variable. This is illustrated in Example 3-1.

Example 3-1. Initializing and assigning a value to a variable
class Values
{
 static void Main()
 {
 int myInt = 7;
 System.Console.WriteLine("Initialized, myInt: {0}",
 myInt);
 myInt = 5;
 System.Console.WriteLine("After assignment, myInt: {0}",
 myInt);
 }
}

 Output:
Initialized, myInt: 7
After assignment, myInt: 5

Here we initialize the variable myInt to the value 7, display that value, reassign the variable with the
value 5, and display it again.

3.2.1 Definite Assignment

C# requires that variables be initialized before they are used. To test this rule, change the line that
initializes myInt in Example 3-1 to:

int myInt;

and save the revised program shown in Example 3-2.

Example 3-2. Using an uninitialized variable
class Values
{
 static void Main()
 {
 int myInt;
 System.Console.WriteLine
 ("Uninitialized, myInt: {0}",myInt);
 myInt = 5;

 38

 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 }
}

When you try to compile this listing, the C# compiler will display the following error message:

3.1.cs(6,55): error CS0165: Use of unassigned local
variable 'myInt'

It is not legal to use an uninitialized variable in C#. Example 3-2 is not legal.

So, does this mean you must initialize every variable in a program? In fact, no. You don't actually need
to initialize a variable, but you must assign a value to it before you attempt to use it. This is called
definite assignment and C# requires it. Example 3-3 illustrates a correct program.

Example 3-3. Assigning without initializing
class Values
{
 static void Main()
 {
 int myInt;
 myInt = 7;
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("Reassigned, myInt: {0}", myInt);
 }
}

3.2.2 Constants

A constant is a variable whose value cannot be changed. Variables are a powerful tool, but there are
times when you want to manipulate a defined value, one whose value you want to ensure remains
constant. For example, you might need to work with the Fahrenheit freezing and boiling points of water
in a program simulating a chemistry experiment. Your program will be clearer if you name the
variables that store these values FreezingPoint and BoilingPoint, but you do not want to permit
their values to be reassigned. How do you prevent reassignment? The answer is to use a constant.

Constants come in three flavors: literals, symbolic constants, and enumerations. In this assignment:

x = 32;

the value 32 is a literal constant. The value of 32 is always 32. You can't assign a new value to 32;
you can't make 32 represent the value 99 no matter how you might try.

Symbolic constants assign a name to a constant value. You declare a symbolic constant using the
const keyword and the following syntax:

const type identifier = value;

A constant must be initialized when it is declared, and once initialized it cannot be altered. For
example:

const int FreezingPoint = 32;

In this declaration, 32 is a literal constant and FreezingPoint is a symbolic constant of type int.
Example 3-4 illustrates the use of symbolic constants.

Programming C#

 39

Example 3-4. Using symbolic constants
class Values
{
 static void Main()
 {
 const int FreezingPoint = 32; // degrees Farenheit
 const int BoilingPoint = 212;

 System.Console.WriteLine("Freezing point of water: {0}",
 FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 BoilingPoint);
 //BoilingPoint = 21;

 }
}

Example 3-4 creates two symbolic integer constants: FreezingPoint and BoilingPoint. As a
matter of style, constant names are written in Pascal notation, but this is certainly not required by the
language.

These constants serve the same purpose as always using the literal values 32 and 212 for the
freezing and boiling points of water in expressions that require them, but because these constants
have names they convey far more meaning. Also, if you decide to switch this program to Celsius, you
can reinitialize these constants at compile time, to 0 and 100, respectively; and all the rest of the code
ought to continue to work.

To prove to yourself that the constant cannot be reassigned, try uncommenting the last line of the
program (shown in bold). When you recompile you should receive this error:

error CS0131: The left-hand side of an assignment must be
a variable, property or indexer

3.2.3 Enumerations

Enumerations provide a powerful alternative to constants. An enumeration is a distinct value type,
consisting of a set of named constants (called the enumerator list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might wish to add a number of other useful constants as well to this list, such as:

const int LightJacketWeather = 60;
const int SwimmingWeather = 72;
const int WickedCold = 0;

This process is somewhat cumbersome, and there is no logical connection among these various
constants. C# provides the enumeration to solve these problems:

enum Temperatures
{
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,

 40

 SwimmingWeather = 72,
 BoilingPoint = 212,
}

Every enumeration has an underlying type, which can be any integral type (integer, short, long,
etc.) except for char. The technical definition of an enumeration is:

[attributes] [modifiers] enum identifier
 [:base-type] {enumerator-list};

The optional attributes and modifiers are considered later in this book. For now, let's focus on the rest
of this declaration. An enumeration begins with the keyword enum, which is generally followed by an
identifier, such as:

enum Temperatures

The base type is the underlying type for the enumeration. If you leave out this optional value (and
often you will) it defaults to integer, but you are free to use any of the integral types (e.g., ushort,
long) except for char. For example, the following fragment declares an enumeration of unsigned
integers (uint):

enum ServingSizes :uint
{
 Small = 1,
 Regular = 2,
 Large = 3
}

Notice that an enum declaration ends with the enumerator list. The enumerator list contains the
constant assignments for the enumeration, each separated by a comma.

Example 3-5 rewrites Example 3-4 to use an enumeration.

Example 3-5. Using enumerations to simplify your code
class Values
{

 enum Temperatures
 {
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWEather = 72,
 BoilingPoint = 212,
 }

 static void Main()
 {

 System.Console.WriteLine("Freezing point of water: {0}",
 Temperatures.FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 Temperatures.BoilingPoint);

 }
}

Programming C#

 41

As you can see, an enum must be qualified by its enumtype (e.g., Temperatures.WickedCold).

Each constant in an enumeration corresponds to a numerical value, in this case, an integer. If you
don't specifically set it otherwise, the enumeration begins at 0 and each subsequent value counts up
from the previous.

If you create the following enumeration:

enum SomeValues
{
 First,
 Second,
 Third = 20,
 Fourth
}

the value of First will be 0, Second will be 1, Third will be 20, and Fourth will be 21.

Enums are formal types; therefore an explicit conversion is required to convert between an enum type
and an integral type.

C++ programmers take note: C#'s use of enums is subtly different
from C++, which restricts assignment to an enum type from an
integer but allows an enum to be promoted to an integer for
assignment of an enum to an integer.

3.2.4 Strings

It is nearly impossible to write a C# program without creating strings. A string object holds a string of
characters.

You declare a string variable using the string keyword much as you would create an instance of any
object:

string myString;

A string literal is created by placing double quotes around a string of letters:

"Hello World"

It is common to initialize a string variable with a string literal:

string myString = "Hello World";

Strings will be covered in much greater detail in Chapter 10.

3.2.5 Identifiers

Identifiers are names that programmers choose for their types, methods, variables, constants, objects,
and so forth. An identifier must begin with a letter or an underscore.

The Microsoft naming conventions suggest using camel notation (initial lowercase such as someName)
for variable names and Pascal notation (initial uppercase such as SomeOtherName) for method
names and most other identifiers.

 42

Microsoft no longer recommends using Hungarian notation (e.g.,
iSomeInteger) or underscores (e.g., SOME_VALUE).

Identifiers cannot clash with keywords. Thus, you cannot create a variable named int or class. In
addition, identifiers are case-sensitive, so C# treats myVariable and MyVariable as two different
variable names.

3.3 Expressions

Statements that evaluate to a value are called expressions. You may be surprised how many
statements do evaluate to a value. For example, an assignment such as:

myVariable = 57;

is an expression; it evaluates to the value assigned, in this case, 57.

Note that the preceding statement assigns the value 57 to the variable myVariable. The assignment
operator (=) does not test equality; rather it causes whatever is on the right side (57) to be assigned to
whatever is on the left side (myVariable). All of the C# operators (including assignment and equality)
are discussed later in this chapter (see Section 3.6).

Because myVariable = 57 is an expression that evaluates to 57, it can be used as part of another
assignment operator, such as:

mySecondVariable = myVariable = 57;

What happens in this statement is that the literal value 57 is assigned to the variable myVariable.
The value of that assignment (57) is then assigned to the second variable, mySecondVariable.
Thus, the value 57 is assigned to both variables. You can thus initialize any number of variables to the
same value with one statement:

a = b = c = d = e = 20;

3.4 Whitespace

In the C# language, spaces, tabs, and newlines are considered to be " whitespace" (so named
because you see only the white of the underlying "page"). Extra whitespace is generally ignored in C#
statements. Thus, you can write:

myVariable = 5;

or:

myVariable = 5;

and the compiler will treat the two statements as identical.

The exception to this rule is that whitespace within strings is not ignored. If you write:

Console.WriteLine("Hello World")

each space between "Hello" and "World" is treated as another character in the string.

Programming C#

 43

Most of the time the use of whitespace is intuitive. The key is to use whitespace to make the program
more readable to the programmer; the compiler is indifferent.

However, there are instances in which the use of whitespace is quite significant. Although the
expression:

int x = 5;

is the same as:

int x=5;

it is not the same as:

intx=5;

The compiler knows that the whitespace on either side of the assignment operator is extra, but the
whitespace between the type declaration int and the variable name x is not extra, and is required.
This is not surprising; the whitespace allows the compiler to parse the keyword int rather than some
unknown term intx. You are free to add as much or as little whitespace between int and x as you
care to, but there must be at least one whitespace character (typically a space or tab).

Visual Basic programmers take note: in C# the end-of-line has no
special significance; statements are ended with semicolons, not
newline characters. There is no line continuation character
because none is needed.

3.5 Statements

In C# a complete program instruction is called a statement. Programs consist of sequences of C#
statements. Each statement must end with a semicolon (;). For example:

int x; // a statement
x = 23; // another statement
int y = x; // yet another statement

C# statements are evaluated in order. The compiler starts at the beginning of a statement list and
makes its way to the bottom. This would be entirely straightforward, and terribly limiting, were it not for
branching. There are two types of branches in a C# program: unconditional branching and conditional
branching.

Program flow is also affected by looping and iteration statements, which are signaled by the keywords
for , while, do, in, and foreach. Iteration is discussed later in this chapter. For now, let's consider
some of the more basic methods of conditional and unconditional branching.

3.5.1 Unconditional Branching Statements

An unconditional branch is created in one of two ways. The first way is by invoking a method. When
the compiler encounters the name of a method it stops execution in the current method and branches
to the newly "called" method. When that method returns a value, execution picks up in the original
method on the line just below the method call. Example 3-6 illustrates.

Example 3-6. Calling a method
using System;

 44

class Functions
{
 static void Main()
 {
 Console.WriteLine("In Main! Calling SomeMethod()...");
 SomeMethod();
 Console.WriteLine("Back in Main().");

 }
 static void SomeMethod()
 {
 Console.WriteLine("Greetings from SomeMethod!");
 }
}

Output:

In Main! Calling SomeMethod()...
Greetings from SomeMethod!
Back in Main().

Program flow begins in Main() and proceeds until SomeMethod() is invoked (invoking a method
is sometimes referred to as "calling" the method). At that point program flow branches to the method.
When the method completes, program flow resumes at the next line after the call to that method.

The second way to create an unconditional branch is with one of the unconditional branch keywords:
goto, break, continue, return, or statementhrow. Additional information about the first four
jump statements is provided in Section 3.5.2.3, Section 3.5.3.1, and Section 3.5.3.6, later in this
chapter. The final statement, throw, is discussed in Chapter 9.

3.5.2 Conditional Branching Statements

A conditional branch is created by a conditional statement, which is signaled by keywords such as if,
else, or switch. A conditional branch occurs only if the condition expression evaluates true.

3.5.2.1 If...else statements

If...else statements branch based on a condition. The condition is an expression, tested in the
head of the if statement. If the condition evaluates true, the statement (or block of statements) in the
body of the if statement is executed.

If statements may contain an optional else statement. The else statement is executed only if the
expression in the head of the if statement evaluates false:

if (expression)
 statement1
[else
 statement2]

This is the kind of description of the if statement you are likely to find in your compiler documentation.
It shows you that the if statement takes an expression (a statement that returns a value) in
parentheses, and executes statement1 if the expression evaluates true. Note that statement1 can
actually be a block of statements within braces.

Programming C#

 45

You can also see that the else statement is optional, as it is enclosed in square brackets. Although
this gives you the syntax of an if statement, an illustration will make its use clear. Example 3-7
illustrates.

Example 3-7. If . . . else statements
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 if (valueOne > valueTwo)
 {
 Console.WriteLine(
 "ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 Console.WriteLine(
 "ValueTwo: {0} larger than ValueOne: {1}",
 valueTwo,valueOne);
 }

 valueOne = 30; // set valueOne higher

 if (valueOne > valueTwo)
 {
 valueTwo = valueOne++;
 Console.WriteLine("\nSetting valueTwo to valueOne value, ");
 Console.WriteLine("and incrementing ValueOne.\n");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 valueOne = valueTwo;
 Console.WriteLine("Setting them equal. ");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 }
}

In Example 3-7, the first if statement tests whether valueOne is greater than valueTwo. The
relational operators such as greater than (>), less than (<), and equal to (==) are fairly intuitive to use.

The test of whether valueOne is greater than valueTwo evaluates false (because valueOne is 10
and valueTwo is 20 and so valueOne is not greater than valueTwo). The else statement is
invoked, printing the statement:

ValueTwo: 20 is larger than ValueOne: 10

The second if statement evaluates true and all the statements in the if block are evaluated, causing
two lines to print:

 46

ValueOne was larger. Setting valueTwo to old ValueOne value,
and incrementing ValueOne.

ValueOne: 31 ValueTwo: 30

Statement Blocks

Anyplace that C# expects a statement, you can substitute a statement block.
A statement block is a set of statements surrounded by braces.

Thus, where you might write:

if (someCondition)
 someStatement;

you can instead write:

if(someCondition)
{
 statementOne;
 statementTwo;
 statementThree;
}

3.5.2.2 Nested if statements

It is possible, and not uncommon, to nest if statements to handle complex conditions. For example,
suppose you need to write a program to evaluate the temperature, and specifically to return the
following types of information:

• If the temperature is 32 degrees or lower, the program should warn you about ice on the road.
• If the temperature is exactly 32 degrees, the program should tell you that there may be ice

patches.
• If the temperature is higher than 32 degrees, the program should assure you that there is no

ice.

There are many good ways to write this program. Example 3-8 illustrates one approach, using
nested if statements.

Example 3-8. Nested if statements
using System;
class Values
{
 static void Main()
 {
 int temp = 32;

 if (temp <= 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 if (temp == 32)
 {
 Console.WriteLine(
 "Temp exactly freezing, beware of water.");
 }

Programming C#

 47

 else
 {
 Console.WriteLine("Watch for black ice! Temp: {0}", temp);
 }
 }

 }
}

The logic of Example 3-8 is that it tests whether the temperature is less than or equal to 32. If so, it
prints a warning:

if (temp <= 32)
{
 Console.WriteLine("Warning! Ice on road!");

The program then checks whether the temp is equal to 32 degrees. If so, it prints one message; if not,
the temp must be less than 32 and the program prints the second message. Notice that this second
if statement is nested within the first if, so the logic of the else is: "since it has been established
that the temp is less than or equal to 32, and it isn't equal to 32, it must be less than 32."

All Operators Are Not Created Equal

A closer examination of the second if statement in Example 3-8 reveals a
common potential problem. This if statement tests whether the temperature
is equal to 32:

if (temp == 32)

In C and C++, there is an inherent danger in this kind of statement. It's not
uncommon for novice programmers to use the assignment operator rather
than the equals operator, instead creating the statement:

if (temp = 32)

This mistake would be difficult to notice, and the result would be that 32 was
assigned to temp, and then 32 would be returned as the value of the
assignment statement. Because any nonzero value evaluates to true in C
and C#, the if statement would return true. The side effect would be that
temp would be assigned a value of 32 whether or not it originally had that
value. This is a common bug that could easily be overlooked—if the
developers of C# had not anticipated it!

C# solves this problem by requiring that if statements accept only Boolean
values. The 32 returned by the assignment is not Boolean (it is an integer)
and, in C#, there is no automatic conversion from 32 to true. Thus, this bug
would be caught at compile time, which is a very good thing, and a
significant improvement over C++—at the small cost of not allowing implicit
conversions from integers to Booleans!

3.5.2.3 Switch statements: an alternative to nested ifs

 48

Nested if statements are hard to read, hard to get right, and hard to debug. When you have a
complex set of choices to make, the switch statement is a more powerful alternative. The logic of a
switch statement is this: "pick a matching value and act accordingly."

switch (expression)
{
 case constant-expression:
 statement
 jump-statement
 [default: statement]
}

As you can see, like an if statement, the expression is put in parentheses in the head of the switch
statement. Each case statement then requires a constant expression; that is, a literal or symbolic
constant or an enumeration.

If a case is matched, the statement (or block of statements) associated with that case is executed.
This must be followed by a jump statement. Typically, the jump statement is break, which transfers
execution out of the switch. An alternative is a goto statement, typically used to jump into another
case, as illustrated in Example 3-9.

Example 3-9. The switch statement
using System;

class Values
{
 static void Main()
 {
 const int Democrat = 0;
 const int LiberalRepublican = 1;
 const int Republican = 2;
 const int Libertarian = 3;
 const int NewLeft = 4;
 const int Progressive = 5;

 int myChoice = Libertarian;

 switch (myChoice)
 {
 case Democrat:
 Console.WriteLine("You voted Democratic.\n");
 break;
 case LiberalRepublican: // fall through
 //Console.WriteLine(
 //"Liberal Republicans vote Republican\n");
 case Republican:
 Console.WriteLine("You voted Republican.\n");
 break;
 case NewLeft:
 Console.Write("NewLeft is now Progressive");
 goto case Progressive;
 case Progressive:
 Console.WriteLine("You voted Progressive.\n");
 break;
 case Libertarian:
 Console.WriteLine("Libertarians are voting Republican");
 goto case Republican;
 default:

Programming C#

 49

 Console.WriteLine("You did not pick a valid choice.\n");
 break;
 }

 Console.WriteLine("Thank you for voting.");

 }
}

In this whimsical example, we create constants for various political parties. We then assign one value
(Libertarian) to the variable myChoice and switch on that value. If myChoice is equal to
Democrat, we print out a statement. Notice that this case ends with break. Break is a jump
statement that takes us out of the switch statement and down to the first line after the switch, on which
we print "Thank you for voting."

The value LiberalRepublican has no statement under it, and it "falls through" to the next
statement: Republican. If the value is LiberalRepublican or Republican, the Republican
statements will execute. You can only "fall through" like this if there is no body within the statement. If
you uncomment the WriteLine under LiberalRepublican, this program will not compile.

C and C++ programmers take note: you cannot fall through to the
next case if the case statement is not empty. Thus, you can write
the following:

case 1: // fall through ok
case 2:

In this example, case 1 is empty. You cannot, however, write the
following:

case 1:
 TakeSomeAction();
 // fall through not OK
case 2:

Here case 1 has a statement in it, and you cannot fall through. If
you want case 1 to fall through to case 2, you must explicitly
use goto:

case 1: TakeSomeAction();
goto case 2
// explicit fall through
case 2:

If you do need a statement but you then want to execute another case, you can use the goto
statement, as shown in the NewLeft case:

goto case Progressive;

It is not required that the goto take you to the case immediately following. In the next instance, the
Libertarian choice also has a goto, but this time it jumps all the way back up to the Republican
case. Because our value was set to Libertarian, this is just what occurs. We print out the

 50

Libertarian statement, then go to the Republican case, print that statement, and then hit the
break, taking us out of the switch and down to the final statement. The output for all of this is:

Libertarians are voting Republican
You voted Republican.

Thank you for voting.

Note the default case, excerpted from Example 3-9:

default:
 Console.WriteLine(
 "You did not pick a valid choice.\n");

If none of the cases matches, the default case will be invoked, warning the user of the mistake.

3.5.2.4 Switch on string statements

In the previous example, the switch value was an integral constant. C# offers the ability to switch on a
string, allowing you to write:

case "Libertarian":

If the strings match, the case statement is entered.

3.5.3 Iteration Statements

C# provides an extensive suite of iteration statements, including for, while and do . . . while
loops, as well as foreach loops (new to the C family but familiar to VB programmers). In addition, C#
supports the goto, break , continue,and return jump statements.

3.5.3.1 The goto statement

The goto statement is the seed from which all other iteration statements have been germinated.
Unfortunately, it is a semolina seed, producer of spaghetti code and endless confusion. Most
experienced programmers properly shun the goto statement, but in the interest of completeness,
here's how you use it:

1. Create a label.
2. goto that label.

The label is an identifier followed by a colon. The goto command is typically tied to a condition, as
illustrated in Example 3-10.

Example 3-10. Using goto
using System;
public class Tester
 {

 public static int Main()
 {
 int i = 0;
 repeat: // the label
 Console.WriteLine("i: {0}",i);
 i++;

Programming C#

 51

 if (i < 10)
 goto repeat; // the dasterdly deed
 return 0;
 }
 }

If you were to try to draw the flow of control in a program that makes extensive use of goto
statements, the resulting morass of intersecting and overlapping lines looks like a plate of spaghetti;
hence the term "spaghetti code." It was this phenomenon that led to the creation of alternatives, such
as the while loop. Many programmers feel that using goto in anything other than a trivial example
creates confusion and difficult-to-maintain code.

3.5.3.2 The while loop

The semantics of the while loop are "while this condition is true, do this work."

The syntax is:

while (expression) statement

As usual, an expression is any statement that returns a value. While statements require an
expression that evaluates to a Boolean (true /false) value, and that statement can, of course, be a
block of statements. Example 3-11 updates Example 3-10, using a while loop.

Example 3-11. Using a while loop
using System;
public class Tester
 {

 public static int Main()
 {
 int i = 0;
 while (i < 10)
 {
 Console.WriteLine("i: {0}",i);
 i++;
 }
 return 0;
 }
 }

The code in Example 3-11 produces results identical to the code in Example 3-10, but the logic is
a bit clearer. The while statement is nicely self-contained, and it reads like an English sentence:
"while i is less than 10, print this message and increment i."

Notice that the while loop tests the value of i before entering the loop. This ensures that the loop will
not run if the condition tested is false; thus if i is initialized to 11, the loop will never run.

3.5.3.3 The do . . . while loop

There are times when a while loop might not serve your purpose. In certain situations, you might
want to reverse the semantics from "run while this is true" to the subtly different "do this, while this
condition remains true." In other words, take the action, and then, after the action is completed, check
the condition. For this you will use the do...while loop.

do expression while statement

 52

An expression is any statement that returns a value. An example of the do...while loop is shown in
Example 3-12.

Example 3-12. The do...while loop
using System;
public class Tester
{

 public static int Main()
 {
 int i = 11;
 do
 {
 Console.WriteLine("i: {0}",i);
 i++;
 } while (i < 10);
 return 0;
 }
}

Here i is initialized to 11 and the while test fails, but only after the body of the loop has run once.

3.5.3.4 The for loop

A careful examination of the while loop in Example 3-12 reveals a pattern often seen in iterative
statements: initialize a variable (i = 0), test the variable (i < 10), execute a series of statements,
and increment the variable (i++). The for loop allows you to combine all these steps in a single loop
statement:

for ([initializers]; [expression]; [iterators]) statement

The for loop is illustrated in Example 3-13.

Example 3-13. The for loop
using System;
public class Tester
{

 public static int Main()
 {
 for (int i=0;i<100;i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 return 0;
 }
}

Output:

0 0
1 2 3 4 5 6 7 8 9 10 10

Programming C#

 53

11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99

This for loop makes use of the modulus operator described later in this chapter. The value of i is
printed until i is a multiple of 10.

if (i%10 == 0)

A tab is then printed, followed by the value. Thus the tens (20,30,40, etc.) are called out on the right
side of the output.

The individual values are printed using Console.Write, which is much like WriteLine but which
does not enter a newline character, allowing the subsequent writes to occur on the same line.

A few quick points to notice: in a for loop the condition is tested before the statements are executed.
Thus, in the example, i is initialized to zero, then i is tested to see if it is less than 100. Because i <
100 returns true, the statements within the for loop are executed. After the execution, i is
incremented (i++).

Note that the variable i is scoped to within the for loop (that is, the variable i is visible only within the
for loop). Example 3-14 will not compile:

Example 3-14. Scope of variables declared in a for loop
using System;
public class Tester
{

 public static int Main()
 {
 for (int i=0; i<100; i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 Console.WriteLine("\n Final value of i: {0}", i);
 return 0;
 }
}

The line shown in bold fails, as the variable i is not available outside the scope of the for loop itself.

Whitespace and Braces

There is much controversy about the use of whitespace in programming. For

 54

example, the for loop shown in Example 3-14:

 for (int i=0;i<100;i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {

 Console.WriteLine("\t{0}", i);
 }
 }

could well be written with more space between the operators:

 for (int i = 0; i < 100; i++)
 {
 Console.Write("{0} ", i);
 if (i % 10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }

Because single for and if statements do not need braces, we can also
rewrite the same listing as

 for (int i = 0; i < 100; i++)
 Console.Write("{0} ", i);

 if (i % 10 == 0)
 Console.WriteLine("\t{0}", i);

Much of this is a matter of personal taste. Although I find whitespace can
make code more readable, too much space can cause confusion. In this
book, I tend to compress the whitespace to save room on the printed page.

3.5.3.5 The foreach statement

The foreach statement is new to the C family of languages; it is used for looping through the
elements of an array or a collection. Discussion of this incredibly useful statement is deferred until
Chapter 7.

3.5.3.6 The continue and break statements

There are times when you would like to restart a loop without executing the remaining statements in
the loop. The continue statement causes the loop to return to the top and continue executing.

The obverse side of that coin is the ability to break out of a loop and immediately end all further work
within the loop. For this purpose the break statement exists.

Programming C#

 55

Break and continue create multiple exit points and make for
hard-to-understand, and thus hard-to-maintain, code. Use them
with some care.

Example 3-15 illustrates the mechanics of continue and break. This code, suggested to me by
one of my technical reviewers, Donald Xie, is intended to create a traffic signal processing system.
The signals are simulated by entering numerals and uppercase characters from the keyboard, using
Console.ReadLine, which reads a line of text from the keyboard.

The algorithm is simple: receipt of a "0" (zero) means normal conditions, and no further action is
required except to log the event. (In this case, the program simply writes a message to the console; a
real application might enter a time-stamped record in a database.) On receipt of an Abort signal (here
simulated with an uppercase "A"), the problem is logged and the process is ended. Finally, for any
other event, an alarm is raised, perhaps notifying the police. (Note that this sample does not actually
notify the police, though it does print out a harrowing message to the console.) If the signal is "X," the
alarm is raised but the while loop is also terminated.

Example 3-15. Using continue and break
using System;
public class Tester
{
 public static int Main()
 {
 string signal = "0"; // initialize to neutral
 while (signal != "X") // X indicates stop
 {
 Console.Write("Enter a signal: ");
 signal = Console.ReadLine();

 // do some work here, no matter what signal you
 // receive
 Console.WriteLine("Received: {0}", signal);

 if (signal == "A")
 {
 // faulty - abort signal processing
 // Log the problem and abort.
 Console.WriteLine("Fault! Abort\n");
 break;
 }

 if (signal == "0")
 {
 // normal traffic condition
 // log and continue on
 Console.WriteLine("All is well.\n");
 continue;
 }

 // Problem. Take action and then log the problem
 // and then continue on
 Console.WriteLine("{0} -- raise alarm!\n",
 signal);
 }
 return 0;
 }
}

 56

Output:

Enter a signal: 0
The following signal was received: 0
All is well.

Enter a signal: B
The following signal was received: B
B -- raise alarm!

Enter a signal: A
The following signal was received: A
Faulty processing. Abort

Press any key to continue

The point of this exercise is that when the A signal is received, the action in the if statement is taken
and then the program breaks out of the loop, without raising the alarm. When the signal is 0 it is also
undesirable to raise the alarm, so the program continues from the top of the loop.

3.6 Operators

An operator is a symbol that causes C# to take an action. The C# primitive types (e.g., int) support a
number of operators such as assignment, increment, and so forth. Their use is highly intuitive, with the
possible exception of the assignment operator (=) and the equality operator (==), which are often
confused.

3.6.1 The Assignment Operator (=)

Section 3.3, earlier in this chapter, demonstrates the use of the assignment operator. This symbol
causes the operand on the left side of the operator to have its value changed to whatever is on the
right side of the operator.

3.6.2 Mathematical Operators

C# uses five mathematical operators, four for standard calculations and a fifth to return the remainder
in integer division. The following sections consider the use of these operators.

3.6.2.1 Simple arithmetical operators (+, -, *, /)

C# offers operators for simple arithmetic: the addition (+), subtraction (-), multiplication (*), and
division (/) operators work as you might expect, with the possible exception of integer division.

When you divide two integers, C# divides like a child in fourth grade: it throws away any fractional
remainder. Thus, dividing 17 by 4 will return the value 4 (17/4 = 4, with a remainder of 1). C#
provides a special operator, modulus (%), described in the next section, to retrieve the remainder.

Note, however, that C# does return fractional answers when you divide floats, doubles, and decimals.

3.6.2.2 The modulus operator (%) to return remainders

To find the remainder in integer division, use the modulus operator (%). For example, the statement
17%4 returns 1 (the remainder after integer division).

Programming C#

 57

The modulus operator turns out to be more useful than you might at first imagine. When you perform
modulus n on a number that is a multiple of n, the result is zero. Thus 80 % 10 = 0 because 80 is
an even multiple of 10. This fact allows you to set up loops in which you take an action every nth time
through the loop, by testing a counter to see if %n is equal to zero. This strategy comes in handy in the
use of the for loop, as described earlier in this chapter. The effects of division on integers, floats,
doubles, and decimals is illustrated in Example 3-16.

Example 3-16. Division and modulus
using System;
class Values
{
 static void Main()
 {
 int i1, i2;
 float f1, f2;
 double d1, d2;
 decimal dec1, dec2;

 i1 = 17;
 i2 = 4;
 f1 = 17f;
 f2 = 4f;
 d1 = 17;
 d2 = 4;
 dec1 = 17;
 dec2 = 4;
 Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}\n",
 i1/i2, f1/f2);
 Console.WriteLine("double:\t\t{0}\ndecimal:\t{1}",
 d1/d2, dec1/dec2);
 Console.WriteLine("\nModulus:\t{0}", i1%i2);

 }
}

Output:

Integer: 4
float: 4.25
double: 4.25
decimal: 4.25

Modulus: 1

Now consider this line from Example 3-16:

Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}\n",
 i1/i2, f1/f2);

It begins with a call to Console.Writeline, passing in this partial string:

"Integer:\t{0}\n

This will print the characters Integer: followed by a tab (\t) followed by the first parameter ({0})
and then followed by a newline character (\n). The next string snippet:

float:\t\t{1}\n

 58

is very similar. It prints float: followed by two tabs (to ensure alignment), the contents of the second
parameter ({1}), and then another newline. Notice the subsequent line, as well:

Console.WriteLine("\nModulus:\t{0}", i1%i2);

This time the string begins with a newline character, which causes a line to be skipped just before the
string Modulus: is printed. You can see this effect in the output.

3.6.3 Increment and Decrement Operators

A common requirement is to add a value to a variable, subtract a value from a variable, or otherwise
change the mathematical value, and then to assign that new value back to the same variable. You
might even want to assign the result to another variable altogether. The following two sections discuss
these cases respectively.

3.6.3.1 Calculate and reassign operators

Suppose you want to increment the mySalary variable by 5000. You can do this by writing:

mySalary = mySalary + 5000;

The addition happens before the assignment, and it is perfectly legal to assign the result back to the
original variable. Thus, after this operation completes, mySalary will have been incremented by 5000.
You can perform this kind of assignment with any mathematical operator:

mySalary = mySalary * 5000;
mySalary = mySalary - 5000;

and so forth.

The need to increment and decrement variables is so common that C# includes special operators for
self-assignment. Among these operators are += , -=, *=, /=, and %=, which, respectively, combine
addition, subtraction, multiplication, division, and modulus, with self-assignment. Thus, you can
alternatively write the previous examples as:

mySalary += 5000;
mySalary *= 5000;
mySalary -= 5000;

The effect of this is to increment mySalary by 5000, multiply mySalary by 5000, and subtract 5000
from the mySalary variable, respectively.

Because incrementing and decrementing by 1 is a very common need, C# (like C and C++ before it)
also provides two special operators. To increment by 1 you use the ++ operator, and to decrement by
1 you use the -- operator.

Thus, if you want to increment the variable myAge by 1 you can write:

myAge++;

3.6.3.2 The prefix and postfix operators

To complicate matters further, you might want to increment a variable and assign the results to a
second variable:

Programming C#

 59

firstValue = secondValue++;

The question arises: do you want to assign before you increment the value or after? In other words, if
secondValue starts out with the value 10, do you want to end with both firstValue and
secondValue equal to 11, or do you want firstValue to be equal to 10 (the original value) and
secondValue to be equal to 11?

C# (again, like C and C++) offer two flavors of the increment and decrement operators: prefix and
postfix. Thus you can write:

firstValue = secondValue++; // postfix

which will assign first, and then increment (firstValue=10, secondValue=11), or you can write:

firstValue = ++secondValue; //prefix

which will increment first, and then assign (firstValue=11, secondValue=11).

It is important to understand the different effects of prefix and postfix, as illustrated in Example
3-17.

Example 3-17. Illustrating prefix versus postfix increment
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo;
 valueTwo = valueOne++;
 Console.WriteLine("After postfix: {0}, {1}", valueOne,
 valueTwo);
 valueOne = 20;
 valueTwo = ++valueOne;
 Console.WriteLine("After prefix: {0}, {1}", valueOne,
 valueTwo);
 }
}

Output:

After postfix: 11, 10
After prefix: 21, 21

3.6.4 Relational Operators

Relational operators are used to compare two values, and then return a Boolean (true or false). The
greater-than operator (>), for example, returns true if the value on the left of the operator is greater
than the value on the right. Thus, 5 > 2 returns the value true, while 2 > 5 returns the value
false.

The relational operators for C# are shown in Table 3-3. This table assumes two variables: bigValue
and smallValue in which bigValue has been assigned the value 100 and smallValue the value
50.

 60

Table 3-3. C# relational operators (assumes bigValue = 100 and
smallValue = 50)

Name Operator Given this statement: The expression evaluates to:

Equals ==
bigValue == 100

bigValue = 80

true

false

Not Equals !=
bigValue != 100

bigValue != 80

false

true

Greater than > bigValue > smallValue true

Greater than or equals >=
bigValue >= smallValue

smallValue >= bigValue

true

false
Less than < bigValue < smallValue false

Less than or equals <=
smallValue <= bigValue

bigValue <= smallValue

true

false

Each of these relational operators acts as you might expect. However, take note of the equals
operator (==), which is created by typing two equal signs (=) in a row (i.e., without any space between
them); the C# compiler treats the pair as a single operator.

The C# equality operator (==) tests for equality between the objects on either side of the operator.
This operator evaluates to a Boolean value (true or false). Thus, the statement:

myX == 5;

evaluates to true if and only if myX is a variable whose value is 5.

It is not uncommon to confuse the assignment operator (=) with
the equals operator (==). The latter has two equal signs, the
former only one.

3.6.5 Use of Logical Operators with Conditionals

If statements (discussed earlier in this chapter) test whether a condition is true. Often you will want to
test whether two conditions are both true, or only one is true, or none is true. C# provides a set of
logical operators for this, as shown in Table 3-4. This table assumes two variables, x and y, in which
x has the value 5 and y the value 7.

Table 3-4. C# logical operators (assumes x = 5, y = 7)

Name Operator Given this statement The expression evaluates
to Logic

and && (x == 3) && (y ==
7) false Both must be true

or || (x == 3) || (y ==
7) true Either or both must be

true
not ! ! (x == 3) true Expression must be false

Programming C#

 61

The and operator tests whether two statements are both true. The first line in Table 3-4 includes an
example which illustrates the use of the and operator:

(x == 3) && (y == 7)

The entire expression evaluates false because one side (x == 3) is false.

With the or operator, either or both sides must be true; the expression is false only if both sides are
false. So, in the case of the example in Table 3-4:

(x == 3) || (y == 7)

the entire expression evaluates true because one side (y==7) is true.

With a not operator, the statement is true if the expression is false, and vice versa. So, in the
accompanying example:

! (x == 3)

the entire expression is true because the tested expression (x==3) is false. (The logic is: "it is true that
it is not true that x is equal to 3.")

Short-Circuit Evaluation

Consider the following code snippet:

int x = 8;
if ((x == 8) || (y == 12))

The if statement here is a bit complicated. The entire if statement is in
parentheses, as are all if statements in C#. Thus, everything within the
outer set of parentheses must evaluate true for the if statement to be true.

Within the outer parentheses are two expressions (x==8) and (y==12)
which are separated by an or operator (||). Because x is 8, the first term
(x==8) evaluates true. There is no need to evaluate the second term
(y==12). It doesn't matter whether y is 12, the entire expression will be true.
Similarly, consider this snippet:

int x = 8;
if ((x == 5) && (y == 12))

Again, there is no need to evaluate the second term. Because the first term
is false, the and must fail. (Remember, for an and statement to evaluate
true, both tested expressions must evaluate true.)

In cases such as these, the C# compiler will short-circuit the evaluation; the
second test will never be performed.

 62

3.6.6 Operator Precedence

The compiler must know the order in which to evaluate a series of operators. For example, if I write:

myVariable = 5 + 7 * 3;

there are three operators for the compiler to evaluate (=, +, and *). It could, for example, operate left
to right, which would assign the value 5 to myVariable, then add 7 to the 5 (12) and multiply by 3
(36)—but of course then it would throw that 36 away. This is clearly not what is intended.

The rules of precedence tell the compiler which operators to evaluate first. As is the case in algebra,
multiplication has higher precedence than addition, so 5+7*3 is equal to 26 rather than 36. Both
addition and multiplication have higher precedence than assignment, so the compiler will do the math,
and then assign the result (26) to myVariable only after the math is completed.

In C#, parentheses are also used to change the order of precedence much as they are in algebra.
Thus, you can change the result by writing:

myVariable = (5+7) * 3;

Grouping the elements of the assignment in this way causes the compiler to add 5+7, multiply the
result by 3, and then assign that value (36) to myVariable. Table 3-5 summarizes operator
precedence in C#.

Table 3-5. Operator precedence
Category Operators

Primary
(x) x.y f(x) a[x] x++ x-- new typeof sizeof
checked unchecked

Unary + - > ! ~ ++x —x (T)x
Multiplicative * / %
Additive + -
Shift << >>
Relational < > <= >= is
Equality == !=
Logical AND &
Logical XOR ^
Logical OR |
Conditional AND &&
Conditional OR ||
Conditional ?:
Assignment = *= /= %= += -= <<= >>= &= ^= |=

In some complex equations you might need to nest your parentheses to ensure the proper order of
operations. Assume I want to know how many seconds my family wastes each morning.

It turns out that the adults spend 20 minutes over coffee each morning and 10 minutes reading the
newspaper. The children waste 30 minutes dawdling and 10 minutes arguing.

Here's my algorithm:

(((minDrinkingCoffee + minReadingNewspaper)* numAdults) +

Programming C#

 63

((minDawdling + minArguing) * numChildren)) * secondsPerMinute.

Although this works, it is hard to read and hard to get right. It's much easier to use interim variables:

wastedByEachAdult = minDrinkingCoffee + minReadingNewspaper;
wastedByAllAdults = wastedByEachAdult * numAdults;
wastedByEachKid = minDawdling + minArguing;
wastedByAllKids = wastedByEachKid * numChildren;
wastedByFamily = wastedByAllAdults + wastedByAllKids;
totalSeconds = wastedByFamily * 60;

The latter example uses many more interim variables, but it is far easier to read, understand, and
(most important) debug. As you step through this program in your debugger, you can see the interim
values and make sure they are correct.

3.6.7 The Ternary Operator

Although most operators require one term (e.g., myValue++) or two terms (e.g., a+b), there is one
operator that has three—the ternary operator (?:).

cond-expr ? expr1 : expr2

This operator evaluates a conditional expression (an expression which returns a value of type bool),
and then invokes either expression1 if the value returned from the conditional expression is true, or
expression2 if the value returned is false. The logic is "if this is true, do the first; otherwise do the
second." Example 3-18 illustrates.

Example 3-18. The ternary operator
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

 Console.WriteLine("ValueOne: {0}, valueTwo: {1}, maxValue: {2}",
 valueOne, valueTwo, maxValue);

 }
}

Output:

ValueOne: 10, valueTwo: 20, maxValue: 20

In Example 3-18, the ternary operator is being used to test whether valueOne is greater than
valueTwo. If so, the value of valueOne is assigned to the integer variable maxValue; otherwise the
value of valueTwo is assigned to maxValue.

3.7 Namespaces

Chapter 2 discusses the reasons for introducing namespaces into the C# language (e.g., avoiding
name collisions when using libraries from multiple vendors). In addition to using the namespaces

 64

provided by the .NET Framework or other vendors, you are free to create your own. You do this by
using the namespace keyword, followed by the name you wish to create. Enclose the objects for that
namespace within braces, as illustrated in Example 3-19.

Example 3-19. Creating namespaces
namespace Programming_C_Sharp
{
 using System;
 public class Tester
 {

 public static int Main()
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine("i: {0}",i);
 }
 return 0;
 }
 }
}

Example 3-19 creates a namespace called Programming_C_Sharp, and also specifies a Tester
class which lives within that namespace. You can alternatively choose to nest your namespaces, as
needed, by declaring one within another. You might do so to segment your code, creating objects
within a nested namespace whose names are protected from the outer namespace, as illustrated in
Example 3-20.

Example 3-20. Nesting namespaces
namespace Programming_C_Sharp
{
 namespace Programming_C_Sharp_Test
 {
 using System;
 public class Tester
 {

 public static int Main()
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine("i: {0}",i);
 }
 return 0;
 }
 }
 }
}

The Tester object now declared within the Programming_C_Sharp_Test namespace is:

Programming_C_Sharp.Programming_C_Sharp_Test.Tester

This name would not conflict with another Tester object in any other namespace, including the outer
namespace Programming_C_Sharp.

Programming C#

 65

3.8 Preprocessor Directives

In the examples you've seen so far, you've compiled your entire program whenever you compiled any
of it. At times, however, you might want to compile only parts of your program depending on, for
example, whether you are debugging or building your production code.

Before your code is compiled, another program called the preprocessor runs and prepares your
program for the compiler. The preprocessor examines your code for special preprocessor directives,
all of which begin with the pound sign (#). These directives allow you to define identifiers and then test
for their existence.

3.8.1 Defining Identifiers

#define DEBUG defines a preprocessor identifier, DEBUG. Although other preprocessor directives
can come anywhere in your code, identifiers must be defined before any other code, including using
statements.

You can test whether DEBUG has been defined with the #if statement. Thus, you can write:

#define DEBUG

//... some normal code - not affected by preprocessor

#if DEBUG
 // code to include if debugging
#else
 // code to include if not debugging
#endif

//... some normal code - not affected by preprocessor

When the preprocessor runs, it sees the #define statement and records the identifier DEBUG. The
preprocessor skips over your normal C# code and then finds the #if - #else - #endif block.

The #if statement tests for the identifier DEBUG, which does exist, and so the code between #if and
#else is compiled into your program, but the code between #else and #endif is not compiled. That
code does not appear in your assembly at all; it is as if it were left out of your source code.

Had the #if statement failed—that is, if you had tested for an identifier which did not exist—the code
between #if and #else would not be compiled, but the code between #else and #endif would be
compiled.

Any code not surrounded by #if - #endif is not affected by
the preprocessor and is compiled into your program.

3.8.2 Undefining Identifiers

You undefine an identifier with #undef. The preprocessor works its way through the code from top to
bottom, so the identifier is defined from the #define statement until the #undef statement, or until
the program ends. Thus if you write:

#define DEBUG

 66

#if DEBUG
 // this code will be compiled
#endif

#undef DEBUG

#if DEBUG
 // this code will not be compiled
#endif

the first #if will succeed (DEBUG is defined), but the second will fail (DEBUG has been undefined).

3.8.3 #if, #elif, #else, and #endif

There is no switch statement for the preprocessor, but the #elif and #else directives provide
great flexibility. The #elif directive allows the else-if logic of "if DEBUG then action one, else if TEST
then action two, else action three":

#if DEBUG
 // compile this code if debug is defined
#elif TEST
 // compile this code if debug is not defined
 // but TEST is defined
#else
 // compile this code if neither DEBUG nor TEST
 // is defined
#endif

In this example the preprocessor first tests to see if the identifier DEBUG is defined. If it is, the code
between #if and #elif will be compiled, and none of the rest of the code until #endif, will be
compiled.

If (and only if) DEBUG is not defined, the preprocessor next checks to see if TEST is defined. Note that
the preprocessor will not check for TEST unless DEBUG is not defined. If TEST is defined, the code
between the #elif and the #else directives will be compiled. If it turns out that neither DEBUG nor
TEST is defined, the code between the #else and the #endif statements will be compiled.

3.8.4 #region

The #region preprocessor directive marks an area of text with a comment. The principal use of this
preprocessor directive is to allow tools such as Visual Studio .NET to mark off areas of code and
collapse them in the editor with only the region's comment showing.

For example, when you create a Windows application (covered in Chapter 13) Visual Studio .NET
creates a region for code generated by the designer. When the region is expanded it looks like Figure
3-1. (Note: I've added the rectangle and highlighting to make it easier to find the region.)

Figure 3-1. Expanding the Visual Studio .NET code region

Programming C#

 67

You can see the region marked by the #region and #end region preprocessor directives. When
the region is collapsed, however, all you see is the region comment (Windows Form Designer
generated code), as shown in Figure 3-2.

Figure 3-2. Code region is collapsed

 68

Programming C#

 69

Chapter 4. Classes and Objects

Chapter 3 discusses the myriad primitive types built into the C# language, such as int, long, and
char. The heart and soul of C#, however, is the ability to create new, complex, programmer-defined
types that map cleanly to the objects that make up the problem you are trying to solve.

It is this ability to create new types that characterizes an object-oriented language. You specify new
types in C# by declaring and defining classes. You can also define types with interfaces, as you will
see in Chapter 8. Instances of a class are called objects. Objects are created in memory when your
program executes.

The difference between a class and an object is the same as the difference between the concept of a
Dog and the particular dog who is sitting at your feet as you read this. You can't play fetch with the
definition of a Dog, only with an instance.

A Dog class describes what dogs are like: they have weight, height, eye color, hair color, disposition,
and so forth. They also have actions they can take, such as eat, walk, bark, and sleep. A particular
dog (such as my dog Milo) will have a specific weight (62 pounds), height (22 inches), eye color
(black), hair color (yellow), disposition (angelic), and so forth. He is capable of all the actions of any
dog (though if you knew him you might imagine that eating is the only method he implements).

The huge advantage of classes in object-oriented programming is that they encapsulate the
characteristics and capabilities of an entity in a single, self-contained and self-sustaining unit of code.
When you want to sort the contents of an instance of a Windows list box control, for example, you tell
the list box to sort itself. How it does so is of no concern; that it does so is all you need to know.
Encapsulation, along with polymorphism and inheritance, is one of three cardinal principles of object-
oriented programming.

An old programming joke asks, how many object-oriented programmers does it take to change a light
bulb? Answer: none, you just tell the light bulb to change itself. (Alternate answer: none, Microsoft has
changed the standard to darkness.)

This chapter explains the C# language features that are used to specify new classes. The elements of
a class—its behaviors and properties—are known collectively as its class members. This chapter will
show how methods are used to define the behaviors of the class, and how the state of the class is
maintained in member variables (often called fields). In addition, this chapter introduces properties,
which act like methods to the creator of the class but look like fields to clients of the class.

4.1 Defining Classes

To define a new type or class you first declare it, and then define its methods and fields. You declare a
class using the class keyword. The complete syntax is as follows:

[attributes] [access-modifiers] class identifier [:base-class]
{class-body }

Attributes are covered in Chapter 18; access modifiers are discussed in the next section. (Typically,
your classes will use the keyword public as an access modifier.) The identifier is the name of
the class that you provide. The optional base-class is discussed in Chapter 5. The member
definitions that make up the class-body are enclosed by open and closed curly braces ({}).

 70

C++ programmers take note: a C# class definition does not end
with a semicolon, though if you add one the program will still
compile.

In C#, everything happens within a class. For instance, some of the examples in Chapter 3 make use
of a class named Tester:

public class Tester
{

 public static int Main()
 {
 /...
 }
}

So far, we've not instantiated any instances of that class; that is, we haven't created any Tester
objects. What is the difference between a class and an instance of that class? To answer that question,
start with the distinction between the type int and a variable of type int. Thus, while you would write:

int myInteger = 5;

you would not write:

int = 5;

You can't assign a value to a type; instead, you assign the value to an object of that type (in this case,
a variable of type int).

When you declare a new class, you define the properties of all objects of that class, as well as their
behaviors. For example, if you are creating a windowing environment, you might want to create screen
widgets, more commonly known as controls in Windows programming, to simplify user interaction with
your application. One control of interest might be a list box, a control that is very useful for presenting
a list of choices to the user and enabling the user to select from the list.

List boxes have a variety of characteristics: height, width, location, and text color, for example.
Programmers have also come to expect certain behaviors of list boxes: they can be opened, closed,
sorted, and so on.

Object-oriented programming allows you to create a new type, ListBox, which encapsulates these
characteristics and capabilities. Such a class might have member variables named height, width,
location, and text color, and member methods named sort(), add(), remove(), etc.

You can't assign data to the ListBox type. Instead you must first create an object of that type, as in
the following code snippet:

ListBox myListBox;

Once you create an instance of ListBox, you can assign data to its fields.

Now consider a class to keep track of and display the time of day. The internal state of the class must
be able to represent the current year, month, date, hour, minute, and second. You probably would also
like the class to display the time in a variety of formats. You might implement such a class by defining
a single method and six variables, as shown in Example 4-1.

Programming C#

 71

Example 4-1. Simple Time class
 using System;

 public class Time
 {
 // public methods
 public void DisplayCurrentTime()
 {
 Console.WriteLine(
 "stub for DisplayCurrentTime");
 }

 // private variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

 }

 public class Tester
 {
 static void Main()
 {
 Time t = new Time();
 t.DisplayCurrentTime();
 }

 }

The only method declared within the Time class definition is the method DisplayCurrentTime().
The body of the method is defined within the class definition itself. Unlike other languages (such as
C++), C# does not require that methods be declared before they are defined, nor does the language
support placing its declarations into one file and code into another. (C# has no header files.) All C#
methods are defined in line as shown in Example 4-1 with DisplayCurrentTime().

The DisplayCurrentTime() method is defined to return void; that is, it will not return a value to
a method that invokes it. For now, the body of this method has been "stubbed out."

The Time class definition ends with the declaration of a number of member variables: Year, Month,
Date, Hour, Minute, and Second.

After the closing brace, a second class, Tester, is defined. Tester contains our now familiar
Main() method. In Main() an instance of Time is created and its address is assigned to object t.
Because t is an instance of Time, Main()can make use of the DisplayCurrentTime() method
available with objects of that type and call it to display the time:

t.DisplayCurrentTime();

4.1.1 Access Modifiers

An access modifier determines which class methods—including methods of other classes—can see
and use a member variable or method within a class. Table 4-1 summarizes the C# access modifiers.

 72

Table 4-1. Access modifiers
Access
Modifier Restrictions

public No restrictions. Members marked public are visible to any method of any class.

private The members in class A which are marked private are accessible only to methods
of class A.

protected The members in class A which are marked protected are accessible to methods of
class A and also to methods of classes derived from class A.

internal The members in class A which are marked internal are accessible to methods of
any class in A's assembly.

protected
internal

The members in class A which are marked protected internal are accessible to
methods of class A, to methods of classes derived from class A, and also to any class
in A's assembly. This is effectively protected OR internal (There is no concept
of protected AND internal.)

It is generally desirable to designate the member variables of a class as private. This means that
only member methods of that class can access their value. Because private is the default
accessibility level, you do not need to make it explicit, but I recommend that you do so. Thus, in
Example 4-1, the declarations of member variables should have been written as follows:

// private variables
private int Year;
private int Month;
private int Date;
private int Hour;
private int Minute;
private int Second;

Class Tester and method DisplayCurrentTime() are both declared public so that any other
class can make use of them.

It is good programming practice to explicitly set the accessibility of
all methods and members of your class. Although you can rely on
the fact that class members are declared private by default,
making their access explicit indicates a conscious decision and is
self-documenting.

4.1.2 Method Arguments

Methods can take any number of parameters.[1] The parameter list follows the method name and is
encased in parentheses, with each parameter preceded by its type. For example, the following
declaration defines a method named MyMethod which returns void (that is, which returns no value at
all) and which takes two parameters: an int and a button:

[1] The terms "argument" and "parameter" are often used interchangeably, though some programmers insist on differentiating between
the argument declaration and the parameters passed in when the method is invoked.

void MyMethod (int firstParam, button secondParam)
{
 // ...
}

Programming C#

 73

Within the body of the method, the parameters act as local variables, as if you had declared them in
the body of the method and initialized them with the values passed in. Example 4-2 illustrates how
you pass values into a method, in this case values of type int and float.

Example 4-2. Passing values into SomeMethod()
using System;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }

}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }

}

The method SomeMethod() takes an int and a float and displays them using
Console.WriteLine(). The parameters, which are named firstParam and secondParam, are
treated as local variables within SomeMethod().

In the calling method (Main), two local variables (howManyPeople and pi) are created and
initialized. These variables are passed as the parameters to SomeMethod(). The compiler maps
howManyPeople to firstParam and pi to secondParam, based on their relative positions in the
parameter list.

4.2 Creating Objects

In Chapter 3, a distinction is drawn between value types and reference types. The primitive C# types
(int, char, etc.) are value types, and are created on the stack. Objects, however, are reference types,
and are created on the heap, using the keyword new, as in the following:

Time t = new Time();

t does not actually contain the value for the Time object; it contains the address of that (unnamed)
object that is created on the heap. t itself is just a reference to that object.

4.2.1 Constructors

In Example 4-1, notice that the statement that creates the Time object looks as though it is invoking
a method:

Time t = new Time();

 74

In fact, a method is invoked whenever you instantiate an object. This method is called a constructor,
and you must either define one as part of your class definition or let the Common Language Runtime
(CLR) provide one on your behalf. The job of a constructor is to create the object specified by a class
and to put it into a valid state. Before the constructor runs, the object is undifferentiated memory; after
the constructor completes, the memory holds a valid instance of the class type.

The Time class of Example 4-1 does not define a constructor. If a constructor is not declared, the
compiler provides one for you. The default constructor creates the object but takes no other action.
Member variables are initialized to innocuous values (integers to 0, strings to the empty string, etc.).
Table 4-2 lists the default values assigned to primitive types.

Table 4-2. Primitive types and their default values
Type Default Value

numeric (int, long , etc.) 0
bool false
char `\0' (null)
enum 0
reference null

Typically, you'll want to define your own constructor and provide it with arguments so that the
constructor can set the initial state for your object. In Example 4-1, assume that you want to pass in
the current year, month, date, and so forth, so that the object is created with meaningful data.

To define a constructor you declare a method whose name is the same as the class in which it is
declared. Constructors have no return type and are typically declared public. If there are arguments to
be passed, you define an argument list just as you would for any other method. Example 4-3
declares a constructor for the Time class that accepts a single argument, an object of type DateTime.

Example 4-3. Declaring a constructor
 public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 int Year;
 int Month;
 int Date;
 int Hour;

Programming C#

 75

 int Minute;
 int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();
 }

 }

 Output:
11/16/2000 16:21:40

In this example, the constructor takes a DateTime object and initializes all the member variables
based on values in that object. When the constructor finishes, the Time object exists and the values
have been initialized. When DisplayCurrentTime() is called in Main(), the values are displayed.

Try commenting out one of the assignments and running the program again. You'll find that the
member variable is initialized by the compiler to 0. Integer member variables are set to 0 if you don't
otherwise assign them. Remember, value types (e.g., integers) cannot be uninitialized; if you don't tell
the constructor what to do, it will try for something innocuous.

In Example 4-3, the DateTime object is created in the Main() method of Tester. This object,
supplied by the System library, offers a number of public values—Year, Month, Day, Hour, Minute,
and Second—that correspond directly to the private member variables of our Time object. In addition,
the DateTime object offers a static member method, Now, which returns a reference to an instance of
a DateTime object initialized with the current time.

Examine the highlighted line in Main(), where the DateTime object is created by calling the static
method Now(). Now()creates a DateTime object on the heap and returns a reference to it.

That reference is assigned to currentTime, which is declared to be a reference to a DateTime
object. Then currentTime is passed as a parameter to the Time constructor. The Time constructor
parameter, dt, is also a reference to a DateTime object; in fact dt now refers to the same DateTime
object as currentTime does. Thus, the Time constructor has access to the public member variables
of the DateTime object that was created in Tester.Main().

The reason that the DateTime object referred to in the Time constructor is the same object referred
to in Main() is that objects are reference types. Thus, when you pass one as a parameter it is
passed by reference—that is, the pointer is passed and no copy of the object is made.

4.2.2 Initializers

It is possible to initialize the values of member variables in an initializer, instead of having to do so in
every constructor. You create an initializer by assigning an initial value to a class member:

private int Second = 30; // initializer

 76

Assume that the semantics of our Time object are such that no matter what time is set, the seconds
are always initialized to 30. We might rewrite our Time class to use an initializer so that no matter
which constructor is called, the value of Second is always initialized, either explicitly by the constructor
or implicitly by the initializer, as shown in Example 4-4.

Example 4-4. Using an initializer
 public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.DateTime now = System.DateTime.Now;
 System.Console.WriteLine(
 "\nDebug\t: {0}/{1}/{2} {3}:{4}:{5}",
 now.Month, now.Day , now.Year, now.Hour,
 now.Minute, now.Second);

 System.Console.WriteLine("Time\t: {0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructors
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second; //explicit assignment
 }

 public Time(int Year, int Month, int Date,
 int Hour, int Minute)
 {
 this.Year = Year;
 this.Month = Month;
 this.Date = Date;
 this.Hour = Hour;
 this.Minute = Minute;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second = 30; // initializer
 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

Programming C#

 77

 Time t2 = new Time(2000,11,18,11,45);
 t2.DisplayCurrentTime();

 }
 }

 Output:
Debug : 11/27/2000 7:52:54
Time : 11/27/2000 7:52:54

Debug : 11/27/2000 7:52:54
Time : 11/18/2000 11:45:30

If you do not provide a specific initializer, the constructor will initialize each integer member variable to
zero (0). In the case shown, however, the Second member is initialized to 30:

private int Second = 30; // initializer

If a value is not passed in for Second, its value will be set to 30 when t2 is created:

Time t2 = new Time(2000,11,18,11,45);
t2.DisplayCurrentTime();

However, if a value is assigned to Second, as is done in the constructor (which takes a DateTime
object, shown in bold), that value overrides the initialized value.

The first time through the program we call the constructor that takes a DateTime object, and the
seconds are initialized to 54. The second time through we explicitly set the time to 11:45 (not setting
the seconds) and the initializer takes over.

If the program did not have an initializer and did not otherwise assign a value to Second, the value
would be initialized by the compiler to zero.

4.2.3 Copy Constructors

A copy constructor creates a new object by copying variables from an existing object of the same type.
For example, you might want to pass a Time object to a Time constructor so that the new Time object
has the same values as the old one.

C# does not provide a copy constructor, so if you want one you must provide it yourself. Such a
constructor copies the elements from the original object into the new one:

public Time(Time existingTimeObject)
{
 Year = existingTimeObject.Year;
 Month = existingTimeObject.Month;
 Date = existingTimeObject.Date;
 Hour = existingTimeObject.Hour;
 Minute = existingTimeObject.Minute;
 Second = existingTimeObject.Second;
}

A copy constructor is invoked by instantiating an object of type Time and passing it the name of the
Time object to be copied:

Time t3 = new Time(t2);

 78

Here an existingTimeObject (t2) is passed as a parameter to the copy constructor which will
create a new Time object (t3).

4.2.4 The this Keyword

The keyword this refers to the current instance of an object. The this reference (sometimes
referred to as a this pointer[2]) is a hidden pointer to every nonstatic method of a class. Each method
can refer to the other methods and variables of that object by way of the this reference.

[2] A pointer is a variable that holds the address of an object in memory. C# does not use pointers with managed objects.

There are three ways in which the this reference is typically used. The first way is to qualify instance
members otherwise hidden by parameters, as in the following:

public void SomeMethod (int hour)
{
 this.hour = hour;
}

In this example, SomeMethod() takes a parameter (Hour) with the same name as a member
variable of the class. The this reference is used to resolve the name ambiguity. While this.Hour
refers to the member variable, Hour refers to the parameter.

The argument in favor of this style is that you pick the right variable name and then use it both for the
parameter and for the member variable. The counter-argument is that using the same name for both
the parameter and the member variable can be confusing.

The second use of the this reference is to pass the current object as a parameter to another method.
For instance, the following code

public void FirstMethod(OtherClass otherObject)
{
 otherObject.SecondMethod(this);
}

establishes two classes, one with the method FirstMethod(), and OtherClass, with its method
SecondMethod(). Inside FirstMethod, we'd like to invoke SecondMethod, passing in the
current object for further processing.

The third use of this is with indexers, covered in Chapter 9.

4.3 Using Static Members

The properties and methods of a class can be either instance members or static members. Instance
members are associated with instances of a type, while static members are considered to be part of
the class. You access a static member through the name of the class in which it is declared. For
example, suppose you have a class named Button and have instantiated objects of that class named
btnUpdate and btnDelete. Suppose as well that the Button class has a static method
SomeMethod(). To access the static method you write:

Button.SomeMethod();

rather than writing:

btnUpdate.SomeMethod();

Programming C#

 79

In C# it is not legal to access a static method or member variable through an instance, and trying to do
so will generate a compiler error (C++ programmers, take note).

Some languages distinguish between class methods and other (global) methods that are available
outside the context of any class. In C# there are no global methods, only class methods, but you can
achieve an analogous result by defining static methods within your class.

Static methods act more or less like global methods, in that you can invoke them without actually
having an instance of the object at hand. The advantage of static methods over global, however, is
that the name is scoped to the class in which it occurs, and thus you do not clutter up the global
namespace with myriad function names. This can help manage highly complex programs, and the
name of the class acts very much like a namespace for the static methods within it.

Resist the temptation to create a single class in your program in
which you stash all your miscellaneous methods. It is possible but
not desirable and undermines the encapsulation of an object-
oriented design.

4.3.1 Invoking Static Methods

The Main() method is static. Static methods are said to operate on the class, rather than on an
instance of the class. They do not have a this reference, as there is no instance to point to.

Static methods cannot directly access nonstatic members. For Main() to call a nonstatic method, it
must instantiate an object. Consider Example 4-2, reproduced here for your convenience.

using System;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }

}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }

}

SomeMethod() is a nonstatic method of MyClass. For Main() to access this method, it must first
instantiate an object of type MyClass and then invoke the method through that object.

 80

4.3.2 Using Static Constructors

If your class declares a static constructor, you will be guaranteed that the static constructor will run
before any instance of your class is created.

You are not able to control exactly when a static constructor will
run, but you do know that it will be after the start of your program
and before the first instance is created. Because of this you
cannot assume (or determine) whether an instance is being
created.

For example, you might add the following static constructor to Time:

static Time()
{
 Name = "Time";
}

Notice that there is no access modifier (e.g., public) before the static constructor. Access modifiers
are not allowed on static constructors. In addition, because this is a static member method, you cannot
access nonstatic member variables, and so Name must be declared a static member variable:

private static string Name;

The final change is to add a line to DisplayCurrentTime(), as in the following:

public void DisplayCurrentTime()
{
 System.Console.WriteLine("Name: {0}", Name);
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
}

When all these changes are made, the output is:

Name: Time
11/20/2000 14:39:8
Name: Time
11/18/2000 11:3:30
Name: Time
11/18/2000 11:3:30

Although this code works, it is not necessary to create a static constructor to accomplish this goal. You
could, instead, use an initializer:

private static string Name = "Time";

which accomplishes the same thing. Static constructors are useful, however, for set-up work that
cannot be accomplished with an initializer and that needs to be done only once.

For example, assume you have an unmanaged bit of code in a legacy COM dll. You want to provide a
class wrapper for this code. You can call load library in your static constructor and initialize the jump
table in the static constructor. Handling legacy code and interoperating with unmanaged code is
discussed in Chapter 22.

Programming C#

 81

4.3.3 Using Private Constructors

In C# there are no global methods or constants. You might find yourself creating small utility classes
that exist only to hold static members. Setting aside whether this is a good design or not, if you create
such a class you will not want any instances created. You can prevent any instances from being
created by creating a default constructor (one with no parameters) which does nothing, and which is
marked private. With no public constructors, it will not be possible to create an instance of your
class.

4.3.4 Using Static Fields

A common use of static member variables is to keep track of the number of instances that currently
exist for your class. Example 4-5 illustrates.

Example 4-5. Using static fields for instance counting
using System;

public class Cat
{

 public Cat()
 {
 instances++;
 }

 public static void HowManyCats()
 {
 Console.WriteLine("{0} cats adopted",
 instances);
 }
 private static int instances = 0;
}

public class Tester
{
 static void Main()
 {
 Cat.HowManyCats();
 Cat frisky = new Cat();
 Cat.HowManyCats();
 Cat whiskers = new Cat();
 Cat.HowManyCats();

 }

}

Output:

0 cats adopted
1 cats adopted
2 cats adopted

The Cat class has been stripped to its absolute essentials. A static member variable called
instances is created and initialized to zero. Note that the static member is considered part of the
class, not a member of an instance, and so it cannot be initialized by the compiler on creation of an
instance. Thus, an explicit initializer is required for static member variables. When additional instances
of Cats are created (in a constructor) the count is incremented.

 82

Static Methods to Access Static Fields

It is undesirable to make member data public. This applies to static
member variables as well. One solution is to make the static member
private, as we've done here with instances. We have created a public
accessor method, HowManyCats(), to provide access to this private
member. Because HowManyCats() is also static, it has access to the
static member instances.

4.4 Destroying Objects

C# provides garbage collection and thus does not need an explicit destructor. If you do control an
unmanaged resource, however, you will need to explicitly free that resource when you are done with it.
Implicit control over this resource is provided with a Finalize() method (called a finalizer), which
will be called by the garbage collector when your object is destroyed.

The finalizer should only release resources that your object holds on to, and should not reference
other objects. Note that if you have only managed references you do not need to and should not
implement the Finalize() method; you want this only for handling unmanaged resources. Because
there is some cost to having a finalizer, you ought to implement this only on methods that require it
(that is, methods that consume valuable unmanaged resources).

You must never call an object's Finalize() method directly (except that you can call the base
class' Finalize() method in your own Finalize()). The garbage collector will call
Finalize() for you.

How Finalize Works

The garbage collector maintains a list of objects that have a Finalize()
method. This list is updated every time a finalizable object is created or
destroyed.

When an object on the garbage collector's finalizable list is first collected, it
is placed on a queue with other objects waiting to be finalized. After the
Finalize() method executes, the garbage collector then collects the
object and updates the queue, as well as its list of finalizable objects.

4.4.1 The C# Destructor

C#'s destructor looks, syntactically, much like a C++ destructor, but it behaves quite differently. You
declare a C# destructor with a tilde as follows:

~MyClass(){}

In C#, however, this syntax is simply a shortcut for declaring a Finalize() method that chains up
to its base class. Thus, writing:

~MyClass()
{
 // do work here
}

Programming C#

 83

is identical to writing:

MyClass.Finalize()
{
 // do work here
 base.Finalize();
}

Because of the potential for confusion, it is recommended that you eschew the destructor and write an
explicit finalizer if needed.

4.4.2 Finalize Versus Dispose

It is not legal to call a finalizer explicitly. Your Finalize() method will be called by the garbage
collector. If you do handle precious unmanaged resources (such as file handles) that you want to close
and dispose of as quickly as possible, you ought to implement the IDisposable interface. (You will
learn more about interfaces in Chapter 8.) The IDisposable interface requires its implementers to
define one method, named Dispose(), to perform whatever cleanup you consider to be crucial. The
availability of Dispose() is a way for your clients to say "don't wait for Finalize() to be called,
do it right now."

If you provide a Dispose() method, you should stop the garbage collector from calling
Finalize() on your object. To stop the garbage collector, you call the static method
GC.SuppressFinalize(), passing in the this pointer for your object. Your Finalize() method
can then call your Dispose() method. Thus, you might write:

public void Dispose()
{
 // perform clean up

 // tell the GC not to finailze
 GC.SuppressFinalize(this);
}

public override void Finalize()
{
 Dispose();
 base.Finalize();
}

4.4.3 Implementing the Close Method

For some objects, you'd rather have your clients call the Close() method. (For example, Close
makes more sense than Dispose() for file objects.) You can implement this by creating a private
Dispose() method and a public Close() method and having your Close() method invoke
Dispose().

4.4.4 The using Statement

Because you cannot be certain that your user will call Dispose() reliably, and because finalization
is nondeterministic (i.e., you can't control when the GC will run), C# provides a using statement
which ensures that Dispose() will be called at the earliest possible time. The idiom is to declare
which objects you are using and then to create a scope for these objects with curly braces. When the
close brace is reached, the Dispose() method will be called on the object automatically, as
illustrated in Example 4-6.

 84

Example 4-6. The using construct
using System.Drawing;
class Tester
{
 public static void Main()
 {
 using (Font theFont = new Font("Arial", 10.0f))
 {
 // use theFont

 } // compiler will call Dispose on theFont

 Font anotherFont = new Font("Courier",12.0f);

 using (anotherFont)
 {
 // use anotherFont

 } // compiler calls Dispose on anotherFont

 }

}

In the first part of this example, the Font object is created within the using statement. When the
using statement ends, Dispose() is called on the Font object.

In the second part of the example, a Font object is created outside of the using statement. When we
decide to use that font, we put it inside the using statement and when that statement ends, once
again Dispose() is called.

The using statement also protects you against unanticipated exceptions. No matter how control
leaves the using statement, Dispose() is called. It is as if there were an implicit try-catch-finally
block. (See Section 11.2 in Chapter 11 for details.)

4.5 Passing Parameters

By default, value types are passed into methods by value (see Section 4.1.2 earlier in this chapter).
This means that when a value object is passed to a method, a temporary copy of the object is created
within that method. Once the method completes, the copy is discarded. Although passing by value is
the normal case, there are times when you will want to pass value objects by reference. C# provides
the ref parameter modifier for passing value objects into a method by reference and the out modifier
for those cases in which you want to pass in a ref variable without first initializing it. C# also supports
the params modifier which allows a method to accept a variable number of parameters. The params
keyword is discussed in Chapter 9.

4.5.1 Passing by Reference

Methods can return only a single value (though that value can be a collection of values). Let's return to
the Time class and add a GetTime() method which returns the hour, minutes, and seconds.

Because we cannot return three values, perhaps we can pass in three parameters, let the method
modify the parameters, and examine the result in the calling method. Example 4-7 shows a first
attempt at this.

Example 4-7. Returning values in parameters

Programming C#

 85

public class Time
{
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void GetTime(int h, int m, int s)
 {
 h = Hour;
 m = Minute;
 s = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = 0;
 int theMinute = 0;
 int theSecond = 0;
 t.GetTime(theHour, theMinute, theSecond);
 System.Console.WriteLine("Current time: {0}:{1}:{2}",
 theHour, theMinute, theSecond);

 }

 }

 86

 Output:
11/17/2000 13:41:18
Current time: 0:0:0

Notice that the "Current time" in the output is 0:0:0. Clearly, this first attempt did not work. The
problem is with the parameters. We pass in three integer parameters to GetTime(), and we modify
the parameters in GetTime(), but when the values are accessed back in Main(), they are
unchanged. This is because integers are value types, and so are passed by value; a copy is made in
GetTime(). What we need is to pass these values by reference.

Two small changes are required. First, change the parameters of the GetTime method to indicate that
the parameters are ref (reference) parameters:

public void GetTime(ref int h, ref int m, ref int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

Second, modify the call to GetTime() to pass the arguments as references as well:

t.GetTime(ref theHour, ref theMinute, ref theSecond);

If you leave out the second step of marking the arguments with the keyword ref, the compiler will
complain that the argument cannot be converted from an int to a ref int.

The results now show the correct time. By declaring these parameters to be ref parameters, you
instruct the compiler to pass them by reference. Instead of a copy being made, the parameter in
GetTime() is a reference to the same variable (theHour) that is created in Main(). When you
change these values in GetTime(), the change is reflected in Main().

Keep in mind that ref parameters are references to the actual original value—it is as if you said "here,
work on this one." Conversely, value parameters are copies—it is as if you said "here, work on one
just like this."

4.5.2 Passing Out Parameters with Definite Assignment

C# imposes definite assignment , which requires that all variables be assigned a value before they are
used. In Example 4-7, if you don't initialize theHour, theMinute, and theSecond before you pass
them as parameters to GetTime(), the compiler will complain. Yet the initialization that is done
merely sets their values to 0 before they are passed to the method:

int theHour = 0;
int theMinute = 0;
int theSecond = 0;
t.GetTime(ref theHour, ref theMinute, ref theSecond);

It seems silly to initialize these values because you immediately pass them by reference into GetTime
where they'll be changed, but if you don't, the following compiler errors are reported:

Use of unassigned local variable 'theHour'
Use of unassigned local variable 'theMinute'
Use of unassigned local variable 'theSecond'

Programming C#

 87

C# provides the out parameter modifier for this situation. The out modifier removes the requirement
that a reference parameter be initiailzed. The parameters to GetTime(), for example, provide no
information to the method; they are simply a mechanism for getting information out of it. Thus, by
marking all three as out parameters, you eliminate the need to initialize them outside the method.
Within the called method the out parameters must be assigned a value before the method returns.
Here are the altered parameter declarations for GetTime():

public void GetTime(out int h, out int m, out int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

and here is the new invocation of the method in Main():

t.GetTime(out theHour, out theMinute, out theSecond);

To summarize, value types are passed into methods by value. Ref parameters are used to pass value
types into a method by reference. This allows you to retrieve their modified value in the calling method.
Out parameters are used only to return information from a method. Example 4-8 rewrites Example
4-7 to use all three.

Example 4-8. Using in, out, and ref parameters
public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void SetTime(int hr, out int min, ref int sec)
 {
 // if the passed in time is >= 30
 // increment the minute and set second to 0
 // otherwise leave both alone
 if (sec >= 30)
 {
 Minute++;
 Second = 0;
 }
 Hour = hr; // set to value passed in

 // pass the minute and second back out
 min = Minute;
 sec = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

 88

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = 3;
 int theMinute;
 int theSecond = 20;

 t.SetTime(theHour, out theMinute, ref theSecond);
 System.Console.WriteLine(
 "the Minute is now: {0} and {1} seconds",
 theMinute, theSecond);

 theSecond = 40;
 t.SetTime(theHour, out theMinute, ref theSecond);
 System.Console.WriteLine("the Minute is now:
 {0} and {1} seconds",
 theMinute, theSecond);

 }

 }

 Output:
11/17/2000 14:6:24
the Minute is now: 6 and 24 seconds
the Minute is now: 7 and 0 seconds

SetTime is a bit contrived, but it illustrates the three types of parameters. theHour is passed in as a
value parameter; its entire job is to set the member variable Hour, and no value is returned using this
parameter.

The ref parameter theSecond is used to set a value in the method. If theSecond is greater than or
equal to 30, the member variable Second is reset to 0 and the member variable Minute is
incremented.

Programming C#

 89

Finally, theMinute is passed into the method only to return the value of the member variable Minute,
and thus is marked as an out parameter.

It makes perfect sense that theHour and theSecond must be initialized; their values are needed and
used. It is not necessary to initialize theMinute, as it is an out parameter which exists only to return
a value. What at first appeared to be arbitrary and capricious rules now makes sense; values are only
required to be initialized when their initial value is meaningful.

4.6 Overloading Methods and Constructors

Often you'll want to have more than one function with the same name. The most common example of
this is to have more than one constructor. In the examples shown so far, the constructor has taken a
single parameter: a DateTime object. It would be convenient to be able to set new Time objects to an
arbitrary time by passing in year, month, date, hour, minute, and second values. It would be even
more convenient if some clients could use one constructor, and other clients could use the other
constructor. Function overloading provides for exactly these contingencies.

The signature of a method is defined by its name and its parameter list. Two methods differ in their
signatures if they have different names or different parameter lists. Parameter lists can differ by having
different numbers or types of parameters. For example, in the following code the first method differs
from the second in the number of parameters, and the second differs from the third in the types of
parameters:

void myMethod(int p1);
void myMethod(int p1, int p2);
void myMethod(int p1, string s1);

A class can have any number of methods, as long as each one's signature differs from that of all the
others.

Example 4-9 illustrates our Time class with two constructors, one which takes a DateTime object,
and the other which takes six integers.

Example 4-9. Overloading the constructor
public class Time
{
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructors
 public Time(System.DateTime dt)
 {
 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 public Time(int Year, int Month, int Date,
 int Hour, int Minute, int Second)

 90

 {
 this.Year = Year;
 this.Month = Month;
 this.Date = Date;
 this.Hour = Hour;
 this.Minute = Minute;
 this.Second = Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

}

public class Tester
{
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;

 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 Time t2 = new Time(2000,11,18,11,03,30);
 t2.DisplayCurrentTime();

 }

}

As you can see, the Time class in Example 4-9 has two constructors. If a function's signature
consisted only of the function name, the compiler would not know which constructors to call when
constructing t1 and t2. However, because the signature includes the function argument types, the
compiler is able to match the constructor call for t1 with the constructor whose signature requires a
DateTime object. Likewise, the compiler is able to associate the t2 constructor call with the
constructor method whose signature specifies six integer arguments.

When you overload a method, you must change the signature (i.e., the name, number, or type of the
parameters). You are free, as well, to change the return type, but this is optional. Changing only the
return type does not overload the method, and creating two methods with the same signature but
differing return types will generate a compile error.

This is illustrated in Example 4-10:

Example 4-10. Varying the return type on overloaded methods
public class Tester
{
 private int Triple(int val)
 {
 return 3 * val;
 }

 private long Triple (long val)
 {

Programming C#

 91

 return 3 * val;
 }

 public void Test()
 {
 int x = 5;
 int y = Triple(x);
 System.Console.WriteLine("x: {0} y: {1}", x, y);

 long lx = 10;
 long ly = Triple(lx);
 System.Console.WriteLine("lx: {0} ly: {1}", lx, ly);

 }
 static void Main()
 {
 Tester t = new Tester();
 t.Test();
 }
}

In this example, the Tester class overloads the Triple() method, one to take an integer, the
other to take a long. The return type for the two Triple() methods varies. Although this is not
required, it is very convenient in this case.

4.7 Encapsulating Data with Properties

Properties allow clients to access class state as if they were accessing member fields directly, while
actually implementing that access through a class method.

This is ideal. The client wants direct access to the state of the object and does not want to work with
methods. The class designer, however, wants to hide the internal state of his class in class members,
and provide indirect access through a method.

By decoupling the class state from the method that accesses that state, the designer is free to change
the internal state of the object as needed. When the Time class is first created, the Hour value might
be stored as a member variable. When the class is redesigned, the Hour value might be computed, or
retrieved from a database. If the client had direct access to the original Hour member variable, the
change to computing the value would break the client. By decoupling and forcing the client to go
through a method (or property), the Time class can change how it manages its internal state without
breaking client code.

Properties meet both goals: they provide a simple interface to the client, appearing to be a member
variable. They are implemented as methods, however, providing the data hiding required by good
object-oriented design, as illustrated in Example 4-11.

Example 4-11. Using a property
public class Time
{
 // public accessor methods
 public void DisplayCurrentTime()
 {

 System.Console.WriteLine(
 "Time\t: {0}/{1}/{2} {3}:{4}:{5}",
 month, date, year, hour, minute, second);
 }

 92

 // constructors
 public Time(System.DateTime dt)
 {
 year = dt.Year;
 month = dt.Month;
 date = dt.Day;
 hour = dt.Hour;
 minute = dt.Minute;
 second = dt.Second;
 }

 // create a property
 public int Hour
 {
 get
 {
 return hour;
 }

 set
 {
 hour = value;
 }
 }

 // private member variables
 private int year;
 private int month;
 private int date;
 private int hour;
 private int minute;
 private int second;
}

public class Tester
{
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = t.Hour;
 System.Console.WriteLine("\nRetrieved the hour: {0}\n",
 theHour);
 theHour++;
 t.Hour = theHour;
 System.Console.WriteLine("Updated the hour: {0}\n", theHour);
 }
}

To declare a property, write the property type and name followed by a pair of braces. Within the
braces you may declare get and set accessors. Neither of these has explicit parameters, though the
set() method has an implicit parameter value as shown next.

In Example 4-11, Hour is a property. Its declaration creates two accessors: get and set.

public int Hour
{

Programming C#

 93

 get
 {
 return hour;
 }

 set
 {
 hour = value;
 }
}

Each accessor has an accessor-body which does the work of retrieving and setting the property value.
The property value might be stored in a database (in which case the accessor-body would do
whatever work is needed to interact with the database), or it might just be stored in a private member
variable:

private int hour;

4.7.1 The get Accessor

The body of the get accessor is similar to a class method that returns an object of the type of the
property. In the example, the accessor for Hour is similar to a method that returns an int. It returns
the value of the private member variable in which the value of the property has been stored:

get
{
 return hour;
}

In this example, a local int member variable is returned, but you could just as easily retrieve an
integer value from a database, or compute it on the fly.

Whenever you reference the property (other than to assign to it), the get accessor is invoked to read
the value of the property:

Time t = new Time(currentTime);
int theHour = t.Hour;

In this example, the value of the Time object's Hour property is retrieved, invoking the get accessor
to extract the property, which is then assigned to a local variable.

4.7.2 The set Accessor

The set accessor sets the value of a property and is similar to a method that returns void. When you
define a set accessor you must use the value keyword to represent the argument whose value is
passed to and stored by the property.

set
{
 hour = value;
}

Here, again, a private member variable is used to store the value of the property, but the set
accessor could write to a database or update other member variables as needed.

 94

When you assign a value to the property the set accessor is automatically invoked, and the implicit
parameter value is set to the value you assign:

theHour++;
t.Hour = theHour;

The advantage of this approach is that the client can interact with the properties directly, without
sacrificing the data hiding and encapsulation sacrosanct in good object-oriented design.

4.8 Readonly Fields

You might want to create a version of the Time class that is responsible for providing public static
values representing the current time and date. Example 4-12 illustrates a simple approach to this
problem.

Example 4-12. Using static public constants
public class RightNow
{
 static RightNow()
 {
 System.DateTime dt = System.DateTime.Now;
 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 public static int Year;
 public static int Month;
 public static int Date;
 public static int Hour;
 public static int Minute;
 public static int Second;
}

public class Tester
{
 static void Main()
 {
 System.Console.WriteLine ("This year: {0}",
 RightNow.Year.ToString());
 RightNow.Year = 2002;
 System.Console.WriteLine ("This year: {0}",
 RightNow.Year.ToString());
 }
}

Output:

This year: 2000
This year: 2002

Programming C#

 95

This works well enough, until someone comes along and changes one of these values. As the
example shows, the RightNow.Year value can be changed, for example, to 2002. This is clearly not
what we'd like.

We'd like to mark the static values as constant, but that is not possible because we don't initialize them
until the static constructor is executed. C# provides the keyword readonly for exactly this purpose. If
you change the class member variable declarations as follows:

public static readonly int Year;
public static readonly int Month;
public static readonly int Date;
public static readonly int Hour;
public static readonly int Minute;
public static readonly int Second;

then comment out the reassignment in Main():

// RightNow.Year = 2002; // error!

the program will compile and run as intended.

 96

Programming C#

 97

Chapter 5. Inheritance and Polymorphism

The previous chapter demonstrates how to create new types by declaring classes. The current chapter
explores the relationship among objects in the real world and how to model these relationships in your
code. This chapter focuses on specialization which is implemented in C# through inheritance. This
chapter also explains how instances of more specialized classes can be treated as if they were
instances of more general classes, a process known as polymorphism. This chapter ends with a
consideration of sealed classes, which cannot be specialized, abstract classes, which exist only to be
specialized, and a discussion of the root of all classes, the class Object.

5.1 Specialization and Generalization

Classes and their instances (objects) do not exist in a vacuum, they exist in a network of
interdependencies and relationships, just as we, as social animals, live in a world of relationships and
categories.

The is-a relationship is one of specialization . When we say that a Dog is-a mammal, we mean that the
dog is a specialized kind of mammal. It has all the characteristics of any mammal (it bears live young,
nurses with milk, has hair), but it specializes these characteristics to the familiar characteristics of
canine domesticus. A Cat is also a mammal. As such we expect it to share certain characteristics with
the dog that are generalized in Mammal, but to differ in those characteristics that are specialized in
Cat.

The specialization and generalization relationships are both reciprocal and hierarchical. They are
reciprocal because specialization is the obverse side of the coin from generalization. Thus, Dog and
Cat specialize Mammal, and Mammal generalizes from Dog and Cat.

These relationships are hierarchical because they create a relationship tree, with specialized types
branching off from more generalized types. As you move up the hierarchy you achieve greater
generalization. You move up toward Mammal to generalize that Dogs and Cats and Horses all bear
live young. As you move down the hierarchy you specialize. Thus, the Cat specializes Mammal in
having claws (a characteristic) and purring (a behavior).

Similarly, when you say that ListBox and Button are windows, you indicate that there are
characteristics and behaviors of Windows that you expect to find in both of these types. In other words,
Window generalizes the shared characteristics of both ListBox and Button, while each specializes
its own particular characteristics and behaviors.

About the Unified Modeling Language

The Unified Modeling Language (UML) is a standardized "language" for
describing a system or business. The part of the UML that is useful for the
purposes of this chapter is the set of diagrams used to document the
relationships among classes.

In the UML, classes are represented as boxes. The name of the class
appears at the top of the box, and (optionally) methods and members can be
listed in the sections within the box.

In the UML, you model these relationships as shown in Figure 5-1. Note
that the arrow points from the more specialized class up to the more general
class.

 98

Figure 5-1. An is-a relationship

It is common to note that two classes share functionality, and then to factor out these commonalities
into a shared base class. This provides you with greater reuse of common code and easier-to-maintain
code.

For example, suppose you started out creating a series of objects as illustrated in Figure 5-2.

Figure 5-2. Deriving from Window

After working with RadioButtons, CheckBoxes, and Command buttons for a while, you realize that
they share certain characteristics and behaviors that are more specialized than Window but more
general than any of the three. You might factor these common traits and behaviors into a common
base class, Button, and rearrange your inheritance hierarchy as shown in Figure 5-3. This is an
example of how generalization is used in object-oriented development.

Figure 5-3. A more factored hierarchy

This UML diagram depicts the relationship between the factored classes and shows that both
ListBox and Button derive from Window, and that Button is in turn specialized into CheckBox
and Command. Finally, RadioButton derives from CheckBox. You can thus say that RadioButton
is a CheckBox, which in turn is a Button, and that Buttons are Windows.

Programming C#

 99

This is not the only, or even necessarily the best, organization for these objects, but it is a reasonable
starting point for understanding how these types (classes) relate to one another.

Actually, although this might reflect how some widget hierarchies
are organized, I am very skeptical of any system in which the
model does not reflect how I perceive reality, and when I find
myself saying that a RadioButton is a CheckBox, I have to
think long and hard about whether that makes sense. I suppose a
RadioButton is a kind of checkbox. It is a checkbox that
supports the idiom of mutually exclusive choices. That said, it is a
bit of a stretch and might be a sign of a shaky design.

5.2 Inheritance

In C#, the specialization relationship is typically implemented using inheritance. This is not the only
way to implement specialization, but it is the most common and most natural way to implement this
relationship.

Saying that ListBox inherits from (or derives from) Window indicates that it specializes Window.
Window is referred to as the base class, and ListBox is referred to as the derived class. That is,
ListBox derives its characteristics and behaviors from Window and then specializes to its own
particular needs.

5.2.1 Implementing Inheritance

In C#, you create a derived class by adding a colon after the name of the derived class, followed by
the name of the base class:

public class ListBox : Window

This code declares a new class, ListBox, that derives from Window. You can read the colon as
"derives from."

The derived class inherits all the members of the base class, both member variables and methods.
The derived class is free to implement its own version of a base class method. It does so by marking
the new method with the keyword new. (The new keyword is also discussed in in this chapter.) This
indicates that the derived class has in Section 5.3.3 later in this chapter.) This indicates that the
derived class has intentionally hidden and replaced the base class method, as used in Example 5-1.

Example 5-1. Using a derived class
using System;

public class Window
{
 // constructor takes two integers to
 // fix location on the console
 public Window(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the window
 public void DrawWindow()

 100

 {
 Console.WriteLine("Drawing Window at {0}, {1}",
 top, left);
 }

 // these members are private and thus invisible
 // to derived class methods; we'll examine this
 // later in the chapter
 private int top;
 private int left;
}

// ListBox derives from Window
public class ListBox : Window
{
 // constructor adds a parameter
 public ListBox(
 int top,
 int left,
 string theContents):
 base(top, left) // call base constructor
 {
 mListBoxContents = theContents;
 }

 // a new version (note keyword) because in the
 // derived method we change the behavior
 public new void DrawWindow()
 {
 base.DrawWindow(); // invoke the base method
 Console.WriteLine ("Writing string to the listbox: {0}",
 mListBoxContents);
 }
 private string mListBoxContents; // new member variable
}

public class Tester
{
 public static void Main()
 {
 // create a base instance
 Window w = new Window(5,10);
 w.DrawWindow();

 // create a derived instance
 ListBox lb = new ListBox(20,30,"Hello world");
 lb.DrawWindow();
 }
}

Output:

Drawing Window at 5, 10
Drawing Window at 20, 30
Writing string to the listbox: Hello world

Example 5-1 starts with the declaration of the base class Window. This class implements a
constructor and a simple DrawWindow method. There are two private member variables, top and
left.

Programming C#

 101

5.2.2 Calling Base Class Constructors

In Example 5-1, the new class ListBox derives from Window and has its own constructor, which
takes three parameters. The ListBox constructor invokes the constructor of its parent by placing a
colon (:) after the parameter list and then invoking the base class with the keyword base:

public ListBox(
 int theTop,
 int theLeft,
 string theContents):
 base(theTop, theLeft) // call base constructor

Because classes cannot inherit constructors, a derived class must implement its own constructor and
can only make use of the constructor of its base class by calling it explicitly.

Also notice in Example 5-1 that ListBox implements a new version of DrawWindow():

public new void DrawWindow()

The keyword new here indicates that the programmer is intentionally creating a new version of this
method in the derived class.

If the base class has an accessible default constructor, the derived constructor is not required to
invoke the base constructor explicitly; instead, the default constructor is called implicitly. However, if
the base class does not have a default constructor, every derived constructor must explicitly invoke
one of the base class constructors using the base keyword.

As discussed in Chapter 4, if you do not declare a constructor of
any kind, the compiler will create a default constructor for you.
Whether you write it yourself or you use the one provided "by
default" by the compiler, a default constructor is one that takes no
parameters. Note, however, that once you do create a constructor
of any kind (with or without parameters) the compiler does not
create a default constructor for you.

5.2.3 Calling Base Class Methods

In Example 5-1, the DrawWindow() method of ListBox hides and replaces the base class
method. When you call DrawWindow() on an object of type ListBox, it is
ListBox.DrawWindow() that will be invoked, not Window.DrawWindow(). Note, however, that
ListBox.DrawWindow() can invoke the DrawWindow() method of its base class with the code:

base.DrawWindow(); // invoke the base method

(The keyword base identifies the base class for the current object.)

5.2.4 Controlling Access

The visibility of a class and its members can be restricted through the use of access modifiers, such as
public, private, protected, internal, and protected internal. (See Chapter 4 for a
discussion of access modifiers.)

 102

As you've seen, public allows a member to be accessed by the member methods of other classes,
while private indicates that the member is visible only to member methods of its own class. The
protected keyword extends visibility to methods of derived classes, while internal extends
visibility to methods of any class in the same assembly.[1]

[1] An assembly (discussed in Chapter 1), is the unit of sharing and reuse in the Common Language Runtime (a logical DLL). Typically,
an assembly is a collection of physical files, held in a single directory, which includes all the resources (bitmaps, .gif files, etc.) required
for an executable, along with the Intermediate Language (IL) and metadata for that program.

The internal protected keyword pair allows access to members of the same assembly (internal)
or derived classes (protected). You can think of this designation as internal or protected.

Classes as well as their members can be designated with any of these accessibility levels. If a class
member has a different access designation than the class, the more restricted access applies. Thus, if
you define a class, myClass, as follows:

public class myClass
{
 // ...
 protected int myValue;
}

the accessibility for myValue is protected even though the class itself is public. A public class is one
that is visible to any other class that wishes to interact with it. Occasionally, classes are created that
exist only to help other classes in an assembly, and these classes might be marked internal rather
than public.

5.3 Polymorphism

There are two powerful aspects to inheritance. One is code reuse. When you create a ListBox class,
you're able to reuse some of the logic in the base (Window) class.

What is arguably more powerful, however, is the second aspect of inheritance: polymorphism. Poly
means many and morph means form. Thus, polymorphism refers to being able to use many forms of a
type without regard to the details.

When the phone company sends your phone a ring signal, it does not know what type of phone is on
the other end of the line. You might have an old-fashioned Western Electric phone which energizes a
motor to ring a bell, or you might have an electronic phone which plays digital music.

As far as the phone company is concerned, it knows only about the "base type" phone and expects
that any "instance" of this type knows how to ring. When the phone company tells your phone to ring, it
simply expects the phone to "do the right thing." Thus, the phone company treats your phone
polymorphically.

5.3.1 Creating Polymorphic Types

Because a ListBox is-a Window and a Button is-a Window, we expect to be able to use either of
these types in situations that call for a Window. For example, a form might want to keep a collection of
all the instances of Window it manages so that when the form is opened, it can tell each of its
Windows to draw itself. For this operation, the form does not want to know which elements are list
boxes and which are buttons; it just wants to tick through its collection and tell each to "draw." In
short, the form wants to treat all its Window objects polymorphically.

Programming C#

 103

5.3.2 Creating Polymorphic Methods

To create a method that supports polymorphism, you need only mark it as virtual in its base class.
For example, to indicate that the method DrawWindow() of class Window in Example 5-1 is
polymorphic, simply add the keyword virtual to its declaration, as follows:

public virtual void DrawWindow()

Now each derived class is free to implement its own version of DrawWindow(). To do so, you
simply override the base class virtual method by using the keyword override in the derived class
method definition, and then add the new code for that overridden method.

In the following excerpt from Example 5-2 (which appears later in this section), ListBox derives
from Window and implements its own version of DrawWindow():

public override void DrawWindow()
{
 base.DrawWindow(); // invoke the base method
 Console.WriteLine ("Writing string to the listbox: {0}",
 listBoxContents);
}

The keyword override tells the compiler that this class has intentionally overridden how
DrawWindow() works. Similarly, you'll override this method in another class, Button, also derived
from Window.

In the body of Example 5-2, you'll first create three objects, a Window, a ListBox, and a Button.
You'll then call DrawWindow() on each:

Window win = new Window(1,2);
ListBox lb = new ListBox(3,4,"Stand alone list box");
Button b = new Button(5,6);
win.DrawWindow();
lb.DrawWindow();
b.DrawWindow();

This works much as you might expect. The correct DrawWindow() object is called for each. So far,
nothing polymorphic has been done. The real magic starts when you create an array of Window
objects. Because a ListBox is-a Window, you are free to place a ListBox into a Window array. You
can also place a Button into an array of Window objects because a Button is also a Window:

Window[] winArray = new Window[3];
winArray[0] = new Window(1,2);
winArray[1] = new ListBox(3,4,"List box in array");
winArray[2] = new Button(5,6);

What happens when you call DrawWindow() on each of these objects?

for (int i = 0;i < 3; i++)
{
 winArray[i].DrawWindow();
}

All the compiler knows is that it has three Window objects and that you've called DrawWindow()on
each. If you had not marked DrawWindow as virtual, Window's DrawWindow() method would be

 104

called three times. However, because you did mark DrawWindow() as virtual and because the
derived classes override that method, when you call DrawWindow() on the array, the compiler
determines the runtime type of the actual objects (a Window, a ListBox and a Button) and calls the
right method on each. This is the essence of polymorphism. The complete code for this example is
shown in Example 5-2.

This listing uses an array, which is a collection of objects, all of the
same type. You access the members of the array with the index
operator:

// set the value of the element
// at offset 5
MyArray[5] = 7;

The first element in any array is at index 0. The use of the array in
this example should be fairly intuitive. Arrays are explained in
detail in Chapter 9.

Example 5-2. Using virtual methods
using System;

public class Window
{
 // constructor takes two integers to
 // fix location on the console
 public Window(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the window
 public virtual void DrawWindow()
 {
 Console.WriteLine("Window: drawing Window at {0}, {1}",
 top, left);
 }

 // these members are private and thus invisible
 // to derived class methods. We'll examine this
 // later in the chapter
 protected int top;
 protected int left;

}

// ListBox derives from Window
public class ListBox : Window
{
 // constructor adds a parameter
 public ListBox(
 int top,
 int left,
 string contents):
 base(top, left) // call base constructor
 {

Programming C#

 105

 listBoxContents = contents;
 }

 // a new version (note keyword) because in the
 // derived method we change the behavior
 public override void DrawWindow()
 {
 base.DrawWindow(); // invoke the base method
 Console.WriteLine ("Writing string to the listbox: {0}",
 listBoxContents);
 }

 private string listBoxContents; // new member variable
}

public class Button : Window
{
 public Button(
 int top,
 int left):
 base(top, left)
 {
 }

 // a new version (note keyword) because in the
 // derived method we change the behavior
 public override void DrawWindow()
 {
 Console.WriteLine("Drawing a button at {0}, {1}\n",
 top, left);
 }
}

public class Tester
{
 static void Main()
 {
 Window win = new Window(1,2);
 ListBox lb = new ListBox(3,4,"Stand alone list box");
 Button b = new Button(5,6);
 win.DrawWindow();
 lb.DrawWindow();
 b.DrawWindow();

 Window[] winArray = new Window[3];
 winArray[0] = new Window(1,2);
 winArray[1] = new ListBox(3,4,"List box in array");
 winArray[2] = new Button(5,6);

 for (int i = 0;i < 3; i++)
 {
 winArray[i].DrawWindow();
 }
 }
}

 Output:
Window: drawing Window at 1, 2
Window: drawing Window at 3, 4
Writing string to the listbox: Stand alone list box

 106

Drawing a button at 5, 6

Window: drawing Window at 1, 2
Window: drawing Window at 3, 4
Writing string to the listbox: List box in array
Drawing a button at 5, 6

Note that throughout this example, we've marked the new overridden methods with the keyword
override:

public override void DrawWindow()

The compiler now knows to use the overridden method when treating these objects polymorphically.
The compiler is responsible for tracking the real type of the object and for handling the "late binding"
so that it is ListBox.DrawWindow() that is called when the Window reference really points to a ListBox
object.

C++ programmers take note: you must explicitly mark the
declaration of any method that overrides a virtual method with the
keyword override.

5.3.3 Versioning with the new and override Keywords

In C#, the programmer's decision to override a virtual method is made explicit with the override
keyword. This helps you release new versions of your code; changes to the base class will not break
existing code in the derived classes. The requirement to use the keyword override helps prevent that
problem.

Here's how: assume for a moment that the Window base class of the previous example was written by
Company A. Suppose also that the ListBox and RadioButton classes were written by programmers
from Company B using a purchased copy of the Company A Window class as a base. The
programmers in Company B have little or no control over the design of the Window class, including
future changes that Company A might choose to make.

Now suppose that one of the programmers for Company B decides to add a Sort() method to ListBox:

public class ListBox : Window
{
 public virtual void Sort() {...}
}

This presents no problems until Company A, the author of Window, releases Version 2 of its Window
class, and it turns out that the programmers in Company A have also added a Sort() method to
their public class Window:

public class Window
{
 // ...
 public virtual void Sort() {...}
}

In other object-oriented languages (such as C++), the new virtual Sort() method in Window would
now act as a base method for the virtual Sort() method in ListBox. The compiler would call the
Sort() method in ListBox when you intend to call the Sort() in Window. In Java, if the Sort()

Programming C#

 107

in Window had a different return type, the class loader would consider the Sort() in ListBox to be
an invalid override and would fail to load.

C# prevents this confusion. In C#, a virtual function is always considered to be the root of virtual
dispatch; that is, once C# finds a virtual method, it looks no further up the inheritance hierarchy. If a
new virtual Sort() function is introduced into Window, the runtime behavior of ListBox is
unchanged.

When ListBox is compiled again, however, the compiler generates a warning:

...\class1.cs(54,24): warning CS0114: 'ListBox.Sort()' hides
inherited member 'Window.Sort()'.
To make the current member override that implementation,
add the override keyword. Otherwise add the new keyword.

To remove the warning, the programmer must indicate what he intends. He can mark the ListBox
Sort() method new, to indicate that it is not an override of the virtual method in Window:

public class ListBox : Window
{
 public new virtual void Sort() {...}

This action removes the warning. If, on the other hand, the programmer does want to override the
method in Window, he need only use the override keyword to make that intention explicit:

public class ListBox : Window
{
 public override void Sort() {...}

To avoid this warning, it might be tempting to add the keyword
new to all your virtual methods. This is a bad idea. When new
appears in the code, it ought to document the versioning of code.
It points a potential client to the base class to see what it is that
you are not overriding. Using new scattershot undermines this
documentation. Further, the warning exists to help identify a real
issue.

5.4 Abstract Classes

Every subclass of Window should implement its own DrawWindow() method—but nothing requires
that it do so. To require subclasses to implement a method of their base, you need to designate that
method as abstract.

An abstract method has no implementation. It creates a method name and signature that must be
implemented in all derived classes. Furthermore, making one or more methods of any class abstract
has the side effect of making the class abstract.

Abstract classes establish a base for derived classes, but it is not legal to instantiate an object of an
abstract class. Once you declare a method to be abstract, you prohibit the creation of any instances of
that class.

Thus, if you were to designate DrawWindow() as abstract in the Window class, you could derive
from Window, but you could not create any Window objects. Each derived class would have to
implement DrawWindow(). If the derived class failed to implement the abstract method, that class
would also be abstract, and again no instances would be possible.

 108

Designating a method as abstract is accomplished by placing the keyword abstract at the
beginning of the method definition, as follows:

abstract public void DrawWindow();

(Because the method can have no implementation, there are no braces; only a semicolon.)

If one or more methods are abstract, the class definition must also be marked abstract, as in the
following:

abstract public class Window

Example 5-3 illustrates the creation of an abstract Window class and an abstract DrawWindow()
method.

Example 5-3. Using an abstract method and class
using System;

abstract public class Window
{
 // constructor takes two integers to
 // fix location on the console
 public Window(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the window
 // notice: no implementation
 abstract public void DrawWindow();

 // these members are private and thus invisible
 // to derived class methods. We'll examine this
 // later in the chapter
 protected int top;
 protected int left;

}

// ListBox derives from Window
public class ListBox : Window
{
 // constructor adds a parameter
 public ListBox(
 int top,
 int left,
 string contents):
 base(top, left) // call base constructor
 {

 listBoxContents = contents;
 }

 // an overridden version implementing the
 // abstract method
 public override void DrawWindow()
 {

Programming C#

 109

 Console.WriteLine ("Writing string to the listbox: {0}",
 listBoxContents);
 }

 private string listBoxContents; // new member variable
}

public class Button : Window
{
 public Button(
 int top,
 int left):
 base(top, left)
 {
 }

 // implement the abstract method
 public override void DrawWindow()
 {
 Console.WriteLine("Drawing a button at {0}, {1}\n",
 top, left);
 }

}

public class Tester
{
 static void Main()
 {
 Window[] winArray = new Window[3];
 winArray[0] = new ListBox(1,2,"First List Box");
 winArray[1] = new ListBox(3,4,"Second List Box");
 winArray[2] = new Button(5,6);

 for (int i = 0;i < 3; i++)
 {
 winArray[i].DrawWindow();
 }
 }
}

In Example 5-3, the Window class has been declared abstract and therefore cannot be instantiated.
If you replace the first array member:

winArray[0] = new ListBox(1,2,"First List Box");

with this code:

winArray[0] = new Window(1,2);

the program will generate the following error:

Cannot create an instance of the abstract class or interface 'Window'

You can instantiate the ListBox and Button objects because these classes override the abstract
method, thus making the classes concrete (i.e., not abstract).

 110

5.4.1 Limitations of Abstract

Although designating DrawWindow() as abstract does force all the derived classes to implement the
method, this is a very limited solution to the problem. If we derived a class from ListBox (e.g.,
DropDownListBox), nothing forces that derived class to implement its own DrawWindow() method.

C++ programmers take note: in C# it is not possible for
Window.DrawWindow() to provide an implementation, so we
cannot take advantage of the common DrawWindow() routines
that might otherwise be shared by the derived classes.

Finally, abstract classes should not just be an implementation trick; they should represent the idea of
an abstraction that establishes a "contract" for all derived classes. In other words, abstract classes
describe the public methods of the classes that will implement the abstraction.

The idea of an abstract Window class ought to lay out the common characteristics and behaviors of all
Windows, even if we never intend to instantiate the abstraction Window itself.

The idea of an abstract class is implied in the word "abstract." It serves to implement the abstraction
"Window" that will be manifest in the various concrete instances of Window, such as browser window,
frame, button, list box, drop-down, and so forth. The abstract class establishes what a Window is,
even though we never intend to create a "Window" per se. An alternative to using abstract is to
define an interface, as described in Chapter 8.

5.4.2 Sealed Class

The obverse side of the design coin from abstract is sealed. Although an abstract class is intended to
be derived-from and to provide a template for its subclasses to follow, a sealed class does not allow
classes to derive from it at all. The sealed keyword placed before the class declaration precludes
derivation. Classes are most often marked sealed to prevent accidental inheritance.

If the declaration of Window in Example 5-3 is changed from abstract to sealed (eliminating the
abstract keyword from the DrawWindow() declaration as well), the program will fail to compile. If
you try to build this project, the compiler will return the following error message:

'ListBox' cannot inherit from sealed class 'Window'

among many other complaints (such as that you cannot create a new protected member in a sealed
class).

5.5 The Root of all Classes: Object

All C# classes, of any type, are treated as if they ultimately derive from System.Object. Interestingly,
this includes value types!

A base class is the immediate "parent" of a derived class. A derived class can be the base to further
derived classes, creating an inheritance "tree" or hierarchy. A root class is the topmost class in an
inheritance hierarchy. In C#, the root class is Object. The nomenclature is a bit confusing until you
imagine an upside-down tree, with the root on top and the derived classes below. Thus, the base class
is considered to be "above" the derived class.

Object provides a number of methods that subclasses can and do override. These include
Equals() to determine if two objects are the same, GetType(), which returns the type of the

Programming C#

 111

object (discussed in Chapter 18), and ToString(), which returns a string to represent the current
object (discussed in Chapter 10). Table 5-1 summarizes the methods of Object.

Table 5-1. The methods of Object
Method What It Does

Equals() Evaluates whether two objects are equivalent.

GetHashCode() Allows objects to provide their own hash function for use in collections (see
Chapter 9).

GetType() Provides access to the type object (see Chapter 18).
ToString() Provides a string representation of the object.
Finalize() Cleans up nonmemory resources (see Chapter 4).
MemberwiseClone() Creates copies of the object; should never be implemented by your type.

Example 5-4 illustrates the use of the ToString() method inherited from Object, as well as the
fact that primitive datatypes such as int can be treated as if they inherit from Object.

Example 5-4. Inheriting from Object
using System;

public class SomeClass
{
 public SomeClass(int val)
 {
 value = val;
 }

 public virtual string ToString()
 {
 return value.ToString();
 }
 private int value;
}

public class Tester
{
 static void Main()
 {
 int i = 5;
 Console.WriteLine("The value of i is: {0}", i.ToString());

 SomeClass s = new SomeClass(7);
 Console.WriteLine("The value of s is {0}", s.ToString());
 }
}

Output:

The value of i is: 5
The value of s is 7

The documentation for Object.ToString() reveals its signature:

public virtual string ToString();

 112

It is a public virtual method which returns a string and which takes no parameters. All the built-in types,
such as int, derive from Object and so can invoke Object's methods.

Example 5-4 overrides the virtual function for SomeClass, which is the usual case, so that the class'
ToString() method will return a meaningful value. If you comment out the overridden function, the
base method will be invoked, which will change the output to:

The value of s is SomeClass

Thus, the default behavior is to return a string with the name of the class itself.

Classes do not need to explicitly declare that they derive from Object; the inheritance is implicit.

5.6 Boxing and Unboxing Types

Boxing and unboxing are the processes that enable value types (e.g., integers) to be treated as
reference types (objects). The value is "boxed" inside an Object, and subsequently "unboxed" back
to a value type. It is this process that allowed us to call the ToString() method on the integer in
Example 5-4.

5.6.1 Boxing Is Implicit

Boxing is an implicit conversion of a value type to the type Object. Boxing a value allocates an
instance of Object and copies the value into the new object instance, as shown in Figure 5-4.

Figure 5-4. Boxing reference types

Boxing is implicit when you provide a value type where a reference is expected and the value is
implicitly boxed. For example, if you assign a primitive type such as an integer to a variable of type
Object (which is legal because int derives from Object) the value is boxed, as illustrated here:

using System;
class Boxing
{
 public static void Main()
 {
 int i = 123;
 Console.WriteLine("The object value = {0}", i);
 }
}

Console.WriteLine() expects an object, not an integer. To accommodate the method, the
integer type is automatically boxed by the CLR, and ToString() is called on the resulting object.
This feature allows you to create methods that take an object as a parameter; no matter what is
passed in, reference or value type, the method will work.

Programming C#

 113

5.6.2 Unboxing Must Be Explicit

To return the boxed object back to a value type, you must explicitly unbox it. You should accomplish
this in two steps:

1. Make sure the object instance is a boxed value of the given value type.
2. Copy the value from the instance to the value-type variable.

Figure 5-5 illustrates unboxing.

Figure 5-5. Boxing and then unboxing?

For the unboxing to succeed, the object being unboxed must be a reference to an object that was
created by boxing a value of the given type. Boxing and unboxing are illustrated in Example 5-5.

Example 5-5. Boxing and unboxing
using System;
public class UnboxingTest
{
 public static void Main()
 {
 int i = 123;

 //Boxing
 object o = i;

 // unboxing (must be explict)
 int j = (int) o;
 Console.WriteLine("j: {0}", j);
 }
}

Example 5-5 creates an integer i and implicitly boxes it when it is assigned to the object o. The
value is then explicitly unboxed and assigned to a new int whose value is displayed.

Typically, you will wrap an unbox operation in a try block, as explained in Chapter 11. If the object
being unboxed is null or a reference to an object of a different type, an InvalidCastException is
thrown.

 114

5.7 Nesting Classes

Classes have members, and it is entirely possible for the member of a class to be another user-
defined type. Thus, a Button class might have a member of type Location, and a Location class
might contain members of type Point. Finally, Point might contain members of type int.

At times, the contained class might exist only to serve the outer class, and there might be no reason
for it to be otherwise visible. (In short, the contained class acts as a helper class.) You can define the
helper class within the definition of the outer class. The contained, inner class is called a nested class,
and the class that contains it is called, simply, the outerclass.

Nested classes have the advantage of access to all the members of the outer class. A method of a
nested class can access private members of the outer class.

In addition, the nested class can be hidden from all other classes—that is, it can be private to the outer
class.

Finally, a nested class that is public is accessed within the scope of the outer class. If Outer is the
outer class, and Nested is the (public) inner class, you refer to Nested as Outer.Nested, with the
outer class acting (more or less) as a namespace or scope.

Java programmers take note: nested classes are roughly
equivalent to static inner classes; there is no C# equivalent to
Java's nonstatic inner classes.

Example 5-6 adds a nested class to Fraction named FractionArtist. The job of
FractionArtist is to render the fraction on the console. In this example, the rendering has been
replaced with a pair of simple WriteLine() statements. The Fraction class has also been
stripped down to its essentials.

Example 5-6. Using a nested class
using System;
using System.Text;

public class Fraction
{
 public Fraction(int numerator, int denominator)
 {
 this.numerator=numerator;
 this.denominator=denominator;
 }

 // Methods elided...

 public override string ToString()
 {
 StringBuilder s = new StringBuilder();
 s.AppendFormat("{0}/{1}",
 numerator, denominator);
 return s.ToString();
 }

 internal class FractionArtist
 {
 public void Draw(Fraction f)
 {

Programming C#

 115

 Console.WriteLine("Drawing the numerator: {0}",
 f.numerator);
 Console.WriteLine("Drawing the denominator: {0}",
 f.denominator);
 }
 }
 private int numerator;
 private int denominator;
}

 public class Tester
{
 static void Main()
 {
 Fraction f1 = new Fraction(3,4);
 Console.WriteLine("f1: {0}", f1.ToString());

 Fraction.FractionArtist fa = new Fraction.FractionArtist();
 fa.Draw(f1);
 }
}

The Fraction class is generally unchanged with the exception of adding the new nested class and
eliding a number of methods that are not relevant to this issue. The nested class is shown in bold. The
FractionArtist class provides only a single member, the Draw() method. What is particularly
interesting is that Draw() has access to the private data members f.numerator and
f.denominator, to which it would not have had access if it were not a nested class.

Notice in Main() that to declare an instance of this nested class, you must specify the type name of
the outer class:

Fraction.FractionArtist fa = new Fraction.FractionArtist();

Even though FractionArtist is public, it is scoped to within the Fraction class.

 116

Programming C#

 117

Chapter 6. Operator Overloading

It is a design goal of C# that user-defined classes have all the functionality of built-in types. For
example, suppose you have defined a type to represent fractions. Ensuring that this class has all the
functionality of the built-in types means that you must be able to perform arithmetic on instances of
your fractions (e.g., add two fractions, multiply, etc.) and to convert fractions to and from built-in types
such as integer (int). You could, of course, implement methods for each of these operations and
invoke them by writing statements such as:

Fraction theSum = firstFraction.Add(secondFraction);

Although this will work, it is ugly and not how the built-in types are used. It would be much better to
write:

Fraction theSum = firstFraction + secondFraction;

Statements like this are intuitive and consistent with how built-in types, such as int, are added.

In this chapter you will learn techniques for adding standard operators to your user-defined types. You
will also learn how to add conversion operators so that your user-defined types can be implicitly and
explicitly converted to other types.

6.1 Using the operator Keyword

In C#, operators are static methods whose return values represent the result of an operation and
whose parameters are the operands. When you create an operator for a class you say you have
"overloaded" that operator, much as you might overload any member method. Thus, to overload the
addition operator (+) you would write:

public static Fraction operator+(Fraction lhs, Fraction rhs)

It is my convention to name the parameters lhs and rhs. The parameter name lhs stands for
"lefthand side" and reminds me that the first parameter represents the lefthand side of the operation.
Similarly, rhs stands for "righthand side."

The C# syntax for overloading an operator is to write the word operator followed by the operator to
overload. The operator keyword is a method modifier. Thus, to overload the addition operator (+)
you write operator+.

When you write:

Fraction theSum = firstFraction + secondFraction;

the overloaded + operator is invoked, with the first Fraction passed as the first argument, and the
second Fraction passed as the second argument. When the compiler sees the expression:

firstFraction + secondFraction

it translates that expression into:

Fraction.operator+(firstFraction, secondFraction)

The result is that a new Fraction is returned, which in this case is assigned to the Fraction object
named theSum.

 118

C++ programmers take note: it is not possible to create nonstatic
operators, and thus binary operators must take two operands.

6.2 Supporting Other .NET Languages

C# provides the ability to overload operators for your classes, even though this is not, strictly speaking,
in the Common Language Specification (CLS). Other .NET languages, such as VB.NET might not
support operator overloading, and it is important to ensure that your class supports alternative
methods that these other languages might call to create the same effect.

Thus, if you overload the addition operator (+) you might also want to provide an add()method that
does the same work. Operator overloading ought to be a syntactic shortcut, not the only path for your
objects to accomplish a given task.

6.3 Creating Useful Operators

Operator overloading can make your code more intuitive and enable it to act more like the built-in
types. It can also make your code unmanageably complex and obtuse if you break the common idiom
for the use of operators. Resist the temptation to use operators in new and idiosyncratic ways.

For example, although it might be tempting to overload the increment operator (++) on an employee
class to invoke a method incrementing the employee's pay level, this can create tremendous
confusion for clients of your class. It is best to use operator overloading sparingly, and only when its
meaning is clear and consistent with how the built-in classes operate.

6.4 Logical Pairs

It is quite common to overload the equals operator (==) to test whether two objects are equal (however
equality might be defined for your object). C# insists that if you overload the equals operator, you must
also overload the not-equals operator (!=). Similarly, the less than (<) and greater than (>) operators
must be paired, as must the less than or equals (<=) and greater than or equals (>=) operators.

6.5 The Equals Operator

If you overload the equals operator (==), it is recommended that you also override the virtual
Equals() method provided by object and route its functionality back to the equals operator. This
allows your class to be polymorphic and provides compatibility with other .NET languages that do not
overload operators (but do support method overloading). The FCL classes will not use the overloaded
operators but will expect your classes to implement the underlying methods. Thus, for example,
ArrayList expects you to implement Equals().

The object class implements the Equals() method with this signature:

public override bool Equals(object o)

By overriding this method, you allow your Fraction class to act polymorphically with all other objects.
Inside the body of Equals() you will need to ensure that you are comparing with another
Fraction, and if so you can pass the implementation along to the equals operator definition that
you've written.

public override bool Equals(object o)
{
 if (! (o is Fraction))

Programming C#

 119

 {
 return false;
 }
 return this == (Fraction) o;
}

The is operator is used to check whether the runtime type of an object is compatible with the operand
(in this case, Fraction). Thus o is Fraction will evaluate true if o is in fact a type compatible
with Fraction.

6.6 Conversion Operators

C# will convert int to long implicitly, and allow you to convert long to int explicitly. The conversion
from int to long is implicit because you know that any int will fit into the memory representation of
a long. The reverse operation, from long to int, must be explicit (using a cast) because it is
possible to lose information in the conversion:

int myInt = 5;
long myLong;
myLong = myInt; // implicit
myInt = (int) myLong; // explicit

You want the same functionality for your fractions. Given an int, you can support an implicit
conversion to a fraction because any whole value is equal to that value over 1 (e.g., 15==15/1).

Given a fraction, you might want to provide an explicit conversion back to an integer, understanding
that some value might be lost. Thus, you might convert 9/4 to the integer value 2.

The keyword implicit is used when the conversion is guaranteed to succeed and no information
will be lost; otherwise explicit is used.

Example 6-1 illustrates how you might implement implicit and explicit conversions, and some of the
operators of the Fraction class. (Although I've used Console.WriteLine to print messages
illustrating which method we're entering, the better way to pursue this kind of trace is with the
debugger. You can place a breakpoint on each of the test statements, and then step into the code,
watching the invocation of the constructors as they occur.)

Example 6-1. Defining conversions and operators for the fraction class
operators
using System;

public class Fraction
{
 public Fraction(int numerator, int denominator)
 {
 Console.WriteLine("In Fraction Constructor(int, int)");
 this.numerator=numerator;
 this.denominator=denominator;
 }

 public Fraction(int wholeNumber)
 {
 Console.WriteLine("In Fraction Constructor(int)");
 numerator = wholeNumber;
 denominator = 1;
 }

 120

 public static implicit operator Fraction(int theInt)
 {
 System.Console.WriteLine("In implicit conversion to Fraction");
 return new Fraction(theInt);
 }

 public static explicit operator int(Fraction theFraction)
 {
 System.Console.WriteLine("In explicit conversion to int");
 return theFraction.numerator /
 theFraction.denominator;
 }

 public static bool operator==(Fraction lhs, Fraction rhs)
 {
 Console.WriteLine("In operator ==");
 if (lhs.denominator == rhs.denominator &&
 lhs.numerator == rhs.numerator)
 {
 return true;
 }
 // code here to handle unlike fractions
 return false;
 }

 public static bool operator !=(Fraction lhs, Fraction rhs)
 {
 Console.WriteLine("In operator !=");

 return !(lhs==rhs);
 }

 public override bool Equals(object o)
 {
 Console.WriteLine("In method Equals");
 if (! (o is Fraction))
 {
 return false;
 }
 return this == (Fraction) o;
 }

 public static Fraction operator+(Fraction lhs, Fraction rhs)
 {
 Console.WriteLine("In operator+");
 if (lhs.denominator == rhs.denominator)
 {
 return new Fraction(lhs.numerator+rhs.numerator,
 lhs.denominator);
 }

 // simplistic solution for unlike fractions
 // 1/2 + 3/4 == (1*4) + (3*2) / (2*4) == 10/8
 int firstProduct = lhs.numerator * rhs.denominator;
 int secondProduct = rhs.numerator * lhs.denominator;
 return new Fraction(
 firstProduct + secondProduct,
 lhs.denominator * rhs.denominator
);

Programming C#

 121

 }

 public override string ToString()
 {
 String s = numerator.ToString() + "/" +
 denominator.ToString();
 return s;
 }

 private int numerator;
 private int denominator;
}

 public class Tester
{
 static void Main()
 {
 Fraction f1 = new Fraction(3,4);
 Console.WriteLine("f1: {0}", f1.ToString());

 Fraction f2 = new Fraction(2,4);
 Console.WriteLine("f2: {0}", f2.ToString());

 Fraction f3 = f1 + f2;
 Console.WriteLine("f1 + f2 = f3: {0}", f3.ToString());

 Fraction f4 = f3 + 5;
 Console.WriteLine("f3 + 5 = f4: {0}", f4.ToString());

 Fraction f5 = new Fraction(2,4);
 if (f5 == f2)
 {
 Console.WriteLine("F5: {0} == F2: {1}",
 f5.ToString(),
 f2.ToString());
 }

 }
}

The Fraction class begins with two constructors: one taking a numerator and denominator, the other
taking a whole number. The constructors are followed by the declaration of two conversion operators.
The first conversion operator changes an integer into a Fraction:

public static implicit operator Fraction(int theInt)
{
 return new Fraction(theInt,1);
}

This conversion is marked implicit because any whole number (int) can be converted to a
Fraction by setting the numerator to the int and the denominator to 1. You delegate this
responsibility to the constructor which takes an int.

The second conversion operator is for the explicit conversion of Fractions into integers:

public static explicit operator int(Fraction theFraction)
{
 return theFraction.numerator /

 122

 theFraction.denominator;
}

Because this example uses integer division, it will truncate the value. Thus, if the fraction is 15/16, the
resulting integer value will be 1. A more sophisticated conversion operator might accomplish rounding.

The conversion operators are followed by the equals operator (==) and the not equals operator (!=).
Remember that if you implement one of these equals operators, you must implement the other.

You have defined value equality for a Fraction such that the numerators and denominators must
match. For this exercise, 3/4 and 6/8 are not considered equal. Again, a more sophisticated
implementation would reduce these fractions and notice the equality.

You include an override of the object class' Equals() method so that your Fraction objects can
be treated polymorphically with any other object. Your implementation is to delegate the evaluation of
equality to the equality operator.

A Fraction class would, no doubt, implement all the arithmetic operators (addition, subtraction,
multiplication, division). To keep the illustration simple, you implement only addition, and even here
you simplify greatly. You check to see if the denominators are the same; if so, you add the numerators:

public static Fraction operator+(Fraction lhs, Fraction rhs)
{
 if (lhs.denominator == rhs.denominator)
 {
 return new Fraction(lhs.numerator+rhs.numerator,
 lhs.denominator);
 }

If the denominators are not the same, you cross multiply:

int firstProduct = lhs.numerator * rhs.denominator;
int secondProduct = rhs.numerator * lhs.denominator;
return new Fraction(
 firstProduct + secondProduct,
 lhs.denominator * rhs.denominator

This code is best understood with an example. If you were adding 1/2 and 3/4, you can multiply the
first numerator (1) by the second denominator (4) and store the result (4) in firstProduct. You can
also multiply the second numerator (3) by the first denominator (2) and store that result (6) in
secondProduct. You add these products (6+4) to a sum of 10, which is the numerator for the
answer. You then multiply the two denominators (2*4) to generate the new denominator (8). The
resulting fraction (10/8) is the correct answer. (To recap: 1/2=4/8, 3/4=6/8, 4/8+6/8=10/8. The
example does not reduce the fraction, to keep it simple.)

Finally, to enable debugging of the new Fraction class, the code is written so that Fraction is able
to return its value as a string in the format numerator/denominator:

public override string ToString()
{
 String s = numerator.ToString() + "/" +
 denominator.ToString();
 return s;
}

You create a new string object by calling the ToString() method on numerator. Since numerator
is an object, this causes the compiler to implicitly box the integer (creating an object) and calls

Programming C#

 123

ToString() on that object, returning a string representation of the numerator. You concatenate the
string "/" and then concatenate the string that results from calling ToString() on the denominator.

With your Fraction class in hand, you're ready to test. Your first tests create simple fractions, 3/4
and 2/4:

Fraction f1 = new Fraction(3,4);
Console.WriteLine("f1: {0}", f1.ToString());

Fraction f2 = new Fraction(2,4);
Console.WriteLine("f2: {0}", f2.ToString());

The output from this is what you would expect—the invocation of the constructors and the value
printed in WriteLine:

In Fraction Constructor(int, int)
f1: 3/4
In Fraction Constructor(int, int)
f2: 2/4

The next line in Main() invokes the static operator+. The purpose of this operator is to add two
fractions and return the sum in a new fraction:

Fraction f3 = f1 + f2;
Console.WriteLine("f1 + f2 = f3: {0}", f3.ToString());

Examining the output reveals how operator+ works:

In operator+
In Fraction Constructor(int, int)
f1 + f2 = f3: 5/4

The operator+ is invoked, and then the constructor for f3, taking the two int values representing
the numerator and denominator of the resulting new fraction.

The next test in Main() adds an int to the Fraction f3 and assigns the resulting value to a new
Fraction, f4:

Fraction f4 = f3 + 5;
Console.WriteLine("f3 + 5: {0}", f4.ToString());

The output shows the steps for the various conversions:

In implicit conversion to Fraction
In Fraction Constructor(int)
In operator+
In Fraction Constructor(int, int)
f3 + 5 = f4: 25/4

Notice that the implicit conversion operator was invoked to convert 5 to a fraction. In the return
statement from the implicit conversion operator, the Fraction constructor was called, creating the
fraction 5/1. This new fraction was then passed along with Fraction f3 to operator+, and the
sum was passed to the constructor for f4.

In our final test, a new fraction (f5) is created, and you test whether it is equal to f2. If so, you print
their values:

 124

Fraction f5 = new Fraction(2,4);
if (f5 == f2)
{
 Console.WriteLine("F5: {0} == F2: {1}",
 f5.ToString(),
 f2.ToString());
}

The output shows the creation of f5, and then the invocation of the overloaded equals operator:

In Fraction Constructor(int, int)
In operator ==
F5: 2/4 == F2: 2/4

Programming C#

 125

Chapter 7. Structs

A struct is a simple user-defined type, a lightweight alternative to classes. Structs are similar to
classes in that they may contain structors, properties, methods, fields, operators, nested types and
indexers (see Chapter 9).

There are also significant differences between classes and structs. For instance, structs don't support
inheritance or destructors. More important, although a class is a reference type, a struct is a value type.
(See Chapter 3 for more information about classes and types.) Thus, structs are useful for
representing objects that do not require reference semantics.

The consensus view is that you ought to use structs only for types that are small, simple, and similar in
their behavior and characteristics to built-in types.

Structs are somewhat more efficient in their use of memory in arrays (see Chapter 9). However, they
can be less efficient when used in collections. Collections expect references, and structs must be
boxed. There is overhead in boxing and unboxing, and classes might be more efficient in large
collections.

In this chapter, you will learn how to define and work with structs and how to use constructors to
initialize their values.

7.1 Defining Structs

The syntax for declaring a struct is almost identical to that for a class:

[attributes] [access-modifiers] struct identifier [:interface-list]
{ struct-members }

Example 7-1 illustrates the definition of a struct. Location represents a point on a two-dimensional
surface. Notice that the struct Location is declared exactly as a class would be, except for the use of
the keyword struct. Also notice that the Location constructor takes two integers and assigns their
value to the instance members, x and y. The x and y coordinates of Location are declared as
properties.

Example 7-1. Creating a struct
using System;

public struct Location
{
 public Location(int xCoordinate, int yCoordinate)
 {
 xVal = xCoordinate;
 yVal = yCoordinate;
 }

 public int x
 {
 get
 {
 return xVal;
 }
 set
 {
 xVal = value;

 126

 }
 }

 public int y
 {
 get
 {
 return yVal;
 }
 set
 {
 yVal = value;
 }
 }

 public override string ToString()
 {
 return (String.Format("{0}, {1}", xVal,yVal));
 }

 private int xVal;
 private int yVal;
}

public class Tester
{
 public void myFunc(Location loc)
 {
 loc.x = 50;
 loc.y = 100;
 Console.WriteLine("Loc1 location: {0}", loc);
 }
 static void Main()
 {
 Location loc1 = new Location(200,300);
 Console.WriteLine("Loc1 location: {0}", loc1);
 Tester t = new Tester();
 t.myFunc(loc1);
 Console.WriteLine("Loc1 location: {0}", loc1);
 }
}
Output
Loc1 location: 200, 300
In MyFunc loc: 50, 100
Loc1 location: 200, 300

Unlike classes, structs do not support inheritance. They implicitly derive from object (as do all types in
C#, including the built-in types) but cannot inherit from any other class or struct. Structs are also
implicitly sealed (that is, no class or struct can derive from a struct). Like classes, however, structs can
implement multiple interfaces. Additional differences include the following:

No destructor or custom default constructor

Structs cannot have destructors, nor can they have a custom parameterless (default)
constructor. If you supply no constructor at all, your struct will in effect be provided with a
default constructor which will zero all the data members or set them to default values
appropriate to their type (see Table 4-2). If you supply any constructor, you must initialize all
the fields in the struct.

No initialization

Programming C#

 127

You cannot initialize an instance field in a struct. Thus, it is illegal to write:

private int xVal = 50;
private int yVal = 100;

though that would have been fine had this been a class.

Structs are designed to be simple and lightweight. While private member data promotes data hiding
and encapsulation, some programmers feel it is overkill for structs. They make the member data public,
thus simplifying the implementation of the struct. Other programmers feel that properties provide a
clean and simple interface, and that good programming practice demands data hiding even with
simple lightweight objects. Which you choose is a matter of design philosophy; the language will
support either approach.

7.2 Creating Structs

You create an instance of a struct by using the new keyword in an assignment statement, just as you
would for a class. In Example 7-1, the Tester class creates an instance of Location as follows:

Location loc1 = new Location(200,300);

Here the new instance is named loc1 and is passed two values, 200 and 300.

7.2.1 Structs as Value Types

The definition of the Tester class in Example 7-1 includes a Location object, loc1, created with
the values 200 and 300. This line of code calls the Location constructor:

Location loc1 = new Location(200,300);

Then WriteLine()is called:

Console.WriteLine("Loc1 location: {0}", loc1);

WriteLine() is expecting an object; but, of course, Location is a struct (a value type). The
compiler automatically boxes the struct (as it would any value type), and it is the boxed object that is
passed to WriteLine(). ToString() is called on the boxed object, and because the struct
(implicitly) inherits from object, it is able to respond polymorphically, overriding the method just as
any other object might:

Loc1 location: 200, 300

Structs are value objects, however, and when passed to a function, they are passed by value, as seen
in the next line of code, in which the loc1 object is passed to the myFunc() method:

t.myFunc(loc1);

In myFunc new values are assigned to x and y, and then these new values are printed out:

Loc1 location: 50, 100

When you return to the calling function (Main()) and call WriteLine() again, the values are
unchanged:

 128

Loc1 location: 200, 300

The struct was passed as a value object, and a copy was made in myFunc. Try this experiment—
change the declaration to class:

public class Location

and run the test again. Here is the output:

Loc1 location: 200, 300
In MyFunc loc: 50, 100
Loc1 location: 50, 100

This time the Location object has reference semantics. Thus, when the values are changed in
myFunc(), they are changed on the actual object back in Main().

7.2.2 Calling the Default Constructor

As mentioned earlier, if you do not create a constructor, an implicit default constructor will be called by
the compiler. We can see this if we comment out the constructor:

/* public Location(int xCoordinate, int yCoordinate)
 {
 xVal = xCoordinate;
 yVal = yCoordinate;
 }
*/

and replace the first line in Main() with one that creates an instance of Location without passing
values:

// Location loc1 = new Location(200,300);
 Location loc1 = new Location();

Because there is now no constructor at all, the implicit default constructor is called. The output looks
like this:

Loc1 location: 0, 0
In MyFunc loc: 50, 100
Loc1 location: 0, 0

The default constructor has initialized the member variables to zero.

C++ programmers take note: in C#, the new keyword does not
always create objects on the heap. Classes are created on the
heap, and structs are created on the stack. Also, when new is
omitted (as you will see in the next section), a constructor is never
called. Because C# requires definite assignment, you must
explicitly initialize all the member variables before using the struct.

Programming C#

 129

7.2.3 Creating Structs Without new

Because loc1 is a struct (not a class), it is created on the stack. Thus, in Example 7-1, when the
new operator is called:

Location loc1 = new Location(200,300);

the resulting Location object is created on the stack.

The new operator calls the Location constructor. However, unlike with a class, it is possible to create
a struct without using new at all. This is consistent with how built-in type variables (such as int) are
defined and is illustrated in Example 7-2.

A caveat: I am demonstrating how to create a struct without using
new because it differentiates C# from C++ and also differentiates
how C# treats classes versus structs. That said, however, creating
structs without the keyword new brings little advantage and can
create programs that are harder to understand, more error prone,
and more difficult to maintain! Proceed at your own risk.

Example 7-2. Creating a struct without using new
using System;

public struct Location
{
 public Location(int xCoordinate, int yCoordinate)
 {
 xVal = xCoordinate;
 yVal = yCoordinate;
 }
 public int x
 {
 get
 {
 return xVal;
 }
 set
 {
 xVal = value;
 }
 }

 public int y
 {
 get
 {
 return yVal;
 }
 set
 {
 yVal = value;
 }
 }

 public override string ToString()
 {

 130

 return (String.Format("{0}, {1}", xVal,yVal));
 }

 public int xVal;
 public int yVal;
}

public class Tester
{
 static void Main()
 {
 Location loc1; // no call to the constructor
 loc1.xVal = 75; // initialize the members
 loc1.yVal = 225;
 Console.WriteLine(loc1);
 }
}

In Example 7-2 you initialize the local variables directly, before calling a method of loc1 and before
passing the object to WriteLine():

loc1.xVal = 75;
loc1.yVal = 225;

If you were to comment out one of the assignments and recompile:

static void Main()
{
 Location loc1;
 loc1.xVal = 75;
 // loc1.yVal = 225;
 Console.WriteLine(loc1);
}

you would get a compiler error:

Use of unassigned local variable 'loc1'

Once you assign all the values, you can access the values through the properties x and y:

static void Main()
{
 Location loc1;
 loc1.xVal = 75; // assign member variable
 loc1.yVal = 225; // assign member variable
 loc1.x = 300; // use property
 loc1.y = 400; // use property
 Console.WriteLine(loc1);
}

Be careful about using properties. Although these allow you to support encapsulation by making the
actual values private, the properties themselves are actually member methods, and you cannot call a
member method until you initialize all the member variables.

Programming C#

 131

Chapter 8. Interfaces
An interface is a contract that guarantees to a client how a class or struct will behave. When a class
implements an interface, it tells any potential client "I guarantee I'll support the methods, properties,
events, and indexers of the named interface." (See Chapter 4 for information about methods and
properties, see Chapter 12 for info about events, and see Chapter 9 for coverage of indexers.)

An interface offers an alternative to an abstract class for creating contracts among classes and their
clients. These contracts are made manifest using the interface keyword, which declares a
reference type that encapsulates the contract.

Syntactically, an interface is like a class that has only abstract methods. An abstract class serves as
the base class for a family of derived classes, while interfaces are meant to be mixed in with other
inheritance trees.

When a class implements an interface, it must implement all the methods of that interface; in effect the
class says "I agree to fulfill the contract defined by this interface."

Inheriting from an abstract class implements the is-a relationship, introduced in Chapter 5.
Implementing an interface defines a different relationship, one we've not seen until now: the
implements relationship. These two relationships are subtly different. A car is a vehicle, but it might
implement the CanBeBoughtWithABigLoan capability (as can a house, for example).

Mix Ins

In Somerville, Massachusetts, there was, at one time, an ice cream parlor
where you could have candies and other goodies "mixed in" with your
chosen ice cream flavor. This seemed like a good metaphor to some of the
object-oriented pioneers from nearby MIT who were working on the
fortuitously named SCOOPS programming language. They appropriated the
term "mix in" for classes that mixed in additional capabilities. These mix-in or
capability classes served much the same role as do interfaces in C#.

In this chapter, you will learn how to create, implement, and use interfaces. You'll learn how to
implement multiple interfaces and how to combine and extend interfaces, as well as how to test
whether a class has implemented an interface.

8.1 Implementing an Interface

The syntax for defining an interface is as follows:

[attributes] [access-modifier] interface interface-name [:base-list]
{interface-body}

Don't worry about attributes for now; they're covered in Chapter 18.

Access modifiers, including public, private, protected, internal, and protected internal,
are discussed in Chapter 4.

The interface keyword is followed by the name of the interface. It is common (but not required) to
begin the name of your interface with a capital I. Thus, IStorable, ICloneable, IClaudius, etc.

 132

The base-list lists the interfaces that this interface extends (as described in Section 8.1.1 later in
this chapter).

The interface-body is the implementation of the interface, as described below.

Suppose you wish to create an interface that describes the methods and properties a class needs to
be stored to and retrieved from a database or other storage such as a file. You decide to call this
interface IStorable.

In this interface you might specify two methods: Read() and Write(), which appear in the
interface-body:

interface IStorable
{
 void Read();
 void Write(object);
}

The purpose of an interface is to define the capabilities that you want to have available in a class.

For example, you might create a class, Document. It turns out that Document types can be stored in
a database, so you decide to have Document implement the IStorable interface.

To do so, you use the same syntax as if the new Document class were inheriting from IStorable—a
colon (:), followed by the interface name:

public class Document : IStorable
{
 public void Read() {...}
 public void Write(object obj) {...}
 // ...
}

It is now your responsibility, as the author of the Document class, to provide a meaningful
implementation of the IStorable methods. Having designated Document as implementing
IStorable, you must implement all the IStorable methods, or you will generate an error when you
compile. This is illustrated in Example 8-1, in which the Document class implements the Istorable
interface.

Example 8-1. Using a simple interface
using System;

// declare the interface
interface IStorable
{
 // no access modifiers, methods are public
 // no implmentation
 void Read();
 void Write(object obj);
 int Status { get; set; }

}

// create a class which implements the IStorable interface
public class Document : IStorable
{
 public Document(string s)

Programming C#

 133

 {
 Console.WriteLine("Creating document with: {0}", s);
 }

 // implement the Read method
 public void Read()
 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 // implement the Write method
 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");
 }
 // implement the property
 public int Status
 {
 get
 {
 return status;
 }

 set
 {
 status = value;
 }
 }

 // store the value for the property
 private int status = 0;
}

// Take our interface out for a spin
public class Tester
{

 static void Main()
 {
 // access the methods in the Document object
 Document doc = new Document("Test Document");
 doc.Status = -1;
 doc.Read();
 Console.WriteLine("Document Status: {0}", doc.Status);

 // cast to an interface and use the interface
 IStorable isDoc = (IStorable) doc;
 isDoc.Status = 0;
 isDoc.Read();
 Console.WriteLine("IStorable Status: {0}", isDoc.Status);

 }
}

 Output:
Creating document with: Test Document
Implementing the Read Method for IStorable
Document Status: -1
Implementing the Read Method for IStorable

 134

IStorable Status: 0

Example 8-1 defines a simple interface, IStorable, with two methods, Read() and Write(),
and a property, Status, of type integer. Notice that the property declaration does not provide an
implementation for get() and set(), but simply designates that there is a get() and a set():

int Status { get; set; }

Notice also that the IStorable method declarations do not include access modifiers (e.g., public,
protected, internal, private). In fact, providing an access modifier generates a compile error.
Interface methods are implicitly public because an interface is a contract meant to be used by other
classes. You cannot create an instance of an interface; instead you instantiate a class that implements
the interface.

The class implementing the interface must fulfill the contract exactly and completely. Document must
provide both a Read() and a Write() method and the Status property. How it fulfills these
requirements, however, is entirely up to the Document class. Although IStorable dictates that
Document must have a Status property, it does not know or care whether Document stores the
actual status as a member variable, or looks it up in a database. The details are up to the
implementing class.

8.1.1 Implementing More Than One Interface

Classes can implement more than one interface. For example, if your Document class can be stored
and it also can be compressed, you might choose to implement both the IStorable and
ICompressible interfaces. To do so, you change the declaration (in the base-list) to indicate that
both interfaces are implemented, separating the two interfaces with commas:

public class Document : IStorable, ICompressible

Having done this, the Document class must also implement the methods specified by the
ICompressible interface:

public void Compress()
 {
 Console.WriteLine("Implementing the Compress Method");
 }

 public void Decompress()
 {
 Console.WriteLine("Implementing the Decompress Method");
 }

Running this modified example reveals that the Document object can in fact access these interface
methods.

Creating document with: Test Document
Implementing the Read Method for IStorable
Implementing Compress

8.1.2 Extending Interfaces

It is possible to extend an existing interface to add new methods or members, or to modify how
existing members work. For example, you might extend ICompressable with a new interface,
ILoggedCompressable, which extends the original interface with methods to keep track of the bytes
saved:

Programming C#

 135

interface ILoggedCompressible : ICompressible
{
 void LogSavedBytes();
}

Classes are now free to implement either ICompressible or ILoggedCompressible, depending
on whether they need the additional functionality. If a class does implement ILoggedCompressible,
it must implement all the methods of both ILoggedCompressible and also ICompressible.
Objects of that type can be cast either to ILoggedCompressible or to ICompressible.

8.1.3 Combining Interfaces

Similarly, you can create new interfaces by combining existing interfaces, and, optionally, adding new
methods or properties. For example, you might decide to create IStorableCompressible. This
interface would combine the methods of each of the other two interfaces, but would also add a new
method to store the original size of the pre-compressed item:

interface IStorableCompressible : IStoreable, ILoggedCompressible
{
 void LogOriginalSize();
}

Example 8-2 illustrates extending and combining interfaces.

Example 8-2. Extending and combining interfaces
using System;

interface IStorable
{
 void Read();
 void Write(object obj);
 int Status { get; set; }

}

// here's the new interface
interface ICompressible
{
 void Compress();
 void Decompress();
}

// Extend the interface
interface ILoggedCompressible : ICompressible
{
 void LogSavedBytes();
}

// Combine Interfaces
interface IStorableCompressible : IStorable, ILoggedCompressible
{
 void LogOriginalSize();
}

// yet another interface
interface IEncryptable
{
 void Encrypt();

 136

 void Decrypt();
}

public class Document : IStorableCompressible, IEncryptable
{
 // the document constructor
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }

 // implement IStorable
 public void Read()
 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");
 }

 public int Status
 {
 get
 {
 return status;
 }

 set
 {
 status = value;
 }
 }

 // implement ICompressible
 public void Compress()
 {
 Console.WriteLine("Implementing Compress");
 }

 public void Decompress()
 {
 Console.WriteLine("Implementing Decompress");
 }

 // implement ILoggedCompressible
 public void LogSavedBytes()
 {
 Console.WriteLine("Implementing LogSavedBytes");
 }

 // implement IStorableCompressible
 public void LogOriginalSize()
 {
 Console.WriteLine("Implementing LogOriginalSize");
 }

Programming C#

 137

 // implement IEncryptable
 public void Encrypt()
 {
 Console.WriteLine("Implementing Encrypt");

 }

 public void Decrypt()
 {
 Console.WriteLine("Implementing Decrypt");

 }

 // hold the data for IStorable's Status property
 private int status = 0;
}

public class Tester
{

 static void Main()
 {
 // create a document object
 Document doc = new Document("Test Document");

 // cast the document to the various interfaces
 IStorable isDoc = doc as IStorable;
 if (isDoc != null)
 {
 isDoc.Read();
 }
 else
 Console.WriteLine("IStorable not supported");

 ICompressible icDoc = doc as ICompressible;
 if (icDoc != null)
 {
 icDoc.Compress();
 }
 else
 Console.WriteLine("Compressible not supported");

 ILoggedCompressible ilcDoc = doc as ILoggedCompressible;
 if (ilcDoc != null)
 {
 ilcDoc.LogSavedBytes();
 ilcDoc.Compress();
 // ilcDoc.Read();
 }
 else
 Console.WriteLine("LoggedCompressible not supported");

 IStorableCompressible isc = doc as IStorableCompressible;
 if (isc != null)
 {
 isc.LogOriginalSize(); // IStorableCompressible
 isc.LogSavedBytes(); // ILoggedCompressible
 isc.Compress(); // ICompressible
 isc.Read(); // IStorable

 }

 138

 else
 {
 Console.WriteLine("StorableCompressible not supported");
 }

 IEncryptable ie = doc as IEncryptable;
 if (ie != null)
 {
 ie.Encrypt();
 }
 else
 Console.WriteLine("Encryptable not supported");
 }
}
using System;

interface IStorable
{
 void Read();
 void Write(object obj);
 int status { get; set; }

}

// here's the new interface
interface ICompressible
{
 void Compress();
 void Decompress();
}

// Extend the interface
interface ILoggedCompressible : ICompressible
{
 void LogSavedBytes();
}

// Combine Interfaces
interface IStorableCompressible : IStorable, ILoggedCompressible
{
 void LogOriginalSize();
}

// yet another interface
interface IEncryptable
{
 void Encrypt();
 void Decrypt();
}

public class Document : IStorableCompressible, IEncryptable
{
 // the document constructor
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }

 // implement IStorable
 public void Read()

Programming C#

 139

 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");
 }

 public int status
 {
 get
 {
 return dbStatus;
 }

 set
 {
 dbStatus = value;
 }
 }

 // implement ICompressible
 public void Compress()
 {
 Console.WriteLine("Implementing Compress");
 }

 public void Decompress()
 {
 Console.WriteLine("Implementing Decompress");
 }

 // implement ILoggedCompressible
 public void LogSavedBytes()
 {
 Console.WriteLine("Implementing LogSavedBytes");
 }

 // implement IStorableCompressible
 public void LogOriginalSize()
 {
 Console.WriteLine("Implementing LogOriginalSize");
 }

 // implement IEncryptable
 public void Encrypt()
 {
 Console.WriteLine("Implementing Encrypt");

 }

 public void Decrypt()
 {
 Console.WriteLine("Implementing Decrypt");

 }

 // hold the data for IStorable's status property

 140

 private int dbStatus = 0;
}

public class Tester
{

 static void Main()
 {
 // create a document object
 Document doc = new Document("Test Document");

 // cast the document to the various interfaces
 IStorable isDoc = doc as IStorable;
 if (isDoc != null)
 {
 isDoc.Read();
 }
 else
 Console.WriteLine("IStorable not supported");

 ICompressible icDoc = doc as ICompressible;
 if (icDoc != null)
 {
 icDoc.Compress();
 }
 else
 Console.WriteLine("Compressible not supported");

 ILoggedCompressible ilcDoc = doc as ILoggedCompressible;
 if (ilcDoc != null)
 {
 ilcDoc.LogSavedBytes();
 ilcDoc.Compress();
 // ilcDoc.Read();
 }
 else
 Console.WriteLine("LoggedCompressible not supported");

 IStorableCompressible isc = doc as IStorableCompressible;
 if (isc != null)
 {
 isc.LogOriginalSize(); // IStorableCompressible
 isc.LogSavedBytes(); // ILoggedCompressible
 isc.Compress(); // ICompressible
 isc.Read(); // IStorable

 }
 else
 {
 Console.WriteLine("StorableCompressible not supported");
 }

 IEncryptable ie = doc as IEncryptable;
 if (ie != null)
 {
 ie.Encrypt();
 }
 else
 Console.WriteLine("Encryptable not supported");

 }

Programming C#

 141

}

Output:

Creating document with: Test Document
Implementing the Read Method for IStorable
Implementing Compress
Implementing LogSavedBytes
Implementing Compress
Implementing LogOriginalSize
Implementing LogSavedBytes
Implementing Compress
Implementing the Read Method for IStorable
Implementing Encrypt

Example 8-2 starts by implementing the IStorable interface and the ICompressible interface.
The latter is extended to ILoggedCompressible and then the two are combined into
IStorableCompressible. Finally, the example adds a new interface, IEncryptable.

The Tester program creates a new Document object and then casts it to the various interfaces.
When the object is cast to ILoggedCompressible, you can use the interface to call methods on
Icompressible because ILoggedCompressible extends (and thus subsumes) the methods from
the base interface:

ILoggedCompressible ilcDoc = doc as ILoggedCompressible;
if (ilcDoc != null)
{
 ilcDoc.LogSavedBytes();
 ilcDoc.Compress();
 // ilcDoc.Read();
}

You cannot call Read(), however, because that is a method of IStorable, an unrelated interface.
And if you uncomment out the call to Read(), you will receive a compiler error.

If you cast to IStorableCompressible (which combines the extended interface with the Storable
interface), you can then call methods of IStorableCompressible, Icompressible, and
IStorable:

IStorableCompressible isc = doc as IStorableCompressible
if (isc != null)
{
 isc.LogOriginalSize(); // IStorableCompressible
 isc.LogSavedBytes(); // ILoggedCompressible
 isc.Compress(); // ICompressible
 isc.Read(); // IStorable
}

 isc.LogOriginalSize(); // IStorableCompressible
 isc.LogSavedBytes(); // ILoggedCompressible
 isc.Compress(); // ICompressible
 isc.Read(); // IStorable

8.2 Accessing Interface Methods

You can access the members of the IStorable interface as if they were members of the Document
class:

 142

Document doc = new Document("Test Document");
doc.status = -1;
doc.Read();

or you can create an instance of the interface by casting the document to the interface type, and then
use that interface to access the methods:

IStorable isDoc = (IStorable) doc;
isDoc.status = 0;
isDoc.Read();

In this case, in Main() you know that Document is in fact an IStorable, so you can take
advantage of that knowledge.

As stated earlier, you cannot instantiate an interface directly. That
is, you cannot say:

IStorable isDoc = new IStorable();

You can, however, create an instance of the implementing class,
as in the following:

Document doc = new Document("Test Document");

You can then create an instance of the interface by casting the
implementing object to the interface type, which in this case is
IStorable:

IStorable isDoc = (IStorable) doc;

You can combine these steps by writing:

IStorable isDoc =
 (IStorable) new Document("Test Document");

In general, it is a better design decision to access the interface methods through an interface
reference. Thus, it is better to use isDoc.Read(), than doc.Read(), in the previous example.
Access through an interface allows you to treat the interface polymorphically. In other words, you can
have two or more classes implement the interface, and then by accessing these classes only through
the interface, you can ignore their real runtime type and treat them interchangeably. See Chapter 5
for more information about polymorphism.

8.2.1 Casting to an Interface

In many cases, you don't know in advance that an object supports a given interface. For example,
suppose you have a collection of Documents, some of which can be stored and others of which
cannot. Suppose you add a second interface, ICompressible, for those objects that can compress
themselves for quick transmission via email:

interface ICompressible
{
 void Compress();
 void Decompress();

Programming C#

 143

}

Given a Document type, you might not know whether it supports IStorable or Icompressible or
both. You can just cast to the interfaces:

Document doc = new Document("Test Document");

IStorable isDoc = (IStorable) doc;
isDoc.Read();

ICompressible icDoc = (ICompressible) doc;
icDoc.Compress();

If it turns out that Document implements only the IStorable interface:

public class Document : IStorable

the cast to ICompressible would still compile because ICompressible is a valid interface.
However, because of the illegal cast, when the program is run an exception will be thrown:

An exception of type System.InvalidCastException was thrown.

Exceptions are covered in detail in Chapter 11.

8.2.2 The is Operator

You would like to be able to ask the object if it supports the interface, in order to then invoke the
appropriate methods. In C# there are two ways to accomplish this. The first method is to use the is
operator.

The form of the is operator is:

expression is type

The is operator evaluates true if the expression (which must be a reference type) can be safely cast
to type without throwing an exception. Example 8-3 illustrates the use of the is operator to test
whether a Document implements the IStorable and ICompressible interfaces.

Example 8-3. Using the is operator
using System;

interface IStorable
{
 void Read();
 void Write(object obj);
 int Status { get; set; }

}

// here's the new interface
interface ICompressible
{
 void Compress();
 void Decompress();
}

 144

// Document implements IStorable
public class Document : IStorable
{
 public Document(string s)
 {
 Console.WriteLine(
 "Creating document with: {0}", s);

 }

 // IStorable.Read
 public void Read()
 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 // IStorable.Write
 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");
 }

 // IStorable.Status
 public int Status
 {
 get
 {
 return status;
 }

 set
 {
 status = value;
 }
 }

 private int status = 0;
}

public class Tester
{

 static void Main()
 {
 Document doc = new Document("Test Document");

 // only cast if it is safe
 if (doc is IStorable)
 {
 IStorable isDoc = (IStorable) doc;
 isDoc.Read();
 }

 // this test will fail
 if (doc is ICompressible)
 {
 ICompressible icDoc = (ICompressible) doc;
 icDoc.Compress();
 }

Programming C#

 145

 }
}

Example 8-3 is identical to Example 8-2 except that it adds the declaration for the
ICompressible interface. Main() now determines whether the cast is legal (sometimes referred to
as safe) by evaluating the following if clause:

if (doc is IStorable)

This is clean and nearly self-documenting. The if statement tells you that the cast will happen only if
the object is of the right interface type.

Unfortunately, this use of the is operator turns out to be inefficient. To understand why, you need to
dip into the MSIL code that this generates. Here is a small excerpt (note that the line numbers are in
hexadecimal notation):

IL_0023: isinst ICompressible
IL_0028: brfalse.s IL_0039
IL_002a: ldloc.0
IL_002b: castclass ICompressible
IL_0030: stloc.2
IL_0031: ldloc.2
IL_0032: callvirt instance void ICompressible::Compress()
IL_0037: br.s IL_0043
IL_0039: ldstr "Compressible not supported"

What is most important here is the test for ICompressible on line 23. The keyword isinst is the
MSIL code for the is operator. It tests to see if the object (doc) is in fact of the right type. Having
passed this test we continue on to line 2b, in which castclass is called. Unfortunately, castclass
also tests the type of the object. In effect, the test is done twice. A more efficient solution is to use the
as operator.

8.2.3 The as Operator

The as operator combines the is and cast operations by testing first to see whether a cast is valid
(i.e., whether an is test would return true) and then completing the cast when it is. If the cast is not
valid (i.e., if an is test would return false), the as operator returns null.

The keyword null represents a null reference, one that does not
refer to any object.

Using the as operator eliminates the need to handle cast exceptions. At the same time you avoid the
overhead of checking the cast twice. For these reasons, it is optimal to cast interfaces using as.

The form of the as operator is:

expression as type

The following code adapts the test code from Example 8-3, using the as operator and testing for null:

static void Main()
{

 146

 Document doc = new Document("Test Document");
 IStorable isDoc = doc as IStorable;
 if (isDoc != null)
 isDoc.Read();
 else
 Console.WriteLine("IStorable not supported");

 ICompressible icDoc = doc as ICompressible;
 if (icDoc != null)
 icDoc.Compress();
 else
 Console.WriteLine("Compressible not supported");
}

A quick look at the comparable MSIL code shows that the following version is in fact more efficient:

IL_0023: isinst ICompressible
IL_0028: stloc.2
IL_0029: ldloc.2
IL_002a: brfalse.s IL_0034
IL_002c: ldloc.2
IL_002d: callvirt instance void ICompressible::Compress()

8.2.4 The is Operator Versus the as Operator

If your design pattern is to test the object to see if it is of the type you need and if so you will
immediately cast it, the as operator is more efficient. At times, however, you might want to test the
type of an operator but not cast it immediately. Perhaps you want to test it but not cast it at all; you
simply want to add it to a list if it fulfills the right interface. In that case, the is operator will be a better
choice.

8.2.5 Interface Versus Abstract Class

Interfaces are very similar to abstract classes. In fact, you could change the declaration of IStorable
to be an abstract class:

abstract class Storable
{
 abstract public void Read();
 abstract public void Write();
}

Document could now inherit from Storable, and there would not be much difference from using the
interface.

Suppose, however, that you purchase a List class from a third-party vendor whose capabilities you
wish to combine with those specified by Storable? In C++ you could create a StorableList class
and inherit from both List and Storable. But in C# you're stuck; you can't inherit from both the
Storable abstract class and also the List class because C# does not allow multiple inheritance
with classes.

However, C# does allow you to implement any number of interfaces and derive from one base class.
Thus, by making Storable an interface, you can inherit from the List class and also from
IStorable, as StorableList does in the following example:

public class StorableList : List, IStorable
{

Programming C#

 147

 // List methods here ...
 public void Read() {...}
 public void Write(object obj) {...}
 // ...
}

8.3 Overriding Interface Implementations

An implementing class is free to mark any or all of the methods that implement the interface as virtual.
Derived classes can override or provide new implementations. For example, a Document class
might implement the IStorable interface and mark the Read() and Write() methods as
virtual. The Document might Read() and Write() its contents to a File type. The developer
might later derive new types from Document, such as perhaps a Note or EmailMessage type, and
he might decide that Note will read and write to a database rather than to a file.

Example 8-4 strips down the complexity of Example 8-3 and illustrates overriding an interface
implementation. The Read() method is marked as virtual and implemented by Document.
Read() is then overridden in a Note type that derives from Document.

Example 8-4. Overriding an interface implementation
using System;

interface IStorable
{
 void Read();
 void Write();
}

// Simplify Document to implement only IStorable
public class Document : IStorable
{
 // the document constructor
 public Document(string s)
 {
 Console.WriteLine(
 "Creating document with: {0}", s);

 }

 // Make read virtual
 public virtual void Read()
 {
 Console.WriteLine(
 "Document Read Method for IStorable");
 }

 // NB: Not virtual!
 public void Write()
 {
 Console.WriteLine(
 "Document Write Method for IStorable");
 }

}

// Derive from Document
public class Note : Document
{
 public Note(string s):

 148

 base(s)
 {
 Console.WriteLine(
 "Creating note with: {0}", s);
 }

 // override the Read method
 public override void Read()
 {
 Console.WriteLine(
 "Overriding the Read method for Note!");
 }

 // implement my own Write method
 public void Write()
 {
 Console.WriteLine(
 "Implementing the Write method for Note!");
 }
}
public class Tester
{

 static void Main()
 {
 // create a document object
 Document theNote = new Note("Test Note");
 IStorable isNote = theNote as IStorable;
 if (isNote != null)
 {
 isNote.Read();
 isNote.Write();
 }

 Console.WriteLine("\n");

 // direct call to the methods
 theNote.Read();
 theNote.Write();

 Console.WriteLine("\n");

 // create a note object
 Note note2 = new Note("Second Test");
 IStorable isNote2 = note2 as IStorable;
 if (isNote != null)
 {
 isNote2.Read();
 isNote2.Write();
 }

 Console.WriteLine("\n");

 // directly call the methods
 note2.Read();
 note2.Write();
 }
}
 Output
Creating document with: Test Note
Creating note with: Test Note

Programming C#

 149

Overriding the Read method for Note!
Document Write Method for IStorable

Overriding the Read method for Note!
Document Write Method for IStorable

Creating document with: Second Test
Creating note with: Second Test
Overriding the Read method for Note!
Document Write Method for IStorable

Overriding the Read method for Note!
Implementing the Write method for Note!

In this example, Document implements a simplified IStorable interface (simplified to make the
example clearer):

interface IStorable
{
 void Read();
 void Write();
}

The designer of Document has opted to make the Read() method virtual but not to make the
Write() method virtual:

public virtual void Read()

In a real-world application, you would almost certainly mark both as virtual, but I've differentiated
them to demonstrate that the developer is free to pick and choose which methods are made virtual.

The new class Note derives from Document:

public class Note : Document

It is not necessary for Note to override Read(), but it is free to do so and has done so here:

public override void Read()

In Tester, the Read and Write methods are called in four ways:

1. Through the base class reference to a derived object
2. Through an interface created from the base class reference to the derived object
3. Through a derived object
4. Through an interface created from the derived object

To accomplish the first two calls, a Document (base class) reference is created, and the address of a
new Note (derived) object created on the heap is assigned to the Document reference:

Document theNote = new Note("Test Note");

An interface reference is created and the as operator is used to cast the Document to the
IStorable reference:

IStorable isNote = theNote as IStorable;

 150

You then invoke the Read() and Write() methods through that interface. The output reveals that
the Read() method is responded to polymorphically and the Write()method is not, just as we
would expect:

Overriding the Read method for Note!
Document Write Method for IStorable

The Read() and Write() methods are then called directly on the object itself:

theNote.Read();
theNote.Write();

and once again you see the polymorphic implementation has worked:

Overriding the Read method for Note!
Document Write Method for IStorable

In both cases, the Read() method of Note was called, but the Write() method of Document was
called.

To prove to yourself that this is a result of the overriding method, you next create a second Note
object, this time assigning its address to a reference to a Note. This will be used to illustrate the final
cases (i.e., a call through a derived object and a call through an interface created from the derived
object):

Note note2 = new Note("Second Test");

Once again, when you cast to a reference, the overridden Read() method is called. When, however,
methods are called directly on the Note object:

note2.Read();
note2.Write();

the output reflects that you've called a Note and not an overridden Document:

Overriding the Read method for Note!
Implementing the Write method for Note!

8.4 Explicit Interface Implementation

In the implementation shown so far, the implementing class (in this case, Document) creates a
member method with the same signature and return type as the method detailed in the interface. It is
not necessary to explicitly state that this is an implementation of an interface; this is understood by the
compiler implicitly.

What happens, however, if the class implements two interfaces, each of which has a method with the
same signature? Example 8-5 creates two interfaces: IStorable and ITalk. The latter
implements a Read() method that reads a book aloud. Unfortunately, this conflicts with the Read()
method in IStorable.

Because both IStorable and ITalk have a Read() method, the implementing Document class
must use explicit implementation for at least one of the methods. With explicit implementation, the
implementing class (Document) explicitly identifies the interface for the method:

void ITalk.Read()

Programming C#

 151

This resolves the conflict, but it does create a series of interesting side effects.

First, there is no need to use explicit implementation with the other method of Talk:

public void Talk()

Because there is no conflict, this can be declared as usual.

More importantly, the explicit implementation method cannot have an access modifier:

void ITalk.Read()

This method is implicitly public.

In fact, a method declared through explicit implementation cannot be declared with the abstract,
virtual, override, or new modifiers.

Most important, you cannot access the explicitly implemented method through the object itself. When
you write:

theDoc.Read();

the compiler assumes you mean the implicitly implemented interface for IStorable. The only way to
access an explicitly implemented interface is through a cast to an interface:

ITalk itDoc = theDoc as ITalk;
if (itDoc != null)
{
 itDoc.Read();
}

Explicit implementation is demonstrated in Example 8-5.

Example 8-5. Explicit implementation
using System;

interface IStorable
{
 void Read();
 void Write();
}

interface ITalk
{
 void Talk();
 void Read();
}

// Simplify Document to implement only IStorable
public class Document : IStorable, ITalk
{
 // the document constructor
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }

 152

 // Make read virtual
 public virtual void Read()
 {
 Console.WriteLine("Implementing IStorable.Read");
 }

 public void Write()
 {
 Console.WriteLine("Implementing IStorable.Write");

 }

 void ITalk.Read()
 {
 Console.WriteLine("Implementing ITalk.Read");
 }

 public void Talk()
 {
 Console.WriteLine("Implementing ITalk.Talk");
 }

}

public class Tester
{

 static void Main()
 {
 // create a document object
 Document theDoc = new Document("Test Document");
 IStorable isDoc = theDoc as IStorable;
 if (isDoc != null)
 {
 isDoc.Read();
 }

 ITalk itDoc = theDoc as ITalk;
 if (itDoc != null)
 {
 itDoc.Read();
 }

 theDoc.Read();
 theDoc.Talk();

 }

}

Output:

Creating document with: Test Document
Implementing IStorable.Read
Implementing ITalk.Read

Implementing IStorable.Read
Implementing ITalk.Talk

Programming C#

 153

8.4.1 Selectively Exposing Interface Methods

A class designer can take advantage of the fact that when an interface is implemented through explicit
implementation the interface is not visible to clients of the implementing class except through casting.

Suppose the semantics of your Document object dictate that it implement the IStorable interface,
but you do not want the Read() and Write() methods to be part of the public interface of your
Document. You can use explicit implementation to ensure that they are not available except through
casting. This allows you to preserve the semantics of your Document class while still having it
implement IStorable. If your client wants an object that implements the IStorable interface, it can
make an explicit cast, but when using your document as a Document the semantics will not include
Read() and Write().

In fact, you can select which methods to make visible through explicit implementation so that you can
expose some implementing methods as part of Document but not others. In Example 8-5, the
Document object exposes the Talk() method as a method of Document, but the Talk.Read()
method can be obtained only through a cast. Even if IStorable did not have a Read method, you
might choose to make Read() explicitly implemented so that you do not expose Read() as a
method of Document.

Note that because explicit interface implementation prevents the use of the virtual keyword, a
derived class would be forced to reimplement the method. Thus, if Note derived from Document, it
would be forced to reimplement Talk.Read() because the Document implementation of
Talk.Read()could not be virtual.

8.4.2 Member Hiding

It is possible for an interface member to become hidden. For example, suppose you have an interface
IBase which has a property P:

interface IBase
{
 int P { get; set; }
}

and you derive from that interface a new interface, IDerived, which hides the property P with a new
method P():

interface IDerived : IBase
{
 new int P();
}

Setting aside whether this is a good idea, you have now hidden the property P in the base interface.
An implementation of this derived interface will require at least one explicit interface member. You can
use explicit implementation for either the base property or the derived method, or you can use explicit
implementation for both. Thus, any of the following three versions would be legal:

class myClass : IDerived
{
 // explicit implementation for the base property
 int IBase.P { get {...} }

 // implicit implementation of the derived method
 public int P() {...}
}

 154

 class myClass : IDerived
{
 // implicit implementation for the base property
 public int P { get {...} }

 // explicit implementation of the derived method
 int IDerived.P() {...}
}

class myClass : IDerived
{
 // explicit implementation for the base property
 int IBase.P { get {...} }

 // explicit implementation of the derived method
 int IDerived.P() {...}
}

8.4.3 Accessing Sealed Classes and Value Types

Generally, it is preferable to access the methods of an interface through an interface cast. The
exception is with value types (e.g., structs) or with sealed classes. In that case, it is preferable to
invoke the interface method through the object.

When you implement an interface in a struct, you are implementing it in a value type. When you cast
to an interface reference, there is an implicit boxing of the object. Unfortunately, when you use that
interface to modify the object, it is the boxed object, not the original value object, that is modified.
Further, if you change the value type, the boxed type will remain unchanged. Example 8-6 creates a
struct that implements IStorable and illustrates the impact of implicit boxing when you cast the
struct to an interface reference.

Example 8-6. References on value types
using System;

// declare a simple interface
interface IStorable
{
 void Read();
 int Status { get;set;}

}

// Implement through a struct
public struct myStruct : IStorable
{

 public void Read()
 {
 Console.WriteLine(
 "Implementing IStorable.Read");
 }

 public int Status
 {
 get
 {
 return status;
 }

Programming C#

 155

 set
 {
 status = value;
 }
 }

 private int status;
}

public class Tester
{

 static void Main()
 {
 // create a myStruct object
 myStruct theStruct = new myStruct();
 theStruct.Status = -1; // initialize
 Console.WriteLine(
 "theStruct.Status: {0}", theStruct.Status);

 // Change the value
 theStruct.Status = 2;
 Console.WriteLine("Changed object.");
 Console.WriteLine(
 "theStruct.Status: {0}", theStruct.Status);

 // cast to an IStorable
 // implicit box to a reference type
 IStorable isTemp = (IStorable) theStruct;

 // set the value through the interface reference
 isTemp.Status = 4;
 Console.WriteLine("Changed interface.");
 Console.WriteLine("theStruct.Status: {0}, isTemp: {1}",
 theStruct.Status, isTemp.Status);

 // Change the value again
 theStruct.Status = 6;
 Console.WriteLine("Changed object.");
 Console.WriteLine("theStruct.Status: {0}, isTemp: {1}",
 theStruct.Status, isTemp.Status);
 }
}

Output:

theStruct.Status: -1
Changed object.
theStruct.Status: 2
Changed interface.
theStruct.Status: 2, isTemp: 4
Changed object.
theStruct.Status: 6, isTemp: 4

In Example 8-6, the IStorable interface has a method (Read) and a property (Status).

This interface is implemented by the struct named myStruct:

public struct myStruct : IStorable

 156

The interesting code is in Tester. You start by creating an instance of the structure and initializing its
property to -1. The status value is then printed:

myStruct theStruct = new myStruct();
theStruct.status = -1; // initialize
Console.WriteLine(
 "theStruct.Status: {0}", theStruct.status);

The output from this shows that the status was set properly:

theStruct.Status: -1

Next you access the property to change the status, again through the value object itself:

// Change the value
theStruct.status = 2;
Console.WriteLine("Changed object.");
Console.WriteLine(
 "theStruct.Status: {0}", theStruct.status);

The output shows the change:

Changed object.
theStruct.Status: 2

No surprises so far. At this point, you create a reference to the IStorable interface. This causes an
implicit boxing of the value object theStruct. You then use that interface to change the status value
to 4:

// cast to an IStorable
// implicit box to a reference type
IStorable isTemp = (IStorable) theStruct;

// set the value through the interface reference
isTemp.status = 4;
Console.WriteLine("Changed interface.");
Console.WriteLine("theStruct.Status: {0}, isTemp: {1}",
 theStruct.status, isTemp.status);

Here the output can be a bit surprising:

Changed interface.
theStruct.Status: 2, isTemp: 4

Aha! The object to which the interface reference points has been changed to a status value of 4, but
the struct value object is unchanged. Even more interesting, when you access the method through the
object itself:

// Change the value again
theStruct.status = 6;
Console.WriteLine("Changed object.");
Console.WriteLine("theStruct.Status: {0}, isTemp: {1}",
 theStruct.status, isTemp.status);

the output reveals that the value object has been changed but not the boxed reference value for the
interface reference:

Programming C#

 157

Changed object.
theStruct.Status: 6, isTemp: 4

A quick look at the MSIL code (Example 8-7) reveals what is going on under the hood:

Example 8-7. MSIL code resulting from Example 8-6
method private hidebysig static void Main() il managed
{
 .entrypoint
 // Code size 206 (0xce)
 .maxstack 4
 .locals ([0] value class myStruct theStruct,
 [1] class IStorable isTemp,
 [2] int32 V_2)
 IL_0000: ldloca.s theStruct
 IL_0002: initobj myStruct
 IL_0008: ldloca.s theStruct
 IL_000a: ldc.i4.m1
 IL_000b: call instance void myStruct::set_status(int32)
 IL_0010: ldstr "theStruct.Status: {0}"
 IL_0015: ldloca.s theStruct
 IL_0017: call instance int32 myStruct::get_status()
 IL_001c: stloc.2
 IL_001d: ldloca.s V_2
 IL_001f: box [mscorlib]System.Int32
 IL_0024: call void [mscorlib]System.Console::WriteLine
(class System.String,
class System.Object)
 IL_0029: ldloca.s theStruct
 IL_002b: ldc.i4.2
 IL_002c: call instance void myStruct::set_status(int32)
 IL_0031: ldstr "Changed object."
 IL_0036: call void [mscorlib]System.Console::WriteLine
(class System.String)
 IL_003b: ldstr "theStruct.Status: {0}"
 IL_0040: ldloca.s theStruct
 IL_0042: call instance int32 myStruct::get_status()
 IL_0047: stloc.2
 IL_0048: ldloca.s V_2
 IL_004a: box [mscorlib]System.Int32
 IL_004f: call void [mscorlib]System.Console::WriteLine
(class System.String,
class System.Object)
 IL_0054: ldloca.s theStruct
 IL_0056: box myStruct
 IL_005b: stloc.1
 IL_005c: ldloc.1
 IL_005d: ldc.i4.4
 IL_005e: callvirt instance void IStorable::set_status(int32)
 IL_0063: ldstr "Changed interface."
 IL_0068: call void [mscorlib]System.Console::WriteLine
(class System.String)
 IL_006d: ldstr "theStruct.Status: {0}, isTemp: {1}"
 IL_0072: ldloca.s theStruct
 IL_0074: call instance int32 myStruct::get_status()
 IL_0079: stloc.2
 IL_007a: ldloca.s V_2
 IL_007c: box [mscorlib]System.Int32
 IL_0081: ldloc.1
 IL_0082: callvirt instance int32 IStorable::get_status()

 158

 IL_0087: stloc.2
 IL_0088: ldloca.s V_2
 IL_008a: box [mscorlib]System.Int32
 IL_008f: call void [mscorlib]System.Console::WriteLine
(class System.String,
class System.Object,
class System.Object)
 IL_0094: ldloca.s theStruct
 IL_0096: ldc.i4.6
 IL_0097: call instance void myStruct::set_status(int32)
 IL_009c: ldstr "Changed object."
 IL_00a1: call void [mscorlib]System.Console::WriteLine
(class System.String)
 IL_00a6: ldstr "theStruct.Status: {0}, isTemp: {1}"
 IL_00ab: ldloca.s theStruct
 IL_00ad: call instance int32 myStruct::get_status()
 IL_00b2: stloc.2
 IL_00b3: ldloca.s V_2
 IL_00b5: box [mscorlib]System.Int32
 IL_00ba: ldloc.1
 IL_00bb: callvirt instance int32 IStorable::get_status()
 IL_00c0: stloc.2
 IL_00c1: ldloca.s V_2
 IL_00c3: box [mscorlib]System.Int32
 IL_00c8: call void [mscorlib]System.Console::WriteLine
(class System.String,
class System.Object,
class System.Object)
 IL_00cd: ret
} // end of method Tester::Main

On line IL:000b, the set status was called on the value object. We see the second call on line
IL_0017. Notice that the calls to WriteLine() cause boxing of the integer value status so that the
GetString() method can be called.

The key line is IL_0056 (highlighted) where the struct itself is boxed. It is that boxing that creates a
reference type for the interface reference. Notice on line IL_005e that this time
IStorable::set_status is called rather than myStruct::setStatus.

The design guideline is this: if you are implementing an interface with a value type, be sure to access
the interface members through the object rather than through an interface reference.

Programming C#

 159

Chapter 9. Arrays, Indexers, and Collections

The .NET Framework provides a rich suite of collection classes, including Array, ArrayList,
NameValueCollection, StringCollection, Queue, Stack, and BitArray.

The simplest collection is the Array, the only collection type for which C# provides built-in support. In
this chapter you will learn to work with single, multidimensional, and jagged arrays. You will also be
introduced to indexers, a bit of C# syntactic sugar that makes it easier to access class properties, as
though the class were indexed like an array.

The .NET Framework provides a number of interfaces, such as IEnumerable and ICollection,
whose implementation provides you with standard ways to interact with collections. In this chapter you
will see how to work with the most essential of these. The chapter concludes with a tour of commonly
used .NET collections, including ArrayList, Dictionary, Hashtable, Queue, and Stack.

9.1 Arrays

An array is an indexed collection of objects, all of the same type. C# arrays are somewhat different
from arrays in C++ and other languages—because they are objects. This provides them with useful
methods and properties.

C# provides native syntax for the declaration of Array objects. What is actually created, however, is
an object of type System.Array. Arrays in C# thus provide you with the best of both worlds: easy-to-
use C-style syntax underpinned with an actual class definition so that instances of an array have
access to the methods and properties of System.Array. These appear in Table 9-1.

Table 9-1. System.Array methods and properties
Method or Property Description

BinarySearch() Public static method that searches a one-dimensional sorted array.

Clear() Public static method that sets a range of elements in the array to zero or to a
null reference.

Copy() Overloaded public static method that copies a section of one array to another
array.

CreateInstance() Overloaded public static method that instantiates a new instance of an array.

IndexOf() Overloaded public static method that returns the index (offset) of the first
instance of a value in a one-dimensional array.

LastIndexOf() Overloaded public static method that returns the index of the last instance of
a value in a one-dimensional array.

Reverse() Overloaded public static method that reverses the order of the elements in a
one-dimensional array.

Sort() Overloaded public static method that sorts the values in a one-dimensional
array.

IsFixedSize Public property that returns a value indicating whether the array has a fixed
size.

IsReadOnly Public property that returns a Boolean value indicating whether the array is
read-only.

IsSynchronized Public property that returns a Boolean value indicating whether the array is
thread-safe.

Length Public property that returns the length of the array.
Rank Public property that returns the number of dimensions of the array.
SyncRoot Public property that returns an object that can be used to synchronize

 160

access to the array.
GetEnumerator() Public method that returns an Ienumerator.
GetLength() Public method that returns the length of the specified dimension in the array.

GetLowerBound() Public method that returns the lower boundary of the specified dimension of
the array.

GetUpperBound() Public method that returns the upper boundary of the specified dimension of
the array.

Initialize() Initializes all values in a value type array by calling the default constructor for
each value.

SetValue() Overloaded public method that sets the specified array elements to a value.

9.1.1 Declaring Arrays

You declare a C# array with the following syntax:

type[] array-name;

For example:

int[] myIntArray;

The square brackets ([]) tell the C# compiler that you are declaring an array, and the type specifies
the type of the elements it will contain. In the example above, myIntArray is an array of integers.

You instantiate an array using the new keyword. For example:

myIntArray = new int[5];

This declaration sets aside memory for an array holding five integers.

Visual Basic programmers take note: the first element is always 0;
there is no way to set the upper or lower bounds; and you cannot
change the size (redim) of the array.

It is important to distinguish between the array itself (which is a collection of elements) and the
elements of the array. myIntArray is the array; its elements are the five integers it holds. C# arrays
are reference types, created on the heap. Thus, myIntArray is allocated on the heap. The elements
of an array are allocated based on their type. Integers are value types, and so the elements in
myIntArray will be value types, not boxed integers. An array of reference types will contain nothing
but references to the elements, which are themselves created on the heap.

9.1.2 Understanding Default Values

When you create an array of value types each element initially contains the default value for the type
stored in the array (see Table 4-2, "Primitive types and their default values"). The declaration:

myIntArray = new int[5];

creates an array of five integers, each of whose value is set to 0, the default value for integer types.

Programming C#

 161

Unlike with arrays of value types, the reference types in an array are not initialized to their default
value. Instead, they are initialized to null. If you attempt to access an element in an array of reference
types before you have specifically initialized them, you will generate an exception.

Assume you have created a Button class. You declare an array of Button objects with the following
statement:

Button[] myButtonArray;

and you instantiate the actual array like this:

myButtonArray = new Button[3];

You can shorten this to:

Button myButtonArray = new Button[3];

Unlike with the earlier integer example, this statement does not create an array with references to
three Button objects. Instead, this creates the array myButtonArray with three null references. To
use this array, you must first construct and assign the Button objects for each reference in the array.
You can construct the objects in a loop that adds them one by one to the array.

9.1.3 Accessing Array Elements

You access the elements of an array using the index operator ([]). Arrays are zero-based, which
means that the index of the first element is always zero—in this case, myArray[0].

As explained previously, arrays are objects, and thus have properties. One of the more useful of these
is Length, which tells you how many objects are in an array. Array objects can be indexed from 0 to
length-1. That is, if there are five elements in an array, their indices are 0,1,2,3,4.

Example 9-1 illustrates the array concepts covered so far. In this example a class named Tester
creates an array of Employees and an array of integers, populates the Employee array and then
prints the values of both.

Example 9-1. Working with an array
namespace Programming_CSharp
{
 using System;

 // a simple class to store in the array
 public class Employee
 {
 // a simple class to store in the array
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 private int empID;

 private int size;
 }

 162

 public class Tester
 {
 static void Main()
 {
 int[] intArray;
 Employee[] empArray;
 intArray = new int[5];
 empArray = new Employee[3];

 // populate the array
 for (int i = 0;i<empArray.Length;i++)
 {
 empArray[i] = new Employee(i+5);
 }

 for (int i = 0;i<intArray.Length;i++)
 {
 Console.WriteLine(intArray[i].ToString());
 }

 for (int i = 0;i<empArray.Length;i++)
 {
 Console.WriteLine(empArray[i].ToString());
 }
 }
 }
}

Output:

0
0
0
0
0
5
6
7

The example starts with the definition of an Employee class that implements a constructor that takes
a single integer parameter. The ToString() method inherited from Object is overridden to print
the value of the Employee object's employee ID.

The test method declares and then instantiates a pair of arrays. The integer array is automatically filled
with integers whose value is set to zero. The Employee array contents must be constructed by hand.

Finally, the contents of the arrays are printed to ensure that they are filled as intended. The five
integers print their value first, followed by the three Employee objects.

9.2 The foreach Statement

The foreach looping statement is new to the C family of languages, though it is well known to VB
programmers. The foreach statement allows you to iterate through all the items in an array or other
collection, examining each item in turn. The syntax for the foreach statement is:

foreach (type identifier in expression) statement

Programming C#

 163

Thus, you might update Example 9-1 to replace the for statements that iterate over the contents of
the array with foreach statements, as shown in Example 9-2.

Example 9-2. Using foreach
namespace Programming_CSharp
{
 using System;

 // a simple class to store in the array
 public class Employee
 {
 // a simple class to store in the array
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 private int empID;

 private int size;
 }
 public class Tester
 {
 static void Main()
 {
 int[] intArray;
 Employee[] empArray;
 intArray = new int[5];
 empArray = new Employee[3];

 // populate the array
 for (int i = 0;i<empArray.Length;i++)
 {
 empArray[i] = new Employee(i+10);
 }

 foreach (int i in intArray)
 {
 Console.WriteLine(i.ToString());
 }

 foreach (Employee e in empArray)
 {
 Console.WriteLine(e.ToString());
 }
 }
 }
}

The output for Example 9-2 is identical to Example 9-1. However, rather than creating a for
statement that measures the size of the array and uses a temporary counting variable as an index into
the array:

for (int i = 0; i < empArray.Length; i++)
{

 164

 Console.WriteLine(empArray[i].ToString());
}

We now iterate over the array with the foreach loop which automatically extracts the next item from
within the array and assigns it to the temporary object you've created in the head of the statement.

foreach (Employee e in empArray)
{
 Console.WriteLine(e.ToString());
}

The object extracted from the array is of the appropriate type; thus, you may call any public method on
that object.

9.2.1 Initializing Array Elements

It is possible to initialize the contents of an array at the time it is instantiated by providing a list of
values delimited by curly brackets ({}). C# provides a longer and a shorter syntax:

int[] myIntArray = new int[5] { 2, 4, 6, 8, 10 }
int[] myIntArray = { 2, 4, 6, 8, 10 }

There is no practical difference between these two statements, and most programmers will use the
shorter syntax because we are, by nature, lazy. We are so lazy, we'll work all day to save a few
minutes doing a task—which isn't so crazy if we're going to do that task hundreds of times!

9.2.2 The params Keyword

You can create a method that displays any number of integers to the console by passing in an array of
integers and then iterating over the array with a foreach loop. The params keyword allows you to
pass in a variable number of parameters without necessarily explicitly creating the array.

In the next example, you create a method, DisplayVals(), which takes a variable number of
integer arguments:

public void DisplayVals(params int[] intVals)

The method itself can treat the array as if an integer array were explicitly created and passed in as a
parameter. You are free to iterate over the array as you would over any other array of integers:

foreach (int i in intVals)
{
 Console.WriteLine("DisplayVals {0}",i);
}

The calling method, however, need not explicitly create an array; it can simply pass in integers, and
the compiler will assemble the parameters into an array for the DisplayVals() method:

t.DisplayVals(5,6,7,8);

You are free to pass in an array if you prefer:

int [] explicitArray = new int[5] {1,2,3,4,5};
t.DisplayVals(explicitArray);

Programming C#

 165

Example 9-3 provides the complete source code illustrating the params keyword.

Example 9-3. Using the params keyword
namespace Programming_CSharp
{
 using System;

 public class Tester
 {
 static void Main()
 {
 Tester t = new Tester();
 t.DisplayVals(5,6,7,8);
 int [] explicitArray = new int[5] {1,2,3,4,5};
 t.DisplayVals(explicitArray);
 }

 public void DisplayVals(params int[] intVals)
 {
 foreach (int i in intVals)
 {
 Console.WriteLine("DisplayVals {0}",i);
 }
 }
 }
}
Output
DisplayVals 5
DisplayVals 6
DisplayVals 7
DisplayVals 8
DisplayVals 1
DisplayVals 2
DisplayVals 3
DisplayVals 4
DisplayVals 5

9.2.3 Multidimensional Arrays

Arrays can be thought of as long rows of slots into which values can be placed. Once you have a
picture of a row of slots, imagine 10 rows, one on top of another. This is the classic two-dimensional
array of rows and columns. The rows run across the array and the columns run up and down the array.

A third dimension is possible, but somewhat harder to imagine. Make your arrays three-dimensional,
with new rows stacked atop the old two-dimensional array. OK, now imagine four dimensions. Now
imagine 10.

Those of you who are not string-theory physicists have probably given up, as have I. Multidimensional
arrays are useful, however, even if you can't quite picture what they would look like.

C# supports two types of multidimensional arrays: rectangular and jagged. In a rectangular array,
every row is the same length. A jagged array, however, is an array of arrays, each of which can be a
different length.

9.2.3.1 Rectangular arrays

A rectangular array is an array of two (or more) dimensions. In the classic two-dimensional array, the
first dimension is the number of rows and the second dimension is the number of columns.

 166

To declare a two-dimensional array, you use the following syntax:

type [,] array-name

For example, to declare a two-dimensional rectangular array named myRectangularArray that
contains two rows and three columns of integers, you would write:

int [,] myRectangularArray;

Example 9-4 declares, instantiates, initializes, and prints the contents of a two-dimensional array. In
this example, a for loop is used to initialize the elements of the array.

Example 9-4. Rectangular arrays
namespace Programming_CSharp
{
 using System;

 public class Tester
 {
 static void Main()
 {
 const int rows = 4;
 const int columns = 3;

 // declare a 4x3 integer array
 int[,] rectangularArray = new int[rows, columns];

 // populate the array
 for (int i = 0;i < rows;i++)
 {
 for (int j = 0;j<columns;j++)
 {
 rectangularArray[i,j] = i+j;
 }
 }

 // report the contents of the array
 for (int i = 0;i < rows;i++)
 {
 for (int j = 0;j<columns;j++)
 {
 Console.WriteLine("rectangularArray[{0},{1}] = {2}",
 i,j,rectangularArray[i,j]);
 }
 }
 }
 }
}

Output:

rectangularArray[0,0] = 0
rectangularArray[0,1] = 1
rectangularArray[0,2] = 2
rectangularArray[1,0] = 1
rectangularArray[1,1] = 2
rectangularArray[1,2] = 3
rectangularArray[2,0] = 2
rectangularArray[2,1] = 3

Programming C#

 167

rectangularArray[2,2] = 4
rectangularArray[3,0] = 3
rectangularArray[3,1] = 4
rectangularArray[3,2] = 5

In this example, you declare a pair of constant values:

const int rows = 4;
const int columns = 3;

which are then used to dimension the array:

int[,] rectangularArray = new int[rows, columns];

Notice the syntax. The brackets in the int[,] declaration indicate that the type is an array of integers,
and the comma indicates the array has two dimensions (two commas would indicate three dimensions,
and so on). The actual instantiation of rectangularArray with new int[rows, columns] sets
the size of each dimension. Here the declaration and instantiation have been combined.

The program fills the rectangle with a pair of for loops, iterating through each column in each row.
Thus, the first element filled is rectangularArray[0,0], followed by rectangularArray[0,1],
rectangularArray[0,2]. Once this is done, the program moves on to the next row:
rectangularArray[1,0] rectangularArray[1,1] rectangularArray[1,2]. And so forth,
until all the columns in all the rows are filled.

Just as you can initialize a one-dimensional array using bracketed lists of values, you can initialize a
two-dimensional array using similar syntax. Example 9-5 declares a two-dimensional array,
rectangularArray, initializes its elements using bracketed lists of values, and then prints out the
contents.

Example 9-5. Initializing a multidimensional array
namespace Programming_CSharp
{
 using System;

 public class Tester
 {
 static void Main()
 {
 const int rows = 4;
 const int columns = 3;

 // imply a 4x3 array
 int[,] rectangularArray =
 {
 {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
 };

 for (int i = 0;i < rows;i++)
 {
 for (int j = 0;j<columns;j++)
 {
 Console.WriteLine("rectangularArray[{0},{1}] = {2}",
 i,j,rectangularArray[i,j]);
 }
 }
 }
 }

 168

}

Output:

rectangularArrayrectangularArray[0,0] = 0
rectangularArrayrectangularArray[0,1] = 1
rectangularArrayrectangularArray[0,2] = 2
rectangularArrayrectangularArray[1,0] = 3
rectangularArrayrectangularArray[1,1] = 4
rectangularArrayrectangularArray[1,2] = 5
rectangularArrayrectangularArray[2,0] = 6
rectangularArrayrectangularArray[2,1] = 7
rectangularArrayrectangularArray[2,2] = 8
rectangularArrayrectangularArray[3,0] = 9
rectangularArrayrectangularArray[3,1] = 10
rectangularArrayrectangularArray[3,2] = 11

The preceding example is very similar to Example 9-4, but this time you imply the exact dimensions
of the array by how you initialize it:

int[,] rectangularArrayrectangularArray =
{
 {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
};

Assigning values in four bracketed lists, each consisting of three elements, implies a 4x3 array.

Had you written this as:

int[,] rectangularArrayrectangularArray =
{
 {0,1,2,3}, {4,5,6,7}, {8,9,10,11}
};

you would instead have implied a 3x4 array.

You can see that the C# compiler understands the implications of your clustering, as it is able to
access the objects with the appropriate offsets, as illustrated in the output.

You might guess that this is a 12-element array, and that you can just as easily access an element at
rectangularArray[0,3] as at rectangularArray[1,0], but if you try you will run right into an
exception:

Exception occurred: System.IndexOutOfRangeException:
An exception of type System.IndexOutOfRangeException was thrown.
at Programming_CSharp.Tester.Main() in
csharp\programming csharp\listing0703.cs:line 23

C# arrays are smart and they keep track of their bounds. When you imply a 4x3 array, you must treat it
as such.

9.2.3.2 Jagged arrays

A jagged array is an array of arrays. It is called "jagged" because each of the rows need not be the
same size as all the others, and thus a graphical representation of the array would not be square.

Programming C#

 169

When you create a jagged array you declare the number of rows in your array. Each row will hold an
array, which can be of any length. These arrays must each be declared. You can then fill in the values
for the elements in these "inner" arrays.

In a jagged array, each dimension is a one-dimensional array. To declare a jagged array you use the
following syntax, where the number of brackets indicates the number of dimensions of the array:

type [] []...

For example, you would declare a two-dimensional jagged array of integers named myJaggedArray
as follows:

int [] [] myJaggedArray;

You access the fifth element of the third array by writing myJaggedArray[2][4].

Example 9-6 creates a jagged array named myJaggedArray, initializes its elements, and then
prints their content. To save space, the program takes advantage of the fact that integer array
elements are automatically initialized to zero, and it initializes the values of only some of the elements.

Example 9-6. Working with a jagged array
namespace Programming_CSharp
{
 using System;

 public class Tester
 {
 static void Main()
 {
 const int rows = 4;

 // declare the jagged array as 4 rows high
 int[][] jaggedArray = new int[rows][];

 // the first row has 5 elements
 jaggedArray[0] = new int[5];

 // a row with 2 elements
 jaggedArray[1] = new int[2];

 // a row with 3 elements
 jaggedArray[2] = new int[3];

 // the last row has 5 elements
 jaggedArray[3] = new int[5];

 // Fill some (but not all) elements of the rows
 jaggedArray[0][3] = 15;
 jaggedArray[1][1] = 12;
 jaggedArray[2][1] = 9;
 jaggedArray[2][2] = 99;
 jaggedArray[3][0] = 10;
 jaggedArray[3][1] = 11;
 jaggedArray[3][2] = 12;
 jaggedArray[3][3] = 13;
 jaggedArray[3][4] = 14;

 for (int i = 0;i < 5; i++)

 170

 {
 Console.WriteLine("jaggedArray[0][{0}] = {1}",
 i,jaggedArray[0][i]);
 }

 for (int i = 0;i < 2; i++)
 {
 Console.WriteLine("jaggedArray[1][{0}] = {1}",
 i,jaggedArray[1][i]);
 }

 for (int i = 0;i < 3; i++)
 {
 Console.WriteLine("jaggedArray[2][{0}] = {1}",
 i,jaggedArray[2][i]);
 }
 for (int i = 0;i < 5; i++)
 {
 Console.WriteLine("jaggedArray[3][{0}] = {1}",
 i,jaggedArray[3][i]);
 }
 }
 }
}

Output:

jaggedArray[0][0] = 0
jaggedArray[0][1] = 0
jaggedArray[0][2] = 0
jaggedArray[0][3] = 15
jaggedArray[0][4] = 0
jaggedArray[1][0] = 0
jaggedArray[1][1] = 12
jaggedArray[2][0] = 0
jaggedArray[2][1] = 9
jaggedArray[2][2] = 99
jaggedArray[3][0] = 10
jaggedArray[3][1] = 11
jaggedArray[3][2] = 12
jaggedArray[3][3] = 13
jaggedArray[3][4] = 14

In this example, a jagged array is created with four rows:

int[][] jaggedArray = new int[rows][];

Notice that the second dimension is not specified. This is set by creating a new array for each row.
Each of these arrays can have a different size:

// the first row has 5 elements
jaggedArray[0] = new int[5];

// a row with 2 elements
jaggedArray[1] = new int[2];

// a row with 3 elements
jaggedArray[2] = new int[3];

// the last row has 5 elements

Programming C#

 171

jaggedArray[3] = new int[5];

Once an array is specified for each row, you need only populate the various members of each array
and then print out their contents to ensure that all went as expected.

Notice that when you accessed the members of the rectangular array, you put the indexes all within
one set of square brackets:

rectangularArrayrectangularArray[i,j]

while with a jagged array you need a pair of brackets:

jaggedArray[3][i]

You can keep this straight by thinking of the first as a single array of more than one dimension and the
jagged array as an array of arrays.

9.2.4 Array Conversions

Conversion is possible between arrays if their dimensions are equal and if a conversion is possible
between the element types. An implicit conversion can occur if the elements can implicitly be
converted, and an explicit conversion is possible; the elements can be explicitly converted.

If an array contains references to reference objects, a conversion is possible to an array of base
elements. Example 9-7 illustrates the conversion of an array of user-defined Button types to an
array of objects.

Example 9-7. Converting arrays
namespace Programming_CSharp
{
 using System;

 // create an object we can
 // store in the array
 public class Employee
 {
 // a simple class to store in the array
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 private int empID;

 private int size;
 }

 public class Tester
 {
 // this method takes an array of objects
 // we'll pass in an array of Employees
 // and then an array of strings
 // the conversion is implicit since both Employee
 // and string derive (ultimately) from object

 172

 public static void PrintArray(object[] theArray)
 {
 Console.WriteLine("Contents of the Array {0}",
 theArray.ToString());

 // walk through the array and print
 // the values.
 foreach (object obj in theArray)
 {
 Console.WriteLine("Value: {0}", obj);
 }
 }

 static void Main()
 {
 // make an array of Employee objects
 Employee[] myEmployeeArray = new Employee[3];

 // initialize each Employee's vaue
 for (int i = 0;i < 3;i++)
 {
 myEmployeeArray[i] = new Employee(i+5);
 }

 // display the values
 PrintArray(myEmployeeArray);

 // create an array of two strings
 string[] array =
 {
 "hello", "world"
 };

 // print the value of the strings
 PrintArray(array);
 }
 }
}

Output:

Contents of the Array Programming_CSharp.Employee[]
Value: 5
Value: 6
Value: 7
Contents of the Array System.String[]
Value: hello
Value: world

Example 9-7 begins by creating a simple Employee class, as seen earlier in the chapter. The
Tester class now contains a new static method PrintMyArray(), which takes as a parameter a
one-dimensional array of Objects:

public static void PrintMyArray(object[] theArray)

Object is the implicit base class of every object in the .NET Framework,. and so is the implicit base
class of both String and Employee.

The PrintMyArray() method takes two actions. First, it calls the ToString() method on the
array itself:

Programming C#

 173

Console.WriteLine("Contents of the Array {0}",
 theArray.ToString());

System.Array overrides the PrintMyArray() method to your advantage, printing an identifying
name of the array:

Contents of the Array Programming_CSharp. Employee []
Contents of the Array System.String[]

PrintMyArray() then goes on to call ToString() on each element in the array it receives as a
parameter. Because ToString() is a virtual method in the base class Object, it is guaranteed to
be available in every derived class. You have overridden this method appropriately in Employee and
so this works properly. Calling ToString() on a String object might not be necessary, but it is
harmless and it allows you to treat these objects polymorphically.

9.2.5 System.Array

The Array class has a number of useful methods which extend the capabilities of arrays and make
them smarter than arrays seen in other languages (see Table 9-1 earlier in this chapter). Two useful
static methods of Array are Sort() and Reverse().These are fully supported for the built-in C#
types such as string. Making them work with Button is a bit trickier, as you must implement a
number of interfaces (discussed in Chapter 8). Example 9-8 demonstrates the use of these two
methods to manipulate String objects.

Example 9-8. Using Array.Sort and Array.Reverse
namespace Programming_CSharp
{
 using System;

 public class Tester
 {
 public static void PrintMyArray(object[] theArray)
 {

 foreach (object obj in theArray)
 {
 Console.WriteLine("Value: {0}", obj);
 }
 Console.WriteLine("\n");
 }

 static void Main()
 {
 String[] myArray =
 {
 "Who", "is", "John", "Galt"
 };

 PrintMyArray(myArray);
 Array.Reverse(myArray);
 PrintMyArray(myArray);

 String[] myOtherArray =
 {
 "We", "Hold", "These", "Truths",
 "To", "Be", "Self", "Evident",
 };

 174

 PrintMyArray(myOtherArray);
 Array.Sort(myOtherArray);
 PrintMyArray(myOtherArray);

 }
 }
}

Output:

Value: Who
Value: is
Value: John
Value: Galt

Value: Galt
Value: John
Value: is
Value: Who

Value: We
Value: Hold
Value: These
Value: Truths
Value: To
Value: Be
Value: Self
Value: Evident

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These
Value: To
Value: Truths
Value: We

The example begins by creating myArray, an array of strings with the words:

"Who", "is", "John", "Galt"

This array is printed, and then passed to the Array.Reverse() method, where it is printed again to
see that the array itself has been reversed:

Value: Galt
Value: John
Value: is
Value: Who

Similarly, the example creates a second array, myOtherArray, containing the words:

"We", "Hold", "These", "Truths",
"To", "Be", "Self", "Evident",

which is passed to the Array.Sort() method. Then Array.Sort() happily sorts them
alphabetically:

Value: Be

Programming C#

 175

Value: Evident
Value: Hold
Value: Self
Value: These
Value: To
Value: Truths
Value: We

9.3 Indexers

There are times when it is desirable to access a collection within a class as though the class itself
were an array. For example, suppose you create a list box control named myListBox that contains a
list of strings stored in a one-dimensional array, a private member variable named myStrings. A list
box control contains member properties and methods in addition to its array of strings. However, it
would be convenient to be able to access the list box array with an index, just as if the list box were an
array. For example, such a property would permit statements like the following:

string theFirstString = myListBox[0];
string theLastString = myListBox[Length-1];

An indexer is a C# construct that allows you to access collections contained by a class using the
familiar [] syntax of arrays. An indexer is a special kind of property and includes get() and set()
methods to specify its behavior.

You declare an indexer property within a class using the following syntax:

type this [type argument]{get; set;}

The return type determines the type of object that will be returned by the indexer, while the type
argument specifies what kind of argument will be used to index into the collection that contains the
target objects. Although it is common to use integers as index values, you can index a collection on
other types as well, including strings. You can even provide an indexer with multiple parameters to
create a multidimensional array!

The this keyword is a reference to the object in which the indexer appears. As with a normal
property, you also must define get() and set() methods that determine how the requested object
is retrieved from or assigned to its collection.

Example 9-9 declares a list box control, ListBoxTest, which contains a simple array (myStrings)
and a simple indexer for accessing its contents.

C++ programmers take note: the indexer serves much the same
purpose as overloading the C++ index operator ([]). The index
operator cannot be overloaded in C#, which provides the indexer
in its place.

Example 9-9. Using a simple indexer
namespace Programming_CSharp
{
 using System;

 // a simplified ListBox control
 public class ListBoxTest
 {
 // initialize the list box with strings

 176

 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the list box
 public void Add(string theString)
 {
 if (ctr >= strings.Length)
 {
 // handle bad index
 }
 else
 strings[ctr++] = theString;
 }

 // allow array-like access
 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }
 set
 {
 // add only through the add method
 if (index >= ctr)
 {
 // handle error
 }
 else
 strings[index] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }

 private string[] strings;
 private int ctr = 0;
 }

 public class Tester
 {
 static void Main()
 {
 // create a new list box and initialize

Programming C#

 177

 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Who");
 lbt.Add("Is");
 lbt.Add("John");
 lbt.Add("Galt");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;

 // access all the strings
 for (int i = 0;i<lbt.GetNumEntries();i++)
 {
 Console.WriteLine("lbt[{0}]: {1}",i,lbt[i]);
 }
 }
 }
}

 Output:
lbt[0]: Hello
lbt[1]: Universe
lbt[2]: Who
lbt[3]: Is
lbt[4]: John
lbt[5]: Galt

To keep Example 9-9 simple, you'll strip the list box control down to the few features we care about.
The listing ignores everything having to do with being a user control and focuses only on the list of
strings the list box maintains and methods for manipulating them. In a real application, of course,
these are a small fraction of the total methods of a list box, whose principal job is to display the strings
and enable user choice.

The first thing to notice is the two private members:

private string[] myStrings;
private int myCtr = 0;

In this program, the list box maintains a simple array of strings, myStrings. Again, in a real list box
you might use a more complex and dynamic container, such as a hash table (described later in this
chapter). The member variable myCtr will keep track of how many strings have been added to this
array.

You initialize the array in the constructor with the statement:

myStrings = new String[256];

The remainder of the constructor adds the parameters to the array. Again, for simplicity, you simply
add new strings to the array in the order received.

Because you cannot know how many strings will be added, you
use the keyword params, as described earlier in this chapter.

 178

The Add() method of ListBoxTest does nothing more than append a new string to the internal
array.

The key method of ListBoxTest, however, is the indexer. An indexer is unnamed, so you use the
this keyword:

public string this[int index]

The syntax of the indexer is very similar to that for properties. There is either a get() method or a
set() method or both. In the case shown, the get() method endeavors to implement rudimentary
bounds checking, and assuming the index requested is acceptable, it returns the value requested:

get
{
 if (index < 0 || index >= myStrings.Length)
 {
 // handle bad index
 }
 return myStrings[index];
}

The set() method checks to make sure that the index you are setting already has a value in the list
box. If not, it treats the set as an error (new elements can only be added using Add with this approach).
The set accessor takes advantage of the implicit parameter value which represents whatever is
assigned using the index operator:

set
{
if (index >= ctr)
 {
 // handle error
 }
 else
 strings[index] = value;
}

Thus, if you write:

myIndexedObject[5] = "Hello World"

the compiler will call the indexer set() method on your object and pass in the string Hello World
as an implicit parameter named value.

9.3.1 Indexers and Assignment

In Example 9-9, you cannot assign to an index that does not have a value. Thus, if you write:

myIndexedObject[10] = "wow!";

you would trigger the error handler in the set() method, which would note that the index you've
passed in (10) is larger than the counter (6).

Of course, you can use the set() method for assignment; you simply have to handle the indexes you
receive. To do so, you might change the set() method to check the Length of the buffer rather than
the current value of counter. If a value was entered for an index that did not yet have a value, you
would update ctr:

Programming C#

 179

set
{
 // add only through the add method
 if (index >= strings.Length)
 {
 // handle error
 }
 else
 {
 strings[index] = value;
 if (ctr < index+1)
 ctr = index+1;
 }
}

This allows you to create a "sparse" array in which you can assign to offset 10 without ever having
assigned to offset 9. Thus, if you now write:

myIndexedObject[10] = "wow!";

the output would be:

lbt[0]: Hello
lbt[1]: Universe
lbt[2]: Who
lbt[3]: Is
lbt[4]: John
lbt[5]: Galt
lbt[6]:
lbt[7]:
lbt[8]:
lbt[9]:
lbt[10]: wow!

In Main() you create an instance of the ListBoxTest class named lbt and pass in two strings as
parameters:

ListBoxTest lbt = new ListBoxTest("Hello", "World");

You then call Add() to add four more strings:

// add a few strings
lbt.Add("Who");
lbt.Add("Is");
lbt.Add("John");
lbt.Add("Galt");

Before examining the values, you modify the second value (at index 1):

string subst = "Universe";
lbt[1] = subst;

Finally, you display each value in a loop:

for (int i = 0;i<lbt.GetNumEntries();i++)
{
 Console.WriteLine("lbt[{0}]: {1}",i,lbt[i]);
}

 180

9.3.2 Indexing on Other Values

C# does not require that you always use an integer value as the index to a collection. When you
create a custom collection class and create your indexer, you are free to create indexers which index
on strings and other types. In fact, the index value can be overloaded so that a given collection can be
indexed, for example, by an integer value or by a string value, depending on the needs of the client.

In the case of our list box, we might want to be able to index into the list box based on a string.
Example 9-10 illustrates a string index. The indexer calls findString() which is a helper method
that returns a record based on the value of the string provided. Notice that the overloaded indexer and
the indexer from Example 9-9 are able to coexist.

Example 9-10. Overloading an index
namespace Programming_CSharp
{
 using System;

 // a simplified ListBox control
 public class ListBoxTest
 {
 // initialize the list box with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the list box
 public void Add(string theString)
 {
 strings[ctr] = theString;
 ctr++;
 }

 // allow array-like access
 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }
 set
 {
 strings[index] = value;
 }
 }

 private int findString(string searchString)
 {

Programming C#

 181

 for (int i = 0;i<strings.Length;i++)
 {
 if (strings[i].StartsWith(searchString))
 {
 return i;
 }
 }
 return -1;
 }
 // index on string
 public string this[string index]
 {
 get
 {
 if (index.Length == 0)
 {
 // handle bad index
 }

 return this[findString(index)];
 }
 set
 {
 strings[findString(index)] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }

 private string[] strings;
 private int ctr = 0;
 }

 public class Tester
 {
 static void Main()
 {
 // create a new list box and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Who");
 lbt.Add("Is");
 lbt.Add("John");
 lbt.Add("Galt");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;
 lbt["Hel"] = "GoodBye";
 // lbt["xyz"] = "oops";

 // access all the strings
 for (int i = 0;i<lbt.GetNumEntries();i++)
 {

 182

 Console.WriteLine("lbt[{0}]: {1}",i,lbt[i]);
 } // end for
 } // end main
 } // end tester
} // end namespace

 Output:
lbt[0]: GoodBye
lbt[1]: Universe
lbt[2]: Who
lbt[3]: Is
lbt[4]: John
lbt[5]: Galt

Example 9-10 is identical to Example 9-9 except for the addition of an overloaded indexer which
can match a string, and the method findString, created to support that index.

The findString method simply iterates through the strings held in myStrings until it finds a string
which starts with the target string we use in the index. If found, it returns the index of that string,
otherwise it returns the value -1.

We see in Main() that the user passes in a string segment to the index, just as was done with an
integer:

lbt["Hel"] = "GoodBye";

This calls the overloaded index, which does some rudimentary error checking (in this case, making
sure the string passed in has at least one letter) and then passes the value (Hel) to findString. It
gets back an index and uses that index to index into myStrings:

return this[findString(index)];

The set value works in the same way:

myStrings[findString(index)] = value;

The careful reader will note that if the string does not match, a
value of -1 is returned, which is then used as an index into
myStrings. This action then generates an exception
(System.NullReferenceException), as you can see by un-
commenting the following line in Main:

lbt["xyz"] = "oops";

The proper handling of not finding a string is, as they say, left as
an exercise for the reader. You might consider displaying an error
message or otherwise allowing the user to recover from the error.

9.4 Collection Interfaces

The .NET Framework provides standard interfaces for enumerating, comparing, and creating
collections. The key collection interfaces are listed in Table 9-2.

Programming C#

 183

Table 9-2. Collection interfaces
Interface Purpose

IEnumerable Enumerates through a collection using a foreach statement.

ICollection
Implemented by all collections to provide the CopyTo() method as well
as the Count, ISReadOnly, ISSynchronized, and SyncRoot
properties.

IComparer Compares two objects held in a collection so that the collection can be
sorted.

IList Used by array-indexable collections.
IDictionary For key/value-based collections such as Hashtable and SortedList.

IDictionaryEnumerator Allows enumeration with foreach of a collection that supports
IDictionary.

9.4.1 The IEnumerable Interface

You can support the foreach statement in ListBoxTest by implementing the IEnumerable
interface. IEnumerable has only one method, GetEnumerator(), whose job is to return a
specialized implementation of IEnumerator. Thus, the semantics of an Enumerable class are that it
can provide an Enumerator:

public IEnumerator GetEnumerator()
{
 return (IEnumerator) new ListBoxEnumerator(this);
}

The Enumerator must implement the IEnumerator methods and properties. These can be
implemented either directly by the container class (in this case, ListBoxTest) or by a separate class.
The latter approach is generally preferred because it encapsulates this responsibility in the
Enumerator class rather than cluttering up the container.

Because the Enumerator class is specific to the container class (that is, because
ListBoxEnumerator must know a lot about ListBoxTest) you will make it a private
implementation, contained within ListBoxTest.

Notice that the method passes the current ListBoxTest object (this) to the enumerator, which will
allow the enumerator to enumerate this particular ListBoxTest object.

The class to implement the Enumerator is implemented here as ListBoxEnumerator, which is a
private class defined within ListBoxTest. Its work is fairly straightforward. It must implement the
public instance property Current and two public instance methods, MoveNext() and Reset().

The ListBoxTest to be enumerated is passed in as an argument to the constructor, where it is
assigned to the member variable myLBT. The constructor also sets the member variable index to -1,
indicating that you have not yet begun to enumerate the object:

public ListBoxEnumerator(ListBoxTest lbt)
{
 this.lbt = lbt;
 index = -1;
}

 184

The MoveNext() method increments the index and then checks to ensure that you've not run past
the end of the object you're enumerating. If you have, you return false; otherwise you return true:

public bool MoveNext()
{
 index++;
 if (index >= lbt.strings.Length)
 return false;
 else
 return true;
}

The IEnumerator method Reset() does nothing but reset the index to -1.

The property Current is implemented to return the current string. This is an arbitrary decision; in
other classes Current will have whatever meaning the designer decides is appropriate. However
defined, every enumerator must be able to return the current member, as accessing the current
member is what enumerators are for:

public object Current
{
 get
 {
 return(lbt[index]);
 }
}

That's all there is to it; the call to foreach fetches the enumerator and uses it to enumerate over the
array. Because foreach will display every string, whether or not you've added a meaningful value,
change the initialization of strings to 8 to keep the display manageable, as shown in Example 9-
11.

Example 9-11. Making a ListBox an enumerable class
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simplified ListBox control
 public class ListBoxTest : IEnumerable
 {
 // private implementation of ListBoxEnumerator
 private class ListBoxEnumerator : IEnumerator
 {
 // public within the private implementation
 // thus, private within ListBoxTest
 public ListBoxEnumerator(ListBoxTest lbt)
 {
 this.lbt = lbt;
 index = -1;
 }

 // Increment the index and make sure the
 // value is valid
 public bool MoveNext()
 {
 index++;
 if (index >= lbt.strings.Length)

Programming C#

 185

 return false;
 else
 return true;
 }

 public void Reset()
 {
 index = -1;
 }

 // Current property defined as the
 // last string added to the listbox
 public object Current
 {
 get
 {
 return(lbt[index]);
 }
 }

 private ListBoxTest lbt;
 private int index;
 }

 // Enumerable classes can return an enumerator
 public IEnumerator GetEnumerator()
 {
 return (IEnumerator) new ListBoxEnumerator(this);
 }

 // initialize the list box with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[8];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the list box
 public void Add(string theString)
 {
 strings[ctr] = theString;
 ctr++;
 }

 // allow array-like access
 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }

 186

 set
 {
 strings[index] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }

 private string[] strings;
 private int ctr = 0;
 }

 public class Tester
 {
 static void Main()
 {
 // create a new list box and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Who");
 lbt.Add("Is");
 lbt.Add("John");
 lbt.Add("Galt");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;

 // access all the strings
 foreach (string s in lbt)
 {
 Console.WriteLine("Value: {0}", s);
 }
 }
 }
}

 Output:
Value: Hello
Value: Universe
Value: Who
Value: Is
Value: John
Value: Galt
Value:
Value:

The program begins in Main(), creating a new ListBoxTest object and passing two strings to the
constructor. When the object is created, an array of Strings is created with room for 8 strings. Four
more strings are added using the Add method, and the second string is updated, just as in the
previous example.

The big change in this version of the program is that a foreach loop is called, retrieving each string in
the list box. The foreach loop automatically uses the IEnumerable interface, invoking

Programming C#

 187

GetEnumerator(). This gets back the ListBoxEnumerator whose constructor is called, thus
initializing the index to -1.

The foreach loop then invokes MoveNext(), which immediately increments the index to 0 and
returns true. The foreach then uses the Current property to get back the current string. The
Current property invokes the list box's indexer, getting back the string stored at index 0. This string is
assigned to the variable s defined in the foreach loop and that string is displayed on the console.
The foreach loop repeats these steps (MoveNext(), Current, display) until all the strings in the
list box have been displayed.

9.4.2 The ICollection Interface

Another key interface for arrays, and for all the collections provided by the .NET Framework, is
ICollection. ICollection provides four properties: Count, IsReadOnly, IsSynchronized,
and SyncRoot. ICollection also provides one public method, CopyTo(). We'll look at the
CopyTo() method later in this chapter. The property used most often is Count, which returns the
number of elements in the collection:

For (int i = 0;i<myIntArray.Count;i++)
{
 //...
}

Here you are using the Count property myIntArray to determine how many objects are in it so that
you can print their values.

9.4.3 The IComparer Interface

The IComparer interface provides the Compare() method, by which any two items in a collection
can be ordered.

The Compare() method is typically implemented by calling the CompareTo method of one of the
objects. CompareTo is a method of all objects that implement IComparable. If you want to create
classes that can be sorted within a collection, you will need to implement IComparable.

The .NET Framework provides a Comparer class that implements IComparable and provides a
default case-sensitive implementation. You'll see how to create your own implementation of
IComparable in the next section on ArrayLists.

9.5 Array Lists

The classic problem with the Array type is its fixed size. If you do not know in advance how many
objects an array will hold, you run the risk of declaring either too small an array (and running out of
room) or too large an array (and wasting memory).

Your program might be asking the user for input, or gathering input from a web site. As it finds objects
(strings, books, values, etc.) you will add them to the array, but you have no idea how many objects
you'll collect in any given session. The classic fixed-size array is not a good choice, as you can't
predict how large an array you'll need.

The ArrayList class is an array whose size is dynamically increased as required. ArrayLists
provide a number of useful methods and properties for their manipulation. Some of the most important
are shown in Table 9-3.

 188

Table 9-3. ArrayList methods and properties
Method or Property Purpose

Adapter() Public static method that creates an ArrayList wrapper for an IList
object.

FixedSize() Overloaded public static method that returns a list object as a wrapper. The
list is of fixed size; elements can be modified but not added or removed.

ReadOnly() Overloaded public static method that returns a list class as a wrapper,
allowing read-only access.

Repeat() Public static method that returns an ArrayList whose elements are copies
of the specified value.

Synchronized() Overloaded public static method that returns a list wrapper that is thread-safe.
Capacity Property to get or set the number of elements in the ArrayList.
Count Property to get the number of elements currently in the array.
IsFixedSize Property to get to find out if the ArrayList is of fixed size.
IsReadOnly Property to get to find out if the ArrayList is read-only.
IsSynchronized Property to get to find out if the ArrayList is thread-safe.

Item() Gets or sets the element at the specified index. This is the indexer for the
ArrayList class.

SyncRoot Public property that returns an object that can be used to synchronize access
to the ArrayList.

Add() Public method to add an object to the ArrayList.

AddRange() Public method that adds the elements of an ICollection to the end of the
ArrayList.

BinarySearch() Overloaded public method that uses a binary search to locate a specific
element in a sorted ArrayList.

Clear() Removes all elements from the ArrayList.
Clone() Creates a shallow copy.
Contains() Determines if an element is in the ArrayList.

CopyTo() Overloaded public method that copies an ArrayList to a one-dimensional
array.

GetEnumerator() Overloaded public method that returns an enumerator to iterate an
ArrayList.

GetRange() Copies a range of elements to a new ArrayList.

IndexOf() Overloaded public method that returns the index of the first occurrence of a
value.

Insert() Inserts an element into ArrayList.
InsertRange() Inserts the elements of a collection into the ArrayList.

LastIndexOf() Overloaded public method that returns the index of the last occurrence of a
value in the ArrayList.

Remove() Removes the first occurrence of a specific object.
RemoveAt() Removes the element at the specified index.
RemoveRange() Removes a range of elements.
Reverse() Reverses the order of elements in the ArrayList.

SetRange() Copies the elements of a collection over a range of elements in the
ArrayList.

Sort() Sorts the ArrayList.
ToArray() Copies the elements of the ArrayList to a new array.
TrimToSize() Sets the capacity to the actual number of elements in the ArrayList.

Programming C#

 189

When you create an ArrayList, you do not define how many objects it will contain. You add to the
ArrayList using the Add() method, and the list takes care of its own internal bookkeeping, as
illustrated in Example 9-12.

Example 9-12. Working with an ArrayList
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Employee
 {
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 public int EmpID
 {
 get
 {
 return empID;
 }
 set
 {
 empID = value;
 }
 }

 private int empID;
 }
 public class Tester
 {
 static void Main()
 {
 ArrayList empArray = new ArrayList();
 ArrayList intArray = new ArrayList();

 // populate the array
 for (int i = 0;i<5;i++)
 {
 empArray.Add(new Employee(i+100));
 intArray.Add(i*5);
 }

 // print all the contents
 for (int i = 0;i<intArray.Count;i++)
 {
 Console.Write("{0} ", intArray[i].ToString());
 }

 Console.WriteLine("\n");

 // print all the contents of the button array
 for (int i = 0;i<empArray.Count;i++)
 {

 190

 Console.Write("{0} ", empArray[i].ToString());
 }

 Console.WriteLine("\n");
 Console.WriteLine("empArray.Capacity: {0}",
 empArray.Capacity);
 }
 }
}

 Output:
0 5 10 15 20
100 101 102 103 104
empArray.Capacity: 16

With an Array class, you define how many objects the array will hold. If you try to add more than that,
the Array class will throw an exception. With an ArrayList you do not declare how many objects
the ArrayList will hold. The ArrayList has a property, Capacity, which is the number of
elements the ArrayList is capable of storing:

public int Capcity {virtual get; virtual set; }

The default capacity is 16. When you add the 17th element, the capacity is automatically doubled to
32. If you change the for loop to:

for (int i = 0;i<17;i++)

the output looks like this:

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
MyButtonArray.Capacity: 32

You can manually set the capacity to any number equal to or greater than the count. If you set it to a
number less than the count, the program will throw an exception of type
ArgumentOutOfRangeException.

9.5.1 Implementing IComparable

Like all collections, the ArrayList implements the Sort() method, which allows you to sort any
objects that implement IComparable. In the next example, you'll modify the Employee object to
implement IComparable:

public class Employee : IComparable

To implement the IComparable interface, the Employee object must provide a CompareTo()
method:

public int CompareTo(Object rhs)
{
 Employee r = (Employee) rhs;
 return this.empID.CompareTo(r.empID);
}

The CompareTo() method takes an object as a parameter; the Employee object must compare
itself to this object and return -1 if it is smaller than the object, 1 if it is greater than the object, and 0 if

Programming C#

 191

it is equal to the object. It is up to Employee to determine what smaller than, greater than,and
equal to mean. For example, you will cast the object to an Employee and then delegate the
comparison to the empId member, which is an int and which will use the default CompareTo()
method for integer types, which will do an integer comparison of the two values.

Because int derives from object it has methods, including the
method CompareTo(). Thus int is an object to which you may
delegate the responsibility of comparison.

You are now ready to sort the array list of employees, empList. To see if the sort is working, you'll
need to add integers and Employee instances to their respective arrays with random values. To
create the random values, you'll instantiate an object of class Random, and to generate the random
values you'll call the Next() method on the Random object, which returns a pseudo-random number.
The Next() method is overloaded; one version allows you to pass in an integer which represents
the largest random number you want. In this case, you'll pass in the value 10 to generate a random
number between 0 and 10:

Random r = new Random();
r.Next(10);

Example 9-13 creates an integer array and an Employee array, populates them both with random
numbers, and prints their values. It then sorts both arrays and prints the new values.

Example 9-13. Sorting an integer and an employee array
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Employee : IComparable
 {
 public Employee(int empID)
 {
 this.empID = empID;
 }

 public override string ToString()
 {
 return empID.ToString();
 }

 // Comparer delegates back to Employee
 // Employee uses the integer's default
 // CompareTo method
 public int CompareTo(Object rhs)
 {
 Employee r = (Employee) rhs;
 return this.empID.CompareTo(r.empID);
 }

 private int empID;
 }
 public class Tester
 {
 static void Main()

 192

 {
 ArrayList empArray = new ArrayList();
 ArrayList intArray = new ArrayList();

 // generate random numbers for
 // both the integers and the
 // employee id's
 Random r = new Random();

 // populate the array
 for (int i = 0;i<5;i++)
 {
 // add a random employee id
 empArray.Add(new Employee(r.Next(10)+100));

 // add a random integer
 intArray.Add(r.Next(10));
 }

 // display all the contents of the int array
 for (int i = 0;i<intArray.Count;i++)
 {
 Console.Write("{0} ", intArray[i].ToString());
 }
 Console.WriteLine("\n");

 // display all the contents of the Employee array
 for (int i = 0;i<empArray.Count;i++)
 {
 Console.Write("{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the int array
 intArray.Sort();
 for (int i = 0;i<intArray.Count;i++)
 {
 Console.Write("{0} ", intArray[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the employee array
 //Employee.EmployeeComparer c = Employee.GetComparer();
 //empArray.Sort(c);
 empArray.Sort();

 // display all the contents of the Employee array
 for (int i = 0;i<empArray.Count;i++)
 {
 Console.Write("{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 }
 }
}

 Output:
8 5 7 3 3
105 103 102 104 106
3 3 5 7 8

Programming C#

 193

102 103 104 105 106

The output shows that the integer array and Employee array were generated with random numbers,
and then when sorted the display shows the values have been ordered properly.

9.5.2 Implementing IComparer

When you call Sort() on the ArrayList the default implementation of IComparer is called, which
uses QuickSort to call the IComparable implementation of CompareTo() on each element in the
ArrayList.

You are free to create your own implementation of IComparer, which you might want to do if you
need control over how the sort is accomplished. For example, in the next example, you will add a
second field to Employee, yearsOfSvc. You want to be able to sort the Employee objects in the
ArrayList on either field, empID or yearsOfSvc.

To accomplish this, you will create a custom implementation of IComparer which you will pass to the
Sort() method of ArrayList. This IComparer class, EmployeeComparer, knows about
Employee objects and knows how to sort them.

EmployeeComparer has a property, WhichComparison, of type
Employee.EmployeeComparer.ComparisonType:

public Employee.EmployeeComparer.ComparisonType
 WhichComparison
{
 get
 {
 return whichComparison;
 }
 set
 {
 whichComparison=value;
 }
}

ComparisonType is an enumeration with two values, empID or yearsOfSvc (indicating that you
want to sort by employee ID or years of service, respectively):

public enum ComparisonType
{
 EmpID,
 Yrs
};

Before invoking Sort(), you will create an instance of EmployeeComparer and set its
ComparisionType property:

Employee.EmployeeComparer c = Employee.GetComparer();
c.WhichComparison=Employee.EmployeeComparer.ComparisonType.EmpID;
empArray.Sort(c);

When you invoke Sort() the ArrayList will call the Compare method on the EmployeeComparer,
which in turn will delegate the comparison to the Employee.CompareTo() method, passing in its
property WhichComparison. public int:

 194

Compare(object lhs, object rhs)
{
 Employee l = (Employee) lhs;
 Employee r = (Employee) rhs;
 return l.CompareTo(r,WhichComparison);
}

The Employee object must implement a custom version of CompareTo() which takes the
comparison and compares the objects accordingly:

public int CompareTo(
 Employee rhs,
 Employee.EmployeeComparer.ComparisonType which)
{
 switch (which)
 {
 case Employee.EmployeeComparer.ComparisonType.EmpID:
 return this.empID.CompareTo(rhs.empID);
 case Employee.EmployeeComparer.ComparisonType.Yrs:
 return this.yearsOfSvc.CompareTo(rhs.yearsOfSvc);
 }
 return 0;
}

The complete source for this example is shown in Example 9-14. The integer array has been
removed to simplify the example, and the output of the employee's ToString() method enhanced
to enable you to see the effects of the sort.

Example 9-14. Sorting an array by employees' IDs and years of service
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Employee : IComparable
 {
 public Employee(int empID)
 {
 this.empID = empID;
 }

 public Employee(int empID, int yearsOfSvc)
 {
 this.empID = empID;
 this.yearsOfSvc = yearsOfSvc;
 }

 public override string ToString()
 {
 return "ID: " + empID.ToString() +
 ". Years of Svc: " + yearsOfSvc.ToString();
 }

 // static method to get a Comparer object
 public static EmployeeComparer GetComparer()
 {
 return new Employee.EmployeeComparer();
 }

Programming C#

 195

 // Comparer delegates back to Employee
 // Employee uses the integer's default
 // CompareTo method
 public int CompareTo(Object rhs)
 {
 Employee r = (Employee) rhs;
 return this.empID.CompareTo(r.empID);
 }

 // Special implementation to be called by custom comparer
 public int CompareTo(
 Employee rhs,
 Employee.EmployeeComparer.ComparisonType which)
 {
 switch (which)
 {
 case Employee.EmployeeComparer.ComparisonType.EmpID:
 return this.empID.CompareTo(rhs.empID);
 case Employee.EmployeeComparer.ComparisonType.Yrs:
 return this.yearsOfSvc.CompareTo(rhs.yearsOfSvc);
 }
 return 0;

 }

 // nested class which implements IComparer
 public class EmployeeComparer : IComparer
 {
 // enumeration of comparsion types
 public enum ComparisonType
 {
 EmpID,
 Yrs
 };

 // Tell the Employee objects to compare themselves
 public int Compare(object lhs, object rhs)
 {
 Employee l = (Employee) lhs;
 Employee r = (Employee) rhs;
 return l.CompareTo(r,WhichComparison);
 }

 public Employee.EmployeeComparer.ComparisonType
 WhichComparison
 {
 get
 {
 return whichComparison;
 }
 set
 {
 whichComparison=value;
 }
 }

 // private state variable
 private Employee.EmployeeComparer.ComparisonType
 whichComparison;
 }

 196

 private int empID;
 private int yearsOfSvc = 1;
 }
 public class Tester
 {
 static void Main()
 {
 ArrayList empArray = new ArrayList();

 // generate random numbers for
 // both the integers and the
 // employee id's
 Random r = new Random();

 // populate the array
 for (int i = 0;i<5;i++)
 {
 // add a random employee id
 empArray.Add(
 new Employee(
 r.Next(10)+100,r.Next(20)
)
);
 }

 // display all the contents of the Employee array
 for (int i = 0;i<empArray.Count;i++)
 {
 Console.Write("\n{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the employee array
 Employee.EmployeeComparer c = Employee.GetComparer();
 c.WhichComparison=Employee.EmployeeComparer.ComparisonType.EmpID;
 empArray.Sort(c);
 // display all the contents of the Employee array
 for (int i = 0;i<empArray.Count;i++)
 {
 Console.Write("\n{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 c.WhichComparison=Employee.EmployeeComparer.ComparisonType.Yrs;
 empArray.Sort(c);
 for (int i = 0;i<empArray.Count;i++)
 {
 Console.Write("\n{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 }
 }
}

 Output:
ID: 103. Years of Svc: 11
ID: 108. Years of Svc: 15
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 5

Programming C#

 197

ID: 102. Years of Svc: 0

ID: 102. Years of Svc: 0
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15
ID: 108. Years of Svc: 5

ID: 102. Years of Svc: 0
ID: 108. Years of Svc: 5
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15

The first block of output shows the Employee objects as they are added to the ArrayList. The
employee ID values and the years of service are in random order.

The second block shows the results of sorting by the employee ID, and the third block shows the
results of sorting by years of service.

9.6 Queues

A queue represents a first-in, first-out (FIFO) collection. The classic analogy is to a line (or queue if
you are British) at a ticket window. The first person in line ought to be the first person to come off the
line to buy a ticket.

A queue is a good collection to use when you are managing a limited resource. For example, you
might want to send messages to a resource which can only handle one message at a time. You would
then create a message queue so that you can say to your clients: "Your message is important to us.
Messages are handled in the order in which they are received."

The Queue class has a number of member methods and properties, as shown in Table 9-4.

Table 9-4. Queue methods and properties
Method or Property Purpose
Synchronized() Public static method that returns a Queue wrapper that is thread-safe.
Count Public property that gets the number of elements in the Queue.
IsReadOnly Public property to get a value indicating if the Queue is read-only.
IsSynchronized Public property to get a value indicating if the Queue is synchronized.

SyncRoot Public property that returns an object that can be used to synchronize access to
the Queue.

Clear Removes all objects from the Queue.
Clone() Creates a shallow copy.
Contains() Determines if an element is in the Queue.
CopyTo() Copies the Queue elements to an existing one-dimensional array.
Dequeue() Removes and returns the object at the beginning of the Queue.
Enqueue() Adds an object to the end of the Queue.
GetEnumerator() Returns an enumerator for the Queue.
Peek() Returns the object at the beginning of the Queue without removing it.
ToArray() Copies the elements to a new array.

 198

You add elements to your queue with the Enqueue command and you take them off the queue with
Dequeue or by using an enumerator. Example 9-15 illustrates.

Example 9-15. Working with a queue
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 public class Tester
 {

 static void Main()
 {
 Queue intQueuee = new Queue();

 // populate the array
 for (int i = 0;i<5;i++)
 {
 intQueuee.Enqueue(i*5);
 }

 // Display the Queue.
 Console.Write("intQueuee values:\t");
 PrintValues(intQueuee);

 // Remove an element from the queue.
 Console.WriteLine(
 "\n(Dequeue)\t{0}", intQueuee.Dequeue());

 // Display the Queue.
 Console.Write("intQueuee values:\t");
 PrintValues(intQueuee);

 // Remove another element from the queue.
 Console.WriteLine(
 "\n(Dequeue)\t{0}", intQueuee.Dequeue());

 // Display the Queue.
 Console.Write("intQueuee values:\t");
 PrintValues(intQueuee);

 // View the first element in the
 // Queue but do not remove.
 Console.WriteLine(
 "\n(Peek) \t{0}", intQueuee.Peek());

 // Display the Queue.
 Console.Write("intQueuee values:\t");
 PrintValues(intQueuee);

 }

 public static void PrintValues(IEnumerable myCollection)
 {
 IEnumerator myEnumerator =
 myCollection.GetEnumerator();
 while (myEnumerator.MoveNext())
 Console.Write("{0} ",myEnumerator.Current);
 Console.WriteLine();

Programming C#

 199

 }

 }
}

 Output:
intQueuee values: 0 5 10 15 20

(Dequeue) 0
intQueuee values: 5 10 15 20

(Dequeue) 5
intQueuee values: 10 15 20

(Peek) 10
intQueuee values: 10 15 20

In this example the ArrayList is replaced by a Queue. I've dispensed with the Button class to save
room, but of course you can Enqueue user-defined objects as well.

The output shows that queuing objects adds them to the Queue, and calls to Dequeue return the
object and also remove them from the Queue. The Queue class also provides a Peek() method
which allows you to see, but not remove, the first element.

Because the Queue class is enumerable, you can pass it to the PrintValues method, which is
provided as an IEnumerable interface. The conversion is implicit. In the PrintValues method you
call GetEnumerator, which you will remember is the single method of all IEnumerable classes.
This returns an Enumerator, which you then use to enumerate all the objects in the collection.

9.7 Stacks

A stack is a last-in, first-out (LIFO) collection, like a stack of dishes at a buffet table, or a stack of coins
on your desk. You add a dish on top, and that is the first dish you take off the stack.

The principal methods for adding to and removing from a stack are Push and Pop(); Stack also
offers a Peek() method, very much like Queue. The significant methods and properties for Stack
are shown in Table 9-5.

Table 9-5. Stack methods and properties
Method or Property Purpose
Synchronized() Public static method that returns a Stack wrapper that is thread-safe.
Count() Public property that gets the number of elements in the Stack.
IsReadOnly Public property that gets a value indicating if the Stack is read-only.
IsSynchronized Public property that gets a value indicating if the Stack is synchronized.

SyncRoot Public property that returns an object that can be used to synchronize access
to the Stack.

Clear() Removes all objects from the Stack.
Clone() Creates a shallow copy.
Contains() Determines if an element is in the Stack.
CopyTo() Copies the Stack elements to an existing one-dimensional array.
GetEnumerator() Returns an enumerator for the Stack.

 200

Peek() Returns the object at the top of the Stack without removing it.
Pop() Removes and returns the object at the top of the Stack.
Push() Inserts an object at the top of the Stack.
ToArray() Copies the elements to a new array.

The ArrayList, Queue, and Stack types contain overloaded CopyTo() and ToArray()
methods for copying their elements to an array. In the case of a Stack, the CopyTo() method will
copy its elements to an existing one-dimensional array, overwriting the contents of the array beginning
at the index you specify. The ToArray() method returns a new array with the contents of the
stack's elements. Example 9-16 illustrates.

Example 9-16. Working with a Stack
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Tester
 {
 static void Main()
 {
 Stack intStack = new Stack();

 // populate the array
 for (int i = 0;i<8;i++)
 {
 intStack.Push(i*5);
 }

 // Display the Queue.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Remove an element from the queue.
 Console.WriteLine("\n(Pop)\t{0}",
 intStack.Pop());

 // Display the Queue.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Remove another element from the queue.
 Console.WriteLine("\n(Pop)\t{0}",
 intStack.Pop());

 // Display the Queue.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // View the first element in the
 // Queue but do not remove.
 Console.WriteLine("\n(Peek) \t{0}",
 intStack.Peek());

 // Display the Queue.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

Programming C#

 201

 // declare an array object which will
 // hold 12 integers
 Array targetArray=Array.CreateInstance(
 typeof(int), 12);

 targetArray.SetValue(100, 0);
 targetArray.SetValue(200, 1);
 targetArray.SetValue(300, 2);
 targetArray.SetValue(400, 3);
 targetArray.SetValue(500, 4);
 targetArray.SetValue(600, 5);
 targetArray.SetValue(700, 6);
 targetArray.SetValue(800, 7);
 targetArray.SetValue(900, 8);

 // Display the values of the target Array instance.
 Console.WriteLine("\nTarget array: ");
 PrintValues(targetArray);

 // Copy the entire source Stack to the
 // target Array instance, starting at index 6.
 intStack.CopyTo(targetArray, 6);

 // Display the values of the target Array instance.
 Console.WriteLine("\nTarget array after copy: ");
 PrintValues(targetArray);

 // Copy the entire source Stack
 // to a new standard array.
 Object[] myArray = intStack.ToArray();

 // Display the values of the new standard array.
 Console.WriteLine("\nThe new array:");
 PrintValues(myArray);
 }

 public static void PrintValues(
 IEnumerable myCollection)
 {
 System.Collections.IEnumerator enumerator =
 myCollection.GetEnumerator();
 while (enumerator.MoveNext())
 Console.Write("{0} ",enumerator.Current);
 Console.WriteLine();
 }
 }
}

 Output:
intStack values: 35 30 25 20 15 10 5 0

(Pop) 35
intStack values: 30 25 20 15 10 5 0

(Pop) 30
intStack values: 25 20 15 10 5 0

(Peek) 25
intStack values: 25 20 15 10 5 0

 202

Target array:
100 200 300 400 500 600 700 800 900 0 0 0

Target array after copy:
100 200 300 400 500 600 25 20 15 10 5 0

The new array:
25 20 15 10 5 0

25

The output reflects that the items pushed onto the stack were popped in reverse order. In fact, the
entire stack is stored in reverse order to reflect its LIFO nature.

Example 9-16 uses the Array class that serves as the base class for all arrays. The example
creates an array of 12 integers by calling the static method of CreateInstance(). This method
takes two arguments: a type (in this case, int) and a number representing the size of the array.

The array is populated with the SetValue() method which takes two arguments: the object to add
and the offset at which to add it.

The effect of CopyTo() can be seen by examining the target array before and after calling
CopyTo(). The array elements are overwritten beginning with the index specified (6).

Notice also that the ToArray() method is designed to return an array of objects, and so myArray is
declared appropriately:

Object[] myArray = myIntStack.ToArray();

9.8 Dictionaries

A dictionary is a collection that associates a key to a value. A language dictionary, such as Webster's,
associates a word (the key) with its definition (the value).

To see the value of dictionaries, start by imagining that you want to keep a list of the state capitals.
One approach might be to put them in an array:

string[] stateCapitals = new string[50];

The stateCapitals array will hold 50 state capitals. Each capital is accessed as an offset into the
array. For example, to access the capital for Arkansas, you need to know that Arkansas is the fourth
state in alphabetical order:

string capitalOfArkansas = stateCapitals[3];

It is inconvenient, however, to access state capitals using array notation. After all, if I need the capital
for Massachusetts, there is no easy way for me to determine that Massachusetts is the 21st state
alphabetically.

It would be far more convenient to store the capital with the state name. A dictionaryallows you to
store a value (in this case, the capital) with a key (in this case, the name of the state).

A .NET Framework dictionary can associate any kind of key (string, integer, object, etc.) with any kind
of value (string, integer, object, etc.). Typically, of course, the key is fairly short, the value fairly
complex.

Programming C#

 203

The most important attributes of a good dictionary are that it is easy to add values and it is quick to
retrieve values. Some dictionaries are faster at adding new values, others are optimized for retrieval.
One example of a dictionary type is the hashtable.

9.8.1 Hashtables

A hashtable is a dictionaryoptimized for fast retrieval. The principal methods and properties of
Hashtable are summarized in Table 9-6.

Table 9-6. Hashtable methods and properties
Method or Property Purpose

Synchronized() Public static method that returns a Hashtable wrapper that is thread-
safe (see Chapter 20).

Count Public property that gets the number of elements in the Hashtable.

IsReadOnly Public property that gets a value indicating if the Hashtable is read-
only.

IsSynchronized Public property that gets a value indicating if the Hashtable is
synchronized.

Item() The indexer for the Hashtable.

Keys Public property that gets an ICollection containing the keys in the
Hashtable. (See also Values, later in the table.)

SyncRoot Public property that returns an object that can be used to synchronize
access to the Hashtable.

Values Public property that gets an ICollection containing the values in the
Hashtable. (See also Keys, earlier in the table.)

Add() Adds an entry with a specified Key and Value.
Clear() Removes all objects from the Hashtable.
Clone() Creates a shallow copy.
Contains() Determines if an element is in the Hashtable.
ContainsKey() Determines whether the Hashtable has a specified key.
CopyTo() Copies the Hashtable elements to an existing one-dimensional array.
GetEnumerator() Returns an enumerator for the Hashtable.

GetObjectData() Implements ISerializable and returns the data needed to serialize
the Hashtable.

OnDeserialization() Implements ISerializable and raises the deserialization event when
the deserialization is complete.

Remove() Removes the entry with the specified Key.

In a Hashtable, each value is stored in a "bucket." The bucket is numbered, much like an offset into
an array.

Because the key may not be an integer, it must be possible to translate the key (e.g., "Massachusetts")
into a bucket number. Each key must provide a GetHashCode() method that will accomplish this
magic.

You will remember that everything in C# derives from object. The object class provides a virtual
method GetHashCode(), which the derived types are free to inherit as is or to override.

 204

A trivial implementation of a GetHashCode() function for a string might simply add up the
Unicode values of each character in the string and then use the modulus operator to return a value
between 0 and the number of buckets in the Hashtable. It is not necessary to write such a method
for the string type, however, as the CLR provides one for you.

When you insert the values (the state capitals) into the Hashtable, the Hashtable calls
GetHashCode() on each key we provide. This method returns an int, which identifies the bucket
into which the state capital is placed.

It is possible, of course, for more than one key to return the same bucket number. This is called a
collision. There are a number of ways to handle a collision. The most common solution, and the one
adopted by the CLR, is simply to have each bucket maintain an ordered list of values.

When you retrieve a value from the Hashtable, you provide a key. Once again the Hashtable calls
GetHashCode() on the key and uses the returned int to find the appropriate bucket. If there is
only one value, it is returned. If there is more than one value, a binary search of the bucket's contents
is performed. Because there are few values, this search is typically very fast.

Load Factor

Hash functions that minimize collisions typically do so at the expense of
making less efficient use of their storage. Hash function designers trade off
minimizing collisions, maximizing efficient memory usage, and algorithmic
speed.

Every CLR Hashtable has a load factor that determines the maximum ratio
of entries to buckets. Using a smaller load factor will speed up performance
but use more memory. The default factor is 1.0, which Microsoft says
provides the optimum balance between speed and size, but you can specify
the load factor you want when you instantiate the Hashtable.

As entries are added to the Hashtable the actual load increases until it
matches the load factor specified for the table. When the load factor is
reached, the Hashtable automatically increases the number of buckets to
the smallest prime number larger than twice the current number of buckets.

If your Hashtable had only one bucket, searching for a key would be a
simple binary search and you wouldn't need the Hashtable at all. If,
however, you have more than one bucket, the procedure is to hash the key,
find the associated bucket, and then search that bucket. If there is only one
key in that bucket, searching the bucket is very fast.

With lots of keys you can spend your time working through the hash to find
the right bucket, or searching through the bucket to find the right key. That is
the tradeoff captured by the LoadFactor.

The key in a Hashtable can be a primitive type, or it can be an instance of a user-defined type (an
object). Objects used as keys for a Hashtable must implement GetHashCode() as well as
Equals. In most cases, you can simply use the inherited implementation from Object.

Programming C#

 205

9.8.2 IDictionary

Hash tables are dictionaries because they implement the IDictionary interface. IDictionary
provides a public property Item. The Item property retrieves a value with the specified key. In C#, the
declaration for the Item property is:

object this[object key]
{get; set;}

The Item property is implemented in C# with the index operator ([]). Thus, you access items in any
Dictionary object using the offset syntax, as you would with an array.

Example 9-17 demonstrates adding items to a Hashtable and then retrieving them with the Item
property.

Example 9-17. The Item property as offset operators
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Tester
 {
 static void Main()
 {
 // Create and initialize a new Hashtable.
 Hashtable hashTable = new Hashtable();
 hashTable.Add("000440312", "Jesse Liberty");
 hashTable.Add("000123933", "Stacey Liberty");
 hashTable.Add("000145938", "John Galt");
 hashTable.Add("000773394", "Ayn Rand");

 // access a particular item
 Console.WriteLine("myHastTable["000145938"]: {0}",
 hashTable["000145938"]);
 }
 }
}

Output:

hashTable["000145938"]: John Galt

Example 9-17 begins by instantiating a new Hashtable. We use the simplest constructor accepting
the default initial capacity and load factor (see the sidebar, "Load Factor"), the default hash code
provider, and the default comparer.

We then add four key/value pairs. In this example, the social security number is tied to the person's full
name. (Note that the social security numbers here are intentionally bogus.)

Once the items are added, we access the third item using its key.

 206

9.8.3 The Keys and Values Collections

Dictionary collections provide two additional properties: Keys and Values. Keys retrieves an
ICollection object with all the keys in the Hashtable, as Values retrieves an ICollection
object with all the values. Example 9-18 illustrates.

Example 9-18. Keys and Values collections
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Tester
 {
 static void Main()
 {
 // Create and initialize a new Hashtable.
 Hashtable hashTable = new Hashtable();
 hashTable.Add("000440312", "George Washington");
 hashTable.Add("000123933", "Abraham Lincoln");
 hashTable.Add("000145938", "John Galt");
 hashTable.Add("000773394", "Ayn Rand");

 // get the keys from the hashTable
 ICollection keys = hashTable.Keys;

 // get the values
 ICollection values = hashTable.Values;

 // iterate over the keys ICollection
 foreach(string key in keys)
 {
 Console.WriteLine("{0} ", key);
 }

 // iterate over the values collection
 foreach (string val in values)
 {
 Console.WriteLine("{0} ", val);
 }
 }
 }
}
Output:

000440312
000123933
000773394
000145938
George Washington
Abraham Lincoln
Ayn Rand
John Galt

Although the order of the Keys collection is not guaranteed, it is guaranteed to be the same order as
returned in the Values collection.

Programming C#

 207

9.8.4 IDictionaryEnumerator Interface

IDictionary objects also support the foreachconstruct by implementing the GetEnumerator
method, which returns an IDictionaryEnumerator.

The IDictionaryEnumerator is used to enumerate through any IDictionary object. It provides
properties to access both the key and value for each item in the dictionary. Example 9-19 illustrates.

Example 9-19. Using the IDictionaryEnumerator interface
namespace Programming_CSharp
{
 using System;
 using System.Collections;

 // a simple class to store in the array
 public class Tester
 {

 static void Main()
 {
 // Create and initialize a new Hashtable.
 Hashtable hashTable = new Hashtable();
 hashTable.Add("000440312", "George Washington");
 hashTable.Add("000123933", "Abraham Lincoln");
 hashTable.Add("000145938", "John Galt");
 hashTable.Add("000773394", "Ayn Rand");

 // Display the properties and values of the Hashtable.
 Console.WriteLine("hashTable");
 Console.WriteLine(" Count: {0}", hashTable.Count);
 Console.WriteLine(" Keys and Values:");
 PrintKeysAndValues(hashTable);
 }

 public static void PrintKeysAndValues(Hashtable table)
 {
 IDictionaryEnumerator enumerator = table.GetEnumerator();
 while (enumerator.MoveNext())
 Console.WriteLine("\t{0}:\t{1}",
 enumerator.Key, enumerator.Value);
 Console.WriteLine();

 }
 }
}

Output:

hashTable
 Count: 4
 Keys and Values:
 000440312: George Washington
 000123933: Abraham Lincoln
 000773394: Ayn Rand
 000145938: John Galt

 208

Programming C#

 209

Chapter 10. Strings and Regular Expressions

There was a time when people thought of computers exclusively as manipulating numeric values.
Early computers were first used to calculate missile trajectories, and programming was taught in the
math department of major universities.

Today, most programs are concerned more with strings of characters than with strings of numbers.
Typically these strings are used for word processing, document manipulation, and creation of web
pages.

C# provides built-in support for a fully functional string type. More importantly, C# treats strings as
objects that encapsulate all the manipulation, sorting, and searching methods normally applied to
strings of characters.

Complex string manipulation and pattern matching is aided by the use of regular expressions. C#
combines the power and complexity of regular expression syntax, originally found only in string
manipulation languages such as awk and Perl, with a fully object-oriented design.

In this chapter, you will learn to work with the C# string type and the .NET Framework
System.String class that it aliases. You will see how to extract sub-strings, manipulate and
concatenate strings, and build new strings with the StringBuilder class. In addition, you will learn
how to use the RegEx class to match strings based on complex regular expression.

10.1 Strings

C# treats strings as first-class types that are flexible, powerful, and easy to use. Each string object
is an immutable sequence of Unicode characters. In other words, methods that appear to change the
string actually return a modified copy; the original string remains intact.

When you declare a C# string using the string keyword, you are in fact declaring the object to be of
the type System.String, one of the built-in types provided by the .NET Framework Class Library. A
C# string type is a System.String type,and we will use the names interchangeably throughout the
chapter.

The declaration of the System.String class is:

public sealed class String :
 IComparable, ICloneable, Iconvertible

This declaration reveals that the class is sealed, meaning that it is not possible to derive from the
string class. The class also implements three system interfaces—IComparable, ICloneable, and
IConvertible—which dictate functionality that System.String shares with other classes in
the .NET Framework.

As seen in Chapter 9, the IComparable interface is implemented by types whose values can be
ordered. Strings, for example, can be alphabetized; any given string can be compared with another
string to determine which should come first in an ordered list. IComparable classes implement the
CompareTo method.

ICloneable objects can create new instances with the same value as the original instance. In this
case, it is possible to clone a string to produce a new string with the same values (characters) as the
original. ICloneable classes implement the Clone() method.

 210

IConvertible classes provide methods to facilitate conversion to other primitive types such as
ToInt32(), ToDouble(), ToDecimal(), etc.

10.1.1 Creating Strings

The most common way to create a string is to assign a quoted string of characters, known as a string
literal, to a user-defined variable of type string:

string newString = "This is a string literal"

Quoted strings can include escape characters, such as "\n" or "\t," which begin with a backslash
character (\) and are used to indicate where line breaks or tabs are to appear. Because the backslash
is itself used in some command line syntaxes, such as URLs or directory paths, in a quoted string the
backslash must be preceded by another backslash.

Strings can also be created using verbatim string literals, which start with the (@) symbol. This tells the
String constructor that the string should be used verbatim, even if it spans multiple lines or includes
escape characters. In a verbatim string literal, backslashes and the characters that follow them are
simply considered additional characters of the string. Thus, the following two definitions are equivalent:

string literalOne = "\\\\MySystem\\MyDirectory\\ProgrammingC#.cs;"
string verbatimLiteralOne = @"\\MySystem\MyDirectory\ProgrammingC#.cs";

In the first line, a nonverbatim string literal is used, and so the backslash characters (\) must be
escaped, which means it must be preceded by a second backslash character. In the second, a
verbatim literal string is used, so the extra backslash is not needed. A second example illustrates
multiline verbatim strings:

string literalTwo = "Line One\nLine Two";
string verbatimLiteralTwo = @"Line One
Line Two";

Again, these declarations are interchangeable. Which one you use is a matter of convenience and
personal style.

10.1.2 The ToString Method

Another common way to create a string is to call the ToString() method on an object and assign
the result to a string variable. All the built-in types override this method to simplify the task of
converting a value (often a numeric value) to a string representation of that value. In the following
example, the ToString() method of an integer type is called to store its value in a string:

int myInteger = 5;
string integerString = myInteger.ToString()

The call to myInteger.ToString() returns a String object which is then assigned to
integerString.

The .NET String class provides a wealth of overloaded constructors that support a variety of
techniques for assigning string values to string types. Some of these constructors enable you to
create a string by passing in a character array or character pointer. Passing in a character array as a
parameter to the constructor of the String creates a CLR-compliant new instance of a string.
Passing in a character pointer creates a noncompliant, "unsafe" instance.

Programming C#

 211

10.1.3 Manipulating Strings

The string class provides a host of methods for comparing, searching, and manipulating strings, as
shown in Table 10-1.

Table 10-1. Methods and fields for the string class
Method or Field Explanation

Empty Public static field representing the empty string.
Compare() Overloaded public static method that compares two strings.

CompareOrdinal() Overloaded public static method that compares two strings without regard to
local or culture.

Concat() Overloaded public static method that creates a new string from one or more
strings.

Copy() Overloaded public static method that creates a new string by copying
another.

Equals() Overloaded public static method that determines if two strings have the
same value.

Format() Overloaded public static method that formats a string using a format
specification.

Intern() Overloaded public static method that returns a reference to the specified
instance of a string.

IsInterned() Overloaded public static method that returns a reference for the string.

Join() Overloaded public static method that concatenates a specified string
between each element of a string array.

Chars() The string indexer.
Length() The number of characters in the instance.
Clone() Returns the string.
Compareto() Compares this string with another.
CopyTo() Copies the specified number of characters to an array of Unicode characters.
EndsWith() Indicates whether the specified string matches the end of this string.
Equals() Determines if two strings have the same value.
Insert() Returns a new string with the specified string inserted.

LastIndexOf() Reports the index of the last occurrence of a specified character or string
within the string.

PadLeft() Right-aligns the characters in the string, padding to the left with spaces or a
specified character.

PadRight() Left-aligns the characters in the string, padding to the right with spaces or a
specified character.

Remove() Deletes the specified number of characters.
Split() Returns the substrings delimited by the specified characters in a string array.
StartsWith() Indicates if the string starts with the specified characters.
SubString() Retrieves a substring.
ToCharArray() Copies the characters from the string to a character array.
ToLower() Returns a copy of the string in lowercase.
ToUpper() Returns a copy of the string in uppercase.

Trim() Removes all occurrences of a set of specified characters from beginning and
end of the string.

TrimEnd() Behaves like Trim, but only at the end.
TrimStart() Behaves like Trim, but only at the start.

 212

Example 10-1 illustrates the use of some of these methods, including Compare(), Concat()
(and the overloaded + operator), Copy() (and the = operator), Insert(), EndsWith(), and
IndexOf.

Example 10-1. Working with strings
namespace Programming_CSharp
{
 using System;

 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "abcd";
 string s2 = "ABCD";
 string s3 = @"Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting";

 int result; // hold the results of comparisons

 // compare two strings, case sensitive
 result = string.Compare(s1, s2);
 Console.WriteLine(
 "comprecompare s1: {0}, s2: {1}, result: {2}\n",
 s1, s2, result);

 // overloaded compare, takes boolean "ignore case"
 //(true = ignore case)
 result = string.Compare(s1,s2, true);
 Console.WriteLine("compare insensitive\n");
 Console.WriteLine("s4: {0}, s2: {1}, result: {2}\n",
 s1, s2, result);

 // concatenation method
 string s6 = string.Concat(s1,s2);
 Console.WriteLine(
 "s6 concatenated from s1 and s2: {0}", s6);

 // use the overloaded operator
 string s7 = s1 + s2;
 Console.WriteLine(
 "s7 concatenated from s1 + s2: {0}", s7);

 // the string copy method
 string s8 = string.Copy(s7);
 Console.WriteLine(
 "s8 copied from s7: {0}", s8);

 // use the overloaded operator
 string s9 = s8;
 Console.WriteLine("s9 = s8: {0}", s9);

 // three ways to compare.
 Console.WriteLine(
 "\nDoes s9.Equals(s8)?: {0}",
 s9.Equals(s8));
 Console.WriteLine(
 "Does Equals(s9,s8)?: {0}",

Programming C#

 213

 string.Equals(s9,s8));
 Console.WriteLine(
 "Does s9==s8?: {0}", s9 == s8);

 // Two useful properties: the index and the length
 Console.WriteLine(
 "\nString s9 is {0} characters long. ",
 s9.Length);
 Console.WriteLine(
 "The 5th character is {1}\n",
 s9.Length, s9[4]);

 // test whether a string ends with a set of characters
 Console.WriteLine("s3:{0}\nEnds with Training?: {1}\n",
 s3,
 s3.EndsWith("Training"));
 Console.WriteLine(
 "Ends with Consulting?: {0}",
 s3.EndsWith("Consulting"));

 // return the index of the substring
 Console.WriteLine(
 "\nThe first occurrence of Training ");
 Console.WriteLine ("in s3 is {0}\n",
 s3.IndexOf("Training"));

 // insert the word excellent before "training"
 string s10 = s3.Insert(103,"excellent ");
 Console.WriteLine("s10: {0}\n",s10);

 // you can combine the two as follows:
 string s11 = s3.Insert(s3.IndexOf("Training"),
 "excellent ");
 Console.WriteLine("s11: {0}\n",s11);
 }
 }
}
Output

compre s1: abcd, s2: ABCD, result: -1

compare insensitive

s4: abcd, s2: ABCD, result: 0

s6 concatenated from s1 and s2: abcdABCD
s7 concatenated from s1 + s2: abcdABCD
s8 copied from s7: abcdABCD
s9 = s8: abcdABCD

Does s9.Equals(s8)?: True
Does Equals(s9,s8)?: True
Does s9==s8?: True

String s9 is 8 characters long.
The 5th character is A

s3:Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting
Ends with Training?: False

 214

Ends with Consulting?: True

The first occurrence of Training
in s3 is 103

s10: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

s11: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

Example 10-1 begins by declaring three strings:

string s1 = "abcd";
string s2 = "ABCD";
string s3 = @"Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting";

The first two are string literals, the third a verbatim string literal. We begin by comparing s1 to s2. The
Compare method is a public static method of string, and it is overloaded. The first overloaded
version takes two strings and compares them:

// compare two strings, case sensitive
result = string.Compare(s1, s2);
Console.WriteLine("compre s1: {0}, s2: {1}, result: {2}\n",
 s1, s2, result);

This is a case-sensitive comparison and returns different values, depending on the results of the
comparison:

• A negative integer if the first string is less than the second string
• 0 if the strings are equal
• A positive integer if the first string is greater than the second string

In this case, the output properly indicates that s1 is "less than" s2. In Unicode (as in ASCII), a
lowercase letter has a smaller value than an uppercase letter:

compare s1: abcd, s2: ABCD, result: -1

The second comparison uses an overloaded version of Compare which takes a third, Boolean
parameter, whose value determines whether case should be ignored in the comparison. If the value of
this "ignore case" parameter is true, the comparison is made without regard to case, as in the
following:

result = string.Compare(s1,s2, true);
Console.WriteLine("compare insensitive\n");
Console.WriteLine("s4: {0}, s2: {1}, result: {2}\n",
 s1, s2, result);

The result is written with two WriteLine statements to keep the
lines short enough to print properly in this book.

Programming C#

 215

This time the case is ignored and the result is 0, indicating that the two strings are identical (without
regard to case):

compare insensitive

s4: abcd, s2: ABCD, result: 0

Example 10-1 then concatenates some strings. There are a couple of ways to accomplish this. You
can use the Concat() method, which is a static public method of string:

string s6 = string.Concat(s1,s2);

or you can simply use the overloaded concatenation (+) operator:

string s7 = s1 + s2;

In both cases, the output reflects that the concatenation was successful:

s6 concatenated from s1 and s2: abcdABCD
s7 concatenated from s1 + s2: abcdABCD

Similarly, creating a new copy of a string can be accomplished in two ways. First, you can use the
static Copy method:

string s8 = string.Copy(s7);

or for convenience, you might instead use the overloaded assignment operator (=), which will implicitly
make a copy:

string s9 = s8;

Once again, the output reflects that each method has worked:

s8 copied from s7: abcdABCD
s9 = s8: abcdABCD

The .NET String class provides three ways to test for the equality of two strings. First, you can use
the overloaded Equals() method and ask s9 directly whether s8 is of equal value:

Console.WriteLine("\nDoes s9.Equals(s8)?: {0}",
 s9.Equals(s8));

A second technique is to pass both strings to String's static method Equals():

Console.WriteLine("Does Equals(s9,s8)?: {0}",
 string.Equals(s9,s8));

A final method is to use the overloaded equality operator (==) of String:

Console.WriteLine("Does s9==s8?: {0}", s9 == s8);

In each of these cases, the returned result is a Boolean value, as shown in the output:

Does s9.Equals(s8)?: True
Does Equals(s9,s8)?: True

 216

Does s9==s8?: True

The equality operator is the most natural when you have two string objects, however some languages,
such as VB.NET, do not support operator overloading, so be sure to override the Equals instance
method as well.

The next several lines in Example 10-1 use the index operator ([]) to find a particular character
within a string and the Length property to return the length of the entire string:

Console.WriteLine("\nString s9 is {0} characters long.,
 s9.Length);
Console.WriteLine("The 5th character is {1}\n",
 s9.Length, s9[4]);

Here's the output:

String s9 is {8} characters long.
The 5th character is A

The EndsWith()method asks a string whether a substring is found at the end of the string. Thus,
you might ask s3 first if it ends with "Training" (which it does not) and then if it ends with
"Consulting" (which it does):

// test whether a string ends with a set of characters
Console.WriteLine("s3:{0}\nEnds with Training?: {1}\n",
 s3,
 s3.EndsWith("Training"));
Console.WriteLine("Ends with Consulting?: {0}",
 s3.EndsWith("Consulting"));

The output reflects that the first test fails and the second succeeds:

s3:Liberty Associates, Inc.
provides custom .NET development,
on-site Training and Consulting
Ends with Training?: False
Ends with Consulting?: True

The IndexOf() method locates a substring within our string, and the Insert() method inserts a
new substring into a copy of the original string.

The following code locates the first occurrence of "Training" in s3:

Console.WriteLine("\nThe first occurrence of Training ");
Console.WriteLine ("in s3 is {0}\n",
 s3.IndexOf("Training"));

The output indicates that the offset is 103:

The first occurrence of Training
in s3 is 103

You can then use that value to insert the word "excellent", followed by a space, into that string.
Actually the insertion is into a copy of the string returned by the Insert() method and assigned to
s10:

Programming C#

 217

string s10 = s3.Insert(103,"excellent ");
Console.WriteLine("s10: {0}\n",s10);

Here's the output:

s10: Liberty Associates, Inc.
provides custom .NET development,
on-site excellent Training and Consulting

Finally, you can combine these operations to make a more efficient insertion statement:

string s11 = s3.Insert(s3.IndexOf("Training"),"excellent ");
Console.WriteLine("s11: {0}\n",s11);

with the identical output:

s11: Liberty Associates, Inc.
provides custom .NET development,
on-site excellent Training and Consulting

10.1.4 Finding Substrings

The String type provides an overloaded Substring method for extracting substrings from within
strings. Both versions take an index indicating where to begin the extraction, and one of the two
versions takes a second index to indicate where to end the search. The Substring method is
illustrated in Example 10-2.

Example 10-2. Using the Substring() method
namespace Programming_CSharp
{
 using System;
 using System.Text;

 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "One Two Three Four";

 int ix;

 // get the index of the last space
 ix=s1.LastIndexOf(" ");

 // get the last word.
 string s2 = s1.Substring(ix+1);

 // set s1 to the substring starting at 0
 // and ending at ix (the start of the last word
 // thus s1 has one two three
 s1 = s1.Substring(0,ix);

 // find the last space in s1 (after two)
 ix = s1.LastIndexOf(" ");

 // set s3 to the substring starting at
 // ix, the space after "two" plus one more

 218

 // thus s3 = "three"
 string s3 = s1.Substring(ix+1);

 // reset s1 to the substring starting at 0
 // and ending at ix, thus the string "one two"
 s1 = s1.Substring(0,ix);

 // reset ix to the space between
 // "one" and "two"
 ix = s1.LastIndexOf(" ");

 // set s4 to the substring starting one
 // space after ix, thus the substring "two"
 string s4 = s1.Substring(ix+1);

 // reset s1 to the substring starting at 0
 // and ending at ix, thus "one"
 s1 = s1.Substring(0,ix);

 // set ix to the last space, but there is
 // none so ix now = -1
 ix = s1.LastIndexOf(" ");

 // set s5 to the substring at one past
 // the last space. there was no last space
 // so this sets s5 to the substring starting
 // at zero
 string s5 = s1.Substring(ix+1);

 Console.WriteLine ("s2: {0}\ns3: {1}",s2,s3);
 Console.WriteLine ("s4: {0}\ns5: {1}\n",s4,s5);
 Console.WriteLine ("s1: {0}\n",s1);

 }
 }
}

Output:

s2: Four
s3: Three
s4: Two
s5: One

s1: One

Example 10-2 is not an elegant solution to the problem of extracting words from a string, but it is a
good first approximation and it illustrates a useful technique. The example begins by creating a string,
s1:

string s1 = "One Two Three Four";

Then ix is assigned the value of the last space in the string:

ix=s1.LastIndexOf(" ");

Then the substring that begins one space later is assigned to the new string, s2:

string s2 = s1.Substring(ix+1);

Programming C#

 219

This extracts from x1+1 to the end of the line, assigning to s2 the value Four.

The next step is to remove the word Four from s1. You can do this by assigning to s1 the substring of
s1 which begins at 0 and ends at ix:

s1 = s1.Substring(0,ix);

We reassign ix to the last (remaining) space, which points us to the beginning of the word Three,
which we then extract into string s3. We continue like this until we've populated s4 and s5. Finally, we
print the results:

s2: Four
s3: Three
s4: Two
s5: One

s1: One

Not elegant, but it worked and it illustrates the use of Substring. This is not unlike using pointer
arithmetic in C++, but without using pointers and unsafe code.

10.1.5 Splitting Strings

A more effective solution to the problem illustrated in Example 10-2 would be to use the Split()
method of String, whose job is to parse a string into substrings. To use Split(), you pass in an
array of delimiters (characters which will indicate a split in the words) and the method returns an array
of substrings. Example 10-3 illustrates:

Example 10-3. Using the Split() method
namespace Programming_CSharp
{
 using System;
 using System.Text;

 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "One,Two,Three Liberty Associates, Inc.";

 // constants for the space and comma characters
 const char Space = ' ';
 const char Comma = ',';

 // array of delimiters to split the sentence with
 char[] delimiters = new char[]
 {
 Space,
 Comma
 };

 string output = "";
 int ctr = 1;

 // split the string and then iterate over the
 // resulting array of strings

 220

 foreach (string subString in s1.Split(delimiters))
 {
 output += ctr++;
 output += ": ";
 output += subString;
 output += "\n";
 }
 Console.WriteLine(output);
 }
 }
}

Output:

1: One
2: Two
3: Three
4: Liberty
5: Associates
6:
7: Inc.

You start by creating a string to parse:

string s1 = "One,Two,Three Liberty Associates, Inc.";

The delimiters are set to the space and comma characters. You then call split on this string, and
pass the results to the foreach loop:

foreach (string subString in s1.Split(delimiters))

You start by initializing output to an empty string. You then build up the output string in four steps. You
concatenate the value of ctr. Next you add the colon, then the substring returned by split, then the
newline. With each concatenation a new copy of the string is made, and all four steps are repeated for
each substring found by split. This repeated copying of string is terribly inefficient.

The problem is that the string type is not designed for this kind of operation. What you want is to
create a new string by appending a formatted string each time through the loop. The class you need is
StringBuilder.

10.1.6 Manipulating Dynamic Strings

The StringBuilder class is used for creating and modifying strings. Semantically, it is the
encapsulation of a constructor for a String. The important members of StringBuilder are
summarized in Table 10-2.

Table 10-2. StringBuilder methods
Method Explanation

Capacity() Retrieves or assigns the number of characters the StringBuilder is
capable of holding.

Chars() The indexer.
Length() Retrieves or assigns the length of the StringBuilder.
MaxCapacity() Retrieves the maximum capacity of the StringBuilder.
Append() Overloaded public method that appends a typed object to the end of the

Programming C#

 221

current StringBuilder.

AppendFormat() Overloaded public method that replaces format specifiers with the formatted
value of an object.

EnsureCapacity() Ensures the current StringBuilder has a capacity at least as large as the
specified value.

Insert() Overloaded public method that inserts an object at the specified position.
Remove() Removes the specified characters.

Replace() Overloaded public method that replaces all instances of specified characters
with new characters.

Unlike String, StringBuider is mutable; when you modify a StringBuilder you modify the
actual string, not a copy. Example 10-4 replaces the String object in Example 10-3 with a
StringBuilder object.

Example 10-4. Using a StringBuilder
namespace Programming_CSharp
{
 using System;
 using System.Text;

 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "One,Two,Three Liberty Associates, Inc.";

 // constants for the space and comma characters
 const char Space = ' ';
 const char Comma = ',';

 // array of delimiters to split the sentence with
 char[] delimiters = new char[]
 {
 Space,
 Comma
 };

 // use a StringBuilder class to build the
 // output string
 StringBuilder output = new StringBuilder();
 int ctr = 1;

 // split the string and then iterate over the
 // resulting array of strings
 foreach (string subString in s1.Split(delimiters))
 {
 // AppendFormat appends a formatted string
 output.AppendFormat("{0}: {1}\n",ctr++,subString);
 }
 Console.WriteLine(output);
 }
 }
}

 222

Only the last part of the program is modified. Rather than using the concatenation operator to modify
the string, you use the AppendFormat method of StringBuilder to append new, formatted strings
as you create them. This is much easier and far more efficient. The output is identical:

1: One
2: Two
3: Three
4: Liberty
5: Associates
6:
7: Inc.

Delimiter Limitations

Because you passed in delimiters of both comma and space, the space after
the comma between "Associates" and "Inc." is returned as a word,
numbered 6 above. That is not what you want. To eliminate this you need to
tell split to match a comma (as between One, Two, and Three) or a space
(as between Liberty and Associates) or a comma followed by a space.
It is that last bit that is tricky and requires that you use a regular expression.

10.2 Regular Expressions

Regular expressions are a powerful language for describing and manipulating text. A regular
expression is applied to a string—that is, to a set of characters. Often that string is an entire text
document.

The result of applying a regular expression to a string is either to return a substring, or to return a new
string representing a modification of some part of the original string. Remember that strings are
immutable and so cannot be changed by the regular expression.

By applying a properly constructed regular expression to the following string:

One,Two,Three Liberty Associates, Inc.

you can return any or all of its substrings (e.g., Liberty or One), or modified versions of its substrings
(e.g., LIBeRtY or OnE). What the regular expression does is determined by the syntax of the regular
expression itself.

A regular expression consists of two types of characters: literals and metacharacters. A literal is just a
character you wish to match in the target string. A metacharacter is a special symbol which acts as a
command to the regular expression parser. The parser is the engine responsible for understanding the
regular expression. For example, if you create a regular expression:

^(From|To|Subject|Date):

this will match any substring with the letters "From" or the letters "To" or the letters "Subject" or the
letters "Date" so long as those letters start a new line (^) and end with a colon (:).

The carrot (^) in this case indicates to the regular expression parser that the string you're searching
for must begin a new line. The letters "From" and "To" are literals, and the metacharacters left and
right parentheses ((,)) and vertical bar (|) are all used to group sets of literals and indicate that any
of the choices should match. (Note that ^ is a metacharacter as well, used to indicate the start of the
line.)

Programming C#

 223

Thus you would read this line:

^(From|To|Subject|Date):

as follows: "match any string which begins a new line followed by any of the four literal strings From,
To, Subject, or Date followed by a colon."

A full explanation of regular expressions is beyond the scope of
this book, but all the regular expressions used in the examples are
explained. For a complete understanding of regular expressions, I
highly recommend Mastering Regular Expressions by Jeffrey E. F.
Friedl (published by O'Reilly & Associates, Inc.).

10.2.1 Using Regular Expressions: Regex

The .NET Framework provides an object-oriented approach to regular expression matching and
replacement.

C#'s regular expressions are based on Perl5 regexp, including
lazy quantifiers (??, *?, +?, {n,m}?), positive and negative look
ahead, and conditional evaluation.

The Base Class Library namespace System.Text.RegularExpressions is the home to all
the .NET Framework objects associated with regular expressions. The central class for regular
expression support is Regex, which represents an immutable, compiled regular expression. Although
instances of Regex can be created, the class also provides a number of useful static methods. The
use of Regex is illustrated in Example 10-5.

Example 10-5. Using the Regex class for regular expressions
namespace Programming_CSharp
{
 using System;
 using System.Text;
 using System.Text.RegularExpressions;

 public class Tester
 {
 static void Main()
 {
 string s1 =
 "One, Two, Three Liberty Associates, Inc.";
 Regex theRegex = new Regex(" |, ");
 StringBuilder sBuilder = new StringBuilder();
 int id = 1;

 foreach (string subString in theRegex.Split(s1))
 {
 sBuilder.AppendFormat(
 "{0}: {1}\n", id++, subString);
 }
 Console.WriteLine("{0}", sBuilder);
 }
 }
}

 224

Output:

1: One
2: Two
3: Three
4: Liberty
5: Associates
6: Inc.

Example 10-5 begins by creating a string, s1, identical to the string used in Example 10-4.

string s1 = "One, Two, Three Liberty Associates, Inc.";

and a regular expression, which will be used to search that string:

Regex theRegex = new Regex(" |, ");

One of the overloaded constructors for Regex takes a regular expression string as its parameter. This
is a bit confusing. In the context of a C# program, which is the regular expression: the text passed in to
the constructor, or the Regex object itself? It is true that the text string passed to the constructor is a
regular expression in the traditional sense of the term. From an object-oriented C# point of view,
however, the argument to the constructor is just a string of characters; it is theRegex that is the
regular expression object.

The rest of the program proceeds like the earlier Example 10-4; except that rather than calling
Split() on string s1, the Split() method of Regex is called. Regex.Split() acts in much
the same way as String.Split(), returning an array of strings as a result of matching the regular
expression pattern within theRegex.

Regex.Split() is overloaded. The simplest version is called on an instance of Regex as shown in
Example 10-5. There is also a static version of this method, which takes a string to search and the
pattern to search with, as illustrated in Example 10-6.

Example 10-6. Using static Regex.Split()
namespace Programming_CSharp
{
 using System;
 using System.Text;
 using System.Text.RegularExpressions;

 public class Tester
 {
 static void Main()
 {
 string s1 =
 "One, Two, Three Liberty Associates, Inc.";
 StringBuilder sBuilder = new StringBuilder();
 int id = 1;
 foreach (string subStr in Regex.Split(s1," |, "))
 {
 sBuilder.AppendFormat("{0}: {1}\n", id++, subStr);
 }
 Console.WriteLine("{0}", sBuilder);
 }
 }
}

Programming C#

 225

Example 10-6 is identical to Example 10-5, except that the latter example does not instantiate an
object of type Regex. Instead, Example 10-6 uses the static version of Split(), which takes two
arguments: a string to be searched and a regular expression string that represents the pattern to
match.

The instance method of Split() is also overloaded with versions that limit the number of times the
split will occur and also that determine the position within the target string where the search will begin.

10.2.2 Using Regex Match Collections

Two additional classes in the .NET RegularExpressions namespace allow you to search a string
repeatedly, and to return the results in a collection. The collection returned is of type
MatchCollection, which consists of zero or more Match objects. Two important properties of a
Match object are its length and its value, each of which can be read as illustrated in Example 10-7.

Example 10-7. Using MatchCollection and Match
namespace Programming_CSharp
{
 using System;
 using System.Text.RegularExpressions;

 class Test
 {
 public static void Main()
 {
 string string1 = "This is a test string";

 // find any nonwhitespace followed by whitespace
 Regex theReg = new Regex(@"(\S+)\s");

 // get the collection of matches
 MatchCollection theMatches =
 theReg.Matches(string1);

 // iterate through the collection
 foreach (Match theMatch in theMatches)
 {
 Console.WriteLine(
 "theMatch.Length: {0}", theMatch.Length);

 if (theMatch.Length != 0)
 {
 Console.WriteLine("theMatch: {0}",
 theMatch.ToString());
 }
 }
 }
 }
}

Output:

theMatch.Length: 5
theMatch: This
theMatch.Length: 3
theMatch: is
theMatch.Length: 2
theMatch: a

 226

theMatch.Length: 5
theMatch: test

Example 10-7 creates a simple string to search:

string string1 = "This is a test string";

and a trivial regular expression to search it:

Regex theReg = new Regex(@"(\S+)\s");

The string \S finds nonwhitespace, and the plus sign indicates one or more. The string \s (note
lowercase) indicates whitespace. Thus, together, this string looks for any nonwhitespace characters
followed by whitespace.

Remember that the at (@) symbol before the string creates a
verbatim string, which avoids the necessity of escaping the
backslash (\) character.

The output shows that the first four words were found. The final word was not found because it is not
followed by a space. If you insert a space after the word string and before the closing quote marks,
this program will find that word as well.

The length property is the length of the captured substring, and will be discussed in Section 10.2.4,
later in this chapter.

10.2.3 Using Regex Groups

It is often convenient to group subexpression matches together so that you can parse out pieces of the
matching string. For example, you might want to match on IP addresses and group all IPaddresses
found anywhere within the string.

IP addresses are used to locate computers on a network, and
typically have the form 123.456.789.012.

The Group class allows you to create groups of matches based on regular expression syntax, and
represents the results from a single grouping expression.

A grouping expression names a group and provides a regular expression; any substring matching the
regular expression will be added to the group. For example, to create an ip group you might write:

@"(?<ip>(\d|\.)+)\s"

The Match class derives from Group, and has a collection called "Groups" which contains all the
groups your Match finds.

Creation and use of the Groups collection and Group classes is illustrated in Example 10-8.

Example 10-8. Using the Group class
namespace Programming_CSharp
{

Programming C#

 227

 using System;
 using System.Text.RegularExpressions;

 class Test
 {
 public static void Main()
 {
 string string1 = "04:03:27 127.0.0.0 LibertyAssociates.com";

 // group time = one or more digits or colons followed by space
 Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
 // ip address = one or more digits or dots followed by space
 @"(?<ip>(\d|\.)+)\s" +
 // site = one or more characters
 @"(?<site>\S+)");

 // get the collection of matches
 MatchCollection theMatches = theReg.Matches(string1);

 // iterate through the collection
 foreach (Match theMatch in theMatches)
 {
 if (theMatch.Length != 0)
 {
 Console.WriteLine("\ntheMatch: {0}",
 theMatch.ToString());
 Console.WriteLine("time: {0}",
 theMatch.Groups["time"]);
 Console.WriteLine("ip: {0}",
 theMatch.Groups["ip"]);
 Console.WriteLine("site: {0}",
 theMatch.Groups["site"]);
 }
 }
 }
 }
}

Again, Example 10-8 begins by creating a string to search:

string string1 = "04:03:27 127.0.0.0 LibertyAssociates.com";

This string might be one of many recorded in a web server log file or produced as the result of a
search of the database. In this simple example there are three columns: one for the time of the log
entry, one for an IP address, and one for the site, each separated by spaces; of course, in a real
example solving a real-life problem, you might need to do more complex searches and choose to use
other delimiters and more complex searches.

In Example 10-8, we want to create a single Regex object to search strings of this type and break
them into three groups: time, ip address, and site. The regular expression string is fairly simple, so
the example is easy to understand (however, keep in mind that in a real search, you would probably
only use a part of the source string rather than the entire source string, as shown here:)

// group time = one or more digits or colons
// followed by space
Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
// ip address = one or more digits or dots
// followed by space
@"(?<ip>(\d|\.)+)\s" +

 228

// site = one or more characters
@"(?<site>\S+)");

Let's focus on the characters that create the group:

(?<time>

The parentheses create a group. Everything between the opening parenthesis (just before the
question mark) and the closing parenthesis (in this case, after the + sign) is a single unnamed group.

(@"(?<time>(\d|\:)+)

The string ?<time> names that group time and the group is associated with the matching text, the
regular expression (\d|\:)+)\s". This regular expression can be interpreted as "one or more digits
or colons followed by a space."

Similarly, the string ?<ip> names the ip group, and ?<site> names the site group. As Example
10-7 does, Example 10-8 asks for a collection of all the matches:

MatchCollection theMatches = theReg.Matches(string1);

Example 10-8 iterates through the Matches collection, finding each Match object.

If the Length of the Match is greater than 0, a Match was found; then it prints the entire match:

Console.WriteLine("\ntheMatch: {0}",
 theMatch.ToString());

Here's the output:

theMatch: 04:03:27 127.0.0.0 LibertyAssociates.com

It then gets the "time" group from the Match's Groups collection and prints that value:

Console.WriteLine("time: {0}",
 theMatch.Groups["time"]);

This produces the output:

time: 04:03:27

The code then obtains ip and site groups:

Console.WriteLine("ip: {0}",
 theMatch.Groups["ip"]);
Console.WriteLine("site: {0}",
 theMatch.Groups["site"]);

This produces the output:

ip: 127.0.0.0
site: LibertyAssociates.com

Programming C#

 229

In Example 10-8, the Matches collection has only one Match. It is possible, however, to match
more than one expression within a string. To see this, modify string1 in Example 10-8 to provide
several logFile entries instead of one, as follows:

string string1 = "04:03:27 127.0.0.0 LibertyAssociates.com " +
"04:03:28 127.0.0.0 foo.com " +
"04:03:29 127.0.0.0 bar.com " ;

This creates three matches in the MatchCollection, theMatches. Here's the resulting output:

theMatch: 04:03:27 127.0.0.0 LibertyAssociates.com
time: 04:03:27
ip: 127.0.0.0
site: LibertyAssociates.com

theMatch: 04:03:28 127.0.0.0 foo.com
time: 04:03:28
ip: 127.0.0.0
site: foo.com

theMatch: 04:03:29 127.0.0.0 bar.com
time: 04:03:29
ip: 127.0.0.0
site: bar.com

In this example, theMatches contains three Match objects. Each time through the outer foreach
loop we find the next Match in the collection and display its contents:

foreach (Match theMatch in theMatches)

For each of the Match items found, you can print out the entire match, various groups, or both.

10.2.4 Using CaptureCollection

Each time a Regex object matches a subexpression, a Capture instance is created and added to a
CaptureCollection collection. Each capture object represents a single capture. Each group has its
own capture collection of the matches for the subexpression associated with the group.

A key property of the Capture object is its length, which is the length of the captured substring.
When you ask Match for its length, it is Capture.Length that you retrieve because Match derives
from Group, which in turn derives from Capture.

The regular expression inheritance scheme in .NET allows Match
to include in its interface the methods and properties of these
parent classes. In a sense, a Group is-a capture—it is a capture
that encapsulates the idea of grouping subexpressions. A Match,
in turn, is-a Group—it is the encapsulation of all the groups of
subexpressions making up the entire match for this regular
expression. (See Chapter 5 for more about the is-a relationship
and other relationships.)

Typically, you will find only a single Capture in a CaptureCollection; but that need not be so.
Consider what would happen if you were parsing a string in which the company name might occur in

 230

either of two positions. To group these together in a single match you create the ?<company> group
in two places in your regular expression pattern:

Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
@"(?<company>\S+)\s" +
@"(?<ip>(\d|\.)+)\s" +
@"(?<company>\S+)\s");

This regular expression group captures any matching string of characters that follows time, and also
any matching string of characters that follows ip. Given this regular expression, you are ready to
parse the following string:

string string1 = "04:03:27 Jesse 0.0.0.127 Liberty ";

The string includes names in both the positions specified. Here is the result:

theMatch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27
ip: 0.0.0.127
Company: Liberty

What happened? Why is the Company group showing Liberty? Where is the first term, which also
matched? The answer is that the second term overwrote the first. The group, however, has captured
both; and its Captures collection can show that to you, as illustrated in Example 10-9.

Example 10-9. Examining the capture collection
namespace Programming_CSharp
{
 using System;
 using System.Text.RegularExpressions;

 class Test
 {
 public static void Main()
 {
 // the string to parse
 // note that names appear in both
 // searchable positions
 string string1 =
 "04:03:27 Jesse 0.0.0.127 Liberty ";

 // regular expression which groups company twice
 Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
 @"(?<company>\S+)\s" +
 @"(?<ip>(\d|\.)+)\s" +
 @"(?<company>\S+)\s");

 // get the collection of matches
 MatchCollection theMatches =
 theReg.Matches(string1);

 // iterate through the collection
 foreach (Match theMatch in theMatches)
 {
 if (theMatch.Length != 0)
 {
 Console.WriteLine("theMatch: {0}",
 theMatch.ToString());

Programming C#

 231

 Console.WriteLine("time: {0}",
 theMatch.Groups["time"]);
 Console.WriteLine("ip: {0}",
 theMatch.Groups["ip"]);
 Console.WriteLine("Company: {0}",
 theMatch.Groups["company"]);

 // iterate over the captures collection
 // in the company group within the
 // groups collection in the match
 foreach (Capture cap in
 theMatch.Groups["company"].Captures)
 {
 Console.WriteLine("cap: {0}",cap.ToString());
 }
 }
 }
 }
 }
}

 Output:
theMatch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27
ip: 0.0.0.127
Company: Liberty
cap: Jesse
cap: Liberty

The code in bold iterates through the Captures collection for the Company group.

foreach (Capture cap in
 theMatch.Groups["company"].Captures)

Let's review how this line is parsed. The compiler begins by finding the collection that it will iterate over.
theMatch is an object that has a collection named Groups. The Groups collection has an indexer
that takes a string and returns a single Group object. Thus, the following line returns a single Group
object:

theMatch.Groups["company"]

The Group object has a collection named Captures. Thus, the following line returns a Captures
collection for the Group stored at Groups["company"] within the theMatch object:

theMatch.Groups["company"].Captures

The foreach loop iterates over the Captures collection, extracting each element in turn and
assigning it to the local variable cap, which is of type Capture. You can see from the output that
there are two capture elements: Jesse and Liberty. The second one overwrites the first in the
group, and so the displayed value is just Liberty, but by examining the Captures collection you can
find both values that were captured.

 232

Programming C#

 233

Chapter 11. Handling Exceptions

C#, like many object-oriented languages, handles errors and abnormal conditions with exceptions. An
exception is an object that encapsulates information about an unusual program occurrence.

It is important to distinguish between bugs, errors, and exceptions. A bug is a programmer mistake
that should be fixed before the code is shipped. Exceptions are not a protection against bugs.
Although a bug might cause an exception to be thrown, you should not rely on exceptions to handle
your bugs. Rather, you should fix the bug.

An error is caused by user action. For example, the user might enter a number where a letter is
expected. Once again, an error might cause an exception, but you can prevent that by catching errors
with validation code. Whenever possible, errors should be anticipated and prevented.

Even if you remove all bugs and anticipate all user errors, you will still run into predictable but
unpreventable problems, such as running out of memory or attempting to open a file that no longer
exists. You cannot prevent exceptions, but you can handle them so that they do not bring down your
program.

When your program encounters an exceptional circumstance, such as running out of memory, it
throws (or "raises") an exception. When an exception is thrown, execution of the current function halts
and the stack is unwound until an appropriate exception handler is found.

This means that if the currently running function does not handle the exception, the current function
will terminate and the calling function will get a chance to handle the exception. If none of the calling
functions handles it, the exception will ultimately be handled by the CLR, which will abruptly terminate
your program.

An exception handler is a block of code designed to handle the exception you've thrown. Exception
handlers are implemented as catch statements. Ideally, if the exception is caught and handled, the
program can fix the problem and continue. Even if your program can't continue, by catching the
exception you have an opportunity to print a meaningful error message and terminate gracefully.

If there is code in your function that must run regardless of whether an exception is encountered (e.g.,
to release resources you've allocated), you can place that code in a finally block, where it is certain to
run, even in the presence of exceptions.

11.1 Throwing and Catching Exceptions

In C#, you can throw only objects of type System.Exception, or objects derived from that type. The
CLR System namespace includes a number of exception types that can be used by your program.
These exception types include ArgumentNullException, InValidCastException, and
OverflowException, as well as many others.

11.1.1 The throw Statement

To signal an abnormal condition in a C# class, you throw an exception. To do this, you use the
keyword throw. This line of code creates a new instance of System.Exception and then throws it:

throw new System.Exception();

Throwing an exception immediately halts execution while the CLR searches for an exception handler.
If an exception handler cannot be found in the current method, the runtime unwinds the stack, popping

 234

up through the calling methods until a handler is found. If the runtime returns all the way through
Main() without finding a handler, it terminates the program. Example 11-1 illustrates.

Example 11-1. Throwing an exception
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 public static void Main()
 {
 Console.WriteLine("Enter Main...");
 Test t = new Test();
 t.Func1();
 Console.WriteLine("Exit Main...");

 }

 public void Func1()
 {
 Console.WriteLine("Enter Func1...");
 Func2();
 Console.WriteLine("Exit Func1...");
 }

 public void Func2()
 {
 Console.WriteLine("Enter Func2...");
 throw new System.Exception();
 Console.WriteLine("Exit Func2...");
 }
 }
}

 Output:
Enter Main...
Enter Func1...
Enter Func2...

Exception occurred: System.Exception: An exception of type
System.Exception was thrown.
 at Programming_CSharp.Test.Func2()
 in ...exceptions01.cs:line 26
 at Programming_CSharp.Test.Func1()
 in ...exceptions01.cs:line 20
 at Programming_CSharp.Test.Main()
 in ...exceptions01.cs:line 12

This simple example writes to the console as it enters and exits each method. Main() creates an
instance of type Test and call Func1(). After printing out the Enter Func1 message, Func1()
immediately calls Func2(). Func2() prints out the first message and throws an object of type
System.Exception.

Execution immediately stops, and the CLR looks to see if there is a handler in Func2(). There is not,
and so the runtime unwinds the stack (never printing the exit statement) to Func1(). Again, there
is no handler, and the runtime unwinds the stack back to Main(). With no exception handler there,
the default handler is called, which prints the error message.

Programming C#

 235

11.1.2 The catch Statement

In C#, an exception handler is called a catch block and is created with the catch keyword.

In Example 11-2, the throw statement is executed within a try block, and a catch block is used to
announce that the error has been handled.

Example 11-2. Catching an exception
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 public static void Main()
 {
 Console.WriteLine("Enter Main...");
 Test t = new Test();
 t.Func1();
 Console.WriteLine("Exit Main...");

 }

 public void Func1()
 {
 Console.WriteLine("Enter Func1...");
 Func2();
 Console.WriteLine("Exit Func1...");
 }

 public void Func2()
 {
 Console.WriteLine("Enter Func2...");
 try
 {
 Console.WriteLine("Entering try block...");
 throw new System.Exception();
 Console.WriteLine("Exiting try block...");
 }
 catch
 {
 Console.WriteLine(
 "Exception caught and handled.");
 }
 Console.WriteLine("Exit Func2...");
 }
 }
}

 Output:
Enter Main...
Enter Func1...
Enter Func2...
Entering try block...
Exception caught and handled.
Exit Func2...
Exit Func1...
Exit Main...

 236

Example 11-2 is identical to Example 11-1 except that now the program includes a try/catch
block. You would typically put the try block around a potentially "dangerous" statement, such as
accessing a file, allocating memory, and so forth.

Following the try statement is a generic catch statement. The catch statement in Example 11-2
is generic because you haven't specified what kind of exceptions to catch. In this case the statement
will catch any exceptions that are thrown. Using catch statements to catch specific types of
exceptions is discussed later in this chapter.

11.1.2.1 Taking corrective action

In Example 11-2, the catch statement simply reports that the exception has been caught and
handled. In a real-world example, you might take corrective action to fix the problem that caused an
exception to be thrown. For example, if the user is trying to open a read-only file, you might invoke a
method that allows the user to change the attributes of the file. If the program has run out of memory,
you might give the user an opportunity to close other applications. If all else fails, the catch block can
print an error message so that the user knows what went wrong.

11.1.2.2 Unwinding the call stack

Examine the output of Example 11-2 carefully. You see the code enter Main(), Func1(),
Func2(), and the try block. You never see it exit the try block, though it does exit Func2(),
Func1(), and Main(). What happened?

When the exception is thrown, execution halts immediately and is handed to the catch block. It never
returns to the original code path. It never gets to the line that prints the exit statement for the try
block. The catch block handles the error, and then execution falls through to the code following
catch.

Without catch the call stack unwinds, but with catch it does not unwind as a result of the exception.
The exception is now handled; there are no more problems; and the program continues. This becomes
a bit clearer if you move the try/catch blocks up to Func1(), as shown in Example 11-3.

Example 11-3. Catch in a calling function
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 public static void Main()
 {
 Console.WriteLine("Enter Main...");
 Test t = new Test();
 t.Func1();
 Console.WriteLine("Exit Main...");

 }

 public void Func1()
 {
 Console.WriteLine("Enter Func1...");
 try
 {
 Console.WriteLine("Entering try block...");
 Func2();

Programming C#

 237

 Console.WriteLine("Exiting try block...");
 }
 catch
 {
 Console.WriteLine(
 "Exception caught and handled.");
 }

 Console.WriteLine("Exit Func1...");
 }

 public void Func2()
 {
 Console.WriteLine("Enter Func2...");
 throw new System.Exception();
 Console.WriteLine("Exit Func2...");
 }
 }
}

 Output:
Enter Main...
Enter Func1...
Entering try block...
Enter Func2...
Exception caught and handled.
Exit Func1...
Exit Main...

This time the exception is not handled in Func2(); it is handled in Func1(). When Func2() is
called, it prints the Enter statement and then throws an exception. Execution halts and the runtime
looks for a handler, but there isn't one. The stack unwinds, and the runtime finds a handler in
Func1(). The catch statement is called, and execution resumes immediately following the catch
statement, printing the Exit statement for Func1() and then for Main().

Make sure you are comfortable with why the Exiting Try Block statement and the Exit Func2
statement are not printed. This is a classic case where putting the code into a debugger and then
stepping through it can make things very clear.

11.1.2.3 Creating dedicated catch statements

So far, you've been working only with generic catch statements. You can create dedicated catch
statements that handle only some exceptions and not others, based on the type of exception thrown.
Example 11-4 illustrates how to specify which exception you'd like to handle.

Example 11-4. Specifying the exception to catch
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 238

 // try to divide two numbers
 // handle possible exceptions
 public void TestFunc()
 {
 try
 {
 double a = 5;
 double b = 0;
 Console.WriteLine ("{0} / {1} = {2}",
 a, b, DoDivide(a,b));
 }

 // most derived exception type first
 catch (System.DivideByZeroException)
 {
 Console.WriteLine(
 "DivideByZeroException caught!");
 }

 catch (System.ArithmeticException)
 {
 Console.WriteLine(
 "ArithmeticException caught!");
 }

 // generic exception type last
 catch
 {
 Console.WriteLine(
 "Unknown exception caught");
 }

 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 throw new System.DivideByZeroException();
 if (a == 0)
 throw new System.ArithmeticException();
 return a/b;
 }
 }
}

 Output:
DivideByZeroException caught!

In this example, the DoDivide() method will not let you divide zero by another number, nor will it let
you divide a number by zero. It throws an instance of DivideByZeroException if you try to divide
by zero. If you try to divide zero by another number, there is no appropriate exception: dividing zero by
another number is a legal mathematical operation and shouldn't throw an exception at all. For the sake
of this example, assume you don't want to allow division by zero; you will throw an
ArithmeticException.

When the exception is thrown, the runtime examines each exception handler in order and matches the
first one it can. When you run this with a=5 and b=7, the output is:

5 / 7 = 0.7142857142857143

Programming C#

 239

As you'd expect, no exception is thrown. However, when you change the value of a to 0, the output is:

ArithmeticException caught!

The exception is thrown, and the runtime examines the first exception: DivideByZeroException.
Because this does not match, it goes on to the next handler, ArithmeticException, which does
match.

In a final pass through, suppose you change a to 7 and b to 0. This throws the
DivideByZeroException.

You have to be particularly careful with the order of the catch
statements, because the DivideByZeroException is derived
from ArithmeticException. If you reverse the catch
statements, the DivideByZeroException will match the
ArithmeticException handler and the exception will never get
to the DivideByZeroException handler. In fact, if their order is
reversed, it will be impossible for any exception to reach the
DivideByZeroException handler. The compiler will recognize
that the DivideByZeroException handler cannot be reached
and will report a compile error!

It is possible to distribute your try/catch statements, catching some specific exceptions in one
function and more generic exceptions in higher, calling functions. Your design goals should dictate the
exact design.

Assume you have a method A that calls another method B, which in turn calls method C. Method C
calls method D, which then calls method E. Method E is deep in your code; methods B and A are
higher up. If you anticipate that method E might throw an exception, you should create a try/catch
block deep in your code to catch that exception as close as possible to the place where the problem
arises. You might also want to create more general exception handlers higher up in the code in case
unanticipated exceptions slip by.

11.1.3 The finally Statement

In some instances, throwing an exception and unwinding the stack can create a problem. For example,
if you have opened a file or otherwise committed a resource, you might need an opportunity to close
the file or flush the buffer.

In C#, this is less of a problem than in other languages, such as
C++, because the garbage collection prevents the exception from
causing a memory leak.

In the event, however, that there is some action you must take regardless of whether an exception is
thrown, such as closing a file, you have two strategies to choose from. One approach is to enclose the
dangerous action in a try block and then to close the file in both the catch and try blocks. However,
this is an ugly duplication of code, and it's error prone. C# provides a better alternative in the finally
block.

The code in the finally block is guaranteed to be executed regardless of whether an exception is
thrown. The TestFunc() method in Example 11-5 simulates opening a file as its first action. The

 240

method then undertakes some mathematical operations, and then the file is closed. It is possible that
some time between opening and closing the file an exception will be thrown. If this were to occur, it
would be possible for the file to remain open. The developer knows that no matter what happens, at
the end of this method the file should be closed, so the file close function call is moved to a
finally block, where it will be executed regardless of whether an exception is thrown.

Example 11-5. Using a finally block
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 // try to divide two numbers
 // handle possible exceptions
 public void TestFunc()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 5;
 double b = 0;
 Console.WriteLine ("{0} / {1} = {2}",
 a, b, DoDivide(a,b));
 Console.WriteLine (
 "This line may or may not print");
 }

 // most derived exception type first
 catch (System.DivideByZeroException)
 {
 Console.WriteLine(
 "DivideByZeroException caught!");
 }
 catch
 {
 Console.WriteLine("Unknown exception caught");
 }
 finally
 {
 Console.WriteLine ("Close file here.");
 }

 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 throw new System.DivideByZeroException();
 if (a == 0)
 throw new System.ArithmeticException();
 return a/b;
 }

Programming C#

 241

 }
}

 Output:
Open file here
DivideByZeroException caught!
Close file here.

 Output when b = 12:
Open file here
5 / 12 = 0.41666666666666669
This line may or may not print
Close file here.

In this example, one of the catch blocks has been eliminated to save space and a finally block
has been added. Whether or not an exception is thrown, the finally block is executed, and so in
both output examples you see the message: Close file here.

A finally block can be created with or without catch blocks,
but a finally block requires a try block to execute. It is an
error to exit a finally block with break, continue, return, or
goto.

11.2 Exception Objects

So far you've been using the exception as a sentinel?that is, the presence of the exception signals the
errors?but you haven't touched or examined the exception object itself. The System.Exception
object provides a number of useful methods and properties. The Message property provides
information about the exception, such as why it was thrown. The Message property is read-only; the
code throwing the exception can set the Message property as an argument to the exception
constructor.

The HelpLink property provides a link to the help file associated with the exception. This property is
read/write.

The StackTrace property is read-only and is set by the runtime. In Example 11-6, the
Exception.HelpLink property is set and retrieved to provide information to the user about the
DivideByZeroException. The StackTrace property of the exception is used to provide a stack
trace for the error statement. A stack trace displays the call stack : the series of method calls that lead
to the method in which the exception was thrown.

Example 11-6. Working with an exception object
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 // try to divide two numbers

 242

 // handle possible exceptions
 public void TestFunc()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 12;
 double b = 0;
 Console.WriteLine ("{0} / {1} = {2}",
 a, b, DoDivide(a,b));
 Console.WriteLine (
 "This line may or may not print");
 }

 // most derived exception type first
 catch (System.DivideByZeroException e)
 {
 Console.WriteLine(
 "\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine(
 "\nHelpLink: {0}", e.HelpLink);
 Console.WriteLine(
 "\nHere's a stack trace: {0}\n",
 e.StackTrace);
 }
 catch
 {
 Console.WriteLine(
 "Unknown exception caught");
 }
 finally
 {
 Console.WriteLine (
 "Close file here.");
 }

 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 DivideByZeroException e =
 new DivideByZeroException();
 e.HelpLink =
 "http://www.libertyassociates.com";
 throw e;
 }
 if (a == 0)
 throw new ArithmeticException();
 return a/b;
 }
 }
}

Output:

Open file here

Programming C#

 243

DivideByZeroException! Msg: Attempted to divide by zero.

HelpLink: http://www.libertyassociates.com

Here's a stack trace:
at Programming_CSharp.Test.DoDivide(Double a, Double b)
 in c:\...exception06.cs:line 56
at Programming_CSharp.Test.TestFunc()
in...exception06.cs:line 22

Close file here.

In the output, the stack trace lists the methods in the reverse order in which they were called; that is, it
shows that the error occurred in DoDivide(), which was called by TestFunc(). When methods
are deeply nested, the stack trace can help you understand the order of method calls.

In this example, rather than simply throwing a DivideByZeroException, you create a new instance
of the exception:

DivideByZeroException e = new DivideByZeroException();

You do not pass in a custom message, and so the default message will be printed:

DivideByZeroException! Msg: Attempted to divide by zero.

You can modify this line of code to pass in a default message:

new DivideByZeroException(
"You tried to divide by zero which is not
meaningful");

In this case, the output message will reflect the custom message:

DivideByZeroException! Msg:
You tried to divide by zero which is not
meaningful

Before throwing the exception, you set the HelpLink property:

e.HelpLink = "http://www.libertyassociates.com";

When this exception is caught, the program prints the message and the HelpLink:

catch (System.DivideByZeroException e)
{
 Console.WriteLine("\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine("\nHelpLink: {0}", e.HelpLink);

This allows you to provide useful information to the user. In addition, it prints the StackTrace by
getting the StackTrace property of the exception object:

Console.WriteLine("\nHere's a stack trace: {0}\n",
 e.StackTrace);

The output of this call reflects a full StackTrace leading to the moment the exception was thrown:

 244

Here's a stack trace:
at Programming_CSharp.Test.DoDivide(Double a, Double b)
 in c:\...exception06.cs:line 56
at Programming_CSharp.Test.TestFunc()
in...exception06.cs:line 22

Note that I've shortened the pathnames, your printout might look a little different.

11.3 Custom Exceptions

The intrinsic exception types the CLR provides, coupled with the custom messages shown in the
previous example, will often be all you need to provide extensive information to a catch block when
an exception is thrown. There will be times, however, when you want to provide more extensive
information or need special capabilities in your exception. It is a trivial matter to create your own
custom exception class; the only restriction is that it must derive (directly or indirectly) from
System.ApplicationException. Example 11-7 illustrates the creation of a custom exception.

Example 11-7. Creating a custom exception
namespace Programming_CSharp
{
 using System;

 public class MyCustomException :
 System.ApplicationException
 {
 public MyCustomException(string message):
 base(message)
 {

 }
 }

 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 // try to divide two numbers
 // handle possible exceptionsexceptions
 public void TestFunc()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 0;
 double b = 5;
 Console.WriteLine ("{0} / {1} = {2}",
 a, b, DoDivide(a,b));
 Console.WriteLine (
 "This line may or may not print");
 }

 // most derived exception type first
 catch (System.DivideByZeroException e)
 {
 Console.WriteLine(

Programming C#

 245

 "\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine(
 "\nHelpLink: {0}\n", e.HelpLink);
 }
 catch (MyCustomException e)
 {
 Console.WriteLine(
 "\nMyCustomException! Msg: {0}",
 e.Message);
 Console.WriteLine(
 "\nHelpLink: {0}\n", e.HelpLink);
 }
 catch
 {
 Console.WriteLine(
 "Unknown exception caught");
 }
 finally
 {
 Console.WriteLine ("Close file here.");
 }

 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 DivideByZeroException e =
 new DivideByZeroException();
 e.HelpLink=
 "http://www.libertyassociates.com";
 throw e;
 }
 if (a == 0)
 {
 MyCustomException e =
 new MyCustomException(
 "Can't have zero divisor");
 e.HelpLink =
 "http://www.libertyassociates.com/NoZeroDivisor.htm";
 throw e;
 }
 return a/b;
 }
 }
}

MyCustomException is derived from System.ApplicationException and consists of nothing
more than a constructor that takes a string message that it passes to its base class, as described in
Chapter 4. In this case, the advantage of creating this custom exception class is that it better reflects
the particular design of the Test class, in which it is not legal to have a zero divisor. Using the
ArithmeticException rather than a custom exception would work as well, but it might confuse
other programmers because a zero divisor wouldn't normally be considered an arithmetic error.

 246

11.4 Rethrowing Exceptions

You might want your catch block to take some initial corrective action and then rethrow the exception
to an outer try block (in a calling function). It might rethrow the same exception, or it might throw a
different one. If it throws a different one, it may want to embed the original exception inside the new
one so that the calling method can understand the exception history. The InnerException property
of the new exception retrieves the original exception.

Because the InnerException is also an exception, it too might have an inner exception. Thus, an
entire chain of exceptions can be nested one within the other, much like Ukrainian dolls are contained
one within the other. Example 11-8 illustrates.

Example 11-8. Rethrowing and inner exceptions
namespace Programming_CSharp
{
 using System;

 public class MyCustomException : System.Exception
 {
 public MyCustomException(
 string message,Exception inner):
 base(message,inner)
 {

 }
 }

 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 public void TestFunc()
 {
 try
 {
 DangerousFunc1();
 }

 // if you catch a custom exception
 // print the exception history
 catch (MyCustomException e)
 {
 Console.WriteLine("\n{0}", e.Message);
 Console.WriteLine(
 "Retrieving exception history...");
 Exception inner =
 e.InnerException;
 while (inner != null)
 {
 Console.WriteLine(
 "{0}",inner.Message);
 inner =
 inner.InnerException;
 }
 }

Programming C#

 247

 }

 public void DangerousFunc1()
 {
 try
 {
 DangerousFunc2();
 }

 // if you catch any exception here
 // throw a custom exception
 catch(System.Exception e)
 {
 MyCustomException ex =
 new MyCustomException(
 "E3 - Custom Exception Situation!",e);
 throw ex;
 }
 }

 public void DangerousFunc2()
 {
 try
 {
 DangerousFunc3();
 }

 // if you catch a DivideByZeroException take some
 // corrective action and then throw a general exception
 catch (System.DivideByZeroException e)
 {
 Exception ex =
 new Exception(
 "E2 - Func2 caught divide by zero",e);
 throw ex;
 }
 }

 public void DangerousFunc3()
 {
 try
 {
 DangerousFunc4();
 }
 catch (System.ArithmeticException)
 {
 throw;
 }

 catch (System.Exception)
 {
 Console.WriteLine(
 "Exception handled here.");
 }
 }

 public void DangerousFunc4()
 {
 throw new DivideByZeroException("E1 - DivideByZero Exception");
 }
 }

 248

}

Output:

E3 - Custom Exception Situation!
Retrieving exception history...
E2 - Func2 caught divide by zero
E1 - DivideByZeroException

Because this code has been stripped to the essentials, the output might leave you scratching your
head. The best way to see how this code works is to use the debugger to step through it.

You begin by calling DangerousFunc1() in a try block:

try
{
 DangerousFunc1();
}

DangerousFunc1() calls DangerousFunc2(), which calls DangerousFunc3(), which in turn
calls DangerousFunc4(). All these calls are in their own try blocks. At the end,
DangerousFunc4() throws a DivideByZeroException. System.DivideByZeroException
normally has its own error message, but you are free to pass in a custom message. Here, to make it
easier to identify the sequence of events, the custom message E1 - DivideByZeroException is
passed in.

The exception thrown in DangerousFunc4() is caught in the catch block in
DangerousFunc3(). The logic in DangerousFunc3() is that if any ArithmeticException is
caught (such as DivideByZeroException), it takes no action; it just rethrows the exception:

catch (System.ArithmeticException)
{
 throw;
}

The syntax to rethrow the exact same exception (without modifying it) is just the word throw.

The exception is thus rethrown to DangerousFunc2(), which catches it, takes some corrective
action, and throws a new exception of type Exception. In the constructor to that new exception,
DangerousFunc2() passes in a custom message (E2 - Func2 caught divide by zero)
and the original exception. Thus, the original exception (E1) becomes the InnerException for the
new exception (E2). DangerousFunc2() then throws this new E2 exception to
DangerousFunc1().

DangerousFunc1() catches the exception, does some work, and creates a new exception of type
MyCustomException, passing to the constructor a new string (E3 - Custom Exception
Situation!) and the exception it just caught (E2). Remember, the exception it just caught is the
exception with a DivideByZeroException (E1) as its inner exception. At this point, you have an
exception of type MyCustomException (E3), with an inner exception of type Exception (E2),
which in turn has an inner exception of type DivideByZeroException (E1). All this is then thrown
to the test function, where it is caught.

When the catch function runs, it prints the message:

E3 - Custom Exception Situation!

Programming C#

 249

and then drills down through the layers of inner exceptions, printing their messages:

while (inner != null)
{
 Console.WriteLine("{0}",inner.Message);
 inner = inner.InnerException;
}

The output reflects the chain of exceptions thrown and caught:

Retrieving exception history...
E2 - Func2 caught divide by zero
E1 - DivideByZero Exception

 250

Programming C#

 251

Chapter 12. Delegates and Events

When a head of state dies, the president of the United States typically does not have time to attend
the funeral personally. Instead, he dispatches a delegate. Often this delegate is the vice president, but
sometimes the VP is unavailable and the president must send someone else, such as the secretary of
state or even the first lady. He does not want to "hardwire" his delegated authority to a single person;
he might delegate this responsibility to anyone who is able to execute the correct international protocol.

The president defines in advance what authority will be delegated (attend the funeral), what
parameters will be passed (condolences, kind words), and what value he hopes to get back (good will).
He then assigns a particular person to that delegated responsibility at "runtime" as the course of his
presidency progresses.

In programming, you are often faced with situations where you need to execute a particular action, but
you don't know in advance which method, or even which object, you'll want to call upon to execute that
action. For example, a button might know that it must notify some object when it is pushed, but it might
not know which object or objects need to be notified. Rather than wiring the button to a particular
object, you will connect the button to a delegate and then resolve that delegate to a particular method
when the program executes.

In the early, dark, and primitive days of computing, a program would begin execution and then
proceed through its steps until it completed. If the user was involved, the interaction was strictly
controlled and limited to filling in fields.

Today's Graphical User Interface (GUI) programming model requires a different approach, known as
event-driven programming. A modern program presents the user interface and waits for the user to
take an action. The user might take many different actions, such as choosing among menu selections,
pushing buttons, updating text fields, clicking icons, and so forth. Each action causes an event to be
raised. Other events can be raised without direct user action, such as events that correspond to timer
ticks of the internal clock, email being received, file-copy operations completing, etc.

An event is the encapsulation of the idea that "something happened" to which the program must
respond. Events and delegates are tightly coupled concepts because flexible event handling requires
that the response to the event be dispatched to the appropriate event handler. An event handler is
typically implemented in C# as a delegate.

Delegates are also used as callbacks so that one class can say to another "do this work and when
you're done, let me know." This second usage will be covered in detail in Chapter 19. Delegates can
also be used to specify methods that will only become known at runtime, a topic that will be developed
in the following sections.

12.1 Delegates

In C#, delegates are first-class objects, fully supported by the language. Technically, a delegate is a
reference type used to encapsulate a method with a specific signature and return type. You can
encapsulate any matching method in that delegate. (In C++ and many other languages, you can
accomplish this requirement with function pointers and pointers to member functions. Unlike function
pointers, delegates are object-oriented and type-safe.)

A delegate is created with the delegate keyword, followed by a return type and the signature of the
methods that can be delegated to it, as in the following:

public delegate int WhichIsFirst(object obj1, object obj2);

 252

This declaration defines a delegate named WhichIsFirst which will encapsulate any method that
takes two objects as parameters and that returns an int.

Once the delegate is defined, you can encapsulate a member method with that delegate by
instantiating the delegate, passing in a method that matches the return type and signature.

12.1.1 Using Delegates to Specify Methods at Runtime

Delegates are used to specify the kinds of methods that can be used to handle events and to
implement callbacks in your applications. They can also be used to specify static and instance
methods that won't be known until runtime.

Suppose, for example, that you want to create a simple container class called a Pair that can hold
and sort any two objects passed to it. You can't know in advance what kind of objects a Pair will hold,
but by creating methods within those objects to which the sorting task can be delegated, you can
delegate responsibility for determining their order to the objects themselves.

Different objects will sort differently; for example, a Pair of counter objects might sort in numeric
order, while a Pair of Buttons might sort alphabetically by their name. As the author of the Pair
class, you want the objects in the pair to have the responsibility of knowing which should be first and
which should be second. To accomplish this, you will insist that the objects to be stored in the Pair
must provide a method that tells you how to sort the objects.

You define the method you require by creating a delegate that defines the signature and return type of
the method the object (e.g., Button) must provide to allow the Pair to determine which object should
be first and which should be second.

The Pair class defines a delegate, WhichIsFirst. The Sort method will take a parameter, an
instance of WhichIsFirst. When the Pair needs to know how to order its objects it will invoke the
delegate passing in its two objects as parameters. The responsibility for deciding which of the two
objects comes first is delegated to the method encapsulated by the delegate.

To test the delegate, you will create two classes, a Dog class and a Student class. Dogs and
Students have little in common, except that they both implement methods that can be encapsulated
by WhichComesFirst, and thus both Dog objects and Student objects are eligible to be held within
Pair objects.

In the test program you will create a couple of Students and a couple of Dogs, and store them each
in a Pair. You will then create delegate objects to encapsulate their respective methods that match
the delegate signature and return type, and you'll ask the Pair objects to sort the Dog and Student
objects. Let's take this step by step.

You begin by creating a Pair constructor that takes two objects and stashes them away in a private
array:

public class Pair
{

 // two objects, added in order received
 public Pair(object firstObject, object secondObject)
 {
 thePair[0] = firstObject;
 thePair [1] = secondObject;
 }
 // hold both objects
 private object[]thePair = new object[2];

Programming C#

 253

Next, you override ToString() to obtain the string value of the two objects:

public override string ToString()
{
 return thePair [0].ToString() + ", " + thePair [1].ToString();
}

You now have two objects in your Pair and you can print out their values. You're ready to sort them
and print the results of the sort. You can't know in advance what kind of objects you will have, so you
would like to delegate the responsibility of deciding which object comes first in the sorted Pair to the
objects themselves. Thus, you require that each object stored in a Pair implement a method to return
which of the two comes first. The method will take two objects (of whatever type) and return an
enumerated value: theFirstComesFirst if the first object comes first, and
theSecondComesFirst if the second does.

These required methods will be encapsulated by the delegate WhichIsFirst that you define within
the Pair class:

public delegate comparison
WhichIsFirst(object obj1, object obj2);

The return value is of type comparison, the enumeration.

public enum comparison
{
 theFirstComesFirst = 1,
 theSecondComesFirst = 2
}

Any static method that takes two objects and returns a comparison can be encapsulated by this
delegate at runtime.

You can now define the Sort method for the Pair class:

public void Sort(WhichIsFirst theDelegatedFunc)
{
 if (theDelegatedFunc(thePair[0],thePair[1]) ==
 comparison.theSecondComesFirst)
 {
 object temp = thePair[0];
 thePair[0] = thePair[1];
 thePair[1] = temp;
 }
}

This method takes a parameter: a delegate of type WhichIsFirst named theDelegatedFunc. The
Sort() method delegates responsibility for deciding which of the two objects in the Pair comes first
to the method encapsulated by that delegate. In the body of the Sort() method it invokes the
delegated method and examines the return value, which will be one of the two enumerated values of
comparsion.

If the value returned is theSecondComesFirst, the objects within the pair are swapped; otherwise
no action is taken.

 254

Notice that theDelegatedFunc is the name of the parameter to represent the method encapsulated
by the delegate. You can assign any method (with the appropriate return value and signature) to this
parameter. It is as if you had a method which took an int as a parameter:

int SomeMethod (int myParam){//...}

The parameter name is myParam, but you can pass in any int value or variable. Similarly the
parameter name in the delegate example is theDelegatedFunc, but you can pass in any method
that meets the return value and signature defined by the delegate WhichIsFirst.

Imagine you are sorting students by name. You write a method that returns theFirstComesFirst if
the first student's name comes first and theSecondComesFirst if the second student's name does.
If you pass in "Amy, Beth" the method will return theFirstComesFirst, and if you pass in "Beth,
Amy" it will return theSecondComesFirst. If you get back theSecondComesFirst, the Sort
method reverses the items in its array, setting Amy to the first position and Beth to the second.

Now add one more method, ReverseSort, which will put the items into the array in reverse order:

public void ReverseSort(WhichIsFirst theDelegatedFunc)
{
 if (theDelegatedFunc(thePair[0], thePair[1]) ==
 comparison.theFirstComesFirst)
 {
 object temp = thePair[0];
 thePair[0] = thePair[1];
 thePair[1] = temp;
 }
}

The logic here is identical to the Sort(), except that this method performs the swap if the delegated
method says that the first item comes first. Because the delegated function thinks the first item comes
first, and this is a reverse sort, the result you want is for the second item to come first. This time if you
pass in "Amy, Beth," the delegated function returns theFirstComesFirst (i.e., Amy should come
first), but because this is a reverse sort it swaps the values, setting Beth first. This allows you to use
the same delegated function as you used with Sort, without forcing the object to support a function
that returns the reverse sorted value.

Now all you need are some objects to sort. You'll create two absurdly simple classes: Student and
Dog. Assign Student objects a name at creation:

public class Student
{
 public Student(string name)
 {
 this.name = name;
 }

The Student class requires two methods, one to override ToString() and the other to be
encapsulated as the delegated method.

Student must override ToString() so that the ToString() method in Pair, which invokes
ToString() on the contained objects, will work properly: the implementation does nothing more
than return the student's name (which is already a string object):

public override string ToString()
{
 return name;

Programming C#

 255

}

It must also implement a method to which Pair.Sort() can delegate the responsibility of
determining which of two objects comes first:

return (String.Compare(s1.name, s2.name) < 0 ?
 comparison.theFirstComesFirst :
 comparison.theSecondComesFirst);

String.Compare is a .NET Framework method on the String class which compares two strings
and returns less than zero if the first is smaller and greater than zero if the second is smaller, and
returns zero if they are the same. This method is discussed in some detail in Chapter 10. Notice that
the logic here returns theFirstComesFirst only if the first string is smaller; if they are the same or
the second is larger, this method returns theSecondComesFirst.

Notice that the WhichStudentComesFirst() method takes two objects as parameters and returns
a comparison. This qualifies it to be a Pair.WhichIsFirst delegated method, whose signature
and return value it matches.

The second class is Dog. For our purposes, Dog objects will be sorted by weight, lighter dogs before
heavier. Here's the complete declaration of Dog:

public class Dog
{
 public Dog(int weight)
 {
 this.weight=weight;
 }

 // dogs are ordered by weight
 public static comparison WhichDogComesFirst(
 Object o1, Object o2)
 {
 Dog d1 = (Dog) o1;
 Dog d2 = (Dog) o2;
 return d1.weight > d2.weight ?
 theSecondComesFirst :
 theFirstComesFirst;
 }
 public override string ToString()
 {
 return weight.ToString();
 }
 private int weight;
}

Notice that the Dog class also overrides ToString and implements a static method with the correct
signature for the delegate. Notice also that the Dog and Student delegate methods do not have the
same name. They do not need to have the same name, as they will be assigned to the delegate
dynamically at runtime.

You can call your delegated method names anything you like, but
creating parallel names (e.g., WhichDogComesFirst and
WhichStudentComesFirst) makes the code easier to read,
understand, and maintain.

 256

Example 12-1 is the complete program, which illustrates how the delegate methods are invoked.

Example 12-1. Working with delegates
namespace Programming_CSharp
{
 using System;

 public enum comparison
 {
 theFirstComesFirst = 1,
 theSecondComesFirst = 2
 }

 // a simple collection to hold 2 items
 public class Pair
 {
 // the delegate declaration
 public delegate comparison
 WhichIsFirst(object obj1, object obj2);

 // passed in constructor take two objects,
 // added in order received
 public Pair(
 object firstObject,
 object secondObject)
 {
 thePair[0] = firstObject;
 thePair[1] = secondObject;
 }

 // public method which orders the two objects
 // by whatever criteria the object likes!
 public void Sort(
 WhichIsFirst theDelegatedFunc)
 {
 if (theDelegatedFunc(thePair[0],thePair[1])
 == comparison.theSecondComesFirst)
 {
 object temp = thePair[0];
 thePair[0] = thePair[1];
 thePair[1] = temp;
 }
 }

 // public method which orders the two objects
 // by the reverse of whatever criteria the object likes!
 public void ReverseSort(
 WhichIsFirst theDelegatedFunc)
 {
 if (theDelegatedFunc(thePair[0],thePair[1]) ==
 comparison.theFirstComesFirst)
 {
 object temp = thePair[0];
 thePair[0] = thePair[1];
 thePair[1] = temp;
 }
 }

 // ask the two objects to give their string value
 public override string ToString()

Programming C#

 257

 {
 return thePair[0].ToString() + ", "
 + thePair[1].ToString();
 }

 // private array to hold the two objects
 private object[] thePair = new object[2];
 }

 public class Dog
 {
 public Dog(int weight)
 {
 this.weight=weight;
 }

 // dogs are ordered by weight
 public static comparison WhichDogComesFirst(
 Object o1, Object o2)
 {
 Dog d1 = (Dog) o1;
 Dog d2 = (Dog) o2;
 return d1.weight > d2.weight ?
 comparison.theSecondComesFirst :
 comparison.theFirstComesFirst;
 }
 public override string ToString()
 {
 return weight.ToString();
 }
 private int weight;
 }

 public class Student
 {
 public Student(string name)
 {
 this.name = name;
 }

 // students are ordered alphabetically
 public static comparison
 WhichStudentComesFirst(Object o1, Object o2)
 {
 Student s1 = (Student) o1;
 Student s2 = (Student) o2;
 return (String.Compare(s1.name, s2.name) < 0 ?
 comparison.theFirstComesFirst :
 comparison.theSecondComesFirst);
 }

 public override string ToString()
 {
 return name;
 }
 private string name;
 }

 public class Test
 {

 258

 public static void Main()
 {
 // create two students and two dogs
 // and add them to Pair objects
 Student Jesse = new Student("Jesse");
 Student Stacey = new Student ("Stacey");
 Dog Milo = new Dog(65);
 Dog Fred = new Dog(12);

 Pair studentPair = new Pair(Jesse,Stacey);
 Pair dogPair = new Pair(Milo, Fred);
 Console.WriteLine("studentPair\t\t\t: {0}",
 studentPair.ToString());
 Console.WriteLine("dogPair\t\t\t\t: {0}",
 dogPair.ToString());

 // Instantiate the delegates
 Pair.WhichIsFirst theStudentDelegate =
 new Pair.WhichIsFirst(
 Student.WhichStudentComesFirst);

 Pair.WhichIsFirst theDogDelegate =
 new Pair.WhichIsFirst(
 Dog.WhichDogComesFirst);

 // sort using the delegates
 studentPair.Sort(theStudentDelegate);
 Console.WriteLine("After Sort studentPair\t\t: {0}",
 studentPair.ToString());
 studentPair.ReverseSort(theStudentDelegate);
 Console.WriteLine("After ReverseSort studentPair\t: {0}",
 studentPair.ToString());

 dogPair.Sort(theDogDelegate);
 Console.WriteLine("After Sort dogPair\t\t: {0}",
 dogPair.ToString());
 dogPair.ReverseSort(theDogDelegate);
 Console.WriteLine("After ReverseSort dogPair\t: {0}",
 dogPair.ToString());
 }
 }
}

Output:

studentPair : Jesse, Stacey
dogPair : 65, 12
After Sort studentPair : Jesse, Stacey
After ReverseSort studentPair : Stacey, Jesse
After Sort dogPair : 12, 65
After ReverseSort dogPair : 65, 12

The Test program creates two Student objects and two Dog objects and then adds them to Pair
containers. The student constructor takes a string for the student's name and the dog constructor
takes an int for the dog's weight.

Student Jesse = new Student("Jesse");
Student Stacey = new Student ("Stacey");
Dog Milo = new Dog(65);
Dog Fred = new Dog(12);

Programming C#

 259

Pair studentPair = new Pair(Jesse,Stacey);
Pair dogPair = new Pair(Milo, Fred);
Console.WriteLine("studentPair\t\t\t: {0}",
 studentPair.ToString());
Console.WriteLine("dogPair\t\t\t\t: {0}",
 dogPair.ToString());

It then prints the contents of the two Pair containers to see the order of the objects. The output looks
like this:

studentPair : Jesse, Stacey
dogPair : 65, 12

As expected, the objects are in the order in which they were added to the Pair containers. We next
instantiate two delegate objects:

Pair.WhichIsFirst theStudentDelegate =
 new Pair.WhichIsFirst(
 Student.WhichStudentComesFirst);

Pair.WhichIsFirst theDogDelegate =
 new Pair.WhichIsFirst(
 Dog.WhichDogComesFirst);

The first delegate, theStudentDelegate, is created by passing in the appropriate static method
from the Student class. The second delegate, theDogDelegate, is passed a static method from the
Dog class.

The delegates are now objects that can be passed to methods. You pass the delegates first to the
Sort method of the Pair object, and then to the ReverseSort method. The results are printed to
the console:

After Sort studentPair : Jesse, Stacey
After ReverseSort studentPair : Stacey, Jesse
After Sort dogPair : 12, 65
After ReverseSort dogPair : 65, 12

12.1.2 Static Delegates

A disadvantage of Example 12-1 is that it forces the calling class, in this case Test, to instantiate
the delegates it needs in order to sort the objects in a Pair. It would be nice to get the delegate from
the Student or Dog class. You can do this by giving each class its own static delegate. Thus, you can
modify Student to add this:

public static readonly Pair.WhichIsFirst OrderStudents =
 new Pair.WhichIsFirst(Student.WhichStudentComesFirst);

This creates a static, readonly delegate named OrderStudents.

Marking OrderStudents readonly denotes that once this
static field is created, it will not be modified.

You can create a similar delegate within Dog:

 260

public static readonly Pair.WhichIsFirst OrderDogs =
 new Pair.WhichIsFirst(Dog. WhichDogComesFirst);

These are now static fields of their respective classes. Each is prewired to the appropriate method
within the class. You can invoke delegates without declaring a local delegate instance. You just pass
in the static delegate of the class:

studentPair.Sort(theStudentDelegate);
Console.WriteLine("After Sort studentPair\t\t: {0}",
 studentPair.ToString());
 studentPair.ReverseSort(Student.OrderStudents);
 Console.WriteLine("After ReverseSort studentPair\t: {0}",
 studentPair.ToString());

 dogPair.Sort(Dog.OrderDogs);
 Console.WriteLine("After Sort dogPair\t\t: {0}",
 dogPair.ToString());
 dogPair.ReverseSort(Dog.OrderDogs);
 Console.WriteLine("After ReverseSort dogPair\t: {0}",
 dogPair.ToString());

The output from these changes is identical to the previous example.

12.1.3 Delegates as Properties

The problem with static delegates is that they must be instantiated, whether or not they are ever used,
as with Student and Dog in the previous example. You can improve these classes by changing the
static delegate fields to properties.

For Student, you take out the declaration:

public static readonly Pair.WhichIsFirst OrderStudents =
 new Pair.WhichIsFirst(Student.WhichStudentComesFirst);

and replace it with:

public static Pair.WhichIsFirst OrderStudents
{
 get
 {
 return new Pair.WhichIsFirst(WhichStudentComesFirst);
 }
}

Similarly, you replace the Dog static field with:

public static Pair.WhichIsFirst OrderDogs
{
 get
 {
 return new Pair.WhichIsFirst(WhichDogComesFirst);
 }
}

Programming C#

 261

The assignment of the delegates is unchanged:

studentPair.Sort(Student.OrderStudents);
dogPair.Sort(Dog.OrderDogs);

When the OrderStudent property is accessed, the delegate is created:

return new Pair.WhichIsFirst(WhichStudentComesFirst);

The key advantage is that the delegate is not created until it is requested. This allows the test class to
determine when it needs a delegate but still allows the details of the creation of the delegate to be the
responsibility of the Student (or Dog) class.

12.1.4 Setting Order of Execution with Arrays of Delegates

Delegates can help you create a system in which the user can dynamically decide on the order of
operations. Suppose you have an image processing system in which an image can be manipulated in
a number of well-defined ways, such as blurring, sharpening, rotating, filtering, and so forth. Assume,
as well, that the order in which these effects are applied to the image is important. The user wishes to
choose from a menu of effects, applying all that he likes, and then telling the image processor to run
the effects, one after the other in the order that he has specified.

You can create delegates for each operation and add them to an ordered collection, such as an array,
in the order you'd like them to execute. Once all the delegates are created and added to the collection,
you simply iterate over the array, invoking each delegated method in turn.

You begin by creating a class Image to represent the image that will be processed by the
ImageProcessor:

public class Image
{
 public Image()
 {
 Console.WriteLine("An image created");
 }
}

You can imagine that this stands in for a .gif or .jpeg file or other image.

The ImageProcessor then declares a delegate. You can of course define your delegate to return
any type and take any parameters you like. For this example you'll define the delegate to encapsulate
any method that returns void and takes no arguments:

public delegate void DoEffect();

The ImageProcessor then declares a number of methods, each of which processes an image and
each of which matches the return type and signature of the delegate:

public static void Blur()
 {
 Console.WriteLine("Blurring image");
 }

 public static void Filter()

 262

 {
 Console.WriteLine("Filtering image");
 }

 public static void Sharpen()
 {
 Console.WriteLine("Sharpening image");
 }

 public static void Rotate()
 {
 Console.WriteLine("Rotating image");
 }

In a production environment these methods would be very
complicated, and they'd actually do the work of blurring, filtering,
sharpening, and rotating the image.

The ImageProcessor class needs an array to hold the delegates that the user picks, a variable to
hold the running total of how many effects are in the array, and of course a variable for the image
itself:

DoEffect[] arrayOfEffects;
Image image;
int numEffectsRegistered = 0;

The ImageProcessor also needs a method to add delegates to the array:

public void AddToEffects(DoEffect theEffect)
{
 if (numEffectsRegistered >= 10)
 {
 throw new Exception("Too many members in array");
 }
 arrayOfEffects[numEffectsRegistered++] = theEffect;

}

It needs another method to actually call each method in turn:

public void ProcessImages()
{
 for (int i = 0;i < numEffectsRegistered;i++)
 {
 arrayOfEffects[i]();
 }
}

Finally, you need only declare the static delegates that the client can call, hooking them to the
processing methods:

public DoEffect BlurEffect = new DoEffect(Blur);
public DoEffect SharpenEffect = new DoEffect(Sharpen);
public DoEffect FilterEffect = new DoEffect(Filter);
public DoEffect RotateEffect = new DoEffect(Rotate);

Programming C#

 263

In a production environment in which you might have dozens of
effects, you might choose to make these properties rather than
static methods. That would save creating the effects unless they
are needed at the cost of making the program slightly more
complicated.

The client code would normally have an interactive user-interface component, but we'll simulate that
by choosing the effects, adding them to the array, and then calling ProcessImage, as shown in
Example 12-2.

Example 12-2. Using an array of delegates
namespace Programming_CSharp
{
 using System;

 // the image which we'll manipulate
 public class Image
 {
 public Image()
 {
 Console.WriteLine("An image created");
 }
 }

 public class ImageProcessor
 {
 // declare the delegate
 public delegate void DoEffect();

 // create various static delegates tied to member methods
 public DoEffect BlurEffect =
 new DoEffect(Blur);
 public DoEffect SharpenEffect =
 new DoEffect(Sharpen);
 public DoEffect FilterEffect =
 new DoEffect(Filter);
 public DoEffect RotateEffect =
 new DoEffect(Rotate);

 // the constructor initializes the image and the array
 public ImageProcessor(Image image)
 {
 this.image = image;
 arrayOfEffects = new DoEffect[10];
 }

 // in a production environment we'd use a more
 // flexible collection.
 public void AddToEffects(DoEffect theEffect)
 {
 if (numEffectsRegistered >= 10)
 {
 throw new Exception(
 "Too many members in array");
 }
 arrayOfEffects[numEffectsRegistered++]
 = theEffect;

 264

 }

 // the image processing methods...
 public static void Blur()
 {
 Console.WriteLine("Blurring image");
 }

 public static void Filter()
 {
 Console.WriteLine("Filtering image");
 }

 public static void Sharpen()
 {
 Console.WriteLine("Sharpening image");
 }

 public static void Rotate()
 {
 Console.WriteLine("Rotating image");
 }

 public void ProcessImages()
 {
 for (int i = 0;i < numEffectsRegistered;i++)
 {
 arrayOfEffects[i]();
 }
 }

 // private member variables...
 private DoEffect[] arrayOfEffects;
 private Image image;
 private int numEffectsRegistered = 0;

 }

 // test driver
 public class Test
 {
 public static void Main()
 {
 Image theImage = new Image();

 // no ui to keep things simple, just pick the
 // methods to invoke, add them in the required
 // order, and then call on the image processor to
 // run them in the order added.
 ImageProcessor theProc =
 new ImageProcessor(theImage);
 theProc.AddToEffects(theProc.BlurEffect);
 theProc.AddToEffects(theProc.FilterEffect);
 theProc.AddToEffects(theProc.RotateEffect);
 theProc.AddToEffects(theProc.SharpenEffect);
 theProc.ProcessImages();
 }
 }
}

Programming C#

 265

Output:

An image created
Blurring image
Filtering image
Rotating image
Sharpening image

In the Test class of Example 12-2, the ImageProcessor is instantiated and effects are added. If
the user chooses to blur the image before filtering the image, it is a simple matter to add the delegates
to the array in the appropriate order. Similarly, any given operation can be repeated as often as the
user desires, just by adding more delegates to the collection.

You can imagine displaying the order of operations in a list box that might allow the user to reorder the
methods, moving them up and down the list at will. As the operations are reordered you need only
change their sort order in the collection. You might even decide to capture the order of operations to a
database and then load them dynamically, instantiating delegates as dictated by the records you've
stored in the database.

Delegates provide the flexibility to determine dynamically which methods will be called, in what order,
and how often.

12.1.5 Multicasting

At times it is desirable to multicast : to call two implementing methods through a single delegate. This
becomes particularly important when handling events (discussed later in this chapter).

The goal is to have a single delegate that invokes more than one method. This is different from having
a collection of delegates, each of which invokes a single method. In the previous example, the
collection was used to order the various delegates. It was possible to add a single delegate to the
collection more than once and to use the collection to reorder the delegates to control their order of
invocation.

With multicasting you create a single delegate that will call multiple encapsulated methods. For
example, when a button is pressed you might want to take more than one action. You could implement
this by giving the button a collection of delegates, but it is cleaner and easier to create a single
multicast delegate.

Any delegate that returns void is a multicast delegate, though you can treat it as a single-cast
delegate if you wish. Two multicast delegates can be combined with the addition operator (+). The
result is a new multicast delegate that invokes both of the original implementing methods. For example,
assuming Writer and Logger are delegates that return void, the following line will combine them
and produce a new multicast delegate named myMulticastDelegate:

myMulticastDelegate = Writer + Logger;

You can add delegates to a multicast delegate using the plus-equals (+=) operator. This operator adds
the delegate on the right side of the operator to the multicast delegate on the left. For example,
assuming Transmitter and myMulticastDelegate are delegates, the following line adds
Transmitter to myMulticastDelegate:

myMulticastDelegate += Transmitter;

 266

To see how multicast delegates are created and used, let's walk through a complete example. In
Example 12-3, you create a class called MyClassWithDelegate which defines a delegate that
takes a string as a parameter and returns void:

public delegate void StringDelegate(string s);

You then define a class called MyImplementingClass which has three methods, all of which return
void and take a string as a parameter: WriteString, LogString, and TransmitString. The first
writes the string to standard output, the second simulates writing to a log file, and the third simulates
transmitting the string across the Internet. You instantiate the delegates to invoke the appropriate
methods:

Writer("String passed to Writer\n");
Logger("String passed to Logger\n");
Transmitter("String passed to Transmitter\n");

To see how to combine delegates, you create another Delegate instance:

MyClassWithDelegate.StringDelegate myMulticastDelegate;

and assign to it the result of "adding" two existing delegates:

myMulticastDelegate = Writer + Logger;

You add to this delegate an additional delegate using the += operator:

myMulticastDelegate += Transmitter;

Finally, you selectively remove delegates using the -= operator:

DelegateCollector -= Logger;

Example 12-3. Combining delegates
namespace Programming_CSharp
{
 using System;

 public class MyClassWithDelegate
 {
 // the delegate declaration
 public delegate void StringDelegate(string s);

 }

 public class MyImplementingClass
 {
 public static void WriteString(string s)
 {
 Console.WriteLine("Writing string {0}", s);
 }

 public static void LogString(string s)
 {
 Console.WriteLine("Logging string {0}", s);
 }

 public static void TransmitString(string s)

Programming C#

 267

 {
 Console.WriteLine("Transmitting string {0}", s);
 }

 }

 public class Test
 {
 public static void Main()
 {
 // define three StringDelegate objects
 MyClassWithDelegate.StringDelegate
 Writer, Logger, Transmitter;

 // define another StringDelegate
 // to act as the multicast delegate
 MyClassWithDelegate.StringDelegate
 myMulticastDelegate;

 // Instantiate the first three delegates,
 // passing in methods to encapsulate
 Writer = new MyClassWithDelegate.StringDelegate(
 MyImplementingClass.WriteString);
 Logger = new MyClassWithDelegate.StringDelegate(
 MyImplementingClass.LogString);
 Transmitter =
 new MyClassWithDelegate.StringDelegate(
 MyImplementingClass.TransmitString);

 // Invoke the Writer delegate method
 Writer("String passed to Writer\n");

 // Invoke the Logger delegate method
 Logger("String passed to Logger\n");

 // Invoke the Transmitter delegate method
 Transmitter("String passed to Transmitter\n");

 // Tell the user you are about to combine
 // two delegates into the multicast delegate
 Console.WriteLine(
 "myMulticastDelegate = Writer + Logger");

 // combine the two delegates, the result is
 // assigned to myMulticast Delegate
 myMulticastDelegate = Writer + Logger;

 // Call the delegated methods, two methods
 // will be invoked
 myMulticastDelegate(
 "First string passed to Collector");

 // Tell the user you are about to add
 // a third delegate to the multicast
 Console.WriteLine(
 "\nmyMulticastDelegate += Transmitter");

 // add the third delegate
 myMulticastDelegate += Transmitter;

 268

 // invoke the three delegated methods
 myMulticastDelegate(
 "Second string passed to Collector");

 // tell the user you are about to remove
 // the logger delegate
 Console.WriteLine(
 "\nmyMulticastDelegate -= Logger");

 // remove the logger delegate
 myMulticastDelegate -= Logger;

 // invoke the two remaining
 // delegated methods
 myMulticastDelegate(
 "Third string passed to Collector");
 }
 }
}

 Output:

Writing string String passed to Writer

Logging string String passed to Logger

Transmitting string String passed to Transmitter

myMulticastDelegate = Writer + Logger
Writing string First string passed to Collector
Logging string First string passed to Collector

myMulticastDelegate += Transmitter
Writing string Second string passed to Collector
Logging string Second string passed to Collector
Transmitting string Second string passed to Collector

myMulticastDelegate -= Logger
Writing string Third string passed to Collector
Transmitting string Third string passed to Collector

In the test portion of Example 12-3, the delegate instances are defined and the first three (Writer,
Logger, and Transmitter) are invoked. The fourth delegate, myMulticastDelegate, is then
assigned the combination of the first two and it is invoked, causing both delegated methods to be
called. The third delegate is added, and when myMulticastDelegate is invoked all three delegated
methods are called. Finally, Logger is removed, and when myMulticastDelegate is invoked only
the two remaining methods are called.

The power of multicast delegates is best understood in terms of events, discussed in the next section.
When an event such as a button press occurs, an associated multicast delegate can invoke a series of
event handler methods which will respond to the event.

12.2 Events

Graphical user interfaces (GUIs), Windows and web browsers, such as Microsoft, require that
programs respond to events. An event might be a button push, a menu selection, the completion of a
file transfer, and so forth. In short, something happens and you must respond to it. You cannot predict
the order in which events will arise. The system is quiescent until the event, and then it springs into
action to handle the event.

Programming C#

 269

In a GUI environment, any number of widgets can raise an event. For example, when you click a
button, it might raise the Click event. When you add to a drop-down list, it might raise a
ListChanged event.

Other classes will be interested in responding to these events. How they respond is not of interest to
the class raising the event. The button says "I was clicked," and the responding classes react
appropriately.

12.2.1 Publishing and Subscribing

In C#, any object can publish a set of events to which other classes can subscribe. When the
publishing class raises an event, all the subscribed classes are notified.

This design implements the Publish/Subscribe (Observer) Pattern
described in the seminal work " Design Patterns," by Gamma, et
al. (Addison Wesley, 1995). Gamma describes the intent of this
pattern, "Define a one to many dependency between objects so
that when one object changes state, all its dependents are notified
and updated automatically."

With this mechanism, your object can say "Here are things I can notify you about," and other classes
might sign up, saying "Yes, let me know when that happens." For example, a button might notify any
number of interested observers when it is clicked. The button is called the publisher because the
button publishes the Click event and the other classes are the subscribers because they subscribe
to the Click event.

12.2.2 Events and Delegates

Events in C# are implemented with delegates. The publishing class defines a delegate that the
subscribing classes must implement. When the event is raised, the subscribing class's methods are
invoked through the delegate.

A method that handles an event is called an event handler . You can declare your event handlers as
you would any other delegate.

By convention, event handlers in the .NET Framework return void and take two parameters The first
parameter is the "source" of the event; that is, the publishing object. The second parameter is an
object derived from EventArgs. It is recommended that your event handlers follow this design pattern.

EventArgs is the base class for all event data. Other than its constructor, the EventArgs class
inherits all its methods from Object, though it does add a public static field empty which represents
an event with no state (to allow for the efficient use of events with no state). The EventArgs derived
class contains information about the event.

Events are properties of the class publishing the event. The keyword event controls how the event
property is accessed by the subscribing classes. The event keyword is designed to maintain the
publish/subscribe idiom.

Suppose you want to create a Clock class that uses events to notify potential subscribers whenever
the local time changes value by one second. Call this event OnSecondChange. You declare the event
and its event handler delegate type as follows:

[attributes] [modifiers] event type

 270

 member-name

For example:

public event SecondChangeHandler OnSecondChange;

This example has no attributes (attributes are covered in Chapter 18). The modifier can be
abstract , new, override, static, virtual, or one of the four access modifiers, in this case
public.

The modifier is followed by the keyword event.

The type is the delegate to which you want to associate the event, in this case
SecondChangeHandler.

The member name is the name of the event, in this case OnSecondChange. It is customary to begin
events with the word On.

Altogether, this declaration states that OnSecondChange is an event which is implemented by a
delegate of type SecondChangeHandler.

The declaration for the SecondChangeHandler delegate is:

public delegate void SecondChangeHandler(
 object clock,
 TimeInfoEventArgs timeInformation
);

This declares the delegate. As stated earlier, by convention an event handler must return void and
must take two parameters: the source of the event (in this case clock) and an object derived from
EventArgs, in this case TimeInfoEventArgs. TimeInfoEventArgs is defined as follows:

public class TimeInfoEventArgs : EventArgs
{
 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
 public readonly int hour;
 public readonly int minute;
 public readonly int second;
}

The TimeInfoEventArgs object will have information about the current hour, minute, and second. It
defines a constructor and three public, readonly integer variables.

In addition to a delegate and an event, a Clock has three member variables: hour, minute, and
second; as well as a single method, Run():

public void Run()
{
 for(;;)
 {
 // sleep 10 milliseconds

Programming C#

 271

 Thread.Sleep(10);

 // get the current time
 System.DateTime dt = System.DateTime.Now;

 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour,dt.Minute,dt.Second);

 // if anyone has subscribed, notify them
 if (OnSecondChange != null)
 {
 OnSecondChange(this,timeInformation);
 }
 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;

 }
}

Run creates an infinite for loop that periodically checks the system time. If the time has changed from
the Clock object's current time, it notifies all its subscribers and then updates its own state.

The first step is to sleep for 10 milliseconds:

Thread.Sleep(10);

This makes use of a static method of the Thread class from the System.Threading namespace,
which will be covered in some detail in Chapter 20. The call to Sleep() prevents the loop from
running so tightly that little else on the computer gets done.

After sleeping for 10 milliseconds, the method checks the current time:

System.DateTime dt = System.DateTime.Now;

About every 100 times it checks, the second will have incremented. The method notices that change
and notifies its subscribers. To do so, it first creates a new TimeInfoEventArgs object:

if (dt.Second != second)
{
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour,dt.Minute,dt.Second);

It then notifies the subscribers by firing the OnSecondChange event:

 // if anyone has subscribed, notify them
 if (OnSecondChange != null)

 272

 {
 OnSecondChange(this,timeInformation);
 }
}

If an event has no subscribers registered, it will evaluate to null. The test above checks that the
value is not null, ensuring that there are subscribers before calling OnSecondChange.

You will remember that OnSecondChange takes two arguments: the source of the event and the
object derived from EventArgs. In the snippet, you see that the clock's this reference is passed
because the clock is the source of the event. The second parameter is the TimeInfoEventArgs
object timeInformation created on the line above.

Raising the event will invoke whatever methods have been registered with the Clock class through
the delegate. We'll examine this in a moment.

Once the event is raised, you update the state of the Clock class:

this.second = dt.Second;
this.minute = dt.Minute;
this.hour = dt.Hour;

Note that no attempt has been made to make this code thread
safe. Thread safety and synchronization are discussed in
Chapter 20.

All that is left is to create classes that can subscribe to this event. You'll create two. Your first will be
the DisplayClock class. The job of DisplayClock is not to keep track of time, but rather to display
the current time to the console.

The example simplifies this class down to two methods. The first is a helper method named
Subscribe. Subscribe's job is to subscribe to the clock's OnSecondChange event. The second
method is the event handler TimeHasChanged:

public class DisplayClock
{
 public void Subscribe(Clock theClock)
 {
 theClock.OnSecondChange +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 public void TimeHasChanged(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(),
 ti.minute.ToString(),
 ti.second.ToString());
 }
}

When the first method, Subscribe, is invoked, it creates a new SecondChangeHandler delegate,
passing in its event handler method TimeHasChanged. It then registers that delegate with the
OnSecondChange event of Clock.

Programming C#

 273

You will create a second class that will also respond to this event, LogCurrentTime. This class
would normally log the event to a file, but for our demonstration purposes, it will log to the standard
console:

public class LogCurrentTime
{
 public void Subscribe(Clock theClock)
 {
 theClock.OnSecondChange +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 // this method should write to a file
 // we write to the console to see the effect
 // this object keeps no state
 public void WriteLogEntry(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.hour.ToString(),
 ti.minute.ToString(),
 ti.second.ToString());
 }
}

Although in this example these two classes are very similar, in a production program any number of
disparate classes might subscribe to an event.

Notice that events are added using the += operator. This allows new events to be added to the Clock
object's OnSecondChange event without destroying the events already registered. When
LogCurrentTime subscribes to the OnSecondChange event, you do not want the event to lose track
of the fact that DisplayClock has already subscribed.

All that remains is to create a Clock class, create the DisplayClock class, and tell it to subscribe to
the event. You then will create a LogCurrentTime class and tell it to subscribe as well. Finally, you'll
tell the Clock to run. All this is shown in Example 12-4.

Example 12-4. Working with events
namespace Programming_CSharp
{
 using System;
 using System.Threading;

 // a class to hold the information about the event
 // in this case it will hold only information
 // available in the clock class, but could hold
 // additional state information
 public class TimeInfoEventArgs : EventArgs
 {
 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
 public readonly int hour;
 public readonly int minute;
 public readonly int second;

 274

 }

 // our subject -- it is this class that other classes
 // will observe. This class publishes one event:
 // OnSecondChange. The observers subscribe to that event
 public class Clock
 {
 // the delegate the subscribers must implement
 public delegate void SecondChangeHandler
 (
 object clock,
 TimeInfoEventArgs timeInformation
);

 // the event we publish
 public event SecondChangeHandler OnSecondChange;

 // set the clock running
 // it will raise an event for each new second
 public void Run()
 {
 for(;;)
 {
 // sleep 10 milliseconds
 Thread.Sleep(10);

 // get the current time
 System.DateTime dt = System.DateTime.Now;

 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(
 dt.Hour,dt.Minute,dt.Second);

 // if anyone has subscribed, notify them
 if (OnSecondChange != null)
 {
 OnSecondChange(
 this,timeInformation);
 }
 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;

 }
 }
 private int hour;
 private int minute;
 private int second;
 }

 // an observer. DisplayClock subscribes to the
 // clock's events. The job of DisplayClock is

Programming C#

 275

 // to display the current time
 public class DisplayClock
 {
 // given a clock, subscribe to
 // its SecondChangeHandler event
 public void Subscribe(Clock theClock)
 {
 theClock.OnSecondChange +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 // the method that implements the
 // delegated functionality
 public void TimeHasChanged(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(),
 ti.minute.ToString(),
 ti.second.ToString());
 }
 }

 // a second subscriber whose job is to write to a file
 public class LogCurrentTime
 {
 public void Subscribe(Clock theClock)
 {
 theClock.OnSecondChange +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 // this method should write to a file
 // we write to the console to see the effect
 // this object keeps no state
 public void WriteLogEntry(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.hour.ToString(),
 ti.minute.ToString(),
 ti.second.ToString());
 }
 }

 public class Test
 {
 public static void Main()
 {
 // create a new clock
 Clock theClock = new Clock();

 // create the display and tell it to
 // subscribe to the clock just created
 DisplayClock dc = new DisplayClock();
 dc.Subscribe(theClock);

 // create a Log object and tell it
 // to subscribe to the clock
 LogCurrentTime lct = new LogCurrentTime();
 lct.Subscribe(theClock);

 276

 // Get the clock started
 theClock.Run();
 }
 }
}

Output:

Current Time: 14:53:56
Logging to file: 14:53:56
Current Time: 14:53:57
Logging to file: 14:53:57
Current Time: 14:53:58
Logging to file: 14:53:58
Current Time: 14:53:59
Logging to file: 14:53:59
Current Time: 14:54:0
Logging to file: 14:54:0

The net effect of this code is to create two classes, DisplayClock and LogCurrentTime, both of
which subscribe to a third class' event (Clock.OnSecondChange).

12.2.3 Decoupling Publishers from Subscribers

The Clock class could simply print the time rather than raising an event, so why bother with the
indirection of using delegates? The advantage of the publish/subscribe idiom is that any number of
classes can be notified when an event is raised. The subscribing classes do not need to know how the
Clock works, and the Clock does not need to know what they are going to do in response to the
event. Similarly, a button can publish an Onclick event, and any number of unrelated objects can
subscribe to that event, receiving notification when the button is clicked.

The publisher and the subscribers are decoupled by the delegate. This is highly desirable; it makes for
more flexible and robust code. The Clock can change how it detects time without breaking any of the
subscribing classes. The subscribing classes can change how they respond to time changes without
breaking the Clock. The two classes spin independently of one another, and that makes for code that
is easier to maintain.

Programming C#

 277

Part II: Programming with C#

Chapter 13. Building Windows Applications

The previous chapters have used console applications to demonstrate C# and the Common Language
Runtime. Although console applications can be implemented simply, it is time to turn your attention to
the reason you're learning the C# language in the first place: building Windows and web applications.

In the early days of Windows computing, an application ran on a desktop, in splendid isolation. Over
time, developers found it beneficial to spread their applications across a network, with the user
interface on one computer and a database on another. This division of responsibilities or partitioning of
an application came to be called two-tier or client-server application development. Later three-tier or n-
tier approaches emerged as developers began to use web servers to host business objects that could
handle the database access on behalf of clients.

When the Web first came along, there was a clear distinction between Windows applications and web
applications. Windows applications ran on the desktop or a local-area network (LAN), and web
applications ran on a distant server and were accessed by a browser. This distinction is now being
blurred as Windows applications reach out to the Web for services. Many new applications consist of
logic running on a client, a database server, and remote third-party computers located on the Web.
Traditional desktop applications such as Excel or Outlook are now able to integrate data retrieved
through web connections seamlessly, and web applications can distribute some of their processing to
client-side components.

The primary remaining distinction between a Windows application and a web application might be this:
who owns the user interface? Will your application use a browser to display its user interface, or will
the UI be built into the executable running on the desktop?

There are enormous advantages to web applications, starting with the obvious: they can be accessed
from any browser that can connect to the server. In addition, updates can be made at the server,
without the need to distribute new dynamic link libraries (DLLs) to your customers.

On the other hand, if your application derives no benefit from being on the Web, you might find that
you can achieve greater control over the look and feel of your application, or you can achieve better
performance, by building a desktop application.

.NET offers closely related, but distinguishable, suites of tools for building Windows or web
applications. Both are based on forms, with the premise that many applications have user interfaces
centered on interacting with the user through forms and controls, such as buttons, list boxes, text, and
so forth.

The tools for creating web applications are called Web-Forms and are considered in Chapter 15. The
tools for creating Windows applications are called Windows Forms and are the subject of this chapter.

It is my prediction that the distinction between Web-Forms and
Windows Forms is temporary. There is such obvious similarity
between these two approaches that I'd be very surprised if the
next version of .NET didn't merge these two tools into one unified
development environment.

In the following pages, you will learn how to create a simple Windows Form using either a text editor
such as Notepad or the Design tool in Visual Studio.NET. Next you will build a more complex Windows
application using Visual Studio, the Windows Forms framework, and a number of C# programming
techniques you learned in earlier chapters. The chapter concludes with a brief introduction to

 278

Documentation Comments, a new XML-facilitated means to document applications, and an
introduction to the deployment of .NET applications.

13.1 Creating a Simple Windows Form

A Windows Form is a tool for building a Windows application. The .NET Framework offers extensive
support for Windows application development, the centerpiece of which is the Windows Forms
framework. Not surprisingly, Windows Forms use the metaphor of a form. This idea was borrowed
from the wildly successful Visual Basic (VB) environment and supports Rapid Application
Development (RAD). Arguably, C# is the first development environment to marry the RAD tools of
Visual Basic with the object-oriented and high-performance characteristics of a C-family language.

13.1.1 Using Notepad

Visual Studio.NET provides a rich set of drag-and-drop tools for working with Windows Forms. It is
possible to build a Windows application without using the Visual Studio Integrated Development
Environment (IDE), but it is far more painful and takes a lot longer.

However, just to prove the point, you'll use Notepad to create a simple Windows Form application that
displays text in a window and implements a Cancel button. The application display is shown in Figure
13-1.

Figure 13-1. The hand-drawn Windows Form

You start by adding a using statement for the Windows Forms namespace:

using System.Windows.Forms;

The key to creating a Windows Form application is to derive your form from
System.Windows.Forms.Form:

public class HandDrawnClass : Form

The Form object represents any window displayed in your application. You can use the Form class to
create standard windows, as well as floating windows, tools, dialog boxes, and so forth. Microsoft
apparently chose to call this a form rather than a window to emphasize that most windows now have
an interactive component that includes controls for interacting with users.

All the Windows widgets you'll need (labels, buttons, list boxes, etc.) are found within the
Windows.Forms namespace. In the IDE, you'll be able to drag and drop these objects onto a
designer, but for now you'll declare them right in your program code.

To get started, declare the two widgets you need, a label to hold the Hello World text and a button
to exit the application:

Programming C#

 279

private System.Windows.Forms.Label lblOutput;
private System.Windows.Forms.Button btnCancel;

You're now ready to instantiate these objects, which you do in your Form's constructor:

this.lblOutput = new System.Windows.Forms.Label();
this.btnCancel = new System.Windows.Forms.Button();

Next you can set the Form's title text to Hello World:

this.Text = "Hello World";

Note that the preceding statements appear in your form's
constructor, HandDrawnClass, and so the this keyword refers
to the form itself.

Set the label's location, text, and size:

lblOutput.Location = new System.Drawing.Point (16, 24);
lblOutput.Text = "Hello World!";
lblOutput.Size = new System.Drawing.Size (216, 24);

The location is expressed as a System.Drawing.Point object, whose constructor takes a
horizontal and vertical position. The size is set with a Size object, whose constructor takes a
pair of integers that represent the width and height of the object.

The .NET Framework provides the System.Drawing object,
which encapsulates the Win32 GID+ graphics functions. Much of
the .NET Framework Class Library (FCL) consists of classes that
encapsulate Win32 methods as objects.

Next, do the same for the button object, setting its location, size, and text:

btnCancel.Location = new System.Drawing.Point (150,200);
btnCancel.Size = new System.Drawing.Size (112, 32);
btnCancel.Text = "&Cancel";

The button also needs an event handler. As described in Chapter 12, events (in this case the cancel
button-click event) are implemented using delegates. The publishing class (button) defines a
delegate (System.EventHandler) that the subscribing class (your form) must implement.

The delegated method can have any name but must return void and take two parameters: an object
(sender) and a SystemEventArgs object, typically named e:

protected void btnCancel_Click (
 object sender, System.EventArgs e)
{
 //...
}

You register your event handler method in two steps. First you create a new System.EventHandler
delegate, passing in the name of your method as a parameter:

new System.EventHandler (this.btnCancel_Click);

 280

You then add that delegate to the button's click event handler list with the += operator.

The following line combines these steps into one:

one:btnCancel.Click +=
 new System.EventHandler (this.btnCancel_Click);

Now you must set up the form's dimensions. The form property AutoScaleBaseSize sets the base
size used at display time to compute the scaling factor for the form. The ClientSize property sets
the size of the form's client area, which is the size of the form excluding borders and titlebar (when you
use the designer, these values are provided for you interactively):

this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (300, 300);

Finally, remember to add the widgets to the form:

this.Controls.Add (this.btnCancel);
this.Controls.Add (this.lblOutput);

Having registered the event handler, you must supply the implementation. For this example, clicking
Cancel will exit the application, using the static method Exit() of the Application class:

protected void btnCancel_Click (
 object sender, System.EventArgs e)
{
 Application.Exit ();
}

That's it; you just need an entry point to invoke the constructor on the form:

public static void Main()
{
 Application.Run(new HandDrawnClass());
}

The complete source is shown in Example 13-1. When you run this application, the window is
opened and the text is displayed. Pressing Cancel closes the application.

Example 13-1. Creating a hand-drawn Windows Form
using System;
using System.Windows.Forms;

namespace ProgCSharp
{
 public class HandDrawnClass : Form
 {
 // a label to display Hello World
 private System.Windows.Forms.Label
 lblOutput;

 // a cancel button
 private System.Windows.Forms.Button
 btnCancel;

 public HandDrawnClass()
 {

Programming C#

 281

 // create the objects
 this.lblOutput =
 new System.Windows.Forms.Label ();
 this.btnCancel =
 new System.Windows.Forms.Button ();

 // set the form's title
 this.Text = "Hello World";

 // set up the output label
 lblOutput.Location =
 new System.Drawing.Point (16, 24);
 lblOutput.Text = "Hello World!";
 lblOutput.Size =
 new System.Drawing.Size (216, 24);

 // set up the cancel button
 btnCancel.Location =
 new System.Drawing.Point (150,200);
 btnCancel.Size =
 new System.Drawing.Size (112, 32);
 btnCancel.Text = "&Cancel";

 // set up the event handler
 btnCancel.Click +=
 new System.EventHandler (this.btnCancel_Click);

 // Add the controls and set the client area
 this.AutoScaleBaseSize =
 new System.Drawing.Size (5, 13);
 this.ClientSize =
 new System.Drawing.Size (300, 300);
 this.Controls.Add (this.btnCancel);
 this.Controls.Add (this.lblOutput);

 }

 // handle the cancel event
 protected void btnCancel_Click (
 object sender, System.EventArgs e)
 {
 Application.Exit();
 }

 // Run the app
 public static void Main()
 {
 Application.Run(new HandDrawnClass());
 }
 }
}

13.1.2 Using the Visual Studio.Net Designer

Although hand coding is always great fun, it is also a lot of work, and the result in the previous
example is not as elegant as most programmers would expect. The Visual Studio IDE provides a
design tool for Windows Forms that is much easier to use.

 282

To begin work on a new Windows application, first open Visual Studio and choose New Project. In the
New Project window, create a new C# Windows application and name it ProgCSharpWindowsForm,
as shown in Figure 13-2.

Figure 13-2. Creating a Windows Form application

Visual Studio responds by creating a Windows Form application and, best of all, putting you into a
design environment as shown in Figure 13-3.

Figure 13-3. The design environment

Programming C#

 283

The Design window displays a blank Windows Form (Form1). A Toolbox window is also available, with
a selection of Windows widgets and controls. If the Toolbox is not displayed, try clicking the word
"Toolbox," or select View Toolbox on the Visual Studio menu. You can also use the keyboard
shortcut Ctrl-Alt-X to display the Toolbox. With the Toolbox displayed, you can drag a label and a
button directly onto the form, as shown in Figure 13-4.

Figure 13-4. The Windows Form development environment

 284

Before proceeding, take a look around. The Toolbox is filled with controls that you can add to your
Windows Form application. In the upper-right corner you should see the Solution Explorer, a window
which displays all the files in your projects. In the lower-right corner is the Properties window, which
displays all the properties of the currently selected item. In Figure 13-4, the label (label1) is
selected, and the Properties window displays its properties.

You can use the Properties window to set the static properties of the various controls. For example, to
add text to label1, you can type the words "Hello World" into the box to the right of its Text property.
If you want to change the font for the lettering in the HelloWorld label, you click the Font property
shown in the lower-right corner of Figure 13-5. (You can provide text in the same way for your button
(button1) by selecting it in the Property window and typing the word "Cancel" into its Text property.)

Figure 13-5. Modifying the font

Programming C#

 285

Any one of these steps is much easier than modifying these properties in code (though that is certainly
still possible).

Once you have the form laid out the way you want, all that remains is to create an event handler for
the Cancel button. Double-clicking the Cancel button will create the event handler, register it, and put
you on the code-behind page (the page that holds the source code for this form), where you can enter
the event handling logic, as shown in Figure 13-6.

Figure 13-6. After double-clicking the Cancel button

 286

The cursor is already in place; you have only to enter the one line of code:

Application.Exit();

In the IDE, the cursor flashes, making it very easy to see where
the code goes. For most readers, the cursor probably will not flash
in this book.

Visual Studio.NET generates all the code necessary to create and initialize the components. The
complete source code is shown in Example 13-2, including the one line of code you provided (shown
in bold in this example) to handle the Cancel button-click event.

Example 13-2. Source code generated by the IDE
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace ProgCSharpWindowsForm
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Label lblOutput;
 private System.Windows.Forms.Button btnCancel;
 /// <summary>
 /// Required designer variable.

Programming C#

 287

 /// </summary>
 private System.ComponentModel.Container
 components;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code
 // after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 public override void Dispose()
 {
 base.Dispose();
 if(components != null)
 components.Dispose();
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.lblOutput = new System.Windows.Forms.Label();
 this.btnCancel = new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // lblOutput
 //
 this.lblOutput.Font = new System.Drawing.Font("Arial", 15.75F,
 System.Drawing.FontStyle.Bold,
 System.Drawing.GraphicsUnit.Point, ((System.Byte)(0)));
 this.lblOutput.Location = new System.Drawing.Point(24, 16);
 this.lblOutput.Name = "lblOutput";
 this.lblOutput.Size = new System.Drawing.Size(136, 48);
 this.lblOutput.TabIndex = 0;
 this.lblOutput.Text = "Hello World";
 //
 // btnCancel
 //
 this.btnCancel.Location = new System.Drawing.Point(192, 208);
 this.btnCancel.Name = "btnCancel";
 this.btnCancel.TabIndex = 1;
 this.btnCancel.Text = "Cancel";
 this.btnCancel.Click += new System.EventHandler(
 this.btnCancel_Click);
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 288

 this.ClientSize = new System.Drawing.Size(292, 273);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.btnCancel, this.lblOutput});
 this.Name = "Form1";
 this.Text = "Form1";
 this.ResumeLayout(false);

 }

 private void btnCancel_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }

 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 }
}

Some of the code in this listing has been reformatted to fit the
printed page.

There is quite a bit of code in this listing that did not appear in; though most of it is not terribly
important. When Visual Studio creates the application, it must add some boilerplate code that is not
essential for this simple application.

A careful examination reveals that the essentials are the same, but there are some key differences
worth examining. The listing starts with special comment marks:

/// <summary>
/// Summary description for Form1.
/// </summary>

These marks are used for creating documentation; they are explained in detail later in this chapter.

The form derives from System.Windows.Forms.Form as did our earlier example. The widgets are
defined as in the previous example:

public class Form1 : System.Windows.Forms.Form
{
 private System.Windows.Forms.Label lblOutput;
 private System.Windows.Forms.Button btnCancel;

The designer creates a private container variable for its own use:

private System.ComponentModel.Container
 components;

Programming C#

 289

In this and in every Windows Form application generated by Visual Studio .NET, the constructor calls
a private method, InitializeComponent(), which is used to define and set the properties of all
the controls. The properties are set based on the values you've chosen (or on the default values
you've left alone) in the designer. The InitializeComponent() method is marked with a
comment that you should not modify the contents of this method; making changes to this method
might confuse the designer.

This program will behave exactly as your earlier hand-crafted application did.

13.2 Creating a Windows Form Application

To see how Windows Forms can be used to create a more realistic Windows application, in this
section you'll build a utility named FileCopier that copies all files from a group of directories
selected by the user to a single target directory or device, such as a floppy or backup hard drive on the
company network. Although you won't implement every possible feature, you can imagine
programming this application so that you can mark dozens of files and have them copied to multiple
disks; packing them as tightly as possible. You might even extend the application to compress the files.
The true goal of this example is for you to exercise many of the C# skills learned in earlier chapters
and to explore the Windows.Forms namespace.

For the purposes of this example and to keep the code simple, you'll focus on the user interface and
the steps needed to wire up its various controls. The final application UI is shown in Figure 13-7.

Figure 13-7. The FileCopier user interface

The user interface for FileCopier consists of the following controls:

• Labels: Source Files and Target Directory

 290

• Buttons: Clear, Copy, Delete, and Cancel
• An "Overwrite if exists"-checkbox
• A text box displaying the path of the selected target directory
• Two large tree view controls, one for available source directories and one for available target

devices and directories

The goal is to allow the user to check files (or entire directories) in the left tree view (source). If the
user presses the Copy button, the files checked on the left side will be copied to the Target Directory
specified in the right-hand control. If the user presses Delete, the checked files will be deleted.

The rest of this chapter implements a number of FileCopier features in order to demonstrate the
fundamental features of Windows Forms.

13.2.1 Creating the Basic UI Form

The first task is to open a new project named FileCopier. The IDE puts you into the Designer,
where you can drag widgets onto the form. You can expand the form to the size you want. Drag label,
button, checkbox, and tree view controls from the Toolbox onto your form until it looks more or less
like the one shown in Figure 13-8.

You want checkboxes next to the directories and files in the source selection window but not in the
target (where only one directory will be chosen). Set the CheckBoxes property on the left TreeView
control, tvwSource, to true and set the property on the right-hand TreeView control,
tvwTargetDir, to false. To do so, click each control in turn and adjust the values in the Properties
window.

Figure 13-8. Creating the form in the designer

Once this is done, double-click the Cancel button to create its event handler: when you double-click a
control, Visual Studio.NET creates an event handler for that object. One particular event is the target
event, and Visual Studio.NET opens that event's event handler:

protected void btnCancel_Click (object sender, System.EventArgs e)
{

Programming C#

 291

 Application.Exit();
}

You can set many different events for the TreeView control. You can set them programmatically by
clicking the Events button in the Properties window. From there you can create new handlers, just by
filling in a new event handler method name. Visual Studio.NET will register the event handler and
open the editor for the code, where it will create the header and put the cursor in an empty method
body.

So much for the easy part. Visual Studio.NET will generate code to set up the form and initialize all the
controls, but it won't fill the TreeView controls. That you must do by hand.

13.2.2 Populating the TreeView Controls

The two TreeView controls work identically, except that the left control, tvwSource, lists the
directories and files, whereas the right control, tvwTargetDir, lists only directories. The
CheckBoxes property on tvwSource is set to true, and on tvwTargetDir it is set to false. Also,
although tvwSource will allow multiselect, which is the default for TreeView controls, you will
enforce single selection for tvwTargetDir.

You'll factor the common code for both TreeView controls into a shared method
FillDirectoryTree and pass in the control with a flag indicating whether to get the files. You'll call
this method from the constructor, once for each of the two controls:

FillDirectoryTree(tvwSource, true);
FillDirectoryTree(tvwTargetDir, false);

The FillDirectoryTree implementation names the TreeView parameter tvw. This will represent
the source TreeView and the destination TreeView in turn.

private void FillDirectoryTree(TreeView tvw, bool isSource)

13.2.2.1 TreeNode objects

The TreeView control has a property, Nodes, which gets a TreeNodeCollection object. The
TreeNodeCollection is a collection of TreeNode objects, each of which represents a node in the
tree. Start by emptying that collection:

tvw.Nodes.Clear();

You are ready to fill the TreeView's Nodes collection by recursing through the directories of all the
drives. First, you get all the logical drives on the system. To do so you call a static method of the
Environment object, GetLogicalDrives(). The Environment class provides information
about and access to the current platform environment. You can use the Environment object to get
the machine name, OS version, system directory, and so forth, from the computer on which you are
running your program.

string[] strDrives = Environment.GetLogicalDrives();

GetLogicalDrives() returns an array of strings, each of which represents the root directory of
one of the logical drives. You will iterate over that collection, adding nodes to the TreeView control as
you go.

foreach (string rootDirectoryName in strDrives)
{

 292

You should process each drive within the foreach loop. The very first thing you need to determine is
whether the drive is ready. My hack for that is to get the list of top-level directories from the drive by
calling GetDirectories() on a DirectoryInfo object I created for the root directory:

DirectoryInfo dir = new DirectoryInfo(rootDirectoryName);
dir.GetDirectories();

The DirectoryInfo class exposes instance methods for creating, moving, and enumerating
through directories, their files, and their subdirectories. The DirectoryInfo class is covered in detail
in Chapter 21.

The GetDirectories() method returns a list of directories, but you'll throw this list away. You are
calling it here only to generate an exception if the drive is not ready.

You'll wrap the call in a try block and take no action in the catch block. The effect is that if an exception
is thrown, the drive is skipped.

Once you know that the drive is ready, you create a TreeNode to hold the root directory of the drive
and add that node to the TreeView control:

TreeNode ndRoot = new TreeNode(rootDirectoryName);
tvw.Nodes.Add(ndRoot);

You now want to recurse through the directories, so you call into a new routine,
GetSubDirectoryNodes(), passing in the root node, the name of the root directory, and the flag
indicating whether you want files:

if (isSource)
{
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, true);
}
else
{
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, false);
}

You're probably wondering why you need to pass in ndRoot.Text if you're already passing in
ndRoot. Patience; you'll see why this is needed when you recurse back into
GetSubDirectoryNodes.

13.2.2.2 Recursing through the subdirectories

GetSubDirectoryNodes() begins by once again calling GetDirectories(), this time
stashing away the resulting array of DirectoryInfo objects:

private void GetSubDirectoryNodes(
 TreeNode parentNode, string fullName, bool getFileNames)
{
 DirectoryInfo dir = new DirectoryInfo(fullName);
 DirectoryInfo[] dirSubs = dir.GetDirectories();

Notice that the node passed in is named parentNode. The current level of nodes will be considered
children to the node passed in. This is how you map the directory structure to the hierarchy of the tree
view.

Iterate over each subdirectory, skipping any that are marked Hidden:

Programming C#

 293

foreach (Directory dirSub in dirSubs)
{
 if ((dirSub.Attributes &
 FileSystemAttributes.Hidden) != 0)
 {
 continue;
 }

FileSystemAttributes is an enum; other possible values include Archive, Compressed,
Directory, Encrypted, Hidden, Normal, ReadOnly, etc.

The property dirSub.Attributes is the bit pattern of the
current attributes of the directory. If you logically AND that value
with the bit pattern FileSystemAttributes.Hidden, a bit is
set if the file has the hidden attribute; otherwise all the bits are
cleared. You can test for any hidden bit by testing whether the
resulting int is other than zero.

You create a TreeNode with the directory name and add it to the Nodes collection of the node passed
in to the method (parentNode):

TreeNode subNode = new TreeNode(dirSub.Name);
parentNode.Nodes.Add(subNode);

You now recurse back into the GetSubDirectoryNodes() method, passing in the node you just
created as the new parent, the full path as the full name of the parent, and the flag:

GetSubDirectoryNodes(subNode,dirSub.FullName,getFileNames);

Notice that the call to the TreeNode constructor uses the Name
property of the DirectoryInfo object, while the call to
GetSubDirectoryNodes() uses the FullName property. If
your directory is c:\WinNT\Media\Sounds, the FullName
property will return the full path, while the Name property will return
just Sounds. You pass in only the name to the node because that
is what you want displayed in the tree view. You pass in the full
name with path to the GetSubDirectoryNodes() method so
that the method can locate all the subdirectories on the disk. This
answers the question asked earlier as to why you need to pass in
the root node's name the first time you call this method; what is
passed in is not the name of the node, it is the full path to the
directory represented by the node!

13.2.2.3 Getting the files in the directory

Once you've recursed through the subdirectories, it is time to get the files for the directory, if the
getFileNames flag is true. To do so, you call the GetFiles() method on the DirectoryInfo
object. What is returned is an array of FileInfo objects:

if (getFileNames)
{
 // Get any files for this node.

 294

 FileInfo[] files = dir.GetFiles();

The FileInfo class (covered in Chapter 21) provides instance methods for manipulating files.

You can now iterate over this collection, accessing the Name property of the FileInfo object and
passing that name to the constructor of a TreeNode, which you then add to the parent node's Nodes
collection (thus creating a child node). There is no recursion this time because files do not have
subdirectories:

foreach (FileInfo file in files)
{
 TreeNode fileNode = new TreeNode(file.Name);
 parentNode.Nodes.Add(fileNode);
}

That's all it takes to fill the two tree views.

If you found any of this confusing, I highly recommend putting the
code into your debugger and stepping through the recursion; you
can watch the TreeView build its nodes.

13.2.3 Handling TreeView Events

You must handle a number of events in this example. First, the user might click Cancel, Copy, Clear,
or Delete. Second, the user might click one of the checkboxes in the left TreeView or one of the
nodes in the right TreeView.

Let's consider the clicks on the TreeViews first, as they are the more interesting, and potentially the
more challenging.

13.2.3.1 Clicking the source TreeView

There are two TreeView objects, each with its own event handler. Consider the source TreeView
object first. The user checks the files and directories he wants to copy from. Each time the user clicks
a file or directory, a number of events are raised. The event you must handle is AfterCheck.

To do so, you implement a custom event-handler method you will create and name
tvwSource_AfterCheck(). Visual Studio.NET will wire this to the event handler, or if you are not
using the integrated development environment, you must do so yourself.

tvwSource.AfterCheck +=
new System.Windows.Forms.TreeViewEventHandler
 (this.tvwSource_AfterCheck);

The implementation of AfterCheck() delegates the work to a recursable method named
SetCheck(), you'll also write.

protected void tvwSource_AfterCheck (
object sender, System.Windows.Forms.TreeViewEventArgs e)
{
 SetCheck(e.node,e.node.Checked);
}

Programming C#

 295

The event handler passes in the sender object and an object of type TreeViewEventArgs. It turns
out that you can get the node from this TreeViewEventArgs object (e). You call SetCheck(),
passing in the node and the state of whether the node has been checked.

Each node has a Nodes property, which gets a TreeNodeCollection containing all the subnodes.
SetCheck() recurses through the current node's Nodes collection, setting each subnode's check
mark to match that of the node that was checked. In other words, when you check a directory, all its
files and subdirectories are checked, recursively, all the way down.

It's Turtles, All the Way Down

My favorite story on recursion is this: it happened that a famous Darwinist
was telling a story about primitive creation myths. "Some peoples," he said,
"believe the world rests on the back of a great turtle. Of course, that raises
the question: on what does the turtle rest?"

An elderly woman from the back of the room stood up and said, "Very clever,
Sonny, but it's turtles, all the way down."

For each TreeNode in the Nodes collection, you check to see if it is a leaf. A node is a leaf if its own
Nodes collection has a count of zero. If so, you set its check property to whatever was passed in as a
parameter. If it is not a leaf, you recurse.

private void SetCheck(TreeNode node, bool check)
{
 node.Checked = check;

 foreach (TreeNode n in node.Nodes)
 {
 if (node.Nodes.Count == 0)
 {
 node.Checked = check;
 }
 else
 {
 SetCheck(n,check);
 }
 }
}

This propagates the check mark (or clears the check mark) down through the entire structure. In this
way, the user can indicate that he wants to select all the files in all the subdirectories by clicking a
single directory.

13.2.3.2 Clicking the target TreeView

The event handler for the target TreeView is somewhat trickier. The event itself is AfterSelect.
(Remember that the target TreeView does not have checkboxes.) This time, you want to take the one
directory chosen and put its full path into the text box at the upper-left corner of the form.

To do so, you must work your way up through the nodes, finding the name of each parent directory
and building the full path:

protected void tvwTargetDir_AfterSelect (

 296

 object sender, System.Windows.Forms.TreeViewEventArgs e)
{

 string theFullPath = GetParentString(e.node);

We'll look at GetParentString() in just a moment. Once you have the full path, you must lop off
the backslash (if any) on the end and then you can fill the text box:

if (theFullPath.EndsWith("\\"))
{
 theFullPath =
 theFullPath.Substring(0,theFullPath.Length-1);
}
txtTargetDir.Text = theFullPath;

The GetParentString() method takes a node and returns a string with the full path. To do so, it
recurses upward through the path, adding the backslash after any node that is not a leaf:

private string GetParentString(TreeNode node)
{
 if(node.Parent == null)
 {
 return node.Text;
 }
 else
 {
 return GetParentString(node.Parent) + node.Text +
 (node.Nodes.Count == 0 ? "" : "\\");
 }
}

The conditional operator (?) is the only ternary operator in C# (a
ternary operator takes three terms). The logic is: "test whether
node.Nodes.Count is zero; if so return the value before the
colon (in this case an empty string); otherwise return the value
after the colon (in this case a backslash).

The recursion stops when there is no parent; that is, when you hit the root directory.

13.2.3.3 Handling the Clear button event

Given the SetCheck() method developed earlier, handling the Clear button's click event is trivial:

protected void btnClear_Click (object sender, System.EventArgs e)
{
 foreach (TreeNode node in tvwSource.Nodes)
 {
 SetCheck(node, false);
 }
}

You just call the SetCheck() method on the root nodes and tell them to recursively uncheck all their
contained nodes.

Programming C#

 297

13.2.4 Implementing the Copy Button Event

Now that you can check the files and pick the target directory, you're ready to handle the Copy button-
click event. The very first thing you need to do is to get a list of which files were selected. What you
want is an array of FileInfo objects, but you have no idea how many objects will be in the list. That is a
perfect job for ArrayList. You'll delegate responsibility for filling the list to a method called
GetFileList():

protected void btnCopy_Click (
 object sender, System.EventArgs e)
{
 ArrayList fileList = GetFileList();

Let's pick that method apart before returning to the event handler.

13.2.4.1 Getting the selected files

You start by instantiating a new ArrayList object to hold the strings representing the names of all
the files selected:

private ArrayList GetFileList()
{
 ArrayList fileNames = new ArrayList();

To get the selected filenames, you can walk through the source TreeView control:

foreach (TreeNode theNode in tvwSource.Nodes)
{
 GetCheckedFiles(theNode, fileNames);
}

To see how this works, you want to step into the GetCheckedFiles() method. This method is
pretty simple: it examines the node it was handed. If that node has no children (node.Nodes.Count
== 0), it is a leaf. If that leaf is checked, you want to get the full path (by calling
GetParentString() on the node) and add it to the ArrayList passed in as a parameter:

private void GetCheckedFiles(TreeNode node, ArrayList fileNames)
{
 if (node.Nodes.Count == 0)
 {
 if (node.Checked)
 {
 string fullPath = GetParentString(node);
 fileNames.Add(fullPath);
 }
 }

If the node is not a leaf, you want to recurse down the tree, finding the child nodes:

else
 {
 foreach (TreeNode n in node.Nodes)
 {
 GetCheckedFiles(n,fileNames);
 }
 }
}

 298

This will return the ArrayList filled with all the filenames. Back in GetFileList(), you'll use this
ArrayList of filenames to create a second ArrayList, this time to hold the actual FileInfo
objects:

ArrayList fileList = new ArrayList();

Notice that once again you do not tell the ArrayList constructor what kind of object it will hold. This
is one of the advantages of a rooted type-system; the collection only needs to know that it has some
kind of Object; because all types are derived from Object, the list can hold FileInfo objects as
easily as it can hold string objects.

You can now iterate through the filenames in ArrayList, picking out each name and instantiating a
FileInfo object with it. You can detect if it is a file or a directory by calling the Exists property,
which will return false if the File object you created is actually a directory. If it is a File, you can
add it to the new ArrayList:

foreach (string fileName in fileNames)
{
 FileInfo file = new File(fileName);

 if (file.Exists)
 {
 fileList.Add(file);
 }
}

13.2.4.2 Sorting the list of selected files

You want to work your way through the list of selected files in large to small order so that you can pack
the target disk as tightly as possible. You must therefore sort the ArrayList. You can call its Sort()
method, but how will it know how to sort File objects? Remember, the ArrayList has no special
knowledge about its contents.

To solve this, you must pass in an IComparer interface. We'll create a class called FileComparer
that will implement this interface and that will know how to sort FileInfo objects:

public class FileComparer : IComparer
{

This class has only one method, Compare(), which takes two objects as arguments:

public int Compare (object f1, object f2)
{

The normal approach is to return 1 if the first object (f1) is larger than the second (f2), to return -1 if
the opposite is true, and to return 0 if they are equal. In this case, however, you want the list sorted
from big to small, so you should reverse the return values.

Since this is the only use of this compare method, it is reasonable
to put this special knowledge that the sort is from big to small right
into the compare method itself. The alternative is to sort small to
big, and have the calling method reverse the results, as you
saw in Example 12-1.

Programming C#

 299

To test the length of the FileInfo object, you must cast the Object parameters to FileInfo
objects (which is safe, as you know this method will never receive anything else):

FileInfo file1 = (FileInfo) f1;
 FileInfo file2 = (FileInfo) f2;
 if (file1.Length > file2.Length)
 {
 return -1;
 }
 if (file1.Length < file2.Length)
 {
 return 1;
 }
 return 0;
 }
}

In a production program, you might want to test the type of the
object and perhaps handle the exception if the object is not of the
expected type.

Returning to GetFileList(), you were about to instantiate the IComparer reference and pass it
to the Sort() method of fileList:

IComparer comparer = (IComparer) new FileComparer();
fileList.Sort(comparer);

That done, you can return fileList to the calling method:

return fileList;

The calling method was btnCopy_Click. Remember you went off to GetFileList() in the first
line of the event handler!

protected void btnCopy_Click (object sender, System.EventArgs e)
{
 ArrayList fileList = GetFileList();

At this point you've returned with a sorted list of File objects, each representing a file selected in the
source TreeView.

You can now iterate through the list, copying the files and updating the UI:

foreach (FileInfo file in fileList)
{
 try
 {
 lblStatus.Text = "Copying " +
 txtTargetDir.Text + "\\" +
 file.Name + "...";
 Application.DoEvents();

 file.CopyTo(txtTargetDir.Text + "\\" +
 file.Name,chkOverwrite.Checked);
 }

 catch (Exception ex)

 300

 {
 MessageBox.Show(ex.Message);
 }
}
lblStatus.Text = "Done.";
Application.DoEvents();

As you go, you write the progress to the lblStatus label and call Application.DoEvents() to
give the UI an opportunity to redraw. You then call CopyTo() on the file, passing in the target
directory, obtained from the text field, and a Boolean flag indicating whether the file should be
overwritten if it already exists.

You'll notice that the flag you pass in is the value of the chkOverWrite checkbox. The Checked
property evaluates true if the checkbox is checked and false if not.

The copy is wrapped in a try block because you can anticipate any number of things going wrong
when copying files. For now, you handle all exceptions by popping up a dialog box with the error, but
you might want to take corrective action in a commercial application.

That's it; you've implemented file copying!

13.2.5 Handling the Delete Button Event

The code to handle the delete event is even simpler. The very first thing you do is ask the user if she is
sure she wants to delete the files:

protected void btnDelete_Click
(object sender, System.EventArgs e)
{
System.Windows.Forms.DialogResult result =
 MessageBox.Show(
 "Are you quite sure?", // msg
 "Delete Files", // caption
 MessageBoxButtons.OKCancel, // buttons
 MessageBoxIcon.Exclamation, // icons
 MessageBoxDefaultButton.Button2); // default button
}

You can use the MessageBox static Show() method, passing in the message you want to display,
the title "Delete Files" as a string, and flags.

• MessageBox.OKCancel asks for two buttons: OK and Cancel.
• MessageBox.IconExclamation indicates that you want to display an exclamation mark

icon.
• MessageBox.DefaultButton.Button2 sets the second button (Cancel) as the default

choice.

When the user chooses OK or Cancel, the result is passed back as a
System.Windows.Forms.DialogResult enumerated value. You can test this value to see if the
user pressed OK:

if (result == System.Windows.Forms.DialogResult.OK)
{

If so, you can get the list of fileNames and iterate through it, deleting each as you go:

Programming C#

 301

ArrayList fileNames = GetFileList();

foreach (FileInfo file in fileNames)
{
 try
 {
 lblStatus.Text = "Deleting " +
 txtTargetDir.Text + "\\" +
 file.Name + "...";
 Application.DoEvents();

 file.Delete();
 }

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}
lblStatus.Text = "Done.";
Application.DoEvents();

This code is identical to the copy code, except that the method that is called on the file is Delete().

Example 13-3 provides the commented source code for this example.

To save space, this example shows only the custom methods and
leaves out the declarations of the Windows.Forms objects as
well as the boilerplate code produced by Visual Studio.NET. As
explained in the preface, you can download the complete source
code from my web site, http://www.LibertyAssociates.com.

Example 13-3. File copier source code
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

/// <remarks>
/// File Copier - WinForms demonstration program
/// (c) Copyright 2001 Liberty Associates, Inc.
/// </remarks>
namespace FileCopier
{
 /// <summary>
 /// Form demonstrating Windows Forms implementation
 /// </summary>

 // < declarations of Windows widgets cut here >

 public class Form1 : System.Windows.Forms.Form
 {
 /// <summary>

 302

 /// internal class which knows how to compare
 /// two files we want to sort large to small,
 /// so reverse the normal return values.
 /// </summary>
 public class FileComparer : IComparer
 {
 public int Compare (object f1, object f2)
 {
 FileInfo file1 = (FileInfo) f1;
 FileInfo file2 = (FileInfo) f2;
 if (file1.Length > file2.Length)
 {
 return -1;
 }
 if (file1.Length < file2.Length)
 {
 return 1;
 }
 return 0;
 }
 }

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 // fill the source and target directory trees
 FillDirectoryTree(tvwSource, true);
 FillDirectoryTree(tvwTargetDir, false);
 }
 /// <summary>
 /// Fill the directory tree for either the Source or
 /// Target TreeView.
 /// </summary>
 private void FillDirectoryTree(
 TreeView tvw, bool isSource)
 {
 // Populate tvwSource, the Source TreeView,
 // with the contents of
 // the local hard drive.
 // First clear all the nodes.
 tvw.Nodes.Clear();

 // Get the logical drives and put them into the
 // root nodes. Fill an array with all the
 // logical drives on the machine.
 string[] strDrives =
 Environment.GetLogicalDrives();

 // Iterate through the drives, adding them to the tree.
 // Use a try/catch block, so if a drive is not ready,
 // e.g. an empty floppy or CD,
 // it will not be added to the tree.
 foreach (string rootDirectoryName in strDrives)
 {
 if (rootDirectoryName != @"C:\")
 continue;
 try

Programming C#

 303

 {

 // Fill an array with all the first level
 // subdirectories. If the drive is
 // not ready, this will throw an exception.
 DirectoryInfo dir =
 new DirectoryInfo(rootDirectoryName);
 dir.GetDirectories();

 TreeNode ndRoot = new TreeNode(rootDirectoryName);

 // Add a node for each root directory.
 tvw.Nodes.Add(ndRoot);

 // Add subdirectory nodes.
 // If TreeView is the source,
 // then also get the filenames.
 if (isSource)
 {
 GetSubDirectoryNodes(
 ndRoot, ndRoot.Text, true);
 }
 else
 {
 GetSubDirectoryNodes(
 ndRoot, ndRoot.Text, false);
 }

 }
 catch (Exception e)
 {
 // Catch any errors such as
 // Drive not ready.
 MessageBox.Show(e.Message);
 }
 }
 } // close for FillSourceDirectoryTree

 /// <summary>
 /// Gets all the subdirectories below the
 /// passed in directory node.
 /// Adds to the directory tree.
 /// The parameters passed in at the parent node
 /// for this subdirectory,
 /// the full pathname of this subdirectory,
 /// and a Boolean to indicate
 /// whether or not to get the files in the subdirectory.
 /// </summary>
 private void GetSubDirectoryNodes(
 TreeNode parentNode, string fullName, bool getFileNames)
 {
 DirectoryInfo dir = new DirectoryInfo(fullName);
 DirectoryInfo[] dirSubs = dir.GetDirectories();

 // Add a child node for each subdirectory.
 foreach (DirectoryInfo dirSub in dirSubs)
 {
 // do not show hidden folders
 if ((dirSub.Attributes & FileAttributes.Hidden)
 != 0)

 304

 {
 continue;
 }

 /// <summary>
 /// Each directory contains the full path.
 /// We need to split it on the backslashes,
 /// and only use
 /// the last node in the tree.
 /// Need to double the backslash since it
 /// is normally
 /// an escape character
 /// </summary>

 TreeNode subNode = new TreeNode(dirSub.Name);
 parentNode.Nodes.Add(subNode);

 // Call GetSubDirectoryNodes recursively.
 GetSubDirectoryNodes(
 subNode,dirSub.FullName,getFileNames);
 }

 if (getFileNames)
 {
 // Get any files for this node.
 FileInfo[] files = dir.GetFiles();

 // After placing the nodes,
 // now place the files in that subdirectory.
 foreach (FileInfo file in files)
 {
 TreeNode fileNode = new TreeNode(file.Name);
 parentNode.Nodes.Add(fileNode);
 }
 }
 }

 // < boilerplate code cut here >

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 /// <summary>
 /// Create an ordered list of all
 /// the selected files, copy to the
 /// target directory
 /// </summary>
 private void btnCopy_Click(object sender,
 System.EventArgs e)
 {
 // get the list
 ArrayList fileList = GetFileList();

 // copy the files

Programming C#

 305

 foreach (FileInfo file in fileList)
 {
 try
 {
 // update the label to show progress
 lblStatus.Text = "Copying " + txtTargetDir.Text +
 "\\" + file.Name + "...";
 Application.DoEvents();

 // copy the file to its destination location
 file.CopyTo(txtTargetDir.Text + "\\" +
 file.Name,chkOverwrite.Checked);
 }

 catch // (Exception ex)
 {
 // you may want to do more than just show the message
 // MessageBox.Show(ex.Message);
 }
 }
 lblStatus.Text = "Done.";
 Application.DoEvents();

 }

 /// <summary>
 /// on cancel, exit
 /// </summary>
 private void btnCancel_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }

 /// <summary>
 /// Tell the root of each tree to uncheck
 /// all the nodes below
 /// </summary>
 private void btnClear_Click(object sender, System.EventArgs e)
 {
 // get the top most node for each drive
 // and tell it to clear recursively
 foreach (TreeNode node in tvwSource.Nodes)
 {
 SetCheck(node, false);
 }

 }

 /// <summary>
 /// check that the user does want to delete
 /// Make a list and delete each in turn
 /// </summary>
 private void btnDelete_Click(object sender, System.EventArgs e)
 {
 // ask them if they are sure
 System.Windows.Forms.DialogResult result =
 MessageBox.Show(
 "Are you quite sure?", // msg
 "Delete Files", // caption
 MessageBoxButtons.OKCancel, // buttons
 MessageBoxIcon.Exclamation, // icons

 306

 MessageBoxDefaultButton.Button2); // default button

 // if they are sure...
 if (result == System.Windows.Forms.DialogResult.OK)
 {
 // iterate through the list and delete them.
 // get the list of selected files
 ArrayList fileNames = GetFileList();

 foreach (FileInfo file in fileNames)
 {
 try
 {
 // update the label to show progress
 lblStatus.Text = "Deleting " +
 txtTargetDir.Text + "\\" +
 file.Name + "...";
 Application.DoEvents();

 // Danger Will Robinson!
 file.Delete();

 }

 catch (Exception ex)
 {
 // you may want to do more than
 // just show the message
 MessageBox.Show(ex.Message);
 }
 }
 lblStatus.Text = "Done.";
 Application.DoEvents();
 }
 }

 /// <summary>
 /// Get the full path of the chosen directory
 /// copy it to txtTargetDir
 /// </summary>
 private void tvwTargetDir_AfterSelect(
 object sender,
 System.Windows.Forms.TreeViewEventArgs e)
 {
 // get the full path for the selected directory
 string theFullPath = GetParentString(e.Node);

 // if it is not a leaf, it will end with a backslash
 // remove the backslash
 if (theFullPath.EndsWith("\\"))
 {
 theFullPath =
 theFullPath.Substring(0,theFullPath.Length-1);
 }
 // insert the path in the text box
 txtTargetDir.Text = theFullPath;
 }

Programming C#

 307

 /// <summary>
 /// Mark each node below the current
 /// one with the current value of checked
 /// </summary>
 private void tvwSource_AfterCheck(object sender,
 System.Windows.Forms.TreeViewEventArgs e)
 {
 // Call a recursible method.
 // e.node is the node which was checked by the user.
 // The state of the check mark is already
 // changed by the time you get here.
 // Therefore, we want to pass along
 // the state of e.node.Checked.
 SetCheck(e.Node,e.Node.Checked);

 }
 /// <summary>
 /// recursively set or clear check marks
 /// </summary>
 private void SetCheck(TreeNode node, bool check)
 {
 // set this node's check mark
 node.Checked = check;

 // find all the child nodes from this node
 foreach (TreeNode n in node.Nodes)
 {
 // if the child is a leaf
 // just check it (or uncheck it)
 if (node.Nodes.Count == 0)
 {
 node.Checked = check;
 }
 // if the child is a node in the tree, recurse
 else
 {
 SetCheck(n,check);
 }
 }
 }

 /// <summary>
 /// Given a node and an array list
 /// fill the list with the names of
 /// all the checked files
 /// </summary>
 // Fill the ArrayList with the full paths of
 // all the feils checked
 private void GetCheckedFiles(TreeNode node,
 ArrayList fileNames)
 {
 // if this is a leaf...
 if (node.Nodes.Count == 0)
 {
 // if the node was checked...
 if (node.Checked)
 {
 // get the full path and add it to the arrayList
 string fullPath = GetParentString(node);
 fileNames.Add(fullPath);
 }

 308

 }
 else // if this node is not a leaf
 {
 // call this for all the subnodes
 foreach (TreeNode n in node.Nodes)
 {
 GetCheckedFiles(n,fileNames);
 }
 }
 }

 /// <summary>
 /// Given a node, return the
 /// full pathname
 /// </summary>
 private string GetParentString(TreeNode node)
 {
 // if this is the root node (c:\) return the text
 if(node.Parent == null)
 {
 return node.Text;
 }
 else
 {
 // recurse up and get the path then
 // add this node and a slash
 // if this node is the leaf, don't add the slash
 return GetParentString(node.Parent) + node.Text +
 (node.Nodes.Count == 0 ? "" : "\\");
 }
 }

 /// <summary>
 /// shared by delete and copy
 /// creates an ordered list of all
 /// the selected files
 /// </summary>
 private ArrayList GetFileList()
 {
 // create an unsorted array list of the full filenames
 ArrayList fileNames = new ArrayList();

 // fill the fileNames ArrayList with the
 // full path of each file to copy
 foreach (TreeNode theNode in tvwSource.Nodes)
 {
 GetCheckedFiles(theNode, fileNames);
 }

 // Create a list to hold the fileInfo objects
 ArrayList fileList = new ArrayList();

 // for each of the filenames we have in our unsorted list
 // if the name corresponds to a file (and not a directory)
 // add it to the file list
 foreach (string fileName in fileNames)
 {
 // create a file with the name
 FileInfo file = new FileInfo(fileName);

Programming C#

 309

 // see if it exists on the disk
 // this fails if it was a directory
 if (file.Exists)
 {
 // both the key and the value are the file
 // would it be easier to have an empty value?
 fileList.Add(file);
 }
 }

 // Create an instance of the IComparer interface
 IComparer comparer = (IComparer) new FileComparer();

 // pass the comparer to the sort method so that the list
 // is sorted by the compare method of comparer.
 fileList.Sort(comparer);

 return fileList;
 }

 }
}

/// <summary>
/// Mark each node below the current
/// one with the current value of checked
/// </summary>
protected void tvwSource_AfterCheck (
 object sender, System.Windows.Forms.TreeViewEventArgs e)
{
}

13.3 XML Documentation Comments

C# supports a new Documentation Comment style, with three slash marks (///). You can see these
comments sprinkled throughout Example 13-3. The Visual Studio.NET editor recognizes these
comments and helps format them properly.

The C# compiler processes these comments into an XML file. You can create this file by using the
/doc command-line switch. For example, you might compile the program in Example 13-3 with
this command line:

csc filecopier.cs /r:System.Windows.Forms.dll /r:mscorlib.dll
/r:system.dll /r:system.configuration.dll /r:system.data.dll
/r:system.diagnostics.dll /r:system.drawing.dll
/r:microsoft.win32.interop.dll
/doc:XMLDoc.XML

You can accomplish this same operation in Visual Studio .NET by clicking a project icon in the
Solution Explorer window, selecting View Property Pages on the Visual Studio menu, and then
clicking the Configuration Properties folder. Within the Configuration Properties folder, click the Build
property page and type in a name for the XML Documentation File property to specify a name for the
XML file you want to produce.

Either approach produces the file XMLDoc.XML with your comments in XML format. An excerpt of the
file that will be produced for the FileCopier application of the previous section is shown in Example
13-4.

 310

Example 13-4. The XML output (excerpt) for file copy
<?xml version="1.0"?>
<doc>
 <assembly>
 <name>FileCopier</name>
 </assembly>
 <members>
 <member name="T:FileCopier.Form1">
 <summary>
 Form demonstrating Windows Forms implementation
 </summary>
 </member>
 <member name="F:FileCopier.Form1.components">
 <summary>
 Required designer variable.
 </summary>
 </member>
 <member name="F:FileCopier.Form1.tvwTargetDir">
 <summary>
 Tree view of potential target directories
 </summary>
 </member>
 <member name="F:FileCopier.Form1.tvwSource">
 <summary>
 Tree view of source directories
 includes check boxes for checking
 chosen files or directories
 </summary>
 </member>
 <member name="F:FileCopier.Form1.txtTargetDir">

The file is quite long, and although it can be read by humans, it is not especially useful in that format.
You could, however, write an XSLT file to translate the XML into HTML, or you could read the XML
document into a database of documentation.

One of the simplest things to do with the documentation comments in your source code is to allow
Visual Studio to generate a Code Comment Web Report. You choose this from the Tools menu
(Tools Build Comment Web Pages...), and the IDE does the rest. The result is a set of HTML files
that you can view from within the IDE or from a browser, as shown in Figure 13-9.

Figure 13-9. Code comment web report

Programming C#

 311

Every member preceded by a documentation comment is included in the XML file via a <member> tag
added by the compiler, along with a name attribute that identifies the member. You can also make use
of predefined tags to increase the richness of the generated documentation. For example, you can
add <see> comments to reference another member in the class or <exception> to document
exception classes. A detailed discussion of XML Documentation Comments is beyond the scope of
this book, but a complete listing of available tags can be found in the C# Programmers Reference that
is included with Visual Studio.

13.4 Deploying an Application

Now that the application works, how do you deploy it? The good news is that in .NET there is no
Registry to fuss with; you could, in fact, just copy the assembly to a new machine.

For example, you can compile the program in Example 13-3 into an assembly named
FileCopier.exe. You can then copy that file to a new machine and double-click it. Presto! It works.
No muss, no fuss.

13.4.1 Deployment Projects

For larger commercial applications, this simple approach might not be enough; sweet as it is.
Customers would like you to install the files in the appropriate directories, set up shortcuts, and so
forth.

Visual Studio provides extensive help for deployment. The process is to add a Setup and
Deployment project to your application project. For example, assuming you are in the FileCopier
project, click Add Project and choose Setup and Deployment Projects. You should see the dialog box
shown in Figure 13-10.

Figure 13-10. The New Project dialog box

 312

You have a variety of choices here. For a Windows project such as this one, your choices include:

Cab Project

Much like a ZIP file, this compresses a number of small files into an easy-to-use (and easy-to-
transport) package. This option can be combined with the others.

Merge Module

If you have more than one project that use files in common, this option helps you make
intermediate merge modules. You can then integrate these modules into the other deployment
projects.

Setup Project

This creates a setup file that automatically installs your files and resources.

Setup Wizard

Helps you create one of the other types.

Remote Deploy Wizard

Helps you create an installer project that can be deployed automatically.

Web Setup Project

Helps `you deploy a web-based project.

You would create a Cab Project first if you had many small ancillary files that had to be distributed with
your application (for example, if you had .html files, .gif files, or other resources included with your
program).

To see how this works, use the menu choice File Add Project New Project and choose and
name a Setup and Deployment Project, selecting CAB File. When you name the project (for example,
FileCopierCabProject) and click OK, you'll see that the project has been added to your group (as
shown in Figure 13-11).

Programming C#

 313

Figure 13-11. The Cab project added to your group

Right-clicking the project brings up a context menu. Choose Add, and you have two choices: Project
Output... and File... The latter allows you to add any arbitrary file to the Cab. The former offers a menu
of its own, as shown in Figure 13-12.

Figure 13-12. Project Output menu

Here you can choose to add sets of files to your Cab collection. The Primary output is the target
assembly for the selected project. The other files are optional elements of the selected project that you
might or might not want to distribute.

In this case, select Primary Output. The choice is reflected in the Solution Explorer, as shown in
Figure 13-13.

Figure 13-13. The modified project

 314

You can now build this project, and the result is a .cab file, which you can examine with WinZip, as
shown in Figure 13-14.

Figure 13-14. The Cab file contents

You see the executable file you expect, along with another file, Osd8c0.osd. Opening this file reveals
that it is an XML description of the .cab file itself, as shown in Example 13-5.

Example 13-5. The .cab file description file
<?XML version="1.0" ENCODING='UTF-8'?>
<!DOCTYPE SOFTPKG SYSTEM
"http://www.microsoft.com/standards/osd/osd.dtd">
<?XML::namespace href="http://www.microsoft.com/standards/osd/msicd.dtd"
as="MSICD"?>
<SOFTPKG NAME="FileCopierCabProject" VERSION="1,0,0,0">
 <TITLE> FileCopierCabProject </TITLE>
 <MSICD::NATIVECODE>
 <CODE NAME="FileCopier">
 <IMPLEMENTATION>
 <CODEBASE FILENAME="FileCopier.exe">
 </CODEBASE>
 </IMPLEMENTATION>
 </CODE>
 </MSICD::NATIVECODE>
</SOFTPKG>

13.4.2 Setup Project

To create a Setup package, add another project, choosing Setup Project. This project type is very
flexible; it allows all of your setup options to be bundled in an MSI installation file.

If you right-click the project and select Add, you see additional options in the pop-up menu. In addition
to Project Output and File, you now find Merge Module and Component.

Merge Modules are mix-and-match pieces that can later be added to a full Setup project. Component
allows you to add .NET components that your distribution might need but which might not be on the
target machine, just add the target executable through Project Output.

The user interface for customizing Setup consists of a split pane whose contents are determined by
the View menu. You access the View menu by right-clicking the project itself, as shown in Figure 13-
15.

Figure 13-15. The View menu

Programming C#

 315

As you make selections from the View menu, the panes in the IDE change to reflect your choices and
to offer you options.

For example, if you choose File System, the IDE opens a split-pane viewer, with a directory tree on the
left and the details on the right. Clicking the Application Folder shows the myriad files you've already
added (the primary output and its dependencies), as shown in Figure 13-16.

Figure 13-16. The Application Folder

You are free to add or delete files. Right-clicking in the detail window brings up a context menu, as
shown in Figure 13-17.

Figure 13-17. Context menu within the File Detail window

You can see there is great flexibility here to add precisely those files you want.

 316

13.4.3 Deployment Locations

The folder into which your files will be loaded (the Application Folder) is determined by the Default
Location. The Properties window for the Application Folder describes the Default Location as
[ProgramFilesFolder]\[Manufacturer]\[Product Name.

ProgramFilesFolder refers to the program files folder on the target machine. The Manufacturer and the
Product Name are properties of the project. If you click the Project and examine its properties, you see
that the IDE has made some good guesses, as shown in Figure 13-18.

Figure 13-18. Setup project properties

You can easily modify these properties. For example, you can modify the property Manufacturer to
change the folder in which the product will be stored under Program Files.

13.4.3.1 Creating a shortcut

If you want the install program to create a shortcut on the user's desktop, you can right-click the
Primary Output file in the Application Folder and drag it to the user's Desktop, as shown in Figure 13-
19.

Figure 13-19. Create a shortcut on the user's desktop

Programming C#

 317

13.4.3.2 Entries in My Documents

You can add items to the My Documents folder on the user's machine by placing them in the User's
Personal Data Folder.

13.4.3.3 Shortcuts in the Start menu

In addition to adding a shortcut to the desktop, you might want to create a folder within the Start
Programs menu. To do so, click the User's Program Menu folder, right-click in the right pane, and
choose Add Folder. Within that folder, you can add the Primary Output, either by dragging or by right-
clicking and choosing Add.

13.4.4 Adding Special Folders

In addition to the four folders provided for you (Application Folder, User's Desktop, User's Personal
Data Folder, User's Program Menu) there are a host of additional options. Right-click the File System
On Target Machine folder to get the menu, as shown in Figure 13-20.

Figure 13-20. Custom folder menu

Here you can add folders for fonts, add items to the user's Favorites Folder, and so forth. Most of
these are self-explanatory.

13.4.5 Other View Windows

So far, you've looked only at the File System folders from the original View menu (pictured in Figure
13-15).

13.4.5.1 Making changes to the Registry

The Registry window allows you to tell Setup to make adjustments to the user's Registry files, as
shown in Figure 13-21. Click any folder in this list to edit the associated properties in the Properties
window.

Figure 13-21. Setting up the Registry

 318

Careful! There is nothing more dangerous than touching the
Registry. In most .NET applications this will not be needed
because .NET-managed applications do not use the Registry.

13.4.5.2 Registering file types

The File Types choice on the View menu allows you to associate application-specific file types on the
user's machine. You can also set the action to take with these files.

13.4.5.3 Managing the UI during Setup

The View/User Interface selection lets you take direct control over the text and graphics shown during
each step of the Setup process. The workflow of Setup is shown as a tree, as shown in Figure 13-22.

Figure 13-22. Setup workflow

When you click a step in the process, the properties for that form are displayed. For example, clicking
the Welcome form under Install/Start displays the properties shown in Figure 13-23.

Figure 13-23. The Welcome form

Programming C#

 319

The Dynamic Properties section offers you the opportunity to change the Banner Bitmap and the text
displayed in the opening dialog box. You can add dialog boxes that Microsoft provides, or import your
own dialog boxes into the process.

13.4.5.4 Other View choices

If the workflow does not provide sufficient control, you can choose the Custom Options choice from the
View menu. You can also specify Launch conditions for the Setup process itself.

13.4.6 Building the Setup Project

Once you've made all your choices and set all the options, you can build the Setup project. The result
is a single Setup file that can be distributed to your customers.

 320

Programming C#

 321

Chapter 14. Accessing Data with ADO.NET

Many real-world applications need to interact with a database. The .NET Framework provides a rich
set of objects to manage database interaction; these classes are collectively referred to as ADO.NET.

ADO.NET looks very similar to ADO, its predecessor. The key difference is that ADO.NET is a
disconnected data architecture. In a disconnected architecture, data is retrieved from a database and
cached on your local machine. You manipulate the data on your local computer and connect to the
database only when you wish to alter records or acquire new data.

There are significant advantages to disconnecting your data architecture from your database. The
biggest advantage is that you avoid many of the problems associated with connected data objects
which do not scale very well. Database connections are resource-intensive, and it is difficult to have
thousands (or hundreds of thousands) of simultaneous continuous connections. A disconnected
architecture is resource-frugal.

ADO.NET connects to the database to retrieve data, and connects again to update data when you've
made changes. Most applications spend most of their time simply reading through data and displaying
it; ADO.NET provides a disconnected subset of the data for your use while reading and displaying.

Disconnected data objects work in a mode similar to that of the Web. All web sessions are
disconnected, and state is not preserved between web page requests. A disconnected data
architecture makes for a cleaner marriage with the Web.

14.1 Relational Databases and SQL

Although one can certainly write an entire book on relational databases, and another on SQL, the
essentials of these technologies are not hard to understand. A database is a repository of data. A
relational database organizes your data into tables. Consider the Northwind database provided with
Microsoft SQL Server 7, SQL Server 2000, and all versions of Microsoft Access.

14.1.1 Tables, Records, and Columns

The Northwind database describes a fictional company buying and selling food products. The data for
Northwind is divided into 13 tables, including Customers, Employees, Orders, Order Details, Products,
and so forth.

Every table in a relational database is organized into rows, where each row represents a single record.
The rows are organized into columns. All the rows in a table have the same column structure. For
example, the Orders table has these columns: OrderID, CustomerID, EmployeeID, OrderDate,
etc.

For any given order, you need to know the customer's name, address, contact name, and so forth.
You could store that information with each order, but that would be very inefficient. Instead, we use a
second table called Customers, in which each row represents a single customer. In the Customers
table is a column for the CustomerID. Each customer has a unique ID, and that field is marked as the
primary key for that table. A primary key is the column or combination of columns that uniquely
identifies a record in a given table.

The Orders table uses the CustomerID as a foreign key. A foreign key is a column (or combination of
columns) that is a primary (or otherwise unique) key from a different table. The Orders table uses the
CustomerID, which is the primary key used in the Customers table, to identify which customer has
placed the order. To determine the address for the order, you can use the CustomerID to look up the
customer record in the Customers table.

 322

This use of foreign keys is particularly helpful in representing one-to-many or many-to-one
relationships between tables. By separating information into tables that are linked by foreign keys, you
avoid having to repeat information in records. A single customer, for example, can have multiple
orders, but it is inefficient to place the same customer information (name, phone number, credit limit,
and so on) in every order record. The process of removing redundant information from your records
and shifting it to separate tables is called normalization.

14.1.2 Normalization

Normalization not only makes your use of the database more efficient, but also it reduces the
likelihood of data corruption. If you kept the customer's name both in the Customers table and also in
the Orders table, you would run the risk that a change in one table might not be reflected in the other.
Thus, if you changed the customer's address in the Customers table, that change might not be
reflected in every row in the Orders table (and a lot of work would be necessary to make sure that it
was reflected). By keeping only the CustomerID in Orders, you are free to change the address in
Customers, and the change is automatically reflected for each order.

Just as C# programmers want the compiler to catch bugs at compile time rather than at runtime,
database programmers want the database to help them avoid data corruption. The compiler helps
avoid bugs in C# by enforcing the rules of the language; for example, you can't use a variable you've
not defined. SQL Server and other modern relational databases avoid bugs by enforcing constraints
that you request. For example, the Customers database marks the CustomerID as a primary key.
This creates a primary key constraint in the database, which ensures that each CustomerID is unique.
If you were to enter a customer named Liberty Associates, Inc. with the CustomerID of LIBE, and
then tried to add Liberty Mutual Funds with a CustomerID of LIBE, the database would reject the
second record because of the primary key constraint.

14.1.3 Declarative Referential Integrity

Relational databases use Declarative Referential Integrity (DRI) to establish constraints on the
relationships among the various tables. For example, you might declare a constraint on the Orders
table that dictates that no order can have a CustomerID unless that CustomerID represents a valid
record in Customers. This helps you avoid two types of mistakes. First, you cannot enter a record with
an invalid CustomerID. Second, you cannot delete a Customer record if that CustomerID is used in
any order. The integrity of your data and their relationships are thus protected.

14.1.4 SQL

The most popular language for querying and manipulating databases is SQL, usually pronounced
"sequel." SQL is a declarative language, as opposed to a procedural language, and it can take a while
to get used to working with a declarative language when you are used to languages such as C#.

The heart of SQL is the query. A query is a statement that returns a set of records from the database.

For example, you might like to see all the CompanyNames and CustomerIDs of every record in the
Customers table where the customer's address is in London. To do so you would write:

Select CustomerID, CompanyName from Customers where city = 'London'

This returns the following six records as output:

CustomerID CompanyName
---------- --
AROUT Around the Horn
BSBEV B's Beverages
CONSH Consolidated Holdings

Programming C#

 323

EASTC Eastern Connection
NORTS North/South
SEVES Seven Seas Imports

SQL is capable of much more powerful queries. For example, suppose the Northwinds manager would
like to know what products were purchased in July of 1996 by the customer "Vins et alcools
Chevalier." This turns out to be somewhat complicated. The Order Details table knows the
ProductID for all the products in any given order. The Orders table knows which CustomerIDs are
associated with an order. The Customers table knows the CustomerID for a customer, and the
Products table knows the Product name for the ProductID. How do you tie all this together? Here's
the query:

select o.OrderID, productName
from [Order Details] od
join orders o on o.OrderID = od.OrderID
join products p on p.ProductID = od.ProductID
join customers c on o.CustomerID = c.CustomerID
where c.CompanyName = 'Vins et alcools Chevalier'
and orderDate >= '7/1/1996' and orderDate <= '7/31/1996'

This query asks the database to get the OrderID and the product name from the relevant tables: first
look at Order Details (which we've called od for short), then join that with the Orders table for every
record where the OrderID in the Order Details table is the same as the OrderID in the Orders table.

When you join two tables you can say either "Get every record that exists in either table" (this is called
an outer join), or you can say, as I've done here, "Get only those records that exist in both tables"
(called an inner join). That is, an inner join says: get only the records in Orders that match the records
in Order Details by having the same value in the OrderID field (on o.Orderid =
od.Orderid).

SQL joins are inner joins by default. Writing join orders is the
same as writing inner join orders.

The SQL statement goes on to ask the database to create an inner join with Products, getting every
row where the ProductID in the Products table is the same as the ProductID in the Order Details
table.

You then create an inner join with customers for those rows where the CustomerID is the same in
both the Orders table and the Customer table.

Finally, you tell the database to constrain the results to only those rows where the CompanyName is
the one you want, and the dates are in July.

The collection of constraints finds only three records that match:

OrderID ProductName
----------- --
10248 Queso Cabrales
10248 Singaporean Hokkien Fried Mee
10248 Mozzarella di Giovanni

This output shows that there was only one order (10248) where the customer had the right ID and
where the date of the order was July 1996. That order produced three records in the Order Details
table, and using the product IDs in these three records, we got the product names from the Products
table.

 324

You can use SQL not only for searching for and retrieving data, but also for creating, updating, and
deleting tables and generally managing and manipulating both the content and the structure of the
database.

For a full explanation of SQL and tips on how to put it to best use, I recommend Transact SQL
Programming, by Kline, Gould, and Zanevsky (O'Reilly & Associates, 1999).

14.2 The ADO.Net Object Model

The ADO.Net object model is rich, but at its heart it is a fairly straightforward set of classes. The most
important of these is the DataSet. The DataSet represents a subset of the entire database, cached
on your machine without a continuous connection to the database.

Periodically, you'll reconnect the DataSet to its parent database, update the database with changes
you've made to the DataSet, and update the DataSet with changes in the database made by other
processes.

This is highly efficient, but to be effective the DataSet must be a robust subset of the database,
capturing not just a few rows from a single table, but a set of tables with all the metadata necessary to
represent the relationships and constraints of the original database. This is, not surprisingly, what
ADO.NET provides.

The DataSet is composed of DataTable objects as well as DataRelation objects. These are
accessed as properties of the DataSet object. The DataTables property returns a
TablesCollection, which in turn contains all the DataTable objects.

14.2.1 DataTables and DataColumns

The DataTable can be created programmatically or as a result of a query against the database. The
DataTable has a number of public properties, including the Columns collection, which returns the
ColumnsCollection object, which in turn consists of DataColumn objects. Each DataColumn
object represents a column in a table.

14.2.2 DataRelations

In addition to the DataTables collection, the DataSet has a Relations property, which returns a
RelationsCollection consisting of DataRelation objects. Each DataRelation represents a
relationship between two tables, through DataColumn objects. For example, in the Northwind
database the Customers table is in a relationship with the Orders table through the CustomerID
column.

The nature of the relationship is one-to-many, or parent-to-child: for any given order, there will be
exactly one customer, but any given customer might be represented in any number of orders.

14.2.3 Rows

The Rows collection returns a set of rows for any given table. Use this collection to examine the results
of queries against the database, iterating through the rows to examine each record in turn.
Programmers experienced with ADO are often confused by the absence of the RecordSet with its
moveNext and movePrevious commands. With ADO.NET, you do not iterate through the DataSet;
instead, you access the table you need, and then you can iterate through the Rows collection, typically
with a foreach loop. You'll see this in the first example in this chapter.

Programming C#

 325

14.2.4 Data Adapter

The DataSet is an abstraction of a relational database. ADO.NET uses a Data Adapter as a
bridge between the DataSet and the data source: the underlying database. Data Adapter provides
the Fill() method to retrieve data from the database and populate the Data Set.

14.2.5 DBCommand and DBConnection

The DBConnection object represents a connection to a data source. This connection can be shared
among different command objects. The DBCommand object allows you to send a command (typically a
SQL statement or a stored procedure) to the database. Often these objects are implicitly created when
you create your DataSet, but you can explicitly access these objects, as you'll see in a subsequent
example.

14.2.6 The DataAdapter Object

Rather than tie the DataSet object too closely to your database architecture, ADO.NET uses a
DataAdapter object to mediate between the DataSet object and the database. This decouples the
DataSet from the database and allows a single DataSet to represent more than one database or
other data source.

14.3 Getting Started with ADO.NET

Enough theory! Let's write some code and see how this works. Working with ADO.NET can be
complex, but for many queries, the model is surprisingly simple.

In this example, you'll create a simple Windows Form, with a single list box in it called lbCustomers.
You'll populate this list box with bits of information from the Customers table in the Northwind
database.

Begin by creating a DataAdapter object:

SqlDataAdapter DataAdapter =
new SqlDataAdapter(
commandString, connectionString);

The two parameters are commandString and connectionString. The commandString is the
SQL statement that will generate the data you want in your DataSet:

string commandString =
 "Select CompanyName, ContactName from Customers";

The connectionString is whatever string is needed to connect to the database. In my case, I'm
running SQL Server on my development machine where I have left the system administrator (sa)
password blank (I know, I know, not a good idea. I'll fix it by the time this book is released. Honest.):

string connectionString =
 "server=localhost; uid=sa; pwd=; database=northwind";

With the DataAdapter in hand, you're ready to create the DataSet and fill it with the data that you
obtain from the SQL select statement:

DataSet DataSet = new DataSet();
DataAdapter.FillDataSet(DataSet,"Customers");

 326

That's it. You now have a DataSet, and you can query, manipulate, and otherwise manage the data.
The DataSet has a collection of tables; you care only about the first one because you've retrieved
only a single record:

DataTable dataTable = DataSet.Tables[0];

You can extract the rows you've retrieved with the SQL statement and add the data to the list box:

foreach (DataRow dataRow in dataTable.Rows)
{
 lbCustomers.Items.Add(
 dataRow["CompanyName"] +
 " (" + dataRow["ContactName"] + ")");
}

The list box is filled with the company name and contact name from the table in the database,
according to the SQL statement we passed in. Example 14-1 contains the complete source for this
example.

Example 14-1. Working with ADO.NET
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;

namespace ProgrammingCSharpWinForm
{

 public class ADOForm1 : System.Windows.Forms.Form
 {
 private System.ComponentModel.Container components;
 private System.Windows.Forms.ListBox lbCustomers;

 public ADOForm1()
 {
 InitializeComponent();

 // connect to my local server, northwind db
 string connectionString =
 "server=myServer; uid=sa; pwd=; database=northwind";

 // get records from the customers table
 string commandString =
 "Select CompanyName, ContactName from Customers";

 // create the data set command object
 // and the DataSet
 SqlDataAdapter DataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

 DataSet DataSet = new DataSet();

 // fill the data set object
 DataAdapter.Fill(DataSet,"Customers");

Programming C#

 327

 // Get the one table from the DataSet
 DataTable dataTable = DataSet.Tables[0];

 // for each row in the table, display the info
 foreach (DataRow dataRow in dataTable.Rows)
 {
 lbCustomers.Items.Add(
 dataRow["CompanyName"] +
 " (" + dataRow["ContactName"] + ")");
 }

 }

 public override void Dispose()
 {
 base.Dispose();
 components.Dispose();
 }

 private void InitializeComponent()
 {
 this.components =
 new System.ComponentModel.Container ();
 this.lbCustomers = new System.Windows.Forms.ListBox ();
 lbCustomers.Location = new System.Drawing.Point (48, 24);
 lbCustomers.Size = new System.Drawing.Size (368, 160);
 lbCustomers.TabIndex = 0;
 this.Text = "ADOFrm1";
 this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
 this.ClientSize = new System.Drawing.Size (464, 273);
 this.Controls.Add (this.lbCustomers);
 }

 public static void Main(string[] args)
 {
 Application.Run(new ADOForm1());
 }
 }
}

With just a few lines of code, you have extracted a set of data from the database and displayed it in
the list box, as shown in Figure 14-1.

Figure 14-1. Output from Example 14-1

The eight lines of code accomplish the following tasks:

 328

• Create the string for the connection:
• string connectionString =

"server=myServer; uid=sa; pwd=; database=northwind";

• Create the string for the select statement:
• string commandString =

"Select CompanyName, ContactName from Customers";

• Create the DataAdapter and pass in the selection and connection strings:
• SqlDataAdapter DataAdapter =
• new SqlDataAdapter(

commandString, connectionString);

• Create a new DataSet object:

DataSet DataSet = new DataSet();

• Fill the DataSet from the Customers table using the DataAdapter:

DataAdapter.Fill(DataSet,"Customers");

• Extract the DataTable from the DataSet:

DataTable dataTable = DataSet.Tables[0];

• Use the DataTable to fill the list box:
• foreach (DataRow dataRow in dataTable.Rows)
• {
• lbCustomers.Items.Add(
• dataRow["CompanyName"] +
• " (" + dataRow["ContactName"] + ")");

}

14.4 Using ADO Managed Providers

The previous example used one of the two managed providers currently available with ADO.NET: the
SQL Managed Provider and ADO Managed. The SQL Managed Provider is optimized for SQL Server
and is restricted to working with SQL Server databases. The more general solution is the ADO
Managed Provider, which will connect to any OLE DB provider, including Access.

You can rewrite Example 14-1 to work with the Northwind database using Access rather than SQL
Server with just a few small changes. First, you need to change the connection string:

string connectionString =
 "provider=Microsoft.JET.OLEDB.4.0; "
 + "data source = c:\\nwind.mdb";

This query connects to the Northwind database on C drive. (Your exact path might be different.)

Next, change the DataAdapter object to an ADODataAdapter rather than a SqlDataAdapter:

OleDbDataAdapter DataAdapter =
 new OleDbDataAdapter (commandString, connectionString);

Programming C#

 329

Also be sure to add a using statement for the OleDb namespace:

using System.Data.OleDb;

This design pattern continues throughout the two Managed Providers; for every object whose class
name begins with "Sql," there is a corresponding class beginning with "ADO." Example 14-2
illustrates the complete ADO version of Example 14-1.

Example 14-2. Using the ADO Managed Provider
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Data.OleDb;

namespace ProgrammingCSharpWinForm
{

 public class ADOForm1 : System.Windows.Forms.Form
 {
 private System.ComponentModel.Container components;
 private System.Windows.Forms.ListBox lbCustomers;

 public ADOForm1()
 {
 InitializeComponent();

 // connect to Northwind Access database
 string connectionString =
 "provider=Microsoft.JET.OLEDB.4.0; "
 + "data source = c:\\nwind.mdb";

 // get records from the customers table
 string commandString =
 "Select CompanyName, ContactName from Customers";

 // create the data set command object
 // and the DataSet
 OleDbDataAdapter DataAdapter =
 new OleDbDataAdapter(
 commandString, connectionString);

 DataSet DataSet = new DataSet();

 // fill the data set object
 DataAdapter.Fill(DataSet,"Customers");

 // Get the one table from the DataSet
 DataTable dataTable = DataSet.Tables[0];

 // for each row in the table, display the info
 foreach (DataRow dataRow in dataTable.Rows)
 {
 lbCustomers.Items.Add(
 dataRow["CompanyName"] +
 " (" + dataRow["ContactName"] + ")");
 }

 330

 }

 public override void Dispose()
 {
 base.Dispose();
 components.Dispose();
 }

 private void InitializeComponent()
 {
 this.components =
 new System.ComponentModel.Container ();
 this.lbCustomers = new System.Windows.Forms.ListBox ();
 lbCustomers.Location = new System.Drawing.Point (48, 24);
 lbCustomers.Size = new System.Drawing.Size (368, 160);
 lbCustomers.TabIndex = 0;
 this.Text = "ADOFrm1";
 this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
 this.ClientSize = new System.Drawing.Size (464, 273);
 this.Controls.Add (this.lbCustomers);
 }

 public static void Main(string[] args)
 {
 Application.Run(new ADOForm1());
 }
 }
}

The output from this is identical to that from the previous example, as shown in Figure 14-2.

Figure 14-2. Using the ADO Managed Provider

The ADO Managed Provider is more general than the SQL Managed Provider and can, in fact, be
used to connect to SQL Server as well as to any other OLE DB object. Because the SQL Server
Provider is optimized for SQL Server, it will be more efficient to use the SQL Server-specific provider
when working with SQL Server. In time, any number of specialized managed providers will be
available.

14.5 Working with Data-Bound Controls

ADO.NET provides good support for "data-bound" objects: that is, objects that can be tied to a
particular data set, such as one retrieved from a database by ADO.NET.

Programming C#

 331

A simple example of a data-bound control is the DataGrid control provided with both Windows Forms
and Web Forms.

14.5.1 Populating a DataGrid

In its simplest use, a DataGrid is easy to implement. Once again, first create a DataSet and then fill
it from the Customers table of the Northwind database, but this time, rather than iterating through the
rows of the data set and writing the output to a list box, you can simply bind the Customers table in
your data set to a DataGrid control.

To illustrate, alter Example 14-2 by deleting the list box from the form you created in the previous
example and replace it with a DataGrid. The default name provided by the Visual Studio design tool
is DataGrid1, but let's change it to CustomerDataGrid. After the data set is created and filled, you
bind the DataGrid through its DataSource property:

CustomerDataGrid.DataSource=
 DataSet.Tables["Customers"].DefaultView;

Example 14-3 provides the complete source code for this example.

Example 14-3. Using a DataGrid Control
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;

namespace ProgrammingCSharpWindows.Form
{

 public class ADOForm3 : System.Windows.Forms.Form
 {
 private System.ComponentModel.Container
 components;
 private System.Windows.Forms.DataGrid
 CustomerDataGrid;

 public ADOForm3()
 {
 InitializeComponent();

 // set up connection and command strings
 string connectionString =
 "server=localComputer; uid=sa; pwd=; database=northwind";
 string commandString =
 "Select CompanyName, ContactName, ContactTitle, "
 + "Phone, Fax from Customers";

 // create a data set and fill it
 SqlDataAdapter DataAdapter =
 new SqlDataAdapter(commandString, connectionString);
 DataSet DataSet = new DataSet();
 DataAdapter.Fill(DataSet,"Customers");

 // bind the DataSet to the grid
 CustomerDataGrid.DataSource=

 332

 DataSet.Tables["Customers"].DefaultView;
 }

 public override void Dispose()
 {
 base.Dispose();
 components.Dispose();
 }

 private void InitializeComponent()
 {
 this.components =
 new System.ComponentModel.Container ();
 this.CustomerDataGrid =
 new System.Windows.Forms.DataGrid ();
 CustomerDataGrid.BeginInit ();
 CustomerDataGrid.Location =
 new System.Drawing.Point (8, 24);
 CustomerDataGrid.Size =
 new System.Drawing.Size (656, 224);
 CustomerDataGrid.DataMember = "";
 CustomerDataGrid.TabIndex = 0;
 CustomerDataGrid.Navigate +=
 new System.Windows.Forms.NavigateEventHandler
 (this.dataGrid1_Navigate);
 this.Text = "ADOFrm3";
 this.AutoScaleBaseSize =
 new System.Drawing.Size (5, 13);
 this.ClientSize = new System.Drawing.Size (672, 273);
 this.Controls.Add (this.CustomerDataGrid);
 CustomerDataGrid.EndInit ();
 }

 protected void dataGrid1_Navigate
 (object sender, System.Windows.Forms.NavigateEventArgs ne)
 {

 }

 public static void Main(string[] args)
 {
 Application.Run(new ADOForm3());
 }
 }
}

The code is embarrassingly easy to implement and the results are quite impressive, as shown in
Figure 14-3. Notice that every field in the record is represented by a column in the DataGrid, and
that the titles of the columns are the names of the fields. All of this is the default behavior of the
DataGrid.

Figure 14-3. Using the DataGrid

Programming C#

 333

14.5.2 Customizing the DataSet

It is possible to control precisely every aspect of creating the DataSet, rather than using the default
settings. In the previous examples, when you created the DataSet you passed in a commandString
and a connectionString:

SqlDataAdapter DataAdapter =
 new SqlDataAdapter(commandString, connectionString);

These were assigned internally to a SqlCommand object and a SqlConnection object, respectively.
You can instead explicitly create these objects to gain finer control over their properties.

In this next example, you'll give the class four new class members:

private System.Data.SqlClient.SqlConnection myConnection;
private System.Data.DataSet myDataSet;
private System.Data.SqlClient.SqlCommand myCommand;
private System.Data.SqlClient.SqlDataAdapter DataAdapter;

The connection is created by instantiating a SqlConnection object with the connection string:

string connectionString =
 "server=localhost; uid=sa; pwd=; database=northwind";
myConnection = new System.Data.Sql.SqlConnection(connectionString);

and then it is opened explicitly:

myConnection.Open();

By hanging on to this connection, you can reuse it (as you'll see in a subsequent example) and you
can also use its transaction support if needed.

Next, explicitly create the DataSet object and set one of its properties:

myDataSet = new System.Data.DataSet();
myDataSet.CaseSensitive=true;

Setting CaseSensitive to true indicates that string comparisons within DataTable objects are
case-sensitive.

 334

Next, explicitly create the SqlCommand object and give that new command object the connection
object and the text for the command:

myCommand = new System.Data.SqlClient.SqlCommand()
myCommand.Connection=myConnection;
myCommand.CommandText = "Select * from Customers";

Finally, create the SqlDataAdapter object and assign to it the SqlCommand object you just
established. Then tell the DataSet how to map the table columns, using the table you're searching,
and you instruct the SqlDataAdapter to fill the DataSet object:

DataAdapter = new System.Data.SqlClient.SqlDataAdapter();
DataAdapter.SelectCommand= myCommand;
DataAdapter.TableMappings.Add("Table","Customers");
DataAdapter.Fill(myDataSet);

That done, you're ready to fill the DataGrid:

dataGrid1.DataSource=
 myDataSet.Tables["Customers"].DefaultView;

(This time I've used the default name for the DataGrid.)

Example 14-4 provides the complete source code.

Example 14-4. Customizing a Dataset
namespace ProgrammingCSharpWindows.Form
{
 using System;
 using System.Drawing;
 using System.Collections;
 using System.ComponentModel;
 using System.Windows.Forms;
 using System.Data;
 using System.Data.SqlClient;

 public class ADOForm1 : System.Windows.Forms.Form
 {
 private System.ComponentModel.Container components;
 private System.Windows.Forms.DataGrid dataGrid1;

 // private System.Data.ADO.ADOConnection myConnection;
 private System.Data.SqlClient.SqlConnection myConnection;
 private System.Data.DataSet myDataSet;
 private System.Data.SqlClient.SqlCommand myCommand;
 private System.Data.SqlClient.SqlDataAdapter DataAdapter;

 public ADOForm1()
 {
 InitializeComponent();

 // create the connection object and open it
 string connectionString =
 "server=Neptune; uid=sa; pwd=oWenmEany; database=northwind";
 myConnection = new
 System.Data.SqlClient.SqlConnection(connectionString);

Programming C#

 335

 myConnection.Open();

 // create the DataSet and set a property
 myDataSet = new System.Data.DataSet();
 myDataSet.CaseSensitive=true;

 // create the SqlCommand object and assign the
 // connection and the select statement
 myCommand = new System.Data.SqlClient.SqlCommand();
 myCommand.Connection=myConnection;
 myCommand.CommandText = "Select * from Customers";

 // create the DataAdapter object and pass in the
 // SQL Command object and establish the table mappings
 DataAdapter = new System.Data.SqlClient.SqlDataAdapter();
 DataAdapter.SelectCommand= myCommand;
 DataAdapter.TableMappings.Add("Table","Customers");

 // Tell the DataAdapter object to fill the DataSet
 DataAdapter.Fill(myDataSet);

 // display it in the grid
 dataGrid1.DataSource=
 myDataSet.Tables["Customers"].DefaultView;
 }

 public override void Dispose()
 {
 base.Dispose();
 components.Dispose();
 }

 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container ();
 this.dataGrid1 = new System.Windows.Forms.DataGrid ();
 dataGrid1.BeginInit ();
 dataGrid1.Location = new System.Drawing.Point (24, 32);
 dataGrid1.Size = new System.Drawing.Size (480, 408);
 dataGrid1.DataMember = "";
 dataGrid1.TabIndex = 0;
 this.Text = "ADOFrm1";
 this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
 this.ClientSize = new System.Drawing.Size (536, 501);
 this.Controls.Add (this.dataGrid1);
 dataGrid1.EndInit ();
 }

 public static void Main(string[] args)
 {
 Application.Run(new ADOForm1());
 }
 }
}

The result of this is shown in Figure 14-4. Now that you have this control, you are in a position to get
much fancier in your use of the grid.

Figure 14-4. Taking direct control of the DataGrid

 336

14.5.3 Combining Data Tables

With the work you've done so far, it is easy now to build a grid that reflects the relationship between
two or more tables. For example, you might like to examine all the orders that each customer has
placed over some period of time.

Relational databases are built on the idea that one table relates to other tables. The relationship
between Orders and Customers is that every order includes a CustomerID, which is a foreign key in
Orders and a primary key in Customers. Thus, you have a one-to-many relationship, in which one
customer can have many orders, but each order has exactly one customer. You'd like to be able to
display this relationship in the grid.

ADO.NET makes this fairly easy, and you can build on the previous example. This time, you want to
represent two tables, Customers and Orders, rather than just the Customers table. To do so, you need
only a single DataSet object and a single Connection object, but you need two SqlCommand
objects and two SqlDataAdapter objects.

After you create the SqlDataAdapter for Customers, just as you did in the previous example, go on
to create a second command for Orders:

myCommand2 = new System.Data.SqlClient.SqlCommand();
DataAdapter2 = new System.Data.SqlClient.SqlDataAdapter();
myCommand2.Connection = myConnection;
myCommand2.CommandText = "SELECT * FROM Orders";

Notice that DataAdapter2 can reuse the same connection as used by the earlier DataAdapter
object. The new CommandText is different, of course, because you are searching a different table.

Next, instantiate a second SqlDataAdapter object with this new command and map its table to
Orders. You can then fill the DataSet with the second table:

DataAdapter2.SelectCommand = myCommand2;
DataAdapter2.TableMappings.Add ("Table", "Orders");
DataAdapter2.Fill(myDataSet);

You now have a single DataSet with two tables. You can display either or both of the tables, but in
this example you'll do more. There is a relationship between these tables, and you want to display that
relationship. Unfortunately, the DataSet is ignorant of the relationship, unless you explicitly create a
DataRelation object and add it to the DataSet.

Programming C#

 337

Start by declaring an object of type DataRelation:

System.Data.DataRelation dataRelation;

This relation will represent the relationship in the database between Customers.CustomerID and
Orders.CustomerID. To model this, you need a pair of DataColumn objects:

System.Data.DataColumn dataColumn1;
System.Data.DataColumn dataColumn2;

Each DataColumn must be assigned a column in the table within the DataSet:

dataColumn1 =
 myDataSet.Tables["Customers"].Columns["CustomerID"];
dataColumn2 =
 myDataSet.Tables["Orders"].Columns["CustomerID"];

You're now ready to create the DataRelation object, passing into the constructor the name of the
relationship and the two DataColumn objects:

dataRelation =
 new System.Data.DataRelation("CustomersToOrders",
 dataColumn1, dataColumn2);

You can now add that relation to the DataSet:

myDataSet.Relations.Add(dataRelation);

Next, create a DataViewManager object that provides a view of the DataSet for the DataGrid, and
set the DataGrid.DataSource property to that view:

 DataViewManager DataSetView =
 myDataSet.DefaultViewManager;
dataGrid1.DataSource = DataSetView;

Finally, because the DataGrid now has more than one table, you must tell the grid which table is the
"parent" table, or the one table to which many other tables can relate. Do this by setting the
DataMember property as shown:

dataGrid1.DataMember= "Customers";

Example 14-5 provides the complete source for this process.

Example 14-5. Using a DataGrid with two tables
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
namespace ProgrammingCSharpWindows.Form
{
 using System.Data.SqlClient;

 public class ADOForm1 : System.Windows.Forms.Form
 {

 338

 private System.ComponentModel.Container components;
 private System.Windows.Forms.DataGrid dataGrid1;

 // private System.Data.ADO.ADOConnection myConnection;
 private System.Data.SqlClient.SqlConnection myConnection;
 private System.Data.DataSet myDataSet;
 private System.Data.SqlClient.SqlCommand myCommand;
 private System.Data.SqlClient.SqlCommand myCommand2;
 private System.Data.SqlClient.SqlDataAdapter DataAdapter;
 private System.Data.SqlClient.SqlDataAdapter DataAdapter2;

 public ADOForm1()
 {
 InitializeComponent();

 // create the connection
 string connectionString =
 "server=Neptune; uid=sa; pwd=oWenmEany; database=northwind";
 myConnection = new
 System.Data.SqlClient.SqlConnection(connectionString);
 myConnection.Open();

 // create the data set
 myDataSet = new System.Data.DataSet();
 myDataSet.CaseSensitive=true;

 // set up the command and DataSet command for the first table
 myCommand = new System.Data.SqlClient.SqlCommand();
 myCommand.Connection=myConnection;
 myCommand.CommandText = "Select * from Customers";
 DataAdapter = new System.Data.SqlClient.SqlDataAdapter();
 DataAdapter.SelectCommand= myCommand;
 DataAdapter.TableMappings.Add("Table","Customers");
 DataAdapter.Fill(myDataSet);

 // set up the command and DataSet command for the second table
 myCommand2 = new System.Data.SqlClient.SqlCommand();
 DataAdapter2 = new System.Data.SqlClient.SqlDataAdapter();
 myCommand2.Connection = myConnection;
 myCommand2.CommandText = "SELECT * FROM Orders";
 DataAdapter2.SelectCommand = myCommand2;
 DataAdapter2.TableMappings.Add ("Table", "Orders");
 DataAdapter2.Fill(myDataSet);

 // establish the relationship between the tables
 System.Data.DataRelation dataRelation;
 System.Data.DataColumn dataColumn1;
 System.Data.DataColumn dataColumn2;
 dataColumn1 =
 myDataSet.Tables["Customers"].Columns["CustomerID"];
 dataColumn2 =
 myDataSet.Tables["Orders"].Columns["CustomerID"];

 dataRelation =
 new System.Data.DataRelation(
 "CustomersToOrders",
 dataColumn1,
 dataColumn2);

Programming C#

 339

 // add the relation object to the data set
 myDataSet.Relations.Add(dataRelation);

 // set up the grid's view and member data and display it
 DataViewManager DataSetView =
 myDataSet.DefaultViewManager;
 dataGrid1.DataSource = DataSetView;
 dataGrid1.DataMember= "Customers";
 }

 public override void Dispose()
 {
 base.Dispose();
 components.Dispose();
 }

 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container ();
 this.dataGrid1 = new System.Windows.Forms.DataGrid ();
 dataGrid1.BeginInit ();
 //@this.TrayHeight = 0;
 //@this.TrayLargeIcon = false;
 //@this.TrayAutoArrange = true;
 dataGrid1.Location = new System.Drawing.Point (24, 32);
 dataGrid1.Size = new System.Drawing.Size (480, 408);
 dataGrid1.DataMember = "";
 dataGrid1.TabIndex = 0;
 this.Text = "ADOFrm1";
 this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
 this.ClientSize = new System.Drawing.Size (536, 501);
 this.Controls.Add (this.dataGrid1);
 dataGrid1.EndInit ();
 }

 public static void Main(string[] args)
 {
 Application.Run(new ADOForm1());
 }
 }
}

The result is impressive. Figure 14-5 shows the grid with one customer chosen. The
CustomersToOrders link is open under customer ID CACTU.

Figure 14-5. All the customers, with a CustomersToOrders link open

 340

Clicking the link opens all the orders for that customer, as shown in Figure 14-6.

Figure 14-6. All the orders for the chosen customer

14.6 Changing Database Records

So far, you've retrieved data from a database, but you haven't manipulated its records in any way.
Using ADO.NET, it is of course possible to add records, change an existing record, or delete a record
altogether.

In a typical implementation, you might work your way through the following steps:

1. Fill the tables for your DataSet using a stored procedure or SQL.
2. Display the data in various DataTable objects within your DataSet by either binding to a

control or looping through the rows in the tables.
3. Change data in individual DataTable objects by adding, modifying, or deleting DataRow

objects.

Programming C#

 341

4. Invoke the GetChanges() method to create a second DataSet that features only the
changes to the data.

5. Check for errors in the second newly created DataSet by examining the HasErrors
property. If there are errors, check the HasErrors property of each DataTable in the
DataSet. If the table has errors, invoke the GetErrors() method of the DataTable and
get back an array of DataRow objects with errors. On each row you can examine the
RowError property for specific information about the error, which you can then resolve.

6. Merge the second Data Set with the first.
7. Call the Update() method on the DataAdapter object and pass in the merged DataSet.
8. Invoke the AcceptChanges() method on the DataSet, or invoke RejectChanges() to

cancel the changes.

This process gives you very fine control over the update to your data as well as an opportunity to fix
any data that would otherwise cause an error.

In the following example, you'll create a dialog box that displays the contents of the Customer table in
Northwinds. The goal is to test updating a record, adding a new record, and deleting a record. As
always, I'll keep the code as simple as possible, which means eliminating many of the error-checking
and exception-handling routines you might expect in a production program.

Figure 14-7 shows the somewhat crude but useful form I've built to experiment with these features of
ADO.NET.

Figure 14-7. The ADO update form

This form consists of a list box (lbCustomers), a button for Update (btnUpdate), an associated text
box (txtCustomerName), and a Delete button (btnDelete). There is also a set of eight text fields
that are used in conjunction with the New button (btnNew). These text fields represent eight of the
fields in the Customers table in the Northwind database. There is also a label (lblMessage) that you
can use for writing messages to the user (it currently says Press New, Update, or Delete).

14.6.1 Accessing the Data

First, create the DataAdapter object and the DataSet as private member variables, along with the
DataTable:

private SqlDataAdapter DataAdapter;
private DataSet DataSet;

 342

private DataTable dataTable;

This enables you to refer to these objects from various member methods. You start by creating strings
for the connection and the command that will get you the table you need:

string connectionString =
 "server=localhost; uid=sa; pwd=; database=northwind";
string commandString = "Select * from Customers";

These strings are passed as parameters to the SqlDataAdapter constructor:

DataAdapter =
 new SqlDataAdapter(commandString, connectionString);

You can now create the DataSet and fill it with the SqlDataAdapter object you've just created:

DataSet = new DataSet();
DataAdapter.Fill(DataSet,"Customers");

Display the table contents by calling the PopulateLB() method, which is a private method that fills
the list box from the contents of the single table in the DataSet:

dataTable = DataSet.Tables[0];
lbCustomers.Items.Clear();
foreach (DataRow dataRow in dataTable.Rows)
{
 lbCustomers.Items.Add(
 dataRow["CompanyName"] +
 " (" + dataRow["ContactName"] + ")");
}

14.6.2 Updating a Record

The form is now displayed, and you're ready to update a record. Highlight a record and fill in a new
customer name in the topmost text field. When you press Update, read the resulting name and put it
into the chosen record.

The first task is to get the specific row the user wants to change:

DataRow targetRow = dataTable.Rows[lbCustomers.SelectedIndex];

Declare a new object of type DataRow and initialize it with a reference to the specific row in the
DataTable's Rows collection that corresponds to the selected item in the list box. Remember that
DataTable was declared as a member variable and initialized in the PopulateLB() method
shown in the previous section.

You can now display the name of the company you're going to update:

lblMessage.Text = "Updating " + targetRow["CompanyName"];
Application.DoEvents();

The call to the static method DoEvents() of the Application
class causes the application to process Windows messages and
paint the screen with the message. If you were to leave this line
out, the current thread would dominate the processor and the

Programming C#

 343

messages would not be printed until the button handler completes
its work.

Call BeginEdit() on the DataRow to put the row into editing mode. This suspends events on the
row so that you could, if you chose, edit a number of rows at once without triggering validation rules
(there are no validation rules in this example). It is good form to bracket changes on DataRows with
calls to BeginEdit() and EndEdit():

targetRow.BeginEdit();
targetRow["CompanyName"] = txtCustomerName.Text;
targetRow.EndEdit();

The actual edit is to the column CompanyName within the targetRow object, which is set to the text
value of the text control txtCustomerName. The net effect is that the CompanyName field in the row
is set to whatever the user put into that text box.

Notice that the column you want is indexed within the row by the name of that column. In this case, the
name will match the name that is used in the database, but that is not required. When you created the
DataSet, you could have used the TableMappings() method to change the names of the
columns.

Having edited the column, you are ready to check to make sure there are no errors. First, extract all
the changes made to the DataSet (in this case, there will be only one change) using the
GetChanges() method, passing in a DataRowState enumeration to indicate that you want only
those rows that have been modified. GetChanges() returns a new DataSet object:

DataSet DataSetChanged =
 DataSet.GetChanges(DataRowState.Modified);

Now you can check for errors. To simplify the code, I've included a flag to indicate that all is OK. If you
find any errors, rather than trying to fix them you can just set the flag to false and not make the
updates:

bool okayFlag = true;
if (DataSetChanged.HasErrors)
{
 okayFlag = false;
 string msg = "Error in row with customer ID ";

 foreach (DataTable theTable in DataSetChanged.Tables)
 {
 if (theTable.HasErrors)
 {
 DataRow[] errorRows = theTable.GetErrors();

 foreach (DataRow theRow in errorRows)
 {
 msg = msg + theRow["CustomerID"];
 }
 }
 }
 lblMessage.Text = msg;
}

First test to see whether the new data record set has any errors by checking the HasErrors property.
If HasErrors is true, there are errors; set the Boolean okayFlag to false, and then go on to

 344

discover where the error lies. To do so, iterate through all the tables in the new database (in this case,
there is only one), and if a table has errors you'll get an array of all the rows in that table with errors
(shown here as the errorRows array).

Then iterate through the array of rows with errors, handling each in turn. In this case, you just update
the message on the dialog box, but in a production environment you might interact with the user to fix
the problem.

If the okayFlag is still true after testing HasErrors, there were no errors and you are ready to
update the database. First, merge the new DataSet back in with the original (presumably, in a
production program you'd be merging the fixed tables back in with the original):

if (okayFlag)
{
 DataSet.Merge(DataSetChanged);

You can now update the DataSet:

DataAdapter.Update(DataSet,"Customers");

This causes the DataAdapter object to create the necessary command text to update the database.
You can actually see that text by accessing the CommandText property of the DataAdapter object.
You can display the command in the message text:

lblMessage.Text = DataAdapter.UpdateCommand.CommandText;
Application.DoEvents();

You now must tell the DataSet to accept the changes and then repopulate the list box from the
DataSet:

DataSet.AcceptChanges();
PopulateLB();

If okayFlag were false, there would have been errors; in this example, we'd just reject the changes:

else
 DataSet.RejectChanges();

14.6.3 Deleting a Record

The code for handling the Delete button is even simpler. First, get the target row:

DataRow targetRow =
 dataTable.Rows[lbCustomers.SelectedIndex];

and form the delete message:

string msg = targetRow["CompanyName"] + " deleted. ";

You don't want to show the message until the row is deleted, but you need to get it now because after
you delete the row it will be too late!

You're now ready to delete the row and then update the database and the DataSet:

dataTable.Rows[lbCustomers.SelectedIndex].Delete();

Programming C#

 345

DataSet.AcceptChanges();
DataAdapter.Update(DataSet,"Customers");

The first of these three lines marks the row for deletion. The second accepts these changes in the
DataSet, and the third updates the database with the changed DataSet.

Calling AcceptChanges() on the DataSet causes
AcceptChanges() to be called on each table within the
DataSet. The call to AcceptChanges() on each table in turn
causes AcceptChanges() to be called on each row in those
tables. Thus the one call to DataSet.AcceptChanges()
cascades down through all the contained tables and rows.

You're now ready to repopulate the list box and display a message indicating that the record was
deleted:

PopulateLB();
lblMessage.Text = msg;
Application.DoEvents();

Deleting records from the Customers database might cause an
exception if the record deleted is constrained by database integrity
rules. For example, if a customer has orders in the Orders table,
you cannot delete the customer until you delete the orders. To
solve this, the following example will create new Customer
records that you can then delete at will.

14.6.4 Creating New Records

To create a new record, the user will fill in the fields and press the New button. This will fire the
btnNew_Click event, which is tied to the btnNew_Click event handling method:

btnNew.Click += new System.EventHandler (this.btnNew_Click);

In the event handler, you call DataTable.NewRow(), which asks the table for a new DataRow
object:

DataRow newRow = dataTable.NewRow();

This is very elegant because the new row that the DataTable produces has all the necessary
DataColumns for this table. You can just fill in the columns you care about, taking the text from the
user interface (UI):

newRow["CustomerID"] = txtCompanyID.Text;
newRow["CompanyName"] = txtCompanyName.Text;
newRow["ContactName"] = txtContactName.Text;
newRow["ContactTitle"] = txtContactTitle.Text;
newRow["Address"] = txtAddress.Text;
newRow["City"] = txtCity.Text;
newRow["PostalCode"] = txtZip.Text;
newRow["Phone"] = txtPhone.Text;

Now that the row is fully populated, just add it back to the table:

 346

dataTable.Rows.Add(newRow);

The table resides within the DataSet, so all you have to do is tell the DataAdapter object to update
the database with the DataSet:

DataAdapter.Update(DataSet,"Customers");

Next, update the user interface and tell the DataSet to accept the changes:

lblMessage.Text = DataAdapter.UpdateCommand.CommandText;
Application.DoEvents();
DataSet.AcceptChanges();

You can now repopulate the list box with your new added row and clear the text fields so that you're
ready for another new record:

PopulateLB();
ClearFields();

ClearFields() is a private method that simply sets all the text fields to empty strings. That method
and the entire program are shown in Example 14-6.

Example 14-6. Updating, deleting, and adding records
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;
namespace ProgrammingCSharpWindows.Form
{
 public class ADOForm1 : System.Windows.Forms.Form
 {
 private System.ComponentModel.Container components;
 private System.Windows.Forms.Label label9;
 private System.Windows.Forms.TextBox txtPhone;
 private System.Windows.Forms.Label label8;
 private System.Windows.Forms.TextBox txtContactTitle;
 private System.Windows.Forms.Label label7;
 private System.Windows.Forms.TextBox txtZip;
 private System.Windows.Forms.Label label6;
 private System.Windows.Forms.TextBox txtCity;
 private System.Windows.Forms.Label label5;
 private System.Windows.Forms.TextBox txtAddress;
 private System.Windows.Forms.Label label4;
 private System.Windows.Forms.TextBox txtContactName;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.TextBox txtCompanyName;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.TextBox txtCompanyID;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Button btnNew;
 private System.Windows.Forms.TextBox txtCustomerName;
 private System.Windows.Forms.Button btnUpdate;
 private System.Windows.Forms.Label lblMessage;
 private System.Windows.Forms.Button btnDelete;
 private System.Windows.Forms.ListBox lbCustomers;

Programming C#

 347

 private SqlDataAdapter DataAdapter;

 // the DataSet and table are members so that
 // we can access them from any member method
 private DataSet DataSet;
 private DataTable dataTable;

 public ADOForm1()
 {
 InitializeComponent();

 string connectionString =
 "server=Neptune; uid=sa; pwd=oWenmEany; database=northwind";
 string commandString = "Select * from Customers";

 DataAdapter =
 new SqlDataAdapter(commandString, connectionString);
 DataSet = new DataSet();
 DataAdapter.Fill(DataSet,"Customers");
 PopulateLB();
 }

 // fill the list box with columns from the Customers table
 private void PopulateLB()
 {
 dataTable = DataSet.Tables[0];
 lbCustomers.Items.Clear();
 foreach (DataRow dataRow in dataTable.Rows)
 {
 lbCustomers.Items.Add(
 dataRow["CompanyName"] + " (" +
 dataRow["ContactName"] + ")");
 }

 }

 public override void Dispose()
 {
 base.Dispose();
 components.Dispose();
 }

 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container ();
 this.txtCustomerName = new System.Windows.Forms.TextBox ();
 this.txtCity = new System.Windows.Forms.TextBox ();
 this.txtCompanyID = new System.Windows.Forms.TextBox ();
 this.lblMessage = new System.Windows.Forms.Label ();
 this.btnUpdate = new System.Windows.Forms.Button ();
 this.txtContactName = new System.Windows.Forms.TextBox ();
 this.txtZip = new System.Windows.Forms.TextBox ();
 this.btnDelete = new System.Windows.Forms.Button ();
 this.txtContactTitle = new System.Windows.Forms.TextBox ();
 this.txtAddress = new System.Windows.Forms.TextBox ();
 this.txtCompanyName = new System.Windows.Forms.TextBox ();
 this.label5 = new System.Windows.Forms.Label ();
 this.label6 = new System.Windows.Forms.Label ();
 this.label7 = new System.Windows.Forms.Label ();
 this.label8 = new System.Windows.Forms.Label ();
 this.label9 = new System.Windows.Forms.Label ();

 348

 this.label4 = new System.Windows.Forms.Label ();
 this.lbCustomers = new System.Windows.Forms.ListBox ();
 this.txtPhone = new System.Windows.Forms.TextBox ();
 this.btnNew = new System.Windows.Forms.Button ();
 this.label1 = new System.Windows.Forms.Label ();
 this.label2 = new System.Windows.Forms.Label ();
 this.label3 = new System.Windows.Forms.Label ();
 //@this.TrayHeight = 0;
 //@this.TrayLargeIcon = false;
 //@this.TrayAutoArrange = true;
 txtCustomerName.Location = new System.Drawing.Point (256, 120);
 txtCustomerName.TabIndex = 4;
 txtCustomerName.Size = new System.Drawing.Size (160, 20);
 txtCity.Location = new System.Drawing.Point (384, 245);
 txtCity.TabIndex = 15;
 txtCity.Size = new System.Drawing.Size (160, 20);
 txtCompanyID.Location = new System.Drawing.Point (136, 216);
 txtCompanyID.TabIndex = 7;
 txtCompanyID.Size = new System.Drawing.Size (160, 20);
 lblMessage.Location = new System.Drawing.Point (32, 368);
 lblMessage.Text = "Press New, Update or Delete";
 lblMessage.Size = new System.Drawing.Size (416, 48);
 lblMessage.TabIndex = 1;
 btnUpdate.Location = new System.Drawing.Point (32, 120);
 btnUpdate.Size = new System.Drawing.Size (75, 23);
 btnUpdate.TabIndex = 0;
 btnUpdate.Text = "Update";
 btnUpdate.Click +=
 new System.EventHandler (this.btnUpdate_Click);
 txtContactName.Location = new System.Drawing.Point (136, 274);
 txtContactName.TabIndex = 11;
 txtContactName.Size = new System.Drawing.Size (160, 20);
 txtZip.Location = new System.Drawing.Point (384, 274);
 txtZip.TabIndex = 17;
 txtZip.Size = new System.Drawing.Size (160, 20);
 btnDelete.Location = new System.Drawing.Point (472, 120);
 btnDelete.Size = new System.Drawing.Size (75, 23);
 btnDelete.TabIndex = 2;
 btnDelete.Text = "Delete";
 btnDelete.Click +=
 new System.EventHandler (this.btnDelete_Click);
 txtContactTitle.Location = new System.Drawing.Point (136, 303);
 txtContactTitle.TabIndex = 19;
 txtContactTitle.Size = new System.Drawing.Size (160, 20);
 txtAddress.Location = new System.Drawing.Point (384, 216);
 txtAddress.TabIndex = 13;
 txtAddress.Size = new System.Drawing.Size (160, 20);
 txtCompanyName.Location = new System.Drawing.Point (136, 245);
 txtCompanyName.TabIndex = 9;
 txtCompanyName.Size = new System.Drawing.Size (160, 20);
 label5.Location = new System.Drawing.Point (320, 252);
 label5.Text = "City";
 label5.Size = new System.Drawing.Size (48, 16);
 label5.TabIndex = 14;
 label6.Location = new System.Drawing.Point (320, 284);
 label6.Text = "Zip";
 label6.Size = new System.Drawing.Size (40, 16);
 label6.TabIndex = 16;
 label7.Location = new System.Drawing.Point (40, 312);
 label7.Text = "Contact Title";
 label7.Size = new System.Drawing.Size (88, 16);

Programming C#

 349

 label7.TabIndex = 18;
 label8.Location = new System.Drawing.Point (320, 312);
 label8.Text = "Phone";
 label8.Size = new System.Drawing.Size (56, 16);
 label8.TabIndex = 20;
 label9.Location = new System.Drawing.Point (120, 120);
 label9.Text = "New Customer Name:";
 label9.Size = new System.Drawing.Size (120, 24);
 label9.TabIndex = 22;
 label4.Location = new System.Drawing.Point (320, 224);
 label4.Text = "Address";
 label4.Size = new System.Drawing.Size (56, 16);
 label4.TabIndex = 12;
 lbCustomers.Location = new System.Drawing.Point (32, 16);
 lbCustomers.Size = new System.Drawing.Size (512, 95);
 lbCustomers.TabIndex = 3;
 txtPhone.Location = new System.Drawing.Point (384, 303);
 txtPhone.TabIndex = 21;
 txtPhone.Size = new System.Drawing.Size (160, 20);
 btnNew.Location = new System.Drawing.Point (472, 336);
 btnNew.Size = new System.Drawing.Size (75, 23);
 btnNew.TabIndex = 5;
 btnNew.Text = "New";
 btnNew.Click += new System.EventHandler (this.btnNew_Click);
 label1.Location = new System.Drawing.Point (40, 224);
 label1.Text = "Company ID";
 label1.Size = new System.Drawing.Size (88, 16);
 label1.TabIndex = 6;
 label2.Location = new System.Drawing.Point (40, 252);
 label2.Text = "Company Name";
 label2.Size = new System.Drawing.Size (88, 16);
 label2.TabIndex = 8;
 label3.Location = new System.Drawing.Point (40, 284);
 label3.Text = "Contact Name";
 label3.Size = new System.Drawing.Size (88, 16);
 label3.TabIndex = 10;
 this.Text = "Customers Update Form";
 this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
 this.ClientSize = new System.Drawing.Size (584, 421);
 this.Controls.Add (this.label9);
 this.Controls.Add (this.txtPhone);
 this.Controls.Add (this.label8);
 this.Controls.Add (this.txtContactTitle);
 this.Controls.Add (this.label7);
 this.Controls.Add (this.txtZip);
 this.Controls.Add (this.label6);
 this.Controls.Add (this.txtCity);
 this.Controls.Add (this.label5);
 this.Controls.Add (this.txtAddress);
 this.Controls.Add (this.label4);
 this.Controls.Add (this.txtContactName);
 this.Controls.Add (this.label3);
 this.Controls.Add (this.txtCompanyName);
 this.Controls.Add (this.label2);
 this.Controls.Add (this.txtCompanyID);
 this.Controls.Add (this.label1);
 this.Controls.Add (this.btnNew);
 this.Controls.Add (this.txtCustomerName);
 this.Controls.Add (this.btnUpdate);
 this.Controls.Add (this.lblMessage);
 this.Controls.Add (this.btnDelete);

 350

 this.Controls.Add (this.lbCustomers);
 }

 // handle the new button click
 protected void btnNew_Click (object sender, System.EventArgs e)
 {
 // create a new row, populate it
 DataRow newRow = dataTable.NewRow();
 newRow["CustomerID"] = txtCompanyID.Text;
 newRow["CompanyName"] = txtCompanyName.Text;
 newRow["ContactName"] = txtContactName.Text;
 newRow["ContactTitle"] = txtContactTitle.Text;
 newRow["Address"] = txtAddress.Text;
 newRow["City"] = txtCity.Text;
 newRow["PostalCode"] = txtZip.Text;
 newRow["Phone"] = txtPhone.Text;

 // add the new row to the table
 dataTable.Rows.Add(newRow);

 // update the db
 DataAdapter.Update(DataSet,"Customers");

 // inform the user and accept the changes
 lblMessage.Text = DataAdapter.UpdateCommand.CommandText;
 Application.DoEvents();
 DataSet.AcceptChanges();

 // repopulate the list box
 PopulateLB();

 // clear all the text fields
 ClearFields();
 }

 // set all the text fields to empty strings
 private void ClearFields()
 {
 txtCompanyID.Text = "";
 txtCompanyName.Text = "";
 txtContactName.Text = "";
 txtContactTitle.Text = "";
 txtAddress.Text = "";
 txtCity.Text = "";
 txtZip.Text = "";
 txtPhone.Text = "";
 }

 // handle the update button click
 protected void btnUpdate_Click (object sender, System.EventArgs e)
 {
 // get the selected row
 DataRow targetRow = dataTable.Rows[lbCustomers.SelectedIndex];

 // inform the user
 lblMessage.Text = "Updating " + targetRow["CompanyName"];
 Application.DoEvents();

 // edit the row
 targetRow.BeginEdit();
 targetRow["CompanyName"] = txtCustomerName.Text;

Programming C#

 351

 targetRow.EndEdit();

 // get each row that changed
 DataSet DataSetChanged =
 DataSet.GetChanges(DataRowState.Modified);

 // test to make sure all the changed rows are without errors
 bool okayFlag = true;
 if (DataSetChanged.HasErrors)
 {
 okayFlag = false;
 string msg = "Error in row with customer ID ";

 // examine each table in the changed DataSet
 foreach (DataTable theTable in DataSetChanged.Tables)
 {
 // if any table has errors, find out which rows
 if (theTable.HasErrors)
 {
 // get the rows with errors
 DataRow[] errorRows = theTable.GetErrors();

 // iterate through the errors and correct
 // (in our case, just identify)
 foreach (DataRow theRow in errorRows)
 {
 msg = msg + theRow["CustomerID"];
 }
 }
 }
 lblMessage.Text = msg;
 }
 // if we have no errors
 if (okayFlag)
 {
 // merge the changes back into the original DataSet
 DataSet.Merge(DataSetChanged);

 // update the database
 DataAdapter.Update(DataSet,"Customers");

 // inform the user
 lblMessage.Text = DataAdapter.UpdateCommand.CommandText;
 Application.DoEvents();

 // accept the changes and repopulate the list box
 DataSet.AcceptChanges();
 PopulateLB();
 }
 else // if we had errors, reject the changes
 DataSet.RejectChanges();
 }

 // handle the delete button click
 protected void btnDelete_Click (object sender, System.EventArgs e)
 {
 // get the selected row
 DataRow targetRow = dataTable.Rows[lbCustomers.SelectedIndex];

 352

 // prepare message for user
 string msg = targetRow["CompanyName"] + " deleted. ";

 // delete the selected row
 dataTable.Rows[lbCustomers.SelectedIndex].Delete();

 // accept the changes to the DataSet
 DataSet.AcceptChanges();

 // update the database
 DataAdapter.Update(DataSet,"Customers");

 // repopulate the list box without the deleted record
 PopulateLB();

 // inform the user
 lblMessage.Text = msg;
 Application.DoEvents();
 }

 public static void Main(string[] args)
 {
 Application.Run(new ADOForm1());
 }
 }
}

Figure 14-8 shows the filled-out form just before pressing the New button.

Figure 14-8. Getting ready to add a new record

Figure 14-9 shows the form immediately after adding the new record.

Figure 14-9. After adding the new record

Programming C#

 353

Note that the new record is appended to the end of the list and the text fields are cleared.

14.7 ADO.NET and XML

In this chapter, I have demonstrated the kinds of data access that users have come to expect from
ADO and shown how the new ADO.NET data access framework provides such support through its
class libraries. I would be remiss, however, if I failed to mention that ADO.NET also provides complete
support for XML. Most interesting is its support for presenting the contents of a data set as either a
collection of tables, as we have explored in this chapter, or as an XML document.

The tight integration of ADO.NET and XML and its applications are beyond the scope of this book, but
complete information can be found in the .NET Framework SDK Reference.

 354

Programming C#

 355

Chapter 15. ProgrammingWeb Applications with
Web Forms

Rather than writing traditional Windows desktop and client-server applications, more and more
developers are now writing web-based applications, even when their software is for desktop use.
There are many obvious advantages. For one, you do not have to create as much of the user interface:
you can let Internet Explorer and Netscape Navigator handle a lot of it for you. Another, perhaps
bigger advantage is that distribution of revisions is faster, easier, and less expensive. When I worked
at an online network that predated the Web, we estimated our cost of distribution for each upgrade at
$1 million per diskette (remember diskettes?). Web applications have virtually zero distribution cost.
The third advantage of web applications is distributed processing. With a web-based application, it is
far easier to provide server-side processing. The Web provides standardized protocols (e.g., HTTP,
HTML, and XML) to facilitate building n-tier applications.

The .NET technology for building web applications (and dynamic web sites) is ASP.NET, which
provides a rich collection of types for building web applications in its System.Web and
System.Web.UI namespaces. In this chapter, I'll focus on where ASP.NET and C# programming
intersect: the creation of Web Forms. (For coverage of ASP.NET alone, see my upcoming book,
Programming ASP.NET, O'Reilly, 2001.)

Web Forms bring Rapid Application Development (RAD) techniques (such as those used in Windows
Forms) to the development of web applications. As with Windows Forms, you drag and drop controls
onto a form and write the supporting code either in-line or in code-behind pages. With Web Forms,
however, the application is deployed to a web server, and users interact with the application through a
standard browser.

15.1 Understanding Web Forms

Web Forms implement a programming model in which web pages are dynamically generated on a
web server for delivery to a browser over the Internet. They are, in some ways, the successor to ASP
pages, and they marry ASP technology with traditional programming.

With Web Forms, you create an HTML page with static content, and you write C# code to generate
dynamic content. The C# code runs on the server, and the data produced is integrated with your static
HTML to create the web page. What is sent to the browser is standard HTML.

Web Forms are designed to run on any browser, with the server rendering the correct browser-
compliant HTML. You can do the programming for the logic of the Web Form in any .NET language. I
will of course use C#, which is arguably the language of choice, though some ASP developers who
have used VBScript might opt for VB .NET.

Just as with Windows Forms, you can create Web Forms in Notepad (or another editor of your choice)
rather than in Visual Studio. Many developers will choose to do so, but Visual Studio makes the
process of designing and testing Web Forms much easier.

Web Forms divide the user interface into two parts: the visual part or user interface (UI), and the logic
that lies behind it. This is very similar to developing Windows Forms as shown in Chapter 14, but
with Web Forms the UI page and the code are in separate files.

The UI page is stored in a file with the extension .aspx. The logic (code) for that page can be stored in
a separate code-behind C# source file. When you run the form, the code-behind class file runs and
dynamically creates the HTML sent to the client browser. This code makes use of the rich Web Forms
types found in the System.Web and System.Web.UI namespaces of the .NET Framework Class
Library (FCL).

 356

With Visual Studio, Web Forms programming couldn't be simpler: open a form, drag some controls
onto it, and write the code to handle events. Presto! You've written a web application.

On the other hand, even with Visual Studio writing a robust and complete web application can be a
daunting task. Web Forms offer a very rich UI; the number and complexity of web controls have
greatly multiplied in recent years, and user expectations about the look and feel of web applications
have risen accordingly.

In addition, web applications are inherently distributed. Typically, the client will not be in the same
building as the server. For most web applications, you must take network latency, bandwidth, and
network server performance into account when creating the UI; a round trip from client to host might
take a few seconds.

15.1.1 Web Form Events

Web Forms are event-driven. An event is an object that encapsulates the idea that "something
happened." An event is generated (or raised) when the user presses a button or selects from a list box
or otherwise interacts with the UI. Events can also be generated by the system starting or finishing
work. For example, you open a file for reading, and the system raises an event when the file has been
read into memory.

The method that responds to the event is called the event handler. Event handlers are written in C# in
the code-behind page and are associated with controls in the HTML page through control attributes.

Event handlers are delegates (see Chapter 12). By convention, ASP.NET event handlers return void
and take two parameters. The first parameter represents the object raising the event. The second,
called the event argument , contains information specific to the event, if any. For most events, the
event argument is of type EventArgs, which does not expose any properties. For some controls, the
event argument might be of a type derived from EventArgs that can expose properties specific to that
event type.

In web applications, most events are typically handled on the server and, therefore, require a round
trip. ASP.NET only supports a limited set of events, such as button clicks and text changes. These are
events that the user might expect to cause a significant change, as opposed to Windows events, such
as mouse-over, that might happen many times during a single user-driven task.

15.1.1.1 Postback versus non-postback events

Postback events are those that cause the form to be posted back to the server immediately. These
include click type events, such as the Button Click event. In contrast, many events (typically change
events) are considered non-postback in that the form is not posted back to the server immediately.
Instead, these events are cached by the control until the next time that a postback event occurs. You
can force controls with non-postback events to behave in a postback manner by setting their
AutoPostBack property to true.

15.1.1.2 State

A web application's State is the current value of all the controls and variables for the current user in
the current session. The Web is inherently a "stateless" environment. This means that every post to
the server loses the state from previous posts, unless the developer takes great pains to preserve this
session knowledge. ASP.NET, however, provides support for maintaining the state of a user's session.

Whenever a page is posted to the server, it is re-created by the server from scratch before it is
returned to the browser. ASP.NET provides a mechanism that automatically maintains state for server
controls. Thus, if you provide a list and the user has made a selection, that selection will be preserved
after the page is posted back to the server and redrawn on the client.

Programming C#

 357

15.1.2 Web Form Life Cycle

Every request for a page made from a web server causes a chain of events at the server. These
events, from beginning to end, constitute the life cycle of the page and all its components. The life
cycle begins with a request for the page, which causes the server to load it. When the request is
complete, the page is unloaded. From one end of the life cycle to the other, the goal is to render
appropriate HTML output back to the requesting browser. The life cycle of a page is marked by the
following events, each of which you can handle yourself or leave to default handling by the ASP.NET
server:

Initialize

Initialize is the first phase in the life cycle for any page or control. It is here that you initialize
any settings needed for the duration of the incoming request.

Load View State

The ViewState property of the control is populated. The ViewState information comes from a
hidden variable on the control, used to persist the state across round trips to the server. The
input string from this hidden variable is parsed by the page framework, and the ViewState
property is set. This can be modified via the LoadViewState() method. This allows
ASP.NET to manage the state of your control across page loads so that each control is not
reset to its default state each time the page is posted.

Process Postback Data

During this phase, the data sent to the server in the posting is processed. If any of this data
results in a requirement to update the ViewState, that update is performed via the
LoadPostData() method.

Load

CreateChildControls() is called, if necessary, to create and initialize server controls in
the control tree. State is restored, and the form controls show client-side data. You can modify
the load phase by handling the Load event with the OnLoad method.

Send Postback Change Modifications

If there are any state changes between the current state and the previous state, change
events are raised via the RaisePostDataChangedEvent() method.

Handle Postback Events

The client-side event that caused the postback is handled.

PreRender

This is the phase just before the output is rendered to the browser. It is essentially your last
chance to modify the output prior to rendering using the OnPreRender() method.

Save State

Near the beginning of the life cycle, the persisted view state was loaded from the hidden
variable. Now it is saved back to the hidden variable, persisting as a string object that will

 358

complete the round trip to the client. You can override this using the SaveViewState()
method.

Render

This is where the output to be sent back to the client browser is generated. You can override it
using the Render method. CreateChildControls() is called, if necessary, to create and
initialize server controls in the control tree.

Dispose

This is the last phase of the life cycle. It gives you an opportunity to do any final cleanup and
release references to any expensive resources, such as database connections. You can
modify it using the Dispose() method.

15.2 Creating a Web Form

To create the simple Web Form that will be used in the next example, start up Visual Studio .NET and
open a New Project named ProgrammingCSharpWeb. Select the Visual C# Projects folder (because
C# is your language of choice), select Web Application as the project type, and type in its name,
ProgrammingCSharpWeb. Visual Studio .NET will display http://localhost as the default location, as
shown in Figure 15-1.

Figure 15-1. Creating a project in the New Project window of Visual
Studio .NET

Visual Studio places nearly all the files it creates for the project in a folder within your local machine's
default web site. For example, c:\Inetpub\wwwroot\ProgrammingCSharpWeb.

In Visual Studio .NET, a solution is a set of projects; each project
will create a dynamic link library (DLL) or an executable (EXE). All
projects are created in the context of a solution, and solutions are
managed by .sln and .suo files.

Programming C#

 359

The solution files and other Visual Studio-specific files are stored in <drive>\Documents and
<drive>Settings\<user name>\MyDocuments\Visual Studio Projects (where <drive> and <user name>
are specific to your machine).

You must have IIS and the FrontPage Server extensions installed
on your computer to use Web Forms. To configure the FrontPage
Server extensions, open the Internet Service Manager and right-
click the web site. Select All Tasks Configure Server
Extensions. For further information, please check
http://www.microsoft.com.

When the application is created, Visual Studio places a number of files in your project. The Web Form
itself is stored in a file named WebForm1.aspx. This file will contain only HTML. A second, equally
important file, WebForm1.cs, stores the C# associated with your form; this is the code-behind file.

Notice that the code-behind file does not appear in the Solution Explorer. To see the code-behind (.cs)
file, you must place the cursor within Visual Studio .NET, right-click the form, and choose "View Code
in the pop-up menu." You can now tab back and forth between the form itself, WebForm1.aspx, and
the C# code-behind file, WebForm1.cs. When viewing the form, WebForm1.aspx, you can choose
between Design mode and HTML mode by clicking the tabs at the bottom of the Editor window.
Design mode lets you drag controls onto your form; HTML mode allows you to view and edit the HTML
code directly.

Let's take a closer look at the .aspx and code-behind files that Visual Studio creates. Start by
renaming WebForm1.aspx to HelloWeb.aspx. To do this, close WebForm1.aspx, and then right-click
its name in the Solution Explorer. Choose Rename and enter the name HelloWeb.aspx. After you
rename it, open HelloWeb.aspx and view the code; you will find that the code-behind file has been
renamed as well to HelloWeb.cs.

When you create a new Web Form application, Visual Studio .NET will generate a bit of boilerplate
code to get you started, as shown in Example 15-1.

Example 15-1. Wizard-generated code for a Web Form
<%@ Page language="c#"
Codebehind="HelloWeb.cs"
AutoEventWireup="false"
Inherits="ProgrammingCSharpWeb.WebForm1" %>

<html>
 <head>
 <meta name="GENERATOR"
 Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </head>
 <body>

 <form method="post" runat="server">

 </form>

 </body>
</html>

What you see is typical boilerplate HTML except for the first line, which contains the following
ASP.NET code:

 360

<%@ Page language="c#"
Codebehind="HelloWeb.cs"
AutoEventWireup="false"
Inherits="ProgrammingCSharpWeb.WebForm1" %>

The language attribute indicates that the language used on the code-behind page is C#. The
Codebehind attribute designates that the filename of that page is HelloWeb.cs, and the Inherits
attribute indicates that this page derives from WebForm1. WebForm1 is a class declared in
HelloWeb.cs.

public class WebForm1 : System.Web.UI.Page

As the C# code makes clear, WebForm1 inherits from System.Web.UI.Page, which is the class that
defines the properties, methods, and events common to all server-side pages.

Returning to the HTML view of HelloWeb.aspx, you see that a form has been specified in the body of
the page using the standard HTML form tag:

<form method="post" runat="server">

Web Forms assumes that you'll need at least one form to manage the user interaction, and creates
one when you open a project. The attribute runat="server" is the key to the server-side magic.
Any tag that includes this attribute is considered a server-side control to be executed by the ASP.NET
framework on the server.

Having created an empty Web Form, the first thing you might want to do is add some text to the page.
By switching to HTML view, you can add script and HTML directly to the file just as you could with
classic ASP. Adding the following line to the body segment of the HTML page will cause it to display a
greeting and the current local time:

Hello World! It is now <% = DateTime.Now.ToString() %>

The <% and %> marks work just as they did in classic ASP, indicating that code falls between them (in
this case, C#). The = sign immediately following the opening tag causes ASP.NET to display the value,
just like a call to Response.Write(). You could just as easily write the line as:

Hello World! It is now
<% Response.Write(DateTime.Now.ToString()); %>

Run the page by pressing Ctrl-F5 (or save it and navigate to it in your browser). You should see the
string printed to the browser, as in Figure 15-2.

Figure 15-2. Output generated by the HelloWorld.aspx file

Programming C#

 361

15.3 Adding Controls

You can add server-side controls to a Web Form in two ways: manually, by writing HTML into the
HTML page, or by dragging controls from the toolbox to the Design page. For example, suppose you
want to use buttons to let the user choose one of three Shippers provided in the Northwinds database.
You could write the following HTML into the <form> element in the HTML window:

<asp:RadioButton GroupName="Shipper" id="Airborne"
 text = "Airborne Express" Checked="True" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="UPS"
 text = "United Parcel Service" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="Federal"
 text = "Federal Express" runat="server">
</asp:RadioButton>

The asp tags declare server-side ASP.NET controls that are replaced with normal HTML when the
server processes the page. When you run the application, the browser displays three radio buttons in
a button group; pressing one will deselect the others.

You can create the same effect more easily by dragging three buttons from the Visual Studio toolbox
onto the Form, as illustrated in Figure 15-3.

Figure 15-3. Dragging buttons onto the Web Form

 362

You can add controls to a page in one of two modes. The default mode is LinearLayout. When you
add controls in LinearLayout, they are displayed by the browser one after the other. You are
responsible for adding HTML to assist in their positioning.

The alternative mode is GridLayout. With GridLayout, the controls are added to a grid, allowing
for more accurate positioning. When you turn on GridLayout, the wizard adds a table to your page
to allow for precise positioning. To change from Grid to Layout or back, change the pageLayout
property of the document in Visual Studio .NET.

GridLayout makes the HTML a bit more difficult to read, but it does make it easier to place controls
precisely where you want them and thus to create attractive pages. We'll stick to LinearLayout for
now to keep the HTML simple.

Web Forms offer two types of server-side controls. The first type is server-side HTML controls, also
called Web Controls. These are standard HTML controls that you tag with the attribute
runat=Server.

The alternative to Web Controls is ASP.NET Server Controls, also called ASP Controls. ASP Controls
have been designed to replace the standard HTML controls. ASP controls provide a more consistent
object model and more consistently named attributes. For example, with HTML controls, there are
myriad different ways to handle input:

<input type = "radio">
<input type="checkbox">
<input type="button">
<input type="text">
<textarea>

Each of these behaves differently and takes different attributes. The ASP Controls try to normalize the
set of controls, using attributes consistently throughout the ASP control object model. The ASP
Controls that correspond to the preceding HTML server-side controls are:

<asp:RadioButton>
<asp:CheckBox>
<asp:Button>
<asp:TextBox rows="1">
<asp:TextBox rows="5">

The remainder of this chapter will focus on ASP Controls.

15.4 Data Binding

Various technologies have offered programmers the opportunity to bind controls to data so that as the
data is modified, the controls respond automatically. As Bullwinkle used to say, "Rocky, that trick
never works." Bound controls often provided only limited control over their look and feel, and
performance was usually pretty terrible. The ASP.NET designers set out to solve these problems and
provide a suite of robust data-bound controls, which simplify display and modification of data,
sacrificing neither performance nor control over the UI.

In the previous section, you hardcoded radio buttons onto a form, one for each of three Shippers in the
Northwinds database. That can't be the best way to do it; if you change the Shippers in the database,
you have to go back and rewire the controls. In this section you will see how you can create these
controls dynamically and then bind them to data in the database.

You might want to create the radio buttons based on data in the database because you can't know at
design time what text the buttons will have, or even how many buttons you'll need. To accomplish this,
you use a RadioButtonList. RadioButtonList is a control that allows you to create radio

Programming C#

 363

buttons programatically; you provide the name and values for the buttons, and ASP.NET takes care of
the plumbing.

Delete the radio buttons already on the form, and drag and drop a RadioButtonList in their place.
Once it is there, you can use the Properties window to rename it to rbl1.

15.4.1 Setting Initial Properties

Web Forms programming is event-based; you write your code to respond to various events. Typically,
the events you're responding to are user-initiated. For example, when the user clicks a button, a
Button-Click event is generated.

The most important initial event is the Page_Load event, which is fired every time a Web Form is
loaded. When the page is loaded, you want to fill the radio buttons with values from the database. For
example, if you are creating a purchase form, you might create one radio button for each possible
shipping method, such as UPS, FedEx, and so forth. You should therefore put your code into the
Page_Load method to create the buttons.

You only want to load these values into the radio buttons the first time the page is loaded. If the user
clicks a button or takes another action that sends the page back to the server, you do not want to
retrieve the values again when the page is reloaded.

ASP.NET can differentiate the first time the page is displayed from subsequent displays after a client
postback of the page to the server. Every Web Form page has the property IsPostBack, which will
be true if the page is being loaded in response to a client postback and false if it is being loaded for
the first time.

You can check the value of IsPostBack. If it is false, you know that this is the first time the page is
being displayed, and it's therefore time to get the values out of the database:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {//... }
}

The arguments to the Page_Load method are the normal arguments for events, as discussed in
Chapter 12.

15.4.2 Connecting to the Database

The code for making the connection to the database and filling a data set will look very familiar; it is
almost identical to what you saw in Chapter 14. There is no difference in creating a data set for Web
Forms and creating a data set for Windows Forms.

Start by declaring the member variables you need:

private System.Data. SqlClient.SQLConnection myConnection;
private System.Data.DataSet myDataSet;
private System.Data. SqlClient.SQLCommand myCommand;
private System.Data.SqlClient.SqlDataAdapter dataAdapter;

As in Chapter 14, you use the Structured Query Language (SQL) versions of SqlConnection and
dataAdapter. Create the connectionString for the Northwinds database, and use that to
instantiate and open the SQLConnection object:

 364

string connectionString =
 "server=localhost; uid=sa; pwd=; database=northwind";
myConnection =
 new System.Data. SqlClient.SQLConnection(connectionString);
myConnection.Open();

Create the data set and set it to handle case-sensitive queries:

myDataSet = new System.Data.DataSet();
myDataSet.CaseSensitive=true;

Next, create the SQLCommand object and assign it the connection object and the Select statement,
which are needed to get the ShipperID and company name identifying each potential shipper. Use
the name as the text for the radio button and the ShipperID as the value:

myCommand = new System.Data.SQL.SQLCommand();
myCommand.ActiveConnection=myConnection;
myCommand.CommandText = "Select ShipperID, CompanyName from Shippers";

You're ready to create the SQLDataSetCommand object and assign the SQLCommand object to it. With
that, you can map the Shippers table:

myCommand = new System.Data.SqlClient.SqlCommand()
myCommand.Connection=myConnection;
myCommand.CommandText =
 "Select ShipperID, CompanyName from Shippers";

You now create the dataAdapter object, set its SelectCommand property with your command
object, and add the Shippers table to its table mappings:

dataAdapter = new System.Data.SqlClient.SqlDataAdapter();
dataAdapter.SelectCommand= myCommand;
dataAdapter.TableMappings.Add("Table","Shippers");

Finally, fill the dataAdapter with the results of the query:

dataAdapter.Fill(myDataSet);

This is all virtually identical to what you saw in Chapter 14. This time, however, you're going to bind
this data to the RadioButtonList you created earlier.

The first step is to set the properties on the RadioButtonList object. The first property of interest
tells the RadioButtonList how to flow the radio buttons on the page:

rbl1.RepeatLayout =
 System.Web.UI.WebControls.RepeatLayout.Flow;

Flow is one of the two possible values in the RepeatLayout enumeration. The other is Table, which
lays the radio buttons out using a tabular layout. Next you must tell the RadioButtonList which
values from the data set are to be used for display (the DataTextField) and which is the value to be
returned when selected by the user (the DataValueField):

rbl1.DataTextField = "CompanyName";
rbl1.DataValueField = "ShipperID";

Programming C#

 365

The final steps are to tell the RadioButtonList which view of the data to use. For this example you
will use the default view of the Shippers table within the dataset:

rbl1.DataSource = myDataSet.Tables["Shippers"].DefaultView;

With that done, you're ready to bind the RadioButtonList to the dataset:

rbl1.DataBind();

Finally, you should ensure that one of the radio buttons is selected, so select the first:

rbl1.Items[0].Selected = true;

This statement accesses the Items collection within the RadioButtonList, chooses the first item
(the first radio button), and sets its Selected property to true.

When you run the program and navigate to the page in your browser, the buttons will be displayed as
shown in Figure 15-4.

Figure 15-4. RadioButtonList

If you examine the page source, you will not find a RadioButtonList. Instead, standard HTML radio
buttons have been created, and each has been given a shared ID. This allows the browser to treat
them as a group. Their labels have been created, and each radio button and its label has been
wrapped in a tag:

<input type="radio" id="rbl1_0" value="1"
checked="true" name="rbl1" />
<label for="rbl1_0">Federal Express</label>

This HTML is generated by the server by combining the RadioButtonList you added to your HTML
with the processing of the code-behind page. When the page is loaded, the Page_Load() method is
called and the data adapter is filled. When you assign the rbl1.DataTextField to CompanyName
and the rbl1.DataValueField to shipperID, and you assign the rbl1.DataSource to the
Shipper's table default view, you prepare the radio button list to generate the buttons. When you call
DataBind, the radio buttons are created from the data in the data source.

By adding just a few more controls, you can create a complete form with which users can interact. You
will do this by adding a more appropriate greeting ("Welcome to Northwinds"), a text box to accept the
name of the user, two new buttons (Order and Cancel), and text that provides feedback to the user.
Figure 15-5 shows the finished form.

Figure 15-5. The form

 366

This form will not win any awards for design, but its use will illustrate a number of key points about
Web Forms.

I've never known a developer who didn't think he could design a
perfectly fine UI. At the same time, I never knew one who actually
could. UI design is one of those skills (such as teaching) that we
all think we can do, but only a few very talented folks are good at
it. As a developer, I know my limitations; I write the code,
someone else lays it out on the page.

Example 15-2 is the complete HTML for the .aspx file.

Example 15-2. The .aspx file
<%@ Page language="c#"
Codebehind="HelloWeb.cs"
AutoEventWireup="false"
Inherits="ProgrammingCSharpWeb.WebForm1" %>
<html><head>
<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>
<meta content=C# name=CODE_LANGUAGE></head>
<body>
<form id=FORM3 method=post runat="server">
<table border=0>
 <tr>
 <td colspan="2">Welcome to Northwinds. </td>
 </tr>
 <tr>
 <td><asp:label id=Label1 runat="server"
 Width="88" Height="38">Your Name:</asp:label>
 </td>
 <td><asp:textbox id=txtName runat="server"
 Width="157" Height="26"></asp:textbox>
 </td>
 </tr>
 <tr>

Programming C#

 367

 <td colSpan=2>
 </td>
 </tr>
 <tr>
 <td>Shipper:</td>
 <td><asp:radiobuttonlist id=rbl1
 runat="server"></asp:radiobuttonlist>
 </td>
 </tr>
 <tr>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <td><asp:button id=Order runat="server"
 Width="88" Height="28" Text="Order"></asp:button>
 </td>
 <td><asp:button id=Cancel runat="server"
 Width="80" Height="28"
 Text="Cancel"></asp:button>
 </td>
 </tr>
</table>
</form>
<asp:Label id=lblFeedBack runat="server"
 Width="321" Height="19">Please choose the shipper.
</asp:Label>
</body>
</html>

The <asp:Button> controls will be converted into a standard HTML <input> tag. Again, the
advantage of using ASP controls is that they provide a more consistent object model for the
programmer and yet they generate standard HTML that every browser can display. Because they are
marked with the runat=Server attribute and given an id attribute, you can access these buttons
programmatically in server-side code if you choose to do so. Example 15-3 is the complete code-
behind page to support this HTML.

Example 15-3. The code-behind page supporting the HTML
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

namespace ProgrammingCSharpWeb
{
 // page constructor
 public class WebForm1 : System.Web.UI.Page
 {
 // declare the controls
 protected
 System.Web.UI.WebControls.RadioButtonList
 rbl1;
 private

 368

 System.Data.SqlClient.SqlConnection
 myConnection;
 private System.Data.DataSet myDataSet;
 private
 System.Data.SqlClient.SqlCommand myCommand;
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.TextBox txtName;
 protected System.Web.UI.WebControls.Button Order;
 protected System.Web.UI.WebControls.Button Cancel;
 protected System.Web.UI.WebControls.Label lblFeedBack;
 private System.Data.SqlClient.SqlDataAdapter
 dataAdapter;

 public WebForm1()
 {
 Page.Init +=
 new System.EventHandler(Page_Init);
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 // the first time we load the page, get the data and
 // set the radio buttons
 if (!IsPostBack)
 {
 string connectionString =
 "server=localhost; uid=sa; pwd=oWenmEany;
database=northwind";
 myConnection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 myConnection.Open();

 // create the dataset and set a property
 myDataSet = new System.Data.DataSet();
 myDataSet.CaseSensitive=true;

 // create the SqlCommand object and assign the
 // connection and the select statement
 myCommand = new System.Data.SqlClient.SqlCommand();
 myCommand.Connection=myConnection;
 myCommand.CommandText =
 "Select ShipperID, CompanyName from Shippers";

 // create the dataAdapter object and pass in the
 // Sql Command object and establish the table mappings
 dataAdapter = new System.Data.SqlClient.SqlDataAdapter();
 dataAdapter.SelectCommand= myCommand;
 dataAdapter.TableMappings.Add("Table","Shippers");

 // Tell the dataAdapter object to fill the dataset
 dataAdapter.Fill(myDataSet);

 // set up the properties for the RadioButtonList
 rbl1.RepeatLayout =
 System.Web.UI.WebControls.RepeatLayout.Flow;
 rbl1.DataTextField = "CompanyName";
 rbl1.DataValueField = "ShipperID";

 // set the data source and bind to it
 rbl1.DataSource = myDataSet.Tables["Shippers"].DefaultView;
 rbl1.DataBind();

Programming C#

 369

 // select the first button
 rbl1.Items[0].Selected = true;

 }
 }

 protected void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 private void InitializeComponent()
 {
 this.Order.Click +=
 new System.EventHandler(this.Order_Click);
 this.Load +=
 new System.EventHandler(this.Page_Load);
 }

 // handle clicking the order button
 public void Order_Click (
 object sender, System.EventArgs e)
 {
 // create the message by getting
 // the values from the controls
 string msg;
 msg = "Thank you " + txtName.Text +". You chose " ;
 // iterate over the radio buttons
 for (int i = 0;i<rbl1.Items.Count;i++)
 {
 // if it is selected, add it to the msg.
 if (rbl1.Items[i].Selected)
 {
 msg = msg + rbl1.Items[i].Text;
 lblFeedBack.Text = msg;
 } // end if selected
 } // end for loop
 } // end Order_Click
 } // end class WebForm1
} // end namespace ProgrammingCSharpWeb

15.5 Responding to Postback Events

The <asp:button> objects automatically postback when clicked. You need not write any code to
handle that event unless you want to do something more than postback to the server. If you take no
other action, the page will simply be re-sent to the client.

Normally, when a page is redrawn, each control is redrawn from scratch. The Web is stateless, and if
you want to manage the state of a control (e.g., redraw the user's text in the text box), you must do so
yourself. In classic ASP, the programmer was responsible for managing this state, but ASP.NET
provides some assistance. When the page is posted, a hidden element named ViewState is
automatically added to the page:

<input type="hidden" name="_ _VIEWSTATE"
value="YTB6LTI5MTE3ODE1N19hMHpfaHo1ejF4X2Ewel9oejV6NXhfYTB6YTB6YTB6aHpSZXBl
YXRMYXl
vdXRfU3lzdGVtLldlYi5VSS5XZWJDb250cm9scy5SZXBlYXRMYXlvdXR6VGFibGV4X0RhdGFWYW
x1ZUZpZ

 370

WxkX1NoaXBwZXJJRF9EYXRhVGVceHRGaWVsZF9Db21wYW55TmFtZXhfX3hfYTB6YTB6YXpTcGVl
ZHkgRVx
4cHJlc3NfMV94X2F6VW5pdGVkIFBhY2thZ2VfMl94X2F6RmVkZXJhbCBTaGlwcGluZ18zX3hfeF
94X3hfX
3h4X3h4X3hfX3hcdDUwX1N5c3RlbS5TdHJpbmc=a15204ed" />

This element represents the state of the form (the values are already chosen by the user). When the
page is redrawn on the client, ASP.NET uses the view state to return the controls to their previous
state.

When the user clicks the Order button, the page is posted and the event handler assigned to that
button is invoked:

public void Order_Click (object sender, System.EventArgs e)
{
 string msg;
 msg = "Thank you " + txtName.Text +". You chose " ;
 for (int i = 0;i<rbl1.Items.Count;i++)
 {
 if (rbl1.Items[i].Selected)
 {
 msg = msg + rbl1.Items[i].Text;
 lblFeedBack.Text = msg;
 }
 }
}

The easiest way to create the event handler is to double-click the
Order button in Design mode in Visual Studio .NET. This will
cause Visual Studio to add the event to the
InitializeComponent method:

Order.Click += new System.EventHandler
(this.Order_Click);

and it will create a skeleton Order_Click event handler method
for you. Alternatively, you can do this all by hand.

This event handler creates a message based on the name you enter and the shipper you choose and
puts that message into the Feedback label. When the form first comes up, it looks like Figure 15-5. If
I fill in my name, pick United Parcel Service, and press Order, the form will be submitted and then
redisplayed. The result is shown in Figure 15-6.

Figure 15-6. Page posted after the user clicks Order

Programming C#

 371

The form automatically remembers the state of the radio button and text controls (this is what the
VIEWSTATE field is for) and that the event handler has been called and run on the server, and the
label is updated accordingly.

ASP programmers take note: there is no code in the .aspx file nor
in the .cs file to manage the state. Nowhere do you stash away
the state of the radio buttons or the text field; all this is managed
automatically for you by ASP.NET.

15.6 ASP.NET and C#

There is a great deal to learn about ASP.NET, but much of it is language-independent. ASP.NET
offers a rich suite of controls and related tools, including tools to validate data, display dates, present
advertisements, interact with the user, and so forth. Most of these require no coding whatsoever.

The role of the C# programmer in ASP.NET development is in writing the event handlers that respond
to user interaction. Many of the event handlers will either add data to a database or retrieve data and
make it available to the controls.

 372

Programming C#

 373

Chapter 16. Programming Web Services

.NET Web Services expand on the concept of distributed processing to build components whose
methods can be invoked across the Internet. These components can be built in any .NET language,
and they communicate using open protocols that are platform-independent.

For example, a stock exchange server might provide a web service method that takes a stock ticker
symbol as a parameter and returns a quote. An application might combine that service with another
service from a different company that also takes a stock symbol but that returns background data
about the company. The application developer can concentrate on adding value to these services,
rather than duplicating the same service for his own application.

The list of web services that might be useful to developers and end users seems boundless. A
bookstore might provide a web service that takes an ISBN and returns the price and availability of a
title. A hotel's web service might take a date range and number of guests and return a reservation.
Another web service might take a telephone number and return a name and address. Yet another
might provide information about the weather or shuttle launches.

Microsoft has announced a number of commercial .NET services as part of its Project Hailstorm
initiative. Among these are its Passport service for identifying and authenticating users (see
http://www.passport.com), as well as services for managing storage, notification, appointments,
and a host of other applications. These services, as well as the ones you write, can be integrated with
your applications just like any other business object.

In such a world, a single application might draw on and stitch together the services of hundreds of
small web services distributed all over the world. This takes the Web to an entirely new dimension: not
only is information retrieved and exchanged, but also methods are invoked and applications are
executed.

16.1 SOAP, WSDL, and Discovery

What is needed to make web services possible is a simple, universally accepted protocol for exposing,
finding, and invoking web service functions. In 1999, Simple Object Access Protocol (SOAP) was
proposed to the World Wide Web Consortium. SOAP has the advantages of being based on XML and
of using standard Internet communications protocols.

SOAP is a lightweight, message-based protocol built on XML, HTTP, and SMTP. Two other protocols
are desirable, but not required, for a client to use a SOAP-enabled web service: a description of the
methods provided by a particular service that can be understood and acted upon by clients, and a
description of all such services available at a particular site or URL. The first of these is provided
in .NET by the Web Service Description Language (WSDL) protocol, jointly developed by Microsoft,
IBM, and others. Two other protocols have been proposed for discovery: UDDI, a joint effort by a
number of companies including IBM and Microsoft, and Discovery, a proprietary offering from
Microsoft.

WSDL is an XML schema used to describe the available methods—the interface—of a web service.
Discovery enables applications to locate and interrogate web service descriptions, a preliminary step
for accessing a web service. It is through the discovery process that web service clients learn that a
service exists, what its capabilities are, and how to properly interact with it. A Discovery (.disco) file
provides information to help browsers determine the URLs at any web site at which web services are
available. When a server receives a request for a .disco file, it generates a list of some or all of the
URLs at that site that provide web services.

 374

16.1.1 Server-side Support

The plumbing necessary to discover and invoke web services is integrated into the .NET Framework
and provided by classes within the System.Web.Services.WebService namespace. Creating a
web service requires no special programming on your part; you need only write the implementing code,
add the [WebMethod] attribute, and let the server do the rest. You can read about attributes in detail
in Chapter 18.

16.1.2 Client-side Support

You make use of a web service by writing client code that acts as though it were communicating
directly with the host server by means of a URL. However, in reality, the client interacts with a proxy.
The job of the proxy is to represent the server on the client machine, but to bundle client requests into
SOAP messages that are sent on to the server and to retrieve the responses that contain the result.
Proxies and the details of dealing with objects on other machines are covered in detail in Chapter 19.

16.2 Building a Web Service

To illustrate the techniques used to implement a web service in C# using the services classes of
the .NET Framework, let's build a simple calculator and then make use of its functions over the Web.

You begin by specifying the web service. You do so by defining a class that inherits from
System.Web.Services.WebService. The easiest way to create this class is to open Visual Studio
and create a new C# Web Service project. The default name that Visual Studio provides is
WebService1, but you might want to choose something more appropriate.

Visual Studio .NET creates a skeleton web service and even provides a Web Service example method
for you to replace with your own code, as shown in Example 16-1.

Example 16-1. Skeleton web class generated by Visual Studio .NET
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace WSCalc
{
 /// <summary>
 /// Summary description for Service1.
 /// </summary>
 public class Service1 : System.Web.Services.WebService
 {
 public Service1()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services
Designer
 InitializeComponent();
 }

 #region Component Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>

Programming C#

 375

 private void InitializeComponent()
 {
 }
 #endregion

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 public override void Dispose()
 {
 }

 // WEB SERVICE EXAMPLE
 // The HelloWorld() example service
 //returns the string Hello World
 // To build, uncomment the following lines
 // then save and build the project
 // To test this web service, press F5

// [WebMethod]
// public string HelloWorld()
// {
// return "Hello World";
// }
 }
}

You'll create five methods: Add(), Sub(), Mult(), Div(), and Pow(). Each takes two
parameters of type double, performs the requested operation, and then returns a value of the same
type. For example, here is the code for raising a number to some specified power:

public double pow(double x, double y)
{
 double retVal = x;
 for (int i = 0;i < y-1;i++)
 {
 retVal *= x;
 }
 return retVal;
}

To expose each method as a web service, you simply add the [WebMethod] attribute before each
method declaration:

[WebMethod]

Attributes are discussed in Chapter 18.

You are not required to expose all the methods of your class as web services. You can pick and
choose, adding the [WebMethod] attribute only to those methods you want to expose.

That's all you need to do; .NET takes care of the rest.

WSDL and Namespaces

 376

Your web service will use a Web Service Description Language (WSDL)
XML document to describe the web-callable end points. Within any WSDL
document, an XML namespace must be used to ensure that the end points
have unique names. The default XML namespace is http://tempuri.org/, but
you will want to modify this before making your web service publicly
available.

You can change the XML namespace by using the WebService attribute:

[WebService(Namespace=
 "http://www.LibertyAssociates.com/webServices/")]

You can read about attributes in detail in Chapter 18.

Example 16-2 shows the complete source code for the Calculator web service:

Example 16-2. Calculator web service program
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace WSCalc
{
 [WebService(Namespace="http://www.libertyAssociates.com/webServices/")]
 public class Service1 : System.Web.Services.WebService
 {
 public Service1()
 {
 InitializeComponent();
 }

 #region Component Designer generated code
 private void InitializeComponent()
 {
 }
 #endregion

 public override void Dispose()
 {
 }

 [WebMethod]
 public double Add(double x, double y)
 {
 return x+y;
 }

 [WebMethod]
 public double Sub(double x, double y)
 {
 return x-y;
 }
 [WebMethod]

Programming C#

 377

 public double Mult(double x, double y)
 {
 return x*y;
 }
 [WebMethod]
 public double Div(double x, double y)
 {
 return x/y;
 }
 [WebMethod]
 public double pow(double x, double y)
 {
 double retVal = x;
 for (int i = 0;i < y-1;i++)
 {
 retVal *= x;
 }
 return retVal;
 }

 }
}

The only special work you must do is to add references to both System.Web and
System.Web.Services. If you build your application using command-line tools, you would use the
/R flag to add the references. In Visual Studio .NET, you simply right-click the Solution Explorer
window, select References, and add the appropriate namespace references from the .NET tab. You
must also add the appropriate using statements to the top of the file, as shown in Example 16-2.

When you build this project with Visual Studio .NET, a DLL is created in the appropriate subdirectory
of your Internet server (e.g., c:\InetPub\wwwroot\ProgCSharpWebSvc). A quick check of that directory
reveals that a .disco file has also been added.

There is nothing magical about using Visual Studio .NET; you can
create your server in Notepad if you like. Visual Studio .NET
simply saves you the work of creating the directories, creating
the .disco file, and so forth. Visual Studio .NET is particularly
helpful when creating the client files, as you'll see shortly.

16.2.1 Testing Your Web Service

If you open a browser to your web service's URL (or invoke the browser by running the program in
Visual Studio .NET), you get an automatically generated, server-side web page that describes the web
service, as shown in Figure 16-1. Test pages such as this offer a good way to test your web service.
(The next section illuminates the seeming hocus-pocus that produces these pages.)

Figure 16-1. The web service web page

 378

Clicking a method brings you to a page that describes the method and allows you to invoke it by typing
in parameters and pressing the Invoke button. Figure 16-2 illustrates.

Figure 16-2. Test page for a web service method

If you type 3 into the first value field and 4 into the second field, you will have asked the web service to
raise 3 to the fourth power. The result is an XML page describing the output, as shown in Figure 16-
3.

Figure 16-3. XML output for a web service method

Notice that the URL encodes the parameters of 3 and 4, and the output XML shows the result of 81
(3*3*3*3 = 81).

Programming C#

 379

16.2.2 Viewing the WSDL Contract

A lot of work is being done for you automatically. HTML pages describing your web service and its
methods are generated, and these pages include links to pages in which the methods can be tested.
How is this done?

As noted earlier, the web service is described in WSDL. You can see the WSDL document by
appending ?WSDL to the web service URL, like this:

http://localhost/webForms/WSCalc/Service1.asmx?wsdl

The browser displays the WSDL document, as shown in Figure 16-4.

Figure 16-4. Sample WSDL output for calculator web service

The details of the WSDL document are beyond the scope of this book, but you can see that each
method is fully described in a structured XML format. This is the information used by SOAP to allow
the client browser to invoke your web service methods on the server.

16.3 Creating the Proxy

Before you can create a client application to interact with the calculator web service, you must first
create a proxy class. Once again, you can do this by hand, but that would be hard work. The folks at
Microsoft have provided a tool called wsdl that generates the source code for the proxy based on the
information in the WSDL file.

To create the proxy, you enter wsdl at the Windows command-line prompt, followed by the path to the
WSDL contract. For example, you might enter:

wsdl http://localhost/webforms/wscalc/service1.asmx?wsdl

 380

The result is the creation of a C# client file named Service1.cs, an excerpt of which appears in
Example 16-3. You must add the namespace WSCalc because you'll need it when you build your
client (the tool does not insert it for you).

Example 16-3. Sample client code to access the calculator web service
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.Web.Services;

namespace WSCalc
{
 [System.Web.Services.WebServiceBindingAttribute(
 Name="Service1Soap",
 Namespace="http://www.libertyAssociates.com/webServices/")]
 public class Service1 :
 System.Web.Services.Protocols.SoapHttpClientProtocol
 {

 public Service1()
 {
 this.Url =
 "http://localhost/webforms/wscalc/service1.asmx";
 }

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://www.libertyAssociates.com/webServices/Add",
 RequestNamespace=
 "http://www.libertyAssociates.com/webServices/",
 ResponseNamespace=
 "http://www.libertyAssociates.com/webServices/",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=
 System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public System.Double Add(System.Double x, System.Double y)
 {
 object[] results = this.Invoke("Add", new object[] {x,y});
 return ((System.Double)(results[0]));
 }

 public System.IAsyncResult
 BeginAdd(System.Double x, System.Double y,
 System.AsyncCallback callback, object asyncState)
 {
 return this.BeginInvoke("Add", new object[] {x,
 y}, callback, asyncState);
 }

 public System.Double EndAdd(System.IAsyncResult asyncResult)
 {
 object[] results = this.EndInvoke(asyncResult);
 return ((System.Double)(results[0]));
 }

This complex code is produced by the WSDL tool to build the proxy DLL you will need when you build
your client. The file uses attributes extensively (see Chapter 18), but with your working knowledge of
C# you can extrapolate at least how some of it works.

Programming C#

 381

The file starts by declaring the Service1 class which derives from the class
SoapHttpClientProtocol, which occurs in the namespace called
System.Web.Services.Protocols:

public class Service1 :
 System.Web.Services.Protocols.SoapHttpClientProtocol

The constructor sets the URL property inherited from SoapHttpClientProtocol to the URL of
the .asmx page you created earlier.

The Add() method is declared with a host of attributes that provide the SOAP goo to make the
remote invocation work.

The WSDL application has also provided asynchronous support for your methods. For example, for
the Add() method, it also created BeginAdd() and EndAdd().This allows you to interact with a
web service without performance penalties.

To build the proxy, you place the code generated by WSDL into a C# Library project in Visual
Studio .NET and then build the project to generate a DLL. Be sure to write down the location of that
DLL, as you will need it when you build the client application.

To test the web service, you create a very simple C# Console application. The only trick is that in your
client code you need to add a reference to the proxy DLL you just created and a reference to
System.Web.Services.dll. Once that is done, you can instantiate the web service, just like any
locally available object:

WSCalc.Service1 theWebSvc =
 new WSCalc.Service1();

You can then invoke the Pow() method as if it were a method on a locally available object:

for (int i = 1;i<10; i++)
 for (int j = 1;j <10;j++)
 {
 Console.WriteLine(
 "{0} to the power of {1} = {2}", i, j,
 theWebSvc.Pow(i, j));
 }

This simple loop creates a table of the powers of the numbers 2 through 9, displaying for each the
powers 1 through 9. The complete source code and an excerpt of the output is shown in Example
16-4.

Example 16-4. A client program to test the calculator web service
using System;

// driver program to test the web service
public class Tester
{
 public static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }

 public void Run()
 {

 382

 int var1 = 5;
 int var2 = 7;

 // instantiate the web service proxy
 WSCalc.Service1 theWebSvc =
 new WSCalc.Service1();

 // cal the add method
 Console.WriteLine("{0} + {1} = {2}", var1, var2,
 theWebSvc.Add(var1, var2));

 // build a table by repeatedly calling the pow method
 for (int i = 2;i<10; i++)
 for (int j = 1;j <10;j++)
 {
 Console.WriteLine("{0} to the power of {1} = {2}", i, j,
 theWebSvc.pow(i, j));
 }
 }
}

Output (excerpt):

5 + 7 = 12
2 to the power of 1 = 2
2 to the power of 2 = 4
2 to the power of 3 = 8
2 to the power of 4 = 16
2 to the power of 5 = 32
2 to the power of 6 = 64
2 to the power of 7 = 128
2 to the power of 8 = 256
2 to the power of 9 = 512
3 to the power of 1 = 3
3 to the power of 2 = 9
3 to the power of 3 = 27
3 to the power of 4 = 81
3 to the power of 5 = 243
3 to the power of 6 = 729
3 to the power of 7 = 2187
3 to the power of 8 = 6561
3 to the power of 9 = 19683

Your calculator service is now more available than you might have imagined (depending on your
security settings) through the web protocols of HTTP-Get, HTTP-Post, or SOAP. Your client uses the
SOAP protocol, but you could certainly create a client that would use HTTP-Get:

http://localhost/ProgCSharpWebSvc/
 WebService1.asmx/Add?x=23&y=22

In fact, if you put that URL into your browser, the browser will respond with the answer:

<?xml version="1.0"?>
 <double xmlns="http://tempuri.org/">45</double>

The key advantage SOAP has over HTTP-Get and HTTP-Post is that SOAP can support a rich set of
data types, including all of the C# intrinsic types (int, double, etc.), as well as enums, classes,
structs, and ADO.NET DataSets, and arrays of any of these types.

Programming C#

 383

Also, while HTTP-Get and HTTP-Post protocols are restricted to name/value pairs of primitive types
and enums, SOAP's rich XML grammar offers a more robust alternative for data exchange.

 384

Programming C#

 385

Part III: C# and the .NET CLR

Chapter 17. Assemblies and Versioning
The basic unit of .NET programming is the assembly. An assembly is a collection of files that appears
to the user to be a single dynamic link library (DLL) or executable (EXE). DLLs are collections of
classes and methods that are linked into your running program only when they are needed.

Assemblies are the .NET unit of reuse, versioning, security, and deployment. This chapter will discuss
assemblies in detail, including the architecture and contents of assemblies, private assemblies, and
shared assemblies.

In addition to the object code for the application, assemblies contain resources such as .gif files, type
definitions for each class you define, as well as metadata about the code and data. Metadata is
explored in detail in Chapter 18.

17.1 PE Files

On disk, assemblies are Portable Executable (PE) files. PE files are not new. The format of a .NET PE
file is exactly the same as a normal Windows PE file. PE files are implemented as DLLs or EXEs.
Logically (as opposed to physically), assemblies consist of one or more modules. Note, however, that
an assembly must have exactly one entry point—DLLMain, WinMain, or Main. DLLMain is the entry
point for DLLs, WinMain is the entry point for Windows applications, and Main is the entry point for
DOS and Console applications.

Modules are created as DLLs and are the constituent pieces of assemblies. Standing alone, modules
cannot be executed; they must be combined into assemblies to be useful.

You deploy and reuse the entire contents of an assembly as a unit. Assemblies are loaded on demand
and will not be loaded if not needed.

17.2 Metadata

Metadata is information stored in the assembly that describes the types and methods of the assembly
and provides other useful information about the assembly. Assemblies are said to be self-describing
because the metadata fully describes the contents of each module. Metadata is discussed in detail in
Chapter 18.

17.3 Security Boundary

Assemblies form security boundaries, as well as type boundaries. That is, an assembly is the scope
boundary for the types it contains, and types cannot cross assemblies. You can, of course, refer to
types across assembly boundaries by adding a reference to the required assembly, either in the
Integrated Development Environment (IDE) or on the command line, at compile time. What you cannot
do is have the definition of a type span two assemblies.

17.4 Versioning

Each assembly has a version number, and versions cannot transcend the boundary of the assembly.
That is, a version can refer only to the contents of a single assembly. All types and resources within
the assembly change versions together.

 386

17.5 Manifests

As part of its metadata, every assembly has a manifest, which describes what is in the assembly,
including identification information (name, version, etc.), a list of the types and resources in the
assembly, a map to connect public types with the implementing code, and a list of assemblies
referenced by this assembly.

Even the simplest program has a manifest. You can examine that manifest using ILDasm, which is
provided as part of your development environment. When you open it in ILDasm, the EXE program
created by Example 12-3y looks like Figure 17-1.

Figure 17-1. ILDasm of Example 12-3

Notice the manifest (second line from the top). Double-clicking the manifest opens a Manifest window,
as shown in Figure 17-2.

Figure 17-2. The Manifest window

Programming C#

 387

This file serves as a map of the contents of the assembly. You can see in the first line the reference to
the mscorlib assembly, which is referenced by this and every .NET application The mscorlib
assembly is the core library assembly for .NET and is available on every .NET platform.

The next assembly line is a reference to the assembly from Example 12-3. You can also see that
this assembly consists of a single module. You can ignore the rest of the metadata for now.

17.5.1 Modules in the Manifest

Assemblies can consist of more than one module. In such a case, the manifest includes a hash code
identifying each module to ensure that when the program executes, only the proper version of each
module is loaded. If you have multiple versions of a given module on your machine, the hash code
ensures that your program will load properly.

The hash is a numeric representation of the code for the module, and if the code is changed, the hash
will not match.

17.5.2 Module Manifests

Each module has a manifest of its own that is separate from the assembly manifest. The module
manifest lists the assemblies referenced by that particular module. In addition, if the module declares
any types, these are listed in the manifest along with the code to implement the module. A module can
also contain resources, such as the images needed by that module.

17.5.3 Other Required Assemblies

The assembly manifest also contains references to other required assemblies. Each such reference
includes the name of the other assembly, the version number and required culture, and, optionally, the
other assembly's originator. The originator is a digital signature for the developer or company that
provided the other assembly.

Culture is an object representing the language and national
display characteristics for the person using your program. It is
culture that determines, for example, whether dates are in
month/date/year format or date/month/year format.

17.6 Multi-Module Assemblies

A single-module assembly has a single file that can be an EXE or DLL file. This single module
contains all the types and implementations for the application. The assembly manifest is embedded
within this module.

A multi-module assembly consists of multiple files (zero or one EXE and zero or more DLL files,
though you must have at least one EXE or DLL). The assembly manifest in this case can reside in a
standalone file, or it can be embedded in one of the modules. When the assembly is referenced, the
runtime loads the file containing the manifest and then loads the required modules as needed.

17.6.1 Benefiting from Multi-Module Assemblies

Multi-module assemblies have advantages for real-world programs, especially if they are developed by
multiple developers or are very large.

 388

Imagine that 25 developers are working on a single project. If they were to create a single-module
assembly to build and test the application, all 25 programmers would have to check in their latest code
simultaneously, and the entire mammoth application would be built. That creates a logistical nightmare.

If they each build their own modules, however, the program can be built with the latest available
module from each programmer. This relieves the logistics problems; each module can be checked in
when it is ready.

Perhaps more importantly, multiple modules make it easier to deploy and to maintain large programs.
Imagine that each of the 25 developers builds a separate module, each in its own DLL. The person
responsible for building the application would then create a 26th module with the manifest for the
entire assembly. These 26 files can be deployed to the end user. The end user then need only load
the one module with the manifest, and he can ignore the other 25. The manifest will identify which of
the 25 modules has each method, and the appropriate modules will be loaded as methods are invoked.
This will be transparent to the user.

As modules are updated, the programmers only need to send the updated modules (and a module
with an updated manifest). Additional modules can be added and existing modules can be deleted; the
end user continues to load only the one module with the manifest.

In addition, it is entirely likely that not all 25 modules will need to be loaded into the program. By
breaking the program into 25 modules, the loader can load only those parts of the program that are
needed. This makes it easy to shunt aside code that is only rarely needed into its own module, which
might not be loaded at all in the normal course of events. Although this was the theory behind DLLs all
along, .NET accomplishes this without "DLL Hell," a monumental achievement described later in this
chapter.

17.6.2 Building a Multi-Module Assembly

To demonstrate the use of multi-module assemblies, the following example creates a couple of very
simple modules that you can then combine into a single assembly. The first module is a Fraction
class. This simple class will allow you to create and manipulate common fractions. Example 17-1
illustrates.

Example 17-1. The Fraction class
namespace ProgCS
{
 using System;

 public class Fraction
 {
 public Fraction(int numerator, int denominator)
 {
 this.numerator = numerator;
 this.denominator = denominator;
 }

 public Fraction Add(Fraction rhs)
 {
 if (rhs.denominator != this.denominator)
 {
 throw new ArgumentException(
 "Denominators must match");
 }

 return new Fraction(
 this.numerator + rhs.numerator,
 this.denominator);

Programming C#

 389

 }

 public override string ToString()
 {
 return numerator + "/" + denominator;
 }

 private int numerator;
 private int denominator;
 }
}

Notice that the Fraction class is in the ProgCS namespace. The full name for the class will be
ProgCS.Fraction.

The Fraction class takes two values in its constructor: a numerator and a denominator. There is
also an Add() method, which takes a second Fraction and returns the sum, assuming the two
share a common denominator. This class is simplistic, but it will demonstrate the functionality
necessary for this example.

The second class is the myCalc class, which stands in for a robust calculator. Example 17-2
illustrates.

Example 17-2. The Calculator
namespace ProgCS
{
 using System;

 public class myCalc
 {
 public int Add(int val1, int val2)
 {
 return val1 + val2;
 }
 public int Mult(int val1, int val2)
 {
 return val1 * val2;
 }
 }
}

Once again, myCalc is a very stripped-down class to keep things simple. Notice that calc is also in
the ProgCS namespace.

This is sufficient to create an assembly. You'll use an AssemblyInfo.cs file to add some metadata to
the assembly. The use of metadata will be covered in Chapter 19.

You can write your own AssemblyInfo.cs file, but the simplest
approach is to let Visual Studio generate one for you
automatically.

Visual Studio creates single-module assemblies by default. You can create a multi-module resource
with the /addModules command line. The easiest way to compile and build a multi-module assembly
is with a makefile, which you can create with Notepad or any text editor.

 390

If you are unfamiliar with makefiles, don't worry; this is the only
example that needs a makefile, and that is only to get around the
current limitation of Visual Studio creating only single-module
assemblies. If necessary, you can just use the makefile as offered
without fully understanding every line.

Example 17-3 shows the complete makefile (which is explained in detail immediately afterward).

Example 17-3. The complete makefile for a multi-module assembly
ASSEMBLY= MySharedAssembly.dll

BIN=.\bin
SRC=.
DEST=.\bin

CSC=csc /nologo /debug+ /d:DEBUG /d:TRACE

MODULETARGET=/t:module
LIBTARGET=/t:library
EXETARGET=/t:exe

REFERENCES=System.dll

MODULES=$(DEST)\Fraction.dll $(DEST)\Calc.dll
METADATA=$(SRC)\AssemblyInfo.cs

all: $(DEST)\MySharedAssembly.dll

Assembly metadata placed in same module as manifest
$(DEST)\$(ASSEMBLY): $(METADATA) $(MODULES) $(DEST)
 $(CSC) $(LIBTARGET) /addmodule:$(MODULES: =;) /out:$@ %s

Add Calc.dll module to this dependency list
$(DEST)\Calc.dll: Calc.cs $(DEST)
 $(CSC) $(MODULETARGET) /r:$(REFERENCES: =;) /out:$@ %s

Add Fraction
$(DEST)\Fraction.dll: Fraction.cs $(DEST)
 $(CSC) $(MODULETARGET) /r:$(REFERENCES: =;) /out:$@ %s

$(DEST)::
!if !EXISTS($(DEST))
 mkdir $(DEST)
!endif

The makefile begins by defining the assembly you want to build:

ASSEMBLY= MySharedAssembly.dll

It then defines the directories you'll use, putting the output in a bin directory beneath the current
directory and retrieving the source code from the current directory:

BIN=.\bin
SRC=.
DEST=.\bin

Programming C#

 391

You build the assembly as follows:

$(DEST)\$(ASSEMBLY): $(METADATA) $(MODULES) $(DEST)
 $(CSC) $(LIBTARGET) /addmodule:$(MODULES: =;) /out:$@ %s

This places the assembly (MySharedAssembly.dll) in the destination directory (bin). It tells nmake
(the program that executes the makefile) that the assembly consists of the metadata and the
modules, and it provides the command line required to build the assembly.

The metadata is defined earlier as:

METADATA=$(SRC)\AssemblyInfo.cs

The modules are defined as the two DLLs:

MODULES=$(DEST)\Fraction.dll $(DEST)\Calc.dll

The compile line builds the library and adds the modules, putting the output into the assembly file
MySharedAssembly.dll:

$(DEST)\$(ASSEMBLY): $(METADATA) $(MODULES) $(DEST)
 $(CSC) $(LIBTARGET) /addmodule:$(MODULES: =;) /out:$@ %s

To accomplish this, nmake needs to know how to make the modules. You start by telling nmake how
to create calc.dll. For this you need the calc.cs source file, and you tell nmake the command line to
build that DLL:

$(DEST)\Calc.dll: Calc.cs $(DEST)
 $(CSC) $(MODULETARGET) /r:$(REFERENCES: =;) /out:$@ %s

Then do the same thing for fraction.dll:

$(DEST)\Fraction.dll: Fraction.cs $(DEST)
 $(CSC) $(MODULETARGET) /r:$(REFERENCES: =;) /out:$@ %s

The result of running nmake on this makefile is to create three DLLs: fraction.dll, calc.dll, and
MySharedAssembly.dll. If you open MySharedAssembly.dll with ILDasm, you'll find that it consists of
nothing but a manifest, as shown in Figure 17-3.

Figure 17-3. MySharedAssembly.dll

If you examine the manifest, you see the metadata for the libraries you created, as shown in Figure
17-4.

Figure 17-4. The manifest for MySharedAssembly

 392

You first see an external assembly for the core library (mscorlib), followed by the two modules,
ProgCS.Fraction and ProgCS.myCalc.

You now have an assembly that consists of three DLL files: MySharedAssembly.dll with the manifest,
and Calc.dll and Fraction.dll with the types and implementation needed.

17.6.2.1 Testing the assembly

To use these modules, you need to create a driver program that will load in the modules as needed.
Example 17-4 illustrates. Save this program as Test.cs in the same directory as the other modules.

Example 17-4. A module test driver
namespace Programming_CSharp
{
 using System;

 public class Test
 {
 // main will not load the shared assembly
 static void Main()
 {
 Test t = new Test();
 t.UseCS();
 t.UseFraction();

 }

 // calling this loads the myCalc assembly
 // and the mySharedAssembly assembly as well
 public void UseCS()
 {

Programming C#

 393

 ProgCS.myCalc calc = new ProgCS.myCalc();
 Console.WriteLine("3+5 = {0}\n3*5 = {1}",
 calc.Add(3,5), calc.Mult(3,5));
 }

 // calling this adds the Fraction assembly
 public void UseFraction()
 {
 ProgCS.Fraction frac1 = new ProgCS.Fraction(3,5);
 ProgCS.Fraction frac2 = new ProgCS.Fraction(1,5);
 ProgCS.Fraction frac3 = frac1.Add(frac2);
 Console.WriteLine("{0} + {1} = {2}",
 frac1, frac2, frac3);
 }
 }
}

Output:
3+5 = 8
3*5 = 15
3/5 + 1/5 = 4/5

For the purposes of this demonstration, it is important not to put any code in Main() that depends
on your modules. You do not want the modules loaded when Main() loads, and so no Fraction or
Calc objects are placed in Main(). When you call into UseFraction and UseCalc, you'll be able
to see that the modules are individually loaded.

17.6.2.2 Loading the assembly

An assembly is loaded into its application by the AssemblyResolverthrough a process called
probing. The assembly resolver is called by the .NET Framework automatically; you do not call it
explicitly. Its job is to resolve the assembly name to an EXE program and load your program.

With a private assembly, the AssemblyResolver looks only in the application load directory and its
subdirectories—that is, the directory in which you invoked your application.

The three DLLs produced earlier must be in the directory in which
Example 17-4 executes or in a subdirectory of that directory.

Put a break point on the second line in Main, as shown in Figure 17-5.

Figure 17-5. A break point in Main()

 394

Execute to the break point and open the Modules window. Only two modules are loaded, as shown in
Figure 17-6.

Figure 17-6. Only two modules loaded

Step into the first method call and watch the modules window. As soon as you step into UseCS, the
AssemblyLoader recognizes that it needs an assembly from MySharedAssembly.Dll. The DLL is
loaded, and from that assembly's manifest the AssemblyLoader finds that it needs Calc.dll, which is
loaded as well, as shown in Figure 17-7.

Figure 17-7. Modules loaded on demand

Programming C#

 395

When you step into Fraction, the final DLL will be loaded. The advantage of multi-module
assemblies is that a module is loaded only when it is needed.

17.7 Private Assemblies

Assemblies come in two flavors: private and shared . Private assemblies are intended to be used by
only one application; shared assemblies are intended to be shared among many applications.

All the assemblies you've built so far are private. By default, when you compile a C# application, a
private assembly is created. The files for a private assembly are all kept in the same folder (or in a tree
of subfolders). This tree of folders is isolated from the rest of the system, as nothing other than the one
application depends on it, and you can redeploy this application to another machine just by copying
the folder and its subfolders.

A private assembly can have any name you choose. It does not matter if that name clashes with
assemblies in another application; the names are local only to a single application.

In the past, DLLs were installed on a machine and an entry was made in the Windows Registry. It was
difficult to avoid corrupting the Registry, and reinstalling the program on another machine was
nontrivial. With assemblies, all of that goes away. With private assemblies, installing is as simple as
copying the files to the appropriate directory. Period.

17.8 Shared Assemblies

You can create assemblies that can be shared by other applications. You might want to do this if you
have written a generic control or a class that might be used by other developers. If you want to share
your assembly, it must meet certain stringent requirements.

First, your assembly must have a strong name. Strong names are globally unique.

No one else can generate the same strong name as you because
an assembly generated with one private key is guaranteed to
have a different name than any assembly generated with another
private key.

 396

Second, your shared assembly must be protected against newer versions trampling over it, and so it
must have version control.

Finally, to share your assembly, you will place it in the Global Assembly Cache (GAC) (pronounced
GACK). This is an area of the file system set aside by the Common Language Runtime (CLR) to hold
shared assemblies.

17.8.1 The End of DLL Hell

Assemblies mark the end of DLL Hell. You will remember this scenario: you install Application A on
your machine, and it loads a number of DLLs into your Windows directory. It works great for months.
You then install Application B on your machine, and suddenly, unexpectedly, Application A breaks.
Application B is in no way related to Application A. So what happened? It turns out, you later learn,
that Application B replaced a DLL that Application A needed, and suddenly Application A begins to
stagger about, blind and senseless.

When DLLs were invented, disk space was at a premium and reusing DLLs seemed like a good idea.
The theory was that DLLs would be backward-compatible, so automatically upgrading to the new DLL
would be painless and safe. As my old boss Pat Johnson used to say, "In theory, theory and practice
are the same. But in practice, they never are."

When the new DLL was added to the computer, the old application, which was happily minding its own
business in another corner of your machine, suddenly linked to a DLL that was incompatible with its
expectations and hey! Presto! It went into the dance of death. This phenomenon led customers to be
justifiably leery of installing new software, or even of upgrading existing programs, and it is one of the
reasons Windows machines are perceived to be unstable. With assemblies, this entire nightmare goes
away.

17.8.2 Versions

S hared assemblies in .NET are uniquely identified by their names and their versions. The GAC allows
for "side-by-side" versions in which an older version of an assembly is available alongside a newer
version. This allows particular applications to say "give me the newest" or "give me the latest build of
Version 2," or even "give me only the version I was built with."

Side-by-side versioning applies only to items in the GAC. Private
assemblies do not need this feature and do not have it.

A version number for an assembly might look like this: 1:0:2204:21, four numbers, separated by
colons. The first two numbers (1:0) are the major and minor version. The third number (2204) is the
build, and the fourth (21) is the revision.

When two assemblies have different major or minor numbers, they are considered to be incompatible.
When they have different build numbers, they might or might not be compatible, and when they have
different revision numbers, they are considered definitely compatible with each other.

Revision numbers are intended for bug fixes. If you fix a bug and are prepared to certify that your DLL
is fully backward-compatible with the existing version, you should increment the revision. When an
application loads an assembly, it specifies the major and minor version that it wants, and the
AssemblyResolverfinds the highest build and revision numbers.

Programming C#

 397

17.8.3 Strong Names

In order to use a shared assembly, you need to meet three requirements:

• You need to be able to specify the exact assembly you want to load. Therefore, you need a
globally unique name for the shared assembly.

• You need to ensure that the assembly has not been tampered with. That is, you need a digital
signature for the assembly when it is built.

• You need to ensure that the assembly you are loading is the one authored by the actual
creator of the assembly. You therefore need to record the identity of the originator.

All these requirements are met by strong names. Strong names must be globally unique and use
public key encryption to ensure that the assembly hasn't been tampered with and was written by the
creator. A strong name is a string of hexadecimal digits and is not meant to be human-readable.

To create a strong name, a public-private key pair is generated for the assembly. A hash is taken of
the names and contents of the files in the assembly. The hash is then encrypted with the private key
for the assembly and placed in the manifest. This is known as signing the assembly. The public key is
incorporated into the strong name of the assembly.

Public Key Encryption

Strong names are based on public key encryption technology. The essence
of public key encryption is that your data is encoded with a complex
mathematical formula that returns two keys. Data encrypted with the first key
can only be decrypted with the second. Data encrypted with the second key
can only be decrypted with the first.

You distribute your first key as a public key that anyone can have. You keep
your second key as a private key that no one but you can have access to.

The reciprocal relationship between the keys allows anyone to encrypt data
with your public key, and then you can decrypt it with your private key. No
one else has access to the data once it is encrypted, including the person
who encrypted it.

Similarly, you can encrypt data with your private key, and then anyone can
decrypt that data with your public key. Although this makes the data freely
available, it ensures that only you could have created it. This is called a
digital signature .

When an application loads the assembly, the CLR uses the public key to decode the hash of the files
in the assembly to ensure that they have not been tampered with. This also protects against name
clashes.

You can create a strong name with the sn utility:

sn -k c:\myStrongName.snk

The -k flag indicates that you want a new key pair written to the specified file. You can call the file
anything you like. Remember, a strong name is a string of hexadecimal digits and is not meant to be
human-readable.

 398

You associate this strong name with your assembly by using an attribute:

using System.Runtime.CompilerServices
[assembly: AssemblyKeyFile("c:\myStrongName.key")]

Attributes are covered in detail in Chapter 19. For now, you can just put this code at the top of your
file to associate the strong name you generated with your assembly.

17.8.4 The Global Assembly Cache

Once you've created your strong name and associated it with your assembly, all that remains is to
place the assembly in the GAC, a reserved system directory. You can do that with the gacutil utility:

gacutil /i:MySharedAssembly.dll

Or you can open your File Explorer and drag your assembly into the GAC. To see the GAC, open the
File Explorer and navigate to \winNT\assembly; Explorer turns into a GAC utility.

17.8.5 Building a Shared Assembly

The best way to understand shared assemblies is to build one. Let's return to the earlier multi-module
project (see Examples 17-1 through 17-4) and navigate to the directory that contains the files calc.cs
and fraction.cs.

Try this experiment. Locate the bin directory for the driver program and make sure that you do not
have a local copy of the MySharedAssembly DLL files.

The referenced assembly (MySharedAssembly) should have its
CopyLocal property set to false.

Run the program. It should fail with an exception saying it cannot load the assembly:

Exception occurred: System.TypeLoadException:
 Could not load class
'ProgCS.myCalc' because the module containing
it failed to load.

Now copy the DLLs into the driver program's directory tree, run it again, and this time you should find
that it works fine.

Let's make the MySharedAssembly into a shared assembly. You do so in two steps. First, you create
a strong name for the assembly, and then you put the assembly into the GAC.

17.8.5.1 Step 1: Create a strong name

Create a key pair by opening a command window and entering:

sn -k keyFile.snk

Now open the AssemblyInfo.cs file in the project for the MySharedAssembly.dll and modify this line:

[assembly: AssemblyKeyFile("")]

Programming C#

 399

as follows:

[assembly: AssemblyKeyFile(".\\keyFile.snk")]

This sets the key file for the assembly. Rebuild with the same make file as earlier, and then open the
resulting DLL in ILDasm and open the manifest. You should see a public key, as shown in Figure 17-
8.

Figure 17-8. The originator in the manifest of MySharedAssembly.dll

By adding the strong name, you have signed this assembly (your exact values will be different). You
now need to get the strong name from the DLL. To do this, navigate to the directory with the DLL and
enter the following at a command prompt:

sn -T MySharedAssembly.dll

Note that sn is case-sensitive. Do not write sn -t.

The response should be something like this:

Public key token is 01fad8e0f0941a4d

This value is an abbreviated version of the assembly's public key, called the public key token .

Remove the DLLs from the test program's directory structure and run it again. It should fail again.
Although you've given this assembly a strong name, you've not yet registered it in the GAC.

17.8.5.2 Step 2: Put the shared assembly in the GAC

The next step is to drag the library into the GAC. To do so, open an Explorer window and navigate to
the WinNT directory or its equivalent. When you double-click the Assembly subdirectory, Explorer will
turn into a GAC viewer.

You can drag and drop into the GAC viewer, or you can invoke this command-line utility:

Gacutil -i mySharedAssembly

In either case, be sure to check that your assembly was loaded into the GAC, and that the originator
value shown in the GAC viewer matches the value you got back from sn:

Public key token is 01fad8e0f0941a4d

as illustrated in Figure 17-9.

Figure 17-9. The GAC

 400

Once this is done, you have a shared assembly that can be accessed by any client. Refresh the client
by building it again and look at its manifest, as shown in Figure 17-10.

Figure 17-10. The manifest

There's MySharedAssembly, listed as an external assembly, and the public key now matches the
value shown in the GAC. Very nice, time to try it.

Close ILDasm and compile and run your code. It should work fine, even though there are no DLLs for
this library in its immediate path. You have just created and used a shared assembly.

Programming C#

 401

Chapter 18. Attributes and Reflection

Throughout this book, I have emphasized that a .NET application contains code, data, and metadata.
Metadata is information about the data—that is, information about the types, code, assembly, and so
forth—that is stored along with your program. This chapter will explore how some of that metadata is
created and used.

Attributes are a mechanism for adding metadata, such as compiler instructions and other data about
your data, methods, and classes, to the program itself. Attributes are inserted into the metadata and
are visible through ILDasm and other metadata-reading tools.

Reflection is the process by which a program can read its own metadata. A program is said to reflect
on itself, extracting metadata from its assembly and using that metadata either to inform the user or to
modify its own behavior.

18.1 Attributes

An attribute is an object that represents data you want to associate with an element in your program.
The element to which you attach an attribute is referred to as the target of that attribute. For example,
the attribute:

[NoIDispatch]

is associated with a class or an interface to indicate that the target class should derive from IUnknown
rather than IDispatch, when exporting to COM. COM interface programming is discussed in detail in
Chapter 22.

In Chapter 17, you saw this attribute:

[assembly: AssemblyKeyFile("c:\myStrongName.key")]

This inserts metadata into the assembly to designate the program's StrongName.

18.2 Intrinsic Attributes

Attributes come in two flavors: intrinsic and custom . Intrinsic attributes are supplied as part of the
Common Language Runtime (CLR), and they are integrated into .NET. Custom attributes are
attributes you create for your own purposes.

Most programmers will use only intrinsic attributes, though custom attributes can be a powerful tool
when combined with reflection, described later in this chapter.

18.2.1 Attribute Targets

If you search through the CLR, you'll find a great many attributes. Some attributes are applied to an
assembly, others to a class or interface, and some, such as [WebMethod], to class members. These
are called the attribute targets. Possible attribute targets are detailed in Table 18-1.

Table 18-1. Possible attribute targets
Member Name Usage

All Applied to any of the following elements: assembly, class, class member, delegate,
enum, event, field, interface, method, module, parameter, property, return value, or

 402

struct
Assembly Applied to the assembly itself
Class Applied to instances of the class

ClassMembers Applied to classes, structs, enums, constructors, methods, properties, fields, events,
delegates, and interfaces

Constructor Applied to a given constructor
Delegate Applied to the delegated method
Enum Applied to an enumeration
Event Applied to an event
Field Applied to a field
Interface Applied to an interface
Method Applied to a method
Module Applied to a single module
Parameter Applied to a parameter of a method
Property Applied to a property (both get and set, if implemented)
ReturnValue Applied to a return value
Struct Applied to a struct

18.2.2 Applying Attributes

You apply attributes to their targets by placing them in square brackets immediately before the target
item. You can combine attributes, either by stacking one on top of another:

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(".\\keyFile.snk")]

or by separating the attributes with commas:

[assembly: AssemblyDelaySign(false),
 assembly: AssemblyKeyFile(".\\keyFile.snk")]

You must place assembly attributes after all using statements
and before any code.

Many intrinsic attributes are used for interoperating with COM, as discussed in detail in Chapter 22.
You've already seen use of one attribute ([WebMethod]) in Chapter 16. You'll see other attributes,
such as the [Serializable] attribute, used in the discussion of serialization in Chapter 19.

The System.Runtime namespace offers a number of intrinsic attributes, including attributes for
assemblies (such as the keyname attribute), for configuration (such as debug to indicate the debug
build), and for version attributes.

You can organize the intrinsic attributes by how they are used. The principal intrinsic attributes are
those used for COM, those used to modify the Interface Definition Language (IDL) file from within a
source-code file, attributes used by the ATL Server classes, and attributes used by the Visual C++
compiler.

Perhaps the attribute you are most likely to use in your everyday C# programming (if you are not
interacting with COM) is [Serializable]. As you'll see in Chapter 19, all you need to do to ensure
that your class can be serialized to disk or to the Internet is add the [Serializable] attribute to the
class:

Programming C#

 403

[serializable]
class MySerializableClass

The attribute tag is put in square brackets immediately before its target—in this case, the class
declaration.

The key fact about intrinsic attributes is that you know when you need them; the task will dictate their
use.

18.3 Custom Attributes

You are free to create your own custom attributes and use them at runtime as you see fit. Suppose, for
example, that your development organization wants to keep track of bug fixes. You already keep a
database of all your bugs, but you'd like to tie your bug reports to specific fixes in the code.

You might add comments to your code along the lines of:

// Bug 323 fixed by Jesse Liberty 1/1/2005.

This would make it easy to see in your source code, but there is no enforced connection to Bug 323 in
the database. A custom attribute might be just what you need. You would replace your comment with
something like this:

[BugFixAttribute(323,"Jesse Liberty","1/1/2005")
Comment="Off by one error"]

You could then write a program to read through the metadata to find these bug-fix notations and
update the database. The attribute would serve the purposes of a comment, but would also allow you
to retrieve the information programmatically through tools you'd create.

18.3.1 Declaring an Attribute

Attributes, like most things in C#, are embodied in classes. To create a custom attribute, you derive
your new custom attribute class from System.Attribute:

public class BugFixAttribute : System.Attribute

You need to tell the compiler with which kinds of elements this attribute can be used (the attribute
target). You specify this with (what else?) an attribute:

[AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]

AttributeUsage is an attribute applied to attributes: a meta-attribute. It provides, if you will, meta-
metadata?that is, data about the metadata. For the AttributeUsage attribute constructor, you pass
two arguments. The first argument is a set of flags that indicate the target?in this case, the class and
its constructor, fields, methods, and properties. The second argument is a flag that indicates whether a
given element might receive more than one such attribute. In this example, AllowMultiple is set to
true, indicating that class members can have more than one BugFixAttribute assigned.

 404

18.3.2 Naming an Attribute

The new custom attribute in this example is named BugFixAttribute. The convention is to append
the word Attribute to your attribute name. The compiler supports this by allowing you to call the
attribute with the shorter version of the name. Thus, you can write:

[BugFix(123, "Jesse Liberty", "01/01/05", Comment="Off by one")]

The compiler will first look for an attribute named BugFix and, if it does not find that, will then look for
BugFixAttribute.

18.3.3 Constructing an Attribute

Every attribute must have at least one constructor. Attributes take two types of parameters, positional
and named. In the BugFix example, the programmer's name and the date are positional parameters,
and comment is a named parameter. Positional parameters are passed in through the constructor and
must be passed in the order declared in the constructor:

public BugFixAttribute(int bugID, string programmer,
string date)
{
 this.bugID = bugID;
 this.programmer = programmer;
 this.date = date;
}

Named parameters are implemented as properties:

public string Comment
{
 get
 {
 return comment;
 }
 set
 {
 comment = value;
 }
}

It is common to create read-only properties for the positional parameters:

public int BugID
{
 get
 {
 return bugID;
 }
}

18.3.4 Using an Attribute

Once you have defined an attribute, you can put it to work by placing it immediately before its target.
To test the BugFixAttribute of the preceding example, the following program creates a simple
class named MyMath and gives it two functions. You'll assign BugFixAttributes to the class to
record its code-maintenance history:

Programming C#

 405

[BugFixAttribute(121,"Jesse Liberty","01/03/05")]
[BugFixAttribute(107,"Jesse Liberty","01/04/05",
 Comment="Fixed off by one errors")]
public class MyMath

These attributes will be stored with the metadata. Example 18-1 shows the complete program.

Example 18-1. Working with custom attributes
namespace Programming_CSharp
{
 using System;
 using System.Reflection;

 // create custom attribute to be assigned to class members
 [AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]
 public class BugFixAttribute : System.Attribute
 {
 // attribute constructor for
 // positional parameters
 public BugFixAttribute
 (int bugID,
 string programmer,
 string date)
 {
 this.bugID = bugID;
 this.programmer = programmer;
 this.date = date;
 }

 // accessor
 public int BugID
 {
 get
 {
 return bugID;
 }
 }

 // property for named parameter
 public string Comment
 {
 get
 {
 return comment;
 }
 set
 {
 comment = value;
 }
 }

 // accessor
 public string Date
 {
 get

 406

 {
 return date;
 }
 }

 // accessor
 public string Programmer
 {
 get
 {
 return programmer;
 }
 }

 // private member data
 private int bugID;
 private string comment;
 private string date;
 private string programmer;
 }

 // ********* assign the attributes to the class ********

 [BugFixAttribute(121,"Jesse Liberty","01/03/05")]
 [BugFixAttribute(107,"Jesse Liberty","01/04/05",
 Comment="Fixed off by one errors")]
 public class MyMath
 {

 public double DoFunc1(double param1)
 {
 return param1 + DoFunc2(param1);
 }

 public double DoFunc2(double param1)
 {
 return param1 / 3;
 }

 }

 public class Tester
 {
 public static void Main()
 {
 MyMath mm = new MyMath();
 Console.WriteLine("Calling DoFunc(7). Result: {0}",
 mm.DoFunc1(7));
 }
 }
}

Output:

Calling DoFunc(7). Result: 9.3333333333333339

As you can see, the attributes had absolutely no impact on the output. In fact, for the moment, you
have only my word that the attributes exist at all. A quick look at the metadata using ILDasm does
reveal that the attributes are in place, however, as shown in Figure 18-1. We'll see how to get at this
metadata and use it in your program in the next section.

Programming C#

 407

Figure 18-1. The metadata in the assembly

18.4 Reflection

For the attributes in the metadata to be useful, you need a way to access them?ideally during runtime.
The classes in the Reflection namespace, along with the System.Type and
System.TypedReference classes, provide support for examining and interacting with the metadata.

Reflection is generally used for any of four tasks:

Viewing metadata

This might be used by tools and utilities that wish to display metadata.

Performing type discovery

This allows you to examine the types in an assembly and interact with or instantiate those
types. This can be useful in creating custom scripts. For example, you might want to allow
your users to interact with your program using a script language, such as JavaScript, or a
scripting language you create yourself.

Late binding to methods and properties

This allows the programmer to invoke properties and methods on objects dynamically
instantiated based on type discovery. This is also known as dynamic invocation.

Creating types at runtime (Reflection Emit)

The ultimate use of reflection is to create new types at runtime and then to use those types to
perform tasks. You might do this when a custom class, created at runtime, will run significantly
faster than more generic code created at compile time. An example is offered later in this
chapter.

18.4.1 Viewing MetaData

In this section, you will use the C# Reflection support to read the metadata in the MyMath class.

 408

You start by initializing an object of the type MemberInfo. This object, in the System.Reflection
namespace, is provided to discover the attributes of a member and to provide access to the metadata:

System.Reflection.MemberInfo inf = typeof(MyMath);

You call the typeof operator on the MyMath type, which returns an object of type Type, which
derives from MemberInfo.

The Type class is the root of the reflection classes. Type
encapsulates a representation of the type of an object. The Type
class is the primary way to access metadata. MemberInfo
derives from Type and encapsulates information about the
members of a class (e.g., methods, properties, fields, events,
etc.).

The next step is to call GetCustomAttributes on this MemberInfo object, passing in the type of
the attribute you want to find. What you get back is an array of objects, each of type
BugFixAttribute:

object[] attributes;
attributes =
 inf.GetCustomAttributes(typeof(BugFixAttribute),false);

You can now iterate through this array, printing out the properties of the BugFixAttribute object.
Example 18-2 replaces the Tester class from Example 18-1.

Example 18-2. Using Reflection
public static void Main()
{
 MyMath mm = new MyMath();
 Console.WriteLine("Calling DoFunc(7). Result: {0}",
 mm.DoFunc1(7));

 // get the member information and use it to
 // retrieve the custom attributes
 System.Reflection.MemberInfo inf = typeof(MyMath);
 object[] attributes;
 attributes =
 inf.GetCustomAttributes(
 typeof(BugFixAttribute), false);

 // iterate through the attributes, retrieving the
 // properties
 foreach(Object attribute in attributes)
 {
 BugFixAttribute bfa = (BugFixAttribute) attribute;
 Console.WriteLine("\nBugID: {0}", bfa.BugID);
 Console.WriteLine("Programmer: {0}", bfa.Programmer);
 Console.WriteLine("Date: {0}", bfa.Date);
 Console.WriteLine("Comment: {0}", bfa.Comment);
 }
}

Output:

Calling DoFunc(7). Result: 9.3333333333333339

Programming C#

 409

BugID: 121
Programmer: Jesse Liberty
Date: 01/03/05
Comment:

BugID: 107
Programmer: Jesse Liberty
Date: 01/04/05
Comment: Fixed off by one errors

When you put this replacement code into Example 18-1 and run it, you can see the metadata printed
as you'd expect.

18.4.2 Type Discovery

You can use reflection to explore and examine the contents of an assembly. You can find the types
associated with a module; the methods, fields, properties, and events associated with a type, as well
as the signatures of each of the type's methods; the interfaces supported by the type; and the type's
base class.

To start, load an assembly dynamically with the Assembly.Load static method. The Assembly class
encapsulates the actual assembly itself, for purposes of reflection. The signature for the Load method
is:

public static Assembly.Load(AssemblyName)

For the next example, pass in the Core Library to the Load method. MsCorLib.dll has the core
classes of the .NET Framework:

Assembly a = Assembly.Load("Mscorlib.dll");

Once the assembly is loaded, you can call GetTypes() to return an array of Type objects. The
Type object is the heart of reflection. Type represents type declarations: classes, interfaces, arrays,
values, and enumerations:

Type[] types = a.GetTypes();

The assembly returns an array of types that you can display in a foreach loop, as shown in
Example 18-3. Because this listing uses the Type class, you will want to add a using statement for
the System.Reflection namespace.

Example 18-3. Reflecting on an assembly
namespace Programming_CSharp
{
 using System;
 using System.Reflection;

 public class Tester
 {
 public static void Main()
 {
 // what is in the assembly
 Assembly a = Assembly.Load("Mscorlib.dll");
 Type[] types = a.GetTypes();
 foreach(Type t in types)

 410

 {
 Console.WriteLine("Type is {0}", t);
 }
 Console.WriteLine(
 "{0} types found", types.Length);
 }
 }
}

The output from this would fill many pages. Here is a short excerpt:

Type is System.TypeCode
Type is System.Security.Util.StringExpressionSet
Type is System.Runtime.InteropServices.COMException
Type is System.Runtime.InteropServices.SEHException
Type is System.Reflection.TargetParameterCountException
Type is System.Text.UTF7Encoding
Type is System.Text.UTF7Encoding$Decoder
Type is System.Text.UTF7Encoding$Encoder
Type is System.ArgIterator
Type is System.Runtime.Remoting.JITLookupTable
Type is System.Runtime.Remoting.IComponentServices
Type is System.Runtime.Remoting.ComponentServices
1429 types found

This example obtained an array filled with the types from the Core Library and printed them one by
one. The array contained 1,429 entries on my machine.

18.4.3 Reflecting on a Type

You can reflect on a single type in the mscorlib assembly as well. To do so, you extract a type from
the assembly with the GetType() method, as shown in Example 18-4.

Example 18-4. Reflecting on a type
namespace Programming_CSharp
{
 using System;
 using System.Reflection;

 public class Tester
 {
 public static void Main()
 {
 // examine a single object
 Type theType =
 Type.GetType(
 "System.Reflection.Assembly");
 Console.WriteLine(
 "\nSingle Type is {0}\n", theType);
 }
 }
}

Output:

Single Type is System.Reflection.Assembly

18.4.3.1 Finding all type members

Programming C#

 411

You can ask the Assembly type for all its members using the GetMembers() method of the Type
class, which lists all the methods, properties, and fields, as shown in Example 18-5.

Example 18-5. Reflecting on the members of a type
namespace Programming_CSharp
{
 using System;
 using System.Reflection;

 public class Tester
 {
 public static void Main()
 {
 // examine a single object
 Type theType =
 Type.GetType(
 "System.Reflection.Assembly");
 Console.WriteLine(
 "\nSingle Type is {0}\n", theType);

 // get all the members
 MemberInfo[] mbrInfoArray =
 theType.GetMembers();
 foreach (MemberInfo mbrInfo in mbrInfoArray)
 {
 Console.WriteLine("{0} is a {1}",
 mbrInfo, mbrInfo.MemberType);
 }
 }
 }
}

Once again the output is quite lengthy, but within the output you see fields, methods, constructors, and
properties, as shown in this excerpt:

System.String s_localFilePrefix is a Field
Boolean IsDefined(System.Type) is a Method
Void .ctor() is a Constructor
System.String CodeBase is a Property
System.String CopiedCodeBase is a Property

18.4.3.2 Finding type methods

You might want to focus on methods only, excluding the fields, properties, and so forth. To do so, you
remove the call to GetMembers():

MemberInfo[] mbrInfoArray =
 theType.GetMembers(BindingFlags.LookupAll);

and add a call to GetMethods():

mbrInfoArray = theType.GetMethods();

The output now is nothing but the methods:

Output (excerpt):

Boolean Equals(System.Object) is a Method

 412

System.String ToString() is a Method
System.String CreateQualifiedName(
 System.String, System.String) is a Method
System.Reflection.MethodInfo get_EntryPoint() is a Method

18.4.3.3 Finding particular type members

Finally, to narrow it down even further, you can use the FindMembers method to find particular
members of the type. For example, you can narrow your search to methods whose names begin with
the letters Get.

To narrow the search, you use the FindMembers method, which takes four parameters:
MemberTypes, BindingFlags, MemberFilter, and object.

MemberTypes

A MemberTypes object that indicates the type of the member to search for. These include
All, Constructor, Custom, Event, Field, Method, Nestedtype, Property, and
TypeInfo. You will also use the MemberTypes.Method to find a method.

BindingFlags

An enumeration that controls the way searches are conducted by reflection. There are a great
many BindingFlag values, including IgnoreCase, Instance, Public, Static, and so
forth. The BindingFlags default member indicates no binding flag, which is what you want
because you do not want to restrict the binding.

MemberFilter

A delegate (see Chapter 12) that is used to filter the list of members in the MemberInfo array
of objects. The filter you'll use is Type.FilterName, a field of the Type class used for
filtering on a name.

Object

A string value that will be used by the filter. In this case you'll pass in "Get*" to match only
those methods that begin with the letters Get.

The complete listing for filtering on these methods is shown in Example 18-6.

Example 18-6. Finding particular members
namespace Programming_CSharp
{
 using System;
 using System.Reflection;

 public class Tester
 {
 public static void Main()
 {
 // examine a single object
 Type theType = Type.GetType(
 "System.Reflection.Assembly");

 // just members which are methods beginning with Get
 MemberInfo[] mbrInfoArray =

Programming C#

 413

 theType.FindMembers(MemberTypes.Method,
 BindingFlags.Default,
 Type.FilterName, "Get*");
 foreach (MemberInfo mbrInfo in mbrInfoArray)
 {
 Console.WriteLine("{0} is a {1}",
 mbrInfo, mbrInfo.MemberType);
 }
 }
 }

Output (excerpt):

System.Type[] GetTypes() is a Method
System.Type[] GetExportedTypes() is a Method
System.Type GetType(System.String, Boolean) is a Method
System.Type GetType(System.String) is a Method
System.Reflection.AssemblyName GetName(Boolean) is a Method
System.Reflection.AssemblyName GetName() is a Method
Int32 GetHashCode() is a Method

18.4.4 Late Binding

Once you have discovered a method, it's possible to invoke it using reflection. For example, you might
like to invoke the Cos() method of System.Math, which returns the cosine of an angle.

You could, of course, call Cos() in the normal course of your
code, but reflection allows you to bind to that method at runtime.
This is called late-binding and offers the flexibility of choosing at
runtime which object you will bind to and invoking it
programmatically. This can be useful when creating a custom
script to be run by the user or when working with objects that
might not be available at compile time. For example, by using late-
binding, your program can interact with the spellchecker or other
components of a running commercial word processing program
such as Microsoft Word.

To invoke Cos(), you will first get the Type information for the System.Math class:

Type theMathType = Type.GetType("System.Math");

With that type information, you can dynamically load an instance of that class by using a static method
of the Activator class.

The Activator class contains four methods, all static, which you can use to create objects locally or
remotely or to obtain references to existing objects. The four methods are:
CreateComInstanceFrom, CreateInstanceFrom, GetObject, and CreateInstance:

CreateComInstanceFrom

Used to create instances of COM objects.

CreateInstanceFrom

 414

Used to create a reference to an object from a particular assembly and type name.

GetObject

Used when marshaling objects. Marshaling is discussed in detail in Chapter 19.

CreateInstance

Used to create local or remote instances of an object. You'll use this method to instantiate an
object of the System.Math class.

Object theObj = Activator.CreateInstance(theMathType);

You now have two objects in hand: a Type object named TheMathType, which you created by calling
GetType, and an instance of the System.Math class named theObj, which you instantiated by
calling CreateInstance.

Before you can invoke a method on the object, you must get the method you need from the Type
object, theMathType. To do so, you'll call GetMethod(), and you'll pass in the signature of the Cos
method.

The signature, you will remember, is the name of the method (Cos) and its parameter types. In the
case of Cos(), there is only one parameter: a double. Whereas, Type.GetMethod takes two
parameters: the first represents the name of the method you want, and the second represents the
parameters. The name is passed as a string; the parameters are passed as an array of types:

MethodInfo CosineInfo =
 theMathType.GetMethod("Cos",paramTypes);

Before calling GetMethod, you must prepare the array of types:

Type[] paramTypes = new Type[1];
paramTypes[0]= Type.GetType("System.Double");

This code declares the array of Type objects and then fills the first element (paramTypes[0]) with a
Type representing a double. You obtain that type representing a double by calling the static method
Type.GetType(), passing in the string "System.Double".

You now have an object of type MethodInfo on which you can invoke the method. To do so, you
must pass in the actual value of the parameters, again in an array:

Object[] parameters = new Object[1];
parameters[0] = 45;
Object returnVal = CosineInfo.Invoke(theObj,parameters);

Programming C#

 415

Note that you've created two arrays. The first, paramTypes, holds
the type of the parameters. The second, parameters, holds the
actual value. If the method had taken two arguments, you'd have
declared these arrays to hold two values. If the method took no
values, you still would create the array, but you would give it a
size of zero!

 Type[] paramTypes = new Type[0];

Odd as this looks, it is correct.

Example 18-7 illustrates dynamically calling the Cos() method.

Example 18-7. Dynamically invoking a method
namespace Programming_CSharp
{
 using System;
 using System.Reflection;

 public class Tester
 {
 public static void Main()
 {
 Type theMathType = Type.GetType("System.Math");
 Object theObj =
 Activator.CreateInstance(theMathType);

 // array with one member
 Type[] paramTypes = new Type[1];
 paramTypes[0]= Type.GetType("System.Double");

 // Get method info for Cos()
 MethodInfo CosineInfo =
 theMathType.GetMethod("Cos",paramTypes);

 // fill an array with the actual parameters
 Object[] parameters = new Object[1];
 parameters[0] = 45;
 Object returnVal =
 CosineInfo.Invoke(theObj,parameters);
 Console.WriteLine(
 "The cosine of a 45 degree angle {0}",
 returnVal);

 }
 }
}

That was a lot of work just to invoke a single method. The power, however, is that you can use
reflection to discover an assembly on the user's machine, use reflection to query what methods are
available, and then use reflection to invoke one of those members dynamically!

 416

18.5 Reflection Emit

So far we've seen reflection used for three purposes: viewing metadata, type discovery, and dynamic
invocation. You might use these techniques when building tools (such as a development environment)
or when processing scripts. The most powerful use of reflection, however, is with reflection emit.

Reflection emit supports the dynamic creation of new types at runtime. You can define an assembly to
run dynamically or to save itself to disk, and you can define modules and new types with methods that
you can then invoke.

The use of dynamic invocation and reflection emit should be
considered an advanced topic. Most developers will never have
need to use reflection emit. This demonstration is based on an
example provided at the Microsoft Author's Summit, Fall 2000.

To understand the power of reflection emit, you must first consider a slightly more complicated
example of dynamic invocation.

Problems can have general solutions that are relatively slow and specific solutions that are fast. To
keep things manageably simple, consider a DoSum() method, which provides the sum of a string of
integers from 1...n, where n will be supplied by the user.

Thus, DoSum(3) is equal to 1+2+3, or 6. DoSum(10) is 55. Writing this in C# is very simple:

public int DoSum1(int n)
{
 int result = 0;
 for(int i = 1;i <= n; i++)
 {
 result += i;
 }
 return result;
}

The method simply loops, adding the requisite number. If you pass in 3, the method adds 1 + 2 + 3
and returns an answer of 6.

With large numbers, and when run many times, this might be a bit slow. Given the value 20, this
method would be considerably faster if you removed the loop:

public int DoSum2()
{
 return 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20;
}

DoSum2 runs more quickly than DoSum1 does. How much more quickly? To find out, you'll need to put
a timer on both methods. To do so, you'll use a DateTime object to mark the start time and a
TimeSpan object to compute the elapsed time.

For this experiment, you need to create two DoSum() methods; the first will use the loop and the
second will not. You will call each 1,000,000 times. (Computers are very fast, so to see a difference
you have to work hard!) You'll then compare the times. Example 18-8 illustrates the entire test
program.

Example 18-8. Comparing loop to brute force

Programming C#

 417

namespace Programming_CSharp
{
 using System;
 using System.Diagnostics;
 using System.Threading;

 public class MyMath
 {
 // sum numbers with a loop
 public int DoSum(int n)
 {
 int result = 0;
 for(int i = 1; i <= n; i++)
 {
 result += i;
 }
 return result;
 }

 // brute force by hand
 public int DoSum2()
 {
 return 1+2+3+4+5+6+7+8+9+10+11
 +12+13+14+15+16+17+18+19+20;
 }

 }

 public class TestDriver
 {
 public static void Main()
 {

 const int val = 20; // val to sum

 // 1,000,000 iterations
 const int iterations = 1000000;

 // hold the answer
 int result = 0;

 MyMath m = new MyMath();

 // mark the start time
 DateTime startTime = DateTime.Now;

 // run the experiment
 for (int i = 0;i < iterations;i++)
 {
 result = m.DoSum(val);
 }

// mark the elapsed time
 TimeSpan elapsed =
 DateTime.Now - startTime;

 // display the results
 Console.WriteLine(
 "Loop: Sum of ({0}) = {1}",
 val, result);
 Console.WriteLine(

 418

 "The elapsed time in milliseconds is: " +
 elapsed.TotalMilliseconds.ToString());

 // mark a new start time
 startTime = DateTime.Now;

 // run the experiment
 for (int i = 0;i < iterations;i++)
 {
 result = m.DoSum2();
 }

 // mark the new elapsed time
 elapsed = DateTime.Now - startTime;

 // display the results
 Console.WriteLine(
 "Brute Force: Sum of ({0}) = {1}",
 val, result);
 Console.WriteLine(
 "The elapsed time in milliseconds is: " +
 elapsed.TotalMilliseconds);
 }
 }
}

Output:

Loop: Sum of (20) = 210
The elapsed time in milliseconds is: 187.5
Brute Force: Sum of (20) = 210
The elapsed time in milliseconds is: 31.25

As you can see, both methods returned the same answer (one million times!), but the brute-force
method was six times faster.

Is there a way to avoid the loop and still provide a general solution? In traditional programming, the
answer would be no, but with reflection you do have one other option. You can, at runtime, take the
value the user wants (20, in this case) and write out to disk a class that implements the brute-force
solution. You can then use dynamic invocation to invoke that method.

There are at least three ways to achieve this result, each increasingly elegant. The third, reflection
emit, is the best, but a close look at two other techniques is instructive. If you are pressed for time, you
might wish to jump ahead to Section 18.5.3 later in this chapter.

18.5.1 Dynamic Invocation with InvokeMember()

The first approach will be to create a class named BruteForceSums dynamically, at runtime. The
BruteForceSums class will contain a method, ComputeSum(), that implements the brute-force
approach. You'll write that class to disk, compile it, and then use dynamic invocation to invoke its
brute-force method by means of the InvokeMember() method of the Type class. The key point is
that BruteForceSums.cs won't exist until you run the program. You'll create it when you need it and
supply its arguments then.

To accomplish this, you'll create a new class named ReflectionTest. The job of the
ReflectionTest class is to create the BruteForceSums class, write it to disk, and compile it.
ReflectionTest has only two methods: DoSum and GenerateCode.

Programming C#

 419

ReflectionTest.DoSum is a public method that returns the sum, given a value. That is, if you pass
in 10, it returns the sum of 1+2+3+4+5+6+7+8+9+10. It does this by creating the BruteForceSums
class and delegating the job to its ComputeSum method.

ReflectionTest has two private fields:

Type theType = null;
object theClass = null;

The first is an object of type Type, which you use to load your class from disk, and the second is an
object of type object, which you use to dynamically invoke the ComputeSums() method of the
BruteForceSums class you'll create.

The driver program instantiates an instance of ReflectionTest and calls its DoSum method,
passing in the value. For this version of the program, the value is increased to 200.

The DoSum method checks whether theType is null; if it is, the class has not been created yet. DoSum
calls the helper method GenerateCode to generate the code for the BruteForceSums class and the
class's ComputeSums method. GenerateCode then writes this newly created code to a .cs file on
disk and runs the compiler to turn it into an assembly on disk. Once this is completed, DoSum can call
the method using reflection.

Once the class and method are created, you load the assembly from disk and assign the class type
information to theType, and DoSum can use that to invoke the method dynamically to get the correct
answer.

You begin by creating a constant for the value to which you'll sum:

const int val = 200;

Each time you compute a sum, it will be the sum of the values 1 to 200.

Before you create the dynamic class, you need to go back and re-create MyMath:

MyMath m = new MyMath();

Give MyMath a method DoSumLooping, much as you did in the previous example:

public int DoSumLooping (int initialVal)
{
 int result = 0;
 for(int i = 1;i <=initialVal;i++)
 {
 result += i;
 }
 return result;
}

This serves as a benchmark against which you can compare the performance of the brute-force
method.

Now you're ready to create the dynamic class and compare its performance with the looping version.
First, instantiate an object of type ReflectionTest and invoke the DoSum() method on that object:

ReflectionTest t = new ReflectionTest();
result = t.DoSum(val);

 420

ReflectionTest.DoSum checks to see if its Type field, theType, is null. If it is, you haven't yet
created and compiled the BruteForceSums class and must do so now:

if (theType == null)
{
 GenerateCode(theValue);
}

The GenerateCode method takes the value (in this case, 200) as a parameter to know how many
values to add.

GenerateCode begins by creating a file on disk. The details of file I/O will be covered in Chapter 21.
For now, I'll walk you through this quickly. First, call the static method File.Open, and pass in the
filename and a flag indicating that you want to create the file. File.Open returns a Stream object:

string fileName = "BruteForceSums";
Stream s = File.Open(fileName + ".cs", FileMode.Create);

Once you have the Stream, you can create a StreamWriter so that you can write into that file:

StreamWriter wrtr = new StreamWriter(s);

You can now use the WriteLine methods of StreamWriter to write lines of text into the file. Begin
the new file with a comment:

wrtr.WriteLine("// Dynamically created BruteForceSums class");

This writes the text:

// Dynamically created BruteForceSums class

to the file you've just created (BruteForceSums.cs). Next, write out the class declaration:

string className = "BruteForceSums";
wrtr.WriteLine("class {0}", className);
wrtr.WriteLine("{");

Within the braces of the class, you create the ComputeSum method:

wrtr.WriteLine("\tpublic double ComputeSum()");
wrtr.WriteLine("\t{");
wrtr.WriteLine("\t// Brute force sum method");
wrtr.WriteLine("\t// For value = {0}", theVal);

Now it is time to write out the addition statements. When you are done, you want the file to have this
line:

return 0+1+2+3+4+5+6+7+8+9...

continuing up to value (in this case, 200):

wrtr.Write("\treturn 0");
for (int i = 1;i<=theVal;i++)
{
 wrtr.Write("+ {0}",i);
}

Programming C#

 421

Notice how this works. What will be written to the file is:

\treturn 0+ 1+ 2+ 3+...

The initial \t causes the code to be indented in the source file.

When the loop completes, you end the return statement with a semicolon and then close the method
and the class:

wrtr.WriteLine(";");
wrtr.WriteLine("\t}");
wrtr.WriteLine("}");

Close the streamWriter and the stream, thus closing the file:

wrtr.Close();
s.Close();

When this runs, the BruteForceSums.cs file will be written to disk. It will look like this:

// Dynamically created BruteForceSums class
class BruteForceSums
{
 public double ComputeSum()
 {
 // Brute force sum method
 // For value = 200
 return 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+
11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+
22+ 23+ 24+ 25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+
33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+
44+ 45+ 46+ 47+ 48+ 49+ 50+ 51+ 52+ 53+ 54+
55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ 63+ 64+ 65+
66+ 67+ 68+ 69+ 70+ 71+ 72+ 73+ 74+ 75+ 76+
77+ 78+ 79+ 80+ 81+ 82+ 83+ 84+ 85+ 86+ 87+
88+ 89+ 90+ 91+ 92+ 93+ 94+ 95+ 96+ 97+ 98+
99+ 100+ 101+ 102+ 103+ 104+ 105+ 106+ 107+
108+ 109+ 110+ 111+ 112+ 113+ 114+ 115+ 116+
117+ 118+ 119+ 120+ 121+ 122+ 123+ 124+ 125+
126+ 127+ 128+ 129+ 130+ 131+ 132+ 133+ 134+
135+ 136+ 137+ 138+ 139+ 140+ 141+ 142+ 143+
144+ 145+ 146+ 147+ 148+ 149+ 150+ 151+ 152+
153+ 154+ 155+ 156+ 157+ 158+ 159+ 160+ 161+
162+ 163+ 164+ 165+ 166+ 167+ 168+ 169+ 170+
171+ 172+ 173+ 174+ 175+ 176+ 177+ 178+ 179+
180+ 181+ 182+ 183+ 184+ 185+ 186+ 187+ 188+
189+ 190+ 191+ 192+ 193+ 194+ 195+ 196+ 197+
198+ 199+ 200;
 }
}

This accomplishes the goal of dynamically creating a class with a method that finds the sum through
brute force.

The only remaining task is to build the file and then use the method. To build the file, you must start a
new process (processes are explained in some detail in Chapter 20). The best way to launch this
process is with a ProcessStartInfo structure that will hold the command line. Instantiate a
ProcessStartInfo and set its filename to cmd.exe:

 422

ProcessStartInfo psi = new ProcessStartInfo();
 psi.FileName = "cmd.exe";

You need to pass in the string you want to invoke at the command line. The
ProcessStartInfo.Arguments property specifies the command-line arguments to use when
starting the program. The command-line argument to the cmd.exe program will be /c to tell cmd.exe to
exit after it executes the command, and then the command for cmd.exe. The command for cmd.exe is
the command-line compile:

string compileString = "/c csc /optimize+ ";
compileString += " /target:library ";
compileString += "{0}.cs > compile.out";

The string compileString will invoke the C# compiler (csc), telling it to optimize the code (after all,
you're doing this to gain performance) and to build a dynamic link library (DLL) file (/target:library). You
redirect the output of the compile to a file named compile.out so that you can examine it if there are
errors.

You combine compileString with the filename, using the static method Format of the string class,
and assign the combined string to psi.Arguments:

psi.Arguments = String.Format(compileString, fileName);

The effect of all this is to set the Arguments property of the ProcessStartInfo object psi to:

/c csc /optimize+ /target:library
BruteForceSums.cs > compile.out

Before invoking cmd.exe, you set the WindowStyle property of psi to Minimized so that when the
command executes, the window does not flicker onto and then off of the user's display:

psi.WindowStyle = ProcessWindowStyle.Minimized;

You are now ready to start the cmd.exe process, and you will wait until it finishes before proceeding
with the rest of the GenerateCode method:

Process proc = Process.Start(psi);
proc.WaitForExit();

Once the process is done, you can get the assembly, and from the assembly, you can get the class
you've created. Finally, you can ask that class for its type and assign that to your theType member
variable:

Assembly a = Assembly.LoadFrom(fileName + ".dll");
theClass = a.CreateInstance(className);
theType = a.GetType(className);

You can now delete the .cs file you generated:

File.Delete(fileName + ".cs");

You've now filled theType, and you're ready to return to DoSum to invoke the ComputeSum method
dynamically. The Type object has a method InvokeMember(), which can be used to invoke a
member of the class described by the Type object. The InvokeMember method is overloaded; the
version you'll use takes five arguments:

Programming C#

 423

public object InvokeMember(
 string name,
 BindingFlags invokeAttr,
 Binder binder,
 object target,
 object[] args
) ;
name

Is the name of the method you wish to invoke.

invokeAttr

Is a bit mask of BindingFlags that specify how the search of the object is conducted. In this
case, you'll use the InvokeMethod flag OR'd with the Default flag. These are the standard
flags for invoking a method dynamically.

binder

Is used to assist in type conversions. By passing in null, you'll specify that you want the
default binder.

target

Is the object on which you'll invoke the method. In this case, you'll pass in theClass, which is
the class you just created from the assembly you just built.

args

Is an array of arguments to pass to the method you're invoking.

The complete invocation of InvokeMember looks like this:

object[] arguments = new object[0];
object retVal =
 theType.InvokeMember("ComputeSum",
 BindingFlags.Default |
 BindingFlags.InvokeMethod,
 null,
 theClass,
 arguments);
return (double) retVal;

The result of invoking this method is assigned to the local variable retVal, which is then returned, as
a double, to the driver program. The complete listing is shown in Example 18-9.

Example 18-9. Dynamic invocation with Type and InvokeMethod()
namespace Programming_CSharp
{
 using System;
 using System.Diagnostics;
 using System.IO;
 using System.Reflection;

 // used to benchmark the looping approach
 public class MyMath
 {

 424

 // sum numbers with a loop
 public int DoSumLooping(int initialVal)
 {
 int result = 0;
 for(int i = 1;i <=initialVal;i++)
 {
 result += i;
 }
 return result;
 }
 }

 // responsible for creating the BruteForceSums
 // class and compiling it and invoking the
 // DoSums method dynamically
 public class ReflectionTest
 {
 // the public method called by the driver
 public double DoSum(int theValue)
 {
 // if you don't have a reference
 // to the dynamically created class
 // create it
 if (theType == null)
 {
 GenerateCode(theValue);
 }

 // with the reference to the dynamically
 // created class you can invoke the method
 object[] arguments = new object[0];
 object retVal =
 theType.InvokeMember("ComputeSum",
 BindingFlags.Default |
 BindingFlags.InvokeMethod,
 null,
 theClass,
 arguments);
 return (double) retVal;
 }

 // generate the code and compile it
 private void GenerateCode(int theVal)
 {
 // open the file for writing
 string fileName = "BruteForceSums";
 Stream s =
 File.Open(fileName + ".cs", FileMode.Create);
 StreamWriter wrtr = new StreamWriter(s);
 wrtr.WriteLine(
 "// Dynamically created BruteForceSums class");

 // create the class
 string className = "BruteForceSums";
 wrtr.WriteLine("class {0}", className);
 wrtr.WriteLine("{");

 // create the method
 wrtr.WriteLine("\tpublic double ComputeSum()");
 wrtr.WriteLine("\t{");
 wrtr.WriteLine("\t// Brute force sum method");

Programming C#

 425

 wrtr.WriteLine("\t// For value = {0}", theVal);

 // write the brute force additions
 wrtr.Write("\treturn 0");
 for (int i = 1;i<=theVal;i++)
 {
 wrtr.Write("+ {0}",i);
 }
 wrtr.WriteLine(";"); // finish method
 wrtr.WriteLine("\t}"); // end method
 wrtr.WriteLine("}"); // end class

 // close the writer and the stream
 wrtr.Close();
 s.Close();

 // Build the file
 ProcessStartInfo psi =
 new ProcessStartInfo();
 psi.FileName = "cmd.exe";

 string compileString = "/c csc /optimize+ ";
 compileString += "/target:library ";
 compileString += "{0}.cs > compile.out";

 psi.Arguments =
 String.Format(compileString, fileName);
 psi.WindowStyle = ProcessWindowStyle.Minimized;

 Process proc = Process.Start(psi);
 proc.WaitForExit(); // wait at most 2 seconds

 // Open the file, and get a
 // pointer to the method info
 Assembly a =
 Assembly.LoadFrom(fileName + ".dll");
 theClass = a.CreateInstance(className);
 theType = a.GetType(className);
 // File.Delete(fileName + ".cs"); // clean up
 }
 Type theType = null;
 object theClass = null;
 }

 public class TestDriver
 {
 public static void Main()
 {
 const int val = 200; // 1..200
 const int iterations = 100000;
 double result = 0;

 // run the benchmark
 MyMath m = new MyMath();
 DateTime startTime = DateTime.Now;
 for (int i = 0;i < iterations;i++)
 {
 result = m.DoSumLooping(val);
 }
 TimeSpan elapsed =
 DateTime.Now - startTime;

 426

 Console.WriteLine(
 "Sum of ({0}) = {1}",val, result);
 Console.WriteLine(
 "Looping. Elapsed milliseconds: " +
 elapsed.TotalMilliseconds +
 "for {0} iterations", iterations);

 // run our reflection alternative
 ReflectionTest t = new ReflectionTest();

 startTime = DateTime.Now;
 for (int i = 0;i < iterations;i++)
 {
 result = t.DoSum(val);
 }

 elapsed = DateTime.Now - startTime;
 Console.WriteLine(
 "Sum of ({0}) = {1}",val, result);
 Console.WriteLine(
 "Brute Force. Elapsed milliseconds: " +
 elapsed.TotalMilliseconds +
 "for {0} iterations", iterations);
 }
 }
}

Output:

Sum of (200) = 20100
Looping. Elapsed milliseconds:
78.125 for 100000 iterations
Sum of (200) = 20100
Brute Force. Elapsed milliseconds:
3843.75 for 100000 iterations

Notice that the dynamically invoked method is far slower than the loop. This is not a surprise; writing
the file to disk, compiling it, reading it from disk, and invoking the method all bring significant overhead.
You accomplished your goal, but it was a pyrrhic victory .

18.5.2 Dynamic Invocation with Interfaces

It turns out that dynamic invocation is particularly slow. You want to maintain the general approach of
writing the class at runtime and compiling it on the fly. But rather than using dynamic invocation, you'd
just like to call the method. One way to speed things up is to use an interface to call the
ComputeSums() method directly.

To accomplish this, you need to change ReflectionTest.DoSum() from:

public double DoSum(int theValue)
{
 if (theType == null)
 {
 GenerateCode(theValue);
 }
 object[] arguments = new object[0];
 object retVal =
 theType.InvokeMember("ComputeSum",
 BindingFlags.Default | BindingFlags.InvokeMethod,

Programming C#

 427

 null,
 theFunction,
 arguments);
 return (double) retVal;
}

to the following:

public double DoSum(int theValue)
{
 if (theComputer == null)
 {
 GenerateCode(theValue);
 }
 return (theComputer.ComputeSum());
}

In this example, theComputer is an interface to an object of type BruteForceSum. It must be an
interface and not an object because when you compile this program, theComputer won't yet exist;
you'll create it dynamically.

Remove the declarations for thetype and theFunction and replace them with:

IComputer theComputer = null;

This declares theComputer to be an IComputer interface. At the top of your program, declare the
interface:

public interface IComputer
{
 double ComputeSum();
}

When you create the BruteForceSum class, you must make it implement Icomputer:

wrtr.WriteLine(
"class {0} : Programming_CSharp.IComputer ",
className);

Save your program in a project file named Reflection, and modify compileString in GenerateCode
as follows:

string compileString = "/c csc /optimize+ ";
compileString += "/r:\"Reflection.exe\" ";
compileString += "/target:library ";
compileString += "{0}.cs > compile.out";

The compile string will need to reference the ReflectionTest program itself (Reference.exe) so that the
dynamically called compiler will know where to find the declaration of IComputer.

After you build the assembly, you will no longer assign the instance to theClass and then get the
type for theType, as these variables are gone. Instead, you will assign the instance to the interface
IComputer:

theComputer = (IComputer) a.CreateInstance(className);

 428

You use the interface to invoke the method directly in DoSum:

return (theComputer.ComputeSum());

Example 18-10 is the complete source code.

Example 18-10. Dynamic invocation with interfaces
namespace Programming_CSharp
{
 using System;
 using System.Diagnostics;
 using System.IO;
 using System.Reflection;

 // used to benchmark the looping approach
 public class MyMath
 {
 // sum numbers with a loop
 public int DoSumLooping(int initialVal)
 {
 int result = 0;
 for(int i = 1;i <=initialVal;i++)
 {
 result += i;
 }
 return result;
 }
 }

 public interface IComputer
 {
 double ComputeSum();
 }

 // responsible for creating the BruteForceSums
 // class and compiling it and invoking the
 // DoSums method dynamically
 public class ReflectionTest
 {
 // the public method called by the driver
 public double DoSum(int theValue)
 {
 if (theComputer == null)
 {
 GenerateCode(theValue);
 }
 return (theComputer.ComputeSum());
 }

 // generate the code and compile it
 private void GenerateCode(int theVal)
 {
 // open the file for writing
 string fileName = "BruteForceSums";
 Stream s =
 File.Open(fileName + ".cs", FileMode.Create);
 StreamWriter wrtr = new StreamWriter(s);
 wrtr.WriteLine(
 "// Dynamically created BruteForceSums class");

Programming C#

 429

 // create the class
 string className = "BruteForceSums";
 wrtr.WriteLine(
 "class {0} : Programming_CSharp.IComputer ",
 className);
 wrtr.WriteLine("{");

 // create the method
 wrtr.WriteLine("\tpublic double ComputeSum()");
 wrtr.WriteLine("\t{");
 wrtr.WriteLine("\t// Brute force sum method");
 wrtr.WriteLine("\t// For value = {0}", theVal);

 // write the brute force additions
 wrtr.Write("\treturn 0");
 for (int i = 1;i<=theVal;i++)
 {
 wrtr.Write("+ {0}",i);
 }
 wrtr.WriteLine(";"); // finish method
 wrtr.WriteLine("\t}"); // end method
 wrtr.WriteLine("}"); // end class

 // close the writer and the stream
 wrtr.Close();
 s.Close();

 // Build the file
 ProcessStartInfo psi =
 new ProcessStartInfo();
 psi.FileName = "cmd.exe";

 string compileString = "/c csc /optimize+ ";
 compileString += "/r:\"Reflection.exe\" ";
 compileString += "/target:library ";
 compileString += "{0}.cs > compile.out";

 psi.Arguments =
 String.Format(compileString, fileName);
 psi.WindowStyle = ProcessWindowStyle.Minimized;

 Process proc = Process.Start(psi);
 proc.WaitForExit(); // wait at most 2 seconds

 // Open the file, and get a
 // pointer to the method info
 Assembly a =
 Assembly.LoadFrom(fileName + ".dll");
 theComputer = (IComputer) a.CreateInstance(className);
 File.Delete(fileName + ".cs"); // clean up
 }
 IComputer theComputer = null;
 }

 public class TestDriver
 {
 public static void Main()
 {
 const int val = 200; // 1..200
 const int iterations = 100000;
 double result = 0;

 430

 // run the benchmark
 MyMath m = new MyMath();
 DateTime startTime = DateTime.Now;
 for (int i = 0;i < iterations;i++)
 {
 result = m.DoSumLooping(val);
 }
 TimeSpan elapsed =
 DateTime.Now - startTime;
 Console.WriteLine(
 "Sum of ({0}) = {1}",val, result);
 Console.WriteLine(
 "Looping. Elapsed milliseconds: " +
 elapsed.TotalMilliseconds +
 " for {0} iterations", iterations);

 // run our reflection alternative
 ReflectionTest t = new ReflectionTest();

 startTime = DateTime.Now;
 for (int i = 0;i < iterations;i++)
 {
 result = t.DoSum(val);
 }

 elapsed = DateTime.Now - startTime;
 Console.WriteLine(
 "Sum of ({0}) = {1}",val, result);
 Console.WriteLine(
 "Brute Force. Elapsed milliseconds: " +
 elapsed.TotalMilliseconds +
 " for {0} iterations", iterations);
 }
 }
}

 Output:
Sum of (200) = 20100
Looping. Elapsed milliseconds:
140.625 for 100000 iterations
Sum of (200) = 20100
Brute Force. Elapsed milliseconds:
875 for 100000 iterations

This output is much more satisfying; our dynamically created brute-force method now runs nearly
twice as fast as the loop does. But you can do a lot better than that with reflection emit.

18.5.3 Dynamic Invocation with Reflection Emit

So far you've created an assembly on the fly by writing its source code to disk and then compiling that
source code. You then dynamically invoked the method you wanted to use from that assembly, which
was compiled on disk. That brings a lot of overhead, and what have you accomplished? When you're
done with writing the file to disk, you have source code you can compile, and when you're done
compiling, you have IL (Intermediate Language) op codes on disk you can ask the .NET Framework to
run.

Reflection emit allows you to skip a few steps and just "emit" the op codes directly. This is writing
assembly code directly from your C# program and then invoking the result. It just doesn't get any
cooler than that.

Programming C#

 431

You start much as you did in the previous examples. You create a constant for the number to add to
(200) and the number of iterations (1,000,000). You then re-create the myMath class as a benchmark.

Once again you have a ReflectionTest class, and once again you call DoSum, passing in the value:

ReflectionTest t = new ReflectionTest();
result = t.DoSum(val);

DoSum itself is virtually unchanged:

public double DoSum(int theValue)
{
 if (theComputer == null)
 {
 GenerateCode(theValue);
 }

 // call the method through the interface
 return (theComputer.ComputeSum());
}

As you can see, you will use an interface again, but this time you are not going to write a file to disk.

GenerateCode is quite different now. You no longer write the file to disk and compile it; instead you
call the helper method EmitAssembly and get back an assembly. You then create an instance from
that assembly and cast that instance to your interface.

public void GenerateCode(int theValue)
{
 Assembly theAssembly = EmitAssembly(theValue);
 theComputer = (IComputer)
 theAssembly.CreateInstance("BruteForceSums");
}

As you might have guessed, the magic is stashed away in the EmitAssembly method:

private Assembly EmitAssembly(int theValue)

The value you pass in is the sum you want to compute. To see the power of reflection emit, you'll
increase that value from 200 to 2,000.

The first thing to do in EmitAssembly is to create an object of type AssemblyName and give that
AssemblyName object the name "DoSumAssembly":

AssemblyName assemblyName = new AssemblyName();
assemblyName.Name = "DoSumAssembly";

An AssemblyName is an object that fully describes an assembly's unique identity. As discussed in
Chapter 13, an assembly's identity consists of a simple name (DoSumAssembly), a version number,
a cryptographic key pair, and a supported culture.

With this object in hand, you can create a new AssemblyBuilder object. To do so, you call
DefineDynamicAssembly on the current domain, which you get by calling the static GetDomain()
method of the Thread object. Domains are discussed in detail in Chapter 19.

 432

The parameters to the GetDomain()method are the AssemblyName object you just created and an
AssemblyBuilderAccess enumeration value (one of Run, RunandSave, or Save). You'll use Run
in this case to indicate that the assembly can be run but not saved:

AssemblyBuilder newAssembly =
 Thread.GetDomain().DefineDynamicAssembly(assemblyName,
 AssemblyBuilderAccess.Run);

With this newly created AssemblyBuilder object, you are ready to create a ModuleBuilder object.
The job of the ModuleBuilder, not surprisingly, is to build a module dynamically. Modules are
discussed in Chapter 17. You call the DefineDynamicModule method, passing in the name of the
method you want to create:

ModuleBuilder newModule =
newAssembly.DefineDynamicModule("Sum");

Now, given that module, you can define a public class and get back a TypeBuilder object.
TypeBuilder is the root class used to control the dynamic creation of classes. With a TypeBuilder
object, you can define classes and add methods and fields:

TypeBuilder myType =
newModule.DefineType("BruteForceSums", TypeAttributes.Public);

You are now ready to mark the new class as implementing the IComputer interface:

myType.AddInterfaceImplementation(typeof(IComputer));

You're almost ready to create the ComputeSum method, but first you must set up the array of
parameters. Because you have no parameters at all, you create an array of zero length:

Type[] paramTypes = new Type[0];

You then create a Type object to hold the return type for your method:

Type returnType = typeof(int);

You're ready to create the method. The DefineMethod() method of TypeBuilder will both create
the method and return an object of type MethodBuilder, which you will use to generate the IL code:

MethodBuilder simpleMethod =
myType.DefineMethod("ComputeSum",
 MethodAttributes.Public |
 MethodAttributes.Virtual,
 returnType,
 paramTypes);

You pass in the name of the method, the flags you want (public and virtual), the return type
(int), and the paramTypes (the zero length array).

You then use the MethodBuilder object you created to get an ILGenerator object:

ILGenerator generator = simpleMethod.GetILGenerator();

Programming C#

 433

With your precious ILGenerator object in hand, you are ready to emit the op codes. These are the
very op codes that the C# compiler would have created. (In fact, the best way to get the op codes is to
write a small C# program, compile it, and then examine the op codes in ILDasm!)

First emit the value 0 to the stack. Then loop through the number values you want to add (1 through
200), adding each to the stack in turn, adding the previous sum to the new number and leaving the
result on the stack:

generator.Emit(OpCodes.Ldc_I4, 0);
for (int i = 1; i <= theValue;i++)
{
 generator.Emit(OpCodes.Ldc_I4, i);
 generator.Emit(OpCodes.Add);
}

The value that remains on the stack is the sum you want, so you'll return it:

generator.Emit(OpCodes.Ret);

You're ready now to create a MethodInfo object that will describe the method:

MethodInfo computeSumInfo =
 typeof(IComputer).GetMethod("ComputeSum");

Now you must specify the implementation that will implement the method. You call
DefineMethodOverride on the TypeBuilder object you created earlier, passing in the
MethodBuilder you created, along with the MethodInfo object you just created:

myType.DefineMethodOverride(simpleMethod, computeSumInfo);

You're just about done; create the class and return the assembly:

myType.CreateType();
return newAssembly;

OK, I didn't say it was easy, but it is really cool, and the resulting code runs very fast. The normal loop
runs 1,000,000 iterations in 11.5 seconds, but the emitted code runs in .4 second! A full 3,000% faster.
Example 18-11 is the full source code.

Example 18-11. Dynamic invocation with reflection emit
namespace Programming_CSharp
{
 using System;
 using System.Diagnostics;
 using System.IO;
 using System.Reflection;
 using System.Reflection.Emit;
 using System.Threading;

 // used to benchmark the looping approach
 public class MyMath
 {
 // sum numbers with a loop
 public int DoSumLooping(int initialVal)
 {
 int result = 0;
 for(int i = 1;i <=initialVal;i++)

 434

 {
 result += i;
 }
 return result;
 }
 }

 // declare the interface
 public interface IComputer
 {
 int ComputeSum();
 }

 public class ReflectionTest
 {
 // the private method which emits the assembly
 // using op codes
 private Assembly EmitAssembly(int theValue)
 {
 // Create an assembly name
 AssemblyName assemblyName =
 new AssemblyName();
 assemblyName.Name = "DoSumAssembly";

 // Create a new assembly with one module
 AssemblyBuilder newAssembly =
 Thread.GetDomain().DefineDynamicAssembly(
 assemblyName, AssemblyBuilderAccess.Run);
 ModuleBuilder newModule =
 newAssembly.DefineDynamicModule("Sum");

 // Define a public class named "BruteForceSums "
 // in the assembly.
 TypeBuilder myType =
 newModule.DefineType(
 "BruteForceSums", TypeAttributes.Public);

 // Mark the class as implementing IComputer.
 myType.AddInterfaceImplementation(
 typeof(IComputer));

 // Define a method on the type to call. Pass an
 // array that defines the types of the parameters,
 // the type of the return type, the name of the
 // method, and the method attributes.
 Type[] paramTypes = new Type[0];
 Type returnType = typeof(int);
 MethodBuilder simpleMethod =
 myType.DefineMethod(
 "ComputeSum",
 MethodAttributes.Public |
 MethodAttributes.Virtual,
 returnType,
 paramTypes);

 // Get an ILGenerator. This is used
 // to emit the IL that you want.
 ILGenerator generator =
 simpleMethod.GetILGenerator();

 // Emit the IL that you'd get if you

Programming C#

 435

 // compiled the code example
 // and then ran ILDasm on the output.

 // Push zero onto the stack. For each 'i'
 // less than 'theValue',
 // push 'i' onto the stack as a constant
 // add the two values at the top of the stack.
 // The sum is left on the stack.
 generator.Emit(OpCodes.Ldc_I4, 0);
 for (int i = 1; i <= theValue;i++)
 {
 generator.Emit(OpCodes.Ldc_I4, i);
 generator.Emit(OpCodes.Add);

 }

 // return the value
 generator.Emit(OpCodes.Ret);

 //Encapsulate information about the method and
 //provide access to the method's metadata
 MethodInfo computeSumInfo =
 typeof(IComputer).GetMethod("ComputeSum");

 // specify the method implementation.
 // Pass in the MethodBuilder that was returned
 // by calling DefineMethod and the methodInfo
 // just created
 myType.DefineMethodOverride(simpleMethod, computeSumInfo);

 // Create the type.
 myType.CreateType();
 return newAssembly;
 }

 // check if the interface is null
 // if so, call Setup.
 public double DoSum(int theValue)
 {
 if (theComputer == null)
 {
 GenerateCode(theValue);
 }

 // call the method through the interface
 return (theComputer.ComputeSum());
 }

 // emit the assembly, create an instance
 // and get the interface
 public void GenerateCode(int theValue)
 {
 Assembly theAssembly = EmitAssembly(theValue);
 theComputer = (IComputer)
 theAssembly.CreateInstance("BruteForceSums");
 }

 // private member data
 IComputer theComputer = null;

 }

 436

 public class TestDriver
 {
 public static void Main()
 {
 const int val = 2000; // Note 2,000

 // 1 million iterations!
 const int iterations = 1000000;
 double result = 0;

 // run the benchmark
 MyMath m = new MyMath();
 DateTime startTime = DateTime.Now;
 for (int i = 0;i < iterations;i++)
 {
 result = m.DoSumLooping(val);
 }
 TimeSpan elapsed =
 DateTime.Now - startTime;
 Console.WriteLine(
 "Sum of ({0}) = {1}",val, result);
 Console.WriteLine(
 "Looping. Elapsed milliseconds: " +
 elapsed.TotalMilliseconds +
 " for {0} iterations", iterations);

 // run our reflection alternative
 ReflectionTest t = new ReflectionTest();

 startTime = DateTime.Now;
 for (int i = 0;i < iterations;i++)
 {
 result = t.DoSum(val);
 }

 elapsed = DateTime.Now - startTime;
 Console.WriteLine(
 "Sum of ({0}) = {1}",val, result);
 Console.WriteLine(
 "Brute Force. Elapsed milliseconds: " +
 elapsed.TotalMilliseconds +
 " for {0} iterations", iterations);
 }
 }
}

Output:

Sum of (2000) = 2001000
Looping. Elapsed milliseconds:
11468.75 for 1000000 iterations
Sum of (2000) = 2001000
Brute Force. Elapsed milliseconds:
406.25 for 1000000 iterations

Reflection emit is a powerful technique for emitting op codes. Although today's compilers are very fast
and today's machines have lots of memory and processing speed, it is comforting to know that when
you must, you can get right down to the virtual metal.

Programming C#

 437

Chapter 19. Marshaling and Remoting

The days of integrated programs all running in a single process on a single machine are, if not dead,
at least seriously wounded. Today's programs consist of complex components running in multiple
processes, often across the network. The Web has facilitated distributed applications in a way
unthinkable even a few years ago, and the trend is toward distribution of responsibility.

A second trend is toward centralizing business logic on large servers. Although these trends appear to
be contradictory, in fact they are synergistic: business objects are being centralized while the user
interface and even some middleware is being distributed.

The net effect is that objects need to be able to talk with one another at a distance. Objects running on
a server handling the web user interface need to be able to interact with business objects living on
centralized servers at corporate headquarters.

The process of moving an object across a boundary is called remoting. Boundaries exist at various
levels of abstraction in your program. The most obvious boundary is between objects running on
different machines.

The process of preparing an object to be remoted is called marshaling. On a single machine, objects
might need to be marshaled across context, app domain, or process boundaries.

A process is essentially a running application. If an object in your word processor wants to interact with
an object in your spreadsheet, they must communicate across process boundaries.

Processes are divided into application domains (often called "app domains"); these in turn are divided
into various contexts. App domains act like lightweight processes, and contexts create boundaries
within which objects with similar rules can be contained. At times, objects will be marshaled across
both context and app domain boundaries, as well as across process and machine boundaries.
(Processes, app domains, and contexts are all explained in greater detail later in this chapter.)

When an object is remoted, it appears to be sent through the wire from one computer to another,
much like Captain Kirk being teleported down to the surface of a planet some miles below the orbiting
USS Enterprise.

In Star Trek, Kirk was actually sent to the planet, but in the .NET edition it is all an illusion. If you are
standing on the surface of the planet, you might think you are seeing and talking with the real Kirk, but
you are not talking to Kirk at all; you are talking to a proxy, or a simulation whose job is to take your
message and beam it up to the Enterprise where it is relayed to the real Kirk. Between you and Kirk
there are also a number of "sinks."

A sink is an object whose job is to enforce policy. For example, if Kirk tries to tell you something that
might influence the development of your civilization, the prime-directive sink might disallow the
transmission.

When the real Kirk responds, he passes his response through various sinks until it gets to the proxy
and the proxy tells you. It seems to you like Kirk is really there, but he's actually sitting on the bridge,
yelling at Scotty that he needs more power.

The actual transmission of your message is done by a channel. The channel's job is to know how to
move the message from the Enterprise to the planet. The channel works with a formatter. The
formatter makes sure the message is in the right format. Perhaps you speak only Vulcan, and the poor
Captain does not. The formatter can translate your message into Federation Standard, and translate
Kirk's response from Federation Standard back to Vulcan. You appear to be talking with one another,
but the formatter is silently facilitating the communication.

 438

This chapter demonstrates how your objects can be marshaled across various boundaries, and how
proxies and stubs can create the illusion that your object has been squeezed through the network
cable to a machine across the office or around the world. In addition, this chapter explains the role of
formatters, channels, and sinks, and how to apply these concepts to your programming.

19.1 Application Domains

A process is, essentially, a running application. Each .NET application runs in its own process. If you
have Word, Excel, and Visual Studio open, you have three processes running. If you open another
copy of Word, another process starts up. Each process is subdivided into one or more application
domains (or app domains). An app domain acts like a process but uses fewer resources.

App domains can be independently started and halted; they are secure, lightweight, and versatile. An
app domain can provide fault tolerance; if you start an object in a second app domain and it crashes, it
will bring down the app domain but not your entire program. You can imagine that web servers might
use app domains for running users' code; if the code has a problem, the web server can maintain
operations.

An app domain is encapsulated by an instance of the AppDomain class, which offers a number of
methods and properties. A few of the most important are listed in Table 19-1.

Table 19-1. Methods and properties of the AppDomain class
Method or Property Details

CurrentDomain Public static property that returns the current application domain for
the current thread

CreateDomain() Overloaded public static method that creates a new application
domain

GetCurrentThreadID() Public static method that returns the current thread identifier
Unload() Public static method that removes the specified app domain
FriendlyName Public property that returns the friendly name for this app domain

DefineDynamicAssembly() Overloaded public method that defines a dynamic assembly in the
current app domain

ExecuteAssembly() Public method that executes the designated assembly

GetData() Public method that gets the value stored in the current application
domain given a key

Load() Public method that loads an assembly into the current app domain

SetAppDomainPolicy() Public method that sets the security policy for the current app
domain

SetData() Public method that puts data into the specified app domain property

App domains also support a variety of events, including AssemblyLoad, AssemblyResolve,
ProcessExit, and ResourceResolve, that are fired as assemblies are found, loaded, run, and
unloaded.

Every process has an initial app domain, and can have additional app domains as you create them.
Each app domain exists in exactly one process. Until now, all the programs in this book have been in a
single app domain: the default app domain. Each process has its own default app domain. In many,
perhaps most of the programs you write, the default app domain will be all that you'll need.

However, there are times when a single domain is insufficient. You might create a second app domain
if you need to run a library written by another programmer. Perhaps you don't trust that the library, and
want to isolate it in its own domain so that if a method in the library crashes the program, only the
isolated domain will be affected. If you were the author of Internet Information Server (IIS, Microsoft's

Programming C#

 439

web hosting software), you might spin up a new app domain for each plug-in application or each virtual
directory you host. This would provide fault tolerance, so that if one web application crashed, it would
not bring down the web server.

It is also possible that the other library might require a different security environment; creating a
second app domain allows the two security environments to co-exist. Each app domain has its own
security, and the app domain serves as a security boundary.

App domains are not threads and should be distinguished from threads. A thread exists in one app
domain at a time, and a thread can access (and report) in which app domain it is executing. App
domains are used to isolate applications; within an app domain there might be multiple threads
operating at any given moment (see Chapter 22).

To see how app domains work, let's set up an example. Suppose you wish your program to instantiate
a Shape class, but in a second app domain.

There is no good reason for this Shape class to be put in a
second app domain, except to illustrate how these techniques
work. It is possible, however, that more complex objects might
need a second app domain to provide a different security
environment. Further, if you are creating classes which might
engage in risky behavior, you might like the protection of starting
them in a second app domain.

Normally, you'd load the Shape class from a separate assembly, but to keep this example simple,
you'll just put the definition of the Shape class into the same source file as all the other code in this
example (see Chapter 17). Further, in a production environment, you might run the Shape class
methods in a separate thread, but for simplicity, you'll ignore threading for now. (Threading is covered
in detail in Chapter 20) By sidestepping these ancillary issues, you can keep the example
straightforward and focus on the details of creating and using application domains and marshaling
objects across app domain boundaries.

19.1.1 Creating and Using App Domains

You create a new app domain by calling the static method CreateDomain() on the AppDomain
class:

AppDomain ad2 =
 AppDomain.CreateDomain("Shape Domain", null, null);

This creates a new app domain with the friendly name Shape Domain. The friendly name is a
convenience to the programmer; it is a way to interact with the domain programmatically without
knowing the internal representation of the domain. You can check the friendly name of the domain
you're working in with the property System.AppDomain.CurrentDomain.FriendlyName.

Once you have instantiated an AppDomain object, you can create instances of classes, interfaces,
and so forth using its CreateInstance() method. Here's the signature:

public ObjectHandle CreateInstance(
 string assemblyName,
 string typeName,
 bool ignoreCase,
 BindingFlags bindingAttr,
 Binder binder,

 440

 object[] args,
 CultureInfo culture,
 object[] activationAttributes,
 Evidence securityAttributes
);

And here's how to use it:

ObjectHandle oh = ad2.CreateInstance(
"ProgCSharp", // the assembly name
"ProgCSharp.Shape", // the type name with
namespace
false, // ignore case
System.Reflection.BindingFlags.CreateInstance, // flag
null, // binder
new object[] {3, 5}, // args
null, // culture
null, // activation attributes
null); // security attributes

The first parameter (ProgCSharp) is the name of the assembly, and the second
(ProgCSharp.Shape) is the name of the class. The class name must be fully qualified by
namespaces.

A binder is an object that enables dynamic binding of an assembly at runtime. Its job is to allow you to
pass in information about the object you want to create, to create that object for you, and to bind your
reference to that object. In the vast majority of cases, including this example, you'll use the default
binder, which we accomplish by passing in null.

It is possible, of course, to write your own binder, which might, for example, check your ID against
special permissions in a database and reroute the binding to a different object, based on your identity
or your privileges.

"Binding" typically refers to attaching an object name to an object.
"Dynamic binding" refers to the ability to make that attachment
when the program is running, as opposed to when it is compiled.
In this example, the Shape object is bound to the instance
variable at runtime, through the app domain's
CreateInstance()method.

Binding flags help the binder fine-tune its behavior at binding time. In this example, you'd use the
BindingFlags enumeration value CreateInstance. The default binder normally only looks at
public classes for binding, but you can add flags to have it look at private classes if you have the right
permissions.

When you bind an assembly at runtime, you do not specify the assembly to load at compile time, but
rather, determine which assembly you want programmatically and bind your variable to that assembly
when the program is running.

The constructor we're calling takes two integers, which must be put into an object array (new
object[] {3, 5}). We can send null for the culture because we'll use the default (en) culture
and won't specify activation attributes or security attributes.

What you get back is an object handle , a type that is used to pass an object (in a wrapped state)
between multiple app domains without loading the metadata for the wrapped object in each object

Programming C#

 441

through which the ObjectHandle travels. You can get the actual object itself by calling UnWrap()
on the object handle, and casting the resulting object to the actual type—in this case, Shape.

The CreateInstance() method provides an opportunity to create the object in a new app domain.
If you were to create the object with new, it would be created in the current app domain.

19.1.2 Marshaling Across App Domain Boundaries

You've created a Shape object in the Shape domain, but you're accessing it through a Shape object
in the original domain. To access the shape object in another domain, you must marshal the object
across the domain boundary.

Marshaling is the process of preparing an object to move across a boundary; once again, like Captain
Kirk teleporting to the planet's surface. Marshaling is accomplished in two ways: by value or by
reference. When an object is marshaled by value, a copy is made. It is as if I called you on the phone
and asked you to send me your calculator, and you called up the hardware store and had them send
me one that is identical to yours. I can use the copy just as I would the original, but entering numbers
on my copy has no effect on your original.

Marshaling by reference is almost like sending me your own calculator. Here's how it works. You do
not actually give me the original, you keep that in your house, but you send me a proxy. The proxy is
very smart: when I press a button on my proxy calculator, it sends a signal to your original calculator,
and the number appears over there. Pressing buttons on the proxy looks and feels to me just like I
reached through the telephone wire between us and touched your original calculator.

19.1.2.1 Understanding marshaling with proxies

The Captain Kirk and hardware analogies are fine as far as analogies go, but what actually happens
when you marshal by reference? The Common Language Runtime (CLR) provides your calling object
with a transparent proxy (TP).

The job of the TP is to take everything known about your method call (the return value, the parameters,
etc.) off of the stack and stuff it into an object which implements the IMessage interface. That
IMessage is passed to a RealProxy object.

RealProxy is an abstract base class from which all proxies derive. You can implement your own real
proxy, or any of the other objects in this process except for the transparent proxy. The default real
proxy will hand the IMessage to a series of sink objects.

Any number of sinks can be used depending on the number of policies you wish to enforce, but the
last sink in a chain will put the IMessage into a Channel. Channels are split into client-side and
server-side channels, and their job is to move the message across the boundary. Channels are
responsible for understanding the transport protocol. The actual format of a message as it moves
across the boundary is managed by a formatter. The .NET Framework provides two formatters: a
Simple Object Access Protocol (SOAP) formatter which is the default for HTTP channels, and a Binary
formatter which is the default for TCP/IP channels. You are free to create your own formatters and, if
you are truly a glutton for punishment, your own channels.

Once a message is passed across a boundary, it is received by the server-side channel and formatter,
which reconstitute the IMessage and pass it to one or more sinks on the server side. The final sink in
a sink chain is the StackBuilder, whose job is to take the IMessage and turn it back into a stack
frame so that it appears to be a function call to the server.

19.1.2.2 Specifying the marshaling method

 442

To illustrate the distinction between marshaling by value and marshaling by reference, in the next
example, you'll tell the Shape object to marshal by reference, but give it a member variable of type
Point, which you'll specify as marshal by value.

Note that each time you create an object that might be used across a boundary, you must choose how
it will be marshaled. Normally, objects cannot be marshaled at all; you must take action to indicate that
an object can be marshaled, either by value or by reference.

The easiest way to make an object marshal by value is to mark it with the Serializable attribute:

[Serializable]
public class Point

(When an object is serialized, its internal state is written out to a stream, either for marshaling or for
storage. The details of serialization are covered in Chapter 21.)

The easiest way to make an object marshal by reference is to derive its class from
MarshalByRefObject:

public class Shape : MarshalByRefObject

The Shape class will have just one member variable, upperLeft. This variable will be a Point
object, which will hold the coordinates of the upper-left corner of the shape.

The constructor for Shape will initialize its Point member:

public Shape(int upperLeftX, int upperLeftY)
{
 Console.WriteLine("[{0}] Event{1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Shape constructor");
 upperLeft = new Point(upperLeftX, upperLeftY);
}

Provide Shape with a method for displaying its position:

public void ShowUpperLeft()
{
 Console.WriteLine("[{0}] Upper left: {1},{2}",
 System.AppDomain.CurrentDomain.FriendlyName,
 upperLeft.X, upperLeft.Y);
}

Also provide a second method for returning its upperLeft member variable:

public Point GetUpperLeft()
{
 return upperLeft;
}

The Point class is very simple as well. It has a constructor that initializes its two member variables
and accessors to get their value.

Once you create the Shape, ask it for its coordinates:

s1.ShowUpperLeft(); // ask the object to display

Programming C#

 443

Then ask it to return its upperLeft coordinate as a Point object that you'll change:

Point localPoint = s1.GetUpperLeft();

localPoint.X = 500;
localPoint.Y = 600;

Ask that Point to print its coordinates, and then ask the Shape to print its coordinates. So, will the
change to the local Point object be reflected in the Shape? That will depend on how the Point
object is marshaled. If it is marshaled by value, the localPoint object will be a copy, and the Shape
object will be unaffected by changing the localPoint variables' values. If, on the other hand, you
change the Point object to marshal by reference, you'll have a proxy to the actual upperLeft
variable, and changing that will change the Shape. Example 19-1 illustrates.

Example 19-1. Marshaling across app domain boundaries
using System;
using System.Runtime.Remoting;

using System.Reflection;

namespace ProgCSharp
{

 // for marshal by reference comment out
 // the attribute and uncomment the base class
 [Serializable]
 public class Point // : MarshalByRefObject
 {
 public Point (int x, int y)
 {
 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Point constructor");

 this.x = x;
 this.y = y;
 }

 public int X
 {
 get
 {
 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Point x.get");

 return this.x;
 }

 set
 {
 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Point x.set");
 this.x = value;
 }
 }

 444

 public int Y
 {
 get
 {
 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Point y.get");
 return this.y;
 }

 set
 {
 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Point y.set");
 this.y = value;
 }
 }

 private int x;
 private int y;
 }

 // the shape class marshals by reference
 public class Shape : MarshalByRefObject
 {
 public Shape(int upperLeftX, int upperLeftY)
 {
 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Shape constructor");

 upperLeft = new Point(upperLeftX, upperLeftY);
 }
 public Point GetUpperLeft()
 {
 return upperLeft;
 }

 public void ShowUpperLeft()
 {
 Console.WriteLine("[{0}] Upper left: {1},{2}",
 System.AppDomain.CurrentDomain.FriendlyName,
 upperLeft.X, upperLeft.Y);
 }

 private Point upperLeft;
 }
 public class Tester
 {
 public static void Main()
 {

 Console.WriteLine("[{0}] {1}",
 System.AppDomain.CurrentDomain.FriendlyName,
 "Entered Main");

 // create the new app domain
 AppDomain ad2 =
 System.AppDomain.CurrentDomain.CreateDomain(

Programming C#

 445

 "Shape Domain");

 // Assembly a = Assembly.LoadFrom("ProgCSharp.exe");
 // Object theShape = a.CreateInstance("Shape");
 // instantiate a Shape object
 ObjectHandle oh = ad2.CreateInstance(
 "ProgCSharp",
 "ProgCSharp.Shape", false,
 System.Reflection.BindingFlags.CreateInstance,
 null, new object[] {3, 5},
 null, null, null);

 Shape s1 = (Shape) oh.Unwrap();

 s1.ShowUpperLeft(); // ask the object to display

 // get a local copy? proxy?
 Point localPoint = s1.GetUpperLeft();

 // assign new values
 localPoint.X = 500;
 localPoint.Y = 600;

 // display the value of the local Point object
 Console.WriteLine("[{0}] localPoint: {1}, {2}",
 System.AppDomain.CurrentDomain.FriendlyName,
 localPoint.X, localPoint.Y);

 s1.ShowUpperLeft(); // show the value once more
 }
 }
}

Output:

[Programming CSharp.exe] Entered Main
[Shape Domain] Shape constructor
[Shape Domain] Point constructor
[Shape Domain] Point x.get
[Shape Domain] Point y.get
[Shape Domain] Upper left: 3,5
[Programming CSharp.exe] Point x.set
[Programming CSharp.exe] Point y.set
[Programming CSharp.exe] Point x.get
[Programming CSharp.exe] Point y.get
[Programming CSharp.exe] localPoint: 500, 600
[Shape Domain] Point x.get
[Shape Domain] Point y.get
[Shape Domain] Upper left: 3,5

Read through the code, or better yet, put it in your debugger and step through it. The output reveals
that the Shape and Point constructors run in the Shape domain, as does the access of the values of
the Point object in the Shape.

The property is set in the original app domain, setting the local copy of the Point object to 500 and
600. Because Point is marshaled by value, however, what you are setting is a copy of the Point
object, and when you ask the Shape to display its upperLeft member variable, it is unchanged.

To complete the experiment, comment out the attribute at the top of the Point declaration and
uncomment the base class:

 446

// [serializable]
public class Point : MarshalByRefObject

Now run the program again. The output is quite different:

[Programming CSharp.exe] Entered Main
[Shape Domain] Shape constructor
[Shape Domain] Point constructor
[Shape Domain] Point x.get
[Shape Domain] Point y.get
[Shape Domain] Upper left: 3,5
[Shape Domain] Point x.set
[Shape Domain] Point y.set
[Shape Domain] Point x.get
[Shape Domain] Point y.get
[Programming CSharp.exe] localPoint: 500, 600
[Shape Domain] Point x.get
[Shape Domain] Point y.get
[Shape Domain] Upper left: 500,600

This time you get a proxy for the Point object and the properties are set through the proxy on the
original Point member variable. Thus, the changes are reflected within the Shape itself.

19.2 Context

App domains themselves are subdivided into contexts. Contexts can be thought of as boundaries
within which objects share usage rules. These usage rules include synchronization transactions (see
Chapter 20), and so forth.

19.2.1 Context-Bound and Context-Agile Objects

Objects are either context-bound, or they are context-agile. If they are context-bound, they exist in a
context, and to interact with them the message must be marshaled. If they are context-agile, they act
within the context of the calling object; that is, their methods execute in the context of the object that
invokes the method and so marshaling is not required.

Suppose you have an object A that interacts with the database and so is marked to support
transactions. This creates a context. All method calls on A occur within the context of the protection
afforded by the transaction. Object A can decide to roll back the transaction, and all actions taken
since the last commit are undone.

Suppose that you have another object, B, which is context-agile. Now suppose that object A passes a
database reference to object B and then calls methods on B. Perhaps A and B are in a call-back
relationship, in which B will do some work and then call A back with the results. Because B is context-
agile, B's method operates in the context of the calling object; thus it will be afforded the transaction
protection of object A. The changes B makes to the database will be undone if A rolls back the
transaction, because B's methods execute within the context of the caller. So far, so good.

Should B be context-agile or context-bound? In the case examined so far, B worked fine being agile.
Suppose one more class exists: C. C does not have transactions, and it calls a method on B that
changes the database. Now A tries to roll back, but unfortunately, the work B did for C was in C's
context and thus was not afforded the support of transactions. Uh-oh: that work can't be undone.

If B was marked context-bound, when A created it B would have inherited A's context. In that case,
when C invoked a method on B it would have to be marshaled across the context boundary, but then
when B executed the method it would have been in the context of A's transaction. Much better.

Programming C#

 447

This would work if B were context-bound but without attributes. B of course could have its own context
attributes, and these might force B to be in a different context from A. For example, B might have a
transaction attribute marked RequiresNew. In this case, when B is created it gets a new context, and
thus cannot be in A's context. Thus, when A rolled back, B's work could not be undone. You might
mark B with the RequiresNew enumeration value because B is an audit function. When A takes an
action on the database it informs B, which updates an audit trail. You do not want B's work undone
when A undoes its transaction. You want B to be in its own transaction context, rolling back only its
own mistakes, not A's.

An object thus has three choices. The first choice is to be context-agile. A context-agile object
operates in the context of its caller. Option two is to be context-bound (accomplished by deriving from
ContextBoundObject) but have no attributes, and thus operate in the context of the creator. Option
three is to be context-bound with context attributes, and thus operate only in the context which
matches the attributes.

Which you decide upon depends on how your object will be used. If your object is a simple calculator
that cannot possibly need synchronization or transactions or any context support, it is more efficient to
be context-agile. If your object should use the context of the object that creates it, you should make
that object context-bound with no attributes. Finally, if your object has its own context requirements,
you should give it the appropriate attributes.

19.2.2 Marshaling Across Context Boundaries

No proxy is needed when accessing context-agile objects within a single app domain. When an object
in one context accesses a context-bound object in a second context, it does so through a proxy, and
at that time the two context policies are enforced. It is in this sense that a context creates a boundary;
the policy is enforced at the boundary between contexts.

For example, when you mark a context-bound object with the
System.Runtime.Remoting.Synchronization attribute, you indicate that you want the system
to manage synchronization for that object. All objects outside that context must pass through the
context boundary to touch one of the objects, and at that time the policy of synchronization will be
applied.

Strictly speaking, marking two classes with the
Synchronization attribute does not guarantee that they will
end up in the same context. Each attribute gets to vote on
whether it is happy with the current context at activation. If two
objects are marked for synchronization but one is pooled, they will
be forced into different contexts.

Objects are marshaled differently across context boundaries, depending on how they are created:

• Typical objects are not marshaled at all; within app domains they are context-agile.
• Objects marked with the Serializable attribute are marshaled by value across app

domains and are context-agile.
• Objects that derive from MarshalByRefObject are marshaled by reference across app

domains and are context-agile.
• Objects derived from ContextBoundObject are marshaled by reference across app

domains as well as by reference across context boundaries.

 448

19.3 Remoting

In addition to being marshaled across context and app domain boundaries, objects can be marshaled
across process boundaries, and even across machine boundaries. When an object is marshaled,
either by value or by proxy, across a process or machine boundary, it is said to be remoted.

19.3.1 Understanding Server Object Types

There are two types of server objects supported for remoting in .NET: well-known and client-activated.
The communication with well-known objects is established each time a message is sent by the client.
There is no permanent connection with a well-known object, as there is with client-activated objects.

Well-known objects come in two varieties: singleton and single-call. With a well-known singleton object,
all messages for the object, from all clients, are dispatched to a single object running on the server.
The object is created when the server is started and is there to provide service to any client that can
reach it. Well-known objects must have a parameterless constructor.

With a well-known single-call object, each new message from a client is handled by a new object. This
is highly advantageous on server farms, where a series of messages from a given client might be
handled in turn by different machines depending on load balancing.

Client-activated objects are typically used by programmers who are creating dedicated servers,
created to provide services to a client they are also writing. In this scenario, the client and the server
create a connection, and they maintain that connection until the needs of the client are fulfilled.

19.3.2 Specifying a Server with an Interface

The best way to understand remoting is to walk through an example. Here, you'll build a simple four-
function calculator class, like the one used in an earlier discussion on web services (see Chapter 16),
that implements the interface shown in Example 19-2.

Example 19-2. The Calculator interface
namespace Programming_CSharp
{
 using System;

 public interface ICalc
 {
 double Add(double x, double y);
 double Sub(double x, double y);
 double Mult(double x, double y);
 double Div(double x, double y);
 }
}

Save this in a file named Icalc.cs and compile it into a file named ICalc.dll. To create and compile the
source file in Visual Studio, create a new project of type C# Class Library, enter the interface definition
in the Edit window, and then select Build Build on the Visual Studio menu bar. Alternatively, if you
have entered the source code using Notepad, you can compile the file at the command line by
entering:

csc Icalc.cs /t:library

There are tremendous advantages to implementing a server through an interface. If you implement the
calculator as a class, the client must link to that class in order to declare instances on the client. This
greatly diminishes the advantages of remoting because changes to the server require the class

Programming C#

 449

definition to be updated on the client. In other words, the client and server would be tightly coupled.
Interfaces help decouple the two objects; in fact, you can later update that implementation on the
server, and as long as the server still fulfills the contract implied by the interface, the client need not
change at all.

19.3.3 Building a Server

To build the server used in this example, create CalcServer.cs in a new project of type C# Console
Application and then compile it by selecting Build Build on the Visual Studio menu bar. Or, you can
enter the code in Notepad, save it to a file named CalcServer.cs, and enter the following at the
command-line prompt:

csc CalcServer.cs /t:exe

The Calculator class implements ICalc. It derives from MarshalByRefObject so that it will
deliver a proxy of the calculator to the client application:

public class Calculator : MarshalByRefObject, ICalc

The implementation consists of little more than a constructor and simple methods to implement the
four functions.

In this example, you'll put the logic for the server into the Main() method of CalcServer.cs.

Your first task is to create a channel. Use HTTP as the transport because it is simple and you don't
need a sustained TCP/IP connection. You can use the HTTPChannel type provided by .NET:

HTTPChannel chan = new HTTPChannel(65100);

Notice that you register the channel on TCP/IP port 65100 (see the discussion of port numbers in
Chapter 21).

Next, register the channel with the CLR ChannelServices using the static method
RegisterChannel:

ChannelServices.RegisterChannel(chan);

This step informs .NET that you will be providing HTTP services on port 65100, much as IIS does on
port 80. Because you've registered an HTTP channel and not provided your own formatter, your
method calls will use the SOAP formatter by default.

Now you are ready to ask the RemotingConfiguration class to register your well-known object.
You must pass in the type of the object you want to register, along with an endpoint. An endpoint is a
name that RemotingConfiguration will associate with your type. It completes the address. If the
IP address identifies the machine and the port identifies the channel, the endpoint identifies the actual
application that will be providing the service. To get the type of the object, you can call the static
method GetType() of the Type class, which returns a Type object. Pass in the full name of the
object whose type you want:

Type calcType =
 Type.GetType("Programming_CSharp.Calculator");

Also pass in the enumerated type that indicates whether you are registering a SingleCall or
Singleton:

 450

RemotingConfiguration.RegisterWellKnownServiceType
 (calcType, "theEndPoint",WellKnownObjectMode.Singleton);

The call to RegisterWellKnownServiceType does not put one byte on the wire. It simply uses
reflection to build a proxy for your object.

Now you're ready to rock and roll. Example 19-3 provides the entire source code for the server.

Example 19-3. The Calculator server
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace Programming_CSharp
{
 // implement the calculator class
 public class Calculator : MarshalByRefObject, ICalc
 {
 public Calculator()
 {
 Console.WriteLine("Calculator constructor");
 }

 // implement the four functions
 public double Add(double x, double y)
 {
 Console.WriteLine("Add {0} + {1}", x, y);
 return x+y;
 }
 public double Sub(double x, double y)
 {
 Console.WriteLine("Sub {0} - {1}", x, y);
 return x-y;
 }
 public double Mult(double x, double y)
 {
 Console.WriteLine("Mult {0} * {1}", x, y);
 return x*y;
 }
 public double Div(double x, double y)
 {
 Console.WriteLine("Div {0} / {1}", x, y);
 return x/y;
 }
 }

 public class ServerTest
 {
 public static void Main()
 {
 // create a channel and register it
 HttpChannel chan = new HttpChannel(65100);
 ChannelServices.RegisterChannel(chan);

 Type calcType =
 Type.GetType("Programming_CSharp.Calculator");

 // register our well-known type and tell the server
 // to connect the type to the endpoint "theEndPoint"

Programming C#

 451

 RemotingConfiguration.RegisterWellKnownServiceType
 (calcType,
 "theEndPoint",
 WellKnownObjectMode.Singleton);

 // "They also serve who only stand and wait."); (Milton)
 Console.WriteLine("Press [enter] to exit...");
 Console.ReadLine();
 }
 }
}

When you run this program, it prints its self-deprecating message:

Press [enter] to exit...

and then waits for a client to ask for service.

19.3.4 Building the Client

The client must also register a channel, but because you are not listening on that channel, you can
use channel 0:

HTTPChannel chan = new HTTPChannel(0);
ChannelServices.RegisterChannel(chan);

The client now need only connect through the remoting services, passing a Type object representing
the type of the object it needs (in our case, the ICalc interface) and the URI (Uniform Resource
Identifier) of the implementing class:

MarshalByRefObject obj =
 RemotingServices.Connect
 (typeof(Programming_CSharp.ICalc),
 "http://localhost:65100/theEndPoint");

In this case the server is assumed to be running on your local machine, so the URI is http://localhost,
followed by the port for the server, 65100, followed in turn by the endpoint you declared in the server,
theEndPoint.

The remoting service should return an object representing the interface you've requested. You can
then cast that object to the interface and begin using it. Because remoting cannot be guaranteed (the
network might be down, the host machine may not be available, and so forth), you should wrap the
usage in a try block:

try
{
 Programming_CSharp.ICalc calc =
 obj as Programming_CSharp.ICalc;

 double sum = calc.Add(3,4);

You now have a proxy of the Calculator operating on the server, but usable on the client, across the
process boundary and, if you like, across the machine boundary. Example 19-4 shows the entire
client.

Example 19-4. The remoting Calculator client

 452

namespace Programming_CSharp
{
 using System;
 using System.Runtime.Remoting;
 using System.Runtime.Remoting.Channels;
 using System.Runtime.Remoting.Channels.Http;

 public class CalcClient
 {
 public static void Main()
 {

 int[] myIntArray = new int[3];

 Console.WriteLine("Watson, come here I need you...");

 // create an Http channel and register it
 // uses port 0 to indicate won't be listening
 HttpChannel chan = new HttpChannel(0);
 ChannelServices.RegisterChannel(chan);

 // get my object from across the http channel
 MarshalByRefObject obj =
 (MarshalByRefObject) RemotingServices.Connect
 (typeof(Programming_CSharp.ICalc),
 "http://localhost:65100/theEndPoint");

 try
 {
 // cast the object to our interface
 Programming_CSharp.ICalc calc =
 obj as Programming_CSharp.ICalc;

 // use the interface to call methods
 double sum = calc.Add(3.0,4.0);
 double difference = calc.Sub(3,4);
 double product = calc.Mult(3,4);
 double quotient = calc.Div(3,4);

 // print the results
 Console.WriteLine("3+4 = {0}", sum);
 Console.WriteLine("3-4 = {0}", difference);
 Console.WriteLine("3*4 = {0}", product);
 Console.WriteLine("3/4 = {0}", quotient);
 }
 catch(System.Exception ex)
 {
 Console.WriteLine("Exception caught: ");
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Output on client::

Watson, come here I need you...
3+4 = 7
3-4 = -1
3*4 = 12
3/4 = 0.75

Programming C#

 453

Output on server:

Calculator constructor
Press [enter] to exit...
Add 3 + 4
Sub 3 - 4
Mult 3 * 4
Div 3 / 4

The server starts up and waits for the user to press Enter to signal that it can shut down. The client
starts and displays a message to the console. The client then calls each of the four operations. You
see the server printing its message as each method is called, and then the results are printed on the
client.

It is as simple as that; you now have code running on the server and providing services to your client.

19.3.5 Using SingleCall

To see the difference that SingleCall makes versus Singleton, change one line in the server's
Main() method. Here's the existing code:

RemotingServices. RegisterWellKnownServiceType
 ("CalcServerApp","Programming_CSharp.Calculator",
 "theEndPoint",WellKnownObjectMode.Singleton);

Change the object to SingleCall:

RemotingServices. RegisterWellKnownServiceType
 ("CalcServerApp","Programming_CSharp.Calculator",
 "theEndPoint",WellKnownObjectMode.SingleCall);

The output reflects that a new object is created to handle each request:

Calculator constructor
Press [enter] to exit...
Calculator constructor
Add 3 + 4
Calculator constructor
Sub 3 - 4
Calculator constructor
Mult 3 * 4
Calculator constructor
Div 3 / 4

19.3.6 Understanding RegisterWellKnownServiceType

When you called the RegisterWellKnownServiceType() method on the server, what actually
happened? Remember that you created a Type object for the Calculator class:

Type.GetType("Programming_CSharp.Calculator");

You then called RegisterWellKnownServiceType(), passing in that Type object along with the
endpoint and the Singleton enumeration. This signals the CLR to instantiate your Calculator and
then to associate it with an endpoint.

 454

To do that work yourself, you would need to modify Example 19-3, changing Main() to instantiate
a Calculator and then passing that Calculator to the Marshal() method of
RemotingServices with the endpoint to which you want to associate that instance of Calculator.
The modified Main() is shown in Example 19-5 and, as you can see, its output is identical to that
of Example 19-3.

Example 19-5. Manually instantiating and associating Calculator with an
endpoint
public static void Main()
{
 // create a channel and register it
 HttpChannel chan = new HttpChannel(65100);
 ChannelServices.RegisterChannel(chan);

 // make your own instance and call Marshal directly
 Calculator calculator = new Calculator();
 RemotingServices.Marshal(calculator,"theEndPoint");

 // "They also serve who only stand and wait."); (Milton)
 Console.WriteLine("Press [enter] to exit...");
 Console.ReadLine();
}

The net effect is that you have instantiated a calculator object, and associated a proxy for remoting
with the endpoint you've specified.

19.3.7 Understanding Endpoints

What is going on when you register this endpoint? Clearly, the server is associating that endpoint with
the object you've created, and when the client connects that endpoint is used as an index into a table
so that the server can provide a proxy to the correct object (in this case, the Calculator).

If you don't provide an endpoint for the client to talk to, you can instead write all the information about
your calculator object to a file and physically give that file to your client. For example, you could send it
to your buddy by email, and he could load it on his local computer.

The client can deserialize the object and reconstitute a proxy which it can then use to access the
calculator on your server! (The following example was suggested to me by Mike Woodring of
DevelopMentor, who uses a similar example to drive home the idea that the endpoint is simply a
convenience for accessing a marshaled object remotely.)

To see how you can invoke an object without a known endpoint, modify the Main() method of
Example 19-3 once again. This time, rather than calling Marshal() with an endpoint, just pass in
the object:

ObjRef objRef = RemotingServices.Marshal(calculator)

Marshal() returns an ObjRef object. An ObjRef object stores all the information required to
activate and communicate with a remote object. When you do supply an endpoint, the server creates a
table that associates the endpoint with an objRef so that the server can create the proxy when a
client asks for it. ObjRef contains all the information needed by the client to build a proxy, and
ObjRef itself is serializable.

Open a file stream for writing to a new file and create a new SOAP formatter. You can serialize your
ObjRef to that file by invoking the Serialize() method on the formatter, passing in the file stream

Programming C#

 455

and the ObjRef you got back from Marshal. Presto! You have all the information you need to create
a proxy to your object written out to a disk file. The complete replacement for Main() is shown in
Example 19-6.

Example 19-6. Marshaling an object without a well-known endpoint
public static void Main()
{
 // create a channel and register it
 HttpChannel chan = new HttpChannel(65100);
 ChannelServices.RegisterChannel(chan);
 // make your own instance and call Marshal directly
 Calculator calculator = new Calculator();

 ObjRef objRef = RemotingServices.Marshal(calculator);

 FileStream fileStream =
 new FileStream("calculatorSoap.txt",FileMode.Create);

 SoapFormatter soapFormatter = new SoapFormatter();

 soapFormatter.Serialize(fileStream,objRef);
 fileStream.Close();

 // "They also serve who only stand and wait."); (Milton)
 Console.WriteLine(
 "Exported to CalculatorSoap.txt. Press ENTER to exit...");
 Console.ReadLine();
}

When you run the server, it writes the file calculatorSoap.txt to the disk. The server then waits for the
client to connect. It might have a long wait.

You can take that file to your client and reconstitute it on the client machine. To do so, again create a
channel and register it. This time, however, open a fileStream on the file you just copied from the
server:

FileStream fileStream =
 new FileStream ("calculatorSoap.txt", FileMode.Open);

Then instantiate a SoapFormatter and call Deserialize() on the formatter, passing in the
filename and getting back an ObjRef:

SoapFormatter soapFormatter =
 new SoapFormatter ();
try
{
 ObjRef objRef =
 (ObjRef) soapFormatter.Deserialize (fileStream);

You are ready to unmarshall that ObjRef, getting back an ICalc reference:

ICalc calc =
 (ICalc) RemotingServices.Unmarshal(objRef);

You are now free to invoke methods on the server through that ICalc, which will act as a proxy to the
calculator object running on the server that you described in the calculatorSoap.txt file. The complete
replacement for the client is shown in Example 19-7.

 456

Example 19-7. Replacement of Main() from Example 19-4 (the client)
public static void Main()
{

 int[] myIntArray = new int[3];

 Console.WriteLine("Watson, come here I need you...");

 // create an Http channel and register it
 // uses port 0 to indicate you won't be listening
 HttpChannel chan = new HttpChannel(0);
 ChannelServices.RegisterChannel(chan);

 FileStream fileStream =
 new FileStream ("calculatorSoap.txt", FileMode.Open);
 SoapFormatter soapFormatter =
 new SoapFormatter ();

 try
 {
 ObjRef objRef =
 (ObjRef) soapFormatter.Deserialize (fileStream);
 ICalc calc =
 (ICalc) RemotingServices.Unmarshal(objRef);

 // use the interface to call methods
 double sum = calc.Add(3.0,4.0);
 double difference = calc.Sub(3,4);
 double product = calc.Mult(3,4);
 double quotient = calc.Div(3,4);

 // print the results
 Console.WriteLine("3+4 = {0}", sum);
 Console.WriteLine("3-4 = {0}", difference);
 Console.WriteLine("3*4 = {0}", product);
 Console.WriteLine("3/4 = {0}", quotient);
 }
 catch(System.Exception ex)
 {
 Console.WriteLine("Exception caught: ");
 Console.WriteLine(ex.Message);
 }

When the client starts up, the file is read from the disk and the proxy is unmarshaled. This is the mirror
operation to marshaling and serializing the object on the server. Once you have unmarshaled the
proxy, you are able to invoke the methods on the calculator object running on the server.

Programming C#

 457

Chapter 20. Threads and Synchronization
Threads are relatively lightweight processes responsible for multitasking within a single application.
The System.Threading namespace provides a wealth of classes and interfaces to manage
multithreaded programming. The majority of programmers might never need to manage threads
explicitly, however, because the Common Language Runtime (CLR) abstracts much of the threading
support into classes that greatly simplify most threading tasks. For example, in Chapter 21 you will
see how to create multithreaded reading and writing streams without resorting to managing the
threads yourself.

The first part of this chapter shows you how to create, manage, and kill threads. Even if you don't
create your own threads explicitly, you'll want to ensure that your code can handle multiple threads if
it's run in a multithreading environment. This concern is especially important if you are creating
components that might be used by other programmers in a program that supports multithreading. It is
particularly significant to web services developers. Although web services (covered in Chapter 16)
have many attributes of desktop applications, they are run on the server, generally lack a user
interface, and force the developer to think about server-side issues such as efficiency and
multithreading.

The second part of this chapter focuses on synchronization. When you have a limited resource, you
may need to restrict access to that resource to one thread at a time. A classic analogy is to a restroom
on an airplane. You want to allow access to the restroom for only one person at a time. You do this by
putting a lock on the door. When passengers want to use the restroom, they try the door handle; if it is
locked, they either go away and do something else, or they wait patiently in line with others who want
access to the resource. When the resource becomes free, one person is taken off the line and given
the resource, which is then locked again.

At times, various threads might want to access a resource in your program, such as a file. It might be
important to ensure that only one thread has access to your resource at a time, and so you will lock
the resource, allow a thread access, and then unlock the resource. Programming locks can be fairly
sophisticated, ensuring a fair distribution of resources.

20.1 Threads

Threads are typically created when you want a program to do two things at once. For example,
assume you are calculating pi (3.141592653589...) to the 10 billionth place. The processor will happily
begin computing this, but nothing will write to the user interface while it is working. Because computing
pi to the 10 billionth place will take a few million years, you might like the processor to provide an
update as it goes. In addition, you might want to provide a Stop button so that the user can cancel the
operation at any time. To allow the program to handle the click on the Stop button, you will need a
second thread of execution.

An apartment is a logical container within a process, and is used
for objects that share the same thread-access requirements.
Objects in an apartment can all receive method calls from any
object in any thread in the apartment. The .NET Framework does
not use apartments, and managed objects (objects created within
the CLR) are responsible for thread safety. The only exception to
this is when managed code talks to COM. COM interoperability is
discussed in Chapter 22.

Another common place to use threading is when you must wait for an event, such as user input, a
read from a file, or receipt of data over the network. Freeing the processor to turn its attention to
another task while you wait (such as computing another 10,000 values of pi) is a good idea, and it
makes your program appear to run more quickly.

 458

On the flip side, note that in some circumstances, threading can actually slow you down. Assume that
in addition to calculating pi, you also want to calculate the Fibonnacci series (1,1,2,3,5,8,13,21...). If
you have a multiprocessor machine, this will run faster if each computation is in its own thread. If you
have a single-processor machine (as most users do), computing these values in multiple threads will
certainly run slower than computing one and then the other in a single thread, because the processor
must switch back and forth between the two threads, and that incurs some overhead.

20.1.1 Starting Threads

The simplest way to create a thread is to create a new instance of the Thread class. The Thread
constructor takes a single argument: a delegate type. The CLR provides the ThreadStart
delegate class specifically for this purpose, which points to a method you designate. This allows you to
construct a thread and to say to that thread "when you start, run this method." The ThreadStart
delegate declaration is:

public delegate void ThreadStart();

As you can see, the method you attach to this delegate must take no parameters and must return
void. Thus, you might create a new thread like this:

Thread myThread = new Thread(new ThreadStart(myFunc));

myFunc must be a method that takes no parameters and returns void.

For example, you might create two worker threads, one that counts up from zero:

public void Incrementer()
{
 for (int i =0;i<10;i++)
 {
 Console.WriteLine("Incrementer: {0}", i);
 }
}

and one that counts down from 10:

public void Decrementer()
{
 for (int i = 10;i>=0;i--)
 {
 Console.WriteLine("Decrementer: {0}", i);
 }
}

To run these in threads, you create two new threads, each initialized with a ThreadStart delegate,
which in turn would be initialized to the respective member functions:

Thread t1 = new Thread(new ThreadStart(Incrementer));
Thread t2 = new Thread(new ThreadStart(Decrementer));

Instantiating these threads does not start them running. To do so you must call the Start method on
the Thread object itself:

t1.Start();
t2.Start();

Programming C#

 459

If you don't take further action, the thread will stop when the
function returns. You'll see how to stop a thread before the
function ends later in this chapter.

Example 20-1 is the full program and its output. You will need to add a using statement for
System.Threading to make the compiler aware of the Thread class. Notice the output, where you
can see the processor switching from t1 to t2.

Example 20-1. Using threads
namespace Programming_CSharp
{
 using System;
 using System.Threading;

 class Tester
 {
 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();

 }

 public void DoTest()
 {
 // create a thread for the Incrementer
 // pass in a ThreadStart delegate
 // with the address of Incrementer
 Thread t1 =
 new Thread(
 new ThreadStart(Incrementer));

 // create a thread for the Decrementer
 // pass in a ThreadStart delegate
 // with the address of Decrementer
 Thread t2 =
 new Thread(
 new ThreadStart(Decrementer));

 // start the threads
 t1.Start();
 t2.Start();
 }

 // demo function, counts up to 1K
 public void Incrementer()
 {
 for (int i =0;i<1000;i++)
 {
 Console.WriteLine(
 "Incrementer: {0}", i);
 }
 }

 // demo function, counts down from 1k

 460

 public void Decrementer()
 {
 for (int i = 1000;i>=0;i--)
 {
 Console.WriteLine(
 "Decrementer: {0}", i);
 }
 }
 }
}

Output:

Incrementer: 102
Incrementer: 103
Incrementer: 104
Incrementer: 105
Incrementer: 106
Decrementer: 1000
Decrementer: 999
Decrementer: 998
Decrementer: 997

The processor allows the first thread to run long enough to count up to 106. Then, the second thread
kicks in, counting down from 1000 for a while, and then the first thread is allowed to run. When I run
this with larger numbers, I notice that each thread is allowed to run for about 100 numbers before
switching. The actual amount of time devoted to any given thread is handled by the thread scheduler
and will depend on many factors, such as the processor speed, demands on the processor from other
programs, and so forth.

20.1.2 Joining Threads

When you tell a thread to stop processing and wait until a second thread completes its work, you are
said to be joining the first thread to the second. It is as if you tied the tip of the first thread on to the tail
of the second?hence "joining" them.

To join thread 1 (t1) onto thread 2 (t2), you write:

t2.Join();

If this statement is executed in a method in thread t1, t1 will halt and wait until t2 completes and
exits. For example, we might ask the thread in which Main() executes to wait for all our other
threads to end before it writes its concluding message. In this next code snippet, assume you've
created a collection of threads named myThreads. You will iterate over the collection, joining the
current thread to each thread in the collection in turn:

foreach (Thread myThread in myThreads)
{
 myThread.Join();
}

Console.WriteLine("All my threads are done.");

The final message All my threads are done will not be printed until all the threads have ended.
In a production environment, you might start up a series of threads to accomplish some task (e.g.,
printing, updating the display, etc.) and not want to continue the main thread of execution until the
worker threads are completed.

Programming C#

 461

20.1.3 Suspending Threads

At times, you want to suspend your thread for a short while. You might, for example, like your clock
thread to suspend for about a second in between testing the system time. This lets you display the
new time about once a second without devoting hundreds of millions of machine cycles to the effort.

The Thread class offers a public static method, Sleep, for just this purpose. The method is
overloaded; one version takes an int, the other a timeSpan object. Each represents the number of
milliseconds you want the thread suspended for, expressed either as an int (e.g., 2000 = 2000
milliseconds or two seconds) or as a timeSpan.

Although timeSpan objects can measure ticks (100 nanoseconds), the Sleep() method's
granularity is in milliseconds (1,000 nanoseconds).

To cause your thread to sleep for one second, you can invoke the static method of Thread, Sleep,
which suspends the thread in which it is invoked:

Thread.Sleep(1000);

At times, you'll tell your thread to sleep for only one millisecond. You might do this to signal to the
thread scheduler that you'd like your thread to yield to another thread, even if the thread scheduler
might otherwise give your thread a bit more time.

If you modify Example 20-1 to add a Thread.Sleep(1) statement after each WriteLine, the
output changes significantly:

for (int i =0;i<1000;i++)
{
 Console.WriteLine(
 "Incrementer: {0}", i);
 Thread.Sleep(1);
}

This small change is sufficient to give each thread an opportunity to run once the other thread prints
one value. The output reflects this change:

Incrementer: 0
Incrementer: 1
Decrementer: 1000
Incrementer: 2
Decrementer: 999
Incrementer: 3
Decrementer: 998
Incrementer: 4
Decrementer: 997
Incrementer: 5
Decrementer: 996
Incrementer: 6
Decrementer: 995

20.1.4 Killing Threads

Typically, threads die after running their course. You can, however, ask a thread to kill itself by calling
its Interrupt() method. This causes a ThreadInterruptedException exception to be thrown,
which the thread can catch, and thus provides the thread with an opportunity to clean up any
resources it might have allocated.

 462

catch (ThreadInterruptedException)
{
 Console.WriteLine("[{0}] Interrupted! Cleaning up...",
 Thread.CurrentThread.Name);
}

The thread ought to treat the ThreadInterruptedException exception as a signal that it is time to
exit, and as quickly as possible. You don't so much kill a thread as politely request that it commit
suicide.

You might wish to kill a thread in reaction to an event, such as the user pressing the Cancel button.
The event handler for the Cancel button might be in thread T1, and the event it is canceling might be
in thread T2. In your event handler, you can call Interrupt on T1:

T1.Interrupt();

An exception will be raised in T1's currently running method that T1 can catch. This gives T1 the
opportunity to free its resources and then exit gracefully.

In Example 20-2, three threads are created and stored in an array of Thread objects. Before the
Threads are started, the IsBackground property is set to true. Each thread is then started and
named (e.g., Thread1, Thread2, etc.). A message is displayed indicating that the thread is started,
and then the main thread sleeps for 50 milliseconds before starting up the next thread.

After all three threads are started and another 50 milliseconds have passed, the first thread is killed by
calling Interrupt(). The main thread then joins all three of the running threads. The effect of this
is that the main thread will not resume until all the other threads have completed. When they do
complete, the main thread prints a message: All my threads are done. The complete source is
displayed in Example 20-2.

Example 20-2. Interrupting a thread
namespace Programming_CSharp
{
 using System;
 using System.Threading;

 class Tester
 {
 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 // create an array of unnamed threads
 Thread[] myThreads =
 {
 new Thread(new ThreadStart(Decrementer)),
 new Thread(new ThreadStart(Incrementer)),
 new Thread(new ThreadStart(Incrementer))
 };

 // start each thread

Programming C#

 463

 int ctr = 1;
 foreach (Thread myThread in myThreads)
 {
 myThread.IsBackground=true;
 myThread.Start();
 myThread.Name = "Thread" + ctr.ToString();
 ctr++;
 Console.WriteLine("Started thread {0}", myThread.Name);
 Thread.Sleep(50);
 }

 // having started the threads
 // tell thread 1 to kill itself
 myThreads[1].Interrupt();

 // wait for all threads to end before continuing
 foreach (Thread myThread in myThreads)
 {
 myThread.Join();
 }

 // after all threads end, print a message
 Console.WriteLine("All my threads are done.");
 }

 // demo function, counts down from 1k
 public void Decrementer()
 {
 try
 {
 for (int i = 1000;i>=0;i--)
 {
 Console.WriteLine(
 "Thread {0}. Decrementer: {1}",
 Thread.CurrentThread.Name,
 i);
 Thread.Sleep(1);
 }
 }
 catch (ThreadInterruptedException)
 {
 Console.WriteLine(
 "Thread {0} interrupted! Cleaning up...",
 Thread.CurrentThread.Name);
 }
 finally
 {
 Console.WriteLine(
 "Thread {0} Exiting. ",
 Thread.CurrentThread.Name);
 }
 }

 // demo function, counts up to 1K
 public void Incrementer()
 {
 try
 {
 for (int i =0;i<1000;i++)
 {
 Console.WriteLine(

 464

 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 i);
 Thread.Sleep(1);
 }
 }
 catch (ThreadInterruptedException)
 {
 Console.WriteLine(
 "Thread {0} interrupted! Cleaning up...",
 Thread.CurrentThread.Name);
 }
 finally
 {
 Console.WriteLine(
 "Thread {0} Exiting. ",
 Thread.CurrentThread.Name);
 }
 }
 }
}

Output (excerpt):

Started thread Thread1
Thread Thread1. Decrementer: 1000
Thread Thread1. Decrementer: 999
Thread Thread1. Decrementer: 998
Started thread Thread2
Thread Thread1. Decrementer: 997
Thread Thread2. Incrementer: 0
Thread Thread1. Decrementer: 996
Thread Thread2. Incrementer: 1
Thread Thread1. Decrementer: 995
Thread Thread2. Incrementer: 2
Thread Thread1. Decrementer: 994
Thread Thread2. Incrementer: 3
Started thread Thread3
Thread Thread1. Decrementer: 993
Thread Thread2. Incrementer: 4
Thread Thread2. Incrementer: 5
Thread Thread1. Decrementer: 992
Thread Thread2. Incrementer: 6
Thread Thread1. Decrementer: 991
Thread Thread3. Incrementer: 0
Thread Thread2. Incrementer: 7
Thread Thread1. Decrementer: 990
Thread Thread3. Incrementer: 1
Thread Thread2 interrupted! Cleaning up...
Thread Thread2 Exiting.
Thread Thread1. Decrementer: 989
Thread Thread3. Incrementer: 2
Thread Thread1. Decrementer: 988
Thread Thread3. Incrementer: 3
Thread Thread1. Decrementer: 987
Thread Thread3. Incrementer: 4
Thread Thread1. Decrementer: 986
Thread Thread3. Incrementer: 5
// ...
Thread Thread1. Decrementer: 1
Thread Thread3. Incrementer: 997

Programming C#

 465

Thread Thread1. Decrementer: 0
Thread Thread3. Incrementer: 998
Thread Thread1 Exiting.
Thread Thread3. Incrementer: 999
Thread Thread3 Exiting.
All my threads are done.

You see the first thread start and decrement from 1000 to 998. The second thread starts, and the two
threads are interleaved for a while until the third thread starts. After a short while, however, Thread2
reports that it has been interrupted, and then it reports that it is exiting. The two remaining threads
continue until they are done. They then exit naturally, and the main thread, which was joined on all
three, resumes to print its exit message.

20.2 Synchronization

At times, you might want to control access to a resource, such as an object's properties or methods,
so that only one thread at a time can modify or use that resource. Your object is similar to the airplane
restroom discussed earlier, and the various threads are like the people waiting in line. Synchronization
is provided by a lock on the object, which prevents a second thread from barging in on your object until
the first thread is finished with it.

In this section you'll examine three synchronization mechanisms provided by the CLR: the
Interlock class, the C# lock statement, and the Monitor class. But first, you'll need to simulate a
shared resource, such as a file or printer, with a simple integer variable: counter. Rather than
opening the file or accessing the printer, you'll increment counter from each of two threads.

To start, declare the member variable and initialize it to 0:

int counter = 0;

Modify the Incrementer method to increment the counter member variable:

public void Incrementer()
{
 try
 {
 while (counter < 1000)
 {
 int temp = counter;
 temp++; // increment

 // simulate some work in this method
 Thread.Sleep(1);

 // assign the Incremented value
 // to the counter variable
 // and display the results
 counter = temp;
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 counter);
 }
 }

The idea here is to simulate the work that might be done with a controlled resource. Just as we might
open a file, manipulate its contents, and then close it, here we read the value of counter into a

 466

temporary variable, increment the temporary variable, sleep for one millisecond to simulate work, and
then assign the incremented value back to counter.

The problem is this: your first thread will read the value of counter (0) and assign that to a temporary
variable. It will then increment the temporary variable. While it is doing its work, the second thread will
read the value of counter (still 0) and assign that value to a temporary variable. The first thread
finishes its work, then assigns the temporary value (1) back to counter and displays it. The second
thread does the same. What is printed is 1,1. In the next go around, the same thing happens. Rather
than having the two threads count 1,2,3,4, we see 1,1,2,2,3,3. Example 20-3 shows the
complete source code and output for this example.

Example 20-3. Simulating a shared resource
namespace Programming_CSharp
{
 using System;
 using System.Threading;

 class Tester
 {
 private int counter = 0;

 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 Thread t1 = new Thread(new ThreadStart(Incrementer));
 t1.IsBackground=true;
 t1.Name = "ThreadOne";
 t1.Start();
 Console.WriteLine("Started thread {0}",
 t1.Name);

 Thread t2 = new Thread(new ThreadStart(Incrementer));
 t2.IsBackground=true;
 t2.Name = "ThreadTwo";
 t2.Start();
 Console.WriteLine("Started thread {0}",
 t2.Name);
 t1.Join();
 t2.Join();

 // after all threads end, print a message
 Console.WriteLine("All my threads are done.");
 }

 // demo function, counts up to 1K
 public void Incrementer()
 {
 try
 {
 while (counter < 1000)
 {
 int temp = counter;

Programming C#

 467

 temp++; // increment

 // simulate some work in this method
 Thread.Sleep(1);

 // assign the decremented value
 // and display the results
 counter = temp;
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 counter);
 }
 }
 catch (ThreadInterruptedException)
 {
 Console.WriteLine(
 "Thread {0} interrupted! Cleaning up...",
 Thread.CurrentThread.Name);
 }
 finally
 {
 Console.WriteLine(
 "Thread {0} Exiting. ",
 Thread.CurrentThread.Name);
 }
 }
 }
}

Output:

Started thread ThreadOne
Started thread ThreadTwo
Thread ThreadOne. Incrementer: 1
Thread ThreadOne. Incrementer: 2
Thread ThreadOne. Incrementer: 3
Thread ThreadTwo. Incrementer: 3
Thread ThreadTwo. Incrementer: 4
Thread ThreadOne. Incrementer: 4
Thread ThreadTwo. Incrementer: 5
Thread ThreadOne. Incrementer: 5
Thread ThreadTwo. Incrementer: 6
Thread ThreadOne. Incrementer: 6

Assume your two threads are accessing a database record rather than reading a member variable.
For example, your code might be part of an inventory system for a book retailer. A customer asks if
Programming C# is available. The first thread reads the value and finds that there is one book on hand.
The customer wants to buy the book, so the thread proceeds to gather credit card information and
validate the customer's address.

While this is happening, a second thread asks if this wonderful book is still available. The first thread
has not yet updated the record, so one book still shows as available. The second thread begins the
purchase process. Meanwhile, the first thread finishes and decrements the counter to zero. The
second thread, blissfully unaware of the activity of the first, also sets the value back to zero.
Unfortunately, you have now sold the same copy of the book twice.

As noted earlier, you need to synchronize access to the counter object (or to the database record,
file, printer, etc.).

 468

20.2.1 Using Interlocked

The CLR provides a number of synchronization mechanisms. These include the common
synchronization tools such as critical sections (called Locks in .NET), as well as more sophisticated
tools such as a Monitor class. Each is discussed later in this chapter.

Incrementing and decrementing a value is such a common programming pattern, and one which so
often needs synchronization protection, that C# offers a special class, Interlocked, just for this
purpose. Interlocked has two methods, Increment and Decrement, which not only increment or
decrement a value, but which do so under synchronization control.

Modify the Incrementer method from Example 20-3 as follows:

public void Incrementer()
{
 try
 {
 while (counter < 1000)
 {
 Interlocked.Increment(ref counter);

 // simulate some work in this method
 Thread.Sleep(1);

 // assign the decremented value
 // and display the results
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 counter);
 }
 }
}

The catch and finally blocks and the remainder of the program are unchanged from the previous
example.

Interlocked.Increment() expects a single parameter: a reference to an int. Because int
values are passed by value, you use the ref keyword, as described in Chapter 4.

The Increment() method is overloaded and can take a
reference to a long, rather than a reference to an int, if that is
more convenient.

Once this change is made, access to the counter member is synchronized, and the output is what
we'd expect.

Output (excerpts):

Started thread ThreadOne
Started thread ThreadTwo
Thread ThreadOne. Incrementer: 1
Thread ThreadTwo. Incrementer: 2
Thread ThreadOne. Incrementer: 3
Thread ThreadTwo. Incrementer: 4
Thread ThreadOne. Incrementer: 5

Programming C#

 469

Thread ThreadTwo. Incrementer: 6
Thread ThreadOne. Incrementer: 7
Thread ThreadTwo. Incrementer: 8
Thread ThreadOne. Incrementer: 9
Thread ThreadTwo. Incrementer: 10
Thread ThreadOne. Incrementer: 11
Thread ThreadTwo. Incrementer: 12
Thread ThreadOne. Incrementer: 13
Thread ThreadTwo. Incrementer: 14
Thread ThreadOne. Incrementer: 15
Thread ThreadTwo. Incrementer: 16
Thread ThreadOne. Incrementer: 17
Thread ThreadTwo. Incrementer: 18
Thread ThreadOne. Incrementer: 19
Thread ThreadTwo. Incrementer: 20

20.2.2 Using Locks

Although the Interlocked object is fine if you want to increment or decrement a value, there will be
times when you want to control access to other objects as well. What is needed is a more general
synchronization mechanism. This is provided by the .NET Lock object.

A lock marks a critical section of your code, providing synchronization to an object you designate while
the lock is in effect. The syntax of using a Lock is to request a lock on an object and then to execute a
statement or block of statements. The lock is removed at the end of the statement block.

C# provides direct support for locks through the lock keyword. You pass in a reference object and
follow the keyword with a statement block:

lock(expression) statement-block

For example, you can modify Incrementer once again to use a lock statement, as follows:

public void Incrementer()
{
 try
 {
 while (counter < 1000)
 {
 lock (this)
 {
 int temp = counter;
 temp ++;
 Thread.Sleep(1);
 counter = temp;
 }

 // assign the decremented value
 // and display the results
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 counter);
 }
 }

The catch and finally blocks and the remainder of the program are unchanged from the previous
example.

 470

The output from this code is identical to that produced using Interlocked.

20.2.3 Using Monitors

The objects used so far will be sufficient for most needs. For the most sophisticated control over
resources, you might want to use a monitor. A monitor lets you decide when to enter and exit the
synchronization, and it lets you wait for another area of your code to become free.

A monitor acts as a smart lock on a resource. When you want to begin synchronization, you call the
Enter() method of the monitor, passing in the object you want to lock:

Monitor.Enter(this);

If the monitor is unavailable, the object protected by the monitor is in use. You can do other work while
you wait for the monitor to become available and then try again. You can also explicitly choose to
Wait(), suspending your thread until the moment the monitor is free. Wait() helps you control
thread ordering.

For example, suppose you are downloading and printing an article from the Web. For efficiency, you'd
like to print in a background thread, but you want to ensure that at least 10 pages have downloaded
before you begin.

Your printing thread will wait until the get-file thread signals that enough of the file has been read. You
don't want to join the get-file thread because the file might be hundreds of pages. You don't want to
wait until it has completely finished downloading, but you do want to ensure that at least 10 pages
have been read before your print thread begins. The Wait() method is just the ticket.

To simulate this, you will rewrite tester and add back the decrementer method. Your incrementer will
count up to 10. The decrementer method will count down to zero. It turns out you don't want to start
decrementing unless the value of counter is at least 5.

In decrementer you call Enter on the monitor. You then check the value of counter, and if it is
less than 5, you call Wait on the monitor:

if (counter < 5)
{
 Monitor.Wait(this);
}

This call to Wait() frees the monitor but signals the CLR that you want the monitor back the next
time it is free. Waiting threads will be notified of a chance to run again if the active thread calls
Pulse():

Monitor.Pulse(this);

Pulse() signals the CLR that there has been a change in state that might free a thread that is
waiting. The CLR will keep track of the fact that the earlier thread asked to wait, and threads will be
guaranteed access in the order in which the waits were requested. ("Your wait is important to us and
will be handled in the order received.")

When a thread is finished with the monitor, it can mark the end of its controlled area of code with a call
to Exit():

Monitor.Exit(this);

Programming C#

 471

Example 20-4 continues the simulation, providing synchronized access to a counter variable using
a Monitor.

Example 20-4. Using a Monitor object
namespace Programming_CSharp
{
 using System;
 using System.Threading;

 class Tester
 {
 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 // create an array of unnamed threads
 Thread[] myThreads =
 {
 new Thread(new ThreadStart(Decrementer)),
 new Thread(new ThreadStart(Incrementer))
 };

 // start each thread
 int ctr = 1;
 foreach (Thread myThread in myThreads)
 {
 myThread.IsBackground=true;
 myThread.Start();
 myThread.Name = "Thread" + ctr.ToString();
 ctr++;
 Console.WriteLine("Started thread {0}", myThread.Name);
 Thread.Sleep(50);
 }

 // wait for all threads to end before continuing
 foreach (Thread myThread in myThreads)
 {
 myThread.Join();
 }

 // after all threads end, print a message
 Console.WriteLine("All my threads are done.");
 }

 void Decrementer()
 {
 try
 {
 // synchronize this area of code
 Monitor.Enter(this);

 // if counter is not yet 10
 // then free the monitor to other waiting

 472

 // threads, but wait in line for your turn
 if (counter < 10)
 {
 Console.WriteLine(
 "[{0}] In Decrementer. Counter: {1}. Gotta Wait!",
 Thread.CurrentThread.Name, counter);
 Monitor.Wait(this);
 }

 while (counter >0)
 {
 long temp = counter;
 temp--;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine(
 "[{0}] In Decrementer. Counter: {1}. ",
 Thread.CurrentThread.Name, counter);

 }
 }
 finally
 {
 Monitor.Exit(this);
 }
 }

 void Incrementer()
 {
 try
 {
 Monitor.Enter(this);
 while (counter < 10)
 {
 long temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine(
 "[{0}] In Incrementer. Counter: {1}",
 Thread.CurrentThread.Name, counter);
 }

 // I'm done incrementing for now, let another
 // thread have the Monitor
 Monitor.Pulse(this);
 }
 finally
 {
 Console.WriteLine("[{0}] Exiting...",
 Thread.CurrentThread.Name);
 Monitor.Exit(this);
 }
 }
 private long counter = 0;
 }
}

Output:

Started thread Thread1

Programming C#

 473

[Thread1] In Decrementer. Counter: 0. Gotta Wait!
Started thread Thread2
[Thread2] In Incrementer. Counter: 1
[Thread2] In Incrementer. Counter: 2
[Thread2] In Incrementer. Counter: 3
[Thread2] In Incrementer. Counter: 4
[Thread2] In Incrementer. Counter: 5
[Thread2] In Incrementer. Counter: 6
[Thread2] In Incrementer. Counter: 7
[Thread2] In Incrementer. Counter: 8
[Thread2] In Incrementer. Counter: 9
[Thread2] In Incrementer. Counter: 10
[Thread2] Exiting...
[Thread1] In Decrementer. Counter: 9.
[Thread1] In Decrementer. Counter: 8.
[Thread1] In Decrementer. Counter: 7.
[Thread1] In Decrementer. Counter: 6.
[Thread1] In Decrementer. Counter: 5.
[Thread1] In Decrementer. Counter: 4.
[Thread1] In Decrementer. Counter: 3.
[Thread1] In Decrementer. Counter: 2.
[Thread1] In Decrementer. Counter: 1.
[Thread1] In Decrementer. Counter: 0.
All my threads are done.

In this example, decrementer is started first. In the output you see Thread1 (the decrementer) start
up and then realize that it has to wait. You then see Thread2 start up. Only when Thread2 pulses
does Thread1 begin its work.

Try some experiments with this code. First, comment out the call to Pulse(). You'll find that
Thread1 never resumes. Without Pulse() there is no signal to the waiting threads.

As a second experiment, rewrite Incrementer to pulse and exit the monitor after each increment:

void Incrementer()
{
 try
 {
 while (counter < 10)
 {
 Monitor.Enter(this);
 long temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine(
 "[{0}] In Incrementer. Counter: {1}",
 Thread.CurrentThread.Name, counter);
 Monitor.Pulse(this);
 Monitor.Exit(this);
 }

Rewrite Decrementer as well, changing the if statement to a while statement and knocking down
the value from 10 to 5:

//if (counter < 10)
while (counter < 5)

 474

The net effect of these two changes is to cause Thread2, the Incrementer, to pulse the Decrementer
after each increment. While the value is smaller than five, the Decrementer must continue to wait;
once the value goes over five, the Decrementer runs to completion. When it is done, the Incrementer
thread can run again. The output is shown here:

[Thread2] In Incrementer. Counter: 2
[Thread1] In Decrementer. Counter: 2. Gotta Wait!
[Thread2] In Incrementer. Counter: 3
[Thread1] In Decrementer. Counter: 3. Gotta Wait!
[Thread2] In Incrementer. Counter: 4
[Thread1] In Decrementer. Counter: 4. Gotta Wait!
[Thread2] In Incrementer. Counter: 5
[Thread1] In Decrementer. Counter: 4.
[Thread1] In Decrementer. Counter: 3.
[Thread1] In Decrementer. Counter: 2.
[Thread1] In Decrementer. Counter: 1.
[Thread1] In Decrementer. Counter: 0.
[Thread2] In Incrementer. Counter: 1
[Thread2] In Incrementer. Counter: 2
[Thread2] In Incrementer. Counter: 3
[Thread2] In Incrementer. Counter: 4
[Thread2] In Incrementer. Counter: 5
[Thread2] In Incrementer. Counter: 6
[Thread2] In Incrementer. Counter: 7
[Thread2] In Incrementer. Counter: 8
[Thread2] In Incrementer. Counter: 9
[Thread2] In Incrementer. Counter: 10

20.3 Race Conditions and Deadlocks

The .NET library provides sufficient thread support that you will rarely find yourself: creating your own
threads and managing synchronization manually.

Thread synchronization can be tricky, especially in complex programs. If you do decide to create your
own threads, you must confront and solve all the traditional problems of thread synchronization, such
as race conditions and deadlock.

20.3.1 Race Conditions

A race condition exists when the success of your program depends on the uncontrolled order of
completion of two independent threads.

Suppose, for example, that you have two threads?one is responsible for opening a file and the other is
responsible for writing to the file. It is important that you control the second thread so that it's assured
that the first thread has opened the file. If not, under some conditions the first thread will open the file,
and the second thread will work fine; under other unpredictable conditions, the first thread won't finish
opening the file before the second thread tries to write to it, and you'll throw an exception (or worse,
your program will simply seize up and die). This is a race condition, and race conditions can be very
difficult to debug.

You cannot leave these two threads to operate independently; you must ensure that Thread1 will
have completed before Thread2 begins. To accomplish this, you might Join() Thread2 on
Thread1. As an alternative, you can use a Monitor and Wait() for the appropriate conditions
before resuming Thread2.

Programming C#

 475

20.3.2 Deadlock

When you wait for a resource to become free, you are at risk of deadlock, also called a deadly
embrace. In a deadlock, two or more threads are waiting for each other, and neither can become free.

Suppose you have two threads, ThreadA and ThreadB. ThreadA locks down an Employee object
and then tries to get a lock on a row in the database. It turns out that ThreadB already has that row
locked, so ThreadA waits.

Unfortunately, ThreadB can't update the row until it locks down the Employee object, which is
already locked down by ThreadA. Neither thread can proceed, and neither thread will unlock its own
resource. They are waiting for each other in a deadly embrace.

As described, the deadlock is fairly easy to spot?and to correct. In a program running many threads,
deadlock can be very difficult to diagnose, let alone solve. One guideline is to get all the locks you
need or to release all the locks you have. That is, as soon as ThreadA realizes that it can't lock the
Row, it should release its lock on the Employee object. Similarly, when ThreadB can't lock the
Employee, it should release the Row. A second important guideline is to lock as small a section of
code as possible and to hold the lock as briefly as possible.

 476

Programming C#

 477

Chapter 21. Streams

For many applications, data is held in memory and accessed as if it were a three-dimensional solid;
when you need to access a variable or an object, you use its name—and, presto, it is available to you.
When you want to move your data into or out of a file, or across the network or over the Internet,
however, your data must be streamed. In a stream packets of data flow one after the other, much like
bubbles in a stream of water.

The endpoint of a stream is a backing store. The backing store provides a source for the stream, like a
lake provides a source for a river. Typically, the backing store will be a file, but it is also possible for
the backing store to be a network or web connection.

Files and directories are abstracted by classes in the .NET Framework. These classes provide
methods and properties for creating, naming, manipulating, and deleting files and directories on your
disk.

The .NET Framework provides both buffered and unbuffered streams, and provides classes for
asynchronous I/O as well. With asynchronous I/O you can instruct the .NET classes to read your file,
and while they are busy getting the bits off the disk your program can be working on other tasks. The
asynchronous I/O tasks notify you when their work is done. The asynchronous classes are sufficiently
powerful and robust that you might be able to avoid creating threads explicitly (see Chapter 20).

Streaming into and out of files is no different than streaming across the network, and the second part
of this chapter will describe streaming using both TCP/IP and web protocols.

To create a stream of data, your object must be serialized, or written to the stream as a series of bits.
You have already encountered serialization in Chapter 19. The .NET Frameworks provide extensive
support for serialization, and the final part of this chapter will walk you through the details of taking
control of the serialization of your object.

21.1 Files and Directories

Before looking at how you can get data into and out of files, let's start by examining the support
provided for file and directory manipulation.

The classes you need are in the System.IO namespace. These include the File class, which
represents a file on disk, and the Directory class, which represents a directory (known in Windows
as a folder).

21.1.1 Working with Directories

The Directory class exposes static methods for creating, moving, and exploring directories. All the
methods of the Directory class are static, and therefore you can call them all without having an
instance of the class.

The DirectoryInfo class is a similar class but one which has nothing but instance members (i.e.,
no static members at all). DirectoryInfo derives from FileSystemInfo, which in turn derives
from MarshalByRefObject. The FileSystemInfo class has a number of properties and methods
which provide information about a file or directory.

Table 21-1 lists the principal methods of the Directory class, and Table 21-2 lists the principal
methods of the DirectoryInfo class including important properties and methods inherited from
FileSystemInfo.

 478

Table 21-1. Principal methods of the Directory class
Method Use

CreateDirectory() Creates all directories and subdirectories specified by its
path parameter.

Delete() Deletes the directory and deletes all its contents.

Exists() Returns a Boolean value, true if the path provided as a
parameter leads to an existing directory.

GetCreationTime()
SetCreationTime()

Returns the creation date and time of the directory; sets
the creation date and time.

GetCurrentDirectory()
SetCurrentDirectory() Returns the current directory; sets the current directory.

GetDirectories() Gets an array of subdirectories.
GetDirectoryRoot() Returns the root of the specified path.

GetFiles() Returns an array of strings with the filenames for the files
in the specified directory.

GetLastAccessTime()
SetLastAccessTime()

Returns the last time the specified directory was
accessed; sets the last time the specified directory was
accessed.

GetLastWriteTime()
SetLastWriteTime()

Returns the last time the specified directory was written
to; sets the last time the specified directory was written to.

GetLogicalDrives() Returns the names of all the logical drives in the form
<drivel>:\.

GetParent() Returns the parent directory for the specified path.
Move() Moves a directory and its contents to a specified path.

Table 21-2. Principal methods and properties of the DirectoryInfo class
Method or Property Use

Attributes Inherits from FileSystemInfo; gets or sets the attributes of the current
file.

CreationTime Inherits from FileSystemInfo; gets or sets the creation time of the
current file.

Exists Public property Boolean value, true if the directory exists.
Extension Public property inherited from FileSystemInfo; the file extension.

FullName Public property inherited from FileSystemInfo; the full path of the file
or directory.

LastAccessTime Public property inherited from FileSystemInfo; gets or sets the last
access time.

LastWriteTime Public property inherited from FileSystemInfo; gets or sets the time
when the current file or directory was last written to.

Name Public property name of this instance of DirectoryInfo.
Parent Public property parent directory of the specified directory.
Root Public property root portion of the path.
Create() Public method that creates a directory.
CreateSubdirectory() Public method that creates a subdirectory on the specified path.

Delete() Public method that deletes a DirectoryInfo and its contents from the
path.

GetDirectories() Public method that returns a DirectoryInfo array with subdirectories.
GetFiles() Public method that returns a list of files in the directory.

Programming C#

 479

GetFileSystemInfos() Public method that retrieves an array of FileSystemInfo objects.

MoveTo() Public method that moves a DirectoryInfo and its contents to a new
path.

Refresh() Public method inherited from FileSystemInfo; refreshes the state of
the object.

21.1.2 Creating a DirectoryInfo Object

To explore a directory hierarchy, you need to instantiate a DirectoryInfo object. The
DirectoryInfo class provides methods for getting not just the names of contained files and
directories, but also FileInfo and DirectoryInfo objects, allowing you to dive into the
hierarchical structure, extracting subdirectories and exploring these recursively.

You instantiate a DirectoryInfo object with the name of the directory you want to explore:

DirectoryInfo dir = new DirectoryInfo(@"C:\winNT");

Remember that the @ sign before a string creates a verbatim
string literal in which it is not necessary to escape characters such
as the backslash. This is covered in Chapter 10.

You can ask that DirectoryInfo object for information about itself, including its name, full path,
attributes, the time it was last accessed, and so forth. To explore the subdirectory hierarchy, you ask
the current directory for its list of subdirectories.

DirectoryInfo[] directories = dir.GetDirectories();

This returns an array of DirectoryInfo objects, each of which represents a directory. You can then
recurse into the same method, passing in each DirectoryInfo object in turn:

foreach (DirectoryInfo newDir in directories)
{
 dirCounter++;
 ExploreDirectory(newDir);
}

The dirCounter static int member variable keeps track of how many subdirectories have been
found altogether. To make the display more interesting, you'll add a second static int member
variable indentLevel that will be incremented each time you recurse into a subdirectory, and
decremented when you pop out. This will allow you to display the subdirectories indented under the
parent directories. The complete listing is shown in Example 21-1.

Example 21-1. Recursing through subdirectories
namespace Programming_CSharp
{
 using System;
 using System.IO;

 class Tester
 {
 public static void Main()
 {
 Tester t = new Tester();

 // choose the initial subdirectory

 480

 string theDirectory = @"c:\WinNT";

 // call the method to explore the directory,
 // displaying its access date and all
 // subdirectories
 DirectoryInfo dir = new DirectoryInfo(theDirectory);

 t.ExploreDirectory(dir);

 // completed. print the statistics
 Console.WriteLine(
 "\n\n{0} directories found.\n",
 dirCounter);
 }

 // Set it running with a directoryInfo object
 // for each directory it finds, it will call
 // itself recursively
 private void ExploreDirectory(DirectoryInfo dir)
 {
 indentLevel++; // push a directory level

 // create indentation for subdirectories
 for (int i = 0; i < indentLevel; i++)
 Console.Write(" "); // two spaces per level

 // print the directory and the time last accessed
 Console.WriteLine("[{0}] {1} [{2}]\n",
 indentLevel, dir.Name, dir.LastAccessTime);

 // get all the directories in the current directory
 // and call this method recursively on each
 DirectoryInfo[] directories = dir.GetDirectories();
 foreach (DirectoryInfo newDir in directories)
 {
 dirCounter++; // increment the counter
 ExploreDirectory(newDir);
 }
 indentLevel--; // pop a directory level
 }

 // static member variables to keep track of totals
 // and indentation level
 static int dirCounter = 1;
 static int indentLevel = -1; // so first push = 0
 }
}

 Output (excerpt):
 [2] logiscan [5/1/2001 3:06:41 PM]

 [2] miitwain [5/1/2001 3:06:41 PM]

 [1] Web [5/1/2001 3:06:41 PM]

 [2] printers [5/1/2001 3:06:41 PM]

 [3] images [5/1/2001 3:06:41 PM]

 [2] Wallpaper [5/1/2001 3:06:41 PM]

Programming C#

 481

363 directories found.

The program begins by identifying a directory (WinNT) and creating a DirectoryInfo object for that
directory. It then calls ExploreDirectory, passing in that DirectoryInfo object.
ExploreDirectory displays information about the directory, and then retrieves all the subdirectories.

The list of all the subdirectories of the current directory is obtained by calling GetDirectories. This
returns an array of DirectoryInfo objects. ExploreDirectory is the recursive method; each
DirectoryInfo object is passed into ExploreDirectory in turn. The effect is to push recursively
into each subdirectory, and then pop back out to explore sister directories until all the subdirectories of
WinNT are displayed. When ExploreDirectory finally returns, the calling method prints a summary.

21.1.3 Working with Files

The DirectoryInfo object can also return a collection of all the files in each subdirectory found. The
GetFiles() method returns an array of FileInfo objects, each of which describes a file in that
directory. The FileInfo and File objects relate to one another, much as DirectoryInfo and
Directory do. Like the methods of Directory, all the File methods are static; and like
DirectoryInfo, all the methods of FileInfo are instance methods.

Table 21-3 lists the principal methods of the File class, and Table 21-4 lists the important
members of the FileInfo class.

Table 21-3. Principal public static methods of the File class
Method Use

AppendText() Creates a StreamWriter that appends text to the specified file.
Copy() Copies an existing file to a new file.
Create() Creates a file in the specified path.
CreateText() Creates a StreamWriter that writes a new text file to the specified file.
Delete() Deletes the specified file.
Exists() Returns true if the specified file exists.
GetAttributes()

SetAttributes()

Gets the FileAttributes of the specified file; sets the
FileAttributes of the specified file.

GetCreationTime()

SetCreationtime()

Returns the creation date and time of the file; sets the creation date and
time.

GetLastAccessTime()

SetLastAccessTime()

Returns the last time the specified file was accessed; sets the last time the
specified file was accessed.

GetLastWriteTime()

SetLastWriteTime()

Returns the last time the specified file was written to; sets the last time the
specified file was written to.

Move() Moves a file to a new location; can be used to rename a file.
OpenRead() Public static method that opens a FileStream on the file.
OpenWrite() Creates a read/write Stream on the specified path.

Table 21-4. Methods and properties of the FileInfo class
Method or
Property Use

 482

Attributes() Inherits from FileSystemInfo; gets or sets the attributes of the current file.
CreationTime Inherits from FileSystemInfo; gets or sets the creation time of the current file.
Directory Public property that gets an instance of the parent directory.
Exists Public property Boolean value, true if the directory exists.
Extension Public property inherited from FileSystemInfo; the file extension.

FullName Public property inherited from FileSystemInfo; the full path of the file or
directory.

LastAccessTime Public property inherited from FileSystemInfo; gets or sets the last access
time.

LastWriteTime Public property inherited from FileSystemInfo; gets or sets the time when the
current file or directory was last written to.

Length Public property that gets the size of the current file.
Name Public property Name of this DirectoryInfo instance.
AppendText() Public method that creates a StreamWriter that appends text to a file.
CopyTo() Public method that copies an existing file to a new file.
Create() Public method that creates a new file.
Delete() Public method that permanently deletes a file.
MoveTo() Public method to move a file to a new location; can be used to rename a file.
Open() Public method that opens a file with various read/write and sharing privileges.
OpenRead() Public method that creates a read-only FileStream.
OpenText() Public method that creates a StreamReader that reads from an existing text file.
OpenWrite() Public method that creates a read/write FileStream.

Example 21-2 modifies Example 21-1, adding code to get a FileInfo object for each file in each
subdirectory. That object is used to display the name of the file, along with its length and the date and
time it was last accessed.

Example 21-2. Exploring files and subdirectories
namespace Programming_CSharp
{
 using System;
 using System.IO;

 class Tester
 {
 public static void Main()
 {
 Tester t = new Tester();

 // choose the initial subdirectory
 string theDirectory = @"c:\WinNT";

 // call the method to explore the directory,
 // displaying its access date and all
 // subdirectories
 DirectoryInfo dir = new DirectoryInfo(theDirectory);

 t.ExploreDirectory(dir);

 // completed. print the statistics
 Console.WriteLine(
 "\n\n{0} files in {1} directories found.\n",
 fileCounter,dirCounter);

Programming C#

 483

 }

 // Set it running with a directoryInfo object
 // for each directory it finds, it will call
 // itself recursively
 private void ExploreDirectory(DirectoryInfo dir)
 {
 indentLevel++; // push a directory level

 // create indentation for subdirectories
 for (int i = 0; i < indentLevel; i++)
 Console.Write(" "); // two spaces per level

 // print the directory and the time last accessed
 Console.WriteLine("[{0}] {1} [{2}]\n",
 indentLevel, dir.Name, dir.LastAccessTime);

 // get all the files in the directory and
 // print their name, last access time, and size
 FileInfo[] filesInDir = dir.GetFiles();
 foreach (FileInfo file in filesInDir)
 {
 // indent once extra to put files
 // under their directory
 for (int i = 0; i < indentLevel+1; i++)
 Console.Write(" "); // two spaces per level

 Console.WriteLine("{0} [{1}] Size: {2} bytes",
 file.Name,
 file.LastWriteTime,
 file.Length);
 fileCounter++;
 }

 // get all the directories in the current directory
 // and call this method recursively on each
 DirectoryInfo[] directories = dir.GetDirectories();
 foreach (DirectoryInfo newDir in directories)
 {
 dirCounter++; // increment the counter
 ExploreDirectory(newDir);
 }
 indentLevel--; // pop a directory level
 }

 // static member variables to keep track of totals
 // and indentation level
 static int dirCounter = 1;
 static int indentLevel = -1; // so first push = 0
 static int fileCounter = 0;
 }
}

 Output (excerpt):
[0] WinNT [5/1/2001 3:34:01 PM]

 Active Setup Log.txt [4/20/2001 10:42:22 AM] Size: 10620 bytes
 actsetup.log [4/20/2001 12:05:02 PM] Size: 8717 bytes
 Blue Lace 16.bmp [12/6/1999 4:00:00 PM] Size: 1272 bytes
 [2] Wallpaper [5/1/2001 3:14:32 PM]

 484

 Boiling Point.jpg [4/20/2001 8:30:24 AM] Size: 28871 bytes
 Chateau.jpg [4/20/2001 8:30:24 AM] Size: 70605 bytes
 Windows 2000.jpg [4/20/2001 8:30:24 AM] Size: 129831 bytes

8590 files in 363 directories found.

The example is initialized with the name of the C:\WinNT directory. It prints information about all the
files in that directory and then recursively explores all the subdirectories and all their subdirectories
(your output might differ). This can take quite a while to run because the WinNT directory tree is rather
large (363 subdirectories on my machine, as shown in the output).

21.1.4 Modifying Files

As you can see from Figures 21-3 and 21-4, it is possible to use the FileInfo class to create, copy,
rename, and delete files. The next example will create a new subdirectory, copy files in, rename some,
delete others, and then delete the entire directory.

To set up these examples, create a \test directory and copy the
media directory from WinNT into the test directory. Do not work
on files in WinNT directly; when working with system files you
want to be extraordinarily careful.

The first step is to create a DirectoryInfo object for the test directory:

string theDirectory = @"c:\test\media";
DirectoryInfo dir = new DirectoryInfo(theDirectory);

Next, create a subdirectory within the test directory by calling CreateSubDirectory on the
DirectoryInfo object. You get back a new DirectoryInfo object, representing the newly created
subdirectory:

string newDirectory = "newTest";
DirectoryInfo newSubDir =
 dir.CreateSubdirectory(newDirectory);

You can now iterate over the test and copy files to the newly created subdirectory:

FileInfo[] filesInDir = dir.GetFiles();
foreach (FileInfo file in filesInDir)
{
 string fullName = newSubDir.FullName +
 "\\" + file.Name;
 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
}

Notice the syntax of the CopyTo method. This is a method of the FileInfo object. You pass in the full
path of the new file, including its full name and extension.

Once you've copied the files, you can get a list of the files in the new subdirectory and work with them
directly:

filesInDir = newSubDir.GetFiles();
foreach (FileInfo file in filesInDir)

Programming C#

 485

{

Create a simple integer variable named counter and use it to rename every other file:

if (counter++ %2 == 0)
{
 file.MoveTo(fullName + ".bak");
 Console.WriteLine("{0} renamed to {1}",
 fullName,file.FullName);
}

You rename a file by "moving" it to the same directory but with a new name. You can, of course, move
a file to a new directory with its original name, or you can move and rename at the same time.

You'll rename every other file, and you'll delete the ones you don't rename:

file.Delete();
Console.WriteLine("{0} deleted.",
 fullName);

Once you're done manipulating the files, you can clean up by deleting the entire subdirectory:

newSubDir.Delete(true);

The Boolean parameter determines whether this is a recursive delete. If you pass in false, and if this
directory has subdirectories with files in it, it will throw an exception.

Example 21-3 lists the source code for the complete program. Be careful when running this; when it
is done, the subdirectory is gone. To see the renaming and deletions, either put a breakpoint on the
last line or remove the last line.

Example 21-3. Creating a subdirectory and manipulating files
newSubDir.Delete(true);

namespace Programming_CSharp
{
 using System;
 using System.IO;

 class Tester
 {
 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 string theDirectory = @"c:\test\media";
 DirectoryInfo dir = new DirectoryInfo(theDirectory);
 t.ExploreDirectory(dir);
 }

 // Set it running with a directory name
 private void ExploreDirectory(DirectoryInfo dir)
 {

 // make a new subdirectory
 string newDirectory = "newTest";
 DirectoryInfo newSubDir =
 dir.CreateSubdirectory(newDirectory);

 486

 // get all the files in the directory and
 // copy them to the new directory
 FileInfo[] filesInDir = dir.GetFiles();
 foreach (FileInfo file in filesInDir)
 {
 string fullName = newSubDir.FullName +
 "\\" + file.Name;
 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
 }

 // get a collection of the files copied in
 filesInDir = newSubDir.GetFiles();

 // delete some and rename others
 int counter = 0;
 foreach (FileInfo file in filesInDir)
 {
 string fullName = file.FullName;

 if (counter++ %2 == 0)
 {
 file.MoveTo(fullName + ".bak");
 Console.WriteLine("{0} renamed to {1}",
 fullName,file.FullName);
 }
 else
 {
 file.Delete();
 Console.WriteLine("{0} deleted.",
 fullName);
 }
 }

 newSubDir.Delete(true); // delete the subdirectory
 }
 }
}

Output (excerpts):

c:\test\media\Bach's Brandenburg Concerto No. 3.RMI
 copied to newTest
c:\test\media\Beethoven's 5th Symphony.RMI copied to newTest
c:\test\media\Beethoven's Fur Elise.RMI copied to newTest
c:\test\media\canyon.mid copied to newTest
c:\test\media\newTest\Bach's Brandenburg Concerto
 No. 3.RMI renamed to
c:\test\media\newTest\Bach's Brandenburg Concerto
 No. 3.RMI.bak
c:\test\media\newTest\Beethoven's 5th Symphony.RMI deleted.
c:\test\media\newTest\Beethoven's Fur Elise.RMI renamed to
c:\test\media\newTest\Beethoven's Fur Elise.RMI.bak
c:\test\media\newTest\canyon.mid deleted.

Programming C#

 487

21.2 Reading and Writing Data

Reading and writin g data is accomplished with the Stream class. Remember streams? This is a
chapter about streams.[1]

[1] With a tip of the hat to Arlo Guthrie.

Stream supports synchronous and asynchronous reads and writes. The .NET Framework provides a
number of classes derived from Stream, including FileStream, MemoryStream, and
NetworkStream. In addition, there is a BufferedStream class, which provides buffered I/O and
which can be used in conjunction with any of the other stream classes. The principal classes involved
with I/O are summarized in Table 21-5.

Table 21-5. Principle I/O classes of the .NET Framework
Class Use

Stream Abstract class that supports reading and writing bytes.

BinaryReader/BinaryWriter Read and write encoded strings and primitive datatypes to
and from streams.

File, FileInfo, Directory,
DirectoryInfo

Provide implementations for the abstract FileSystemInfo
classes, including creating, moving, renaming, and deleting
files and directories.

FileStream
For reading to and from File objects, supports random
access to files. Opens files synchronously by default,
supports asynchronous file access.

TextReader, TextWriter,
StringReader, StringWriter

TextReader and TextWriter are abstract classes
designed for Unicode character I/O. StringReader and
StringWriter write to and from strings, allowing your input
and output to be either a stream or a string.

BufferedStream

A stream that adds buffering to another stream such as a
NetworkStream. Note that FileStream has buffering built
in. BufferedStreams can improve performance of the
stream to which they are attached.

MemoryStream
A nonbuffered stream whose encapsulated data is directly
accessible in memory. A MemoryStream has no backing
store, and is most useful as a temporary buffer.

NetworkStream A stream over a network connection.

21.2.1 Binary Files

This section will start by using the basic Stream class to perform a binary read of a file. The term
binary read is used to distinguish from a text read. If you don't know for certain that a file is just text, it
is safest to treat it as a stream of bytes, known as a binary file.

The Stream class is chock-a-block with methods, but the most important are Read(), Write(),
BeginRead(), BeginWrite(), and Flush(). All of these are covered in the next few sections.

To perform a binary read, begin by creating a pair of Stream objects, one for reading and one for
writing.

Stream inputStream = File.OpenRead(
 @"C:\test\source\test1.cs");

 488

Stream outputStream = File.OpenWrite(
 @"C:\test\source\test1.bak");

To open the files to be read and written, you use the static OpenRead() and OpenWrite() methods
of the File class. The static overload of these methods takes as an argument the path for the file, as
shown previously.

Binary reads work by reading into a buffer. A buffer is just an array of bytes that will hold the data read
by the Read() method.

You pass in the buffer, the offset in the buffer at which to begin storing the data read in, and the
number of bytes to read. InputStream.Read reads bytes from the backing store into the buffer and
returns the total number of bytes read.

It continues reading until no more bytes remain to be read.

while ((bytesRead =
 inputStream.Read(buffer,0,SIZE_BUFF)) > 0)
{
 outputStream.Write(buffer,0,bytesRead);
}

Each buffer-full of bytes is written to the output file. The arguments to Write are the buffer from which
to read, the offset into that buffer at which to start reading, and the number of bytes to write. You'll
notice that you write the same number of bytes as you just read.

Example 21-4 provides the complete listing.

Example 21-4. Implementing a binary read and write to a file
namespace Programming_CSharp
{
 using System;
 using System.IO;

 class Tester
 {
 const int SizeBuff = 1024;

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 t.Run();
 }

 // Set it running with a directory name
 private void Run()
 {
 // the file to read from
 Stream inputStream = File.OpenRead(
 @"C:\test\source\test1.cs");

 // the file to write to
 Stream outputStream = File.OpenWrite(
 @"C:\test\source\test1.bak");

 // create a buffer to hold the bytes
 byte[] buffer = new Byte[SizeBuff];

Programming C#

 489

 int bytesRead;

 // while the read method returns bytes
 // keep writing them to the output stream
 while ((bytesRead =
 inputStream.Read(buffer,0,SizeBuff)) > 0)
 {
 outputStream.Write(buffer,0,bytesRead);
 }

 // tidy up before exiting
 inputStream.Close();
 outputStream.Close();
 }
 }
}

The result of running this program is that a copy of the input file (test1.cs) is made in the same
directory and named test1.bak.

21.2.2 Buffered Streams

In the previous example, you created a buffer to read into. When you called Read, a buffer-full was
read from disk. It might be, however, that the operating system can be much more efficient if it reads a
larger (or smaller) number of bytes at once.

A buffered stream object allows the operating system to create its own internal buffer, and read bytes
to and from the backing store in whatever increments it thinks is most efficient. It will still fill your buffer
in the increments you dictate, but your buffer is filled from the in-memory buffer, not from the backing
store. The net effect is that the input and output are more efficient and thus faster.

A BufferedStream object is composed around an existing Stream object that you already have
created. To use a BufferedStream, you start by creating a normal stream class as you did in
Example 21-4:

Stream inputStream = File.OpenRead(
 @"C:\test\source\folder3.cs");

Stream outputStream = File.OpenWrite(
 @"C:\test\source\folder3.bak");

Once you have the normal stream, you pass that stream object to the buffered stream's constructor:

BufferedStream bufferedInput =
 new BufferedStream(inputStream);

BufferedStream bufferedOutput =
 new BufferedStream(outputStream);

You can then use the BufferedStream as a normal stream, calling Read() and Write() just as
you did before. The operating system handles the buffering:

while ((bytesRead =
 bufferedInput.Read(buffer,0,SIZE_BUFF)) > 0)
 {
 bufferedOutput.Write(buffer,0,bytesRead);
 }

 490

The only change is that you must remember to flush the buffer when you want to ensure that the
data is written out to the file:

bufferedOutput.Flush();

This essentially tells the operating system to take the entire contents of the in-memory buffer and write
it out to disk.

Example 21-5 provides the complete listing.

Example 21-5. Implementing buffered I/O
namespace Programming_CSharp
{
 using System;
 using System.IO;

 class Tester
 {
 const int SizeBuff = 1024;

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 t.Run();
 }

 // Set it running with a directory name
 private void Run()
 {
 // create binary streams
 Stream inputStream = File.OpenRead(
 @"C:\test\source\folder3.cs");

 Stream outputStream = File.OpenWrite(
 @"C:\test\source\folder3.bak");

 // add buffered streams on top of the
 // binary streams
 BufferedStream bufferedInput =
 new BufferedStream(inputStream);

 BufferedStream bufferedOutput =
 new BufferedStream(outputStream);
 byte[] buffer = new Byte[SizeBuff];
 int bytesRead;

 while ((bytesRead =
 bufferedInput.Read(buffer,0,SizeBuff)) > 0)
 {
 bufferedOutput.Write(buffer,0,bytesRead);
 }

 bufferedOutput.Flush();
 bufferedInput.Close();
 bufferedOutput.Close();

 }
 }

Programming C#

 491

}

With larger files, this example should run more quickly than Example 21-4 did.

21.2.3 Working with Text Files

If you know that the file you are reading (and writing) contains nothing but text, you might want to use
the StreamReader and StreamWriter classes. These classes are designed to make manipulation
of text easier. For example, they support the ReadLine() and WriteLine() methods that read
and write a line of text at a time. You've used WriteLine() with the Console object.

To create a StreamReader instance, start by creating a FileInfo object and then call the
OpenText() method on that object:

FileInfotheSourceFile =
 new FileInfo (@"C:\test\source\test1.cs");

StreamReader stream = theSourceFile.OpenText();

OpenText() returns a StreamReader for the file. With the StreamReader in hand, we can now
read the file, line by line:

do
{
 text = stream.ReadLine();
} while (text != null);

ReadLine() reads a line at a time until it reaches the end of the file. The StreamReader will return
null at the end of the file.

To create the StreamWriter class, you call the StreamWriter constructor, passing in the full name
of the file you want to write to:

StreamWriter writer = new
StreamWriter(@"C:\test\source\folder3.bak",false);

The second parameter is the Boolean argument append. If the file already exists, true will cause the
new data to be appended to the end of the file, and false will cause the file to be overwritten. In this
case, pass in false, overwriting the file if it exists.

You can now create a loop to write out the contents of each line of the old file into the new file, and
while you're at it, to print the line to the console as well:

do
{
 text = reader.ReadLine();
 writer.WriteLine(text);
 Console.WriteLine(text);
} while (text != null);

Example 21-6 provides the complete source code.

Example 21-6. Reading and writing to a text file
namespace Programming_CSharp
{

 492

 using System;
 using System.IO;

 class Tester
 {
 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 t.Run();
 }

 // Set it running with a directory name
 private void Run()
 {
 // open a file
 FileInfo theSourceFile = new FileInfo(
 @"C:\test\source\test.cs");

 // create a text reader for that file
 StreamReader reader = theSourceFile.OpenText();

 // create a text writer to the new file
 StreamWriter writer = new StreamWriter(
 @"C:\test\source\test.bak",false);

 // create a text variable to hold each line
 string text;

 // walk the file and read every line
 // writing both to the console
 // and to the file
 do
 {
 text = reader.ReadLine();
 writer.WriteLine(text);
 Console.WriteLine(text);
 } while (text != null);

 // tidy up
 reader.Close();
 writer.Close();
 }
 }
}

When this program is run, the contents of the original file are written both to the screen and to the new
file. Notice the syntax for writing to the console:

Console.WriteLine(text);

This syntax is nearly identical to that used to write to the file:

writer.WriteLine(text);

The key difference is that the WriteLine() method of Console is static, while the WriteLine()
method of StreamWriter, which is inherited from TextWriter, is an instance method, and thus
must be called on an object rather than on the clas s itself.

Programming C#

 493

21.3 Asynchronous I/O

All the programs you've looked at so far perform synchronous I/O, meaning that while your program is
reading or writing, all other activity is stopped. It can take a long time (relatively speaking) to read data
to or from the backing store, especially if the backing store is a slow disk or (horrors!) a slow network.

With large files, or when reading or writing across the network, you'll want asynchronous I/O, which
allows you to begin a read and then turn your attention to other matters while the Common Language
Runtime (CLR) fulfills your request. The .NET Framework provides asynchronous I/O through the
BeginRead() and BeginWrite() methods of Stream.

The sequence is to call BeginRead() on your file and then to go on to other, unrelated work while
the read progresses in another thread. When the read completes, you are notified via a callback
method. You can then process the data which was read, kick off another read, and then go back to
your other work.

In addition to the three parameters you've used in the binary read (the buffer, the offset, and how
many bytes to read), BeginRead() asks for a delegate and a state object.

The delegate is an optional callback method which, if provided, is called when the data is read. The
state object is also optional. In this example, pass in null for the state object. The state of the object
is kept in the member variables of the test class.

You are free to put any object you like in the state parameter, and you can retrieve it when you are
called back. Typically (as you might guess from the name) you'll stash away state values that you'll
need on retrieval. The state parameter can be used by the developer to hold the state of the call
(paused, pending, running, etc.).

In this example, you'll create the buffer and the Stream object as private member variables of the
class:

public class AsynchIOTester
{
 private Stream inputStream;
 private byte[] buffer;
 const int BufferSize = 256;

In addition, create your delegate as a private member of the class:

private AsyncCallback myCallBack; // delegated method

The delegate is declared to be of type AsyncCallback, which is what the BeginRead() method of
Stream expects.

An AsyncCallBack delegate is declared in the System namespace as follows:

public delegate void AsyncCallback (IAsyncResult ar);

Thus this delegate can be associated with any method that returns void, and that takes as a
parameter an IAsyncResult interface. The CLR will pass in the IAsyncResult interface object at
runtime when the method is called. You only have to declare the method:

void OnCompletedRead(IAsyncResult asyncResult)

and then hook up the delegate in the constructor:

 494

AsynchIOTester()
{
 //...
 myCallBack = new AsyncCallback(this.OnCompletedRead);
}

Here's how it works, step by step. In Main(), you create an instance of the class and tell it to run:

public static void Main()
{
 AsynchIOTester theApp = new AsynchIOTester();
 theApp.Run();
}

The call to new invokes the constructor. In the constructor, you open a file and get a Stream object
back. You then allocate space in the buffer and hook up the callback mechanism:

AsynchIOTester()
{
 inputStream = File.OpenRead(@"C:\test\source\AskTim.txt");
 buffer = new byte[BufferSize];
 myCallBack = new AsyncCallback(this.OnCompletedRead);
}

This example needs a large text file. I've copied a column written
by Tim O'Reilly ("Ask Tim"), from http://www.oreilly.com, into
a text file named AskTim.txt and placed that in a subdirectory I
created named test\source on my C: drive. You can use any text
file in any subdirectory.

In the Run() method, you call BeginRead(), which will cause an asynchronous read of the file:

inputStream.BeginRead(
 buffer, // where to put the results
 0, // offset
 buffer.Length, // BufferSize
 myCallBack, // call back delegate
 null); // local state object

You then go on to do other work. In this case you'll simulate useful work by counting up to 500,000,
displaying your progress every 1,000:

for (long i = 0; i < 500000; i++)
{
 if (i%1000 == 0)
 {
 Console.WriteLine("i: {0}", i);
 }
}

When the read completes, the CLR will call your callback method.

void OnCompletedRead(IAsyncResult asyncResult)
{

Programming C#

 495

The first thing you do when notified that the read has completed is find out how many bytes were
actually read. You do so by calling the EndRead() method of the Stream object, passing in the
IAsyncResult interface object passed in by the CLR:

int bytesRead = inputStream.EndRead(asyncResult);

EndRead() returns the number of bytes read. If the number is greater than zero, you'll convert the
buffer into a string and write it to the console, and then call BeginRead() again, for another
asynchronous read:

if (bytesRead > 0)
{
 String s =
 Encoding.ASCII.GetString (buffer, 0, bytesRead);
 Console.WriteLine(s);
 inputStream.BeginRead(
 buffer, 0, buffer.Length,
 myCallBack, null);
}

The effect is that you can do other work while the reads are taking place, but you can handle the read
data (in this case, by outputting it to the console) each time a buffer-full is ready. Example 21-7
provides the complete program.

Example 21-7. Implementing asynchronous I/O
namespace Programming_CSharp
{
 using System;
 using System.IO;
 using System.Threading;
 using System.Text;

 public class AsynchIOTester
 {
 private Stream inputStream;

 // delegated method
 private AsyncCallback myCallBack;

 // buffer to hold the read data
 private byte[] buffer;

 // the size of the buffer
 const int BufferSize = 256;

 // constructor
 AsynchIOTester()
 {
 // open the input stream
 inputStream =
 File.OpenRead(
 @"C:\test\source\AskTim.txt");

 // allocate a buffer
 buffer = new byte[BufferSize];

 // assign the call back
 myCallBack =
 new AsyncCallback(this.OnCompletedRead);

 496

 }

 public static void Main()
 {
 // create an instance of AsynchIOTester
 // which invokes the constructor
 AsynchIOTester theApp =
 new AsynchIOTester();

 // call the instance method
 theApp.Run();
 }

 void Run()
 {
 inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // (BufferSize)
 myCallBack, // call back delegate
 null); // local state object

 // do some work while data is read
 for (long i = 0; i < 500000; i++)
 {
 if (i%1000 == 0)
 {
 Console.WriteLine("i: {0}", i);
 }
 }

 }

 // call back method
 void OnCompletedRead(IAsyncResult asyncResult)
 {
 int bytesRead =
 inputStream.EndRead(asyncResult);

 // if we got bytes, make them a string
 // and display them, then start up again.
 // Otherwise, we're done.
 if (bytesRead > 0)
 {
 String s =
 Encoding.ASCII.GetString(buffer, 0, bytesRead);
 Console.WriteLine(s);
 inputStream.BeginRead(
 buffer, 0, buffer.Length, myCallBack, null);
 }
 }
 }
}
Output (excerpt)

i: 47000
i: 48000
i: 49000
Date: January 2001
From: Dave Heisler
To: Ask Tim

Programming C#

 497

Subject: Questions About O'Reilly
Dear Tim,
I've been a programmer for about ten years. I had heard of
O'Reilly books,then...
Dave,
You might be amazed at how many requests for help with
school projects I get;
i: 50000
i: 51000
i: 52000

The output reveals that the program is working on the two threads concurrently. The reads are done in
the background while the other thread is counting and printing out every thousand. As the reads
complete, they are printed to the console, and then you go back to counting. (I've shortened the
listings to illustrate the output.)

In a real-world application, you might process user requests or compute values while the
asynchronous I/O is busy retrieving or storing to a file or a database.

21.4 Network I/O

Writing to a remote object on the Internet is not very different from writing to a file on your local
machine. You might want to do this if your program needs to store its data to a file on a machine on
your network, or if you were creating a program which displayed information on a monitor connected to
another computer on your network.

Network I/O is based on the use of streams created with sockets. Sockets are very useful for
client/server applications, peer to peer (P2P), and when making remote procedure calls.

A socket is an object that represents an endpoint for communication between processes
communicating across a network. Sockets can work with various protocols, including UDP and TCP/IP.
In this section we will create a TCP/IP connection between a server and a client. TCP/IP is a
connection-based protocol for network communication. Connection-based means that with TCP/IP,
once a connection is made the two processes can talk with one another as if they were connected by
a direct phone line.

Although TCP/IP is designed to talk across a network, you can
simulate network communication by running the two processes on
the same machine.

It is possible for more than one application on a given computer to be talking to various clients all at
the same time (e.g., you might be running a web server and also an FTP server and also a program
which provides calculation support). Therefore, each application must have a unique ID so that the
client can indicate which application it is looking for. That ID is known as a port. Think of the IP
address as a phone number and the port as an extension.

The server instantiates a socket and tells that socket to listen for connections on a specific port. The
constructor for the socket has one parameter: an int representing the port on which that socket
should listen.

Client applications connect to a specific IP address. For example,
Yahoo's IP address is 216.114.108.245. Clients must also connect
to a specific port. All web browsers connect to port 80 by default.
Port numbers range from 0 to 65,535 (i.e., 216); however, some

 498

numbers are reserved.Ports are divided into the following ranges:

• 0-1023 Well-known ports.

• 1024-49151 Registered ports.

• 49152-65535 Dynamic and /or private ports.

• For a list of all the well-known and registered ports, look at
http://www.iana.org/assignments/port-numbers.

• If you are running your program on a network with a
firewall, talk to your network administrator about which
ports are closed.

Once the socket is created, you call Start() on the socket, which tells the socket to begin
accepting network connections. When the server is ready to start responding to calls from clients, you
call Accept(). The thread in which you've called Accept() blocks: waiting sadly by the phone,
wringing its virtual hands, hoping for a call.

You can imagine creating the world's simplest socket. It waits patiently for a client to call, and when it
gets a call it interacts with that client to the exclusion of all other clients. The next few clients to call will
connect, but they will automatically be put on hold. While they are listening to the music and being told
their call is important and will be handled in the order received, they will block in their own threads.
Once the backlog (hold) queue fills, subsequent callers will get the equivalent of a busy signal. They
must hang up and wait for our simple socket to finish with its current client. This model works fine for
servers that take only one or two requests a week, but it doesn't scale well for real-world applications.
Most servers need to handle thousands, even tens of thousands of connections a minute!

To handle a high volume of connections, applications use asynchronous I/O to accept a call and return
a new socket with the connection to the client. The original socket then returns to listening, waiting for
the next client. This way your application can handle many calls; each time a call is accepted a new
socket is created.

The client is unaware of this sleight of hand in which a new socket is created. As far as the client is
concerned, he has connected with the socket at the IP address and port he requested. Note that the
new socket establishes a persistent connection with the client. This is quite different from UDP, which
uses a connectionless protocol. With TCP/IP, once the connection is made the client and server know
how to talk with each other without having to re-address each packet.

The Socket class itself is fairly simple. It knows how to be an end point, but it doesn't know how to
accept a call and create a TCP/IP connection. This is actually done by the TcpListener class. The
TcpListener class builds upon the Socket class to provide high-level TCP/IP services.

21.4.1 Creating a Network Streaming Server

To create a network server for TCP/IP streaming, you start by creating a TcpListener object to
listen to the TCP/IP port you've chosen. I've arbitrarily chosen port 65000 from the available port IDs:

TcpListener tcpListener = new TcpListener(65000);

Once the TcpListener object is constructed, you can ask it to start listening:

Programming C#

 499

tcpListener.Start();

You now wait for a client to request a connection:

Socket socketForClient = tcpListener.Accept();

The Accept method of the TcpListener object returns a Socket object which represents a
Berkeley socket interface and which is bound to a specific end point. Accept() is a synchronous
method that will not return until it receives a connection request.

Because the model is widely accepted by computer vendors,
Berkeley sockets simplify the task of porting existing socket-based
source code from both Windows and Unix environments.

If the socket is connected, you're ready to send the file to the client:

if (socketForClient.Connected)
{

You create a NetworkStream class, passing the socket into the constructor:

NetworkStream networkStream = new NetworkStream(socketForClient);

You then create a StreamWriter object much as you did before, except this time not on a file, but
rather on the NetworkStream you just created:

System.IO.StreamWriter streamWriter = new
System.IO.StreamWriter(networkStream);

When you write to this stream, the stream is sent over the network to the client. Example 21-8 shows
the entire server. (I've stripped this server down to its bare essentials. With a production server, you
almost certainly would run the request processing code in a thread, and you'd want to enclose the
logic in try blocks to handle network problems.)

Example 21-8. Implementing a network streaming server
using System;
using System.Net.Sockets;

public class NetworkIOServer
{

 public static void Main()
 {
 NetworkIOServer app =
 new NetworkIOServer();
 app.Run();
 }

 private void Run()
 {
 // create a new TcpListener and start it up
 // listening on port 65000
 TcpListener tcpListener = new TcpListener(65000);
 tcpListener.Start();

 500

 // keep listening until you send the file
 for (;;)
 {
 // if a client connects, accept the connection
 // and return a new socket named socketForClient
 // while tcpListener keeps listening
 Socket socketForClient =
 tcpListener.AcceptSocket();
 if (socketForClient.Connected)
 {
 Console.WriteLine("Client connected");

 // call the helper method to send the file
 SendFileToClient(socketForClient);

 Console.WriteLine(
 "Disconnecting from client...");

 // clean up and go home
 socketForClient.Close();
 Console.WriteLine("Exiting...");
 break;
 }
 }
 }

 // helper method to send the file
 private void SendFileToClient(
 Socket socketForClient)
 {
 // create a network stream and a stream writer
 // on that network stream
 NetworkStream networkStream =
 new NetworkStream(socketForClient);
 System.IO.StreamWriter streamWriter =
 new System.IO.StreamWriter(networkStream);

 // create a stream reader for the file
 System.IO.StreamReader streamReader =
 new System.IO.StreamReader(
 @"C:\test\source\myTest.txt");

 string theString;

 // iterate through the file, sending it
 // line-by-line to the client
 do
 {
 theString = streamReader.ReadLine();

 if(theString != null)
 {
 Console.WriteLine(
 "Sending {0}", theString);
 streamWriter.WriteLine(theString);
 streamWriter.Flush();
 }
 }
 while(theString != null);

 // tidy up

Programming C#

 501

 streamReader.Close();
 networkStream.Close();
 streamWriter.Close();
 }
}

21.4.2 Creating a Streaming Network Client

The client instantiates a TcpClient class, which represents a TCP/IP client connection to a host:

TcpClient socketForServer;
socketForServer = new TcpClient("localHost", 65000);

With this TcpClient, you can create a NetworkStream, and on that stream you can create a
StreamReader:

NetworkStream networkStream = socketForServer.GetStream();
System.IO.StreamReader streamReader =
 new System.IO.StreamReader(networkStream);

You now read the stream as long as there is data on it, outputting the results to the console:

do
{
 outputString = streamReader.ReadLine();

 if(outputString != null)
 {
 Console.WriteLine(outputString);
 }
}
while(outputString != null);

Example 21-9 is the complete client.

Example 21-9. Implementing a network streaming client
using System;
using System.Net.Sockets;

public class Client
{

 static public void Main(string[] Args)
 {

 // create a TcpClient to talk to the server
 TcpClient socketForServer;

 try
 {
 socketForServer =
 new TcpClient("localHost", 65000);
 }
 catch
 {
 Console.WriteLine(
 "Failed to connect to server at {0}:65000",
 "localhost");

 502

 return;
 }

 // create the Network Stream and the Stream Reader object
 NetworkStream networkStream =
 socketForServer.GetStream();
 System.IO.StreamReader streamReader =
 new System.IO.StreamReader(networkStream);

 try
 {
 string outputString;

 // read the data from the host and display it
 do
 {
 outputString = streamReader.ReadLine();

 if(outputString != null)
 {
 Console.WriteLine(outputString);
 }
 }
 while(outputString != null);
 }
 catch
 {
 Console.WriteLine(
 "Exception reading from Server");
 }

 // tidy up
 networkStream.Close();
 }
}

To test this, I created a simple test file named myText.txt:

This is line one
This is line two
This is line three
This is line four

Here is the output from the server and the client:

Output (Server):

Client connected
Sending This is line one
Sending This is line two
Sending This is line three
Sending This is line four
Disconnecting from client...
Exiting...

Output (Client):

This is line one
This is line two
This is line three

Programming C#

 503

This is line four
Press any key to continue

If you are testing this on a single machine, run the client and
server in separate command windows or individual instances of
the development environment. You will want to start the server
first or the client will fail, saying it could not connect.

21.4.3 Handling Multiple Connections

A s mentioned earlier, this example does not scale well. Each client demands the entire attention of
the server. What is needed is a server which can accept the connection and then pass the connection
to overlapped I/O, providing the same asynchronous solution that you used earlier for reading from a
file.

To manage this, you'll create a new server, AsynchNetworkServer, which will nest within it a new
class, ClientHandler. When your AsynchNetworkServer receives a client connection, it will
instantiate a ClientHandler and pass the socket to that ClientHandler instance.

The ClientHandler constructor will create a copy of the socket and a buffer and will open a new
NetworkStream on that socket. It will then use overlapped I/O to asynchronously read and write to
that socket. For this demonstration, it will simply echo whatever text the client sends back to the client
and also to the console.

To create the asynchronous I/O, ClientHandler will define two delegate methods,
OnReadComplete() and OnWriteComplete(), that will manage the overlapped I/O of the
strings sent by the client.

The body of the Run() method for the server is very similar to what you saw in Example 21-8. First,
you create a listener and then call Start(). Then you create a forever loop and call
AcceptSocket(). Once the socket is connected, rather than handling the connection, you create a
new ClientHandler and call StartRead() on that object.

The complete source for the server is shown in Example 21-10.

Example 21-10. Implementing an asynchronous network streaming
server
using System;
using System.Net.Sockets;

public class AsynchNetworkServer
{

 class ClientHandler
 {
 public ClientHandler(Socket socketForClient)
 {
 socket = socketForClient;
 buffer = new byte[256];
 networkStream =
 new NetworkStream(socketForClient);

 callbackRead =
 new AsyncCallback(this.OnReadComplete);

 504

 callbackWrite =
 new AsyncCallback(this.OnWriteComplete);
 }

 // begin reading the string from the client
 public void StartRead()
 {
 networkStream.BeginRead(
 buffer, 0, buffer.Length,
 callbackRead, null);
 }

 // when called back by the read, display the string
 // and echo it back to the client
 private void OnReadComplete(IAsyncResult ar)
 {
 int bytesRead = networkStream.EndRead(ar);

 if(bytesRead > 0)
 {
 string s =
 System.Text.Encoding.ASCII.GetString(
 buffer, 0, bytesRead);
 Console.Write(
 "Received {0} bytes from client: {1}",
 bytesRead, s);
 networkStream.BeginWrite(
 buffer, 0, bytesRead, callbackWrite, null);
 }
 else
 {
 Console.WriteLine("Read connection dropped");
 networkStream.Close();
 socket.Close();
 networkStream = null;
 socket = null;
 }
 }

 // after writing the string, print a message and resume reading
 private void OnWriteComplete(IAsyncResult ar)
 {
 networkStream.EndWrite(ar);
 Console.WriteLine("Write complete");
 networkStream.BeginRead(
 buffer, 0, buffer.Length,
 callbackRead, null);
 }

 private byte[] buffer;
 private Socket socket;
 private NetworkStream networkStream;
 private AsyncCallback callbackRead;
 private AsyncCallback callbackWrite;
 }

 public static void Main()
 {
 AsynchNetworkServer app =
 new AsynchNetworkServer();

Programming C#

 505

 app.Run();
 }

 private void Run()
 {
 // create a new TcpListener and start it up
 // listening on port 65000
 TcpListener tcpListener = new TcpListener(65000);
 tcpListener.Start();

 // keep listening until you send the file
 for (;;)
 {
 // if a client connects, accept the connection
 // and return a new socket named socketForClient
 // while tcpListener keeps listening
 Socket socketForClient =
 tcpListener.AcceptSocket();
 if (socketForClient.Connected)
 {
 Console.WriteLine("Client connected");
 ClientHandler handler =
 new ClientHandler(socketForClient);
 handler.StartRead();
 }
 }
 }
}

The server starts up and listens to port 65000. If a client connects, the server will instantiate a
ClientHandler that will manage the I/O with the client while the server listens for the next client.

In this example, you write the string received from the client to the
console in OnReadComplete() and OnWriteComplete(),
and writing to the console can block your thread until the write
completes. In a production program, you do not want to take any
blocking action in these methods because you are using a pooled
thread. If you block in OnReadComplete() or
OnWriteComplete(), you may cause more threads to be
added to the thread pool which is inefficient and will harm
performance and scalability.

The client code is very simple. The client creates a tcpSocket for the port on which the server will
listen (65000) and creates a NetworkStream object for that socket. It then writes a message to that
stream and flushes the buffer. The client creates a StreamReader to read on that stream and writes
whatever it receives to the console. The complete source for the client is shown in Example 21-11.

Example 21-11. Implementing a client for asynchronous network I/O
using System;
using System.Net.Sockets;
using System.Threading;
using System.Runtime.Serialization.Formatters.Binary;

public class AsynchNetworkClient
{

 506

 static public int Main()
 {

 AsynchNetworkClient client =
 new AsynchNetworkClient();
 return client.Run();
 }

 AsynchNetworkClient()
 {
 string serverName = "localhost";
 Console.WriteLine("Connecting to {0}", serverName);
 TcpClient tcpSocket = new TcpClient(serverName, 65000);
 streamToServer = tcpSocket.GetStream();
 }

 private int Run()
 {
 string message = "Hello Programming C#";
 Console.WriteLine(
 "Sending {0} to server.", message);

 // create a streamWriter and use it to
 // write a string to the server
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(streamToServer);
 writer.WriteLine(message);
 writer.Flush();

 // Read response
 System.IO.StreamReader reader =
 new System.IO.StreamReader(streamToServer);
 string strResponse = reader.ReadLine();
 Console.WriteLine("Received: {0}", strResponse);
 streamToServer.Close();
 return 0;

 }

 private NetworkStream streamToServer;
}

Server Output:

Client connected
Received 22 bytes from client: Hello Programming C#
Write complete
Read connection dropped

Client Output:

Connecting to localhost
Sending Hello Programming C# to server.
Received: Hello Programming C#

In this example, the network server does not block while it is handling client connections, but rather it
delegates the management of those connections to instances of ClientHandler. Clients should not
experience a delay waiting for the server to handle their connections.

Programming C#

 507

21.4.4 Aysnchronous Network File Streaming

You can now combine the skills learned for asynchronous file reads with asynchronous network
streaming to produce a program which serves a file to a client on demand.

Your server will begin with an asynchronous read on the socket, waiting to get a filename from the
client. Once you have the filename, you can kick off an asynchronous read of that file on the server.
As each buffer-full of the file becomes available, you can begin an asynchronous write back to the
client. When the asynchronous write to the client finishes, you can kick off another read of the file; in
this way you ping-pong back and forth, filling the buffer from the file and writing the buffer out to the
client. The client need do nothing but read the stream from the server. In the next example the client
will write the contents of the file to the console, but you could easily begin an asynchronous write to a
new file on the client, thereby creating a network-based file copy program.

The structure of the server is not unlike that shown in Example 21-10. Once again you will create a
ClientHandler class, but this time you add an AsyncCallBack named myFileCallBack which
you initialize in the constructor along with the callbacks for the network read and write.

myFileCallBack =
 new AsyncCallback(this.OnFileCompletedRead);

callbackRead =
 new AsyncCallback(this.OnReadComplete);

callbackWrite =
 new AsyncCallback(this.OnWriteComplete);

The Run() function of the outer class, now named AsynchNetworkFileServer, is unchanged.
Once again you create and start the TcpListener class and create a forever loop in which you call
AcceptSocket(), and if you have a socket you instantiate the ClientHandler and call
StartRead(). As in the previous example, StartRead() kicks off a BeginRead(), passing in
the buffer and the delegate to OnReadComplete.

When the read from the network stream completes, your delegated method OnReadComplete() is
called and it retrieves the filename from the buffer. If text is returned, OnReadComplete()retrieves
a string from the buffer using the static System.Text.Encoding.ASCII.GetString() method:

if(bytesRead > 0)
{
 string fileName =
 System.Text.Encoding.ASCII.GetString(
 buffer, 0, bytesRead);

You now have a filename; with that you can open a stream to the file and use the exact same
asynchronous file read used in Example 21-8.

inputStream =
 File.OpenRead(fileName);

inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // Buffer Size
 myFileCallBack, // call back delegate
 null); // local state object

 508

This read of the file has its own callback that will be invoked when the input stream has read a buffer-
full from the file on the server disk drive.

As noted earlier, you normally would not want to take any action in
an overlapped I/O method that might block the thread for any
appreciable time. The call to open the file and begin reading it
would normally be pushed off to a helper thread, instead of doing
this work in OnReadComplete(). It has been simplified for this
example to avoid distracting from the issues at hand.

When the buffer is full, OnFileCompletedRead() is called, which checks to see if any bytes were
read from the file, and if so begins an asynchronous write to the network:

if (bytesRead > 0)
{
 // write it out to the client
 networkStream.BeginWrite(
 buffer, 0, bytesRead, callbackWrite, null);
}

When the network write completes, the OnWriteComplete() method is called, and this kicks off
another read from the file:

private void OnWriteComplete(IAsyncResult ar)
{
 networkStream.EndWrite(ar);
 Console.WriteLine("Write complete");

 inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // (BufferSize)
 myFileCallBack, // call back delegate
 null); // local state object

}

The cycle begins again with another read of the file, and the cycle continues until the file has been
completely read and transmitted to the client. The client code simply writes a filename to the network
stream to kick off the file read:

string message = @"C:\test\source\AskTim.txt";
System.IO.StreamWriter writer =
 new System.IO.StreamWriter(streamToServer);
 writer.Write(message);
 writer.Flush();

The client then begins a loop, reading from the network stream until no bytes are sent by the server.
When the server is done, the network stream is closed. You start by initializing a Boolean value to
false and creating a buffer to hold the bytes sent by the server:

bool fQuit = false;
while (!fQuit)
{
 char[] buffer = new char[BufferSize];

Programming C#

 509

You are now ready to create a new StreamReader from the NetworkStream member variable
streamToServer:

System.IO.StreamReader reader =
 new System.IO.StreamReader(streamToServer);

The call to Read() takes three parameters: the buffer, the offset at which to begin reading, and the
size of the buffer:

int bytesRead = reader.Read(buffer,0, BufferSize);

You check to see if the Read() returned any bytes; if not you are done and you can set the Boolean
value fQuit to true, causing the loop to terminate:

if (bytesRead == 0)
 fQuit = true;

If you did receive bytes, you can write them to the console or write them to a file, or do whatever it is
you will do with the values sent from the server:

 else
 {
 string theString = new String(buffer);
 Console.WriteLine(theString);
 }
}

Once you break out of the loop, you close the NetworkStream.

streamToServer.Close();

The complete annotated source for the server is shown in Example 21-12, with the client following in
Example 21-13.

Example 21-12. Implementing an asynchronous network file server
using System;
using System.Net.Sockets;
using System.Text;
using System.IO;

// get a file name from the client
// open the file and send the
// contents from the server to the client
public class AsynchNetworkFileServer
{

 class ClientHandler
 {
 // constructor
 public ClientHandler(
 Socket socketForClient)
 {
 // initialize member variable
 socket = socketForClient;

 // initialize buffer to hold
 // contents of file

 510

 buffer = new byte[256];

 // create the network stream
 networkStream =
 new NetworkStream(socketForClient);

 // set the file callback for reading
 // the file
 myFileCallBack =
 new AsyncCallback(this.OnFileCompletedRead);

 // set the callback for reading from the
 // network stream
 callbackRead =
 new AsyncCallback(this.OnReadComplete);

 // set the callback for writing to the
 // network stream
 callbackWrite =
 new AsyncCallback(this.OnWriteComplete);
 }

 // begin reading the string from the client
 public void StartRead()
 {
 // read from the network
 // get a filename
 networkStream.BeginRead(
 buffer, 0, buffer.Length,
 callbackRead, null);
 }

 // when called back by the read, display the string
 // and echo it back to the client
 private void OnReadComplete(IAsyncResult ar)
 {
 int bytesRead = networkStream.EndRead(ar);

 // if you got a string
 if(bytesRead > 0)
 {
 // turn the string to a file name
 string fileName =
 System.Text.Encoding.ASCII.GetString(
 buffer, 0, bytesRead);

 // update the console
 Console.Write(
 "Opening file {0}", fileName);

 // open the file input stream
 inputStream =
 File.OpenRead(fileName);

 // begin reading the file
 inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // BufferSize
 myFileCallBack, // call back delegate
 null); // local state object

Programming C#

 511

 }
 else
 {
 Console.WriteLine("Read connection dropped");
 networkStream.Close();
 socket.Close();
 networkStream = null;
 socket = null;
 }
 }

 // when you have a buffer-full of the file
 void OnFileCompletedRead(IAsyncResult asyncResult)
 {
 int bytesRead =
 inputStream.EndRead(asyncResult);

 // if you read some file
 if (bytesRead > 0)
 {
 // write it out to the client
 networkStream.BeginWrite(
 buffer, 0, bytesRead, callbackWrite, null);
 }
 }

 // after writing the string, get more of the file
 private void OnWriteComplete(IAsyncResult ar)
 {
 networkStream.EndWrite(ar);
 Console.WriteLine("Write complete");

 // begin reading more of the file
 inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // (BufferSize)
 myFileCallBack, // call back delegate
 null); // local state object

 }

 private const int BufferSize = 256;
 private byte[] buffer;
 private Socket socket;
 private NetworkStream networkStream;
 private Stream inputStream;
 private AsyncCallback callbackRead;
 private AsyncCallback callbackWrite;
 private AsyncCallback myFileCallBack;

 }

 public static void Main()
 {
 AsynchNetworkFileServer app =
 new AsynchNetworkFileServer();

 512

 app.Run();
 }

 private void Run()
 {
 // create a new TcpListener and start it up
 // listening on port 65000
 TcpListener tcpListener = new TcpListener(65000);
 tcpListener.Start();

 // keep listening until you send the file
 for (;;)
 {
 // if a client connects, accept the connection
 // and return a new socket named socketForClient
 // while tcpListener keeps listening
 Socket socketForClient =
 tcpListener.AcceptSocket();
 if (socketForClient.Connected)
 {
 Console.WriteLine("Client connected");
 ClientHandler handler =
 new ClientHandler(socketForClient);
 handler.StartRead();
 }
 }
 }
}

Example 21-13. Implementing a client for an asynchronous network file
server
using System;
using System.Net.Sockets;
using System.Threading;
using System.Text;
using System.Runtime.Serialization.Formatters.Binary;

public class AsynchNetworkClient
{

 static public int Main()
 {

 AsynchNetworkClient client =
 new AsynchNetworkClient();
 return client.Run();
 }

 AsynchNetworkClient()
 {
 string serverName = "localhost";
 Console.WriteLine("Connecting to {0}", serverName);
 TcpClient tcpSocket = new TcpClient(serverName, 65000);
 streamToServer = tcpSocket.GetStream();
 }

 private int Run()
 {
 string message = @"C:\test\source\AskTim.txt";
 Console.Write(

Programming C#

 513

 "Sending {0} to server.", message);

 // create a streamWriter and use it to
 // write a string to the server
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(streamToServer);
 writer.Write(message);
 writer.Flush();

 bool fQuit = false;

 // while there is data coming
 // from the server, keep reading
 while (!fQuit)
 {
 // buffer to hold the response
 char[] buffer = new char[BufferSize];

 // Read response
 System.IO.StreamReader reader =
 new System.IO.StreamReader(streamToServer);

 // see how many bytes are
 // retrieved to the buffer
 int bytesRead =
 reader.Read(buffer,0,BufferSize);
 if (bytesRead == 0) // none? quite
 fQuit = true;
 else // got some?
 {
 // display it as a string
 string theString = new String(buffer);
 Console.WriteLine(theString);
 }
 }
 streamToServer.Close(); // tidy up
 return 0;

 }

 private const int BufferSize = 256;
 private NetworkStream streamToServer;
}

By combining the asynchronous file read with the asynchronous network read, you have created a
scalable application that can handle requests from a number of clients.

21.5 Web Streams

Rather than reading from a stream provided by a custom server, you can just as easily read from any
web page on the Internet.

A WebRequest is an object that requests a Uniform Resource Identifier (URI) such as the URL for a
web page. You can use a WebRequest object to create a WebResponse object that will encapsulate
the object pointed to by the URI. That is, you can call GetResponse() on your WebRequest object
to get the actual object (e.g., a web page) pointed to by the URI. What you get back is encapsulated in
a WebResponse object. You can then ask that WebResponse object for a Stream object by calling
GetResponseStream(). GetResponseStream() returns a stream that encapsulates the
contents of the web object (e.g., a stream with the web page).

 514

The next example retrieves the contents of a web page as a stream. To get a web page, you'll want to
use HttpWebRequest. HttpWebRequest derives from WebRequest and provides additional
support for interacting with the HTTP protocol.

To create the HttpWebRequest you cast the WebRequest returned from the static Create()
method of the WebRequestFactory:

HttpWebRequest webRequest =
 (HttpWebRequest) WebRequest.Create
 ("http://www.libertyassociates.com/book_edit.htm");

Create() is a static method of WebRequest. When you pass in a URI, an instance of
HTTPWebRequest is created.

The method is overloaded on the type of the parameter. It returns
different derived types depending on what is passed in. For
example, if you pass in a URI, an object of type
HTTPWebRequest is created. The return type, however, is
WebRequest, and so you must cast the returned value to
HTTPWebRequest.

Creating the HTTPWebRequest establishes a connection to a page on my web site. What you get
back from the host is encapsulated in an HttpWebResponse object, which is an HTTP protocol-
specific subclass of the more general WebResponse class:

HttpWebResponse webResponse =
 (HttpWebResponse) webRequest.GetResponse();

You can now open a StreamReader on that page by calling the GetResponseStream() method
of the WebResponse object:

StreamReader streamReader = new StreamReader(
 webResponse.GetResponseStream(), Encoding.ASCII);

You can read from that stream exactly as you read from the network stream. Example 21-14 shows
the complete listing.

Example 21-14. Reading a web page as an HTML stream
using System;
using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Text;

public class Client
{

 static public void Main(string[] Args)
 {

 // create a webRequest for a particular page
 HttpWebRequest webRequest =
 (HttpWebRequest) WebRequest.Create
 ("http://www.libertyassociates.com/book_edit.htm");

Programming C#

 515

 // ask the web request for a webResponse encapsulating
 // that page
 HttpWebResponse webResponse =
 (HttpWebResponse) webRequest.GetResponse();

 // get the streamReader from the response
 StreamReader streamReader = new StreamReader(
 webResponse.GetResponseStream(), Encoding.ASCII);

 try
 {
 string outputString;
 outputString = streamReader.ReadToEnd();
 Console.WriteLine(outputString);
 }
 catch
 {
 Console.WriteLine("Exception reading from web page");
 }
 streamReader.Close();

 }
}

Output (excerpt):

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>Books & Resources</title>
</head>

<body bgcolor="#ffffff" vlink="#808080"
alink="#800000" topmargin="0" leftmargin
="0">
<table border="0" cellpadding="0" cellspacing="0" width="454"
bgcolor="#ffffff">

 <tr>
"More
 than just about any other writer, Jesse Liberty
 is brilliant at communicating what it's really
 like to work on a programming project."
 <font face="times new roman, times,
 serif" size="3">
 Barnes & Noble</i>

The output shows that what is sent through the stream is the HTML of the page you requested. You
might use this capability for screen scraping; reading a page from a site into a buffer and then
extracting the information you need.

All examples of screen scraping in this book assume that you are
reading a site for which you have copyright permission.

 516

21.6 Serialization

When an object is streamed to disk, its various member data must be serialized— that is, written out to
the stream as a series of bytes. The object will also be serialized when stored in a database or when
marshaled across a context, app domain, process, or machine boundary.

The CLR provides support for serializing an object-graph—an object and all the member data of that
object. As noted in Chapter 19, by default types are not serialized; to serialize an object, you must
explicitly mark it with the [Serializable] attribute.

In either case, the CLR will do the work of serializing your object for you. Because the CLR knows how
to serialize all the primitive types, if your object consists of nothing but primitive types (all your member
data consists of integers, longs, strings, etc.), you're all set. If your object consists of other user-
defined types (classes), you must ensure that these types are also serializable. The CLR will try to
serialize each object contained by your object (and all their contained objects as well), but these
objects themselves must either be primitive types or they must be serializable.

This was also evident in Chapter 19 when you marshaled a Shape object that contained a Point
object as member data. The Point object in turn consisted of primitive data. In order to serialize (and
thus marshal) the Shape object, its constituent member, the Point object, also had to be marked as
serializable.

When an object is marshaled, either by value or by reference, it
must be serialized. The difference is only whether a copy is made
or a proxy is provided to the client. Objects marked with the
[Serializable] attribute are marshaled by value; those which
derive from ObjectMarshalByRef are marshaled by reference,
but both are serialized. See Chapter 19 for more information.

21.6.1 Using a Formatter

When data is serialized, it will eventually be read; either by the same program or by a different
program running on another machine. In any case, the code reading the data will expect that data to
be in a particular format. Most of the time in a .NET application, the expected format will either be
native binary format or Simple Object Access Protocol (SOAP).

SOAP is a simple, lightweight XML-based protocol for exchanging
information across the Web. SOAP is highly modular and very
extensible. It also leverages existing Internet technologies, such
as HTTP and SMTP.

When data is serialized the format of the serialization is determined by the formatter you apply. In
Chapter 19, you used formatters with channels when communicating with a remote object. Formatter
classes implement the interface Iformatter; you are also free to create your own formatter, though
very few programmers will ever need or want to! The CLR provides both a SoapFormatter for
Internet serialization and a BinaryFormatter that is useful for fast local storage.

You can instantiate these objects with their default constructors:

BinaryFormatter binaryFormatter =
 New BinaryFormatter();

Programming C#

 517

Once you have an instance of a formatter, you can invoke its Serialize() method, passing in a
stream and an object to serialize. You'll see how this is done in the next example.

21.6.2 Working with Serialization

To see serialization at work, you'll need a sample class that you can serialize and then deserialize.
You can start by creating a class named SumOf. SumOf has three member variables:

private int startNumber = 1;
private int endNumber;
private int[] theSums;

The member array theSums represents the value of the sums of all the numbers from startNumber
through endNumber. Thus, if startNumber is 1 and endNumber is 10, the array will have the values:

1,3,6,10,15,21,28,36,45,55

Each value is the sum of the previous value plus the next in the series. Thus if the series is 1,2,3,4,
the first value in theSums will be 1. The second value is the previous value (1) plus the next in the
series (2); thus, theSums[1] will hold the value 3. Likewise, the third value is the previous value (3)
plus the next in the series—theSums[2] is 6. Finally, the fourth value in theSums is the previous
value (6) plus the next in the series (4), for a value of 10.

The constructor for the SumOf object takes two integers: the starting number and the ending number.
It assigns these to the local values and then calls a helper function to compute the contents of the
array:

public SumOf(int start, int end)
{
 startNumber = start;
 endNumber = end;
 ComputeSums();

The ComputeSums helper function fills in the contents of the array by computing the sums in the
series from startNumber through endNumber:

private void ComputeSums()
{
 int count = endNumber - startNumber + 1;
 theSums = new int[count];
 theSums[0] = startNumber;
 for (int i=1,j=startNumber + 1;i<count;i++,j++)
 {
 theSums[i] = j + theSums[i-1];
 }
}

At any time, you can display the contents of the array by using a foreach loop:

private void DisplaySums()
{
 foreach(int i in theSums)
 {
 Console.WriteLine("{0}, ",i);
 }
}

 518

21.6.2.1 Serializing the object

Now, mark the class as eligible for serialization with the [Serializable] attribute:

[Serializable]
class SumOf

To invoke serialization, you first need a file stream object into which you'll serialize the SumOf object:

FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Create);

You are now ready to call the formatter's Serialize() method, passing in the stream and the
object to serialize. Because this will be done in a method of SumOf, you can pass in the this object,
which points to the current object:

binaryFormatter.Serialize(fileStream,this);

This will serialize the SumOf object to disk.

21.6.2.2 Deserializing the object

To reconstitute the object, open the file and ask a binary formatter to DeSerialize it:

public static SumOf DeSerialize()
{
 FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Open);
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 return (SumOf) binaryFormatter.Deserialize(fileStream);
 fileStream.Close();

}

To make sure all this works, you'll first instantiate a new object of type SumOf and tell it to serialize
itself. You'll then create a new instance of type SumOf by calling the static deserializer and asking it to
display its values:

public static void Main()
{
 Console.WriteLine("Creating first one with new...");
 SumOf app = new SumOf(1,10);

 Console.WriteLine(
 "Creating second one with deserialize...");
 SumOf newInstance = SumOf.DeSerialize();
 newInstance.DisplaySums();
}

Example 21-15 provides the complete source code to illustrate serialization and deserialization.

Example 21-15. Serializing and deserializing an object
namespace Programming_CSharp
{
 using System;

Programming C#

 519

 using System.IO;
 using System.Runtime.Serialization;
 using System.Runtime.Serialization.Formatters.Binary;

 [Serializable]
 class SumOf
 {

 public static void Main()
 {
 Console.WriteLine("Creating first one with new...");
 SumOf app = new SumOf(1,10);

 Console.WriteLine("Creating second one with deserialize...");
 SumOf newInstance = SumOf.DeSerialize();
 newInstance.DisplaySums();
 }

 public SumOf(int start, int end)
 {
 startNumber = start;
 endNumber = end;
 ComputeSums();
 DisplaySums();
 Serialize();
 }

 private void ComputeSums()
 {
 int count = endNumber - startNumber + 1;
 theSums = new int[count];
 theSums[0] = startNumber;
 for (int i=1,j=startNumber + 1;i<count;i++,j++)
 {
 theSums[i] = j + theSums[i-1];

 }
 }

 private void DisplaySums()
 {
 foreach(int i in theSums)
 {
 Console.WriteLine("{0}, ",i);
 }
 }

 private void Serialize()
 {
 Console.Write("Serializing...");
 // create a file stream to write the file
 FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Create);
 // use the CLR binary formatter
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 // serialize to disk
 binaryFormatter.Serialize(fileStream,this);
 Console.WriteLine("...completed");
 fileStream.Close();
 }

 520

 public static SumOf DeSerialize()
 {
 FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Open);
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 return (SumOf) binaryFormatter.Deserialize(fileStream);
 fileStream.Close();

 }
 private int startNumber = 1;
 private int endNumber;
 private int[] theSums;
 }
}

 Output:
Creating first one with new...
1,
3,
6,
10,
15,
21,
28,
36,
45,
55,
Serializing......completed
Creating second one with deserialize...
1,
3,
6,
10,
15,
21,
28,
36,
45,
55,

The output shows that the object was created, displayed, and then serialized. The object was then
deserialized and output again, with no loss of data.

21.6.3 Handling Transient Data

In some ways, the approach to serialization demonstrated in Example 21-15 is very wasteful.
Because you can compute the contents of the array given its starting and ending numbers, there really
is no reason to store its elements to disk. Although the operation might be inexpensive with a small
array, it could become costly with a very large one.

You can tell the serializer not to serialize some data by marking it with the [NonSerialized]
attribute:

[NonSerialized] private int[] theSums;

Programming C#

 521

If you don't serialize the array, however, the object you create will not be correct when you deserialize
it. The array will be empty. Remember, when you deserialize the object, you simply read it up from its
serialized form; no methods are run.

To fix the object before you return it to the caller, implement the IDeserializationCallback
interface:

[Serializable]
class SumOf : IDeserializationCallback

Also implement the one method of this interface: OnDeserialization(). The CLR promises that if
you implement this interface, your class's OnDeserialization() method will be called when the
entire object graph has been deserialized. This is just what you want; the CLR will reconstitute what
you've serialized, and then you'll have the opportunity to fix up the parts that were not serialized.

This implementation can be very simple; just ask the object to recompute the series:

public virtual void OnDeserialization (Object sender)
{
 ComputeSums();
}

This is a classic space/time trade-off; by not serializing the array you make deserialization somewhat
slower (because you must take the time to recompute the array), but you make the file somewhat
smaller. To see if not serializing the array had any effect, I ran the program with the digits 1 to 5,000.
Before setting [NonSerialized] on the array, the serialized file was 20K. After setting
[NonSerialized], the file was 1K. Not bad. Example 21-16 shows the source code using the
digits 1 to 5 as input (to simplify the output).

Example 21-16. Working with a nonserialized object
namespace Programming_CSharp
{
 using System;
 using System.IO;
 using System.Runtime.Serialization;
 using System.Runtime.Serialization.Formatters.Binary;

 [Serializable]
 class SumOf : IDeserializationCallback
 {

 public static void Main()
 {
 Console.WriteLine("Creating first one with new...");
 SumOf app = new SumOf(1,5);

 Console.WriteLine("Creating second one with deserialize...");
 SumOf newInstance = SumOf.DeSerialize();
 newInstance.DisplaySums();
 }

 public SumOf(int start, int end)
 {
 startNumber = start;
 endNumber = end;
 ComputeSums();
 DisplaySums();
 Serialize();

 522

 }

 private void ComputeSums()
 {
 int count = endNumber - startNumber + 1;
 theSums = new int[count];
 theSums[0] = startNumber;
 for (int i=1,j=startNumber + 1;i<count;i++,j++)
 {
 theSums[i] = j + theSums[i-1];

 }
 }

 private void DisplaySums()
 {
 foreach(int i in theSums)
 {
 Console.WriteLine("{0}, ",i);
 }
 }

 private void Serialize()
 {
 Console.Write("Serializing...");
 // create a file stream to write the file
 FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Create);
 // use the CLR binary formatter
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 // serialize to disk
 binaryFormatter.Serialize(fileStream,this);
 Console.WriteLine("...completed");
 fileStream.Close();
 }

 public static SumOf DeSerialize()
 {
 FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Open);
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 return (SumOf) binaryFormatter.Deserialize(fileStream);
 fileStream.Close();

 }

 // fix up the nonserialized data
 public virtual void OnDeserialization
 (Object sender)
 {
 ComputeSums();
 }

 private int startNumber = 1;
 private int endNumber;
 [NonSerialized] private int[] theSums;
 }
}

Programming C#

 523

 Output:
Creating first one with new...
1,
3,
6,
10,
15,
Serializing......completed
Creating second one with deserialize...
1,
3,
6,
10,
15,

You can see in the output that the data was successfully serialized to disk and then reconstituted by
deserializaiton. The trade-off of disk storage space versus time does not make a lot of sense with five
values, but it makes a great deal of sense with 5 million values.

So far you've streamed your data to disk for storage and across the network for easy communication
with distant programs. There is one other time you might create a stream: to store permanent
configuration and status data on a per-user basis. For this purpose, the .NET Frameworks offer
isolated storage.

21.7 Isolated Storage

The .NET CLR provides isolated storage to allow the application developer to store data on a per-user
basis. Isolated storage provides much of the functionality of traditional Windows .ini files or the more
recent HKEY_CURRENT_USER key in the Windows Registry.

Applications save data to a unique data compartment associated with the application. The CLR
implements the data compartment with a data store: typically a directory on the file system.

Administrators are free to limit how much isolated storage individual applications can use. They can
also use security so that less trusted code cannot call more highly trusted code to write to isolated
storage.

What is important about isolated storage is that the CLR provides a standard place to store your
application's data, but it does not impose (or support) any particular layout or syntax for that data. In
short, you can store anything you like in isolated storage.

Typically, you will store text, often in the form of name-value pairs. Isolated storage is a good
mechanism for saving user configuration information such as login name, the position of various
windows and widgets, and other application-specific, user-specific information. The data is stored in a
separate file for each user, but the files can be isolated even further by distinguishing among different
aspects of the identity of the code (by assembly or by originating application domain).

Using isolated storage is fairly straightforward. To write to isolated storage you create an instance of
an IsolatedStorageFileStream which you initialize with a filename and a file mode (create,
append, etc.):

IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg",FileMode.Create);

You then create a StreamWriter on that file:

 524

StreamWriter writer =
 new StreamWriter(configFile);

You then write to that stream as you would to any other. Example 21-17 illustrates.

Example 21-17. Writing to isolated storage
namespace Programming_CSharp
{
 using System;
 using System.IO;
 using System.IO.IsolatedStorage;

 public class Tester
 {

 public static void Main()
 {
 Tester app = new Tester();
 app.Run();
 }

 private void Run()
 {
 // create the configuration file stream
 IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg",FileMode.Create);

 // create a writer to write to the stream
 StreamWriter writer =
 new StreamWriter(configFile);

 // write some data to the config. file
 String output;
 System.DateTime currentTime = System.DateTime.Now;
 output = "Last access: " + currentTime.ToString();
 writer.WriteLine(output);
 output = "Last position = 27,35";
 writer.WriteLine(output);

 // flush the buffer and clean up
 writer.Flush();
 writer.Close();
 configFile.Close();
 }
 }
}

After running this code, search your hard disk for test.cfg. On my machine, this file is found in:

c:\Documents and Settings\Administrator\ApplicationData\
Microsoft\COMPlus\IsolatedStorage\0.4\
Url.wj4zpd5ni41dynqxx1uz0x0aoaraftc\
Url.wj4zpd5ni41dynqxx1uz0ix0aoaraftc\files

You can read this file with Notepad if what you've written is just text:

Last access: 5/2/2001 10:00:57 AM
Last position = 27,35

Programming C#

 525

Or, you can access this data programmatically. To do so, reopen the file:

IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg",FileMode.Open);

Create a StreamReader object:

StreamReader reader =
 new StreamReader(configFile);

and use the standard stream idiom to read through the file:

string theEntry;
do
{
 theEntry = reader.ReadLine();
 Console.WriteLine(theEntry);
} while (theEntry != null);
Console.WriteLine(theEntry);

Example 21-18 provides the entire source needed to read the file.

Example 21-18. Reading from isolated storage
namespace Programming_CSharp
{
 using System;
 using System.IO;
 using System.IO.IsolatedStorage;

 public class Tester
 {
 public static void Main()
 {
 Tester app = new Tester();
 app.Run();

 }

 private void Run()
 {
 // open the configuration file stream
 IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg",FileMode.Open);

 // create a standard stream reader
 StreamReader reader =
 new StreamReader(configFile);

 // read through the file and display
 string theEntry;
 do
 {
 theEntry = reader.ReadLine();
 Console.WriteLine(theEntry);
 } while (theEntry != null);

 reader.Close();

 526

 configFile.Close();
 }
 }
}

Output:

Last access: 5/2/2001 10:00:57 AM
Last position = 27,35

Programming C#

 527

Chapter 22. Programming .NET and COM

Programmers love a clean slate. Although it would be nice if we could throw away all the code we've
ever written and start over, that typically isn't a viable option for most companies. Over the past
decade, many development organizations have made a substantial investment in developing and
purchasing COM components and ActiveX controls. If .NET is to be a viable platform, these legacy
components must be usable from within .NET applications, and to a lesser degree, .NET components
must be callable from COM.

This chapter describes the support .NET provides for importing ActiveX controls and COM
components into your application, for exposing .NET classes to COM-based applications, and for
making direct calls to Win32 APIs. You will also learn about C# pointers and keywords for accessing
memory directly, a technique that may be crucial in some applications.

22.1 Importing ActiveX Controls

ActiveX controls are COM components typically dropped into a form, and which might or might not
have a user interface. When Microsoft developed the OCX standard, which allowed developers to
build ActiveX controls in Visual Basic and use them with C++ (and vice versa), the ActiveX control
revolution began. Over the past few years, thousands of such controls have been developed, sold,
and used. They are small, easy to work with, and an effective example of binary reuse.

Importing ActiveX controls into .NET is surprisingly easy, considering that the COM binary standard
and the .NET binary standard are not compatible. Visual Studio .NET is able to import ActiveX controls,
and Microsoft has also developed a command line utility, AxImp, which will create the assemblies
necessary for the control to be used in a .NET application.

22.1.1 Creating an ActiveX Control

To demonstrate the ability to use classic ActiveX controls in a .NET application, you'll first develop a
simple four-function calculator as an ActiveX control and then you will invoke that ActiveX control from
within a C# application. You'll build the control in VB6, and test it in a VB6 application. If you don't
have VB6 or don't want to bother creating the control, you can download the control from my web site
(http://www.LibertyAssociates.com).

Once the control is working in the standard Windows environment, you'll copy it to your .NET
development environment, register it, and import it into a Windows Forms application.

To create the control, open VB6 and choose ActiveX Control as the new project type. Make the project
form as small as possible, because this control will not have a user interface. Right-click UserControl1
and choose Properties. Rename it Calculator in the Properties window. Click the Project in the project
explorer and in the Properties window rename it to CalcControl. Immediately save the project and
name both the file and the project CalcControl, as shown in Figure 22-1.

Figure 22-1. Creating a VB ActiveX control

 528

Now you can add the four calculator functions by right-clicking the CalcControl form, selecting View
Code from the pop-up menu, and typing in the VB code shown in Example 22-1.

Example 22-1. Implementing the CalcControl ActiveX control
Public Function _
Add(left As Double, right As Double) _
As Double
 Add = left + right
End Function

Public Function _
Subtract(left As Double, right As Double) _
As Double
 Subtract = left - right
End Function

Public Function _
Multiply(left As Double, right As Double) _
As Double
 Multiply = left * right
End Function

Public Function _
Divide(left As Double, right As Double) _
As Double
 Divide = left / right
End Function

This is the entire code for the control. Compile this to the CalcControl.ocx file by choosing File
Make CalcControl.ocx on the Visual Basic 6 menu bar.

Next open a second project in VB as a standard executable (EXE). Name the form TestForm and
name the project CalcTest. Save the file and project as CalcTest.

Programming C#

 529

Add the ActiveX control as a component by pressing Control-T and choosing CalcControl from the
Controls tab, as shown in Figure 22-2.

Figure 22-2. Adding the CalcControl to the VB6 toolbox

This action puts a new control on the toolbox, as shown circled in Figure 22-3.

Figure 22-3. Locating CalcControl in the Visual Basic 6 toolbox

Drag the new control on to the form TestForm and name it CalcControl. Note that the new control will
not be visible; this control has no user interface. Add two text boxes, four buttons, and one label, as
shown in Figure 22-4.

Figure 22-4. Building the TestForm user interface

 530

Name the buttons btnAdd, btnSubtract, btnMultiply, and btnDivide. All that is left is for you
to implement methods for handling the button click events of the calculator buttons. Each time a button
is clicked, you want to get the values in the two text boxes, cast them to double (as required by
CalcControl) using the VB6 CDbl function, invoke a CalcControl function, and print the result in the
label control. Example 22-2 provides the complete source code.

Example 22-2. Using the CalcControl ActiveX control in a VB program
(TestForm)
Private Sub btnAdd_Click()
 Label1.Caption = _
 calcControl.Add(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnDivide_Click()
 Label1.Caption = _
 calcControl.Divide(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnMultiply_Click()
 Label1.Caption = _
 calcControl.Multiply(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnSubtract_Click()
 Label1.Caption = _
 calcControl.Subtract(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Figure 22-5 shows the result of running the CalcTest program, typing in two numbers and clicking
the Multiply button.

Programming C#

 531

Figure 22-5. Running the CalcTest program

22.1.2 Importing a Control in .NET

Now that you've shown that the CalcControl ActiveX control is working, you can copy the
CalcControl.ocx file to your .NET development environment. Once you have copied it, register the
CalcControl.ocx file using Regsvr32, and you're ready to build a test program in .NET to use the
calculator:

Regsvr32 CalcControl.ocx

To get started, you'll create a Visual C# Windows Form project in Visual Studio .NET (see Chapter
13), name the project InteropTest, and design a form like the TestForm form you created in VB in
the preceding section by dragging and dropping controls onto it. Name the form TestForm. A complete
sample form is shown in Figure 22-6.

Figure 22-6. Building a Windows Form to test the CalcControl ActiveX
control

22.1.2.1 Importing a control

There are two ways to import an ActiveX control into the Visual Studio .NET development environment.
You can use the Visual Studio .NET tools themselves, or import the control manually using the aximp
utility that ships with the .NET SDK Framework. To use Visual Studio .NET, choose Tools
Customize Toolbox from the menu. On the COM Components tab find the
CalcControl.Calculator object you just registered, as shown in Figure 22-7.

Figure 22-7. Importing the CalcControl ActiveX control

 532

Because CalcControl is registered on your .NET machine, the Visual Studio .NET Customize
Toolbox is able to find it. When you select the control from this dialog box, it is imported into your
application; Visual Studio takes care of the details. Alternatively, you can open a command box and
import the control manually using the aximp.exe utility, as shown in Figure 22-8.

Figure 22-8. Running aximp

aximp.exe takes one argument, the ActiveX control you want to import (CalcControl.dll). It produces
three files:

AxCalcControl.dll

A .NET Windows control

CalcControl.dll

A proxy .NET class library

AxCalcControl.pdb

A debug file

22.1.2.2 Adding a control to the Visual Studio toolbox

Once this is done, you can return to the Customize Toolbox window, but this time select .NET
Framework Components. You can now browse to the location at which the .NET Windows control
AxCalcControl.dll was generated and import that file into the toolbox, as shown in Figure 22-9.

Programming C#

 533

Figure 22-9. Browsing for the imported control

Once imported, the control appears on the toolbox menu, as shown in Figure 22-10.

Figure 22-10. Viewing the AxCalcControl calculator after importing it into
the toolbox

Now you can drag this control onto your Windows Form and make use of its functions, just as you did
in the VB6 example.

You'll add event handlers for each of the four buttons. The event handlers will delegate their work to
the ActiveX control you wrote in VB6 and imported into .NET.

The source for the event handlers is shown in Example 22-3.

Example 22-3. Implementing event handlers for the test Windows Form
private void btnAdd_Click(object sender, System.EventArgs e)
{
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Add(ref left, ref right).ToString();
}

private void btnDivide_Click(object sender, System.EventArgs e)

 534

{
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Divide(ref left, ref right).ToString();
}

private void btnMultiply_Click(object sender, System.EventArgs e)
{
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Multiply(ref left, ref right).ToString();
}

private void btnSubtract_Click(object sender, System.EventArgs e)
{
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Subtract(ref left, ref right).ToString();
}

Each implementing method obtains the values in the text fields, converts them to double using the
static method double.Parse(), and passes those values to the calculator's methods. The results
are cast back to a string and inserted in the label, as shown in Figure 22-11.

Figure 22-11. Running the imported ActiveX Control in a Windows Form

22.2 Importing COM Components

Importing ActiveX controls turns out to be fairly straightforward. Many of the COM components that
companies develop are not ActiveX controls, however; they are standard COM dynamic link library
(DLL) files. To see how to use these with .NET, you return to VB6 and create a COM business object
that will act exactly as the component from the previous section did.

The first step is to create a new ActiveX DLL project. This is how VB6 creates standard COM DLLs.
Name the class ComCalc and name the project ComCalculator. Save the file and project. Copy the
methods from Example 22-4 into the code window.

Example 22-4. Implementing the methods for ComCalc
Public Function _
Add(left As Double, right As Double) _
As Double
 Add = left + right
End Function

Public Function _
Subtract(left As Double, right As Double) _
As Double
 Subtract = left - right
End Function

Public Function _

Programming C#

 535

Multiply(left As Double, right As Double) _
As Double
 Multiply = left * right
End Function

Public Function _
Divide(left As Double, right As Double) _
As Double
 Divide = left / right
End Function

Build the DLL by using the menu sequence File Make ComCalculator.dll. You can test this by
returning to your earlier test program and removing the Calculator control from the form. Add the
new DLL by opening the project reference window and navigating to the ComCalculator, as shown
in Figure 22-12.

Figure 22-12. Adding a reference to ComCalculator.dll

22.2.1 Coding the COMTestForm program

The code to exercise the COM component is very similar to the earlier example. This time, however,
you instantiate a ComCalc object and call its methods, as shown in Example 22-5.

Example 22-5. The driver program for ComCalc.dll

Private Sub btnAdd_Click()
 Dim theCalc As New ComCalc
 Label1.Caption = _
 theCalc.Add(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnDivide_Click()
 Dim theCalc As New ComCalc
 Label1.Caption = _
 theCalc.Divide(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

 536

Private Sub btnMultiply_Click()
 Dim theCalc As New ComCalc
 Label1.Caption = _
 theCalc.Multiply(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnSubtract_Click()
 Dim theCalc As New ComCalc
 Label1.Caption = _
 theCalc.Subtract(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

22.2.2 Importing the COM .DLL to .NET

Now that you have a working ComCalc DLL, you can import it to .NET. Before you can import it,
however, you must choose between early and late binding. When the client calls a method on the
server, the address of the server's method in memory must be resolved. That process is called binding.

With early binding, the resolution of the address of a method on the server occurs when the client
project is compiled and metadata is added to the client .NET module. With late binding, the resolution
does not happen until runtime, when COM explores the server to see if it supports the method.

Early binding has many advantages. The most significant is performance. Early-bound methods are
invoked far more quickly than late-bound methods. For the compiler to perform early binding, it must
interrogate the server's type library. For the compiler to interrogate the server's type library it must first
be imported into .NET.

22.2.3 Importing the Type Library

The VB6-created COM DLL has a type library within it, but the format of a COM type library cannot be
used by a .NET application. To solve this problem, you must import the COM type library into an
assembly. Once again, you have two ways of doing this. You can allow the Integrated Development
Environment (IDE) to import the class by registering the component, as shown in the following section,
or you can import the type library manually by using the standalone program TlbImp.exe.

TlbImp.exe will produce a proxy assembly with a manifest within it. This proxy assembly is called a
Runtime Class Wrapper (RCW). The .NET client will use the RCW to bind to the methods in the COM
object, as shown in the following section.

22.2.4 Importing Manually

Start by copying the ComCalculator.DLL file to your .NET environment and registering it with
Regsvr32. Then you're ready to import the COM object into .NET, by running TlbImp.exe. The syntax
is to enter the name of the COM component, followed by an optional name for the filename produced,
as shown in Figure 22-13.

Figure 22-13. Running TlbImp.exe

Programming C#

 537

22.2.5 Creating a Test Program

Now it's time to create a driver program to test the COM object, which you'll name COMDllTest.

If you decided not to import the library manually, you import it through the IDE. To do so, select the
COM tab on the Add Reference dialog and select the registered COM object, as shown in Figure 22-
14.

Figure 22-14. Adding a reference to ComCalculator

This will invoke TlbImp for you and will copy the resulting RCW to:

C:/Documents and Settings/Administrator/Application
Data/Microsoft/VisualStudio/RCW

You'll have to be careful, however, because the DLL it produces has the same name as the COM DLL.

If you do use TlbImp.exe, you can add the reference from the Projects tab. Browse to the directory
where ComCalculatorDLLNET.dll was created, and add it to the references.

In either case, you can now create the user interface, which is, again, similar to that used for testing
the ActiveX control, as shown in Figure 22-15.

Figure 22-15. The form for testing the COM object

 538

All that is left is to wire up the event handlers for the four buttons, as shown in Example 22-6.

Example 22-6. Implementing event handlers for the VB 6 COM DLL test
form
private void btnAdd_Click(
 object sender, System.EventArgs e)
{
 Double left, right, result;
 left = Double.Parse(textBox1.Text);
 right = Double.Parse(textBox2.Text);
 ComCalculator.ComCalc theCalc = new ComCalculator.ComCalc();
 result = theCalc.Add(ref left, ref right);
 label1.Text = result.ToString();
}

private void btnSubtract_Click(
 object sender, System.EventArgs e)
{
 Double left, right, result;
 left = Double.Parse(textBox1.Text);
 right = Double.Parse(textBox2.Text);
 ComCalculator.ComCalc theCalc = new ComCalculator.ComCalc();
 result = theCalc.Subtract(ref left, ref right);
 label1.Text = result.ToString();

}

private void btnMultiply_Click(
 object sender, System.EventArgs e)
{
 Double left, right, result;
 left = Double.Parse(textBox1.Text);
 right = Double.Parse(textBox2.Text);
 ComCalculator.ComCalc theCalc = new ComCalculator.ComCalc();
 result = theCalc.Multiply(ref left, ref right);
 label1.Text = result.ToString();
}

private void btnDivide_Click(
 object sender, System.EventArgs e)
{
 Double left, right, result;
 left = Double.Parse(textBox1.Text);
 right = Double.Parse(textBox2.Text);
 ComCalculator.ComCalc theCalc = new ComCalculator.ComCalc();
 result = theCalc.Divide(ref left, ref right);
 label1.Text = result.ToString();
}

Programming C#

 539

Rather than referring to an ActiveX control that is on the form, you must instantiate the
ComCalculator.ComCalc object. The COM object is then available for use as if it had been created
in a .NET assembly, and the running program works as expected, as shown in Figure 22-16.

Figure 22-16. The test driver program in action

22.2.6 Using Late Binding and Reflection

If you do not have a type library file for your third-party COM object, you must use late binding with
reflection. In Chapter 18, you saw how to invoke methods dynamically in .NET assemblies; the
process with COM objects is not terribly different.

To see how to do this, start with the application shown in Example 22-6, but remove the reference to
the imported library. The four button handlers must now be rewritten. You can no longer instantiate a
ComCalculator.Calc object, so instead you must invoke its methods dynamically.

Just as you saw in Chapter 18, you begin by creating a Type object to hold information about the
ComCalc type.

Type comCalcType;
comCalcType = Type.GetTypeFromProgID("ComCalcDLL.ComCalc");

The call to GetTypeFromProgID instructs the .NET Framework to open the registered COM DLL and
retrieve the necessary type information for the specified object. This is the equivalent to calling
GetType, as you did in Chapter 18:

Type theMathType = Type.GetType("System.Math");

You can now proceed exactly as you would if you were invoking this method on a class described in
a .NET assembly. You start by calling CreateInstance to get back an instance of the ComCalc
object:

object comCalcObject = Activator.CreateInstance(comCalcType);

You next create an array to hold the arguments, and then invoke the method using InvokeMember,
passing in the method you want to invoke as a string, a binder flag, a null binder, the object returned
by CreateInstance, and the input argument array:

object[] inputArguments = {left, right };
result = (Double) comCalcType.InvokeMember(
 "Subtract", // the method to invoke
 BindingFlags.InvokeMethod, // how to bind
 null, // binder
 comCalcObject, // the COM object
 inputArguments); // the method arguments

The results of this invocation are cast to Double, and stored in the local variable result. You can
then display this result in the user interface, as shown in Figure 22-17.

 540

Figure 22-17. Late-binding test

Because all four event handlers must replicate this work, differing only in the method they call, you'll
factor the common code to a private helper method named Invoke, as shown in Example 22-7.

Example 22-7. Late binding of COM objects
private void btnAdd_Click(
 object sender, System.EventArgs e)
{
 Invoke("Add");
}

private void btnSubtract_Click(
 object sender, System.EventArgs e)
{
 Invoke("Subtract");
}

private void btnMultiply_Click(
 object sender, System.EventArgs e)
{
 Invoke("Multiply");
}

private void btnDivide_Click(
 object sender, System.EventArgs e)
{
 Invoke("Divide");
}

private void Invoke(string whichMethod)
{
 Double left, right, result;
 left = Double.Parse(textBox1.Text);
 right = Double.Parse(textBox2.Text);

 // create a Type object to hold type information
 Type comCalcType;

 // an array for the arguments
 object[] inputArguments =
 {left, right };

 // get the type info from the COM object
 comCalcType =
 Type.GetTypeFromProgID(
 "ComCalculator.ComCalc");

 // create an instance
 object comCalcObject =
 Activator.CreateInstance(comCalcType);

Programming C#

 541

 // invoke the method dynamically and
 // cast the result to double
 result = (Double) comCalcType.InvokeMember(
 whichMethod, // the method to invoke
 BindingFlags.InvokeMethod, // how to bind
 null, // binder
 comCalcObject, // the COM object
 inputArguments); // the method arguments

 label1.Text = result.ToString();
}

22.3 Exporting .NET Components

You can export your .NET class for use with existing COM components, although this is an unusual
requirement. The Regasm tool will register the metadata from your component in the system registry.

You invoke Regasm with the name of the DLL. For example:

Regasm myAssembly.dll

This will export your component's metadata to the Registry. For example, you can create a new C#
DLL project in which you re-create your four-function calculator, as shown in Example 22-8.

Example 22-8. The four-function calculator in a DLL
using System;

namespace Programming_CSharp
{
 public class Calculator
 {
 public Calculator()
 {

 }
 public Double Add (Double left, Double right)
 {
 return left + right;
 }
 public Double Subtract (Double left, Double right)
 {
 return left - right;
 }
 public Double Multiply (Double left, Double right)
 {
 return left * right;
 }
 public Double Divide (Double left, Double right)
 {
 return left / right;
 }
 }
}

You save this to a file named Calculator.cs in a project named ProgrammingCSharpDLL. After
building this project, you can register it with:

 542

Regasm ProgrammingCSharpDLL.dll

A quick check of the Registry shows that a PROGID was created for the DLL, as shown in Figure 22-
18.

Figure 22-18. The Registry after registering the DLL

You can now invoke the four-function calculator as a COM object using standard VBScript. For
example, you can create a tiny Windows Script Host file, as shown in Example 22-9.

Example 22-9. Invoking the Calculator COM object with a Windows
scripting host file
dim calc
dim msg
dim result
set calc = CreateObject("ProgrammingCSharpDLL.Calculator")
result = calc.Multiply(7,3)
msg = "7 * 3 =" & result & "."
Call MsgBox(msg)

When this is run, a dialog box pops up to verify that the object was created and invoked, as shown in
Figure 22-19.

Figure 22-19. Late binding via COM

22.3.1 Creating a Type Library

If you wish to use early binding with your .NET DLL you will need to create a type library. You can do
so with the TlbExp (Type Library Export) utility, by writing:

TlbExp ProgrammingCSharpDLL.dll /out:Calc.tlb

The result is a type lib that you can browse for and view in the OLE/COM object viewer within Visual
Studio, as shown in Figure 22-20.

Figure 22-20. Viewing the type lib contents

Programming C#

 543

With this type library in hand, you can import the calculator class into any COM environment.

22.4 P/Invoke

It is possible, though generally undesirable, to invoke unmanaged code from within C#. The .NET
platform invoke facility (P/Invoke) was originally intended only to provide access to the Windows API,
but you can use it to expose functions in any DLL.

To see how this works, let's revisit Example 21-3 from Chapter 21. You will recall that you used the
Stream class to rename files by invoking the MoveTo() method:

file.MoveTo(fullName + ".bak");

You can accomplish the same thing by using Windows' kernal32.dll and invoking the MoveFiles
method. To do so, you need to declare the method as a static extern and you need to use the
DllImport attribute:

[DllImport("kernel32.dll", EntryPoint="MoveFile",
 ExactSpelling=false, CharSet=CharSet.Unicode,
 SetLastError=true)]
static extern bool MoveFile(
 string sourceFile, string destinationFile);

The DllImportAttribute class is used to indicate that an unmanaged method will be invoked
through P/Invoke.

The parameters are:

EntryPoint

Indicates the name of the DLL entry point (the method) to be called.

ExactSpelling

 544

Setting this to false allows matching of the entry point name without case sensitivity.

CharSet

Indicates how the string arguments to the method should be marshaled.

SetLastError

Setting this to true allows you to call GetLastError to check if an error occurred when
invoking this method.

The rest of the code is virtually unchanged, except for the invocation of the MoveFile() method
itself. Notice that MoveFile() is declared to be a static method of the class, so you use static
method semantics:

Tester.MoveFile(file.FullName,file.FullName + ".bak");

You pass in the original filename and the new name and the file is moved, just as it was when calling
file.MoveTo(). In this example, there is no advantage—and actually considerable
disadvantage—to using P/Invoke. You have left managed code, and the result is not object-oriented.
P/Invoke really only makes sense when you absolutely, positively need to invoke a method for which
there is no reasonable substitute within managed code. Example 22-10 shows the complete source
code for using P/Invoke to move the files.

Example 22-10. Using P/Invoke to call a Win32 API method
namespace Programming_CSharp
{
 using System;
 using System.IO;
 using System.Runtime.InteropServices;

 class Tester
 {

 // declare the WinAPI method you wish to P/Invoke
 [DllImport("kernel32.dll", EntryPoint="MoveFile",
 ExactSpelling=false, CharSet=CharSet.Unicode,
 SetLastError=true)]
 static extern bool MoveFile(
 string sourceFile, string destinationFile);

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 string theDirectory = @"c:\test\media";
 DirectoryInfo dir =
 new DirectoryInfo(theDirectory);
 t.ExploreDirectory(dir);
 }

 // Set it running with a directory name
 private void ExploreDirectory(DirectoryInfo dir)
 {

 // make a new subdirectory
 string newDirectory = "newTest";
 DirectoryInfo newSubDir =

Programming C#

 545

 dir.CreateSubdirectory(newDirectory);

 // get all the files in the directory and
 // copy them to the new directory
 FileInfo[] filesInDir = dir.GetFiles();
 foreach (FileInfo file in filesInDir)
 {
 string fullName = newSubDir.FullName +
 "\\" + file.Name;
 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
 }

 // get a collection of the files copied in
 filesInDir = newSubDir.GetFiles();

 // delete some and rename others
 int counter = 0;
 foreach (FileInfo file in filesInDir)
 {
 string fullName = file.FullName;

 if (counter++ %2 == 0)
 {
 // P/Invoke the Win API
 Tester.MoveFile(fullName, fullName + ".bak");

 Console.WriteLine("{0} renamed to {1}",
 fullName,file.FullName);
 }
 else
 {
 file.Delete();
 Console.WriteLine("{0} deleted.",
 fullName);
 }
 }
 // delete the subdirectory
 newSubDir.Delete(true);
 }
 }
}
Output (excerpt):
c:\test\media\newTest\recycle.wav renamed to
 c:\test\media\newTest\recycle.wav
c:\test\media\newTest\ringin.wav renamed to
 c:\test\media\newTest\ringin.wav

22.5 Pointers

Until now you've seen no code using C/C++ style pointers. Only here, in the final paragraphs of the
final pages of the book, does this topic arise, even though pointers are central to the C family of
languages. In C#, pointers are relegated to unusual and advanced programming; typically they are
used only when interoperating with COM.

C# supports the usual C pointer operators, listed in Table 22-1.

 546

Table 22-1. C# pointer operators
Operator Meaning
& The address-of operator returns a pointer to the address of a value.
* The dereference operator returns the value at the address of a pointer.
-> The member access operator is used to access the members of a type.

The use of pointers is almost never required, and is nearly always discouraged. When you do use
pointers, you must mark your code with the C# unsafe modifier. The code is marked unsafe because
with pointers you can manipulate memory locations directly, a feat otherwise impossible within a C#
program. In unsafe code you can directly access memory, perform conversions between pointers and
integral types, take the address of variables, and so forth. In exchange, you give up garbage collection
and protection against uninitialized variables, dangling pointers, and accessing memory beyond the
bounds of an array. In essence, unsafe code creates an island of C++-code within your otherwise safe
C# application.

As an example of when this might be useful, you'll read a file to the console by invoking two Win32
API calls: CreateFile and ReadFile. ReadFile takes, as its second parameter, a pointer to a
buffer. The declaration of the two imported methods is not unlike those shown in Example 22-11.

Example 22-11. Declaring Win32 API methods for import into a C#
program
[DllImport("kernel32", SetLastError=true)]
static extern unsafe int CreateFile(
 string filename,
 uint desiredAccess,
 uint shareMode,
 uint attributes,
 uint creationDisposition,
 uint flagsAndAttributes,
 uint templateFile);

[DllImport("kernel32", SetLastError=true)]
static extern unsafe bool ReadFile(
 int hFile,
 void* lpBuffer,
 int nBytesToRead,
 int* nBytesRead,
 int overlapped);

You will create a new class APIFileReader whose constructor will invoke the CreateFile()
method. The constructor takes a filename as a parameter, and passes that filename to the
CreateFile() method:

public APIFileReader(string filename)
{
 fileHandle = CreateFile(
 filename, // filename
 GenericRead, // desiredAccess
 UseDefault, // shareMode
 UseDefault, // attributes
 OpenExisting, // creationDisposition
 UseDefault, // flagsAndAttributes
 UseDefault); // templateFile
}

Programming C#

 547

The APIFileReader class implements only one other method, Read(), which invokes
ReadFile(), passing in the file handle created in the class constructor, along with a pointer into a
buffer, a count of bytes to retrieve, and a reference to a variable which will hold the number of bytes
read. It is the pointer to the buffer which is of interest to us here. To use this API call you must use a
pointer.

Because you will access it with a pointer, the buffer needs to be pinned in memory; the .NET
Framework cannot be allowed to move the buffer during garbage collection. To accomplish this, you
will use the C# fixed keyword. Fixed allows you to get a pointer to the memory used by the buffer,
and also to mark that instance so that the garbage collector won't move it.

The block of statements following the fixed keyword creates a scope, within which the memory will
be pinned. At the end of the fixed block the instance will be marked so that it can be moved. This is
known as declarative pinning:

public unsafe int Read(byte[] buffer, int index, int count)
{
 int bytesRead = 0;
 fixed (byte* bytePointer = buffer)
 {
 ReadFile(
 fileHandle,
 bytePointer + index,
 count,
 &bytesRead, 0);
 }
 return bytesRead;
}

Notice that the method must be marked with the unsafe keyword. This allows you to create pointers
and creates an unsafe context. To compile this you must use the /unsafe compiler option.

The test program instantiates the APIFileReader and an ASCIIEncoding object. It passes the
filename to the constructor of the APIFileReader and then creates a loop to repeatedly fill its buffer
by calling the Read() method which invokes the ReadFile API call. What it gets back is an array of
bytes, which it converts to a string using the ASCIIEncodingObjects's GetString() method. It
passes that string to the Console.Write() method, to be displayed on the console. The complete
source is shown in Example 22-12.

Example 22-12. Using pointers in a C# program
using System;
using System.Runtime.InteropServices;
using System.Text;

class APIFileReader
{
 [DllImport("kernel32", SetLastError=true)]
 static extern unsafe int CreateFile(
 string filename,
 uint desiredAccess,
 uint shareMode,
 uint attributes,
 uint creationDisposition,
 uint flagsAndAttributes,
 uint templateFile);

 [DllImport("kernel32", SetLastError=true)]
 static extern unsafe bool ReadFile(

 548

 int hFile,
 void* lpBuffer,
 int nBytesToRead,
 int* nBytesRead,
 int overlapped);

 // constructor opens an existing file
 // and sets the file handle member
 public APIFileReader(string filename)
 {
 fileHandle = CreateFile(
 filename, // filename
 GenericRead, // desiredAccess
 UseDefault, // shareMode
 UseDefault, // attributes
 OpenExisting, // creationDisposition
 UseDefault, // flagsAndAttributes
 UseDefault); // templateFile
 }

 public unsafe int Read(byte[] buffer, int index, int count)
 {
 int bytesRead = 0;
 fixed (byte* bytePointer = buffer)
 {
 ReadFile(
 fileHandle, // hfile
 bytePointer + index, // lpBuffer
 count, // nBytesToRead
 &bytesRead, // nBytesRead
 0); // overlapped
 }
 return bytesRead;
 }

 const uint GenericRead = 0x80000000;
 const uint OpenExisting = 3;
 const uint UseDefault = 0;
 int fileHandle;
}

class Test
{
 public static void Main()
 {
 // create an instance of the APIFileReader,
 // pass in the name of an existing file
 APIFileReader fileReader =
 new APIFileReader("myTestFile.txt");

 // create a buffer and an ASCII coder
 const int BuffSize = 128;
 byte[] buffer = new byte[BuffSize];
 ASCIIEncoding asciiEncoder = new ASCIIEncoding();

 // read the file into the buffer and display to console
 while (fileReader.Read(buffer, 0, BuffSize) != 0)
 {
 Console.Write("{0}", asciiEncoder.GetString(buffer));
 }
 }

Programming C#

 549

}

The key section of code is shown in bold, where you create a pointer to the buffer and fix that buffer in
memory using the fixed keyword. You need to use a pointer here because the API call demands it,
though you've seen in Chapter 21 that all this can be done without the API call at all.

 550

Programming C#

 551

Appendix A. C# Keywords

abstract

A class modifier that specifies that the class must be derived-from to be instantiated.

as

A binary operator type that casts the left operand to the type specified by the right operand
and that returns nullrather than throwing an exception if the cast fails.

base

A variable with the same meaning as this, except it accesses a base class implementation of
a member.

bool

A logical datatype that can be true or false.

break

A jump statement that exits a loop or switch statement block.

byte

A one-byte unsigned integral datatype.

case

A selection statement that defines a particular choice in a switch statement.

catch

The part of a trystatement that catches exceptions of a specific type defined in the catch
clause.

char

A two-byte Unicode character datatype.

checked

A statement or operator that enforces arithmetic bounds checking on an expression or
statement block.

class

An extendable reference type that combines data and functionality into one unit.

const

A modifier for a local variable or field declaration that indicates the value is a constant. A
const that is evaluated at compile time and can only be a predefined type.

 552

continue

A jump statement that skips the remaining statements in a statement block and continues to
the next iteration in a loop.

decimal

A 16-byte precise decimal datatype.

default

A marker in a switch statement specifying the action to take when no case statements
match the switchexpression.

delegate

A type for defining a method signature so that delegate instances can hold and invoke a
method or list of methods that match its signature.

do

A loop statement to iterate a statement block until an expression at the end of the loop
evaluates tofalse.

double

An eight-byte floating-point datatype.

else

A conditional statement that defines the action to take when a precedingif expression
evaluates to false.

enum

A value type that defines a group of named numeric constants.

event

A member modifier for a delegate field or property that indicates only the += and -= methods
of the delegate can be accessed.

explicit

An operator that defines an explicit conversion.

extern

A method modifier that indicates the method is implemented with unmanaged code.

false

A Boolean literal.

finally

Programming C#

 553

The part of atry statement to always execute when control leaves the scope of thetry block.

fixed

A statement to pin down a reference type so that the garbage collector won't move it during
pointer arithmetic operations.

float

A four-byte floating-point datatype.

for

A loop statement that combines an initialization statement, stopping condition, and iterative
statement into one statement.

foreach

A loop statement that iterates over collections that implement IEnumerable.

get

The name of the accessor that returns the value of a property.

goto

A jump statement that jumps to a label within the same method and same scope as the jump
point.

if

A conditional statement that executes its statement block if its expression evaluates totrue.

implicit

An operator that defines an implicit conversion.

in

The operator between a type and an IEnumerable in a foreachstatement.

int

A four-byte signed integral datatype.

interface

A contract that specifies the members that aclass or structcan implement to receive generic
services for that type.

internal

An access modifier that indicates a type or type member is accessible only to other types in
the same assembly.

 554

is

A relational operator that evaluates to true if the left operand's type matches, is derived from,
or implements the type specified by the right operand.

lock

A statement that acquires a lock on a reference-type object to help multiple threads cooperate.

long

An eight-byte signed integral datatype.

namespace

Maps a set of types to a common name.

new

An operator that calls a constructor on a type, allocating a new object on the heap if the type is
a reference type, or initializing the object if the type is a value type. The keyword is overloaded
to hide an inherited member.

null

A reference-type literal that indicates no object is referenced.

object

The type all other types derive from.

operator

A method modifier that overloads operators.

out

A parameter modifier that specifies the parameter is passed by reference and must be
assigned by the method being called.

override

A method modifier that indicates that a method of a class overrides a virtualmethod of a class
orinterface.

params

A parameter modifier that specifies that the last parameter of a method can accept multiple
parameters of the same type.

private

An access modifier that indicates that only the containing type can access the member.

protected

Programming C#

 555

An access modifier that indicates that only the containing type or derived types can access the
member.

public

An access modifier that indicates that a type or type member is accessible to all other types.

readonly

A field modifier specifying that a field can be assigned only once, in either its declaration or its
containing type's constructor.

ref

A parameter modifier that specifies that the parameter is passed by reference and is assigned
before being passed to the method.

return

A jump statement that exits a method, specifying a return value when the method is nonvoid.

sbyte

A one-byte signed integral datatype.

sealed

A class modifier that indicates a class cannot be derived-from.

set

The name of the accessor that sets the value of a property.

short

A two-byte signed integral datatype.

sizeof

An operator that returns the size in bytes of a struct.

stackalloc

An operator that returns a pointer to a specified number of value types allocated on the stack.

static

A type member modifier that indicates that the member applies to the type rather than an
instance of the type.

string

A predefined reference type that represents an immutable sequence of Unicode characters.

struct

 556

A value type that combines data and functionality in one unit.

switch

A selection statement that allows a selection of choices to be made based on the value of a
predefined type.

this

A variable that references the current instance of a classor struct.

throw

A jump statement that throws an exception when an abnormal condition has occurred.

true

A Boolean literal.

try

A statement that provides a way to handle an exception or a premature exit in a statement
block.

typeof

An operator that returns the type of an object as a System.Type object.

uint

A four-byte unsigned integral datatype.

ulong

An eight-byte unsigned integral datatype.

unchecked

A statement or operator that prevents arithmetic bounds checking on an expression.

unsafe

A method modifier or statement that permits pointer arithmetic to be performed within a
particular block.

ushort

A two-byte unsigned integral datatype.

using

Specifies that types in a particular namespace can be referred to without requiring their fully
qualified type names. The using statement defines a scope. At the end of the scope the object
is disposed.

Programming C#

 557

value

The name of the implicit variable set by the set accessor of a property.

virtual

A class method modifier that indicates that a method can be overridden by a derived class.

void

A keyword used in place of a type for methods that don't have a return value.

volatile

Indicates that a field may be modified by the operating system or another thread.

while

A loop statement to iterate a statement block while an expression at the start of each iteration
evaluates to false.

 558

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming C# is an African crowned crane. This tall, skinny bird
wanders the marshes and grasslands of west and east Africa (the Western and Eastern African
crowned cranes, Balearica pavonina pavonina and Balearica regulorum gibbericeps, respectively).

Adult birds stand about three feet tall and weigh six to nine pounds. Inside their long necks is a five-
foot long windpipe-part of which is coiled inside their breastbone-giving voice to loud calls that can
carry for miles. They live for about 22 years, spending most of their waking hours looking for the
various plants, small animals, and insects they like to eat. (One crowned crane food-finding technique,
perfected during the 38 to 54 million years these birds have been around, is to stamp their feet as they
walk, flushing out tasty bugs.) They are the only type of crane to perch in trees, which they do at night
when sleeping.

Social and talkative, African crowned cranes group together in pairs or families, and the smaller
groups band together in flocks of more than 100 birds. Their elaborate mating dance has served as a
model for some of the dances of local groups of people.

Darren Kelly was the production editor and Audrey Doyle was the proofreader for Programming C#.
Mary Brady and Claire Cloutier provided quality control. Joe Wizda wrote the index. Interior
composition was done by James Carter, Matthew Hutchinson, and Edith Shapiro.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is an original antique engraving from the 19th century. Emma Colby produced the cover
layout with Quark™XPress 4.1 using Adobe's ITC Garamond font.

Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike
Sierra. The illustrations that appear in this book were produced by Robert Romano and Jessamyn
Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Leanne
Soylemez.

