Programming C#

Jesse Liberty

Publisher: O'Reilly
First Edition July 2001
ISBN: 0-596-00117-7, 680 pages

The goal of C# is to serve as a high-performance language for .NET development—one that is simple,
safe, object-oriented, and Internet-centric. Programming C# teaches this new language in a way that
experienced programmers will appreciate—by grounding its application firmly in the context of
Microsoft's .NET platform and the development of desktop and Internet applications.

Programming C#

o 1] =T S 11
YN o To 10 A I o ST =T Yo~ 11
How the BOOK IS Organized ...t 11
WHhO ThiS BOOK IS FOI ...t 13
C# Versus Visual BasiC .NET ... e 13
CH VEISUS JAVA ...ttt ettt ae e e s se e sane e ane e s nneesneesareenns 14
CFH VEISUS Car ettt sttt ae e e e e s e e s ar e e sne e s neesneesare e e 14
Conventions Used in ThiS BOOK ... 14
0 U] Lo] SRR 15
We'd Like to Hear frOmM YOU ...t 15
ACKNOWIEAGEMENTS ... 16

Part I: The CH# LANGQUAGJEc.coieeeieeciee ettt te et sae s sneesneesareenneeennas 17

Chapter 1. C# and the .NET Frameworkccoceoeiininininincneeeese e 17
1.1 The .NET PlatfOorm s 17
1.2 The .NET FrameWOrK ... s 17
1.3 Compilation and the MSIL ... 19
1.4 The CH LANQUAGE.......co ittt sttt st ne e snneenreesnnas 19

Chapter 2. Getting Started:"Hello World" ... 21
2.1 Classes, ODbJecCts, and TYPES. ..ot 21
2.2 Developing "Hello World" ... 26

JUSE IN TIME COMPIIALION ..o 29
2.3 Using the Visual Studio .NET Debugger.......cccoeiiininenencneneseeeee, 29

Chapter 3. C# Language FuNdamentalS...........cooeeienenenenencseeee e 33
B TY PSS et E et b n R e renar e reen e 33

The Stack and the HEaAPccoueiiie e et 34
3.2 Variables and CONSTANTS.........cccccvveerieie e 36

A AT L (=] T =T (SRS 36
G G B o g o] = 1S1S] [0 1 SR 42
G VAV o T (=2S] o 1= [= SR 42
3.5 STAEMENTS ... et er e 43

StAtEMENT BIOCKS ... e s 46

All Operators Are Not Created EQUAL........cccoeiririiine e 47

WHhItESPACE ANU BIaCESc.coiiiiiiierieierieeiee ettt e 53
3.6 OPEIALOIS ...t b et et r e r e e re e 56

Short-CirCUit EVAIUALIONooeiieiceeee st 61
3.7 NAIMESPACES ..ottt r e sb et e e e are e resaeenre e e 63
3.8 PreproCesSOr DIFECTHIVES ...ttt 65

Chapter 4. Classes and ODJECES.......cc.cciiieeiie e e e 69
4.1 DefiNiNgG CIaSSESccci ottt ae e nnee s 69
4.2 CreatiNng ODJECTS ..ot b 73
4.3 UsIiNg StatiC MEMDEIS........ooiiiieee s 78

Static Methods to Access StatiC Fields ... 82
4.4 DeStroyiNg ODJECTESccoiiiiiiee ettt nree s 82

HOW FINAIZE WOTKS ...t s 82
4.5 PasSING PAramEterS........ccciiiiiiiiie ettt sre e s ae s nnee s 84
4.6 Overloading Methods and CONSErUCLOrScccceviiiiee e 89

4.7 Encapsulating Data with Properti€sS........ccccveiieiiiiiie e 91

4.8 REAdONIY FIEIAS ..ot 94
Chapter 5. Inheritance and PolymorphiSm ..., 97
5.1 Specialization and Generalization...........cccooviiieiiiicie i, 97
About the Unified Modeling LANQUAGEooererirenerienineeee s 97
L 1 a1 aT=T) = Lo = PSS 99
5.3 POlYMOIPRISIM .o 102
5.4 ADSTracCt ClIASSEScociiiiiiiiie et e 107
5.5 The Root of all Classes: ODJECt ... 110
5.6 Boxing and UnNboXiNg TYPES ...t 112
5.7 NESTING ClASSES.....ccciiiiectie ettt st er e ere e 114
Chapter 6. Operator OVErloadingccceererirerese e 117
6.1 Using the operator KEYWOId........c.ccoceiiiiiiiiiiiesie et 117
6.2 Supporting Other .NET LaNQUAQES........cccceecieiiriiieesie e 118
6.3 Creating Useful OperatorsS ...t 118
O e o | [ox=1 I == 1] =SS OSPRS 118
6.5 The EqUAlS OPEIaAtOr ..o ittt 118
6.6 CONVEIrSION OPEIATOIS.ciiiiiiieiieieieie et 119
CRAPLEE 7. SHIUCTS ...t e b sre e e be e sae e e aeenree s 125
7.1 DefiNING STIUCTSooiiiiciccee et ae e nree s 125
7.2 Creating STIUCTS.......cooi ittt st sne e nree s 127
Chapter 8. INEITACES ...t et reesree s 131
G 131
8.1 Implementing an INtErface ... 131
8.2 Accessing Interface Methods..........cccveviiieiiie s 141
8.3 Overriding Interface Implementations..........ccccccvveeiiiecceccee e, 147
8.4 Explicit Interface Implementation...........cccccoevviiie e 150
Chapter 9. Arrays, Indexers, and CoOllECHIONS..........ccccvevierierecie e 159
S B N = 1Y SRR 159
9.2 The foreach StatemeENnt ... 162
0.3 TNAEXEIS....eeiieieieeee ettt b et st sb e et e saeesbeebesneenbe s 175
9.4 Collection INTEITACES ..o e 182
B N g = |V S SRS OSPRS 187
O.6 QUEBUEBS ...ttt e e e et e e e e e st e e e e e e abae e e e eaneeeeeanneeeeeasneeeaeannes 197
O S = T0] 7 3SR 199
O S T B o3 i o] o F= 1 g [SRS 202
0T To I = T (o] (RSP PS 204
Chapter 10. Strings and Regular EXPreSSIiONS........ccccviereeieieereneseseseeseseseseeeas 209
IO Y 1] o [PSR 209
Delimiter LIMITAtIONSoceeieeeceeseee et e e et e e e e e aeeneesseesesneesneenseans 222
10.2 Regular EXPreSSIONS ...t 222
Chapter 11. Handling EXCEPLIONSccviiriieeieriesie sttt 233
11.1 Throwing and Catching EXCEPLIONSccccverireririieienerese e 233
11.2 EXCEPTLION ODJECTS....cciiiieiieriesiesteeeree et 241
11.3 CUSTOM EXCEPLIONS ..ottt 244
11.4 Rethrowing EXCEPLIONSccoiiiiiiiieee e 246
Chapter 12. Delegates and EVENTSccoeiiiniieneneeeee e 251

12.1 DEIEOALES.....cei e 251

Programming C#

2.2 EVENTS ...ttt ae e e ne e e 268
Part 11: Programming WIth CH.........ooo i 277
Chapter 13. Building Windows AppliCatioNS........ccooviirerierieiirerese e 277

13.1 Creating a Simple WIiNdowSs FOIM ..o 278

13.2 Creating a Windows Form Applicationcccceceeeiininenenenenesene 289

13.3 XML Documentation COMMENTScccceeviiieriereeereesee e neens 309

13.4 Deploying an APPHCAtIONcccceiiieiiicceece e 311
Chapter 14. Accessing Data With ADO.NETcccoiriiininieeeresese e 321

14.1 Relational Databases and SQLccccoceviiievieneeieseere e 321

14.2 The ADO.Net ObjeCt Model ... 324

14.3 Getting Started wWith ADO.NETcccoiiiiiiineeeee s 325

14.4 Using ADO Managed ProVIders.........cccceiieiiieiie s 328

14.5 Working with Data-Bound CoONtrolS.........ccccccevvicieiieciecsie e 330

14.6 Changing Database ReCOrdSccccceiieiiiiiiieiiecec e 340

14.7 ADO.NET @NA XML...ooiiiiiiiiiiisiisieeeeee e st 353
Chapter 15. ProgrammingWeb Applications with Web Formscccoovnnenees 355

15.1 Understanding Web FOIrmS ... 355

15.2 Creating @ Web FOIM ...t 358

15.3 ADAING CONTIOIS ..o e 361

RS N BT Y = =] T [o T [SRR 362

15.5 Responding to Postback EVENnts........ccccccviiiiciiecieccie e 369

15.6 ASP.NET QN CH ..ottt ne e nne s 371
Chapter 16. Programming WED SEeIVICESccocviiiiiiiiiie et 373

16.1 SOAP, WSDL, and DISCOVEIY.......ccocuiiiiieeiiecitiesie e see e siee e s 373

16.2 Building @ Web SEerViCe ...t 374
WSDL aNd NAMESPACESoeeiueiiiieiiie et estee ettt s te et s e sre e steesbe e sreenseesnne e 375

16.3 Creating the PrOXY ...ttt 379
Part l1l: C# and the .NET CLR ..ot 385
Chapter 17. Assemblies and VErsioNiNgccccuoererereninieniieeesesie s 385

I I | 1= SRS 385

2 |V 1Y = T = - SRS 385

17.3 Security BOUNAAIY ... 385

iR V=T 1 o] 1 T PSPPSR 385

17.5 MaANITESTS .. .ottt b e e e nne s 386

17.6 Multi-Module ASSEMDBIIES ..o 387

17.7 Private ASSEMDIIES ..ot e 395

17.8 Shared ASSEmMDIIES.........cooi e 395
PUDBIIC K@Y ENCIYPLION ..ottt 397
Chapter 18. Attributes and RefleCtion...........ccooiiiiiiiincceeeee e 401

RS T N | o T =SSR 401

18.2 INtriNSIC ALHDULES ... 401

18.3 CUSTtOM ATLIDULES ... e 403

18.4 REFIECTION ...ttt e ae s 407

18.5 RefleCtion EMIT ..o et 416
Chapter 19. Marshaling and ReMOLING.........cccoririririrenireeie s 437

19.1 AppPlication DOMEAINS ... 438

TO.2 CONTEXT ...ttt e e s r e e s r e e sne e s e e e sneesrnee e 446

LS G B =7 8 0o] 1 T PO PSP 448

Chapter 20. Threads and Synchronization ... 457

72 O It R I 01 == T LSRR 457
20.2 SYNCNIONIZATION......ccii ittt ere e esneenree s 465
20.3 Race Conditions and DeadlOCKS...........ccoieviriininiinenee e 474
Chapter 21, SrEAIMScceiiieee ettt e bbb b b nre e ene e 477
21.1 Files and DIFrE€CTONIEScccieeieere et ee s ese e sreenae e sseeaesneennens a77
21.2 Reading and Writing Data..........cccccoeiiiiiiee st 487
21.3 ASYNCNRIONOUS /0.t 493
21.4 NETWOIK 17O ..t et ne s 497
21.5 WED STreamIS.... e e 513
21.6 SEerIAlIZAtION ..o e e 516
P2 A [T F= N U0 IS (0] = T 1< SR OSRRR 523
Chapter 22. Programming .NET and COM.........cccccoviiiiieiieciie et 527
22.1 Importing ACtiveX CONTIOIScccooiiiii e 527
22.2 Importing COM COMPONENTS.......ccciiiiiieiiecieesee et 534
22.3 Exporting .NET COMPONENTScooiiiiiiiiieceeee ettt s 541
22.4 PIINVOKE ...ttt bttt s be b neenne s 543
22.5 POINTEIS ..ottt e sttt e e e ae e te e e s seeteeseesseentesneenseenseaneensens 545
ApPpPeNndixX A. CH# KEYWOIUS......c.coiie ittt ne e 551

[©70] (0] o] o[o TS O TP PRR PSRRI 558

Programming C#

Programming C#

Preface
About This Book
How the Book Is Organized
Who This Book Is For
C# Versus Visual Basic .NET
C# Versus Java
C# versus C++
Conventions Used in This Book
Support
We'd Like to Hear from You
Acknowledgements

I: The C# Language

1. C# and the .NET Framework
1.1 The .NET Platform
1.2 The .NET Framework
1.3 Compilation and the MSIL
1.4 The C# Language

2. Getting Started:"Hello World"
2.1 Classes, Objects, and Types
2.2 Developing "Hello World"
2.3 Using the Visual Studio .NET Debugger

3. C# Language Fundamentals
3.1 Types
3.2 Variables and Constants
3.3 Expressions
3.4 Whitespace
3.5 Statements
3.6 Operators
3.7 Namespaces
3.8 Preprocessor Directives

4. Classes and Objects
4.1 Defining Classes
4.2 Creating Objects
4.3 Using Static Members
4.4 Destroying Objects
4.5 Passing Parameters
4.6 Overloading Methods and Constructors
4.7 Encapsulating Data with Properties
4.8 Readonly Fields

5. Inheritance and Polymorphism
5.1 Specialization and Generalization
5.2 Inheritance

5.3 Polymorphism

5.4 Abstract Classes

5.5 The Root of all Classes: Object
5.6 Boxing and Unboxing Types
5.7 Nesting Classes

6. Operator Overloading
6.1 Using the operator Keyword
6.2 Supporting Other .NET Languages
6.3 Creating Useful Operators
6.4 Logical Pairs
6.5 The Equals Operator
6.6 Conversion Operators

7. Structs
7.1 Defining Structs
7.2 Creating Structs

8. Interfaces
8.1 Implementing an Interface
8.2 Accessing Interface Methods
8.3 Overriding Interface Implementations
8.4 Explicit Interface Implementation

9. Arrays, Indexers, and Collections
9.1 Arrays
9.2 The foreach Statement
9.3 Indexers
9.4 Collection Interfaces
9.5 Array Lists
9.6 Queues
9.7 Stacks
9.8 Dictionaries

10. Strings and Regular Expressions
10.1 Strings
10.2 Regular Expressions

11. Handling Exceptions
11.1 Throwing and Catching Exceptions
11.2 Exception Objects
11.3 Custom Exceptions
11.4 Rethrowing Exceptions

12. Delegates and Events
12.1 Delegates
12.2 Events

[I: Programming with C#

Programming C#

13. Building Windows Applications
13.1 Creating a Simple Windows Form
13.2 Creating a Windows Form Application
13.3 XML Documentation Comments
13.4 Deploying an Application

14. Accessing Data with ADO.NET
14.1 Relational Databases and SQL
14.2 The ADO.Net Object Model
14.3 Getting Started with ADO.NET
14.4 Using ADO Managed Providers
14.5 Working with Data-Bound Controls
14.6 Changing Database Records
14.7 ADO.NET and XML

15. ProgrammingWeb Applications with Web Forms
15.1 Understanding Web Forms
15.2 Creating a Web Form
15.3 Adding Controls
15.4 Data Binding
15.5 Responding to Postback Events
15.6 ASP.NET and C#

16. Programming Web Services
16.1 SOAP, WSDL, and Discovery
16.2 Building a Web Service
16.3 Creating the Proxy

[1l: C# and the .NET CLR

17. Assemblies and Versioning
17.1 PE Files
17.2 Metadata
17.3 Security Boundary
17.4 Versioning
17.5 Manifests
17.6 Multi-Module Assemblies
17.7 Private Assemblies
17.8 Shared Assemblies

18. Attributes and Reflection
18.1 Attributes
18.2 Intrinsic Attributes
18.3 Custom Attributes
18.4 Reflection
18.5 Reflection Emit

19. Marshaling and Remoting
19.1 Application Domains
19.2 Context

19.3 Remoting

20. Threads and Synchronization
20.1 Threads
20.2 Synchronization
20.3 Race Conditions and Deadlocks

21. Streams
21.1 Files and Directories
21.2 Reading and Writing Data
21.3 Asynchronous 1/0O
21.4 Network 1/0
21.5 Web Streams
21.6 Serialization
21.7 Isolated Storage

22. Programming .NET and COM
22.1 Importing ActiveX Controls
22.2 Importing COM Components
22.3 Exporting .NET Components
22.4 PlInvoke
22.5 Pointers

A. C# Keywords

Colophon

10

Programming C#

Preface

Every 10 years or so a new approach to programming hits like a tsunami. In the early 1980s, the new
technologies were Unix, which could be run on a desktop, and a powerful new language called C,
developed by AT&T. The early 90's brought Windows and C++. Each of these developments
represented a sea change in the way you approached programming. .NET and C# are the next wave,
and this book is intended to help you ride it.

Microsoft has “bet the company' on .NET. When a company of their size and influence spends billions
of dollars and reorganizes its entire corporate structure to support a new platform, it is reasonable for
programmers to take notice. It turns out that .NET represents a major change in the way you'll think
about programming. It is, in short, a new development platform designed to facilitate object-oriented
Internet development. The programming language of choice for this object-oriented Internet-centric
platform is C# which builds on the lessons learned from C (high performance), C++ (object-oriented
structure), Java (security), and Visual Basic (rapid development) to create a new language ideally
suited for developing component-based n-tier distributed web applications.

About This Book

This book is a tutorial, both on C# and on writing .NET applications with C#. Part | focuses on the
details of the language. If you are already proficient in a programming language, you may be able to
skim this section, but be sure to read through Chapter 1, which provides an overview of the language
and the .NET platform. If you are new to programming, you'll want to read the book as the King of
Hearts instructed the White Rabbit: "Begin at the beginning, and go on till you come to the end: then
stop."™

11 Alice's Adventures in Wonderland by Lewis Carroll.

How the Book Is Organized

Part | of this book concentrates on the C# language. Part 11 details how to write .NET programs, and
Part 111 describes how to use C# with the .NET Common Language Runtime library.

Part |
Chapter 1, introduces you to the C# language and the .NET platform.

Chapter 2 demonstrates a simple program, to provide a context for what follows, and introduces you
to the Visual Studio IDE and a number of C# language concepts.

Chapter 3, presents the basics of the language, from built-in data types to keywords.

Classes define new types and allow the programmer to extend the language so that you can better
model the problem you're trying to solve. Chapter 4, explains the components that form the heart and
soul of C#.

Classes can be complex representations and abstractions of things in the real world. Chapter 5,
discusses how classes relate and interact.

Chapter 6, teaches you how to add operators to your user-defined types.

Chapter 7 and Chapter 8 introduce Structs and Interfaces, respectively, both close cousins to
classes. Structs are lightweight objects, more restricted than classes, that make fewer demands on the
operating system and on memory. Interfaces are contracts; they describe how a class will work so that
other programmers can interact with your objects in well-defined ways.

11

Object-oriented programs often create a great many objects. It is convenient to group these objects
and manipulate them together, and C# provides extensive support for collections. Chapter 9,
explores the collection classes provided by the Base Class Library and how to create your own
collection types as well.

Chapter 10 discusses how you can use C# to manipulate text Strings and Regular Expressions. Most
Windows and web programs interact with the user, and strings play a vital role in the user interface.

Chapter 11, explains how to deal with exceptions, which provide an object-oriented mechanism for
handling life's little emergencies.

Both Windows and web applications are event-driven. In C#, events are first-class members of the
language. Chapter 12, focuses on how events are managed, and how delegates, object-oriented
type-safe callback mechanisms, are used to support event handling.

Part 11

This section and the next will be of interest to all readers, no matter how much experience you may
already have with other programming languages. These sections explore the details of the .NET
platform.

Part 1l details how to write .NET programs: both desktop applications with Windows Forms and web
applications with Web Forms. In addition, Part 11 describes database interactivity and how to create
web services.

On top of this infrastructure sits a high-level abstraction of the operating system, designed to facilitate
object-oriented software development. This top tier includes ASP.NET and Windows Forms. ASP.NET
includes both Web Forms, for rapid development of web applications, and Web Services, for creating
web objects with no user interface.

C# provides a Rapid Application Development (RAD) model similar to that previously available only in
Visual Basic. Chapter 13, describes how to use this RAD model to create professional-quality
Windows programs using the Windows Forms development environment.

Whether intended for the Web or for the desktop, most applications depend on the manipulation and
management of large amounts of data. Chapter 14, explains the ADO.NET layer of the .NET
Framework and explains how to interact with Microsoft SQL Server and other data providers.

Chapter 15 combines the RAD techniques demonstrated in Chapter 13 with the data techniques
from Chapter 14 to demonstrate Building Web Applications with Web Forms.

Not all applications have a user interface. Chapter 16 focuses on the second half of ASP.NET
technology: Web Services. A web service is a distributed application that provides functionality via
standard web protocols, most commonly XML and HTTP.

Part 111

A runtime is an environment in which programs are executed. The Common Language Runtime (CLR)
is the heart of .NET. It includes a data typing system which is enforced throughout the platform and
which is common to all languages developed for .NET. The CLR is responsible for processes such as
memory management and reference counting of objects.

Another key feature of the .NET CLR is garbage collection. Unlike with traditional C/C++ programming,
in C# the developer is not responsible for destroying objects. Endless hours spent searching for
memory leaks are a thing of the past; the CLR cleans up after you when your objects are no longer in

12

Programming C#

use. The CLR's garbage collector checks the heap for unreferenced objects and frees the memory
used by these objects.

The .NET platform and class library extends upward into the middle-level platform, where you find an
infrastructure of supporting classes, including types for interprocess communication, XML, threading,
I/O, security, diagnostics, and so on. The middle tier also includes the data-access components
collectively referred to as ADO.NET that are discussed in Chapter 14.

Part 111 of this book discusses the relationship of C# to the Common Language Runtime and the
Base Class Library.

Chapter 17, distinguishes between private and public assemblies and describes how assemblies are
created and managed. In .NET, an assembly is a collection of files that appears to the user to be a
single DLL or executable. An assembly is the basic unit of reuse, versioning, security, and deployment.

.NET assemblies include extensive metadata about classes, methods, properties, events, and so forth.
This metadata is compiled into the program and retrieved programmatically through reflection.
Chapter 18, explores how to add metadata to your code, how to create custom attributes, and how to
access this metadata through reflection. It goes on to discuss dynamic invocation, in which methods
are invoked with late (runtime) binding, and ends with a demonstration of reflection emit, an advanced
technique for building self-modifying code.

The .NET Framework was designed to support web-based and distributed applications. Components
created in C# may reside within other processes on the same machine or on other machines across
the network or across the Internet. Marshaling is the technique of interacting with objects that aren't
really there, while remoting comprises techniques for communicating with such objects. Chapter 19,
elaborates.

The Base Class Libraries provide extensive support for asynchronous 1/0O and other classes that make
explicit manipulation of threads unnecessary. However, C# does provide extensive support for
Threads and Synchronization, discussed in Chapter 20.

Chapter 21 discusses Streams, a mechanism not only for interacting with the user but also for
retrieving data across the Internet. This chapter includes full coverage of C# support for serialization:
the ability to write an object graph to disk and read it back again.

Chapter 22, explores interoperability—the ability to interact with COM components created outside
the managed environment of the .NET Framework. It is possible to call components from C#
applications into COM and to call components from COM into C#. Chapter 22 describes how this is
done.

The book concludes with an appendix of C# Keywords.

Who This Book Is For

This book was written for programmers who want to develop applications for the .NET platform. No
doubt, many of you already have experience in C++, Java, or Visual Basic (VB). Other readers may
have experience with other programming languages, and some readers may have no specific
programming experience, but perhaps have been working with HTML and other web technologies.
This book is written for all of you, though if you have no programming experience at all, you may find
some of it tough going.

Ct# Versus Visual Basic .NET

The premise of the .NET Framework is that all languages are created equal. To paraphrase George
Orwell, however, some languages are more equal than others. C# is an excellent language for .NET

13

development. You will find it is an extremely versatile, robust and well-designed language. It is also
currently the language most often used in articles and tutorials about .NET programming.

It is likely that many VB programmers will choose to learn C#, rather than upgrading their skills to

VB .NET. This would not be surprising because the transition from VB6 to VB .NET is, arguably, nearly
as difficult as from VB6 to C#—and, whether it's fair or not, historically, C-family programmers have
had higher earning potential than VB programmers. As a practical matter, VB programmers have
never gotten the respect or compensation they deserve, and C# offers a wonderful chance to make a
potentially lucrative transition.

In any case, if you do have VB experience, welcome! This book was designed with you in mind too,
and I've tried to make the conversion easy.

C# Versus Java

Java Programmers may look at C# with a mixture of trepidation, glee, and resentment. It has been
suggested that C# is somehow a "rip-off* of Java. | won't comment on the religious war between
Microsoft and the "anyone but Microsoft" crowd except to acknowledge that C# certainly learned a
great deal from Java. But then Java learned a great deal from C++, which owed its syntax to C, which
in turn was built on lessons learned in other languages. We all stand on the shoulders of giants.

C# offers an easy transition for Java programmers; the syntax is very similar and the semantics are
familiar and comfortable. Java programmers will probably want to focus on the differences between
Java and C# in order to use the C# language effectively. I've tried to provide a series of markers along
the way (see the notes to Java programmers within the chapters).

C# versus C++

While it is possible to program in .NET with C++, it isn't easy or natural. Frankly, having worked for ten
years as a C++ programmer and written a dozen books on the subject, I'd rather have my teeth drilled
than work with managed C++. Perhaps it is just that C# is so much friendlier. In any case, once | saw

C# | never looked back.

Be careful, though; there are a number of small traps along the way, and I've been careful to mark
these with flashing lights and yellow cones. You'll find notes for C++ programmers throughout the
book.

Conventions Used in This Book

The following font conventions are used in this book:

Italic is used for:
Pathnames, filenames, and program names.
Internet addresses, such as domain names and URLSs.
New terms where they are defined.

Const ant W dt h is used for:

Command lines and options that should be typed verbatim.
Names and keywords in program examples, including method names, variable names, and
class names.

Constant Width Italic is used for replaceable items, such as variables or optional elements, within
syntax lines or code.

14

Programming C#

Constant Width Bold is used for emphasis within program code.

Pay special attention to notes set apart from the text with the following icons:

e This is a tip. It contains useful supplementary information about
.) the topic at hand.
i -

This is a warning. It helps you solve and avoid annoying

N problems.

Support

As part of my responsibilities as author, | provide ongoing support for my books through my web site.
You can also obtain the source code for all of the examples in Programming C# at my site:

http://www.LibertyAssociates.com

On this web site, you'll also find access to a book-support discussion group and a section set aside for
guestions about C#. Before you post a question, however, please check to see if there is an FAQ
(Frequently Asked Questions) list or an errata file. If you check these files and still have a question,
then please go ahead and post to the discussion center.

The most effective way to get help is to ask a very precise question or even to create a very small
program that illustrates your area of concern or confusion. You may also want to check the various
newsgroups and discussion centers on the Internet. Microsoft offers a wide array of newsgroups, and
Developmentor (http://www.develop.com) has a wonderful .NET email discussion list as does
Charles Carroll at http://www.asplists.com.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list examples, errata, and any plans for future editions.
You can access this information at:

http://www.oreilly.com/catalog/progcsharp

You can also send messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To comment on the book, send email to:

15

bookguestions@oreilly.com

For more information about this book and others, as well as additional technical articles and
discussion on the C# and the .NET Framework, see the O'Reilly & Associates web site:

http://www.oreilly.com

and the O'Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

Acknowledgements

To ensure that Programming C# is accurate, complete and targeted at the needs and interests of
professional programmers, | enlisted the help of some of the brightest programmers | know, including
Donald Xie, Dan Hurwitz, Seth Weiss, Sue Lynch, Cliff Gerald, and Tom Petr. Jim Culbert not only
reviewed the book and made extensive suggestions, but continually pointed me back at the practical
needs of working programmers. Jim's contributions to this book cannot be overstated.

Mike Woodring of Developmentor taught me more about the CLR in a week than | could have learned
on my own in six months. A number of folks at Microsoft and O'Reilly helped me wrestle with the twin
beasts of C# and .NET, including (but not limited to) Eric Gunnerson, Rob Howard, Piet Obermeyer,
Jonathan Hawkins, Peter Drayton, Brad Merrill, and Ben Albahari. Susan Warren may be one of the
most amazing programmers I've ever met; her help and guidance is deeply appreciated.

John Osborn signed me to O'Reilly, for which | will forever be in his debt. Valerie Quercia, Brian
McDonald, Jeff Holcomb, Claire Cloutier, and Tatiana Diaz helped make this book better than what I'd
written. Rob Romano created a number of the illustrations and improved the others.

Al Stevens and Eric Gunnerson reviewed the manuscript and saved me from a series of embarrassing
errors and omissions. | am deeply grateful.

16

Programming C#

Part I: The C# Language
Chapter 1. C# and the .NET Framework

The goal of C# is to provide a simple, safe, modern, object-oriented, Internet-centric, high-
performance language for .NET development. C# is a new language, but it draws on the lessons
learned over the past three decades. In much the way that you can see in young children the features
and personalities of their parents and grandparents, you can easily see in C# the influence of Java,
C++, Visual Basic (VB), and other languages.

The focus of this book is the C# language and its use as a tool for programming on the .NET platform.
In my primers on C++,1 | advocate learning the language first, without regard to Windows or Unix
programming. With C# that approach would be pointless. You learn C# specifically to create .NET
applications; pretending otherwise would miss the point of the language. Thus, this book does not
consider C# in a vacuum but places the language firmly in the context of Microsoft's .NET platform and
in the development of desktop and Internet applications.

11 See Sams Teach Yourself C++ in 21 Days, also by Jesse Liberty.

This chapter introduces both the C# language and the .NET platform, including the .NET Framework.

1.1 The .NET Platform

When Microsoft announced C# in July 2000, its unveiling was part of a much larger event: the
announcement of the .NET platform. The .NET platform is, in essence, a new development framework
that provides a fresh application programming interface (API) to the services and APIs of classic
Windows operating systems, especially Windows 2000, while bringing together a number of disparate
technologies that emerged from Microsoft during the late 1990s. Among the latter are COM+
component services, the ASP web development framework, a commitment to XML and object-oriented
design, support for new web services protocols such as SOAP, WSDL, and UDDI, and a focus on the
Internet, all integrated within the DNA architecture.

Microsoft says it is devoting 80% of its research and development budget to .NET and its associated
technologies. The results of this commitment to date are impressive. For one thing, the scope of .NET
is huge. The platform consists of four separate product groups:

A set of languages, including C# and Visual Basic .NET; a set of development tools, including
Visual Studio .NET; a comprehensive class library for building web services and web and
Windows applications; as well as the Common Language Runtime (CLR) to execute objects
built within this framework.

A set of .NET Enterprise Servers, formerly known as SQL Server 2000, Exchange 2000,
BizTalk 2000, and so on, that provide specialized functionality for relational data storage,
email, B2B commerce, etc.

An offering of commercial web services, recently announced as Project Hailstorm; for a fee,
developers can use these services in building applications that require knowledge of user
identity, etc.

New .NET-enabled non-PC devices, from cell phones to game boxes.

1.2 The .NET Framework

Microsoft .NET supports not only language independence, but also language integration. This means
that you can inherit from classes, catch exceptions, and take advantage of polymorphism across
different languages. The .NET Framework makes this possible with a specification called the Common
Type System (CTS) that all .NET components must obey. For example, everything in .NET is an
object of a specific class that derives from the root class called Syst em Cbj ect . The CTS supports

17

the general concept of classes, interfaces, delegates (which support callbacks), reference types, and
value types.

Additionally, .NET includes a Common Language Specification (CLS), which provides a series of basic
rules that are required for language integration. The CLS determines the minimum requirements for
being a .NET language. Compilers that conform to the CLS create objects that can interoperate with
one another. The entire Framework Class Library (FCL) can be used by any language that conforms
to the CLS.

The .NET Framework sits on top of the operating system, which can be any flavor of Windows,! and
consists of a number of components. Currently, the .NET Framework consists of:

[21 Because of the architecture of the CLR, the operating system can be potentially any flavor of Unix or another operating system
altogether.

Four official languages: C#, VB .NET, Managed C++, and JScript .NET

The Common Language Runtime (CLR), an object-oriented platform for Windows and web
development that all these languages share

A number of related class libraries, collectively known as the Framework Class Library (FCL).

Figure 1-1 breaks down the .NET Framework into its system architectural components.

Figure 1-1. NET Framework architecture

Web Services Web Farms Windows Forms

Data and XML dasses
[ADONET, SQL, XSIT, XPath, XML efc.)

Framewark Bose Closses
{10, string, net, security, threading, text, reflection, collections, efc.)

Common Longuage Runtime
(debug, exception, fype checking, /1T compilers)

Windows Platiorm
The most important component of the .NET Framework is the CLR, which provides the environment in
which programs are executed. The CLR includes a virtual machine, analogous in many ways to the
Java virtual machine. At a high level, the CLR activates objects, performs security checks on them,

lays them out in memory, executes them, and garbage-collects them. (The Common Type System is
also part of the CLR.)

In Figure 1-1, the layer on top of the CLR is a set of framework base classes, followed by an
additional layer of data and XML classes, plus another layer of classes intended for web services, web
forms, and Windows forms. Collectively, these classes are known as the Framework Class Library
(FCL), one of the largest class libraries in history and one that provides an object-oriented API to all
the functionality that the .NET platform encapsulates. With more than 5,000 classes, the FCL
facilitates rapid development of desktop, client/server, and other web services and applications.

The set of framework base classes, the lowest level of the FCL, is similar to the set of classes in Java.
These classes support rudimentary input and output, string manipulation, security management,
network communication, thread management, text manipulation, reflection and collections functionality,
etc.

18

Programming C#

Above this level is a tier of classes that extend the base classes to support data management and
XML manipulation. The data classes support persistent management of data that is maintained on
backend databases. These classes include the Structured Query Language (SQL) classes to let you
manipulate persistent data stores through a standard SQL interface. Additionally, a set of classes
called ADO.NET allows you to manipulate persistent data. The .NET Framework also supports a
number of classes to let you manipulate XML data and perform XML searching and translations.

Extending the framework base classes and the data and XML classes is a tier of classes geared
toward building applications using three different technologies: Web Services, Web Forms, and
Windows Forms. Web Services include a number of classes that support the development of
lightweight distributed components, which will work even in the face of firewalls and NAT software.
Because Web Services employ standard HTTP and SOAP as underlying communications protocols,
these components support plug-and-play across cyberspace.

Web Forms and Windows Forms allow you to apply Rapid Application Development techniques to
building web and Windows applications. Simply drag and drop controls onto your form, double-click a
control, and write the code to respond to the associated event.

For a more detailed description of the .NET Framework, see .NET Framework Essentials, by Thuan
Thai and Hoag Lam (published by O'Reilly & Associates, 2001).

1.3 Compilation and the MSIL

In .NET, programs are not compiled into executable files; they are compiled into Microsoft
Intermediate Language (MSIL) files, which the CLR then executes. The MSIL (often shortened to IL)
files that C# produces are identical to the IL files that other .NET languages produce; the platform is
language-agnostic. A key fact about the CLR is that it is common; the same runtime supports
development in C# as well as in VB .NET.

C# code is compiled into IL when you build your project. The IL is saved in a file on disk. When you
run your program, the IL is compiled again, using the Just In Time (JIT) compiler (a process often
called JIT'ing). The result is machine code, executed by the machine's processor.

The standard JIT compiler runs on demand. When a method is called, the JIT compiler analyzes the IL
and produces highly efficient machine code, which runs very fast. The JIT compiler is smart enough to
recognize when the code has already been compiled, so as the application runs, compilation happens
only as needed. As .NET applications run, they tend to become faster and faster, as the already-
compiled code is reused.

The CLS means that all .NET languages produce very similar IL code. As a result, objects created in
one language can be accessed and derived from another. Thus it is possible to create a base class in
VB .NET and derive from it in C#.

1.4 The C# Language

The C# language is disarmingly simple, with only about 80 keywords and a dozen built-in datatypes,
but C# is highly expressive when it comes to implementing modern programming concepts. C#
includes all the support for structured, component-based, object-oriented programming that one
expects of a modern language built on the shoulders of C++ and Java.

The C# language was developed by a small team led by two distinguished Microsoft engineers,
Anders Hejlsberg and Scott Wiltamuth. Hejlsberg is also known for creating Turbo Pascal, a popular
language for PC programming, and for leading the team that designed Borland Delphi, one of the first
successful integrated development environments for client/server programming.

At the heart of any object-oriented language is its support for defining and working with classes.
Classes define new types, allowing you to extend the language to better model the problem you are

19

trying to solve. C# contains keywords for declaring new classes and their methods and properties, and
for implementing encapsulation, inheritance, and polymorphism, the three pillars of object-oriented
programming.

In C# everything pertaining to a class declaration is found in the declaration itself. C# class definitions
do not require separate header files or Interface Definition Language (IDL) files. Moreover, C#
supports a new XML style of inline documentation that greatly simplifies the creation of online and print
reference documentation for an application.

C# also supports interfaces, a means of making a contract with a class for services that the interface
stipulates. In C#, a class can inherit from only a single parent, but a class can implement multiple
interfaces. When it implements an interface, a C# class in effect promises to provide the functionality
the interface specifies.

C# also provides support for structs, a concept whose meaning has changed significantly from C++. In
C#, a struct is a restricted, lightweight type that, when instantiated, makes fewer demands on the
operating system and on memory than a conventional class does. A struct can't inherit from a class or
be inherited from, but a struct can implement an interface.

C# provides component-oriented features, such as properties, events, and declarative constructs
(called attributes). Component-oriented programming is supported by the CLR's support for storing
metadata with the code for the class. The metadata describes the class, including its methods and
properties, as well as its security needs and other attributes, such as whether it can be serialized; the
code contains the logic necessary to carry out its functions. A compiled class is thus a self-contained
unit; therefore, a hosting environment that knows how to read a class' metadata and code needs no
other information to make use of it. Using C# and the CLR, it is possible to add custom metadata to a
class by creating custom attributes. Likewise, it is possible to read class metadata using CLR types
that support reflection.

An assembly is a collection of files that appear to the programmer to be a single dynamic link library
(DLL) or executable (EXE). In .NET, an assembly is the basic unit of reuse, versioning, security, and
deployment. The CLR provides a number of classes for manipulating assemblies.

A final note about C# is that it also provides support for directly accessing memory using C++ style
pointers and keywords for bracketing such operations as unsafe, and for warning the CLR garbage
collector not to collect objects referenced by pointers until they are released.

20

Programming C#

Chapter 2. Getting Started:"Hello World"

It is a time-honored tradition to start a programming book with a "Hello World" program. In this chapter,
we will create, compile, and run a simple "Hello World" program written in C#. The analysis of this brief
program will introduce key features of the C# language.

Example 2-1 illustrates the fundamental elements of a very elementary C# program.

Example 2-1. A simple "Hello World" program in C#
class Hellowrld

{
static void Main()
{
/'l Use the system consol e obj ect
System Consol e. WiteLine("Hello World");
}
}

Compiling and running Hel | o\V\r | d displays the words "Hello World" at the console. Let's take a
closer look at this simple program.

2.1 Classes, Objects, and Types

The essence of object-oriented programming is the creation of new types. A type represents a thing.
Sometimes the thing is abstract, such as a data table or a thread; sometimes it is more tangible, such
as a button in a window. A type defines the thing's general properties and behaviors.

If your program uses three instances of a button type in a window—say, an OK, a Cancel, and a Help
button—each instance will share certain properties and behaviors. Each, for example, will have a size
(though it might differ from that of its companions), a position (though again, it will almost certainly
differ in its position from the others), and a text label (e.g., "OK", "Cancel," and "Help"). Likewise, all
three buttons will have common behaviors, such as the ability to be drawn, activated, pressed, and so
forth. Thus, the details might differ among the individual buttons, but they are all of the same type.

As in many object-oriented programming languages, in C# a type is defined by a class, while the
individual instances of that class are known as objects. Later chapters will explain that there are other
types in C# besides classes, including enums, structs, and delegates, but for now the focus is on
classes.

The "Hello World" program declares a single type: the Hel | o\V\r | d class. To define a C# type, you
declare it as a class using the cl ass keyword, give it a name—in this case, Hel | 0\V\or | d—and then
define its properties and behaviors. The property and behavior definitions of a C# class must be
enclosed by open and closed braces ({ }).

i

C++ programmers take note: there is no semicolon after the
.) closing brace.

1wk

IS

2.1.1 Methods

A class has both properties and behaviors. Behaviors are defined with member methods; properties
are discussed in Chapter 3.

21

A method is a function owned by your class. In fact, member methods are sometimes called member
functions. The member methods define what your class can do or how it behaves. Typically, methods
are given action names, such as Wit eLi ne() or AddNunber s() . In the case shown here, however,
the class method has a special name, Vai n(), which doesn't describe an action but does designate
to the Common Language Runtime (CLR) that this is the main, or first method, for your class.

Unlike C++, Vai n is capitalized in C# and can return i nt or voi d.

The CLR calls Vai n() when your program starts. Vai n() is the entry point for your program, and
every C# program must have a Mai n() method.l!

11t is technically possible to have multiple Vai n() methods in C#; in that case you use the / nai n compiler directive to tell C# which
class contains the Vai n() method that should serve as the entry point to the program.

Method declarations are a contract between the creator of the method and the consumer (user) of the
method. It is possible, even likely, that the creator and consumer will be the same programmer, but
this does not have to be so; it is possible that one member of a development team creates the method
and another programmer consumes (or uses) it.

To declare a method, you specify a return value type followed by a name. Method declarations also
require parentheses, whether the method accepts parameters or not. For example:

int nyMethod(int size);

declares a method named ny Vet hod that takes one parameter: an integer which will be referred to
within the method as size. My method returns an integer value. The return value type tells the
consumer of the method what kind of data the method will return when it finishes running.

Some methods do not return a value at all; these are said to return void, which is specified by the
voi d keyword. For example:

voi d nyVoi dMvet hod() ;

declares a method that returns voi d and takes no parameters. In C# you must always declare a
return type or voi d.

2.1.2 Comments
A C# program can also contain comments. Take a look at the first line after the opening brace:
/'l Use the system consol e obj ect

The text begins with two forward slash marks (/ /). These designate a comment. A comment is a note
to the programmer and does not affect how the program runs. C# supports three types of comments.

The first type, shown here, indicates that all text to the right of the comment mark is to be considered a
comment, until the end of that line. This is known as a C++ style comment.

The second type of comment, known as a C-Style comment , begins with an open comment mark (/ *)
and ends with a closed comment mark (*/). This allows comments to span more than one line without
having to have / / characters at the beginning of each comment line, as shown in Example 2-2.

Example 2-2. lllustrating multiline comments

class Hello

{

22

Programming C#

static void Main()

{
/* Use the system consol e obj ect
as explained in the text in chapter 2 */
System Console. WiteLine("Hello World");
}

}

It is possible to nest C++ style comments within C-style comments. For this reason, it is common to
use C++ style comments whenever possible, and to reserve the C-style comments for "commenting-
out" blocks of code.

The third and final type of comment that C# supports is used to associate external XML-based
documentation with your code, and is illustrated in Chapter 13.

2.1.3 Console Applications

"Hello World" is an example of a console program. A console application has no user interface (Ul);
there are no list boxes, buttons, windows, and so forth. Text input and output is handled through the
standard console (typically a command or DOS window on your PC). Sticking to console applications
for now helps simplify the early examples in this book, and keeps the focus on the language itself. In
later chapters, we'll turn our attention to Windows and web applications, and at that time we'll focus on
the Visual Studio .NET Ul design tools.

All that the Vai n() method does in this simple example is write the text "Hello World" to the monitor.
The monitor is managed by an object named Consol e. This Consol e object has a method

W iteLine() which takes a string (a set of characters) and writes it to the standard output. When
you run this program, a command or DOS screen will pop up on your computer monitor and display
the words "Hello World."

You invoke a method with the dot operator (.). Thus, to call the Consol e object's
W iteLine()method, you write Consol e. WiteLine(...),fillinginthe string to be printed.

2.1.4 Namespaces

Consol e is only one of a tremendous number of useful types that are part of the .NET Framework
Class Library (FCL). Each class has a name, and thus the FCL contains thousands of names, such as
ArraylList,Dictionary, FileSelector,DataError, Event, and so on. Names and names;
hundreds, thousands, even tens of thousands of names.

This presents a problem. No developer can possibly memorize all the names that the .NET Framework
uses, and sooner or later you are likely to create an object and give it a name that has already been
used. What will happen if you develop your own Di ct i onary class, only to discover that it conflicts
with the Di ct i onary class that .NET provides? Remember, each class in C# must have a unique
name.

You certainly could rename your Di ct i onary class nySpeci al Di ct i onary, for example, but that
is a losing battle. New Di ct i onar vy types are likely to be developed, and distinguishing between their
type names and yours would be a nightmare.

The solution to this problem is to create a namespace. A hamespace restricts a name's scope, making
it meaningful only within the defined namespace.

Assume that | tell you that Jim is an engineer. The word "engineer" is used for many things in English,
and can cause confusion. Does he design buildings? Write software? Run a train?

23

In English | might clarify by saying "he's a scientist," or "he's a train engineer." A C# programmer could
tell you that Jim is a sci ence. engi neer ratherthanatrai n. engi neer. The namespace (in this
case, sci ence ortrai n) restricts the scope of the word which follows. It creates a "space" in which
that name is meaningful.

Further, it might happen that Jim is not just any kind of sci ence. engi neer . Perhaps Jim graduated
from MIT with a degree in software engineering, not civil engineering (are civil engineers especially
polite?). Thus, the object that is Ji mmight be defined more specifically as a

sci ence. sof t war e. engi neer . This classification implies that the namespace sof t war e is
meaningful within the namespace sci ence, and that engi neer in this context is meaningful within
the namespace sof t war e. If later you learn that Charlotte is a

transportation.train.engi neer,you will not be confused as to what kind of engineer she is.
The two uses of engi neer can coexist, each within its own namespace.

Similarly, if you learn that .NET has a Di ct i onary class within its Syst em Col | ecti ons
namespace, and that | have also created a Di ct i onary class within a

ProgCshar p. Dat aSt ruct ur es namespace, there is no conflict because each exists in its own
namespace.

In Example 2-1, the Consol e object's name is restricted to the Syst emnamespace by using the
code:

Syst em Consol e. WiteLine()
2.1.5 The Dot Operator (.)

In Example 2-1, the dot operator (.) is used both to access a method (and data) in a class (in this
case, the method Wi t eLi ne()), and to restrict the class name to a specific namespace (in this
case, to locate Consol e within the Syst emnamespace). This works well because in both cases we
are "drilling down" to find the exact thing we want. The top level is the Syst emnamespace (which
contains all the Syst emobjects that the Framework provides); the Consol e type exists within that
namespace, and the Wi t eLi ne() method is a member function of the Consol e type.

In many cases, namespaces are divided into subspaces. For example, the Syst emnamespace
contains a number of subnamespaces such as Confi gurati on, Col | ecti ons, Dat a, and so forth,
while the Col | ect i ons namespace itself is divided into multiple subnamespaces.

Namespaces can help you organize and compartmentalize your types. When you write a complex C#
program, you might want to create your own namespace hierarchy, and there is no limit to how deep
this hierarchy can be. The goal of namespaces is to help you divide and conquer the complexity of
your object hierarchy.

2.1.6 The using Keyword

Rather than writing the word Syst embefore Consol e, you could specify that you will be using types
from the Syst emnamespace by writing the statement:

usi ng System
at the top of the listing, as shown in Example 2-3.

Example 2-3. The using keyword

usi ng System
class Hello

24

Programming C#

{
static void Main()
/1 Consol e fromthe System nanmespace
Console. WiteLine("Hello World");
}
}

Notice that the usi ng Syst emstatement is placed before the Hel | o\V\r | d class definition.

Although you can designate that you are using the Syst emnamespace, unlike with some languages
you cannot designate that you are using the Syst em Consol e object. Example 2-4 will not compile.

Example 2-4. Code that does not compile (not legal C#)

usi ng System Consol e;
class Hello

{
static void Main()
{
/I Consol e fromthe System namespace
WiteLine("Hello World");
}
}

This generates the compile error:

error CS0138: A using nanmespace directive can only be applied to nanespaces;
' System Consol e’ is a class not a nanespace

The usi ng idiom can save a great deal of typing, but it can undermine the advantages of namespaces
by polluting the namespace with many undifferentiated names. A common solution is to use the

usi ng keyword with the built-in namespaces and with your own corporate namespaces, but perhaps
not with third-party components.

2.1.7 Case Sensitivity

C# is case-sensitive, which means that wr i t eLi ne is not the same as W i t eLi ne, which in turn is
not the same as \\RI TEL| NE. Unfortunately, unlike in Visual Basic (VB), the C# development
environment will not fix your case mistakes; if you write the same word twice with different cases, you
might introduce a tricky-to-find bug into your program.

To prevent such a time-wasting and energy-depleting mistake, you should develop conventions for
naming your variables, functions, constants, and so forth. The convention in this book is to name
variables with camel notation (e.g., soneVar i abl eNane), and to name functions, constants, and
properties with Pascal notation (e.g., SoneFunct i on).

e The only difference between camel and Pascal notation is that in
.) Pascal notation, names begin with an uppercase letter.
o

25

2.1.8 The static Keyword

The Vai n() method shown in Example 2-1 has one more designation. Just before the return type
declaration voi d (which, you will remember, indicates that the method does not return a value) you'll
find the keyword st ati c:

static void Main()

The st at | ¢ keyword indicates that you can invoke Vai n() without first creating an object of type
Hel | 0. This somewhat complex issue will be considered in much greater detail in subsequent
chapters. One of the problems with learning a new computer language is you must use some of the
advanced features before you fully understand them. For now, you can treat the declaration of the
Mai n() method as tantamount to magic.

2.2 Developing "Hello World"

There are at least two ways to enter, compile, and run the programs in this book: use the Visual
Studio .NET Integrated Development Environment (IDE), or use a text editor and a command-line
compiler (along with some additional command-line tools to be introduced later).

Although you can develop software outside Visual Studio .NET, the IDE provides enormous
advantages. These include indentation support, Intellisense word completion, color coding, and
integration with the help files. Most important, the IDE includes a powerful debugger and a wealth of
other tools.

Although this book tacitly assumes that you'll be using Visual Studio .NET, the tutorials focus more on
the language and the platform than on the tools. You can copy all the examples into a text editor such
as Windows Notepad or Emacs, save them as text files, and compile them with the C# command-line
compiler that is distributed with the .NET Framework SDK. Note that some examples in later chapters
use Visual Studio .NET tools for creating Windows Forms and Web Forms, but even these you can
write by hand in Notepad if you are determined to do things the hard way.

2.2.1 Editing "Hello World"
To create the "Hello World" program in the IDE, select Visual Studio .NET from your Start menu or a
desktop icon, and then choose Fi | e —2New—2Pr o] ect from the menu toolbar. This will invoke the

New Project window (if you are using Visual Studio for the first time, the New Project window might
appear without further prompting). Figure 2-1 shows the New Project window.

Figure 2-1. Creating a C# console application in Visual Studio .NET

26

Programming C#

%)
Project Types: Templates: |E =3
] ¥icual Basic Projects . & |
— Wisual :Er Projects {\Eﬁ i ﬂgﬁ m[:_lﬁ
+] Wisual C++ Projects =
1 Setup and Deployment Projects Web Web Sarvice web Conbrol
& || Other Prajecks Arclication Library
| Misual Shudio Solutions . _d S—
[Elc# =] B _ef
Console ‘Windows Emply Projact
Apglication Service r
& project For creating a command-ine application
TMama: | Hellohdsord
Lioicakion: I C:\Documents and SettingslAdministratoriMy Dooumen j Browss, ..
Project will be created at ;... \My Documents\Visual Shudio ProjectsiHelloWord HeloWorkd,
FMore 0K Cancel | Help |

To open your application, select Visual C# Projects in the Project Type window and select Console
Application in the Template window. You can now enter a name for the project and select a directory
in which to store your files. Click OK, and a new window will appear in which you can enter the code in

Example 2-1, as shown in Figure 2-2.

Figure 2-2. The editor opened to your new project

- el - ra el Vesasl | anE | [deaan] - [LESELRE
fe B gee Pk Gl e Beb e e
Ip-u-FHP ¥ ¥ ety » | g Rz AR .S,
'R LA umeer - e Al | i e
{ | oo LI Claaaira | | Zchstaor B e - Hokomtork 9 |
¢ e 9l —
Setr i == 3 20 a%
- - — 2 St Helewin i 1 peamct
ke Forie N] - o Heboword
- [ET— sl Fetmenes
Al L o] egrimbewi i
!]
Emmal
i
Muin|ztring[] scgel
I
.
0 | P
Ry LUsd - (1 Bkl By Dok s (Wew i LI
v i e [T
@ |]|
2 e i PE] s " alaticas [l
Feady

Notice that Visual Studio .NET creates a hamespace based on the project name you've provided
(Hel I ovor | d), and adds a usi ng Syst emstatement because nearly every program you write will
need types from the Syst emnamespace.

Visual Studio .NET creates a class named Cl ass1, which you are free to rename. When you rename

the class, be sure to rename the file as well (Classl.cs). To reproduce Example 2-1, for instance,
you change the name of Cl ass1 to Hel | o\Wr | d, and rename the Classl.cs file (listed in the Solution

Explorer window) to Helloworld.cs.

27

Finally, Visual Studio .NET creates a program skeleton, complete with a TODO comment to get you
started. To reproduce Example 2-1, remove the arguments (st ri ng[] ar gs) and comments from
the Mai n() method. Then copy the following two lines into the body of MVai n() :

/'l Use the system consol e object
System Console. WiteLine("Hello World");

If you are not using Visual Studio .NET, open Notepad, type in the code from Example 2-1, and save
the file as a text file named Hello.cs.

2.2.2 Compiling and Running "Hello World"

There are many ways to compile and run the "Hello World" program from within Visual Studio .NET.
Typically you can accomplish every task by choosing commands from the Visual Studio .NET menu
toolbar, by using buttons, and, in many cases, by using key-combination shortcuts.

For example, to compile the "Hello World" program, press Ctrl-Shift-B or choose Bui | d —?Bui | d
Sol ut i on. As an alternative, you can click the Build button on the Build button bar. The Build button
icon is shown in Figure 2-3.

Figure 2-3. Build button icon

+

To run the "Hello World" program without the debugger you can press Ctrl-F5 on your keyboard,
choose Debug —2Start Wt hout Debuggi ng from the IDE menu toolbar, or press the Start
Without Debugging button on the IDE Build toolbar, as shown in Figure 2-4. You can run the program

without first explicitly building it; depending on how your options are set (Tool s —>Opt i ons) the IDE
will save the file, build it, and run it, possibly asking you for permission at each step.

Figure 2-4. Start without debugging button
[]

*

| strongly recommend that you spend some time exploring the

ar Visual Studio .NET development environment. This is your
principal tool as a .NET developer, and you want to learn to use it
well. Time invested up front in getting comfortable with Visual
Studio .NET will pay for itself many times over in the coming
months. Go ahead, put the book down and look at it. I'll wait for
you.

=
L.

To compile and run the "Hello World" program using the C# command-line compiler:

1. Save Example 2-1 as the file hello.cs.
2. Open a command window (St ar t - >Run and type in cnd) .

3. From the command line, enter:
csc hello.cs

This step will build the executable (EXE) file. If the program contains errors, the compiler will
report them in the command window.

4. To run the program, enter:

28

Programming C#

Hel | o

You should see the venerable words "Hello World" appear in your command window.

Just In Time Compilation

Compiling Hello.cs using csc creates an executable (EXE) file. Keep in mind,
however, that the .exe file contains op-codes written in Microsoft
Intermediate Language (MSIL), which is introduced in Chapter 1.

Interestingly, if you had written this application in VB .NET or any other
language compliant with the .NET Common Language Specification, you
would have compiled it into the same MSIL. By design Intermediate
Language (IL) code created from different languages is virtually
indistinguishable; which is the point of having a common language
specification in the first place.

In addition to producing the IL code (which is similar in spirit to Java's byte-
code), the compiler creates a read-only segment of the .exe file in which it
inserts a standard Win32 executable header. The compiler designates an
entry point within the read-only segment; the operating system loader jumps
to that entry point when you run the program, just as it would for any
Windows program.

The operating system cannot execute the IL code, however, and that entry
point does nothing but jump to the .NET Just In Time (JIT) compiler (also
introduced in Chapter 1). The JIT produces native CPU instructions, as you
might find in a normal .exe. The key feature of a JIT compiler, however, is
that functions are compiled only as they are used, Just In Time for
execution.

2.3 Using the Visual Studio .NET Debugger

Arguably, the single most important tool in any development environment is the debugger. The Visual
Studio debugger is very powerful, and it will be well worth whatever time you put into learning how to
use it well. That said, the fundamentals of debugging are very simple. The three key skills are:

How to set a breakpoint and how to run to that breakpoint
How to step into and over method calls
How to examine and modify the value of variables, member data, and so forth

This chapter does not reiterate the entire debugger documentation, but these skills are so fundamental
that it does provide a crash (pardon the expression) course.

The debugger can accomplish the same thing in many ways—typically via menu choices, buttons, and
so forth. The simplest way to set a breakpoint is to click in the lefthand margin. The IDE will mark your
breakpoint with a red dot, as shown in Figure 2-5.

Figure 2-5. A breakpoint

29

[int 1 = 0:di <« 3; i+4)

L] winArray[1i] . bravlindow() @
:I b
e Discussing the debugger requires code examples. The code
“w 4. shown here is from Chapter 5, and you are not expected to
g2 understand how it works yet (though if you program in C++ or

Java, you'll probably understand the gist of it).

To run the debugger you can choose Debug- >St art or just press F5. The program will compile and
run to the breakpoint, at which time it will stop and a yellow arrow will indicate the next statement for

execution, as in Figure 2-6.

Figure 2-6. The breakpoint hit
(int i = D21 <€ 3: i++)

'I:) winArray[i] .Drawilindow (]

After you've hit your breakpoint it is easy to examine the values of various objects. For example, you
can find the value of the variable i just by putting the cursor over it and waiting a moment, as shown in

Figure 2-7.

Figure 2-7. Showing a value

(imt 1 = D;1 € 3; 1+H)

¢) =0}
wvinkrray[i] . brawWindow () 2
1

The debugger IDE also provides a number of very useful windows, such as a Local s window which
displays the values of all the local variables (see Figure 2-8).

Figure 2-8. Locals window

1

Mame Value Type J
i o ink
win {Wdirdow} Winidow
by {ListBow} ListBax
b {Buttar} Button
WINGrTan {Length=3} window[]
e x]
E B3l Locals | Fd

Intrinsic types such as integers simply show their value (see i above), but objects show their type and
have a plus (+) sign. You can expand these objects to see their internal data, as shown in Figure 2-9.
You'll learn more about objects and their internal data in upcoming chapters.

Figure 2-9. Locals window object expanded

30

Programming C#

Tvpe
ink

N

Systam, Object
mTop
mLeft
H b
He
[windrray

‘Windove
Swrshem.
Ink

Ink
ListBos
Eatbion
Window(]

[~

E £l Locak ,@

You can step into the next method by pressing F11. Doing so steps into the Dr awMV ndow() method
of the W ndowCl ass, as shown in Figure 2-10.

{

i

public class Li=tBox

public wirtual woid

Cohaole.Vriteline ["Window:

Draulindow i

G wmTop, mlefo))
¥
procected int mTop:
procected int mlefc:

: Window

Figure 2-10. Stepping into a method

drawing Window at (D), {L)7,

{
1]
El
Maime Value T J
mLeft 2 nt
miop i nt
[=] this {Wtinooe) Window
Systam. Cbjact {¥eincow} Sepsham, Objact
mTop 1 nt
mLaft 2 int
G ks [B]

You can see that the next execution statement is now Wi t eLi ne in Dr awW ndow(). The autos
window has updated to show the current state of the objects.

There is much more to learn about the debugger, but this brief introduction should get you started.
You can answer many programming questions by writing short demonstration programs and
examining them in the debugger. A good debugger is, in some ways, the single most powerful
teaching tool for a programming language.

31

32

Programming C#

Chapter 3. C# Language Fundamentals

Chapter 2 demonstrates a very simple C# program. Nonetheless, there is sufficient complexity in
creating even that little program that some of the pertinent details had to be skipped over. The current
chapter illuminates these details by delving more deeply into the syntax and structure of the C#
language itself.

This chapter discusses the type system in C#, drawing a distinction between built-in types (i nt, bool ,
etc.) versus user-defined types (types you create as classes and interfaces). The chapter also covers
programming fundamentals such as how to create and use variables and constants. It then goes on to
introduce enumerations, strings, identifiers, expressions, and statements.

The second part of the chapter explains and demonstrates the use of branching, using the i f,
switch,while,do...while, for,andforeach statements. Also discussed are operators,
including the assignment, logical, relational, and mathematical operators. This is followed by an
introduction to namespaces and a short tutorial on the C# precompiler.

Although C# is principally concerned with the creation and manipulation of objects, it is best to start
with the fundamental building blocks: the elements from which objects are created. These include the
built-in types that are an intrinsic part of the C# language as well as the syntactic elements of C#.

3.1 Types

C# is a strongly typed language. In a strongly typed language you must declare the type of each
object you create (e.g., integers, floats, strings, windows, buttons, etc.) and the compiler will help you
prevent bugs by enforcing that only data of the right type is assigned to those objects. The type of an
object signals to the compiler the size of that object (e.g., i nt indicates an object of 4 bytes) and its
capabilities (e.g., buttons can be drawn, pressed, and so forth).

Like C++ and Java, C# divides types into two sets: intrinsic (built-in) types that the language offers and
user-defined types that the programmer defines.

C# also divides the set of types into two other categories: value types and reference types.™ The
principal difference between value and reference types is the manner in which their values are stored
in memory. A value type holds its actual value in memory allocated on the stack (or it is allocated as
part of a larger reference type object). The address of a reference type variable sits on the stack, but
the actual object is stored on the heap.

1 Al the intrinsic types are value types except for Obj ect (discussed in Chapter 5) and St ri ng (discussed in Chapter 10). All user-
defined types are reference types except for structs (discussed in Chapter 7).

If you have a very large object, putting it on the heap has many advantages. Chapter 4 discusses the
various advantages and disadvantages of working with reference types; the current chapter focuses
on the intrinsic value types available in C#.

C# also supports C++ style pointer types, but these are rarely used, and only when working with
unmanaged code. Unmanaged code is code created outside of the .NET platform, such as COM
objects. Working with COM obijects is discussed in Chapter 22.

3.1.1 Working with Built-in Types

The C# language offers the usual cornucopia of intrinsic (built-in) types one expects in a modern
language, each of which maps to an underlying type supported by the .NET Common Language
Specification (CLS). Mapping the C# primitive types to the underlying .NET type ensures that objects
created in C# can be used interchangeably with objects created in any other language compliant with
the .NET CLS, such as VB .NET.

33

Each type has a specific and unchanging size. Unlike with C++, a C# i nt is always 4 bytes because it
maps to an | nt 32 in the .NET CLS. Table 3-1 lists the built-in value types offered by C#.

Table 3-1. C# built-in value types

Type SbI;teeg;] T’;I/I;Z Description

byt e 1 Byt e Unsigned (values 0-255).

char 1 Char Unicode characters.

bool 1 Bool ean |t rue orf al se.

shyte |1 Sbyte |Signed (values -128 to 127).

short 2 I nt16 Signed (short) (values -32,768 to 32,767).

ushort |2 U nt 16 |Unsigned (short) (values O to 65,535).

i nt 4 Int32 |Signed integer values between -2,147,483,647 and 2,147,483,647.

ui nt 4 U nt 32 |Unsigned integer values between 0 and 4,294,967,295.

oat o [sinore e o e s T abp el 157
Double-precision floating point; holds the values from approximately

doubl e |8 Doubl e |+/-5.0 * 10°** to approximate +/-1.7 * 10°*® with 15-16 significant
figures.
Fixed-precision up to 28 digits and the position of the decimal point.

deci mal |8 Deci mal [This is typically used in financial calculations. Requires the suffix "m"
or"M."

| ong 8 | nt 64 Signed integers ranging from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

ulong |8 Ui nt 64 |Unsigned integers ranging from O to Oxffffffffffffff.

e C and C++ programmers take note: Boolean variables can only
“ 4. have the values t r ue or f al se. Integer values do not equate to
4 Boolean values in C# and there is no implicit conversion.

In addition to these primitive types, C# has two other value types: enum(considered later in this
chapter) and st r uct (see Chapter 4). Chapter 4 also discusses other subtleties of value types
such as forcing value types to act as reference types through a process known as boxing, and that
value types do not "inherit."

The Stack and the Heap

A stack is a data structure used to store items on a last-in first-out basis (like
a stack of dishes at the buffet line in a restaurant). The stack refers to an
area of memory supported by the processor, on which the local variables are
stored.

In C#, value types (e.g., integers) are allocated on the stack—an area of
memory is set aside for their value, and this area is referred to by the name
of the variable.

Reference types (e.g., objects) are allocated on the heap. When an object is
allocated on the heap its address is returned, and that address is assigned

Programming C#

to a reference.

The garbage collector destroys objects on the stack sometime after the
stack frame they are declared within ends. Typically a stack frame is defined
by a function. Thus, if you declare a local variable within a function (as
explained later in this chapter) the object will be marked for garbage
collection after the function ends.

Objects on the heap are garbage collected sometime after the final
reference to them is destroyed.

3.1.1.1 Choosing a built-in type

Typically you decide which size integer to use (shor t, i nt, or| ong) based on the magnitude of the
value you want to store. For example, a ushort can only hold values from 0 through 65,535, while a
ul ong can hold values from 0 through 4,294,967,295.

That said, memory is fairly cheap, and programmer time is increasingly expensive; most of the time
you'll simply declare your variables to be of type i nt, unless there is a good reason to do otherwise.

The signed types are the numeric types of choice of most programmers unless they have a good
reason to use an unsigned value.

Although you might be tempted to use an unsigned shor t to double the positive values of a signed
short (moving the maximum positive value from 32,767 up to 65,535), it is easier and preferable to
use a signed integer (with a maximum value of 2,147,483,647).

It is better to use an unsigned variable when the fact that the value must be positive is an inherent
characteristic of the data. For example, if you had a variable to hold a person's age, you would use an
unsigned i nt because an age cannot be negative.

Fl oat, doubl e, and deci mal offer varying degrees of size and precision. For most small fractional
numbers, f | oat is fine. Note that the compiler assumes that any number with a decimal point is a
double unless you tell it otherwise. To assign a literal f | oat , follow the number with the letter .
(Assigning values to literals is discussed in detail later in this chapter.)

fl oat soneFl oat = 57f;

The char type represents a Unicode character. char literals can be simple, Unicode, or escape
characters enclosed by single quote marks. For example, A is a simple character while \ u0041 is a
Unicode character. Escape characters are special two-character tokens in which the first character is a
backslash. For example, \ t is a horizontal tab. The common escape characters are shown in Table
3-2.

Table 3-2. Common escape characters

| Char | Meaning
\! Single quote

\ " Double quote

X Backslash

\0 Null

\a Alert

35

\b Backspace

\ f Form feed

\'n Newline

\r Carriage return
\ t Horizontal tab
\'v Vertical tab

3.1.1.2 Converting built-in types

Objects of one type can be converted into objects of another type either implicitly or explicitly. Implicit
conversions happen automatically; the compiler takes care of it for you. Explicit conversions happen
when you "cast" a value to a different type. The semantics of an explicit conversion are "Hey! Compiler!
| know what I'm doing." This is sometimes called "hitting it with the big hammer" and can be very

useful or very painful, depending on whether your thumb is in the way of the nail.

Implicit conversions happen automatically and are guaranteed not to lose information. For example,
you can implicitly cast from a short i nt (2 bytes) to ani nt (4 bytes) implicitly. No matter what
value is in the shor t, it will not be lost when convertingto an i nt :

S;

short x =
= x; // inplicit conversion

int y

If you convert the other way, however, you certainly can lose information. If the value in the | nt is
greater than 32,767 it will be truncated in the conversion. The compiler will not perform an implicit
conversion from i nt to short:

short x;

int y = 500;

x =y, [l won't conpile

You must explicitly convert using the cast operator:
short x;

int y = 500;

X = (short) y;, /] K

All of the intrinsic types define their own conversion rules. At times it is convenient to define
conversion rules for your user-defined types, as discussed in Chapter 5.

3.2 Variables and Constants

A variable is a storage location with a type. In the preceding examples, both x and y are variables.
Variables can have values assigned to them, and that value can be changed programmatically.

WriteLine()

The .Net Framework provides a useful method for writing output to the
screen. The details of this method, Syst em Consol e. WiteLine(), will
become clearer as we progress through the book, but the fundamentals are
straightforward. You call the method as shown in Example 3-3, passing in
a string that you want printed to the console (the screen) and, optionally,

36

Programming C#

parameters that will be substituted. In the following example:

System Consol e. WitelLine("After assignnment, nylnt: {0}",
nmylnt);

the string "Af t er assi gnnent, nylnt:" is printed as is, followed by the
value in the variable nmy| nt . The location of the substitution parameter { O}
specifies where the value of the first output variable, my| nt , will be
displayed, in this case at the end of the string. We'll see a great deal more
about Witeline() incoming chapters.

You create a variable by declaring its type and then giving it a name. You can initialize the variable
when you declare it, and you can assign a new value to that variable at any time, changing the value
held in the variable. This is illustrated in Example 3-1.

Example 3-1. Initializing and assigning a value to a variable
cl ass Val ues

{
static void Main()
{
int mylnt = 7;
System Consol e. WiteLine("Initialized, nylnt: {O}"
nylnt);
nylnt = 5;
System Consol e. WiteLi ne("After assignnment, nmylnt: {0}"
mylnt);
}
}
Cut put :

Initialized, nylnt: 7
After assignnent, nylnt: 5

Here we initialize the variable ny| nt to the value 7, display that value, reassign the variable with the
value 5, and display it again.

3.2.1 Definite Assignment

C# requires that variables be initialized before they are used. To test this rule, change the line that
initializes ny| nt in Example 3-1 to:

int nmylnt;
and save the revised program shown in Example 3-2.

Example 3-2. Using an uninitialized variable
cl ass Val ues

{
static void Main()

{
int nmylnt;
System Consol e. Wi teLine
("Uninitialized, nylnt: {O0}", nmylnt);
mylnt = 5;

37

System Consol e. Wi telLi ne("Assigned, nylnt: {0}", nylnt);
}
When you try to compile this listing, the C# compiler will display the following error message:

3.1.¢cs(6,55): error CS0165: Use of unassigned | ocal
variable 'mylnt'

Itis not legal to use an uninitialized variable in C#. Example 3-2 is not legal.

So, does this mean you must initialize every variable in a program? In fact, no. You don't actually need
to initialize a variable, but you must assign a value to it before you attempt to use it. This is called
definite assignment and C# requires it. Example 3-3 illustrates a correct program.

Example 3-3. Assigning without initializing
cl ass Val ues

{
static void Main()
b
int nylnt;
nmylnt =7,
System Consol e. Wi telLi ne("Assigned, nylnt: {0}", nylnt);
nmylnt = 5;
System Consol e. Wi teLi ne("Reassigned, nylnt: {0}", nylnt);
}
}

3.2.2 Constants

A constant is a variable whose value cannot be changed. Variables are a powerful tool, but there are
times when you want to manipulate a defined value, one whose value you want to ensure remains
constant. For example, you might need to work with the Fahrenheit freezing and boiling points of water
in a program simulating a chemistry experiment. Your program will be clearer if you name the
variables that store these values Fr eezi ngPoi nt and Boi | i ngPoi nt, but you do not want to permit
their values to be reassigned. How do you prevent reassignment? The answer is to use a constant.

Constants come in three flavors: literals, symbolic constants, and enumerations. In this assignment:
X = 32;

the value 32 is a literal constant. The value of 32 is always 32. You can't assign a new value to 32;
you can't make 32 represent the value 99 no matter how you might try.

Symbolic constants assign a name to a constant value. You declare a symbolic constant using the
const keyword and the following syntax:

const type identifier = val ue;

A constant must be initialized when it is declared, and once initialized it cannot be altered. For
example:

const int FreezingPoint = 32;

In this declaration, 32 is a literal constant and Fr eezi ngPoi nt is a symbolic constant of type i nt .
Example 3-4 illustrates the use of symbolic constants.

38

Programming C#

Example 3-4. Using symbolic constants
cl ass Val ues

{
static void Main()
{
const int FreezingPoint = 32; /'l degrees Farenheit
const int BoilingPoint = 212;
System Consol e. Wi telLi ne("Freezing point of water: {0}",
Freezi ngPoi nt);
Syst em Consol e. WiteLine("Boiling point of water: {0}",
Boi | i ngPoi nt) ;
/1 BoilingPoint = 21;
}
}

Example 3-4 creates two symbolic integer constants: Fr eezi ngPoi nt and Boi | i ngPoi nt. As a
matter of style, constant names are written in Pascal notation, but this is certainly not required by the
language.

These constants serve the same purpose as always using the literal values 32 and 212 for the
freezing and boiling points of water in expressions that require them, but because these constants
have names they convey far more meaning. Also, if you decide to switch this program to Celsius, you
can reinitialize these constants at compile time, to O and 100, respectively; and all the rest of the code
ought to continue to work.

To prove to yourself that the constant cannot be reassigned, try uncommenting the last line of the
program (shown in bold). When you recompile you should receive this error:

error CS0131: The left-hand side of an assignnent nust be
a variable, property or indexer

3.2.3 Enumerations

Enumerations provide a powerful alternative to constants. An enumeration is a distinct value type,
consisting of a set of named constants (called the enumerator list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might wish to add a number of other useful constants as well to this list, such as:
const int LightJacketWather = 60;

const int Sw nmm ngWeat her = 72;
const int WckedCold = 0O;

This process is somewhat cumbersome, and there is no logical connection among these various
constants. C# provides the enumeration to solve these problems:

enum Tenper at ures
W ckedCol d = O,

Freezi ngPoi nt = 32,
Li ght Jacket Weat her = 60,

39

Swi nmi ngWeat her = 72,
Boi | i ngPoi nt = 212,
}

Every enumeration has an underlying type, which can be any integral type (i nt eger, short, | ong,
etc.) except for char . The technical definition of an enumeration is:

[attributes] [nodifiers] enumidentifier
[: base-type] {enunerator-list};

The optional attributes and modifiers are considered later in this book. For now, let's focus on the rest
of this declaration. An enumeration begins with the keyword enurm which is generally followed by an
identifier, such as:

enum Tenper at ures

The base type is the underlying type for the enumeration. If you leave out this optional value (and
often you will) it defaults to i nt eger, but you are free to use any of the integral types (e.g., ushort,
| ong) except for char . For example, the following fragment declares an enumeration of unsigned

integers (ui nt):

enum Servi ngSi zes : uint

{
Smal | = 1,
Regul ar = 2,
Large = 3

}

Notice that an enumdeclaration ends with the enumerator list. The enumerator list contains the
constant assignments for the enumeration, each separated by a comma.

Example 3-5 rewrites Example 3-4 to use an enumeration.

Example 3-5. Using enumerations to simplify your code
cl ass Val ues

{
enum Tenper at ur es
{
W ckedCol d = O,
Freezi ngPoi nt = 32,
Li ght Jacket Weat her = 60,
Swi nmi ng\WEat her = 72,
Boi | i ngPoint = 212,
}
static void Main()
{
Syst em Consol e. WiteLi ne("Freezing point of water: {0}",
Tenper at ur es. Freezi ngPoi nt) ;
System Consol e. Wi teLine("Boiling point of water: {O0}",
Tenper at ures. Boi | i ngPoi nt) ;
}
}

40

Programming C#

As you can see, an enummust be qualified by its enumtype (e.g., Tenper at ur es. W ckedCol d).

Each constant in an enumeration corresponds to a numerical value, in this case, an integer. If you
don't specifically set it otherwise, the enumeration begins at 0 and each subsequent value counts up
from the previous.

If you create the following enumeration:

enum SomeVal ues

t
First,
Second,
Third = 20,
Fourth

}

the value of Fi r st will be 0, Second will be 1, Thi r d will be 20, and Four t h will be 21.

Enums are formal types; therefore an explicit conversion is required to convert between an enum type
and an integral type.

o C++ programmers take note: C#'s use of enums is subtly different
s | from C++, which restricts assignment to an enum type from an
" 4 integer but allows an enum to be promoted to an integer for
assignment of an enum to an integer.
3.2.4 Strings

It is nearly impossible to write a C# program without creating strings. A string object holds a string of
characters.

You declare a string variable using the st r i ng keyword much as you would create an instance of any
object:

string nyString;

A string literal is created by placing double quotes around a string of letters:
"Hell o Worl d"

It is common to initialize a string variable with a string literal:

string nmyString = "Hello World";

Strings will be covered in much greater detail in Chapter 10.

3.2.5 Identifiers

Identifiers are names that programmers choose for their types, methods, variables, constants, objects,
and so forth. An identifier must begin with a letter or an underscore.

The Microsoft naming conventions suggest using camel notation (initial lowercase such as soneNane)
for variable names and Pascal notation (initial uppercase such as SoneCt her Nane) for method
names and most other identifiers.

41

o Microsoft no longer recommends using Hungarian notation (e.g.,
s d I Sorel nt eger) or underscores (e.g., SOVE VALUE).

Identifiers cannot clash with keywords. Thus, you cannot create a variable named i nt or cl ass. In
addition, identifiers are case-sensitive, so C# treats nmyVVar i abl e and MyVar i abl e as two different
variable names.

3.3 Expressions

Statements that evaluate to a value are called expressions. You may be surprised how many
statements do evaluate to a value. For example, an assignment such as:

nmyVari abl e = 57;
is an expression; it evaluates to the value assigned, in this case, 57.

Note that the preceding statement assigns the value 57 to the variable nyVar i abl e. The assignment
operator (=) does not test equality; rather it causes whatever is on the right side (57) to be assigned to
whatever is on the left side (myVar i abl e). All of the C# operators (including assignment and equality)
are discussed later in this chapter (see Section 3.6).

Because nmyVar i abl e = 57 is an expression that evaluates to 57, it can be used as part of another
assignment operator, such as:

mySecondVari abl e = nyVari able = 57;

What happens in this statement is that the literal value 57 is assigned to the variable myVar i abl e.
The value of that assignment (57) is then assigned to the second variable, mySecondVar i abl e.
Thus, the value 57 is assigned to both variables. You can thus initialize any number of variables to the
same value with one statement:

a=b=c=d=e = 20;

3.4 Whitespace

In the C# language, spaces, tabs, and newlines are considered to be " whitespace" (so named
because you see only the white of the underlying "page"). Extra whitespace is generally ignored in C#
statements. Thus, you can write:

myVari abl e = 5;

or:

myVari abl e = 5;

and the compiler will treat the two statements as identical.

The exception to this rule is that whitespace within strings is not ignored. If you write:

Console. WiteLine("Hello World")

each space between "Hello" and "World" is treated as another character in the string.

42

Programming C#

Most of the time the use of whitespace is intuitive. The key is to use whitespace to make the program
more readable to the programmer; the compiler is indifferent.

However, there are instances in which the use of whitespace is quite significant. Although the
expression:

int x = 5;

is the same as:

i nt x=5;

it is not the same as:

i nt x=5;

The compiler knows that the whitespace on either side of the assignment operator is extra, but the
whitespace between the type declaration i nt and the variable name x is not extra, and is required.
This is not surprising; the whitespace allows the compiler to parse the keyword i nt rather than some

unknown term i nt x. You are free to add as much or as little whitespace between i nt and x as you
care to, but there must be at least one whitespace character (typically a space or tab).

e Visual Basic programmers take note: in C# the end-of-line has no
.) special significance; statements are ended with semicolons, not
" 4+ newline characters. There is no line continuation character

because none is needed.

3.5 Statements

In C# a complete program instruction is called a statement. Programs consist of sequences of C#
statements. Each statement must end with a semicolon (;). For example:

int x; // a statenent
x = 23; // another statenent
int y =x; // yet another statenent

C# statements are evaluated in order. The compiler starts at the beginning of a statement list and
makes its way to the bottom. This would be entirely straightforward, and terribly limiting, were it not for
branching. There are two types of branches in a C# program: unconditional branching and conditional
branching.

Program flow is also affected by looping and iteration statements, which are signaled by the keywords
for ,while,do,in,andf oreach. Iteration is discussed later in this chapter. For now, let's consider
some of the more basic methods of conditional and unconditional branching.

3.5.1 Unconditional Branching Statements

An unconditional branch is created in one of two ways. The first way is by invoking a method. When
the compiler encounters the name of a method it stops execution in the current method and branches
to the newly "called” method. When that method returns a value, execution picks up in the original
method on the line just below the method call. Example 3-6 illustrates.

Example 3-6. Calling a method
usi ng System

43

cl ass Functions

{
static void Main()
{
Console. WiteLine("In Main! Calling SomeMethod()...");
SomeMet hod();
Console. WiteLine("Back in Main().");
}
static void SonmeMet hod()
{
Consol e. WiteLine("Geetings from SomeMet hod! ") ;
}
}
Qut put :

In Main! Calling SoneMethod()...
Greetings from SonmeMet hod!
Back in Main().

Program flow begins in Vai n() and proceeds until SoneMet hod() is invoked (invoking a method
is sometimes referred to as "calling" the method). At that point program flow branches to the method.
When the method completes, program flow resumes at the next line after the call to that method.

The second way to create an unconditional branch is with one of the unconditional branch keywords:
goto, break, continue,return, orstatenent hr ow. Additional information about the first four
jump statements is provided in Section 3.5.2.3, Section 3.5.3.1, and Section 3.5.3.6, later in this
chapter. The final statement, t hr ow, is discussed in Chapter 9.

3.5.2 Conditional Branching Statements

A conditional branch is created by a conditional statement, which is signaled by keywords such asi f,
el se, orswi t ch. A conditional branch occurs only if the condition expression evaluates true.

3.5.2.1 If...else statements

| f...el se statements branch based on a condition. The condition is an expression, tested in the
head of the | f statement. If the condition evaluates true, the statement (or block of statements) in the
body of the | f statement is executed.

| f statements may contain an optional el se statement. The el se statement is executed only if the
expression in the head of the | f statement evaluates false:

i f (expression)
statenment 1
[el se
st at enent 2]

This is the kind of description of the i f statement you are likely to find in your compiler documentation.
It shows you that the | f statement takes an expression (a statement that returns a value) in
parentheses, and executes st at enent 1 if the expression evaluates true. Note that st at enent 1 can
actually be a block of statements within braces.

Programming C#

You can also see that the el se statement is optional, as it is enclosed in square brackets. Although

this gives you the syntax of an i f statement, an illustration will make its use clear. Example 3-7
illustrates.

Example 3-7. If . . . else statements

usi ng System
cl ass Val ues

{
static void Main()
{
int valueOne = 10;
int valueTwo = 20;
if (valueOne > val ueTwo)
Consol e. Wit eLi ne(
“Val ueOne: {0} larger than ValueTwo: {1}",
val ueOne, val ueTwo);
}
el se
{
Consol e. Wit eLi ne(
"Val ueTwo: {0} larger than ValueOne: {1}",
val ueTwo, val ueOne) ;
}
val ueOne = 30; // set val ueOne higher
if (valueOne > val ueTwo)
{
val ueTwo = val ueOne++
Consol e. WitelLine("\nSetting valueTwo to val ueOGne val ue, ");
Consol e. WiteLine("and increnenting Val ueGne.\n");
Consol e. WiteLine("Val ueGne: {0} ValueTwo: {1}",
val ueOne, val ueTwo);
}
el se
{
val ueOne = val ueTwo;
Consol e. WitelLine("Setting themequal. ");
Consol e. WiteLine("Val ueOne: {0} ValueTwo: {1}",
val ueOne, val ueTwo);
}
}
}

In Example 3-7, the first i f statement tests whether val ueOne is greater than val ueTwo. The
relational operators such as greater than (>), less than (<), and equal to (==) are fairly intuitive to use.

The test of whether val ueOne is greater than val ueTwo evaluates false (because val ueOne is 10
and val ueTwo is 20 and so val ueOne is not greater than val ueTwo). The el se statement is
invoked, printing the statement:

Val ueTwo: 20 is larger than Val ueOne: 10

The second i f statement evaluates true and all the statements in the i f block are evaluated, causing
two lines to print:

Val ueOne was | arger. Setting valueTwo to old Val ueOne val ue,
and i ncrenenting Val ueOne.

Val ueOne: 31 Val ueTwo: 30

Statement Blocks

Anyplace that C# expects a statement, you can substitute a statement block.
A statement block is a set of statements surrounded by braces.

Thus, where you might write:

I f (soneCondition)
soneSt at enent ;

you can instead write:

I f (someCondi tion)

{
st at enent One;
st at ement Two:
st at enent Thr ee;
}

3.5.2.2 Nested if statements

It is possible, and not uncommon, to nest i f statements to handle complex conditions. For example,
suppose you need to write a program to evaluate the temperature, and specifically to return the
following types of information:

If the temperature is 32 degrees or lower, the program should warn you about ice on the road.
If the temperature is exactly 32 degrees, the program should tell you that there may be ice
patches.

If the temperature is higher than 32 degrees, the program should assure you that there is no
ice.

There are many good ways to write this program. Example 3-8 illustrates one approach, using
nested i f statements.

Example 3-8. Nested if statements

usi ng System
cl ass Val ues

{

46

static void Main()

int temp = 32;

if (temp <= 32)
{
Consol e. WiteLine("Warning! Ice on road!");
if (temp == 32)
{
Consol e. Wit eLi ne(
"Tenp exactly freezing, beware of water.");

}

Programming C#

el se

{
}

Consol e. WiteLine("Watch for black ice! Tenp: {0}", temp);

}
}

The logic of Example 3-8 is that it tests whether the temperature is less than or equal to 32. If so, it
prints a warning:

if (temp <= 32)
{

Consol e. WiteLine("Warning! Ice on road!");

The program then checks whether the temp is equal to 32 degrees. If so, it prints one message; if not,
the temp must be less than 32 and the program prints the second message. Notice that this second

i f statement is nested within the first i f, so the logic of the el se is: "since it has been established
that the temp is less than or equal to 32, and it isn't equal to 32, it must be less than 32."

All Operators Are Not Created Equal

A closer examination of the second | f statement in Example 3-8 reveals a
common potential problem. This | f statement tests whether the temperature
is equal to 32:

If (tenp == 32)

In C and C++, there is an inherent danger in this kind of statement. It's not
uncommon for novice programmers to use the assignment operator rather
than the equals operator, instead creating the statement:

If (tenmp = 32)

This mistake would be difficult to notice, and the result would be that 32 was
assigned to t enp, and then 32 would be returned as the value of the
assignment statement. Because any nonzero value evaluates to true in C
and C#, the | T statement would return true. The side effect would be that

t enp would be assigned a value of 32 whether or not it originally had that
value. This is a common bug that could easily be overlooked—if the
developers of C# had not anticipated it!

C# solves this problem by requiring that | f statements accept only Boolean
values. The 32 returned by the assignment is not Boolean (it is an integer)
and, in C#, there is no automatic conversion from 32 to true. Thus, this bug
would be caught at compile time, which is a very good thing, and a
significant improvement over C++—at the small cost of not allowing implicit
conversions from integers to Booleans!

3.5.2.3 Switch statements: an alternative to nested ifs

47

Nested | f statements are hard to read, hard to get right, and hard to debug. When you have a
complex set of choices to make, the swi t ch statement is a more powerful alternative. The logic of a
swi t ch statement is this: "pick a matching value and act accordingly."

switch (expression)

{
case constant - expressi on:
st at enent
j unp- st at enent
[defaul t: statenent]
}

As you can see, like an i f statement, the expression is put in parentheses in the head of the swi t ch
statement. Each case statement then requires a constant expression; that is, a literal or symbolic
constant or an enumeration.

If a case is matched, the statement (or block of statements) associated with that case is executed.
This must be followed by a jump statement. Typically, the jump statement is br eak, which transfers
execution out of the switch. An alternative is a got o statement, typically used to jump into another
case, as illustrated in Example 3-9.

Example 3-9. The switch statement
usi ng System

cl ass Val ues

{

static void Main()

{
const int Denocrat = O;
const int Liberal Republican = 1;
const int Republican = 2;
const int Libertarian = 3;
const int NewLeft = 4;
const int Progressive = 5;

int myChoice = Libertarian;

swi tch (myChoi ce)
{

case Denocrat:
Consol e. WiteLine("You voted Denocratic.\n");
br eak;

case Liberal Republican: // fall through
/] Consol e. WiteLine(

/1" Li beral Republicans vote Republican\n");

case Republi can:
Consol e. WiteLine("You voted Republican.\n");
br eak;

case NewLeft:
Consol e. Wite("NewLeft is now Progressive");
goto case Progressive;

case Progressive:
Consol e. WiteLine("You voted Progressive.\n");
br eak;

case Libertarian:
Consol e. WiteLine("Libertarians are voting Republican");
goto case Republican;

defaul t:

48

Programming C#

Console. WiteLine("You did not pick a valid choice.\n");
br eak;

}

Consol e. WiteLine("Thank you for voting.");

}

In this whimsical example, we create constants for various political parties. We then assign one value
(Li bertari an) to the variable myChoi ce and switch on that value. If myChoi ce is equal to

Denocr at , we print out a statement. Notice that this case ends with br eak. Br eak is a jump
statement that takes us out of the switch statement and down to the first line after the switch, on which
we print "Thank you for voting."

The value Li ber al Republ i can has no statement under it, and it "falls through" to the next
statement: Republ i can. If the value is Li ber al Republ i can or Republ i can, the Republ i can
statements will execute. You can only "fall through" like this if there is no body within the statement. If
you uncomment the Wi t eLi ne under Li ber al Republ i can, this program will not compile.

- C and C++ programmers take note: you cannot fall through to the
42 | nextcase if the case statement is not empty. Thus, you can write
~ 4 the following:

case 1. // fall through ok
case 2:

In this example, case 1 is empty. You cannot, however, write the
following:

case 1:
TakeSonmeAction();
/1 fall through not OK
case 2:

Here case 1 has a statement in it, and you cannot fall through. If
you want case 1 to fall through to case 2, you must explicitly
use got o:

case 1. TakeSoneAction();
goto case 2

/'l explicit fall through
case 2:

If you do need a statement but you then want to execute another case, you can use the got o
statement, as shown in the Newlef t case:

got o case Progressive;
It is not required that the got o take you to the case immediately following. In the next instance, the

Li bertari an choice also has a got o, but this time it jumps all the way back up to the Republ i can
case. Because our value was set to Li bert ari an, this is just what occurs. We print out the

49

Li bertari an statement, then go to the Republ | can case, print that statement, and then hit the
break, taking us out of the switch and down to the final statement. The output for all of this is:

Li bertarians are voting Republican
You voted Republican.

Thank you for voting.
Note the def aul t case, excerpted from Example 3-9:

defaul t:
Consol e. Wi teLi ne(
"You did not pick a valid choice.\n");

If none of the cases matches, the def aul t case will be invoked, warning the user of the mistake.

3.5.2.4 Switch on string statements

In the previous example, the switch value was an integral constant. C# offers the ability to switch on a
string, allowing you to write:

case "Libertarian":

If the strings match, the case statement is entered.

3.5.3 Iteration Statements

C# provides an extensive suite of iteration statements, including f or ,whileanddo . . . while
loops, as well as f or each loops (new to the C family but familiar to VB programmers). In addition, C#
supports the got o, break , conti nue,and r et ur n jump statements.

3.5.3.1 The goto statement

The got o statement is the seed from which all other iteration statements have been germinated.
Unfortunately, it is a semolina seed, producer of spaghetti code and endless confusion. Most
experienced programmers properly shun the got o statement, but in the interest of completeness,
here's how you use it:

1. Create a label.
2. got o that label.

The label is an identifier followed by a colon. The got o command is typically tied to a condition, as
illustrated in Example 3-10.

Example 3-10. Using goto

usi ng System
public class Tester

{
public static int Main()
{
int i = 0;
repeat : /'l the | abel
Consol e. WiteLine("i: {0}",i);
| ++;

50

Programming C#

if (i < 10)
goto repeat; // the dasterdly deed
return O,

}

If you were to try to draw the flow of control in a program that makes extensive use of got o
statements, the resulting morass of intersecting and overlapping lines looks like a plate of spaghetti;
hence the term "spaghetti code." It was this phenomenon that led to the creation of alternatives, such
as the whi | e loop. Many programmers feel that using got o in anything other than a trivial example
creates confusion and difficult-to-maintain code.

3.5.3.2 The while loop

The semantics of the whi | e loop are "while this condition is true, do this work."

The syntax is:

whi |l e (expression) statenent

As usual, an expression is any statement that returns a value. \\hi | e statements require an

expression that evaluates to a Boolean (it r ue /f al se) value, and that statement can, of course, be a
block of statements. Example 3-11 updates Example 3-10, using a whi | e loop.

Example 3-11. Using a while loop

usi ng System
public class Tester

{
public static int Main()
{
int i = 0;
while (i < 10)
{
Console. WiteLine("i: {0}",i);
i+
}
return O,
}
}

The code in Example 3-11 produces results identical to the code in Example 3-10, but the logic is
a bit clearer. The whi | e statement is nicely self-contained, and it reads like an English sentence:
"whi | e i is less than 10, print this message and increment i ."

Notice that the whi | e loop tests the value of i before entering the loop. This ensures that the loop will
not run if the condition tested is false; thus if i is initialized to 11, the loop will never run.

3.5.3.3Thedo ...while loop

There are times when a whi | e loop might not serve your purpose. In certain situations, you might
want to reverse the semantics from "run while this is true" to the subtly different "do this, while this
condition remains true." In other words, take the action, and then, after the action is completed, check
the condition. For this you will use the do. . . whi | e loop.

do expression while statenment

51

An expression is any statement that returns a value. An example of the do. . . whi | e loop is shown in
Example 3-12.

Example 3-12. The do...while loop
usi ng System
public class Tester

{
public static int Main()
{
int i = 11;
do
{
Console. WiteLine("i: {0}",i);
i ++;
} while (i < 10);
return O,
}
}

Here i is initialized to 11 and the whi | e test fails, but only after the body of the loop has run once.
3.5.3.4 The for loop

A careful examination of the whi | e loop in Example 3-12 reveals a pattern often seen in iterative
statements: initialize a variable (i = 0), test the variable (i < 10), execute a series of statements,

and increment the variable (i ++). The f or loop allows you to combine all these steps in a single loop
statement:

for ([initializers]; [expression]; [iterators]) statenent

The f or loop is illustrated in Example 3-13.

Example 3-13. The for loop
usi ng System
public class Tester

{
public static int Main()
{
for (int i=0;i<100;i++)
{
Console. Wite("{0} ", i);
if (1940 == 0)
{
Console. WiteLine("\t{0o}", i);
}
}
return O,
}
}
Qut put :
0 0

12345678910 10

52

Programming C#

11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99

This f or loop makes use of the modulus operator described later in this chapter. The value of i is
printed until i is a multiple of 10.

if (i9%0 == 0)

A tab is then printed, followed by the value. Thus the tens (20,30,40, etc.) are called out on the right
side of the output.

The individual values are printed using Consol e. Wi t e, which is much like Wi t eLi ne but which
does not enter a newline character, allowing the subsequent writes to occur on the same line.

A few quick points to notice: in a f or loop the condition is tested before the statements are executed.
Thus, in the example, i is initialized to zero, then | is tested to see if it is less than 100. Because i <
100 returns t r ue, the statements within the f or loop are executed. After the execution, i is
incremented (i ++).

Note that the variable i is scoped to within the f or loop (that is, the variable i is visible only within the
for loop). Example 3-14 will not compile:

Example 3-14. Scope of variables declared in a for loop

usi ng System
public class Tester

{
public static int Main()
{
for (int i=0; i<100; i++)
{
Console. Wite("{0} ", i);
if (1940 == 0)
{
Console. WiteLine("\t{0}", i);
}
Console. WiteLine("\n Final value of i: {0}", i);
return O;
}
}

The line shown in bold fails, as the variable i is not available outside the scope of the f or loop itself.

Whitespace and Braces

There is much controversy about the use of whitespace in programming. For

53

example, the f or loop shown in Example 3-14:

for (int i=0;i<100;i ++)

{
Console. Wite("{0} ", 1);
if (1940 == 0)
{
Consol e. WiteLine("\t{0}", i);
}
}
could well be written with more space between the operators:
for (int i =0; i < 100; i++)
{
Console. Wite("{0} ", 1);
if (i %10 == 0)
{

Consol e. WiteLine("\t{0}", i);
}
}

Because single f or and i f statements do not need braces, we can also
rewrite the same listing as

for (int i =0; i < 100; i++)
Console. Wite("{0} ", i);

if (i %10 == 0)
Consol e. WiteLine("\t{0}", i);

Much of this is a matter of personal taste. Although | find whitespace can
make code more readable, too much space can cause confusion. In this
book, | tend to compress the whitespace to save room on the printed page.

3.5.3.5 The foreach statement

The f or each statement is new to the C family of languages; it is used for looping through the

elements of an array or a collection. Discussion of this incredibly useful statement is deferred until

Chapter 7.

3.5.3.6 The continue and break statements

There are times when you would like to restart a loop without executing the remaining statements in

the loop. The cont i nue statement causes the loop to return to the top and continue executing.

The obverse side of that coin is the ability to break out of a loop and immediately end all further work

within the loop. For this purpose the br eak statement exists.

Programming C#

- Break and cont | nue create multiple exit points and make for
o 4. hard-to-understand, and thus hard-to-maintain, code. Use them
4 with some care.

Example 3-15 illustrates the mechanics of cont | nue and br eak. This code, suggested to me by
one of my technical reviewers, Donald Xie, is intended to create a traffic signal processing system.
The signals are simulated by entering numerals and uppercase characters from the keyboard, using
Consol e. ReadLi ne, which reads a line of text from the keyboard.

The algorithm is simple: receipt of a "0" (zero) means normal conditions, and no further action is
required except to log the event. (In this case, the program simply writes a message to the console; a
real application might enter a time-stamped record in a database.) On receipt of an Abort signal (here
simulated with an uppercase "A"), the problem is logged and the process is ended. Finally, for any
other event, an alarm is raised, perhaps notifying the police. (Note that this sample does not actually
notify the police, though it does print out a harrowing message to the console.) If the signal is "X," the
alarm is raised but the whi | e loop is also terminated.

Example 3-15. Using continue and break

usi ng System
public class Tester

{
public static int Main()
{
string signal = "0"; /1l initialize to neutra
while (signal !'="X") /1 X indicates stop
{
Console. Wite("Enter a signal: ");
signal = Consol e. ReadLi ne();
/1 do sone work here, no matter what signal you
/'l receive
Consol e. WiteLine("Received: {0}", signal);
if (signal == "A")
{
/1 faulty - abort signal processing
/'l Log the problem and abort.
Consol e. WiteLine("Fault! Abort\n");
br eak;
}
if (signal == "0")
{
/1 normal traffic condition
/1 1og and continue on
Console. WiteLine("All is well.\n");
conti nue
}
/'l Problem Take action and then |og the problem
/1 and then continue on
Console. WiteLine("{0} -- raise alarnm\n"
signal);
}
return O,
}
}

55

Qut put :

Enter a signal: O

The follow ng signal was received: O
Al is well.

Enter a signal: B

The foll ow ng signal was received: B
B -- raise alarm

Enter a signal: A

The follow ng signal was received: A
Faulty processing. Abort

Press any key to continue

The point of this exercise is that when the A signal is received, the action in the i f statement is taken
and then the program breaks out of the loop, without raising the alarm. When the signal is O it is also
undesirable to raise the alarm, so the program continues from the top of the loop.

3.6 Operators

An operator is a symbol that causes C# to take an action. The C# primitive types (e.g., | nt) support a
number of operators such as assignment, increment, and so forth. Their use is highly intuitive, with the
possible exception of the assignment operator (=) and the equality operator (==), which are often
confused.

3.6.1 The Assignment Operator (=)

Section 3.3, earlier in this chapter, demonstrates the use of the assignment operator. This symbol
causes the operand on the left side of the operator to have its value changed to whatever is on the
right side of the operator.

3.6.2 Mathematical Operators

C# uses five mathematical operators, four for standard calculations and a fifth to return the remainder
in integer division. The following sections consider the use of these operators.

3.6.2.1 Simple arithmetical operators (+, -, *, /)

C# offers operators for simple arithmetic: the addition (+), subtraction (-), multiplication (*), and
division (/) operators work as you might expect, with the possible exception of integer division.

When you divide two integers, C# divides like a child in fourth grade: it throws away any fractional
remainder. Thus, dividing 17 by 4 will return the value 4 (17/ 4 = 4, with a remainder of 1). C#
provides a special operator, modulus (%), described in the next section, to retrieve the remainder.

Note, however, that C# does return fractional answers when you divide floats, doubles, and decimals.
3.6.2.2 The modulus operator (%) to return remainders

To find the remainder in integer division, use the modulus operator (%). For example, the statement
17% returns 1 (the remainder after integer division).

56

Programming C#

The modulus operator turns out to be more useful than you might at first imagine. When you perform
modulus n on a number that is a multiple of n, the result is zero. Thus 80 % 10 = 0 because 80 is
an even multiple of 10. This fact allows you to set up loops in which you take an action every nth time
through the loop, by testing a counter to see if % is equal to zero. This strategy comes in handy in the
use of the f or loop, as described earlier in this chapter. The effects of division on integers, floats,
doubles, and decimals is illustrated in Example 3-16.

Example 3-16. Division and modulus

usi ng System
cl ass Val ues

{
static void Main()
{
int i1, i2;
float f1, f2;
doubl e d1, d2;
deci mal decl, dec2;
i1 =17;
i2 = 4;
f1 = 17f;
f2 = 4f;
dl = 17;
d2 = 4;
decl = 17;
dec2 = 4;
Console. WiteLine("Integer:\t{O}\nfloat:\t\t{1}\n",
i1/i2, f1/f2);
Consol e. WiteLine("double:\t\t{0}\ndecimal :\t{1}",
dl/d2, decl/dec2);
Consol e. WiteLine("\nModul us:\t{0}", i1% 2);
}
}
Qut put :
I nt eger: 4
float: 4. 25
doubl e: 4. 25
deci mal : 4. 25
Modul us: 1

Now consider this line from Example 3-16:

Console. WiteLine("Integer:\t{O}\nfloat:\t\t{1}\n",
il/i2, f1/f2);

It begins with a call to Consol e. Wit el i ne, passing in this partial string:
"Integer:\t{0}\n

This will print the characters | nt eger : followed by atab (\ t) followed by the first parameter ({ 0})
and then followed by a newline character (\ n). The next string snippet:

float:\t\t{1}\n

57

is very similar. It prints f | oat : followed by two tabs (to ensure alignment), the contents of the second
parameter ({ 1}), and then another newline. Notice the subsequent line, as well:

Consol e. Wi teLine("\nModul us:\t{0}", i1% 2);

This time the string begins with a newline character, which causes a line to be skipped just before the
string Modul us: is printed. You can see this effect in the output.

3.6.3 Increment and Decrement Operators

A common requirement is to add a value to a variable, subtract a value from a variable, or otherwise
change the mathematical value, and then to assign that new value back to the same variable. You
might even want to assign the result to another variable altogether. The following two sections discuss
these cases respectively.

3.6.3.1 Calculate and reassign operators

Suppose you want to increment the ny Sal ar y variable by 5000. You can do this by writing:

mySal ary = nySal ary + 5000;

The addition happens before the assignment, and it is perfectly legal to assign the result back to the
original variable. Thus, after this operation completes, nmySal ar y will have been incremented by 5000.

You can perform this kind of assignment with any mathematical operator:

mySal ary = nySal ary * 5000;
nmySal ary = nySal ary - 5000;

and so forth.

The need to increment and decrement variables is so common that C# includes special operators for
self-assignment. Among these operators are += , - =, * =,/ =, and %, which, respectively, combine
addition, subtraction, multiplication, division, and modulus, with self-assignment. Thus, you can
alternatively write the previous examples as:

mySal ary += 5000;
mySal ary *= 5000;
mySal ary -= 5000;

The effect of this is to increment my Sal ar y by 5000, multiply nmy Sal ar y by 5000, and subtract 5000
from the ny Sal ar y variable, respectively.

Because incrementing and decrementing by 1 is a very common need, C# (like C and C++ before it)
also provides two special operators. To increment by 1 you use the ++ operator, and to decrement by
1 you use the - - operator.

Thus, if you want to increment the variable ny Age by 1 you can write:

nmy Age++;

3.6.3.2 The prefix and postfix operators

To complicate matters further, you might want to increment a variable and assign the results to a
second variable:

58

Programming C#

firstVal ue = secondVal ue++;

The question arises: do you want to assign before you increment the value or after? In other words, if
secondVal ue starts out with the value 10, do you want to end with both f i r st Val ue and
secondVal ue equal to 11, or do you want f i r st Val ue to be equal to 10 (the original value) and
secondVal ue to be equal to 117

C# (again, like C and C++) offer two flavors of the increment and decrement operators: pr ef i x and
post f i x. Thus you can write:

firstVal ue = secondVal ue++; [/ postfix

which will assign first, and then increment (f i r st Val ue=10, secondVal ue=11), or you can write:
firstVal ue = ++secondVal ue; //prefix

which will increment first, and then assign (f i r st Val ue=11, secondVal ue=11).

It is important to understand the different effects of pr ef i x and post f i x, as illustrated in Example
3-17.

Example 3-17. lllustrating prefix versus postfix increment

usi ng System
cl ass Val ues

{
static void Main()
{
int val ueOne = 10;
int val ueTwo;
val ueTwo = val ueOne++;
Console. WiteLine("After postfix: {0}, {1}", val ueOne,
val ueTwo) ;
val ueOne = 20;
val ueTwo = ++val ueOne;
Console. WiteLine("After prefix: {0}, {1}", val ueOne,
val ueTwo) ;
}
}
Qut put :

After postfix: 11, 10
After prefix: 21, 21

3.6.4 Relational Operators

Relational operators are used to compare two values, and then return a Boolean (true or false). The
greater-than operator (>), for example, returns true if the value on the left of the operator is greater
than the value on the right. Thus, 5 > 2 returns the value t r ue, while 2 > 5 returns the value

fal se.

The relational operators for C# are shown in Table 3-3. This table assumes two variables: bi gVal ue
and siel | Val ue in which bi gVal ue has been assigned the value 100 and snal | Val ue the value
50.

59

Table 3-3. C# relational operators (assumes bigValue = 100 and
smallValue = 50)

Name Operator Given this statement: The expression evaluates to:

bi gval ue == 100 true
Equals ==

bi gval ue = 80 fal se

bi gval ue !'= 100 fal se
Not Equals =

bi gval ue = 80 true
Greater than > bi gval ue > snmal | Val ue true

bi gval ue >= snual | Val ue |true
Greater than or equals |>=

smal | Val ue >= bi gVval ue |fal se
Less than < bi gval ue < smal | Val ue fal se

smal | Val ue <= bi gVal ue |true
Less than or equals <=

bi gval ue <= snual | Val ue |[fal se

Each of these relational operators acts as you might expect. However, take note of the equals
operator (==), which is created by typing two equal signs (=) in a row (i.e., without any space between
them); the C# compiler treats the pair as a single operator.

The C# equality operator (==) tests for equality between the objects on either side of the operator.
This operator evaluates to a Boolean value (it r ue or f al se). Thus, the statement:

n’yx == :

evaluates to t r ue if and only if ny X is a variable whose value is 5.

- It is not uncommon to confuse the assignment operator (=) with
#s 4. the equals operator (==). The latter has two equal signs, the
2 former only one.

3.6.5 Use of Logical Operators with Conditionals

| f statements (discussed earlier in this chapter) test whether a condition is true. Often you will want to
test whether two conditions are both true, or only one is true, or none is true. C# provides a set of
logical operators for this, as shown in Table 3-4. This table assumes two variables, x and y, in which
x has the value 5 and vy the value 7.

Table 3-4. C# logical operators (assumes x =5,y =7)

Name Operator| Given this statement The expresst|c())n evaluates Logic

and |&& (7;(==3) & (y == fal se Both must be true

or I (x==3) [l (y = | e Either or both must be
7) true

not | I (x == 3) true Expression must be false

60

Programming C#

The and operator tests whether two statements are both true. The first line in Table 3-4 includes an
example which illustrates the use of the and operator:
(x == 3) && (y ==7)

The entire expression evaluates false because one side (x == 3) is false.

With the or operator, either or both sides must be true; the expression is false only if both sides are
false. So, in the case of the example in Table 3-4:

(x ==3) || (y ==17)
the entire expression evaluates true because one side (y==7) is true.

With a not operator, the statement is true if the expression is false, and vice versa. So, in the
accompanying example:

I (x == 3)

the entire expression is true because the tested expression (x==3) is false. (The logic is: "it is true that
it is not true that x is equal to 3.")

Short-Circuit Evaluation

Consider the following code snippet:

int x = 8;
it ((x ==28) [| (y == 12))

The | f statement here is a bit complicated. The entire | f statement is in
parentheses, as are all | f statements in C#. Thus, everything within the
outer set of parentheses must evaluate true for the | f statement to be true.

Within the outer parentheses are two expressions (x==8) and (y==12)
which are separated by an or operator (| |). Because x is 8, the first term
(x==8) evaluates true. There is no need to evaluate the second term
(y==12). It doesn't matter whether y is 12, the entire expression will be true.
Similarly, consider this snippet:

int x = 8;
If ((x == 5) && (y == 12))

Again, there is no need to evaluate the second term. Because the first term
is false, the and must fail. (Remember, for an and statement to evaluate
true, both tested expressions must evaluate true.)

In cases such as these, the C# compiler will short-circuit the evaluation; the
second test will never be performed.

61

3.6.6 Operator Precedence

The compiler must know the order in which to evaluate a series of operators. For example, if | write:
myVariable = 5 + 7 * 3;

there are three operators for the compiler to evaluate (=, +, and *). It could, for example, operate left
to right, which would assign the value 5 to nyVar i abl e, then add 7 to the 5 (12) and multiply by 3
(36)—but of course then it would throw that 36 away. This is clearly not what is intended.

The rules of precedence tell the compiler which operators to evaluate first. As is the case in algebra,
multiplication has higher precedence than addition, so 5+7*3 is equal to 26 rather than 36. Both

addition and multiplication have higher precedence than assignment, so the compiler will do the math,
and then assign the result (26) to myVar i abl e only after the math is completed.

In C#, parentheses are also used to change the order of precedence much as they are in algebra.
Thus, you can change the result by writing:

nmyVari able = (5+7) * 3;
Grouping the elements of the assignment in this way causes the compiler to add 5+7, multiply the

result by 3, and then assign that value (36) to nyVar i abl e. Table 3-5 summarizes operator
precedence in C#.

Table 3-5. Operator precedence

Category Operators

. X X. f(x a[x] x++ x-- new typeof sizeof
Primary ghzeckedy unghzeckegl] "
Unary +->1~++x —Xx (T)x
Multiplicative *[%
Additive + -
Shift << >>
Relational <><=>=is
Equality ==I=
Logical AND &
Logical XOR "
Logical OR |
Conditional AND &&
Conditional OR I
Conditional ?:
Assignment =*= [2 %= 4= = <<= >>=&="= |=

In some complex equations you might need to nest your parentheses to ensure the proper order of
operations. Assume | want to know how many seconds my family wastes each morning.

It turns out that the adults spend 20 minutes over coffee each morning and 10 minutes reading the
newspaper. The children waste 30 minutes dawdling and 10 minutes arguing.

Here's my algorithm:

(((m nDrinki ngCof fee + m nReadi ngNewspaper)* numAdults) +

62

Programming C#

((m nDawdl i ng + m nArguing) * nuntChildren)) * secondsPerM nute.

Although this works, it is hard to read and hard to get right. It's much easier to use interim variables:

wast edByEachAdul t
wast edByAl | Adul ts

m nDri nki ngCoffee + m nReadi ngNewspaper ;
wast edByEachAdul t * numAdul ts;

wast edByEachKid = m nDawdling + m nArguing;

wast edByAl | Kids = wastedByEachKid * nuntChil dren;

wast edByFanmi |y = wast edByAl | Adults + wast edByAl | Ki ds;

total Seconds = wastedByFam |y * 60;

The latter example uses many more interim variables, but it is far easier to read, understand, and
(most important) debug. As you step through this program in your debugger, you can see the interim
values and make sure they are correct.

3.6.7 The Ternary Operator

Although most operators require one term (e.g., nyVal ue++) or two terms (e.g., a+h), there is one
operator that has three—the ternary operator (?:) .

cond-expr ? exprl : expr2

This operator evaluates a conditional expression (an expression which returns a value of type bool),
and then invokes either expr essi onl if the value returned from the conditional expression is true, or
expressi on? if the value returned is false. The logic is "if this is true, do the first; otherwise do the
second." Example 3-18 illustrates.

Example 3-18. The ternary operator

usi ng System
cl ass Val ues

{
static void Main()
{
i nt valueOne = 10;
int valueTwo = 20;
int maxVal ue = val ueOne > valueTwo ? val ueOne : val ueTwo;
Consol e. WiteLine("Val ueGne: {0}, valueTwo: {1}, naxValue: {2}",
val ueOne, val ueTwo, naxVal ue);
}
}
CQut put :

Val ueOne: 10, valueTwo: 20, maxVal ue: 20

In Example 3-18, the ternary operator is being used to test whether val ueOne is greater than
val ueTwo. If so, the value of val ueOne is assigned to the integer variable naxVal ue; otherwise the
value of val ueTwo is assigned to naxVal ue.

3.7 Namespaces

Chapter 2 discusses the reasons for introducing namespaces into the C# language (e.g., avoiding
name collisions when using libraries from multiple vendors). In addition to using the namespaces

63

provided by the .NET Framework or other vendors, you are free to create your own. You do this by
using the nanespace keyword, followed by the name you wish to create. Enclose the objects for that
namespace within braces, as illustrated in Example 3-19.

Example 3-19. Creating namespaces
nanespace Programi ng_C Sharp

{
usi ng System
public class Tester
{
public static int Main()
{
for (int i=0;i<10;i++)
{
Console. WiteLine("i: {0}",i);
}
return O;
}
}
}

Example 3-19 creates a namespace called Pr ogr anmi ng C Shar p, and also specifies a Test er
class which lives within that namespace. You can alternatively choose to nest your namespaces, as
needed, by declaring one within another. You might do so to segment your code, creating objects
within a nested namespace whose names are protected from the outer namespace, as illustrated in

Example 3-20.

Example 3-20. Nesting hamespaces
namespace Progranmm ng_C Sharp

{
nanmespace Programi ng_C Sharp_Test
{
usi ng System
public class Tester
{
public static int Main()
{
for (int i=0;i<10;i++)
{
Console. WiteLine("i: {0}",i);
}
return O,
}
}
}
}

The Test er object now declared within the Pr ogr anmi ng_C_Shar p_Test namespace is:

Programm ng_C _Shar p. Programm ng_C Sharp_Test. Tester

This name would not conflict with another Test er object in any other namespace, including the outer
namespace Pr ogr anmm ng_C_Shar p.

Programming C#

3.8 Preprocessor Directives

In the examples you've seen so far, you've compiled your entire program whenever you compiled any
of it. At times, however, you might want to compile only parts of your program depending on, for
example, whether you are debugging or building your production code.

Before your code is compiled, another program called the preprocessor runs and prepares your
program for the compiler. The preprocessor examines your code for special preprocessor directives,
all of which begin with the pound sign (#). These directives allow you to define identifiers and then test
for their existence.

3.8.1 Defining Identifiers

#def i ne DEBUGdefines a preprocessor identifier, DEBUG. Although other preprocessor directives
can come anywhere in your code, identifiers must be defined before any other code, including usi ng
statements.

You can test whether DEBUG has been defined with the #i f statement. Thus, you can write:

#def i ne DEBUG

/1... sonme nornmal code - not affected by preprocessor
#i f DEBUG
/'l code to include if debugging
#el se
/'l code to include if not debugging
#endi f
/1... some normal code - not affected by preprocessor

When the preprocessor runs, it sees the #def | ne statement and records the identifier DEBUG. The
preprocessor skips over your normal C# code and then finds the #i f - #el se - #endi f block.

The #i f statement tests for the identifier DEBUG, which does exist, and so the code between #i f and
#el se is compiled into your program, but the code between #el se and #endi f is not compiled. That
code does not appear in your assembly at all; it is as if it were left out of your source code.

Had the #i f statement failed—that is, if you had tested for an identifier which did not exist—the code
between #i f and #el se would not be compiled, but the code between #el se and #endi f would be
compiled.

Any code not surrounded by #1 f - #endi f is not affected by
«s |, the preprocessor and is compiled into your program.

=
L.

3.8.2 Undefining ldentifiers

You undefine an identifier with #undef . The preprocessor works its way through the code from top to
bottom, so the identifier is defined from the #def | ne statement until the #undef statement, or until
the program ends. Thus if you write:

#def i ne DEBUG

65

#i f DEBUG
/1l this code will be conpiled
#endi f

#undef DEBUG
#i f DEBUG

/'l this code will not be conpiled
#endi f

the first #i f will succeed (DEBUG s defined), but the second will fail (DEBUG has been undefined).

3.8.3 #if, #elif, #else, and #endif

There is no swi t ch statement for the preprocessor, but the #el i f and #el se directives provide
great flexibility. The #el i f directive allows the else-if logic of "if DEBUG then action one, else if TEST
then action two, else action three":

#i f DEBUG
/1l compile this code if debug is defined
#elif TEST

/1l compile this code if debug is not defined
/1 but TEST is defined
#el se
/'l compile this code if neither DEBUG nor TEST
/1 is defined
#endi f

In this example the preprocessor first tests to see if the identifier DEBUG is defined. If it is, the code
between #i f and #el i f will be compiled, and none of the rest of the code until #endi f, will be
compiled.

If (and only if) DEBUGIs not defined, the preprocessor next checks to see if TEST is defined. Note that
the preprocessor will not check for TEST unless DEBUG is not defined. If TEST is defined, the code
between the #el i f and the #el se directives will be compiled. If it turns out that neither DEBUG nor
TEST is defined, the code between the #el se and the #endi f statements will be compiled.

3.8.4 #region

The #r egi on preprocessor directive marks an area of text with a comment. The principal use of this
preprocessor directive is to allow tools such as Visual Studio .NET to mark off areas of code and
collapse them in the editor with only the region's comment showing.

For example, when you create a Windows application (covered in Chapter 13) Visual Studio .NET
creates a region for code generated by the designer. When the region is expanded it looks like Figure
3-1. (Note: I've added the rectangle and highlighting to make it easier to find the region.)

Figure 3-1. Expanding the Visual Studio .NET code region

66

Programming C#

public overcide void Dispose ()
base Dispose();
if {componenta != null)
componenta. Piapoas () ;

/_ #region Windows Form Designer generated code \

private void InitializeComponent ()

{
this.components = new Jystem.Componentiodel.Container ()2
thiz.Sige = hew System.Drawing.S1iee (300,300)
chisz.Text = "FoEml":

1

gendregion

I | f

You can see the region marked by the #r egi on and #end regi on preprocessor directives. When
the region is collapsed, however, all you see is the region comment (\W ndows For m Desi gner
gener at ed code), as shown in Figure 3-2.

Figure 3-2. Code region is collapsed

IG;'HeIImmndnws.FurmL j |ﬂﬁ j

=

public override wvoid Dispoae()
{
hasze,Digpose(] :
1f (components = null)
components.Dispose () ;

[STAThEead]
static wvolid Main()

[

Application, Run(nev Forml[]):

67

68

Programming C#

Chapter 4. Classes and Objects

Chapter 3 discusses the myriad primitive types built into the C# language, such as i nt, | ong, and
char . The heart and soul of C#, however, is the ability to create new, complex, programmer-defined
types that map cleanly to the objects that make up the problem you are trying to solve.

It is this ability to create new types that characterizes an object-oriented language. You specify new
types in C# by declaring and defining classes. You can also define types with interfaces, as you will
see in Chapter 8. Instances of a class are called objects. Objects are created in memory when your
program executes.

The difference between a class and an object is the same as the difference between the concept of a
Dog and the particular dog who is sitting at your feet as you read this. You can't play fetch with the
definition of a Dog, only with an instance.

A Dog class describes what dogs are like: they have weight, height, eye color, hair color, disposition,
and so forth. They also have actions they can take, such as eat, walk, bark, and sleep. A particular
dog (such as my dog Milo) will have a specific weight (62 pounds), height (22 inches), eye color
(black), hair color (yellow), disposition (angelic), and so forth. He is capable of all the actions of any
dog (though if you knew him you might imagine that eating is the only method he implements).

The huge advantage of classes in object-oriented programming is that they encapsulate the
characteristics and capabilities of an entity in a single, self-contained and self-sustaining unit of code.
When you want to sort the contents of an instance of a Windows list box control, for example, you tell
the list box to sort itself. How it does so is of no concern; that it does so is all you need to know.
Encapsulation, along with polymorphism and inheritance, is one of three cardinal principles of object-
oriented programming.

An old programming joke asks, how many object-oriented programmers does it take to change a light
bulb? Answer: none, you just tell the light bulb to change itself. (Alternate answer: none, Microsoft has
changed the standard to darkness.)

This chapter explains the C# language features that are used to specify new classes. The elements of
a class—its behaviors and properties—are known collectively as its class members. This chapter will
show how methods are used to define the behaviors of the class, and how the state of the class is
maintained in member variables (often called fields). In addition, this chapter introduces properties,
which act like methods to the creator of the class but look like fields to clients of the class.

4.1 Defining Classes

To define a new type or class you first declare it, and then define its methods and fields. You declare a
class using the cl ass keyword. The complete syntax is as follows:

[attributes] [access-nodifiers | class identifier [:base-class]
{cl ass-body }

Attributes are covered in Chapter 18; access modifiers are discussed in the next section. (Typically,
your classes will use the keyword publ i ¢ as an access modifier.) The i denti fi er isthe name of

the class that you provide. The optional base- cl ass is discussed in Chapter 5. The member
definitions that make up the cl ass- body are enclosed by open and closed curly braces ({ }).

69

C++ programmers take note: a C# class definition does not end
s | with a semicolon, though if you add one the program will still
42 compile.

In C#, everything happens within a class. For instance, some of the examples in Chapter 3 make use
of a class named Test er:

public class Tester

{
public static int Main()
{
/...
}
}

So far, we've not instantiated any instances of that class; that is, we haven't created any Test er
objects. What is the difference between a class and an instance of that class? To answer that question,
start with the distinction between the type | nt and a variable of type i nt . Thus, while you would write:

int nylnteger = 5;

you would not write:

You can't assign a value to a type; instead, you assign the value to an object of that type (in this case,
a variable of type i nt).

When you declare a new class, you define the properties of all objects of that class, as well as their
behaviors. For example, if you are creating a windowing environment, you might want to create screen
widgets, more commonly known as controls in Windows programming, to simplify user interaction with
your application. One control of interest might be a list box, a control that is very useful for presenting
a list of choices to the user and enabling the user to select from the list.

List boxes have a variety of characteristics: height, width, location, and text color, for example.
Programmers have also come to expect certain behaviors of list boxes: they can be opened, closed,
sorted, and so on.

Object-oriented programming allows you to create a new type, Li st Box, which encapsulates these

characteristics and capabilities. Such a class might have member variables named hei ght , wi dt h,
| ocation, andtext col or,and member methods named sort (), add(),renove(), etc.

You can't assign data to the Li st Box type. Instead you must first create an object of that type, as in
the following code snippet:

Li st Box myLi st Box;
Once you create an instance of Li st Box, you can assign data to its fields.

Now consider a class to keep track of and display the time of day. The internal state of the class must
be able to represent the current year, month, date, hour, minute, and second. You probably would also
like the class to display the time in a variety of formats. You might implement such a class by defining
a single method and six variables, as shown in Example 4-1.

70

Programming C#

Example 4-1. Simple Time class
usi ng System

public class Tine

/1 public nethods
public void DisplayCurrentTinme()

{
Consol e. Wit eLi ne(

"stub for DisplayCurrentTine");

/'l private variables
i nt Year;

i nt Mont h;
i nt Dat e;

i nt Hour;
int Mnute;
i nt Second;

}

public class Tester

{
static void Main()

{
Timet = new Time();
t.DisplayCurrentTime();

}

The only method declared within the Ti ne class definition is the method Di spl ayCurrent Ti ne().
The body of the method is defined within the class definition itself. Unlike other languages (such as
C++), C# does not require that methods be declared before they are defined, nor does the language
support placing its declarations into one file and code into another. (C# has no header files.) All C#
methods are defined in line as shown in Example 4-1 with Di spl ayCurrent Ti ne().

The Di spl ayCurrent Ti me() method is defined to return voi d; that is, it will not return a value to
a method that invokes it. For now, the body of this method has been "stubbed out.”

The Ti ne class definition ends with the declaration of a number of member variables: Year , Mont h,
Dat e, Hour , M nut e, and Second.

After the closing brace, a second class, Test er, is defined. Test er contains our now familiar

Mai n() method. In Vai n() aninstance of Ti ne is created and its address is assigned to object t .
Because t is an instance of Ti e, MVai n() can make use of the Di spl ayCurrent Ti me() method
available with objects of that type and call it to display the time:

t.DisplayCurrentTime();
4.1.1 Access Modifiers

An access modifier determines which class methods—including methods of other classes—can see
and use a member variable or method within a class. Table 4-1 summarizes the C# access modifiers.

71

Table 4-1. Access modifiers

Access .

Modifier Restrictions
public No restrictions. Members marked publ i c are visible to any method of any class.

. The members in class A which are marked pr i vat e are accessible only to methods
private

of class A.

The members in class A which are marked pr ot ect ed are accessible to methods of
pr ot ect ed .

class A and also to methods of classes derived from class A.

i nter nal The members in class A which are marked i nt er nal are accessible to methods of
any class in A's assembly.

The members in class A which are marked pr ot ect ed i nt ernal are accessible to
protected |methods of class A, to methods of classes derived from class A, and also to any class
i nternal in A's assembly. This is effectively pr ot ect ed OR i nt er nal (There is no concept

of prot ect ed AND i nt ernal .)

It is generally desirable to designate the member variables of a class as pri vat e. This means that
only member methods of that class can access their value. Because pri vat e is the default
accessibility level, you do not need to make it explicit, but | recommend that you do so. Thus, in
Example 4-1, the declarations of member variables should have been written as follows:

/'l private variables
private int Year;

private int Month;
private int Date;
private int Hour;
private int M nute;
private int Second;

Class Test er and method Di spl ayCurrent Ti me() are both declared publ i ¢ so that any other
class can make use of them.

It is good programming practice to explicitly set the accessibility of
ar all methods and members of your class. Although you can rely on
the fact that class members are declared pr i vat e by default,
making their access explicit indicates a conscious decision and is
self-documenting.

=
L.

4.1.2 Method Arguments

Methods can take any number of parameters.i*! The parameter list follows the method name and is
encased in parentheses, with each parameter preceded by its type. For example, the following
declaration defines a method named My Vet hod which returns voi d (that is, which returns no value at
all) and which takes two parameters: an i nt and a button:

1 The terms "argument” and "parameter” are often used interchangeably, though some programmers insist on differentiating between
the argument declaration and the parameters passed in when the method is invoked.

void MyMethod (int firstParam button secondParan)

{
/1

}

72

Programming C#

Within the body of the method, the parameters act as local variables, as if you had declared them in
the body of the method and initialized them with the values passed in. Example 4-2 illustrates how
you pass values into a method, in this case values of type i nt and f | oat .

Example 4-2. Passing values into SomeMethod()
usi ng System

public class MO ass

{
public void SomeMethod(int firstParam float secondParam
{
Consol e. Wit eLi ne(
"Here are the paraneters received: {0}, {1}",
firstParam secondParam;
}
}
public class Tester
{
static void Main()
{
i nt howivanyPeopl e = 5;
float pi = 3.14f;
MyCl ass nt = new Wd ass();
nc. SoneMet hod(howivanyPeopl e, pi);
}
}

The method SonelMet hod() takesanint andaf | oat and displays them using
Consol e. WitelLine().The parameters, which are named f i r st Par amand secondPar am are
treated as local variables within SormrelVet hod().

In the calling method (Vai n), two local variables (howiVanyPeopl e and pi) are created and
initialized. These variables are passed as the parameters to SonelMet hod() . The compiler maps

howivanyPeopl eto fi rst Paramand pi to secondPar am based on their relative positions in the
parameter list.

4.2 Creating Objects

In Chapter 3, a distinction is drawn between value types and reference types. The primitive C# types
(i nt, char, etc.) are value types, and are created on the stack. Objects, however, are reference types,
and are created on the heap, using the keyword new, as in the following:

Timet = new Time();

t does not actually contain the value for the Ti ne object; it contains the address of that (unnamed)
object that is created on the heap. t itself is just a reference to that object.

4.2.1 Constructors

In Example 4-1, notice that the statement that creates the Ti ne object looks as though it is invoking
a method:

Timet = new Time();

73

In fact, a method is invoked whenever you instantiate an object. This method is called a constructor,
and you must either define one as part of your class definition or let the Common Language Runtime
(CLR) provide one on your behalf. The job of a constructor is to create the object specified by a class
and to put it into a valid state. Before the constructor runs, the object is undifferentiated memory; after
the constructor completes, the memory holds a valid instance of the class t ype.

The Ti ne class of Example 4-1 does not define a constructor. If a constructor is not declared, the
compiler provides one for you. The default constructor creates the object but takes no other action.

Member variables are initialized to innocuous values (integers to 0, strings to the empty string, etc.).
Table 4-2 lists the default values assigned to primitive types.

Table 4-2. Primitive types and their default values

Type Default Value
nuneric (int, long,etc) 0
bool fal se
char N0 (null)
enum 0
reference nul |

Typically, you'll want to define your own constructor and provide it with arguments so that the
constructor can set the initial state for your object. In Example 4-1, assume that you want to pass in
the current year, month, date, and so forth, so that the object is created with meaningful data.

To define a constructor you declare a method whose name is the same as the class in which it is
declared. Constructors have no return type and are typically declared public. If there are arguments to
be passed, you define an argument list just as you would for any other method. Example 4-3
declares a constructor for the Ti ne class that accepts a single argument, an object of type Dat eTi ne.

Example 4-3. Declaring a constructor
public class Tine

{
/'l public accessor nethods
public void DisplayCurrentTinme()
{
System Consol e. WiteLine("{0}/{1}/{2} {3}:{4}:{5}",
Mont h, Date, Year, Hour, M nute, Second);
}

/'l constructor
public Time(System DateTi ne dt)

{
Year = dt. Year;
Month = dt. Mont h;
Date = dt. Day;
Hour = dt. Hour;
M nute = dt. M nut e;
Second = dt. Second;
}
/'l private menber vari abl es
i nt Year;
i nt Mont h;
i nt Dat e;
i nt Hour;

74

Programming C#

int Mnute;
i nt Second;
}
public class Tester
{
static void Main()
{
System Dat eTi me currentTime = System Dat eTi me. Now;
Time t = new Tinme(currentTi ne);
t.DisplayCurrentTime();
}
}
Qut put :

11/ 16/ 2000 16: 21: 40

In this example, the constructor takes a Dat eTi e object and initializes all the member variables
based on values in that object. When the constructor finishes, the Ti ne object exists and the values
have been initialized. When Di spl ayCurrent Ti me() is called in Vai n(), the values are displayed.

Try commenting out one of the assignments and running the program again. You'll find that the
member variable is initialized by the compiler to 0. Integer member variables are set to O if you don't
otherwise assign them. Remember, value types (e.g., integers) cannot be uninitialized; if you don't tell
the constructor what to do, it will try for something innocuous.

In Example 4-3, the Dat eTi e object is created in the Vai n() method of Test er. This object,
supplied by the Syst emlibrary, offers a number of public values—Year , Mont h, Day, Hour, M nut e,
and Second—that correspond directly to the private member variables of our Ti ne object. In addition,
the Dat eTi ne object offers a static member method, Now, which returns a reference to an instance of
a Dat eTi e object initialized with the current time.

Examine the highlighted line in Vai n(), where the Dat eTi ne object is created by calling the static
method Now(). Now() creates a Dat eTi ne object on the heap and returns a reference to it.

That reference is assigned to cur r ent Ti e, which is declared to be a reference to a Dat eTi ne
object. Then cur rent Ti ne is passed as a parameter to the Ti e constructor. The Ti ne constructor
parameter, dt , is also a reference to a Dat eTi ne object; in fact dt now refers to the same Dat eTi ne
object as cur rent Ti e does. Thus, the Ti ne constructor has access to the public member variables
of the Dat eTi ne object that was created in Tester. Mai n().

The reason that the Dat eTi ne object referred to in the Ti ne constructor is the same object referred
toin Mai n() is that objects are reference types. Thus, when you pass one as a parameter it is
passed by reference—that is, the pointer is passed and no copy of the object is made.

4.2.2 Initializers

It is possible to initialize the values of member variables in an initializer, instead of having to do so in
every constructor. You create an initializer by assigning an initial value to a class member:

private int Second = 30; // initializer

75

Assume that the semantics of our Time object are such that no matter what time is set, the seconds
are always initialized to 30. We might rewrite our Time class to use an initializer so that no matter
which constructor is called, the value of Second is always initialized, either explicitly by the constructor
or implicitly by the initializer, as shown in Example 4-4.

Example 4-4. Using an initializer
public class Tine

{
/1 public accessor nethods
public void DisplayCurrentTine()
{
Syst em Dat eTi nre now = System Dat eTi me. Now;,
Syst em Consol e. Wit eLi ne(
"“\'nDebug\t: {0}/{21}/{2} {3}:{4}:{5}",
now. Mont h, now. Day , now. Year, now. Hour,
now. M nut e, now. Second) ;
System Console. WiteLine("Tine\t: {0}/{1}/{2} {3}:{4}:{5}",
Mont h, Date, Year, Hour, Mnute, Second);
}
/1 constructors
public Tinme(System DateTi ne dt)
{
Year = dt. Year;
Mont h = dt . Mont h;
Date = dt . Day;
Hour = dt . Hour;
Mnute = dt. M nut e;
Second = dt . Second; /lexplicit assignnent
}
public Tinme(int Year, int Month, int Date,
int Hour, int M nute)
{
this. Year = Year ;
this.Month = Mont h;
this.Date = Dat e;
this. Hour = Hour ;
this.Mnute = M nut e;
}
/1 private nenber variabl es
private int Year;
private int Month;
private int Date;
private int Hour;
private int M nute;
private int Second = 30; // initializer
}
public class Tester
{

static void Main()
{

System Dat eTi me currentTi me = System Dat eTi ne. Now,
Time t = new Time(currentTinme);
t.DisplayCurrentTine();

76

Programming C#

Tinme t2 = new Ti me(2000, 11, 18, 11, 45);
t2.DisplayCurrentTime();

}
}
Qut put :
Debug . 11/ 27/ 2000 7:52:54
Ti me . 11/ 27/ 2000 7:52:54
Debug . 11/ 27/ 2000 7:52:54
Ti me : 11/18/ 2000 11:45:30

If you do not provide a specific initializer, the constructor will initialize each integer member variable to
zero (0). In the case shown, however, the Second member is initialized to 30:

private int Second = 30; // initializer
If a value is not passed in for Second, its value will be set to 30 when t 2 is created:

Tinme t2 = new Ti me(2000, 11, 18, 11, 45);
t2.DisplayCurrentTime();

However, if a value is assigned to Second, as is done in the constructor (which takes a Dat eTi ne
object, shown in bold), that value overrides the initialized value.

The first time through the program we call the constructor that takes a Dat e Ti ne object, and the
seconds are initialized to 54. The second time through we explicitly set the time to 11: 45 (not setting
the seconds) and the initializer takes over.

If the program did not have an initializer and did not otherwise assign a value to Second, the value
would be initialized by the compiler to zero.

4.2.3 Copy Constructors
A copy constructor creates a new object by copying variables from an existing object of the same type.
For example, you might want to pass a Ti e object to a Ti ne constructor so that the new Ti ne object

has the same values as the old one.

C# does not provide a copy constructor, so if you want one you must provide it yourself. Such a
constructor copies the elements from the original object into the new one:

public Tinme(Time existingTi neQbject)

{
Year = existingTi mneQoj ect. Year;
Mont h = exi stingTi meCbj ect. Mont h;
Date = exi stingTi meQbj ect . Dat e;
Hour = exi stingTi neCbj ect. Hour;
M nute = exi stingTi neCbj ect. M nut e;
Second = existingTi neQoj ect. Second,;
}

A copy constructor is invoked by instantiating an object of type Ti e and passing it the name of the
Ti e object to be copied:

Time t3 = new Tinme(t2);

7

Here an exi stingTi mneChj ect (t 2) is passed as a parameter to the copy constructor which will
create a new Ti e object (t 3).

4.2.4 The this Keyword

The keyword t hi s refers to the current instance of an object. The t hi s reference (sometimes
referred to as a this pointer?) is a hidden pointer to every nonstatic method of a class. Each method
can refer to the other methods and variables of that object by way of the t hi s reference.

[21 A pointer is a variable that holds the address of an object in memory. C# does not use pointers with managed objects.

There are three ways in which the t hi s reference is typically used. The first way is to qualify instance
members otherwise hidden by parameters, as in the following:

public void SormeMet hod (int hour)
{

}

this. hour = hour;

In this example, SonelMet hod() takes a parameter (Hour) with the same name as a member
variable of the class. The t hi s reference is used to resolve the name ambiguity. While t hi s. Hour
refers to the member variable, Hour refers to the parameter.

The argument in favor of this style is that you pick the right variable name and then use it both for the
parameter and for the member variable. The counter-argument is that using the same name for both
the parameter and the member variable can be confusing.

The second use of the t hi s reference is to pass the current object as a parameter to another method.
For instance, the following code

public void FirstMethod(Q herC ass ot her Obj ect)
{

}

ot her Obj ect . SecondMet hod(t hi s);

establishes two classes, one with the method Fi r st Vet hod(), and O her Cl ass, with its method
SecondMet hod(). Inside Fi r st Vet hod, we'd like to invoke SecondMet hod, passing in the
current object for further processing.

The third use of t hi s is with indexers, covered in Chapter 9.

4.3 Using Static Members

The properties and methods of a class can be either instance members or static members. Instance
members are associated with instances of a type, while static members are considered to be part of
the class. You access a static member through the name of the class in which it is declared. For
example, suppose you have a class named But t on and have instantiated objects of that class named
bt nUpdat e and bt nDel et e. Suppose as well that the But t on class has a static method

SonmeMet hod(). To access the static method you write:

Butt on. SomeMet hod() ;
rather than writing:

bt nUpdat e. SoneMet hod() ;

78

Programming C#

In C# it is not legal to access a static method or member variable through an instance, and trying to do
so will generate a compiler error (C++ programmers, take note).

Some languages distinguish between class methods and other (global) methods that are available
outside the context of any class. In C# there are no global methods, only class methods, but you can
achieve an analogous result by defining static methods within your class.

Static methods act more or less like global methods, in that you can invoke them without actually
having an instance of the object at hand. The advantage of static methods over global, however, is
that the name is scoped to the class in which it occurs, and thus you do not clutter up the global
namespace with myriad function names. This can help manage highly complex programs, and the
name of the class acts very much like a namespace for the static methods within it.

o Resist the temptation to create a single class in your program in
s | which you stash all your miscellaneous methods. It is possible but
" 4 not desirable and undermines the encapsulation of an object-

oriented design.

4.3.1 Invoking Static Methods

The Vai n() method is static. Static methods are said to operate on the class, rather than on an
instance of the class. They do not have a t hi s reference, as there is no instance to point to.

Static methods cannot directly access nonstatic members. For Vai n() to call a nonstatic method, it
must instantiate an object. Consider Example 4-2, reproduced here for your convenience.

usi ng System

public class MO ass

{
public void SomeMethod(int firstParam float secondParamn
{
Consol e. Wit eLi ne(
"Here are the paraneters received: {0}, {1}",
firstParam secondParam;
}
}
public class Tester
{
static void Main()
{
i nt howMvanyPeopl e = 5;
float pi = 3.14f;
MyCl ass nt = new My ass();
nc. SoneMet hod(howivanyPeopl e, pi);
}
}

SonmeMet hod() is a nonstatic method of MyCl ass. For Vai n() to access this method, it must first
instantiate an object of type MyCl ass and then invoke the method through that object.

79

4.3.2 Using Static Constructors

If your class declares a static constructor, you will be guaranteed that the static constructor will run
before any instance of your class is created.

s You are not able to control exactly when a static constructor will
). run, but you do know that it will be after the start of your program
"4 and before the first instance is created. Because of this you

cannot assume (or determine) whether an instance is being
created.

For example, you might add the following static constructor to Ti ne:

static Time()

{
}

Name = "Ti me";

Notice that there is no access modifier (e.g., publ i ¢) before the static constructor. Access modifiers
are not allowed on static constructors. In addition, because this is a static member method, you cannot
access nonstatic member variables, and so Nane must be declared a static member variable:

private static string Name;
The final change is to add a line to Di spl ayCurrent Ti me(), as in the following:

public void DisplayCurrentTinme()

{
System Consol e. WiteLi ne("Nane: {0}", Nane);
System Consol e. WiteLine("{0}/{1}/{2} {3}:{4}:{5}",
Mont h, Date, Year, Hour, Mnute, Second);
}

When all these changes are made, the output is:

Nane: Tine
11/ 20/ 2000 14:39:8
Nanme: Tine
11/ 18/ 2000 11:3:30
Nanme: Tine
11/ 18/ 2000 11:3:30

Although this code works, it is not necessary to create a static constructor to accomplish this goal. You
could, instead, use an initializer:

private static string Name = "Ti nme";

which accomplishes the same thing. Static constructors are useful, however, for set-up work that
cannot be accomplished with an initializer and that needs to be done only once.

For example, assume you have an unmanaged bit of code in a legacy COM dIl. You want to provide a
class wrapper for this code. You can call load library in your static constructor and initialize the jump
table in the static constructor. Handling legacy code and interoperating with unmanaged code is
discussed in Chapter 22.

80

Programming C#

4.3.3 Using Private Constructors

In C# there are no global methods or constants. You might find yourself creating small utility classes
that exist only to hold static members. Setting aside whether this is a good design or not, if you create
such a class you will not want any instances created. You can prevent any instances from being
created by creating a default constructor (one with no parameters) which does nothing, and which is
marked pri vat e. With no public constructors, it will not be possible to create an instance of your
class.

4.3.4 Using Static Fields

A common use of static member variables is to keep track of the number of instances that currently
exist for your class. Example 4-5 illustrates.

Example 4-5. Using static fields for instance counting
usi ng System

public class Cat

{
public Cat()
{
i nst ances++;
}
public static void HowvanyCats()
{
Consol e. WiteLine("{0} cats adopted",
i nst ances) ;
}
private static int instances = O;
}
public class Tester
{
static void Main()
{
Cat . HowivanyCat s() ;
Cat frisky = new Cat();
Cat . HowvanyCat s() ;
Cat whiskers = new Cat();
Cat . HowivanyCat s() ;
}
}
Qut put :

0 cats adopted
1 cats adopted
2 cats adopted

The Cat class has been stripped to its absolute essentials. A static member variable called

i nst ances is created and initialized to zero. Note that the static member is considered part of the
class, not a member of an instance, and so it cannot be initialized by the compiler on creation of an
instance. Thus, an explicit initializer is required for static member variables. When additional instances
of Cat s are created (in a constructor) the count is incremented.

81

Static Methods to Access Static Fields

It is undesirable to make member data pub! | c. This applies to static
member variables as well. One solution is to make the static member
privat e, as we've done here with | nst ances. We have created a public
accessor method, HowivanyCat s(), to provide access to this private
member. Because HowivanyCat s() is also static, it has access to the
static member | nst ances.

4.4 Destroying Objects

C# provides garbage collection and thus does not need an explicit destructor. If you do control an
unmanaged resource, however, you will need to explicitly free that resource when you are done with it.
Implicit control over this resource is provided with a Fi nal i ze() method (called a finalizer), which
will be called by the garbage collector when your object is destroyed.

The finalizer should only release resources that your object holds on to, and should not reference
other objects. Note that if you have only managed references you do not need to and should not
implement the Fi nal | ze() method; you want this only for handling unmanaged resources. Because
there is some cost to having a finalizer, you ought to implement this only on methods that require it
(that is, methods that consume valuable unmanaged resources).

You must never call an object's Fi nal i ze() method directly (except that you can call the base
class' Fi nal i ze() method in your own Fi nal i ze()). The garbage collector will call
Finalize() foryou.

How Finalize Works

The garbage collector maintains a list of objects that have a Fi nal i ze()
method. This list is updated every time a finalizable object is created or
destroyed.

When an object on the garbage collector's finalizable list is first collected, it
is placed on a queue with other objects waiting to be finalized. After the
Final i ze() method executes, the garbage collector then collects the
object and updates the queue, as well as its list of finalizable objects.

4.4.1 The C# Destructor

C#'s destructor looks, syntactically, much like a C++ destructor, but it behaves quite differently. You
declare a C# destructor with a tilde as follows:

~Wdass(){}

In C#, however, this syntax is simply a shortcut for declaring a Fi nal i ze() method that chains up
to its base class. Thus, writing:

~Wd ass()
{

/1 do work here

82

Programming C#

is identical to writing:

MyCl ass. Finalize()
{

/1 do work here
base. Finalize();

}

Because of the potential for confusion, it is recommended that you eschew the destructor and write an
explicit finalizer if needed.

4.4.2 Finalize Versus Dispose

It is not legal to call a finalizer explicitly. Your Fi nal i ze() method will be called by the garbage
collector. If you do handle precious unmanaged resources (such as file handles) that you want to close
and dispose of as quickly as possible, you ought to implement the | Di sposabl e interface. (You will
learn more about interfaces in Chapter 8.) The | Di sposabl e interface requires its implementers to
define one method, named Di spose(), to perform whatever cleanup you consider to be crucial. The
availability of Di spose() is a way for your clients to say "don't wait for Fi nal i ze() to be called,
do it right now."

If you provide a Di spose() method, you should stop the garbage collector from calling

Finalize() onyourobject. To stop the garbage collector, you call the static method

GC. SuppressFinal i ze(), passing in the t hi s pointer for your object. Your Fi nal i ze() method
can then call your Di spose() method. Thus, you might write:

public void Dispose()
{

/'l performclean up

/1 tell the GC not to finailze
GC. SuppressFinalize(this);

}
public override void Finalize()
{
Di spose();
base. Finalize();
}

4.4.3 Implementing the Close Method

For some objects, you'd rather have your clients call the Cl ose() method. (For example, Cl ose
makes more sense than Di spose() for file objects.) You can implement this by creating a private
Di spose() method and a public Cl ose() method and having your Cl ose() method invoke
Di spose().

4.4.4 The using Statement

Because you cannot be certain that your user will call Di spose() reliably, and because finalization
is nondeterministic (i.e., you can't control when the GC will run), C# provides a usi ng statement
which ensures that Di spose() will be called at the earliest possible time. The idiom is to declare
which objects you are using and then to create a scope for these objects with curly braces. When the
close brace is reached, the Di spose() method will be called on the object automatically, as
illustrated in Example 4-6.

83

Example 4-6. The using construct

usi ng System Drawi ng;
cl ass Tester

{ public static void Main()
{ usi ng (Font theFont = new Font("Arial", 10.0f))
{ /'l use theFont
} /'l compiler will call Dispose on theFont
Font anot her Font = new Font (" Courier", 12.0f);
usi ng (anot her Font)
{ /'l use anot her Font
} // conpiler calls Dispose on anot her Font
}
}

In the first part of this example, the Font object is created within the usi ng statement. When the
usi ng statement ends, Di spose() is called on the Font object.

In the second part of the example, a Font object is created outside of the usi ng statement. When we
decide to use that font, we put it inside the usi ng statement and when that statement ends, once
again Di spose() is called.

The usi ng statement also protects you against unanticipated exceptions. No matter how control
leaves the usi ng statement, Di spose() is called. It is as if there were an implicit try-catch-finally
block. (See Section 11.2 in Chapter 11 for details.)

4.5 Passing Parameters

By default, value types are passed into methods by value (see Section 4.1.2 earlier in this chapter).
This means that when a value object is passed to a method, a temporary copy of the object is created
within that method. Once the method completes, the copy is discarded. Although passing by value is
the normal case, there are times when you will want to pass value objects by reference. C# provides
the r ef parameter modifier for passing value objects into a method by reference and the out modifier
for those cases in which you want to pass in ar ef variable without first initializing it. C# also supports
the par anms modifier which allows a method to accept a variable number of parameters. The par ans
keyword is discussed in Chapter 9.

4.5.1 Passing by Reference

Methods can return only a single value (though that value can be a collection of values). Let's return to
the Ti me class and add a Get Ti ne() method which returns the hour, minutes, and seconds.

Because we cannot return three values, perhaps we can pass in three parameters, let the method

modify the parameters, and examine the result in the calling method. Example 4-7 shows a first
attempt at this.

Example 4-7. Returning values in parameters

84

Programming C#

public class Tine

{

/1 public accessor nethods
public void DisplayCurrentTine()

{
System Consol e. WiteLine("{0}/{1}/{2} {3}:{4}:{5}",
Mont h, Date, Year, Hour, Mnute, Second);
}
public int GetHour()
{
return Hour,
}
public void GetTime(int h, int m int s)
{
h = Hour;
m = M nut e;
s = Second;
}

/1l constructor
public Time(System DateTi ne dt)

{

Year = dt. Year;
Mont h = dt. Mont h;
Date = dt. Day;

Hour = dt. Hour;

M nut e dt. M nut e;
Second dt . Second;

/1 private nenber variabl es
private int Year;
private int Month;
private int Date;
private int Hour;
private int M nute;
private int Second,;

}

public class Tester

{
static void Main()

{
System Dat eTinme currentTi me = System Dat eTi ne. Now,
Time t = new Tinme(currentTi ne);
t.DisplayCurrentTinme();

i nt theHour =
int theM nute 0;
i nt theSecond 0;
t.Get Ti me(theHour, theM nute, theSecond);
System Consol e. WiteLine("Current time: {0}:{1}:{2}"
t heHour, theM nute, theSecond);

0;

85

Qut put :
11/17/2000 13:41:18
Current tine: 0:0:0

Notice that the "Current time" in the output is 0: 0: 0. Clearly, this first attempt did not work. The
problem is with the parameters. We pass in three integer parameters to Get Ti ne(), and we modify
the parameters in Get Ti ne(), but when the values are accessed back in Vai n(), they are
unchanged. This is because integers are value types, and so are passed by value; a copy is made in
Cet Ti me() . What we need is to pass these values by reference.

Two small changes are required. First, change the parameters of the Get Ti ne method to indicate that
the parameters are r ef (reference) parameters:

public void GetTinme(ref int h, ref int m ref int s)

{
h = Hour;
m = M nut e;
s = Second;
}

Second, modify the call to Get Ti ne() to pass the arguments as references as well:
t.GetTinme(ref theHour, ref theM nute, ref theSecond);

If you leave out the second step of marking the arguments with the keyword r ef , the compiler will
complain that the argument cannot be converted froman i nt toaref int.

The results now show the correct time. By declaring these parameters to be r ef parameters, you
instruct the compiler to pass them by reference. Instead of a copy being made, the parameter in

Cet Ti me() is areference to the same variable (t heHour) that is created in Vai n(). When you
change these values in Get Ti ne(), the change is reflected in Vai n().

Keep in mind that ref parameters are references to the actual original value—it is as if you said "here,
work on this one." Conversely, value parameters are copies—it is as if you said "here, work on one
just like this."

4.5.2 Passing Out Parameters with Definite Assignment

C# imposes definite assignment , which requires that all variables be assigned a value before they are
used. In Example 4-7, if you don't initialize t heHour , t heM nut e, and t heSecond before you pass
them as parameters to Get Ti ne(), the compiler will complain. Yet the initialization that is done
merely sets their values to O before they are passed to the method:

int theM nute
int theSecond
t.GetTinme(ref theHour, ref theM nute, ref theSecond);

int theHour = 0O;

0;
0;
It seems silly to initialize these values because you immediately pass them by reference into Get Ti ne

where they'll be changed, but if you don't, the following compiler errors are reported:

Use of unassigned | ocal variable 'theHour'
Use of unassigned | ocal variable 'theM nute'
Use of unassigned | ocal variable 'theSecond

86

Programming C#

C# provides the out parameter modifier for this situation. The out modifier removes the requirement
that a reference parameter be initiailzed. The parameters to Get Ti ne(), for example, provide no
information to the method; they are simply a mechanism for getting information out of it. Thus, by
marking all three as out parameters, you eliminate the need to initialize them outside the method.
Within the called method the out parameters must be assigned a value before the method returns.
Here are the altered parameter declarations for Get Ti ne():

public void GetTinme(out int h, out int m out int s)

{
h = Hour;
m = M nut e;
s = Second;
}

and here is the new invocation of the method in MVai n() :
t.GetTime(out theHour, out theM nute, out theSecond);

To summarize, value types are passed into methods by value. Ref parameters are used to pass value
types into a method by reference. This allows you to retrieve their modified value in the calling method.
CQut parameters are used only to return information from a method. Example 4-8 rewrites Example
4-7 to use all three.

Example 4-8. Using in, out, and ref parameters
public class Tine

/'l public accessor nethods
public void DisplayCurrentTinme()

{
System Consol e. WiteLine("{0}/{1}/{2} {3}:{4}:{5}",
Mont h, Date, Year, Hour, M nute, Second);
}
public int GetHour()
{
return Hour,
}
public void SetTine(int hr, out int min, ref int sec)
{
/1 if the passed intime is >= 30
/1 increnent the minute and set second to O
/1 otherw se | eave both al one
if (sec >= 30)
{
M nut e++;
Second = 0;
}
Hour = hr; // set to value passed in
/'l pass the m nute and second back out
mn = Mnute;
sec = Second;
}

/| constructor
public Time(System DateTi ne dt)

{

87

Year = dt. Year;
Month = dt. Mont h;
Date = dt. Day;
Hour = dt. Hour;

M nute = dt.M nute;
Second = dt. Second;
}
/1 private nenber variabl es
private int Year;
private int Mnth;
private int Date;
private int Hour;
private int M nute;
private int Second,
}
public class Tester
{
static void Main()
{
System Dat eTinme currentTime = System Dat eTi ne. Now,
Time t = new Time(currentTinme);
t.DisplayCurrentTine();
int theHour = 3;
int theM nute;
int theSecond = 20;
t.Set Ti me(theHour, out theM nute, ref theSecond);
Syst em Consol e. Wit eLi ne(
"the Mnute is now. {0} and {1} seconds",
t heM nute, theSecond);
t heSecond = 40;
t.Set Ti me(theHour, out theM nute, ref theSecond);
System Consol e. WiteLine("the Mnute is now.
{0} and {1} seconds",
t heM nute, theSecond);
}
}
Cut put :

11/ 17/ 2000 14:6: 24
the Mnute is now. 6 and 24 seconds
the Mnute is now 7 and O seconds

Set Ti e is a bit contrived, but it illustrates the three types of parameters. t heHour is passed in as a
value parameter; its entire job is to set the member variable Hour , and no value is returned using this
parameter.

The r ef parameter t heSecond is used to set a value in the method. If t heSecond is greater than or
equal to 30, the member variable Second is reset to 0 and the member variable M nut e is
incremented.

88

Programming C#

Finally, t heM nut e is passed into the method only to return the value of the member variable M nut e,
and thus is marked as an out parameter.

It makes perfect sense that t heHour and t heSecond must be initialized; their values are needed and
used. It is not necessary to initialize t heM nut e, as it is an out parameter which exists only to return

a value. What at first appeared to be arbitrary and capricious rules now makes sense; values are only

required to be initialized when their initial value is meaningful.

4.6 Overloading Methods and Constructors

Often you'll want to have more than one function with the same name. The most common example of
this is to have more than one constructor. In the examples shown so far, the constructor has taken a
single parameter: a Dat eTi nme object. It would be convenient to be able to set new Ti ne objects to an
arbitrary time by passing in year, month, date, hour, minute, and second values. It would be even
more convenient if some clients could use one constructor, and other clients could use the other
constructor. Function overloading provides for exactly these contingencies.

The signature of a method is defined by its name and its parameter list. Two methods differ in their
signatures if they have different names or different parameter lists. Parameter lists can differ by having
different numbers or types of parameters. For example, in the following code the first method differs
from the second in the number of parameters, and the second differs from the third in the types of
parameters:

voi d myMet hod(int pl);
voi d myMet hod(int pl, int p2);
voi d myMet hod(int pl, string sl);

A class can have any number of methods, as long as each one's signature differs from that of all the
others.

Example 4-9 illustrates our Ti ne class with two constructors, one which takes a Dat eTi ne object,
and the other which takes six integers.

Example 4-9. Overloading the constructor
public class Tine

{
/'l public accessor nethods
public void DisplayCurrentTinme()
{
System Consol e. WiteLine("{0}/{1}/{2} {3}:{4}:{5}",
Mont h, Date, Year, Hour, M nute, Second);

/'l constructors
public Time(System DateTi ne dt)

{

Year = dt. Year;
Month = dt . Mont h;
Date = dt . Day;
Hour = dt . Hour ;

M nute = dt. M nut e;
Second = dt . Second;
}

public Tinme(int Year, int Month, int Date,
int Hour, int Mnute, int Second)

89

this.Year = Year ;
this.Month = Mont h;
this.Date = Dat e;
this. Hour = Hour ;
this.Mnute = M nut e;
this. Second = Second;
}
/'l private menber variabl es
private int Year;
private int Month;
private int Date;
private int Hour;
private int M nute;
private int Second;
}
public class Tester
{
static void Main()
{
System Dat eTime currentTime = System Dat eTi ne. Now,
Time t = new Tinme(currentTi ne);
t.DisplayCurrentTime();
Time t2 = new Ti ne(2000, 11, 18, 11, 03, 30);
t2.Di splayCurrentTinme();
}
}

As you can see, the Ti ne class in Example 4-9 has two constructors. If a function's signature
consisted only of the function name, the compiler would not know which constructors to call when
constructing t 1 and t 2. However, because the signature includes the function argument types, the
compiler is able to match the constructor call for t 1 with the constructor whose signature requires a
Dat eTi e object. Likewise, the compiler is able to associate the t 2 constructor call with the
constructor method whose signature specifies six integer arguments.

When you overload a method, you must change the signature (i.e., the name, number, or type of the
parameters). You are free, as well, to change the return type, but this is optional. Changing only the
return type does not overload the method, and creating two methods with the same signature but
differing return types will generate a compile error.

This is illustrated in Example 4-10:

Example 4-10. Varying the return type on overloaded methods
public class Tester

{
private int Triple(int val)
{
return 3 * val;
}
private long Triple (long val)
{

90

Programming C#

return 3 * val;

}
public void Test()
{
int x = b5;
int y = Triple(x);
System Consol e. WiteLine("x: {0} vy: {1}", x, vy);
long I x = 10;
long ly = Triple(lx);
System Consol e. WiteLine("Ix: {0} ly: {1}", Ix, ly);
}
static void Main()
{
Tester t = new Tester();
t.Test();
}

}

In this example, the Test er class overloads the Tri pl e() method, one to take an integer, the
other to take a long. The return type for the two Tri pl e() methods varies. Although this is not
required, it is very convenient in this case.

4.7 Encapsulating Data with Properties

Properties allow clients to access class state as if they were accessing member fields directly, while
actually implementing that access through a class method.

This is ideal. The client wants direct access to the state of the object and does not want to work with
methods. The class designer, however, wants to hide the internal state of his class in class members,
and provide indirect access through a method.

By decoupling the class state from the method that accesses that state, the designer is free to change
the internal state of the object as needed. When the Ti ne class is first created, the Hour value might
be stored as a member variable. When the class is redesigned, the Hour value might be computed, or
retrieved from a database. If the client had direct access to the original Hour member variable, the
change to computing the value would break the client. By decoupling and forcing the client to go
through a method (or property), the Ti ne class can change how it manages its internal state without
breaking client code.

Properties meet both goals: they provide a simple interface to the client, appearing to be a member
variable. They are implemented as methods, however, providing the data hiding required by good
object-oriented design, as illustrated in Example 4-11.

Example 4-11. Using a property

public class Tine

{

/'l public accessor nethods
public void DisplayCurrentTinme()

{
System Consol e. Wit eLi ne(
"Time\t: {0}/{1}/{2} {3}:{4}:{5}",
nmont h, date, year, hour, mnute, second);
}

91

}

/'l constructors
public Time(System DateTi ne dt)

{

m nut e
second

year = dt. Year;
nmont h = dt . Mont h;
date = dt . Day;
hour = dt . Hour;
= dt. M nut e;
= dt . Second;

/'l create a property
public int Hour

{
get
{
return hour;
}
set
{
hour = val ue;
}
}

/1 private nenber variabl es
private int year;
private int nonth;
private int date;
private int hour;
private int mnute;
private int second;

public class Tester

{

}

static void Main()

{

System Dat eTi me currentTi me = System Dat eTi ne. Now,
Time t = new Time(currentTinme);
t.DisplayCurrentTine();

int theHour = t. Hour;
System Consol e. WitelLine("\nRetrieved the hour: {0}\n",
t heHour) ;
t heHour ++;
t. Hour = theHour;
Syst em Consol e. WiteLi ne("Updated the hour: {0}\n", theHour);

To declare a property, write the property type and name followed by a pair of braces. Within the
braces you may declare get and set accessors. Neither of these has explicit parameters, though the
set () method has an implicit parameter val ue as shown next.

In Example 4-11, Hour is a property. Its declaration creates two accessors: get and set .

public int Hour

{

92

Programming C#

return hour;

hour = val ue;

Each accessor has an accessor-body which does the work of retrieving and setting the property value.
The property value might be stored in a database (in which case the accessor-body would do
whatever work is needed to interact with the database), or it might just be stored in a private member
variable:

private int hour;
4.7.1 The get Accessor

The body of the get accessor is similar to a class method that returns an object of the type of the
property. In the example, the accessor for Hour is similar to a method that returns an i nt . It returns
the value of the private member variable in which the value of the property has been stored:

get
{

}

return hour;

In this example, a local i nt member variable is returned, but you could just as easily retrieve an
integer value from a database, or compute it on the fly.

Whenever you reference the property (other than to assign to it), the get accessor is invoked to read
the value of the property:

Time t = new Tinme(currentTi ne);
int theHour = t. Hour;

In this example, the value of the Ti ne object's Hour property is retrieved, invoking the get accessor
to extract the property, which is then assigned to a local variable.

4.7.2 The set Accessor

The set accessor sets the value of a property and is similar to a method that returns voi d. When you
define a set accessor you must use the value keyword to represent the argument whose value is
passed to and stored by the property.

set

{
}

hour = val ue;

Here, again, a private member variable is used to store the value of the property, but the set
accessor could write to a database or update other member variables as needed.

93

When you assign a value to the property the set accessor is automatically invoked, and the implicit
parameter value is set to the value you assign:

t heHour ++;
t. Hour = theHour;

The advantage of this approach is that the client can interact with the properties directly, without
sacrificing the data hiding and encapsulation sacrosanct in good object-oriented design.

4.8 Readonly Fields

You might want to create a version of the Ti e class that is responsible for providing public static

values representing the current time and date. Example 4-12 illustrates a simple approach to this
problem.

Example 4-12. Using static public constants
public class Ri ght Now

{
static Ri ght Now()

{
System Dat eTi me dt = System Dat eTi ne. Now,
Year = dt. Year;
Month = dt . Mont h;
Date = dt . Day;
Hour = dt . Hour;
M nut e dt. M nut e;
Second dt . Second;

/'l private nenber variabl es
public static int Year;
public stati nt Mont h;
public stati nt Date;
public stati nt Hour;
public stati nt M nute;
public stati nt Second;

O0O0O0O00O0

OO0 000

}

public class Tester

{

static void Main()

{
System Consol e. WiteLine ("This year: {0}",

Ri ght Now. Year . ToString());
Ri ght Now. Year = 2002;
System Consol e. WiteLine ("This year: {0}",
Ri ght Now. Year . ToString());

}
Qut put :

This year: 2000
This year: 2002

94

Programming C#

This works well enough, until someone comes along and changes one of these values. As the
example shows, the Ri ght Now. Year value can be changed, for example, to 2002. This is clearly not
what we'd like.

We'd like to mark the static values as constant, but that is not possible because we don't initialize them
until the static constructor is executed. C# provides the keyword r eadon! y for exactly this purpose. If
you change the class member variable declarations as follows:

publ i
publ i
publ i
publ i
publ i
publ i

OO0 0000

stati
stati
stati
stati
stati
stati

OO0 0000

readonly
readonly
readonly
readonly
readonly
readonly

nt
nt
nt
nt
nt
nt

Year ;
Mont h;
Dat e;
Hour ;
M nut e;
Second;

then comment out the reassignment in Vai n() :

/'l Ri ght Now. Year

= 2002;

/] error!

the program will compile and run as intended.

95

96

Programming C#

Chapter 5. Inheritance and Polymorphism

The previous chapter demonstrates how to create new types by declaring classes. The current chapter
explores the relationship among objects in the real world and how to model these relationships in your
code. This chapter focuses on specialization which is implemented in C# through inheritance. This
chapter also explains how instances of more specialized classes can be treated as if they were
instances of more general classes, a process known as polymorphism. This chapter ends with a
consideration of sealed classes, which cannot be specialized, abstract classes, which exist only to be
specialized, and a discussion of the root of all classes, the class Ohj ect .

5.1 Specialization and Generalization

Classes and their instances (objects) do not exist in a vacuum, they exist in a network of
interdependencies and relationships, just as we, as social animals, live in a world of relationships and
categories.

The is-a relationship is one of specialization . When we say that a Dog is-a mammal, we mean that the
dog is a specialized kind of mammal. It has all the characteristics of any mammal (it bears live young,
nurses with milk, has hair), but it specializes these characteristics to the familiar characteristics of
canine domesticus. A Cat is also a mammal. As such we expect it to share certain characteristics with
the dog that are generalized in Mammal, but to differ in those characteristics that are specialized in
Cat.

The specialization and generalization relationships are both reciprocal and hierarchical. They are
reciprocal because specialization is the obverse side of the coin from generalization. Thus, Dog and
Cat specialize Mammal, and Mammal generalizes from Dog and Cat.

These relationships are hierarchical because they create a relationship tree, with specialized types
branching off from more generalized types. As you move up the hierarchy you achieve greater
generalization. You move up toward Mammal to generalize that Dogs and Cats and Horses all bear
live young. As you move down the hierarchy you specialize. Thus, the Cat specializes Mammal in
having claws (a characteristic) and purring (a behavior).

Similarly, when you say that Li st Box and But t on are windows, you indicate that there are
characteristics and behaviors of W ndows that you expect to find in both of these types. In other words,
W ndow generalizes the shared characteristics of both Li st Box and But t on, while each specializes
its own particular characteristics and behaviors.

About the Unified Modeling Language

The Unified Modeling Language (UML) is a standardized "language” for
describing a system or business. The part of the UML that is useful for the
purposes of this chapter is the set of diagrams used to document the
relationships among classes.

In the UML, classes are represented as boxes. The name of the class
appears at the top of the box, and (optionally) methods and members can be
listed in the sections within the box.

In the UML, you model these relationships as shown in Figure 5-1. Note
that the arrow points from the more specialized class up to the more general
class.

97

Figure 5-1. An is-arelationship

tt

Butbon List Box

It is common to note that two classes share functionality, and then to factor out these commonalities

into a shared base class. This provides you with greater reuse of common code and easier-to-maintain
code.

For example, suppose you started out creating a series of objects as illustrated in Figure 5-2.

Figure 5-2. Deriving from Window

Window

T
I | I I

Radio Bulton Check Box Command List Box

After working with Radi oBut t ons, CheckBoxes, and Conmand buttons for a while, you realize that
they share certain characteristics and behaviors that are more specialized than \W ndow but more
general than any of the three. You might factor these common traits and behaviors into a common

base class, But t on, and rearrange your inheritance hierarchy as shown in Figure 5-3. This is an
example of how generalization is used in object-oriented development.

Figure 5-3. A more factored hierarchy
Window
Button List Box

Y

Check Box Command

t

Radio Button

This UML diagram depicts the relationship between the factored classes and shows that both

Li st Box and But t on derive from W ndow, and that But t on is in turn specialized into CheckBox
and Cormmand. Finally, Radi oBut t on derives from CheckBox. You can thus say that Radi oBut t on
is a CheckBox, which in turnis a But t on, and that But t ons are W ndows.

98

Programming C#

This is not the only, or even necessarily the best, organization for these objects, but it is a reasonable
starting point for understanding how these types (classes) relate to one another.

Actually, although this might reflect how some widget hierarchies
s are organized, | am very skeptical of any system in which the
model does not reflect how | perceive reality, and when | find
myself saying that a Radi oBut t on is a CheckBox, | have to
think long and hard about whether that makes sense. | suppose a
Radi oBut t on is a kind of checkbox. It is a checkbox that
supports the idiom of mutually exclusive choices. That said, it is a
bit of a stretch and might be a sign of a shaky design.

=
L.

5.2 Inheritance

In C#, the specialization relationship is typically implemented using inheritance. This is not the only
way to implement specialization, but it is the most common and most natural way to implement this
relationship.

Saying that Li st Box inherits from (or derives from) W ndow indicates that it specializes \W ndow.
W ndowis referred to as the base class, and Li st Box is referred to as the derived class. That is,
Li st Box derives its characteristics and behaviors from \W ndow and then specializes to its own
particular needs.

5.2.1 Implementing Inheritance

In C#, you create a derived class by adding a colon after the name of the derived class, followed by
the name of the base class:

public class ListBox : Wndow

This code declares a new class, Li st Box, that derives from \W ndow. You can read the colon as
"derives from."

The derived class inherits all the members of the base class, both member variables and methods.
The derived class is free to implement its own version of a base class method. It does so by marking
the new method with the keyword new. (The new keyword is also discussed in in this chapter.) This
indicates that the derived class has in Section 5.3.3 later in this chapter.) This indicates that the
derived class has intentionally hidden and replaced the base class method, as used in Example 5-1.

Example 5-1. Using a derived class
usi ng System

public class W ndow
{
/'l constructor takes two integers to
/[l fix location on the console
public Wndow(int top, int left)
{
this.top = top;
this.left = left;
}

/'l simulates draw ng the w ndow
public void Draww ndow)

99

Consol e. WiteLine("Drawi ng Wndow at {0}, {1}",

top, left);
}
/1l these nmenbers are private and thus invisible
/1 to derived class nmethods; we'll examine this

/1l later in the chapter
private int top;
private int left;

}

/1l ListBox derives from W ndow
public class ListBox : W ndow

{
/1 constructor adds a paraneter
public Li st Box(
int top,
int left,
string theContents):
base(top, left) // call base constructor
{
nmLi st BoxContents = t heContents;
}
/1 a new version (note keyword) because in the
/1 derived nethod we change the behavi or
public new void Draww ndow)
{
base. Draww ndow); // invoke the base nethod
Consol e.WiteLine ("Witing string to the listbox: {0}",
nmLi st BoxCont ent s) ;
}
private string nListBoxContents; // new nmenber variabl e
}
public class Tester
{
public static void Main()
{
/] create a base instance
W ndow w = new W ndow(5, 10);
w. Dr awW ndow() ;
/] create a derived instance
Li stBox | b = new ListBox(20,30,"Hello world");
| b. DrawwW ndow();
}
}
Qut put :

Drawi ng Wndow at 5, 10
Drawi ng W ndow at 20, 30
Witing string to the listbox: Hello world

Example 5-1 starts with the declaration of the base class W ndow. This class implements a
constructor and a simple Dr anwW ndow method. There are two private member variables, t op and
left.

100

Programming C#

5.2.2 Calling Base Class Constructors

In Example 5-1, the new class Li st Box derives from \W ndow and has its own constructor, which
takes three parameters. The Li st Box constructor invokes the constructor of its parent by placing a
colon (:) after the parameter list and then invoking the base class with the keyword base:

publ i c Li st Box(
int theTop,
int thelLeft,
string theContents):
base(theTop, theLeft) [// call base constructor

Because classes cannot inherit constructors, a derived class must implement its own constructor and
can only make use of the constructor of its base class by calling it explicitly.

Also notice in Example 5-1 that ListBox implements a new version of DrawWindow():

public new void Draww ndow()

The keyword new here indicates that the programmer is intentionally creating a new version of this
method in the derived class.

If the base class has an accessible default constructor, the derived constructor is not required to
invoke the base constructor explicitly; instead, the default constructor is called implicitly. However, if
the base class does not have a default constructor, every derived constructor must explicitly invoke
one of the base class constructors using the base keyword.

As discussed in Chapter 4, if you do not declare a constructor of
«r). any kind, the compiler will create a default constructor for you.

Whether you write it yourself or you use the one provided "by
default" by the compiler, a default constructor is one that takes no
parameters. Note, however, that once you do create a constructor
of any kind (with or without parameters) the compiler does not
create a default constructor for you.

5.2.3 Calling Base Class Methods

In Example 5-1, the Dr awW ndow() method of Li st Box hides and replaces the base class
method. When you call Dr awWW ndow() on an object of type Li st Box, itis

Li st Box. Dr awW ndow() that will be invoked, not W ndow. Dr awW ndow(). Note, however, that
Li st Box. Dr awW ndow() can invoke the Dr awWW ndow() method of its base class with the code:
base. Drawwndow(); // invoke the base nethod

(The keyword base identifies the base class for the current object.)

5.2.4 Controlling Access

The visibility of a class and its members can be restricted through the use of access modifiers, such as
public,private,protected,internal,andprotected internal.(See Chapter 4 fora
discussion of access modifiers.)

101

As you've seen, publ i ¢ allows a member to be accessed by the member methods of other classes,
while pri vat e indicates that the member is visible only to member methods of its own class. The
prot ect ed keyword extends visibility to methods of derived classes, while | nt er nal extends
visibility to methods of any class in the same assembly.*!

11 An assembly (discussed in Chapter 1), is the unit of sharing and reuse in the Common Language Runtime (a logical DLL). Typically,
an assembly is a collection of physical files, held in a single directory, which includes all the resources (bitmaps, .gif files, etc.) required
for an executable, along with the Intermediate Language (IL) and metadata for that program.

Theinternal protected keyword pair allows access to members of the same assembly (internal)
or derived classes (protected). You can think of this designation as | nt er nal or pr ot ect ed.

Classes as well as their members can be designated with any of these accessibility levels. If a class
member has a different access designation than the class, the more restricted access applies. Thus, if
you define a class, nyCl ass, as follows:

public class nyd ass

{
/1

protected int myVal ue;

the accessibility for myVal ue is protected even though the class itself is public. A public class is one
that is visible to any other class that wishes to interact with it. Occasionally, classes are created that
exist only to help other classes in an assembly, and these classes might be marked i nt er nal rather
than publ i c.

5.3 Polymorphism

There are two powerful aspects to inheritance. One is code reuse. When you create a Li st Box class,
you're able to reuse some of the logic in the base (\W ndow) class.

What is arguably more powerful, however, is the second aspect of inheritance: polymorphism. Poly
means many and morph means form. Thus, polymorphism refers to being able to use many forms of a
type without regard to the details.

When the phone company sends your phone a ring signal, it does not know what type of phone is on
the other end of the line. You might have an old-fashioned Western Electric phone which energizes a
motor to ring a bell, or you might have an electronic phone which plays digital music.

As far as the phone company is concerned, it knows only about the "base type" phone and expects
that any "instance” of this type knows how to ring. When the phone company tells your phone to ring, it
simply expects the phone to "do the right thing." Thus, the phone company treats your phone
polymorphically.

5.3.1 Creating Polymorphic Types

Because a Li st Box is-a W ndowand a But t on is-a W ndow, we expect to be able to use either of
these types in situations that call for a \W ndow. For example, a form might want to keep a collection of
all the instances of W ndow it manages so that when the form is opened, it can tell each of its

W ndows to draw itself. For this operation, the form does not want to know which elements are list
boxes and which are but t ons; it just wants to tick through its collection and tell each to "draw." In
short, the form wants to treat all its \W ndow objects polymorphically.

102

Programming C#

5.3.2 Creating Polymorphic Methods

To create a method that supports polymorphism, you need only mark it as vi r t ual in its base class.
For example, to indicate that the method Dr awW ndow() of class W ndowin Example 5-1 is
polymorphic, simply add the keyword vi rt ual to its declaration, as follows:

public virtual void Drawwndow)

Now each derived class is free to implement its own version of Dr awW ndow(). To do so, you
simply override the base class virtual method by using the keyword over ri de in the derived class
method def i ni ti on, and then add the new code for that overridden method.

In the following excerpt from Example 5-2 (which appears later in this section), Li st Box derives
from W ndow and implements its own version of Dr aw\W ndow() :

public override void DrawwW ndow()

{
base. Drawwndow(); // invoke the base nethod
Console. WiteLine ("Witing string to the listbox: {0}",
i st BoxCont ents);
}

The keyword over ri de tells the compiler that this class has intentionally overridden how
Dr awW ndow() works. Similarly, you'll override this method in another class, But t on, also derived
from W ndow.

In the body of Example 5-2, you'll first create three objects, a \W ndow, a Li st Box, and a But t on.
You'll then call Dr awW ndow() on each:

W ndow wi n = new W ndow 1, 2);

ListBox Ib new Li st Box(3,4,"Stand al one |ist box");
Button b = new Button(5, 6);

wi n. DrawwW ndow();

| b. DrawW ndow);

b. DrawW ndow();

This works much as you might expect. The correct Dr awWW ndow() object is called for each. So far,
nothing polymorphic has been done. The real magic starts when you create an array of W ndow
objects. Because a Li st Box is-a W ndow, you are free to place a Li st Box into a W ndow array. You
can also place a But t on into an array of \W ndow objects because a But t on is also a W ndow.

W ndow] w nArray = new W ndow 3];

wi nArray[0] = new W ndow(1, 2);
wi nArray[1] = new ListBox(3,4,"List box in array");
wi nArray[2] = new Button(5, 6);

What happens when you call Dr awM¥ ndow() on each of these objects?

for (int i = 0;i < 3; i++)

{
}

wi nArray[i].DrawW ndow);

All the compiler knows is that it has three \W ndow objects and that you've called Dr awW ndow() on
each. If you had not marked Dr avwW ndowas vi rt ual , W ndows Dr awW ndow() method would be

103

called three times. However, because you did mark Dr awWW ndow() asvi rtual and because the
derived classes override that method, when you call Dr awWW ndow() on the array, the compiler
determines the runtime type of the actual objects (a W ndow, a Li st Box and a But t on) and calls the
right method on each. This is the essence of polymorphism. The complete code for this example is

shown in Example 5-2.

- This listing uses an array, which is a collection of objects, all of the
«: | same type. You access the members of the array with the index
" 44 operator:

/] set the value of the el enent
/] at offset 5
M/Array[5] = 7,

The first element in any array is at index 0. The use of the array in
this example should be fairly intuitive. Arrays are explained in

detail in Chapter 9.

Example 5-2. Using virtual methods
usi ng System

public class W ndow

{
/'l constructor takes two integers to
/'l fix location on the console
public Wndow(int top, int left)
{
this.top = top;
this.left = left;
}
/1l simulates draw ng the w ndow
public virtual void Drawwndow)
{
Consol e. WiteLine("Wndow. drawi ng Wndow at {0}, {1}",
top, left);
}
/'l these menbers are private and thus invisible
/1l to derived class nethods. We'l| examine this
/1l later in the chapter
protected int top;
protected int left;
}

/1 ListBox derives from W ndow
public class ListBox : Wndow
{
/'l constructor adds a paramneter
public Li st Box(
int top,
int left,
string contents):
base(top, left) [// call base constructor

104

Programming C#

| i st BoxContents = contents;

}

/1 a new version (note keyword) because in the
/1 derived nmethod we change the behavi or
public override void DrawW ndow()

{
base. Drawwndow(); // invoke the base nethod
Consol e. WiteLine ("Witing string to the listbox: {0}",
| i st BoxContents);
}
private string |listBoxContents; // new nmenber variable
}
public class Button : W ndow
{
public Button(
int top,
int left):
base(top, left)
{
}
/1 a new version (note keyword) because in the
/1 derived nethod we change the behavi or
public override void DrawW ndow)
{
Consol e. WiteLine("Drawing a button at {0}, {1}\n",
top, left);
}
}
public class Tester
{
static void Main()
{
W ndow wi n = new W ndow 1, 2);
ListBox I b = new ListBox(3,4,"Stand al one |ist box");
Button b = new Button(5, 6);
wi n. Dr awW ndow() ;
| b. DrawW ndow();
b. Dr awW ndow() ;
Wndow[] wi nArray = new W ndow 3];
wi nArray[0] = new W ndow 1, 2);
wi nArray[1] = new ListBox(3,4,"List box in array");
wi nArray[2] = new Button(5,6);
for (int i =0;i < 3; i++)
{
Wi nArray[i].DrawW ndow();
}
}
}
CQut put :

W ndow. drawi ng Wndow at 1, 2
W ndow. drawi ng Wndow at 3, 4
Witing string to the |istbox: Stand alone |ist box

105

Drawing a button at 5, 6

W ndow. draw ng Wndow at 1, 2

W ndow. draw ng Wndow at 3, 4

Witing string to the listbox: List box in array
Drawing a button at 5, 6

Note that throughout this example, we've marked the new overridden methods with the keyword
overri de:

public override void DrawwW ndow()

The compiler now knows to use the overridden method when treating these objects polymorphically.
The compiler is responsible for tracking the real type of the object and for handling the "late binding"
so that it is ListBox.DrawWindow() that is called when the Window reference really points to a ListBox
object.

C++ programmers take note: you must explicitly mark the
s | declaration of any method that overrides a virtual method with the
42 keyword override.

5.3.3 Versioning with the new and override Keywords

In C#, the programmer's decision to override a virtual method is made explicit with the override
keyword. This helps you release new versions of your code; changes to the base class will not break
existing code in the derived classes. The requirement to use the keyword override helps prevent that
problem.

Here's how: assume for a moment that the Window base class of the previous example was written by
Company A. Suppose also that the ListBox and RadioButton classes were written by programmers
from Company B using a purchased copy of the Company A Window class as a base. The
programmers in Company B have little or no control over the design of the Window class, including
future changes that Company A might choose to make.

Now suppose that one of the programmers for Company B decides to add a Sort() method to ListBox:

public class ListBox : Wndow

{
}

public virtual void Sort() {...}

This presents no problems until Company A, the author of \W ndow, releases Version 2 of its W ndow
class, and it turns out that the programmers in Company A have also added a Sort () method to
their public class W ndow:

public class W ndow

{
/1

public virtual void Sort() {...}
}

In other object-oriented languages (such as C++), the new virtual Sort () method in W ndow would
now act as a base method for the virtual Sort () method in Li st Box. The compiler would call the
Sort() methodin Li st Box when you intend to call the Sort () in W ndow. In Java, if the Sort (

106

)

Programming C#

in W ndow had a different return type, the class loader would consider the Sort () in Li st Box to be
an invalid override and would fail to load.

C# prevents this confusion. In C#, a virtual function is always considered to be the root of virtual
dispatch; that is, once C# finds a virtual method, it looks no further up the inheritance hierarchy. If a
new virtual Sort () function is introduced into \W ndow, the runtime behavior of Li st Box is
unchanged.

When Li st Box is compiled again, however, the compiler generates a warning:

...\classl.cs(54,24): warning CS0114: 'ListBox.Sort()' hides
i nherited nmenmber ' Wndow. Sort()

To make the current nmenber override that inplenentation,

add the override keyword. Ot herw se add the new keyword.

To remove the warning, the programmer must indicate what he intends. He can mark the Li st Box
Sort() method new, to indicate that it is not an override of the virtual method in \W ndow:

public class ListBox : Wndow

{

public new virtual void Sort() {...}

This action removes the warning. If, on the other hand, the programmer does want to override the
method in W ndow, he need only use the over ri de keyword to make that intention explicit:

public class ListBox : Wndow

{
public override void Sort() {...}

- To avoid this warning, it might be tempting to add the keyword

e newto all your virtual methods. This is a bad idea. When new
appears in the code, it ought to document the versioning of code.
It points a potential client to the base class to see what it is that
you are not overriding. Using new scattershot undermines this
documentation. Further, the warning exists to help identify a real
issue.

5.4 Abstract Classes

Every subclass of W ndow should implement its own Dr awW ndow() method—but nothing requires
that it do so. To require subclasses to implement a method of their base, you need to designate that
method as abstract.

An abstract method has no implementation. It creates a method name and signature that must be
implemented in all derived classes. Furthermore, making one or more methods of any class abstract
has the side effect of making the class abstract.

Abstract classes establish a base for derived classes, but it is not legal to instantiate an object of an
abstract class. Once you declare a method to be abstract, you prohibit the creation of any instances of
that class.

Thus, if you were to designate Dr awW ndow() as abstract inthe W ndow class, you could derive
from W ndow, but you could not create any \W ndow objects. Each derived class would have to
implement Dr avwWW ndow() . If the derived class failed to implement the abstract method, that class
would also be abstract, and again no instances would be possible.

107

Designating a method as abst r act is accomplished by placing the keyword abst r act at the
beginning of the method definition, as follows:

abstract public void DrawwW ndow();
(Because the method can have no implementation, there are no braces; only a semicolon.)

If one or more methods are abstract, the class definition must also be marked abst r act, as in the
following:

abstract public class Wndow

Example 5-3 illustrates the creation of an abstract \W ndow class and an abstract Dr avwW ndow()
method.

Example 5-3. Using an abstract method and class
usi ng System

abstract public class W ndow
{
/'l constructor takes two integers to
/1 fix location on the consol e
public Wndow(int top, int left)
{
this.top = top;
this.left = left;
}

/] simulates drawi ng the wi ndow
/] notice: no inplementation
abstract public void DrawwW ndow();

/'l these nenbers are private and thus invisible
I/ to derived class nmethods. W'Il|l examine this
I/ later in the chapter

protected int top;

protected int left;

}

/1 ListBox derives from W ndow
public class ListBox : W ndow
{
/'l constructor adds a paraneter
public ListBox(
int top,
int left,
string contents):
base(top, left) // call base constructor

| i st BoxContents = contents;

}

/1 an overridden version inplenmenting the
/1 abstract method
public override void DrawwW ndow()

{

108

Programming C#

Console.WiteLine ("Witing string to the |istbox: {0}",
i st BoxCont ents);

}
private string |istBoxContents; // new nenber variable
}
public class Button : Wndow
{
public Button(
int top,
int left):
base(top, left)
{
}
/1l inplenent the abstract mnethod
public override void DrawwW ndow()
{
Consol e. WiteLine("Drawing a button at {0}, {1}\n",
top, left);
}
}
public class Tester
{
static void Main()
{
W ndow] winArray = new W ndow 3] ;
wi nArray[0] = new ListBox(1,2,"First List Box");
wi nArray[1] = new ListBox(3,4,"Second List Box");
wi nArray[2] = new Button(5, 6);
for (int i = 0;i < 3; i++)
{
w nArray[i].DrawW ndow();
}
}
}

In Example 5-3, the W ndow class has been declared abstract and therefore cannot be instantiated.
If you replace the first array member:

wi nArray[0] new Li stBox(1,2,"First List Box");

with this code:

wi nArray[0] new W ndow(1, 2);
the program will generate the following error:
Cannot create an instance of the abstract class or interface 'Wndow

You can instantiate the Li st Box and But t on objects because these classes override the abstract
method, thus making the classes concrete (i.e., not abstract).

109

5.4.1 Limitations of Abstract

Although designating Dr awW ndow() as abstract does force all the derived classes to implement the
method, this is a very limited solution to the problem. If we derived a class from Li st Box (e.g.,
Dr opDownlLi st Box), nothing forces that derived class to implement its own Dr awW ndow() method.

e C++ programmers take note: in C# it is not possible for
a“] W ndow. Dr awWW ndow() to provide an implementation, so we
o

cannot take advantage of the common Dr awW ndow() routines
that might otherwise be shared by the derived classes.

Finally, abstract classes should not just be an implementation trick; they should represent the idea of
an abstraction that establishes a "contract" for all derived classes. In other words, abstract classes
describe the public methods of the classes that will implement the abstraction.

The idea of an abstract \W ndow class ought to lay out the common characteristics and behaviors of all
W ndows, even if we never intend to instantiate the abstraction W ndow itself.

The idea of an abstract class is implied in the word "abstract." It serves to implement the abstraction
"Window" that will be manifest in the various concrete instances of \W ndow, such as browser window,
frame, button, list box, drop-down, and so forth. The abstract class establishes what a \WW ndow s,
even though we never intend to create a "Window" per se. An alternative to using abst r act isto
define an interface, as described in Chapter 8.

5.4.2 Sealed Class

The obverse side of the design coin from abstract is sealed. Although an abstract class is intended to
be derived-from and to provide a template for its subclasses to follow, a sealed class does not allow
classes to derive from it at all. The seal ed keyword placed before the class declaration precludes
derivation. Classes are most often marked seal ed to prevent accidental inheritance.

If the declaration of W ndowin Example 5-3 is changed from abst r act to seal ed (eliminating the
abstract keyword from the Dr awMW ndow() declaration as well), the program will fail to compile. If
you try to build this project, the compiler will return the following error message:

"Li st Box' cannot inherit from seal ed class ' W ndow

among many other complaints (such as that you cannot create a new protected member in a sealed
class).

5.5 The Root of all Classes: Object

All C# classes, of any type, are treated as if they ultimately derive from Syst em Obj ect . Interestingly,
this includes value types!

A base class is the immediate "parent" of a derived class. A derived class can be the base to further
derived classes, creating an inheritance "tree" or hierarchy. A root class is the topmost class in an
inheritance hierarchy. In C#, the root class is Cbj ect . The nomenclature is a bit confusing until you
imagine an upside-down tree, with the root on top and the derived classes below. Thus, the base class
is considered to be "above" the derived class.

Ohj ect provides a number of methods that subclasses can and do override. These include
Equal s() to determine if two objects are the same, Cet Type(), which returns the type of the

110

Programming C#

object (discussed in Chapter 18), and ToSt ri ng(), which returns a string to represent the current
object (discussed in Chapter 10). Table 5-1 summarizes the methods of Obj ect .

Table 5-1. The methods of Object

Method What It Does
Equal s() Evaluates whether two objects are equivalent.
Get HashCode() Allows objects to provide their own hash function for use in collections (see
Chapter 9).
Get Type() Provides access to the type object (see Chapter 18).
ToString() Provides a string representation of the object.
Finalize() Cleans up nonmemory resources (see Chapter 4).

Menmberwi seCl one() |Creates copies of the object; should never be implemented by your type.

Example 5-4 illustrates the use of the ToSt ri ng() method inherited from Cbj ect , as well as the
fact that primitive datatypes such as i nt can be treated as if they inherit from Cbj ect .

Example 5-4. Inheriting from Object
usi ng System

public class SoneC ass

{
public Somed ass(int val)
{
val ue = val;
}
public virtual string ToString()
{
return val ue. ToString();
}
private int val ue;
}
public class Tester
{
static void Main()
{
int i =5;
Consol e. WiteLine("The value of i is: {0}", i.ToString());
SoneCl ass s = new Soned ass(7);
Consol e. WitelLine("The value of s is {0}", s.ToString());
}
}
Qut put :
The value of i is: 5

The value of s is 7
The documentation for Obj ect . ToSt ri ng() reveals its signature:

public virtual string ToString();

111

It is a public virtual method which returns a string and which takes no parameters. All the built-in types,
such as i nt, derive from Cbj ect and so can invoke Chj ect 's methods.

Example 5-4 overrides the virtual function for SoneCl ass, which is the usual case, so that the class'
ToString() method will return a meaningful value. If you comment out the overridden function, the
base method will be invoked, which will change the output to:

The val ue of s is Soned ass
Thus, the default behavior is to return a string with the name of the class itself.

Classes do not need to explicitly declare that they derive from Obj ect ; the inheritance is implicit.

5.6 Boxing and Unboxing Types

Boxing and unboxing are the processes that enable value types (e.g., integers) to be treated as
reference types (objects). The value is "boxed" inside an Cbj ect , and subsequently "unboxed" back
to a value type. It is this process that allowed us to call the ToSt ri ng() method on the integer in

Example 5-4.
5.6.1 Boxing Is Implicit

Boxing is an implicit conversion of a value type to the type Cbj ect . Boxing a value allocates an
instance of Cbj ect and copies the value into the new object instance, as shown in Figure 5-4.

Figure 5-4. Boxing reference types

O the stack n the heap
i
123
int i=123:
0 (i hoxed)

123 —» int
object o=i; 123

Boxing is implicit when you provide a value type where a reference is expected and the value is
implicitly boxed. For example, if you assign a primitive type such as an integer to a variable of type
(bj ect (which is legal because | nt derives from Cbj ect) the value is boxed, as illustrated here:

usi ng System
cl ass Boxi ng

{
public static void Main()
{
int i = 123;
Consol e. WiteLine("The object value = {0}", i);
}
}

Consol e. WitelLine() expectsan object, not an integer. To accommodate the method, the
integer type is automatically boxed by the CLR, and ToSt ri ng() is called on the resulting object.
This feature allows you to create methods that take an object as a parameter; no matter what is
passed in, reference or value type, the method will work.

112

Programming C#

5.6.2 Unboxing Must Be Explicit

To return the boxed object back to a value type, you must explicitly unbox it. You should accomplish
this in two steps:

1. Make sure the object instance is a boxed value of the given value type.
2. Copy the value from the instance to the value-type variable.

Figure 5-5 illustrates unboxing.

Figure 5-5. Boxing and then unboxing?

O the stack On the heap
i
123
inti=1#3;
0 (i boxed)

123 —» int
object o=i; 123
i

123
int j={int) 0;

For the unboxing to succeed, the object being unboxed must be a reference to an object that was
created by boxing a value of the given t ype. Boxing and unboxing are illustrated in Example 5-5.

Example 5-5. Boxing and unboxing

usi ng System
publ i c class Unboxi ngTest

{
public static void Main()
{
int i = 123;
/ 1 Boxi ng
object o = i;
/'l unboxing (rmust be explict)
int j = (int) o;
Consol e. WiteLine("j: {O}", j);
}
}

Example 5-5 creates an integer i and implicitly boxes it when it is assigned to the object 0. The
value is then explicitly unboxed and assigned to a new i nt whose value is displayed.

Typically, you will wrap an unbox operation in a try block, as explained in Chapter 11. If the object
being unboxed is null or a reference to an object of a different type, an | nval i dCast Exceptionis
thrown.

113

5.7 Nesting Classes

Classes have members, and it is entirely possible for the member of a class to be another user-
defined type. Thus, a But t on class might have a member of type Locat i on, and a Locat i on class
might contain members of type Poi nt . Finally, Poi nt might contain members of type i nt .

At times, the contained class might exist only to serve the outer class, and there might be no reason
for it to be otherwise visible. (In short, the contained class acts as a helper class.) You can define the
helper class within the definition of the outer class. The contained, inner class is called a nested class,
and the class that contains it is called, simply, the outerclass.

Nested classes have the advantage of access to all the members of the outer class. A method of a
nested class can access private members of the outer class.

In addition, the nested class can be hidden from all other classes—that is, it can be private to the outer
class.

Finally, a nested class that is public is accessed within the scope of the outer class. If Cut er is the
outer class, and Nest ed is the (public) inner class, you refer to Nest ed as Cut er . Nest ed, with the
outer class acting (more or less) as a namespace or scope.

Java programmers take note: nested classes are roughly
s | equivalent to static inner classes; there is no C# equivalent to
d+ Java's nonstatic inner classes.

Example 5-6 adds a nested class to Fracti on named Fracti onArti st. The job of
FractionArti st isto render the fraction on the console. In this example, the rendering has been
replaced with a pair of simple W i t eLi ne() statements. The Fract i on class has also been
stripped down to its essentials.

Example 5-6. Using a nested class

usi ng System
usi ng System Text;

public class Fraction

{
public Fraction(int nunerator, int denom nator)
{
t hi s. numer at or =nuner at or ;
t hi s. denom nat or =denoni nat or ;
}

/1 Methods elided...

public override string ToString()

{
StringBuilder s = new StringBuilder();
s. AppendFormat ("{0}/{1}",
nuner at or, denoni nator);
return s. ToString();
}
internal class FractionArti st
{

public void Draw(Fraction f)
{

114

Programming C#

Console. WiteLine("Drawi ng the nunerator: {0}",
f.nunerator);
Consol e. WiteLine("Drawi ng the denom nator: {0}",
f.denom nator);
}
- |
private int nunerator;
private int denom nator;

}
public class Tester
{
static void Main()
{
Fraction f1 = new Fraction(3,4);
Console. WiteLine("f1: {0}", f1.ToString());
Fraction.FractionArtist fa = new Fraction. FractionArtist();
fa.Draw(f1);
}
}

The Fract i on class is generally unchanged with the exception of adding the new nest ed class and
eliding a number of methods that are not relevant to this issue. The nested class is shown in bold. The
FractionArti st class provides only a single member, the Dr aw() method. What is particularly
interesting is that Dr aw() has access to the private data members f . nuner at or and

f . denom nat or, to which it would not have had access if it were not a nested class.

Notice in Vai n() that to declare an instance of this nested class, you must specify the type name of
the outer class:

Fraction. FractionArtist fa = new Fraction. FractionArtist();

Even though Fracti onArti st ispubli c,itis scoped to within the Fract i on class.

115

116

Programming C#

Chapter 6. Operator Overloading

It is a design goal of C# that user-defined classes have all the functionality of built-in types. For
example, suppose you have defined a type to represent fractions. Ensuring that this class has all the
functionality of the built-in types means that you must be able to perform arithmetic on instances of
your fractions (e.g., add two fractions, multiply, etc.) and to convert fractions to and from built-in types
such as integer (i nt). You could, of course, implement methods for each of these operations and
invoke them by writing statements such as:

Fraction theSum = firstFraction. Add(secondFraction);

Although this will work, it is ugly and not how the built-in types are used. It would be much better to
write:

Fraction theSum = firstFraction + secondFraction;
Statements like this are intuitive and consistent with how built-in types, such as i nt , are added.

In this chapter you will learn techniques for adding standard operators to your user-defined types. You
will also learn how to add conversion operators so that your user-defined types can be implicitly and
explicitly converted to other types.

6.1 Using the operator Keyword

In C#, operators are static methods whose return values represent the result of an operation and
whose parameters are the operands. When you create an operator for a class you say you have
"overloaded" that operator, much as you might overload any member method. Thus, to overload the
addition operator (+) you would write:

public static Fraction operator+(Fraction |hs, Fraction rhs)

It is my convention to name the parameters | hs and r hs. The parameter name | hs stands for
"lefthand side" and reminds me that the first parameter represents the lefthand side of the operation.
Similarly, r hs stands for "righthand side.”

The C# syntax for overloading an operator is to write the word oper at or followed by the operator to
overload. The oper at or keyword is a method modifier. Thus, to overload the addition operator (+)
you write oper at or +.

When you write:

Fraction theSum = firstFracti on + secondFraction;

the overloaded + operator is invoked, with the first Fr act i on passed as the first argument, and the
second Fract i on passed as the second argument. When the compiler sees the expression:

firstFraction + secondFraction

it translates that expression into:

Fraction. operator+(firstFraction, secondFraction)

The result is that a new Fr act i on is returned, which in this case is assigned to the Fr act i on object
named t heSum

117

- C++ programmers take note: it is not possible to create nonstatic
ar operators, and thus binary operators must take two operands.

6.2 Supporting Other .NET Languages

C# provides the ability to overload operators for your classes, even though this is not, strictly speaking,
in the Common Language Specification (CLS). Other .NET languages, such as VB.NET might not
support operator overloading, and it is important to ensure that your class supports alternative
methods that these other languages might call to create the same effect.

Thus, if you overload the addition operator (+) you might also want to provide an add() method that
does the same work. Operator overloading ought to be a syntactic shortcut, not the only path for your
objects to accomplish a given task.

6.3 Creating Useful Operators

Operator overloading can make your code more intuitive and enable it to act more like the built-in
types. It can also make your code unmanageably complex and obtuse if you break the common idiom
for the use of operators. Resist the temptation to use operators in new and idiosyncratic ways.

For example, although it might be tempting to overload the increment operator (++) on an employee
class to invoke a method incrementing the employee's pay level, this can create tremendous
confusion for clients of your class. It is best to use operator overloading sparingly, and only when its
meaning is clear and consistent with how the built-in classes operate.

6.4 Logical Pairs

It is quite common to overload the equals operator (==) to test whether two objects are equal (however
equality might be defined for your object). C# insists that if you overload the equals operator, you must
also overload the not-equals operator (! =). Similarly, the less than (<) and greater than (>) operators
must be paired, as must the less than or equals (<=) and greater than or equals (>=) operators.

6.5 The Equals Operator

If you overload the equals operator (==), it is recommended that you also override the virtual

Equal s() method provided by obj ect and route its functionality back to the equals operator. This
allows your class to be polymorphic and provides compatibility with other .NET languages that do not
overload operators (but do support method overloading). The FCL classes will not use the overloaded
operators but will expect your classes to implement the underlying methods. Thus, for example,
Arrayli st expects you to implement Equal s().

The object class implements the Equal s() method with this signature:

public override bool Equal s(object o)

By overriding this method, you allow your Fr act i on class to act polymorphically with all other objects.
Inside the body of Equal s() you will need to ensure that you are comparing with another

Fracti on, and if so you can pass the implementation along to the equals operator definition that

you've written.

public override bool Equal s(object o)

{

if (! (ois Fraction))

118

Programming C#

{
return fal se;
}
return this == (Fraction) o;

}

The | s operator is used to check whether the runtime type of an object is compatible with the operand
(in this case, Fraction). Thuso i s Fracti on will evaluate true if o is in fact a type compatible
with Fract i on.

6.6 Conversion Operators

C# will convert i nt to | ong implicitly, and allow you to convert | ong to i nt explicitly. The conversion
from i nt to | ong is implicit because you know that any i nt will fit into the memory representation of
al ong. The reverse operation, from | ong to i nt, must be explicit (using a cast) because it is
possible to lose information in the conversion:

int mylnt = 5;

| ong nyLong;

myLong = nylnt; /Il inmplicit
mylnt = (int) myLong; [// explicit

You want the same functionality for your fractions. Given an i nt , you can support an implicit
conversion to a fraction because any whole value is equal to that value over 1 (e.g., 15==15/ 1).

Given a fraction, you might want to provide an explicit conversion back to an integer, understanding
that some value might be lost. Thus, you might convert 9/ 4 to the integer value 2.

The keyword i npl i ci t is used when the conversion is guaranteed to succeed and no information
will be lost; otherwise expl i ci t is used.

Example 6-1 illustrates how you might implement implicit and explicit conversions, and some of the
operators of the Fr act i on class. (Although I've used Consol e. Wi t eLi ne to print messages
illustrating which method we're entering, the better way to pursue this kind of trace is with the
debugger. You can place a breakpoint on each of the test statements, and then step into the code,
watching the invocation of the constructors as they occur.)

Example 6-1. Defining conversions and operators for the fraction class
operators
usi ng System

public class Fraction

{

public Fraction(int nunerator, int denom nator)

{
Console. WiteLine("In Fraction Constructor(int, int)");
t hi s. numer at or =nuner at or ;
t hi s. denom nat or =denom nat or;

}

public Fraction(int whol eNunber)

{
Console. WiteLine("In Fraction Constructor(int)");
nuner at or = whol eNunber ;
denom nator = 1;

}

119

public static inplicit operator Fraction(int thelnt)

{

System Consol e. WiteLine("In inplicit conversion to Fraction");
return new Fraction(thelnt);

}

public static explicit operator int(Fraction theFraction)

{

System Consol e. WiteLine("In explicit conversion to int");
return theFraction. nunerator /
t heFracti on. denom nat or

}

public static bool operator==(Fraction |hs, Fraction rhs)

{

Consol e. WitelLine("In operator ==");

if (Ihs.denom nator == rhs.denom nator &&
| hs. nuner at or == rhs. nunerat or)

{

return true,

}

// code here to handle unlike fractions
return fal se;

public static bool operator !=(Fraction |hs, Fraction rhs)

{

Consol e. WiteLine("In operator !=");

return ! (Il hs==rhs);

}

public override bool Equal s(object o)

{ Consol e. WitelLine("In nethod Equal s");
if (! (ois Fraction))
{ return false;

} ieturn this == (Fraction) o;

public static Fraction operator+(Fraction |hs, Fraction rhs)

Consol e. WitelLine("In operator+");
if (Ihs.denonm nator == rhs.denom nator)
{
return new Fraction(l hs. nunerator+r hs. nuner at or
| hs. denoni nat or) ;

}

/1 sinplistic solution for unlike fractions
/1 112 + 3/4 == (1*4) + (3*2) / (2*4) == 10/8
int firstProduct = | hs. nunerator * rhs.denom nator
i nt secondProduct = rhs.nunmerator * |hs.denom nator
return new Fraction(

firstProduct + secondProduct,

| hs. denom nator * rhs. denom nat or

)

120

Programming C#

}
public override string ToString()
{
String s = nunerator. ToString() + "/" +
denom nator. ToString();
return s;
}

private int numerator;
private int denom nator;

}
public class Tester
{
static void Main()
{
Fraction f1 = new Fraction(3,4);
Console.WiteLine("f1: {0}", f1.ToString());
Fraction f2 = new Fraction(2,4);
Consol e. WitelLine("f2: {0}", f2.ToString());
Fraction f3 = f1 + f2;
Console. WiteLine("f1 + f2 = f3: {0}", f3.ToString());
Fraction f4 = f3 + 5;
Console. WiteLine("f3 + 5 = f4: {0}", f4.ToString());
Fraction f5 = new Fraction(2,4);
if (f5 == f2)
{
Console. WiteLine("F5: {0} == F2: {1}",
f5.ToString(),
f2.ToString());
}
}
}

The Fract i on class begins with two constructors: one taking a numerator and denominator, the other
taking a whole number. The constructors are followed by the declaration of two conversion operators.
The first conversion operator changes an integer into a Fr act | on:

public static inplicit operator Fraction(int thelnt)

{
}

return new Fraction(thelnt,1);

This conversion is marked i npl i ci t because any whole number (i nt) can be converted to a
Fracti on by setting the numerator to the i nt and the denominator to 1. You delegate this
responsibility to the constructor which takes an i nt .

The second conversion operator is for the explicit conversion of Fr act | ons into integers:

public static explicit operator int(Fraction theFraction)

{

return theFraction. numerator /

121

t heFracti on. denom nat or;

Because this example uses integer division, it will truncate the value. Thus, if the fraction is 15/ 16, the
resulting integer value will be 1. A more sophisticated conversion operator might accomplish rounding.

The conversion operators are followed by the equals operator (==) and the not equals operator (! =).
Remember that if you implement one of these equals operators, you must implement the other.

You have defined value equality for a Fr act i on such that the numerators and denominators must
match. For this exercise, 3/ 4 and 6/ 8 are not considered equal. Again, a more sophisticated
implementation would reduce these fractions and notice the equality.

You include an override of the object class' Equal s() method so that your Fr act i on objects can
be treated polymorphically with any other object. Your implementation is to delegate the evaluation of
equality to the equality operator.

A Fracti on class would, no doubt, implement all the arithmetic operators (addition, subtraction,
multiplication, division). To keep the illustration simple, you implement only addition, and even here
you simplify greatly. You check to see if the denominators are the same; if so, you add the numerators:

public static Fraction operator+(Fraction |hs, Fraction rhs)

if (Ihs.denom nator == rhs. denom nator)

{

return new Fraction(l hs. nunerator +r hs. nuner at or,
| hs. denom nat or) ;

}
If the denominators are not the same, you cross multiply:

int firstProduct = | hs. nunerator * rhs.denom nator;
i nt secondProduct = rhs. nunerator * | hs. denom nator;
return new Fraction(

firstProduct + secondProduct,

| hs. denom nator * rhs.denoni nat or

This code is best understood with an example. If you were adding 1/ 2 and 3/ 4, you can multiply the
first numerator (1) by the second denominator (4) and store the result (4) inf i r st Product . You can
also multiply the second numerator (3) by the first denominator (2) and store that result (6) in
secondProduct . You add these products (6+4) to a sum of 10, which is the numerator for the
answer. You then multiply the two denominators (2* 4) to generate the new denominator (8). The
resulting fraction (10/ 8) is the correct answer. (To recap: 1/ 2=4/ 8, 3/ 4=6/ 8, 4/ 8+6/ 8=10/ 8. The
example does not reduce the fraction, to keep it simple.)

Finally, to enable debugging of the new Fr act i on class, the code is written so that Fr act i on is able
to return its value as a string in the format nuner at or / denomi nat or:

public override string ToString()

{
String s = nunerator. ToString() + "/" +
denom nator. ToString();
return s;
}

You create a new string object by calling the ToSt ri ng() method on numerator. Since nuner at or
is an object, this causes the compiler to implicitly box the integer (creating an object) and calls

122

Programming C#

ToString() onthatobject, returning a string representation of the numerator. You concatenate the
string "/ " and then concatenate the string that results from calling ToSt ri ng() on the denominator.

With your Fr act i on class in hand, you're ready to test. Your first tests create simple fractions, 3/ 4
and 2/ 4:

Fraction f1 = new Fraction(3,4);
Console. WiteLine("fl: {0}", f1.ToString());

Fraction f2 = new Fraction(2,4);
Console. WiteLine("f2: {0}", f2.ToString());

The output from this is what you would expect—the invocation of the constructors and the value
printed in Wi t eLi ne:

In Fraction Constructor(int, int)

fl1:. 3/4
In Fraction Constructor(int, int)
f2: 2/4

The next line in Vai n() invokes the static oper at or +. The purpose of this operator is to add two
fractions and return the sum in a new fraction:

Fraction f3 = f1 + f2;
Console. WiteLine("fl1 + f2 = f3: {0}", f3.ToString());

Examining the output reveals how oper at or + works:

I n operator+
In Fraction Constructor(int, int)
f1+f2 =13 5/4

The oper at or + is invoked, and then the constructor for f 3, taking the two i nt values representing
the numerator and denominator of the resulting new fraction.

The next testin Mai n() adds ani nt tothe Fracti on f 3 and assigns the resulting value to a new
Fraction,f 4:

Fraction f4 = f3 + 5;
Console. WiteLine("f3 + 5: {0}", f4.ToString());

The output shows the steps for the various conversions:

In inplicit conversion to Fraction
In Fraction Constructor(int)

I n operator+

In Fraction Constructor(int, int)
f3 +5 = f4:. 25/4

Notice that the implicit conversion operator was invoked to convert 5 to a fraction. In the return
statement from the implicit conversion operator, the Fr act i on constructor was called, creating the
fraction 5/ 1. This new fraction was then passed along with Fract i on f 3 to oper at or +, and the
sum was passed to the constructor for f 4.

In our final test, a new fraction (f 5) is created, and you test whether it is equal to f 2. If so, you print
their values:

123

Fraction f5 = new Fraction(2,4);

if (f5 == f2)
{
Console. WiteLine("F5: {0} == F2: {1}",
f5.ToString(),
f2. ToString());
}

The output shows the creation of f 5, and then the invocation of the overloaded equals operator:

In Fraction Constructor(int, int)
In operator ==
F5: 2/4 == F2: 2/4

124

Programming C#

Chapter 7. Structs

A struct is a simple user-defined type, a lightweight alternative to classes. Structs are similar to
classes in that they may contain structors, properties, methods, fields, operators, nested types and
indexers (see Chapter 9).

There are also significant differences between classes and structs. For instance, structs don't support
inheritance or destructors. More important, although a class is a reference type, a struct is a value type.
(See Chapter 3 for more information about classes and types.) Thus, structs are useful for
representing objects that do not require reference semantics.

The consensus view is that you ought to use structs only for types that are small, simple, and similar in
their behavior and characteristics to built-in types.

Structs are somewhat more efficient in their use of memory in arrays (see Chapter 9). However, they
can be less efficient when used in collections. Collections expect references, and structs must be
boxed. There is overhead in boxing and unboxing, and classes might be more efficient in large
collections.

In this chapter, you will learn how to define and work with structs and how to use constructors to
initialize their values.

7.1 Defining Structs

The syntax for declaring a struct is almost identical to that for a class:

[attributes] [access-nodifiers] struct identifier [:interface-list]
{ struct-nmembers }

Example 7-1 illustrates the definition of a struct. Locat i on represents a point on a two-dimensional
surface. Notice that the struct Locat i on is declared exactly as a class would be, except for the use of
the keyword st r uct . Also notice that the Locat i on constructor takes two integers and assigns their
value to the instance members, x and y. The x and y coordinates of Locat i on are declared as
properties.

Example 7-1. Creating a struct
usi ng System

public struct Location

{
public Location(int xCoordinate, int yCoordinate)
{
xVal = xCoordi nat e;
yVal = yCoordi nate;
}
public int x
{
get
{
return xVal ;
}
set
{

xVal = val ue;

125

}
public int y
{
get
{
return yVval
}
set
{
yVal = val ue;
}
}
public override string ToString()
{
return (String. Format ("{0}, {1}", xVal,yVval));
}

private int xVal;
private int yVval;

}
public class Tester
{
public void myFunc(Location | oc)
{
[oc. x = 50;
| oc.y = 100;
Consol e. WiteLine("Locl |ocation: {0}", loc);
}
static void Main()
{
Location locl = new Location(200, 300);
Consol e. WiteLine("Locl |location: {0}", locl);
Tester t = new Tester();
t.nmyFunc(locl);
Consol e. WiteLine("Locl location: {0}", locl);
}
}
Qut put

Locl | ocation: 200, 300
In MyFunc loc: 50, 100
Locl | ocation: 200, 300

Unlike classes, structs do not support inheritance. They implicitly derive from object (as do all types in
C#, including the built-in types) but cannot inherit from any other class or struct. Structs are also
implicitly sealed (that is, no class or struct can derive from a struct). Like classes, however, structs can
implement multiple interfaces. Additional differences include the following:

No destructor or custom default constructor

Structs cannot have destructors, nor can they have a custom parameterless (default)
constructor. If you supply no constructor at all, your struct will in effect be provided with a
default constructor which will zero all the data members or set them to default values
appropriate to their type (see Table 4-2). If you supply any constructor, you must initialize all
the fields in the struct.

No initialization

126

Programming C#

You cannot initialize an instance field in a struct. Thus, it is illegal to write:

private int xVal
private int yVal

50;
100;

though that would have been fine had this been a class.

Structs are designed to be simple and lightweight. While private member data promotes data hiding
and encapsulation, some programmers feel it is overkill for structs. They make the member data public,
thus simplifying the implementation of the struct. Other programmers feel that properties provide a
clean and simple interface, and that good programming practice demands data hiding even with

simple lightweight objects. Which you choose is a matter of design philosophy; the language will
support either approach.

7.2 Creating Structs

You create an instance of a struct by using the new keyword in an assignment statement, just as you
would for a class. In Example 7-1, the Test er class creates an instance of Locat i on as follows:

Location | ocl = new Location(200, 300);

Here the new instance is named | oc1 and is passed two values, 200 and 300.

7.2.1 Structs as Value Types

The definition of the Test er class in Example 7-1 includes a Locat i on object, | oc1, created with
the values 200 and 300. This line of code calls the Locat i on constructor:

Location | ocl = new Location(200, 300);
Then Wi teLine()iscalled:
Consol e. WiteLine("Locl |ocation: {0}", l|ocl);

W iteLine() isexpecting an object; but, of course, Locat i on is a struct (a value type). The
compiler automatically boxes the struct (as it would any value type), and it is the boxed object that is
passedto WitelLine().ToString() iscalled onthe boxed object, and because the struct
(implicitly) inherits from obj ect , it is able to respond polymorphically, overriding the method just as
any other object might:

Locl | ocation: 200, 300

Structs are value objects, however, and when passed to a function, they are passed by value, as seen
in the next line of code, in which the | oc1 object is passed to the myFunc() method:

t. nmyFunc(l ocl);
In myFunc new values are assigned to x and y, and then these new values are printed out:
Locl Il ocation: 50, 100

When you return to the calling function (Vai n())and call Wi teLi ne() again, the values are
unchanged:

127

Locl | ocation: 200, 300

The struct was passed as a value object, and a copy was made in my Func. Try this experiment—
change the declaration to class:

public class Location

and run the test again. Here is the output:

Locl | ocation: 200, 300
In MyFunc loc: 50, 100
Locl | ocation: 50, 100

This time the Locat i on object has reference semantics. Thus, when the values are changed in
myFunc(), they are changed on the actual object back in Vai n().

7.2.2 Calling the Default Constructor

As mentioned earlier, if you do not create a constructor, an implicit default constructor will be called by
the compiler. We can see this if we comment out the constructor:

/* public Location(int xCoordinate, int yCoordinate)

{

xVal
yVal

xCoor di nat e;
yCoor di nat e;

*/

and replace the first line in Vai n() with one that creates an instance of Locat i on without passing
values:

/'l Location locl = new Location(200, 300);
Location | ocl = new Location();

Because there is now no constructor at all, the implicit default constructor is called. The output looks
like this:

Locl location: 0, O
In MyFunc loc: 50, 100
Locl | ocation: 0, O

The default constructor has initialized the member variables to zero.

o C++ programmers take note: in C#, the new keyword does not
«s). always create objects on the heap. Classes are created on the
—4&% heap, and structs are created on the stack. Also, when newis

omitted (as you will see in the next section), a constructor is never
called. Because C# requires definite assignment, you must
explicitly initialize all the member variables before using the struct.

128

Programming C#

7.2.3 Creating Structs Without new

Because | ocl is a struct (not a class), it is created on the stack. Thus, in Example 7-1, when the
new operator is called:

Location locl = new Locati on(200, 300);
the resulting Locat i on object is created on the stack.
The new operator calls the Locat i on constructor. However, unlike with a class, it is possible to create

a struct without using new at all. This is consistent with how built-in type variables (such as i nt) are
defined and is illustrated in Example 7-2.

e A caveat: | am demonstrating how to create a struct without using
“s). new because it differentiates C# from C++ and also differentiates
&% how C# treats classes versus structs. That said, however, creating

structs without the keyword new brings little advantage and can
create programs that are harder to understand, more error prone,
and more difficult to maintain! Proceed at your own risk.

Example 7-2. Creating a struct without using new
usi ng System

public struct Location

{
public Location(int xCoordinate, int yCoordinate)
{
xVal = xCoordi nate
yVal = yCoordi nate
}
public int x
{
get
{
return xVal
}
set
{
xVal = val ue
}
}
public int y
{
get
{
return yval
}
set
{
yVal = val ue
}
}
public override string ToString()
{

129

return (String. Format ("{0}, {1}", xVal,yVal));
}

public int xVal;
public int yVal;

}
public class Tester
{
static void Main()
{
Location | ocl; /!l no call to the constructor
| ocl. xVal = 75; // initialize the nembers
| ocl.yVal = 225;
Consol e. WiteLine(locl);
}
}

In Example 7-2 you initialize the local variables directly, before calling a method of | oc1 and before
passing the objectto Wi teLine():

| ocl. xVal
| ocl. yVal

75;
225,

If you were to comment out one of the assignments and recompile:
static void Main()
{

Location |ocl;
| ocl. xVal = 75;
/1 locl.yVal = 225;
Consol e. WiteLine(locl);
}
you would get a compiler error:
Use of unassigned |ocal variable 'locl

Once you assign all the values, you can access the values through the properties x and y:

static void Main()

{
Location | ocl;
locl. xVal = 75; /'l assign nmenber variable
| ocl.yVval = 225; /1 assign nenber variabl e
| ocl. x = 300; /'l use property
locl.y = 400; /'l use property
Consol e. WiteLine(locl);

}

Be careful about using properties. Although these allow you to support encapsulation by making the
actual values private, the properties themselves are actually member methods, and you cannot call a
member method until you initialize all the member variables.

130

Programming C#

Chapter 8. Interfaces

An interface is a contract that guarantees to a client how a class or struct will behave. When a class
implements an interface, it tells any potential client "I guarantee I'll support the methods, properties,
events, and indexers of the named interface." (See Chapter 4 for information about methods and
properties, see Chapter 12 for info about events, and see Chapter 9 for coverage of indexers.)

An interface offers an alternative to an abstract class for creating contracts among classes and their
clients. These contracts are made manifest using the i nt er f ace keyword, which declares a
reference type that encapsulates the contract.

Syntactically, an interface is like a class that has only abstract methods. An abstract class serves as
the base class for a family of derived classes, while interfaces are meant to be mixed in with other
inheritance trees.

When a class implements an interface, it must implement all the methods of that interface; in effect the
class says "l agree to fulfill the contract defined by this interface."

Inheriting from an abstract class implements the is-a relationship, introduced in Chapter 5.
Implementing an interface defines a different relationship, one we've not seen until now: the
implements relationship. These two relationships are subtly different. A car is a vehicle, but it might
implement the CanBeBought W t hABI gLoan capability (as can a house, for example).

Mix Ins

In Somerville, Massachusetts, there was, at one time, an ice cream parlor
where you could have candies and other goodies "mixed in" with your
chosen ice cream flavor. This seemed like a good metaphor to some of the
object-oriented pioneers from nearby MIT who were working on the
fortuitously named SCOOPS programming language. They appropriated the
term "mix in" for classes that mixed in additional capabilities. These mix-in or
capability classes served much the same role as do interfaces in C#.

In this chapter, you will learn how to create, implement, and use interfaces. You'll learn how to
implement multiple interfaces and how to combine and extend interfaces, as well as how to test
whether a class has implemented an interface.

8.1 Implementing an Interface

The syntax for defining an interface is as follows:

[attributes] [access-nodifier] interface interface-nane [:base-Ilist]
{interface-body}

Don't worry about attributes for now; they're covered in Chapter 18.

Access modifiers, including publ i ¢, private, protected,internal,andprotectedinternal,
are discussed in Chapter 4.

The i nt er f ace keyword is followed by the name of the interface. It is common (but not required) to
begin the name of your interface with a capital | . Thus, | St or abl e, | Cl oneabl e, | Cl audi us, etc.

131

The base- | | st lists the interfaces that this interface extends (as described in Section 8.1.1 later in
this chapter).

The i nt er f ace- body is the implementation of the interface, as described below.

Suppose you wish to create an interface that describes the methods and properties a class needs to
be stored to and retrieved from a database or other storage such as a file. You decide to call this
interface | St or abl e.

In this interface you might specify two methods: Read() and Wi te(), which appear in the
i nterface-body:

interface | Storable

voi d Read();
void Wite(object);
}

The purpose of an interface is to define the capabilities that you want to have available in a class.

For example, you might create a class, Docunent . It turns out that Docunent types can be stored in
a database, so you decide to have Docunment implement the | St or abl e interface.

To do so, you use the same syntax as if the new Docunent class were inheriting from | St or abl e—a
colon (:), followed by the interface name:

public class Docunent : |Storable

{
public void Read() {...}

public void Wite(object obj) {...}
11
}

It is now your responsibility, as the author of the Docunent class, to provide a meaningful
implementation of the | St or abl e methods. Having designated Docunent as implementing

| St or abl e, you must implement all the | St or abl e methods, or you will generate an error when you
compile. This is illustrated in Example 8-1, in which the Docunent class implements the | st or abl e
interface.

Example 8-1. Using a simple interface
usi ng System

/1l declare the interface
interface | Storable

{
/'l no access nodifiers, methods are public
/1 no inplnmentation
void Read();
void Wite(object obj);
int Status { get; set; }
}
/'l create a class which inplenents the |Storable interface
public class Docunent : |Storable
{

publ i c Docunent(string s)

132

Programming C#

{
}

/1 inplement the Read net hod
public void Read()

{

Consol e. WitelLine("Creating document with: {0}", s);

Consol e. Wit eLi ne(
"“I'npl ementing the Read Method for |Storable");

}

/1 inplement the Wite method
public void Wite(object o)

{
Consol e. Wit eLi ne(

“lInpl enenting the Wite Method for |Storable");

}
/1 inmplenment the property

public int Status

{
get
{

}

set

{
}

return status;

status = val ue;

}

/] store the value for the property
private int status = O;

}

/1 Take our interface out for a spin
public class Tester

{
static void Main()
{
/1 access the nmethods in the Docunent object
Docunment doc = new Docunent (" Test Docunent");
doc. Status = -1;
doc. Read();
Consol e. WitelLi ne("Docunment Status: {0}", doc.Status);
/1 cast to an interface and use the interface
| Storabl e isDoc = (I Storable) doc;
i sDoc. Status = O;
i sDoc. Read();
Consol e. WiteLine("IStorable Status: {0}", isDoc.Status);
}
}
Cut put :

Creating docunent with: Test Docunent

| mpl enenting the Read Method for | Storable
Docurment Status: -1

| npl enenting the Read Method for |Storable

133

| Storable Status: O

Example 8-1 defines a simple interface, | St or abl e, with two methods, Read() and Wite(),
and a property, St at us, of type i nt eger . Notice that the property declaration does not provide an
implementation for get () and set (), but simply designates that thereisaget () andaset ():

int Status { get; set; }

Notice also that the | St or abl e method declarations do not include access modifiers (e.g., publ i c,
protected,internal,private).Infact, providing an access modifier generates a compile error.
Interface methods are implicitly publ i ¢ because an interface is a contract meant to be used by other
classes. You cannot create an instance of an interface; instead you instantiate a class that implements
the interface.

The class implementing the interface must fulfill the contract exactly and completely. Docunent must
provide both a Read() anda W ite() method and the St at us property. How it fulfills these
requirements, however, is entirely up to the Docunent class. Although | St or abl e dictates that
Document must have a St at us property, it does not know or care whether Docunent stores the
actual status as a member variable, or looks it up in a database. The details are up to the
implementing class.

8.1.1 Implementing More Than One Interface

Classes can implement more than one interface. For example, if your Docunent class can be stored
and it also can be compressed, you might choose to implement both the | St or abl e and

| Conpr essi bl e interfaces. To do so, you change the declaration (in the base-list) to indicate that
both interfaces are implemented, separating the two interfaces with commas:

public class Docunent : |Storable, |Conpressible

Having done this, the Docunent class must also implement the methods specified by the
| Conpr essi bl e interface:

public void Conmpress()

{
Consol e. WiteLine("Inplenenting the Conpress Method");
}
public void Deconpress()
{
Consol e. WiteLine("Inplenenting the Deconpress Method");
}

Running this modified example reveals that the Docurnent object can in fact access these interface
methods.

Creating docunment with: Test Docunent
I mpl emrenting the Read Method for |Storable
| mpl erent i ng Conpress

8.1.2 Extending Interfaces

It is possible to extend an existing interface to add new methods or members, or to modify how
existing members work. For example, you might extend | Conpr essabl e with a new interface,

| LoggedConpr essabl e, which extends the original interface with methods to keep track of the bytes
saved:

134

Programming C#

interface | LoggedConpressible : | Conpressible
{

}

voi d LogSavedBytes();

Classes are now free to implement either | Conpr essi bl e or | LoggedConpr essi bl e, depending
on whether they need the additional functionality. If a class does implement | LoggedConpr essi bl e,
it must implement all the methods of both | LoggedConpr essi bl e and also | Conpr essi bl e.
Objects of that type can be cast either to | LoggedConpressi bl e orto | Conpressi bl e.

8.1.3 Combining Interfaces

Similarly, you can create new interfaces by combining existing interfaces, and, optionally, adding new
methods or properties. For example, you might decide to create | St or abl eConpr essi bl e. This
interface would combine the methods of each of the other two interfaces, but would also add a new
method to store the original size of the pre-compressed item:

interface | Storabl eConpressible : |Storeable, |LoggedConpressible
{

}

void LogOriginal Size();

Example 8-2 illustrates extending and combining interfaces.

Example 8-2. Extending and combining interfaces
usi ng System

interface | Storable

voi d Read();
void Wite(object obj);
int Status { get; set; }

}

/'l here's the new interface
i nterface | Conpressible

{
void Compress();

voi d Deconmpress();
}

/1 Extend the interface
interface | LoggedConpressible : | Conpressible

{
}

/1 Conbine Interfaces
interface | Storabl eConpressible : |Storable, |LoggedConpressible

{
}

/1 yet another interface
interface | Encryptable

{

voi d LogSavedBytes();

voi d LogOriginal Size();

void Encrypt();

135

}

public class Docunment : |Storabl eConpressible, |Encryptable

{

void Decrypt();

/1 the docunment constructor
public Docunment(string s)

{

Consol e. WitelLine("Creating docunment with: {0}", s);

}

/1 inmplenent |Storable
public void Read()

{ Consol e. Wit eLi ne(
"l npl ementing the Read Method for |Storable");
}
public void Wite(object 0)
{ Consol e. Wit eLi ne(
“"I'npl emrenting the Wite Method for | Storable");
}
public int Status
{
get
{
return status;
}
set
{
status = val ue;
}
}

/1 inmplenment | Conpressible
public void Conpress()

{
Consol e. WiteLine("Inplenmenting Conpress");
}
public void Deconpress()
{
Consol e. WiteLine("Inplenmenting Deconpress");
}

/1 inplenment |LoggedConpressible
public void LogSavedBytes()

{

}

/1 inplenent |Storabl eConpressible
public void LogOriginal Size()
{

}

Consol e. WiteLine("Inplenmenting LogSavedBytes");

Consol e. WiteLine("Inplenmenting LogOriginal Si ze");

136

Programming C#

/1 inplenent |Encryptable
public void Encrypt()

{ Consol e. WiteLine("Inplenmenting Encrypt");
}

public void Decrypt()

{ Consol e. WiteLine("Inplenmenting Decrypt");
}

/1 hold the data for I|Storable's Status property
private int status = 0;

}

public class Tester

{

static void Main()
{
/1 create a docunent object
Docunment doc = new Docunent (" Test Docunent");

/1 cast the docunent to the various interfaces
| Storabl e isDoc = doc as | Storable;

if (isDoc !'= null)

{

}

el se
Consol e. WitelLine("IStorable not supported");

i sDoc. Read();

| Conpressible icDoc = doc as | Conpressible;
if (icboc !'= null)
{

}

el se
Consol e. Wi telLi ne(" Conpressi ble not supported");

i cDoc. Compress();

LoggedConpressi bl e il cDoc = doc as | LoggedConpressi bl e;
f (ilcDoc !'= null)

|
i
{

il cDoc. LogSavedBytes();
il cDoc. Compress();
/1l ilcDoc.Read();

}

el se

Consol e. Wi telLi ne("LoggedConpressi bl e not supported");

| St or abl eConpressi bl e isc = doc as | Storabl eConpressi bl e;

if (isc !'=null)

{
isc.LogOriginal Size(); // 1Storabl eConpressible
i sc. LogSavedBytes(); /1 1 LoggedConpressi bl e
i sc. Compress(); /1 1 Conpressible
isc.Read(); /1 1Storable

}

137

el se

{
Consol e. Wi teLi ne("Storabl eConpressi bl e not supported");
}
| Encryptabl e ie = doc as | Encryptable;
if (ie!=null)
{
ie. Encrypt();
}
el se

Consol e. WitelLine("Encryptabl e not supported");
}
}
usi ng System

interface | Storable

{
void Read();
void Wite(object obj);
int status { get; set; }
}

/1 here's the new interface
i nterface | Conpressible

{
voi d Conpress();

voi d Decompress();
}

/1 Extend the interface
interface | LoggedConpressible : | Conpressible

{
}

/1 Conbine Interfaces
interface | Storabl eConpressible : |Storable, |LoggedConpressible

{
}

/1 yet another interface
interface | Encryptable

voi d LogSavedBytes();

voi d LogOriginal Size();

{
void Encrypt();
void Decrypt();
}
public class Docunment : |Storabl eConpressible, |Encryptable
{

// the docunent constructor
public Document(string s)

{
Consol e. WitelLine("Creating document with: {0}", s);

}

/1 inplenent |Storable
public void Read()

138

Programming C#

{
Consol e. Wit eLi ne(
“I'npl ementing the Read Method for |Storable");
}
public void Wite(object 0)
{
Consol e. Wit eLi ne(
“"I'npl emrenting the Wite Method for | Storable");
}
public int status
{
get
{
return dbStat us;
}
set
dbSt at us = val ue;
}
}
/1 inplenent |Conpressible
public void Conpress()
{
Consol e. WiteLine("Inplementing Conpress");
}
public void Deconpress()
{
Consol e. WiteLine("Inpl ementing Deconpress");
}
/1 inplenment |LoggedConpressible

public void LogSavedBytes()
{

}

/1 inplenent |Storabl eConpressible
public void LogOriginal Size()

{

Consol e. WiteLine("Ilnpl ementing

Consol e. WiteLine("lnpl ementing

}

/1 inmplenment |Encryptable

public void Encrypt()

{ Consol e. WiteLine("lnpl ementing
}

public void Decrypt()

{ Consol e. WiteLine("Ilnpl ementing
}

/1 hold the data for

LogSavedByt es") ;

LogOrigi nal Si ze");

Encrypt");

Decrypt");

| Storabl e's status property

139

private int dbStatus = O;

}
public class Tester
{
static void Main()
{
/1l create a document object
Docunment doc = new Docunent (" Test Docunent");
/1 cast the docunent to the various interfaces
| Storabl e i sDoc = doc as | Storable;
if (isDoc !'= null)
{
i sDoc. Read();
}
el se
Consol e. WitelLine("IStorable not supported");
| Conpressible icDoc = doc as | Conpressible;
if (icboc !'= null)
{
i cDoc. Compress();
}
el se
Consol e. Wi telLi ne(" Conpressi ble not supported");
| LoggedConpressi bl e il cDoc = doc as | LoggedConpressi bl e;
if (ilcDoc !'= null)
{
il cDoc. LogSavedBytes();
il cDoc. Compress();
/1l ilcDoc.Read();
}
el se
Consol e. Wi telLi ne("LoggedConpressi bl e not supported");
| St or abl eConpressi bl e isc = doc as | Storabl eConpressi bl e;
if (isc !'=null)
{
isc.LogOriginal Size(); // 1Storabl eConpressible
i sc. LogSavedBytes(); /1 1 LoggedConpressibl e
i sc. Compress(); /1 1 Conpressible
isc.Read(); /1 1Storable
}
el se
Consol e. Wi telLi ne("Storabl eConpressi ble not supported");
}
| Encryptable ie = doc as | Encryptabl e;
if (ie!=null)
{
ie. Encrypt();
}
el se
Consol e. Wi telLi ne("Encryptabl e not supported");
}

140

Programming C#

}
Qut put :

Creating docunment with: Test Docunent

| npl enenting the Read Method for |Storable
| mpl enenti ng Conpress

| mpl emrent i ng LogSavedByt es

| mpl erent i ng Conpress

| npl enenting LogOri gi nal Si ze

| npl enenti ng LogSavedByt es

| mpl enenti ng Conpress

| mpl emrenting the Read Method for |Storable
| mpl emrent i ng Encrypt

Example 8-2 starts by implementing the | St or abl e interface and the | Conpr essi bl e interface.
The latter is extended to | LoggedConpr essi bl e and then the two are combined into
| St or abl eConpr essi bl e. Finally, the example adds a new interface, | Encr ypt abl e.

The Test er program creates a new Docunent object and then casts it to the various interfaces.
When the object is castto | LoggedConpr essi bl e, you can use the interface to call methods on

| conpressi bl e because | LoggedConpr essi bl e extends (and thus subsumes) the methods from
the base interface:

LoggedConpressible ilcDoc = doc as |LoggedConpressible;
f (ilcDoc !'= null)

|
i
{

il cDoc. LogSavedBytes();
il cDoc. Compress();
/1 ilcDoc. Read();

}

You cannot call Read(), however, because that is a method of | St or abl e, an unrelated interface.
And if you uncomment out the call to Read(), you will receive a compiler error.

If you castto | St or abl eConpr essi bl e (which combines the extended interface with the St or abl e
interface), you can then call methods of | St or abl eConpr essi bl e, | conpr essi bl e, and
| St or abl e:

| St or abl eConpressi ble isc = doc as | Storabl eConpressible

if (isc !'=null)
{
isc.LogOriginal Size(); [/ 1Storabl eConpressible
i sc. LogSavedBytes(); /1 1 LoggedConpr essi bl e
i sc. Conpress(); /1 1 Conpressible
i sc. Read(); /1l 1Storable
}
isc.LogOriginal Size(); // 1Storabl eConpressible
i sc. LogSavedBytes(); /1 1 LoggedConpr essi bl e
i sc. Conpress(); /1 1 Conpressible
isc.Read(); /] 1Storable

8.2 Accessing Interface Methods

You can access the members of the | St or abl e interface as if they were members of the Docunent
class:

141

Docurment doc = new Docunent (" Test Document");
doc.status = -1;
doc. Read();

or you can create an instance of the interface by casting the document to the interface type, and then
use that interface to access the methods:

| Storable isDoc = (I Storable) doc;
i sDoc. status = O;
i sDoc. Read();

In this case, in Vai n() you know that Docunent isinfactan | St or abl e, so you can take
advantage of that knowledge.

- As stated earlier, you cannot instantiate an interface directly. That
s | iS, you cannot say:

| Storable isDoc = new | Storable();

You can, however, create an instance of the implementing class,
as in the following:

Docunent doc = new Docunent (" Test Docunent");

You can then create an instance of the interface by casting the
implementing object to the interface t ype, which in this case is
| St or abl e:

| Storabl e isDoc = (I Storable) doc;
You can combine these steps by writing:

| St orabl e i sDoc =
(I St orabl e) new Docunent (" Test Docunent");

In general, it is a better design decision to access the interface methods through an interface
reference. Thus, it is better to use i sDoc. Read(), than doc. Read(), in the previous example.
Access through an interface allows you to treat the interface polymorphically. In other words, you can
have two or more classes implement the interface, and then by accessing these classes only through
the interface, you can ignore their real runtime type and treat them interchangeably. See Chapter 5
for more information about polymorphism.

8.2.1 Casting to an Interface

In many cases, you don't know in advance that an object supports a given interface. For example,
suppose you have a collection of Docunent s, some of which can be stored and others of which
cannot. Suppose you add a second interface, | Conpr essi bl e, for those objects that can compress
themselves for quick transmission via email:

interface | Conpressible

{
voi d Compress();
voi d Decompress();

142

Programming C#

}

Given a Docunent type, you might not know whether it supports | St or abl e or | conpr essi bl e or
both. You can just cast to the interfaces:

Docunent doc = new Docunent (" Test Docunent");

| Storable isDoc = (I Storable) doc;
i sDoc. Read();

| Conpressible icbDoc = (I Conpressible) doc;
i cDoc. Compress();

If it turns out that Docunent implements only the | St or abl e interface:
public class Docunent : |Storable

the cast to | Conpr essi bl e would still compile because | Conpr essi bl e is a valid interface.
However, because of the illegal cast, when the program is run an exception will be thrown:

An exception of type System I nvali dCast Exception was thrown.

Exceptions are covered in detail in Chapter 11.

8.2.2 The is Operator

You would like to be able to ask the object if it supports the interface, in order to then invoke the
appropriate methods. In C# there are two ways to accomplish this. The first method is to use the i s
operator.

The form of the i s operator is:

expression is type

The | s operator evaluates t r ue if the expression (which must be a reference type) can be safely cast
to t ype without throwing an exception. Example 8-3 illustrates the use of the i s operator to test
whether a Docunent implements the | St or abl e and | Conpr essi bl e interfaces.

Example 8-3. Using the is operator
usi ng System

interface | Storable

voi d Read();
void Wite(object obj);
int Status { get; set; }

}

/1 here's the new interface
interface | Conpressible

{
void Compress();

voi d Decompress();

143

/1 Docurnent inplenents |Storable

public class Docunent : |Storable
{ public Document(string s)
{ Consol e. Wi teLi ne(
"Creating docunent with: {0}", s);
}

/1 1Storabl e. Read
public void Read()

{
Consol e. Wit eLi ne(

"l npl enenting the Read Method for |Storable");
}

/1 1Storable. Wite
public void Wite(object o)
{
Consol e. Wit eLi ne(
"I npl enenting the Wite Method for |Storable");

}

/1 1Storabl e. Status
public int Status

{
get
{
return status;
}
set
{
status = val ue;
}
}
private int status = O;
}
public class Tester
{

static void Main()
{

Docunment doc = new Docunent (" Test Docunent");

/1 only cast if it is safe
if (doc is IStorable)

| Storable isDoc = (I Storable) doc;
i sDoc. Read();
/1 this test will fail

if (doc is |Conpressible)

| Conpressible icDoc = (I Conpressible) doc;
i cDoc. Compress();

144

Programming C#

Example 8-3 is identical to Example 8-2 except that it adds the declaration for the
| Conpr essi bl e interface. Mai n() now determines whether the cast is legal (sometimes referred to
as saf e) by evaluating the following i f clause:

if (doc is |IStorable)

This is clean and nearly self-documenting. The i f statement tells you that the cast will happen only if
the object is of the right interface type.

Unfortunately, this use of the | s operator turns out to be inefficient. To understand why, you need to
dip into the MSIL code that this generates. Here is a small excerpt (note that the line numbers are in
hexadecimal notation):

L _0023: isinst | Conpressible
L _0028: brfalse.s 1L_0039

L _002a: Idloc.0

L _002b: castclass | Conpressible
L_0030: stloc.2

L _0031: Idloc.2

L 0032: callvirt i nstance void | Conpressible::Conmpress()
L _0037: br.s I L_0043
L _0039: Idstr "Conpressi bl e not supported”

What is most important here is the test for | Conpr essi bl e on line 23. The keyword | si nst is the
MSIL code for the | s operator. It tests to see if the object (doc) is in fact of the right type. Having
passed this test we continue on to line 2b, in which cast cl ass is called. Unfortunately, cast cl ass
also tests the type of the object. In effect, the test is done twice. A more efficient solution is to use the
as operator.

8.2.3 The as Operator

The as operator combines the i s and cast operations by testing first to see whether a cast is valid
(i.e., whether an i s test would return t r ue) and then completing the cast when it is. If the cast is not
valid (i.e., if an i s test would return f al se) , the as operator returns nul | .

o The keyword nul | represents a null reference, one that does not
o refer to any object.
". o -
(17T

Using the as operator eliminates the need to handle cast exceptions. At the same time you avoid the
overhead of checking the cast twice. For these reasons, it is optimal to cast interfaces using as.

The form of the as operator is:
expression as type
The following code adapts the test code from Example 8-3, using the as operator and testing for null:

static void Main()
{

145

Docunent doc = new Docunent (" Test Docunent");
| Storabl e i sDoc = doc as | Storable;
if (isbDoc !'= null)
i sDoc. Read();
el se
Consol e. WiteLine("lStorable not supported");

| Conpressible icDoc = doc as | Conpressi bl e;
if (icbDoc !'= null)
i cDoc. Compress();
el se
Consol e. WiteLine("Conpressible not supported");

}

A quick look at the comparable MSIL code shows that the following version is in fact more efficient:

0023: isinst | Conpr essi bl e
0028: stloc.2
_0029: Idloc.2
_002a: brfalse.s [1L_0034
002c: Idloc.2
_002d: callvirt i nstance void | Conpressible::Compress()

8.2.4 The is Operator Versus the as Operator

If your design pattern is to test the object to see if it is of the type you need and if so you will
immediately cast it, the as operator is more efficient. At times, however, you might want to test the
type of an operator but not cast it immediately. Perhaps you want to test it but not cast it at all; you
simply want to add it to a list if it fulfills the right interface. In that case, the | s operator will be a better
choice.

8.2.5 Interface Versus Abstract Class

Interfaces are very similar to abstract classes. In fact, you could change the declaration of | St or abl e
to be an abstract class:

abstract class Storable

{
abstract public void Read();

abstract public void Wite();
}

Docunent could now inherit from St or abl e, and there would not be much difference from using the
interface.

Suppose, however, that you purchase a Li st class from a third-party vendor whose capabilities you
wish to combine with those specified by St or abl e? In C++ you could create a St or abl eLi st class
and inherit from both Li st and St or abl e. But in C# you're stuck; you can't inherit from both the

St or abl e abstract class and also the Li st class because C# does not allow multiple inheritance
with classes.

However, C# does allow you to implement any number of interfaces and derive from one base class.
Thus, by making St or abl e an interface, you can inherit from the Li st class and also from
| St orabl e, as St or abl eLi st does in the following example:

public class StorableList : List, |Storable

{

146

Programming C#

/1 List nmethods here ...

public void Read() {...}

public void Wite(object obj) {...}
/1

}

8.3 Overriding Interface Implementations

An implementing class is free to mark any or all of the methods that implement the interface as virtual.
Derived classes can over ri de or provide newimplementations. For example, a Docunent class
might implement the | St or abl e interface and mark the Read() and Wi te() methods as
virtual . The Docunent might Read() and Wite() itscontentstoaFi | e type. The developer
might later derive new types from Docunent , such as perhaps a Not e or Enai | Message type, and
he might decide that Not e will read and write to a database rather than to a file.

Example 8-4 strips down the complexity of Example 8-3 and illustrates overriding an interface
implementation. The Read() method is marked as vi r t ual and implemented by Docunent .
Read() isthen overridden in a Not e type that derives from Docunent .

Example 8-4. Overriding an interface implementation
usi ng System

interface | Storable
{
voi d Read();
void Wite();
}

/1 Sinmplify Docunment to inplenent only | Storable
public class Docunent : |Storable

{

/] the docunent constructor
publ i ¢ Docunent(string s)

{
Consol e. Wit eLi ne(

"Creating docunent with: {0}", s);

}

/1 Make read virtual
public virtual void Read()
{
Consol e. Wit eLi ne(
"Docunent Read Method for |Storable");

}

/1 NB: Not virtual!
public void Wite()

{
Consol e. Wit eLi ne(

"Docunent Wite Method for |Storable");

}

/'l Derive from Docunent
public class Note : Docunent

{
public Note(string s):

147

base(s)

Consol e. Wit eLi ne(
"Creating note with: {0}", s);
}

/1 override the Read nethod
public override void Read()

{
Consol e. Wit eLi ne(

"Overriding the Read nethod for

}

/1 implenment ny omn Wite nethod
public void Wite()

Note!"):

{
Consol e. Wit eLi ne(
“"I'npl emrenting the Wite nmethod for Note!");
}
public class Tester
{
static void Main()
{
/1 create a docunent object
Docunment theNote = new Note("Test Note");
| Storable isNote = theNote as | Storable;
if (isNote !'= null)
{
i sNote. Read();
isNote. Wite();
}
Consol e. WiteLine("\n");
/1 direct call to the nethods
t heNot e. Read();
theNote. Wite();
Consol e. WiteLine("\n");
/'l create a note object
Not e note2 = new Not e("Second Test");
| Storable i sNote2 = note2 as | Storable;
if (isNote !'= null)
{
i sNot e2. Read();
isNote2. Wite();
}
Consol e. WiteLine("\n");
/1l directly call the nethods
note2. Read();
note2. Wite();
}
}
Qut put

Creating docunment with: Test Note
Creating note with: Test Note

148

Programming C#
Overriding the Read nethod for Note!
Docunment Wite Method for |Storable

Overriding the Read net hod for Note!
Docurment Wite Method for |Storable

Creating docunment with: Second Test
Creating note with: Second Test

Overriding the Read nethod for Note!
Docunent Wite Method for |Storable

Overriding the Read nethod for Note!
| mpl emrenting the Wite nethod for Note!

In this example, Docunent implements a simplified | St or abl e interface (simplified to make the
example clearer):

interface | Storable

{
voi d Read();

void Wite();
The designer of Docunent has opted to make the Read() method virtual but not to make the
Wite() method virtual:
public virtual void Read()

In a real-world application, you would almost certainly mark both as vi rt ual , but I've differentiated
them to demonstrate that the developer is free to pick and choose which methods are made virtual.

The new class Not e derives from Docunent :

public class Note : Docunent

It is not necessary for Not e to override Read(), butitis free to do so and has done so here:
public override void Read()

In Test er, the Read and W i t e methods are called in four ways:

Through the base class reference to a derived object

Through an interface created from the base class reference to the derived object
Through a derived object

Through an interface created from the derived object

PwnNPE

To accomplish the first two calls, a Docunent (base class) reference is created, and the address of a
new Not e (derived) object created on the heap is assigned to the Docunent reference:

Docunent theNote = new Note("Test Note");

An interface reference is created and the as operator is used to cast the Docunent to the
| St or abl e reference:

| Storabl e i sNote = theNote as | Storabl e;

149

You then invoke the Read() and Wi te() methods through that interface. The output reveals that
the Read() method is responded to polymorphically and the W i t e() method is not, just as we
would expect:

Overriding the Read nethod for Note!
Docunent Wite Method for |Storable

The Read() and Wi te() methods are then called directly on the object itself:

theNote. Read();
theNote. Wite();

and once again you see the polymorphic implementation has worked:

Overriding the Read nethod for Note!
Document Wite Method for |Storable

In both cases, the Read() method of Not e was called, but the Wit e() method of Docunent was
called.

To prove to yourself that this is a result of the overriding method, you next create a second Not e
object, this time assigning its address to a reference to a Not e. This will be used to illustrate the final
cases (i.e., a call through a derived object and a call through an interface created from the derived
object):

Not e note2 = new Note("Second Test");

Once again, when you cast to a reference, the overridden Read() method is called. When, however,
methods are called directly on the Not e object:

not e2. Read();
note2. Wite();

the output reflects that you've called a Not e and not an overridden Docunent :

Overriding the Read nethod for Note!
I mpl ementing the Wite nethod for Note!

8.4 Explicit Interface Implementation

In the implementation shown so far, the implementing class (in this case, Docunent) creates a
member method with the same signature and return type as the method detailed in the interface. It is
not necessary to explicitly state that this is an implementation of an interface; this is understood by the
compiler implicitly.

What happens, however, if the class implements two interfaces, each of which has a method with the
same signature? Example 8-5 creates two interfaces: | St or abl e and | Tal k. The latter

implements a Read() method that reads a book aloud. Unfortunately, this conflicts with the Read()
method in | St or abl e.

Because both | St or abl e and | Tal k have a Read() method, the implementing Docunent class
must use explicit implementation for at least one of the methods. With explicit implementation, the
implementing class (Docunent) explicitly identifies the interface for the method:

void | Tal k. Read()

150

Programming C#

This resolves the conflict, but it does create a series of interesting side effects.

First, there is no need to use explicit implementation with the other method of Tal k:
public void Talk()

Because there is no conflict, this can be declared as usual.

More importantly, the explicit implementation method cannot have an access modifier:
void | Tal k. Read()

This method is implicitly public.

In fact, a method declared through explicit implementation cannot be declared with the abst r act
virtual,overri de, or newmodifiers.

Most important, you cannot access the explicitly implemented method through the object itself. When
you write:

t heDoc. Read();

the compiler assumes you mean the implicitly implemented interface for | St or abl e. The only way to
access an explicitly implemented interface is through a cast to an interface:

| Talk itDoc = theDoc as | Tal k;
if (itbhoc !'= null)
{

}

i tDoc. Read();

Explicit implementation is demonstrated in Example 8-5.

Example 8-5. Explicit implementation
usi ng System

interface | Storable

{
void Read();
void Wite();
}
interface I Talk
{
void Tal k();
void Read();
}
/1 Sinmplify Docunent to inplenment only I Storable
public class Docunent : | Storable, |Talk
{

// the docunent constructor
publ i c Docunment (string s)

{
Consol e. WiteLine("Creating docunment with: {0}", s);

151

/1 Make read virtual
public virtual void Read()

{
}

Consol e. WiteLine("Inplenmenting |Storable. Read");

public void Wite()

{

}

Consol e. WitelLine("Inplenmenting | Storable. Wite");

void | Tal k. Read()

Consol e. WiteLine("lnplementing | Tal k. Read");

public void Talk()

Consol e. WiteLine("lnmplementing | Tal k. Tal k");

public class Tester

}
{
}
}
{
{
}
}
Qut put :

static void Main()

/1 create a docunent object

Docunent theDoc = new Docunent (" Test Document");
| Storabl e i sDoc = theDoc as | Storable;

if (isboc !'= null)

{

}
| Talk itDoc = theDoc as | Tal k

if (itboc !'= null)
{

}

t heDoc. Read();
t heDoc. Tal k() ;

i sDoc. Read();

itDoc. Read();

Creating docunment with: Test Docunent
| npl enenting | Storabl e. Read
I npl enenting | Tal k. Read

| mpl ementi ng | St orabl e. Read
| npl enenting | Tal k. Tal k

152

Programming C#

8.4.1 Selectively Exposing Interface Methods

A class designer can take advantage of the fact that when an interface is implemented through explicit
implementation the interface is not visible to clients of the implementing class except through casting.

Suppose the semantics of your Docunent object dictate that it implement the | St or abl e interface,
but you do not want the Read() and Wite() methods to be part of the public interface of your
Docurent . You can use explicit implementation to ensure that they are not available except through
casting. This allows you to preserve the semantics of your Docunent class while still having it
implement | St or abl e. If your client wants an object that implements the | St or abl e interface, it can
make an explicit cast, but when using your document as a Document the semantics will not include
Read() andWite().

In fact, you can select which methods to make visible through explicit implementation so that you can
expose some implementing methods as part of Docunent but not others. In Example 8-5, the
Docunent object exposes the Tal k() method as a method of Docunent , but the Tal k. Read()
method can be obtained only through a cast. Even if | St or abl e did not have a Read method, you
might choose to make Read() explicitly implemented so that you do not expose Read() asa
method of Docunent .

Note that because explicit interface implementation prevents the use of the vi r t ual keyword, a
derived class would be forced to reimplement the method. Thus, if Not e derived from Docunent , it
would be forced to reimplement Tal k. Read() because the Docunent implementation of

Tal k. Read() could not be virtual.

8.4.2 Member Hiding

It is possible for an interface member to become hidden. For example, suppose you have an interface
| Base which has a property P:

interface | Base

{
}

int P { get; set; }
and you derive from that interface a new interface, | Der i ved, which hides the property P with a new
method P() :

interface |IDerived : |Base

{
}

new int P();

Setting aside whether this is a good idea, you have now hidden the property P in the base interface.
An implementation of this derived interface will require at least one explicit interface member. You can
use explicit implementation for either the base property or the derived method, or you can use explicit
implementation for both. Thus, any of the following three versions would be legal:

class nyClass : I|Derived

{
/1l explicit inplenmentation for the base property
int |Base.P { get {...} }
[l inmplicit inplenmentation of the derived nethod
public int P() {...}

}

153

class nyClass : I|Derived

{
/1 inmplicit inplementation for the base property
public int P{ get {...} }
/1l explicit inplenmentation of the derived nethod
int IDerived.P() {...}

}

class nyClass : |Derived

{
/1l explicit inplementation for the base property
int 1Base.P { get {...} }
/1l explicit inplenmentation of the derived nethod
int IDerived.P() {...}

}

8.4.3 Accessing Sealed Classes and Value Types

Generally, it is preferable to access the methods of an interface through an interface cast. The
exception is with value types (e.qg., structs) or with sealed classes. In that case, it is preferable to
invoke the interface method through the object.

When you implement an interface in a struct, you are implementing it in a value type. When you cast
to an interface reference, there is an implicit boxing of the object. Unfortunately, when you use that
interface to modify the object, it is the boxed object, not the original value object, that is modified.
Further, if you change the value type, the boxed type will remain unchanged. Example 8-6 creates a
struct that implements | St or abl e and illustrates the impact of implicit boxing when you cast the
struct to an interface reference.

Example 8-6. References on value types
usi ng System

/'l declare a sinple interface
interface | Storable

void Read();
int Status { get;set;}

}
/1 1nplement through a struct
public struct nyStruct : |Storable
{
public void Read()
{
Consol e. Wit eLi ne(
"I mpl ementing | Storabl e. Read");
}
public int Status
{
get
{

return status;

}

154

Programming C#

set
{
status = val ue;
}
}
private int status;
}
public class Tester
{
static void Main()
{
/1 create a myStruct object
nyStruct theStruct = new nyStruct();
theStruct.Status = -1; // initialize
Consol e. Wit eLi ne(
"theStruct. Status: {0}", theStruct. Status);
/1 Change the val ue
theStruct. Status = 2;
Consol e. WiteLi ne("Changed object.");
Consol e. Wit eLi ne(
“"theStruct. Status: {0}", theStruct. Status);
/1 cast to an | Storable
/1 inplicit box to a reference type
| Storable isTenp = (I Storable) theStruct;
/1 set the value through the interface reference
i sTenp. Status = 4;
Consol e. WiteLine("Changed interface.");
Console. WiteLine("theStruct. Status: {0}, isTemp: {1}",
theStruct. Status, isTenp.Status);
/1 Change the val ue again
theStruct. Status = 6;
Consol e. WiteLi ne("Changed object.");
Consol e. WiteLine("theStruct. Status: {0}, isTenp: {1}",
theStruct. Status, isTenp. Status);
}
}
Cut put :

theStruct. Status: -1

Changed obj ect.

theStruct. Status: 2

Changed i nterface.

theStruct. Status: 2, isTenp: 4
Changed obj ect.

theStruct. Status: 6, isTenp: 4

In Example 8-6, the | St or abl e interface has a method (Read) and a property (St at us).
This interface is implemented by the struct named nmy St r uct :

public struct nyStruct : |Storable

155

The interesting code is in Test er . You start by creating an instance of the structure and initializing its
property to - 1. The status value is then printed:

myStruct theStruct = new nmyStruct();
theStruct.status = -1; // initialize
Consol e. Wit eLi ne(

"theStruct. Status: {0}", theStruct.status);

The output from this shows that the status was set properly:

theStruct. Status: -1

Next you access the property to change the status, again through the value object itself:

/1 Change the val ue
theStruct.status = 2;
Consol e. Wit eLi ne("Changed object.");
Consol e. Wit eLi ne(
"theStruct. Status: {0}", theStruct.status);

The output shows the change:

Changed obj ect.
theStruct. Status: 2

No surprises so far. At this point, you create a reference to the | St or abl e interface. This causes an
implicit boxing of the value object t heSt r uct . You then use that interface to change the status value
to 4:

/] cast to an | Storable
/1 inplicit box to a reference type
| Storable isTenp = (I Storable) theStruct;

/'l set the value through the interface reference

i sTenp. status = 4;

Consol e. WiteLine("Changed interface.");

Console. WiteLine("theStruct. Status: {0}, isTemp: {1}",
theStruct.status, isTenp.status);

Here the output can be a bit surprising:

Changed interface.
theStruct. Status: 2, isTenp: 4

Aha! The object to which the interface reference points has been changed to a status value of 4, but
the struct value object is unchanged. Even more interesting, when you access the method through the
object itself:

/' Change the val ue again

theStruct.status = 6;

Consol e. WiteLi ne("Changed object.");

Console. WiteLine("theStruct. Status: {0}, isTemp: {1}",
theStruct.status, isTenp.status);

the output reveals that the value object has been changed but not the boxed reference value for the
interface reference:

156

Programming C#

Changed obj ect.
theStruct. Status: 6, isTenp: 4

A quick look at the MSIL code (Example 8-7) reveals what is going on under the hood:

Example 8-7. MSIL code resulting from Example 8-6
net hod private hidebysig static void Main() il nmanaged

{

.entrypoi nt

/1 Code size

206 (Oxce)

.maxstack 4
.locals ([0] value class nyStruct theStruct,
[1] class |IStorable isTenp,

[2]

_0000:
_0002:
_0008:
_000a:
_000b:
~0010:
_0015:
_0017:
I L_001c:
I L_001d:
I L_001f:
I L_0024:

rrrrrrrrr

int32 V_2)
I dloca.s theStruct
i ni tobj nyStruct
I dloca.s theStruct
[dc.i4. nl
cal | i nstance void nmyStruct::set_status(int32)
[dstr “theStruct. Status: {0}"
I dloca.s theStruct
call instance int32 nyStruct::get_status()
stloc.2
Idloca.s V. 2
box [mscorlib] System | nt 32
call voi d [nscorlib] System Consol e: : WitelLine

(class System String,
cl ass System hj ect)

IL_0029: Idloca.s theStruct

IL_002b: Idc.i4.2

IL_002c: call i nstance void nmyStruct::set_status(int32)

IL_0031: Idstr "Changed object."

IL_0036: call voi d [nscorlib] System Consol e:: WiteLine
(class System String)

IL_003b: Idstr “theStruct. Status: {0}"

IL_0040: Idloca.s theStruct

IL_0042: call instance int32 nyStruct::get_status()

IL_0047: stloc.2

IL_0048: Idloca.s V. 2

I L_004a: box [mscorlib] System | nt 32

IL_004f: call void [nscorlib] System Consol e: : Wi teLine

(class System String,
cl ass System hj ect)

IL_0054: |Idloca.s theStruct

I L_0056: box nyStruct

IL_005b: stloc.1

IL_005c: Idloc.1

IL_005d: Idc.i4.4

IL_005e: <callvirt instance void |IStorable::set_status(int32)

IL_0063: Idstr "Changed interface."

IL_0068: call voi d [nscorlib] System Consol e: : WitelLine
(class System String)

IL_006d: Idstr "theStruct. Status: {0}, isTenp: {1}"

IL_0072: Idloca.s theStruct

IL_0074: call instance int32 nyStruct::get_status()

IL_0079: stloc.2

IL_007a: Idloca.s V.2

IL_007c: box [mecorlib] System | nt 32

IL_0081: Idloc.1

IL_0082: callvirt instance int32 |IStorable::get _status()

157

IL_0087: stloc.2

IL_ 0088: Idloca.s V.2

I L_008a: box [mecorlib] System | nt 32

IL_008f: call voi d [nscorlib] System Consol e: : WiteLine

(class System String,
cl ass System bj ect,
cl ass System bj ect)

IL_0094: |Idloca.s theStruct

IL_0096: 1dc.i4.6

IL_0097: call i nstance void nmyStruct::set_status(int32)

[L_009c: Idstr "Changed object."

IL_00al: call voi d [nscorlib] System Consol e: : WitelLine
(class System String)

IL_00a6: Ildstr "theStruct. Status: {0}, isTenp: {1}"

IL_00ab: Idloca.s theStruct

IL_00ad: call instance int32 nyStruct::get_status()

IL_00b2: stloc.2

IL_00b3: Idloca.s V.2

I L_00b5: box [mecorlib] System | nt 32

IL_OOba: Idloc.1

IL_00bb: <callvirt instance int32 |IStorable::get _status()

IL_00c0O: stloc.2

IL_00cl: Idloca.s V.2

IL_00c3: box [mecorlib] System | nt 32

IL_00c8: call voi d [nscorlib] System Consol e: : WitelLine

(class System String,
cl ass System bj ect,
cl ass System hj ect)
IL_00cd: ret
} // end of nmethod Tester::Min

Online | L: 000b, the set status was called on the value object. We see the second call on line
| L_0017. Notice that the callsto Wi t eLi ne() cause boxing of the integer value status so that the
Cet String() method can be called.

The key lineis | L0056 (highlighted) where the struct itself is boxed. It is that boxing that creates a
reference type for the interface reference. Notice on line | L_005e that this time
| St orabl e:: set status is called rather than nySt ruct : : set St at us

The design guideline is this: if you are implementing an interface with a value type, be sure to access
the interface members through the object rather than through an interface reference.

158

Programming C#

Chapter 9. Arrays, Indexers, and Collections

The .NET Framework provides a rich suite of collection classes, including Ar ray, ArraylLi st
NarmeVal ueCol | ection, StringCol | ection, Queue, St ack, and Bi t Arr ay.

The simplest collection is the Ar r ay, the only collection type for which C# provides built-in support. In
this chapter you will learn to work with single, multidimensional, and jagged arrays. You will also be
introduced to indexers, a bit of C# syntactic sugar that makes it easier to access class properties, as
though the class were indexed like an array.

The .NET Framework provides a number of interfaces, such as | Enuner abl e and | Col | ecti on,
whose implementation provides you with standard ways to interact with collections. In this chapter you
will see how to work with the most essential of these. The chapter concludes with a tour of commonly
used .NET collections, including ArrayLi st, Di cti onary, Hasht abl e, Queue, and St ack.

9.1 Arrays

An array is an indexed collection of objects, all of the same type. C# arrays are somewhat different
from arrays in C++ and other languages—because they are objects. This provides them with useful
methods and properties.

C# provides native syntax for the declaration of Ar r ay objects. What is actually created, however, is
an object of type Syst em Arr ay. Arrays in C# thus provide you with the best of both worlds: easy-to-
use C-style syntax underpinned with an actual class definition so that instances of an array have
access to the methods and properties of Syst em Arr ay. These appear in Table 9-1.

Table 9-1. System.Array methods and properties

Method or Property Description
Bi narySearch() |Public static method that searches a one-dimensional sorted array.
Clear() Public static method that sets a range of elements in the array to zero or to a
null reference.
Overloaded public static method that copies a section of one array to another
Copy() arra
y.
Createlnstance() |Overloaded public static method that instantiates a new instance of an array.
| ndexOf () Overloaded public static method that returns the index (offset) of the first
instance of a value in a one-dimensional array.
Last | ndexCf () Overloaded public static method that returns the index of the last instance of

a value in a one-dimensional array.

Overloaded public static method that reverses the order of the elements in a
one-dimensional array.

Reverse()

Sort() Overloaded public static method that sorts the values in a one-dimensional
array.

| sFi xedSi ze SPil;ghC property that returns a value indicating whether the array has a fixed

| sReadOnl y r;l;t()jll_%rﬁ)l;operty that returns a Boolean value indicating whether the array is

Public property that returns a Boolean value indicating whether the array is

I'sSynchroni zed thread-safe.

Length Public property that returns the length of the array.
Rank Public property that returns the number of dimensions of the array.
SyncRoot Public property that returns an object that can be used to synchronize

159

access to the array.
Cet Enunerator () |Public method that returns an | enuner at or .
Get Length() Public method that returns the length of the specified dimension in the array.
Get Lower Bound() Public method that returns the lower boundary of the specified dimension of
the array.
Public method that returns the upper boundary of the specified dimension of
Cet Upper Bound() the array PP y P
S Initializes all values in a value type array by calling the default constructor for
Initialize() each value
Set Val ue() Overloaded public method that sets the specified array elements to a value.

9.1.1 Declaring Arrays

You declare a C# array with the following syntax:
type[] array-nane;

For example:

int[] nmylntArray;

The square brackets ([|) tell the C# compiler that you are declaring an array, and the type specifies
the type of the elements it will contain. In the example above, ny| nt Arr ay is an array of integers.

You instantiate an array using the new keyword. For example:
mylntArray = new int[5];

This declaration sets aside memory for an array holding five integers.

Visual Basic programmers take note: the first element is always O;
s | there is no way to set the upper or lower bounds; and you cannot
43 change the size (r edi n) of the array.

It is important to distinguish between the array itself (which is a collection of elements) and the
elements of the array. ny| nt Arr ay is the array; its elements are the five integers it holds. C# arrays
are reference types, created on the heap. Thus, ny| nt Arr ay is allocated on the heap. The elements
of an array are allocated based on their type. Integers are value types, and so the elements in

my | nt Arr ay will be value types, not boxed integers. An array of reference types will contain nothing
but references to the elements, which are themselves created on the heap.

9.1.2 Understanding Default Values

When you create an array of value types each element initially contains the default value for the type
stored in the array (see Table 4-2, "Primitive types and their default values"). The declaration:

mylntArray = new int[5];

creates an array of five integers, each of whose value is set to 0, the default value for integer types.

160

Programming C#

Unlike with arrays of value types, the reference types in an array are not initialized to their default
value. Instead, they are initialized to null. If you attempt to access an element in an array of reference
types before you have specifically initialized them, you will generate an exception.

Assume you have created a But t on class. You declare an array of But t on objects with the following
statement:

Button[] mnyButtonArray;
and you instantiate the actual array like this:

myButt onArray = new Button[3];

You can shorten this to:

':37.' Button nyButtonArray = new Button[3];

Unlike with the earlier integer example, this statement does not create an array with references to
three But t on objects. Instead, this creates the array nyBut t onAr r ay with three null references. To
use this array, you must first construct and assign the But t on objects for each reference in the array.
You can construct the objects in a loop that adds them one by one to the array.

9.1.3 Accessing Array Elements

You access the elements of an array using the index operator ([|). Arrays are zero-based, which
means that the index of the first element is always zero—in this case, nyArr ay[0] .

As explained previously, arrays are objects, and thus have properties. One of the more useful of these
is Lengt h, which tells you how many objects are in an array. Array objects can be indexed from 0 to
[engt h- 1. That is, if there are five elements in an array, their indices are 0,1,2,3,4.

Example 9-1 illustrates the array concepts covered so far. In this example a class named Test er
creates an array of Enpl oyees and an array of integers, populates the Enpl oyee array and then
prints the values of both.

Example 9-1. Working with an array
namespace Programm ng_CShar p

{
usi ng System

/'l a sinple class to store in the array
public class Enpl oyee

{ /1l a sinple class to store in the array
publ i ¢ Enpl oyee(int enpl D)
{ this.enpl D = enpl D,
|}oublic override string ToString()
{ return enmpl D. ToString();
|}orivate i nt enpl D
} private int size;

161

public class Tester

{
static void Main()
{
int[] intArray;
Enpl oyee[] enpArray;
intArray = new int[5];
enpArray = new Enpl oyee[3];
/'l popul ate the array
for (int i = 0;i<enpArray.Length;i++)
{
enpArray[i] = new Enpl oyee(i +5);
}
for (int i = 0;i<intArray.Length;i++)
{
Console. WiteLine(intArray[i].ToString());
}
for (int i = 0;i<enpArray.Length;i++)
{
Consol e. WiteLine(enmpArray[i].ToString());
}
}
}
}
Qut put
0
0
0
0
0
5
6
7

The example starts with the definition of an Enpl oyee class that implements a constructor that takes
a single integer parameter. The ToSt ri ng() method inherited from Obj ect is overridden to print
the value of the Enpl oyee object's employee ID.

The test method declares and then instantiates a pair of arrays. The integer array is automatically filled
with integers whose value is set to zero. The Enpl oyee array contents must be constructed by hand.

Finally, the contents of the arrays are printed to ensure that they are filled as intended. The five
integers print their value first, followed by the three Enpl oyee objects.

9.2 The foreach Statement

The f or each looping statement is new to the C family of languages, though it is well known to VB
programmers. The f or each statement allows you to iterate through all the items in an array or other
collection, examining each item in turn. The syntax for the f or each statement is:

foreach (type identifier in expression) statenent

162

Programming C#

Thus, you might update Example 9-1 to replace the f or statements that iterate over the contents of

the array with f or each statements, as shown in Example 9-2.

Example 9-2. Using foreach
nanespace Programm ng_CShar p

{
usi ng System
/1 a sinple class to store in the array
public class Enpl oyee
{
/1 a sinple class to store in the array
publ i ¢ Enpl oyee(int enpl D)
{
this.enpl D = enpl D,
}
public override string ToString()
{
return enpl D. ToString();
}
private int enplD
private int size;
public class Tester
{
static void Min()
{
int[] intArray;
Enpl oyee[] enpArray;
intArray = new int[5];
enpArray = new Enpl oyee[3];
/'l popul ate the array
for (int i = 0;i<enpArray.Length;i++)
{
enpArray[i] = new Enpl oyee(i +10);
}
foreach (int i in intArray)
{
Console. WiteLine(i.ToString());
}
foreach (Enpl oyee e in enpArray)
Console. WiteLine(e. ToString());
}
}
}
}

The output for Example 9-2 is identical to Example 9-1. However, rather than creating a f or

statement that measures the size of the array and uses a temporary counting variable as an index into

the array:

for (int i = 0; i < enpArray.Length; i++)
{

163

Consol e. WiteLine(enpArray[i].ToString());
}

We now iterate over the array with the f or each loop which automatically extracts the next item from
within the array and assigns it to the temporary object you've created in the head of the statement.

foreach (Enpl oyee e in enpArray)
{

}

Consol e. WiteLine(e. ToString());

The object extracted from the array is of the appropriate type; thus, you may call any public method on
that object.

9.2.1 Initializing Array Elements

It is possible to initialize the contents of an array at the time it is instantiated by providing a list of
values delimited by curly brackets ({ }). C# provides a longer and a shorter syntax:

int]

] nyintArray = newint[5] { 2, 4, 6, 8, 10 }
int[] mylntArray =

{ 2, 4, 6, 8 10}

There is no practical difference between these two statements, and most programmers will use the
shorter syntax because we are, by nature, lazy. We are so lazy, we'll work all day to save a few
minutes doing a task—which isn't so crazy if we're going to do that task hundreds of times!

9.2.2 The params Keyword

You can create a method that displays any number of integers to the console by passing in an array of
integers and then iterating over the array with a f or each loop. The par ans keyword allows you to
pass in a variable number of parameters without necessarily explicitly creating the array.

In the next example, you create a method, Di spl ayVal s(), which takes a variable number of
integer arguments:

public void DisplayVal s(paranms int[] intVals)

The method itself can treat the array as if an integer array were explicitly created and passed in as a
parameter. You are free to iterate over the array as you would over any other array of integers:

foreach (int i in intVals)

{
}

Consol e. WiteLine("D splayvals {0}",i);
The calling method, however, need not explicitly create an array; it can simply pass in integers, and
the compiler will assemble the parameters into an array for the Di spl ayVal s() method:
t.Di splayVval s(5,6,7,8);
You are free to pass in an array if you prefer:

int [] explicitArray = new int[5] {1, 2,3,4,5};
t.DisplayVal s(explicitArray);

164

Programming C#

Example 9-3 provides the complete source code illustrating the par ans keyword.

Example 9-3. Using the params keyword
nanespace Program ng_CShar p

{
usi ng System
public class Tester
{
static void Main()
{
Tester t = new Tester();
t.Di splayVval s(5,6,7,8);
int [] explicitArray = new int[5] {1, 2,3,4,5};
t.Di splayVal s(explicitArray);
}
public void DisplayVal s(paranms int[] intVals)
{
foreach (int i in intVals)
{
Consol e. WiteLine("Displayvals {0}",i);
}
}
}
}
Qut put
Di splayVvals 5
Di spl ayVals 6
Di splayvals 7
Di splayVval s 8
Di splayVals 1
Di splayVval s 2
Di splayVvals 3
Di spl ayVal s 4
Di splayVvals 5

9.2.3 Multidimensional Arrays

Arrays can be thought of as long rows of slots into which values can be placed. Once you have a
picture of a row of slots, imagine 10 rows, one on top of another. This is the classic two-dimensional
array of rows and columns. The rows run across the array and the columns run up and down the array.

A third dimension is possible, but somewhat harder to imagine. Make your arrays three-dimensional,
with new rows stacked atop the old two-dimensional array. OK, now imagine four dimensions. Now
imagine 10.

Those of you who are not string-theory physicists have probably given up, as have I. Multidimensional
arrays are useful, however, even if you can't quite picture what they would look like.

C# supports two types of multidimensional arrays: rectangular and jagged. In a rectangular array,
every row is the same length. A jagged array, however, is an array of arrays, each of which can be a
different length.

9.2.3.1 Rectangular arrays

A rectangular array is an array of two (or more) dimensions. In the classic two-dimensional array, the
first dimension is the number of rows and the second dimension is the number of columns.

165

To declare a two-dimensional array, you use the following syntax:
type [,] array-nane

For example, to declare a two-dimensional rectangular array named nyRect angul ar Arr ay that
contains two rows and three columns of integers, you would write:

int [,] myRectangul arArray;

Example 9-4 declares, instantiates, initializes, and prints the contents of a two-dimensional array. In
this example, a f or loop is used to initialize the elements of the array.

Example 9-4. Rectangular arrays
nanespace Programr ng_CShar p

{
usi ng System
public class Tester
{
static void Main()
{
const int rows = 4;
const int colums = 3;
/1 declare a 4x3 integer array
int[,] rectangularArray = new int[rows, columms];
/1 popul ate the array
for (int i = 0;i < rows;i++)
{
for (int j = 0;j<colums;j++)
{
rectangul arArray[i,j] = i+4j;
}
}
/'l report the contents of the array
for (int i = 0;i < rows;i++)
{
for (int j = 0;j<colums;j ++)
{
Consol e. WiteLine("rectangul arArray[{0}, {1}] = {2}",
i,j,rectangularArrayl[i,j]);
}
}
}
}
}
Qut put :

rectangul ar Array|[0, 0]
rectangul arArray[0, 1]
rectangul ar Array| 0, 2]
rectangul ar Array[1, 0]
rectangul arArray[1, 1]
rectangul arArray[1, 2]
rectangul ar Array| 2, 0]
rectangul arArray| 2, 1]

WNWNEFEDNEFEO

166

Programming C#

rectangul ar Array| 2, 2]
rectangul ar Array| 3, 0]
rectangul arArray| 3, 1]
rectangul ar Array| 3, 2]

ab~hwhs

In this example, you declare a pair of constant values:

const int rows = 4;
const int colums = 3;

which are then used to dimension the array:

int[,] rectangularArray = new int[rows, columms];

Notice the syntax. The brackets inthe i nt [, | declaration indicate that the type is an array of integers,
and the comma indicates the array has two dimensions (two commas would indicate three dimensions,
and so on). The actual instantiation of r ect angul ar Array withnew i nt[rows, col ums] sets
the size of each dimension. Here the declaration and instantiation have been combined.

The program fills the rectangle with a pair of f or loops, iterating through each column in each row.
Thus, the first element filled is r ect angul ar Array|[0, 0] , followed by r ect angul ar Array[0, 1],
rectangul ar Array[O, 2] . Once this is done, the program moves on to the next row:

rectangul arArray[1, 0] rectangul arArray[1, 1] rectangul arArray[1, 2] . And so forth,
until all the columns in all the rows are filled.

Just as you can initialize a one-dimensional array using bracketed lists of values, you can initialize a
two-dimensional array using similar syntax. Example 9-5 declares a two-dimensional array,
rectangul ar Array, initializes its elements using bracketed lists of values, and then prints out the
contents.

Example 9-5. Initializing a multidimensional array
namespace Programm ng_CShar p

{
usi ng System

public class Tester

{
static void Main()
{
const int rows = 4,
const int colums = 3;
/'l inply a 4x3 array
int[,] rectangularArray =
{
{0,1,2}, {3,4,5}, {6,7,8}, {9, 10,11}
1
for (int i = 0;i < rows;i++)
{
for (int j = 0;j<colums;j++)
{
Consol e. WiteLine("rectangularArray[{0},{1}] = {2}",
i,j,rectangularArrayl[i,j]);
}
}
}
}

167

}
Qut put :

rect angul ar Arrayr ect angul ar Array|[0, 0]
rectangul ar Arrayrect angul ar Array|[0, 1]
rectangul ar Arrayr ect angul ar Array|[0, 2]
rect angul ar Arrayrect angul ar Array[1, 0]
rectangul arArrayrect angul arArray[1, 1]
rectangul ar Arrayrectangul ar Array|[1, 2]
rect angul ar Arrayr ect angul ar Array| 2, 0]
rectangul ar Arrayrect angul ar Array| 2, 1]
rect angul ar Arrayrect angul ar Array|[2, 2]
rect angul ar Arrayrect angul ar Array[3, 0]
rectangul ar Arrayrect angul ar Array| 3, 1]
rectangul ar Arrayr ect angul ar Array| 3, 2]

PPRPOO~NOOUORWNEO

[l]

The preceding example is very similar to Example 9-4, but this time you imply the exact dimensions
of the array by how you initialize it:

int[,] rectangul arArrayrectangul arArray =

{
b

{0,1,2}, {3,4,5}, {6,7,8}, {910, 11}

Assigning values in four bracketed lists, each consisting of three elements, implies a 4x3 array.
Had you written this as:

int[,] rectangul arArrayrectangul arArray =

{0,1,2,3}, {4,5,6,7}, {8,910, 11}
b

you would instead have implied a 3x4 array.

You can see that the C# compiler understands the implications of your clustering, as it is able to
access the objects with the appropriate offsets, as illustrated in the output.

You might guess that this is a 12-element array, and that you can just as easily access an element at
rectangul arArray[0, 3] asatrectangul ar Array[1, 0], but if you try you will run right into an
exception:

Exception occurred: System | ndexQut Of RangeExcepti on:

An exception of type System | ndexQut Of RangeExcepti on was thrown.
at Progranmm ng_CSharp. Tester.Main() in

cshar p\ progranm ng csharp\listing0703.cs:line 23

C# arrays are smart and they keep track of their bounds. When you imply a 4x3 array, you must treat it
as such.

9.2.3.2 Jagged arrays

A jagged array is an array of arrays. It is called "jagged" because each of the rows need not be the
same size as all the others, and thus a graphical representation of the array would not be square.

168

Programming C#

When you create a jagged array you declare the number of rows in your array. Each row will hold an
array, which can be of any length. These arrays must each be declared. You can then fill in the values
for the elements in these "inner" arrays.

In a jagged array, each dimension is a one-dimensional array. To declare a jagged array you use the
following syntax, where the number of brackets indicates the number of dimensions of the array:

type [T []...

For example, you would declare a two-dimensional jagged array of integers named nyJaggedAr r ay
as follows:

int [] [] myJaggedArray;
You access the fifth element of the third array by writing myJaggedAr ray[2] [4] .

Example 9-6 creates a jagged array named nyJaggedAr r ay, initializes its elements, and then
prints their content. To save space, the program takes advantage of the fact that integer array
elements are automatically initialized to zero, and it initializes the values of only some of the elements.

Example 9-6. Working with a jagged array

nanespace Program ng_CShar p

{
usi ng System

public class Tester

{
static void Main()

{

const int rows = 4;

/1l declare the jagged array as 4 rows high
int[][] jaggedArray = new int[rows][];

/] the first row has 5 el ements
jaggedArray[0] = new int[5];

/1 arowwth 2 elenents
jaggedArray[1] = new int[2];

/Il arowwth 3 elenents
jaggedArray[2] = new int[3];

/] the |last row has 5 el ements
jaggedArray[3] = new int[5];

/1 Fill some (but not all) elenments of the rows
jaggedArray[0][3] = 15;
jaggedArray[1][1] = 12;
jaggedArray[2][1] = 9;
jaggedArray[2][2] = 99;
jaggedArray[3][0] = 10;
jaggedArray[3][1] = 11;
jaggedArray[3][2] = 12;
jaggedArray[3][3] = 13;
jaggedArray[3][4] = 14;
for (int i = 0;i < 5; |i++)

169

Consol e. WitelLine("jaggedArray[O0][{0}] = {1}",
i,jaggedArray[O][i]);
}
for (int i =0;i < 2; i++)
{
Consol e. WiteLine("jaggedArray[1][{0}] = {1}",
i, jaggedArray[1][i]);
}
for (int i =0;i < 3; i++)
{
Consol e. WiteLine("jaggedArray[2][{0}] = {1}",
i, jaggedArray[2][i]);
for (int i =0;i <5; i++)
Consol e. WiteLine("jaggedArray[3][{0}] = {1}",
i,jaggedArray[3][i]);
}
}
}
}
Qut put :
jaggedArray[0][0] = O
jaggedArray[0][1] = O
jaggedArray[0][2] = O
jaggedArray[0][3] = 15
jaggedArray[0][4] =0
jaggedArray[1][0] = O
jaggedArray[1][1] = 12
jaggedArray[2][0] =0
jaggedArray[2][1] =9
jaggedArray[2][2] = 99
jaggedArray[3][0] = 10
jaggedArray[3][1] = 11
jaggedArray[3][2] = 12
jaggedArray[3][3] = 13
jaggedArray[3][4] = 14

In this example, a jagged array is created with four rows:
int[][] jaggedArray = new int[rows][];

Notice that the second dimension is not specified. This is set by creating a new array for each row.
Each of these arrays can have a different size:

/] the first row has 5 el ements
jaggedArray[0] = new int[5];

/1 arowwth 2 elenents
jaggedArray[1] = new int[2];

/1l arowwth 3 elenents
jaggedArray[2] = new int[3];

/1 the last row has 5 el ements

170

Programming C#

jaggedArray[3] = new int[5];

Once an array is specified for each row, you need only populate the various members of each array
and then print out their contents to ensure that all went as expected.

Notice that when you accessed the members of the rectangular array, you put the indexes all within
one set of square brackets:

rectangul arArrayrectangul arArray[i,]]
while with a jagged array you need a pair of brackets:
jaggedArray[3][i]

You can keep this straight by thinking of the first as a single array of more than one dimension and the
jagged array as an array of arrays.

9.2.4 Array Conversions

Conversion is possible between arrays if their dimensions are equal and if a conversion is possible
between the element types. An implicit conversion can occur if the elements can implicitly be
converted, and an explicit conversion is possible; the elements can be explicitly converted.

If an array contains references to reference objects, a conversion is possible to an array of base
elements. Example 9-7 illustrates the conversion of an array of user-defined But t on types to an
array of objects.

Example 9-7. Converting arrays
namespace Programm ng_CShar p

{
usi ng System

/'l create an object we can
/'l store in the array
public class Enpl oyee

{ /'l a sinple class to store in the array
publ i ¢ Enpl oyee(int enpl D)
: this.empl D = enpl D,
|}oublic override string ToString()
: return enmpl D. ToString();
|}orivate i nt enpl D
private int size;
}
?ublic cl ass Tester

/1 this nmethod takes an array of objects

/1 we'll pass in an array of Enpl oyees

/1 and then an array of strings

/'l the conversion is inplicit since both Enpl oyee
/1 and string derive (ultimately) from object

171

public static void PrintArray(object[] theArray)

{
Consol e. WiteLine("Contents of the Array {0}",
theArray. ToString());
/1 wal k through the array and print
/1 the val ues.
foreach (object obj in theArray)
{
Consol e. WitelLine("Value: {0}", obj);
}
}
static void Main()
{
/1 make an array of Enployee objects
Enpl oyee[] nyEnpl oyeeArray = new Enpl oyee[3];
/1 initialize each Enpl oyee's vaue
for (int i = 0;i < 3;i++)
{
nyEnpl oyeeArray[i] = new Enpl oyee(i +5);
}
/1 display the val ues
Print Array(nyEnpl oyeeArray);
/1l create an array of two strings
string[] array =
“hell 0", "world"
1
/1 print the value of the strings
PrintArray(array);
}
}
}
Qut put :
Contents of the Array Progranm ng_CSharp. Enpl oyee[]
Val ue: 5
Val ue: 6
Val ue: 7

Contents of the Array System String[]
Val ue: hello
Val ue: world

Example 9-7 begins by creating a simple Enpl oyee class, as seen earlier in the chapter. The
Test er class now contains a new static method Pri nt MyArray(), which takes as a parameter a
one-dimensional array of hj ect s:

public static void PrintMWArray(object[] theArray)

Ohj ect is the implicit base class of every object in the .NET Framework,. and so is the implicit base
class of both St ri ng and Enpl oyee.

The Print MyArray() method takes two actions. First, it calls the ToSt ri ng() method on the
array itself:

172

Programming C#

Consol e. WiteLine("Contents of the Array {0}",
theArray. ToString());

System Array overrides the Pri nt MyArray() method to your advantage, printing an identifying
name of the array:

Contents of the Array Progranm ng_CSharp. Enpl oyee []
Contents of the Array System String[]

Print MyArray() thengoesontocall ToString() oneach elementin the array it receives as a
parameter. Because ToSt ri ng() is a virtual method in the base class Chj ect , it is guaranteed to
be available in every derived class. You have overridden this method appropriately in Enpl oyee and
so this works properly. Calling ToSt ri ng() ona St ri ng object might not be necessary, but it is
harmless and it allows you to treat these objects polymorphically.

9.2.5 System.Array

The Ar r ay class has a number of useful methods which extend the capabilities of arrays and make
them smarter than arrays seen in other languages (see Table 9-1 earlier in this chapter). Two useful
static methods of Array are Sort () and Rever se().These are fully supported for the built-in C#
types such as st r i ng. Making them work with But t on is a bit trickier, as you must implement a
number of interfaces (discussed in Chapter 8). Example 9-8 demonstrates the use of these two
methods to manipulate St r i ng objects.

Example 9-8. Using Array.Sort and Array.Reverse
nanespace Programr ng_CShar p

{
usi ng System

public class Tester

{ ?ubl ic static void Print MArray(object[] theArray)

foreach (object obj in theArray)
{ Consol e. WiteLine("Value: {0}", obj);
}Oonsol e.WiteLine("\n");

}

static void Main()

{ String[] myArray =
i "Wo", "is", "John", "Galt"

Print M Array(nyArray);
Array. Reverse(nyArray);
Print M Array(nyArray);

String[] nyQtherArray =

{
"We", "Hold", "These", "Truths",

"To" s " Be" s "Sel f" s "Evi dent " s
b

173

}
Qut put :

Val ue:
Val ue:
Val ue:
Val ue:

Val ue:
Val ue:
Val ue:
Val ue:

Val ue:
Val ue:
Val ue:
Val ue:
Val ue:
Val ue:
Val ue:
Val ue:

Val ue:
Val ue:
Val ue:
Val ue:
Val ue:
Val ue:
Val ue:
Val ue:

Print WArray(nyQt her Array);
Array. Sort (nyQt her Array) ;
Print M Array(nmyQt her Array);

Who
is

John
Gal t

Gal t
John
is

Who

e
Hol d
These
Trut hs
To

Be

Sel f
Evi dent

Be

Evi dent
Hol d
Sel f
These
To

Trut hs
e

The example begins by creating my Ar r ay, an array of strings with the words:

“Who", "is", "John", "Galt"
This array is printed, and then passed to the Array. Rever se() method, where it is printed again to
see that the array itself has been reversed:

Val ue: Galt
Val ue: John
Val ue: is

Val ue: Wo

Similarly, the example creates a second array, my O her Ar r ay, containing the words:

"To",

"Hol d", "These", "Truths",
"Be", "Self", "Evident",

which is passed to the Array. Sort () method. Then Array. Sort () happily sorts them
alphabetically:

Val ue: Be

174

Programming C#

Val ue: Evi dent
Val ue: Hol d
Val ue: Sel f
Val ue: These

Val ue: To
Val ue: Truths
Val ue: We
9.3 Indexers

There are times when it is desirable to access a collection within a class as though the class itself
were an array. For example, suppose you create a list box control named nyLi st Box that contains a
list of strings stored in a one-dimensional array, a private member variable named ny St r i ngs. A list
box control contains member properties and methods in addition to its array of strings. However, it
would be convenient to be able to access the list box array with an index, just as if the list box were an
array. For example, such a property would permit statements like the following:

string theFirstString = nyLi st Box[0];
string thelLastString = nyLi st Box[Lengt h-1];

An indexer is a C# construct that allows you to access collections contained by a class using the
familiar [| syntax of arrays. An indexer is a special kind of property and includes get () and set ()
methods to specify its behavior.

You declare an indexer property within a class using the following syntax:
type this [type argunent]{get; set;}

The return type determines the type of object that will be returned by the indexer, while the type
argument specifies what kind of argument will be used to index into the collection that contains the
target objects. Although it is common to use integers as index values, you can index a collection on
other types as well, including strings. You can even provide an indexer with multiple parameters to
create a multidimensional array!

The t hi s keyword is a reference to the object in which the indexer appears. As with a normal
property, you also must define get () and set () methods that determine how the requested object
is retrieved from or assigned to its collection.

Example 9-9 declares a list box control, Li st BoxTest , which contains a simple array (nmySt ri ngs)
and a simple indexer for accessing its contents.

- C++ programmers take note: the indexer serves much the same
4: | purpose as overloading the C++ index operator (| |). The index
—4% operator cannot be overloaded in C#, which provides the indexer

in its place.

Example 9-9. Using a simple indexer
nanespace Programr ng_CShar p

{
usi ng System

/1 a sinmplified ListBox control
public class ListBoxTest

{

/[l initialize the |list box with strings

175

public ListBoxTest(parans string[] initialStrings)

{
/1 allocate space for the strings
strings = new String[256];
/1 copy the strings passed in to the constructor
foreach (string s in initialStrings)
strings[ctr++] = s;
}
}

/1 add a single string to the end of the list box
public void Add(string theString)

if (ctr >= strings.Length)

/1 handl e bad i ndex
}

el se
strings[ctr++] = theString;

}

/1 allow array-1like access
public string this[int index]

{
get
{
if (index < 0 || index >= strings.Length)
/1 handl e bad i ndex
}
return strings[index];
}
set
{
/1 add only through the add nethod
if (index >= ctr)
/1 handl e error
}
el se
strings[index] = val ue;
}
}

/1 publish how many strings you hold
public int GetNunEntries()

{
}

private string[] strings;
private int ctr = 0;

return ctr;

}

public class Tester
{
static void Main()

/] create a new list box and initialize

176

Programming C#

Li st BoxTest | bt =
new Li st BoxTest("Hello", "Wrld");

/1l add a few strings
| bt . Add("Who");

| bt. Add("1s");

| bt. Add("John");

[bt. Add("Galt");

/'l test the access
string subst = "Universe";
[bt[1] = subst;

/'l access all the strings

for (int i = 0;i<lbt.GetNunkEntries();i++)
{
Console. WiteLine("Ibt[{0O}]: {2}",i,IDbt[i]);
}
}
}
}
Qut put

Ibt[0]: Hello

[bt[1]: Universe
[bt[2]: Wo
[bt[3]: Is

I bt[4]: John
[bt[5]: Galt

To keep Example 9-9 simple, you'll strip the list box control down to the few features we care about.
The listing ignores everything having to do with being a user control and focuses only on the list of
strings the list box maintains and methods for manipulating them. In a real application, of course,
these are a small fraction of the total methods of a list box, whose principal job is to display the strings
and enable user choice.

The first thing to notice is the two private members:

private string[] nyStrings;
private int myCr = 0;

In this program, the list box maintains a simple array of strings, ny St r i ngs. Again, in a real list box
you might use a more complex and dynamic container, such as a hash table (described later in this

chapter). The member variable my Ct r will keep track of how many strings have been added to this

array.

You initialize the array in the constructor with the statement:

myStrings = new String[256];

The remainder of the constructor adds the parameters to the array. Again, for simplicity, you simply
add new strings to the array in the order received.

- Because you cannot know how many strings will be added, you
ar] use the keyword par ans, as described earlier in this chapter.

177

The Add() method of Li st BoxTest does nothing more than append a new string to the internal
array.

The key method of Li st BoxTest , however, is the indexer. An indexer is unnamed, so you use the
t hi s keyword:

public string this[int index]
The syntax of the indexer is very similar to that for properties. There is either a get () method or a

set () method or both. In the case shown, the get () method endeavors to implement rudimentary
bounds checking, and assuming the index requested is acceptable, it returns the value requested:

get
{
if (index < 0 || index >= nyStrings.Length)
/'l handl e bad i ndex
}
return nyStrings[index];
}

The set () method checks to make sure that the index you are setting already has a value in the list
box. If not, it treats the set as an error (new elements can only be added using Add with this approach).
The set accessor takes advantage of the implicit parameter val ue which represents whatever is
assigned using the index operator:

set
{
if (index >= ctr)
{

/'l handl e error
}
el se

strings[index] = val ue;

}

Thus, if you write:

nmyl ndexedQbj ect [5] "Hello Worl d"

the compiler will call the indexer set () method on your object and pass in the string Hel | o VWor | d
as an implicit parameter named val ue.

9.3.1 Indexers and Assignment
In Example 9-9, you cannot assign to an index that does not have a value. Thus, if you write:
nmyl ndexedQbj ect [10] = "wow ";

you would trigger the error handler in the set () method, which would note that the index you've
passed in (10) is larger than the counter (6).

Of course, you can use the set () method for assignment; you simply have to handle the indexes you
receive. To do so, you might change the set () method to check the Lengt h of the buffer rather than
the current value of count er . If a value was entered for an index that did not yet have a value, you
would update ct r:

178

Programming C#

set

/1 add only through the add net hod
if (index >= strings.Length)

/1 handle error

}
el se
{
strings[index] = val ue;
if (ctr < index+1)
ctr = index+1;
}

}

This allows you to create a "sparse" array in which you can assign to offset 10 without ever having
assigned to offset 9. Thus, if you now write:

nmyl ndexedQbj ect [10] = "wow! ";

the output would be:

Ibt[0]: Hello
I bt[1]: Universe
Ibt[2]: Wo
Ibt[3]: Is

[bt[4]: John
[bt[5]: Galt
[bt[6]:

[bt[7]:

[bt[8]:

[bt[9]:

[bt[10]: wowl

In Mai n() you create an instance of the Li st BoxTest class named | bt and pass in two strings as
parameters:

Li st BoxTest | bt = new ListBoxTest("Hello", "Wbrld");
You then call Add() to add four more strings:

/] add a few strings
[bt. Add("Who");

[bt. Add("1s");

| bt . Add(" John");

[bt. Add("Galt");

Before examining the values, you modify the second value (at index 1):

string subst = "Universe";
I bt[1] = subst;

Finally, you display each value in a loop:

for (int i = 0;i<lbt.CGetNunEntries();i++)
{

Console. WiteLine("Ibt[{O}]: {1}",i,IDbt[i]);
}

179

9.3.2 Indexing on Other Values

C# does not require that you always use an integer value as the index to a collection. When you
create a custom collection class and create your indexer, you are free to create indexers which index
on strings and other types. In fact, the index value can be overloaded so that a given collection can be
indexed, for example, by an integer value or by a string value, depending on the needs of the client.

In the case of our list box, we might want to be able to index into the list box based on a string.
Example 9-10 illustrates a string index. The indexer calls f i ndSt ri ng() which is a helper method
that returns a record based on the value of the string provided. Notice that the overloaded indexer and
the indexer from Example 9-9 are able to coexist.

Example 9-10. Overloading an index
nanespace Program ng_CShar p

{

usi ng System

/1 a sinplified ListBox control
public class ListBoxTest

{

180

/1l initialize the Iist box with strings
public ListBoxTest(parans string[] initialStrings)

{
/1 allocate space for the strings
strings = new String[256];
/'l copy the strings passed in to the constructor
foreach (string s in initial Strings)
{
strings[ctr++] = s;
}
}

/1 add a single string to the end of the Ilist box
public void Add(string theString)
{

strings[ctr] = theString;

ctr++;

}

/1 allow array-1like access
public string this[int index]

{
get
{
if (index < 0 || index >= strings.Length)
/1 handl e bad i ndex
}
return strings[index];
}
set
{
strings[index] = val ue;
}
}
private int findString(string searchString)
{

}

}
11

Programming C#

for (int i = 0;i<strings.Length;i++)
{
if (strings[i].StartsWth(searchString))
return i;
}
}
return -1;

i ndex on string

public string this[string index]

{

get
if (index.Length == 0)

/1 handl e bad i ndex

}
return this[findString(index)];
}
set
{
strings[findString(index)] = value;
}

/1 publish how many strings you hold
public int GetNunEntries()

{
}

return ctr;

private string[] strings;
private int ctr = 0;

public class Tester

{

static void Main()

{

/1 create a new |ist box and initial
Li st BoxTest | bt =
new Li st BoxTest("Hello", "World");
/] add a few strings
[bt. Add("Who");
[bt. Add("1s");
| bt. Add("John");
[bt. Add("Galt");
/1 test the access
string subst = "Universe";
[bt[1] = subst;
[bt["Hel"] = "CGoodBye";
/1 I'bt["xyz"] = "oops";
/1 access all the strings
for (int i = 0;i<lbt.GetNunEntries(

{

ze

)i ++)

181

Consol e. WiteLine("Ibt[{O}]: {2}",i,Ibt[i]);
} /'l end for
} /1 end main
} /'l end tester
} /'l end namespace

| bt[0]: GoodBye

[bt[1]: Universe
[bt[2]: Wo
[bt[3]: Is

[bt[4]: John
[bt[5]: Galt

Example 9-10 is identical to Example 9-9 except for the addition of an overloaded indexer which
can match a string, and the method f | ndSt r i ng, created to support that index.

The f i ndSt ri ng method simply iterates through the strings held in my St r i ngs until it finds a string
which starts with the target string we use in the index. If found, it returns the index of that string,
otherwise it returns the value -1.

We see in Vai n() that the user passes in a string segment to the index, just as was done with an
integer:

I bt["Hel "] = "GoodBye";

This calls the overloaded index, which does some rudimentary error checking (in this case, making
sure the string passed in has at least one letter) and then passes the value (Hel)to f i ndString. It
gets back an index and uses that index to index into nmy St r i ngs:

return this[findString(index)];
The set value works in the same way:

nmyStrings[findString(index)] = val ue;

e The careful reader will note that if the string does not match, a
.) value of -1 is returned, which is then used as an index into
"4 nyStrings. This action then generates an exception

(System Nul | Ref erenceExcepti on), as you can see by un-
commenting the following line in Vai n:

| bt["xyz"] = "oops";
The proper handling of not finding a string is, as they say, left as

an exercise for the reader. You might consider displaying an error
message or otherwise allowing the user to recover from the error.

9.4 Collection Interfaces

The .NET Framework provides standard interfaces for enumerating, comparing, and creating
collections. The key collection interfaces are listed in Table 9-2.

182

Programming C#

Table 9-2. Collection interfaces
Interface Purpose

| Enunrer abl e Enumerates through a collection using a f or each statement.
Implemented by all collections to provide the CopyTo() method as well

I Col | ection as the Count , | SReadOnl y, | SSynchr oni zed, and SyncRoot
properties.

| Conpar er Compares two objects held in a collection so that the collection can be
sorted.

I Li st Used by array-indexable collections.

I Dictionary For key/value-based collections such as Hasht abl e and Sor t edLi st .

L Allows enumeration with f or each of a collection that supports

I Di ctionaryEnuner at or C

IDictionary.

9.4.1 The IEnumerable Interface

You can support the f or each statement in Li st BoxTest by implementing the | Enuner abl e
interface. | Enuner abl e has only one method, Get Enuner at or (), whose job is to return a
specialized implementation of | Enuner at or . Thus, the semantics of an Enuner abl e class are that it
can provide an Enuner at or :

public I Enunerator GetEnunerator()

{
}

return (I Enunmerator) new Li st BoxEnunerator(this);

The Enuner at or mustimplement the | Enuner at or methods and properties. These can be
implemented either directly by the container class (in this case, Li st BoxTest) or by a separate class.
The latter approach is generally preferred because it encapsulates this responsibility in the

Enuner at or class rather than cluttering up the container.

Because the Enuner at or class is specific to the container class (that is, because
Li st BoxEnumer at or must know a lot about Li st BoxTest) you will make it a private
implementation, contained within Li st BoxTest .

Notice that the method passes the current Li st BoxTest object (i hi s) to the enumerator, which will
allow the enumerator to enumerate this particular Li st BoxTest object.

The class to implement the Enuner at or is implemented here as Li st BoxEnuner at or, which is a
private class defined within Li st BoxTest . Its work is fairly straightforward. It must implement the
public instance property Cur r ent and two public instance methods, MoveNext () and Reset ().

The Li st BoxTest to be enumerated is passed in as an argument to the constructor, where it is
assigned to the member variable my LBT. The constructor also sets the member variable i ndex to -1,
indicating that you have not yet begun to enumerate the object:

publ i c Li st BoxEnunerat or (Li st BoxTest | bt)

{
this.lbt = 1Ibt;

i ndex = -1;

183

The MbveNext () method increments the index and then checks to ensure that you've not run past
the end of the object you're enumerating. If you have, you return f al se; otherwise you returnt r ue:

publi c bool MoyveNext()

{
i ndex++;
if (index >= |bt.strings.Length)
return false;
el se
return true;
}

The | Enuner at or method Reset () does nothing but reset the index to -1.

The property Cur r ent is implemented to return the current string. This is an arbitrary decision; in
other classes Cur r ent will have whatever meaning the designer decides is appropriate. However
defined, every enumerator must be able to return the current member, as accessing the current
member is what enumerators are for:

publ i c object Current

{
get
{
return(l bt[index]);
}
}

That's all there is to it; the call to f or each fetches the enumerator and uses it to enumerate over the
array. Because f or each will display every string, whether or not you've added a meaningful value,
change the initialization of st r i ngs to 8 to keep the display manageable, as shown in Example 9-
11.

Example 9-11. Making a ListBox an enumerable class
namespace Programm ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;

/1 a sinmplified ListBox control

public class ListBoxTest : |Enunerable

{
/1l private inplenmentation of ListBoxEnumnerator
private class ListBoxEnunerator : | Enunerator
{

/1 public within the private inplenmentation
/1 thus, private within ListBoxTest
publ i c Li st BoxEnunerat or (Li st BoxTest | bt)
{
this.Ibt = 1bt;
i ndex = -1;

}

/'l Increment the index and nmake sure the
/] value is valid
publ i c bool MyveNext()
{
i ndex++;
if (index >= | bt.strings.Length)

184

Programming C#

return false;
el se
return true

}
public void Reset()
{
i ndex = -1;
}

/1 Current property defined as the
/1 last string added to the |istbox
public object Current

{
get
{
return(l bt[index]);
}
}

private ListBoxTest |Dbt;
private int index;

}

/1 Enunerabl e classes can return an enunerat or
public | Enunmerator GetEnunerator()

{
}

/1 initialize the Ilist box with strings
public ListBoxTest(parans string[] initialStrings)

{

return (I Enumerator) new Li st BoxEnumerator(this);

/1 allocate space for the strings
strings = new String[8];

/1 copy the strings passed in to the constructor
foreach (string s in initial Strings)

{
}

strings[ctr++] = s;

}

/1 add a single string to the end of the |list box
public void Add(string theString)

{
strings[ctr] = theString;
ctr++;

}

/1 allow array-like access
public string this[int index]

{
get

{

if (index < 0 || index >= strings.Length)

/1 handl e bad i ndex
}

return strings[index];

185

set

{
}

strings[index] = val ue;

}

/1 publish how many strings you hold
public int GetNunmEntries()

{
}

private string[] strings;
private int ctr = 0O,

return ctr;

}

public class Tester

{
static void Main()

{
/'l create a new list box and initialize
Li st BoxTest | bt =
new Li st BoxTest("Hello", "Wbrld");

/] add a few strings
[bt. Add("Who");

[bt. Add("1s");

| bt . Add("John");

[bt. Add("Galt");

/'l test the access
string subst = "Universe";
| bt[1] = subst;

/| access all the strings
foreach (string s in |bt)

{
}

Consol e. WiteLine("Value: {0}", s);

Qut put :
Val ue: Hello
Val ue: Uni verse

Val ue: Who
Val ue: Is
Val ue: John
Val ue: Galt
Val ue:

Val ue:

The program begins in Vai n(), creating a new Li st BoxTest object and passing two strings to the
constructor. When the object is created, an array of St r i ngs is created with room for 8 strings. Four
more strings are added using the Add method, and the second string is updated, just as in the
previous example.

The big change in this version of the program is that a f or each loop is called, retrieving each string in
the list box. The f or each loop automatically uses the | Enuner abl e interface, invoking

186

Programming C#

Cet Enuner at or (). This gets back the Li st BoxEnuner at or whose constructor is called, thus
initializing the index to - 1.

The f or each loop then invokes MoveNext (), which immediately increments the index to O and
returns t r ue. The f or each then uses the Cur r ent property to get back the current string. The
Current property invokes the list box's indexer, getting back the string stored at index 0. This string is
assigned to the variable s defined in the f or each loop and that string is displayed on the console.
The f or each loop repeats these steps (MbveNext (), Current, display) until all the strings in the
list box have been displayed.

9.4.2 The ICollection Interface

Another key interface for arrays, and for all the collections provided by the .NET Framework, is

| Col I ection.|Collection provides four properties: Count , | sReadOnl vy, | sSynchr oni zed,
and SyncRoot . | Col | ect i on also provides one public method, CopyTo(). We'll look at the
CopyTo() method later in this chapter. The property used most often is Count , which returns the
number of elements in the collection:

For (int i = O;i<nylntArray. Count;i ++)
{

...
}

Here you are using the Count property nmyl nt Arr ay to determine how many objects are in it so that
you can print their values.

9.4.3 The IComparer Interface

The | Conpar er interface provides the Conpar e() method, by which any two items in a collection
can be ordered.

The Conpar e() method is typically implemented by calling the Conpar eTo method of one of the
objects. Conpar eTo is a method of all objects that implement | Conpar abl e. If you want to create
classes that can be sorted within a collection, you will need to implement | Corpar abl e.

The .NET Framework provides a Conpar er class that implements | Conpar abl e and provides a
default case-sensitive implementation. You'll see how to create your own implementation of
| Conpar abl e in the next section on ArraylLi st s.

9.5 Array Lists

The classic problem with the Ar r ay type is its fixed size. If you do not know in advance how many
objects an array will hold, you run the risk of declaring either too small an array (and running out of
room) or too large an array (and wasting memory).

Your program might be asking the user for input, or gathering input from a web site. As it finds objects
(strings, books, values, etc.) you will add them to the array, but you have no idea how many objects
you'll collect in any given session. The classic fixed-size array is not a good choice, as you can't
predict how large an array you'll need.

The ArraylLi st class is an array whose size is dynamically increased as required. ArrayLi st s
provide a number of useful methods and properties for their manipulation. Some of the most important
are shown in Table 9-3.

187

Table 9-3. ArrayList methods and properties

Method or Property

Purpose

Adapter()

Public static method that creates an ArrayLi st wrapper foran | Li st
object.

Fi xedSi ze()

Overloaded public static method that returns a list object as a wrapper. The
list is of fixed size; elements can be modified but not added or removed.

ReadOnly()

Overloaded public static method that returns a list class as a wrapper,
allowing read-only access.

Repeat ()

Public static method that returns an Arr ayLi st whose elements are copies
of the specified value.

Synchroni zed()

Overloaded public static method that returns a list wrapper that is thread-safe.

Capacity Property to get or set the number of elements in the ArrayLi st .

Count Property to get the number of elements currently in the array.

| sFi xedSi ze Property to get to find out if the ArrayLi st is of fixed size.

| sReadOnl y Property to get to find out if the Ar r ayLi st is read-only.

| sSynchroni zed Property to get to find out if the Ar rayLi st is thread-safe.

lten() Gets or sets the element at the specified index. This is the indexer for the
Arrayli st class.

S Public property that returns an object that can be used to synchronize access

yncRoot .

to the ArraylLi st.

Add() Public method to add an object to the Ar rayLi st .

AddRange()

Public method that adds the elements of an | Col | ect | on to the end of the
Arrayli st.

Bi narySearch()

Overloaded public method that uses a binary search to locate a specific
element in a sorted ArraylLi st .

Clear() Removes all elements from the ArrayLi st.
Clone() Creates a shallow copy.
Contains() Determines if an element is in the Ar rayLi st .
Overloaded public method that copies an ArrayLi st to a one-dimensional
CopyTo() P P Y

array.

Cet Enunerator()

Overloaded public method that returns an enumerator to iterate an
Arrayli st.

Get Range() Copies a range of elements to a new ArraylLi st .

| ndexcf () Overloaded public method that returns the index of the first occurrence of a
value.

Insert() Inserts an element into ArrayLi st .

I nsert Range()

Inserts the elements of a collection into the ArraylLi st .

Last |l ndexOr ()

Overloaded public method that returns the index of the last occurrence of a
value in the ArraylLi st .

Renove()

Removes the first occurrence of a specific object.

RenoveAt ()

Removes the element at the specified index.

RenoveRange()

Removes a range of elements.

Reverse()

Reverses the order of elements in the ArraylLi st .

Set Range()

Copies the elements of a collection over a range of elements in the
Arrayli st.

Sort()

Sorts the ArraylLi st .

ToArray()

Copies the elements of the ArrayLi st to a new array.

TrimroSi ze()

Sets the capacity to the actual number of elements in the ArraylLi st.

188

Programming C#

When you create an Ar r ayLi st, you do not define how many objects it will contain. You add to the
ArraylLi st using the Add() method, and the list takes care of its own internal bookkeeping, as
illustrated in Example 9-12.

Example 9-12. Working with an ArrayList

nanespace Programm ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;

/1 a sinple class to store in the array
public class Enpl oyee

{

publ i ¢ Enpl oyee(int enpl D)
{

this.enpl D = enpl D,
}
public override string ToString()
{

return enpl D. ToString();
}
public int EnplD
{

get

{

return enpl D,

}

set

{

enpl D = val ue;

}

}

private int enplD,

public class Tester
{
static void Main()

{
ArraylLi st enpArray

ArrayList intArray

= new ArrayList();
= new ArrayList();
/'l popul ate the array
for (int i = 0;i<5;i++)
{

enpArray. Add(new Enpl oyee(i +100));

i nt Array. Add(i *5);

}
/1 print all the contents
for (int i = 0;i<intArray.Count;i++)
{
Console. Wite("{0} ", intArray[i].ToString());
}

Consol e. WiteLine("\n");
/1l print all the contents of the button array

for (int i = 0;i<enpArray. Count;i ++)
{

189

Console. Wite("{0} ", enpArray[i].ToString());
}

Consol e. WiteLine("\n");
Consol e. WiteLine("enpArray. Capacity: {0}",
enpArray. Capacity);

Qut put :

05 10 15 20

100 101 102 103 104
enpArray. Capacity: 16

With an Ar r ay class, you define how many objects the array will hold. If you try to add more than that,
the Ar r ay class will throw an exception. With an ArrayLi st you do not declare how many objects
the ArrayLi st will hold. The ArrayLi st has a property, Capaci t y, which is the number of
elements the ArrayLi st is capable of storing:

public int Capcity {virtual get; virtual set; }

The default capacity is 16. When you add the 17th element, the capacity is automatically doubled to
32. If you change the f or loop to:

for (int i = 0;i<17;i++)
the output looks like this:

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
56 7 89 10 11 12 13 14 15 16 17 18 19 20 21
MyBut t onArray. Capacity: 32

You can manually set the capacity to any humber equal to or greater than the count. If you set it to a
number less than the count, the program will throw an exception of type
Ar gunent Qut OF RangeExcept i on.

9.5.1 Implementing IComparable

Like all collections, the ArrayLi st implements the Sort () method, which allows you to sort any
objects that implement | Conpar abl e. In the next example, you'll modify the Enpl oyee object to
implement | Conpar abl e:

public class Enpl oyee : | Comparable

To implement the | Conpar abl e interface, the Enpl oyee object must provide a Conpar eTo()
method:

public int ConpareTo(Object rhs)

{

Enmpl oyee r = (Enpl oyee) rhs;

return this.enplD. ConpareTo(r.enplD);
}

The Conpar eTo() method takes an object as a parameter; the Enpl oyee object must compare
itself to this object and return -1 if it is smaller than the object, 1 if it is greater than the object, and O if

190

Programming C#

it is equal to the object. It is up to Enpl oyee to determine what snal | er than, greater than,and
equal to mean. For example, you will cast the object to an Enpl oyee and then delegate the
comparison to the enpl d member, which is an i nt and which will use the default Conpar eTo()
method for integer types, which will do an integer comparison of the two values.

- Because | nt derives from obj ect it has methods, including the
#3 4. method ConpareTo(). Thusint isanobj ect to which you may
4 delegate the responsibility of comparison.

You are now ready to sort the array list of employees, enplLi st . To see if the sort is working, you'll
need to add integers and Enpl oyee instances to their respective arrays with random values. To
create the random values, you'll instantiate an object of class Random and to generate the random
values you'll call the Next () method on the Randomobject, which returns a pseudo-random number.
The Next () method is overloaded; one version allows you to pass in an integer which represents
the largest random number you want. In this case, you'll pass in the value 10 to generate a random
number between 0 and 10:

Random r = new Random();
r. Next (10);

Example 9-13 creates an integer array and an Enpl oyee array, populates them both with random
numbers, and prints their values. It then sorts both arrays and prints the new values.

Example 9-13. Sorting an integer and an employee array
namespace Programm ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;

/'l a sinple class to store in the array
public class Enployee : | Conparable

{
publ i ¢ Enpl oyee(int enpl D)

{
}

public override string ToString()
{

}

/'l Comparer del egates back to Enpl oyee
/'l Enpl oyee uses the integer's default
/'l CompareTo met hod
public int ConpareTo(Object rhs)

{

this.enpl D = enpl D,

return enmpl D. ToString();

Enpl oyee r = (Enpl oyee) rhs;
return this.enplD. ConpareTo(r.enplD);
}

private int enplD,
}

public class Tester

{
static void Main()

191

CQut put :
85733
105 103 1
33578

192

ArrayLi st enpArray = new ArrayList();
ArrayList intArray = new ArrayList();

/1 generate random nunbers for
/1 both the integers and the
/1 enployee id's

Random r = new Random();

/1l popul ate the array
for (int i = 0;i<5;i++)

/1 add a random enpl oyee id
enpArray. Add(new Enpl oyee(r. Next (10)+100));

/1 add a random i nteger
int Array. Add(r. Next (10));

}
/1 display all the contents of the int array
for (int i = 0;i<intArray.Count;i++)
{
Console. Wite("{0} ", intArray[i].ToString());
}

Consol e. WiteLine("\n");

/1 display all the contents of the Enpl oyee array
for (int i = 0;i<enpArray. Count;i ++)
{

}
Consol e. WiteLine("\n");

Console. Wite("{0} ", enmpArray[i].ToString());

/1 sort and display the int array
intArray. Sort();

for (int i = 0;i<intArray.Count;i++)
{

Console. Wite("{0} ", intArray[i].ToString());
}

Consol e. WiteLine("\n");

/1 sort and display the enpl oyee array

/' Enpl oyee. Enpl oyeeConparer ¢ = Enpl oyee. Get Conpar er (
/1 enpArray. Sort(c);

enpArray. Sort();

/1 display all the contents of the Enpl oyee array
for (int i = 0;i<enpArray. Count;i ++)

Console. Wite("{0} ", enpArray[i].ToString());

}
Consol e. WiteLine("\n");

02 104 106

Programming C#

102 103 104 105 106

The output shows that the integer array and Enpl oyee array were generated with random numbers,
and then when sorted the display shows the values have been ordered properly.

9.5.2 Implementing IComparer

When you call Sort () onthe ArrayLi st the default implementation of | Conpar er is called, which
uses Qui ckSort to call the | Conpar abl e implementation of Conpar eTo() on each elementin the
Arrayli st.

You are free to create your own implementation of | Corpar er , which you might want to do if you
need control over how the sort is accomplished. For example, in the next example, you will add a
second field to Enpl oyee, year sO Svc. You want to be able to sort the Enpl oyee objects in the
ArrayLi st on either field, enpl Dor year sOF Sve.

To accomplish this, you will create a custom implementation of | Conpar er which you will pass to the
Sort() method of ArrayLi st. This | Conpar er class, Enpl oyeeConpar er, knows about
Enpl oyee objects and knows how to sort them.

Enpl oyeeConpar er has a property, V\ii chConpar i son, of type
Enpl oyee. Enpl oyeeConpar er. Conpari sonType:

publ i ¢ Enpl oyee. Enpl oyeeConpar er . Conpari sonType
VWi chCompari son

{
get
{
return whi chConpari son;
}
set
whi chConpar i son=val ue;
}
}

Conpari sonType is an enumeration with two values, enpl Dor year sOf Svc (indicating that you
want to sort by employee ID or years of service, respectively):

publ i ¢ enum Conpari sonType

{
Enmpl D,
Yrs

}s

Before invoking Sort (), you will create an instance of Enpl oyeeConpar er and set its
Conpari si onType property:

Enmpl oyee. Enpl oyeeConparer ¢ = Enpl oyee. Get Conparer();
c. Wi chConpari son=Enpl oyee. Enpl oyeeConpar er. Conpar i sonType. Enpl D;
enpArray. Sort(c);

When you invoke Sort () the ArrayList will call the Conpar e method on the Enpl oyeeConpar er,
which in turn will delegate the comparison to the Enpl oyee. Conpar eTo() method, passing in its
property VWi chConpari son. public int:

193

Conpar e(obj ect | hs, object rhs)

{

Enpl oyee | = (Enpl oyee) | hs;

Enpl oyee r = (Enpl oyee) rhs;

return | . ConpareTo(r, Wi chConpari son);
}

The Enpl oyee object must implement a custom version of Conpar eTo() which takes the
comparison and compares the objects accordingly:

public int ConpareTo(
Enpl oyee rhs,
Enpl oyee. Enpl oyeeConpar er . Conpari sonType whi ch)

{
swi tch (which)
{
case Enpl oyee. Enpl oyeeConpar er. Conpari sonType. Enpl D:
return this.enplD. ConpareTo(rhs.enplD);
case Enpl oyee. Enpl oyeeConpar er. Conpari sonType. Yrs:
return this.yearsO Svc. Conpar eTo(rhs. yearsOf Svc) ;
}
return O;
}

The complete source for this example is shown in Example 9-14. The integer array has been
removed to simplify the example, and the output of the employee's ToSt ri ng() method enhanced
to enable you to see the effects of the sort.

Example 9-14. Sorting an array by employees' IDs and years of service
nanespace Programr ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;

/1 a sinple class to store in the array
public class Enpl oyee : | Conparable

{
publ i ¢ Enpl oyee(int enpl D)
{
this.enmpl D = enpl D,
}
publ i c Enpl oyee(int enpl D, int yearsO Svc)
{
this.enmpl D = enpl D,
this.yearsOf Svc = yearsOf Svc;
}
public override string ToString()
{
return "ID: " + enmplD. ToString() +
". Years of Svc: " + yearsOfSvc. ToString();
}

/1l static nethod to get a Conparer object
public static Enpl oyeeConparer GetConparer()
{

}

return new Enpl oyee. Enpl oyeeConparer();

194

Programming C#

/1 Conparer del egates back to Enpl oyee
/1 Empl oyee uses the integer's default
/'l ConpareTo net hod
public int ConpareTo(Object rhs)
{

Enpl oyee r = (Enpl oyee) rhs;

return this.enplD. ConpareTo(r.enplD);
}

/1 Special inplenentation to be called by custom conparer
public int ConpareTo(

Enpl oyee rhs,

Enpl oyee. Enpl oyeeConpar er . Conpari sonType whi ch)

{
swi tch (which)
{
case Enpl oyee. Enpl oyeeConpar er. Conpari sonType. Enpl D:
return this.enplD. ConpareTo(rhs. enplD);
case Enpl oyee. Enpl oyeeConpar er. Conpari sonType. Yrs:
return this.yearsOf Svc. Conpar eTo(rhs. yearsOf Svc) ;
}
return O;
}

/1l nested class which inplenments | Conparer
public class Enpl oyeeConparer : | Conparer

{
/1 enumeration of conparsion types
public enum Conpari sonType
{
Enpl D,
Yrs
1
/1 Tell the Enployee objects to conpare thensel ves
public int Conpare(object |hs, object rhs)
{
Enpl oyee | = (Enpl oyee) | hs;
Enpl oyee r = (Enpl oyee) rhs;
return | . ConpareTo(r, Wi chConpari son);
}
publ i c Enpl oyee. Enpl oyeeConpar er. Conpari sonType
Wi chConpari son
{
get
{
return whi chConpari son;
}
set
whi chConpari son=val ue;
}
}
/1 private state variable
privat e Enpl oyee. Enpl oyeeConpar er. Conpari sonType
whi chConpari son;
}

195

private int enplD
private int yearsOf Sve = 1;

public class Tester

{
static void Main()
{
ArraylLi st enpArray = new ArraylList();
/1 generate random nunbers for
/1 both the integers and the
/1 enployee id's
Random r = new Random();
/1l popul ate the array
for (int i = 0;i<5;i++)
/1 add a random enpl oyee id
enpArray. Add(
new Enpl oyee(
r. Next (10) +100, r . Next (20)
)
)
}
/1 display all the contents of the Enpl oyee array
for (int i = 0;i<enpArray. Count;i++)
{
Console.Wite("\n{0} ", enpArray[i].ToString());
}
Consol e. WiteLine("\n");
/1 sort and display the enpl oyee array
Enpl oyee. Enpl oyeeConparer c¢ = Enpl oyee. Get Conparer();
c. Whi chConpar i son=Enpl oyee. Enpl oyeeConpar er. Conpari sonType. Enpl D;
enpArray. Sort (c);
/1 display all the contents of the Enpl oyee array
for (int i = 0;i<enpArray. Count;i ++)
{
Console. Wite("\n{0} ", enpArray[i].ToString());
}
Consol e. WiteLine("\n");
c. Wi chConpar i son=Enpl oyee. Enpl oyeeConpar er. Conpari sonType. Yrs;
enpArray. Sort (c);
for (int i = 0;i<enpArray. Count;i ++)
{
Console. Wite("\n{0} ", enpArray[i].ToString());
}
Consol e. WiteLine("\n");
}
}
}
Cut put :

ID: 103. Years of Svc: 11
ID: 108. Years of Svc: 15
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 5

196

ID: 102. Years of
I D: 102. Years of
I D: 103. Years of
ID: 107. Years of
I D: 108. Years of
I D: 108. Years of
I D: 102. Years of
I D: 108. Years of
ID: 103. Years of
ID: 107. Years of
I D: 108. Years of

Programming C#

Svc: O
Svc: O
Sve: 11
Svc: 14
Svc: 15
Svc: 5
Svec: O
Svc: 5
Svc: 11
Svc: 14
Svc: 15

The first block of output shows the Enpl oyee objects as they are added to the ArraylLi st. The
employee ID values and the years of service are in random order.

The second block shows the results of sorting by the employee ID, and the third block shows the
results of sorting by years of service.

9.6 Queues

A queue represents a first-in, first-out (FIFO) collection. The classic analogy is to a line (or queue if
you are British) at a ticket window. The first person in line ought to be the first person to come off the

line to buy a ticket.

A queue is a good collection to use when you are managing a limited resource. For example, you
might want to send messages to a resource which can only handle one message at a time. You would
then create a message queue so that you can say to your clients: "Your message is important to us.
Messages are handled in the order in which they are received."”

The Queue class has a number of member methods and properties, as shown in Table 9-4.

Table 9-4. Queue methods and properties

Method or Property

Purpose

Synchroni zed()

Public static method that returns a Queue wrapper that is thread-safe.

Count

Public property that gets the number of elements in the Queue.

| sReadOnl y

Public property to get a value indicating if the Queue is read-only.

| sSynchr oni zed

Public property to get a value indicating if the Queue is synchronized.

Public property that returns an object that can be used to synchronize access to

SyncRoot the Queue.

d ear Removes all objects from the Queue.

Cl one() Creates a shallow copy.

Cont ai ns() Determines if an element is in the Queue.

CopyTo() Copies the Queue elements to an existing one-dimensional array.
Dequeue() Removes and returns the object at the beginning of the Queue.
Enqueue() Adds an object to the end of the Queue.

Get Enunmer at or () |Returns an enumerator for the Queue.

Peek() Returns the object at the beginning of the Queue without removing it.
ToArray() Copies the elements to a hew array.

197

You add elements to your queue with the Enqueue command and you take them off the queue with
Dequeue or by using an enumerator. Example 9-15 illustrates.

Example 9-15. Working with a queue

nanespace Programm ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;

public class Tester

{

static void Main()
{

Queue i nt Queuee = new Queue();

/'l popul ate the array
for (int i = 0;i<5;i++)

{

}

/1 Display the Queue.
Consol e. Wite("intQueuee values:\t");
Print Val ues(int Queuee);

i nt Queuee. Enqueue(i *5);

/1 Rermove an el enment fromthe queue.
Consol e. Wit eLi ne(
"\ n(Dequeue)\t{0}", intQueuee. Dequeue());

/1 Display the Queue.
Console. Wite("intQueuee values:\t");
Pri nt Val ues(i nt Queuee);

/'l Renove anot her elenent fromthe queue.
Consol e. Wit eLi ne(
"\ n(Dequeue)\t{0}", intQueuee. Dequeue());

/1 Display the Queue.
Consol e. Wite("intQueuee values:\t");
Pri nt Val ues(i nt Queuee);

/1 Viewthe first elenent in the
/1 Queue but do not renopve.
Consol e. Wit eLi ne(
"\ n(Peek) \t{0}", intQueuee.Peek());

/1 Display the Queue.
Consol e. Wite("intQueuee values:\t");
Print Val ues(int Queuee);

}

public static void PrintVal ues(|Enunerable nyCollection)
{
| Enunmer at or nyEnunerat or =
myCol | ecti on. Get Enunerator();
while (nmyEnunerator. MoveNext())
Console.Wite("{0} ",nyEnunerator.Current);
Consol e. WitelLine();

198

Programming C#

Qut put :
i nt Queuee val ues: 05 10 15 20

(Dequeue) 0
i nt Queuee val ues: 5 10 15 20

(Dequeue) 5
i nt Queuee val ues: 10 15 20

(Peek) 10
i nt Queuee val ues: 10 15 20

In this example the ArrayLi st is replaced by a Queue. I've dispensed with the But t on class to save
room, but of course you can Enqueue user-defined objects as well.

The output shows that queuing objects adds them to the Queue, and calls to Dequeue return the
object and also remove them from the Queue. The Queue class also provides a Peek() method
which allows you to see, but not remove, the first element.

Because the Queue class is enumerable, you can pass it to the Pri nt Val ues method, which is
provided as an | Enuner abl e interface. The conversion is implicit. In the Pri nt Val ues method you
call Get Enunrer at or , which you will remember is the single method of all | Enuner abl e classes.
This returns an Enuner at or , which you then use to enumerate all the objects in the collection.

9.7 Stacks

A stack is a last-in, first-out (LIFO) collection, like a stack of dishes at a buffet table, or a stack of coins
on your desk. You add a dish on top, and that is the first dish you take off the stack.

The principal methods for adding to and removing from a stack are Push and Pop(); St ack also

offers a Peek() method, very much like Queue. The significant methods and properties for St ack
are shown in Table 9-5.

Table 9-5. Stack methods and properties

Method or Property Purpose
Synchroni zed() |Public static method that returns a St ack wrapper that is thread-safe.
Count () Public property that gets the number of elements in the St ack.
| sReadOnl y Public property that gets a value indicating if the St ack is read-only.

| sSynchroni zed Public property that gets a value indicating if the St ack is synchronized.
Public property that returns an object that can be used to synchronize access

SyncRoot to the St ack.

Clear() Removes all objects from the St ack.

Clone() Creates a shallow copy.

Contains() Determines if an element is in the St ack.

CopyTo() Copies the St ack elements to an existing one-dimensional array.

Get Enunmer at or () |Returns an enumerator for the St ack.

199

Peek()

Pop() Removes and returns the object at the top of the St ack.
Push() Inserts an object at the top of the St ack.
ToArray() Copies the elements to a new array.

The ArraylLi st, Queue, and St ack types contain overloaded CopyTo() and ToArray()
methods for copying their elements to an array. In the case of a St ack, the CopyTo() method will
copy its elements to an existing one-dimensional array, overwriting the contents of the array beginning
at the index you specify. The ToArray() method returns a new array with the contents of the

stack's elements. Example 9-16 illustrates.

Example 9-16. Working with a Stack

nanespace Programm ng_CShar p

{

usi ng System
usi ng System Col | ecti ons;

/1 a sinple class to store in the array
public class Tester

{

static void Main()

{

200

Stack intStack = new Stack();

/'l popul ate the array
for (int i = 0;i<8;i++)

{

}

/1 Display the Queue.
Console. Wite("intStack values:\t");
PrintVal ues(intStack);

i nt St ack. Push(i*5);

/'l Renopve an el enment fromthe queue.
Console. WiteLine("\ n(Pop)\t{O0}",
i nt Stack. Pop());

/1 Display the Queue.
Console.Wite("intStack values:\t");
PrintValues(intStack);

/'l Renove anot her elenent fromthe queue.

Consol e. WiteLine("\n(Pop)\t{0O}",
i ntStack. Pop());

/1 Display the Queue.
Console.Wite("intStack values:\t");
PrintVal ues(intStack);

/1 Viewthe first elenent in the

/1 Queue but do not renove.

Consol e. WiteLine("\n(Peek) \t{o}",
i nt Stack. Peek());

/1 Display the Queue.
Console. Wite("intStack values:\t");
PrintVal ues(intStack);

Returns the object at the top of the St ack without removing it.

Programming C#

/1 declare an array object which wll

/1 hold 12 integers

Array target Array=Array. Createl nstance(

typeof (int),

target Array.
target Array.
target Array.
target Array.
target Array.
target Array.
target Array.
target Array.
target Array.

12

)

Set Val ue(
Set Val ue(
Set Val ue(
Set Val ue(
Set Val ue(
Set Val ue(
Set Val ue(
Set Val ue(
Set Val ue(

/1 Display the val ues

Consol e. Wit eLi ne(
PrintVal ues(targetArray);

100,
200,
300,
400,
500,
600,
700,
800,
900,

O~NOO U WNEO
N N N N N N N N

of the
"\nTarget array:. ");

target Array instance.

/1 Copy the entire source Stack to the
/1 target Array instance,
i nt St ack. CopyTo(targetArray,

/1 Display the values of the target Array instance.
Consol e. WiteLine("\nTarget array after copy:
PrintVal ues(targetArray);

starting at

6);

/1 Copy the entire source Stack

/1 to a new standard array.

oj ect[] nyArray

/1 Display the values of the new standard array.
Consol e. Wit eLi ne(

}

i nt Stack. ToArray():

"\nThe new array:");
PrintVal ues(nyArray);

public static void PrintVal ues(

| Enuner abl e nmyCol | ection)

System Col | ecti ons. | Enuner at or enunerator =
nyCol | ecti on. Get Enuner at or (

i nt St ack val ues:

(Pop) 35
i nt St ack val ues:

(Pop) 30
i nt Stack val ues:

(Peek) 25
i nt Stack val ues:

35

30

25

25

)

30

25

20

20

",enunerator.Current);

25

20

15

15

{
whil e (enunerat or. MoveNext (
Console. Wite("{0}
Consol e. Wit eLi ne(
}
}
}
Cut put :

20

15

10

10

)
))

15 10 5 O0

10 5 O

i ndex 6.

201

Target array:
100 200 300 400 500 600 700 800 900 O O O

Target array after copy:
100 200 300 400 500 600 25 20 15 10 5 O

The new array:
25 20 15 10 5 O

25

The output reflects that the items pushed onto the stack were popped in reverse order. In fact, the
entire stack is stored in reverse order to reflect its LIFO nature.

Example 9-16 uses the Ar r ay class that serves as the base class for all arrays. The example
creates an array of 12 integers by calling the static method of Cr eat el nst ance(). This method
takes two arguments: a type (in this case, i nt) and a number representing the size of the array.

The array is populated with the Set Val ue() method which takes two arguments: the object to add
and the offset at which to add it.

The effect of CopyTo() can be seen by examining the target array before and after calling
CopyTo(). The array elements are overwritten beginning with the index specified (6).

Notice also that the ToArray() method is designed to return an array of objects, and so nyAr r ay is
declared appropriately:

bject[] nyArray = mylntStack. TOArray();
9.8 Dictionaries

A dictionary is a collection that associates a key to a value. A language dictionary, such as Webster's,
associates a word (the key) with its definition (the value).

To see the value of dictionaries, start by imagining that you want to keep a list of the state capitals.
One approach might be to put them in an array:

string[] stateCapitals = new string[50];

The st at eCapi t al s array will hold 50 state capitals. Each capital is accessed as an offset into the
array. For example, to access the capital for Arkansas, you need to know that Arkansas is the fourth
state in alphabetical order:

string capital O Arkansas = stateCapitals[3];

It is inconvenient, however, to access state capitals using array notation. After all, if | need the capital
for Massachusetts, there is no easy way for me to determine that Massachusetts is the 21 state
alphabetically.

It would be far more convenient to store the capital with the state name. A dictionaryallows you to
store a value (in this case, the capital) with a key (in this case, the name of the state).

A .NET Framework dictionary can associate any kind of key (string, integer, object, etc.) with any kind
of value (string, integer, object, etc.). Typically, of course, the key is fairly short, the value fairly
complex.

202

Programming C#

The most important attributes of a good dictionary are that it is easy to add values and it is quick to
retrieve values. Some dictionaries are faster at adding new values, others are optimized for retrieval.
One example of a dictionary type is the hashtable.

9.8.1 Hashtables

A hashtable is a dictionaryoptimized for fast retrieval. The principal methods and properties of
Hasht abl e are summarized in Table 9-6.

Table 9-6. Hashtable methods and properties

Method or Property

Purpose

Synchroni zed()

Public static method that returns a Hasht abl e wrapper that is thread-
safe (see Chapter 20).

Count

Public property that gets the number of elements in the Hasht abl e.

| sReadOnl y

Public property that gets a value indicating if the Hasht abl e is read-
only.

I sSynchr oni zed

Public property that gets a value indicating if the Hasht abl e is
synchronized.

ltem() The indexer for the Hasht abl e.
K Public property that gets an | Col | ect i on containing the keys in the
eys .
Hasht abl e. (See also Val ues, later in the table.)
Public property that returns an object that can be used to synchronize
SyncRoot
access to the Hasht abl e.
Val ues Public property that gets an | Col | ect i on containing the values in the
Hasht abl e. (See also Keys, earlier in the table.)
Add() Adds an entry with a specified Key and Val ue.
Clear() Removes all objects from the Hasht abl e.
Clone() Creates a shallow copy.

Contains()

Determines if an element is in the Hasht abl e.

Cont ai nsKey()

Determines whether the Hasht abl e has a specified key.

CopyTo()

Copies the Hasht abl e elements to an existing one-dimensional array.

Cet Enunerator()

Returns an enumerator for the Hasht abl e.

Cet Obj ectData()

Implements | Seri al i zabl e and returns the data needed to serialize
the Hasht abl e.

OnDeseri al i zati on(

)

Implements | Seri al i zabl e and raises the deserialization event when
the deserialization is complete.

Renove()

Removes the entry with the specified Key.

In a Hasht abl e, each value is stored in a "bucket." The bucket is numbered, much like an offset into

an array.

Because the key may not be an integer, it must be possible to translate the key (e.g., "Massachusetts")
into a bucket number. Each key must provide a Cet HashCode() method that will accomplish this

magic.

You will remember that everything in C# derives from obj ect . The obj ect class provides a virtual
method Cet HashCode(), which the derived types are free to inherit as is or to override.

203

A trivial implementation of a Get HashCode() function for a st r i ng might simply add up the
Unicode values of each character in the string and then use the modulus operator to return a value
between 0 and the number of buckets in the Hasht abl e. It is not necessary to write such a method
for the st ri ng type, however, as the CLR provides one for you.

When you insert the values (the state capitals) into the Hasht abl e, the Hasht abl e calls
CGet HashCode() on each key we provide. This method returns an i nt , which identifies the bucket
into which the state capital is placed.

It is possible, of course, for more than one key to return the same bucket number. This is called a
collision. There are a number of ways to handle a collision. The most common solution, and the one
adopted by the CLR, is simply to have each bucket maintain an ordered list of values.

When you retrieve a value from the Hasht abl e, you provide a key. Once again the Hasht abl e calls
Cet HashCode() on the key and uses the returned i nt to find the appropriate bucket. If there is
only one value, it is returned. If there is more than one value, a binary search of the bucket's contents
is performed. Because there are few values, this search is typically very fast.

Load Factor

Hash functions that minimize collisions typically do so at the expense of
making less efficient use of their storage. Hash function designers trade off
minimizing collisions, maximizing efficient memory usage, and algorithmic
speed.

Every CLR Hasht abl e has a load factor that determines the maximum ratio
of entries to buckets. Using a smaller load factor will speed up performance
but use more memory. The default factor is 1.0, which Microsoft says
provides the optimum balance between speed and size, but you can specify
the load factor you want when you instantiate the Hasht abl e.

As entries are added to the Hasht abl e the actual load increases until it
matches the load factor specified for the table. When the load factor is
reached, the Hasht abl e automatically increases the number of buckets to
the smallest prime number larger than twice the current number of buckets.

If your Hasht abl e had only one bucket, searching for a key would be a
simple binary search and you wouldn't need the Hasht abl e at all. If,
however, you have more than one bucket, the procedure is to hash the key,
find the associated bucket, and then search that bucket. If there is only one
key in that bucket, searching the bucket is very fast.

With lots of keys you can spend your time working through the hash to find
the right bucket, or searching through the bucket to find the right key. That is
the tradeoff captured by the LoadFact or .

The key in a Hasht abl e can be a primitive type, or it can be an instance of a user-defined type (an
object). Objects used as keys for a Hasht abl e must implement Get HashCode() as well as
Equal s. In most cases, you can simply use the inherited implementation from Obj ect .

204

Programming C#

9.8.2 IDictionary

Hash tables are dictionaries because they implement the | Di ct i onar vy interface. | Di cti onary
provides a public property | t em The | t emproperty retrieves a value with the specified key. In C#, the
declaration for the | t emproperty is:

obj ect this[object key]
{get; set;}

The | t emproperty is implemented in C# with the index operator ([|). Thus, you access items in any
Di ct i onary object using the offset syntax, as you would with an array.

Example 9-17 demonstrates adding items to a Hasht abl e and then retrieving them with the | t em
property.

Example 9-17. The Item property as offset operators
nanmespace Programm ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;
/'l a sinple class to store in the array
public class Tester
{
static void Main()
{
/'l Create and initialize a new Hashtabl e.
Hasht abl e hashTabl e = new Hashtable();
hashTabl e. Add("000440312", "Jesse Liberty");
hashTabl e. Add("000123933", "Stacey Liberty");
hashTabl e. Add("000145938", "John Glt");
hashTabl e. Add("000773394", "Ayn Rand");
/1l access a particular item
Consol e. Wi teLi ne("myHast Tabl e["000145938"]: {0}",
hashTabl e["000145938"]) ;
}
}
}
Qut put :

hashTabl e["000145938"]: John Galt

Example 9-17 begins by instantiating a new Hasht abl e. We use the simplest constructor accepting
the default initial capacity and load factor (see the sidebar, "Load Factor"), the default hash code
provider, and the default comparer.

We then add four key/value pairs. In this example, the social security number is tied to the person's full
name. (Note that the social security numbers here are intentionally bogus.)

Once the items are added, we access the third item using its key.

205

9.8.3 The Keys and Values Collections

Di ct i onary collections provide two additional properties: Keys and Val ues. Keys retrieves an
| Col | ecti on object with all the keys in the Hasht abl e, as Val ues retrieves an | Col | ecti on
object with all the values. Example 9-18 illustrates.

Example 9-18. Keys and Values collections
nanespace Programr ng_CShar p

{
usi ng System
usi ng System Col | ecti ons;
/1 a sinple class to store in the array
public class Tester
{
static void Main()
{
/1l Create and initialize a new Hashtabl e.
Hasht abl e hashTabl e = new Hashtable();
hashTabl e. Add("000440312", "George Washi ngton");
hashTabl e. Add("000123933", "Abraham Li ncol n");
hashTabl e. Add("000145938", "John Galt");
hashTabl e. Add("000773394", "Ayn Rand");
/1 get the keys fromthe hashTabl e
| Col | ection keys = hashTabl e. Keys;
/1 get the val ues
| Col |l ection val ues = hashTabl e. Val ues;
/1 iterate over the keys ICollection
foreach(string key in keys)
{
Console. WiteLine("{0} ", key);
}
/] iterate over the values collection
foreach (string val in values)
{
Consol e. WiteLine("{0} ", val);
}
}
}
}
Qut put :
000440312
000123933
000773394
000145938

Geor ge Washi ngt on
Abr aham Li ncol n
Ayn Rand

John Galt

Although the order of the Keys collection is not guaranteed, it is guaranteed to be the same order as
returned in the Val ues collection.

206

Programming C#

9.8.4 IDictionaryEnumerator Interface

I Di ctionary objects also support the f or eachconstruct by implementing the Get Enuner at or
method, which returns an | Di ct i onar yEnuner at or .

The | Di cti onaryEnuner at or is used to enumerate through any | Di ct | onar y object. It provides
properties to access both the key and value for each item in the dictionary. Example 9-19 illustrates.

Example 9-19. Using the IDictionaryEnumerator interface

nanespace Programn
{
usi ng System
usi ng System Co

ng_CShar p

| ections;

/1 a sinple class to store in the array
public class Tester

{

static void Main()

{
/] Create

Hasht abl e
hashTabl e.
hashTabl e.
hashTabl e.
hashTabl e.

and initialize a new Hashtabl e.
hashTabl e = new Hashtable();
Add("000440312", "CGeorge Washi ngton");
Add("000123933", "Abraham Lincoln");
Add("000145938", "John Galt");
Add("000773394", "Ayn Rand");

/1 Display the properties and val ues of the Hashtabl e.
Consol e. WiteLine("hashTable");

Console. WiteLine(" Count: {0}", hashTabl e. Count);

Console. WiteLine(" Keys and Values:");
Pri nt KeysAndVal ues(hashTabl e);

}

public static void PrintKeysAndVal ues(Hashtabl e table)

{

I Di ctionaryEnumerator enunerator = table.Get Enumer at or (
while (enunerator.MveNext())
Consol e. WiteLine("\t{O}:\t{1}",
enuner at or. Key, enunerator. Val ue);
Console. WiteLine();

}
Qut put :

hashTabl e
Count : 4
Keys and Val ues:
000440312:
000123933:
000773394:
000145938:

Geor ge Washi ngton
Abr aham Li ncol n
Ayn Rand

John Galt

)

207

208

Programming C#

Chapter 10. Strings and Regular Expressions

There was a time when people thought of computers exclusively as manipulating numeric values.
Early computers were first used to calculate missile trajectories, and programming was taught in the
math department of major universities.

Today, most programs are concerned more with strings of characters than with strings of numbers.
Typically these strings are used for word processing, document manipulation, and creation of web
pages.

C# provides built-in support for a fully functional st r i ng type. More importantly, C# treats strings as
objects that encapsulate all the manipulation, sorting, and searching methods normally applied to
strings of characters.

Complex string manipulation and pattern matching is aided by the use of regular expressions. C#
combines the power and complexity of regular expression syntax, originally found only in string
manipulation languages such as awk and Perl, with a fully object-oriented design.

In this chapter, you will learn to work with the C# st r i ng type and the .NET Framework

System String class that it aliases. You will see how to extract sub-strings, manipulate and
concatenate strings, and build new strings with the St ri ngBui | der class. In addition, you will learn
how to use the RegEx class to match strings based on complex regular expression.

10.1 Strings

C# treats strings as first-class types that are flexible, powerful, and easy to use. Each st r i ng object
is an immutable sequence of Unicode characters. In other words, methods that appear to change the
string actually return a modified copy; the original string remains intact.

When you declare a C# string using the st r i ng keyword, you are in fact declaring the object to be of
the type Syst em St ri ng, one of the built-in types provided by the .NET Framework Class Library. A
C# string type is a Syst em St ri ng type,and we will use the names interchangeably throughout the
chapter.

The declaration of the Syst em St ri ng class is:

public sealed class String :
| Conpar abl e, |C oneable, Iconvertible

This declaration reveals that the class is sealed, meaning that it is not possible to derive from the
string class. The class also implements three system interfaces—| Conpar abl e, | Cl oneabl e, and
| Converti bl e—which dictate functionality that Syst em St ri ng shares with other classes in

the .NET Framework.

As seen in Chapter 9, the | Conpar abl e interface is implemented by types whose values can be

ordered. Strings, for example, can be alphabetized; any given string can be compared with another
string to determine which should come first in an ordered list. | Conpar abl e classes implement the
Conpar eTo method.

| Cl oneabl e objects can create new instances with the same value as the original instance. In this
case, it is possible to clone a string to produce a new string with the same values (characters) as the
original. | Cl oneabl e classes implement the Cl one() method.

209

| Converti bl e classes provide methods to facilitate conversion to other primitive types such as
Tol nt 32(), ToDoubl e(), ToDeci mal (), etc.

10.1.1 Creating Strings

The most common way to create a string is to assign a quoted string of characters, known as a string
literal, to a user-defined variable of type st ri ng:

string newString = "This is a string literal”

Quoted strings can include escape characters, such as "\ n" or "\ t ," which begin with a backslash
character (\) and are used to indicate where line breaks or tabs are to appear. Because the backslash
is itself used in some command line syntaxes, such as URLs or directory paths, in a quoted string the
backslash must be preceded by another backslash.

Strings can also be created using verbatim string literals, which start with the (@ symbol. This tells the
St ri ng constructor that the string should be used verbatim, even if it spans multiple lines or includes
escape characters. In a verbatim string literal, backslashes and the characters that follow them are
simply considered additional characters of the string. Thus, the following two definitions are equivalent:

string literal One = "\\\\MySystem \ MyDi rect or y\\ Programm ngC#. cs; "
string verbatinlLiteral One = @\\ MySystem MyDi r ect ory\ Programm ngC#. cs";

In the first line, a nonverbatim string literal is used, and so the backslash characters (\) must be
escaped, which means it must be preceded by a second backslash character. In the second, a
verbatim literal string is used, so the extra backslash is not needed. A second example illustrates
multiline verbatim strings:

string literal Two = "Line One\nLi ne Two";
string verbatiniLiteral Two = @Line One
Line Two";

Again, these declarations are interchangeable. Which one you use is a matter of convenience and
personal style.

10.1.2 The ToString Method

Another common way to create a string is to call the ToSt ri ng() method on an object and assign
the result to a string variable. All the built-in types override this method to simplify the task of
converting a value (often a numeric value) to a string representation of that value. In the following
example, the ToSt ri ng() method of an integer type is called to store its value in a string:

int mylnteger = 5;
string integerString = nmylnteger. ToString()

The call to nyl nt eger. ToString() returns a St ri ng object which is then assigned to
i nteger String.

The .NET St ri ng class provides a wealth of overloaded constructors that support a variety of
techniques for assigning string values to st r i ng types. Some of these constructors enable you to
create a string by passing in a character array or character pointer. Passing in a character array as a
parameter to the constructor of the St r i ng creates a CLR-compliant new instance of a string.
Passing in a character pointer creates a noncompliant, "unsafe" instance.

210

Programming C#

10.1.3 Manipulating Strings

The st ri ng class provides a host of methods for comparing, searching, and manipulating strings, as

shown in Table 10-1.

Table 10-1. Methods and fields for the string class

Method or Field Explanation
Enpty Public static field representing the empty string.
Compare() Overloaded public static method that compares two strings.

ConmpareOrdinal ()

Overloaded public static method that compares two strings without regard to
local or culture.

Overloaded public static method that creates a new string from one or more

Concat () strings.

copy() Overloaded public static method that creates a new string by copying
another.

Equal s() Overloaded public static method that determines if two strings have the

same value.

Format ()

Overloaded public static method that formats a string using a format
specification.

Intern()

Overloaded public static method that returns a reference to the specified
instance of a string.

I sinterned()

Overloaded public static method that returns a reference for the string.

Overloaded public static method that concatenates a specified string

Join() between each element of a string array.

Chars() The string indexer.

Length() The number of characters in the instance.

Clone() Returns the string.

Conpareto() Compares this string with another.

CopyTo() Copies the specified number of characters to an array of Unicode characters.
EndsWth() Indicates whether the specified string matches the end of this string.

Equal s() Determines if two strings have the same value.

Insert() Returns a new string with the specified string inserted.

Last |l ndexOr ()

Reports the index of the last occurrence of a specified character or string
within the string.

PadLeft ()

Right-aligns the characters in the string, padding to the left with spaces or a
specified character.

PadRi ght ()

Left-aligns the characters in the string, padding to the right with spaces or a
specified character.

Renove()

Deletes the specified number of characters.

Split()

Returns the substrings delimited by the specified characters in a string array.

StartsWth()

Indicates if the string starts with the specified characters.

SubString()

Retrieves a substring.

ToCharArray()

Copies the characters from the string to a character array.

ToLower ()

Returns a copy of the string in lowercase.

ToUpper () Returns a copy of the string in uppercase.

Trim() Removes all occurrences of a set of specified characters from beginning and
end of the string.

TrinEnd() Behaves like Tr i m but only at the end.

TrinStart()

Behaves like Tr i m but only at the start.

211

Example 10-1 illustrates the use of some of these methods, including Conpare(), Concat ()
(and the overloaded + operator), Copy() (and the = operator), | nsert (), EndsWth(), and
| ndexCOf .

Example 10-1. Working with strings

nanespace Program ng_CShar p

{
usi ng System

public class StringTester

{
static void Main()
{
/1l create sonme strings to work with
string s1 = "abcd";
string s2 = "ABCD';

string s3 = @Liberty Associates, Inc.
provi des custom . NET devel opnent,
on-site Training and Consulting";

int result; // hold the results of conparisons

/1 conpare two strings, case sensitive

result = string. Conpare(sl, s2);

Consol e. Wit eLi ne(
"conpreconpare sl1: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

/1 overl oaded conpare, takes boolean "ignore case"

/1 (true = ignore case)

result = string. Conpare(sl,s2, true);

Consol e. WitelLine("conpare insensitive\n");

Consol e. WiteLine("s4: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

/1 concatenation method
string s6 = string. Concat(sl, s2);
Consol e. Wit eLi ne(

"s6 concatenated fromsl and s2: {0}", s6);

/'l use the overl oaded operat or
string s7 = s1 + s2
Consol e. Wit eLi ne(
"s7 concatenated fromsl + s2: {0}", s7);

/1 the string copy nethod
string s8 = string. Copy(s7);
Consol e. Wit eLi ne(

"s8 copied froms7: {0}", s8);

/'l use the overl oaded operat or
string s9 = s8
Consol e. WiteLine("s9 = s8: {0}", s9);

/'l three ways to conpare.
Consol e. Wit eLi ne(

"\ nDoes s9. Equal s(s8)?: {0}",

s9. Equal s(s8));
Consol e. Wit eLi ne(

"Does Equal s(s9,s8)?: {0}",

212

}
}

Qut put

Programming C#

string. Equal s(s9, s8));
Consol e. Wit eLi ne(
"Does s9==s8?: {0}", s9 == s8);

/1 Two useful properties: the index and the |ength
Consol e. Wit eLi ne(
“\nString s9 is {0} characters long. ",
s9. Lengt h);
Consol e. Wit eLi ne(
"The 5th character is {1}\n",
s9. Length, s9[4]);

/1l test whether a string ends with a set of characters
Consol e. WitelLine("s3:{0}\nEnds with Training?: {1}\n",
s3,
s3. EndsW th("Trai ning"));
Consol e. Wit eLi ne(
"Ends with Consulting?: {0}",
s3. EndsWth("Consulting"));

/1 return the index of the substring
Consol e. Wit eLi ne(

"\'nThe first occurrence of Training ");
Console.WiteLine ("in s3 is {0}\n",

s3. I ndexOf (" Training"));
/1 insert the word excellent before "training"
string s10 = s3.Insert (103, "excellent ");
Consol e. WitelLine("s10: {0}\n",s10);

/1 you can conbine the two as follows:

string s11 = s3.Insert(s3.1ndexOf (" Training"),
"excellent ");

Consol e. WitelLine("sl11l: {0}\n",sl1l);

conpre sl1: abcd, s2: ABCD, result: -1

conpare insensitive

s4:

s2: ABCD, result: O

s6 concatenated from sl and s2: abcdABCD
s7 concatenated fromsl + s2: abcdABCD
s8 copied froms7: abcdABCD

s9 =

Does
Does
Does

abcdABCD

s9. Equal s(s8) ?: True
Equal s(s9, s8)?: True
s9==s87?7: True

String s9 is 8 characters | ong.
The 5th character is A

s3: Li berty Associates, Inc.

provi des custom . NET devel opnent,
on-site Training and Consul ting

Ends with Training?: Fal se

213

Ends with Consul ting?: True

The first occurrence of Training
in s3is 103

s10: Liberty Associates, Inc.
provi des custom . NET devel opnent,
on-site excellent Training and Consulting

sl1l1: Liberty Associates, Inc.
provi des custom . NET devel opnent,
on-site excellent Training and Consulting

Example 10-1 begins by declaring three strings:

string sl "abcd";

string s2 " ABCD";

string s3 = @Liberty Associates, Inc.
provi des custom . NET devel opnent,
on-site Training and Consul ting";

The first two are string literals, the third a verbatim string literal. We begin by comparing s1 to s2. The
Conpar e method is a public static method of st r i ng, and it is overloaded. The first overloaded
version takes two strings and compares them:

/'l compare two strings, case sensitive

result = string. Conpare(sl, s2);

Consol e. WiteLine("compre s1: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

This is a case-sensitive comparison and returns different values, depending on the results of the
comparison:

A negative integer if the first string is less than the second string
0 if the strings are equal
A positive integer if the first string is greater than the second string

In this case, the output properly indicates that s1 is "less than" s2. In Unicode (as in ASCII), a
lowercase letter has a smaller value than an uppercase letter:

conpare sl: abcd, s2: ABCD, result: -1

The second comparison uses an overloaded version of Conpar e which takes a third, Boolean
parameter, whose value determines whether case should be ignored in the comparison. If the value of
this "ignore case" parameter is t r ue, the comparison is made without regard to case, as in the
following:

result = string. Conpare(sl,s2, true);

Consol e. WiteLine("conmpare insensitive\n");

Console. WiteLine("s4: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

- The result is written with two W i t eLi ne statements to keep the
#s J. lines short enough to print properly in this book.

214

Programming C#

This time the case is ignored and the result is 0, indicating that the two strings are identical (without
regard to case):

conmpare insensitive

s4: abcd, s2: ABCD, result: O

Example 10-1 then concatenates some strings. There are a couple of ways to accomplish this. You
can use the Concat () method, which is a static public method of st ri ng:

string s6 = string. Concat (s1, s2);

or you can simply use the overloaded concatenation (+) operator:
string s7 = sl + s2;

In both cases, the output reflects that the concatenation was successful:

s6 concatenated fromsl and s2: abcdABCD
s7 concatenated fromsl + s2: abcdABCD

Similarly, creating a new copy of a string can be accomplished in two ways. First, you can use the
static Copy method:

string s8 = string. Copy(s7);

or for convenience, you might instead use the overloaded assignment operator (=), which will implicitly
make a copy:

string s9 = s8;
Once again, the output reflects that each method has worked:

s8 copied froms7: abcdABCD
s9 = s8: abcdABCD

The .NET St ri ng class provides three ways to test for the equality of two strings. First, you can use
the overloaded Equal s() method and ask s9 directly whether s8 is of equal value:

Consol e. WiteLine("\nDoes s9. Equal s(s8)?: {0}",
s9. Equal s(s8));

A second technique is to pass both strings to St r i ng's static method Equal s() :

Consol e. WiteLine("Does Equal s(s9,s8)?: {0}",
string. Equal s(s9, s8));

A final method is to use the overloaded equality operator (==) of St ri ng:
Consol e. WiteLine("Does s9==s8?: {0}", s9 == s8);
In each of these cases, the returned result is a Boolean value, as shown in the output:

Does s9. Equal s(s8)?: True
Does Equal s(s9,s8)?: True

215

Does s9==s87?7: True

The equality operator is the most natural when you have two string objects, however some languages,
such as VB.NET, do not support operator overloading, so be sure to override the Equal s instance
method as well.

The next several lines in Example 10-1 use the index operator (| |) to find a particular character
within a string and the Lengt h property to return the length of the entire string:

Console. WiteLine("\nString s9 is {0} characters | ong.,
s9. Lengt h);

Consol e. WiteLine("The 5th character is {1}\n",
s9. Length, s9[4]);

Here's the output:

String s9 is {8} characters |ong.
The 5th character is A

The EndsW t h() method asks a string whether a substring is found at the end of the string. Thus,
you might ask s 3 first if it ends with " Tr ai ni ng" (which it does not) and then if it ends with
“Consul ting" (which it does):

/] test whether a string ends with a set of characters
Console. WiteLine("s3:{0}\nEnds with Training?: {1}\n",
s3,
s3. EndsWth("Trai ning"));
Console. WiteLine("Ends with Consulting?: {0}",
s3. EndsWt h("Consul ting"));

The output reflects that the first test fails and the second succeeds:

s3: Li berty Associ ates, Inc.

provi des custom . NET devel opnent,
on-site Training and Consulting
Ends with Training?: Fal se

Ends with Consulting?: True

The | ndexOr () method locates a substring within our string, and the | nsert () method inserts a
new substring into a copy of the original string.

The following code locates the first occurrence of “ Tr ai ni ng" in s3:

Consol e. WiteLine("\nThe first occurrence of Training ");
Console. WiteLine ("in s3 is {0}\n",
s3. I ndexOr (" Trai ning"));

The output indicates that the offset is 103:

The first occurrence of Training
in s3is 103

You can then use that value to insert the word " excel | ent ", followed by a space, into that string.
Actually the insertion is into a copy of the string returned by the | nsert () method and assigned to
s10:

216

Programming C#

string s10 = s3.Insert (103, "excellent ");
Consol e. WitelLine("s10: {0}\n",s10);

Here's the output:

s10: Liberty Associates, Inc.
provi des custom . NET devel opnent,
on-site excellent Training and Consulting

Finally, you can combine these operations to make a more efficient insertion statement:

string s11 = s3.Insert(s3.IndexC (" Training"),"excellent ");
Console. WiteLine("sl11l: {0}\n",sl1l);

with the identical output:

sl1l: Liberty Associates, Inc.
provi des custom . NET devel opnent,
on-site excellent Training and Consulting

10.1.4 Finding Substrings

The St ri ng type provides an overloaded Subst r i ng method for extracting substrings from within
strings. Both versions take an index indicating where to begin the extraction, and one of the two
versions takes a second index to indicate where to end the search. The Subst ri ng method is

illustrated in Example 10-2.

Example 10-2. Using the Substring() method

nanespace Programm ng_CShar p

{
usi ng System
usi ng System Text;

public class StringTester

{
static void Main()
{
/] create sonme strings to work with
string s1 = "One Two Three Four";
int ix;

/'l get the index of the |ast space
i x=sl.Last|ndexOf (" ");

/'l get the |ast word.
string s2 = sl.Substring(ix+1);

/] set sl1 to the substring starting at O

/1 and ending at ix (the start of the |last word
/1 thus sl has one two three

sl = s1. Substring(0,ix);

/1 find the last space in sl (after two)
i x = sl. LastlndexOF(" ");

/1l set s3 to the substring starting at
/'l ix, the space after "two" plus one nore

217

/1 thus s3 = "three"
string s3 = sl1.Substring(ix+1);

/'l reset sl to the substring starting at O
/1 and ending at ix, thus the string "one two"
sl = sl.Substring(0,ix);

/'l reset ix to the space between
/1 "one" and "two"
ix = sl.LastlndexOf(" ");

/] set s4 to the substring starting one
/'l space after ix, thus the substring "two"
string s4 = sl.Substring(ix+1);

/1 reset sl to the substring starting at 0O
/1 and ending at ix, thus "one"
sl = s1. Substring(0,ix);

/1 set ix to the last space, but there is
/1 none so ix now = -1
ix = sl.LastlndexOf(" ");

/1l set s5 to the substring at one past

/1 the last space. there was no | ast space
/1 so this sets s5 to the substring starting
/] at zero

string s5 = sl1.Substring(ix+1);

Consol e. WiteLine ("s2: {0}\ns3: {1}",s2,s3);
Consol e. WitelLine ("s4: {0}\ns5: {1}\n", s4,s5);
Consol e. WiteLine ("s1: {0}\n",sl);

}

}
}
Qut put :
s2: Four
s3: Three
s4: Two
s5: One
sl: One

Example 10-2 is not an elegant solution to the problem of extracting words from a string, but it is a
good first approximation and it illustrates a useful technique. The example begins by creating a string,
sl:

string s1 = "One Two Three Four";

Then 1 x is assigned the value of the last space in the string:

i x=sl. Lastl ndexOF (" ");

Then the substring that begins one space later is assigned to the new string, s2:

string s2 = sl1.Substring(ix+1);

218

Programming C#

This extracts from x1+1 to the end of the line, assigning to s2 the value Four .

The next step is to remove the word Four from s1. You can do this by assigning to s1 the substring of
s1 which begins at O and ends at i x:

sl = s1.Substring(0,ix);
We reassign i x to the last (remaining) space, which points us to the beginning of the word Thr ee,

which we then extract into string s 3. We continue like this until we've populated s4 and s5. Finally, we
print the results:

s2: Four
s3: Three
s4: Two
s5: One
sl: One

Not elegant, but it worked and it illustrates the use of Subst ri ng. This is not unlike using pointer
arithmetic in C++, but without using pointers and unsafe code.

10.1.5 Splitting Strings

A more effective solution to the problem illustrated in Example 10-2 would be to use the Spl it ()
method of St ri ng, whose job is to parse a string into substrings. Touse Spl it (), you passin an
array of delimiters (characters which will indicate a split in the words) and the method returns an array
of substrings. Example 10-3 illustrates:

Example 10-3. Using the Split() method

nanmespace Programm ng_CShar p
{

usi ng System

usi ng System Text;

public class StringTester
{
static void Main()
{
/'l create sone strings to work with
string s1 = "One, Two, Three Liberty Associates, Inc.";

/'l constants for the space and conma characters
const char Space ="' ';
const char Comma =",";

/1l array of delimters to split the sentence with
char[] delimters = new char[]

{
Space,
Comma

};

string output = "";
int ctr = 1;

/'l split the string and then iterate over the
/'l resulting array of strings

219

foreach (string subString in sl1.Split(delimters))

{
out put += ctr++;
out put += ": ";
out put += subString;
out put += "\n";
}
Consol e. WiteLi ne(output);
}
}
}
CQut put :
1: One
2: Two
3: Three
4. Liberty
5: Associ at es
6:
7. Inc.

You start by creating a string to parse:

string s1 = "One, Two, Three Liberty Associates, Inc.";

The delimiters are set to the space and comma characters. You then call spl i t on this string, and
pass the results to the f or each loop:

foreach (string subString in sl1.Split(delimters))

You start by initializing output to an empty string. You then build up the output string in four steps. You
concatenate the value of ct r . Next you add the colon, then the substring returned by split, then the
newline. With each concatenation a new copy of the string is made, and all four steps are repeated for
each substring found by spl i t . This repeated copying of st r i ng is terribly inefficient.

The problem is that the string type is not designed for this kind of operation. What you want is to
create a new string by appending a formatted string each time through the loop. The class you need is
StringBuil der.

10.1.6 Manipulating Dynamic Strings

The St ringBui | der class is used for creating and modifying strings. Semantically, it is the
encapsulation of a constructor for a St r i ng. The important members of St ri ngBui | der are
summarized in Table 10-2.

Table 10-2. StringBuilder methods

Method Explanation
Capacity() Retrieves or asgigns the number of characters the St ri ngBui | der is
capable of holding.
Chars() The indexer.
Length() Retrieves or assigns the length of the St ri ngBui | der.
MaxCapacity() Retrieves the maximum capacity of the St ri ngBui | der .
Append() Overloaded public method that appends a typed object to the end of the

220

Programming C#

current St ri ngBui | der .

AppendFor mat (

)

Overloaded public method that replaces format specifiers with the formatted
value of an object.

Ensur eCapaci t y(

)

Ensures the current St ri ngBui | der has a capacity at least as large as the
specified value.

Insert()

Overloaded public method that inserts an object at the specified position.

Renove()

Removes the specified characters.

Repl ace()

Overloaded public method that replaces all instances of specified characters
with new characters.

Unlike St ri ng, St ri ngBui der is mutable; when you modify a St ri ngBui | der you modify the
actual string, not a copy. Example 10-4 replaces the St r i ng object in Example 10-3 with a

StringBui | der object.

Example 10-4. Using a StringBuilder

nanespace Programm ng_CShar p

{
usi ng System
usi ng System Text;
public class StringTester
{
static void Main()
{
/1l create sonme strings to work with
string s1 = "One, Two, Three Liberty Associates, Inc.";
/1l constants for the space and comma characters
const char Space ="' ';
const char Comma = "',";
/] array of delimters to split the sentence with
char[] delimters = new char[]
{
Space,
Comma
1
/1 use a StringBuilder class to build the
/1 output string
StringBuil der output = new StringBuilder();
int ctr = 1;
/1l split the string and then iterate over the
/1l resulting array of strings
foreach (string subString in sl.Split(delimters))
/1 AppendFormat appends a fornmatted string
out put . AppendFormat ("{0}: {1}\n",ctr++, subString);
}
Consol e. Wit eLi ne(out put);
}
}
}

221

Only the last part of the program is modified. Rather than using the concatenation operator to modify
the string, you use the AppendFor mat method of St ri ngBui | der to append new, formatted strings
as you create them. This is much easier and far more efficient. The output is identical:

One

Two

Thr ee

Li berty
Associ at es

NogRwhRE

I nc.

Delimiter Limitations

Because you passed in delimiters of both comma and space, the space after
the comma between "Associates" and "Inc.” is returned as a word,
numbered 6 above. That is not what you want. To eliminate this you need to
tell split to match a comma (as between One, Two, and Thr ee) or a space
(as between Li berty and Associ at es) or a comma followed by a space.
It is that last bit that is tricky and requires that you use a regular expression.

10.2 Regular Expressions

Regular expressions are a powerful language for describing and manipulating text. A regular
expression is applied to a string—that is, to a set of characters. Often that string is an entire text
document.

The result of applying a regular expression to a string is either to return a substring, or to return a new
string representing a modification of some part of the original string. Remember that strings are
immutable and so cannot be changed by the regular expression.

By applying a properly constructed regular expression to the following string:

One, Two, Three Liberty Associates, Inc.

you can return any or all of its substrings (e.g., Li berty or One), or modified versions of its substrings
(e.g., LI BeRt Y or OnE). What the regular expression does is determined by the syntax of the regular
expression itself.

A regular expression consists of two types of characters: literals and metacharacters. A literal is just a
character you wish to match in the target string. A metacharacter is a special symbol which acts as a
command to the regular expression parser. The parser is the engine responsible for understanding the
regular expression. For example, if you create a regular expression:

A(Fromn To| Subj ect | Dat e) :

this will match any substring with the letters "Fr ont' or the letters "To" or the letters "Subj ect " or the
letters "Dat e" so long as those letters start a new line (*) and end with a colon (:).

The carrot () in this case indicates to the regular expression parser that the string you're searching
for must begin a new line. The letters "Fr on and "To" are literals, and the metacharacters left and
right parentheses ((,)) and vertical bar (|) are all used to group sets of literals and indicate that any
of the choices should match. (Note that ** is a metacharacter as well, used to indicate the start of the
line.)

222

Programming C#

Thus you would read this line:
N(From To| Subj ect | Dat e) :

as follows: "match any string which begins a new line followed by any of the four literal strings Fr om
To, Subj ect, or Dat e followed by a colon."

- A full explanation of regular expressions is beyond the scope of
) this book, but all the regular expressions used in the examples are
" 4 explained. For a complete understanding of regular expressions, |

highly recommend Mastering Regular Expressions by Jeffrey E. F.
Friedl (published by O'Reilly & Associates, Inc.).

10.2.1 Using Regular Expressions: Regex

The .NET Framework provides an object-oriented approach to regular expression matching and
replacement.

- C#'s regular expressions are based on Perl5 regexp, including
s | lazy quantifiers (?7?, *?, +?, {n,m}?), positive and negative look
" 4+ ahead, and conditional evaluation.

The Base Class Library namespace Syst em Text . Regul ar Expr essi ons is the home to all

the .NET Framework objects associated with regular expressions. The central class for regular
expression support is Regex, which represents an immutable, compiled regular expression. Although
instances of Regex can be created, the class also provides a number of useful static methods. The
use of Regex is illustrated in Example 10-5.

Example 10-5. Using the Regex class for regular expressions
nanmespace Programm ng_CShar p

{
usi ng System
usi ng System Text;
usi ng System Text. Regul ar Expr essi ons;
public class Tester
{
static void Main()
{
string sl =
"One, Two, Three Liberty Associates, Inc.”
Regex t heRegex = new Regex(" |, ");
StringBuil der sBuilder = new StringBuilder();
int id=1;
foreach (string subString in theRegex. Split(sl))
{
sBui | der. AppendFor mat (
"{0}: {1}\n", id++, subString);
}
Consol e. WiteLine("{0}", sBuilder);
}
}
}

223

o
—
©
c
—

One

Two

Thr ee

Li berty
Associ at es
I nc.

oaRrwbR

Example 10-5 begins by creating a string, s1, identical to the string used in Example 10-4.
string s1 = "One, Two, Three Liberty Associates, Inc.";

and a regular expression, which will be used to search that string:
Regex t heRegex = new Regex(" |, ");

One of the overloaded constructors for Regex takes a regular expression string as its parameter. This
is a bit confusing. In the context of a C# program, which is the regular expression: the text passed in to
the constructor, or the Regex object itself? It is true that the text string passed to the constructor is a
regular expression in the traditional sense of the term. From an object-oriented C# point of view,
however, the argument to the constructor is just a string of characters; itis t heRegex that is the
regular expression object.

The rest of the program proceeds like the earlier Example 10-4; except that rather than calling
Split() onstring s1, the Split() method of Regex is called. Regex. Split() actsin much
the same way as St ring. Split(), returning an array of strings as a result of matching the regular
expression pattern within t heRegex.

Regex. Split() is overloaded. The simplest version is called on an instance of Regex as shown in
Example 10-5. There is also a static version of this method, which takes a string to search and the
pattern to search with, as illustrated in Example 10-6.

Example 10-6. Using static Regex.Split()

nanmespace Programm ng_CShar p

{
usi ng System
usi ng System Text;
usi ng System Text . Regul ar Expr essi ons;
public class Tester
{
static void Main()
{
string sl =
"One, Two, Three Liberty Associates, Inc.";
StringBuil der sBuilder = new StringBuilder();
int id = 1;
foreach (string subStr in Regex.Split(sl," |, "))
sBui | der. AppendFormat ("{0}: {1}\n", id++, subStr);
}
Console. WiteLine("{0}", sBuilder);
}
}
}

224

Programming C#

Example 10-6 is identical to Example 10-5, except that the latter example does not instantiate an
object of type Regex. Instead, Example 10-6 uses the static version of Spl it (), which takes two
arguments: a string to be searched and a regular expression string that represents the pattern to
match.

The instance method of Spl it () is also overloaded with versions that limit the number of times the
split will occur and also that determine the position within the target string where the search will begin.

10.2.2 Using Regex Match Collections

Two additional classes in the .NET Regul ar Expr essi ons namespace allow you to search a string
repeatedly, and to return the results in a collection. The collection returned is of type

Vet chCol | ect i on, which consists of zero or more Vat ch objects. Two important properties of a
Vet ch object are its length and its value, each of which can be read as illustrated in Example 10-7.

Example 10-7. Using MatchCollection and Match

namespace Programm ng_CShar p
{
usi ng System
usi ng System Text . Regul ar Expr essi ons;

cl ass Test

{
public static void Main()

{

string stringl = "This is a test string";

/1 find any nonwhitespace followed by whitespace
Regex theReg = new Regex(@ (\S+)\s");

/'l get the collection of matches
Mat chCol | ecti on theMatches =
t heReg. Mat ches(stringl);

/'l iterate through the collection
foreach (Match theMatch in theMatches)
{
Consol e. Wit eLi ne(
"t heMatch. Length: {0}", theMatch. Length);

if (theMatch.Length !'= 0)
{
Consol e. WiteLine("thewatch: {0}",
theMat ch. ToString());

}
Qut put :

t heMat ch. Length: 5
t heMatch: This

t heMat ch. Length: 3
theMatch: is

t heMat ch. Length: 2
t heMvatch: a

225

t heMat ch. Length: 5
t heMat ch: test

Example 10-7 creates a simple string to search:
string stringl = "This is a test string”;
and a trivial regular expression to search it:

Regex theReg = new Regex(@ (\S+)\s");

The string \ S finds nonwhitespace, and the plus sign indicates one or more. The string \ s (note
lowercase) indicates whitespace. Thus, together, this string looks for any nonwhitespace characters
followed by whitespace.

Remember that the at (@ symbol before the string creates a
«s |, verbatim string, which avoids the necessity of escaping the
4% backslash (\) character.

The output shows that the first four words were found. The final word was not found because it is not
followed by a space. If you insert a space after the word st r i ng and before the closing quote marks,
this program will find that word as well.

The | engt h property is the length of the captured substring, and will be discussed in Section 10.2.4,
later in this chapter.

10.2.3 Using Regex Groups

It is often convenient to group subexpression matches together so that you can parse out pieces of the
matching string. For example, you might want to match on IP addresses and group all | Paddr esses
found anywhere within the string.

i

IP addresses are used to locate computers on a network, and
.) typically have the form 123.456.789.012.

1wk

IS

The G oup class allows you to create groups of matches based on regular expression syntax, and
represents the results from a single grouping expression.

A grouping expression names a group and provides a regular expression; any substring matching the
regular expression will be added to the group. For example, to create an i p group you might write:

@ (?<ip>(\d|\.)+)\s"

The Vat ch class derives from G- oup, and has a collection called "G oups" which contains all the
groups your Vat ch finds.

Creation and use of the Gr oups collection and G- oup classes is illustrated in Example 10-8.
Example 10-8. Using the Group class

namespace Programm ng_CShar p

{

226

Programming C#

usi ng System
usi ng System Text. Regul ar Expr essi ons;

cl ass Test
{
public static void Main()

{
string stringl = "04:03:27 127.0.0.0 LibertyAssoci ates. cont;

/1l group tine = one or nore digits or colons foll owed by space
Regex theReg = new Regex(@ (?<tine>(\d|\:)+)\s" +

/1l ip address = one or nore digits or dots followed by space
@ (?<ip>(\d|\.)+)\s" +

/1l site = one or nore characters

@(?<site>\S+)");

/'l get the collection of matches
Mat chCol | ecti on theMat ches = t heReg. Mat ches(stringl);

/'l iterate through the collection
foreach (Match theMatch in thelMatches)

if (theMatch.Length I'= 0)
{
Consol e. WiteLine("\ntheMatch: {0}",
t heMatch. ToString());
Consol e.WiteLine("time: {0}",
t heMat ch. Groups["tinme"]);
Console. WiteLine("ip: {0}",
t heMvat ch. Groups["i p"]);
Consol e. WitelLine("site: {0}",
t heMat ch. Groups["site"]);

}

Again, Example 10-8 begins by creating a string to search:
string stringl = "04:03:27 127.0.0.0 Li bertyAssoci ates. cont;

This string might be one of many recorded in a web server log file or produced as the result of a
search of the database. In this simple example there are three columns: one for the time of the log
entry, one for an IP address, and one for the site, each separated by spaces; of course, in a real
example solving a real-life problem, you might need to do more complex searches and choose to use
other delimiters and more complex searches.

In Example 10-8, we want to create a single Regex object to search strings of this type and break
them into three groups: t | ne, | p address, and si t e. The regular expression string is fairly simple, so
the example is easy to understand (however, keep in mind that in a real search, you would probably
only use a part of the source string rather than the entire source string, as shown here:)

/1 group time = one or nore digits or colons

/1 followed by space

Regex theReg = new Regex(@ (?<tine>(\d|\:)+)\s" +
/1 ip address = one or nore digits or dots

/1 followed by space

@ (?<ip>(\d|\.)+)\s" +

227

/] site = one or nore characters
@(7?<site>\S+)");

Let's focus on the characters that create the group:
(?<time>

The parentheses create a group. Everything between the opening parenthesis (just before the
guestion mark) and the closing parenthesis (in this case, after the + sign) is a single unnamed group.

(@ (?<tinme>(\d|\:)+)
The string ?<t | ne> names that group t i ne and the group is associated with the matching text, the
regular expression (\ d| \:) +)\ s". This regular expression can be interpreted as "one or more digits

or colons followed by a space.”

Similarly, the string ?<i p> names the i p group, and ?<si t e> names the si t e group. As Example
10-7 does, Example 10-8 asks for a collection of all the matches:

Mat chCol | ecti on theMatches = theReg. Matches(stringl);
Example 10-8 iterates through the Vat ches collection, finding each Vat ch object.

If the Lengt h of the Vat ch is greater than 0, a Vat ch was found; then it prints the entire match:

Consol e. WiteLine("\nthewvatch: {0}",
theMat ch. ToString());

Here's the output:

theMat ch: 04:03:27 127.0.0.0 LibertyAssoci ates.com
It then gets the "time" group from the Vat ch' s Gr oups collection and prints that value:

Console. WiteLine("time: {0}",
t heMat ch. Groups["tinme"]);

This produces the output:
tinme: 04:03:27
The code then obtains | p and si t e groups:
Console. WiteLine("ip: {0}",
t heMat ch. Groups["ip"]);

Console. WiteLine("site: {0}",
t heMat ch. Groups["site"]);

This produces the output:

ip: 127.0.0.0
site: LibertyAssociates.com

228

Programming C#

In Example 10-8, the Vat ches collection has only one Vat ch. It is possible, however, to match
more than one expression within a string. To see this, modify st ri ngl in Example 10-8 to provide
several | ogFi | e entries instead of one, as follows:

string stringl = "04:03:27 127.0.0.0 LibertyAssoci ates.com" +
"04:03:28 127.0.0.0 foo.com" +
"04:03:29 127.0.0.0 bar.com" ;

This creates three matches in the Vat chCol | ecti on, theMat ches. Here's the resulting output:

theMat ch: 04:03:27 127.0.0.0 LibertyAssoci ates. com
time: 04:03:27

ip: 127.0.0.0

site: LibertyAssociates.com

t heMat ch: 04:03:28 127.0.0.0 foo.com
tine: 04:03:28

ip: 127.0.0.0

site: foo.com

t heMat ch: 04:03:29 127.0.0.0 bar.com
tine: 04:03:29

ip: 127.0.0.0

site: bar.com

In this example, t helVat ches contains three Vat ch objects. Each time through the outer f or each
loop we find the next Vat ch in the collection and display its contents:

foreach (Match theMatch in theMatches)

For each of the Vat ch items found, you can print out the entire match, various groups, or both.

10.2.4 Using CaptureCollection

Each time a Regex object matches a subexpression, a Capt ur e instance is created and added to a
CaptureCol | ecti on collection. Each capture object represents a single capture. Each group has its
own capture collection of the matches for the subexpression associated with the group.

A key property of the Capt ur e objectis its | engt h, which is the length of the captured substring.
When you ask Vat ch for its length, it is Capt ur e. Lengt h that you retrieve because Vat ch derives
from Gr oup, which in turn derives from Capt ur e.

i

The regular expression inheritance scheme in .NET allows Vat ch
wj. o include in its interface the methods and properties of these

parent classes. In a sense, a G oup is-a capture—it is a capture
that encapsulates the idea of grouping subexpressions. A Vat ch,
in turn, is-a G- oup—it is the encapsulation of all the groups of
subexpressions making up the entire match for this regular
expression. (See Chapter 5 for more about the is-a relationship
and other relationships.)

=
Ty

Typically, you will find only a single Capt ur e ina Capt ur eCol | ect i on; but that need not be so.
Consider what would happen if you were parsing a string in which the company name might occur in

229

either of two positions. To group these together in a single match you create the ?<conpany> group
in two places in your regular expression pattern:

Regex theReg = new Regex(@ (?<tine>(\d|\:)+)\s" +
@ (?<conpany>\ S+)\s" +
@ (?<ip>(\d]\.)+)\s" +
@ (?<conpany>\ S+)\s");

This regular expression group captures any matching string of characters that follows t i ne, and also
any matching string of characters that follows i p. Given this regular expression, you are ready to
parse the following string:

string stringl = "04:03:27 Jesse 0.0.0.127 Liberty ";

The string includes names in both the positions specified. Here is the result:

t heMat ch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27

ip: 0.0.0.127

Conpany: Liberty

What happened? Why is the Conpany group showing Li ber t y? Where is the first term, which also
matched? The answer is that the second term overwrote the first. The group, however, has captured
both; and its Capt ur es collection can show that to you, as illustrated in Example 10-9.

Example 10-9. Examining the capture collection
nanespace Programr ng_CShar p

{
usi ng System
usi ng System Text. Regul ar Expr essi ons;

cl ass Test

{
public static void Main()

{
/'l the string to parse
/1 note that nanes appear in both
/'l searchabl e positions
string stringl =
"04:03:27 Jesse 0.0.0.127 Liberty "

/'l regul ar expression which groups conpany tw ce
Regex theReg = new Regex(@ (?<time>(\d|\:)+)\s" +
@ (?<conpany>\ S+)\s" +
@ (?<ip>(\d|\.)+)\s" +
@ (?<conpany>\ S+)\s");

/1l get the collection of natches
Mat chCol | ection theMat ches =
t heReg. Mat ches(stringl);

/1l iterate through the collection
foreach (Match theMatch in theMatches)

if (theMatch.Length != 0)
{
Consol e. WiteLine("thewvatch: {0}"
t heMat ch. ToString());

230

Programming C#

Consol e. WiteLine("time: {0}",
t heMat ch. Groups["tine"]);
Console. WiteLine("ip: {0}",
t heMat ch. Groups["ip"]);
Consol e. Wit eLi ne(" Conmpany: {0}",
t heMvat ch. Groups[" conpany"]);

/1l iterate over the captures collection
/1 in the conpany group within the
/'l groups collection in the match
foreach (Capture cap in

t heMat ch. Gr oups["conpany"] . Capt ur es)
{

}

Consol e. WiteLine("cap: {0}",cap.ToString());

Qut put :
t heMat ch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27
ip: 0.0.0.127
Conpany: Liberty
cap: Jesse
cap: Liberty

The code in bold iterates through the Capt ur es collection for the Conpany group.

foreach (Capture cap in
t heMat ch. Gr oups["conpany"] . Capt ur es)

Let's review how this line is parsed. The compiler begins by finding the collection that it will iterate over.
t helVat ch is an object that has a collection named G- oups. The G- oups collection has an indexer
that takes a string and returns a single G- oup object. Thus, the following line returns a single G- oup
object:

t heMat ch. Groups[" conmpany"]

The G- oup object has a collection named Capt ur es. Thus, the following line returns a Capt ur es
collection for the Gr oup stored at Gr oups|[" conpany”] within the t helVat ch object:

t heMvat ch. Gr oups["conpany"] . Capt ur es

The f or each loop iterates over the Capt ur es collection, extracting each element in turn and
assigning it to the local variable cap, which is of type Capt ur e. You can see from the output that
there are two capture elements: Jesse and Li ber t y. The second one overwrites the first in the
group, and so the displayed value is just Li ber t y, but by examining the Capt ur es collection you can
find both values that were captured.

231

232

Programming C#

Chapter 11. Handling Exceptions

C#, like many object-oriented languages, handles errors and abnormal conditions with exceptions. An
exception is an object that encapsulates information about an unusual program occurrence.

It is important to distinguish between bugs, errors, and exceptions. A bug is a programmer mistake
that should be fixed before the code is shipped. Exceptions are not a protection against bugs.
Although a bug might cause an exception to be thrown, you should not rely on exceptions to handle
your bugs. Rather, you should fix the bug.

An error is caused by user action. For example, the user might enter a number where a letter is
expected. Once again, an error might cause an exception, but you can prevent that by catching errors
with validation code. Whenever possible, errors should be anticipated and prevented.

Even if you remove all bugs and anticipate all user errors, you will still run into predictable but
unpreventable problems, such as running out of memory or attempting to open a file that no longer
exists. You cannot prevent exceptions, but you can handle them so that they do not bring down your
program.

When your program encounters an exceptional circumstance, such as running out of memory, it
throws (or "raises") an exception. When an exception is thrown, execution of the current function halts
and the stack is unwound until an appropriate exception handler is found.

This means that if the currently running function does not handle the exception, the current function
will terminate and the calling function will get a chance to handle the exception. If none of the calling
functions handles it, the exception will ultimately be handled by the CLR, which will abruptly terminate
your program.

An exception handler is a block of code designed to handle the exception you've thrown. Exception
handlers are implemented as cat ch statements. Ideally, if the exception is caught and handled, the
program can fix the problem and continue. Even if your program can't continue, by catching the
exception you have an opportunity to print a meaningful error message and terminate gracefully.

If there is code in your function that must run regardless of whether an exception is encountered (e.qg.,
to release resources you've allocated), you can place that code in a finally block, where it is certain to
run, even in the presence of exceptions.

11.1 Throwing and Catching Exceptions
In C#, you can throw only objects of type Syst em Except i on, or objects derived from that type. The
CLR Syst emnamespace includes a number of exception types that can be used by your program.

These exception types include Ar gunent Nul | Exception, | nVal i dCast Excepti on, and
Over fl owexcept i on, as well as many others.

11.1.1 The throw Statement

To signal an abnormal condition in a C# class, you throw an exception. To do this, you use the
keyword t hr ow. This line of code creates a new instance of Syst em Except i on and then throws it:

t hrow new System Exception();

Throwing an exception immediately halts execution while the CLR searches for an exception handler.
If an exception handler cannot be found in the current method, the runtime unwinds the stack, popping

233

up through the calling methods until a handler is found. If the runtime returns all the way through
Mai n() without finding a handler, it terminates the program. Example 11-1 illustrates.

Example 11-1. Throwing an exception
nanespace Programr ng_CShar p

{
usi ng System
public class Test
{
public static void Main()
{
Consol e. WiteLine("Enter Main...");
Test t = new Test();
t.Funcl();
Console. WiteLine("Exit Main...");
}
public void Funcl()
{
Consol e. WitelLine("Enter Funcl...");
Func2();
Consol e. WiteLine("Exit Funcl...");
}
public void Func2()
{
Consol e. WiteLine("Enter Func2...");
t hrow new System Exception();
Console. WiteLine("Exit Func2...");
}
}
}
CQut put :
Enter Main. ..

Enter Funcl...
Enter Func2...

Exception occurred: System Exception: An exception of type
System Excepti on was thrown.
at Progranm ng_CShar p. Test. Func2()
in ...exceptionsOl.cs:line 26
at Progranm ng_CSharp. Test. Funcl()
in ...exceptionsOl.cs:line 20
at Progranm ng_CSharp. Test. Main()
in ...exceptions0l.cs:line 12

This simple example writes to the console as it enters and exits each method. Vai n() creates an
instance of type Test and call Func1(). After printing out the Ent er Funcl message, Funcl()
immediately calls Func2().Func2() prints out the first message and throws an object of type
Syst em Excepti on.

Execution immediately stops, and the CLR looks to see if there is a handler in Func2(). There is not,
and so the runtime unwinds the stack (never printing the exi t statement) to Func1(). Again, there
is no handler, and the runtime unwinds the stack back to Vai n(). With no exception handler there,
the default handler is called, which prints the error message.

234

Programming C#

11.1.2 The catch Statement

In C#, an exception handler is called a catch block and is created with the cat ch keyword.

In Example 11-2, the t hr ow statement is executed within at r v block, and a cat ch block is used to
announce that the error has been handled.

Example 11-2. Catching an exception
nanespace Programm ng_CShar p

usi ng System

public class Test

{
{
publ
{
}
publ
{
}
publ
{
}
}
}

Qut put :
Enter Main..
Ent er Funcl.
Ent er Func?2.

ic static void Main()

Consol e. WiteLine("Enter Min...

Test t = new Test();
t.Funcl();

Consol e. WiteLine("Exit Main...'

ic void Funcl()

Consol e. WiteLine("Enter Funcl...

Func2();

Console. WiteLine("Exit Funcl...

ic void Func2()

Consol e. WiteLine("Enter Func2...

try
{
Consol e. WiteLine("Entering try block...");
t hrow new System Excepti on(
Console. WiteLine("Exiting try block...");
}
catch
{
Consol e. Wit eLi ne(
"Exception caught and handled.");
}

Consol e. WitelLine("Exit Func2...

Entering try block. ..
Excepti on caught and handl ed.

Exi t
Exi t
Exi t

Func?2. .
Funcl..
Mai n. ..

"),

DE

)

")

235

Example 11-2 is identical to Example 11-1 except that now the program includes at ry/cat ch
block. You would typically put the t r y block around a potentially "dangerous" statement, such as
accessing a file, allocating memory, and so forth.

Following the t r y statement is a generic cat ch statement. The cat ch statement in Example 11-2
is generic because you haven't specified what kind of exceptions to catch. In this case the statement
will catch any exceptions that are thrown. Using cat ch statements to catch specific types of
exceptions is discussed later in this chapter.

11.1.2.1 Taking corrective action

In Example 11-2, the cat ch statement simply reports that the exception has been caught and
handled. In a real-world example, you might take corrective action to fix the problem that caused an
exception to be thrown. For example, if the user is trying to open a read-only file, you might invoke a
method that allows the user to change the attributes of the file. If the program has run out of memory,
you might give the user an opportunity to close other applications. If all else fails, the cat ch block can
print an error message so that the user knows what went wrong.

11.1.2.2 Unwinding the call stack

Examine the output of Example 11-2 carefully. You see the code enter Vai n(), Funcl(),
Func2(),andthetry block. You never see it exit the t r v block, though it does exit Func2(),
Funcl(),and Mai n().What happened?

When the exception is thrown, execution halts immediately and is handed to the cat ch block. It never
returns to the original code path. It never gets to the line that prints the exi t statement for the t ry
block. The cat ch block handles the error, and then execution falls through to the code following

cat ch.

Without cat ch the call stack unwinds, but with cat ch it does not unwind as a result of the exception.
The exception is now handled; there are no more problems; and the program continues. This becomes
a bit clearer if you move the t r y/cat ch blocks up to Func1(), as shown in Example 11-3.

Example 11-3. Catch in a calling function
nanespace Programr ng_CShar p

{
usi ng System

public class Test

{
public static void Main()
{
Console. WiteLine("Enter Main...");
Test t = new Test();
t.Funcl();
Console. WiteLine("Exit Main...");
}
public void Funcl()
{
Consol e. WiteLine("Enter Funcl...");
try
{

Consol e. WiteLine("Entering try block...");
Func2();

236

Programming C#

Console. WiteLine("Exiting try block...");

}
cat ch
{
Consol e. Wit eLi ne(
"Exception caught and handl ed.");
}
Console. WiteLine("Exit Funcl...");
}
public void Func2()
{
Consol e. WiteLine("Enter Func2...");
t hrow new System Exception();
Console. WiteLine("Exit Func2...");
}
}
}
Qut put :
Enter Min...

Enter Funcl...

Entering try bl ock...

Enter Func2...

Exception caught and handl ed.
Exit Funcl...

Exit Main...

This time the exception is not handled in Func2();itis handled in Funcl().When Func2() is
called, it prints the Ent er statement and then throws an exception. Execution halts and the runtime
looks for a handler, but there isn't one. The stack unwinds, and the runtime finds a handler in
Funcl(). The cat ch statementis called, and execution resumes immediately following the cat ch
statement, printing the Exi t statement for Funcl1() and then for Vai n().

Make sure you are comfortable with why the Exi ti ng Try Bl ock statement and the Exi t Func?2
statement are not printed. This is a classic case where putting the code into a debugger and then
stepping through it can make things very clear.

11.1.2.3 Creating dedicated catch statements

So far, you've been working only with generic cat ch statements. You can create dedicated cat ch
statements that handle only some exceptions and not others, based on the type of exception thrown.
Example 11-4 illustrates how to specify which exception you'd like to handle.

Example 11-4. Specifying the exception to catch

nanespace Programr ng_CShar p

{
usi ng System

public class Test

{
public static void Main()
{
Test t = new Test();
t.Test Func();
}

237

[/ try to divide two nunbers
/1 handl e possi bl e exceptions
public void Test Func()

{
try
{
doubl e a = 5;
double b = 0;
Console. WiteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
}
/1 rnmost derived exception type first
catch (System Di vi deByZer oExcepti on)
Consol e. Wit eLi ne(
"Di vi deByZer oExcepti on caught!");
}
catch (System Arithneti cException)
{
Consol e. Wit eLi ne(
"Arithmeti cException caught!");
}
/'l generic exception type |ast
catch
{
Consol e. Wit eLi ne(
"“Unknown exception caught");
}
}

/1 do the division if |egal
public doubl e DoDivi de(doubl e a, double b)

{
if (b ==0)
t hrow new System Di vi deByZer oException();
if (a==0)
t hrow new System Arithneti cException();
return al/b;
}
}
}
Qut put :

Di vi deByZer oExcepti on caught!

In this example, the DoDi vi de() method will not let you divide zero by another number, nor will it let
you divide a number by zero. It throws an instance of Di vi deByZer oExcept i on if you try to divide
by zero. If you try to divide zero by another number, there is no appropriate exception: dividing zero by
another number is a legal mathematical operation and shouldn't throw an exception at all. For the sake
of this example, assume you don't want to allow division by zero; you will throw an

Arithneti cException.

When the exception is thrown, the runtime examines each exception handler in order and matches the
first one it can. When you run this with a=5 and b=7, the output is:

5/ 7 = 0.7142857142857143

238

Programming C#

As you'd expect, no exception is thrown. However, when you change the value of a to 0, the output is:
Arithmeti cException caught!

The exception is thrown, and the runtime examines the first exception: Di vi deByZer oExcept i on.
Because this does not match, it goes on to the next handler, Ari t hnet i cExcept i on, which does
match.

In a final pass through, suppose you change a to 7 and b to 0. This throws the
Di vi deByZer oExcepti on.

i

You have to be particularly careful with the order of the cat ch
%3 4. Statements, because the Di vi deByZer oExcept i on is derived
ot

from Ari t hnet i cExcept i on. If you reverse the catch
statements, the Di vi deByZer oExcept i on will match the
Arilthmet i cExcepti on handler and the exception will never get
to the Di vi deByZer oExcept i on handler. In fact, if their order is
reversed, it will be impossible for any exception to reach the

Di vi deByZer oExcept i on handler. The compiler will recognize
that the Di vi deByZer oExcept i on handler cannot be reached
and will report a compile error!

It is possible to distribute your t r y/cat ch statements, catching some specific exceptions in one
function and more generic exceptions in higher, calling functions. Your design goals should dictate the
exact design.

Assume you have a method A that calls another method B, which in turn calls method C. Method C
calls method D, which then calls method E. Method E is deep in your code; methods B and A are
higher up. If you anticipate that method E might throw an exception, you should create at r y/cat ch
block deep in your code to catch that exception as close as possible to the place where the problem
arises. You might also want to create more general exception handlers higher up in the code in case
unanticipated exceptions slip by.

11.1.3 The finally Statement

In some instances, throwing an exception and unwinding the stack can create a problem. For example,
if you have opened a file or otherwise committed a resource, you might need an opportunity to close
the file or flush the buffer.

e In C#, this is less of a problem than in other languages, such as
- C++, because the garbage collection prevents the exception from
~ 4 causing a memory leak.

In the event, however, that there is some action you must take regardless of whether an exception is
thrown, such as closing a file, you have two strategies to choose from. One approach is to enclose the
dangerous action in a t r y block and then to close the file in both the cat ch and t r y blocks. However,
this is an ugly duplication of code, and it's error prone. C# provides a better alternative in the f i nal | vy
block.

The code in the f i nal | v block is guaranteed to be executed regardless of whether an exception is
thrown. The Test Func() method in Example 11-5 simulates opening a file as its first action. The

239

method then undertakes some mathematical operations, and then the file is closed. It is possible that
some time between opening and closing the file an exception will be thrown. If this were to occur, it
would be possible for the file to remain open. The developer knows that no matter what happens, at
the end of this method the file should be closed, so the fi | e ¢l ose function call is moved to a
final |y block, where it will be executed regardless of whether an exception is thrown.

Example 11-5. Using a finally block

nanespace Programm ng_CShar p

{
usi ng System

public class Test

{
public static void Main()
{
Test t = new Test();
t. Test Func();
}

/1l try to divide two nunbers
/1 handl e possi bl e exceptions
public void TestFunc()

{
try
{
Console. WiteLine("Open file here");
doubl e a = 5;
double b = 0;
Console. WiteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
Consol e. WiteLine (
"This line may or may not print");
}
/1 nmost derived exception type first
catch (System Di vi deByZer oExcepti on)
{
Consol e. Wit eLi ne(
"Di vi deByZer oExcepti on caught!");
}
cat ch
{
Consol e. Wit eLi ne("Unknown exception caught");
}
finally
{
Console.WiteLine ("Close file here.");
}
}

/] do the division if |egal
publ i c doubl e DoDi vi de(doubl e a, doubl e b)

{
if (b ==0)
t hrow new System Di vi deByZer oException();
if (a==0)
t hrow new System Arithneti cException();
return alb;
}

240

Programming C#

Qut put :
Open file here

Di vi deByZer oExcepti on caught!
Close file here.

Qut put when b = 12:

Open file here

5/ 12 = 0.41666666666666669
This line may or may not print
Close file here.

In this example, one of the cat ch blocks has been eliminated to save space and af i nal | y block
has been added. Whether or not an exception is thrown, the f i nal | y block is executed, and so in
both output examples you see the message: Cl ose fi | e here.

- A finally block can be created with or without cat ch blocks,
#3). butafinally blockrequires atry block to execute. Itis an
% errortoexitafinal |y block with br eak, conti nue, return, or
got o.

11.2 Exception Objects

So far you've been using the exception as a sentinel?that is, the presence of the exception signals the
errors?but you haven't touched or examined the except i on object itself. The Syst em Excepti on
object provides a number of useful methods and properties. The Vessage property provides
information about the exception, such as why it was thrown. The MVessage property is read-only; the
code throwing the exception can set the Message property as an argument to the exception
constructor.

The Hel pLi nk property provides a link to the help file associated with the exception. This property is
read/write.

The St ackTr ace property is read-only and is set by the runtime. In Example 11-6, the

Excepti on. Hel pLi nk property is set and retrieved to provide information to the user about the

Di vi deByZer oExcept i on. The St ackTr ace property of the exception is used to provide a stack
trace for the error statement. A stack trace displays the call stack : the series of method calls that lead
to the method in which the exception was thrown.

Example 11-6. Working with an exception object
namespace Programm ng_CShar p

{
usi ng System

public class Test

{
public static void Main()
{
Test t = new Test();
t.Test Func();
}

/1 try to divide two nunbers

241

/1 handl e possi bl e exceptions
public void TestFunc()

{
try
{
Consol e. WiteLine("Open file here");
double a = 12;
double b = 0;
Console.WiteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
Consol e. WitelLine (
“"This line may or may not print");
}
/1 nost derived exception type first
catch (System Di vi deByZer oExcepti on e)
{
Consol e. Wit eLi ne(
"\ nDi vi deByZer oExcepti on! Msg: {0}",
e. Message) ;
Consol e. Wit eLi ne(
"\ nHel pLi nk: {0}", e.Hel pLink);
Consol e. Wit eLi ne(
"\nHere's a stack trace: {0}\n",
e. StackTrace);
catch
{
Consol e. Wit eLi ne(
"“Unknown exception caught");
}
finally
{
Consol e. WiteLine (
"Close file here.");
}
}

/1 do the division if |ega
public doubl e DoDi vi de(doubl e a, double b)
{
if (b ==0)
{
Di vi deByZer oException e =
new Di vi deByZer oException();
e. Hel pLink =
"http://ww. | ibertyassoci at es. cont
t hrow e;

}
if (a == 0)

throw new ArithmeticException();
return al/b;

}
Qut put :

Open file here

242

Programming C#

Di vi deByZer oExcepti on! Msg: Attenpted to divide by zero.

Hel pLi nk: http://ww. | ibertyassoci ates.com

Here's a stack trace:

at Progranmm ng_CSharp. Test. DoDi vi de(Doubl e a, Doubl e b)
in c:\...exception06.cs:line 56

at Progranm ng_CShar p. Test. Test Func()

in...exception06.cs:line 22

Close file here.

In the output, the stack trace lists the methods in the reverse order in which they were called; that is, it
shows that the error occurred in DoDi vi de(), which was called by Test Func(). When methods
are deeply nested, the stack trace can help you understand the order of method calls.

In this example, rather than simply throwing a Di vi deByZer oExcept i on, you create a new instance
of the exception:

Di vi deByZer oException e = new Di vi deByZer oException();

You do not pass in a custom message, and so the default message will be printed:
Di vi deByZer oExcepti on! Msg: Attenpted to divide by zero.

You can modify this line of code to pass in a default message:

new Di vi deByZer oExcepti on(
“"You tried to divide by zero which is not
meani ngful ") ;

In this case, the output message will reflect the custom message:
Di vi deByZer oExcepti on! Msg:

You tried to divide by zero which is not

nmeani ngf ul

Before throwing the exception, you set the Hel pLi nk property:
e. Hel pLink = "http://ww. | ibertyassoci ates. cont';

When this exception is caught, the program prints the message and the Hel pLi nk:

catch (System Di vi deByZer oExcepti on e)

{
Consol e. WiteLine("\nDi vi deByZer oExcepti on! Msg: {0}",

e. Message) ;
Consol e. Wi teLine("\nHel pLi nk: {0}", e.Hel pLink);

This allows you to provide useful information to the user. In addition, it prints the St ackTr ace by
getting the St ackTr ace property of the exception object:

Consol e. WitelLine("\nHere's a stack trace: {0}\n",
e. StackTrace) ;

The output of this call reflects a full St ackTr ace leading to the moment the exception was thrown:

243

Here's a stack trace

at Progranm ng_CShar p. Test. DoDi vi de(Doubl e a, Doubl e b)
in c:\...exception06.cs:line 56

at Progranm ng_CShar p. Test. Test Func()
in...exception06.cs:line 22

Note that I've shortened the pathnames, your printout might look a little different.

11.3 Custom Exceptions

The intrinsic exception types the CLR provides, coupled with the custom messages shown in the
previous example, will often be all you need to provide extensive information to a cat ch block when
an exception is thrown. There will be times, however, when you want to provide more extensive
information or need special capabilities in your exception. It is a trivial matter to create your own
custom exception class; the only restriction is that it must derive (directly or indirectly) from

System ApplicationExcepti on. Example 11-7 illustrates the creation of a custom exception.

Example 11-7. Creating a custom exception
nanespace Programm ng_CShar p

{
usi ng System

public class My/Cust onException :
System Appl i cati onException

{
publ i c MyCustonmException(string nessage):
base(nessage)
{
}
}
public class Test
{
public static void Main()
{
Test t = new Test();
t. Test Func();
}

/1l try to divide two nunbers
/1 handl e possi bl e exceptionsexceptions
public void TestFunc()
{
try

{
Console. WiteLine("Open file here");

double a = O;

double b = 5;

Console. WiteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));

Consol e. WiteLine (
"This line may or may not print");

/1 nmost derived exception type first
catch (System Di vi deByZer oExcepti on e)

{
Consol e. Wit eLi ne(

244

Programming C#

"\ nDi vi deByZer oExcepti on! Msg: {0}",
e. Message) ;

Consol e. Wit eLi ne(
"\ nHel pLink: {0}\n", e.Hel pLink);

}
catch (MyCust omException e)
{
Consol e. Wit eLi ne(
"\ nMyCust onmkException! Mg: {0}",
e. Message) ;
Consol e. Wit eLi ne(
“\'nHel pLi nk: {0}\n", e.Hel pLink);
}
cat ch
Consol e. Wit eLi ne(
"“Unknown exception caught");
}
finally
{ . |
Console.WiteLine ("Close file here.");
}

}

/] do the division if |egal
public doubl e DoDi vi de(doubl e a, double b)
{
if (b ==0)
{
Di vi deByZer oException e =
new Di vi deByZer oException();
e. Hel pLi nk=
"http://ww.|ibertyassoci ates. cont;
t hrow e;

}
if (a==0)
{

MyCust onmException e =
new MyCust onExcepti on(
"Can't have zero divisor");
e. Hel pLink =
"http://ww.|ibertyassoci at es. conl NoZer oDi vi sor. ht ni';
t hrow e;

return al/b;

}

My Cust omExcept i on is derived from Syst em Appl i cat i onExcept i on and consists of nothing
more than a constructor that takes a string nessage that it passes to its base class, as described in
Chapter 4. In this case, the advantage of creating this custom exception class is that it better reflects
the particular design of the Test class, in which it is not legal to have a zero divisor. Using the
Arithreti cExcepti on rather than a custom exception would work as well, but it might confuse
other programmers because a zero divisor wouldn't normally be considered an arithmetic error.

245

11.4 Rethrowing Exceptions

You might want your cat ch block to take some initial corrective action and then rethrow the exception
to an outer t r y block (in a calling function). It might rethrow the same exception, or it might throw a
different one. If it throws a different one, it may want to embed the original exception inside the new
one so that the calling method can understand the exception history. The | nner Except i on property

of the new exception retrieves the original exception.

Because the | nner Except i on is also an exception, it too might have an inner exception. Thus, an
entire chain of exceptions can be nested one within the other, much like Ukrainian dolls are contained

one within the other. Example 11-8 illustrates.

Example 11-8. Rethrowing and inner exceptions
namespace Programm ng_CShar p

{

246

usi ng System

public class MyCustonException :

publ i c MyCust omExcepti on(
string nessage, Exception inner):
base(nessage, i nner)

public class Test

public static void Main()

Test t = new Test();
t. Test Func();

public void TestFunc()

try

{
{
}
}
{
{
}
{
{
}

11

Danger ousFuncl();

if you catch a custom exception

/'l print the exception history
catch (M/Cust onException e)

{

Consol e. WiteLine("\n{0}", e.Message);
Consol e. Wit eLi ne(
"Retrieving exception history...");
Exception inner =
e. |l nner Excepti on;
while (inner !'= null)
{
Consol e. Wit eLi ne(
"{0}",inner.Message);
i nner =
i nner. | nner Excepti on;

Syst em Excepti on

Programming C#

}
public void DangerousFuncl()
{
try
{
Danger ousFunc2();
}
/1 if you catch any exception here
/1 throw a custom exception
cat ch(System Exception e)
{
MyCust onException ex =
new MyCust onExcepti on(
"E3 - Custom Exception Situation!",e);
t hrow ex;
}
}
public voi d DangerousFunc2()
{
try
{
Danger ousFunc3();
}
/1 if you catch a DivideByZeroException take sone
/1 corrective action and then throw a general exception
catch (System Di vi deByZer oExcepti on e)
Exception ex =
new Excepti on(
"E2 - Func2 caught divide by zero",e);
t hrow ex;
}
}
public void DangerousFunc3()
{
try
{
Danger ousFunc4();
}
catch (System Arithneti cException)
t hr ow,
}
catch (System Excepti on)
{
Consol e. Wit eLi ne(
"Exception handl ed here.");
}
}
public void DangerousFunc4()
{
t hrow new Di vi deByZer oExcepti on("E1 - Divi deByZero Exception");
}

247

}

Qut put :

E3 - Custom Exception Situation!
Retrieving exception history...

E2 - Func2 caught divide by zero
E1l - Divi deByZer oException

Because this code has been stripped to the essentials, the output might leave you scratching your
head. The best way to see how this code works is to use the debugger to step through it.

You begin by calling Danger ousFuncl() inatry block:

try
{

}

Danger ousFuncl();

Danger ousFuncl() calls Danger ousFunc2(), which calls Danger ousFunc3(), which in turn
calls Danger ousFunc4(). All these calls are in their own t r y blocks. At the end,

Danger ousFunc4() throws a Di vi deByZer oExcepti on. Syst em Di vi deByZer oExcepti on
normally has its own error message, but you are free to pass in a custom message. Here, to make it
easier to identify the sequence of events, the custom message E1 - Di vi deByZer oExcepti on is
passed in.

The exception thrown in Danger ousFunc4() is caughtin the cat ch block in
Danger ousFunc3(). The logic in Danger ousFunc3() isthatifany Arithmeti cExceptionis
caught (such as Di vi deByZer oExcept i on), it takes no action; it just rethrows the exception:

catch (System Arithmeti cExcepti on)
{

}

t hr ow;

The syntax to rethrow the exact same exception (without modifying it) is just the word t hr ow.

The exception is thus rethrown to Danger ousFunc2(), which catches it, takes some corrective
action, and throws a new exception of type Except i on. In the constructor to that new exception,
Danger ousFunc2() passes in acustom message (E2 - Func2 caught divide by zero)
and the original exception. Thus, the original exception (E1) becomes the | nner Except i on for the
new exception (E2). Danger ousFunc2() then throws this new E2 exception to

Danger ousFuncl().

Danger ousFuncl() catches the exception, does some work, and creates a new exception of type
MyCust omExcept i on, passing to the constructor a new string (E3 - Cust om Exception

Si tuat i on!) and the exception it just caught (E2). Remember, the exception it just caught is the
exception with a Di vi deByZer oExcepti on (EL) as its inner exception. At this point, you have an
exception of type MyCust onExcept i on (E3), with an inner exception of type Exception (E2),
which in turn has an inner exception of type Di vi deByZer oExcepti on (EL). All this is then thrown
to the t est function, where it is caught.

When the cat ch function runs, it prints the message:

E3 - Custom Exception Situation!

248

Programming C#

and then drills down through the layers of inner exceptions, printing their messages:

while (inner !'= null)

{
Consol e. WiteLine("{0}",inner. Message);
i nner = inner.|nnerException;

}

The output reflects the chain of exceptions thrown and caught:

Retrieving exception history...
E2 - Func2 caught divide by zero
E1l - DivideByZero Exception

249

250

Programming C#

Chapter 12. Delegates and Events

When a head of state dies, the president of the United States typically does not have time to attend

the funeral personally. Instead, he dispatches a delegate. Often this delegate is the vice president, but
sometimes the VP is unavailable and the president must send someone else, such as the secretary of
state or even the first lady. He does not want to "hardwire" his delegated authority to a single person;
he might delegate this responsibility to anyone who is able to execute the correct international protocol.

The president defines in advance what authority will be delegated (attend the funeral), what
parameters will be passed (condolences, kind words), and what value he hopes to get back (good will).
He then assigns a particular person to that delegated responsibility at "runtime" as the course of his
presidency progresses.

In programming, you are often faced with situations where you need to execute a particular action, but
you don't know in advance which method, or even which object, you'll want to call upon to execute that
action. For example, a button might know that it must notify some object when it is pushed, but it might
not know which object or objects need to be notified. Rather than wiring the button to a particular
object, you will connect the button to a delegate and then resolve that delegate to a particular method
when the program executes.

In the early, dark, and primitive days of computing, a program would begin execution and then
proceed through its steps until it completed. If the user was involved, the interaction was strictly
controlled and limited to filling in fields.

Today's Graphical User Interface (GUI) programming model requires a different approach, known as
event-driven programming. A modern program presents the user interface and waits for the user to
take an action. The user might take many different actions, such as choosing among menu selections,
pushing buttons, updating text fields, clicking icons, and so forth. Each action causes an event to be
raised. Other events can be raised without direct user action, such as events that correspond to timer
ticks of the internal clock, email being received, file-copy operations completing, etc.

An event is the encapsulation of the idea that "something happened" to which the program must
respond. Events and delegates are tightly coupled concepts because flexible event handling requires
that the response to the event be dispatched to the appropriate event handler. An event handler is
typically implemented in C# as a delegate.

Delegates are also used as callbacks so that one class can say to another "do this work and when
you're done, let me know." This second usage will be covered in detail in Chapter 19. Delegates can
also be used to specify methods that will only become known at runtime, a topic that will be developed
in the following sections.

12.1 Delegates

In C#, delegates are first-class objects, fully supported by the language. Technically, a delegate is a
reference type used to encapsulate a method with a specific signature and return type. You can
encapsulate any matching method in that delegate. (In C++ and many other languages, you can
accomplish this requirement with function pointers and pointers to member functions. Unlike function
pointers, delegates are object-oriented and type-safe.)

A delegate is created with the del egat e keyword, followed by a return type and the signature of the
methods that can be delegated to it, as in the following:

public del egate int WhichlsFirst(object obj1l, object obj2);

251

This declaration defines a delegate named \Whi chl sFi r st which will encapsulate any method that
takes two obj ect s as parameters and that returns an i nt .

Once the delegate is defined, you can encapsulate a member method with that delegate by
instantiating the delegate, passing in a method that matches the return type and signature.

12.1.1 Using Delegates to Specify Methods at Runtime

Delegates are used to specify the kinds of methods that can be used to handle events and to
implement callbacks in your applications. They can also be used to specify static and instance
methods that won't be known until runtime.

Suppose, for example, that you want to create a simple container class called a Pai r that can hold
and sort any two objects passed to it. You can't know in advance what kind of objects a Pai r will hold,
but by creating methods within those objects to which the sorting task can be delegated, you can
delegate responsibility for determining their order to the objects themselves.

Different objects will sort differently; for example, a Pai r of count er objects might sort in numeric
order, while a Pai r of But t ons might sort alphabetically by their name. As the author of the Pai r
class, you want the objects in the pair to have the responsibility of knowing which should be first and
which should be second. To accomplish this, you will insist that the objects to be stored in the Pai r
must provide a method that tells you how to sort the objects.

You define the method you require by creating a delegate that defines the signature and return type of
the method the object (e.g., But t on) must provide to allow the Pai r to determine which object should
be first and which should be second.

The Pai r class defines a delegate, \Wii chl sFi rst. The Sort method will take a parameter, an
instance of Wi chl sFi rst. When the Pai r needs to know how to order its objects it will invoke the
delegate passing in its two objects as parameters. The responsibility for deciding which of the two
objects comes first is delegated to the method encapsulated by the delegate.

To test the delegate, you will create two classes, a Dog class and a St udent class. Dogs and

St udent s have little in common, except that they both implement methods that can be encapsulated
by Whi chConesFi r st , and thus both Dog objects and St udent objects are eligible to be held within
Pai r objects.

In the test program you will create a couple of St udent s and a couple of Dogs, and store them each
in a Pai r. You will then create delegate objects to encapsulate their respective methods that match

the delegate signature and return type, and you'll ask the Pai r objects to sort the Dog and St udent
objects. Let's take this step by step.

You begin by creating a Pai r constructor that takes two objects and stashes them away in a private
array:

public class Pair

{

/1l two objects, added in order received
public Pair(object firstCbject, object secondCbject)
{
thePair[0] = firstoject;
thePair [1] = secondnject;
}
/'l hold both objects
private object[]thePair = new object[?2];

252

Programming C#

Next, you override ToSt ri ng() to obtain the string value of the two objects:

public override string ToString()
{

}

return thePair [0].ToString() + ", " + thePair [1].ToString();

You now have two objects in your Pai r and you can print out their values. You're ready to sort them
and print the results of the sort. You can't know in advance what kind of objects you will have, so you
would like to delegate the responsibility of deciding which object comes first in the sorted Pai r to the
objects themselves. Thus, you require that each object stored in a Pai r implement a method to return
which of the two comes first. The method will take two objects (of whatever type) and return an
enumerated value: t heFi r st ConesFi r st if the first object comes first, and

t heSecondConesFi r st if the second does.

These required methods will be encapsulated by the delegate Wi chl sFi r st that you define within
the Pai r class:

publ i c del egate conpari son
VWi chl sFi rst(object obj1l, object obj2);

The return value is of type conpar i son, the enumeration.

publ i ¢ enum compari son

{
theFirst ConesFirst =1

t heSecondConesFirst = 2
}

Any static method that takes two objects and returns a conpar i son can be encapsulated by this
delegate at runtime.

You can now define the Sor t method for the Pai r class:

public void Sort (Wi chlsFirst theDel egatedFunc)

{
if (theDel egatedFunc(thePair[O0],thePair[1]) ==
compari son. t heSecondConesFi r st)
{
object tenp = thePair[0];
thePair[0] = thePair[1];
thePair[1l] = tenp;
}
}

This method takes a parameter: a delegate of type \V\hi chl sFi r st named t heDel egat edFunc. The
Sort () method delegates responsibility for deciding which of the two objects in the Pai r comes first
to the method encapsulated by that delegate. In the body of the Sort () method it invokes the
delegated method and examines the return value, which will be one of the two enumerated values of
compar si on.

If the value returned is t heSecondConesFi r st , the objects within the pair are swapped; otherwise
no action is taken.

253

Notice that t heDel egat edFunc is the name of the parameter to represent the method encapsulated
by the delegate. You can assign any method (with the appropriate return value and signature) to this
parameter. It is as if you had a method which took an i nt as a parameter:

int SomeMethod (int nyParam{//...}

The parameter name is my Par am but you can pass in any i nt value or variable. Similarly the
parameter name in the delegate example is t heDel egat edFunc, but you can pass in any method
that meets the return value and signature defined by the delegate \V\hi chl sFi rst.

Imagine you are sorting students by name. You write a method that returns t heFi r st ConesFi r st if
the first student's name comes first and t heSecondConesFi r st if the second student's name does.
If you pass in "Amy, Beth" the method will return t heFi r st ConesFi r st , and if you pass in "Beth,
Amy" it will return t heSecondConesFi r st . If you get back t heSecondConesFi r st , the Sor t
method reverses the items in its array, setting Amy to the first position and Beth to the second.

Now add one more method, Rever seSor t , which will put the items into the array in reverse order:

public void ReverseSort (WhichlsFirst theDel egat edFunc)

{
if (theDel egatedFunc(thePair[0], thePair[1]) ==
compari son. t heFi r st ComesFi rst)
{
object tenp = thePair[0];
thePair[0] = thePair[1];
thePair[1l] = tenp;
}
}

The logic here is identical to the Sort (), except that this method performs the swap if the delegated
method says that the first item comes first. Because the delegated function thinks the first item comes
first, and this is a reverse sort, the result you want is for the second item to come first. This time if you
pass in "Amy, Beth," the delegated function returns t heFi r st ConesFi r st (i.e., Amy should come
first), but because this is a reverse sort it swaps the values, setting Beth first. This allows you to use
the same delegated function as you used with Sor t , without forcing the object to support a function
that returns the reverse sorted value.

Now all you need are some objects to sort. You'll create two absurdly simple classes: St udent and
Dog. Assign St udent objects a name at creation:

public class Student

{
public Student(string nane)
{
thi s. name = nane;
}

The St udent class requires two methods, one to override ToSt ri ng() and the other to be
encapsulated as the delegated method.

St udent must override ToSt ri ng() sothatthe ToStri ng() method in Pai r, which invokes
ToString() on the contained objects, will work properly: the implementation does nothing more
than return the student's name (which is already a string object):

public override string ToString()
{

return nane;

254

Programming C#

}

It must also implement a method to which Pai r. Sort () can delegate the responsibility of
determining which of two objects comes first:

return (String. Conpare(sl. nane, s2.nanme) < 0 ?
compari son. t heFi r st ComesFi r st
conpari son. t heSecondConesFi rst);

String. Conpar e is a .NET Framework method on the St ri ng class which compares two strings
and returns less than zero if the first is smaller and greater than zero if the second is smaller, and
returns zero if they are the same. This method is discussed in some detail in Chapter 10. Notice that
the logic here returns t heFi r st ConesFi r st only if the first string is smaller; if they are the same or
the second is larger, this method returns t heSecondConesFi r st .

Notice that the Wi chSt udent ConesFi rst () method takes two objects as parameters and returns
a conpari son. This qualifies it to be a Pai r. Wi chl sFi r st delegated method, whose signature
and return value it matches.

The second class is Dog. For our purposes, Dog objects will be sorted by weight, lighter dogs before
heavier. Here's the complete declaration of Dog:

public class Dog

{
publ i c Dog(int weight)
{
t hi s. wei ght =wei ght ;
}
/1 dogs are ordered by wei ght
public static compari son Wi chDogComesFi rst (
bj ect 01, nject 02)
{
Dog d1 = (Dog) o1l;
Dog d2 = (Dog) o02;
return dil.wei ght > d2.weight ?
t heSecondComesFi r st
t heFi r st ConesFi rst;
}
public override string ToString()
{
return weight. ToString();
}
private int weight;
}

Notice that the Dog class also overrides ToSt r i ng and implements a static method with the correct
signature for the delegate. Notice also that the Dog and St udent delegate methods do not have the
same name. They do not need to have the same name, as they will be assigned to the delegate
dynamically at runtime.

- You can call your delegated method names anything you like, but
42) creating parallel names (e.g., Vi chDogConesFi r st and

VWhi chSt udent ConesFi r st) makes the code easier to read,
understand, and maintain.

255

Example 12-1 is the complete program, which illustrates how the delegate methods are invoked.

Example 12-1. Working with delegates

nanespace Programm ng_CShar p

{
usi ng System

publ i ¢ enum compari son

{
t heFirst ComesFirst = 1
t heSecondConesFirst = 2

}

/1 a sinple collection to hold 2 itens
public class Pair
{
/1 the del egate decl aration
publ i ¢ del egate conpari son
Wi chl sFirst (object obj1, object obj2);

/'l passed in constructor take two objects,
/1 added in order received
public Pair(

obj ect firstObject,

obj ect secondj ect)

t hePai r [0]
t hePai r[1]

firstoject;
secondObj ect ;

}

/1 public nmethod which orders the two objects
/1 by whatever criteria the object I|ikes!
public void Sort(

Whi chl sFirst theDel egat edFunc)

{
i f (theDel egat edFunc(thePair[0],thePair[1])
== conpari son. t heSecondComnesFirst)
{
object tenp = thePair[O0];
thePair[0] = thePair[1];
thePair[1] = tenp;
}
}

/1 public nmethod which orders the two objects
/'l by the reverse of whatever criteria the object I|ikes!
public void ReverseSort (

Wi chl sFi rst theDel egat edFunc)

i f (theDel egat edFunc(thePair[0],thePair[1l]) ==
conpari son. t heFi rst ComesFirst)

{
object tenp = thePair[O0];
thePair[0] = thePair[1];
thePair[1] = tenp;

}

}

/1 ask the two objects to give their string value
public override string ToString()

256

Programming C#

return thePair[0].ToString() + ",
+ thePair[1].ToString();

/1 private array to hold the two objects
private object[] thePair = new object[2];

}
public class Dog
{
public Dog(int weight)
{
t hi s. wei ght =wei ght ;
}
/1 dogs are ordered by weight
public static conparison Whi chDogComesFi r st (
hj ect 01, Object 02)
{
Dog d1 = (Dog) ol;
Dog d2 = (Dog) o2
return di.weight > d2.weight ?
conpari son. t heSecondConesFi r st
conpari son. t heFi r st ConesFi r st ;
}
public override string ToString()
{
return weight.ToString();
}
private int weight;
}
public class Student
{
public Student(string nane)
{
thi s. name = nane;
}
/1 students are ordered al phabetically
public static comparison
Whi chSt udent ConmesFi rst (Obj ect ol, Object 02)
{
Student s1 = (Student) ol
Student s2 = (Student) o02;
return (String. Conpare(sl. nane, s2.nane) < 0 ?
conpari son. t heFi r st ComesFi r st
conpari son. t heSecondConesFirst);
}
public override string ToString()
{
return nane;
}
private string namne;
}
public class Test
{

257

public static void Main()

{
/1l create two students and two dogs
/1 and add themto Pair objects
Student Jesse = new Student("Jesse");
Student Stacey = new Student ("Stacey");
Dog M1 o = new Dog(65);
Dog Fred new Dog(12);

Pair studentPair = new Pair(Jesse, Stacey);

Pair dogPair = new Pair(MIlo, Fred);

Consol e. WitelLine("studentPair\t\t\t: {0}",
studentPair. ToString());

Consol e. WiteLine("dogPair\t\t\t\t: {0}",
dogPair. ToString());

/1 Instantiate the del egates

Pai r. Wi chl sFirst theStudent Del egate =
new Pai r. Wi chl sFi rst (
St udent . Whi chSt udent ConesFirst);

Pai r. Wi chl sFi rst theDogDel egate =
new Pai r. Wi chl sFi rst(
Dog. Whi chDogConesFirst) ;

/1 sort using the del egates

st udent Pai r. Sort (t heSt udent Del egat e) ;

Console. WiteLine("After Sort studentPair\t\t: {0}",
studentPair. ToString());

st udent Pai r. Rever seSort (t heSt udent Del egat e) ;

Consol e. WitelLine("After ReverseSort studentPair\t: {0}",
student Pair. ToString());

dogPai r. Sort (t heDogDel egate) ;

Consol e. WitelLine("After Sort dogPair\t\t: {0}",
dogPair. ToString());

dogPai r. Rever seSort (t heDogDel egat e) ;

Console. WiteLine("After ReverseSort dogPair\t: {0}",
dogPair. ToString());

}
Qut put :

st udent Pai r . Jesse, Stacey
dogPai r . 65, 12
After Sort studentPair . Jesse, Stacey
After ReverseSort studentPair . Stacey, Jesse
After Sort dogPair . 12, 65
After ReverseSort dogPair . 65, 12

The Test program creates two St udent objects and two Dog objects and then adds them to Pai r
containers. The student constructor takes a string for the student's name and the dog constructor
takes an i nt for the dog's weight.

Student Jesse = new Student("Jesse");
Student Stacey = new Student ("Stacey");
Dog M1 o = new Dog(65);

Dog Fred = new Dog(12);

258

Programming C#

Pair studentPair = new Pair(Jesse, Stacey);

Pair dogPair = new Pair(Mlo, Fred);

Consol e. WiteLine("studentPair\t\t\t: {0}",
studentPair.ToString());

Consol e. WiteLine("dogPair\t\t\t\t: {0O}",
dogPair. ToString());

It then prints the contents of the two Pai r containers to see the order of the objects. The output looks
like this:

st udent Pai r . Jesse, Stacey
dogPai r © 65, 12

As expected, the objects are in the order in which they were added to the Pai r containers. We next
instantiate two delegate objects:

Pai r. Wi chl sFirst theStudentDel egate =
new Pai r. Wi chl sFi rst(
St udent . Whi chSt udent ConesFi rst);

Pai r. Whi chl sFirst theDogDel egate =
new Pai r. Wi chl sFi rst(
Dog. Whi chDogConesFi rst);

The first delegate, t heSt udent Del egat e, is created by passing in the appropriate static method
from the St udent class. The second delegate, t heDogDel egat e, is passed a static method from the
Dog class.

The delegates are now objects that can be passed to methods. You pass the delegates first to the
Sort method of the Pai r object, and then to the Rever seSort method. The results are printed to
the console:

After Sort studentPair . Jesse, Stacey
After ReverseSort studentPair . Stacey, Jesse
After Sort dogPair : 12, 65
After ReverseSort dogPair . 65, 12

12.1.2 Static Delegates

A disadvantage of Example 12-1 is that it forces the calling class, in this case Test , to instantiate
the delegates it needs in order to sort the objects in a Pai r . It would be nice to get the delegate from
the St udent or Dog class. You can do this by giving each class its own static delegate. Thus, you can
modify St udent to add this:

public static readonly Pair.WichlsFirst OderStudents =
new Pai r. Wi chl sFi rst (Student. Wi chSt udent ConesFirst);

This creates a static, r eadonl y delegate named O der St udent s.

- Marking Or der St udent s readonl y denotes that once this
«3) static field is created, it will not be modified.

.
SN

You can create a similar delegate within Dog:

259

public static readonly Pair.WichlsFirst O derDogs =
new Pair. Wi chl sFi rst (Dog. Whi chDogConesFirst);

These are now static fields of their respective classes. Each is prewired to the appropriate method
within the class. You can invoke delegates without declaring a local delegate instance. You just pass
in the static delegate of the class:

student Pai r. Sort (t heSt udent Del egat e) ;
Consol e. WiteLine("After Sort studentPair\t\t: {0}",
studentPair. ToString());
st udent Pai r. Rever seSort (St udent . Or der St udent s) ;
Console. WiteLine("After ReverseSort studentPair\t: {0}",
studentPair. ToString());

dogPai r. Sort (Dog. Or der Dogs) ;

Console. WiteLine("After Sort dogPair\t\t: {0}",
dogPair. ToString());

dogPai r . Rever seSort (Dog. Or der Dogs) ;

Consol e. WitelLine("After ReverseSort dogPair\t: {0}",
dogPair. ToString());

The output from these changes is identical to the previous example.

12.1.3 Delegates as Properties

The problem with static delegates is that they must be instantiated, whether or not they are ever used,
as with St udent and Dog in the previous example. You can improve these classes by changing the
static delegate fields to properties.

For St udent , you take out the declaration:

public static readonly Pair.WichlsFirst O derStudents =
new Pai r. Wi chl sFi rst (Student. Wi chSt udent ConesFirst);

and replace it with:

public static Pair.WichlsFirst OderStudents

{
get
{
return new Pair. Wi chl sFirst (Wi chStudent ConesFirst);
}
}

Similarly, you replace the Dog static field with:

public static Pair.WichlsFirst OrderDogs

{
get
{
return new Pair. Wi chl sFirst (Wi chDogComesFirst);
}
}

260

Programming C#

The assignment of the delegates is unchanged:

i ':?.' student Pai r. Sort (St udent . Order St udent s) ;
dogPai r. Sort (Dog. O der Dogs) ;

When the O der St udent property is accessed, the delegate is created:
return new Pair. Wi chlsFirst (Wi chStudent ConesFirst);

The key advantage is that the delegate is not created until it is requested. This allows the test class to
determine when it needs a delegate but still allows the details of the creation of the delegate to be the
responsibility of the St udent (or Dog) class.

12.1.4 Setting Order of Execution with Arrays of Delegates

Delegates can help you create a system in which the user can dynamically decide on the order of
operations. Suppose you have an image processing system in which an image can be manipulated in
a number of well-defined ways, such as blurring, sharpening, rotating, filtering, and so forth. Assume,
as well, that the order in which these effects are applied to the image is important. The user wishes to
choose from a menu of effects, applying all that he likes, and then telling the image processor to run
the effects, one after the other in the order that he has specified.

You can create delegates for each operation and add them to an ordered collection, such as an array,
in the order you'd like them to execute. Once all the delegates are created and added to the collection,
you simply iterate over the array, invoking each delegated method in turn.

You begin by creating a class | nage to represent the image that will be processed by the
| magePr ocessor:

public class | mage

{
public Image()
{
Consol e. Wi teLi ne("An inmage created");
}
}

You can imagine that this stands in for a .gif or .jpeg file or other image.

The | nageProcessor then declares a delegate. You can of course define your delegate to return
any type and take any parameters you like. For this example you'll define the delegate to encapsulate
any method that returns voi d and takes no arguments:

public del egate void DoEffect();

The | magePr ocessor then declares a number of methods, each of which processes an i nage and
each of which matches the return type and signature of the delegate:

public static void Blur()
{

}

public static void Filter()

Consol e. WiteLine("Blurring i mage");

261

{

Consol e. WiteLine("Filtering i nage");

}
public static void Sharpen()
{
Consol e. Wit eLi ne(" Shar peni ng i nage");
}
public static void Rotate()
{
Consol e. WiteLine("Rotating inmage");
}
e In a production environment these methods would be very
s | complicated, and they'd actually do the work of blurring, filtering,
~ % sharpening, and rotating the | nage.

The | nagePr ocessor class needs an array to hold the delegates that the user picks, a variable to
hold the running total of how many effects are in the array, and of course a variable for the | nage
itself:

DoEffect[] arrayOfEffects;

| mage i mage;
i nt nunkffectsRegistered = 0;

The | rageProcessor al so needs a method to add delegates to the array:

public void AddToEf f ect s(DoEf f ect theEffect)

{ i f (nunkffectsRegistered >= 10)
{ t hrow new Exception("Too many menbers in array");
arrayOf Ef f ect s[nuntf f ect sRegi stered++] = t heEffect;

}

It needs another method to actually call each method in turn:

public void Processl mages()

{
for (int i = 0;i < nunkEffectsRegistered;i++)
{
arrayOfEffects[i]();
}
}

Finally, you need only declare the static delegates that the client can call, hooking them to the
processing methods:

public DoEffect BlurEffect = new DoEffect(Blur);

publ i ¢ DoEffect SharpenEffect = new DoEffect (Shar pen);
publ i c DoEffect FilterEffect new DoEffect (Filter);
publ i c DoEffect RotateEffect new DoEf f ect (Rotate);

262

Programming C#

- In a production environment in which you might have dozens of
s | effects, you might choose to make these properties rather than
~ Y& static methods. That would save creating the effects unless they

are needed at the cost of making the program slightly more
complicated.

The client code would normally have an interactive user-interface component, but we'll simulate that
by choosing the effects, adding them to the array, and then calling Pr ocess| nmage, as shown in

Example 12-2.

Example 12-2. Using an array of delegates
nanespace Programm ng_CShar p

{
usi ng System
/1 the inmage which we'll nanipul ate
public class | nmage
{
public I mage()
{
Consol e. WiteLine("An i mage created");
}
}
public class | mageProcessor
{

/'l declare the del egate
public del egate void DoEffect();

/'l create various static delegates tied to nmenber nethods
public DoEffect BlurEffect =
new DoEf f ect (Bl ur);
publ i c DoEf fect SharpenEffect =
new DoEf f ect (Shar pen) ;
publ i c DoEffect FilterEffect
new DoEffect (Filter);
publ i c DoEffect RotateEffect
new DoEf f ect (Rot ate);

/1 the constructor initializes the inmge and the array
public | mageProcessor (|l nage i mage)
{
this.inmge = inmage;
arrayOf Ef fects = new DoEffect[10];
}

/1 in a production environnent we'd use a nore
/'l flexible collection,
public void AddToEf f ect s(DoEf fect theEffect)
{

i f (nunkffectsRegistered >= 10)

{

t hr ow new Excepti on(
"Too nmany nmenbers in array");

arrayOf Ef f ect s[nunEf f ect sRegi st er ed++]
= theEffect;

263

}

/1 the inmage processing nethods..
public static void Blur()

{

Consol e. WiteLine("Blurring image");
}
public static void Filter()
{

Consol e. WiteLine("Filtering i mage");
}
public static void Sharpen()
{

Consol e. Wi telLi ne("Sharpeni ng i nage");
}
public static void Rotate()
{

Consol e. WitelLine("Rotating inmage");
}

public void Processl mges()

{
for (int i = 0;i < nunkffectsRegistered;i++)
{
arrayOfEffects[i]();
}
}

/1 private nenber variables...
private DoEffect[] arrayOfEffects;
private | mage inage;

private int nunkffectsRegistered = O;

}

/1 test driver
public class Test

{
public static void Main()
{
| mage thel mage = new | mage();
/1 no ui to keep things sinple, just pick the
/1 methods to invoke, add themin the required
/1 order, and then call on the inage processor to
/1 run themin the order added.
| mageProcessor theProc =
new | mageProcessor (t hel nage) ;
t heProc. AddToEf f ect s(t heProc. Bl ur Ef fect) ;
t heProc. AddToEf f ect s(theProc. Fil terEffect);
t hePr oc. AddToEf f ect s(t heProc. Rot at eEf f ect) ;
t heProc. AddToEf f ect s(t hePr oc. Shar penEf f ect) ;
t heProc. Processl nages();
}
}

264

Programming C#

Qut put :

An i mage created
Blurring i mge
Filtering i mage
Rot ati ng i mage
Shar peni ng i nage

In the Test class of Example 12-2, the | negePr ocessor is instantiated and effects are added. If
the user chooses to blur the image before filtering the image, it is a simple matter to add the delegates
to the array in the appropriate order. Similarly, any given operation can be repeated as often as the
user desires, just by adding more delegates to the collection.

You can imagine displaying the order of operations in a list box that might allow the user to reorder the
methods, moving them up and down the list at will. As the operations are reordered you need only
change their sort order in the collection. You might even decide to capture the order of operations to a
database and then load them dynamically, instantiating delegates as dictated by the records you've
stored in the database.

Delegates provide the flexibility to determine dynamically which methods will be called, in what order,
and how often.

12.1.5 Multicasting

At times it is desirable to multicast : to call two implementing methods through a single delegate. This
becomes particularly important when handling events (discussed later in this chapter).

The goal is to have a single delegate that invokes more than one method. This is different from having
a collection of delegates, each of which invokes a single method. In the previous example, the
collection was used to order the various delegates. It was possible to add a single delegate to the
collection more than once and to use the collection to reorder the delegates to control their order of
invocation.

With multicasting you create a single delegate that will call multiple encapsulated methods. For
example, when a button is pressed you might want to take more than one action. You could implement
this by giving the button a collection of delegates, but it is cleaner and easier to create a single
multicast delegate.

Any delegate that returns voi d is a multicast delegate, though you can treat it as a single-cast
delegate if you wish. Two multicast delegates can be combined with the addition operator (+). The
result is a new multicast delegate that invokes both of the original implementing methods. For example,
assuming Wit er and Logger are delegates that return voi d, the following line will combine them
and produce a new multicast delegate named nyMul t i cast Del egat e:

myMul ti cast Del egate = Witer + Logger;

You can add delegates to a multicast delegate using the plus-equals (+=) operator. This operator adds
the delegate on the right side of the operator to the multicast delegate on the left. For example,
assuming Transmi tter and myMul ti cast Del egat e are delegates, the following line adds
Transm tter tonmyMil ti cast Del egat e:

myMul ti cast Del egate += Transmitter;

265

To see how multicast delegates are created and used, let's walk through a complete example. In
Example 12-3, you create a class called MyCl assW t hDel egat e which defines a delegate that
takes a string as a parameter and returns voi d:

public delegate void StringDel egate(string s);

You then define a class called My| npl enment i ngCl ass which has three methods, all of which return
voi d and take a string as a parameter: Wi teString, LogString,and Transm t St ri ng. The first
writes the string to standard output, the second simulates writing to a log file, and the third simulates
transmitting the string across the Internet. You instantiate the delegates to invoke the appropriate
methods:

Witer("String passed to Witer\n");
Logger ("String passed to Logger\n");
Transmitter("String passed to Transnmitter\n");

To see how to combine delegates, you create another Del egat e instance:
MyCl assW t hDel egat e. Stri ngDel egat e myMul ti cast Del egat e;
and assign to it the result of "adding" two existing delegates:

myMul ti cast Del egate = Witer + Logger;

You add to this delegate an additional delegate using the += operator:
nyMiul ti cast Del egate += Transmitter;

Finally, you selectively remove delegates using the - = operator:

Del egat eCol | ect or -= Logger;

Example 12-3. Combining delegates

nanespace Programr ng_CShar p

{
usi ng System

public class MyCl assWt hDel egat e

{ /'l the del egate declaration
public delegate void StringDel egate(string s);
}
public class Myl npl enentingCd ass
{ public static void WiteString(string s)
{ Console. WiteLine("Witing string {0}", s);
}
public static void LogString(string s)
i Consol e. WiteLine("Logging string {0}", s);

public static void TransnmitString(string s)

266

Programming C#

Consol e. WitelLine("Transmitting string {0}", s);

public class Test

{

public static void Main()

{

/1 define three StringDel egate objects
MyCl assW t hDel egat e. Stri ngDel egat e
Witer, Logger, Transnitter;

/1 define another StringDel egate

/1 to act as the nmulticast del egate

MyCl assW t hDel egat e. Stri ngDel egat e
myMul ti cast Del egat e;

/1l Instantiate the first three del egates,

/1 passing in nethods to encapsul ate

Witer = new MyCl assWt hDel egate. StringDel egat e(
Myl mpl enent i ngCl ass. WiteString);

Logger = new MyCl assWt hDel egate. StringDel egat e(
Myl mpl ement i ngCl ass. LogString);

Transmitter =
new MyCl assW t hDel egat e. Stri ngDel egat e(
Myl mpl enent i ngCl ass. Transmit String);

/1 1nvoke the Witer del egate nethod
Witer("String passed to Witer\n");

/'l I nvoke the Logger del egate nethod
Logger ("String passed to Logger\n");

/1 1nvoke the Transnitter del egate nethod
Transmitter("String passed to Transmitter\n");

/1 Tell the user you are about to comnbine
/1 two del egates into the nulticast del egate
Consol e. Wit eLi ne(

"nmyMul ti cast Del egate = Witer + Logger");

/1 conbine the two del egates, the result is
/1 assigned to nmyMulticast Del egate
nyMul ticastDel egate = Witer + Logger;

/1 Call the del egated nethods, two nethods
/1 will be invoked
nmyMul t i cast Del egat e(

"First string passed to Collector");

/1 Tell the user you are about to add
/1 a third delegate to the multicast
Consol e. Wit eLi ne(
"\'nmyMul ti castDel egate += Transmitter");

/1 add the third del egate
nmyMiul ti cast Del egate += Transmitter;

267

/'l invoke the three del egated nethods
nmyMul t i cast Del egat e(
"Second string passed to Collector");

/1 tell the user you are about to renpve
/'l the | ogger del egate
Consol e. Wit eLi ne(

"\'nnyMul ti cast Del egate -= Logger");

/'l renmove the | ogger del egate
nmyMul t i cast Del egate -= Logger;

/1 invoke the two remaining
/1 del egat ed net hods
nmyMul t i cast Del egat e(
"Third string passed to Collector");

Qut put :

Witing string String passed to Witer

Loggi ng string String passed to Logger
Transmitting string String passed to Transmitter

myMul ti castDel egate = Witer + Logger
Witing string First string passed to Col |l ector
Logging string First string passed to Col | ector

myMul ti cast Del egate += Transmitter

Witing string Second string passed to Collector
Loggi ng string Second string passed to Col |l ector
Transmitting string Second string passed to Coll ector

myMul ti cast Del egate -= Logger
Witing string Third string passed to Coll ector
Transmitting string Third string passed to Col | ector

In the test portion of Example 12-3, the delegate instances are defined and the first three (Wi t er,
Logger,and Transmi t t er) are invoked. The fourth delegate, myMul t i cast Del egat e, is then
assigned the combination of the first two and it is invoked, causing both delegated methods to be
called. The third delegate is added, and when nyMul t i cast Del egat e is invoked all three delegated
methods are called. Finally, Logger is removed, and when myMul t i cast Del egat e is invoked only
the two remaining methods are called.

The power of multicast delegates is best understood in terms of events, discussed in the next section.
When an event such as a button press occurs, an associated multicast delegate can invoke a series of
event handler methods which will respond to the event.

12.2 Events

Graphical user interfaces (GUIs), Windows and web browsers, such as Microsoft, require that
programs respond to events. An event might be a button push, a menu selection, the completion of a
file transfer, and so forth. In short, something happens and you must respond to it. You cannot predict
the order in which events will arise. The system is quiescent until the event, and then it springs into
action to handle the event.

268

Programming C#

In a GUI environment, any number of widgets can raise an event. For example, when you click a
button, it might raise the Cl i ck event. When you add to a drop-down list, it might raise a
Li st Changed event.

Other classes will be interested in responding to these events. How they respond is not of interest to
the class raising the event. The button says "l was clicked," and the responding classes react
appropriately.

12.2.1 Publishing and Subscribing

In C#, any object can publish a set of events to which other classes can subscribe. When the
publishing class raises an event, all the subscribed classes are notified.

o This design implements the Publish/Subscribe (Observer) Pattern
s | described in the seminal work " Design Patterns," by Gamma, et
4 al. (Addison Wesley, 1995). Gamma describes the intent of this

pattern, "Define a one to many dependency between objects so
that when one object changes state, all its dependents are notified
and updated automatically.”

With this mechanism, your object can say "Here are things | can notify you about," and other classes
might sign up, saying "Yes, let me know when that happens.” For example, a button might notify any
number of interested observers when it is clicked. The button is called the publisher because the
button publishes the Cl | ck event and the other classes are the subscribers because they subscribe
to the Cl | ck event.

12.2.2 Events and Delegates

Events in C# are implemented with delegates. The publishing class defines a delegate that the
subscribing classes must implement. When the event is raised, the subscribing class's methods are
invoked through the delegate.

A method that handles an event is called an event handler . You can declare your event handlers as
you would any other delegate.

By convention, event handlers in the .NET Framework return voi d and take two parameters The first
parameter is the "source" of the event; that is, the publishing object. The second parameter is an
object derived from Event Ar gs. It is recommended that your event handlers follow this design pattern.

Event Ar gs is the base class for all event data. Other than its constructor, the Event Ar gs class
inherits all its methods from Cbj ect , though it does add a public static field enpt y which represents
an event with no state (to allow for the efficient use of events with no state). The Event Ar gs derived
class contains information about the event.

Events are properties of the class publishing the event. The keyword event controls how the event
property is accessed by the subscribing classes. The event keyword is designed to maintain the
publish/subscribe idiom.

Suppose you want to create a Cl ock class that uses events to notify potential subscribers whenever
the local time changes value by one second. Call this event OnSecondChange. You declare the event
and its event handler delegate type as follows:

[attributes] [nodifiers] event type

269

menber - nane

For example:

public event SecondChangeHandl er OnSecondChange;

This example has no attributes (attributes are covered in Chapter 18). The modifier can be
abstract ,new, override,static,virtual,orone of the four access modifiers, in this case
publ i c.

The modifier is followed by the keyword event .

The type is the delegate to which you want to associate the event, in this case
SecondChangeHandl er.

The member name is the name of the event, in this case OnSecondChange. It is customary to begin
events with the word On.

Altogether, this declaration states that OnSecondChange is an event which is implemented by a
delegate of type SecondChangeHandl! er .

The declaration for the SecondChangeHand! er delegate is:

publ i c del egate void SecondChangeHandl er (
obj ect cl ock,
Ti mel nf oEvent Args tinel nformation

)
This declares the delegate. As stated earlier, by convention an event handler must return voi d and
must take two parameters: the source of the event (in this case c| ock) and an object derived from

Event Ar gs, in this case Ti nel nf oEvent Ar gs. Ti nel nf oEvent Ar gs is defined as follows:

public class TinelnfoEventArgs : EventArgs

{
public Ti mel nfoEvent Args(int hour, int mnute, int second)
{
this. hour = hour;
this.mnute = mnute;
thi s.second = second,;
}
public readonly int hour;
public readonly int mnute;
public readonly int second;
}

The Ti nel nf oEvent Ar gs object will have information about the current hour, minute, and second. It
defines a constructor and three public, readonly integer variables.

In addition to a delegate and an event, a Cl ock has three member variables: hour, m nut e, and
second; as well as a single method, Run():

public void Run()
{
for(;;)

/1 sleep 10 mIliseconds

270

Programming C#

Thr ead. Sl eep(10);

/1l get the current tine
System Dat eTi ne dt = System Dat eTi me. Now,

/1 if the second has changed
/'l notify the subscribers
if (dt.Second != second)

{
/'l create the TinmelnfoEvent Args obj ect
I/ to pass to the subscriber
Ti mel nfoEvent Args tinmelnformation =
new Ti mel nf oEvent Args(dt. Hour, dt. M nut e, dt. Second) ;
/1 if anyone has subscribed, notify them
if (OnSecondChange != null)
{
OnSecondChange(thi s, tinel nformation);
}
}

/'l update the state
this.second = dt. Second;
this.mnute = dt. M nute;
this. hour = dt. Hour;

}

Run creates an infinite f or loop that periodically checks the system time. If the time has changed from
the Cl ock object's current time, it notifies all its subscribers and then updates its own state.

The first step is to sleep for 10 milliseconds:

Thread. Sl eep(10);

This makes use of a static method of the Thr ead class from the Syst em Thr eadi ng namespace,
which will be covered in some detail in Chapter 20. The call to S| eep() prevents the loop from
running so tightly that little else on the computer gets done.

After sleeping for 10 milliseconds, the method checks the current time:

System Dat eTi ne dt = System Dat eTi nme. Now,

About every 100 times it checks, the second will have incremented. The method notices that change
and notifies its subscribers. To do so, it first creates a new Ti nel nf oEvent Ar gs object:

if (dt.Second != second)

{

/'l create the TinmelnfoEvent Args obj ect
/1l to pass to the subscriber
Ti mel nf oEvent Args tinelnformation =
new Ti mel nf oEvent Args(dt. Hour, dt. M nut e, dt. Second) ;

It then notifies the subscribers by firing the OnSecondChange event:

/1 if anyone has subscribed, notify them
if (OnSecondChange !'= null)

271

OnSecondChange(thi s, ti nel nformtion);
}

If an event has no subscribers registered, it will evaluate to nul | . The test above checks that the
value is not nul | , ensuring that there are subscribers before calling OnSecondChange.

You will remember that OnSecondChange takes two arguments: the source of the event and the
object derived from Event Ar gs. In the snippet, you see that the clock's t hi s reference is passed
because the clock is the source of the event. The second parameter is the Ti nel nf oEvent Ar gs
objectt i nel nf or mat i on created on the line above.

Raising the event will invoke whatever methods have been registered with the Cl ock class through
the delegate. We'll examine this in a moment.

Once the event is raised, you update the state of the Cl ock class:

this.second = dt. Second;
this.mnute = dt.M nut e;
this. hour = dt. Hour;

e Note that no attempt has been made to make this code thread
s, safe. Thread safety and synchronization are discussed in
" 4% Chapter 20.

All that is left is to create classes that can subscribe to this event. You'll create two. Your first will be
the Di spl ayCl ock class. The job of Di spl ayCl ock is not to keep track of time, but rather to display
the current time to the console.

The example simplifies this class down to two methods. The first is a helper method named
Subscri be. Subscri be's job is to subscribe to the clock's OnSecondChange event. The second
method is the event handler Ti neHasChanged:

public class DisplayCd ock

{
public void Subscribe(d ock thed ock)
{
t hed ock. OnSecondChange +=
new Cl ock. SecondChangeHandl| er (Ti mneHasChanged) ;
}
public void Ti meHasChanged(
obj ect thed ock, TinmelnfoEventArgs ti)
{
Console. WiteLine("Current Tinme: {0}:{1}:{2}",
ti.hour.ToString(),
ti.mnute. ToString(),
ti.second. ToString());
}
}

When the first method, Subscr i be, is invoked, it creates a new SecondChangeHand! er delegate,
passing in its event handler method Ti neHasChanged. It then registers that delegate with the
OnSecondChange event of Cl ock.

272

Programming C#

You will create a second class that will also respond to this event, LogCur r ent Ti ne. This class
would normally log the event to a file, but for our demonstration purposes, it will log to the standard
console:

public class LogCurrentTine

public void Subscribe(C ock theC ock)
{
t hed ock. OnSecondChange +=
new Cl ock. SecondChangeHandl er (WitelLogEntry);

}

/1 this nmethod should wite to a file
/'l we wite to the console to see the effect
I/ this object keeps no state
public void WiteLogEntry(
obj ect theCd ock, TinelnfoEventArgs ti)

{
Console. WitelLine("Logging to file: {0}:{1}:{2}",
ti.hour.ToString(),
ti.mnute. ToString(),
ti.second. ToString());
}

}

Although in this example these two classes are very similar, in a production program any number of
disparate classes might subscribe to an event.

Notice that events are added using the += operator. This allows new events to be added to the Cl ock
object's OnSecondChange event without destroying the events already registered. When
LogCurrent Ti nme subscribes to the OnSecondChange event, you do not want the event to lose track
of the fact that Di spl ayCl ock has already subscribed.

All that remains is to create a Cl ock class, create the Di spl ayCl ock class, and tell it to subscribe to
the event. You then will create a LogCur r ent Ti nme class and tell it to subscribe as well. Finally, you'll
tell the Cl ock to run. All this is shown in Example 12-4.

Example 12-4. Working with events

nanespace Programr ng_CShar p
{

usi ng System

usi ng System Thr eadi ng;

// a class to hold the informati on about the event
/1 inthis case it will hold only information

/1 available in the clock class, but could hold

/] additional state information

public class TinelnfoEventArgs : Event Args

{
public Timel nfoEventArgs(int hour, int mnute, int second)
{
thi s. hour = hour;
this.mnute = m nute;
this.second = second;
}

public readonly int hour;
public readonly int mnute;
public readonly int second;

273

}

/1l our subject -- it is this class that other classes

/1 will observe. This class publishes one event:

/1 OnSecondChange. The observers subscribe to that event
public class C ock

{
/1l the del egate the subscribers nust inplenent
public del egate void SecondChangeHandl er
(
obj ect cl ock,
Ti mel nf oEvent Args ti mel nformation
)
/1 the event we publish
public event SecondChangeHandl er OnSecondChange;
/'l set the clock running
/1 it will raise an event for each new second
public void Run()
{
for(;;)
{
/1 sleep 10 mlliseconds
Thr ead. Sl eep(10);
/1 get the current tine
System Dat eTi ne dt = System Dat eTi me. Now,
/1 if the second has changed
/1 notify the subscribers
if (dt.Second != second)
{
/1 create the TinelnfoEvent Args object
/1 to pass to the subscriber
Ti mel nf oEvent Args tinmel nformation =
new Ti mel nf oEvent Ar gs(
dt . Hour, dt. M nut e, dt. Second) ;
/1 if anyone has subscribed, notify them
if (OnSecondChange != null)
{
OnSecondChange(
this,timelnformation);
}
}
/1 update the state
this.second = dt. Second;
this.mnute = dt. M nute;
t his. hour = dt. Hour;
}
}
private int hour;
private int mnute;
private int second,
}

/1 an observer. DisplayC ock subscribes to the
/1 clock's events. The job of DisplayC ock is

274

Programming C#

/1 to display the current tine
public class Displayd ock

{

}

/'l given a clock, subscribe to
/1 its SecondChangeHandl er event
public void Subscribe(C ock theC ock)
{
t hed ock. OnSecondChange +=
new Cl ock. SecondChangeHandl| er (Ti neHasChanged) ;

}

/1 the method that inplenents the
/1 delegated functionality
public void Ti meHasChanged(
obj ect theCd ock, TinelnfoEventArgs ti)

{
Consol e. WiteLine("Current Time: {0}:{1}:{2}",
ti.hour.ToString(),
ti.mnute. ToString(),
ti.second. ToString());
}

/1 a second subscriber whose job is to wite to a file
public class LogCurrentTinme

{

}

public void Subscribe(C ock theC ock)
{
t hed ock. OnSecondChange +=
new Cl ock. SecondChangeHandl er (WitelLogEntry);
}

/1 this nethod should wite to a file
/1 we wite to the console to see the effect
/1 this object keeps no state
public void WiteLogEntry(
obj ect theCd ock, TinelnfoEventArgs ti)

{
Consol e. WitelLine("Logging to file: {0}:{1}:{2}",
ti.hour.ToString(),
ti.mnute. ToString(),
ti.second. ToString());
}

public class Test

{

public static void Main()
{
/1 create a new cl ock
Cl ock thed ock = new O ock();

/1l create the display and tell it to
/1l subscribe to the clock just created
Di spl ayd ock dc = new Di splayd ock();
dc. Subscri be(t hed ock);

/1l create a Log object and tell it

/1 to subscribe to the clock

LogCurrentTine | ct = new LogCurrentTime();
| ct. Subscribe(thed ock);

275

/] Get the clock started
t hed ock. Run();

}
Qut put :

Current Tine: 14:53:56
Logging to file: 14:53:56
Current Tine: 14:53:57
Logging to file: 14:53:57
Current Time: 14:53:58
Logging to file: 14:53:58
Current Tine: 14:53:59
Logging to file: 14:53:59
Current Time: 14:54:0
Logging to file: 14:54:0

The net effect of this code is to create two classes, Di spl ayCl ock and LogCur rent Ti ne, both of
which subscribe to a third class' event (Cl ock. OnSecondChange).

12.2.3 Decoupling Publishers from Subscribers

The Cl ock class could simply print the time rather than raising an event, so why bother with the
indirection of using delegates? The advantage of the publish/subscribe idiom is that any number of
classes can be notified when an event is raised. The subscribing classes do not need to know how the
Cl ock works, and the Cl ock does not need to know what they are going to do in response to the
event. Similarly, a button can publish an Oncl i ck event, and any number of unrelated objects can
subscribe to that event, receiving notification when the button is clicked.

The publisher and the subscribers are decoupled by the delegate. This is highly desirable; it makes for
more flexible and robust code. The Cl ock can change how it detects time without breaking any of the
subscribing classes. The subscribing classes can change how they respond to time changes without
breaking the Cl ock. The two classes spin independently of one another, and that makes for code that
is easier to maintain.

276

Programming C#

Part II: Programming with C#
Chapter 13. Building Windows Applications

The previous chapters have used console applications to demonstrate C# and the Common Language
Runtime. Although console applications can be implemented simply, it is time to turn your attention to
the reason you're learning the C# language in the first place: building Windows and web applications.

In the early days of Windows computing, an application ran on a desktop, in splendid isolation. Over
time, developers found it beneficial to spread their applications across a network, with the user
interface on one computer and a database on another. This division of responsibilities or partitioning of
an application came to be called two-tier or client-server application development. Later three-tier or n-
tier approaches emerged as developers began to use web servers to host business objects that could
handle the database access on behalf of clients.

When the Web first came along, there was a clear distinction between Windows applications and web
applications. Windows applications ran on the desktop or a local-area network (LAN), and web
applications ran on a distant server and were accessed by a browser. This distinction is now being
blurred as Windows applications reach out to the Web for services. Many new applications consist of
logic running on a client, a database server, and remote third-party computers located on the Web.
Traditional desktop applications such as Excel or Outlook are now able to integrate data retrieved
through web connections seamlessly, and web applications can distribute some of their processing to
client-side components.

The primary remaining distinction between a Windows application and a web application might be this:
who owns the user interface? Will your application use a browser to display its user interface, or will
the Ul be built into the executable running on the desktop?

There are enormous advantages to web applications, starting with the obvious: they can be accessed
from any browser that can connect to the server. In addition, updates can be made at the server,
without the need to distribute new dynamic link libraries (DLLS) to your customers.

On the other hand, if your application derives no benefit from being on the Web, you might find that
you can achieve greater control over the look and feel of your application, or you can achieve better
performance, by building a desktop application.

.NET offers closely related, but distinguishable, suites of tools for building Windows or web
applications. Both are based on forms, with the premise that many applications have user interfaces
centered on interacting with the user through forms and controls, such as buttons, list boxes, text, and
so forth.

The tools for creating web applications are called Web-Forms and are considered in Chapter 15. The
tools for creating Windows applications are called Windows Forms and are the subject of this chapter.

- It is my prediction that the distinction between Web-Forms and

ar Windows Forms is temporary. There is such obvious similarity

* between these two approaches that I'd be very surprised if the
next version of .NET didn't merge these two tools into one unified
development environment.

In the following pages, you will learn how to create a simple Windows Form using either a text editor
such as Notepad or the Design tool in Visual Studio.NET. Next you will build a more complex Windows
application using Visual Studio, the Windows Forms framework, and a number of C# programming
techniques you learned in earlier chapters. The chapter concludes with a brief introduction to

277

Documentation Comments, a new XML-facilitated means to document applications, and an
introduction to the deployment of .NET applications.

13.1 Creating a Simple Windows Form

A Windows Form is a tool for building a Windows application. The .NET Framework offers extensive
support for Windows application development, the centerpiece of which is the Windows Forms
framework. Not surprisingly, Windows Forms use the metaphor of a form. This idea was borrowed
from the wildly successful Visual Basic (VB) environment and supports Rapid Application
Development (RAD). Arguably, C# is the first development environment to marry the RAD tools of
Visual Basic with the object-oriented and high-performance characteristics of a C-family language.

13.1.1 Using Notepad

Visual Studio.NET provides a rich set of drag-and-drop tools for working with Windows Forms. It is
possible to build a Windows application without using the Visual Studio Integrated Development
Environment (IDE), but it is far more painful and takes a lot longer.

However, just to prove the point, you'll use Notepad to create a simple Windows Form application that
displays text in a window and implements a Cancel button. The application display is shown in Figure
13-1.

Figure 13-1. The hand-drawn Windows Form

_MHello world M=l E
Helo Woild!
Cancel

You start by adding a usi ng statement for the Windows Forms namespace:
usi ng System W ndows. For s;

The key to creating a Windows Form application is to derive your form from
System W ndows. For ms. For m

public class HandDrawnCl ass : Form

The For mobject represents any window displayed in your application. You can use the For mclass to
create standard windows, as well as floating windows, tools, dialog boxes, and so forth. Microsoft
apparently chose to call this a form rather than a window to emphasize that most windows now have
an interactive component that includes controls for interacting with users.

All the Windows widgets you'll need (labels, buttons, list boxes, etc.) are found within the
W ndows. For ms namespace. In the IDE, you'll be able to drag and drop these objects onto a
designer, but for now you'll declare them right in your program code.

To get started, declare the two widgets you need, a label to hold the Hel | o WWr | d text and a button
to exit the application:

278

Programming C#

private System W ndows. Forns. Label | bl Qut put;
private System W ndows. For ns. Button bt nCancel ;

You're now ready to instantiate these objects, which you do in your Form's constructor:

thi s. | bl Qut put
thi s. bt nCancel

new System W ndows. For ns. Label ();
new System W ndows. Fornms. Button();

Next you can set the For nls title text to Hel | o \V\or | d:

this. Text = "Hello Wrld";
e Note that the preceding statements appear in your form's
.~ . constructor, HandDr awnCl ass, and so the t hi s keyword refers
— 4% to the form itself.

Set the label's location, text, and size:

| bl Qut put. Locati on = new System Draw ng. Poi nt (16, 24);
| bl Qut put. Text = "Hello World!";
| bl Qut put. Si ze = new System Drawi ng. Si ze (216, 24);

The location is expressed as a Syst em Dr awi ng. Poi nt object, whose constructor takes a
horizontal andvertical position. The size is set with a Si ze object, whose constructor takes a
pair of integers that represent the wi dt h and hei ght of the object.

- The .NET Framework provides the Syst em Dr awi ng object,
«2 1. Which encapsulates the Win32 GID+ graphics functions. Much of

the .NET Framework Class Library (FCL) consists of classes that
encapsulate Win32 methods as objects.

Next, do the same for the but t on object, setting its location, size, and text:

bt nCancel . Locati on = new System Draw ng. Poi nt (150, 200);
bt nCancel . Si ze = new System Draw ng. Si ze (112, 32);
bt nCancel . Text = "&Cancel ";

The button also needs an event handler. As described in Chapter 12, events (in this case the cancel
button-click event) are implemented using delegates. The publishing class (but t on) defines a
delegate (Syst em Event Handl er) that the subscribing class (your form) must implement.

The delegated method can have any name but must return voi d and take two parameters: an object
(sender) and a Syst entEvent Ar gs object, typically named e:

protected void btnCancel _Cick (
obj ect sender, System Event Args e)
{

}

/...
You register your event handler method in two steps. First you create a new Syst em Event Handl er
delegate, passing in the name of your method as a parameter:

new System Event Handl er (this.btnCancel Cick);

279

You then add that delegate to the button's click event handler list with the += operator.

The following line combines these steps into one:

one: bt nCancel . dick +=
new System Event Handl er (this.btnCancel Cick);

Now you must set up the form's dimensions. The form property Aut oScal eBaseSi ze sets the base
size used at display time to compute the scaling factor for the form. The Cl | ent Si ze property sets
the size of the form's client area, which is the size of the form excluding borders and titlebar (when you
use the designer, these values are provided for you interactively):

t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze (5, 13);
this.dientSize = new System Draw ng. Si ze (300, 300);

Finally, remember to add the widgets to the form:

this.Controls. Add (this.btnCancel);
this.Controls. Add (this.|blQutput);

Having registered the event handler, you must supply the implementation. For this example, clicking
Cancel will exit the application, using the static method Exi t () of the Appl i cati on class:

protected void btnCancel _Cick (
obj ect sender, System EventArgs e)
{

}

Application. Exit ();

That's it; you just need an entry point to invoke the constructor on the form:

public static void Main()
{

}

Application. Run(new HandDrawnCl ass());

The complete source is shown in Example 13-1. When you run this application, the window is
opened and the text is displayed. Pressing Cancel closes the application.

Example 13-1. Creating a hand-drawn Windows Form

usi ng System
usi ng System W ndows. For ns;

namespace ProgCSharp

{

public class HandDrawnC ass : Form

{
/1 a label to display Hello Wrld

private System W ndows. For ns. Label
| bl Qut put ;

/1 a cancel button
private System W ndows. Forns. Button
bt nCancel ;

publ i ¢ HandDrawnCl ass()
{

280

Programming C#

/'l create the objects
this.|bl Qutput =

new System W ndows. Fornms. Label ();
t hi s. bt nCancel =

new System W ndows. Forns. Button ();

/1l set the forms title
this. Text = "Hello Wrl d";

/1 set up the output |abel
[bl Qut put. Location =
new System Draw ng. Poi nt (16, 24);
| bl Qutput. Text = "Hello World!";
| bl Qut put. Si ze =
new System Draw ng. Si ze (216, 24);

/1 set up the cancel button
bt nCancel . Location =

new System Draw ng. Poi nt (150, 200);
bt nCancel . Si ze =

new System Draw ng. Si ze (112, 32);
bt nCancel . Text = "&Cancel ";

/1l set up the event handl er
bt nCancel . dick +=
new System Event Handl er (this.btnCancel _Cick);

/1 Add the controls and set the client area
t hi s. Aut oScal eBaseSi ze =

new System Draw ng. Si ze (5, 13);
this.CientSize =

new System Draw ng. Si ze (300, 300);
this.Controls. Add (this.btnCancel);
this.Controls. Add (this.|blQutput);

}

/1 handl e the cancel event
protected void btnCancel _Cick (

obj ect sender, System EventArgs e)
{

}

/1 Run the app
public static void Main()
{

}

Application. Exit();

Appl i cation. Run(new HandDr awnCl ass());

}
13.1.2 Using the Visual Studio.Net Designer

Although hand coding is always great fun, it is also a lot of work, and the result in the previous
example is not as elegant as most programmers would expect. The Visual Studio IDE provides a
design tool for Windows Forms that is much easier to use.

281

To begin work on a new Windows application, first open Visual Studio and choose New Project. In the
New Project window, create a new C# Windows application and name it Pr ogCShar pW ndows For m

as shown in Figure 13-2.

Figure 13-2. Creating a Windows Form application

[:3 Ed
Project Types: Templates: E ==
| Wisual Basic Projects —E _.'J _ﬁ -
_1 Visual C# Prajects (=] lic j, L
£ Visudl C+ Projects ‘Windows Clzss Library windows
1 Setup and Deployment Projects apclication Contrel Library
+ |_] Cther Projecks ,.Z-’:*
) Wisual Shudin Solutions i 2 -.R*F ﬁ'
1.8 |8
| c¥ L o1 L
‘Wb ‘Web Service Web Control
Application Library ﬂ

& project For creating an application with & Windows user nkerface

Tame: | ProgCsharpwindowsFarms

Location: I C:\Documents and Settings)AdministratoriMy Dooumen ﬂ Browss,..

Project will be created at ... WMy Documents\Visual Shudio ProjectsProgZSharpWindowsForms.

FMore K | Cancal | Help |

Visual Studio responds by creating a Windows Form application and, best of all, putting you into a
design environment as shown in Figure 13-3.

Figure 13-3. The design environment

282

Programming C#

¥: ProgCSharpWindowsForms - Microsoft Yisual Cg.NET [design] - Forml.cs [Design]

Fle Edit | Miew | Project Puld Debug Tools Wodow Help
-~ 4B p Debug - kb sortColy

B

Tealbo: R x Formil.cs [Design] |
] o o)

Comporents i nglﬂ
Windaws Forms e R T g
ke Poiriter
A Label

A Linkiahal
8| Button
wbl TexiBos:

180T 454050

2 Mk 1
=Hinliils
RadicButton
“Efl:l.pﬂcl:!:
23 PichureBox
[} Panel
71 Datadrid
=4 ListBoe
£ checkedListBox o
=3 CombeBox
32¢ ListWiew

§o Treeview
] TabContral
N CeteTimePicker
5] MonthCalendar

The Design window displays a blank Windows Form (For nil). A Toolbox window is also available, with
a selection of Windows widgets and controls. If the Toolbox is not displayed, try clicking the word

"Toolbox," or select View =2Toolbox on the Visual Studio menu. You can also use the keyboard
shortcut Ctrl-Alt-X to display the Toolbox. With the Toolbox displayed, you can drag a label and a
button directly onto the form, as shown in Figure 13-4.

Figure 13-4. The Windows Form development environment

283

L. Programming SharpWisl nrm - Sereandt Visaael F+ -+ [desgn] - 158w orn s [Besign]*

e 4t Yew Proec Qid [ebug Took Hndew Help

ifd-a-SE@ ¥ & y Deburg © g fomic RS . *
! . g »
I -
7 n - L Lirawed oren 3 [Dessgn]* | i s
i Data STETIE .
I - L =0 x| ; Sobatins 'Srogravemragss haspa o {1 pros
L. S| R e e S S S S - % programming sharpwiniorm
B Pt RS L Ll 4 i Parances
A Label ;;Hellu World §:-:cociciiiiiiin 12) aseritnirdo o5
A LinkLabel R SR
i pa 230303031
R
B oManMenu 0000 | st
BF ChedBoe | i
' Ridofuttan
| GroupBos
aal PicbureBoo
5] Dwbatird P | []
it o Sohition Expie . | 1 3
£ o] Cheded stBo: .
o [I'l:l'tl:lru-\l'wrru:s: FieProgarhas j
T |tiier !
3 14 ef
7o Treelesy
Buldachon © orrpla
) TarContyol E =
'31 L T .-.umwrw =
K - Flehiae IDEDr v 5
an HScrolis
Cipbossed Ring -
x|
[fmarera o
CuiskoimT ool
d b | CusbomTod Proglh
A Bl oupa |

Before proceeding, take a look around. The Toolbox is filled with controls that you can add to your
Windows Form application. In the upper-right corner you should see the Solution Explorer, a window
which displays all the files in your projects. In the lower-right corner is the Properties window, which
displays all the properties of the currently selected item. In Figure 13-4, the label (I abel 1) is
selected, and the Properties window displays its properties.

You can use the Properties window to set the static properties of the various controls. For example, to
add textto | abel 1, you can type the words "Hello World" into the box to the right of its Text property.
If you want to change the font for the lettering in the Hel | o\\or | d label, you click the Font property

shown in the lower-right corner of Figure 13-5. (You can provide text in the same way for your button
(but t onl) by selecting it in the Property window and typing the word "Cancel" into its Text property.)

Figure 13-5. Modifying the font

284

Programming C#

. Programming SharpWisf orm - Soreandt Vsl £+ -+ [design] - 108 0rasnPomncs [Besign]* -1
B Edb Yeew Proisd Suld [ebug Took Window Help
i,lj'_l'@n' Y E @ e DT ek * g fomi_c - 3@*&;. =
16|~ 2 3 o ok | fed d £k | o sl e ! o om o E|+ 2 *
i : .
Plliooibos o 1] - DD s oren.cx [Design}* | PR el i, Leplores - Programusingi5h,, @ I
i bea (m] - e -] .
B L " B Suutien Proge anrngCSharpeFor (1 pro et
g Wan Formes L Prosgranserongl shar piWint nom
P w ol Rafenanai
:.lr:::' Hallo ‘Wiorld £F] Amunrvbieirfa.cd
A LnkLabel [El EEDvwsronms.co
| Butan
ol Testtos
| Hanrtenu
P ChadBo:
O Radofitton | il
S atn i -
i ST I
T N I 2 a
T vwei SR HESU=N R
o EE At B
SR 11 Biookman 0 Sty il J =z
I_jjcmumm ﬁ Centuy 3-#:':5 | _ﬁ- -l [= |
i Cormbeaic Comc Sane hd bl _j'
Irlm-
:-'*-nwm == armple
Ermu L E
i = | AaBbyyzz
] HenthEaenda - 1
"
A HScrolBr [vieson 3
Ciphosrd Ring - |
ianar s | T "
; T T
Feri, ersal, 12p
FormCoke CobrolTet w
- | [Fent.
| B[Thefenk wed o depley tect in B conkral.
A B oupar: |
oty

Any one of these steps is much easier than modifying these properties in code (though that is certainly

still possible).

Once you have the form laid out the way you want, all that remains is to create an event handler for

the Cancel button. Double-clicking the Cancel button will create the event handler, register it, and put
you on the code-behind page (the page that holds the source code for this form), where you can enter
the event handling logic, as shown in Figure 13-6.

Figure 13-6. After double-clicking the Cancel button

285

‘i ProsgCShar pWindew sForms - Mioresolt Wis i.:ll'_d'.‘-ir | desagn] - Foemnd .cs*
Bl Ed Wew Proed fuld [ebog Dotk rabger Window Help
l-a-FH@P|ERE - - E-5 | p rewg Al ki -RER T
Pv ! 0w * WLEY S -t Bl (ERloe 0 "2 %N ihEm
Sobtion Explonn: - ProglSh ., B

@ Pag i Farmies®
P;npp:?up'nrnm!u'n:.ruml j |ﬁ.ttrf'_aml_mh_cb_u::s:ndaﬁ_':vrst:ml:wrtﬂr\qsej 0= 5 y@
2 Schion Progt S e foems
j T ProgrshanpWindowsForms
cemponsnts . Dispose (| ; # - fu Refererces
J AszemiskyInfocs
Fednil.es

if [Eompanent.a '& pull)

FOGRN] IR R

[3TAThread]
sCati vaid Hain|)
i
Applicacion. Paeiaev Formlil)}
1

private void benCancel Click(cbjsct sender, Systen. EVencArgs ¢
{

1
1

The cursor is already in place; you have only to enter the one line of code:

Application. Exit();

o In the IDE, the cursor flashes, making it very easy to see where
2 the code goes. For most readers, the cursor probably will not flash
" 4 in this book.

Visual Studio.NET generates all the code necessary to create and initialize the components. The
complete source code is shown in Example 13-2, including the one line of code you provided (shown
in bold in this example) to handle the Cancel button-click event.

Example 13-2. Source code generated by the IDE

usi ng System

usi ng System Drawi ng;

usi ng System Col | ecti ons;
usi ng System Conponent Model ;
usi ng System W ndows. For ns;
usi ng System Dat a;

namespace ProgCShar pW ndowsForm
{
/11 <summary>
/1] Summary description for Formnil.
/1] </ sumary>
public class Forml : System W ndows. Forns. Form
{
private System W ndows. For ns. Label | bl Qut put;
private System W ndows. For ns. Button btnCancel ;
Il <summary>
/1l Required designer variable.

286

Programming C#

/1] </ sunmary>
private System Conponent Model . Cont ai ner
conponent s;

public Formi()
{
/1
/1 Required for Wndows Form Designer support
/1
InitializeConmponent();

/1

/1 TODO Add any constructor code
/1 after InitializeConponent call

/1
}

/1l <summary>

/1]l Clean up any resources being used.
/11 </sunmary>

public override void Dispose()

{
base. Di spose();
i f(conponents !'= null)
conponents. Di spose();
}

#regi on W ndows Form Desi gner generated code

/1] <summary>

/1l Required nethod for Designer support - do not nodify
/1l the contents of this nethod with the code editor.
/1] </ sunmary>

private void InitializeConponent()

this.| bl Qut put = new System W ndows. For nms. Label ();

t his. bt nCancel = new System W ndows. Forns. Button();
t hi s. SuspendLayout ();

/1

/1 | bl Qut put

/1

this. | bl Qut put. Font = new System Draw ng. Font ("Arial", 15.75F,
Syst em Drawi ng. Font St yl e. Bol d,
System Drawi ng. G- aphi csUnit. Point, ((SystemByte)(0)));

this.| bl Qutput.Locati on = new System Draw ng. Poi nt (24, 16);
this.| bl Qutput. Nane = "I bl Qut put”;
this.|bl Qutput.Size = new System Draw ng. Si ze(136, 48);
t hi s. | bl Qut put. Tabl ndex = O;
this.|bl Qutput. Text = "Hello World";
/1
/1 btnCancel
/1
t hi s. bt nCancel . Locati on = new Syst em Draw ng. Poi nt (192, 208);
t hi s. bt nCancel . Nane = "btnCancel ";
t hi s. bt nCancel . Tabl ndex = 1;
t hi s. bt nCancel . Text = "Cancel ";
this. btnCancel . dick += new System Event Handl er (
this. btnCancel _dick);
/1
/1 Forml
/1

t hi s. Aut oScal eBaseSi ze = new System Drawi ng. Si ze(5, 13);

287

this.dientSize = new System Draw ng. Si ze(292, 273);

thi s. Control s. AddRange(new System W ndows. Forns. Control [] {
this.btnCancel, this.|blQutput});

this. Name = "Forml";

this. Text = "Forml";

thi s. ResunmeLayout (f al se);

}
private void btnCancel _Cick(object sender, System EventArgs e)
{
Application. Exit();
}

#endr egi on

/1l <summary>

/1] The main entry point for the application.
/1l </sunmmary>

[STAThr ead]

static void Main()

{
Application. Run(new Fornil());
}
}
}
- Some of the code in this listing has been reformatted to fit the
s | printed page.

There is quite a bit of code in this listing that did not appear in; though most of it is not terribly
important. When Visual Studio creates the application, it must add some boilerplate code that is not
essential for this simple application.

A careful examination reveals that the essentials are the same, but there are some key differences
worth examining. The listing starts with special comment marks:

/1l <summary>
/1l Summary description for Formnil.
/1l </summary>

These marks are used for creating documentation; they are explained in detail later in this chapter.

The form derives from Syst em W ndows. For ns. For mas did our earlier example. The widgets are
defined as in the previous example:

public class Forml : System W ndows. For ms. For m

{
private System W ndows. Forns. Label | bl Qut put;

private System W ndows. Forns. Button btnCancel ;
The designer creates a private cont ai ner variable for its own use:

private System Conponent Mbdel . Cont ai ner
conponents;

288

Programming C#

In this and in every Windows Form application generated by Visual Studio .NET, the constructor calls
a private method, | ni ti al i zeConponent (), which is used to define and set the properties of all
the controls. The properties are set based on the values you've chosen (or on the default values
you've left alone) in the designer. The | ni ti al i zeConponent () method is marked with a
comment that you should not modify the contents of this method; making changes to this method
might confuse the designer.

This program will behave exactly as your earlier hand-crafted application did.

13.2 Creating a Windows Form Application

To see how Windows Forms can be used to create a more realistic Windows application, in this
section you'll build a utility named Fi | eCopi er that copies all files from a group of directories

selected by the user to a single target directory or device, such as a floppy or backup hard drive on the
company network. Although you won't implement every possible feature, you can imagine
programming this application so that you can mark dozens of files and have them copied to multiple
disks; packing them as tightly as possible. You might even extend the application to compress the files.
The true goal of this example is for you to exercise many of the C# skills learned in earlier chapters
and to explore the W ndows. For ns namespace.

For the purposes of this example and to keep the code simple, you'll focus on the user interface and
the steps needed to wire up its various controls. The final application Ul is shown in Figure 13-7.

Figure 13-7. The FileCopier user interface

Source Files: Target Directory:

- |kllemp
- O
= [Documents and Seltngs AN
- D.ﬂudmirullulul
+ Dq’.a)ﬂ'ﬁut
+ [OCookies
+ [Deszktop
+* Dr:wnulcs
= My Documents
¥ D FinePrint files —
+ [My Documents
+ [My Pictures
= O My'web:
[images
O _peivate
+ [0 vizual Shedio Projects
+ [Stast Menu
OvSwebCachs
CINTUSER.DAT
O rtuser dat LOG
[rruzeini -

O
B

(=]l
[
D4
F\
H:

+ 4+

Cleas W Dvenmite i exigds Copy

[ielete

Cancel

The user interface for FileCopier consists of the following controls:

Labels: Source Files and Target Directory

289

Buttons: Clear, Copy, Delete, and Cancel

An "Overwrite if exists"-checkbox

A text box displaying the path of the selected target directory

Two large tree view controls, one for available source directories and one for available target
devices and directories

The goal is to allow the user to check files (or entire directories) in the left tree view (source). If the
user presses the Copy button, the files checked on the left side will be copied to the Target Directory
specified in the right-hand control. If the user presses Delete, the checked files will be deleted.

The rest of this chapter implements a number of Fi | eCopi er features in order to demonstrate the
fundamental features of Windows Forms.

13.2.1 Creating the Basic Ul Form

The first task is to open a new project named Fi | eCopi er . The IDE puts you into the Desi gner,
where you can drag widgets onto the form. You can expand the form to the size you want. Drag label,
button, checkbox, and tree view controls from the Toolbox onto your form until it looks more or less
like the one shown in Figure 13-8.

You want checkboxes next to the directories and files in the source selection window but not in the
target (where only one directory will be chosen). Set the CheckBoxes property on the left Tr eeVi ew
control, t vwSour ce, to t r ue and set the property on the right-hand Tr eeVi ew control,

tvwrlarget Dir,tof al se. To do so, click each control in turn and adjust the values in the Properties
window.

Figure 13-8. Creating the form in the designer

7 el apier - Ficrsaolt Vieusl Cs-= [dedgn] - fislapier.on [esgn]
B [N Bew Pomi [l [eeg Pgmel Dwn ke e
G a-1-1 “ha £ls § [uing = g T - -

. — — ——— — — =all=l- JERE -]

; ’ (Boiciope | TR

fe— Sua T -

& Fonia i T
Source Files: Targat Direclory 1#] Aserabtyifoucs

T 1] PieCope

; f—— L H 2w o, 552

B | R
o]

Jrig— : =Pt [T T P

[T Dol il [3 Tor i e =|

I Mrmaricicler
i Bralow Ther et oetamtel 1 W ko

Once this is done, double-click the Cancel button to create its event handler: when you double-click a
control, Visual Studio.NET creates an event handler for that object. One particular event is the target
event, and Visual Studio.NET opens that event's event handler:

protected void btnCancel _Cick (object sender, System EventArgs e)

{

290

Programming C#

Application Exit();

You can set many different events for the Tr eeVi ew control. You can set them programmatically by
clicking the Events button in the Properties window. From there you can create new handlers, just by
filling in a new event handler method name. Visual Studio.NET will register the event handler and
open the editor for the code, where it will create the header and put the cursor in an empty method
body.

So much for the easy part. Visual Studio.NET will generate code to set up the form and initialize all the
controls, but it won't fill the Tr eeVi ew controls. That you must do by hand.

13.2.2 Populating the TreeView Controls

The two Tr eeVi ew controls work identically, except that the left control, t vwSour ce, lists the
directories and files, whereas the right control, t vwTar get Di r, lists only directories. The
CheckBoxes property on t viwSour ce issettotrue,and ontvwrarget Di r itis setto f al se. Also,
although t vwSour ce will allow multiselect, which is the default for Tr eeVi ew controls, you will
enforce single selection for t vwTar get Di r .

You'll factor the common code for both Tr eeVi ew controls into a shared method
Fi I I DirectoryTree and pass in the control with a flag indicating whether to get the files. You'll call
this method from the constructor, once for each of the two controls:

FillDirectoryTree(tvwSource, true);
FillDirectoryTree(tvwlargetDir, false);

The Fi | | Di rect oryTr ee implementation names the Tr eeVi ew parameter t vw. This will represent
the source Tr eeVi ewand the destination Tr eeVi ewin turn.

private void FillDirectoryTree(TreeView tvw, bool isSource)
13.2.2.1 TreeNode objects

The Tr eeVi ew control has a property, Nodes, which gets a Tr eeNodeCol | ect i on object. The
TreeNodeCol | ect i on is a collection of Tr eeNode objects, each of which represents a node in the
tree. Start by emptying that collection:

tvw. Nodes. C ear();

You are ready to fill the Tr eeVi ews Nodes collection by recursing through the directories of all the
drives. First, you get all the logical drives on the system. To do so you call a static method of the
Envi ronnment object, Get Logi cal Drives(). The Environnent class provides information
about and access to the current platform environment. You can use the Envi r onnment object to get
the machine name, OS version, system directory, and so forth, from the computer on which you are
running your program.

string[] strDrives = Environnent. CetLogical Drives();

Cet Logi cal Drives() returns an array of strings, each of which represents the root directory of
one of the logical drives. You will iterate over that collection, adding nodes to the Tr eeVi ew control as
you go.

foreach (string rootDirectoryNane in strDrives)

{

291

You should process each drive within the f or each loop. The very first thing you need to determine is
whether the drive is ready. My hack for that is to get the list of top-level directories from the drive by
calling Get Directories() onaDirectorylnfo objectl created for the root directory:

Directorylnfo dir = new Directorylnfo(rootDirectoryNane);
dir.CGetDirectories();

The Directoryl nfo class exposes instance methods for creating, moving, and enumerating
through directories, their files, and their subdirectories. The Di r ect or y| nf o class is covered in detalil

in Chapter 21.

The Get Di rect ori es() method returns a list of directories, but you'll throw this list away. You are
calling it here only to generate an exception if the drive is not ready.

You'll wrap the call in a try block and take no action in the catch block. The effect is that if an exception
is thrown, the drive is skipped.

Once you know that the drive is ready, you create a Tr eeNode to hold the root directory of the drive
and add that node to the Tr eeVi ew control:

TreeNode ndRoot = new TreeNode(rootDi rectoryNane);
t vw. Nodes. Add(ndRoot) ;

You now want to recurse through the directories, so you call into a new routine,
Get SubDi rect oryNodes(), passing in the root node, the name of the root directory, and the flag
indicating whether you want files:

if (isSource)

Cet SubDi rect or yNodes(ndRoot, ndRoot. Text, true);

}
el se

Cet SubDi rect or yNodes(ndRoot, ndRoot. Text, false);
}

You're probably wondering why you need to pass in ndRoot . Text if you're already passing in
ndRoot . Patience; you'll see why this is needed when you recurse back into
Cet SubDi r ect or yNodes.

13.2.2.2 Recursing through the subdirectories

Cet SubDi rect oryNodes() begins by once again calling Get Di rect ori es(), this time
stashing away the resulting array of Di r ect or yI nf o objects:

private void Get SubDirect oryNodes(
Tr eeNode parent Node, string full Name, bool getFil eNanes)
{

Directorylnfo dir = new Directorylnfo(full Nane);
Directorylnfo[] dirSubs = dir.CGetDirectories();

Notice that the node passed in is named par ent Node. The current level of nodes will be considered
children to the node passed in. This is how you map the directory structure to the hierarchy of the tree
view.

Iterate over each subdirectory, skipping any that are marked H dden:

292

Programming C#

foreach (Directory dirSub in dirSubs)

{
if ((dirSub.Attributes &
Fil eSystemAttri butes. H dden) '= 0)
{
conti nue;
}

Fil eSystemAt tri but es is an enuni other possible values include Ar chi ve, Conpr essed,
Di rectory, Encrypt ed, H dden, Nor nal , ReadOnl vy, etc.

L]
i)

- The property di r Sub. At t ri but es is the bit pattern of the
& 4. current attributes of the directory. If you logically AND that value
4" with the bit pattern Fi | eSystemAt tri but es. H dden, a bitis
set if the file has the hi dden attribute; otherwise all the bits are
cleared. You can test for any hidden bit by testing whether the
resulting i nt is other than zero.

L.

You create a Tr eeNode with the directory name and add it to the Nodes collection of the node passed
in to the method (par ent Node):

Tr eeNode subNode = new TreeNode(dir Sub. Nane) ;
par ent Node. Nodes. Add(subNode) ;

You now recurse back into the Get SubDi r ect or yNodes() method, passing in the node you just
created as the new parent, the full path as the full name of the parent, and the flag:

Cet SubDi rect or yNodes(subNode, di r Sub. Ful | Nane, get Fi | eNanes) ;

- Notice that the call to the Tr eeNode constructor uses the Nane
% 4. Pproperty of the Di rect or yl nf o object, while the call to

Cet SubDi rect oryNodes() usesthe Ful | Nane property. If
your directory is c: \ W nNT\ Medi a\ Sounds, the Ful | Nane
property will return the full path, while the Nane property will return
just Sounds. You pass in only the name to the node because that
is what you want displayed in the tree view. You pass in the full
name with path to the Get SubDi rect or yNodes() method so
that the method can locate all the subdirectories on the disk. This
answers the question asked earlier as to why you need to pass in
the root node's name the first time you call this method; what is
passed in is not the name of the node, it is the full path to the
directory represented by the node!

13.2.2.3 Getting the files in the directory

Once you've recursed through the subdirectories, it is time to get the files for the directory, if the
get Fi | eNanes flagistrue. To do so, you call the Get Fi | es() method onthe Di rect oryl nfo
object. What is returned is an array of Fi | el nf o objects:

i f (getFileNanes)

{
/Il Get any files for this node.

293

Filelnfo[] files = dir.CGetFiles();
The Fi | el nf o class (covered in Chapter 21) provides instance methods for manipulating files.

You can now iterate over this collection, accessing the Nane property of the Fi | el nf o object and
passing that name to the constructor of a Tr eeNode, which you then add to the parent node's Nodes
collection (thus creating a child node). There is no recursion this time because files do not have
subdirectories:

foreach (Filelnfo file in files)

TreeNode fil eNode = new TreeNode(fil e. Name);
par ent Node. Nodes. Add(fi | eNode) ;

}

That's all it takes to fill the two tree views.

If you found any of this confusing, | highly recommend putting the
s | code into your debugger and stepping through the recursion; you
4§ can watch the Tr eeVi ew build its nodes.

13.2.3 Handling TreeView Events

You must handle a number of events in this example. First, the user might click Cancel, Copy, Clear,
or Delete. Second, the user might click one of the checkboxes in the left Tr eeVi ew or one of the
nodes in the right Tr eeVi ew.

Let's consider the clicks on the Tr eeVi ews first, as they are the more interesting, and potentially the
more challenging.

13.2.3.1 Clicking the source TreeView

There are two Tr eeVi ew objects, each with its own event handler. Consider the source Tr eeVi ew
object first. The user checks the files and directories he wants to copy from. Each time the user clicks
a file or directory, a number of events are raised. The event you must handle is Af t er Check.

To do so, you implement a custom event-handler method you will create and name
tvwSource AfterCheck(). Visual Studio.NET will wire this to the event handler, or if you are not
using the integrated development environment, you must do so yourself.

t vwSour ce. Aft er Check +=
new System W ndows. For nms. Tr eeVi ewkEvent Handl er
(this.tvwSource AfterCheck);

The implementation of Af t er Check() delegates the work to a recursable method named
Set Check(), you'll also write.

protected void tvwSource_ AfterCheck (
obj ect sender, System W ndows. Forns. TreeVi ewEvent Args e)

{
}

Set Check(e. node, e. node. Checked);

294

Programming C#

The event handler passes in the sender object and an object of type Tr eeVi ewEvent Ar gs. It turns
out that you can get the node from this Tr eeVi ewEvent Ar gs object (e). You call Set Check(),
passing in the node and the state of whether the node has been checked.

Each node has a Nodes property, which gets a Tr eeNodeCol | ect i on containing all the subnodes.
Set Check() recurses through the current node's Nodes collection, setting each subnode's check
mark to match that of the node that was checked. In other words, when you check a directory, all its
files and subdirectories are checked, recursively, all the way down.

It's Turtles, All the Way Down

My favorite story on recursion is this: it happened that a famous Darwinist
was telling a story about primitive creation myths. "Some peoples," he said,
"believe the world rests on the back of a great turtle. Of course, that raises
the question: on what does the turtle rest?"

An elderly woman from the back of the room stood up and said, "Very clever,
Sonny, but it's turtles, all the way down."

For each Tr eeNode in the Nodes collection, you check to see if it is a leaf. A node is a leaf if its own
Nodes collection has a count of zero. If so, you set its check property to whatever was passed in as a
parameter. If it is not a leaf, you recurse.

private void Set Check(TreeNode node, bool check)

{
node. Checked = check;
foreach (TreeNode n in node. Nodes)
{
i f (node. Nodes. Count == 0)
{
node. Checked = check;
}
el se
{
Set Check(n, check);
}
}
}

This propagates the check mark (or clears the check mark) down through the entire structure. In this
way, the user can indicate that he wants to select all the files in all the subdirectories by clicking a
single directory.

13.2.3.2 Clicking the target TreeView

The event handler for the target Tr eeVi ewis somewhat trickier. The event itself is Af t er Sel ect .
(Remember that the target Tr eeVi ew does not have checkboxes.) This time, you want to take the one
directory chosen and put its full path into the text box at the upper-left corner of the form.

To do so, you must work your way up through the nodes, finding the name of each parent directory
and building the full path:

protected void tvwTargetDir_After Sel ect (

295

obj ect sender, System W ndows. Forns. TreeVi ewEvent Args e)

string theFull Path = GetParentString(e. node);

We'll look at Get Parent St ring() injusta moment. Once you have the full path, you must lop off
the backslash (if any) on the end and then you can fill the text box:

i f (theFul | Path. EndsWth("\\"))

{
theFul | Path =

t heFul | Pat h. Substri ng(0, theFul | Pat h. Length-1);

}
txt TargetDi r. Text = theFul | Pat h;

The GetParentString() method takes a node and returns a string with the full path. To do so, it
recurses upward through the path, adding the backslash after any node that is not a leaf:

private string GetParent String(TreeNode node)

{
i f(node. Parent == null)
{
return node. Text;
}
el se
{
return GetParent String(node. Parent) + node. Text +
(node. Nodes. Count == 0 2 "" : "\\");
}
}
- The conditional operator (?) is the only ternary operator in C# (a
«s | ternary operator takes three terms). The logic is: "test whether
i X

node. Nodes. Count is zero; if so return the value before the
colon (in this case an empty string); otherwise return the value
after the colon (in this case a backslash).

The recursion stops when there is no parent; that is, when you hit the root directory.

13.2.3.3 Handling the Clear button event

Given the Set Check() method developed earlier, handling the Clear button's click event is trivial:

protected void btnClear_Cick (object sender, System Event Args e)
{

foreach (TreeNode node in tvwSource. Nodes)

Set Check(node, false);
}

You just call the Set Check() method on the root nodes and tell them to recursively uncheck all their
contained nodes.

296

Programming C#

13.2.4 Implementing the Copy Button Event

Now that you can check the files and pick the target directory, you're ready to handle the Copy button-
click event. The very first thing you need to do is to get a list of which files were selected. What you
want is an array of Filelnfo objects, but you have no idea how many objects will be in the list. That is a
perfect job for ArrayLi st . You'll delegate responsibility for filling the list to a method called
CetFileList():

protected void btnCopy Cick (
obj ect sender, System EventArgs e)
{

ArrayList fileList = GetFileList();

Let's pick that method apart before returning to the event handler.

13.2.4.1 Getting the selected files

You start by instantiating a new ArrayLi st object to hold the strings representing the names of all
the files selected:

private ArrayList GetFileList()
{

ArrayList fileNanes = new ArrayList();
To get the selected filenames, you can walk through the source Tr eeVi ew control:

foreach (TreeNode theNode in tvwSource. Nodes)

{
}

Cet CheckedFi | es(theNode, fil eNanes);

To see how this works, you want to step into the Get CheckedFi | es() method. This method is
pretty simple: it examines the node it was handed. If that node has no children (node. Nodes. Count
== 0), itis a leaf. If that leaf is checked, you want to get the full path (by calling

Cet Parent String() onthe node) and add it to the ArrayLi st passed in as a parameter:

private void Get CheckedFil es(TreeNode node, ArrayList fil eNanmes)

{
i f (node. Nodes. Count == 0)

{
i f (node. Checked)
{
string fullPath = GetParent String(node);
fileNanmes. Add(ful |l Pat h);
}
}

If the node is not a leaf, you want to recurse down the tree, finding the child nodes:

el se
{
foreach (TreeNode n in node. Nodes)
{ Cet CheckedFil es(n, fil eNanes) ;
}
}
}

297

This will return the Ar rayLi st filled with all the filenames. Back in Get Fi | eLi st (), you'll use this
Arrayli st of filenames to create a second ArrayLi st , this time to hold the actual Fi | el nf o
objects:

ArrayList fileList = new ArrayList();

Notice that once again you do not tell the ArrayLi st constructor what kind of object it will hold. This
is one of the advantages of a rooted type-system; the collection only needs to know that it has some
kind of Ohj ect ; because all types are derived from Ohj ect , the list can hold Fi | el nf o objects as
easily as it can hold st r i ng objects.

You can now iterate through the filenames in Arr ayLi st , picking out each name and instantiating a
Fi | el nf o object with it. You can detect if it is a file or a directory by calling the Exi st s property,
which will return f al se if the Fi | e object you created is actually a directory. Ifitis a Fi | e, you can
add it to the new ArraylLi st:

foreach (string fileNane in fil eNanes)

{
Filelnfo file = new File(fil eNane);
if (file.Exists)
{
fileList.Add(file);
}
}

13.2.4.2 Sorting the list of selected files

You want to work your way through the list of selected files in large to small order so that you can pack
the target disk as tightly as possible. You must therefore sort the ArrayLi st . You can call its Sort ()
method, but how will it know how to sort Fi | e objects? Remember, the ArrayLi st has no special
knowledge about its contents.

To solve this, you must pass in an | Conpar er interface. We'll create a class called Fi | eConpar er
that will implement this interface and that will know how to sort Fi | el nf o objects:

public class FileConparer : | Conparer
{

This class has only one method, Conpar e(), which takes two objects as arguments:

public int Conpare (object f1, object f2)
{

The normal approach is to return 1 if the first object (f 1) is larger than the second (f 2), to return -1 if
the opposite is true, and to return O if they are equal. In this case, however, you want the list sorted
from big to small, so you should reverse the return values.

- Since this is the only use of this conpar e method, it is reasonable
«s |, toputthis special knowledge that the sort is from big to small right

into the conpar e method itself. The alternative is to sort small to
big, and have the cal | i ng method reverse the results, as you
saw in Example 12-1.

298

Programming C#

To test the length of the Fi | el nf o object, you must cast the Cbj ect parametersto Fi | el nf o
objects (which is safe, as you know this method will never receive anything else):

Filelnfo filel = (Filelnfo) f1,
Filelnfo file2 = (Filelnfo) f2;
if (filel.Length > file2.Length)

{

return -1;

}
if (filel.Length < file2.Length)
{

}

return O;

return 1;

~n ®
-".'i_.r
= Iy

o In a production program, you might want to test the type of the
object and perhaps handle the exception if the object is not of the
i expected type.

Returning to Get Fi | eLi st (), you were about to instantiate the | Conpar er reference and pass it
tothe Sort () method of fi | eLi st

| Conparer conparer = (| Conparer) new Fil eConparer();
fileList.Sort(conparer);

That done, you canreturn f i | eLi st to the calling method:
return fileList;

The calling method was bt nCopy Cl i ck. Remember you went off to Get Fi | eLi st () in the first
line of the event handler!

protected void btnCopy Cick (object sender, System EventArgs e)

{
ArrayList fileList = GetFileList();

At this point you've returned with a sorted list of Fi | e objects, each representing a file selected in the
source TreeVi ew.

You can now iterate through the list, copying the files and updating the Ul:

foreach (Filelnfo file in fileList)

{
try
{
| bl Status. Text = "Copying " +
txt TargetDir. Text + "\\" +
file.Name + "...";
Application. DoEvents();
file.CopyTo(txtTargetDir. Text + "\\" +
file.Name, chkOverwite. Checked);
}

catch (Exception ex)

299

{

}
}
| bl St atus. Text = "Done.";
Application. DoEvents();

MessageBox. Show(ex. Message) ;

As you go, you write the progress to the | bl St at us label and call Appl i cation. DoEvents() to
give the Ul an opportunity to redraw. You then call CopyTo() on the file, passing in the target
directory, obtained from the text field, and a Boolean flag indicating whether the file should be
overwritten if it already exists.

You'll notice that the flag you pass in is the value of the chkOver Wi t e checkbox. The Checked
property evaluates t r ue if the checkbox is checked and f al se if not.

The copy is wrapped in a t r y block because you can anticipate any number of things going wrong
when copying files. For now, you handle all exceptions by popping up a dialog box with the error, but
you might want to take corrective action in a commercial application.

That's it; you've implemented file copying!
13.2.5 Handling the Delete Button Event

The code to handle the delete event is even simpler. The very first thing you do is ask the user if she is
sure she wants to delete the files:

protected void btnDelete Cick

(obj ect sender, System EventArgs e)

{

System W ndows. For ms. Di al ogResult result =
MessageBox. Show(

"Are you quite sure?", /'l msg
"Del ete Files", /'l caption
MessageBoxBut t ons. OKCancel , /'l buttons
MessageBoxI| con. Excl amat i on, /'l icons

MessageBoxDef aul t Button. Button2); // default button
}

You can use the MessageBox static Show() method, passing in the message you want to display,
the title "Del et e Fi | es” as a string, and flags.

MessageBox. OKCancel asks for two buttons: OK and Cancel .

MessageBox. | conExcl anmat i on indicates that you want to display an exclamation mark
icon.

MessageBox. Def aul t But t on. But t on2 sets the second button (Cancel) as the default
choice.

When the user chooses CK or Cancel , the result is passed back as a
System W ndows. Forms. Di al ogResul t enumerated value. You can test this value to see if the
user pressed OK:

if (result == System W ndows. Forns. Di al ogResul t. OK)
{

If so, you can get the list of f i | eNanes and iterate through it, deleting each as you go:

300

Arr

for

{

}
| bl

Programming C#

ayList fileNames = GetFil eList(
each (Filelnfo file in fil eNanes)
try
{
| bl Status. Text = "Deleting "
txt TargetDir. Text + "\\"
file.Name + "...";
Application. DoEvents();
file.Delete();
}
catch (Exception ex)
{
MessageBox. Show ex. Message) ;
}

Status. Text = "Done.";

Application. DoEvents();

)

+
+

This code is identical to the copy code, except that the method that is called on the file is Del et e().

Example 13-3 provides the commented source code for this example.

Example 13-3. File copier source code

usi
usi
usi
usi
usi
usi
usi

111
111
111
111

F I
“wh
i

"

e

e To save space, this example shows only the custom methods and
leaves out the declarations of the \WW ndows. For ns objects as
well as the boilerplate code produced by Visual Studio.NET. As
explained in the preface, you can download the complete source

code from my web site, http://www.LibertyAssociates.com.

ng System

ng System Col | ecti ons;

ng System Conponent Model ;
ng System Dat a;

ng System Draw ng;

ng System | G

ng System W ndows. For ns;

<remar ks>
File Copier -

</remar ks>

nanespace Fil eCopi er

{

/1l <summary>

W nForns denonstration program
(c) Copyright 2001 Liberty Associ ates,

I nc.

/1l Form denmonstrating Wndows Forms inplenentation

/1l </summary>

/'l < declarations of Wndows wi dgets cut

public class Forml :

{

Il <summary>

here >

Syst em W ndows. For ns. Form

301

302

/11 internal class which knows how to conpare
/11 two files we want to sort large to small,
111 so reverse the normal return val ues.

/1l </summary>

public class FileConparer : | Conparer

{

}

public int Conpare (object f1, object f2)

Filelnfo filel (Filelnfo) f1
Filelnfo file2 (Filelnfo) f2;
if (filel.Length > file2.Length)

{

return -1;

}
if (filel.Length < file2.Length)
{

}

return O;

return 1;

public Formi()
{
/1
/1 Required for Wndows Form Designer support
/1
InitializeConmponent();

/1 fill the source and target directory trees
FillDirectoryTree(tvwSource, true);
FillDirectoryTree(tvwlargetDir, false);

/1] <summary>

/1] Fill the directory tree for either the Source or
/1l Target TreeView.

/1] </ sunmary>

private void FillDirectoryTree(

{

TreeVi ew tvw, bool isSource)

/1 Popul ate tvwSource, the Source TreeView,
/1 with the contents of

/1 the local hard drive.

/1 First clear all the nodes.

tvw. Nodes. Clear();

/[l Cet the logical drives and put theminto the
/1 root nodes. Fill an array with all the
/'l logical drives on the nachine.
string[] strDrives =
Envi ronnent . Get Logi cal Drives();

/1 lterate through the drives, adding themto the tree.
/1 Use a try/catch block, so if a drive is not ready,
/1 e.g. an enpty floppy or CD
/1 it will not be added to the tree.
foreach (string rootDirectoryName in strDrives)
{

if (rootDirectoryNane !'= @C.\")

conti nue;
try

111
111
111
111
111
111
111
111
111
111

pri

Programming C#

/1 Fill an array with all the first |eve
/1 subdirectories. If the drive is
/1 not ready, this will throw an exception
Directorylnfo dir =

new Di rectoryl nfo(rootDirectoryNane);
dir.CGetDirectories();

TreeNode ndRoot = new TreeNode(rootDirectoryNane);

/1 Add a node for each root directory.
t vw. Nodes. Add(ndRoot) ;

/1 Add subdirectory nodes.

/1 1f TreeViewis the source,
/1 then also get the fil enanes.
if (isSource)

Get SubDi r ect or yNodes(
ndRoot, ndRoot. Text, true);

}
el se
Get SubDi r ect or yNodes(
ndRoot, ndRoot. Text, false);
}

catch (Exception e)

/1 Catch any errors such as
/1l Drive not ready.
MessageBox. Show(e. Message) ;

}
} | |
/1 close for FillSourceDirectoryTree
<sunmary>
Gets all the subdirectories bel ow the

passed in directory node.

Adds to the directory tree.

The paraneters passed in at the parent node

for this subdirectory,

the full pathname of this subdirectory,

and a Bool ean to indicate

whet her or not to get the files in the subdirectory.

</ sumary>
vate void Get SubDirectoryNodes(
TreeNode parent Node, string full Name, bool getFil eNanes)

Directorylnfo dir = new Directorylnfo(full Nane);
Directorylnfo[] dirSubs = dir.CGetDirectories();
/1 Add a child node for each subdirectory.
foreach (Directorylnfo dirSub in dirSubs)

/1 do not show hidden fol ders

if ((dirSub.Attributes & FileAttributes. H dden)
'=0)

303

}

conti nue;
}
/1l <summary>
/11 Each directory contains the full path.
111 We need to split it on the backsl ashes,
Iy and only use
/11 the last node in the tree.
/11 Need to doubl e the backslash since it
/11 is normally
111 an escape character

/1l </sunmmary>

TreeNode subNode = new TreeNode(dirSub. Nane) ;
par ent Node. Nodes. Add(subNode) ;

/1 Call GetSubDirectoryNodes recursively.
Get SubDi r ect or yNodes(
subNode, di r Sub. Ful | Nare, get Fi | eNanes) ;

(get Fi | eNamnres)

/1 Get any files for this node.
Filelnfo[] files = dir.CetFiles();

/1 After placing the nodes,
/1 now place the files in that subdirectory.
foreach (Filelnfo file in files)

TreeNode fil eNode = new TreeNode(fil e. Nane);
par ent Node. Nodes. Add(fi | eNode) ;

/1l < boilerplate code cut here >

/1] <summary>

/1l The main entry point for the application
/1l </summary>

[STAThr ead]

static void Main()

{

}

111
111
111
111

Application. Run(new Fornl());
<sumrary>
Create an ordered |ist of al
the selected files, copy to the
target directory

/1l </sunmmary>
private void btnCopy Cick(object sender

{

System Event Args e)

/1l get the |ist
ArrayList fileList = GetFileList();

/1 copy the files

Programming C#

foreach (Filelnfo file in fileList)

{
try
/1 update the | abel to show progress
| bl Status. Text = "Copying " + txtTargetDir. Text +
"\\" + file.Name + "...";
Application. DoEvents();
/1 copy the file to its destination |ocation
file.CopyTo(txtTargetDir.Text + "\\" +
file.Nanme, chkOverwrite. Checked);
}
catch // (Exception ex)
{
/1 you may want to do nore than just show t he nessage
/'l MessageBox. Show(ex. Message) ;
}
}
| bl St at us. Text = "Done.";
Appl i cation. DoEvents();
}
/1] <summary>
/11 on cancel, exit

/1l </sunmmary>
private void btnCancel _Cick(object sender, System EventArgs e)

{
Application. Exit();

}

/1] <summary>

111 Tell the root of each tree to uncheck
111 all the nodes bel ow

/1] </ sunmary>
private void btnC ear_Cick(object sender, System EventArgs e)
{

/1 get the top nost node for each drive

/1 and tell it to clear recursively

foreach (TreeNode node in tvwSource. Nodes)

Set Check(node, false);

}
}
/1l <summary>
111 check that the user does want to delete
111 Make a |ist and delete each in turn

/1l <l summary>
private void btnDel ete_Cick(object sender, System EventArgs e)
{
/1 ask themif they are sure
System W ndows. For ns. Di al ogResult result =
MessageBox. Show(
"Are you quite sure?", [/ nsg
"Delete Files", /1 caption
MessageBoxButt ons. OKCancel , // buttons
MessageBox| con. Excl amation, // icons

305

MessageBoxDef aul t Button. Button2); // default button

/1 if they are sure...
if (result == System W ndows. Forns. Di al ogResul t. OK)

/1 iterate through the list and delete them
/1 get the list of selected files
ArrayList fileNanmes = GetFileList();

foreach (Filelnfo file in fil eNanmes)

{
try
{
/1 update the | abel to show progress
I bl Status. Text = "Deleting " +
txt TargetDir. Text + "\\" +
file.Name + "...";
Appl i cation. DoEvents();
/1 Danger W | Robinson!
file.Delete();
}
catch (Exception ex)
/1 you may want to do nore than
/1l just show the nessage
MessageBox. Show ex. Message) ;
}
}
| bl St atus. Text = "Done.";

Appl i cation. DoEvents();

/1l <summary>
/11 Get the full path of the chosen directory
/11 copy it to txtTargetDir
/1] </ sunmary>
private void tvwlargetDir_After Sel ect (
obj ect sender,
Syst em W ndows. For ns. TreeVi ewEvent Args e)

{
/1 get the full path for the selected directory
string theFull Path = GetParent String(e.Node);
/1 if it is not aleaf, it will end with a backsl ash
/1 renove the backsl ash
if (theFull Path. EndsWth("\\"))
t heFul | Path =
t heFul | Pat h. Substring(O0, t heFul | Pat h. Lengt h-1);
/1 insert the path in the text box
txt Target Di r. Text = theFul | Pat h;
}

306

Programming C#

/1l <summary>

/11 Mar k each node bel ow the current

Iy one with the current val ue of checked

/1l </summary>

private void tvwSource_ AfterCheck(object sender
Syst em W ndows. For ns. Tr eeVi ewEvent Args e)

{
/1 Call a recursible nethod.
/1l e.node is the node which was checked by the user.
/1 The state of the check mark is al ready
/1 changed by the tinme you get here.
/1 Therefore, we want to pass al ong
/1l the state of e.node. Checked.
Set Check(e. Node, e. Node. Checked) ;
}
/1] <summary>
111 recursively set or clear check marks

/1l </summary>
private void SetCheck(TreeNode node, bool check)

{
/1l set this node's check mark
node. Checked = check
/1 find all the child nodes fromthis node
foreach (TreeNode n in node. Nodes)
{
// if the child is a |eaf
/1l just check it (or uncheck it)
i f (node. Nodes. Count == 0)
{
node. Checked = check
}
// if the child is a node in the tree, recurse
el se
Set Check(n, check);
}
}
}
/1] <summary>
111 G ven a node and an array |ist
111 fill the list with the nanes of
111 all the checked files

/11 </sunmary>

/1 Fill the ArrayList with the full paths of

/1 all the feils checked

private void GetCheckedFil es(TreeNode node,
ArrayLi st fil eNanes)

{

// if this is a leaf..
i f (node. Nodes. Count == 0)

/1 if the node was checked. .
i f (node. Checked)

{
/1 get the full path and add it to the arrayLi st
string full Path = Get Parent Stri ng(node);
fil eNanes. Add(ful | Pat h);

}

307

308

else // if this node is not a |eaf

/1 call this for all the subnodes
foreach (TreeNode n in node. Nodes)

{
CGet CheckedFi | es(n, fil eNanes);
}
}

}
/1] <summary>
111 G ven a node, return the
111 full pathnane

/1] </ sunmary>
private string GetParentString(TreeNode node)

{
/1 if this is the root node (c:\) return the text
i f(node. Parent == null)
{
return node. Text;
}
el se
{
/1l recurse up and get the path then
/1 add this node and a sl ash
/1 if this node is the leaf, don't add the slash
return GetParent String(node. Parent) + node. Text +
(node. Nodes. Count == 2"t "\
}
}

/1] <summary>

111 shared by del ete and copy

111 creates an ordered |list of al

111 the selected files

/1l </sunmmary>

private ArraylList GetFileList()

{
/1l create an unsorted array list of the full filenanes
ArrayList fileNanes = new ArrayList();

/1 fill the fileNames ArrayList with the

/1 full path of each file to copy

foreach (TreeNode theNode in tvwSource. Nodes)
{

}

/1l Create a list to hold the filelnfo objects
ArrayList fileList = new ArrayList();

Cet CheckedFi | es(t heNode, fil eNanes);

/1l for each of the filenanmes we have in our unsorted |ist
/1 if the nane corresponds to a file (and not a directory)
/] add it to the file Iist
foreach (string fileNane in fil eNanes)
{

/] create a file with the nane

Filelnfo file = new Filelnfo(fileNane);

Programming C#

see if it exists on the disk
this fails if it was a directory
if (file.Exists)

/'l both the key and the value are the file

/1 would it be easier to have an enpty val ue?
fileList.Add(file);

}

/'l Create an instance of the | Conparer interface
| Conparer conparer = (| Conparer) new Fil eComparer();

/1l pass the conparer to the sort nmethod so that the I|ist
/'l is sorted by the conpare method of conparer.
fileList.Sort(conparer);

return fileList;

}
}
}
/1l <summary>
/111 Mar k each node bel ow the current
/111 one with the current value of checked

/1l </sunmmary>
protected void tvwSource_ After Check (

obj ect sender, System W ndows. Forns. Tr eeVi ewEvent Args e)
{

}

13.3 XML Documentation Comments

C# supports a new Documentation Comment style, with three slash marks (/ / /). You can see these

comments sprinkled throughout Example 13-3. The Visual Studio.NET editor recognizes these
comments and helps format them properly.

The C# compiler processes these comments into an XML file. You can create this file by using the
/ doc conmmand- | i ne switch. For example, you might compile the program in Example 13-3 with
this command line:

csc filecopier.cs /r:System Wndows. Fornms.dl |l /r:nscorlib.dll
/r:systemdl|l /r:systemconfiguration.dll /r:systemdata.dll
/r:systemdiagnostics.dll /r:systemdraw ng.dl |
/r:mcrosoft.wi n32.interop.dll

/ doc: XM_Doc. XM

You can accomplish this same operation in Visual Studio .NET by clicking a project icon in the
Solution Explorer window, selecting View éProperty Pages on the Visual Studio menu, and then
clicking the Configuration Properties folder. Within the Configuration Properties folder, click the Build
property page and type in a name for the XML Documentation File property to specify a name for the
XML file you want to produce.

Either approach produces the file XMLDoc.XML with your comments in XML format. An excerpt of the
file that will be produced for the FileCopier application of the previous section is shown in Example
13-4.

309

Example 13-4. The XML output (excerpt) for file copy

<?xm version="1.0"?>
<doc>
<assenbl y>
<nane>Fi | eCopi er </ nane>
</ assenbl y>
<menber s>
<menber nanme="T: Fi | eCopi er. FormL." >
<sunmmary>
Form denonstrati ng Wndows Forms inpl enentation
</ sumary>
</ menber >
<menber nanme="F: Fi | eCopi er. FormlL. conponent s" >
<sunmmary>
Requi red desi gner vari able
</ sumary>
</ menber >
<menber nanme="F: Fi | eCopi er. Forml. tvwTargetDi r" >
<sunmmary>
Tree view of potential target directories
</ sumary>
</ menber >
<menber nanme="F: Fi | eCopi er. For ml. t vwSour ce" >
<sunmmary>
Tree view of source directories
i ncl udes check boxes for checking
chosen files or directories
</ summary>
</ menmber >
<nmenber nanme="F: Fi | eCopi er. Fornl. txt TargetDi r">

The file is quite long, and although it can be read by humans, it is not especially useful in that format.
You could, however, write an XSLT file to translate the XML into HTML, or you could read the XML
document into a database of documentation.

One of the simplest things to do with the documentation comments in your source code is to allow

Visual Studio to generate a Code Comment Web Report. You choose this from the Tool s menu

(Tools —>Build Comment Web Pages...), and the IDE does the rest. The result is a set of HTML files
that you can view from within the IDE or from a browser, as shown in Figure 13-9.

Figure 13-9. Code comment web report

310

Programming C#

AT
L Code Comment Web Report

Saktan | Proact
rLapicr FileCopier.Form1 Class
T 1

Fann daroshiratisg misdass Fanms rnplemenlation

Aotoes: Publc

Bsaw Classes: Fom

Aapiired desirer vanatie
Trae vhine of patensal tamget direotiies

Trae i of soume diremanes ndiuies chedl bawes Tor chediag dosen Sles o
diructario

Trae viam af paleral target drechories
Labal diplavs progress whes coprng or dalatng fiks

IF ehachad, whan coprng we'll everarile axistng fiks

‘Wihan prassed, sets ol dhedh bexved s sounss rae v b dear
Shuks the apobostien

Dieledas the seledbed fles

CIegibs the s Heted fies 10 the tanget dractory

irbamad clags which kngess Bow o compars bao Al e mast bo cort lerge o e=all, 50
rEvEriE e norinal relum walugs
Fil the diractery tree for either the Sourcs or Targer Trae'ies,

Gers AN the subdrensies Below the passed in draomey nisde. Adds to Se Gremory rae
Tha pararmatsrs passsd n st the perent nods Far this subdirectory, #a #5ll path neme of
thir pubdreatary, 2nd o Bosleas to ndioaie wheibesr or nok bo get fe Sles ia the

mubd rmckary.

Every member preceded by a documentation comment is included in the XML file via a <nmenber > tag
added by the compiler, along with a name attribute that identifies the member. You can also make use
of predefined tags to increase the richness of the generated documentation. For example, you can
add <see> comments to reference another member in the class or <except i on> to document
exception classes. A detailed discussion of XML Documentation Comments is beyond the scope of
this book, but a complete listing of available tags can be found in the C# Programmers Reference that
is included with Visual Studio.

13.4 Deploying an Application

Now that the application works, how do you deploy it? The good news is that in .NET there is no
Registry to fuss with; you could, in fact, just copy the assembly to a new machine.

For example, you can compile the program in Example 13-3 into an assembly named
Fi | eCopi er . exe. You can then copy that file to a new machine and double-click it. Presto! It works.
No muss, no fuss.

13.4.1 Deployment Projects

For larger commercial applications, this simple approach might not be enough; sweet as it is.
Customers would like you to install the files in the appropriate directories, set up shortcuts, and so
forth.

Visual Studio provides extensive help for deployment. The process is to add a Set up and
Depl oynment project to your application project. For example, assuming you are in the Fi | eCopi er
project, click Add Project and choose Setup and Deployment Projects. You should see the dialog box

shown in Figure 13-10.

Figure 13-10. The New Project dialog box

311

Project Types: Templates: |E £
1 Vizusl Basic Projects = T "
] Visusl C# Projects N 5
+ | Wisuzl C++ Projects Cab Project Deploy Wizard Merge Madule
| visual FoxPro Projects Praject

—4 Setup and Deployment Projects

+ || Cither Projects 5) E] ;J'.r',l
__| Visual Shudio Solutions 4s gy =

Setup Project Setup Wioard Web Setup

Project
Creabe 5 Cab project bo which files can be addsd.
Tame: | FleCoplerCab
Lioication: I Ct\Documents and Settings)Administrabor\My Dooumen j Browss, ..

Project will be created at ;.. \AdministraboriMy Documents|Yisual Shodio ProjectsiFileCopienCab.

F Mare oK | Cancsl | Help |

You have a variety of choices here. For a Windows project such as this one, your choices include:
Cab Project

Much like a ZIP file, this compresses a number of small files into an easy-to-use (and easy-to-
transport) package. This option can be combined with the others.

Merge Module

If you have more than one project that use files in common, this option helps you make
intermediate merge modules. You can then integrate these modules into the other deployment
projects.

Setup Project

This creates a setup file that automatically installs your files and resources.
Setup Wizard

Helps you create one of the other types.
Remote Deploy Wizard

Helps you create an installer project that can be deployed automatically.
Web Setup Project

Helps “you deploy a web-based project.

You would create a Cab Project first if you had many small ancillary files that had to be distributed with
your application (for example, if you had .html files, .gif files, or other resources included with your
program).

To see how this works, use the menu choice File —>Add Project —New Project and choose and
name a Setup and Deployment Project, selecting CAB File. When you name the project (for example,
Fi | eCopi er CabPr o] ect) and click OK, you'll see that the project has been added to your group (as

shown in Figure 13-11).

312

Programming C#

Figure 13-11. The Cab project added to your group
x|
-
3 Solution FileCopier' (2 projects)
- & FileCopier
+ |=2] References
t£] Assemblylnfo.cs
¢¥] FileCopier.cs
(2] FieCopisrCabProject

| | r

 GAsdute... [%¢ I

Right-clicking the project brings up a context menu. Choose Add, and you have two choices: Project
Output... and File... The latter allows you to add any arbitrary file to the Cab. The former offers a menu

of its own, as shown in Figure 13-12.

Figure 13-12. Project Output menu
Proier [t A - |

Discumert ation Files
Primary output
Locabzed resources
Dby Symibols
Content Fies
Source Files

o |

onfiguration: [tactive)

L4

Le.

Diescripoan:

KIY 3

| | Cancel | Help |

Here you can choose to add sets of files to your Cab collection. The Primary output is the target
assembly for the selected project. The other files are optional elements of the selected project that you

might or might not want to distribute.

In this case, select Primary Output. The choice is reflected in the Solution Explorer, as shown in
Figure 13-13.

Figure 13-13. The modified project
x|

S

3 Solution FileCopier' (Z projects)

- B FileCopier

4+ |=2] References

££] Assemblylrfo.cs
¢#] FilCopier.cs

- [E] FieCopisrCabProjec:
== Primary cutput from FieCopier |

1| | ,

G soluti... [92 B |

313

You can now build this project, and the result is a .cab file, which you can examine with WinZip, as
shown in Figure 13-14.

Figure 13-14. The Cab file contents

= wWinZip - FlleCoplerCabProject.CAB
Fie Achions Optiors Help

T RICEHe R T

Open Favorices Extract Wiaw ChedkCut ‘Wizard
Mamme | Modified | Size | Ratio | Packed | Path
—IFieCopier.axe | 2[222001 9:22 &M 11,264 ? ?
| a0, osd 212212001 %:22 AM 629 ? ?
i | I
Selactad 0 files, O bytes Total & fles, 12KE o

You see the executable file you expect, along with another file, Osd8c0.0sd. Opening this file reveals
that it is an XML description of the .cab file itself, as shown in Example 13-5.

Example 13-5. The .cab file description file

<?XML version="1. 0" ENCODI NG=' UTF-8' ?>
<! DOCTYPE SOFTPKG SYSTEM
"http://ww. m crosoft.conl standards/osd/ osd. dtd">
<?XM.:: nanespace href="http://ww. n crosoft.com standards/ osd/ nsi cd. dtd"
as="Ms| CD" 7>
<SOFTPKG NAME="Fi | eCopi er CabProj ect" VERSI ON="1, 0,0, 0">
<TI TLE> Fi | eCopi er CabProj ect </ TITLE>
<MBI CD: : NATI VECODE>
<CODE NAME="Fi | eCopi er" >
<I MPLEMENTATI ON>
<CODEBASE FI LENAVE="Fi | eCopi er. exe" >
</ CODEBASE>
</ | MPLEMENTATI ON>
</ CCDE>
</ MBI CD: : NATI VECCDE>
</ SOFTPKG>

13.4.2 Setup Project

To create a Setup package, add another project, choosing Setup Project. This project type is very
flexible; it allows all of your setup options to be bundled in an MSI installation file.

If you right-click the project and select Add, you see additional options in the pop-up menu. In addition
to Project Output and File, you now find Merge Module and Component.

Merge Modules are mix-and-match pieces that can later be added to a full Setup project. Component
allows you to add .NET components that your distribution might need but which might not be on the
target machine, just add the target executable through Project Output.

The user interface for customizing Setup consists of a split pane whose contents are determined by
the View menu. You access the View menu by right-clicking the project itself, as shown in Figure 13-
15.

Figure 13-15. The View menu

314

Programming C#

Solution Explorer - FileCopierSetupProject B
N EEEEE .
3 Solution FileCopier’ (3 projects)
(& FileCopier

=2 References
o] Assemblylnfo.cs
o] FileCapiar.cs

% _] Detel [Buld
451 Frim Rebuibd &)
= B Flecopig
= Erimy Deploy &)
Wizl b | L] File System
fidd | Regetry
A File Types
Pj User Trterface
Tal Custom Actans
* Remcve P9 Launch Conditions
Renams
Properties

As you make selections from the View menu, the panes in the IDE change to reflect your choices and
to offer you options.

For example, if you choose File System, the IDE opens a split-pane viewer, with a directory tree on the
left and the details on the right. Clicking the Application Folder shows the myriad files you've already
added (the primary output and its dependencies), as shown in Figure 13-16.

Figure 13-16. The Appllcatlon Folder

rhsipPeirs fhwmtﬁ*r&tmmnt}l B Types (FeCoperislupProed) La e, pErsElupProEcl] R ¢ (Pl ope
_..'E'!. File Systam on Target Machne ey Type
& Apphcation Folder -_Erfn_n@ily_.rl_' Agsanbly
wd Lbsir's Desktop JMicrosoft. ComServices. DL dgsembly
wd Liser's Personal Dats Folder “IMcrasoft VissalC DUl Aggeminhy
] User’s Programs Many “OMrosoft, Wind.Inkerop ¢l tsmembty
s dmzcorbb, OLL szambly
| Primary cutpLl Froem FieCopies (Actho) Cukpit

H_ISystem Conf igueation. dl

sk pm, Corfigus-stion. Instal. DL
iyt e, Dt DL

d 5k s, DRagncetics, A
Hgpstem. DL

st Drassing DL

s Sk e, Mek il

I Epskmm, Rurkime. Seriskzston. Formatbers. Sosp DL
d 15k am, Taxt, Aegubarcprasanns, L
A5yl nem, wiror e 0
VGt EML DL

HILELLEERE

You are free to add or delete files. Right-clicking in the detail window brings up a context menu, as
shown in Figure 13-17.

Figure 13-17. Context menu within the File Detail window

add » Falder

View Project Output, ..
File. ..
Cramporent, ..

You can see there is great flexibility here to add precisely those files you want.

315

13.4.3 Deployment Locations

The folder into which your files will be loaded (the Application Folder) is determined by the Default
Location. The Properties window for the Application Folder describes the Default Location as
[ProgramFilesFolder]\[Manufacturer|\[Product Name.

ProgramFilesFolder refers to the program files folder on the target machine. The Manufacturer and the
Product Name are properties of the project. If you click the Project and examine its properties, you see
that the IDE has made some good guesses, as shown in Figure 13-18.

Figure 13-18. Setup project properties

IFial:upheﬁetumelut IvsdPraductProperties

== | 8} [|e8
(Hame) FileCopier SetupProject
AddRemovePragramsicoon (Mane)
Authar Liberty Associskes, Inc.
Cormments
DetactNewer Tnstalledverdon True
Kenamards
Localizatian Mautral | Englsh
Manufacturer Lbetty Associabes, Ind
ManuFacturerUrl
PackageCode {SODESBD0-5717-44%0- 9 3E-FEADEB01 1 33E}
ProductCode {SaB4C4A6-DAAT-4ETS-B4DF-1TFIFI06 1CFG}
RemovePreviousYersions Falzs
SaarchiPath d:\Program Files\Micresoft Wisual Studio. MET\Comenan7ifMarge
Subject
SupporPhone
Suppoetirl
Tithe FileCopier SetupFromc:
UpgradeCode {FaRGEC-CA0T-4737-43CE- S0 0BEACES) 23}
Yersion 1.0.0

You can easily modify these properties. For example, you can modify the property Manuf act ur er to
change the folder in which the product will be stored under Pr ogram Fi | es.

13.4.3.1 Creating a shortcut

If you want the install program to create a shortcut on the user's desktop, you can right-click the
Primary Output file in the Application Folder and drag it to the user's Desktop, as shown in Figure 13-
19.

Figure 13-19. Create a shortcut on the user's desktop

E} Fils Systemn on Target Machine Blams
ad Appdication Foldes s Aocessbiiy . dl
o] Uiser's [yl - - Itdcrosoft, ComSerdoes, DLL
) Liser's P Craske Shoetoul bo Primary sotput From FikeCopier Rctive) Brosot sualc. DL
il Usser's Py Dependences Ubicrascft Win2 Interog. di
Fiter rmscarib. DL
- SFrimary output From FleCopler (Activa)
Cutputs 5ystem. Corfiouration. di
,I. it JSystem. Corfiguration, Install.CLL
L5ystem. Duata, DLL
U5 st Disgraostics.dl
X Dmbte U5 ystem. OLL
P Propertics Windaw WSyrstem. Drawing. DLL
ISystem. Met . dl

S 5eshem. Rurtime., Seri zization. Formathers, Soap.DLL
sl tSysbem. Text. RegulsrExpressons. OLL

PRI D |

316

Programming C#

13.4.3.2 Entries in My Documents

You can add items to the My Documents folder on the user's machine by placing them in the User's
Personal Data Folder.

13.4.3.3 Shortcuts in the Start menu

In addition to adding a shortcut to the desktop, you might want to create a folder within the Start -
Programs menu. To do so, click the User's Program Menu folder, right-click in the right pane, and
choose Add Folder. Within that folder, you can add the Primary Output, either by dragging or by right-
clicking and choosing Add.

13.4.4 Adding Special Folders

In addition to the four folders provided for you (Application Folder, User's Desktop, User's Personal
Data Folder, User's Program Menu) there are a host of additional options. Right-click the File System
On Target Machine folder to get the menu, as shown in Figure 13-20.

Figure 13-20. Custom folder menu

Hlesmm(ﬂ....uietmprn]ut}l Iz Types (FleCof Proj

3-“ Application | fidd Special Folder » Common Fikes Folder
s Usar's Daskbop Fonks Foldar

- :j UL:; PFWMISD;:‘E-:.HH Program Files Folder

__| File Copier System Folder

User's Application Dsks Folder

User's Fayarites Folder

Ueet's Send To Meru
User's Skart Menw
Lissr's Template Foldsr
Windoves Folder

Cueshom Fobder

Here you can add folders for fonts, add items to the user's Favorites Folder, and so forth. Most of
these are self-explanatory.

13.4.5 Other View Windows

So far, you've looked only at the File System folders from the original View menu (pictured in Figure
13-15).

13.4.5.1 Making changes to the Registry

The Registry window allows you to tell Setup to make adjustments to the user's Registry files, as
shown in Figure 13-21. Click any folder in this list to edit the associated properties in the Properties
window.

Figure 13-21. Setting up the Registry

317

- gReqstry on Target Machine
) HKEY_CLASSES_ROCT
=] HEEY _CURRENT_LSER
= |_] Software
1 [Manufacturer]
=] HEEY_LOCAL_MACHINE
=] Software
1 [Manufacturer]
] HEEY_USERS
__1 UserjMachine Hive

- Careful! There is nothing more dangerous than touching the
— Registry. In most .NET applications this will not be needed
because .NET-managed applications do not use the Registry.

13.4.5.2 Registering file types

The File Types choice on the View menu allows you to associate application-specific file types on the
user's machine. You can also set the action to take with these files.

13.4.5.3 Managing the Ul during Setup

The View/User Interface selection lets you take direct control over the text and graphics shown during
each step of the Setup process. The workflow of Setup is shown as a tree, as shown in Figure 13-22.

Figure 13-22. Setup workflow

£ Install
-5 Tt
= Wakome
= sekect Instalation Folder
= Confirm Installation
= % Progress
= Progress
- a End
= Finished
£ Admin
- 5 St
= wekome
= Select Instalation Folder
= Confirm Installation
= ::|L_| Progress
= Progress
- 5 End
= Finished

When you click a step in the process, the properties for that form are displayed. For example, clicking
the Welcome form under Install/Start displays the properties shown in Figure 13-23.

Figure 13-23. The Welcome form

318

Programming C#

£ Install
-5 Tt
= Wakome
= sekect Instalation Folder
= Confirm Installation
= % Progress
= Progress
- % End
= Finished
£ Admin
- 5 St
= wekome
= Select Instalation Folder
= Confirm Installation
= %l Progress
= Progress
- 5 End

= Finished

The Dynamic Properties section offers you the opportunity to change the Banner Bitmap and the text
displayed in the opening dialog box. You can add dialog boxes that Microsoft provides, or import your
own dialog boxes into the process.

13.4.5.4 Other View choices

If the workflow does not provide sufficient control, you can choose the Custom Options choice from the
View menu. You can also specify Launch conditions for the Setup process itself.

13.4.6 Building the Setup Project

Once you've made all your choices and set all the options, you can build the Setup project. The result
is a single Setup file that can be distributed to your customers.

319

320

Programming C#

Chapter 14. Accessing Data with ADO.NET

Many real-world applications need to interact with a database. The .NET Framework provides a rich
set of objects to manage database interaction; these classes are collectively referred to as ADO.NET.

ADO.NET looks very similar to ADO, its predecessor. The key difference is that ADO.NET is a
disconnected data architecture. In a disconnected architecture, data is retrieved from a database and
cached on your local machine. You manipulate the data on your local computer and connect to the
database only when you wish to alter records or acquire new data.

There are significant advantages to disconnecting your data architecture from your database. The
biggest advantage is that you avoid many of the problems associated with connected data objects
which do not scale very well. Database connections are resource-intensive, and it is difficult to have
thousands (or hundreds of thousands) of simultaneous continuous connections. A disconnected
architecture is resource-frugal.

ADO.NET connects to the database to retrieve data, and connects again to update data when you've
made changes. Most applications spend most of their time simply reading through data and displaying
it; ADO.NET provides a disconnected subset of the data for your use while reading and displaying.

Disconnected data objects work in a mode similar to that of the Web. All web sessions are
disconnected, and state is not preserved between web page requests. A disconnected data
architecture makes for a cleaner marriage with the Web.

14.1 Relational Databases and SQL

Although one can certainly write an entire book on relational databases, and another on SQL, the
essentials of these technologies are not hard to understand. A database is a repository of data. A
relational database organizes your data into tables. Consider the Northwind database provided with
Microsoft SQL Server 7, SQL Server 2000, and all versions of Microsoft Access.

14.1.1 Tables, Records, and Columns

The Northwind database describes a fictional company buying and selling food products. The data for
Northwind is divided into 13 tables, including Customers, Employees, Orders, Order Details, Products,
and so forth.

Every table in a relational database is organized into rows, where each row represents a single record.
The rows are organized into columns. All the rows in a table have the same column structure. For
example, the Orders table has these columns: O der | D, Cust oner | D, Enpl oyeel D, O der Dat e,
etc.

For any given order, you need to know the customer's name, address, contact name, and so forth.
You could store that information with each order, but that would be very inefficient. Instead, we use a
second table called Customers, in which each row represents a single customer. In the Customers
table is a column for the Cust onrer | D. Each customer has a unique ID, and that field is marked as the
primary key for that table. A primary key is the column or combination of columns that uniquely
identifies a record in a given table.

The Orders table uses the Cust oner | D as a foreign key. A foreign key is a column (or combination of
columns) that is a primary (or otherwise unique) key from a different table. The Orders table uses the
Cust oner | D, which is the primary key used in the Customers table, to identify which customer has
placed the order. To determine the address for the order, you can use the Cust oner | Dto look up the
customer record in the Customers table.

321

This use of foreign keys is particularly helpful in representing one-to-many or many-to-one
relationships between tables. By separating information into tables that are linked by foreign keys, you
avoid having to repeat information in records. A single customer, for example, can have multiple
orders, but it is inefficient to place the same customer information (name, phone number, credit limit,
and so on) in every order record. The process of removing redundant information from your records
and shifting it to separate tables is called normalization.

14.1.2 Normalization

Normalization not only makes your use of the database more efficient, but also it reduces the
likelihood of data corruption. If you kept the customer's hame both in the Customers table and also in
the Orders table, you would run the risk that a change in one table might not be reflected in the other.
Thus, if you changed the customer's address in the Customers table, that change might not be
reflected in every row in the Orders table (and a lot of work would be necessary to make sure that it
was reflected). By keeping only the Cust oner | Din Orders, you are free to change the address in
Customers, and the change is automatically reflected for each order.

Just as C# programmers want the compiler to catch bugs at compile time rather than at runtime,
database programmers want the database to help them avoid data corruption. The compiler helps
avoid bugs in C# by enforcing the rules of the language; for example, you can't use a variable you've
not defined. SQL Server and other modern relational databases avoid bugs by enforcing constraints
that you request. For example, the Customers database marks the Cust oner | D as a primary key.
This creates a primary key constraint in the database, which ensures that each Cust oner | Dis unique.
If you were to enter a customer named Liberty Associates, Inc. with the Cust oner | D of LIBE, and
then tried to add Liberty Mutual Funds with a Cust oner | D of LIBE, the database would reject the
second record because of the primary key constraint.

14.1.3 Declarative Referential Integrity

Relational databases use Declarative Referential Integrity (DRI) to establish constraints on the
relationships among the various tables. For example, you might declare a constraint on the Orders
table that dictates that no order can have a Cust oner | Dunless that Cust oner | D represents a valid
record in Customers. This helps you avoid two types of mistakes. First, you cannot enter a record with
an invalid Cust oner | D. Second, you cannot delete a Customer record if that Cust oner | Dis used in
any order. The integrity of your data and their relationships are thus protected.

14.1.4 SQL

The most popular language for querying and manipulating databases is SQL, usually pronounced
"sequel." SQL is a declarative language, as opposed to a procedural language, and it can take a while
to get used to working with a declarative language when you are used to languages such as C#.

The heart of SQL is the query. A query is a statement that returns a set of records from the database.

For example, you might like to see all the ConpanyNanes and Cust oner | Ds of every record in the
Customers table where the customer's address is in London. To do so you would write:

Sel ect Customer| D, ConpanyNane from Custonmers where city = 'London’
This returns the following six records as output:

Cust oner | D ConpanyNanme

AROUT Around the Horn
BSBEV B' s Beverages
CONSH Consol i dat ed Hol di ngs

322

Programming C#

EASTC East ern Connecti on
NORTS Nor t h/ Sout h
SEVES Seven Seas | nports

SQL is capable of much more powerful queries. For example, suppose the Northwinds manager would
like to know what products were purchased in July of 1996 by the customer "Vins et alcools
Chevalier." This turns out to be somewhat complicated. The Order Details table knows the

Product | Dfor all the products in any given order. The Orders table knows which Cust oner | Ds are
associated with an order. The Customers table knows the Cust oner | D for a customer, and the
Products table knows the Product name for the Pr oduct | D. How do you tie all this together? Here's
the query:

select o.Orderl D, productNane

from[Order Details] od

join orders o on o.OderlD = od. Orderl D

join products p on p.ProductlD = od. Product| D

join customers ¢ on o.CustonmerlI D = c. Custonerl| D

where c. ConmpanyName = 'Vins et al cools Chevalier'

and orderDate >= '7/1/1996" and orderDate <= '7/31/ 1996’

This query asks the database to get the Or der | D and the product name from the relevant tables: first
look at Order Details (which we've called od for short), then join that with the Orders table for every
record where the Or der | Din the Order Details table is the same as the O der | Din the Orders table.

When you join two tables you can say either "Get every record that exists in either table" (this is called
an outer join), or you can say, as I've done here, "Get only those records that exist in both tables"
(called an inner join). That is, an inner join says: get only the records in Orders that match the records
in Or der Det al | s by having the same value in the Or der | Dfield (on o. Orderid =

od. Orderi d).

o SQL joins are inner joins by default. Writing join orders is the
«2 | sameas writing inner join orders.

The SQL statement goes on to ask the database to create an inner join with Pr oduct s, getting every
row where the Product | Din the Products table is the same as the Product | Din the Order Details
table.

You then create an inner join with customers for those rows where the Cust oner | Dis the same in
both the Orders table and the Customer table.

Finally, you tell the database to constrain the results to only those rows where the ConpanyNane is
the one you want, and the dates are in July.

The collection of constraints finds only three records that match:

Order D Pr oduct Nane

10248 Queso Cabral es

10248 Si ngapor ean Hokkien Fried Mee
10248 Mozzarel l a di G ovanni

This output shows that there was only one order (10248) where the customer had the right ID and
where the date of the order was July 1996. That order produced three records in the Or der Detail s
table, and using the product IDs in these three records, we got the product names from the Products
table.

323

You can use SQL not only for searching for and retrieving data, but also for creating, updating, and
deleting tables and generally managing and manipulating both the content and the structure of the
database.

For a full explanation of SQL and tips on how to put it to best use, | recommend Transact SQL
Programming, by Kline, Gould, and Zanevsky (O'Reilly & Associates, 1999).

14.2 The ADO.Net Object Model

The ADO.Net object model is rich, but at its heart it is a fairly straightforward set of classes. The most
important of these is the Dat aSet . The Dat aSet represents a subset of the entire database, cached
on your machine without a continuous connection to the database.

Periodically, you'll reconnect the Dat aSet to its parent database, update the database with changes
you've made to the Dat aSet , and update the Dat aSet with changes in the database made by other
processes.

This is highly efficient, but to be effective the Dat aSet must be a robust subset of the database,
capturing not just a few rows from a single table, but a set of tables with all the metadata necessary to
represent the relationships and constraints of the original database. This is, not surprisingly, what
ADO.NET provides.

The Dat aSet is composed of Dat aTabl e objects as well as Dat aRel at | on objects. These are
accessed as properties of the Dat aSet object. The Dat aTabl es property returns a
Tabl esCol | ect i on, which in turn contains all the Dat aTabl e objects.

14.2.1 DataTables and DataColumns

The Dat aTabl e can be created programmatically or as a result of a query against the database. The
Dat aTabl e has a number of public properties, including the Col urms collection, which returns the
Col ummsCol | ect i on object, which in turn consists of Dat aCol unm objects. Each Dat aCol unm
object represents a column in a table.

14.2.2 DataRelations

In addition to the Dat aTabl es collection, the Dat aSet has a Rel at i ons property, which returns a
Rel ati onsCol | ecti on consisting of Dat aRel at i on objects. Each Dat aRel ati on represents a
relationship between two tables, through Dat aCol unm objects. For example, in the Northwind
database the Customers table is in a relationship with the Orders table through the Cust oner | D
column.

The nature of the relationship is one-to-many, or parent-to-child: for any given order, there will be
exactly one customer, but any given customer might be represented in any number of orders.

14.2.3 Rows

The Rows collection returns a set of rows for any given table. Use this collection to examine the results
of queries against the database, iterating through the rows to examine each record in turn.
Programmers experienced with ADO are often confused by the absence of the Recor dSet with its
noveNext and novePr evi ous commands. With ADO.NET, you do not iterate through the Dat aSet ;
instead, you access the table you need, and then you can iterate through the Rows collection, typically
with a f or each loop. You'll see this in the first example in this chapter.

324

Programming C#

14.2.4 Data Adapter

The Dat aSet is an abstraction of a relational database. ADO.NET uses a Dat a Adapter asa
bridge between the Dat aSet and the data source: the underlying database. Dat a Adapt er provides
the Fi | | () method to retrieve data from the database and populate the Dat a Set .

14.2.5 DBCommand and DBConnection

The DBConnect i on object represents a connection to a data source. This connection can be shared
among different command objects. The DBConand object allows you to send a command (typically a
SQL statement or a stored procedure) to the database. Often these objects are implicitly created when
you create your Dat aSet , but you can explicitly access these objects, as you'll see in a subsequent
example.

14.2.6 The DataAdapter Object

Rather than tie the Dat aSet object too closely to your database architecture, ADO.NET uses a

Dat aAdapt er object to mediate between the Dat aSet object and the database. This decouples the
Dat aSet from the database and allows a single Dat aSet to represent more than one database or
other data source.

14.3 Getting Started with ADO.NET

Enough theory! Let's write some code and see how this works. Working with ADO.NET can be
complex, but for many queries, the model is surprisingly simple.

In this example, you'll create a simple Windows Form, with a single list box in it called | bCust oner s.
You'll populate this list box with bits of information from the Customers table in the Northwind
database.

Begin by creating a Dat aAdapt er object:

Sql Dat aAdapt er Dat aAdapter =
new Sql Dat aAdapt er (
commandString, connectionString);

The two parameters are conmmendSt ri ng and connect i onSt ri ng. The commandSt ri ng is the
SQL statement that will generate the data you want in your Dat aSet :

string commandString =
"Sel ect ConmpanyNane, ContactNane from Custoners”;

The connect i onSt ring is whatever string is needed to connect to the database. In my case, I'm
running SQL Server on my development machine where | have left the system administrator (sa)
password blank (I know, | know, not a good idea. I'll fix it by the time this book is released. Honest.):

string connectionString =
"server=| ocal host; uid=sa; pwd=; database=northw nd";

With the Dat aAdapt er in hand, you're ready to create the Dat aSet and fill it with the data that you
obtain from the SQL sel ect statement:

Dat aSet DataSet = new DataSet();
Dat aAdapt er. Fi | | Dat aSet (Dat aSet, " Cust oners") ;

325

That's it. You now have a Dat aSet , and you can query, manipulate, and otherwise manage the data.
The Dat aSet has a collection of tables; you care only about the first one because you've retrieved
only a single record:

Dat aTabl e dat aTabl e = Dat aSet. Tabl es[0] ;

You can extract the rows you've retrieved with the SQL statement and add the data to the list box:

foreach (DataRow dataRow i n dataTabl e. Rows)

{
| bCustoners. | tens. Add(
dat aRow[" CompanyNane"] +
" (" + dataRow "ContactNane"] + ")");
}

The list box is filled with the company name and contact name from the table in the database,

according to the SQL statement we passed in. Example 14-1 contains the complete source for this
example.

Example 14-1. Working with ADO.NET
usi ng System

usi ng System Draw ng;

usi ng System Col | ecti ons;

usi ng System Conponent Model ;

usi ng System W ndows. For ns;

usi ng System Dat a;

usi ng System Data. Sql Cli ent;

nanespace Programr ngCShar pW nFor m

{

public class ADOForml : System W ndows. For ns. Form

{
private System Conponent Model . Cont ai ner conponents;
private System W ndows. Fornms. Li st Box | bCust oners;

publ i ¢ ADOFornil()

{
InitializeConponent();

/1 connect to my |ocal server, northw nd db
string connectionString =
"server=myServer; uid=sa; pwd=; database=northw nd";

/1 get records fromthe custoners table
string commandString =
"Sel ect ConpanyNane, ContactNane from Custoners”;

/1 create the data set conmmand obj ect
/1 and the DataSet

Sql Dat aAdapt er Dat aAdapter =

new Sql Dat aAdapt er (

conmandStri ng, connectionString);

Dat aSet DataSet = new DataSet();

/1 fill the data set object
Dat aAdapt er. Fil | (Dat aSet, " Cust oners");

326

}

}

Programming C#

/1 Get the one table fromthe DataSet
Dat aTabl e dataTabl e = Dat aSet. Tabl es[0] ;

/1 for each rowin the table, display the info
foreach (DataRow dataRow i n dat aTabl e. Rows)

| bCust oners. It ens. Add(
dat aRow[" ConpanyNane"] +
" (" + dataRow "ContactNarme"] + ")");

public override void D spose()

{

pri

base. Di spose();
conponents. Di spose();

vate void InitializeConponent()

t his. conponents =

new Syst em Conponent Mbdel . Contai ner ();
this.| bCustoners = new System W ndows. Forns. Li stBox ();
| bCust oners. Locati on = new System Draw ng. Poi nt (48, 24);
| bCust oners. Si ze = new System Drawi ng. Si ze (368, 160);
| bCust oners. Tabl ndex = 0;
this. Text = "ADOFr mL";
t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze (5, 13);
this.CientSize = new System Drawi ng. Si ze (464, 273);
this.Controls. Add (this.|bCustoners);

public static void Main(string[] args)

{
}

Appl i cation. Run(new ADOFornil());

With just a few lines of code, you have extracted a set of data from the database and displayed it in
the list box, as shown in Figure 14-1.

Figure 14-1. Output from Example 14-1

M ADOFrm1 M= E1
Cactuz Comidas para levar [Paincio Simpson) :J
Centio comercaal Moctezuma [Franciscs Chanal
Chiop-zuay Chiness [1ang 'Wang) _J

Coméicio Minein [Pedio Afonzo)

Congobdated Holdings [Elzabath Brown|

Drachenbhs Delikatessen [Sven Dnlieb)

[monde ertier [Janine Labiune)

E attein Connection [fnn Devon)

Emnzt Hande! [Ficland Mended]

Familia Arquibaldo [dia Chuz)

FISSA Fabnca Inter. Salchichas S.4. [Dwego Rosl)

Folies gounande : [Maitne Rancs] :l

The eight lines of code accomplish the following tasks:

327

Create the string for the connection:
string connectionString =
"server=nyServer; uid=sa; pwd=, database=northw nd";

Create the string for the select statement:
string commandString =
"Sel ect ConpanyName, ContactNane from Custoners”;

Create the Dat aAdapt er and pass in the selection and connection strings:
Sql Dat aAdapt er Dat aAdapter =

new Sql Dat aAdapt er (
comandString, connectionString);

Create a new Dat aSet object:

Dat aSet Dat aSet = new DataSet();

Fill the Dat aSet from the Customers table using the Dat aAdapt er :

Dat aAdapt er. Fi | | (Dat aSet, " Cust oners") ;

Extract the Dat aTabl e from the Dat aSet :

Dat aTabl e dat aTabl e = Dat aSet. Tabl es[0] ;

Use the Dat aTabl e to fill the list box:
foreach (DataRow dataRow i n dataTabl e. Rows)

{
| bCustoners. | tens. Add(

dat aRow[" ConpanyNane"] +
(" + dataRow "ContactNane"] + ")");
}

14.4 Using ADO Managed Providers

The previous example used one of the two managed providers currently available with ADO.NET: the
SQL Managed Provider and ADO Managed. The SQL Managed Provider is optimized for SQL Server
and is restricted to working with SQL Server databases. The more general solution is the ADO
Managed Provider, which will connect to any OLE DB provider, including Access.

You can rewrite Example 14-1 to work with the Northwind database using Access rather than SQL
Server with just a few small changes. First, you need to change the connection string:

string connectionString =
"provi der=M crosoft.JET. OLEDB. 4. 0;
+ "data source = c:\\nw nd. ndb";

This query connects to the Northwind database on C drive. (Your exact path might be different.)
Next, change the Dat aAdapt er object to an ADODat aAdapt er rather than a Sgl Dat aAdapt er:

O eDbDat aAdapt er Dat aAdapter =
new O eDbDat aAdapt er (comrandString, connectionString);

328

Programming C#

Also be sure to add a usi ng statement for the O eDb namespace:
usi ng System Dat a. O eDb;

This design pattern continues throughout the two Managed Providers; for every object whose class
name begins with "Sql," there is a corresponding class beginning with "ADO." Example 14-2
illustrates the complete ADO version of Example 14-1.

Example 14-2. Using the ADO Managed Provider

usi ng System

usi ng System Draw ng;

usi ng System Col | ecti ons;
usi ng Syst em Conponent Model ;
usi ng System W ndows. For ns;
usi ng System Dat a;

usi ng System Dat a. O eDb;

nanespace Programr ngCShar pW nFor m

{

public class ADOFornl : System W ndows. Fornms. Form

{
private System Conponent Mbdel . Cont ai ner conponents;
private System W ndows. For nms. Li st Box | bCust oners;

public ADOFornil()

{
InitializeConponent();

/1 connect to Northw nd Access dat abase
string connectionString =
"provider=M crosoft.JET. OLEDB. 4. 0; "
+ "data source = c:\\nw nd. ndb";

/1 get records fromthe custoners table
string commandString =
"Sel ect ConpanyName, ContactNane from Custoners”;

/1 create the data set command obj ect
/1 and the Dat aSet

O eDbDat aAdapt er Dat aAdapter =

new O eDbDat aAdapt er (

conmandStri ng, connectionString);

Dat aSet Dat aSet = new DataSet();

/1 fill the data set object
Dat aAdapt er. Fil | (Dat aSet, " Cust oners");

/1 Get the one table fromthe DataSet
Dat aTabl e dat aTabl e = Dat aSet. Tabl es[0] ;

/1 for each rowin the table, display the info
foreach (DataRow dataRow i n dat aTabl e. Rows)

| bCust oners. | tens. Add(

dat aRow[" ConpanyNane"] +
" (" + dataRow "ContactNane"] + ")");

329

}

public override void D spose()

{
base. Di spose();
conponents. Di spose();
}
private void InitializeConmponent()
{
this. conponents =
new Syst em Conponent Mbdel . Contai ner ();
this. | bCustoners = new System W ndows. Forns. Li stBox ();
| bCust oners. Locati on = new System Draw ng. Poi nt (48, 24);
| bCust oners. Si ze = new System Drawi ng. Si ze (368, 160);
| bCust oners. Tabl ndex = 0;
this. Text = "ADOFr mL";
t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze (5, 13);
this.CientSize = new System Draw ng. Si ze (464, 273);
this. Controls. Add (this.|bCustoners);
}
public static void Main(string[] args)
{
Application. Run(new ADOFornil());
}

}

The output from this is identical to that from the previous example, as shown in Figure 14-2.

Figure 14-2. Using the ADO Managed Provider

_MapoFm1 M=
Cachuz Comidas para levar [Paticio Simpson) a
Certio c-l:lmt_iul octezuma [Francizeo Chang)
Chapr-suey Chinsss (Yang Wang) I~
Comarcia Mineiro [Pedo afonza)

Corzobdated Holdings [Elzabeth Brown)

Drachenbhd Delikatessen [Sven Otiheb)

D monde ertier [Janne Labiune)

Eastein Connechon [Arn Devon)

Einst Handel [Roland Mended]

Famila Amquibsldo [Sia i)

FIS54 Fabnca Inter. Salchichas 5.4, [Dhego Roel]

Folies goumande s [Martine HancE] ﬂ

The ADO Managed Provider is more general than the SQL Managed Provider and can, in fact, be
used to connect to SQL Server as well as to any other OLE DB object. Because the SQL Server
Provider is optimized for SQL Server, it will be more efficient to use the SQL Server-specific provider
when working with SQL Server. In time, any number of specialized managed providers will be
available.

14.5 Working with Data-Bound Controls

ADO.NET provides good support for "data-bound" objects: that is, objects that can be tied to a
particular data set, such as one retrieved from a database by ADO.NET.

330

Programming C#

A simple example of a data-bound control is the Dat aG i d control provided with both Windows Forms
and Web Forms.

14.5.1 Populating a DataGrid

In its simplest use, a Dat aGr i d is easy to implement. Once again, first create a Dat aSet and then fill
it from the Customers table of the Northwind database, but this time, rather than iterating through the
rows of the data set and writing the output to a list box, you can simply bind the Customers table in
your data set to a Dat aG i d control.

To illustrate, alter Example 14-2 by deleting the list box from the form you created in the previous
example and replace it with a Dat aGr i d. The default name provided by the Visual Studio design tool
is Dat aG i d1, but let's change it to Cust oner Dat aG i d. After the data set is created and filled, you
bind the Dat aG i d through its Dat aSour ce property:

Cust oner Dat aGi d. Dat aSour ce=
Dat aSet . Tabl es[" Cust oners"] . Def aul t Vi ew,

Example 14-3 provides the complete source code for this example.

Example 14-3. Using a DataGrid Control
usi ng System

usi ng System Drawi ng;

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System W ndows. For ns;

usi ng System Dat a;

using System Data. Sgl Cli ent;

nanespace Programi ngCShar pW ndows. Form

{

public class ADOFornB : System W ndows. For ns. Form
{
private System Conponent Mbdel . Cont ai ner
conponents;
private System W ndows. Forns. DataGrid
Cust oner Dat aGri d;

publ i ¢ ADOFornB()

{
InitializeConponent();

/1l set up connection and conmand strings
string connectionString =
"server=l ocal Conput er; uid=sa; pwd=; database=northw nd";
string comandString =
"Sel ect ConpanyNane, ContactNane, ContactTitle,
+ "Phone, Fax from Custoners"”;

n

/] create a data set and fill it
Sql Dat aAdapt er Dat aAdapter =
new Sql Dat aAdapt er (commandStri ng, connecti onString);
Dat aSet Dat aSet = new DataSet();
Dat aAdapt er. Fi | | (Dat aSet, " Cust oners") ;

I/ bind the DataSet to the grid
Cust oner Dat aGri d. Dat aSour ce=

331

Dat aSet . Tabl es[" Cust oners"] . Def aul t Vi ew,

}
public override void D spose()
{
base. Di spose();
conponents. Di spose();
}
private void InitializeConmponent()
{
this. conponents =
new Syst em Conponent Mbdel . Contai ner ();
this.CustonerDataGid =
new System W ndows. Fornms. DataGrid ();
CustonmerDataGrid.Beginlnit ();
Cust onmer Dat aGri d. Location =
new System Draw ng. Poi nt (8, 24);
Cust onerDataGid. Si ze =
new System Draw ng. Si ze (656, 224);
Cust onmer Dat aGri d. Dat aMenber = "";
Cust oner Dat aGri d. Tabl ndex = O;
Cust oner Dat aGi d. Navi gate +=
new System W ndows. For ms. Navi gat eEvent Handl er
(this.dataGidl_Navigate);
this. Text = "ADOFrnm3";
t hi s. Aut oScal eBaseSi ze =
new System Drawi ng. Si ze (5, 13);
this.dientSize = new System Draw ng. Si ze (672, 273);
this. Controls. Add (this.CustonerDataGid);
CustonmerDataGid. Endlnit ();
}

protected void dataG i dl_Navi gate
(obj ect sender, System W ndows. Forns. Navi gat eEvent Args ne)

{
}
public static void Main(string[] args)
i Appl i cation. Run(new ADOFornB());

}

The code is embarrassingly easy to implement and the results are quite impressive, as shown in
Figure 14-3. Notice that every field in the record is represented by a column in the Dat aG i d, and
that the titles of the columns are the names of the fields. All of this is the default behavior of the

Dat aGri d.

Figure 14-3. Using the DataGrid

332

Programming C#

]IJ\inrJ the Data Grid

Comparyhlam | Contacthame ContaciTile | Phone Fau
B's Bevesages Victona Achw Sale: Repres (171] 555121 [nul)

Cactus Comd Palncio Simps Sales Agent 1] 1355555 1) 1354852
Cenbio comer Francizco Ch Maiketng Ma [5) 555-3392 [5) 5557293
Chiop-zeey Ch YangWang Owner 452076545 ([hul)
Comércio Min Pedio Atonso Sales Associa [11) 5557647 (nul)
Corgolidated Elzabelh Bro Szles Repres [171) 555-228 [171) 555919
Drachenbht O Sven Ottieb Order Admisiz 0241-039123 0241053428
Dumonde ent Janine Labnae Clenes 40E7 8888 40678989
Eastein Comn Ann Devon Sales Agent [171) 555-023 171) 555-337
Emnzt Handel Roland Mend Sales Manage TE75-3425 TEVE-3426
Famiia Argub Ana Cruz Markatng Azz [11] 5559857 [nul]

14.5.2 Customizing the DataSet

It is possible to control precisely every aspect of creating the Dat aSet , rather than using the default
settings. In the previous examples, when you created the Dat aSet you passed in a commandSt ri ng
and aconnectionString:

Sql Dat aAdapt er Dat aAdapter =
new Sql Dat aAdapt er (commandStri ng, connecti onString);

These were assigned internally to a Sql Command object and a Sql Connect i on object, respectively.
You can instead explicitly create these objects to gain finer control over their properties.

In this next example, you'll give the class four new class members:

private System Data. Sql Cient. Sgl Connecti on nmyConnecti on;
private System Dat a. Dat aSet nyDat aSet ;

private System Data. Sql C i ent. Sql Command mnyConmand;
private System Data. Sgl C i ent. Sql Dat aAdapt er Dat aAdapt er;

The connection is created by instantiating a Sgl Connect i on object with the connection string:

string connectionString =
"server =l ocal host; uid=sa; pwd=, database=northw nd";
nyConnecti on = new System Dat a. Sql . Sql Connecti on(connectionString);

and then it is opened explicitly:
nmyConnection. Qpen();

By hanging on to this connection, you can reuse it (as you'll see in a subsequent example) and you
can also use its transaction support if needed.

Next, explicitly create the Dat aSet object and set one of its properties:

nmyDat aSet = new System Dat a. Dat aSet () ;
nmyDat aSet . CaseSensitive=true;

Setting CaseSensi ti ve tot r ue indicates that string comparisons within Dat aTabl e objects are
case-sensitive.

333

Next, explicitly create the Sgl Conmand object and give that new command object the connection
object and the text for the command:

nmyComand = new System Data. Sgl C i ent. Sql Command()
nmy Conmand. Connect i on=myConnecti on;
nyConmand. ConmandText = "Sel ect * from Custoners”;

Finally, create the Sgl Dat aAdapt er object and assign to it the Sql Conmand object you just
established. Then tell the Dat aSet how to map the table columns, using the table you're searching,
and you instruct the Sgl Dat aAdapt er to fill the Dat aSet object:

Dat aAdapt er = new System Data. Sql C i ent. Sql Dat aAdapter();
Dat aAdapt er . Sel ect Command= myConmrand;

Dat aAdapt er . Tabl eMappi ngs. Add(" Tabl e", " Cust oners") ;

Dat aAdapt er. Fi | | (nyDat aSet) ;

That done, you're ready to fill the Dat aGri d:

dat aGri d1. Dat aSour ce=
nyDat aSet . Tabl es[" Cust oners"] . Def aul t Vi ew,

(This time I've used the default name for the Dat aGri d.)

Example 14-4 provides the complete source code.

Example 14-4. Customizing a Dataset
nanespace Programi ngCShar pW ndows. Form

{
usi ng System
usi ng System Draw ng;
usi ng System Col | ecti ons;
usi ng Syst em Conponent Model ;
usi ng System W ndows. For ns;
usi ng System Dat a;
using System Data. Sgl Cli ent;

public class ADOFornil : System W ndows. Forns. Form

{
private System Conponent Model . Cont ai ner conponents;
private System W ndows. Forns. DataGid dataG i di;

/1 private System Data. ADO. ADOConnecti on myConnecti on;
private System Data. Sql Cient. Sql Connecti on nyConnecti on;
private System Dat a. Dat aSet nyDat aSet ;

private System Data. Sql Cient. Sgl Command myComand,;
private System Data. Sql C i ent. Sgl Dat aAdapt er Dat aAdapt er;

public ADOFornil()

{
InitializeConmponent();

/'l create the connection object and open it
string connectionString =

"server=Nept une; ui d=sa; pwd=oWennkany; database=northw nd";
myConnecti on = new

System Dat a. Sgl i ent. Sgl Connecti on(connectionString);

334

Programming C#

myConnection. Open() ;

/1l create the DataSet and set a property
myDat aSet = new System Dat a. Dat aSet () ;
nyDat aSet . CaseSensi ti ve=true;

/'l create the Sgl Conmand object and assign the

/1 connection and the sel ect statenent

myCommand = new System Data. Sgl C i ent. Sql Command();
nmy Conmand. Connect i on=myConnecti on;

nyConmand. ConmandText = "Sel ect * from Custoners”;

/'l create the DataAdapter object and pass in the

/1 SQ. Command obj ect and establish the table nappings

Dat aAdapt er = new System Data. Sql C i ent. Sql Dat aAdapter();
Dat aAdapt er. Sel ect Command= myConmmand;

Dat aAdapt er . Tabl eMappi ngs. Add(" Tabl e", " Cust oners");

/1 Tell the DataAdapter object to fill the DataSet
Dat aAdapt er. Fil | (myDat aSet) ;

/1 display it in the grid
dat aGi d1. Dat aSour ce=
nmyDat aSet . Tabl es[" Cust oners"] . Def aul t Vi ew;

}

public override void Dispose()

{
base. Di spose();
conponents. Di spose();

}

private void InitializeConponent()

{
t hi s. conponents = new Syst em Conponent Model . Contai ner ();
this.dataGidl = new System Wndows. Fornms. DataGrid ();
dataGridl.Beginlnit ();
dataGridl. Locati on = new System Drawi ng. Poi nt (24, 32);
dataGridl. Size = new System Drawi ng. Si ze (480, 408);
dat aGri d1. Dat aMenber = "";
dat aGri d1. Tabl ndex = 0;
this. Text = "ADOFrmL";
t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze (5, 13);
this.dientSize = new System Draw ng. Si ze (536, 501);
this.Controls. Add (this.dataGidl);
dataGidl. Endlnit ();

}

public static void Main(string[] args)

{
Appl i cation. Run(new ADOFornil());

}

}

The result of this is shown in Figure 14-4. Now that you have this control, you are in a position to get
much fancier in your use of the grid.

Figure 14-4. Taking direct control of the DataGrid

335

Musing the Data Grid [_ O] =]
CompanyMam | ContactName ContaciTile | Phone Fax -
B's Bevesages Victona Achw Sales Repres [171] 555121 [nul)

Cachus Comd Palncio Simps Sales Agent [1] 1355665 [1] 1354852 J
Cenbio comer Framcisco Ch Maiketng Ma [5) 565-3392 [5) 5557293

Chop-zway Ch Yang'Wang Ownes 452076545 (nul)

Cométcio Min Pedio Alonso Sales Associa [11] BES. 7647 [nul]

Cesolidated Elzabelh Bro Ssles Repres [171) 555-228 (171) 555919

Drackenblst D Swen Ocliste Drdes Admiciz 0241.039123 02414053428

[monde ent Janine Labne Cwnes 40678862 40670989

Essten Corn Ann Devon Ssles Agent [171) 555-023 [171) 555-337

Eingt Handel Roland Mend Sales Manage TETS-3425 TETS-3426

Famila Argub Ana Cnz Markcatng Azz [11] 5559857 [nul] ﬂ

14.5.3 Combining Data Tables

With the work you've done so far, it is easy now to build a grid that reflects the relationship between
two or more tables. For example, you might like to examine all the orders that each customer has
placed over some period of time.

Relational databases are built on the idea that one table relates to other tables. The relationship
between Orders and Customers is that every order includes a Cust onmer | D, which is a foreign key in
Orders and a primary key in Customers. Thus, you have a one-to-many relationship, in which one
customer can have many orders, but each order has exactly one customer. You'd like to be able to
display this relationship in the grid.

ADO.NET makes this fairly easy, and you can build on the previous example. This time, you want to
represent two tables, Customers and Orders, rather than just the Customers table. To do so, you need
only a single Dat aSet object and a single Connect i on object, but you need two Sgl Command
objects and two Sql Dat aAdapt er objects.

After you create the Sql Dat aAdapt er for Customers, just as you did in the previous example, go on
to create a second command for Orders:

myCommand2 = new System Data. Sql i ent. Sqgl Conmand() ;

Dat aAdapter2 = new System Data. Sql C i ent. Sql Dat aAdapter();
myCommand2. Connecti on = nyConnecti on;

myCommand2. ConmandText = "SELECT * FROM Orders”;

Notice that Dat aAdapt er 2 can reuse the same connection as used by the earlier Dat aAdapt er
object. The new ConmandText is different, of course, because you are searching a different table.

Next, instantiate a second Sql Dat aAdapt er object with this new command and map its table to
Orders. You can then fill the Dat aSet with the second table:

Dat aAdapt er 2. Sel ect Contrand = nyConmand2;
Dat aAdapt er 2. Tabl eMappi ngs. Add (" Tabl e",
Dat aAdapter2. Fil | (nmyDat aSet) ;

"Orders");

You now have a single Dat aSet with two tables. You can display either or both of the tables, but in
this example you'll do more. There is a relationship between these tables, and you want to display that
relationship. Unfortunately, the Dat aSet is ignorant of the relationship, unless you explicitly create a
Dat aRel at i on object and add it to the Dat aSet .

336

Programming C#

Start by declaring an object of type Dat aRel at i on:
Syst em Dat a. Dat aRel ati on dat aRel ati on;

This relation will represent the relationship in the database between Cust oner s. Cust oner | Dand
Or ders. Cust oner | D. To model this, you need a pair of Dat aCol unm objects:

Syst em Dat a. Dat aCol unm dat aCol unm1;
Syst em Dat a. Dat aCol unm dat aCol unm2;

Each Dat aCol unm must be assigned a column in the table within the Dat aSet :

dat aCol uml =

nyDat aSet . Tabl es[" Cust oners"]. Col ums[" Custoner| D'];
dat aCol utm2 =

nmyDat aSet . Tabl es["Orders"]. Col ums[" Custoner| D'];

You're now ready to create the Dat aRel at | on object, passing into the constructor the name of the
relationship and the two Dat aCol unm objects:

dat aRel ation =
new System Dat a. Dat aRel ati on(" Cust omer sToOr ders",
dat aCol um1, dat aCol um?2);

You can now add that relation to the Dat aSet :
nyDat aSet . Rel ati ons. Add(dat aRel ati on);

Next, create a Dat aVi ewivanager object that provides a view of the Dat aSet for the Dat aGi d, and
setthe Dat aG i d. Dat aSour ce property to that view:

Dat aVi ewivanager Dat aSet Vi ew =
nmyDat aSet . Def aul t Vi ewManager ;
dat aGri d1. Dat aSour ce = Dat aSet Vi ew,

Finally, because the Dat aG i d now has more than one table, you must tell the grid which table is the
"parent"” table, or the one table to which many other tables can relate. Do this by setting the
Dat aMenber property as shown:

dat aGri d1. Dat aMenber = " Cust oners";
Example 14-5 provides the complete source for this process.

Example 14-5. Using a DataGrid with two tables
usi ng System

usi ng System Drawi ng;

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System W ndows. For ns;

usi ng System Dat a;

nanespace Programm ngCShar pW ndows. For m

{
usi ng System Data. Sql Cli ent;

public class ADOForml : System W ndows. Forns. Form

{

337

338

private System Conponent Model . Cont ai ner conponents;
private System W ndows. Forns. DataGid dataGidi;

/1 private System Data. ADO. ADOConnecti on myConnecti on;
private System Data. Sql Cient. Sql Connecti on nyConnecti on;
private System Dat a. Dat aSet nyDat aSet ;

private System Data. Sql Cient. Sql Command nyComrand,;
private System Data. Sgl Cient. Sql Command nyComand2;
private System Data. Sql Cient. Sql Dat aAdapt er Dat aAdapt er;
private System Data. Sql Cient. Sql Dat aAdapt er Dat aAdapt er 2;

public ADOFornil()

{

InitializeComponent();

/1 create the connection
string connectionString =

"server=Nept une; uid=sa; pwd=oWennEany; database=northw nd";
nmyConnecti on = new

System Dat a. Sgl C i ent. Sql Connecti on(connectionString);
nmyConnecti on. Open();

/] create the data set
nyDat aSet = new System Data. DataSet();
nyDat aSet . CaseSensi ti ve=true;

/1 set up the conmand and DataSet command for the first table
nyComand = new System Data. Sgl C i ent. Sql Cormand();

nmy Conmand. Connect i on=myConnecti on;

nyConmand. ConmandText = "Sel ect * from Custoners”;

Dat aAdapt er = new System Data. Sql C i ent. Sql Dat aAdapter();
Dat aAdapt er . Sel ect Command= myConmand;

Dat aAdapt er . Tabl eMappi ngs. Add(" Tabl e", " Cust oners");

Dat aAdapter. Fil | (myDat aSet) ;

/1 set up the conmand and DataSet command for the second table
nmyComand2 = new System Data. Sql C i ent. Sgl Conmand() ;

Dat aAdapter2 = new System Dat a. Sql C i ent. Sql Dat aAdapter();
nmyComuand2. Connecti on = myConnecti on;

nyConmand2. CommandText = "SELECT * FROM Orders";

Dat aAdapt er 2. Sel ect Command = myConmmand?2;

Dat aAdapt er 2. Tabl eMappi ngs. Add (" Table", "Orders");

Dat aAdapter2. Fi | | (nyDat aSet) ;

/1 establish the relationship between the tables
Syst em Dat a. Dat aRel ati on dat aRel ati on;
Syst em Dat a. Dat aCol unm dat aCol unm1;
Syst em Dat a. Dat aCol unm dat aCol unm2;
dat aCol um1l =
nmyDat aSet . Tabl es[" Cust oners"]. Col ums[" Custoner| D'];
dat aCol um2 =
nyDat aSet . Tabl es["Orders"] . Col ums[" Cust oner| D'];

dat aRel ati on =
new System Dat a. Dat aRel ati on(
"Cust omer sToOr der s",
dat aCol um1,
dat aCol um?2) ;

Programming C#

/1 add the relation object to the data set
nmyDat aSet . Rel ati ons. Add(dat aRel ati on);

/1 set up the grid' s view and nmenber data and display it
Dat aVi ewianager Dat aSet Vi ew =
nyDat aSet . Def aul t Vi ewanager ;
dat aGri d1. Dat aSour ce = Dat aSet Vi ew,
dat aGri d1. Dat aMenber = " Cust oners”;

}
public override void Dispose()
{
base. Di spose();
conponents. Di spose();
}
private void InitializeConponent()
{
t hi s. conponents = new Syst em Conponent Model . Contai ner ();
this.dataGidl = new System Wndows. Fornms. DataGrid ();
dataGridl.Beginlnit ();
/1 @his. TrayHei ght = 0;
/1 @his. TrayLargel con = fal se;
/1 @his. TrayAut oArrange = true;
dat aGri dl. Locati on = new System Draw ng. Poi nt (24, 32);
dataGidl. Si ze = new System Drawi ng. Si ze (480, 408);
dat aGi d1. Dat aMenber = "";
dat aGri d1. Tabl ndex = 0;
this. Text = "ADOFrmL";
t hi s. Aut oScal eBaseSi ze = new System Drawi ng. Si ze (5, 13);
this.CientSize = new System Drawi ng. Si ze (536, 501);
this.Controls. Add (this.dataGidl);
dataGidl.Endlnit ();
}
public static void Main(string[] args)
{
Appl i cation. Run(new ADOFornil());
}

}

The result is impressive. Figure 14-5 shows the grid with one customer chosen. The
Cust onmer sToOr der s link is open under customer ID CACTU.

Figure 14-5. All the customers, with a CustomersToOrders link open

339

B rultiple Tables - [Of]

CustomeslD | Compargilam Corfactame | ContactTite | Addiess City -

H BOMAF Bon app’ Lawrence Lebi Qwiner T2 rus des B Marsedlz
B BOTTH Bottor-Diolar - Elizabeth Ling Accounting M 23 Teawasee Toawasse
@ BSREV B's Baverage: Victons Azhw Sale: Aepes Faunterop Cr London

B CacTu Cactuz Comid Pabicoo Smps Sakes dgent Cenito 333 Buenos &
CustomensToDrders

B CENTC Certio comer Francizco Ch Madeting Ma Sieras de G Mésico D
B CHOPS Chopr-tuey Ch Yang“ang Owner Hauplzti, 23 Bein

@ Cabml Comeércio Min Pedio Afceso Sales Associa Ay, dos Lugia Sao Pauc
B CONSH Conzolidated Elizabeth Bro Sakes Aepres Berkeley Gard London
B DRACD Drachenblut D Sven Ottieb Qider Admines 'wWalsenseg 21 Aachen

B DUMOM D mordie ent Janine Labrun Qwner E7. rue des G Mantes
B EASTC Easter Conn Arn Devon Sales Agent 35 King Geor London
B EANSH Emst Handel Roland Mend Sales Mansge Eichgasse B Graz
B FAaMIA Familia Ssqub Asia Couz Maiketivng Az Rua Oide, 32 Sao Pauc
@ FI554 FIS5A Fabne DiegoRoel Accounbng M O Moralzaza Madnd
| FOLIG Faobes gowma Martne Ranc Assistant Sabe 184, chousse Lile
B FOLED Fok ochfaH Maiia Laizson Owiner Ekergatan 24 Biicke
B FRAME Frankenwerza Peter Franken Marketing Ma Berdiner Plalz Munchen
B FRANA Frarce restay Carne Schemt Marketing Ma 54, rue Royal Mantes
B FRAMS Framchi SpA Paolo Accoiti Sales Aepes Via Monle Bia Tatine

- m FlIRIR Fims ID:.H-:Ih:. | #m Fadrimia Calar Mlzazaa lzadien dze s | ir\-hl'\:ﬂﬂ

Clicking the link opens all the orders for that customer, as shown in Figure 14-6.

Figure 14-6. All the orders for the chosen customer

_Brultiple Tables =] E3 |

4 Cuztomers: Custo - CACTU ame: Cachus Comidas para llevar 3
Diderly | Customedl | Emplopeeil | OrdesDate | AequedDiate | ShippedDiate
» [1051] CACTU B 4729797 R9ET RAAA9ET
10782 CACTU 3 L2ATET 11419 222Ny
108149 CaCTU 2 17090 24098 1R 38
T0es CACTU 4 ZAmEe INAEE 219098
106937 CACTU 7 301938 EE 313198
(11054 CACTU ;] 200M8 SENEE [ndl
*
4 3

14.6 Changing Database Records

So far, you've retrieved data from a database, but you haven't manipulated its records in any way.
Using ADO.NET, it is of course possible to add records, change an existing record, or delete a record
altogether.

In a typical implementation, you might work your way through the following steps:

1. Fill the tables for your Dat aSet using a stored procedure or SQL.

2. Display the data in various Dat aTabl e objects within your Dat aSet by either binding to a
control or looping through the rows in the tables.

3. Change data in individual Dat aTabl e objects by adding, modifying, or deleting Dat aRow
objects.

Programming C#

4. Invoke the Cet Changes() method to create a second Dat aSet that features only the
changes to the data.

5. Check for errors in the second newly created Dat aSet by examining the HasErr or s
property. If there are errors, check the HasEr r or s property of each Dat aTabl e in the
Dat aSet . If the table has errors, invoke the Get Err or s() method of the Dat aTabl e and
get back an array of Dat aRow objects with errors. On each row you can examine the
RowEr r or property for specific information about the error, which you can then resolve.

6. Merge the second Dat a Set with the first.

Call the Updat e() method on the Dat aAdapt er object and pass in the merged Dat aSet .

8. Invoke the Accept Changes() method on the Dat aSet , or invoke Rej ect Changes() to
cancel the changes.

~

This process gives you very fine control over the update to your data as well as an opportunity to fix
any data that would otherwise cause an error.

In the following example, you'll create a dialog box that displays the contents of the Customer table in
Northwinds. The goal is to test updating a record, adding a new record, and deleting a record. As
always, I'll keep the code as simple as possible, which means eliminating many of the error-checking
and exception-handling routines you might expect in a production program.

Figure 14-7 shows the somewhat crude but useful form I've built to experiment with these features of
ADO.NET.

Figure 14-7. The ADO update form
_Bcustomers Update Form M= E

Blondeszddsl pere et fils [Frédengue Cibeauy)
Bélida Comidas peepsradas [Main Sommet]
Bon app' [Laurence Labihan]

B ottom-D ollar Markess (Elizabeth Lincol)

B’z Beverage: [Victona Aszhworth)

Cactiiz Comidas pars llevar [Petncie Simgsan)
Centro comescial Mockezuma [Framcizco Chang) ﬂ

Mevi Customer Name | Delele |

Company D

Ll

Address

Contact Mame Zip

|

Compary Mame [Cily
|
|

—— —— —

Contact Titke Fhone
Mew

Press Mew. Update o Delabe

This form consists of a list box (| bCust oner s), a button for Update (bt nUpdat e), an associated text
box (t xt Cust oner Nane), and a Delete button (bt nDel et e). There is also a set of eight text fields
that are used in conjunction with the New button (bt nNew). These text fields represent eight of the
fields in the Customers table in the Northwind database. There is also a label (I bl Message) that you
can use for writing messages to the user (it currently says Press New, Update, or Delete).

14.6.1 Accessing the Data

First, create the Dat aAdapt er object and the Dat aSet as private member variables, along with the
Dat aTabl e:

private Sql Dat aAdapt er Dat aAdapter;
private DataSet DataSet;

341

private DataTabl e dataTabl e;

This enables you to refer to these objects from various member methods. You start by creating strings
for the connection and the command that will get you the table you need:

string connectionString =
"server=| ocal host; uid=sa; pwd=; database=northw nd";
string commandString = "Select * from Custoners”;

These strings are passed as parameters to the Sgl Dat aAdapt er constructor:

Dat aAdapter =
new Sql Dat aAdapt er (commandStri ng, connectionString);

You can now create the Dat aSet and fill it with the Sql Dat aAdapt er object you've just created:

Dat aSet = new DataSet();
Dat aAdapt er. Fi | | (Dat aSet, " Cust oners") ;

Display the table contents by calling the Popul at eLB() method, which is a private method that fills
the list box from the contents of the single table in the Dat aSet :

dat aTabl e = Dat aSet. Tabl es[0] ;
| bCustoners.ltens. Clear();
foreach (DataRow dataRow i n dataTabl e. Rows)

| bCustoners. | tens. Add(
dat aRow[" ConpanyNane"] +
" (" + dataRow "ContactNanme"] + ")");
}

14.6.2 Updating a Record

The form is now displayed, and you're ready to update a record. Highlight a record and fill in a new
customer name in the topmost text field. When you press Update, read the resulting name and put it
into the chosen record.

The first task is to get the specific row the user wants to change:
Dat aRow t ar get Row = dat aTabl e. Rows[| bCust oner s. Sel ect edl ndex] ;

Declare a new object of type Dat aRow and initialize it with a reference to the specific row in the
Dat aTabl e's Rows collection that corresponds to the selected item in the list box. Remember that
Dat aTabl e was declared as a member variable and initialized in the Popul at eLB() method
shown in the previous section.

You can now display the name of the company you're going to update:

| bl Message. Text = "Updating " + target Row " ConpanyNane"];
Application. DoEvents();

- The call to the static method DoEvent s() of the Appl i cati on
° . class causes the application to process Windows messages and
4" paint the screen with the message. If you were to leave this line
out, the current thread would dominate the processor and the

L.

342

Programming C#

messages would not be printed until the button handler completes
its work.

Call Begi nEdi t () on the Dat aRowto put the row into editing mode. This suspends events on the
row so that you could, if you chose, edit a number of rows at once without triggering validation rules
(there are no validation rules in this example). It is good form to bracket changes on Dat aRows with
callsto Begi nEdi t () and EndEdit():

target Row. Begi nEdit();
t ar get Row[" ConmpanyNane"] = txt Cust oner Nane. Text ;
target Row. EndEdit ();

The actual edit is to the column ConpanyNane within the t ar get Row object, which is set to the text
value of the text control t xt Cust orrer Name. The net effect is that the ConpanyNane field in the row
is set to whatever the user put into that text box.

Notice that the column you want is indexed within the row by the name of that column. In this case, the
name will match the name that is used in the database, but that is not required. When you created the
Dat aSet , you could have used the Tabl eMappi ngs() method to change the names of the
columns.

Having edited the column, you are ready to check to make sure there are no errors. First, extract all
the changes made to the Dat aSet (in this case, there will be only one change) using the

Cet Changes() method, passing in a Dat aRowSt at e enumeration to indicate that you want only
those rows that have been modified. Get Changes() returns a new Dat aSet object:

Dat aSet Dat aSet Changed =
Dat aSet . Get Changes(Dat aRowSt at e. Modi fi ed) ;

Now you can check for errors. To simplify the code, I've included a flag to indicate that all is OK. If you
find any errors, rather than trying to fix them you can just set the flag to f al se and not make the
updates:

bool okayFlag = true;
i f (DataSet Changed. HasErrors)

{
okayFl ag = fal se;
string neg = "Error in rowwith custoner ID";
foreach (DataTabl e theTabl e in DataSet Changed. Tabl es)
if (theTabl e. HasErrors)
Dat aRow[] errorRows = theTable. GetErrors();
foreach (DataRow theRow i n error Rows)
{
nsg = nmsg + theRow| "CustonerlD'];
}
}
}
| bl Message. Text = mnsgQ;
}

First test to see whether the new data record set has any errors by checking the HasEr r or s property.
If HasError s istr ue, there are errors; set the Boolean okayF| ag to f al se, and then go on to

343

discover where the error lies. To do so, iterate through all the tables in the new database (in this case,
there is only one), and if a table has errors you'll get an array of all the rows in that table with errors
(shown here as the er r or Rows array).

Then iterate through the array of rows with errors, handling each in turn. In this case, you just update
the message on the dialog box, but in a production environment you might interact with the user to fix
the problem.

If the okayFl ag is still t r ue after testing HasEr r or s, there were no errors and you are ready to
update the database. First, merge the new Dat aSet back in with the original (presumably, in a
production program you'd be merging the fixed tables back in with the original):
i f (okayFl ag)

Dat aSet . Mer ge(Dat aSet Changed) ;

You can now update the Dat aSet :

Dat aAdapt er . Updat e(Dat aSet , " Cust onmers") ;

This causes the Dat aAdapt er object to create the necessary command text to update the database.
You can actually see that text by accessing the CommandText property of the Dat aAdapt er object.
You can display the command in the message text:

| bl Message. Text = Dat aAdapt er. Updat eCommand. ConmandText ;
Application. DoEvents();

You now must tell the Dat aSet to accept the changes and then repopulate the list box from the
Dat aSet :

Dat aSet . Accept Changes();
Popul atelLB();

If okayFl ag were f al se, there would have been errors; in this example, we'd just reject the changes:

el se
Dat aSet . Rej ect Changes();

14.6.3 Deleting a Record

The code for handling the Delete button is even simpler. First, get the target row:

Dat aRow t ar get Row =
dat aTabl e. Rows[| bCust oner s. Sel ect edl ndex] ;

and form the delete message:
string nsg = target Row "ConpanyNane"] + " deleted. ";

You don't want to show the message until the row is deleted, but you need to get it now because after
you delete the row it will be too late!

You're now ready to delete the row and then update the database and the Dat aSet :

dat aTabl e. Rows[| bCust oners. Sel ect edl ndex] . Del ete();

Programming C#

Dat aSet . Accept Changes();
Dat aAdapt er . Updat e(Dat aSet , " Cust onmers") ;

The first of these three lines marks the row for deletion. The second accepts these changes in the
Dat aSet , and the third updates the database with the changed Dat aSet .

- Calling Accept Changes() onthe Dat aSet causes
%+ 4. AcceptChanges() to be called on each table within the
% Dat aSet. The callto Accept Changes() on each table in turn
causes Accept Changes() to be called on each row in those
tables. Thus the one call to Dat aSet . Accept Changes()
cascades down through all the contained tables and rows.

Ty

You're now ready to repopulate the list box and display a message indicating that the record was
deleted:

Popul ateLB();
| bl Message. Text = nsg;
Application. DoEvents();

- Deleting records from the Customers database might cause an
) exception if the record deleted is constrained by database integrity
"4 rules. For example, if a customer has orders in the Orders table,

you cannot delete the customer until you delete the orders. To
solve this, the following example will create new Customer
records that you can then delete at will.

14.6.4 Creating New Records

To create a new record, the user will fill in the fields and press the New button. This will fire the
bt nNew Cl i ck event, which is tied to the bt nNew Cl i ck event handling method:

bt nNew. C i ck += new System Event Handl er (this.btnNew Cick);

In the event handler, you call Dat aTabl e. NewRow(), which asks the table for a new Dat aRow
object:

Dat aRow newRow = dat aTabl e. NewRow();

This is very elegant because the new row that the Dat aTabl e produces has all the necessary
Dat aCol urms for this table. You can just fill in the columns you care about, taking the text from the
user interface (Ul):

newRow " Custoner| D'] = txt Conpanyl D. Text;
newRow| " ConmpanyNane" | t xt CompanyNane. Text ;
newRowf " Cont act Nane" | t xt Cont act Nane. Text ;
newRow "ContactTitle"] = txtContactTitle. Text;
newRow " Address"] = txtAddress. Text;

newRow "City"] = txtCGty. Text;

newRow " Post al Code"] = txtZi p. Text;

newRow " Phone"] = txtPhone. Text;

Now that the row is fully populated, just add it back to the table:

345

dat aTabl e. Rows. Add(newRow) ;

The table resides within the Dat aSet , so all you have to do is tell the Dat aAdapt er object to update
the database with the Dat aSet :

Dat aAdapt er . Updat e(Dat aSet , " Cust oners") ;
Next, update the user interface and tell the Dat aSet to accept the changes:

| bl Message. Text = Dat aAdapt er. Updat eConmmand. ConmmandText ;
Appl i cation. DoEvents();
Dat aSet . Accept Changes();

You can now repopulate the list box with your new added row and clear the text fields so that you're
ready for another new record:

Popul atelLB();
ClearFields();

Cl ear Fi el ds() is a private method that simply sets all the text fields to empty strings. That method
and the entire program are shown in Example 14-6.

Example 14-6. Updating, deleting, and adding records
using System

usi ng System Draw ng;

usi ng System Col | ecti ons;

usi ng System Conponent Model ;

usi ng System W ndows. For ns;

usi ng System Dat a;

using System Data. Sgl Cli ent;

nanespace Programm ngCShar pW ndows. For m

{
public class ADOFornil : System W ndows. Forns. Form

{
private System Conponent Model . Cont ai ner conponents;
private System W ndows. Forns. Label | abel 9;
private System W ndows. For ns. Text Box t xt Phone;
private System W ndows. Fornms. Label | abel 8;
private System W ndows. Fornms. Text Box txtContactTitle;
private System W ndows. Forns. Label | abel 7;
private System W ndows. For ns. Text Box t xt Zi p;
private System W ndows. For nms. Label | abel 6;
private System W ndows. Forns. Text Box txtCity;
private System W ndows. Forns. Label | abel 5;
private System W ndows. For nms. Text Box t xt Addr ess;
private System W ndows. Forns. Label | abel 4;
private System W ndows. For ns. Text Box t xt Cont act Nane;
private System W ndows. Fornms. Label | abel 3;
private System W ndows. For nms. Text Box t xt ConpanyNane;
private System W ndows. For ns. Label | abel 2;
private System W ndows. For ns. Text Box t xt Conpanyl D;
private System W ndows. For ns. Label | abel 1;
private System W ndows. Forns. Button bt nNew,
private System W ndows. For ms. Text Box t xt Cust omer Nane;
private System W ndows. Forns. Button bt nUpdat e;
private System W ndows. Forns. Label | bl Message;
private System W ndows. Forns. Button bt nDel et e;
private System W ndows. For nms. Li st Box | bCust oners;

346

Programming C#

private Sqgl Dat aAdapt er Dat aAdapter;

/1 the DataSet and table are nenbers so that
/1 we can access them from any nenber nethod
private DataSet DataSet;

private DataTabl e dataTabl e;

public ADOFornil()

{
InitializeConmponent();
string connectionString =
"server=Nept une; uid=sa; pwd=oWennEany; database=northw nd";
string commandString = "Sel ect * from Custoners”;
Dat aAdapter =
new Sql Dat aAdapt er (commandStri ng, connectionString);
Dat aSet = new DataSet();
Dat aAdapt er. Fi | | (Dat aSet, " Cust oners");
Popul ateLB();
}
/1 fill the list box with colums fromthe Customers table
private void Popul ateLB()
{
dat aTabl e = Dat aSet. Tabl es[0] ;
| bCustoners.ltens.Clear();
foreach (DataRow dataRow i n dataTabl e. Rows)
| bCust onmers. Items. Add(
dat aRow[" ConpanyNane"] + " (" +
dat aRow[" Cont act Nane"] + ")");
}
}
public override void Dispose()
{
base. Di spose();
conponents. Di spose();
}
private void InitializeConmponent()
{
t hi s. conponents = new Syst em Conponent Model . Contai ner ();
t hi s. txt Cust omer Nane = new System W ndows. Forms. Text Box ();
this.txtCity = new System W ndows. Forns. Text Box ();
thi s. txt Conmpanyl D = new System W ndows. For ms. Text Box ();
this.| bl Message = new System W ndows. Fornms. Label ();
t hi s. bt nUpdate = new System W ndows. Forms. Button ();
t hi s. txt Cont act Nane = new System W ndows. Fornms. Text Box ();
this.txtZip = new System W ndows. Forns. TextBox ();
this.btnDel ete = new System W ndows. Forns. Button ();
this.txtContactTitle = new System W ndows. Forns. Text Box ();
this.txt Address = new System W ndows. Forms. Text Box ();
t hi s. txt ConpanyNane = new System W ndows. For ns. Text Box ();
this.label5 = new System W ndows. Forns. Label ();
this.label 6 = new System W ndows. For ms. Label ();
this.label 7 = new System W ndows. For nms. Label ();
this.label 8 = new System W ndows. Forns. Label ();
this.label 9 = new System W ndows. Forns. Label ();

this.label4 = new System W ndows. For ns. Label ();
this.|bCustomers = new System W ndows. Forns. Li stBox ();
this.txtPhone = new System W ndows. Forms. Text Box ();
this. btnNew = new System W ndows. Forns. Button ();
this.labell = new System W ndows. Forns. Label ();
this.label 2 = new System W ndows. Forns. Label ();
this.label 3 = new System W ndows. Forns. Label ();

/1 @his. TrayHei ght = 0;
/1 @his. TrayLargel con = fal se;
/1 @his. TrayAut oArrange = true;
t xt Cust omer Nane. Locati on = new System Drawi ng. Poi nt (256, 120);
t xt Cust oner Nanme. Tabl ndex = 4;
t xt Cust oner Nane. Si ze = new System Drawi ng. Si ze (160, 20);
txtCity. Location = new System Draw ng. Poi nt (384, 245);
txtCity. Tabl ndex = 15;
txtCity.Size = new System Drawi ng. Si ze (160, 20);
t xt Conpanyl D. Locati on = new System Draw ng. Point (136, 216);
t xt Conpanyl D. Tabl ndex = 7;
t xt Conpanyl D. Si ze = new System Draw ng. Si ze (160, 20);
| bl Message. Locati on = new System Drawi ng. Point (32, 368);
| bl Message. Text = "Press New, Update or Delete";
| bl Message. Si ze = new System Draw ng. Si ze (416, 48);
| bl Message. Tabl ndex = 1,
bt nUpdat e. Locati on = new System Draw ng. Poi nt (32, 120);
bt nUpdat e. Si ze = new System Drawi ng. Si ze (75, 23);
bt nUpdat e. Tabl ndex = O0;
bt nUpdat e. Text = "Update";
bt nUpdate. Cick +=
new System Event Handl er (this. btnUpdate_Cick);
t xt Cont act Nanme. Locati on = new System Draw ng. Poi nt (136, 274);
t xt Cont act Nane. Tabl ndex = 11;
t xt Cont act Nane. Si ze = new System Drawi ng. Si ze (160, 20);
t Xt Zi p. Locati on = new System Drawi ng. Poi nt (384, 274);
t xt Zi p. Tabl ndex = 17;
txtZi p. Si ze = new System Draw ng. Si ze (160, 20);
bt nDel et e. Locati on = new System Draw ng. Poi nt (472, 120);
bt nDel ete. Si ze = new System Drawi ng. Si ze (75, 23);
bt nDel et e. Tabl ndex = 2;
bt nDel ete. Text = "Del ete";
bt nDel ete. dick +=
new System Event Handl er (this.btnDelete_Cick);
txtContactTitle.Location = new System Draw ng. Poi nt (136, 303);
txt Contact Titl e. Tabl ndex = 19;
txtContactTitle.Size = new System Draw ng. Si ze (160, 20);
t xt Addr ess. Locati on = new System Draw ng. Poi nt (384, 216);
t xt Addr ess. Tabl ndex = 13;
t xt Addr ess. Si ze = new System Drawi ng. Si ze (160, 20);
t xt ConmpanyNane. Locati on = new System Draw ng. Poi nt (136, 245);
t xt ConpanyNane. Tabl ndex = 9;
t xt ConpanyNane. Si ze = new System Draw ng. Si ze (160, 20);
| abel 5. Locati on = new System Draw ng. Poi nt (320, 252);
| abel 5. Text = "City";
| abel 5. Si ze = new System Drawi ng. Si ze (48, 16);
| abel 5. Tabl ndex = 14;
| abel 6. Locati on = new System Draw ng. Poi nt (320, 284);
| abel 6. Text = "Zip";
| abel 6. Si ze = new System Drawi ng. Si ze (40, 16);
| abel 6. Tabl ndex = 16;
| abel 7. Locati on = new System Draw ng. Point (40, 312);
| abel 7. Text “"Contact Title";
| abel 7. Si ze new System Draw ng. Si ze (88, 16);

Programming C#

| abel 7. Tabl ndex = 18;

| abel 8. Locati on = new System Draw ng. Poi nt (320, 312);
| abel 8. Text = "Phone";

| abel 8. Si ze = new System Drawi ng. Si ze (56, 16);

| abel 8. Tabl ndex = 20;

| abel 9. Locati on = new System Drawi ng. Point (120, 120);
| abel 9. Text = "New Custoner Nane:";

| abel 9. Si ze = new System Drawi ng. Si ze (120, 24);

| abel 9. Tabl ndex = 22;

| abel 4. Locati on = new System Draw ng. Poi nt (320, 224);
| abel 4. Text = "Address";

| abel 4. Si ze = new System Drawi ng. Si ze (56, 16);

| abel 4. Tabl ndex = 12;

| bCust oners. Locati on = new System Draw ng. Poi nt (32, 16);

| bCustoners. Si ze =
| bCust oners. Tabl ndex =
t xt Phone. Locati on =
t xt Phone. Tabl ndex =
t xt Phone. Si ze =
bt nNew. Locati on =

3,
21;

new System Dr awi ng. Poi nt

new System Dr awi ng. Poi nt

new System Draw ng. Si ze (512, 95);

(384, 303);

new System Drawi ng. Si ze (160, 20);

(472, 336);

bt nNew. Si ze = new System Drawi ng. Si ze (75, 23);

bt nNew. Tabl ndex = 5;

bt nNew. Text = " New"';

bt nNew. C i ck += new System Event Handl er (this.btnNew Cick);
| abel 1. Location = new System Draw ng. Poi nt (40, 224);
| abel 1. Text = "Conpany |D';

| abel 1. Si ze = new System Drawi ng. Si ze (88, 16);

| abel 1. Tabl ndex = 6;

| abel 2. Locati on = new System Draw ng. Point (40, 252);
| abel 2. Text = "Conmpany Nane";

| abel 2. Si ze = new System Drawi ng. Si ze (88, 16);

| abel 2. Tabl ndex = 8;

| abel 3. Locati on = new System Draw ng. Point (40, 284);
| abel 3. Text = "Contact Nane";

| abel 3. Si ze = new System Drawi ng. Si ze (88, 16);

| abel 3. Tabl ndex = 10;

this. Text = "Custoners Update Forni;

t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze (5, 13);
this.OientSize = new System Drawi ng. Si ze (584, 421);
this.Controls. Add (this.|abel9);

this. Controls. Add (this.txtPhone);

this.Controls. Add (this.|abel 8);

this.Controls. Add (this.txtContactTitle);
this.Controls.Add (this.|abel7);

this. Controls. Add (this.txtZp);

this.Controls. Add (this.|abel6);

this.Controls.Add (this.txtCity);

this.Controls.Add (this.|abel5);

this.Controls. Add (this.txtAddress);

this. Controls. Add (this.|abel4);

this. Controls. Add (this.txtContactNane);
this.Controls. Add (this.|abel 3);

this. Controls. Add (this.txtConmpanyNane);
this.Controls. Add (this.|abel 2);

this. Controls. Add (this.txtConpanylD);

this. Controls. Add (this.|abell);

this.Controls. Add (this.btnNew);

this.Controls. Add (this.txtCustonerNane);

this. Controls. Add (this.btnUpdate);

this. Controls. Add (this.!|Dbl Message);

this. Controls. Add (this.btnDel ete);

349

this.Controls. Add (this.|bCustoners);
}

/1 handl e the new button click
protected void btnNew Cick (object sender, System EventArgs e)
{
/1l create a new row, populate it
Dat aRow newRow = dat aTabl e. NewRow() ;
newRow " Cust oner| D'] = txt Conpanyl D. Text;
newRow " ConpanyNane"] t xt ConpanyNane. Text ;
newRow " Cont act Nane"] t xt Cont act Nane. Text ;
newRow "ContactTitle"] = txtContactTitle. Text;
newRow " Addr ess"] = txtAddress. Text;
newRow "City"] = txtCity. Text;
newRow " Post al Code"] = txtZip. Text;
newRow " Phone"] = txtPhone. Text;

// add the newrow to the table
dat aTabl e. Rows. Add(newRow) ;

/1 update the db
Dat aAdapt er . Updat e(Dat aSet , " Cust oners");

/1 informthe user and accept the changes

| bl Message. Text = Dat aAdapt er. Updat eCommand. CormandText ;
Appl i cation. DoEvents();

Dat aSet . Accept Changes();

/'l repopul ate the list box
Popul atelLB();

/1l clear all the text fields
ClearFields();

/1 set all the text fields to enpty strings
private void ClearFields()

{
t xt Companyl D. Text = "";
t xt CompanyNane. Text = "";
t xt Cont act Nane. Text = "";
txtContactTitle. Text = "";
t xt Address. Text = "";
txtCity. Text = "";
txtZip. Text = "";
t xt Phone. Text = "";

}

/1 handl e the update button click
protected void btnUpdate Cick (object sender, System EventArgs e)
{

/1 get the selected row

Dat aRow t ar get Row = dat aTabl e. Rows[| bCust oner s. Sel ect edl ndex] ;

/1 informthe user
| bl Message. Text = "Updating " + targetRow " ConmpanyNane"];
Appl i cation. DoEvents();

/|l edit the row

target Row. Begi nEdit();
t ar get Row[" ConpanyNane"] = txt Cust oner Nane. Text ;

350

Programming C#

target Row. EndEdit();

/'l get each row that changed
Dat aSet Dat aSet Changed =
Dat aSet . Get Changes(Dat aRowSt at e. Modi fi ed) ;

/1l test to make sure all the changed rows are wi thout errors

bool okayFlag = true;
i f (DataSet Changed. HasErrors)
{
okayFl ag = fal se;
string msg = "Error in rowwth custoner ID";

/1 exam ne each table in the changed Dat aSet
foreach (DataTabl e theTabl e i n Dat aSet Changed. Tabl es)

/1 if any table has errors, find out which rows
if (theTabl e. HasErrors)
{

/1 get the rows with errors

Dat aRow[] errorRows = theTable.GetErrors();

/1l iterate through the errors and correct
/1 (in our case, just identify)
foreach (DataRow theRow in errorRows)

{
}

nmsg = msg + theRow "CustonerlD'];
}
}
| bl Message. Text = nsg;

if we have no errors
(okayFl ag)

S~
-~

/1 nmerge the changes back into the original DataSet
Dat aSet . Mer ge(Dat aSet Changed) ;

/1 update the database
Dat aAdapt er . Updat e(Dat aSet , " Cust oners");

/1 informthe user

| bl Message. Text = Dat aAdapt er. Updat eComand. CommandText ;

Appl i cation. DoEvents();

/1 accept the changes and repopul ate the |ist box
Dat aSet . Accept Changes();

Popul ateLB();

else // if we had errors, reject the changes
Dat aSet . Rej ect Changes();

/1 handl e the delete button click

protected void btnDelete Cick (object sender, System EventArgs e)

{

/'l get the selected row

Dat aRow t arget Row = dataTabl e. Rows[| bCust oner s. Sel ect edl ndex] ;

351

/'l prepare nessage for user
string nsg = target Row "ConpanyNane"] + " deleted. ";
/1 delete the selected row
dat aTabl e. Rows[| bCust oners. Sel ect edl ndex] . Del ete();

/1 accept the changes to the DataSet
Dat aSet . Accept Changes();

/1 update the database
Dat aAdapt er . Updat e(Dat aSet , " Cust oner s") ;

/'l repopulate the list box without the deleted record
Popul atelLB();

/1 informthe user
| bl Message. Text = nsg;
Appl i cation. DoEvents();

}
public static void Miin(string[] args)
{

Appl i cation. Run(new ADOFormil());
}

}

Figure 14-8 shows the filled-out form just before pressing the New button.

Figure 14-8. Getting ready to add a new record
jrlnrrmu‘r\ Update Form Mi=1E3

GROSELLA-Festawrants [Manuel Parsira) :l
Hanai Carnes [Matio Ponbes)
HILARION-Abastos [Carlos Hemandez)

Hurigry Copate Impart Store (Yashi Latimer]
Humgry Owd AlMight Grocers [Patncia McKernal
|shard Trading [Heler Bennett]

K.aruglich E szen (Philp Cramer) =

Update Mew Custome: Name: [Delete |

Company 1D |LBE Addmss 100 Main Street
Company Hame [LIJEIE_I.I Azzacistes, [ne iy [.ﬁ.r'!,nTnm

Contact Hame [Jezoe Linerty Zp EET)

Cortact Tile |President Phome [B179551212

le

Prezz New, Updste or Delete

Figure 14-9 shows the form immediately after adding the new record.

Figure 14-9. After adding the new record

352

Programming C#

N, M[=1E1

Diewisndedride Kub [Rits Miiksr)
Wartan Hesklku |[Fikko Kockitalo)
‘wielington Importadona [Paula Paerte)
Whike Clover M arkets [Kail Jablonski)
wlman Fala M atli Eakturen)

‘Woltki Zajazd [Zbyszek Pesbzenewcz)
Libeily Astocistes, Inc [Jesse Libety)

=]
=]
=
Update | Mews Customes Mame: | Delate

Zip

| |
Compary Hame | City |
| |
| |

Phone

Note that the new record is appended to the end of the list and the text fields are cleared.

14.7 ADO.NET and XML

In this chapter, | have demonstrated the kinds of data access that users have come to expect from
ADO and shown how the new ADO.NET data access framework provides such support through its
class libraries. | would be remiss, however, if | failed to mention that ADO.NET also provides complete
support for XML. Most interesting is its support for presenting the contents of a data set as either a
collection of tables, as we have explored in this chapter, or as an XML document.

The tight integration of ADO.NET and XML and its applications are beyond the scope of this book, but
complete information can be found in the .NET Framework SDK Reference.

353

354

Programming C#

Chapter 15. ProgrammingWeb Applications with
Web Forms

Rather than writing traditional Windows desktop and client-server applications, more and more
developers are now writing web-based applications, even when their software is for desktop use.

There are many obvious advantages. For one, you do not have to create as much of the user interface:
you can let Internet Explorer and Netscape Navigator handle a lot of it for you. Another, perhaps

bigger advantage is that distribution of revisions is faster, easier, and less expensive. When | worked
at an online network that predated the Web, we estimated our cost of distribution for each upgrade at
$1 million per diskette (remember diskettes?). Web applications have virtually zero distribution cost.
The third advantage of web applications is distributed processing. With a web-based application, it is
far easier to provide server-side processing. The Web provides standardized protocols (e.g., HTTP,
HTML, and XML) to facilitate building n-tier applications.

The .NET technology for building web applications (and dynamic web sites) is ASP.NET, which
provides a rich collection of types for building web applications in its Syst em \\&b and

Syst em WWeb. Ul namespaces. In this chapter, I'll focus on where ASP.NET and C# programming
intersect: the creation of Web Forms. (For coverage of ASP.NET alone, see my upcoming book,
Programming ASP.NET, O'Reilly, 2001.)

Web Forms bring Rapid Application Development (RAD) techniques (such as those used in Windows
Forms) to the development of web applications. As with Windows Forms, you drag and drop controls
onto a form and write the supporting code either in-line or in code-behind pages. With Web Forms,
however, the application is deployed to a web server, and users interact with the application through a
standard browser.

15.1 Understanding Web Forms

Web Forms implement a programming model in which web pages are dynamically generated on a
web server for delivery to a browser over the Internet. They are, in some ways, the successor to ASP
pages, and they marry ASP technology with traditional programming.

With Web Forms, you create an HTML page with static content, and you write C# code to generate
dynamic content. The C# code runs on the server, and the data produced is integrated with your static
HTML to create the web page. What is sent to the browser is standard HTML.

Web Forms are designed to run on any browser, with the server rendering the correct browser-
compliant HTML. You can do the programming for the logic of the Web Form in any .NET language. |
will of course use C#, which is arguably the language of choice, though some ASP developers who
have used VBScript might opt for VB .NET.

Just as with Windows Forms, you can create Web Forms in Notepad (or another editor of your choice)
rather than in Visual Studio. Many developers will choose to do so, but Visual Studio makes the
process of designing and testing Web Forms much easier.

Web Forms divide the user interface into two parts: the visual part or user interface (Ul), and the logic
that lies behind it. This is very similar to developing Windows Forms as shown in Chapter 14, but
with Web Forms the Ul page and the code are in separate files.

The Ul page is stored in a file with the extension .aspx. The logic (code) for that page can be stored in
a separate code-behind C# source file. When you run the form, the code-behind class file runs and
dynamically creates the HTML sent to the client browser. This code makes use of the rich Web Forms
types found in the Syst em VWb and Syst em V\eb. Ul namespaces of the .NET Framework Class
Library (FCL).

355

With Visual Studio, Web Forms programming couldn't be simpler: open a form, drag some controls
onto it, and write the code to handle events. Presto! You've written a web application.

On the other hand, even with Visual Studio writing a robust and complete web application can be a
daunting task. Web Forms offer a very rich Ul; the number and complexity of web controls have
greatly multiplied in recent years, and user expectations about the look and feel of web applications
have risen accordingly.

In addition, web applications are inherently distributed. Typically, the client will not be in the same
building as the server. For most web applications, you must take network latency, bandwidth, and
network server performance into account when creating the Ul; a round trip from client to host might
take a few seconds.

15.1.1 Web Form Events

Web Forms are event-driven. An event is an object that encapsulates the idea that "something
happened." An event is generated (or raised) when the user presses a button or selects from a list box
or otherwise interacts with the Ul. Events can also be generated by the system starting or finishing
work. For example, you open a file for reading, and the system raises an event when the file has been
read into memory.

The method that responds to the event is called the event handler. Event handlers are written in C# in
the code-behind page and are associated with controls in the HTML page through control attributes.

Event handlers are delegates (see Chapter 12). By convention, ASP.NET event handlers return void
and take two parameters. The first parameter represents the object raising the event. The second,
called the event argument , contains information specific to the event, if any. For most events, the
event argument is of type EventArgs, which does not expose any properties. For some controls, the
event argument might be of a type derived from EventArgs that can expose properties specific to that
event type.

In web applications, most events are typically handled on the server and, therefore, require a round
trip. ASP.NET only supports a limited set of events, such as button clicks and text changes. These are
events that the user might expect to cause a significant change, as opposed to Windows events, such
as mouse-over, that might happen many times during a single user-driven task.

15.1.1.1 Postback versus non-postback events

Postback events are those that cause the form to be posted back to the server immediately. These
include click type events, such as the Button Click event. In contrast, many events (typically change
events) are considered non-postback in that the form is not posted back to the server immediately.
Instead, these events are cached by the control until the next time that a postback event occurs. You
can force controls with non-postback events to behave in a postback manner by setting their

Aut oPost Back property tot r ue.

15.1.1.2 State

A web application's State is the current value of all the controls and variables for the current user in
the current session. The Web is inherently a "stateless" environment. This means that every post to
the server loses the state from previous posts, unless the developer takes great pains to preserve this
session knowledge. ASP.NET, however, provides support for maintaining the state of a user's session.

Whenever a page is posted to the server, it is re-created by the server from scratch before it is
returned to the browser. ASP.NET provides a mechanism that automatically maintains state for server
controls. Thus, if you provide a list and the user has made a selection, that selection will be preserved
after the page is posted back to the server and redrawn on the client.

356

Programming C#

15.1.2 Web Form Life Cycle

Every request for a page made from a web server causes a chain of events at the server. These
events, from beginning to end, constitute the life cycle of the page and all its components. The life
cycle begins with a request for the page, which causes the server to load it. When the request is
complete, the page is unloaded. From one end of the life cycle to the other, the goal is to render
appropriate HTML output back to the requesting browser. The life cycle of a page is marked by the
following events, each of which you can handle yourself or leave to default handling by the ASP.NET
server:

Initialize

Initialize is the first phase in the life cycle for any page or control. It is here that you initialize
any settings needed for the duration of the incoming request.

Load View State
The ViewState property of the control is populated. The Vi ewSt at e information comes from a
hidden variable on the control, used to persist the state across round trips to the server. The
input string from this hidden variable is parsed by the page framework, and the Vi ewSt at e
property is set. This can be modified via the LoadVi ewSt at e() method. This allows

ASP.NET to manage the state of your control across page loads so that each control is not
reset to its default state each time the page is posted.

Process Postback Data
During this phase, the data sent to the server in the posting is processed. If any of this data
results in a requirement to update the Vi ewSt at e, that update is performed via the
LoadPost Dat a() method.

Load

Creat eChi |l dControl s() is called, if necessary, to create and initialize server controls in
the control tree. State is restored, and the form controls show client-side data. You can modify
the load phase by handling the Load event with the OnLoad method.

Send Postback Change Modifications

If there are any state changes between the current state and the previous state, change
events are raised via the Rai sePost Dat aChangedEvent () method.

Handle Postback Events
The client-side event that caused the postback is handled.
PreRender

This is the phase just before the output is rendered to the browser. It is essentially your last
chance to modify the output prior to rendering using the OnPr eRender () method.

Save State

Near the beginning of the life cycle, the persisted view state was loaded from the hidden
variable. Now it is saved back to the hidden variable, persisting as a string object that will

357

complete the round trip to the client. You can override this using the SaveVi ewSt at e()
method.

Render

This is where the output to be sent back to the client browser is generated. You can override it
using the Render method. Cr eat eChi | dCont rol s() is called, if necessary, to create and
initialize server controls in the control tree.

Dispose

This is the last phase of the life cycle. It gives you an opportunity to do any final cleanup and
release references to any expensive resources, such as database connections. You can

modify it using the Di spose() method.

15.2 Creating a Web Form

To create the simple Web Form that will be used in the next example, start up Visual Studio .NET and
open a New Project named ProgrammingCSharpWeb. Select the Visual C# Projects folder (because
C# is your language of choice), select Web Application as the project type, and type in its name,
ProgrammingCSharpWeb. Visual Studio .NET will display http://localhost as the default location, as

shown in Figure 15-1.

Figure 15-1. Creating a project in the New Project window of Visual

Studio .NET
| x|
Project Types: Templates: |E =3
1 Wizual Basic Projects AT o -
4 Wisual C# Projects h:|_|'JF =g W §
& | isual G4 Projects Windows Comsole Class Library
| "isual FoxPro Projects Apclication Apphcation
1 Setup and Deployment Prajects
+ |__] Cther Projects # P .‘“‘1
18 H |
1 Visual Studin Solutions s] Lef
Windows Windows ‘Wb
Control Ubrary Service Apolicaton

Create & C# Web Form.

TMarma: | ProgrammngCSharpieb

Linizaticins I hittpe ffocakhost j Browss, ..

Project will be created at hetpslocakbostFrogramming”Sharpieb.

F Mare oK Cancsl | Help |

Visual Studio places nearly all the files it creates for the project in a folder within your local machine's
default web site. For example, c:\Inetpub\wwwroot\ProgrammingCSharpWeb.

e In Visual Studio .NET, a solution is a set of projects; each project
.) will create a dynamic link library (DLL) or an executable (EXE). All
" 4 projects are created in the context of a solution, and solutions are

managed by .sIn and .suo files.

358

Programming C#

The solution files and other Visual Studio-specific files are stored in <drive>\Documents and
<drive>Settings\<user name>\MyDocuments\Visual Studio Projects (where <drive> and <user name>
are specific to your machine).

You must have IIS and the FrontPage Server extensions installed
ar on your computer to use Web Forms. To configure the FrontPage
Server extensions, open the Internet Service Manager and right-
click the web site. Select All Tasks —>Configure Server
Extensions. For further information, please check
http://www.microsoft.com.

=
L.

When the application is created, Visual Studio places a number of files in your project. The Web Form
itself is stored in a file named WebForm1.aspx. This file will contain only HTML. A second, equally
important file, WebForm1.cs, stores the C# associated with your form; this is the code-behind file.

Notice that the code-behind file does not appear in the Solution Explorer. To see the code-behind (.cs)
file, you must place the cursor within Visual Studio .NET, right-click the form, and choose "View Code
in the pop-up menu." You can now tab back and forth between the form itself, WebForm1.aspx, and
the C# code-behind file, WebForm1.cs. When viewing the form, WebForm1.aspx, you can choose
between Desi gn mode and HTIVL mode by clicking the tabs at the bottom of the Editor window.
Design mode lets you drag controls onto your form; HTML mode allows you to view and edit the HTML
code directly.

Let's take a closer look at the .aspx and code-behind files that Visual Studio creates. Start by
renaming WebForm1.aspx to HelloWeb.aspx. To do this, close WebForm1.aspx, and then right-click
its name in the Solution Explorer. Choose Rename and enter the name HelloWeb.aspx. After you
rename it, open HelloWeb.aspx and view the code; you will find that the code-behind file has been
renamed as well to HelloWeb.cs.

When you create a new Web Form application, Visual Studio .NET will generate a bit of boilerplate
code to get you started, as shown in Example 15-1.

Example 15-1. Wizard-generated code for a Web Form
<% Page | anguage="c#"
Codebehi nd="Hel | oWb. cs™

Aut oEvent W r eup="f al se"
I nherits="Progranmm ngCShar p\Wb. WebFor mL" %

<htm >
<head>
<net a name=" GENERATOR"
Content ="M crosoft Visual Studio 7.0">
<nmet a nane="CODE_LANGUAGE" Content="C#">
</ head>
<body>

<f orm met hod="post" runat="server">
</fornp

</ body>
</htm >

What you see is typical boilerplate HTML except for the first line, which contains the following
ASP.NET code:

359

<% Page | anguage="c#"

Codebehi nd="Hel | oWb. cs"

Aut oEvent W r eup="f al se"

I nherits="Progranmm ngCShar p\Wb. WebFor mL" %

The | anguage attribute indicates that the language used on the code-behind page is C#. The
Codebehi nd attribute designates that the filename of that page is HelloWeb.cs, and the | nherits
attribute indicates that this page derives from \\ebFor niL. WWebFor il is a class declared in
HelloWeb.cs.

public class WebFormlL : System Web. Ul . Page

As the C# code makes clear, \\ebFor il inherits from Syst em \Web. Ul . Page, which is the class that
defines the properties, methods, and events common to all server-side pages.

Returning to the HTML view of HelloWeb.aspx, you see that a form has been specified in the body of
the page using the standard HTML form tag:

<f orm met hod="post" runat="server">

Web Forms assumes that you'll need at least one form to manage the user interaction, and creates
one when you open a project. The attribute r unat =" server" is the key to the server-side magic.
Any tag that includes this attribute is considered a server-side control to be executed by the ASP.NET
framework on the server.

Having created an empty Web Form, the first thing you might want to do is add some text to the page.
By switching to HTML view, you can add script and HTML directly to the file just as you could with
classic ASP. Adding the following line to the body segment of the HTML page will cause it to display a
greeting and the current local time:

Hello World! It is now <% = DateTinme. Now. ToString() %
The <%and %> marks work just as they did in classic ASP, indicating that code falls between them (in
this case, C#). The = sign immediately following the opening tag causes ASP.NET to display the value,

just like a call to Response. Wite().Youcould just as easily write the line as:

Hello World! It is now
<% Response. Wite(DateTi ne. Now. ToString()); %

Run the page by pressing Ctrl-F5 (or save it and navigate to it in your browser). You should see the
string printed to the browser, as in Figure 15-2.

Figure 15-2. Output generated by the HelloWorld.aspx file

 Mrelio world M= E
Helo ‘Waild!
Cancel

360

Programming C#

15.3 Adding Controls

You can add server-side controls to a Web Form in two ways: manually, by writing HTML into the
HTML page, or by dragging controls from the toolbox to the Design page. For example, suppose you
want to use buttons to let the user choose one of three Shippers provided in the Northwinds database.
You could write the following HTML into the <f or n> element in the HTML window:

<asp: Radi oButt on GroupNane="Shi pper" id="Airborne"
text = "Airborne Express" Checked="True" runat="server">
</ asp: Radi oBut t on>
<asp: Radi oButt on G oupNane="Shi pper" i d="UPS"
text = "United Parcel Service" runat="server">
</ asp: Radi oBut t on>
<asp: Radi oButt on GroupNane="Shi pper" id="Federal"
text = "Federal Express" runat="server">
</ asp: Radi oBut t on>

The asp tags declare server-side ASP.NET controls that are replaced with normal HTML when the
server processes the page. When you run the application, the browser displays three radio buttons in
a button group; pressing one will deselect the others.

You can create the same effect more easily by dragging three buttons from the Visual Studio toolbox
onto the Form, as illustrated in Figure 15-3.

Figure 15-3. Dragging buttons onto the Web Form

% WebForm1 - Microsoft Yisual Ca# NET [design] - WebForm1.aspx®

Fie Edt Yiew Project Puld Debug Formet Table [nsert Frames Took Wndow Heb
i 0-=E0 LE®E - b Dabug - | (4 sortCakimn
oyt TE(E qwtemes - Vg XL HED| 6 [8.0

e L webForm1.aspx® |

20| dg Hsi
8
:

TextBox EEEEE. - "REERRRE O-- oo R R
Button S [[RadieBunend]

=
b

2] LikButten o
5] ImageButton S S S
Ampeek |
=9 Cropbownlist A I
o LR RS LR EEE LR EEEE LRI EREE RS
T Datacrid R S
£ Repeater

[CheckBox
Io checkBasxList
= RadioButkonList

&+ RadioButton

ed] Image
Clred |cocismrmmmmomoooooiooiiooon
[+ PlaceHoker R
FT] calender e
3 achtatr e S e TSP
™ Tehls

E‘Jmpmcrﬁ WP oo
HTML B
— iy DR DR RS
General |3 Design | B HTML

361

You can add controls to a page in one of two modes. The default mode is Li near Layout . When you
add controls in Li near Layout , they are displayed by the browser one after the other. You are
responsible for adding HTML to assist in their positioning.

The alternative mode is Gr i dLayout . With G i dLayout , the controls are added to a grid, allowing
for more accurate positioning. When you turn on Gr i dLayout , the wizard adds a table to your page
to allow for precise positioning. To change from Grid to Layout or back, change the pagelLayout
property of the document in Visual Studio .NET.

G i dLayout makes the HTML a bit more difficult to read, but it does make it easier to place controls
precisely where you want them and thus to create attractive pages. We'll stick to Li near Layout for
now to keep the HTML simple.

Web Forms offer two types of server-side controls. The first type is server-side HTML controls, also
called Web Controls. These are standard HTML controls that you tag with the attribute
runat =Server.

The alternative to Web Controls is ASP.NET Server Controls, also called ASP Controls. ASP Controls
have been designed to replace the standard HTML controls. ASP controls provide a more consistent
object model and more consistently named attributes. For example, with HTML controls, there are
myriad different ways to handle input:

<i nput type = "radio">
<i nput type="checkbox">
<i nput type="button">
<i nput type="text">

<t ext ar ea>

Each of these behaves differently and takes different attributes. The ASP Controls try to normalize the
set of controls, using attributes consistently throughout the ASP control object model. The ASP
Controls that correspond to the preceding HTML server-side controls are:

<asp: Radi oButt on>
<asp: CheckBox>

<asp: Button>

<asp: Text Box rows="1">
<asp: Text Box rows="5">

The remainder of this chapter will focus on ASP Controls.

15.4 Data Binding

Various technologies have offered programmers the opportunity to bind controls to data so that as the
data is modified, the controls respond automatically. As Bullwinkle used to say, "Rocky, that trick
never works." Bound controls often provided only limited control over their look and feel, and
performance was usually pretty terrible. The ASP.NET designers set out to solve these problems and
provide a suite of robust data-bound controls, which simplify display and modification of data,
sacrificing neither performance nor control over the Ul.

In the previous section, you hardcoded radio buttons onto a form, one for each of three Shippers in the
Northwinds database. That can't be the best way to do it; if you change the Shippers in the database,
you have to go back and rewire the controls. In this section you will see how you can create these
controls dynamically and then bind them to data in the database.

You might want to create the radio buttons based on data in the database because you can't know at
design time what text the buttons will have, or even how many buttons you'll need. To accomplish this,
you use a Radi oBut t onLi st. Radi oButt onLi st is a control that allows you to create radio

362

Programming C#

buttons programatically; you provide the name and values for the buttons, and ASP.NET takes care of
the plumbing.

Delete the radio buttons already on the form, and drag and drop a Radi oBut t onLi st in their place.
Once it is there, you can use the Properties window to rename ittor bl 1.

15.4.1 Setting Initial Properties

Web Forms programming is event-based; you write your code to respond to various events. Typically,
the events you're responding to are user-initiated. For example, when the user clicks a button, a
But t on- Cl i ck eventis generated.

The most important initial event is the Page Load event, which is fired every time a Web Form is
loaded. When the page is loaded, you want to fill the radio buttons with values from the database. For
example, if you are creating a purchase form, you might create one radio button for each possible
shipping method, such as UPS, FedEx, and so forth. You should therefore put your code into the
Page_Load method to create the buttons.

You only want to load these values into the radio buttons the first time the page is loaded. If the user
clicks a button or takes another action that sends the page back to the server, you do not want to
retrieve the values again when the page is reloaded.

ASP.NET can differentiate the first time the page is displayed from subsequent displays after a client
postback of the page to the server. Every Web Form page has the property | sPost Back, which will
be true if the page is being loaded in response to a client postback and false if it is being loaded for
the first time.

You can check the value of | sPost Back. If it is false, you know that this is the first time the page is
being displayed, and it's therefore time to get the values out of the database:

protected voi d Page Load(object sender, EventArgs e)

{
if (!l sPostBack)

(...
}

The arguments to the Page Load method are the normal arguments for events, as discussed in
Chapter 12.

15.4.2 Connecting to the Database

The code for making the connection to the database and filling a data set will look very familiar; it is
almost identical to what you saw in Chapter 14. There is no difference in creating a data set for Web
Forms and creating a data set for Windows Forms.

Start by declaring the member variables you need:

private System Data. Sqgl dient.SQ.Connection nyConnecti on;
private System Dat a. Dat aSet nyDat aSet ;

private System Data. Sqgl i ent.SQ.Conmand myComrand;
private System Data. Sql C i ent. Sgl Dat aAdapt er dat aAdapt er;

As in Chapter 14, you use the Structured Query Language (SQL) versions of Sgl Connect i on and
dat aAdapt er . Create the connect i onSt ri ng for the Northwinds database, and use that to
instantiate and open the SQLConnect i on object:

363

string connectionString =
"server=l ocal host; uid=sa; pwd=, database=northw nd";
myConnection =
new System Data. Sgl Cient.SQ.Connecti on(connectionString);
nyConnecti on. Qpen();

Create the data set and set it to handle case-sensitive queries:

myDat aSet = new System Dat a. Dat aSet () ;
nyDat aSet . CaseSensi ti ve=true;

Next, create the SQOLConmand object and assign it the connection object and the Sel ect statement,
which are needed to get the Shi pper | Dand company name identifying each potential shipper. Use
the name as the text for the radio button and the Shi pper | D as the value:

myCommand = new Syst em Dat a. SQL. SQLCormand();
myConmmand. Act i veConnect i on=nyConnecti on;
nmyComand. CormandText = "Sel ect Shi pperl D, ConpanyNane from Shi ppers";

You're ready to create the SQ_Dat aSet Conmmand object and assign the SOLConmand object to it. With
that, you can map the Shi pper s table:

nmyComand = new System Dat a. Sgl C i ent. Sql Cormand()
nmy Conmand. Connect i on=myConnecti on;
myCommand. CommandText =

"Sel ect Shipperl D, ConmpanyNane from Shi ppers”;

You now create the dat aAdapt er object, setits Sel ect Conmand property with your command
object, and add the Shi pper s table to its table mappings:

dat aAdapter = new System Data. Sql i ent. Sql Dat aAdapter();
dat aAdapt er . Sel ect Conmand= nyComrand,;
dat aAdapt er . Tabl eMappi ngs. Add(" Tabl e", " Shi ppers");

Finally, fill the dat aAdapt er with the results of the query:

dat aAdapter. Fill (myDat aSet) ;

This is all virtually identical to what you saw in Chapter 14. This time, however, you're going to bind
this data to the Radi oBut t onLi st you created earlier.

The first step is to set the properties on the Radi oBut t onLi st object. The first property of interest
tells the Radi oBut t onLi st how to flow the radio buttons on the page:

rbl 1. Repeat Layout =
System Web. Ul . WebCont r ol s. Repeat Layout . Fl ow;

FI owis one of the two possible values in the Repeat Layout enumeration. The other is Tabl e, which
lays the radio buttons out using a tabular layout. Next you must tell the Radi oBut t onLi st which
values from the data set are to be used for display (the Dat aText Fi el d) and which is the value to be
returned when selected by the user (the Dat aVal ueFi el d):

rbl 1. Dat aText Fi el d = " ConpanyNane";
rbl 1. Dat aVal ueFi el d = " Shi pper| D";

364

Programming C#

The final steps are to tell the Radi oBut t onLi st which view of the data to use. For this example you
will use the default view of the Shippers table within the dataset:

rbl 1. Dat aSour ce = nyDat aSet . Tabl es[" Shi ppers"] . Def aul t Vi ew,

With that done, you're ready to bind the Radi oBut t onLi st to the dataset:

rbl 1. DataBi nd();

Finally, you should ensure that one of the radio buttons is selected, so select the first:

rbl1.1tens[0]. Sel ected = true;

This statement accesses the | t ens collection within the Radi oBut t onLi st , chooses the first item
(the first radio button), and sets its Sel ect ed property tot r ue.

When you run the program and navigate to the page in your browser, the buttons will be displayed as
shown in Figure 15-4.

Figure 15-4. RadioButtonList
Ji-‘_]

= Back - D 1) | Dsearch [ElPavorites | PHistary
Address |iﬂ http: locahost (Frooramming T SharpWebHeloweb, aspo

Helle World! It is now 2001-02-15T13:15:52

T Amhorne Express
T Unated Parcel Serace
* Federal Express

If you examine the page source, you will not find a Radi oBut t onLi st . Instead, standard HTML radio
buttons have been created, and each has been given a shared ID. This allows the browser to treat
them as a group. Their labels have been created, and each radio button and its label has been
wrapped in a tag:

<i nput type="radio" id="rbl1 0" val ue="1"
checked="true" nane="rbl 1" />

<l abel for="rbl 1 0">Federal Express</|abel >

This HTML is generated by the server by combining the Radi oBut t onLi st you added to your HTML
with the processing of the code-behind page. When the page is loaded, the Page Load() method is
called and the data adapter is filled. When you assign the r bl 1.Dat aText Fi el d to ConpanyNane
and the r bl 1. Dat aVal ueFi el d to shi pper | D, and you assign the r bl 1. Dat aSour ce to the
Shipper's table default view, you prepare the radio button list to generate the buttons. When you call
Dat aBi nd, the radio buttons are created from the data in the data source.

By adding just a few more controls, you can create a complete form with which users can interact. You
will do this by adding a more appropriate greeting ("Welcome to Northwinds"), a text box to accept the
name of the user, two new buttons (Order and Cancel), and text that provides feedback to the user.
Figure 15-5 shows the finished form.

Figure 15-5. The form

365

'a hittp:/ /localbost /Programmni] -8 - 8] x|
File Edit ‘“iew Favorkes Tools Help “
w=Back - D 1) A | Qisearch [&jFavorites ($History a2

Address |E| calhnst,meg'ammlngﬁ'mrpWeb,ll-Hn'-.#'eb.as-pxj Go | Links ®
. =l
Welcome to ForthWind
Your Name: |
* Anbome Express
Shipper: O Treted Parcel Service
" Federal Express
Order Cancel |
Pleasze choose the shipper.
=
&] Done 1= Local inkranet

This form will not win any awards for design, but its use will illustrate a number of key points about
Web Forms.

- I've never known a developer who didn't think he could design a
s | perfectly fine Ul. At the same time, | never knew one who actually
“ 4 could. Ul design is one of those skills (such as teaching) that we

all think we can do, but only a few very talented folks are good at
it. As a developer, | know my limitations; | write the code,
someone else lays it out on the page.

Example 15-2 is the complete HTML for the .aspx file.

Example 15-2. The .aspx file
<%@ Page | anguage="c#"
Codebehi nd="Hel | oWb. cs"
Aut oEvent W r eup="f al se"
I nherits="Programm ngCShar p\b. WebFor mL" %
<ht M ><head>
<meta content="M crosoft Visual Studio 7.0" nane=GENERATOR>
<neta cont ent =C# name=CODE_LANGUAGE></ head>
<body>
<form i d=FORMB net hod=post runat="server">
<t abl e border=0>
<tr>
<td col span="2">Wl cone to Northw nds. </td>
</[tr>
<tr>
<t d><asp: | abel id=Label 1 runat="server"
W dt h="88" Hei ght =" 38" >Your Nane: </ asp: | abel >
</td>
<t d><asp: t ext box i d=txt Name runat ="server"”
W dt h="157" Hei ght ="26"></ asp: t ext box>
</td>
</tr>
<tr>

366

Programming C#

<td col Span=2>
</td>
</tr>
<tr>
<t d>Shi pper: </ td>
<t d><asp:radi obuttonlist id=rbl1l
runat ="server"></asp: radi obuttonlist>
</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><asp: button i d=Order runat="server"
W dt h="88" Hei ght ="28" Text ="0Order"></asp: button>
</td>
<t d><asp: button i d=Cancel runat="server"
W dt h="80" Hei ght ="28"
Text =" Cancel "></ asp: butt on>
</td>
</tr>
</t abl e>
</ fornp
<asp: Label id=l bl FeedBack runat="server"
W dt h="321" Hei ght="19">P| ease choose the shi pper
</ asp: Label >
</ body>
</htm >

The <asp: But t on> controls will be converted into a standard HTML <i nput > tag. Again, the
advantage of using ASP controls is that they provide a more consistent object model for the
programmer and yet they generate standard HTML that every browser can display. Because they are
marked with the r unat =Ser ver attribute and given an i d attribute, you can access these buttons
programmatically in server-side code if you choose to do so. Example 15-3 is the complete code-
behind page to support this HTML.

Example 15-3. The code-behind page supporting the HTML
usi ng System

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System Dat a;

usi ng System Draw ng;

usi ng System \Wb;

usi ng System Web. Sessi onSt at e;

usi ng System Web. Ul ;

usi ng System Web. Ul . WebContr ol s;
usi ng System Web. Ul . Ht m Control s;
using System Data. Sgl Cli ent;

nanespace Programr ngCShar pWeb
{
/1 page constructor
public class WebForml : System Wb. Ul . Page

/1 declare the controls
prot ect ed
System Web. Ul . WebCont r ol s. Radi oBut t onLi st
rbol1;
private

367

System Dat a. Sgl Cl i ent. Sql Connecti on
nmyConnecti on;
private System Dat a. Dat aSet nyDat aSet ;
private
System Dat a. Sgl C i ent. Sql Command nyComand;
protected System Web. U . WebControl s. Label Label 1
protected System Web. U . WebControl s. Text Box txt Namne;
protected System Wb. U . WebControl s. Button Order;
protected System Web. U . WebControl s. Butt on Cancel
protected System Web. U . WebControl s. Label | bl FeedBack
private System Dat a. Sgl Cl i ent . Sql Dat aAdapt er
dat aAdapt er;

public WebFornil()

{
Page. lnit +=
new System Event Handl er (Page I nit);
}
protected voi d Page Load(object sender, EventArgs e)
{

/1 the first time we |oad the page, get the data and
/1 set the radio buttons
if (!lsPostBack)
{
string connectionString =
"server =l ocal host; uid=sa; pwd=oWennEany;
dat abase=nort hwi nd";
myConnection =
new System Data. Sgl Cient. Sql Connecti on(connectionString);
nmyConnection. Qpen();

/'l create the dataset and set a property
myDat aSet = new System Dat a. Dat aSet () ;
nyDat aSet . CaseSensi ti ve=true;

/'l create the Sqgl Conmand object and assign the
/1 connection and the sel ect statenent
nmyCommand = new System Data. Sgl Cl i ent. Sql Command();
nmy Conmand. Connect i on=myConnecti on;
nmy Command. CormandText =
"Sel ect Shi pperl D, ConpanyNane from Shi ppers";

/1 create the dataAdapter object and pass in the

/1 Sql Conmand object and establish the table mappings

dat aAdapter = new System Data. Sql C i ent. Sql Dat aAdapter();
dat aAdapt er . Sel ect Conmand= nyComrand,;

dat aAdapt er . Tabl eMappi ngs. Add(" Tabl e", " Shi ppers");

/1 Tell the dataAdapter object to fill the dataset
dat aAdapter. Fil | (nyDat aSet) ;

/1 set up the properties for the Radi oButtonLi st
rbl 1. Repeat Layout =

System Web. Ul . WebCont r ol s. Repeat Layout . Fl ow;
rbl 1. Dat aText Fi el d = " ConpanyNane";
rbl 1. Dat aVal ueFi el d = " Shi pper| D"

/] set the data source and bind to it

rbl 1. Dat aSource = nyDat aSet . Tabl es[" Shi ppers"]. Def aul t Vi ew,
rbl 1. DataBi nd();

368

Programming C#

/'l select the first button
rbl1.1tens[0]. Selected = true;

}
}
protected void Page |Init(object sender, EventArgs e)
{
InitializeConmponent();
}
private void InitializeConponent()
{
this.Oder.dick +=
new System Event Handl er (this. Order_d i ck);
this. Load +=
new System Event Handl er (t hi s. Page_Load) ;
}

/1 handl e clicking the order button
public void Order_Cick (
obj ect sender, System Event Args e)

{
/] create the nessage by getting
/'l the values fromthe controls
string nsg;
nseg = "Thank you " + txtNanme. Text +". You chose " ;
/] iterate over the radio buttons
for (int i = 0;i<rbll.1tens.Count;i++)
{
/1 if it is selected, add it to the nsg.
if (rbll.1tenms[i]. Sel ected)
{
nmsg = nsg + rbll. ltens[i]. Text;
| bl FeedBack. Text = nsg;
} /1 end if selected
} /1 end for |oop
} /1 end Order_Cick
} /'l end class WebFornl
} /'l end nanespace Progranmm ngCShar p\Web

15.5 Responding to Postback Events

The <asp: but t on> objects automatically postback when clicked. You need not write any code to
handle that event unless you want to do something more than postback to the server. If you take no
other action, the page will simply be re-sent to the client.

Normally, when a page is redrawn, each control is redrawn from scratch. The Web is stateless, and if
you want to manage the state of a control (e.g., redraw the user's text in the text box), you must do so
yourself. In classic ASP, the programmer was responsible for managing this state, but ASP.NET
provides some assistance. When the page is posted, a hidden element named Vi ewSt at e is
automatically added to the page:

<i nput type="hidden" nane="_ _VI EWSTATE"

val ue="YTB6LTI 5MIE3ODELIN19hMHpf aHolej F4X2Ewel 90ej V6NXhf YTB6YTB6YTB6aHpSZXBI
YXRMYXI

vdXRf U3l zdGvt LI dl Yi 5VSS5XZW Db250cmBscy5SZXBl YXRMYXI vdXR6 VG bGV4XORhdGFWYW
x1ZUZpZ

369

Wk X1NoaXBWZXJ J RFOEYXRhVGVe e HRGaW/s ZFIDb 2 LwyWb5 Tt ZXhf X3hf YTB6YTB6YXpTcGVI
ZHKgRVX

4cHII c3NF W94AX2F6VWBPdGVk| FBhY2t hZ2Vf M 94X2F6RMVkZXJhbCBTaG weG uzZ18zX3hf eF
94X3hf X

3h4X3h4X3hf X3hcdDUWX1N5c 3R bS5TdHIpbnt=a15204ed" />

This element represents the state of the form (the values are already chosen by the user). When the
page is redrawn on the client, ASP.NET uses the view state to return the controls to their previous
state.

When the user clicks the Order button, the page is posted and the event handler assigned to that
button is invoked:

public void Order_Click (object sender, System EventArgs e)
{

string neg;

nmsg = "Thank you " + txtNane.Text +". You chose " ;
for (int i = 0;i<rbll. Itens.Count;i++)
{
if (rbll.1tens[i]. Sel ected)
{
nsg = nmsg + rbll.ltens[i]. Text;
| bl FeedBack. Text = nsgQ;
}
}
}
o The easiest way to create the event handler is to double-click the

ar Order button in Design mode in Visual Studio .NET. This will
cause Visual Studio to add the event to the
InitializeConponent method:

=
L.

Order.dick += new System Event Handl er
(this.Oder _dick);

and it will create a skeleton Or der Cl i ck event handler method
for you. Alternatively, you can do this all by hand.

This event handler creates a message based on the name you enter and the shipper you choose and
puts that message into the Feedback label. When the form first comes up, it looks like Figure 15-5. If
[fill in my name, pick United Parcel Service, and press Order, the form will be submitted and then
redisplayed. The result is shown in Figure 15-6.

Figure 15-6. Page posted after the user clicks Order

370

The form automatically remembers the state of the radio button and text controls (this is what the
VI EWSTATE field is for) and that the event handler has been called and run on the server, and the

Programming C#

File Edit ‘iew Favorbes Tools Help

48 -10] x|

w=Back - D 1) A | Qisearch [&jFavorites | 4History ot
Address |ﬂJ Htp:.l'ilncahnstiPrngammhgﬁhﬁrpﬂ-‘ebjﬁﬂln%j 6o |Links ®
=]
Welcome to NorthWind
Tour Mame: | Jesse Libary
" Awbomne Express
Shipper & TTreted Parcel Service
" Federal Express
Order Cancel
Thank vou Jesse Likerty. Tou chose United Parcel Sernce
=

&] Done 1= Local inkranet

label is updated accordingly.

=
L.

ASP programmers take note: there is no code in the .aspx file nor
in the .cs file to manage the state. Nowhere do you stash away
the state of the radio buttons or the text field; all this is managed

automatically for you by ASP.NET.

15.6 ASP.NET and C#

There is a great deal to learn about ASP.NET, but much of it is language-independent. ASP.NET

offers a rich suite of controls and related tools, including tools to validate data, display dates, present

advertisements, interact with the user, and so forth. Most of these require no coding whatsoever.

The role of the C# programmer in ASP.NET development is in writing the event handlers that respond
to user interaction. Many of the event handlers will either add data to a database or retrieve data and
make it available to the controls.

371

372

Programming C#

Chapter 16. Programming Web Services

.NET Web Services expand on the concept of distributed processing to build components whose
methods can be invoked across the Internet. These components can be built in any .NET language,
and they communicate using open protocols that are platform-independent.

For example, a stock exchange server might provide a web service method that takes a stock ticker
symbol as a parameter and returns a quote. An application might combine that service with another
service from a different company that also takes a stock symbol but that returns background data
about the company. The application developer can concentrate on adding value to these services,
rather than duplicating the same service for his own application.

The list of web services that might be useful to developers and end users seems boundless. A
bookstore might provide a web service that takes an ISBN and returns the price and availability of a
title. A hotel's web service might take a date range and number of guests and return a reservation.
Another web service might take a telephone number and return a name and address. Yet another
might provide information about the weather or shuttle launches.

Microsoft has announced a number of commercial .NET services as part of its Project Hailstorm
initiative. Among these are its Passport service for identifying and authenticating users (see
http://www.passport.com), as well as services for managing storage, notification, appointments,
and a host of other applications. These services, as well as the ones you write, can be integrated with
your applications just like any other business object.

In such a world, a single application might draw on and stitch together the services of hundreds of
small web services distributed all over the world. This takes the Web to an entirely new dimension: not
only is information retrieved and exchanged, but also methods are invoked and applications are
executed.

16.1 SOAP, WSDL, and Discovery

What is needed to make web services possible is a simple, universally accepted protocol for exposing,
finding, and invoking web service functions. In 1999, Simple Object Access Protocol (SOAP) was
proposed to the World Wide Web Consortium. SOAP has the advantages of being based on XML and
of using standard Internet communications protocols.

SOAP is a lightweight, message-based protocol built on XML, HTTP, and SMTP. Two other protocols
are desirable, but not required, for a client to use a SOAP-enabled web service: a description of the
methods provided by a particular service that can be understood and acted upon by clients, and a
description of all such services available at a particular site or URL. The first of these is provided

in .NET by the Web Service Description Language (WSDL) protocol, jointly developed by Microsoft,
IBM, and others. Two other protocols have been proposed for discovery: UDDI, a joint effort by a
number of companies including IBM and Microsoft, and Discovery, a proprietary offering from
Microsoft.

WSDL is an XML schema used to describe the available methods—the interface—of a web service.
Discovery enables applications to locate and interrogate web service descriptions, a preliminary step
for accessing a web service. It is through the discovery process that web service clients learn that a
service exists, what its capabilities are, and how to properly interact with it. A Discovery (.disco) file
provides information to help browsers determine the URLSs at any web site at which web services are
available. When a server receives a request for a .disco file, it generates a list of some or all of the
URLs at that site that provide web services.

373

16.1.1 Server-side Support

The plumbing necessary to discover and invoke web services is integrated into the .NET Framework
and provided by classes within the Syst em W\éb. Servi ces. \WebSer vi ce namespace. Creating a
web service requires no special programming on your part; you need only write the implementing code,
add the [\ebIVet hod] attribute, and let the server do the rest. You can read about attributes in detalil

in Chapter 18.
16.1.2 Client-side Support

You make use of a web service by writing client code that acts as though it were communicating
directly with the host server by means of a URL. However, in reality, the client interacts with a proxy.
The job of the proxy is to represent the server on the client machine, but to bundle client requests into
SOAP messages that are sent on to the server and to retrieve the responses that contain the result.
Proxies and the details of dealing with objects on other machines are covered in detail in Chapter 19.

16.2 Building a Web Service

To illustrate the techniques used to implement a web service in C# using the services classes of
the .NET Framework, let's build a simple calculator and then make use of its functions over the Web.

You begin by specifying the web service. You do so by defining a class that inherits from

System WWeb. Servi ces. \\ebSer vi ce. The easiest way to create this class is to open Visual Studio
and create a new C# Web Service project. The default name that Visual Studio provides is

WebSer vi cel, but you might want to choose something more appropriate.

Visual Studio .NET creates a skeleton web service and even provides a Web Service example method
for you to replace with your own code, as shown in Example 16-1.

Example 16-1. Skeleton web class generated by Visual Studio .NET
usi ng System

usi ng System Col | ecti ons;

usi ng System Conponent Mbdel ;

usi ng System Dat a;

usi ng System Di agnosti cs;

usi ng System Wb;

usi ng System Web. Servi ces;

namespace W5Cal ¢

{
[l <summary>
/1l Summary description for Servicel
1] <l summary>
public class Servicel : System Web. Servi ces. WebServi ce
{
public Servicel()
{
/] CODEGEN: This call is required by the ASP. NET Wb Servi ces
Desi gner
InitializeConmponent();
}

#regi on Conponent Desi gner generated code

/1l <summary>

/1l Required nmethod for Designer support - do not nodify
/1]l the contents of this nethod with the code editor.
/1]l <l summary>

374

Programming C#

private void InitializeConponent()

{
}

#endr egi on

/1l <summary>

/1] Clean up any resources being used.
/1l </sunmmary>

public override void D spose()

{
}

/1 WEB SERVI CE EXAMPLE

/1 The Hell oWworld() exanple service
//returns the string Hello World

/1 To build, uncomrent the follow ng Iines
/'l then save and build the project

/1 To test this web service, press F5

/1 [WebMet hod]
/1 public string HelloWwrld()
/1 {
/1 return "Hello Wrld";
/1 }
}
}

You'll create five methods: Add(), Sub(),Mult(),D v(),and Pow().Each takes two
parameters of type doubl e, performs the requested operation, and then returns a value of the same
type. For example, here is the code for raising a number to some specified power:

publ i ¢ doubl e pow(doubl e x, doubl e vy)

{
doubl e retVal = x;
for (int i = 0;i <y-1;i++)
{
retVvVal *= x;
}
return retVval;
}

To expose each method as a web service, you simply add the [\\ebVet hod] attribute before each
method declaration:

[WVebMet hod]
- Attributes are discussed in Chapter 18.
n
wh . &

You are not required to expose all the methods of your class as web services. You can pick and
choose, adding the [V\ieblVet hod] attribute only to those methods you want to expose.

That's all you need to do; .NET takes care of the rest.

WSDL and Namespaces

375

Your web service will use a Web Service Description Language (WSDL)
XML document to describe the web-callable end points. Within any WSDL
document, an XML namespace must be used to ensure that the end points
have unique names. The default XML namespace is http://tempuri.org/, but
you will want to modify this before making your web service publicly
available.

You can change the XML namespace by using the \\ebSer vi ce attribute:

[WebSer vi ce(Nanespace=

You can read about attributes in detail in Chapter 18.

http://wwv. Li bertyAssoci ates. coml webServices/")]

Example 16-2 shows the complete source code for the Calculator web service:

Example 16-2. Calculator web service program

usi
usi
usi
usi
usi
usi
usi

ng
ng
ng
ng
ng
ng
ng

System
System Col | ecti ons;
Syst em Conponent Model
System Dat a;

Syst em Di agnosti cs;
Syst em Web;

Syst em Web. Servi ces;

nanespace WsCal ¢

376

WebSer vi ce(Namespace="http://wwv. | i bert yAssoci at es. coml webSer vi ces/ "
p p y
public class Servicel : System Web. Servi ces. WebSer vi ce

{

public Servicel()
{

}

#regi on Conponent Desi gnher generated code
private void InitializeConponent()

{
}

#endr egi on

InitializeConmponent();

public override void D spose()

{
}

[WVebMet hod]
publ i ¢ doubl e Add(doubl e x, doubl e vy)

{
}

[WVebMet hod]
publ i ¢ doubl e Sub(doubl e x, double y)

{

return x+y;

return x-y;

}
[WVebMet hod]

Programming C#

publ i c double Milt(double x, double vy)

{

return x*y,
}
[WebMet hod]
publ i c doubl e Di v(doubl e x, double vy)
{

return x/vy;
}
[WebMet hod]
publ i c doubl e pow(doubl e x, double y)
{

doubl e retVval = x;

for (int i = 0;i <y-1;i++)

{

retval *= x;

}

return retVal;
}

}

The only special work you must do is to add references to both Syst em V\éb and

System WWeb. Servi ces. If you build your application using command-line tools, you would use the
/ R flag to add the references. In Visual Studio .NET, you simply right-click the Solution Explorer
window, select References, and add the appropriate namespace references from the .NET tab. You
must also add the appropriate usi ng statements to the top of the file, as shown in Example 16-2.

When you build this project with Visual Studio .NET, a DLL is created in the appropriate subdirectory
of your Internet server (e.g., c:\InetPub\wwwroot\ProgCSharpWebSvc). A quick check of that directory
reveals that a .disco file has also been added.

There is nothing magical about using Visual Studio .NET; you can
ar create your server in Notepad if you like. Visual Studio .NET
simply saves you the work of creating the directories, creating

the .disco file, and so forth. Visual Studio .NET is particularly
helpful when creating the client files, as you'll see shortly.

=
L.

16.2.1 Testing Your Web Service

If you open a browser to your web service's URL (or invoke the browser by running the program in
Visual Studio .NET), you get an automatically generated, server-side web page that describes the web
service, as shown in Figure 16-1. Test pages such as this offer a good way to test your web service.
(The next section illuminates the seeming hocus-pocus that produces these pages.)

Figure 16-1. The web service web page

377

A Servicel Wb Service - Microsalt Inbermet Fsploeer

Fle Edk W Favorbes Toos helo n
D 2] A CresndBr Hseerch [wlFwokes 4 J4- S =l o] &

Adcress [@] btparjiacaihost fusbier me s Cale Sarvcal asms =] e

ervice
The following operations ars supported. For a formal defnition, plasss revisw the Service Descnpbion

* pow
& Fule
« Sub
® Diw
e

| | L|J

i Lol infranect

2]

Clicking a method brings you to a page that describes the method and allows you to invoke it by typing

in parameters and pressing the Invoke button. Figure 16-2 illustrates.

Figure 16-2. Test page for a web service method

E Spryece] Web Servicr - Microsoft Inbermet Eaplorer

b
Fle Edt wew Fawonls Toos Hep El
Eadh - D A A [Cresondes Dsewch sjFfavortes 3 24 Sbh o S| B

Al |E'| skt foc s hoest bl e WS Sk IS mrvics 1, s Fopspoey

3 ow

Click for & comolets kst of opsrations,

pow

Test
Ta tst, dlick tha Trwake huttam,

Paramatar Walkin

= |

¥ [
Invoke

SOAP -
| '

1|
2] Dore [2 Local infranst

If you type 3 into the first value field and 4 into the second field, you will have asked the web service to
raise 3 to the fourth power. The result is an XML page describing the output, as shown in Figure 16-

3.

Figure 16-3. XML output for a web service method

-'gIi.l.:l:_"."lu:-ﬂU.lsl‘_-"mbﬁ.lnln--"'F!':it-sl-l..":'-.-r'-'il.ﬂ-nblll:-:_."gl:mi‘:-c-ﬂlirs'r-d - h‘*:'uwll. Intermel Exgplorer

Fie Edt Wew Favorites Took Help : “
&) 4] 7Y | [FrersonalBar ChSearch |ajFavortes B S OF - =] By

Addrass |{| hetp:) locakost)webFomsiwSCak iService], s pow? s =38 By =4 j ‘.}G,:,

. i o J

¢ Teml virsinn="1 [} ra="ulf-A" 7=

e FOAS1R6-

=

2] Dong 28 Local intrarek

Notice that the URL encodes the parameters of 3 and 4, and the output XML shows the result of 81

(3*3*3*3 = 81).

378

Programming C#

16.2.2 Viewing the WSDL Contract

A lot of work is being done for you automatically. HTML pages describing your web service and its
methods are generated, and these pages include links to pages in which the methods can be tested.
How is this done?

As noted earlier, the web service is described in WSDL. You can see the WSDL document by
appending ?\\5DL to the web service URL, like this:

http://1 ocal host/webFor ns/ WsCal c/ Ser vi cel. asnx?wsdl
The browser displays the WSDL document, as shown in Figure 16-4.

Figure 16-4. Sample WSDL output for calculator web service

5 hitkgTacalhast fwebforms "WSCalc Service L.asmy P wedl - Microsoft Internet Explorer

Fie Edt \ew Favorkss Toos Help % n
ik D) Y [Cresndlber Joewch [oFmades o8 e O O = B
Address |i£] it P s sl Pow e W S e fRsrwice 1, s Fwescll j :":'GD

-
Teml wersion="1.0" encoding="utf-g&" 7

ao httpef fevew liberty Assocaites . com/webServices /

For t="guallfled” =lementr o ="gqualifled
"http:f fwiew liberty Assocaites.com/webServices
=" Add"
I 1 r 1 sty ‘s douhle
Ire="1 re="1 =y type="sdouble
“addResponsa -
il t i 1 [i ‘AddResult
pe="sidoubla” /:
&) Done (o Local intraret

The details of the WSDL document are beyond the scope of this book, but you can see that each
method is fully described in a structured XML format. This is the information used by SOAP to allow
the client browser to invoke your web service methods on the server.

16.3 Creating the Proxy

Before you can create a client application to interact with the calculator web service, you must first
create a proxy class. Once again, you can do this by hand, but that would be hard work. The folks at
Microsoft have provided a tool called wsd| that generates the source code for the proxy based on the
information in the WSDL file.

To create the proxy, you enter wsdl at the Windows command-line prompt, followed by the path to the
WSDL contract. For example, you might enter:

wsdl http://1ocal host/webfornms/wscal c/servicel. asmx?wsdl

379

The result is the creation of a C# client file named Servicel.cs, an excerpt of which appears in
Example 16-3. You must add the namespace \\5Cal ¢ because you'll need it when you build your
client (the tool does not insert it for you).

Example 16-3. Sample client code to access the calculator web service

usi ng System Xm . Serialization;

usi ng System

usi ng System Web. Servi ces. Protocol s;
usi ng System Web. Servi ces;

nanespace WSCal c
{
[Syst em Web. Servi ces. WebSer vi ceBi ndi ngAttri but e(
Narme="Ser vi celSoap",
Namespace="http://wwv | i bertyAssoci at es. conl webServi ces/")]
public class Servicel :
Syst em Web. Servi ces. Prot ocol s. SoapHt t pCl i ent Pr ot ocol

{
public Servicel()
{
this. Ul =
“http://1ocal host/webformnms/wscal c/ servicel. asnx";
}

[Syst em Web. Servi ces. Prot ocol s. SoapDocurent Met hodAt t ri but e(
"http://ww.libertyAssoci at es. conl webSer vi ces/ Add",
Request Nanespace=
“http://ww. |ibertyAssoci ates. conm webServices/",
ResponseNanespace=
"http://ww.libertyAssoci at es. conf webServi ces/",
Use=Syst em Wb. Servi ces. Descri pti on. SoapBi ndi ngUse. Li teral,
Par anet er Styl e=
Syst em Web. Servi ces. Prot ocol s. SoapPar anet er St yl e. W apped)]
public System Doubl e Add(System Doubl e x, System Double vy)
{
object[] results = this.lnvoke("Add", new object[] {x,Vy});
return ((System Double)(results[0]));

}

public System | AsyncResul t
Begi nAdd(Syst em Doubl e x, System Doubl e v,
System AsyncCal | back cal | back, object asyncState)

{

return this.Beginlnvoke("Add", new object[] {x,

y}, call back, asyncState);

}
public System Doubl e EndAdd(System | AsyncResult asyncResult)
{

object[] results = this. Endl nvoke(asyncResult);

return ((System Doubl e)(results[0]));
}

This complex code is produced by the WSDL tool to build the proxy DLL you will need when you build
your client. The file uses attributes extensively (see Chapter 18), but with your working knowledge of
C# you can extrapolate at least how some of it works.

380

Programming C#

The file starts by declaring the Ser vi cel class which derives from the class
SoapHt t pCl i ent Prot ocol , which occurs in the namespace called
Syst em Web. Servi ces. Prot ocol s:

public class Servicel :
Syst em Web. Servi ces. Prot ocol s. SoapHt t pCl i ent Pr ot ocol

The constructor sets the URL property inherited from SoapHt t pCl i ent Pr ot ocol to the URL of
the .asmx page you created earlier.

The Add() method is declared with a host of attributes that provide the SOAP goo to make the
remote invocation work.

The WSDL application has also provided asynchronous support for your methods. For example, for
the Add() method, it also created Begi nAdd() and EndAdd() .This allows you to interact with a
web service without performance penalties.

To build the proxy, you place the code generated by WSDL into a C# Library project in Visual
Studio .NET and then build the project to generate a DLL. Be sure to write down the location of that
DLL, as you will need it when you build the client application.

To test the web service, you create a very simple C# Console application. The only trick is that in your
client code you need to add a reference to the proxy DLL you just created and a reference to
System Wéb. Servi ces. dl | . Once that is done, you can instantiate the web service, just like any
locally available object:

WECal c. Servi cel t heWbSve =
new WSCal c. Servicel();

You can then invoke the Pow() method as if it were a method on a locally available object:

for (int i = 1;i<10; i++)
for (int j = 1;j <10;j++)
{

Consol e. Wit eLi ne(
"{0} to the power of {1} = {2}", i, |,
t heWebSvce. Pow(i, j));
}

This simple loop creates a table of the powers of the numbers 2 through 9, displaying for each the
powers 1 through 9. The complete source code and an excerpt of the output is shown in Example
16-4.

Example 16-4. A client program to test the calculator web service
usi ng System

/1 driver programto test the web service
public class Tester

{
public static void Main()

{

Tester t = new Tester();
t.Run();

}

public void Run()
{

381

int varl
int var?2

5;
7;

/1l instantiate the web service proxy
WSCal c. Servi cel theWbSve =
new WSCal c. Servicel();

/1 cal the add nethod
Console. WiteLine("{0} + {1} = {2}", varl, var2
t heWebSvc. Add(varl, var2));
/1 build a table by repeatedly calling the pow nethod
for (int i = 2;i<10; i++)
for (int j = 1;j <10;]++)

Consol e. WiteLine("{0} to the power of {1} = {2}", i, |,
t hewebSvce. pow(i, j));

}

Qut put (excerpt):

5+ 7 =12

2 to the power of 1 =2

2 to the power of 2 =4

2 to the power of 3 =8

2 to the power of 4 = 16

2 to the power of 5 = 32

2 to the power of 6 = 64

2 to the power of 7 = 128
2 to the power of 8 = 256
2 to the power of 9 = 512
3 to the power of 1 = 3

3 to the power of 2 =9

3 to the power of 3 = 27

3 to the power of 4 = 81

3 to the power of 5 = 243
3 to the power of 6 = 729
3 to the power of 7 = 2187
3 to the power of 8 = 6561
3 to the power of 9 = 19683

Your calculator service is how more available than you might have imagined (depending on your
security settings) through the web protocols of HTTP-Get, HTTP-Post, or SOAP. Your client uses the
SOAP protocol, but you could certainly create a client that would use HTTP-Get:

http://1 ocal host/ ProgCShar pWebSvc/
WebSer vi cel. asnx/ Add?x=23&y=22

In fact, if you put that URL into your browser, the browser will respond with the answer:
<?xm version="1.0"?>

<doubl e xm ns="http://tenpuri.org/">45</doubl e>

The key advantage SOAP has over HTTP-Get and HTTP-Post is that SOAP can support a rich set of
data types, including all of the C# intrinsic types (i nt , doubl e, etc.), as well as enums, classes,
structs, and ADO.NET DataSets, and arrays of any of these types.

382

Programming C#

Also, while HTTP-Get and HTTP-Post protocols are restricted to name/value pairs of primitive types
and enums, SOAP's rich XML grammar offers a more robust alternative for data exchange.

383

384

Programming C#

Part Ill: C# and the .NET CLR

Chapter 17. Assemblies and Versioning

The basic unit of .NET programming is the assembly. An assembly is a collection of files that appears
to the user to be a single dynamic link library (DLL) or executable (EXE). DLLs are collections of
classes and methods that are linked into your running program only when they are needed.

Assemblies are the .NET unit of reuse, versioning, security, and deployment. This chapter will discuss
assemblies in detail, including the architecture and contents of assemblies, private assemblies, and
shared assemblies.

In addition to the object code for the application, assemblies contain resources such as .gif files, type
definitions for each class you define, as well as metadata about the code and data. Metadata is
explored in detail in Chapter 18.

17.1 PE Files

On disk, assemblies are Portable Executable (PE) files. PE files are not new. The format of a .NET PE
file is exactly the same as a normal Windows PE file. PE files are implemented as DLLs or EXEs.
Logically (as opposed to physically), assemblies consist of one or more modules. Note, however, that
an assembly must have exactly one entry point—DLLNMai n, W nMai n, or Vai n. DLLNV&I n is the entry
point for DLLs, \WW nlVai n is the entry point for Windows applications, and Vai n is the entry point for
DOS and Console applications.

Modules are created as DLLs and are the constituent pieces of assemblies. Standing alone, modules
cannot be executed; they must be combined into assemblies to be useful.

You deploy and reuse the entire contents of an assembly as a unit. Assemblies are loaded on demand
and will not be loaded if not needed.

17.2 Metadata

Metadata is information stored in the assembly that describes the types and methods of the assembly
and provides other useful information about the assembly. Assemblies are said to be self-describing
because the metadata fully describes the contents of each module. Metadata is discussed in detail in

Chapter 18.
17.3 Security Boundary

Assemblies form security boundaries, as well as type boundaries. That is, an assembly is the scope
boundary for the types it contains, and types cannot cross assemblies. You can, of course, refer to
types across assembly boundaries by adding a reference to the required assembly, either in the
Integrated Development Environment (IDE) or on the command line, at compile time. What you cannot
do is have the definition of a type span two assemblies.

17.4 Versioning

Each assembly has a version number, and versions cannot transcend the boundary of the assembly.
That is, a version can refer only to the contents of a single assembly. All types and resources within
the assembly change versions together.

385

17.5 Manifests

As part of its metadata, every assembly has a manifest, which describes what is in the assembly,
including identification information (name, version, etc.), a list of the types and resources in the
assembly, a map to connect public types with the implementing code, and a list of assemblies
referenced by this assembly.

Even the simplest program has a manifest. You can examine that manifest using | L Das m which is
provided as part of your development environment. When you open it in | LDasm the EXE program

created by Example 12-3y looks like Figure 17-1.

Figure 17-1. ILDasm of Example 12-3

F C\Documents and Ettt'mq5'-.A¢'nirﬁitr-:tnr"-_r~1',.r -. H[=] E3

File Wew Help

E-\Documents and S -E":'Il'lg::' \ddministraboe I ‘Documents'Wisual
MAMIFEST
= W Programming_CSharp
= [BE MyClazswithDelegate
clazs public aulo ansi beloreheldnit
[JE StingDelegate
2 etos: wod(]
= JE MylmplementingClass
class public aulo anzi beforsfeldnil
= .chor; woidl)
1 LogSting - vaidstring)
2l TranzmitStong void(ztong)
2 WhitaStong : voidiztinng|
JJE Test
‘] |

. azvembly ProgrammingCShaip
{

] I

4
-
-

Notice the manifest (second line from the top). Double-clicking the manifest opens a Manifest window,
as shown in Figure 17-2.

Figure 17-2. The Manifest window

cassenbly extern mscoxlib &
r sl

.publickeytalesn = [B? 74 EC E& 19 34 ED 89) PN 3
mar 1024110

tamh ly FrogrammingCSharp

.custon instance woid [nscorlib]Systes. Reflection. AssemblyEevHamnedttribuate: ;.
custon instance vold [mecorlib]System Reflection hdssemblyleyFiledttribute: .
.custon instance void [mscorl:b]Systes Reflection . AssemrblylelaySignaAttribute:
.custon instance vold [mscorlib]System.Reflection.dssemblyTrademarkéttribute:
ccuston instance void [nscorl:b]Systea Reflection AssenblyCopyrightAttribute:
.custon ingtance woid [mscorlib]Svstem . Reflection.bdssemblyProductéttribute:: .
ccuston instance woid [necorli:b]Systes Refl=ction AssenblyCompanypdttribute: |
.custon instance void [mscorlib]Svetem . Reflection.AssemblyConfigurationdttrib
.custon instance void [mscorl:k]System Reflection. bssenblylescripticnhttribut
.custon instance void [nscorlib]lSystem. Reflection.AssemblyTitleAttribute:: ct
——— The following custowm attribute iz added automatically, do not unconmen
A4 custom anstance void [mecorlib]System. Diagnostics. Debuggabledttribute: .
L

‘hask algorithsm Ox00003004
wer 1:0:535:28584

J.

.module ProgramminglSharp. exe

<4 HWID: {22DDF4E4-SF73-449B-99DB-9998B299F3E8}
csubsysten 0x00000003

file aligoment 512

.eorflags Dx10000001

<+ Inage baze: 0x03400000

i | oy

386

Programming C#

This file serves as a map of the contents of the assembly. You can see in the first line the reference to
the nscor | i b assembly, which is referenced by this and every .NET application The nscorlib
assembly is the core library assembly for .NET and is available on every .NET platform.

The next assembly line is a reference to the assembly from Example 12-3. You can also see that
this assembly consists of a single module. You can ignore the rest of the metadata for now.

17.5.1 Modules in the Manifest

Assemblies can consist of more than one module. In such a case, the manifest includes a hash code
identifying each module to ensure that when the program executes, only the proper version of each
module is loaded. If you have multiple versions of a given module on your machine, the hash code
ensures that your program will load properly.

The hash is a numeric representation of the code for the module, and if the code is changed, the hash
will not match.

17.5.2 Module Manifests

Each module has a manifest of its own that is separate from the assembly manifest. The module
manifest lists the assemblies referenced by that particular module. In addition, if the module declares
any types, these are listed in the manifest along with the code to implement the module. A module can
also contain resources, such as the images needed by that module.

17.5.3 Other Required Assemblies

The assembly manifest also contains references to other required assemblies. Each such reference
includes the name of the other assembly, the version number and required culture, and, optionally, the
other assembly's originator. The originator is a digital signature for the developer or company that
provided the other assembly.

- Culture is an object representing the language and national
s | display characteristics for the person using your program. It is
"4 culture that determines, for example, whether dates are in

month/date/year format or date/month/year format.

17.6 Multi-Module Assemblies

A single-module assembly has a single file that can be an EXE or DLL file. This single module
contains all the types and implementations for the application. The assembly manifest is embedded
within this module.

A multi-module assembly consists of multiple files (zero or one EXE and zero or more DLL files,
though you must have at least one EXE or DLL). The assembly manifest in this case can reside in a
standalone file, or it can be embedded in one of the modules. When the assembly is referenced, the
runtime loads the file containing the manifest and then loads the required modules as needed.

17.6.1 Benefiting from Multi-Module Assemblies

Multi-module assemblies have advantages for real-world programs, especially if they are developed by
multiple developers or are very large.

387

Imagine that 25 developers are working on a single project. If they were to create a single-module
assembly to build and test the application, all 25 programmers would have to check in their latest code
simultaneously, and the entire mammoth application would be built. That creates a logistical nightmare.

If they each build their own modules, however, the program can be built with the latest available
module from each programmer. This relieves the logistics problems; each module can be checked in
when it is ready.

Perhaps more importantly, multiple modules make it easier to deploy and to maintain large programs.
Imagine that each of the 25 developers builds a separate module, each in its own DLL. The person
responsible for building the application would then create a 26th module with the manifest for the

entire assembly. These 26 files can be deployed to the end user. The end user then need only load

the one module with the manifest, and he can ignore the other 25. The manifest will identify which of
the 25 modules has each method, and the appropriate modules will be loaded as methods are invoked.
This will be transparent to the user.

As modules are updated, the programmers only need to send the updated modules (and a module
with an updated manifest). Additional modules can be added and existing modules can be deleted; the
end user continues to load only the one module with the manifest.

In addition, it is entirely likely that not all 25 modules will need to be loaded into the program. By
breaking the program into 25 modules, the loader can load only those parts of the program that are
needed. This makes it easy to shunt aside code that is only rarely needed into its own module, which
might not be loaded at all in the normal course of events. Although this was the theory behind DLLs all
along, .NET accomplishes this without "DLL Hell," a monumental achievement described later in this
chapter.

17.6.2 Building a Multi-Module Assembly

To demonstrate the use of multi-module assemblies, the following example creates a couple of very
simple modules that you can then combine into a single assembly. The first module is a Fr act i on

class. This simple class will allow you to create and manipulate common fractions. Example 17-1
illustrates.

Example 17-1. The Fraction class
nanespace ProgCS

{
usi ng System

public class Fraction

{

public Fraction(int nunerator, int denom nator)

{

this. nunerator = nunerator;
thi s. denom nat or = denom nat or;

}

public Fraction Add(Fraction rhs)
{

if (rhs.denom nator != this.denom nator)

{

t hr ow new Ar gunent Excepti on(
"Denom nators nust nmatch");

}

return new Fracti on(
thi s. numerator + rhs.numerator,
t his. denom nator);

388

Programming C#

}
public override string ToString()
{
return nunerator + "/" + denonl nator;
}

private int numerator;
private int denom nator;

Notice that the Fr act i on class is in the Pr ogCS namespace. The full name for the class will be
Pr ogCS. Fracti on.

The Fract i on class takes two values in its constructor: a nuner at or and a denom nat or . There is
also an Add() method, which takes a second Fr act i on and returns the sum, assuming the two
share a common denoni nat or . This class is simplistic, but it will demonstrate the functionality
necessary for this example.

The second class is the my Cal ¢ class, which stands in for a robust calculator. Example 17-2
illustrates.

Example 17-2. The Calculator

nanmespace ProgCS

{
usi ng System
public class nyCalc
{
public int Add(int vall, int val2)
{
return vall + val 2;
}
public int Mult(int vall, int val?2)
{
return vall * val 2;
}
}
}

Once again, nyCal c is a very stripped-down class to keep things simple. Notice that cal c is also in
the Pr ogCS namespace.

This is sufficient to create an assembly. You'll use an Assemblyinfo.cs file to add some metadata to
the assembly. The use of metadata will be covered in Chapter 19.

i

You can write your own Assemblyinfo.cs file, but the simplest
.) approach is to let Visual Studio generate one for you
" 4 automatically.

Visual Studio creates single-module assemblies by default. You can create a multi-module resource
with the / addVbdul es command line. The easiest way to compile and build a multi-module assembly
is with a nekef i | e, which you can create with Notepad or any text editor.

389

%
be

If you are unfamiliar with makefiles, don't worry; this is the only
example that needs a makefile, and that is only to get around the
current limitation of Visual Studio creating only single-module
assemblies. If necessary, you can just use the makefile as offered
without fully understanding every line.

P
-~y .9
-"."_.r)

= Iy

iy

Example 17-3 shows the complete nakef i | e (which is explained in detail immediately afterward).

Example 17-3. The complete makefile for a multi-module assembly
ASSEMBLY= MyShar edAssenbl y. dl |

Bl N=.\ bin
SRC=.
DEST=.\ bin

CSC=csc /nol ogo /debug+ /d: DEBUG / d: TRACE

MODULETARGET=/t : npbdul e
LI BTARGET=/t:library
EXETARGET=/t : exe

REFERENCES=Syst em dI |

MODULES=$(DEST)\ Fracti on.dl | $(DEST)\Cal c.dl |
METADATA=$(SRC) \ Assenbl yI nfo. cs

all: $(DEST)\ MyShar edAssenbl y. dl |

Assenbly netadata placed in sanme nodul e as mani f est
$(DEST) \ $(ASSEMBLY) : $(METADATA) $(MODULES) $(DEST)
$(CSC) $(LIBTARGET) /addnodul e: $(MODULES: =;) /out: $@ %

Add Calc.dll nodule to this dependency i st
$(DEST)\ Calc.dll: Calc.cs $(DEST)
$(CSC) $(MODULETARCET) /r:$(REFERENCES: =;) /out:$@ %

Add Fraction
$(DEST)\ Fraction.dll: Fraction.cs $(DEST)
$(CSC) $(MODULETARGET) /r: $(REFERENCES: =;) /out:$@ %

$(DEST) : :
Lif 1| EXI STS($(DEST))

nkdi r $(DEST)
lendi f

The nakef i | e begins by defining the assembly you want to build:
ASSEMBLY= MyShar edAssenbl y. dl |

It then defines the directories you'll use, putting the output in a bi n directory beneath the current
directory and retrieving the source code from the current directory:

Bl N=.\ bin

SRC=.
DEST=.\ bin

390

Programming C#

You build the assembly as follows:

$(DEST) \ $(ASSEMBLY) : $(METADATA) $(MODULES) $(DEST)
$(CSC) $(LIBTARGET) /addnodul e: $(MODULES: =;) /out:$@ %

This places the assembly (MySharedAssembly.dll) in the destination directory (bi n). It tells nmake
(the program that executes the nakef i | €) that the assembly consists of the metadata and the
modules, and it provides the command line required to build the assembly.

The metadata is defined earlier as:

METADATA=$(SRC) \ Assenbl yl nfo. cs

The modules are defined as the two DLLs:

MODULES=$(DEST)\ Fraction.dl | $(DEST)\Cal c. dl |

The compile line builds the library and adds the modules, putting the output into the assembly file
MySharedAssembly.dll:

$(DEST) \ $(ASSEMBLY) : $(METADATA) $(MODULES) $(DEST)
$(CSC) $(LIBTARGET) /addnodul e: $(MODULES: =;) /out:$@ %s

To accomplish this, nnmake needs to know how to make the modules. You start by telling nnake how
to create calc.dll. For this you need the calc.cs source file, and you tell nnake the command line to
build that DLL:

$(DEST)\ Calc.dl|: Calc.cs $(DEST)

$(CSC) $(MODULETARGET) /r: $(REFERENCES: =;) /out:$@ %

Then do the same thing for fraction.dll:

$(DEST)\ Fraction.dl|: Fraction.cs $(DEST)
$(CSC) $(MODULETARGET) /r:$(REFERENCES: =;) /out:$@ %

The result of running nrrek e on this nakefile is to create three DLLs: fraction.dll, calc.dll, and
MySharedAssembly.dll. If you open MySharedAssembly.dll with | LDasm you'll find that it consists of
nothing but a manifest, as shown in Figure 17-3.

Figure 17-3. MySharedAssembly.dll

fE:"-._Frmi%urp"l._hil‘l"-_Hﬁhnﬂ'ht_lnss:l'ltlh.d...!Elﬂ
Fiix Wiew Help A

Coh F'|-:-'gIZ'5 hali:- Abirhh vSh aredézzemb . di
MAMIFEST

:{nml:u!,l MyShareddzzembly B

| ¥

If you examine the manifest, you see the metadata for the libraries you created, as shown in Figure
17-4.

Figure 17-4. The manifest for MySharedAssembly

391

_-:ls:en.'l:l'y mxtern msoorlib
pablickesiokan = (BEF Th 5C 56 19 34 ED 85 FLA |
hazh = (2B B3 S& BD Hl:l LE] 12 .-'I.'l 0B AF 250D 48 17 28 R e £, F. W R0

0 57 EA 07 A0
wer 1:0:7411:0
'_anunl:lv HeSheredhzzenbly

D 4 —— Tha Iellowing caslbon altribube is added aulcratically, &0 not usccament

S custon instancs vold [mscorlib]Systes. [nsgnostics, Debuggsbledtiributs
rr

custom ipstance void [mzcorlib]Systes Eeflection dssesblyleyHesmdtiribube
custom ipstance wold [mscorlib]Sestem. hosenblvEeyFiledtiributs: :
cusbon igstance void [escorlib]Sysies
custon ipstance wid [mscorlib]Sestem
castom lpstance vold [mscorlib]Sestem. B
Eakkem instants woid [axsar]liblSystes
custom ipstance wold [mscorlib|Sestes

AEamnb] ¥FPradissthtiribiba
Asseub | PCoupanyitiribobs

custom instance woid [mscorlib]Sestes. Beflectiom. dssewblyTitledttribute:
hash algositha Ix00D00E004
war L0EIE: 29053

falm Fractacm dl]

Fd 44 58 C6 A D
film Cale.dll
hash = |92 1\'_' a0 AR 2% EX 0D FE &0 &2 94 9E eC 40 &3 02 LA b
EC 4F ID CD & RN]
class swtern p'lb-l:l.c Frogls Fractios

falm Fracizom dll
class Cud2000002

'_-:'.535- sxtarn pablic FroglS.myilalco

falm Cale dll
class fwd2000002

nodule HrSharedissenblv dll
S HVID: (PRl d0-ElDd—465A-ab 2B-E2e LCAREDGER }
sabeistan 000000003
frle slionmapt 512
corf lags 0=00000001
0 Tmmge bems - Ox03440000

L1

- OF

et
-O%

AsseablyDelaySigoatl '.:;':uLl:
A=senblyTrademarkhtiribute:
dssemblylopyrightAttribube:

f
-]

cuskon ipstanss vold [asarlib]Sestes Feflssotuss issswblpConf igueatiosdtieibote: @ otaristeing) =
custon instance vwoid [mzcorlib]Sestes. Fefleciion dsseablylescriptiooAtiribute

ctor

zh = (OB EB 60 IF EX 20 F3 6B EE OF 34 04 GO EE CD FL -~ _.'w . WOML.P_.Q

11l

u'l;b-ml

booly = (O1 60 01
or{string) = { 0L 00
ox{string) = |
etasfloal) = § Ol 00
cior{stripgi =
ctor{skripg) =
af(®bring) &
oriztring) = { 01 00

cioristrimg] = | 01
(strang) = (01 00 00

| o

You first see an external assembly for the core library (nscor | i b), followed by the two modules,
Pr ogCs. Fracti on and Pr ogCsS. nyCal c.

You now have an assembly that consists of three DLL files: MySharedAssembly.dll with the manifest,
and Calc.dll and Fraction.dll with the types and implementation needed.

17.6.2.1 Testing the assembly

To use these modules, you need to create a driver program that will load in the modules as needed.
Example 17-4 illustrates. Save this program as Test.cs in the same directory as the other modules.

Example 17-4. A module test driver
nanespace Programm ng_CShar p

{

392

usi ng System

public class Test

{

/1 main will not |oad the shared assenbly
static void Main()
{

Test t = new Test();

t.UseCS();

t.UseFraction();

}

/1 calling this |oads the nmyCal c assenbly
/1 and the nySharedAssenbly assenbly as wel |
public void UseCS()

{

Programming C#

ProgCS. nyCal ¢ calc = new ProgCS. nyCalc();
Console. WiteLine("3+5 = {0}\n3*5 = {1}",
calc. Add(3,5), calc.Mult(3,5));
}

/1l calling this adds the Fraction assenbly
public void UseFraction()

{
ProgCs. Fraction fracl = new ProgCS. Fraction(3,5);
ProgCS. Fraction frac2 = new ProgCS. Fraction(1,5);
ProgCS. Fraction frac3 = fracl. Add(frac?2);
Console. WiteLine("{0} + {1} = {2}",
fracl, frac2, frac3);
}
}
}
Qut put :
3+5 = 8
3*5 = 15

3/5 + 1/5 = 4/5

For the purposes of this demonstration, it is important not to put any code in Vai n() that depends
on your modules. You do not want the modules loaded when \Vai n() loads, and so no Fracti on or
Cal c objects are placed in Vai n(). When you call into UseFr acti on and UseCal c, you'll be able
to see that the modules are individually loaded.

17.6.2.2 Loading the assembly

An assembly is loaded into its application by the Assenbl yResol ver through a process called
probing. The assembly resolver is called by the .NET Framework automatically; you do not call it
explicitly. Its job is to resolve the assembly name to an EXE program and load your program.

With a private assembly, the Assenbl yResol ver looks only in the application load directory and its
subdirectories—that is, the directory in which you invoked your application.

- The three DLLs produced earlier must be in the directory in which
«r | Example 17-4 executes or in a subdirectory of that directory.

Put a break point on the second line in \Vai n, as shown in Figure 17-5.

Figure 17-5. A break point in Main()

393

“# Programming_CSherp, Test ﬂ |_-,5‘M.:|i1_"j|

namespace Programming CSharp

{

using System:

public class Test

{
FF main will not load the shared assembly
atatic vold Main()
[

o Test t = new Test(]:

t.UzeCS():
t.lzeFraction():

Execute to the break point and open the Modules window. Only two modules are loaded, as shown in
Figure 17-6.

Figure 17-6. Only two modules loaded

Hame Aiddress Path Crder | YVersion am

HCAG0000-6CEICO00 ctsdrntimicrosaft. et framesiorkly., . 1

%] Sharedassem... 0C400000-00KH0B000 C:iProglSharpiSharedfssemblylbin,,, 2 1.0.535.29... [2280]35ha...

1| |
|#2 Programming_CShaep. Test =| [

hameapacse PIDIHTEH'H'ILIIH_CSIIEIII
1
using IyStemd

public class Teat

i
/ main will not load the shared assembly
atatic vold Hain()
1

Q Test t = new Test();

C.U=eC3();

t.UzeFraction();

Step into the first method call and watch the modules window. As soon as you step into UseCsS, the
Assenbl yLoader recognizes that it needs an assembly from MySharedAssembly.DIl. The DLL is
loaded, and from that assembly's manifest the Assenbl yLoader finds that it needs Calc.dll, which is
loaded as well, as shown in Figure 17-7.

Figure 17-7. Modules loaded on demand

394

Programming C#

Modules
Tlama Address | Path | Ordar | Wersion | Program
&) mscorlib.di GCAGI000-ECESC000 cwinrtimicrasoft netiframeworkiv, .. 1 1.0,2728.2 [2z80] Sha. ..
8] SharedAssesn,,. 00400000-0040E000 C:\ProgCsharplSharedfssembhdbin... 2 1.0,535.29,,, [2280] Sha...
%] mysharedass... 0301 0000-0301 G000 ciiprogesherp\sharedassembhylbinid... 3 1.0,555.29,,, [2280] Sha...
& cale.dl O30 00000 3036000 ciyprogesherp|sharedassemblylbinid... 4 [2z80] Sha. ..
1 |
Test.cs

|{>gﬁugannirg_cmaupjest j | fllseTsi)

1}

P ol Taels (]

1
> ProgCS.myCale cale = new ProglS.myCalo():

Conzole . Uriceline(®3+45 = (Q}%Wn3*5 = {1}*,
cale, bdd (3, 5], caloc.Mulc(3,5)):
Y

When you step into Fr act i on, the final DLL will be loaded. The advantage of multi-module
assemblies is that a module is loaded only when it is needed.

17.7 Private Assemblies

Assemblies come in two flavors: private and shared . Private assemblies are intended to be used by
only one application; shared assemblies are intended to be shared among many applications.

All the assemblies you've built so far are private. By default, when you compile a C# application, a
private assembly is created. The files for a private assembly are all kept in the same folder (or in a tree
of subfolders). This tree of folders is isolated from the rest of the system, as nothing other than the one
application depends on it, and you can redeploy this application to another machine just by copying
the folder and its subfolders.

A private assembly can have any name you choose. It does not matter if that name clashes with
assemblies in another application; the names are local only to a single application.

In the past, DLLs were installed on a machine and an entry was made in the Windows Registry. It was
difficult to avoid corrupting the Registry, and reinstalling the program on another machine was
nontrivial. With assembilies, all of that goes away. With private assemblies, installing is as simple as
copying the files to the appropriate directory. Period.

17.8 Shared Assemblies

You can create assemblies that can be shared by other applications. You might want to do this if you
have written a generic control or a class that might be used by other developers. If you want to share
your assembly, it must meet certain stringent requirements.

First, your assembly must have a strong name. Strong names are globally unique.

No one else can generate the same strong name as you because

e | an assembly generated with one private key is guaranteed to

4 have a different name than any assembly generated with another
private key.

395

Second, your shared assembly must be protected against newer versions trampling over it, and so it
must have version control.

Finally, to share your assembly, you will place it in the Global Assembly Cache (GAC) (pronounced
GACK). This is an area of the file system set aside by the Common Language Runtime (CLR) to hold
shared assembilies.

17.8.1 The End of DLL Hell

Assemblies mark the end of DLL Hell. You will remember this scenario: you install Application A on
your machine, and it loads a number of DLLs into your Windows directory. It works great for months.
You then install Application B on your machine, and suddenly, unexpectedly, Application A breaks.
Application B is in no way related to Application A. So what happened? It turns out, you later learn,
that Application B replaced a DLL that Application A needed, and suddenly Application A begins to
stagger about, blind and senseless.

When DLLs were invented, disk space was at a premium and reusing DLLs seemed like a good idea.
The theory was that DLLs would be backward-compatible, so automatically upgrading to the new DLL
would be painless and safe. As my old boss Pat Johnson used to say, "In theory, theory and practice
are the same. But in practice, they never are."

When the new DLL was added to the computer, the old application, which was happily minding its own
business in another corner of your machine, suddenly linked to a DLL that was incompatible with its
expectations and hey! Presto! It went into the dance of death. This phenomenon led customers to be
justifiably leery of installing new software, or even of upgrading existing programs, and it is one of the
reasons Windows machines are perceived to be unstable. With assemblies, this entire nightmare goes
away.

17.8.2 Versions

S hared assemblies in .NET are uniquely identified by their names and their versions. The GAC allows
for "side-by-side" versions in which an older version of an assembly is available alongside a newer
version. This allows particular applications to say "give me the newest" or "give me the latest build of
Version 2," or even "give me only the version | was built with."

e Side-by-side versioning applies only to items in the GAC. Private
.) assemblies do not need this feature and do not have it.
ity

A version number for an assembly might look like this: 1: 0: 2204: 21, four numbers, separated by
colons. The first two numbers (1: 0) are the major and minor version. The third number (2204) is the
build, and the fourth (21) is the revision.

When two assemblies have different major or minor numbers, they are considered to be incompatible.
When they have different build numbers, they might or might not be compatible, and when they have
different revision numbers, they are considered definitely compatible with each other.

Revision numbers are intended for bug fixes. If you fix a bug and are prepared to certify that your DLL
is fully backward-compatible with the existing version, you should increment the revision. When an
application loads an assembly, it specifies the major and minor version that it wants, and the

Assenbl yResol ver finds the highest build and revision numbers.

396

Programming C#

17.8.3 Strong Names
In order to use a shared assembly, you need to meet three requirements:

You need to be able to specify the exact assembly you want to load. Therefore, you need a
globally unique name for the shared assembly.

You need to ensure that the assembly has not been tampered with. That is, you need a digital
signature for the assembly when it is built.

You need to ensure that the assembly you are loading is the one authored by the actual
creator of the assembly. You therefore need to record the identity of the originator.

All these requirements are met by strong names. Strong names must be globally unique and use
public key encryption to ensure that the assembly hasn't been tampered with and was written by the
creator. A strong name is a string of hexadecimal digits and is not meant to be human-readable.

To create a strong hame, a public-private key pair is generated for the assembly. A hash is taken of
the names and contents of the files in the assembly. The hash is then encrypted with the private key
for the assembly and placed in the manifest. This is known as signing the assembly. The public key is
incorporated into the strong name of the assembly.

Public Key Encryption

Strong names are based on public key encryption technology. The essence
of public key encryption is that your data is encoded with a complex
mathematical formula that returns two keys. Data encrypted with the first key
can only be decrypted with the second. Data encrypted with the second key
can only be decrypted with the first.

You distribute your first key as a public key that anyone can have. You keep
your second key as a private key that no one but you can have access to.

The reciprocal relationship between the keys allows anyone to encrypt data
with your public key, and then you can decrypt it with your private key. No
one else has access to the data once it is encrypted, including the person
who encrypted it.

Similarly, you can encrypt data with your private key, and then anyone can
decrypt that data with your public key. Although this makes the data freely
available, it ensures that only you could have created it. This is called a
digital signature .

When an application loads the assembly, the CLR uses the public key to decode the hash of the files
in the assembly to ensure that they have not been tampered with. This also protects against name
clashes.

You can create a strong hame with the sn utility:
sn -k c:\nyStrongNane. snk

The - k flag indicates that you want a new key pair written to the specified file. You can call the file
anything you like. Remember, a strong name is a string of hexadecimal digits and is not meant to be
human-readable.

397

You associate this strong hame with your assembly by using an attribute:

usi ng System Runti nme. Conpi | er Servi ces
[assenbl y: Assenbl yKeyFil e("c:\myStrongNane. key")]

Attributes are covered in detail in Chapter 19. For now, you can just put this code at the top of your
file to associate the strong name you generated with your assembly.

17.8.4 The Global Assembly Cache

Once you've created your strong name and associated it with your assembly, all that remains is to
place the assembly in the GAC, a reserved system directory. You can do that with the gacut i | utility:

gacutil /i:M/SharedAssenbly. dl |

Or you can open your File Explorer and drag your assembly into the GAC. To see the GAC, open the
File Explorer and navigate to \winNT\assembly; Explorer turns into a GAC utility.

17.8.5 Building a Shared Assembly

The best way to understand shared assemblies is to build one. Let's return to the earlier multi-module
project (see Examples 17-1 through 17-4) and navigate to the directory that contains the files calc.cs
and fraction.cs.

Try this experiment. Locate the bi n directory for the driver program and make sure that you do not
have a local copy of the MyShar edAssenbl y DLL files.

i

The referenced assembly (M Shar edAssenbl y) should have its
oAl CopyLocal property settof al se.

Run the program. It should fail with an exception saying it cannot load the assembly:

Exception occurred: System TypelLoadExcepti on:
Coul d not | oad class

" ProgCs. myCal ¢' because the nodul e contai ni ng

it failed to | oad.

Now copy the DLLs into the driver program's directory tree, run it again, and this time you should find
that it works fine.

Let's make the My Shar edAssenbl y into a shared assembly. You do so in two steps. First, you create
a strong name for the assembly, and then you put the assembly into the GAC.

17.8.5.1 Step 1: Create a strong name

Create a key pair by opening a command window and entering:

sn -k keyFil e.snk

Now open the Assemblylnfo.cs file in the project for the MySharedAssembly.dll and modify this line:

[assenbl y: Assenbl yKeyFile("")]

398

Programming C#

as follows:

[assenbl y: Assenbl yKeyFil e(".\\keyFile.snk")]

This sets the key file for the assembly. Rebuild with the same nake file as earlier, and then open the
resulting DLL in | LDasmand open the manifest. You should see a public key, as shown in Figure 17-
8.

Figure 17-8. The originator in the manifest of MySharedAssemny dll

publickey = (00 24 00 00 D4 80 00 00 94 00 00 OO 06 02 00 OO0 £
oo 24 00 00 52 5% 41 31 00 04 OO0 0D 01 DO 01 0O o ‘i CREAL.

11 13 %5 3C 41 19 8 41 28 2% Ef AF DE BC A2 D4 S Ch wALD

BB 22 BD 4F &3 E1 F5 57 2C 2D E2 43 CF C3 68 4E S 00 W -G hN
F7 C7? 7 EB 55 94 065 11 E4 66 30 Fé D4 22 DE OD , . U 141
BE Db A& 0D &D 58 283 10 E9 75 D3 BF CC B2 24 EB A0one o mED. L u. LB
04 19 D8 C1 Be BO CF DS CBE Ee 5C EE 43 08 0D E9 J XC

20 8F %8 DC 23 AC 46 A3 CD 7R 87 2C F3 32 7h B4 “ M Fo 2 il E
EX 47 B4 AD S8 73 3E 0D AD 1D CO A2 FA 15 14 A3 Go W=

BB 17 D1 AC F3 A3 7h& FB 59 BC 34 16 CE AR 34 C5) . ¥.: 4

By adding the strong name, you have signed this assembly (your exact values will be different). You
now need to get the strong name from the DLL. To do this, navigate to the directory with the DLL and
enter the following at a command prompt:

sn -T MySharedAssenbly. dl |

Note that sn is case-sensitive. Do not write sn -t .

=
BT

The response should be something like this:
Public key token is 01f ad8e0Of 0941a4d
This value is an abbreviated version of the assembly's public key, called the public key token .

Remove the DLLs from the test program's directory structure and run it again. It should fail again.
Although you've given this assembly a strong name, you've not yet registered it in the GAC.

17.8.5.2 Step 2: Put the shared assembly in the GAC

The next step is to drag the library into the GAC. To do so, open an Explorer window and navigate to
the WIinNT directory or its equivalent. When you double-click the Assembly subdirectory, Explorer will
turn into a GAC viewer.

You can drag and drop into the GAC viewer, or you can invoke this command-line utility:
Gacutil -i mySharedAssenbly

In either case, be sure to check that your assembly was loaded into the GAC, and that the originator
value shown in the GAC viewer matches the value you got back from sn:

Public key token is 01f ad8e0Of 0941a4d
as illustrated in Figure 17-9.

Figure 17-9. The GAC

399

Enhal Assembly Nama | Typa | VYersion | Cudbura | Public Key Token

1&vicrosaft. vsa 7.0.9188.0 bOAFSEFFL1dS50a3e
‘.-ﬁlf"b:ras:.‘nﬁ.'n‘:a F.oa17E.0 bOFEF7FL1d50a5a
1E)Microsoft. Yea, Wb, Codelid MBrocessor F0.0.0 bOFEF Tl 1d50a3a
1€ Imsatinberop 1.0.0.0 A2faaeh FESE26a0
idlmsconchg 1.0.2411.0 BOSFSFF1 150438
1£Irnm:rih Prelt 1.0.2411.0 bF7a5c561939a069
1&)My=haredAssembly 1.0.535, 29377 A5H29F0102e00473

Once this is done, you have a shared assembly that can be accessed by any client. Refresh the client
by building it again and look at its manifest, as shown in Figure 17-10.

Figure 17-10. The manifest

cazsembly extern HySharedé=ssenbly

publickeytoken = (A5 92 9F 01 02 EO C4 73)
ver 1:0:535;29377

There's My Shar edAssenbl vy, listed as an external assembly, and the public key now matches the
value shown in the GAC. Very nice, time to try it.

Close | LDasmand compile and run your code. It should work fine, even though there are no DLLs for
this library in its immediate path. You have just created and used a shared assembly.

400

Programming C#

Chapter 18. Attributes and Reflection

Throughout this book, | have emphasized that a .NET application contains code, data, and metadata.
Metadata is information about the data—that is, information about the types, code, assembly, and so
forth—that is stored along with your program. This chapter will explore how some of that metadata is
created and used.

Attributes are a mechanism for adding metadata, such as compiler instructions and other data about
your data, methods, and classes, to the program itself. Attributes are inserted into the metadata and
are visible through ILDasm and other metadata-reading tools.

Reflection is the process by which a program can read its own metadata. A program is said to reflect
on itself, extracting metadata from its assembly and using that metadata either to inform the user or to
modify its own behavior.

18.1 Attributes

An attribute is an object that represents data you want to associate with an element in your program.
The element to which you attach an attribute is referred to as the target of that attribute. For example,
the attribute:

[Nol Di spat ch]

is associated with a class or an interface to indicate that the target class should derive from | Unknown
rather than | Di spat ch, when exporting to COM. COM interface programming is discussed in detail in

Chapter 22.
In Chapter 17, you saw this attribute:

[assenbl y: Assenbl yKeyFil e("c:\ myStrongNane. key")]

This inserts metadata into the assembly to designate the program's St r ongNane.

18.2 Intrinsic Attributes

Attributes come in two flavors: intrinsic and custom . Intrinsic attributes are supplied as part of the
Common Language Runtime (CLR), and they are integrated into .NET. Custom attributes are
attributes you create for your own purposes.

Most programmers will use only intrinsic attributes, though custom attributes can be a powerful tool
when combined with reflection, described later in this chapter.

18.2.1 Attribute Targets

If you search through the CLR, you'll find a great many attributes. Some attributes are applied to an
assembly, others to a class or interface, and some, such as [V\ebMet hod] , to class members. These
are called the attribute targets. Possible attribute targets are detailed in Table 18-1.

Table 18-1. Possible attribute targets

Member Name| Usage

All Applied to any of the following elements: assembly, class, class member, delegate,
enum, event, field, interface, method, module, parameter, property, return value, or

401

struct

Assenbl y Applied to the assembly itself

Cl ass Applied to instances of the class

d assMenber s Applied to class_es, structs, enums, constructors, methods, properties, fields, events,
delegates, and interfaces

Constructor |Applied to a given constructor

Del egat e Applied to the delegated method

Enum Applied to an enumeration

Event Applied to an event

Field Applied to a field

Interface Applied to an interface

Met hod Applied to a method

Modul e Applied to a single module

Par anet er Applied to a parameter of a method

Property Applied to a property (both get and set , if implemented)

Ret urnVal ue |Applied to a return value

Struct Applied to a struct

18.2.2 Applying Attributes

You apply attributes to their targets by placing them in square brackets immediately before the target
item. You can combine attributes, either by stacking one on top of another:

[assenbl y: Assenbl yDel aySi gn(fal se)]
[assenbl y: Assenbl yKeyFile(".\\keyFile.snk")]

or by separating the attributes with commas:

[assenbl y: Assenbl yDel aySi gn(fal se),
assenbl y: Assenbl yKeyFil e(".\\keyFil e.snk")]

- You must place assembly attributes after all usi ng statements
" and before any code.
‘., ‘ -II
(17T

Many intrinsic attributes are used for interoperating with COM, as discussed in detail in Chapter 22.
You've already seen use of one attribute ([V\ebVet hod]) in Chapter 16. You'll see other attributes,
such asthe [Seri al i zabl e] attribute, used in the discussion of serialization in Chapter 19.

The Syst em Runt i me namespace offers a number of intrinsic attributes, including attributes for
assemblies (such as the keynane attribute), for configuration (such as debug to indicate the debug
build), and for version attributes.

You can organize the intrinsic attributes by how they are used. The principal intrinsic attributes are

those used for COM, those used to modify the Interface Definition Language (IDL) file from within a
source-code file, attributes used by the ATL Server classes, and attributes used by the Visual C++

compiler.

Perhaps the attribute you are most likely to use in your everyday C# programming (if you are not
interacting with COM) is [Ser i al i zabl e] . As you'll see in Chapter 19, all you need to do to ensure
that your class can be serialized to disk or to the Internet is add the [Seri al | zabl e] attribute to the
class:

402

Programming C#

[serializable]
class MySerializabl eC ass

The attribute tag is put in square brackets immediately before its target—in this case, the class
declaration.

The key fact about intrinsic attributes is that you know when you need them; the task will dictate their
use.

18.3 Custom Attributes

You are free to create your own custom attributes and use them at runtime as you see fit. Suppose, for
example, that your development organization wants to keep track of bug fixes. You already keep a
database of all your bugs, but you'd like to tie your bug reports to specific fixes in the code.

You might add comments to your code along the lines of:

/1 Bug 323 fixed by Jesse Liberty 1/1/2005.

This would make it easy to see in your source code, but there is no enforced connection to Bug 323 in
the database. A custom attribute might be just what you need. You would replace your comment with
something like this:

[BugFi xAttri bute(323,"Jesse Liberty","1/1/2005")
Comment ="O'f by one error"]

You could then write a program to read through the metadata to find these bug-fix notations and
update the database. The attribute would serve the purposes of a comment, but would also allow you
to retrieve the information programmatically through tools you'd create.

18.3.1 Declaring an Attribute

Attributes, like most things in C#, are embodied in classes. To create a custom attribute, you derive
your new custom attribute class from Syst em At tri but e:

public class BugFi xAttribute : System Attribute

You need to tell the compiler with which kinds of elements this attribute can be used (the attribute
target). You specify this with (what else?) an attribute:

[AttributeUsage(AttributeTargets. C ass |
AttributeTargets. Constructor |
AttributeTargets.Field |
AttributeTargets. Met hod |
AttributeTargets. Property,

AllowMil tiple = true)]

Attribut eUsage is an attribute applied to attributes: a meta-attribute. It provides, if you will, meta-
metadata?that is, data about the metadata. For the At t r i but eUsage attribute constructor, you pass
two arguments. The first argument is a set of flags that indicate the target?in this case, the class and
its constructor, fields, methods, and properties. The second argument is a flag that indicates whether a
given element might receive more than one such attribute. In this example, Al | owiul t i pl e is set to
t r ue, indicating that class members can have more than one BugFi xAt t ri but e assigned.

403

18.3.2 Naming an Attribute

The new custom attribute in this example is named BugFi xAt t r i but e. The convention is to append
the word At t ri but e to your attribute name. The compiler supports this by allowing you to call the
attribute with the shorter version of the name. Thus, you can write:

[BugFi x(123, "Jesse Liberty", "01/01/05", Comment="Off by one")]

The compiler will first look for an attribute named BugFi x and, if it does not find that, will then look for
BugFi xAttri bute.

18.3.3 Constructing an Attribute

Every attribute must have at least one constructor. Attributes take two types of parameters, positional

and named. In the BugFi x example, the programmer's name and the date are positional parameters,

and comment is a named parameter. Positional parameters are passed in through the constructor and
must be passed in the order declared in the constructor:

publ i c BugFi xAttribute(int buglD, string programrer,
string date)

{
thi s. bugl D = bugl D,
t hi s. programer = programmer;
this.date = date;

}

Named parameters are implemented as properties:

public string Coment

{
get

{

return conmment;

comment = val ue;
}
Itis common to create read-only properties for the positional parameters:

public int BuglD

{
get
{
return bugl D
}
}

18.3.4 Using an Attribute

Once you have defined an attribute, you can put it to work by placing it immediately before its target.
To test the BugFi xAt t ri but e of the preceding example, the following program creates a simple
class named My Vat h and gives it two functions. You'll assign BugFi xAt t r i but es to the class to
record its code-maintenance history:

404

Programming C#

[BugFi xAttri bute(121,"Jesse Liberty","01/03/05")]

[BugFi xAttri bute(107,"Jesse Liberty","01/04/05",
Comment =" Fi xed of f by one errors")]

public class MyMath

These attributes will be stored with the metadata. Example 18-1 shows the complete program.

Example 18-1. Working with custom attributes
nanespace Programm ng_ CShar p

{
usi ng System
usi ng System Refl ection;

/1l create customattribute to be assigned to class nenbers
[AttributeUsage(AttributeTargets. d ass |
AttributeTargets. Constructor |
AttributeTargets.Field |
AttributeTargets. Met hod |
AttributeTargets. Property,
Al lowmul tiple = true)]
public class BugFi xAttribute : System Attribute
{
/] attribute constructor for
/1 positional paraneters
public BugFi xAttribute
(int bugl D,
string programer,
string date)

{
t hi s. bugl D = bugl D
t hi s. programer = programmer;
this.date = date;

}

/|l accessor
public int BuglD

{
get
{
return bugl D;
}
}

/1 property for naned paraneter
public string Conment

{
get

{

return comment;

set

{
}

comrent = val ue;

}

/|l accessor
public string Date

{
get

405

return date;

}

/| accessor
public string Programer

{
get

{
}

return progranmer;

}

/1 private nenber data
private int bugl D
private string comment;
private string date;
private string programrer;

[*****xxx% ggsign the attributes to the class ********

[BugFi xAttri bute(121,"Jesse Liberty","01/03/05")]

[BugFi xAttri bute(107,"Jesse Liberty","01/04/05",
Conment =" Fi xed of f by one errors")]

public class MyMath

{
publ i c doubl e DoFuncl(doubl e paramnd)
{
return paranil + DoFunc2(parani);
}
publ i c doubl e DoFunc2(doubl e paraml)
{
return paranil / 3;
}
}
public class Tester
{
public static void Main()
{
M/Math mm = new MyMath();
Console. WiteLine("Calling DoFunc(7). Result: {0}",
mm DoFuncl(7));
}
}
}
CQut put :

Calling DoFunc(7). Result: 9.3333333333333339

As you can see, the attributes had absolutely no impact on the output. In fact, for the moment, you
have only my word that the attributes exist at all. A quick look at the metadata using ILDasm does
reveal that the attributes are in place, however, as shown in Figure 18-1. We'll see how to get at this
metadata and use it in your program in the next section.

406

Programming C#

Figure 18-1. The metadata in the assembly
I (s =] 3

= C:\Documents and Settings dudministraior by Documents\Wiseal 5 udio PropctsiFirst Boundhbesidy
MAMIFEST
= W Pogramming_CSharp
% [JE BugFedtiibuie
= [BE MyMath
clazs public auto ansi beforefeldnit
cushom instance vod Programming_C5heep BugFisdtirbute: choainl 32,
custom instance void Programming_CS harp BugFixdtinbute:: choalint32,
A cton; woid]
1 DoFunc] : llostEdlozEd)
=l DoFunc? : flioatEd[HoaEd |
= [BE Taster
clazs public auto ansi batorsfieldnit
=l chor: woodl)
2 Mam: vod()

L ¥
.{ammbi_,l SecondTestdpp |

4] I

18.4 Reflection

For the attributes in the metadata to be useful, you need a way to access them?ideally during runtime.
The classes in the Ref | ect i on namespace, along with the Syst em Type and
System TypedRef er ence classes, provide support for examining and interacting with the metadata.

Reflection is generally used for any of four tasks:
Viewing metadata

This might be used by tools and utilities that wish to display metadata.
Performing type discovery

This allows you to examine the types in an assembly and interact with or instantiate those
types. This can be useful in creating custom scripts. For example, you might want to allow
your users to interact with your program using a script language, such as JavaScript, or a
scripting language you create yourself.

Late binding to methods and properties

This allows the programmer to invoke properties and methods on objects dynamically
instantiated based on type discovery. This is also known as dynamic invocation.

Creating types at runtime (Reflection Emit)

The ultimate use of reflection is to create new types at runtime and then to use those types to
perform tasks. You might do this when a custom class, created at runtime, will run significantly
faster than more generic code created at compile time. An example is offered later in this
chapter.

18.4.1 Viewing MetaData

In this section, you will use the C# Reflection support to read the metadata in the My Vat h class.

407

You start by initializing an object of the type Menber | nf 0. This object, in the Syst em Ref | ecti on
namespace, is provided to discover the attributes of a member and to provide access to the metadata:

System Refl ecti on. Menberinfo inf = typeof (M/Math);

You call the t ypeof operator on the My Vat h type, which returns an object of type Type, which
derives from Menber | nf o.

- The Type class is the root of the reflection classes. Type
%3 4. encapsulates a representation of the type of an object. The Type

class is the primary way to access metadata. Venber | nf o
derives from Type and encapsulates information about the
members of a class (e.g., methods, properties, fields, events,
etc.).

The next step is to call Get Cust omAt t r i but es on this Merrber | nf o object, passing in the type of
the attribute you want to find. What you get back is an array of objects, each of type
BugFi xAttri bute:

object[] attributes;
attributes =
i nf.GetCustomAttri butes(typeof (BugFi xAttribute), false);

You can now iterate through this array, printing out the properties of the BugFi xAt t r i but e object.
Example 18-2 replaces the Test er class from Example 18-1.

Example 18-2. Using Reflection
public static void Main()

{
MyMat h mm = new MyMath();
Console. WiteLine("Calling DoFunc(7). Result: {0}",
mm DoFuncl(7));
/1 get the menber information and use it to
/1 retrieve the customattributes
System Refl ecti on. MenberInfo inf = typeof (M/Math);
object[] attributes;
attributes =
i nf.GetCustomAttri butes(
t ypeof (BugFi xAttri bute), false);
/'l iterate through the attributes, retrieving the
/'l properties
foreach(Object attribute in attributes)
{
BugFi xAttribute bfa = (BugFi xAttribute) attribute;
Consol e. WiteLine("\nBugl D: {0}", bfa.BuglD);
Consol e. WiteLine("Programer: {0}", bfa.Progranmrer);
Console. WiteLine("Date: {0}", bfa.Date);
Consol e. WiteLine("Comment: {0}", bfa.Coment);
}
}
CQut put :

Calling DoFunc(7). Result: 9.3333333333333339

408

Programming C#

Bugl D: 121

Progranmer: Jesse Liberty
Date: 01/03/05

Comment :

Bugl D: 107

Progranmer: Jesse Liberty

Date: 01/04/05

Comment: Fixed off by one errors

When you put this replacement code into Example 18-1 and run it, you can see the metadata printed
as you'd expect.

18.4.2 Type Discovery

You can use reflection to explore and examine the contents of an assembly. You can find the types
associated with a module; the methods, fields, properties, and events associated with a type, as well
as the signatures of each of the type's methods; the interfaces supported by the type; and the type's
base class.

To start, load an assembly dynamically with the Assenbl y. Load static method. The Assenbl y class
encapsulates the actual assembly itself, for purposes of reflection. The signature for the Load method
is:

public static Assenbly. Load(Assenbl yNane)

For the next example, pass in the Core Library to the Load method. Vs Cor Li b. dI | has the core
classes of the .NET Framework:

Assenbly a = Assenbly. Load("Mscorlib.dlI");

Once the assembly is loaded, you can call Get Types() to return an array of Type objects. The
Type object is the heart of reflection. Type represents type declarations: classes, interfaces, arrays,
values, and enumerations:

Type[] types = a. CetTypes();

The assembly returns an array of types that you can display in a f or each loop, as shown in
Example 18-3. Because this listing uses the Type class, you will want to add a usi ng statement for
the Syst em Ref | ect i on hamespace.

Example 18-3. Reflecting on an assembly
nanespace Programr ng_CShar p

{
usi ng System
usi ng System Refl ection;

public class Tester

{
public static void Main()

{
/1l what is in the assenbly

Assenbly a = Assenbly. Load("Mscorlib.dlI");
Type[] types = a.CetTypes();
foreach(Type t in types)

409

{

}
Consol e. Wit eLi ne(

"{0} types found", types.Length);

Consol e. WiteLine("Type is {0}", t);

}

The output from this would fill many pages. Here is a short excerpt:

Type is System TypeCode

Type is System Security. Uil.StringExpressi onSet
Type is System Runtine. | nteropServi ces. COVEXcepti on
Type is System Runtinme. | nteropServi ces. SEHEXcepti on
Type is System Refl ection. Tar get Par anet er Count Excepti on
Type is System Text. UTF7Encodi ng

Type is System Text. UTF7Encodi ng$Decoder

Type is System Text. UTF7Encodi ng$Encoder

Type is System Arglterator

Type is System Runtinme. Renoting. JI TLookupTabl e

Type is System Runti me. Renoti ng. | Conponent Servi ces
Type is System Runti ne. Renoti ng. Component Ser vi ces
1429 types found

This example obtained an array filled with the types from the Core Library and printed them one by
one. The array contained 1,429 entries on my machine.

18.4.3 Reflecting on a Type

You can reflect on a single type in the nscor | i b assembly as well. To do so, you extract a type from
the assembly with the Get Type() method, as shown in Example 18-4.

Example 18-4. Reflecting on atype
nanespace Programm ng_CShar p

{
usi ng System
usi ng System Refl ection;
public class Tester
{
public static void Main()
{
/1 exam ne a single object
Type theType =
Type. Cet Type(
"System Refl ection. Assenbl y");
Consol e. Wit eLi ne(
"\nSingle Type is {0}\n", theType);
}
}
}
Qut put :

Single Type is System Refl ecti on. Assenbly

18.4.3.1 Finding all type members

410

Programming C#

You can ask the Assenbl y type for all its members using the Get Menber s() method of the Type
class, which lists all the methods, properties, and fields, as shown in Example 18-5.

Example 18-5. Reflecting on the members of a type
nanespace Programr ng_CShar p

{
usi ng System
usi ng System Refl ection;

public class Tester
{
public static void Main()
{
/'l exam ne a single object
Type theType =
Type. Get Type(
"System Refl ection. Assenbl y");
Consol e. Wit eLi ne(
"\'nSingle Type is {0}\n", theType);

/1 get all the nenbers
Member | nfo[] nbrinfoArray =

t heType. Get Menmbers();
foreach (Menberlnfo nmbrinfo in nbrinfoArray)

{
Console. WiteLine("{0} is a {1}",
nbr 1 nfo, nbrlnfo.Menber Type);

}

Once again the output is quite lengthy, but within the output you see fields, methods, constructors, and
properties, as shown in this excerpt:

System String s _local FilePrefix is a Field
Bool ean | sDefined(System Type) is a Method
Void .ctor() is a Constructor

System String CodeBase is a Property
System String Copi edCodeBase is a Property

18.4.3.2 Finding type methods

You might want to focus on methods only, excluding the fields, properties, and so forth. To do so, you
remove the call to Get Menbers():

Menmber | nfo[] nbrinfoArray =
t heType. Get Menber s(Bi ndi ngFl ags. LookupAl |);

and add a call to Get Met hods() :

nbr I nf oArray = theType. Get Met hods() ;
The output now is nothing but the methods:

Qut put (excerpt):

Bool ean Equal s(System bject) is a Method

411

System String ToString() is a Method
System String CreateQualifiedName(
System String, System String) is a Method
System Refl ecti on. Met hodl nfo get _EntryPoint() is a Method

18.4.3.3 Finding particular type members

Finally, to narrow it down even further, you can use the Fi ndiVenber s method to find particular
members of the type. For example, you can narrow your search to methods whose names begin with
the letters Get .

To narrow the search, you use the Fi ndVenber s method, which takes four parameters:
Menber Types, Bi ndi ngFl ags, Menber Fi | t er, and obj ect.

MemberTypes

A Merber Types object that indicates the type of the member to search for. These include
Al'l , Constructor, Custom Event, Fi el d, Met hod, Nest edt ype, Property, and
Typel nf o. You will also use the MVermber Types. Met hod to find a method.

BindingFlags

An enumeration that controls the way searches are conducted by reflection. There are a great
many Bi ndi ngFl ag values, including | gnor eCase, | nst ance, Publ i ¢, St ati ¢, and so
forth. The Bi ndi ngFl ags default member indicates no binding flag, which is what you want
because you do not want to restrict the binding.

MemberFilter

A delegate (see Chapter 12) that is used to filter the list of members in the Memberinfo array
of objects. The filter you'll use is Type. Fi | t er Nane, a field of the Type class used for
filtering on a name.

Object

A string value that will be used by the filter. In this case you'll pass in "Get *" to match only
those methods that begin with the letters Get .

The complete listing for filtering on these methods is shown in Example 18-6.

Example 18-6. Finding particular members
namespace Programm ng_CShar p

{
usi ng System
usi ng System Refl ection;

public class Tester

{
public static void Main()

{

/1 exam ne a single object
Type theType = Type. Get Type(
"System Refl ecti on. Assenbl y");

/1 just nmenbers which are nmethods beginning with GCet
MenberInfo[] nbrinfoArray =

412

Programming C#

t heType. Fi ndMenber s(Menber Types. Met hod,
Bi ndi ngFl ags. Def aul t,
Type. Fil terName, "Get*");
foreach (Menmberlinfo nbrinfo in nbrinfoArray)
{
Console. WiteLine("{0} is a {1}",
nmbor I nf o, nbrlnfo. Menber Type);

}
Qut put (excerpt):

System Type[] GetTypes() is a Method

System Type[] CetExportedTypes() is a Method

System Type Cet Type(System String, Boolean) is a Method
System Type Cet Type(System String) is a Method

System Refl ecti on. Assenbl yNane Get Nane(Bool ean) is a Mt hod
System Refl ecti on. Assenbl yNane GetNane() is a Method
Int32 GetHashCode() is a Method

18.4.4 Late Binding

Once you have discovered a method, it's possible to invoke it using reflection. For example, you might
like to invoke the Cos() method of Syst em Mat h, which returns the cosine of an angle.

- You could, of course, call Cos() inthe normal course of your
«s |, code, but reflection allows you to bind to that method at runtime.

4% This is called late-binding and offers the flexibility of choosing at
runtime which object you will bind to and invoking it
programmatically. This can be useful when creating a custom
script to be run by the user or when working with objects that
might not be available at compile time. For example, by using late-
binding, your program can interact with the spellchecker or other
components of a running commercial word processing program
such as Microsoft Word.

To invoke Cos(), you will first get the Ty pe information for the Syst em Mat h class:
Type theMat hType = Type. Get Type(" System Mat h");

With that type information, you can dynamically load an instance of that class by using a static method
of the Act i vat or class.

The Act i vat or class contains four methods, all static, which you can use to create objects locally or
remotely or to obtain references to existing objects. The four methods are:
Cr eat eCom nst anceFrom Cr eat el nst anceFr om Get Cbj ect , and Cr eat el nst ance:

CreateComlnstanceFrom
Used to create instances of COM objects.

CreatelnstanceFrom

413

Used to create a reference to an object from a particular assembly and type name.
GetObject

Used when marshaling objects. Marshaling is discussed in detail in Chapter 19.
Createlnstance

Used to create local or remote instances of an object. You'll use this method to instantiate an
object of the Syst em Mat h class.

Obj ect theCbj = Activator. Createlnstance(theMathType);

You now have two objects in hand: a Type object named Thelat hType, which you created by calling
Cet Type, and an instance of the Syst em Mat h class named t heChbj , which you instantiated by
calling Cr eat el nst ance.

Before you can invoke a method on the object, you must get the method you need from the Type
object, t helVat hType. To do so, you'll call Get Vet hod(), and you'll pass in the signature of the Cos
method.

The signature, you will remember, is the name of the method (Cos) and its parameter types. In the
case of Cos(), there is only one parameter: a double. Whereas, Type. Get Vet hod takes two
parameters: the first represents the name of the method you want, and the second represents the
parameters. The name is passed as a string; the parameters are passed as an array of types:

Met hodl nf o Cosi nelnfo =
t heMat hType. Get Met hod(" Cos", par amlypes) ;

Before calling Get Met hod, you must prepare the array of types:

Type[] paramlypes = new Type[1];
par amlypes[0] = Type. Get Type(" Syst em Doubl e") ;

This code declares the array of Type objects and then fills the first element (par anirypes| 0]) with a
Type representing a double. You obtain that type representing a double by calling the static method
Type. Get Type(), passing in the string " Syst em Doubl e”.

You now have an object of type Met hodl nf o on which you can invoke the method. To do so, you
must pass in the actual value of the parameters, again in an array:

bj ect[] paranmeters = new Object[1];
par anmeters[0] = 45;
bj ect returnVal = Cosinelnfo.lnvoke(theOoj, paraneters);

414

Programming C#

%
be

Note that you've created two arrays. The first, par anilypes, holds
the type of the parameters. The second, par anet er s, holds the
actual value. If the method had taken two arguments, you'd have
declared these arrays to hold two values. If the method took no
values, you still would create the array, but you would give it a
size of zero!

4
n
7N
g
= By
L.

Type[] paraniTypes = new Type[0];

Odd as this looks, it is correct.

Example 18-7 illustrates dynamically calling the Cos() method.

Example 18-7. Dynamically invoking a method
nanmespace Programm ng_CShar p

{
usi ng System
usi ng System Refl ection;

public class Tester

{
public static void Main()

{
Type theMat hType = Type. Get Type(" System Math");
bj ect theCbj =
Acti vat or. Creat el nstance(t heMat hType) ;

/'l array with one nmenber
Type[] paranTypes = new Type[1];
par amlypes[0] = Type. Cet Type(" Syst em Doubl e") ;

/'l Get method info for Cos()
Met hodl nfo Cosi nelnfo =
t heMat hType. Get Met hod(" Cos", par anlypes) ;

/1 fill an array with the actual paraneters
Obj ect[] paranmeters = new Object[1];
paranmet ers[0] = 45;
Obj ect returnVal =
Cosi nel nfo. I nvoke(t heoj, paraneters);
Consol e. Wit eLi ne(
"The cosine of a 45 degree angle {0}",
returnval);

}

That was a lot of work just to invoke a single method. The power, however, is that you can use
reflection to discover an assembly on the user's machine, use reflection to query what methods are
available, and then use reflection to invoke one of those members dynamically!

415

18.5 Reflection Emit

So far we've seen reflection used for three purposes: viewing metadata, type discovery, and dynamic
invocation. You might use these techniques when building tools (such as a development environment)
or when processing scripts. The most powerful use of reflection, however, is with reflection emit.

Reflection emit supports the dynamic creation of new types at runtime. You can define an assembly to
run dynamically or to save itself to disk, and you can define modules and new types with methods that
you can then invoke.

The use of dynamic invocation and reflection emit should be

ar considered an advanced topic. Most developers will never have
need to use reflection emit. This demonstration is based on an
example provided at the Microsoft Author's Summit, Fall 2000.

=
L.

To understand the power of reflection emit, you must first consider a slightly more complicated
example of dynamic invocation.

Problems can have general solutions that are relatively slow and specific solutions that are fast. To
keep things manageably simple, consider a DoSun{) method, which provides the sum of a string of
integers from 1...n, where n will be supplied by the user.

Thus, DoSunt 3) is equal to 1+2+3, or 6. DoSunt(10) is 55. Writing this in C# is very simple:

public int DoSunil(int n)

{
int result = O;
for(int i = 1;i <= n; i++)
{
result +=1i;
}
return result;
}

The method simply loops, adding the requisite number. If you pass in 3, the method adds 1 + 2 + 3
and returns an answer of 6.

With large numbers, and when run many times, this might be a bit slow. Given the value 20, this
method would be considerably faster if you removed the loop:

public int DoSun2()
{

}

return 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20;

DoSun® runs more quickly than DoSumil does. How much more quickly? To find out, you'll need to put
a timer on both methods. To do so, you'll use a Dat eTi e object to mark the start time and a
Ti meSpan object to compute the elapsed time.

For this experiment, you need to create two DoSun{) methods; the first will use the loop and the
second will not. You will call each 1,000,000 times. (Computers are very fast, so to see a difference
you have to work hard!) You'll then compare the times. Example 18-8 illustrates the entire test
program.

Example 18-8. Comparing loop to brute force

416

Programming C#

nanespace Programm ng_CShar p

{
usi ng System
usi ng System Di agnosti cs;
usi ng System Thr eadi ng;

public class MyMath

{
/1 sum nunbers with a | oop
public int DoSun(int n)
{
int result = 0;
for(int i =1, i <= n; i++)
{
result +=1i;
}
return result;
}
/1 brute force by hand
public int DoSun2()
{
return 1+2+3+4+5+6+7+8+9+10+11
+12+13+14+15+16+17+18+19+20;
}
}

public class TestDriver

public static void Main()
{

const int val = 20; // val to sum

// 1,000,000 iterations
const int iterations = 1000000;

/1 hold the answer
int result = 0;

M/Math m = new MyMath();

/'l mark the start tinme
DateTinme startTinme = DateTi ne. Now,

/1 run the experinent
for (int i = 0;i < iterations;i++)

result = m DoSun(val);
}

/1 mark the el apsed tinme
Ti meSpan el apsed =
Dat eTi me. Now - startTi ne;

/1 display the results
Consol e. Wit eLi ne(
"Loop: Sumof ({0}) = {1}",
val, result);
Consol e. Wit eLi ne(

417

"The elapsed tinme in mlliseconds is: " +
el apsed. Total M I | i seconds. ToString());

/1 mark a new start tine
startTime = DateTi ne. Now;,

/'l run the experinment
for (int i = 0;i < iterations;i++)

{
}

/'l mark the new el apsed tine
el apsed = DateTi ne. Now - startTine;

result = mDoSun2();

/'l display the results
Consol e. Wit eLi ne(
"Brute Force: Sumof ({0}) = {1}",
val, result);
Consol e. Wit eLi ne(

"The elapsed tinme in mlliseconds is: " +
el apsed. Total M I | i seconds);
}
}

}

Qut put :

Loop: Sum of (20) = 210

The elapsed tine in mlliseconds is: 187.5

Brute Force: Sum of (20) = 210

The elapsed tine in mlliseconds is: 31.25

As you can see, both methods returned the same answer (one million times!), but the brute-force
method was six times faster.

Is there a way to avoid the loop and still provide a general solution? In traditional programming, the
answer would be no, but with reflection you do have one other option. You can, at runtime, take the
value the user wants (20, in this case) and write out to disk a class that implements the brute-force
solution. You can then use dynamic invocation to invoke that method.

There are at least three ways to achieve this result, each increasingly elegant. The third, reflection
emit, is the best, but a close look at two other techniques is instructive. If you are pressed for time, you
might wish to jump ahead to Section 18.5.3 later in this chapter.

18.5.1 Dynamic Invocation with InvokeMember()

The first approach will be to create a class named Br ut eFor ceSuns dynamically, at runtime. The
Br ut eFor ceSuns class will contain a method, Conput eSun(), that implements the brute-force
approach. You'll write that class to disk, compile it, and then use dynamic invocation to invoke its
brute-force method by means of the | nvokeMenber () method of the Type class. The key point is
that BruteForceSums.cs won't exist until you run the program. You'll create it when you need it and
supply its arguments then.

To accomplish this, you'll create a new class named Ref | ecti onTest . The job of the
Refl ectionTest classis to create the Br ut eFor ceSuns class, write it to disk, and compile it.
Refl ectionTest has only two methods: DoSumand Gener at eCode.

418

Programming C#

Refl ecti onTest . DoSumis a public method that returns the sum, given a value. That is, if you pass
in 10, it returns the sum of 1+2+3+4+5+6+7+8+9+10. It does this by creating the Br ut eFor ceSuns
class and delegating the job to its Conput e Summethod.

Ref | ecti onTest has two private fields:

Type theType = nul |l ;
object theCass = null;

The first is an object of type Type, which you use to load your class from disk, and the second is an
object of type obj ect, which you use to dynamically invoke the Conput eSuns() method of the

Br ut eFor ceSuns class you'll create.

The driver program instantiates an instance of Ref | ecti onTest and calls its DoSummethod,
passing in the value. For this version of the program, the value is increased to 200.

The DoSummethod checks whether t heType is null; if it is, the class has not been created yet. DoSum
calls the helper method Gener at eCode to generate the code for the Br ut eFor ceSuns class and the
class's Conmput eSuns method. Gener at eCode then writes this newly created code to a .cs file on
disk and runs the compiler to turn it into an assembly on disk. Once this is completed, DoSumcan call
the method using reflection.

Once the class and method are created, you load the assembly from disk and assign the class type
information to t he Type, and DoSumcan use that to invoke the method dynamically to get the correct
answer.

You begin by creating a constant for the value to which you'll sum:

const int val = 200;

Each time you compute a sum, it will be the sum of the values 1 to 200.

Before you create the dynamic class, you need to go back and re-create My Vat h:
MyMath m = new MyMat h() ;

Give My MVat h a method DoSunioopi ng, much as you did in the previous example:

public int DoSunmlLooping (int initialVal)

{
int result = 0;
for(int i = 1;i <=initialVal;i++)
{ _
result +=i;
}
return result;
}

This serves as a benchmark against which you can compare the performance of the brute-force
method.

Now you're ready to create the dynamic class and compare its performance with the looping version.
First, instantiate an object of type Ref | ect i onTest and invoke the DoSun{) method on that object:

Refl ectionTest t = new ReflectionTest();
result = t.DoSum(val);

419

Refl ectionTest. DoSumchecks to see if its Type field, t heType, is null. If it is, you haven't yet
created and compiled the Br ut eFor ceSuns class and must do so now:

if (theType == null)

Cener at eCode(t heVal ue) ;

The Cener at eCode method takes the value (in this case, 200) as a parameter to know how many
values to add.

Cener at eCode begins by creating a file on disk. The details of file I/O will be covered in Chapter 21.
For now, I'll walk you through this quickly. First, call the static method Fi | e. Open, and pass in the
filename and a flag indicating that you want to create the file. Fi | e. Open returns a St r eamobject:

string fileNanme = "BruteForceSuns";
Streams = File.Open(fileNanme + ".cs", FileMde.Create);

Once you have the St r eam you can create a St r eamV | t er so that you can write into that file:
StreanWiter wtr = new StreamWiter(s);

You can now use the Wi t eLi ne methods of St ream/V i t er to write lines of text into the file. Begin
the new file with a comment:

wrtr. WiteLine("// Dynanmically created BruteForceSunms class");
This writes the text:

/1 Dynam cally created BruteForceSuns cl ass

to the file you've just created (BruteForceSums.cs). Next, write out the class declaration:

string classNane = "BruteForceSuns";
wtr.WiteLine("class {0}", classNane);
wrtr. WiteLine("{");

Within the braces of the class, you create the Conput e Summethod:

wtr.WiteLine("\tpublic double ComputeSum()");
wtr.WiteLine("\t{");

wrtr. WiteLine("\t// Brute force sum nethod");
wrtr. WiteLine("\t// For value = {0}", theVval);

Now it is time to write out the addition statements. When you are done, you want the file to have this
line:

return 0+1+2+3+4+5+6+7+8+49. ..
continuing up to val ue (in this case, 200):
wtr. Wite("\treturn 0");

for (int i = 1;i<=theVal;i++)

{
}

wtr. Wite("+ {0}",i);

420

Programming C#

Notice how this works. What will be written to the file is:

\treturn 0+ 1+ 2+ 3+...
The initial \ t causes the code to be indented in the source file.

When the loop completes, you end the return statement with a semicolon and then close the method
and the class:

wtr.WiteLine(";");
wtr. WiteLine("\t}");
wtr.WiteLine("}");

Close the st reanW i t er and the stream, thus closing the file:

wrtr.Close();
s.Cose();

When this runs, the BruteForceSums.cs file will be written to disk. It will look like this:

/1 Dynamically created BruteForceSuns cl ass
cl ass Brut eForceSuns

{
publ i ¢ doubl e Comput eSum)

{

/1 Brute force sum net hod

/1 For value = 200

return O+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+
11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+
22+ 23+ 24+ 25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+
33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+
44+ 45+ 46+ 47+ 48+ 49+ 50+ 51+ 52+ 53+ 54+
55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ 63+ 64+ 65+
66+ 67+ 68+ 69+ 70+ 71+ 72+ 73+ 74+ 75+ 76+
77+ 78+ 79+ 80+ 81+ 82+ 83+ 84+ 85+ 86+ 87+
88+ 89+ 90+ 91+ 92+ 93+ 94+ 95+ 96+ 97+ 98+
99+ 100+ 101+ 102+ 103+ 104+ 105+ 106+ 107+
108+ 109+ 110+ 111+ 112+ 113+ 114+ 115+ 116+
117+ 118+ 119+ 120+ 121+ 122+ 123+ 124+ 125+
126+ 127+ 128+ 129+ 130+ 131+ 132+ 133+ 134+
135+ 136+ 137+ 138+ 139+ 140+ 141+ 142+ 143+
144+ 145+ 146+ 147+ 148+ 149+ 150+ 151+ 152+
153+ 154+ 155+ 156+ 157+ 158+ 159+ 160+ 161+
162+ 163+ 164+ 165+ 166+ 167+ 168+ 169+ 170+
171+ 172+ 173+ 174+ 175+ 176+ 177+ 178+ 179+
180+ 181+ 182+ 183+ 184+ 185+ 186+ 187+ 188+
189+ 190+ 191+ 192+ 193+ 194+ 195+ 196+ 197+
198+ 199+ 200;

}

This accomplishes the goal of dynamically creating a class with a method that finds the sum through
brute force.

The only remaining task is to build the file and then use the method. To build the file, you must start a
new process (processes are explained in some detail in Chapter 20). The best way to launch this
process is with a ProcessSt ar t | nf o structure that will hold the command line. Instantiate a
ProcessStart | nf o and set its filename to cmd.exe:

421

ProcessStartinfo psi = new ProcessStartinfo();
psi . FileName = "cnd. exe";

You need to pass in the string you want to invoke at the command line. The

ProcessStart | nfo. Argunent s property specifies the command-line arguments to use when
starting the program. The command-line argument to the cmd.exe program will be /c to tell cmd.exe to
exit after it executes the command, and then the command for cmd.exe. The command for cmd.exe is
the command-line compile:

string conpileString = "/c csc /optimze+ ";
conpileString += " /target:library ";
conmpileString += "{0}.cs > conpile.out";

The string conpi | eSt ri ng will invoke the C# compiler (csc), telling it to optimize the code (after all,
you're doing this to gain performance) and to build a dynamic link library (DLL) file (/target:library). You

redirect the output of the compile to a file named compile.out so that you can examine it if there are
errors.

You combine conpi | eSt ri ng with the filename, using the static method For nat of the string class,
and assign the combined string to psi . Ar gunent s:

psi.Argunments = String. Format (conpileString, fileNane);
The effect of all this is to set the Ar gunent s property of the ProcessSt art | nf o object psi to:

/c csc /optimze+ /target:library
Br ut eForceSuns. cs > conpi | e. out

Before invoking cmd.exe, you set the W ndowsSt y| e property of psi to M ni n zed so that when the
command executes, the window does not flicker onto and then off of the user's display:

psi. WndowStyl e = ProcessW ndowStyl e. M ni m zed;

You are now ready to start the cmd.exe process, and you will wait until it finishes before proceeding
with the rest of the Gener at eCode method:

Process proc = Process. Start(psi);
proc. WitForExit();

Once the process is done, you can get the assembly, and from the assembly, you can get the class
you've created. Finally, you can ask that class for its type and assign that to your t he Ty pe member
variable:

Assenbly a = Assenbly. LoadFron{fileNane + ".dlI|");
theC ass = a. Createl nstance(cl assNane) ;
t heType = a. Get Type(cl assNane) ;

You can now delete the .cs file you generated:

File.Delete(fileName + ".cs");

You've now filled t heType, and you're ready to return to DoSumto invoke the Conmput eSummethod
dynamically. The Type object has a method | nvokeMenber (), which can be used to invoke a

member of the class described by the Type object. The | nvokeMenber method is overloaded; the
version you'll use takes five arguments:

422

Programming C#

public object |nvokeMenber(
string nane,
Bi ndi ngFl ags i nvokeAttr,
Bi nder bi nder,
obj ect target,
object[] args

)

name
Is the name of the method you wish to invoke.

invokeAttr
Is a bit mask of Bi ndi ngFl ags that specify how the search of the object is conducted. In this
case, you'll use the | nvokelet hod flag OR'd with the Def aul t flag. These are the standard
flags for invoking a method dynamically.

binder
Is used to assist in type conversions. By passing in nul | , you'll specify that you want the
default binder.

target
Is the object on which you'll invoke the method. In this case, you'll pass in t heCl ass, which is
the class you just created from the assembly you just built.

args

Is an array of arguments to pass to the method you're invoking.
The complete invocation of | nvokelNenber looks like this:

object[] arguments = new object[O0];
obj ect retVal =
t heType. | nvokeMenber (" Comput eSuni',
Bi ndi ngFl ags. Defaul t |
Bi ndi ngFl ags. | nvokeMet hod,
nul |,
t hed ass,
argumnent s) ;
return (double) retVal;

The result of invoking this method is assigned to the local variable r et Val , which is then returned, as
a double, to the driver program. The complete listing is shown in Example 18-9.

Example 18-9. Dynamic invocation with Type and InvokeMethod()
nanespace Program ng_CShar p

{
usi ng System
usi ng System Di agnosti cs;
usi ng System | Q
usi ng System Refl ection;

/'l used to benchmark the | ooping approach
public class MyMath

{

423

}

11

{

424

11

sum nunbers with a | oop

public int DoSuniooping(int initialVal)

{

int result = 0;

for(int i = 1;i <=initialVal;i++)
{ .

result +=i;
}

return result;

responsi ble for creating the BruteForceSuns
/1 class and conpiling it and invoking the

/1 DoSuns nethod dynam cally

public class ReflectionTest

11

the public nethod called by the driver

publ i c doubl e DoSun{int theVal ue)

{

/1
pri

/1 if you don't have a reference

/1 to the dynamically created cl ass
/1 create it

if (theType == null)

{

}

/1 with the reference to the dynamically
/1 created class you can invoke the nethod
object[] argunments = new object[O0];
obj ect retVal =

t heType. | nvokeMenber (" Conput eSunt

Bi ndi ngFl ags. Def aul t

Bi ndi ngFl ags. | nvokeMet hod,

nul |,

t hed ass,

argument s) ;
return (double) retVal;

CGener at eCode(t heVal ue) ;

generate the code and conpile it
vate void GenerateCode(int theVval)

/1 open the file for witing
string fileNane = "BruteForceSuns";
Streams =
File.Open(fileName + ".cs", FileMde.Create);
StreanWiter wtr = new StreamWiter(s);
wrtr. WiteLine(
"/l Dynamically created BruteForceSuns class");

/'l create the class

string classNane = "BruteForceSuns";
wtr.WiteLine("class {0}", classNane);
wtr. WiteLine("{");

/'l create the nethod

wtr. WiteLine("\tpublic double ConputeSum()");
wtr. WiteLine("\t{");

wtr.WiteLine("\t// Brute force sum nethod");

}

Programming C#

wtr. WiteLine("\t// For value = {0}", theVal);

// wite the brute force additions
wtr. Wite("\treturn 0");

for (int i = 1;i<=theVal;i++)
{

wtr. Wite("+ {0}",i);
wrtr. WiteLine(";"); /1 finish nethod
wtr. WiteLine("\t}"); /1 end method
wtr. WiteLine("}"); /1 end cl ass

/1 close the witer and the stream
wrtr.Close();
s.Close();

/1 Build the file
ProcessStartinfo psi =

new ProcessStartinfo();
psi.FileName = "cnd. exe";

string conpileString = "/c csc /optimze+ ";
conpileString += "/target:library ";
conpileString += "{0}.cs > conpile.out";

psi . Argunents =
String. Format (conpil eString, fileNane);
psi . WndowStyl e = ProcessW ndowStyl e. M ni m zed;

Process proc = Process. Start(psi);

proc. VitForExit(); /'l wait at npbst 2 seconds

/1 Open the file, and get a
/1 pointer to the method info
Assenbly a =
Assenbl y. LoadFron(fileNanme + ".dll");
t heC ass = a. Creat el nstance(cl assNane) ;
t heType = a. Get Type(cl assNane) ;
/1l File.Delete(fileNane + ".cs"); [/ clean up

Type theType = null;
object theC ass = null;

}

public class TestDriver

{

public static void Main()

{

const int val = 200; // 1..200
const int iterations = 100000;
double result = 0;

/1 run the benchmark

MyMath m = new MyMat h() ;
DateTine startTime = DateTi ne. Now,
for (int i = 0;i < iterations;i++)

{
}

Ti meSpan el apsed =
Dat eTi ne. Now - startTine;

result = m DoSunioopi ng(val);

425

Consol e. Wit eLi ne(
“Sum of ({0}) = {1}",val,
Consol e. Wit eLi ne(
"Loopi ng. Elapsed mlliseconds:
el apsed. Total M I | i seconds +
“for {0} iterations", iterations);

result);

/1 run our reflection alternative
Refl ectionTest t =

startTine = Dat eTi ne. Now,
for (int i = 0;i < iterations;i++)
{
result = t.DoSun(val);
}
el apsed = DateTinme. Now - startTi ne;
Consol e. Wit eLi ne(
"Sum of ({0}) = {1}",val, result);

Consol e. Wit eLi ne(
"Brute Force. Elapsed mlliseconds:
el apsed. Total M I | i seconds +

"for {0} iterations", iterations);
}
}
}
CQut put :
Sum of (200) = 20100

Loopi ng. El apsed nmilliseconds:

78.125 for 100000 iterations
Sum of (200) = 20100
Brute Force. Elapsed nmilliseconds:

3843.75 for 100000 iterations

(L

new Refl ecti onTest (

)

(L

Notice that the dynamically invoked method is far slower than the loop. This is not a surprise; writing
the file to disk, compiling it, reading it from disk, and invoking the method all bring significant overhead.

You accomplished your goal, but it was a pyrrhic victory .

18.5.2 Dynamic Invocation with Interfaces

It turns out that dynamic invocation is particularly slow. You want to maintain the general approach of
writing the class at runtime and compiling it on the fly. But rather than using dynamic invocation, you'd
just like to call the method. One way to speed things up is to use an interface to call the

Conput eSunms() method directly.

To accomplish this, you need to change Ref | ecti onTest. DoSun() from:

publ i ¢ doubl e DoSum(int theVal ue)
{

if (theType == null)
Gener at eCode(t heVal ue) ;
}
object[] argunents = new object[0];
obj ect retVal =
t heType. | nvokeMenber (" Conput eSunt',

Bi ndi ngFl ags. Defaul t |

426

Bi ndi ngFl ags. | nvokeMet hod,

Programming C#

nul |,
t heFuncti on,
argument s) ;

return (double) retVal;

}

to the following:

publ i ¢ doubl e DoSunm(int theVal ue)

{
if (theConputer == null)
{
Cener at eCode(t heVal ue) ;
}
return (theConputer. ConmputeSum));
}

In this example, t heConput er is an interface to an object of type Br ut eFor ceSum It must be an
interface and not an object because when you compile this program, t heConput er won't yet exist;
you'll create it dynamically.

Remove the declarations for t het ype and t heFunct i on and replace them with:
| Comput er theConputer = null;

This declares t heConput er to be an | Conput er interface. At the top of your program, declare the
interface:

public interface | Computer
{

}

doubl e ConputeSun{);

When you create the Br ut eFor ceSumclass, you must make it implement | conput er :

wrtr. WiteLine(
"class {0} : Programm ng_CSharp. | Conputer ",
cl assNane) ;

Save your program in a project file named Reflection, and modify conpi | eSt ri ng in Gener at eCode
as follows:

string conpileString = "/c csc /optimze+ ";
conmpileString += "/r:\"Refl ection.exe\" ";
conpileString += "/target:library ";
conmpileString += "{0}.cs > conpile.out";

The compile string will need to reference the ReflectionTest program itself (Reference.exe) so that the
dynamically called compiler will know where to find the declaration of | Conput er .

After you build the assembly, you will no longer assign the instance to t heCl ass and then get the
type for t heType, as these variables are gone. Instead, you will assign the instance to the interface
| Conput er:

t heComputer = (I Conputer) a.Createl nstance(cl assNane);

427

You use the interface to invoke the method directly in DoSum

return (theConputer. ConputeSun());

Example 18-10 is the complete source code.

Example 18-10. Dynamic invocation with interfaces

nanespace Programr ng_CShar p
{
usi ng System
usi ng System Di aghosti cs;
using System |1 Q
usi ng System Refl ection;

/1 used to benchmark the | oopi ng approach

public class MyMath

initialVval)

{
/1 sum nunmbers with a | oop
public int DoSuniooping(int
{
int result = 0;
for(int i = 1;i <=initialVal;i++)
{
result +=i;
}
return result;
}
}
public interface | Computer
{
doubl e ConputeSun();
}

/'l responsible for

creating the BruteForceSums

/1 class and conpiling it and invoking the

/1 DoSuns met hod dynami cally
public class ReflectionTest

{

/1 the public nmethod called by the driver

public doubl e DoSun{int theVal ue)

{
if (theConputer == null)
{
Cener at eCode(t heVal ue) ;
}
return (theConputer. Conput eSun(
}

)

/'l generate the code and conpile it
private void GenerateCode(int theVal)

{
/1 open the file for witing
string fileName = "BruteForceSuns";
Streams =

File. Open(fileNane + ".cs",
StreamWiter wtr =
wrtr. WiteLine(

"/l Dynam cally created BruteForceSuns class");

428

Fi | eMode. Create) ;

new StreamiWiter(s);

}

Programming C#

/] create the class

string classNane = "BruteForceSuns";

wrtr. WiteLine(
"class {0} : Programm ng_CSharp. | Conmputer ",
cl assNan®) ;

wtr.WiteLine("{");

/1 create the nethod

wtr. WiteLine("\tpublic double ConputeSum()");
wtr. WiteLine("\t{");

wtr.WiteLine("\t// Brute force sum nethod");
wtr.WiteLine("\t// For value = {0}", theVal);

// wite the brute force additions
wtr. Wite("\treturn 0");

for (int i = 1;i<=theVal;i++)
{

wtr. Wite("+ {0}",i);
wtr.WiteLine(";"); /1 finish method
wtr. WiteLine("\t}"); /1 end method
wtr. WiteLine("}"); /1 end cl ass

/] close the witer and the stream
wtr.Cose();
s.Close();

[/ Build the file
ProcessStartinfo psi =
new ProcessStartlnfo();
psi.FileName = "cnd. exe";
string conpileString = "/c csc /optimze+ ";

conpileString += "/r:\"Refl ection.exe\" ";

conpil eString += "/target:library ";
conpileString += "{0}.cs > conpile.out";

psi . Argunments =
String. Format (conpil eString, fileNane);
psi . WndowStyl e = ProcessW ndowStyl e. M ni m zed;

Process proc = Process. Start(psi);

proc. Wai t ForExit(); // wait at nost 2 seconds

/1 Open the file, and get a
/1 pointer to the nmethod info
Assenbly a =
Assenbly. LoadFrom(fil eName + ".dlI");

t heComputer = (1 Conputer) a.Createlnstance(cl assNane);

File.Delete(fileNane + ".cs"); [/ clean up

| Conput er theConputer = null;

}

public class TestDriver

public static void Main()

{

const int val = 200; // 1..200
const int iterations = 100000;
double result = 0;

429

/[l run the benchmark
MyMath m = new MyMat h();
DateTine startTinme = DateTi ne. Now,

for (int i = 0;i < iterations;i++)
{

result = m DoSunioopi ng(val);
}

Ti meSpan el apsed =
Dat eTi ne. Now -
Consol e. Wit eLi ne(
“Sum of ({0}) = {1}", val
Consol e. Wit eLi ne(
"Looping. Elapsed mlliseconds: " +
el apsed. Total M I | i seconds +
for {0} iterations", iterations);

startTi me;

result);

/1 run our reflection alternative
Refl ectionTest t = new Refl ectionTest (

startTime =
for (int

{
}

el apsed = DateTi ne. Now -
Consol e. Wit eLi ne(
"Sum of ({0}) = {1}",val,
Consol e. Wit eLi ne(
"Brute Force. Elapsed m|liseconds:
el apsed. Total M | | i seconds +
for {0} iterations", iterations);

Dat eTi ne. Now,
O;i < iterations;i++)

result = t.DoSun(val);

startTi me;

result);

Qut put :
Sum of (200) = 20100
Loopi ng. El apsed m | liseconds:
140. 625 for 100000 iterations
Sum of (200) = 20100
Brute Force. El apsed m|liseconds:
875 for 100000 iterations

)

+

This output is much more satisfying; our dynamically created brute-force method now runs nearly
twice as fast as the loop does. But you can do a lot better than that with reflection emit.

18.5.3 Dynamic Invocation with Reflection Emit

So far you've created an assembly on the fly by writing its source code to disk and then compiling that
source code. You then dynamically invoked the method you wanted to use from that assembly, which
was compiled on disk. That brings a lot of overhead, and what have you accomplished? When you're
done with writing the file to disk, you have source code you can compile, and when you're done
compiling, you have IL (Intermediate Language) op codes on disk you can ask the .NET Framework to

run.

Reflection emit allows you to skip a few steps and just "emit" the op codes directly. This is writing
assembly code directly from your C# program and then invoking the result. It just doesn't get any

cooler than that.

430

Programming C#

You start much as you did in the previous examples. You create a constant for the number to add to
(200) and the number of iterations (1,000,000). You then re-create the my Vat h class as a benchmark.

Once again you have a Ref | ect i onTest class, and once again you call DoSum passing in the value:

Refl ectionTest t = new ReflectionTest();
result = t.DoSum(val);

Do Sumitself is virtually unchanged:

publ i ¢ doubl e DoSum(int theVal ue)

{
if (theConputer == null)
{
Cener at eCode(t heVval ue) ;
}
/1 call the nethod through the interface
return (theConputer. ConmputeSum));
}

As you can see, you will use an interface again, but this time you are not going to write a file to disk.

Cener at eCode is quite different now. You no longer write the file to disk and compile it; instead you
call the helper method Eni t Assenbl y and get back an assembly. You then create an instance from
that assembly and cast that instance to your interface.

public void CGenerateCode(int theVal ue)

{
Assenbly theAssenbly = Em t Assenbl y(t heVal ue) ;
t heComputer = (I Conputer)
t heAssenbl y. Creat el nst ance(" Brut eForceSuns") ;
}

As you might have guessed, the magic is stashed away in the Eni t Assenbl y method:
private Assenmbly Em t Assenbl y(int theVal ue)

The value you pass in is the sum you want to compute. To see the power of reflection emit, you'll
increase that value from 200 to 2,000.

The first thing to do in Eni t Assenbl v is to create an object of type Assenbl yNane and give that
Assenbl yNane object the name " DoSumAssenbl y":

Assenbl yNane assenbl yName = new Assenbl yNanme();
assenbl yNanme. Nanme = "DoSumAssenbl y";

An Assenbl yNane is an object that fully describes an assembly's unique identity. As discussed in
Chapter 13, an assembly's identity consists of a simple name (DoSunAssenbl y), a version number,
a cryptographic key pair, and a supported culture.

With this object in hand, you can create a new Assenbl yBui | der object. To do so, you call

Def i neDynam cAssenbl y on the current domain, which you get by calling the static Get Dorai n()
method of the Thr ead object. Domains are discussed in detail in Chapter 19.

431

The parameters to the Get Domai n() method are the Assenbl yNane object you just created and an
Assenbl yBui | der Access enumeration value (one of Run, RunandSave, or Save). You'll use Run
in this case to indicate that the assembly can be run but not saved:

Assenbl yBui | der newAssenbly =
Thread. Get Donai n(). Defi neDynam cAssenbl y(assenbl yNane,
Assenbl yBui | der Access. Run) ;

With this newly created Assenbl yBui | der object, you are ready to create a Vbdul eBui | der object.
The job of the Modul eBui | der, not surprisingly, is to build a module dynamically. Modules are
discussed in Chapter 17. You call the Def i neDynami cMVbdul e method, passing in the name of the
method you want to create:

Modul eBui | der newiMbdul e =
newAssenbl y. Def i neDynam cModul e(" Sum') ;

Now, given that module, you can define a public class and get back a TypeBui | der object.
TypeBui | der is the root class used to control the dynamic creation of classes. With a TypeBui | der
object, you can define classes and add methods and fields:

TypeBui | der nyType =
newibdul e. Def i neType(" Brut eForceSuns", TypeAttributes. Public);

You are now ready to mark the new class as implementing the | Conput er interface:
myType. Addl nt er f acel npl enent ati on(typeof (I Conmputer));

You're almost ready to create the Conput e Summethod, but first you must set up the array of
parameters. Because you have no parameters at all, you create an array of zero length:

Type[] paranTypes = new Type[O0];
You then create a Type object to hold the return type for your method:
Type returnType = typeof(int);

You're ready to create the method. The Def i nelVet hod() method of TypeBui | der will both create
the method and return an object of type Met hodBui | der, which you will use to generate the IL code:

Met hodBui | der si nmpl eMet hod =
myType. Def i neMet hod(" Conput eSunt',
Met hodAttri butes. Public |
Met hodAttri butes. Virtual,
returnType,
par anlypes) ;

You pass in the name of the method, the flags you want (publ i ¢ and vi r t ual), the return type
(i nt), and the par amlypes (the zero length array).

You then use the Vet hodBui | der object you created to get an | LCener at or object:

| LGenerat or generator = sinpleMethod. GetlLCGenerator();

432

Programming C#

With your precious | LGener at or object in hand, you are ready to emit the op codes. These are the
very op codes that the C# compiler would have created. (In fact, the best way to get the op codes is to
write a small C# program, compile it, and then examine the op codes in ILDasm!)

First emit the value O to the stack. Then loop through the number values you want to add (1 through
200), adding each to the stack in turn, adding the previous sum to the new number and leaving the
result on the stack:

generator. Emt (OpCodes. Ldc_I| 4, 0);
for (int i = 1; i <= theValue;i++)
{
generator. Emt(OpCodes. Ldc_I|4, i);

generator. Emt (OpCodes. Add) ;
}

The value that remains on the stack is the sum you want, so you'll return it:
generator. Emt (OpCodes. Ret);
You're ready now to create a Vet hodl nf o object that will describe the method:

Met hodl nf o conput eSum nfo =
t ypeof (1 Conput er) . Get Met hod(" Conput eSunt') ;

Now you must specify the implementation that will implement the method. You call

Def i neMet hodOverri de onthe TypeBui | der object you created earlier, passing in the
Vet hodBui | der you created, along with the Vet hodl nf o object you just created:
nmyType. Def i neMet hodOverri de(si npl eMet hod, conputeSum nf o) ;

You're just about done; create the class and return the assembly:

nmyType. Creat eType();
return newAssenbly;

OK, | didn't say it was easy, but it is really cool, and the resulting code runs very fast. The normal loop
runs 1,000,000 iterations in 11.5 seconds, but the emitted code runs in .4 second! A full 3,000% faster.
Example 18-11 is the full source code.

Example 18-11. Dynamic invocation with reflection emit
nanmespace Programm ng_CShar p

{
usi ng System
usi ng System Di agnosti cs;
usi ng System |G,
usi ng System Refl ection;
usi ng System Reflection. Emt;
usi ng System Thr eadi ng;

/1 used to benchmark the | oopi ng approach
public class MyMath
{
/1 sum numbers with a | oop
public int DoSuniooping(int initialVal)
{
int result = 0;
for(int i = 1;i <=initialVal;i++)

433

{
}

return result;

result +=i;

}

/] declare the interface
public interface I Conputer

{
}

public class ReflectionTest

i nt ConmputeSunm();

/1 the private nmethod which enmits the assenbly
/1 using op codes
private Assenbly EnitAssenbl y(int theVal ue)
{

/1l Create an assenbly nane

Assenbl yNanme assenbl yNane =

new Assenbl yNanme();
assenbl yName. Nanme = "DoSumAssenbl y";

/1l Create a new assenbly with one nodul e
Assenbl yBui | der newAssenmbly =

Thr ead. Get Domai n(). Defi neDynami cAssenbl y(

assenbl yNanme, Assenbl yBuil der Access. Run);
Modul eBui | der newiMbdul e =
newAssenbl y. Def i neDynam cModul e(" Sum') ;

/1 Define a public class nanmed "BruteForceSuns

/1 in the assenbly.
TypeBui | der nmyType =
newModul e. Def i neType(
"Brut eForceSuns", TypeAttributes. Public);

/1 Mark the class as inplenenting I Conputer
nyType. Addl nt er f acel npl ement at i on(
t ypeof (1 Conputer));

/1 Define a nmethod on the type to call. Pass an
/1 array that defines the types of the paraneters,
/1l the type of the return type, the name of the

/1 method, and the nmethod attributes.
Type[] paranTypes = new Type[O0];
Type returnType = typeof(int);
Met hodBui | der si mpl eMet hod =
nyType. Def i neMet hod(
" Conput eSunt',
Met hodAttri but es. Public
Met hodAttri butes. Virtual
returnType
par amrypes) ;

/1l Get an ILGenerator. This is used
/1 to enmt the IL that you want.
| LGenerator generator =

si mpl eMet hod. Get | LGenerator();

/1 Emit the IL that you'd get if you

Programming C#

/1 conpiled the code exanple
/1 and then ran ILDasm on the output.

/1l Push zero onto the stack. For each 'i
/1 less than 'theVal ue'

/1 push "i' onto the stack as a constant

/1 add the two values at the top of the stack
/1 The sumis left on the stack
generator. Emt (OpCodes. Ldc_I 4, 0);

for (int i =1; i <= theValue;i++)

{

generator. Emt(OpCodes. Ldc 14, i);
gener ator. Em t (OpCodes. Add) ;

}

/1l return the val ue
generator. Emt (OpCodes. Ret) ;

/1 Encapsul ate i nformati on about the nmethod and
/I provide access to the nethod' s netadata
Met hodl nf o conput eSum nfo =

t ypeof (1 Conmput er) . Get Met hod(" Conmput eSunt') ;

/1 specify the nmethod inplenmentation.

/1 Pass in the MethodBuil der that was returned
/1 by calling DefineMethod and the nethodl nfo
/1 just created

nyType. Def i neMet hodOverri de(si npl eMet hod, conput eSum nf o) ;

/1l Create the type
myType. Creat eType();
return newAssenbly;

}

/1 check if the interface is nul
/1 if so, call Setup.
publ i c doubl e DoSun{int theVal ue)

{
if (theComputer == null)
{
CGener at eCode(t heVal ue) ;
}
/1 call the nmethod through the interface
return (theConputer. ConputeSun());
}

/1 emt the assenbly, create an instance
/1 and get the interface
public void GenerateCode(int theVal ue)

{
Assenbly theAssenbly = Em t Assenbl y(theVal ue);
t heComputer = (| Computer)
t heAssenbl y. Creat el nst ance(" Brut eFor ceSuns") ;
}

/1 private nenber data
| Conput er theConmputer = null;

435

public class TestDriver

{
public static void Main()

{
const int val = 2000; // Note 2,000

// 1 mllion iterations!
const int iterations = 1000000;
double result = 0;

/1 run the benchmark

MyMath m = new MyMat h() ;

Dat eTinme startTime = DateTi ne. Now,
for (int i = 0;i < iterations;i++)

{
}

Ti meSpan el apsed =

Dat eTi me. Now - startTi ne;
Consol e. Wit eLi ne(

“Sum of ({0}) = {1}",val, result);
Consol e. Wit eLi ne(

"Looping. Elapsed mlliseconds: " +

el apsed. Total M I | i seconds +

" for {0} iterations", iterations);

result = m DoSunioopi ng(val);

/'l run our reflection alternative
Refl ectionTest t = new ReflectionTest();

startTi me = Dat eTi ne. Now;
for (int i = 0;i < iterations;i++)

{
}

el apsed = DateTinme. Now - startTi ne;
Consol e. Wit eLi ne(

"Sum of ({0}) = {1}",val, result);
Consol e. Wit eLi ne(

"Brute Force. Elapsed mlliseconds: " +

el apsed. Total M I | i seconds +

" for {0} iterations", iterations);

t. DoSun{val);

result

}
Qut put :

Sum of (2000) = 2001000

Loopi ng. El apsed mlliseconds:
11468. 75 for 1000000 iterations
Sum of (2000) = 2001000

Brute Force. Elapsed mlliseconds:
406. 25 for 1000000 iterations

Reflection emit is a powerful technique for emitting op codes. Although today's compilers are very fast
and today's machines have lots of memory and processing speed, it is comforting to know that when
you must, you can get right down to the virtual metal.

436

Programming C#

Chapter 19. Marshaling and Remoting

The days of integrated programs all running in a single process on a single machine are, if not dead,
at least seriously wounded. Today's programs consist of complex components running in multiple
processes, often across the network. The Web has facilitated distributed applications in a way
unthinkable even a few years ago, and the trend is toward distribution of responsibility.

A second trend is toward centralizing business logic on large servers. Although these trends appear to
be contradictory, in fact they are synergistic: business objects are being centralized while the user
interface and even some middleware is being distributed.

The net effect is that objects need to be able to talk with one another at a distance. Objects running on
a server handling the web user interface need to be able to interact with business objects living on
centralized servers at corporate headquarters.

The process of moving an object across a boundary is called remoting. Boundaries exist at various
levels of abstraction in your program. The most obvious boundary is between objects running on
different machines.

The process of preparing an object to be remoted is called marshaling. On a single machine, objects
might need to be marshaled across context, app domain, or process boundaries.

A process is essentially a running application. If an object in your word processor wants to interact with
an object in your spreadsheet, they must communicate across process boundaries.

Processes are divided into application domains (often called "app domains"); these in turn are divided
into various contexts. App domains act like lightweight processes, and contexts create boundaries
within which objects with similar rules can be contained. At times, objects will be marshaled across
both context and app domain boundaries, as well as across process and machine boundaries.
(Processes, app domains, and contexts are all explained in greater detail later in this chapter.)

When an object is remoted, it appears to be sent through the wire from one computer to another,
much like Captain Kirk being teleported down to the surface of a planet some miles below the orbiting
USS Enterprise.

In Star Trek, Kirk was actually sent to the planet, but in the .NET edition it is all an illusion. If you are
standing on the surface of the planet, you might think you are seeing and talking with the real Kirk, but
you are not talking to Kirk at all; you are talking to a proxy, or a simulation whose job is to take your
message and beam it up to the Enterprise where it is relayed to the real Kirk. Between you and Kirk
there are also a number of "sinks."

A sink is an object whose job is to enforce policy. For example, if Kirk tries to tell you something that
might influence the development of your civilization, the prime-directive sink might disallow the
transmission.

When the real Kirk responds, he passes his response through various sinks until it gets to the proxy
and the proxy tells you. It seems to you like Kirk is really there, but he's actually sitting on the bridge,
yelling at Scotty that he needs more power.

The actual transmission of your message is done by a channel. The channel's job is to know how to
move the message from the Enterprise to the planet. The channel works with a formatter. The
formatter makes sure the message is in the right format. Perhaps you speak only Vulcan, and the poor
Captain does not. The formatter can translate your message into Federation Standard, and translate
Kirk's response from Federation Standard back to Vulcan. You appear to be talking with one another,
but the formatter is silently facilitating the communication.

437

This chapter demonstrates how your objects can be marshaled across various boundaries, and how
proxies and stubs can create the illusion that your object has been squeezed through the network
cable to a machine across the office or around the world. In addition, this chapter explains the role of
formatters, channels, and sinks, and how to apply these concepts to your programming.

19.1 Application Domains

A process is, essentially, a running application. Each .NET application runs in its own process. If you
have Word, Excel, and Visual Studio open, you have three processes running. If you open another
copy of Word, another process starts up. Each process is subdivided into one or more application
domains (or app domains). An app domain acts like a process but uses fewer resources.

App domains can be independently started and halted; they are secure, lightweight, and versatile. An
app domain can provide fault tolerance; if you start an object in a second app domain and it crashes, it
will bring down the app domain but not your entire program. You can imagine that web servers might
use app domains for running users' code; if the code has a problem, the web server can maintain
operations.

An app domain is encapsulated by an instance of the AppDonai n class, which offers a number of
methods and properties. A few of the most important are listed in Table 19-1.

Table 19-1. Methods and properties of the AppDomain class

Method or Property Details

Public static property that returns the current application domain for
the current thread

Cur rent Donmi n

Cr eat eDormai n() Overk_)aded public static method that creates a new application
domain

Get Current Threadl D() Public static method that returns the current thread identifier

Unl oad() Public static method that removes the specified app domain

Fri endl yNane Public property that returns the friendly name for this app domain

) Overloaded public method that defines a dynamic assembly in the

Def i i cAssenbl .
| neDynam cAsse ¥ current app domain

Execut eAssenbl y() Public method that executes the designated assembly

Get Data() Public_ mgthod that gets the value stored in the current application
domain given a key

Load() Public method that loads an assembly into the current app domain

Set AppDomai nPol i cy() Z;k:}l:;nmethod that sets the security policy for the current app

Set Dat a() Public method that puts data into the specified app domain property

App domains also support a variety of events, including Assenbl yLoad, Assenbl yResol ve,
ProcessExi t,and ResourceResol ve, that are fired as assemblies are found, loaded, run, and
unloaded.

Every process has an initial app domain, and can have additional app domains as you create them.
Each app domain exists in exactly one process. Until now, all the programs in this book have been in a
single app domain: the default app domain. Each process has its own default app domain. In many,
perhaps most of the programs you write, the default app domain will be all that you'll need.

However, there are times when a single domain is insufficient. You might create a second app domain
if you need to run a library written by another programmer. Perhaps you don't trust that the library, and
want to isolate it in its own domain so that if a method in the library crashes the program, only the
isolated domain will be affected. If you were the author of Internet Information Server (lIS, Microsoft's

438

Programming C#

web hosting software), you might spin up a new app domain for each plug-in application or each virtual
directory you host. This would provide fault tolerance, so that if one web application crashed, it would
not bring down the web server.

It is also possible that the other library might require a different security environment; creating a
second app domain allows the two security environments to co-exist. Each app domain has its own
security, and the app domain serves as a security boundary.

App domains are not threads and should be distinguished from threads. A thread exists in one app
domain at a time, and a thread can access (and report) in which app domain it is executing. App
domains are used to isolate applications; within an app domain there might be multiple threads
operating at any given moment (see Chapter 22).

To see how app domains work, let's set up an example. Suppose you wish your program to instantiate
a Shape class, but in a second app domain.

i

There is no good reason for this Shape class to be putin a
«2 1. second app domain, except to illustrate how these techniques
— &% work. It is possible, however, that more complex objects might

need a second app domain to provide a different security
environment. Further, if you are creating classes which might
engage in risky behavior, you might like the protection of starting
them in a second app domain.

Normally, you'd load the Shape class from a separate assembly, but to keep this example simple,
you'll just put the definition of the Shape class into the same source file as all the other code in this
example (see Chapter 17). Further, in a production environment, you might run the Shape class
methods in a separate thread, but for simplicity, you'll ignore threading for now. (Threading is covered
in detail in Chapter 20) By sidestepping these ancillary issues, you can keep the example
straightforward and focus on the details of creating and using application domains and marshaling
objects across app domain boundaries.

19.1.1 Creating and Using App Domains

You create a new app domain by calling the static method Cr eat eDonai n() on the AppDomai n
class:

AppDomai n ad2 =
AppDonai n. Cr eat eDonai n(" Shape Domai n", null, null);

This creates a new app domain with the friendly name Shape Donai n. The friendly name is a
convenience to the programmer; it is a way to interact with the domain programmatically without
knowing the internal representation of the domain. You can check the friendly name of the domain
you're working in with the property Syst em AppDorai n. Cur rent Domai n. Fri endl yNare.

Once you have instantiated an AppDonai n object, you can create instances of classes, interfaces,
and so forth using its Cr eat el nst ance() method. Here's the signature:

public ObjectHandl e Createl nstance(
string assenbl yNane,
string typeNane,
bool i gnoreCase,
Bi ndi ngFl ags bi ndi ngAttr,
Bi nder bi nder,

439

object[] args,

Culturelnfo culture,

object[] activationAttri butes,
Evi dence securityAttributes

)
And here's how to use it:

Obj ect Handl e oh = ad2. Creat el nst ance(

" Pr ogCShar p", /'l the assenbly nanme

" Pr ogCShar p. Shape", /'l the type nanme with
nanespace

fal se, /'l ignore case

System Refl ecti on. Bi ndi ngFl ags. Creat el nstance, // flag

nul |, /'l binder

new object[] {3, 5}, /'l args

nul |, /'l culture

nul |, /1 activation attributes
null); /'l security attributes

The first parameter (Pr ogCShar p) is the name of the assembly, and the second
(ProgCsShar p. Shape) is the name of the class. The class name must be fully qualified by
namespaces.

A binder is an object that enables dynamic binding of an assembly at runtime. Its job is to allow you to
pass in information about the object you want to create, to create that object for you, and to bind your
reference to that object. In the vast majority of cases, including this example, you'll use the default
binder, which we accomplish by passing in nul | .

It is possible, of course, to write your own binder, which might, for example, check your ID against
special permissions in a database and reroute the binding to a different object, based on your identity
or your privileges.

e "Binding" typically refers to attaching an object name to an object.
.) "Dynamic binding" refers to the ability to make that attachment
" 4% when the program is running, as opposed to when it is compiled.

In this example, the Shape object is bound to the instance
variable at runtime, through the app domain's
Creat el nstance() method.

Binding flags help the binder fine-tune its behavior at binding time. In this example, you'd use the

Bi ndi ngFl ags enumeration value Cr eat el nst ance. The default binder normally only looks at
public classes for binding, but you can add flags to have it look at private classes if you have the right
permissions.

When you bind an assembly at runtime, you do not specify the assembly to load at compile time, but
rather, determine which assembly you want programmatically and bind your variable to that assembly
when the program is running.

The constructor we're calling takes two integers, which must be put into an object array (new
object[] {3, 5}).Wecansendnul!l forthe culture because we'll use the default (en) culture
and won't specify activation attributes or security attributes.

What you get back is an object handle , a t ype that is used to pass an object (in a wrapped state)
between multiple app domains without loading the metadata for the wrapped object in each object

440

Programming C#

through which the Cbj ect Hand! e travels. You can get the actual object itself by calling UnW ap()
on the object handle, and casting the resulting object to the actual type—in this case, Shape.

The Creat el nst ance() method provides an opportunity to create the object in a new app domain.
If you were to create the object with new, it would be created in the current app domain.

19.1.2 Marshaling Across App Domain Boundaries

You've created a Shape object in the Shape domain, but you're accessing it through a Shape object
in the original domain. To access the shape object in another domain, you must marshal the object
across the domain boundary.

Marshaling is the process of preparing an object to move across a boundary; once again, like Captain
Kirk teleporting to the planet's surface. Marshaling is accomplished in two ways: by value or by
reference. When an object is marshaled by value, a copy is made. It is as if | called you on the phone
and asked you to send me your calculator, and you called up the hardware store and had them send
me one that is identical to yours. | can use the copy just as | would the original, but entering numbers
on my copy has no effect on your original.

Marshaling by reference is almost like sending me your own calculator. Here's how it works. You do
not actually give me the original, you keep that in your house, but you send me a proxy. The proxy is
very smart: when | press a button on my proxy calculator, it sends a signal to your original calculator,
and the number appears over there. Pressing buttons on the proxy looks and feels to me just like |
reached through the telephone wire between us and touched your original calculator.

19.1.2.1 Understanding marshaling with proxies

The Captain Kirk and hardware analogies are fine as far as analogies go, but what actually happens
when you marshal by reference? The Common Language Runtime (CLR) provides your calling object
with a transparent proxy (TP).

The job of the TP is to take everything known about your method call (the return value, the parameters,
etc.) off of the stack and stuff it into an object which implements the | Message interface. That
| Message is passed to a Real Pr oxy object.

Real Proxy is an abstract base class from which all proxies derive. You can implement your own real
proxy, or any of the other objects in this process except for the transparent proxy. The default real
proxy will hand the | Message to a series of sink objects.

Any number of sinks can be used depending on the number of policies you wish to enforce, but the
last sink in a chain will put the | Message into a Channel . Channels are split into client-side and
server-side channels, and their job is to move the message across the boundary. Channels are
responsible for understanding the transport protocol. The actual format of a message as it moves
across the boundary is managed by a formatter. The .NET Framework provides two formatters: a
Simple Object Access Protocol (SOAP) formatter which is the default for HTTP channels, and a Binary
formatter which is the default for TCP/IP channels. You are free to create your own formatters and, if
you are truly a glutton for punishment, your own channels.

Once a message is passed across a boundary, it is received by the server-side channel and formatter,
which reconstitute the | Message and pass it to one or more sinks on the server side. The final sink in
a sink chain is the St ackBui | der , whose job is to take the | Message and turn it back into a stack
frame so that it appears to be a function call to the server.

19.1.2.2 Specifying the marshaling method

441

To illustrate the distinction between marshaling by value and marshaling by reference, in the next
example, you'll tell the Shape object to marshal by reference, but give it a member variable of type
Poi nt , which you'll specify as marshal by value.

Note that each time you create an object that might be used across a boundary, you must choose how
it will be marshaled. Normally, objects cannot be marshaled at all; you must take action to indicate that
an object can be marshaled, either by value or by reference.

The easiest way to make an object marshal by value is to mark it with the Ser i al | zabl e attribute:

[Serializable]
public class Point

(When an object is serialized, its internal state is written out to a stream, either for marshaling or for
storage. The details of serialization are covered in Chapter 21.)

The easiest way to make an object marshal by reference is to derive its class from
Mar shal ByRef Obj ect :

public class Shape : Marshal ByRef Obj ect

The Shape class will have just one member variable, upper Lef t . This variable will be a Poi nt
object, which will hold the coordinates of the upper-left corner of the shape.

The constructor for Shape will initialize its Poi nt member:

publ i ¢ Shape(int upperLeftX, int upperLeftY)

{
Console. WiteLine("[{0}] Event{1}",
Syst em AppDorai n. Curr ent Domai n. Fri endl yNane,
"Shape constructor");
upper Left = new Poi nt (upper Left X, upperlLeftY);
}

Provide Shape with a method for displaying its position:

public void ShowUpperLeft()

{

Console. WiteLine("[{0}] Upper left: {1},{2}",
Syst em AppDomai n. Cur r ent Donai n. Fri endl yNane,
upper Left. X, upperLeft.Y);

}

Also provide a second method for returning its upper Lef t member variable:

public Point GetUpperLeft()
{

}

return upperlLeft;

The Poi nt class is very simple as well. It has a constructor that initializes its two member variables
and accessors to get their value.

Once you create the Shape, ask it for its coordinates:

s1. ShowUpperLeft(); /'l ask the object to display

442

Programming C#

Then ask it to return its upper Lef t coordinate as a Poi nt object that you'll change:

Poi nt | ocal Point = sl1.GetUpperLeft();

| ocal Poi nt. X
| ocal Point.Y

500;
600;

Ask that Poi nt to print its coordinates, and then ask the Shape to print its coordinates. So, will the
change to the local Poi nt object be reflected in the Shape? That will depend on how the Poi nt
object is marshaled. If it is marshaled by value, the | ocal Poi nt object will be a copy, and the Shape
object will be unaffected by changing the | ocal Poi nt variables' values. If, on the other hand, you
change the Poi nt object to marshal by reference, you'll have a proxy to the actual upper Lef t
variable, and changing that will change the Shape. Example 19-1 illustrates.

Example 19-1. Marshaling across app domain boundaries
usi ng System
usi ng System Runti me. Renoti ng;

usi ng System Refl ection;

nanespace ProgCSharp

{

/1 for marshal by reference coment out

/1 the attribute and uncomment the base cl ass
[Serializable]

public class Point // : Marshal ByRef Obj ect

{
public Point (int x, int y)
{
Console.WiteLine("[{0}] {1}",
Syst em AppDomai n. Cur r ent Donai n. Fri endl yNane,
"Point constructor");
this.x = x;
this.y =vy;
}
public int X
{
get
{
Console. WiteLine("[{0}] {1}",
Syst em AppDomai n. Cur r ent Donai n. Fri endl yNane,
"Point x.get");
return this.x;
}
set
{
Consol e.WiteLine("[{0}] {1}",
Syst em AppDonai n. Cur r ent Domai n. Fri endl yNane,
"Point x.set");
this.x = val ue;
}
}

public int Y

{
get
{
Console. WiteLine("[{0}] {1}",
Syst em AppDonai n. Cur r ent Domai n. Fri endl yNane,
"Point y.get");
return this.y;
}
set
{
Console. WiteLine("[{O0}] {1}",
Syst em AppDonai n. Cur r ent Domai n. Fri endl yNane,
"Point y.set");
this.y = val ue;
}
}

private int x;
private int vy;

}

/1 the shape class marshals by reference
public class Shape : Marshal ByRef Obj ect

{
publ i c Shape(int upperLeftX, int upperLeftY)

{
Console. WiteLine("[{0}] {1}",

Syst em AppDonai n. Curr ent Domai n. Fri endl yNane,
"Shape constructor");
upper Left = new Poi nt (upperLeftX, upperLeftY);

public Point GetUpperLeft()

{
return upperLeft;
}
public void ShowUpperLeft()
{

Console. WiteLine("[{0}] Upper left: {1},{2}",
Syst em AppDonai n. Cur r ent Domai n. Fri endl yNane,
upper Left. X, upperLeft.Y);

private Point upperlLeft;

public class Tester

{
public static void Main()

{

Consol e. WiteLine("[{0}] {1}",
Syst em AppDonai n. Cur r ent Domai n. Fri endl yNane,
"Entered Main");

/'l create the new app donain
AppDonmai n ad2 =
Syst em AppDonai n. Cur r ent Donai n. Cr eat eDomai n(

Programming C#

" Shape Donai n");

/1 Assenbly a = Assenbly. LoadFron(" ProgCShar p. exe");
/1 Object theShape = a. Createl nstance(" Shape");
/1 instantiate a Shape object
hj ect Handl e oh = ad2. Creat el nst ance(
" Pr ogCShar p",
"ProgCsShar p. Shape", fal se,
Syst em Ref |l ecti on. Bi ndi ngFl ags. Cr eat el nst ance,
null, new object[] {3, 5},
null, null, null);

Shape sl1 = (Shape) oh.Unwrap();
sl. ShowUpperLeft(); /1 ask the object to display

/1 get a local copy? proxy?
Poi nt | ocal Point = sl1.CGetUpperlLeft();

/'l assign new val ues
| ocal Poi nt. X 500;
| ocal Point.Y 600;

/1 display the value of the |ocal Point object
Console. WiteLine("[{0}] local Point: {1}, {2}",
Syst em AppDomai n. Cur r ent Donai n. Fri endl yNane,
I ocal Point. X, |ocal Point.Y);

s1. ShowUpperLeft(); /1 show the val ue once nore

}
CQut put :

[Programm ng CSharp.exe] Entered Miin
[Shape Donmi n] Shape constructor

[Shape Donmi n] Poi nt constructor

[Shape Donmi n] Poi nt x.get

[Shape Domai n] Point y.get

[Shape Donmi n] Upper left: 3,5

[Programm ng CSharp. exe] Point x.set

[Progranmm ng CSharp. exe] Point y.set
[Programm ng CSharp. exe] Point x.get

[Programm ng CSharp. exe] Point y.get

[Programm ng CSharp. exe] |ocal Point: 500, 600
[Shape Domai n] Point x.get

[Shape Donmi n] Point y. get

[Shape Donmi n] Upper left: 3,5

Read through the code, or better yet, put it in your debugger and step through it. The output reveals
that the Shape and Poi nt constructors run in the Shape domain, as does the access of the values of
the Poi nt object in the Shape.

The property is set in the original app domain, setting the local copy of the Poi nt object to 500 and
600. Because Poi nt is marshaled by value, however, what you are setting is a copy of the Poi nt
object, and when you ask the Shape to display its upper Lef t member variable, it is unchanged.

To complete the experiment, comment out the attribute at the top of the Poi nt declaration and
uncomment the base class:

/'l [serializable]
public class Point : Mar shal ByRef Obj ect

Now run the program again. The output is quite different:

[Programm ng CSharp.exe] Entered Main
[Shape Dommi n] Shape constructor

[Shape Donmi n] Poi nt constructor

[Shape Donmi n] Poi nt x. get

[Shape Dommi n] Point y. get

[Shape Domai n] Upper left: 3,5

[Shape Domai n] Poi nt x.set

[Shape Donmi n] Point y.set

[Shape Donmi n] Poi nt x. get

[Shape Domai n] Poi nt y. get

[Programm ng CSharp. exe] | ocal Point: 500, 600
[Shape Domai n] Poi nt x. get

[Shape Domai n] Point y.get

[Shape Donmi n] Upper |eft: 500,600

This time you get a proxy for the Poi nt object and the properties are set through the proxy on the
original Poi nt member variable. Thus, the changes are reflected within the Shape itself.

19.2 Context

App domains themselves are subdivided into contexts. Contexts can be thought of as boundaries
within which objects share usage rules. These usage rules include synchronization transactions (see
Chapter 20), and so forth.

19.2.1 Context-Bound and Context-Agile Objects

Objects are either context-bound, or they are context-agile. If they are context-bound, they exist in a

context, and to interact with them the message must be marshaled. If they are context-agile, they act
within the context of the calling object; that is, their methods execute in the context of the object that

invokes the method and so marshaling is not required.

Suppose you have an object A that interacts with the database and so is marked to support
transactions. This creates a context. All method calls on A occur within the context of the protection
afforded by the transaction. Object A can decide to roll back the transaction, and all actions taken
since the last commit are undone.

Suppose that you have another object, B, which is context-agile. Now suppose that object A passes a
database reference to object B and then calls methods on B. Perhaps A and B are in a call-back
relationship, in which B will do some work and then call A back with the results. Because B is context-
agile, B's method operates in the context of the calling object; thus it will be afforded the transaction
protection of object A. The changes B makes to the database will be undone if A rolls back the
transaction, because B's methods execute within the context of the caller. So far, so good.

Should B be context-agile or context-bound? In the case examined so far, B worked fine being agile.
Suppose one more class exists: C. C does not have transactions, and it calls a method on B that
changes the database. Now A tries to roll back, but unfortunately, the work B did for C was in C's
context and thus was not afforded the support of transactions. Uh-oh: that work can't be undone.

If B was marked context-bound, when A created it B would have inherited A's context. In that case,
when C invoked a method on B it would have to be marshaled across the context boundary, but then
when B executed the method it would have been in the context of A's transaction. Much better.

446

Programming C#

This would work if B were context-bound but without attributes. B of course could have its own context
attributes, and these might force B to be in a different context from A. For example, B might have a
transaction attribute marked Requi r esNew. In this case, when B is created it gets a new context, and
thus cannot be in A's context. Thus, when A rolled back, B's work could not be undone. You might
mark B with the Requi r esNew enumeration value because B is an audit function. When A takes an
action on the database it informs B, which updates an audit trail. You do not want B's work undone
when A undoes its transaction. You want B to be in its own transaction context, rolling back only its
own mistakes, not A's.

An object thus has three choices. The first choice is to be context-agile. A context-agile object
operates in the context of its caller. Option two is to be context-bound (accomplished by deriving from
Cont ext BoundChbj ect) but have no attributes, and thus operate in the context of the creator. Option
three is to be context-bound with context attributes, and thus operate only in the context which
matches the attributes.

Which you decide upon depends on how your object will be used. If your object is a simple calculator
that cannot possibly need synchronization or transactions or any context support, it is more efficient to
be context-agile. If your object should use the context of the object that creates it, you should make
that object context-bound with no attributes. Finally, if your object has its own context requirements,
you should give it the appropriate attributes.

19.2.2 Marshaling Across Context Boundaries

No proxy is needed when accessing context-agile objects within a single app domain. When an object
in one context accesses a context-bound object in a second context, it does so through a proxy, and
at that time the two context policies are enforced. It is in this sense that a context creates a boundary;
the policy is enforced at the boundary between contexts.

For example, when you mark a context-bound object with the

System Runti nme. Renot i ng. Synchroni zat i on attribute, you indicate that you want the system
to manage synchronization for that object. All objects outside that context must pass through the
context boundary to touch one of the objects, and at that time the policy of synchronization will be
applied.

e Strictly speaking, marking two classes with the
a“] Synchroni zat | on attribute does not guarantee that they will
o

end up in the same context. Each attribute gets to vote on
whether it is happy with the current context at activation. If two
objects are marked for synchronization but one is pooled, they will
be forced into different contexts.

Objects are marshaled differently across context boundaries, depending on how they are created:

Typical objects are not marshaled at all; within app domains they are context-agile.
Objects marked with the Ser i al i zabl e attribute are marshaled by value across app
domains and are context-agile.

Objects that derive from Var shal ByRef Obj ect are marshaled by reference across app
domains and are context-agile.

Objects derived from Cont ext BoundObj ect are marshaled by reference across app
domains as well as by reference across context boundaries.

447

19.3 Remoting

In addition to being marshaled across context and app domain boundaries, objects can be marshaled
across process boundaries, and even across machine boundaries. When an object is marshaled,
either by value or by proxy, across a process or machine boundary, it is said to be remoted.

19.3.1 Understanding Server Object Types

There are two types of server objects supported for remoting in .NET: well-known and client-activated.
The communication with well-known objects is established each time a message is sent by the client.
There is no permanent connection with a well-known object, as there is with client-activated objects.

Well-known objects come in two varieties: singleton and single-call. With a well-known singleton object,
all messages for the object, from all clients, are dispatched to a single object running on the server.
The object is created when the server is started and is there to provide service to any client that can
reach it. Well-known objects must have a parameterless constructor.

With a well-known single-call object, each new message from a client is handled by a new object. This
is highly advantageous on server farms, where a series of messages from a given client might be
handled in turn by different machines depending on load balancing.

Client-activated objects are typically used by programmers who are creating dedicated servers,
created to provide services to a client they are also writing. In this scenario, the client and the server
create a connection, and they maintain that connection until the needs of the client are fulfilled.

19.3.2 Specifying a Server with an Interface

The best way to understand remoting is to walk through an example. Here, you'll build a simple four-
function calculator class, like the one used in an earlier discussion on web services (see Chapter 16),
that implements the interface shown in Example 19-2.

Example 19-2. The Calculator interface
namespace Programm ng_CShar p

{
usi ng System
public interface ICalc
{
doubl e Add(doubl e x, double y);
doubl e Sub(doubl e x, double y);
doubl e Mult (doubl e x, double y);
doubl e Di v(double x, double y);
}
}

Save this in a file named Icalc.cs and compile it into a file named ICalc.dll. To create and compile the
source file in Visual Studio, create a new project of type C# Class Library, enter the interface definition
in the Edit window, and then select Build —2Build on the Visual Studio menu bar. Alternatively, if you
have entered the source code using Notepad, you can compile the file at the command line by
entering:

csc lcalc.cs /t:library

There are tremendous advantages to implementing a server through an interface. If you implement the
calculator as a class, the client must link to that class in order to declare instances on the client. This
greatly diminishes the advantages of remoting because changes to the server require the class

448

Programming C#

definition to be updated on the client. In other words, the client and server would be tightly coupled.
Interfaces help decouple the two objects; in fact, you can later update that implementation on the
server, and as long as the server still fulfills the contract implied by the interface, the client need not
change at all.

19.3.3 Building a Server

To build the server used in this example, create CalcServer.cs in a new project of type C# Console

Application and then compile it by selecting Build —>Build on the Visual Studio menu bar. Or, you can
enter the code in Notepad, save it to a file named CalcServer.cs, and enter the following at the
command-line prompt:

csc Cal cServer.cs /t:exe

The Cal cul at or class implements | Cal c. It derives from Mar shal ByRef Cbj ect so that it will
deliver a proxy of the calculator to the client application:

public class Cal cul ator : Marshal ByRef Cbject, ICalc

The implementation consists of little more than a constructor and simple methods to implement the
four functions.

In this example, you'll put the logic for the server into the Vai n() method of CalcServer.cs.

Your first task is to create a channel . Use HTTP as the transport because it is simple and you don't
need a sustained TCP/IP connection. You can use the HTTPChannel type provided by .NET:

HTTPChannel chan = new HTTPChannel (65100);

Notice that you register the channel on TCP/IP port 65100 (see the discussion of port numbers in
Chapter 21).

Next, register the channel with the CLR Channel Ser vi ces using the static method
Regi st er Channel :

Channel Servi ces. Regi st er Channel (chan);

This step informs .NET that you will be providing HTTP services on port 65100, much as IIS does on
port 80. Because you've registered an HTTP channel and not provided your own formatter, your
method calls will use the SOAP formatter by default.

Now you are ready to ask the Renot i ngConfi gur ati on class to register your well-known object.
You must pass in the type of the object you want to register, along with an endpoint. An endpoint is a
name that Renot i ngConf i gur at i on will associate with your type. It completes the address. If the
IP address identifies the machine and the port identifies the channel, the endpoint identifies the actual
application that will be providing the service. To get the type of the object, you can call the static
method Cet Type() of the Type class, which returns a Type object. Pass in the full name of the
object whose type you want:

Type cal cType =
Type. Get Type(" Progranmm ng_CShar p. Cal cul ator™);

Also pass in the enumerated type that indicates whether you are registering a Si ngl eCal | or
Si ngl et on:

449

Renot i ngConfi gurati on. Regi st er Wl | KnownSer vi ceType
(cal cType, "theEndPoint", Wl | KnownChj ect Mbde. Si ngl eton);

The call to Regi st er Vel | KnownSer vi ceType does not put one byte on the wire. It simply uses
reflection to build a proxy for your object.

Now you're ready to rock and roll. Example 19-3 provides the entire source code for the server.

Example 19-3. The Calculator server

usi ng System

usi ng System Runti me. Renoti ng;

usi ng System Runti me. Renoti ng. Channel s;
usi ng System Runti me. Renpti ng. Channel s. Ht t p;

nanespace Program ng_CShar p

/1 inplenent the cal cul ator class
public class Cal culator : Marshal ByRef Cbject, ICalc

{
public Calculator()
{
Consol e. WitelLine("Cal culator constructor");
}
/1 inplenent the four functions
publ i ¢ doubl e Add(doubl e x, doubl e vy)
{
Consol e. WiteLine("Add {0} + {1}", X, Vy);
return x+y;
publ i ¢ doubl e Sub(doubl e x, double vy)
{
Consol e. WiteLine("Sub {0} - {1}", X, Vy);
return x-y;
}
publ i c double Milt(double x, double vy)
{
Consol e. WiteLine("Mlt {0} * {1}", X, Vy);
return x*y;
publ i ¢ doubl e Di v(doubl e x, double vy)
{
Console. WiteLine("Div {0} / {1}", X, Vy);
return x/vy;
}
}
public class Server Test
{

public static void Main()
{

/] create a channel and register it
Ht t pChannel chan = new Htt pChannel (65100);
Channel Servi ces. Regi st er Channel (chan);

Type cal cType =
Type. Get Type(" Programm ng_CShar p. Cal cul ator");

/'l register our well-known type and tell the server
/1l to connect the type to the endpoint "theEndPoint"

450

Programming C#

Renot i ngConfi gurati on. Regi st er Wl | KnownSer vi ceType
(cal cType,
"t heEndPoi nt ",
Vel | KnownChj ect Mode. Si ngl eton) ;

/1 "They al so serve who only stand and wait."); (MIlton)

Console. WiteLine("Press [enter] to exit...");
Consol e. ReadLi ne();

}
When you run this program, it prints its self-deprecating message:

Press [enter] to exit...

and then waits for a client to ask for service.

19.3.4 Building the Client

The client must also register a channel, but because you are not listening on that channel, you can
use channel O:

HTTPChannel chan = new HTTPChannel (0);
Channel Servi ces. Regi st er Channel (chan);

The client now need only connect through the remoting services, passing a Type object representing
the type of the object it needs (in our case, the | Cal c interface) and the URI (Uniform Resource
Identifier) of the implementing class:

Mar shal ByRef Obj ect obj =
Renot i ngSer vi ces. Connect
(typeof (Programmi ng_CSharp. | Cal c),
"http://1ocal host: 65100/t heEndPoi nt ") ;

In this case the server is assumed to be running on your local machine, so the URI is http://localhost,
followed by the port for the server, 65100, followed in turn by the endpoint you declared in the server,
t heEndPoi nt .

The remoting service should return an object representing the interface you've requested. You can
then cast that object to the interface and begin using it. Because remoting cannot be guaranteed (the
network might be down, the host machine may not be available, and so forth), you should wrap the
usage inat ry block:

try
{
Progranm ng_CSharp.lCalc calc =
obj as Programm ng_CShar p. | Cal c;

doubl e sum = cal c. Add(3, 4);

You now have a proxy of the Calculator operating on the server, but usable on the client, across the

process boundary and, if you like, across the machine boundary. Example 19-4 shows the entire
client.

Example 19-4. The remoting Calculator client

451

nanespace Programm ng_CShar p

{
usi ng System
usi ng System Runti me. Renoti ng;
usi ng System Runti me. Renoti ng. Channel s;
usi ng System Runti ne. Renoti ng. Channel s. Htt p;
public class Calcdient
{
public static void Main()
{
int[] mylntArray = new int[3];
Consol e. Wi teLi ne("Wat son, come here | need you..
/] create an Http channel and register it
/1 uses port O to indicate won't be listening
Ht t pChannel chan = new HttpChannel (0);
Channel Servi ces. Regi st er Channel (chan);
/1 get nmy object fromacross the http channe
Mar shal ByRef Cbj ect obj =
(Marshal ByRef Obj ect) Renoti ngServices. Connect
(typeof (Progranmm ng_CSharp. | Cal c),
“http://1ocal host: 65100/t heEndPoint");
try
{
/1 cast the object to our interface
Progranm ng CSharp.lCalc calc =
obj as Programm ng_CSharp. | Cal c;
/1 use the interface to call nethods
doubl e sum = cal c. Add(3.0,4.0);
doubl e difference = cal c. Sub(3,4);
doubl e product = calc. Ml t(3,4);
doubl e quotient = calc.Div(3,4);
/1 print the results
Consol e. WitelLine("3+4 = {0}", sun);
Consol e. WiteLine("3-4 = {0}", difference);
Consol e. WitelLine("3*4 = {0}", product);
Consol e. WiteLine("3/4 = {0}", quotient);
}
catch(System Exception ex)
{
Consol e. Wi telLi ne("Exception caught: ");
Consol e. Wit eLi ne(ex. Message) ;
}
}
}
}

Qut put on client::

WAt son, come here | need you..

3+4 = 7
3-4 = -1
3*4 = 12
3/4 =0.75

452

Programming C#

Qut put on server:

Cal cul at or constructor
Press [enter] to exit...
Add 3 + 4
Sub 3 - 4
Mult 3 * 4
Dv 3/ 4

The server starts up and waits for the user to press Enter to signal that it can shut down. The client
starts and displays a message to the console. The client then calls each of the four operations. You
see the server printing its message as each method is called, and then the results are printed on the
client.

It is as simple as that; you now have code running on the server and providing services to your client.

19.3.5 Using SingleCall

To see the difference that Si ngl eCal | makes versus Si ngl et on, change one line in the server's
Mai n() method. Here's the existing code:

Renot i ngServi ces. Regi st er Wl | KnownSer vi ceType
("Cal cServer App", "Programm ng_CShar p. Cal cul ator",
"t heEndPoi nt ", Wl | KnownCbj ect Mode. Si ngl eton);

Change the object to Si ngl eCal | :

Renot i ngServi ces. Regi st er Wl | KnownSer vi ceType
("Cal cServer App", "Programm ng_CShar p. Cal cul ator",
"t heEndPoi nt ", Wl | KnownCbj ect Mbde. Si ngl eCal |);

The output reflects that a new object is created to handle each request:

Cal cul ator constructor
Press [enter] to exit...
Cal cul ator constructor
Add 3 + 4

Cal cul ator constructor
Sub 3 - 4

Cal cul ator constructor
Mult 3 * 4

Cal cul ator constructor
Dv 3/ 4

19.3.6 Understanding RegisterWellKnownServiceType

When you called the Regi st er Viél | KnownSer vi ceType() method on the server, what actually
happened? Remember that you created a Type object for the Cal cul at or class:

Type. Get Type(" Progranm ng_CShar p. Cal cul ator™);
You then called Regi st er V&l | KnownSer vi ceType(), passing in that Ty pe object along with the

endpoint and the Si ngl et on enumeration. This signals the CLR to instantiate your Cal cul at or and
then to associate it with an endpoint.

453

To do that work yourself, you would need to modify Example 19-3, changing Vai n() to instantiate
a Cal cul at or and then passing that Cal cul at or to the Mar shal () method of

Renot i ngSer vi ces with the endpoint to which you want to associate that instance of Cal cul at or.
The modified Vai n() is shown in Example 19-5 and, as you can see, its output is identical to that

of Example 19-3.

Example 19-5. Manually instantiating and associating Calculator with an

endpoint
public static void Main()
{

/'l create a channel and register it
Ht t pChannel chan = new Htt pChannel (65100);
Channel Servi ces. Regi st er Channel (chan);

/1 make your own instance and call Marshal directly
Cal cul ator cal culator = new Cal culator();
Renot i ngSer vi ces. Marshal (cal cul ator, "t heEndPoi nt") ;

/1 "They also serve who only stand and wait."); (MIlton)
Consol e. WiteLine("Press [enter] to exit...");
Consol e. ReadLi ne();

}

The net effect is that you have instantiated a calculator object, and associated a proxy for remoting
with the endpoint you've specified.

19.3.7 Understanding Endpoints

What is going on when you register this endpoint? Clearly, the server is associating that endpoint with
the object you've created, and when the client connects that endpoint is used as an index into a table
so that the server can provide a proxy to the correct object (in this case, the Calculator).

If you don't provide an endpoint for the client to talk to, you can instead write all the information about
your calculator object to a file and physically give that file to your client. For example, you could send it
to your buddy by email, and he could load it on his local computer.

The client can deserialize the object and reconstitute a proxy which it can then use to access the
calculator on your server! (The following example was suggested to me by Mike Woodring of
DevelopMentor, who uses a similar example to drive home the idea that the endpoint is simply a
convenience for accessing a marshaled object remotely.)

To see how you can invoke an object without a known endpoint, modify the Vai n() method of
Example 19-3 once again. This time, rather than calling Var shal () with an endpoint, just pass in
the object:

Obj Ref obj Ref = Renoti ngServices. Marshal (cal cul at or)

Marshal () returns an Obj Ref object. An Obj Ref object stores all the information required to
activate and communicate with a remote object. When you do supply an endpoint, the server creates a
table that associates the endpoint with an ob] Ref so that the server can create the proxy when a
client asks for it. Obj Ref contains all the information needed by the client to build a proxy, and

Ohj Ref itself is serializable.

Open a file stream for writing to a new file and create a new SOAP formatter. You can serialize your
hj Ref to that file by invoking the Seri al i ze() method on the formatter, passing in the file stream

454

Programming C#

and the Cbj Ref you got back from Var shal . Presto! You have all the information you need to create
a proxy to your object written out to a disk file. The complete replacement for Vai n() is shown in

Example 19-6.

Example 19-6. Marshaling an object without a well-known endpoint

public static void Main()
{

/'l create a channel and register it

Ht t pChannel chan = new Htt pChannel (65100);

Channel Servi ces. Regi st er Channel (chan);

I/ make your own instance and call Marshal directly
Cal cul ator cal culator = new Cal culator();

Obj Ref obj Ref = Renoti ngServices. Marshal (cal cul ator);

FileStream fil eStream =
new Fil eStrean("cal cul at or Soap.txt", Fi |l eMode. Create) ;

SoapFornatter soapFormatter = new SoapFormatter();

soapFormatter. Serialize(fileStream obj Ref);
fileStream C ose();

/1 "They al so serve who only stand and wait."); (MIlton)
Consol e. Wit eLi ne(

"Exported to Cal cul atorSoap.txt. Press ENTER to exit...");
Consol e. ReadLi ne();

}

When you run the server, it writes the file calculatorSoap.txt to the disk. The server then waits for the
client to connect. It might have a long wait.

You can take that file to your client and reconstitute it on the client machine. To do so, again create a
channel and register it. This time, however, open afi | eSt r eamon the file you just copied from the
server:

FileStream fil eStream =
new Fil eStream ("cal cul at or Soap.txt", Fil eMde. Qpen);

Then instantiate a SoapFor mat t er and call Deseri al i ze() on the formatter, passing in the
filename and getting back an Cbj Ref :

SoapFormatter soapFormatter =
new SoapFormatter ();
try
{
hj Ref obj Ref =
(bj Ref) soapFormatter. Deserialize (fileStream;

You are ready to unmarshall that Cbj Ref , getting back an | Cal ¢ reference:

ICalc calc =
(I Cal c) RenotingServices. Unmar shal (obj Ref);

You are now free to invoke methods on the server through that | Cal c, which will act as a proxy to the
calculator object running on the server that you described in the calculatorSoap.txt file. The complete
replacement for the client is shown in Example 19-7.

455

Example 19-7. Replacement of Main() from Example 19-4 (the client)

public static void Main()
{

int[] nmylntArray = new int[3];
Consol e. WiteLine("Watson, conme here | need you...");

/] create an Http channel and register it

/1 uses port O to indicate you won't be Iistening
Ht t pChannel chan = new Htt pChannel (0);

Channel Servi ces. Regi st er Channel (chan);

FileStream fil eStream =

new Fil eStream ("cal cul at or Soap.txt", FileMde. Qpen);
SoapFormatter soapFormatter =

new SoapFormatter ();

try

hj Ref obj Ref =

(Obj Ref) soapFormatter. Deserialize (fileStream;
ICalc calc =

(I Cal c) RenotingServices. Unmar shal (obj Ref);

/1 use the interface to call nethods
doubl e sum = cal c. Add(3.0, 4.0);

doubl e di fference = cal c. Sub(3, 4);
doubl e product = calc. Ml t(3,4);
doubl e quotient = calc.Div(3,4);

/1l print the results

Consol e. WiteLine("3+4
Consol e. WiteLine("3-4
Consol e. WiteLine("3*4
Console. WitelLine("3/4

{0}", sum;

{0}", difference);
{0}", product);
{0}", quotient);

catch(System Exception ex)

Consol e. Wi teLine("Exception caught: ");
Consol e. Wi teLi ne(ex. Message) ;
}

When the client starts up, the file is read from the disk and the proxy is unmarshaled. This is the mirror
operation to marshaling and serializing the object on the server. Once you have unmarshaled the
proxy, you are able to invoke the methods on the calculator object running on the server.

456

Programming C#

Chapter 20. Threads and Synchronization

Threads are relatively lightweight processes responsible for multitasking within a single application.
The Syst em Thr eadi ng namespace provides a wealth of classes and interfaces to manage
multithreaded programming. The majority of programmers might never need to manage threads
explicitly, however, because the Common Language Runtime (CLR) abstracts much of the threading
support into classes that greatly simplify most threading tasks. For example, in Chapter 21 you will
see how to create multithreaded reading and writing streams without resorting to managing the
threads yourself.

The first part of this chapter shows you how to create, manage, and kill threads. Even if you don't
create your own threads explicitly, you'll want to ensure that your code can handle multiple threads if
it's run in a multithreading environment. This concern is especially important if you are creating
components that might be used by other programmers in a program that supports multithreading. It is
particularly significant to web services developers. Although web services (covered in Chapter 16)
have many attributes of desktop applications, they are run on the server, generally lack a user
interface, and force the developer to think about server-side issues such as efficiency and
multithreading.

The second part of this chapter focuses on synchronization. When you have a limited resource, you
may need to restrict access to that resource to one thread at a time. A classic analogy is to a restroom
on an airplane. You want to allow access to the restroom for only one person at a time. You do this by
putting a lock on the door. When passengers want to use the restroom, they try the door handle; if it is
locked, they either go away and do something else, or they wait patiently in line with others who want
access to the resource. When the resource becomes free, one person is taken off the line and given
the resource, which is then locked again.

At times, various threads might want to access a resource in your program, such as a file. It might be
important to ensure that only one thread has access to your resource at a time, and so you will lock
the resource, allow a thread access, and then unlock the resource. Programming locks can be fairly
sophisticated, ensuring a fair distribution of resources.

20.1 Threads

Threads are typically created when you want a program to do two things at once. For example,
assume you are calculating pi (3.141592653589...) to the 10 billionth place. The processor will happily
begin computing this, but nothing will write to the user interface while it is working. Because computing
pi to the 10 billionth place will take a few million years, you might like the processor to provide an
update as it goes. In addition, you might want to provide a Stop button so that the user can cancel the
operation at any time. To allow the program to handle the click on the Stop button, you will need a
second thread of execution.

e An apartment is a logical container within a process, and is used
.) for objects that share the same thread-access requirements.
~ 4" Obijects in an apartment can all receive method calls from any

object in any thread in the apartment. The .NET Framework does
not use apartments, and managed objects (objects created within
the CLR) are responsible for thread safety. The only exception to
this is when managed code talks to COM. COM interoperability is
discussed in Chapter 22.

Another common place to use threading is when you must wait for an event, such as user input, a
read from a file, or receipt of data over the network. Freeing the processor to turn its attention to
another task while you wait (such as computing another 10,000 values of pi) is a good idea, and it
makes your program appear to run more quickly.

457

On the flip side, note that in some circumstances, threading can actually slow you down. Assume that
in addition to calculating pi, you also want to calculate the Fibonnacci series (1,1,2,3,5,8,13,21...). If
you have a multiprocessor machine, this will run faster if each computation is in its own thread. If you
have a single-processor machine (as most users do), computing these values in multiple threads will
certainly run slower than computing one and then the other in a single thread, because the processor
must switch back and forth between the two threads, and that incurs some overhead.

20.1.1 Starting Threads

The simplest way to create a thread is to create a new instance of the Thr ead class. The Thr ead
constructor takes a single argument: a del egat e type. The CLR provides the Thr eadSt ar t

delegate class specifically for this purpose, which points to a method you designate. This allows you to
construct a thread and to say to that thread "when you start, run this method." The Thr eadSt ar t
delegate declaration is:

public del egate void ThreadStart();

As you can see, the method you attach to this delegate must take no parameters and must return
voi d. Thus, you might create a new thread like this:

Thread myThread = new Thread(new ThreadStart (nmyFunc));
my Func must be a method that takes no parameters and returns voi d.

For example, you might create two worker threads, one that counts up from zero:

public void Increnenter()

{
for (int i =0;i<10;i++)
{
Consol e. WiteLine("lIncrementer: {O}", i);
}
}

and one that counts down from 10:

public void Decrenenter()

{
for (int i = 10;i>=0;i--)
{
Consol e. Wi teLi ne("Decrenmenter: {0}", i);
}
}

To run these in threads, you create two new threads, each initialized with a Thr eadSt ar t delegate,
which in turn would be initialized to the respective member functions:

Thread t1
Thread t2

new Thread(new ThreadStart (I ncrenmenter));
new Thread(new ThreadStart (Decrenmenter));

Instantiating these threads does not start them running. To do so you must call the St ar t method on
the Thr ead object itself:

tl.Start();
t2.Start();

458

Programming C#

- If you don't take further action, the thread will stop when the
s | function returns. You'll see how to stop a thread before the
" 4 function ends later in this chapter.

Example 20-1 is the full program and its output. You will need to add a using statement for

System Thr eadi ng to make the compiler aware of the Thr ead class. Notice the output, where you

can see the processor switching fromt 1 tot 2.

Example 20-1. Using threads

nanespace Programr ng_CShar p

{
usi ng System
usi ng System Thr eadi ng;

cl ass Tester

{

static void Main()

{
// make an instance of this class
Tester t = new Tester();
/1l run outside static Min
t.DoTest();

}

public void DoTest()

{
|/l create a thread for the |Increnenter
/1l pass in a ThreadStart del egate
/1 with the address of |ncrenmenter
Thread t1 =

new Thr ead(
new ThreadStart (Il ncrenenter));
/'l create a thread for the Decrenenter
/'l pass in a ThreadStart del egate
/1 with the address of Decrenenter
Thread t2 =
new Thr ead(
new ThreadStart (Decrenenter));

/1l start the threads
tl.Start();
t2.Start();

}

/'l denp function, counts up to 1K
public void Increnenter()

{
for (int i =0;i<1000;i ++)
{
Consol e. Wit eLi ne(
"Incrementer: {0}", i);
}
}

// denp function, counts down from 1k

459

public void Decrenenter()

{
for (int i = 1000;i>=0;i--)
{
Consol e. Wi teLi ne(
"Decrenmenter: {0}", i);
}
}
}
}
Qut put :

I ncrenenter: 102
I ncrenenter: 103
I ncrenenter: 104
I ncrenenter: 105
I ncrenenter: 106
Decrenenter: 1000
Decrenenter: 999
Decrenenter: 998
Decrenenter: 997

The processor allows the first thread to run long enough to count up to 106. Then, the second thread
kicks in, counting down from 1000 for a while, and then the first thread is allowed to run. When | run
this with larger numbers, | notice that each thread is allowed to run for about 100 numbers before
switching. The actual amount of time devoted to any given thread is handled by the thread scheduler
and will depend on many factors, such as the processor speed, demands on the processor from other
programs, and so forth.

20.1.2 Joining Threads

When you tell a thread to stop processing and wait until a second thread completes its work, you are
said to be joining the first thread to the second. It is as if you tied the tip of the first thread on to the tail
of the second?hence "joining" them.

To join thread 1 (t 1) onto thread 2 (t 2), you write:
t2.Join();

If this statement is executed in a method in thread t 1, t 1 will halt and wait until t 2 completes and
exits. For example, we might ask the thread in which Vai n() executes to wait for all our other
threads to end before it writes its concluding message. In this next code snippet, assume you've
created a collection of threads named ny Thr eads. You will iterate over the collection, joining the
current thread to each thread in the collection in turn:

foreach (Thread nyThread in myThreads)
{

}

Console. WiteLine("All ny threads are done.");

myThread. Join();

The final message Al | ny threads are done will not be printed until all the threads have ended.
In a production environment, you might start up a series of threads to accomplish some task (e.qg.,
printing, updating the display, etc.) and not want to continue the main thread of execution until the
worker threads are completed.

460

Programming C#

20.1.3 Suspending Threads

At times, you want to suspend your thread for a short while. You might, for example, like your clock
thread to suspend for about a second in between testing the system time. This lets you display the
new time about once a second without devoting hundreds of millions of machine cycles to the effort.

The Thr ead class offers a public static method, S| eep, for just this purpose. The method is
overloaded; one version takes an i nt , the other a t i neSpan object. Each represents the number of
milliseconds you want the thread suspended for, expressed either as an i nt (e.g., 2000 = 2000
milliseconds or two seconds) oras ati neSpan.

Although t i neSpan objects can measure ticks (100 nanoseconds), the S| eep() method's
granularity is in milliseconds (1,000 nanoseconds).

To cause your thread to sleep for one second, you can invoke the static method of Thr ead, S| eep,
which suspends the thread in which it is invoked:

Thread. Sl eep(1000) ;

At times, you'll tell your thread to sleep for only one millisecond. You might do this to signal to the
thread scheduler that you'd like your thread to yield to another thread, even if the thread scheduler
might otherwise give your thread a bit more time.

If you modify Example 20-1 to add a Thr ead. Sl eep(1) statement after each Wit eLi ne, the
output changes significantly:

for (int i =0;i<1000;i ++)

{
Consol e. Wit eLi ne(
"Incrementer: {0}", i);
Thread. Sl eep(1);
}

This small change is sufficient to give each thread an opportunity to run once the other thread prints
one value. The output reflects this change:

I ncrenenter: O
Increnenter: 1
Decrenenter: 1000
I ncrenenter: 2
Decrenenter: 999
I ncrenenter: 3
Decrenenter: 998
I ncrenenter: 4
Decrenenter: 997
I ncrenenter: 5
Decrenenter: 996
I ncrenenter: 6
Decrenenter: 995

20.1.4 Killing Threads

Typically, threads die after running their course. You can, however, ask a thread to Kill itself by calling
its | nt errupt () method. This causes a Thr eadl nt er r upt edExcept i on exception to be thrown,
which the thread can catch, and thus provides the thread with an opportunity to clean up any
resources it might have allocated.

461

catch (Threadl nterruptedException)

{
Console. WiteLine("[{0}] Interrupted! C eaning up...",

Thr ead. Current Thr ead. Nane) ;
}

The thread ought to treat the Thr eadl| nt er r upt edExcept i on exception as a signal that it is time to
exit, and as quickly as possible. You don't so much kill a thread as politely request that it commit
suicide.

You might wish to kill a thread in reaction to an event, such as the user pressing the Cancel button.
The event handler for the Cancel button might be in thread T1, and the event it is canceling might be
in thread T2. In your event handler, you can call | nt er r upt on T1:

Tl.Interrupt();

An exception will be raised in T1's currently running method that T1 can catch. This gives T1 the
opportunity to free its resources and then exit gracefully.

In Example 20-2, three threads are created and stored in an array of Thr ead objects. Before the
Threads are started, the | sBackgr ound property is set to t r ue. Each thread is then started and
named (e.g., Threadl, Thread?2, etc.). A message is displayed indicating that the thread is started,
and then the main thread sleeps for 50 milliseconds before starting up the next thread.

After all three threads are started and another 50 milliseconds have passed, the first thread is killed by
calling | nt errupt (). The main thread then joins all three of the running threads. The effect of this
is that the main thread will not resume until all the other threads have completed. When they do
complete, the main thread prints a message: Al | ny threads are done. The complete source is

displayed in Example 20-2.

Example 20-2. Interrupting a thread

nanespace Programr ng_CShar p

{
usi ng System
usi ng System Thr eadi ng;

cl ass Tester

{

static void Main()

{
/1 make an instance of this class
Tester t = new Tester();
/'l run outside static Miin
t.DoTest();

}

public void DoTest()

{

/'l create an array of unnamed threads
Thread[] myThreads =

new Thread(new ThreadStart (Decrementer)),

new Thread(new ThreadStart(Incrementer)),
new Thread(new ThreadStart(Incrementer))

}

/] start each thread

462

Programming C#

int ctr = 1;
foreach (Thread nyThread in myThreads)
{
myThr ead. | sBackgr ound=true;
nyThread. Start();
nyThread. Nanme = "Thread" + ctr.ToString();
ctr++
Console. WiteLine("Started thread {0}", nyThread. Nane);
Thr ead. Sl eep(50);

}
/1 having started the threads
/1 tell thread 1 to kill itself

nmyThreads[1].Interrupt();

/1 wait for all threads to end before continuing
foreach (Thread nyThread in nmyThreads)

{
}

/1 after all threads end, print a nessage
Console. WiteLine("All my threads are done.");

myThread. Join();

}

/! demo function, counts down from 1k
public void Decrementer()

{
try
for (int i = 1000;i>=0;i--)
{
Consol e. Wit eLi ne(
"Thread {0}. Decrementer: {1}",
Thr ead. Current Thr ead. Nane,
i)
Thread. Sl eep(1);
}
catch (Threadl nterruptedException)
Consol e. Wit eLi ne(
"Thread {0} interrupted! C eaning up...",
Thr ead. Current Thr ead. Nane) ;
}
finally
{
Consol e. Wit eLi ne(
"Thread {0} Exiting. ",
Thr ead. Current Thr ead. Nane) ;
}
}

/1 denp function, counts up to 1K
public void Incrementer()

{
try
{
for (int i =0;i<1000;i ++)

Consol e. Wit eLi ne(

463

}

"Thread {

0} .

| ncrenent er:

{1},

Thr ead. Current Thr ead. Nane,

i);

Thr ead. Sl eep(1);

catch (Threadl nterruptedException)

Consol e. Wit eLi ne(

i nterrupted!

Cl eaning up...",

Thr ead. Current Thr ead. Nane) ;

Exiting. ",

Thr ead. Current Thr ead. Nane) ;

“"Thread {0}
}
finally
{
Consol e. Wi teLi ne(
“"Thread {0}
}
}
}
}
Qut put (excerpt):

Started thread

Thread Threadl.
Thread Threadl.
Thread Threadl.

Started thread
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Started thread
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
1. ..
Thr ead
Thr ead

Thr ead?2
Thr ead?2

464

Thr eadl.
Thr ead?2.
Thr eadl.
Thr ead?2.
Thr eadl.
Thread?2.
Thr eadl.
Thread?2.

Thr eadl.
Thr ead?2.
Thr ead?2.
Thr eadl.
Thr ead?2.
Thr eadl.
Thr ead3.
Thr ead?2.
Thr eadl.
Thr ead3.

Thr eadl.
Thr ead3.
Thr eadl.
Thr ead3.
Thr eadl.
Thr ead3.
Thr eadl.
Thr ead3.

Thr eadl.
Thr ead3.

Threadl

Decrenent er:
Decrenent er:
Decr enent er:

Thr ead?2

Decrenent er:
| ncrenent er:
Decrenent er:
I ncrenent er:
Decr enent er:
| ncrenent er:
Decrenent er:
| ncrenenter:

Thr ead3

Decr enent er:
| ncrenent er:
| ncrenent er:
Decrenent er:
I ncrenent er:
Decr enent er:
| ncrenent er:
| ncrenent er:
Decrenent er:
I ncrenent er:

i nterrupted!
Exi ting.

Decrenent er:
| ncrenent er:
Decr enent er:
I ncrenent er:
Decrenent er:
| ncrenent er:
Decrenent er:
I ncrenent er:

Decrenent er:
| ncrenent er:

1000
999
998

997
0
996
1
995
2
994
3

993
4
5
992
6
991
0
7
990
1

Cl eani ng up. .

989
2
988
3
987
4
986
5

1
997

Programming C#

Thread Threadl. Decrenenter: O
Thread Thread3. |Incrementer: 998
Thread Threadl Exiting.

Thread Thread3. |Increnenter: 999
Thread Thread3 Exiting.

Al'l ny threads are done.

You see the first thread start and decrement from 1000 to 998. The second thread starts, and the two
threads are interleaved for a while until the third thread starts. After a short while, however, Thr ead?2
reports that it has been interrupted, and then it reports that it is exiting. The two remaining threads
continue until they are done. They then exit naturally, and the main thread, which was joined on all
three, resumes to print its exit message.

20.2 Synchronization

At times, you might want to control access to a resource, such as an object's properties or methods,
so that only one thread at a time can modify or use that resource. Your object is similar to the airplane
restroom discussed earlier, and the various threads are like the people waiting in line. Synchronization
is provided by a lock on the object, which prevents a second thread from barging in on your object until
the first thread is finished with it.

In this section you'll examine three synchronization mechanisms provided by the CLR: the

I nterl ock class, the C# lock statement, and the Moni t or class. But first, you'll need to simulate a
shared resource, such as a file or printer, with a simple integer variable: count er . Rather than
opening the file or accessing the printer, you'll increment count er from each of two threads.

To start, declare the member variable and initialize it to O:

int counter = O;
Modify the | ncr enent er method to increment the count er member variable:

public void Increnenter()
{
try
{
whil e (counter < 1000)
{
int temp = counter;
tenp++; // increnent

/] simulate some work in this nethod
Thread. Sl eep(1);

/1 assign the Increnmented val ue
/1l to the counter variable
/1 and display the results
counter = tenp;
Consol e. Wit eLi ne(
"Thread {0}. Increnenter: {1}"
Thread. Current Thr ead. Nane,
counter);

The idea here is to simulate the work that might be done with a controlled resource. Just as we might
open a file, manipulate its contents, and then close it, here we read the value of count er into a

465

temporary variable, increment the temporary variable, sleep for one millisecond to simulate work, and
then assign the incremented value back to count er .

The problem is this: your first thread will read the value of counter (0) and assign that to a temporary
variable. It will then increment the temporary variable. While it is doing its work, the second thread will
read the value of counter (still 0) and assign that value to a temporary variable. The first thread
finishes its work, then assigns the temporary value (1) back to counter and displays it. The second
thread does the same. What is printed is 1, 1. In the next go around, the same thing happens. Rather
than having the two threads count 1, 2, 3, 4, wesee 1, 1, 2, 2, 3, 3. Example 20-3 shows the
complete source code and output for this example.

Example 20-3. Simulating a shared resource
nanespace Program ng_CShar p

{
usi ng System
usi ng System Thr eadi ng;

cl ass Tester

{

private int counter = O;
static void Main()

// make an instance of this class
Tester t = new Tester();

/1 run outside static Main
t.DoTest();

}

public void DoTest()
{
Thread t1 = new Thread(new ThreadStart(lncrenenter));
t 1. 1 sBackground=t r ue;
t1l. Name = "ThreadOne";
tl.Start();
Console. WiteLine("Started thread {0}",
t 1. Nane) ;

Thread t2 = new Thread(new ThreadStart(lncrenenter));
t 2. 1 sBackgr ound=t r ue;
t2. Name = "ThreadTwo";
t2.Start();
Console. WiteLine("Started thread {0}",
t 2. Nane) ;
t1l.Join();
t2.Join();

/1 after all threads end, print a nessage
Console.WiteLine("All my threads are done.");

}

/1 dermo function, counts up to 1K
public void Increnenter()

{
try

while (counter < 1000)
{

int tenmp = counter;

466

Programming C#

tenp++; // increnent

// simul ate some work in this nethod
Thread. Sl eep(1);

/'l assign the decrenented val ue

/1 and display the results

counter = tenp;

Consol e. Wit eLi ne(
"Thread {0}. Increnenter: {1}",
Thr ead. Current Thr ead. Nane,

counter);
}
catch (Threadl nterruptedException)
{
Consol e. Wit eLi ne(
"Thread {0} interrupted! Cl eaning up..."
Thread. Current Thr ead. Nane) ;
}
finally
{
Consol e. Wit eLi ne(
"Thread {0} Exiting. "
Thr ead. Current Thr ead. Nane) ;
}
}
}
}
Qut put :

Started thread ThreadOne

Started thread ThreadTwo

Thread ThreadOne. | ncrementer:
Thread ThreadOne. | ncrementer:
Thread ThreadOne. | ncrementer:
Thread ThreadTwo. | ncrenenter:
Thread ThreadTwo. | ncrenenter:
Thread ThreadOne. | ncrementer:
Thread ThreadTwo. | ncrementer:
Thread ThreadOne. | ncrementer:
Thread ThreadTwo. | ncrenenter:
Thread ThreadOne. | ncrenenter:

OO0 TR, WWNE

Assume your two threads are accessing a database record rather than reading a member variable.

For example, your code might be part of an inventory system for a book retailer. A customer asks if
Programming C# is available. The first thread reads the value and finds that there is one book on hand.
The customer wants to buy the book, so the thread proceeds to gather credit card information and
validate the customer's address.

While this is happening, a second thread asks if this wonderful book is still available. The first thread
has not yet updated the record, so one book still shows as available. The second thread begins the
purchase process. Meanwhile, the first thread finishes and decrements the counter to zero. The
second thread, blissfully unaware of the activity of the first, also sets the value back to zero.
Unfortunately, you have now sold the same copy of the book twice.

As noted earlier, you need to synchronize access to the count er object (or to the database record,
file, printer, etc.).

467

20.2.1 Using Interlocked

The CLR provides a number of synchronization mechanisms. These include the common
synchronization tools such as critical sections (called Locks in .NET), as well as more sophisticated
tools such as a Voni t or class. Each is discussed later in this chapter.

Incrementing and decrementing a value is such a common programming pattern, and one which so
often needs synchronization protection, that C# offers a special class, | nt er | ocked, just for this
purpose. | nt er | ocked has two methods, | ncr enent and Decr enent , which not only increment or
decrement a value, but which do so under synchronization control.

Modify the | ncr enent er method from Example 20-3 as follows:

public void Increnenter()

{
try

whil e (counter < 1000)
{

I nterl ocked. I ncrenent (ref counter);

/] simulate sonme work in this nethod
Thread. Sl eep(1);

/'l assign the decrenmented val ue

/1 and display the results

Consol e. Wit eLi ne(
"Thread {0}. Increnenter: {1}",
Thr ead. Current Thr ead. Nane,
counter);

}

The catch and finally blocks and the remainder of the program are unchanged from the previous
example.

I nterlocked. | ncrement () expects a single parameter: a reference to an i nt . Because i nt
values are passed by value, you use the r ef keyword, as described in Chapter 4.

- The | ncrenent () method is overloaded and can take a
*s 4. reference to al ong, rather than a reference to an i nt , if that is
% more convenient.

Once this change is made, access to the count er member is synchronized, and the output is what
we'd expect.

Qut put (excerpts):

Started thread ThreadOne

Started thread ThreadTwo

Thread ThreadOne. | ncrementer:
Thread ThreadTwo. | ncrenenter:
Thread ThreadOne. | ncrenenter:
Thread ThreadTwo. | ncrenenter:
Thread ThreadOne. | ncrementer:

OabrwWNE

468

Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead

Thr eadTwo.
Thr eadOne.
Thr eadTwo.
Thr eadOne.
Thr eadTwo.
Thr eadOne.
Thr eadTwo.
Thr eadOne.
Thr eadTwo.
Thr eadOne.
Thr eadTwo.
Thr eadOne.
Thr eadTwo.
Thr eadOne.
Thr eadTwo.

ncrenenter:
ncrenenter:
ncrenent er:
ncrenent er:
ncrenenter:
ncrenenter:
ncrenenter:
ncrenment er:
ncrenment er:
ncrenenter:
ncrenenter:
ncrenenter:
ncrenment er:
ncrenent er:
ncrenenter:

20.2.2 Using Locks

Programming C#

Although the | nt er | ocked object is fine if you want to increment or decrement a value, there will be

times when you want to control access to other objects as well. What is needed is a more general
synchronization mechanism. This is provided by the .NET Lock object.

A lock marks a critical section of your code, providing synchronization to an object you designate while
the lock is in effect. The syntax of using a Lock is to request a lock on an object and then to execute a

statement or block of statements. The lock is removed at the end of the statement block.

C# provides direct support for locks through the | ock keyword. You pass in a reference object and

follow the keyword with a statement block:

| ock(expression) statenent-block

For example, you can modify | ncr enent er once again to use a lock statement, as follows:

public void Increnenter()

{
try
{

while (counter < 1000)

{

}

The catch and finally blocks and the remainder of the program are unchanged from the previous

example.

[ock (this)

{

int tenmp = counter;

tenp ++;
Thread. Sl eep(1);

counter

}

= tenp;

/'l assign the decrenented val ue

/1 and display the results

Consol e. Wit eLi ne(

"Thread {0}.
Thr ead. Curr ent Thr ead. Nane,

counter);

I ncrenenter:

{1}"

’

469

The output from this code is identical to that produced using | nt er | ocked.

20.2.3 Using Monitors

The objects used so far will be sufficient for most needs. For the most sophisticated control over
resources, you might want to use a monitor. A monitor lets you decide when to enter and exit the
synchronization, and it lets you wait for another area of your code to become free.

A monitor acts as a smart lock on a resource. When you want to begin synchronization, you call the
Enter () method of the monitor, passing in the object you want to lock:

Moni tor. Enter(this);

If the monitor is unavailable, the object protected by the monitor is in use. You can do other work while
you wait for the monitor to become available and then try again. You can also explicitly choose to
Wit (), suspending your thread until the moment the monitor is free. \\ai t () helps you control
thread ordering.

For example, suppose you are downloading and printing an article from the Web. For efficiency, you'd
like to print in a background thread, but you want to ensure that at least 10 pages have downloaded
before you begin.

Your printing thread will wait until the get-file thread signals that enough of the file has been read. You
don't want to | oi n the get-file thread because the file might be hundreds of pages. You don't want to
wait until it has completely finished downloading, but you do want to ensure that at least 10 pages
have been read before your print thread begins. The \\ai t () method is just the ticket.

To simulate this, you will rewrite tester and add back the decrementer method. Your incrementer will
count up to 10. The decrementer method will count down to zero. It turns out you don't want to start
decrementing unless the value of count er is at least 5.

In decr enent er you call Ent er on the monitor. You then check the value of count er, and if it is
less than 5, you call \\ai t on the monitor:

if (counter < 5)

{
}

Moni tor. Wait (this);

This call to VVai t () frees the monitor but signals the CLR that you want the monitor back the next
time it is free. Waiting threads will be notified of a chance to run again if the active thread calls
Pul se():

Moni t or . Pul se(this);

Pul se() signals the CLR that there has been a change in state that might free a thread that is
waiting. The CLR will keep track of the fact that the earlier thread asked to wait, and threads will be
guaranteed access in the order in which the waits were requested. ("Your wait is important to us and
will be handled in the order received.”)

When a thread is finished with the monitor, it can mark the end of its controlled area of code with a call
toExit():

Monitor. Exit(this);

470

Programming C#

Example 20-4 continues the simulation, providing synchronized access to a count er variable using
a Moni tor.

Example 20-4. Using a Monitor object
nanespace Programm ng_CShar p

{
usi ng System
usi ng System Thr eadi ng;

cl ass Tester

{
static void Main()
{
/1 make an instance of this class
Tester t = new Tester();
/1 run outside static Min
t.DoTest();
}
public void DoTest()
{
/1l create an array of unnamed threads
Thread[] nyThreads =
new Thread(new ThreadStart (Decrenmenter)),
new Thread(new ThreadStart (I ncrenmenter))
1
/1 start each thread
int ctr = 1;
foreach (Thread nyThread in myThreads)
{
nyThr ead. | sBackgr ound=t r ue;
nyThread. Start();
myThread. Nane = "Thread" + ctr.ToString();
ctr++;
Console. WiteLine("Started thread {0}", myThread. Nane);
Thr ead. Sl eep(50);
}
/1 wait for all threads to end before continuing
foreach (Thread nyThread in myThreads)
nyThread. Join();
}
/1 after all threads end, print a nessage
Consol e. WiteLine("A'l ny threads are done.");
}
voi d Decrenenter()
{

try
{
/'l synchronize this area of code

Monitor. Enter(this);

/1 if counter is not yet 10
/1 then free the nonitor to other waiting

471

/1 threads, but wait in line for your turn
if (counter < 10)

{
Consol e. Wit eLi ne(
"[{0}] In Decrenenter. Counter: {1}. Cotta Wait!",
Thr ead. Current Thread. Nane, counter);
Moni tor. Wai t (this);
}

whil e (counter >0)

l ong tenp = counter;

tenp--;

Thr ead. Sl eep(1);

counter = tenp;

Consol e. Wit eLi ne(
"[{0}] In Decrenenter. Counter: {1}. ",
Thread. Current Thr ead. Nane, counter);

}
}
finally
{
Moni tor. Exi t (this);
}
}
void Incrementer()
{
try
{
Moni tor. Enter (this);
whil e (counter < 10)
{
l ong tenp = counter;
t enmp++;
Thread. Sl eep(1);
counter = tenp;
Consol e. Wi teLi ne(
“[{0}] In Increnenter. Counter: {1}",
Thr ead. Current Thread. Nane, counter);
}
/1 1" mdone increnenting for now, |et another
/1 thread have the Monitor
Moni t or. Pul se(this);
}
finally
Console. WiteLine("[{0}] Exiting...",
Thread. Current Thr ead. Nane) ;
Moni tor. Exi t(this);
}
}
private long counter = O;
}
}
Qut put :

Started thread Threadl

472

Programming C#

[Threadl] In Decrenmenter. Counter: 0. Cotta \Wit!
Started thread Thread2

[Thread2] In Incrementer. Counter: 1
[Thread2] In Incrementer. Counter: 2
[Thread2] In Increnmenter. Counter: 3
[Thread2] In Incrementer. Counter: 4
[Thread2] In Increnmenter. Counter: 5
[Thread2] In Incrementer. Counter: 6
[Thread2] In Incrementer. Counter: 7
[Thread2] In Increnmenter. Counter: 8
[Thread2] In Increnmenter. Counter: 9
[Thread2] In Incrementer. Counter: 10
[Thread2] Exiting..

[Threadl] In Decrenmenter. Counter: 9.
[Threadl] In Decrenenter. Counter: 8.
[Threadl] In Decrenenter. Counter: 7.
[Threadl] In Decrenenter. Counter: 6.
[Threadl] In Decrenmenter. Counter: 5.
[Threadl] In Decrenmenter. Counter: 4.
[Threadl] In Decrenenter. Counter: 3.
[Threadl] In Decrenenter. Counter: 2.
[Threadl] In Decrenenter. Counter: 1.
[Threadl] In Decrenmenter. Counter: O.

Al ny threads are done.

In this example, decr enent er is started first. In the output you see Thr eadl (the decrementer) start
up and then realize that it has to wait. You then see Thr ead?2 start up. Only when Thr ead? pulses
does Thr eadl begin its work.

Try some experiments with this code. First, comment out the call to Pul se(). You'll find that
Thr eadl never resumes. Without Pul se() there is no signal to the waiting threads.

As a second experiment, rewrite | ncr enent er to pulse and exit the monitor after each increment:

void Incrementer()

{
try

whil e (counter < 10)
{
Monitor. Enter(this);
l ong tenp = counter;
tenp++;
Thread. Sl eep(1);
counter = tenp;
Consol e. Wit eLi ne(
“[{0}] In Increnenter. Counter: {1}",
Thread. Current Thr ead. Nane, counter);
Moni t or . Pul se(this);
Monitor. Exit(this);
}

Rewrite Decr enent er as well, changing the | f statement to a whi | e statement and knocking down
the value from 10 to 5:

/1if (counter < 10)
while (counter < 5)

473

The net effect of these two changes is to cause Thread2, the Incrementer, to pulse the Decrementer
after each increment. While the value is smaller than five, the Decrementer must continue to wait;
once the value goes over five, the Decrementer runs to completion. When it is done, the Incrementer
thread can run again. The output is shown here:

Thr ead?]
Thr eadl]
Thr ead?2]
Thr eadl]
Thr ead?]
Thr eadl]
Thr ead?]
Thr eadl]
Thr eadl]
Thr eadl]
Thr eadl]
Thr eadl]
Thr ead?2]
Thr ead?2]
Thr ead?]
Thr ead?]
Thr ead?]
Thr ead?2]
Thr ead?2]
Thr ead?]
Thr ead?]
Thr ead?]

o e e e B B K e K e B B e K B B K e B B K e W |

ncrenenter.
Decrenent er.
ncrenment er.
Decrenenter.
ncrenenter.
Decrenent er.
ncrenenter.
Decrenent er.
Decrenent er.
Decrenent er.
Decrenent er.
Decrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.
ncrenent er.

Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:
Count er:

Cotta WAit!

Cotta Wait!

Cotta Wait!

POONOUAWNRPORNWRAUORRAWWNN

0

20.3 Race Conditions and Deadlocks

The .NET library provides sufficient thread support that you will rarely find yourself: creating your own
threads and managing synchronization manually.

Thread synchronization can be tricky, especially in complex programs. If you do decide to create your
own threads, you must confront and solve all the traditional problems of thread synchronization, such

as race conditions and deadlock.

20.3.1 Race Conditions

A race condition exists when the success of your program depends on the uncontrolled order of
completion of two independent threads.

Suppose, for example, that you have two threads?one is responsible for opening a file and the other is
responsible for writing to the file. It is important that you control the second thread so that it's assured
that the first thread has opened the file. If not, under some conditions the first thread will open the file,
and the second thread will work fine; under other unpredictable conditions, the first thread won't finish
opening the file before the second thread tries to write to it, and you'll throw an exception (or worse,
your program will simply seize up and die). This is a race condition, and race conditions can be very

difficult to debug.

You cannot leave these two threads to operate independently; you must ensure that Thr ead1 will
have completed before Thr ead? begins. To accomplish this, you might Joi n() Thread2 on

Threadl. As an alternative, you can use a Moni t or and \\ai t () for the appropriate conditions
before resuming Thr ead?.

474

Programming C#

20.3.2 Deadlock

When you wait for a resource to become free, you are at risk of deadlock, also called a deadly
embrace. In a deadlock, two or more threads are waiting for each other, and neither can become free.

Suppose you have two threads, Thr eadAand Thr eadB. Thr eadA locks down an Employee object
and then tries to get a lock on a row in the database. It turns out that Thr eadB already has that row
locked, so Thr eadA waits.

Unfortunately, Thr eadB can't update the row until it locks down the Enpl oyee object, which is
already locked down by Thr eadA. Neither thread can proceed, and neither thread will unlock its own
resource. They are waiting for each other in a deadly embrace.

As described, the deadlock is fairly easy to spot?and to correct. In a program running many threads,
deadlock can be very difficult to diagnose, let alone solve. One guideline is to get all the locks you
need or to release all the locks you have. That is, as soon as Thr eadA realizes that it can't lock the
Row, it should release its lock on the Enpl oyee object. Similarly, when Thr eadB can't lock the
Enpl oyee, it should release the Row. A second important guideline is to lock as small a section of
code as possible and to hold the lock as briefly as possible.

475

476

Programming C#

Chapter 21. Streams

For many applications, data is held in memory and accessed as if it were a three-dimensional solid;
when you need to access a variable or an object, you use its name—and, presto, it is available to you.
When you want to move your data into or out of a file, or across the network or over the Internet,
however, your data must be streamed. In a stream packets of data flow one after the other, much like
bubbles in a stream of water.

The endpoint of a stream is a backing store. The backing store provides a source for the stream, like a
lake provides a source for a river. Typically, the backing store will be a file, but it is also possible for
the backing store to be a network or web connection.

Files and directories are abstracted by classes in the .NET Framework. These classes provide
methods and properties for creating, naming, manipulating, and deleting files and directories on your
disk.

The .NET Framework provides both buffered and unbuffered streams, and provides classes for
asynchronous /O as well. With asynchronous 1/O you can instruct the .NET classes to read your file,
and while they are busy getting the bits off the disk your program can be working on other tasks. The
asynchronous 1/0O tasks notify you when their work is done. The asynchronous classes are sufficiently
powerful and robust that you might be able to avoid creating threads explicitly (see Chapter 20).

Streaming into and out of files is no different than streaming across the network, and the second part
of this chapter will describe streaming using both TCP/IP and web protocols.

To create a stream of data, your object must be serialized, or written to the stream as a series of bits.
You have already encountered serialization in Chapter 19. The .NET Frameworks provide extensive
support for serialization, and the final part of this chapter will walk you through the details of taking
control of the serialization of your object.

21.1 Files and Directories

Before looking at how you can get data into and out of files, let's start by examining the support
provided for file and directory manipulation.

The classes you need are in the Syst em | Onamespace. These include the Fi | e class, which
represents a file on disk, and the Di r ect or y class, which represents a directory (known in Windows
as a folder).

21.1.1 Working with Directories

The Di rect ory class exposes static methods for creating, moving, and exploring directories. All the
methods of the Di r ect or y class are static, and therefore you can call them all without having an
instance of the class.

The Di rect oryl nf o class is a similar class but one which has nothing but instance members (i.e.,
no static members at all). Di rect or yl nf o derives from Fi | eSyst enl nf o, which in turn derives
from Var shal ByRef Obj ect . The Fi | eSyst end nf o class has a number of properties and methods
which provide information about a file or directory.

Table 21-1 lists the principal methods of the Di r ect or y class, and Table 21-2 lists the principal
methods of the Di r ect or yI nf o class including important properties and methods inherited from
Fi | eSyst enl nf o.

477

Table 21-1. Principal methods of the Directory class

Method

Use

CreateDirectory()

Creates all directories and subdirectories specified by its
path parameter.

Del ete()

Deletes the directory and deletes all its contents.

Exi sts()

Returns a Boolean value, t r ue if the path provided as a
parameter leads to an existing directory.

CetCreationTinme()
Set CreationTinme()

Returns the creation date and time of the directory; sets
the creation date and time.

CetCurrentDirectory()
SetCurrentDirectory()

Returns the current directory; sets the current directory.

CetDirectories()

Gets an array of subdirectories.

CetDirectoryRoot ()

Returns the root of the specified path.

CetFiles()

Returns an array of strings with the filenames for the files
in the specified directory.

Cet Last AccessTi me()
Set Last AccessTi me()

Returns the last time the specified directory was
accessed; sets the last time the specified directory was
accessed.

CetLastWiteTinme()
SetLastWiteTime()

Returns the last time the specified directory was written
to; sets the last time the specified directory was written to.

Cet Logi cal Drives()

Returns the names of all the logical drives in the form
<drivel >:\.

Cet Parent ()

Returns the parent directory for the specified path.

Move()

Moves a directory and its contents to a specified path.

Table 21-2. Principal methods and properties of the DirectoryInfo class

Method or Property

Use

Attributes

Inherits from Fi | eSyst end nf o; gets or sets the attributes of the current
file.

CreationTi ne

Inherits from Fi | eSyst end nf 0; gets or sets the creation time of the
current file.

Exi sts Public property Boolean value, t r ue if the directory exists.
Ext ensi on Public property inherited from Fi | eSyst enl nf o; the file extension.
Ful | Name Public property inherited from Fi | eSyst end nf o; the full path of the file

or directory.

Last AccessTi ne

Public property inherited from Fi | eSyst el nf o; gets or sets the last
access time.

Last WiteTine

Public property inherited from Fi | eSyst el nf o; gets or sets the time
when the current file or directory was last written to.

Nanme Public property name of this instance of Di r ect or y| nf o.
Par ent Public property parent directory of the specified directory.
Root Public property root portion of the path.

Create() Public method that creates a directory.

Creat eSubdirectory()

Public method that creates a subdirectory on the specified path.

Del ete()

Public method that deletes a Di r ect or yI nf o and its contents from the
path.

CetDirectories()

Public method that returns a Di r ect or y| nf o array with subdirectories.

CetFiles()

Public method that returns a list of files in the directory.

478

Programming C#

Cet Fi | eSystem nfos() |Public method that retrieves an array of Fi | eSyst eni nf o objects.

Public method that moves a Di r ect or yI nf o and its contents to a new

MoveTo() path
Public method inherited from Fi | eSyst enl nf o; refreshes the state of
Refresh() the object | ’

21.1.2 Creating a DirectoryInfo Object

To explore a directory hierarchy, you need to instantiate a Di r ect or y| nf o object. The

Di rect oryl nf o class provides methods for getting not just the names of contained files and
directories, but also Fi | el nf o and Di r ect or yl nf o objects, allowing you to dive into the
hierarchical structure, extracting subdirectories and exploring these recursively.

You instantiate a Di r ect or y| nf o object with the name of the directory you want to explore:

Directorylnfo dir = new Directorylnfo(@C.\wi nNT");

o

Remember that the @ sign before a string creates a verbatim
.) string literal in which it is not necessary to escape characters such
4 as the backslash. This is covered in Chapter 10.

You can ask that Di r ect or yI nf o object for information about itself, including its name, full path,
attributes, the time it was last accessed, and so forth. To explore the subdirectory hierarchy, you ask
the current directory for its list of subdirectories.

Directorylnfo[] directories = dir.CGetDirectories();

This returns an array of Di r ect or yI nf o objects, each of which represents a directory. You can then
recurse into the same method, passing in each Di r ect or yI nf o object in turn:

foreach (Directorylnfo newbDir in directories)

{

di r Count er ++;
Expl oreDi rectory(newbDir);

}

The di r Count er static i nt member variable keeps track of how many subdirectories have been
found altogether. To make the display more interesting, you'll add a second static i nt member
variable i ndent Level that will be incremented each time you recurse into a subdirectory, and
decremented when you pop out. This will allow you to display the subdirectories indented under the
parent directories. The complete listing is shown in Example 21-1.

Example 21-1. Recursing through subdirectories
nanespace Programr ng_CShar p

{
usi ng System
usi ng System |G

cl ass Tester

{
public static void Main()

{

Tester t = new Tester();

/'l choose the initial subdirectory

479

string theDirectory = @c:\WnNT";

/1 call the nmethod to explore the directory,

/1 displaying its access date and al

/1 subdirectories

Directorylnfo dir = new Directorylnfo(theDirectory);

t.ExploreDirectory(dir);

/1l conpleted. print the statistics
Consol e. Wit eLi ne(
"\n\n{0} directories found.\n",
di r Counter);

}
/1 Set it running with a directorylnfo object
/1 for each directory it finds, it will cal
/'l itself recursively
private void ExploreDirectory(Directorylnfo dir)
{
i ndent Level ++; // push a directory |eve
/] create indentation for subdirectories
for (int i = 0; i < indentLevel; i++)
Console.Wite(" "); // two spaces per |eve
/1 print the directory and the tinme |ast accessed
Console. WiteLine("[{0}] {1} [{2}]\n",
i ndent Level , dir.Nane, dir.LastAccessTinme);
/1 get all the directories in the current directory
/1 and call this nmethod recursively on each
Directorylnfo[] directories = dir.GetDirectories();
foreach (Directorylnfo newbDir in directories)
{
dirCounter++; [// increnment the counter
Expl oreDi rectory(newbDir);
}
i ndent Level --; // pop a directory |eve
}
/1 static nmenber variables to keep track of totals
/1 and indentation | eve
static int dirCounter = 1;
static int indentLevel = -1; // so first push =0
}
}
Qut put (excerpt):

[2] |

ogi scan [5/1/2001 3:06:41 PM

[2] miitwain [5/1/2001 3:06:41 PM

[1] Wb [5/1/2001 3:06:41 PM

480

[2] printers [5/1/2001 3:06:41 PM

[3]

i mges [5/1/2001 3:06:41 PM

[2] Wall paper [5/1/2001 3:06:41 PM

Programming C#

363 directories found.

The program begins by identifying a directory (WinNT) and creating a Di r ect or y| nf o object for that
directory. It then calls Expl or eDi r ect ory, passing in that Di r ect or yl nf o object.
Expl oreDi rect ory displays information about the directory, and then retrieves all the subdirectories.

The list of all the subdirectories of the current directory is obtained by calling Get Di r ect or i es. This
returns an array of Di r ect or yI nf o objects. Expl or eDi r ect or y is the recursive method; each

Di rectoryl nf o object is passed into Expl or eDi rect or y in turn. The effect is to push recursively
into each subdirectory, and then pop back out to explore sister directories until all the subdirectories of
WInNT are displayed. When Expl or eDi r ect or y finally returns, the calling method prints a summary.

21.1.3 Working with Files

The Di rect or yl nf o object can also return a collection of all the files in each subdirectory found. The
Get Fi l es() method returns an array of Fi | el nf o objects, each of which describes a file in that
directory. The Fi | el nf o and Fi | e objects relate to one another, much as Di r ect oryl nf o and

Di rect ory do. Like the methods of Di r ect ory, all the Fi | e methods are static; and like

Di rect oryl nf o, all the methods of Fi | el nf o are instance methods.

Table 21-3 lists the principal methods of the Fi | e class, and Table 21-4 lists the important
members of the Fi | el nf o class.

Table 21-3. Principal public static methods of the File class

Method Use
AppendText () Creates a St rean i t er that appends text to the specified file.
Copy() Copies an existing file to a new file.
Create() Creates a file in the specified path.
CreateText () Creates a St reaniV i t er that writes a new text file to the specified file.
Del ete() Deletes the specified file.
Exi sts() Returns t r ue if the specified file exists.

CetAttributes()

SetAttributes()

Getsthe Fi | eAtt ri but es of the specified file; sets the
Fi l eAttri but es of the specified file.

CetCreationTime()

SetCreationtinme()

Returns the creation date and time of the file; sets the creation date and

time.

Cet Last AccessTi me()

Set Last AccessTi me()

Returns the last time the specified file was accessed; sets the last time the

specified file was accessed.

CetLastWiteTime()

SetLastWiteTime()

Returns the last time the specified file was written to; sets the last time the

specified file was written to.

Move()

Moves a file to a new location; can be used to rename a file.

OpenRead()

Public static method that opens a Fi | eSt r eamon the file.

OpenWite()

Creates a read/write St r eamon the specified path.

Table 21-4. Methods and properties of the FileIlnfo class

Method or
Property

Use

481

Attributes()

Inherits from Fi | eSyst end nf o; gets or sets the attributes of the current file.

CreationTi ne

Inherits from Fi | eSyst end nf o; gets or sets the creation time of the current file.

Di rectory Public property that gets an instance of the parent directory.

Exi sts Public property Boolean value, t r ue if the directory exists.

Ext ensi on Public property inherited from Fi | eSyst end nf o; the file extension.

Ful | Name Public property inherited from Fi | eSyst enl nf o; the full path of the file or

directory.

Last AccessTi ne

Public property inherited from Fi | eSyst end nf o; gets or sets the last access
time.

Last Wi teTine

Public property inherited from Fi | eSyst end nf o; gets or sets the time when the
current file or directory was last written to.

Length Public property that gets the size of the current file.

Name Public property Nane of this Di r ect or yI nf o instance.

AppendText () |Public method that creates a St r eam/V i t er that appends text to a file.
CopyTo() Public method that copies an existing file to a new file.

Create() Public method that creates a new file.

Del ete() Public method that permanently deletes a file.

MoveTo() Public method to move a file to a new location; can be used to rename a file.
Open() Public method that opens a file with various read/write and sharing privileges.
OpenRead() Public method that creates a read-only Fi | eSt r eam

OpenText () Public method that creates a St r eanReader that reads from an existing text file.
OpenWite() Public method that creates a read/write Fi | eSt r eam

Example 21-2 mod

ifies Example 21-1, adding code to get a Fi | el nf o object for each file in each

subdirectory. That object is used to display the name of the file, along with its length and the date and
time it was last accessed.

Example 21-2. Exploring files and subdirectories
nanespace Programr ng_CShar p

{
usi ng System
usi ng System

cl ass Tester

{
{

Tester

1O

public static void Main()
t = new Tester();
/'l choose the initial subdirectory
theDirectory = @c:\WnNT";

string

/1l call

the nethod to explore the directory,

/1 displaying its access date and all
/'l subdirectories

Directorylnfo dir

new Di rectorylnfo(theDirectory);

t.ExploreDirectory(dir);

/'l conpleted. print the statistics
Consol e. Wit eLi ne(

"\n\n{0} files in {1}

directories found.\n",

fileCounter,dirCounter);

482

Programming C#

}

/1 Set it running with a directorylnfo object
/1 for each directory it finds, it will call

[l itself recursively

private void ExploreDirectory(Directorylnfo dir)

{

i ndent Level ++; // push a directory |eve

/1 create indentation for subdirectories

for (int i = 0; i < indentLevel; i++)

Console.Wite(" "); // two spaces per |eve

/1 print the directory and the tinme |ast accessed

Consol e. WiteLine("[{0}] {1} [{2}]\n",

i ndent Level, dir.Nanme, dir.LastAccessTi ne);

/1 get all the files in the directory and

/1 print their name, |ast access tine,

Filelnfo[] filesInDir = dir.GetFiles(
foreach (Filelnfo file in fileslnDir)
{

/1 indent once extra to put files

/1 under their directory

for (int i = 0; i < indentlLevel+1

and size

)

i +4+)

Console.Wite(" "); // two spaces per |eve

Consol e. WiteLine("{0} [{1}] Size:
file.Name,
file.Last WiteTine,
file.Length);

fil eCounter++;

{2} bytes",

/1 get all the directories in the current directory
/1 and call this nethod recursively on each
Directorylnfo[] directories = dir.GetDirectories();
foreach (Directorylnfo newbDir in directories)

{

di rCounter++; // increnment the counter

Expl oreDi rectory(newDir);
}

i ndent Level --; // pop a directory |eve

}

/1 static nmenber variables to keep track of totals

// and indentation | eve
static int dirCounter = 1;

static int indentLevel = -1; // so first

static int fileCounter = O;

Qut put (excerpt):
[0] WnNT [5/1/2001 3:34:01 PM

push = 0

Active Setup Log.txt [4/20/2001 10:42:22 AM Size: 10620 bytes
actsetup.log [4/20/2001 12:05:02 PM Size: 8717 bytes

Bl ue Lace 16.bnp [12/6/1999 4:00: 00 PM Size:
[2] Wall paper [5/1/2001 3:14:32 PM

1272 bytes

483

Boi ling Point.jpg [4/20/2001 8:30:24 AM Size: 28871 bytes
Chat eau. j pg [4/20/2001 8:30:24 AM Size: 70605 bytes
W ndows 2000.) pg [4/20/2001 8:30:24 AM Size: 129831 hytes

8590 files in 363 directories found.

The example is initialized with the name of the C:\WIinNT directory. It prints information about all the
files in that directory and then recursively explores all the subdirectories and all their subdirectories
(your output might differ). This can take quite a while to run because the WinNT directory tree is rather
large (363 subdirectories on my machine, as shown in the output).

21.1.4 Modifying Files

As you can see from Figures 21-3 and 21-4, it is possible to use the Fi | el nf o class to create, copy,
rename, and delete files. The next example will create a new subdirectory, copy files in, rename some,
delete others, and then delete the entire directory.

o To set up these examples, create a\ t est directory and copy the
%3 4. nedi adirectory from WIinNT into the t est directory. Do not work
ot

on files in WIinNT directly; when working with system files you
want to be extraordinarily careful.

The first step is to create a Di r ect or y| nf o object for the test directory:

string theDirectory = @c:\test\nedi a";
Directorylnfo dir = new Directorylnfo(theDirectory);

Next, create a subdirectory within the test directory by calling Cr eat eSubDi r ect ory on the
Di rect oryl nf o object. You get back a new Di r ect or yl nf o object, representing the newly created
subdirectory:

string newbDirectory = "newlest";
Directorylnfo newSubDir =
dir. CreateSubdi rectory(newbDirectory);

You can now iterate over the test and copy files to the newly created subdirectory:

Filelnfo[] fileslnDir = dir.CGetFiles();
foreach (Filelnfo file in filesInDir)

{
string full Name = newSubDir. Ful | Name +
"\\" + file.Naneg;
file.CopyTo(full Nane);
Consol e. WiteLine("{0} copied to newlest",
file.Full Name);
}

Notice the syntax of the Copy To method. This is a method of the Filelnfo object. You pass in the full
path of the new file, including its full name and extension.

Once you've copied the files, you can get a list of the files in the new subdirectory and work with them
directly:

filesInDir = newSubDir. GetFiles();
foreach (Filelnfo file in filesInDir)

484

Programming C#

{

Create a simple integer variable named count er and use it to rename every other file:

if (counter++ % == 0)

{
file.MoveTo(full Name + ".bak");

Console. WiteLine("{0} renanmed to {1}",
ful |l Nane, file. Full Nane) ;

}

You rename a file by "moving" it to the same directory but with a new name. You can, of course, move
a file to a new directory with its original name, or you can move and rename at the same time.

You'll rename every other file, and you'll delete the ones you don't rename:

file.Delete();
Console. WiteLine("{0} deleted.",
ful | Nane);

Once you're done manipulating the files, you can clean up by deleting the entire subdirectory:

newSubDi r. Del ete(true);

The Boolean parameter determines whether this is a recursive delete. If you pass in f al se, and if this
directory has subdirectories with files in it, it will throw an exception.

Example 21-3 lists the source code for the complete program. Be careful when running this; when it
is done, the subdirectory is gone. To see the renaming and deletions, either put a breakpoint on the
last line or remove the last line.

Example 21-3. Creating a subdirectory and manipulating files
newSubDi r. Del ete(true);

namespace Programm ng_CShar p

{
usi ng System
usi ng System |G,

cl ass Tester

{

public static void Main()

{
/'l make an instance and run it
Tester t = new Tester();
string theDirectory = @c:\test\nedi a";
Directorylnfo dir = new Directorylnfo(theDirectory);
t.ExploreDirectory(dir);

}

/1 Set it running with a directory nane
private void ExploreDirectory(Directorylnfo dir)

{

/'l make a new subdirectory
string newbDirectory = "newlest";
Directorylnfo newSubDir =

di r. CreateSubdirectory(newDi rectory);

485

/1 get all the files in the directory and
/1 copy themto the new directory
Filelnfo[] fileslnDir =dir.GetFiles();
foreach (Filelnfo file in fileslnDir)

{
string full Nane = newSubDir. Ful | Name +
"\\" + file.Naneg;
file.CopyTo(full Nane);
Consol e. WitelLine("{0} copied to newTest",
file.Full Nane);
}

/1 get a collection of the files copied in
filesInDir = newSubDir. CGetFiles();

/1 del ete sone and renanme others
int counter = O;
foreach (Filelnfo file in fileslnDir)

{
string full Name = file. Full Naneg;
if (counter++ % == 0)
{
file. MoveTo(full Nane + ".bak");
Consol e. WitelLine("{0} renaned to {1}",
full Nane, file. Ful | Nane) ;
}
el se
file.Delete();
Consol e. WitelLine("{0} deleted.",
ful | Nane) ;
}
}

newSubDir. Del ete(true); // delete the subdirectory

}
Qut put (excerpts):

c:\test\nedi a\Bach's Brandenburg Concerto No. 3.RM

copi ed to newTest
:\test\nedi a\ Beet hoven's 5th Synphony. RM copied to newTest
:\test\nedi a\ Beet hoven's Fur Elise.RM copied to newTest
:\test\nedi a\ canyon. m d copied to newTest
:\test\nedi a\ newTest\ Bach's Brandenburg Concerto

No. 3.RM renaned to
:\test\nmedi a\ newTest\ Bach' s Brandenburg Concerto

No. 3. RM . bak
:\test\nedi a\ newTest \ Beet hoven's 5th Synphony. RM del et ed.
:\test\nedi a\ newTest \ Beet hoven's Fur Elise.RM renaned to
:\test\nedi a\ newTest\ Beet hoven's Fur Elise. RM . bak
:\test\nedi a\ newTest\ canyon. m d del et ed.

(@] OO0 00

O o000

486

Programming C#

21.2 Reading and Writing Data

Reading and writin g data is accomplished with the St r eamclass. Remember streams? This is a

chapter about streams.™!

[with a tip of the hat to Arlo Guthrie.

St r eamsupports synchronous and asynchronous reads and writes. The .NET Framework provides a
number of classes derived from St r eam including Fi | eSt r eam Menor y St r eam and

Net wor kSt r eam In addition, there is a Buf f er edSt r eamclass, which provides buffered 1/0 and
which can be used in conjunction with any of the other stream classes. The principal classes involved

with 1/O are summarized in Table 21-5.

Table 21-5. Principle I/O classes of the .NET Framework

Class

Use

St ream

Abstract class that supports reading and writing bytes.

Bi nar yReader/ Bi naryWi ter

Read and write encoded strings and primitive datatypes to
and from streams.

File,Filelnfo,Directory,
Directorylnfo

Provide implementations for the abstract Fi | eSyst enl nf o
classes, including creating, moving, renaming, and deleting
files and directories.

Fil eStream

For reading to and from Fi | e objects, supports random
access to files. Opens files synchronously by default,
supports asynchronous file access.

Text Reader, Text Wi ter,
StringReader, StringWiter

Text Reader and Text Wit er are abstract classes
designed for Unicode character I/0. St r i ngReader and
StringWiter write to and from strings, allowing your input
and output to be either a stream or a string.

Buf f er edSt r eam

A stream that adds buffering to another stream such as a
Net wor kSt r eam Note that Fi | eSt r eamhas buffering built
in. Buf f er edSt r eans can improve performance of the
stream to which they are attached.

Menor ySt r eam

A nonbuffered stream whose encapsulated data is directly
accessible in memory. A Venor y St r eamhas no backing
store, and is most useful as a temporary buffer.

Net wor kSt r eam

A stream over a network connection.

21.2.1 Binary Files

This section will start by using the basic St r eamclass to perform a binary read of a file. The term
binary read is used to distinguish from a text read. If you don't know for certain that a file is just text, it
is safest to treat it as a stream of bytes, known as a binary file.

The St r eamclass is chock-a-block with methods, but the most important are Read(), Wite(),

Begi nRead(), Begi nWite(

),and Fl ush(). All of these are covered in the next few sections.

To perform a binary read, begin by creating a pair of St r eamobjects, one for reading and one for

writing.

Stream i nput Stream = Fi |l e. OpenRead(
@C. \test\source\testl.cs");

487

Stream out put Stream = Fi |l e. OpenW it e(
@C: \test\source\testl. bak");

To open the files to be read and written, you use the static OpenRead() and OpenW it e() methods
of the Fi | e class. The static overload of these methods takes as an argument the path for the file, as
shown previously.

Binary reads work by reading into a buffer. A buffer is just an array of bytes that will hold the data read
by the Read() method.

You pass in the buffer, the offset in the buffer at which to begin storing the data read in, and the
number of bytes to read. | nput St r eam Read reads bytes from the backing store into the buffer and
returns the total number of bytes read.

It continues reading until no more bytes remain to be read.

while ((bytesRead =
i nput Stream Read(buffer, 0, SIZE BUFF)) > 0)
{

}

out put Stream Wite(buffer, 0, byt esRead) ;

Each buffer-full of bytes is written to the output file. The arguments to W i t e are the buffer from which
to read, the offset into that buffer at which to start reading, and the number of bytes to write. You'll
notice that you write the same number of bytes as you just read.

Example 21-4 provides the complete listing.

Example 21-4. Implementing a binary read and write to a file
namespace Programm ng_CShar p

{
usi ng System
usi ng System |G,

cl ass Tester
{
const int SizeBuff = 1024;

public static void Main()

{
/'l make an instance and run it
Tester t = new Tester();
t.Run();

}

/1 Set it running with a directory nane
private void Run()
{
/'l the file to read from
Stream i nput Stream = Fi |l e. OpenRead(
@C. \test\source\testl.cs");

/l the file to wite to
Stream out put Stream = Fi |l e. OpenW it e(
@C: \test\source\testl. bak");

/1l create a buffer to hold the bytes
byte[] buffer = new Byte[SizeBuff];

488

Programming C#

i nt bytesRead;

/1 while the read nethod returns bytes
/'l keep witing themto the output stream
while ((bytesRead =

i nput Stream Read(buffer, O, Si zeBuff)) > 0)
{

}

/1 tidy up before exiting
i nput Stream Cl ose();
out put Stream C ose();

out put Stream Wite(buffer, 0, byt esRead);

}

The result of running this program is that a copy of the input file (testl.cs) is made in the same
directory and named testl.bak.

21.2.2 Buffered Streams

In the previous example, you created a buffer to read into. When you called Read, a buffer-full was
read from disk. It might be, however, that the operating system can be much more efficient if it reads a
larger (or smaller) number of bytes at once.

A buffered stream object allows the operating system to create its own internal buffer, and read bytes
to and from the backing store in whatever increments it thinks is most efficient. It will still fill your buffer
in the increments you dictate, but your buffer is filled from the in-memory buffer, not from the backing
store. The net effect is that the input and output are more efficient and thus faster.

A Buf f er edSt r eamobject is composed around an existing St r eamobject that you already have
created. To use a Buf f er edSt r eam you start by creating a normal stream class as you did in

Example 21-4:

Stream i nput Stream = Fi |l e. OpenRead(
@C: \test\source\fol der3.cs");

Stream out put Stream = Fi |l e. OQpenW it g(
@C. \test\source\fol der3. bak");

Once you have the normal stream, you pass that stream object to the buffered stream's constructor:

Buf f er edSt r eam buf f er edl nput =
new BufferedStrean(i nput Stream;

Buf f er edSt r eam buf f er edQut put =
new Buf f er edSt r ean{ out put Stream ;

You can then use the Buf f er edSt r eamas a normal stream, calling Read() and Wi te() justas
you did before. The operating system handles the buffering:

while ((bytesRead =
buf f er edl nput . Read(buffer, 0, SI ZE BUFF)) > 0)
{

}

buf f eredCQut put. Wite(buffer, 0, byt esRead) ;

489

The only change is that you must remember to f | ush the buffer when you want to ensure that the
data is written out to the file:

buf f eredQut put. Fl ush();

This essentially tells the operating system to take the entire contents of the in-memory buffer and write
it out to disk.

Example 21-5 provides the complete listing.

Example 21-5. Implementing buffered 1/O

nanespace Program ng_CShar p

{
usi ng System
using System 1O

cl ass Tester

{
const int SizeBuff = 1024;
public static void Main()
{
/1 make an instance and run it
Tester t = new Tester();
t.Run();
}
/1 Set it running with a directory nane
private void Run()
{
/1 create binary streans
Stream i nput Stream = Fi |l e. OpenRead(
@C:. \test\source\fol der3.cs");
Stream out put Stream = File. OpenWit e(
@C:\test\source\fol der3. bak");
/1 add buffered streans on top of the
/1 binary streans
Buf f er edSt r eam buf f er edl nput =
new Buf f eredSt rean(i nput Stream ;
Buf f er edSt r eam buf f er edQut put =
new Buf f eredSt r eam(out put St ream ;
byte[] buffer = new Byte[SizeBuff];
i nt bytesRead;
while ((bytesRead =
buf f er edl nput . Read(buffer, 0, Si zeBuff)) > 0)
buf f eredQut put . Wite(buffer, 0, byt esRead);
}
buf f eredQut put . Flush();
buf f eredl nput. d ose();
buf f eredQut put . Cl ose();
}
}

490

Programming C#

}

With larger files, this example should run more quickly than Example 21-4 did.

21.2.3 Working with Text Files

If you know that the file you are reading (and writing) contains nothing but text, you might want to use
the St r eanReader and St ream/V i t er classes. These classes are designed to make manipulation
of text easier. For example, they support the ReadLi ne() and Wi telLi ne() methods that read
and write a line of text at a time. You've used Wi t eLi ne() with the Consol e object.

To create a St r eanReader instance, start by creating a Fi | el nf o object and then call the
OpenText () method on that object:

Fi l el nfot heSourceFile =
new Filelnfo (@C:\test\source\testl1.cs");

StreanReader stream = theSourceFile. OpenText();

OpenText () returns a St r eanReader for the file. With the St r eanReader in hand, we can now
read the file, line by line:

do
{

text = stream ReadLine();
} while (text !'= null);

ReadLi ne() reads a line at a time until it reaches the end of the file. The St r eanReader will return
nul | at the end of the file.

To create the St r eanW i t er class, you call the St r eam/V i t er constructor, passing in the full name
of the file you want to write to:

StreanWiter witer = new
StreamViter(@C \test\source\fol der3. bak", fal se);

The second parameter is the Boolean argument append. If the file already exists, t r ue will cause the
new data to be appended to the end of the file, and f al se will cause the file to be overwritten. In this
case, passin f al se, overwriting the file if it exists.

You can now create a loop to write out the contents of each line of the old file into the new file, and
while you're at it, to print the line to the console as well:

do

{
text = reader. ReadLine();
writer. WiteLine(text);
Consol e. WiteLine(text);

} while (text !'= null);

Example 21-6 provides the complete source code.
Example 21-6. Reading and writing to a text file

nanespace Programr ng_CShar p

{

491

usi ng System
using System 1O

cl ass Tester
{
public static void Main()
{
// make an instance and run it
Tester t = new Tester();
t.Run();

/1 Set it running with a directory nane
private void Run()

/1 open a file
Filelnfo theSourceFile = new Fil el nfo(
@C: \test\source\test.cs");

/] create a text reader for that file
StreanReader reader = theSourceFile. QpenText();

/1l create a text witer to the new file
StreanWiter witer = new StreamWiter(
@C. \test\source\test.bak", fal se);

/1l create a text variable to hold each |ine
string text;

/1 walk the file and read every line
/1l witing both to the console

/1 and to the file

do

{

text = reader. ReadLine();
witer.WiteLine(text);
Consol e. WiteLine(text);

} while (text !'= null);

/1 tidy up

reader. C ose();

witer.Cose();

}

When this program is run, the contents of the original file are written both to the screen and to the new
file. Notice the syntax for writing to the console:

Consol e. WiteLine(text);

This syntax is nearly identical to that used to write to the file:

writer. WiteLine(text);

The key difference is that the Wi t eLi ne() method of Consol e is static, while the Wit eLi ne()

method of St r eanf i t er, which is inherited from Text Wi t er, is an instance method, and thus
must be called on an object rather than on the clas s itself.

492

Programming C#

21.3 Asynchronous I/O

All the programs you've looked at so far perform synchronous 1/0, meaning that while your program is
reading or writing, all other activity is stopped. It can take a long time (relatively speaking) to read data
to or from the backing store, especially if the backing store is a slow disk or (horrors!) a slow network.

With large files, or when reading or writing across the network, you'll want asynchronous 1/O, which
allows you to begin a read and then turn your attention to other matters while the Common Language
Runtime (CLR) fulfills your request. The .NET Framework provides asynchronous 1/O through the
Begi nRead() and Begi nWite() methods of St r eam

The sequence is to call Begi nRead() on your file and then to go on to other, unrelated work while
the read progresses in another thread. When the read completes, you are notified via a callback
method. You can then process the data which was read, kick off another read, and then go back to
your other work.

In addition to the three parameters you've used in the binary read (the buffer, the offset, and how
many bytes to read), Begi nRead() asks for a delegate and a state object.

The delegate is an optional callback method which, if provided, is called when the data is read. The
state object is also optional. In this example, pass in nul | for the state object. The state of the object
is kept in the member variables of the test class.

You are free to put any object you like in the state parameter, and you can retrieve it when you are
called back. Typically (as you might guess from the name) you'll stash away state values that you'll
need on retrieval. The state parameter can be used by the developer to hold the state of the call
(paused, pending, running, etc.).

In this example, you'll create the buffer and the St r eamobject as private member variables of the
class:

public class Asynchl OTester

{

private Stream input Stream
private byte[] buffer;
const int BufferSize = 256;

In addition, create your delegate as a private member of the class:

private AsyncCal | back nyCal | Back; // del egated nethod

The delegate is declared to be of type AsyncCal | back, which is what the Begi nRead() method of
St r eamexpects.

An AsyncCal | Back delegate is declared in the Syst emnamespace as follows:
publ i c del egate void AsyncCal | back (I AsyncResult ar);

Thus this delegate can be associated with any method that returns voi d, and that takes as a
parameter an | AsyncResul t interface. The CLR will pass in the | AsyncResul t interface object at
runtime when the method is called. You only have to declare the method:

voi d OnConpl et edRead(| AsyncResult asyncResul t)

and then hook up the delegate in the constructor:

493

Asynchl OTester()

{
/...

myCal | Back = new AsyncCal | back(thi s. OnConpl et edRead) ;
}

Here's how it works, step by step. In Vai n(), you create an instance of the class and tell it to run:

public static void Main()

{
Asynchl OTest er theApp = new Asynchl OTester();

t heApp. Run();
}

The call to newinvokes the constructor. In the constructor, you open a file and get a St r eamobject
back. You then allocate space in the buffer and hook up the callback mechanism:

Asynchl OTester()

{
i nput Stream = File. OQpenRead(@ C: \test\source\ AskTimtxt");
buffer = new byte[BufferSize];
myCal | Back = new AsyncCal | back(thi s. OnConpl et edRead) ;

}

- This example needs a large text file. I've copied a column written

42 . by Tim O'Reilly ("Ask Tim"), from http://www.oreilly.com, into

4 atext file named AskTim.txt and placed that in a subdirectory |
created named test\source on my C: drive. You can use any text
file in any subdirectory.

Ty

In the Run() method, you call Begi nRead(), which will cause an asynchronous read of the file:

i nput St r eam Begi nRead(

buf f er, /1 where to put the results
0, /'l offset

buffer. Length, /'l BufferSize

nmyCal | Back, /'l call back del egate
null); /'l local state object

You then go on to do other work. In this case you'll simulate useful work by counting up to 500,000,
displaying your progress every 1,000:

for (long i = 0; i < 500000; i++)
{
if (i%000 == 0)
{
Console. WiteLine("i: {0}", i);
}

}
When the read completes, the CLR will call your callback method.

voi d OnConpl et edRead(| AsyncResult asyncResul t)
{

494

Programming C#

The first thing you do when notified that the read has completed is find out how many bytes were
actually read. You do so by calling the EndRead() method of the St r eamobject, passing in the
| AsyncResul t interface object passed in by the CLR:

i nt bytesRead = i nputStream EndRead(asyncResult);

EndRead() returns the number of bytes read. If the number is greater than zero, you'll convert the
buffer into a string and write it to the console, and then call Begi nRead() again, for another
asynchronous read:

if (bytesRead > 0)
{
String s =
Encodi ng. ASCl | . Get String (buffer, 0, bytesRead);
Consol e. Wi teLine(s);
i nput St r eam Begi nRead(
buffer, 0, buffer.Length,
nyCal | Back, null);

}

The effect is that you can do other work while the reads are taking place, but you can handle the read
data (in this case, by outputting it to the console) each time a buffer-full is ready. Example 21-7
provides the complete program.

Example 21-7. Implementing asynchronous 1/O
nanespace Programm ng_CShar p

{
usi ng System
using System 1O
usi ng System Thr eadi ng;
usi ng System Text;

public class Asynchl OTest er

{

private StreaminputStream

/1 del egat ed net hod
private AsyncCal | back mnyCal | Back;

/1l buffer to hold the read data
private byte[] buffer;

/|l the size of the buffer
const int BufferSize = 256;

/'l constructor
Asynchl OTester()
{
/] open the input stream
i nput Stream =
Fi | e. OpenRead(
@C \test\source\AskTimtxt");

/1 allocate a buffer
buf fer = new byte[BufferSize];

/1 assign the call back

myCal | Back =
new AsyncCal | back(t hi s. OnConpl et edRead) ;

495

}

public static void Main()

{
/1l create an instance of Asynchl OTester
/1 which invokes the constructor
Asynchl OTest er theApp =
new Asynchl OTester();
/1 call the instance nethod
t heApp. Run();
}
void Run()
{
i nput St ream Begi nRead(
buf f er, /1 holds the results
0, /1 offset
buf f er. Lengt h, /1 (BufferSize)
nyCal | Back, /1 call back del egate
nul |); /1 local state object
/1 do sone work while data is read
for (long i = 0; i < 500000; i++)
if (19000 == 0)
{
Consol e. WiteLine("i: {0}", i);
}
}
}

/1 call back nethod
voi d OnConpl et edRead(| AsyncResult asyncResul t)

{
int bytesRead =
i nput St ream EndRead(asyncResul t);
/1 if we got bytes, make thema string
/1 and display them then start up again
/1 Qtherwi se, we're done.
if (bytesRead > 0)
{
String s =
Encodi ng. ASCI | . Get String(buffer, 0, bytesRead);
Consol e. WiteLine(s);
i nput St r eam Begi nRead(
buffer, 0, buffer.Length, nyCallBack, null);
}
}
}
Qut put (excerpt)
i: 47000
i: 48000
i: 49000

Date: January 2001
From Dave Hei sl er
To: Ask Tim

496

Programming C#

Subj ect: Questions About OReilly

Dear Tim

I'"ve been a programer for about ten years. | had heard of
O Reilly books, then...

Dave,

You m ght be amazed at how many requests for help with
school projects | get;

i : 50000

i: 51000

i: 52000

The output reveals that the program is working on the two threads concurrently. The reads are done in
the background while the other thread is counting and printing out every thousand. As the reads
complete, they are printed to the console, and then you go back to counting. (I've shortened the
listings to illustrate the output.)

In a real-world application, you might process user requests or compute values while the
asynchronous /O is busy retrieving or storing to a file or a database.

21.4 Network 1/0

Writing to a remote object on the Internet is not very different from writing to a file on your local
machine. You might want to do this if your program needs to store its data to a file on a machine on
your network, or if you were creating a program which displayed information on a monitor connected to
another computer on your network.

Network 1/O is based on the use of streams created with sockets. Sockets are very useful for
client/server applications, peer to peer (P2P), and when making remote procedure calls.

A socket is an object that represents an endpoint for communication between processes
communicating across a network. Sockets can work with various protocols, including UDP and TCP/IP.
In this section we will create a TCP/IP connection between a server and a client. TCP/IP is a
connection-based protocol for network communication. Connection-based means that with TCP/IP,
once a connection is made the two processes can talk with one another as if they were connected by

a direct phone line.

- Although TCP/IP is designed to talk across a network, you can
s | simulate network communication by running the two processes on
" 4# the same machine.

It is possible for more than one application on a given computer to be talking to various clients all at
the same time (e.g., you might be running a web server and also an FTP server and also a program
which provides calculation support). Therefore, each application must have a unique ID so that the
client can indicate which application it is looking for. That ID is known as a port. Think of the IP
address as a phone number and the port as an extension.

The server instantiates a socket and tells that socket to listen for connections on a specific port. The
constructor for the socket has one parameter: an i nt representing the port on which that socket
should listen.

- Client applications connect to a specific IP address. For example,

s Yahoo's IP address is 216.114.108.245. Clients must also connect

' to a specific port. All web browsers connect to port 80 by default.
Port numbers range from 0 to 65,535 (i.e., 2*°); however, some

497

numbers are reserved.Ports are divided into the following ranges:
0-1023 Well-known ports.
1024-49151 Registered ports.
49152-65535 Dynamic and /or private ports.

For a list of all the well-known and registered ports, look at
http://www.iana.org/assignments/port-numbers.

If you are running your program on a network with a
firewall, talk to your network administrator about which
ports are closed.

Once the socket is created, you call St art () on the socket, which tells the socket to begin
accepting network connections. When the server is ready to start responding to calls from clients, you
call Accept (). The thread in which you've called Accept () blocks: waiting sadly by the phone,
wringing its virtual hands, hoping for a call.

You can imagine creating the world's simplest socket. It waits patiently for a client to call, and when it
gets a call it interacts with that client to the exclusion of all other clients. The next few clients to call will
connect, but they will automatically be put on hold. While they are listening to the music and being told
their call is important and will be handled in the order received, they will block in their own threads.
Once the backlog (hold) queue fills, subsequent callers will get the equivalent of a busy signal. They
must hang up and wait for our simple socket to finish with its current client. This model works fine for
servers that take only one or two requests a week, but it doesn't scale well for real-world applications.
Most servers need to handle thousands, even tens of thousands of connections a minute!

To handle a high volume of connections, applications use asynchronous I/O to accept a call and return
a new socket with the connection to the client. The original socket then returns to listening, waiting for
the next client. This way your application can handle many calls; each time a call is accepted a new
socket is created.

The client is unaware of this sleight of hand in which a new socket is created. As far as the client is
concerned, he has connected with the socket at the IP address and port he requested. Note that the
new socket establishes a persistent connection with the client. This is quite different from UDP, which
uses a connectionless protocol. With TCP/IP, once the connection is made the client and server know
how to talk with each other without having to re-address each packet.

The Socket class itself is fairly simple. It knows how to be an end point, but it doesn't know how to
accept a call and create a TCP/IP connection. This is actually done by the TcpLi st ener class. The
Tcpli st ener class builds upon the Socket class to provide high-level TCP/IP services.

21.4.1 Creating a Network Streaming Server

To create a network server for TCP/IP streaming, you start by creating a TcpLi st ener object to
listen to the TCP/IP port you've chosen. I've arbitrarily chosen port 65000 from the available port IDs:

TcpLi stener tcpListener = new TcpLi stener (65000);

Once the TcplLi st ener object is constructed, you can ask it to start listening:

498

Programming C#

tcplLi stener. Start();

You now wait for a client to request a connection:

Socket socketForClient = tcpListener.Accept();

The Accept method of the TcplLi st ener object returns a Socket object which represents a

Berkeley socket interface and which is bound to a specific end point. Accept () is a synchronous
method that will not return until it receives a connection request.

- Because the model is widely accepted by computer vendors,
s | Berkeley sockets simplify the task of porting existing socket-based
4 source code from both Windows and Unix environments.

If the socket is connected, you're ready to send the file to the client:

i f (socketForCient. Connected)
{

You create a Net wor kSt r eamclass, passing the socket into the constructor:

Net wor kSt r eam net wor kSt r eam = new Net wor kSt r ean(socket ForC i ent);

You then create a St r eamV i t er object much as you did before, except this time not on a file, but
rather on the Net wor kSt r eamyou just created:

System 1 O StreanWiter streanWiter = new
System |1 O. StreamWiter(networkStream;

When you write to this stream, the stream is sent over the network to the client. Example 21-8 shows
the entire server. (I've stripped this server down to its bare essentials. With a production server, you
almost certainly would run the request processing code in a thread, and you'd want to enclose the
logic in try blocks to handle network problems.)

Example 21-8. Implementing a network streaming server

usi ng System
usi ng System Net. Socket s;

public class Networkl OServer

{

public static void Main()
{
Net wor kl OServer app =
new Net wor kl CServer();
app. Run();
}

private void Run()
{
/'l create a new TcpListener and start it up
/'l listening on port 65000
TcpLi stener tcpListener = new TcpLi stener (65000);
tcpLi stener. Start();

499

/1 keep listening until you send the file
for (;;)
{
/1 if a client connects, accept the connection
/1 and return a new socket naned socket ForC i ent
/1 while tcpListener keeps |istening
Socket socketForClient =
t cpLi st ener. Accept Socket ();
i f (socketForCient. Connected)

{
Consol e. WitelLine("Cient connected");
/1 call the helper nethod to send the file
SendFi | eTod i ent (socket ForCl i ent);
Consol e. Wit eLi ne(
"Di sconnecting fromclient...");
/1 clean up and go hone
socket ForClient.C ose();
Console. WiteLine("Exiting...");
br eak;
}

}

/1 hel per nmethod to send the file

private void SendFil eToCd ient(
Socket socketFordient)

{

// create a network streamand a streamwiter
/1 on that network stream
Net wor kSt r eam net wor kSt r eam =

new Net wor kSt r eam(socket ForCl i ent);
System | O StreanWiter streanWiter =

new System | O StreamWiter(networkStrean);

/1 create a streamreader for the file
System | O. St reanReader streanReader =
new System | O StreanReader (
@C \test\source\nyTest.txt");

string theString;

/] iterate through the file, sending it
/1 line-by-line to the client
do

{
theString = streanReader. ReadLi ne();

if(theString !'= null)

{
Consol e. Wit eLi ne(

"Sending {0}", theString);
streamWiter. WiteLine(theString);
streamWiter.Flush();

}

}
while(theString !'= null);

/1 tidy up

500

Programming C#

st reanReader. Cl ose();
net wor kSt ream Cl ose();
streamWiter.Cose();

}
21.4.2 Creating a Streaming Network Client
The client instantiates a TcpCl i ent class, which represents a TCP/IP client connection to a host:

Tcpd i ent socket For Server;
socket For Server = new TcpClient("local Host", 65000);

With this TcpCl | ent , you can create a Net wor kSt r eam and on that stream you can create a
St r eanReader :

Net wor kSt r eam net wor kSt r eam = socket For Server. Get Strean() ;
System | O StreanReader streanReader =
new System | O StreanReader (networ kStrean) ;

You now read the stream as long as there is data on it, outputting the results to the console:

do
{ | |
out put String = streanReader. ReadLi ne();
if(outputString !'= null)
Consol e. Wi teLine(outputString);
}
}

while(outputString !'= null);
Example 21-9 is the complete client.

Example 21-9. Implementing a network streaming client

usi ng System
usi ng System Net. Socket s;

public class Cient

{

static public void Main(string[] Args)
{

/Il create a TcpClient to talk to the server
Tcpdient socket For Server;

try
{
socket For Server =

new TcpCient ("l ocal Host", 65000);
}

catch

{
Consol e. Wit eLi ne(

"Failed to connect to server at {0}:65000",
"l ocal host");

501

return;

}

/] create the Network Stream and the Stream Reader

Net wor kSt r eam net wor kSt r eam =
socket For Server. Get Strean();
System | O StreanReader streanReader =

new System | O StreanReader (net wor kSt ream ;

try
{

string outputString;

/'l read the data fromthe host and display it

do
{

out put String = streanReader. ReadLi ne(

if(outputString !'= null)

{ Consol e. Wi teLine(outputString);
}
}
while(outputString !'= null);
E:atch
{
Consol e. Wit eLi ne(
"Exception reading from Server");
}
/1 tidy up

net wor kStream Cl ose();
}
To test this, | created a simple test file named myText.txt:

This is |line one
This is line two
This is line three
This is line four

Here is the output from the server and the client:

Qut put (Server):

Client connected

Sending This is |ine one
Sending This is line two
Sending This is line three
Sending This is line four
Di sconnecting fromclient..
Exi ting. .

Qutput (Client):
This is |line one

This is line two
This is line three

502

obj ect

Programming C#

This is line four
Press any key to continue

- If you are testing this on a single machine, run the client and
ar | server in separate command windows or individual instances of
4 the development environment. You will want to start the server

first or the client will fail, saying it could not connect.

21.4.3 Handling Multiple Connections

A s mentioned earlier, this example does not scale well. Each client demands the entire attention of
the server. What is needed is a server which can accept the connection and then pass the connection
to overlapped /O, providing the same asynchronous solution that you used earlier for reading from a
file.

To manage this, you'll create a new server, AsynchNet wor kSer ver , which will nest within it a new
class, Cl i ent Handl er. When your AsynchNet wor kSer ver receives a client connection, it will
instantiate a Cl i ent Handl er and pass the socket to that Cl i ent Handl er instance.

The Cl i ent Handl er constructor will create a copy of the socket and a buffer and will open a new
Net wor kSt r eamon that socket. It will then use overlapped I/O to asynchronously read and write to
that socket. For this demonstration, it will simply echo whatever text the client sends back to the client
and also to the console.

To create the asynchronous I/O, Cl i ent Handl er will define two delegate methods,
OnReadConpl ete() and OnWiteConpl et e(), that will manage the overlapped I/O of the
strings sent by the client.

The body of the Run() method for the server is very similar to what you saw in Example 21-8. First,
you create a listener and then call St art () . Then you create a forever loop and call

Accept Socket (). Once the socket is connected, rather than handling the connection, you create a
new Cl i ent Handl er and call St art Read() on that object.

The complete source for the server is shown in Example 21-10.

Example 21-10. Implementing an asynchronous network streaming
server

usi ng System
usi ng System Net. Socket s;

public class AsynchNet wor kServer

{

class Cient Handl er

{
public CientHandl er(Socket socketForCient)

{
socket = socketForCient;
buf f er new byt e[256] ;
net wor kSt r eam =
new Net wor kSt r ean(socket ForClient);

cal | backRead =
new AsyncCal | back(thi s. OnReadConpl ete) ;

503

cal | backWite =
new AsyncCal | back(t hi s.

}

/1 begin reading the string f
public void StartRead()
{
net wor kSt r eam Begi nRead(
buffer, 0, buffer.Lengt
cal | backRead, null);

}

OnWiteConplete);

romthe client

hl

/1 when called back by the read, display the string

// and echo it back to the cl
private void OnReadConpl et e(

{
int bytesRead = networkStr

if(bytesRead > 0)

i ent
| AsyncResult ar)

eam EndRead(ar) ;

es fromclient: {1}",

buffer, 0, bytesRead, callbackWite, null);

Consol e. WitelLine("Read connection dropped");

{ |
string s =
Syst em Text . Encodi ng. ASCl | . Get St ri ng(
buffer, 0, bytesRead);
Consol e. Wit e(
"Recei ved {0} byt
byt esRead, s);
net wor kSt r eam Begi nW i t e(
}
el se
{
net wor kStream Cl ose();
socket.C ose();
net wor kStream = nul | ;
socket = null;
}

/] after witing the string,
private void OnWiteConpl et e(

net wor kSt ream EndWite(ar)

print a nessage and resune reading
| AsyncResult ar)

Console. WiteLine("Wite conplete");
net wor kSt r eam Begi nRead(
buffer, 0, buffer.Length,
cal | backRead, null);
}
private byte[] buf f er;
private Socket socket ;

private NetworkStream networkStream
private AsyncCal | back cal | backRead,;
private AsyncCal | back cal | backWi te;

public static void Main()

{

504

AsynchNet wor kServer app =
new AsynchNet wor kSer ver (

)

Programming C#

app. Run();
}

private void Run()
{
/'l create a new TcpListener and start it up
/1 listening on port 65000
TcpLi stener tcpListener = new TcpLi stener (65000);
tcpLi stener. Start();

/'l keep listening until you send the file
for (;;)
{
/1 if a client connects, accept the connection
/1l and return a new socket nanmed socket Ford i ent
/'l while tcpListener keeps |istening
Socket socketForClient =
t cpLi st ener. Accept Socket ();
i f (socketFordient.Connected)
{
Console. WiteLine("dient connected");
CientHandl er handler =
new C i ent Handl er (socket ForCl i ent);
handl er. Start Read();

}

The server starts up and listens to port 65000. If a client connects, the server will instantiate a
Cl i ent Handl er that will manage the 1/0O with the client while the server listens for the next client.

o In this example, you write the string received from the client to the

“ . console in OnReadConmpl et e() and OnW i teConplete(),

4 and writing to the console can block your thread until the write
completes. In a production program, you do not want to take any
blocking action in these methods because you are using a pooled
thread. If you block in OnReadConpl et e() or
OnWiteConpl ete(),youmay cause more threads to be
added to the thread pool which is inefficient and will harm
performance and scalability.

Ty

The client code is very simple. The client creates at cpSocket for the port on which the server will

listen (65000) and creates a Net wor kSt r eamobject for that socket. It then writes a message to that
stream and flushes the buffer. The client creates a St r eanReader to read on that stream and writes
whatever it receives to the console. The complete source for the client is shown in Example 21-11.

Example 21-11. Implementing a client for asynchronous network I/O
usi ng System

usi ng System Net. Socket s;

usi ng System Thr eadi ng;

usi ng System Runtine. Serialization. Formatters. Bi nary;

public class AsynchNetwor kd i ent
{

505

static public int Main()
{

AsynchNetworkClient client =
new AsynchNetworkClient();
return client. Run();

}

AsynchNetworkClient()

{
string serverName = "l ocal host";
Consol e. WitelLi ne("Connecting to {0}", serverNane);
Tcpdient tcpSocket = new TcpCdient(serverName, 65000);
streanmlfoServer = tcpSocket. GetStrean();

private int Run()

string nmessage = "Hello Programm ng C#";
Consol e. Wit eLi ne(
"Sending {0} to server.", nessage);

/1l create a streanWiter and use it to
/1 wite a string to the server
System | O StreanWiter witer =

new System | O StreanmWiter(streanfloServer);
witer. WitelLine(nessage);
writer.Flush();

/1 Read response
System | O StreanReader reader =

new System | O StreanReader (streanifloServer);
string strResponse = reader. ReadLine();
Consol e. WitelLi ne("Received: {0}", strResponse);
st reamroServer. C ose();
return O;

}

private NetworkStream streanifoServer;

}

Server Qut put:

Client connected

Recei ved 22 bytes fromclient: Hello Programm ng C#
Wite conplete

Read connection dropped

Client Qutput:
Connecting to | ocal host

Sendi ng Hell o Programm ng C# to server.
Recei ved: Hell o Programm ng C#

In this example, the network server does not block while it is handling client connections, but rather it
delegates the management of those connections to instances of Cl i ent Handl er . Clients should not
experience a delay waiting for the server to handle their connections.

506

Programming C#

21.4.4 Aysnchronous Network File Streaming

You can now combine the skills learned for asynchronous file reads with asynchronous network
streaming to produce a program which serves a file to a client on demand.

Your server will begin with an asynchronous read on the socket, waiting to get a filename from the
client. Once you have the filename, you can kick off an asynchronous read of that file on the server.
As each buffer-full of the file becomes available, you can begin an asynchronous write back to the
client. When the asynchronous write to the client finishes, you can kick off another read of the file; in
this way you ping-pong back and forth, filling the buffer from the file and writing the buffer out to the
client. The client need do nothing but read the stream from the server. In the next example the client
will write the contents of the file to the console, but you could easily begin an asynchronous write to a
new file on the client, thereby creating a network-based file copy program.

The structure of the server is not unlike that shown in Example 21-10. Once again you will create a
Cl i ent Handl er class, but this time you add an AsyncCal | Back named nyFi | eCal | Back which
you initialize in the constructor along with the callbacks for the network read and write.

nmyFi | eCal | Back =
new AsyncCal | back(thi s. OnFi | eConpl et edRead) ;

cal | backRead =
new AsyncCal | back(thi s. OnReadConpl ete) ;

cal | backWite =
new AsyncCal | back(this. OnWiteConpl ete);

The Run() function of the outer class, now named AsynchNet wor kFi | eSer ver, is unchanged.
Once again you create and start the TcplLi st ener class and create a forever loop in which you call
Accept Socket (), and if you have a socket you instantiate the C! i ent Handl er and call

Start Read(). Asinthe previous example, St art Read() kicks off a Begi nRead(), passing in
the buffer and the delegate to OnReadConpl et e.

When the read from the network stream completes, your delegated method OnReadConpl et e() is
called and it retrieves the filename from the buffer. If text is returned, OnReadConpl et e() retrieves
a string from the buffer using the static Syst em Text . Encodi ng. ASCl | . Get St ring() method:

if(bytesRead > 0)
{

string fileNanme =
Syst em Text . Encodi ng. ASCI | . Get Stri ng(
buffer, 0, bytesRead);

You now have a filename; with that you can open a stream to the file and use the exact same
asynchronous file read used in Example 21-8.

i nput Stream =
Fi | e. OpenRead(fil eNamne) ;

i nput St r eam Begi nRead(

buffer, /'l holds the results

0, /1 offset

buf fer. Lengt h, /1 Buffer Size

nmyFi | eCal | Back, /'l call back del egate
null); /'l 1 ocal state object

507

This read of the file has its own callback that will be invoked when the input stream has read a buffer-
full from the file on the server disk drive.

- As noted earlier, you normally would not want to take any action in
ar an overlapped 1/0 method that might block the thread for any
appreciable time. The call to open the file and begin reading it
would normally be pushed off to a helper thread, instead of doing
this work in OnReadConpl et e(). It has been simplified for this
example to avoid distracting from the issues at hand.

=
L.

When the buffer is full, OnFi | eConpl et edRead() is called, which checks to see if any bytes were
read from the file, and if so begins an asynchronous write to the network:

if (bytesRead > 0)

{
/'l wite it out to the client
net wor kSt r eam Begi nWi t e(
buffer, 0, bytesRead, callbackWite, null);
}

When the network write completes, the On\W i t eConpl et e() method is called, and this kicks off
another read from the file:

private void OnWiteConplete(| AsyncResult ar)

{
net wor kSt ream EndWite(ar);
Console. WiteLine("Wite conplete");
i nput St r eam Begi nRead(
buffer, /'l holds the results
0, /'l offset
buf fer. Lengt h, /'l (BufferSize)
nmyFi | eCal | Back, /'l call back del egate
null); /'l 1 ocal state object
}

The cycle begins again with another read of the file, and the cycle continues until the file has been
completely read and transmitted to the client. The client code simply writes a filename to the network
stream to kick off the file read:

string nessage = @C:\test\source\ AskTimtxt";
System O StreanWiter witer =

new System | O StreanWiter(streanToServer);
writer. Wite(nessage);
writer.Flush();

The client then begins a loop, reading from the network stream until no bytes are sent by the server.
When the server is done, the network stream is closed. You start by initializing a Boolean value to
f al se and creating a buffer to hold the bytes sent by the server:

bool fQuit = fal se;
while (!'fQuit)
{

char[] buffer = new char[BufferSize];

508

Programming C#
You are now ready to create a new St r eanReader from the Net wor kSt r eammember variable

st reamlfoSer ver:

System | O. St reanReader reader =
new System | O. St reanReader (streanToServer) ;

The call to Read() takes three parameters: the buffer, the offset at which to begin reading, and the
size of the buffer:

i nt bytesRead = reader. Read(buffer,0, BufferSize);

You check to see if the Read() returned any bytes; if not you are done and you can set the Boolean
value f Qui t to t r ue, causing the loop to terminate:

if (bytesRead == 0)
fQuit = true;

If you did receive bytes, you can write them to the console or write them to a file, or do whatever it is
you will do with the values sent from the server:

el se

{
string theString = new String(buffer);

Consol e. WiteLine(theString);
}
Once you break out of the loop, you close the Net wor kSt r eam

streanifoServer. C ose();

The complete annotated source for the server is shown in Example 21-12, with the client following in
Example 21-13.

Example 21-12. Implementing an asynchronous network file server
usi ng System

usi ng System Net. Socket s;

usi ng System Text;

using System 1O

/1 get a file name fromthe client

/'l open the file and send the

/'l contents fromthe server to the client
public class AsynchNet wor kFi | eServer

{

class CientHandl er
/'l constructor
public CientHandl er(
Socket socketFordient)
{

/1l initialize nmenber variable
socket = socketFordCient;

// initialize buffer to hold
/'l contents of file

509

buffer = new byte[256];

/] create the network stream
net wor kSt r eam =
new Net wor kSt rean(socket ForClient);

/1 set the file callback for reading
/1 the file
myFi | eCal | Back =
new AsyncCal | back(this. OnFi | eConpl et edRead) ;

/1 set the callback for reading fromthe
/1 network stream
cal | backRead =

new AsyncCal | back(t hi s. OnReadConpl et e) ;

/1 set the callback for witing to the
/1 network stream
cal | backWite =
new AsyncCal | back(this. OnwWiteConpl ete);

}

/1 begin reading the string fromthe client
public void StartRead()

{
/1 read fromthe network
/1 get a filenane
net wor kSt r eam Begi nRead(
buffer, 0, buffer.Length,
cal | backRead, null);
}

/1 when called back by the read, display the string
/1 and echo it back to the client
private void OnReadConpl ete(| AsyncResult ar)

{

int bytesRead net wor kSt r eam EndRead(ar) ;
/1 if you got a string
if(bytesRead > 0)

/1 turn the string to a file nane
string fileNanme =
Syst em Text . Encodi ng. ASCI | . Get Stri ng(
buffer, 0, bytesRead);

/1 update the console
Consol e. Wit e(
"Opening file {0}", fileName);

/1 open the file input stream
i nput Stream =
Fi |l e. OpenRead(fil eNane) ;

/1 begin reading the file
i nput St ream Begi nRead(

buf fer, /1 holds the results

0, /1 offset

buf f er. Lengt h, /1 BufferSize

nyFi | eCal | Back, /1 call back del egate
nul l); /1 local state object

510

Programming C#

}
el se
{
Consol e. WitelLine("Read connection dropped");
net wor kSt ream Cl ose();
socket.Cl ose();
net wor kSt r eam = nul |
socket = null
}

/1 when you have a buffer-full of the file
voi d OnFi |l eConpl et edRead(| AsyncResult asyncResul t)

int bytesRead =
i nput Stream EndRead(asyncResul t);

/1 if you read sone file
if (bytesRead > 0)
{
/1 wite it out to the client
net wor kSt r eam Begi nWi t e(
buffer, 0, bytesRead, callbackWite, null);

/1l after witing the string, get nore of the file
private void OnWiteConplete(|AsyncResult ar)

{
net wor kSt ream EndWite(ar);
Console.WiteLine("Wite conplete");
/1 begin reading nore of the file
i nput St ream Begi nRead(
buf fer, /1 holds the results
0, /1 offset
buf f er. Lengt h, /1 (BufferSize)
nyFi | eCal | Back, /1 call back del egate
nul 1) ; /1 local state object
}
private const int Buf f er Si ze = 256;
private byte[] buf fer;
private Socket socket ;
private NetworkStream networkStream
private Stream i nput St ream

private AsyncCal | back cal | backRead;
private AsyncCal | back cal | backWite;
private AsyncCal | back nyFi | eCal | Back

public static void Main()

{
AsynchNet wor kFi | eServer app =

new AsynchNet wor kFi | eServer();

511

app. Run();
}

private void Run()
{
/1l create a new TcpListener and start it up
/1 listening on port 65000
TcpLi stener tcpListener = new TcpLi stener (65000);
tcpListener. Start();

/1 keep listening until you send the file
for (;3)
{
/1 if a client connects, accept the connection
/1 and return a new socket naned socket ForCl i ent
/1 while tcpListener keeps |istening
Socket socketForClient =
t cpLi st ener. Accept Socket () ;
i f (socketForCient. Connected)
{
Consol e. WitelLine("Cient connected");
C i ent Handl er handl er =
new C i ent Handl er (socket ForCl i ent);
handl er. Start Read();

}

Example 21-13. Implementing a client for an asynchronous network file
server

usi ng System

usi ng System Net. Socket s;

usi ng System Thr eadi ng;

usi ng System Text;

usi ng System Runtinme. Serialization.Fornmatters. Bi nary;

public class AsynchNetwor kC i ent

{
static public int Main()
{
AsynchNetworkClient client =
new AsynchNetworkClient();
return client.Run();
}
AsynchNet wor kClient()
{
string serverNanme = "l ocal host";
Consol e. WiteLine("Connecting to {0}", serverNane);
Tcpdient tcpSocket = new Tcpdient(serverNanme, 65000);
st reanmfoServer = tcpSocket. GetStrean();
}
private int Run()
{

string message = @C: \test\source\ AskTi mtxt";
Consol e. Wit e(

512

Programming C#

"Sending {0} to server.", nessage);

/] create a streamWiter and use it to
/1 wite a string to the server
System 1O StreanWiter witer =

new System | O StreanmWiter(streanifloServer);
witer. Wite(nessage);
writer.Flush();

bool fQuit = fal se;

/1 while there is data com ng

/1 fromthe server, keep reading

while (!fQuit)

{
I/ buffer to hold the response
char[] buffer = new char[BufferSize];

/1 Read response
System | O StreanReader reader =
new System | O StreanReader (streanifloServer);

/1 see how many bytes are
/1 retrieved to the buffer
int bytesRead =
reader. Read(buffer, 0, BufferSize);
if (bytesRead == 0) // none? quite
fQuit = true;
el se /1l got sonme?

/1 display it as a string
string theString = new String(buffer);
Consol e. WiteLine(theString);
}
}
streanfoServer.Close(); // tidy up
return O,

}

private const int BufferSize = 256;
private NetworkStream streanifoServer;

}

By combining the asynchronous file read with the asynchronous network read, you have created a
scalable application that can handle requests from a number of clients.

21.5 Web Streams

Rather than reading from a stream provided by a custom server, you can just as easily read from any
web page on the Internet.

A VébRequest is an object that requests a Uniform Resource Identifier (URI) such as the URL for a
web page. You can use a \\ebRequest object to create a \\ébResponse object that will encapsulate
the object pointed to by the URI. That is, you can call Get Response() on your \\ebRequest object
to get the actual object (e.g., a web page) pointed to by the URI. What you get back is encapsulated in
a \\éebResponse object. You can then ask that \\ebResponse object for a St r eamobject by calling
Cet ResponseSt reant(). Get ResponseSt rean() returns a stream that encapsulates the
contents of the web object (e.g., a stream with the web page).

513

The next example retrieves the contents of a web page as a stream. To get a web page, you'll want to
use Ht t pWebRequest . Ht t pVebRequest derives from \\ebRequest and provides additional
support for interacting with the HTTP protocol.

To create the Ht t pV\ebRequest you cast the \\ebRequest returned from the static Cr eat e()
method of the \\ebRequest Fact ory:

Ht t pWebRequest webRequest =
(Htt pWebRequest) WebRequest. Create
("http://ww. |ibertyassoci ates.con book _edit. htm);

Creat e() is a static method of V\ébRequest . When you pass in a URI, an instance of
HTTPVWbRequest is created.

- The method is overloaded on the type of the parameter. It returns
s | different derived types depending on what is passed in. For
"4 example, if you pass in a URI, an object of type

HTTPWebRequest is created. The return type, however, is
VbReguest , and so you must cast the returned value to
HTTPWbRequest .

Creating the HTTPVWbRequest establishes a connection to a page on my web site. What you get
back from the host is encapsulated in an Ht t p\\ébResponse object, which is an HTTP protocol-
specific subclass of the more general V\ebResponse class:

Ht t pWWebResponse webResponse =
(Htt pWebResponse) webRequest. Get Response();

You can now open a St r eanReader on that page by calling the Get ResponseSt rean() method
of the \ébResponse object:

St reanReader streanReader = new StreanReader (
webResponse. Get ResponseStream(), Encoding. ASCl1);

You can read from that stream exactly as you read from the network stream. Example 21-14 shows
the complete listing.

Example 21-14. Reading a web page as an HTML stream
usi ng System

usi ng System Net;

usi ng System Net. Socket s;

usi ng System |G,

usi ng System Text;

public class Cient

{

static public void Main(string[] Args)
{

/'l create a webRequest for a particul ar page
Ht t pWebRequest webRequest =
(Htt pWebRequest) WebRequest. Create
("http://ww. | ibertyassoci ates.conm book_edit. htm');

514

Programming C#

I/ ask the web request for a webResponse encapsul ating
/'l that page
Ht t pWebResponse webResponse =

(Htt pWebResponse) webRequest. Get Response();

/'l get the streanReader fromthe response
StreanmReader streanmReader = new StreanReader (
webResponse. Get ResponseStreanm(), Encoding. ASCl1);

try
{
string outputString;

output String = streanReader. ReadToEnd();
Consol e. WiteLine(outputString);

}
catch
{
Consol e. WiteLine("Exception reading fromweb page");
}

st reanReader. Cl ose();

}
Qut put (excerpt):

<! DOCTYPE HTM. PUBLIC "-//|ETF/ /DTD HTM.// EN'>
<htm >

<head>
<titl e>Books &anp; Resources</title>
</ head>

<body bgcolor="#ffffff" vlink="#808080"

al i nk="#800000" topmargi n="0" |eftmargin

="0">

<tabl e border="0" cell paddi ng="0" cell spaci ng="0" w dt h="454"
bgcol or="#ffffff">

<tr>
" ; Mor e
than just about any other witer, Jesse Liberty
is brilliant at communicating what it's really

like to work on a program ng project. &uot;
</ font ><font face="tines new roman, tines,
serif" size="3">

</ b> Barnes &anp; Nobl e</i>

The output shows that what is sent through the stream is the HTML of the page you requested. You

might use this capability for screen scraping; reading a page from a site into a buffer and then

extracting the information you need.

s | reading a site for which you have copyright permission.

-
SN

- All examples of screen scraping in this book assume that you are

515

21.6 Serialization

When an object is streamed to disk, its various member data must be serialized— that is, written out to
the stream as a series of bytes. The object will also be serialized when stored in a database or when
marshaled across a context, app domain, process, or machine boundary.

The CLR provides support for serializing an object-graph—an object and all the member data of that
object. As noted in Chapter 19, by default types are not serialized; to serialize an object, you must
explicitly mark it with the [Ser i al i zabl e] attribute.

In either case, the CLR will do the work of serializing your object for you. Because the CLR knows how
to serialize all the primitive types, if your object consists of nothing but primitive types (all your member
data consists of integers, longs, strings, etc.), you're all set. If your object consists of other user-
defined types (classes), you must ensure that these types are also serializable. The CLR will try to
serialize each object contained by your object (and all their contained objects as well), but these
objects themselves must either be primitive types or they must be serializable.

This was also evident in Chapter 19 when you marshaled a Shape object that contained a Poi nt
object as member data. The Poi nt object in turn consisted of primitive data. In order to serialize (and
thus marshal) the Shape object, its constituent member, the Poi nt object, also had to be marked as
serializable.

o When an object is marshaled, either by value or by reference, it
a2 | must be serialized. The difference is only whether a copy is made
" W& or a proxy is provided to the client. Objects marked with the

[Serial i zabl e] attribute are marshaled by value; those which
derive from Obj ect Mar shal ByRef are marshaled by reference,
but both are serialized. See Chapter 19 for more information.

21.6.1 Using a Formatter

When data is serialized, it will eventually be read; either by the same program or by a different
program running on another machine. In any case, the code reading the data will expect that data to
be in a particular format. Most of the time in a .NET application, the expected format will either be
native binary format or Simple Object Access Protocol (SOAP).

o SOARP is a simple, lightweight XML-based protocol for exchanging
) information across the Web. SOAP is highly modular and very
"4 extensible. It also leverages existing Internet technologies, such

as HTTP and SMTP.

When data is serialized the format of the serialization is determined by the formatter you apply. In
Chapter 19, you used formatters with channels when communicating with a remote object. Formatter
classes implement the interface | f or nat t er ; you are also free to create your own formatter, though
very few programmers will ever need or want to! The CLR provides both a SoapFor nat t er for
Internet serialization and a Bi nar yFor nat t er that is useful for fast local storage.

You can instantiate these objects with their default constructors:

Bi naryFormatter binaryFormatter =
New Bi naryFormatter();

516

Programming C#

Once you have an instance of a formatter, you can invoke its Seri al i ze() method, passing in a
stream and an object to serialize. You'll see how this is done in the next example.

21.6.2 Working with Serialization

To see serialization at work, you'll need a sample class that you can serialize and then deserialize.
You can start by creating a class named Sunr . Sunof has three member variables:

private int startNunmber = 1;
private int endNunber;
private int[] theSuns;

The member array t heSuns represents the value of the sums of all the numbers from st ar t Nunber
through endNurnber . Thus, if st ar t Nunber is 1 and endNunber is 10, the array will have the values:

1, 3,6, 10, 15, 21, 28, 36, 45, 55

Each value is the sum of the previous value plus the next in the series. Thus if the seriesis 1, 2, 3, 4,
the first value in t heSuns will be 1. The second value is the previous value (1) plus the next in the
series (2); thus, t heSuns|[1] will hold the value 3. Likewise, the third value is the previous value (3)
plus the next in the series—t heSuns| 2] is 6. Finally, the fourth value in t heSuns is the previous
value (6) plus the next in the series (4), for a value of 10.

The constructor for the SunOf object takes two integers: the starting number and the ending number.
It assigns these to the local values and then calls a helper function to compute the contents of the
array:

public Sunt (int start, int end)
{

start Nunber = start;
endNunmber = end;
Comput eSuns() ;

The Conmput eSuns helper function fills in the contents of the array by computing the sums in the
series from st ar t Nunber through endNunber :

private void ConputeSuns()

{
int count = endNunber - startNunber + 1;
theSunms = new int[count];
theSunms[0] = startNunber;
for (int i=1,j=startNunber + 1;i<count;i++,] ++)
{
theSuns[i] = | + theSums[i-1];
}
}

At any time, you can display the contents of the array by using a f or each loop:

private void DisplaySunms()

{
foreach(int i in theSumns)
{
Console. WiteLine("{0}, ",i);
}
}

517

21.6.2.1 Serializing the object

Now, mark the class as eligible for serialization with the [Seri al | zabl e] attribute:

[Serializable]
cl ass Sunmdf

To invoke serialization, you first need a file stream object into which you'll serialize the SunOf object:

FileStreamfil eStream =
new Fil eStrean("DoSum out", Fi | eMode. Create);

You are now ready to call the formatter's Seri al i ze() method, passing in the stream and the
object to serialize. Because this will be done in a method of Sunr , you can pass in the t hi s object,
which points to the current object:

bi naryFormatter. Serialize(fileStreamthis);

This will serialize the SuntX object to disk.
21.6.2.2 Deserializing the object

To reconstitute the object, open the file and ask a binary formatter to DeSer i al i ze it:

public static SumOf DeSerialize()

{
FileStreamfil eStream =
new Fi |l eStreanm("DoSum out", Fi | eMode. Open) ;
Bi naryFormatter binaryFormatter =
new Bi naryFormatter();
return (SumOf) binaryFormatter. Deserialize(fileStream;
fileStream Cl ose();
}

To make sure all this works, you'll first instantiate a new object of type Suntf and tell it to serialize
itself. You'll then create a new instance of type Suntf by calling the static deserializer and asking it to
display its values:

public static void Main()

{
Console. WiteLine("Creating first one with new ..");
Sumsr app = new Suntf (1, 10);
Consol e. Wit eLi ne(
"Creating second one with deserialize...");
SumOf newl nstance = SuntX. DeSerialize();
newl nst ance. Di spl aySuns();
}

Example 21-15 provides the complete source code to illustrate serialization and deserialization.

Example 21-15. Serializing and deserializing an object
nanespace Programr ng_CShar p

{
usi ng System

518

usi ng
usi ng
usi ng

Programming C#

System | G,
System Runtine. Seri al i zati on;
System Runti nme. Seri al i zati on. Fornatters. Bi nary;

[Serializable]

cl ass

{

Sunf

public static void Main()

{

}

Console.WiteLine("Creating first one with new...");
Sunt app = new Sunf (1, 10);

Console. WiteLine("Creating second one with deserialize...");
Sumof newl nstance = SunmOf. DeSerialize();
newl nst ance. Di spl aySuns();

public SunOf (int start, int end)

{

pri

pri

pri

start Nunber = start;
endNunmber = end;
Conput eSuns();

Di spl aySunms();
Serialize();

vate void ComputeSuns()
int count = endNunmber - startNunber + 1;
theSunms = new int[count];
t heSuns[0] = start Nunber;

for (int i=1,j=startNunber + 1;i<count;i++, | ++)

theSuns[i] = | + theSuns[i-1];

vate void D splaySuns()

foreach(int i in theSuns)
{

Consol e. WiteLine("{0}, ",i);
}

vate void Serialize()

Console. Wite("Serializing...");
/1l create a file streamto wite the file
FileStreamfileStream =

new Fil eStrean("DoSum out", Fi | eMode. Create);
/1 use the CLR binary formatter
Bi naryFormatter binaryFormatter =

new Bi naryFormatter();
/1 serialize to disk
bi naryFormatter. Serialize(fileStreamthis);
Consol e. WitelLine("...conpleted");
fileStream Cl ose();

519

public static SumO>f DeSerialize()

{
FileStream fil eStream =
new Fi |l eStreanm("DoSum out", Fi | eMode. Open) ;
Bi naryFormatter binaryFormatter =
new Bi naryFormatter();
return (SumOf) binaryFormatter. Deserialize(fileStream;
fileStream Cl ose();
}

private int startNunber = 1;
private int endNunber;
private int[] theSuns;

Qut put :
Creating first one with new. ..
1,
3,
6,
10,
15,
21,
28,
36,
45,
55,
Serializing...... conpl et ed
Creating second one with deserialize...
1,
3,
6,
10,
15,
21,
28,
36,
45,
55,

The output shows that the object was created, displayed, and then serialized. The object was then
deserialized and output again, with no loss of data.

21.6.3 Handling Transient Data

In some ways, the approach to serialization demonstrated in Example 21-15 is very wasteful.
Because you can compute the contents of the array given its starting and ending numbers, there really
is no reason to store its elements to disk. Although the operation might be inexpensive with a small
array, it could become costly with a very large one.

You can tell the serializer not to serialize some data by marking it with the [NonSer i al | zed]
attribute:

[NonSerialized] private int[] theSurms;

520

Programming C#

If you don't serialize the array, however, the object you create will not be correct when you deserialize
it. The array will be empty. Remember, when you deserialize the object, you simply read it up from its
serialized form; no methods are run.

To fix the object before you return it to the caller, implement the | Deseri al i zat i onCal | back
interface:

[Serializable]
class Sumr : | DeserializationCallback

Also implement the one method of this interface: OnDeseri al i zati on(). The CLR promises that if
you implement this interface, your class's OnDeseri al i zati on() method will be called when the
entire object graph has been deserialized. This is just what you want; the CLR will reconstitute what
you've serialized, and then you'll have the opportunity to fix up the parts that were not serialized.

This implementation can be very simple; just ask the object to recompute the series:

public virtual void OnDeserialization (Cbject sender)

{
}

Comput eSuns() ;

This is a classic space/time trade-off; by not serializing the array you make deserialization somewhat
slower (because you must take the time to recompute the array), but you make the file somewhat
smaller. To see if not serializing the array had any effect, | ran the program with the digits 1 to 5,000.
Before setting [NonSer i al | zed] on the array, the serialized file was 20K. After setting

[NonSeri al i zed], the file was 1K. Not bad. Example 21-16 shows the source code using the
digits 1 to 5 as input (to simplify the output).

Example 21-16. Working with a nonserialized object
namespace Programm ng_CShar p

{
usi ng System
usi ng System | Q
usi ng System Runtine. Seri al i zati on;
usi ng System Runtine. Serialization. Formatters. Bi nary;

[Serializable]

class SumOf : |DeserializationCallback
{
public static void Main()
{
Console. WiteLine("Creating first one with new. ..");
SumOF app = new SuntX (1,5);
Console. WiteLine("Creating second one with deserialize...");
Sumcf newl nstance = SuntX.DeSerialize();
newl nst ance. Di spl aySuns();
}
public Suntf (int start, int end)
{

start Nunber = start;
endNunber = end,;
Comput eSuns() ;

Di splaySums();
Serialize();

521

}

private void ConputeSunms()
{

int count = endNunmber - startNunber + 1;
theSunms = new int[count];

t heSuns[0] = start Nunber;

for (int i=1,j=startNunber + 1;i<count;i++, | ++)

theSuns[i] = | + theSuns[i-1];

private void DisplaySuns()

foreach(int i in theSuns)

{
}

Consol e. WiteLine("{0}, ",i);

private void Serialize()

Console. Wite("Serializing...");
/1l create a file streamto wite the file
FileStreamfileStream =

new Fil eStrean("DoSum out", Fi | eMode. Create);
/1 use the CLR binary formatter
Bi naryFormatter binaryFormatter =

new Bi naryFormatter();
/1 serialize to disk
bi naryFormatter. Serialize(fileStreamthis);
Consol e. WitelLine("...conpleted");
fileStream Cl ose();

}

public static Sunf DeSerialize()
{
FileStreamfileStream =
new Fil eStrean("DoSum out", Fi | eMode. Open) ;
Bi naryFormatter binaryFormatter =
new Bi naryFormatter();
return (SumOf) binaryFormatter. Deserialize(fileStream;
fileStream Cl ose();

}

/1 fix up the nonserialized data
public virtual void OnDeserialization
(nj ect sender)

Conput eSums() ;
}

private int startNunber = 1;
private int endNunber;
[NonSerialized] private int[] theSunmns;

522

Programming C#

Qut put :
Creating first one with new. ..
1,
3,
6,
10,
15,
Serializing...... conpl et ed
Creating second one with deserialize...
1,
3,
6,
10,
15,

You can see in the output that the data was successfully serialized to disk and then reconstituted by
deserializaiton. The trade-off of disk storage space versus time does not make a lot of sense with five
values, but it makes a great deal of sense with 5 million values.

So far you've streamed your data to disk for storage and across the network for easy communication
with distant programs. There is one other time you might create a stream: to store permanent
configuration and status data on a per-user basis. For this purpose, the .NET Frameworks offer
isolated storage.

21.7 Isolated Storage

The .NET CLR provides isolated storage to allow the application developer to store data on a per-user
basis. Isolated storage provides much of the functionality of traditional Windows .ini files or the more
recent HKEY CURRENT USER key in the Windows Registry.

Applications save data to a unique data compartment associated with the application. The CLR
implements the data compartment with a data store: typically a directory on the file system.

Administrators are free to limit how much isolated storage individual applications can use. They can
also use security so that less trusted code cannot call more highly trusted code to write to isolated
storage.

What is important about isolated storage is that the CLR provides a standard place to store your
application's data, but it does not impose (or support) any particular layout or syntax for that data. In
short, you can store anything you like in isolated storage.

Typically, you will store text, often in the form of name-value pairs. Isolated storage is a good
mechanism for saving user configuration information such as login name, the position of various
windows and widgets, and other application-specific, user-specific information. The data is stored in a
separate file for each user, but the files can be isolated even further by distinguishing among different
aspects of the identity of the code (by assembly or by originating application domain).

Using isolated storage is fairly straightforward. To write to isolated storage you create an instance of
an | sol at edSt or ageFi | eSt r eamwhich you initialize with a filename and a file mode (create,

append, etc.):

| sol at edSt orageFi |l eStream configFile =
new | sol at edSt or ageFi | eSt ream
("Tester.cfg", Fil eMode. Create);

You then create a St r ean\W i t er on that file:

523

StreamWiter witer =
new StreamWiter(configFile);

You then write to that stream as you would to any other. Example 21-17 illustrates.

Example 21-17. Writing to isolated storage

nanespace Programr ng_CShar p
{
using System
using System |1 Q
usi ng System | O. | sol at edSt or age;

public class Tester

{

public static void Main()

{
Tester app = new Tester();
app. Run();

}

private void Run()
{
/1 create the configuration file stream
| sol at edSt orageFi |l eStream configFile =
new | sol at edSt orageFi | eStream
("Tester.cfg", Fil eMode. Create);

/'l create a witer to wite to the stream
StreanWiter witer =
new StreamWiter(configFile);

/[l wite sonme data to the config. file

String output;

System Dat eTi me current Tine = System Dat eTi ne. Now,
output = "Last access: " + currentTinme. ToString();
writer.WiteLine(output);

out put = "Last position = 27, 35";
witer.WitelLine(output);

/1 flush the buffer and clean up
writer.Flush();

witer.dose();
configFile. Close();

}
After running this code, search your hard disk for test.cfg. On my machine, this file is found in:

c:\Docunents and Settings\Adni ni strator\ApplicationDat a\
M crosof t\ COWPI us\ | sol at edSt or age\ 0. 4\

Url . w 4zpd5ni 41dyngxxluzOxOaoar af t c\

Url . w 4zpd5ni 41dyngxx1uz0i xOaoaraftc\fil es

You can read this file with Notepad if what you've written is just text:

Last access: 5/2/2001 10:00:57 AM
Last position = 27,35

524

Programming C#

Or, you can access this data programmatically. To do so, reopen the file:

| sol at edSt orageFi |l eStream configFile =
new | sol at edSt or ageFi | eStream
("Tester.cfg", Fil eMode. Qpen) ;

Create a St r eanReader object:

StreanReader reader =
new StreanReader (configFile);

and use the standard stream idiom to read through the file:

string theEntry;

do

{
theEntry = reader. ReadLine();
Consol e. WiteLine(theEntry);

} while (theEntry !'= null);

Consol e. WiteLine(theEntry);

Example 21-18 provides the entire source needed to read the file.

Example 21-18. Reading from isolated storage
nanespace Programr ng_CShar p

{
usi ng System
usi ng System |G,
usi ng System | O. | sol at edSt or age;

public class Tester

{ public static void Main()
{ Tester app = new Tester();
app. Run();
}
?rivate void Run()

/1 open the configuration file stream
| sol at edSt orageFi |l eStream configFile =
new | sol at edSt or ageFi | eStream

("Tester.cfg", Fil eMbde. Qpen) ;

/1l create a standard stream reader
StreanReader reader =
new StreanReader (configFile);

/1 read through the file and display
string theEntry;
do
{
theEntry = reader. ReadLine();
Consol e. WiteLine(theEntry);
} while (theEntry !'= null);

reader. C ose();

525

configFile. Close();

}

Qut put :

Last access: 5/2/2001 10: 00:57 AM
Last position = 27,35

526

Programming C#

Chapter 22. Programming .NET and COM

Programmers love a clean slate. Although it would be nice if we could throw away all the code we've
ever written and start over, that typically isn't a viable option for most companies. Over the past
decade, many development organizations have made a substantial investment in developing and
purchasing COM components and ActiveX controls. If .NET is to be a viable platform, these legacy
components must be usable from within .NET applications, and to a lesser degree, .NET components
must be callable from COM.

This chapter describes the support .NET provides for importing ActiveX controls and COM
components into your application, for exposing .NET classes to COM-based applications, and for
making direct calls to Win32 APIs. You will also learn about C# pointers and keywords for accessing
memory directly, a technique that may be crucial in some applications.

22.1 Importing ActiveX Controls

ActiveX controls are COM components typically dropped into a form, and which might or might not
have a user interface. When Microsoft developed the OCX standard, which allowed developers to
build ActiveX controls in Visual Basic and use them with C++ (and vice versa), the ActiveX control
revolution began. Over the past few years, thousands of such controls have been developed, sold,
and used. They are small, easy to work with, and an effective example of binary reuse.

Importing ActiveX controls into .NET is surprisingly easy, considering that the COM binary standard
and the .NET binary standard are not compatible. Visual Studio .NET is able to import ActiveX controls,
and Microsoft has also developed a command line utility, Ax| np, which will create the assemblies
necessary for the control to be used in a .NET application.

22.1.1 Creating an ActiveX Control

To demonstrate the ability to use classic ActiveX controls in a .NET application, you'll first develop a
simple four-function calculator as an ActiveX control and then you will invoke that ActiveX control from
within a C# application. You'll build the control in VB6, and test it in a VB6 application. If you don't
have VB6 or don't want to bother creating the control, you can download the control from my web site
(http://www.LibertyAssociates.com).

Once the control is working in the standard Windows environment, you'll copy it to your .NET
development environment, register it, and import it into a Windows Forms application.

To create the control, open VB6 and choose ActiveX Control as the new project type. Make the project
form as small as possible, because this control will not have a user interface. Right-click UserControll
and choose Properties. Rename it Calculator in the Properties window. Click the Project in the project
explorer and in the Properties window rename it to CalcControl. Imnmediately save the project and
name both the file and the project CalcControl, as shown in Figure 22-1.

Figure 22-1. Creating a VB ActiveX control

527

Now you can add the four calculator functions by right-clicking the CalcControl form, selecting View
Code from the pop-up menu, and typing in the VB code shown in Example 22-1.

Example 22-1. Implementing the CalcControl ActiveX control

Public Function _
Add(l eft As Double, right As Double) _
As Doubl e
Add = left + right
End Function

Public Function _
Subtract (I eft As Double, right As Double) _
As Doubl e
Subtract = left - right
End Function

Public Function _
Mul tiply(left As Double, right As Double) _
As Doubl e
Miultiply = left * right
End Function

Publi ¢ Function _
Divide(left As Double, right As Double) _
As Doubl e
Divide = left / right
End Function

This is the entire code for the control. Compile this to the CalcControl.ocx file by choosing File -
Make CalcControl.ocx on the Visual Basic 6 menu bar.

Next open a second project in VB as a standard executable (EXE). Name the form Test For mand
name the project Cal cTest . Save the file and project as Cal cTest .

528

Programming C#

Add the ActiveX control as a component by pressing Control-T and choosing CalcControl from the
Controls tab, as shown in Figure 22-2.

Figure 22-2. Adding the CalcControl to the VB6 toolbox

]
Caritrcls] Dasigners | Inzertable Objects |

i) WideoToft wsFlexd Contrals - dﬂ

Aective Setup Contral Library .

adobe SWG Viewer Type Library 2.0 2 24 ¢

BxBrovwse o

CWINNT|System32 \mscord. di - o~ | &8

CHINNTSysbem32 e oo e B ;-g

CalcCaontrol

Cdig (S o

COTool 1.0 Type Library

certmap OLE Conbral modube:

Certwiz Activer Control moduls

i 1,0 Type Lbrary Bro

erfigprts CLE Conbrod module - #
1 | L1 [T Selected ftems Only
CalcCantral

Locstisn: Cil...\22 - L..\ActivexXiCaleContrel aex

ok Cancel | Appy |

This action puts a new control on the toolbox, as shown circled in Figure 22-3.

Figure 22-3. Locating CalcControl in the Visual Basic 6 toolbox
o B

Drag the new control on to the form Test For mand name it CalcControl. Note that the new control will
not be visible; this control has no user interface. Add two text boxes, four buttons, and one label, as
shown in Figure 22-4.

Figure 22-4. Building the TestForm user interface

529

Fle Edit Wiew Project Format Debug Run Query Disgram Tocks Add-Ing Window Help

B-a-BSE P 2R2i oo, |« HEEWR - 26

1=) WideoSort vsFleed Con
Active Sebup Contral Libra
¥ ActiveContral

Ao se
| Blue Sky Software Active |

| Borland el Server OLE ©
TP e hk TR T Curt e T T raree

Name the buttons bt nAdd, bt nSubt ract, bt nMul ti ply, and bt nDi vi de. All that is left is for you
to implement methods for handling the button click events of the calculator buttons. Each time a button
is clicked, you want to get the values in the two text boxes, cast them to doubl e (as required by
CalcControl) using the VB6 CDbl function, invoke a CalcControl function, and print the result in the
label control. Example 22-2 provides the complete source code.

Example 22-2. Using the CalcControl ActiveX control in a VB program
(TestForm)

Private Sub btnAdd _Cick()
Label 1. Caption = _
cal cCont rol . Add(CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

Private Sub btnDivide Cick()
Label 1. Caption = _
cal cControl . Divide(CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

Private Sub btnMiltiply_Cick()
Label 1. Caption = _
cal cControl . Mul tiply(CDbl (Text1. Text),
CDbl (Text 2. Text))
End Sub

Private Sub btnSubtract Cick()
Label 1. Caption = _
cal cControl . Subtract (CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

Figure 22-5 shows the result of running the CalcTest program, typing in two numbers and clicking
the Multiply button.

530

Programming C#

Figure 22-5. Running the CalcTest program
[=.Formi LI=/Rl=lkd

Drrade

22.1.2 Importing a Control in .NET

Now that you've shown that the CalcControl ActiveX control is working, you can copy the
CalcControl.ocx file to your .NET development environment. Once you have copied it, register the
CalcControl.ocx file using Regsvr 32, and you're ready to build a test program in .NET to use the
calculator:

Regsvr 32 Cal cControl . ocx

To get started, you'll create a Visual C# Windows Form project in Visual Studio .NET (see Chapter
13), name the project | nt er opTest, and design a form like the TestForm form you created in VB in
the preceding section by dragging and dropping controls onto it. Name the form TestForm. A complete
sample form is shown in Figure 22-6.

Figure 22-6. Building a Windows Form to test the CalcControl ActiveX
control

Forml.cs [Design]*
A T
:
ZN, =10] x|

% | bexkBiowx]

R

L2 labell

22.1.2.1 Importing a control

There are two ways to import an ActiveX control into the Visual Studio .NET development environment.
You can use the Visual Studio .NET tools themselves, or import the control manually using the aximp

utility that ships with the .NET SDK Framework. To use Visual Studio .NET, choose Tools
Customize Toolbox from the menu. On the COM Components tab find the
Cal cControl . Cal cul at or object you just registered, as shown in Figure 22-7.

Figure 22-7. Importing the CalcControl ActiveX control

531

[xJ
COM Components I MET Framework Components |
[e = | wibrary [Last pccifie
ActrveMovie ontrol Ooject CWINNT Sysbem3Zims,,. Microsoft Active, .. 12/6/1999
ActiverPlugin Objeck CHAWINNT SysbemaZipha,,, Micrasolt Acthee, . 12/6/1999
RuchorBvr Class COAWINNT| Syshem3ZiLM, . 12/671999
adbanner Class CIWINNT Syskem32ims, . 12jaf1999
Adobe Acrobst Conkral For Ackivel CAPROGR A1 AdabelA, . S0
Apphcation Data Control CHAWINNT System3Z\ap, .. shappmgr 1.0T... 322001
Apps Contral CIWINNT Syskem32ime. . cnfgprts OLE Co... 30202001
| CalcControl, Caloulator C\Doouments and Seth.., CaloControl Sr1SfE001
Calendsr Contral 9.0 Ci\Program FilesiMicrasa.,, Miresoft Calen.., 1715/2000
ColorBvr Class COWINNT Sysbem3ZiLM., . 12j6{1999
i-1 WideoSoft Flexferay Control
E Language: Language Meutral
Wersion: a0
18 I Cancel | Reset | Hedlp |

Because Cal cCont r ol is registered on your .NET machine, the Visual Studio .NET Customize
Toolbox is able to find it. When you select the control from this dialog box, it is imported into your
application; Visual Studio takes care of the details. Alternatively, you can open a command box and
import the control manually using the aximp.exe utility, as shown in Figure 22-8.

Figure 22-8. Running aximp

[O, WINNT System 32, cmd.exe

sl .d]1]
:Gontrol. dll

aximp.exe takes one argument, the ActiveX control you want to import (CalcControl.dll). It produces
three files:

AxCalcControl.dll

A .NET Windows control
CalcControl.dll

A proxy .NET class library
AxCalcControl.pdb

A debug file

22.1.2.2 Adding a control to the Visual Studio toolbox

Once this is done, you can return to the Customize Toolbox window, but this time select .NET
Framework Components. You can now browse to the location at which the .NET Windows control
AxCalcControl.dll was generated and import that file into the toolbox, as shown in Figure 22-9.

532

Programming C#

Figure 22-9. Browsing for the imported control

| x]
oM Components .FETFrulukaulup.ruﬂllsl
Tdams | Namespace | Path I Last ﬂ
[adrezster Suskeen, Web, UL WebiCartrak C\WINNT\Microsoft NET\Fr,., 3/29)
[akrasksatecto Murosoft. YaDesignes Data, .. CProgram Fles\Microsoft ., 4711
EEUI.I.._ L L L L B AT LT R e s i RETLES el ot
Eeu
EG lookin: =2 Secord Rourd on Tieptunelliept .. =] ¢ = (5] @Y X [~ BB - Tods~
c-
Hor | Interog
B) I |~ Jidmp, exe
=3 Ly Hiskary 3} CalcCocir
B %] CakeControl. ol
i -],
AGRE | My Projects
—_— Desktop
L+
Faworites
& File name: -
by N | x Qpen I
Placag Files of type: |Em-_,.:utabl:.—-_= ™.l ®e0m) j Cancal

Once imported, the control appears on the toolbox menu, as shown in Figure 22-10.

Figure 22-10. Viewing the AxCalcControl calculator after importing it into
the toolbox
Toolbox
Diata

Components
wWindoas Forms

k FPoinker
A Label
abl Button

shl merHme

Now you can drag this control onto your Windows Form and make use of its functions, just as you did
in the VB6 example.

You'll add event handlers for each of the four buttons. The event handlers will delegate their work to
the ActiveX control you wrote in VB6 and imported into .NET.

The source for the event handlers is shown in Example 22-3.

Example 22-3. Implementing event handlers for the test Windows Form

private void btnAdd _Cick(object sender, System EventArgs e)
{

doubl e I eft = doubl e. Parse(textBoxl. Text);
doubl e right = doubl e. Parse(textBox2. Text);
| abel 1. Text = axCalculatorl. Add(ref left, ref right).ToString();

}

private void btnbDivide Cick(object sender, System Event Args e)

533

doubl e left = doubl e. Parse(textBoxl. Text);
doubl e right = doubl e. Parse(textBox2. Text);
| abel 1. Text = axCalculatorl.Divide(ref left, ref right). ToString();

}

private void btnMultiply Cick(object sender, System EventArgs e)
{

doubl e I eft = doubl e. Parse(textBoxl. Text);
doubl e right = doubl e. Parse(textBox2. Text);
| abel 1. Text = axCalculatorl. Multiply(ref left, ref right).ToString();

}

private void btnSubtract_ Cick(object sender, System Event Args e)

{

double I eft = doubl e. Parse(textBoxl. Text);
doubl e right = doubl e. Parse(textBox2. Text);
| abel 1. Text = axCal cul atorl. Subtract(ref left, ref right). ToString();

}
Each implementing method obtains the values in the text fields, converts them to double using the

static method doubl e. Par se(), and passes those values to the calculator's methods. The results
are cast back to a string and inserted in the label, as shown in Figure 22-11.

Figure 22-11. Running the imported ActiveX Control in a Windows Form

Meal M[=] E3
3

2
7

Add | su:u.:u| Mubply | Divide

22.2 Importing COM Components

Importing ActiveX controls turns out to be fairly straightforward. Many of the COM components that
companies develop are not ActiveX controls, however; they are standard COM dynamic link library
(DLL) files. To see how to use these with .NET, you return to VB6 and create a COM business object
that will act exactly as the component from the previous section did.

The first step is to create a new ActiveX DLL project. This is how VB6 creates standard COM DLLs.
Name the class Contal ¢ and name the project ContCal cul at or . Save the file and project. Copy the
methods from Example 22-4 into the code window.

Example 22-4. Implementing the methods for ComCalc

Public Function _
Add(l eft As Double, right As Doubl e)
As Doubl e
Add = left + right
End Function

Public Function _
Subtract (I eft As Double, right As Doubl e)
As Doubl e
Subtract = left - right
End Function

Public Function _

534

Programming C#

Mul tiply(left As Doubl e, right As Double)

As Doubl e

Multiply = left * right

End Functi on

Publ i ¢ Function

Di vide(left As Double, right As Double)

As Doubl e

Divide = left / right

End Functi on

Build the DLL by using the menu sequence File —>Make ComCalculator.dil. You can test this by

returning to your earlier test program and removing the Cal cul at or control from the form. Add the
new DLL by opening the project reference window and navigating to the Contal cul at or, as shown

in Figure 22-12.

Figure 22-12. Adding a reference to ComCalculator.dll

x|

Awalable Refarences: s

v

1

COM + 1.0 Adenin Type Library
COM MakeCab 1.0 Type Library Erowise. .,
COM4 Servioes T Lbr.

CMPraps 1.0 Type Library ﬂ Cancel |
COLBCAT 1.0 Type Library

*

ComExp 1.0 Typs Library J

COMMSIZen 1.0 Type Library Priatity

ComPlus 1,0 Catalog Peglication Type Library Help
COMWR 1.0 Type Library ﬂ

Controd Wizard 1.0 Type Lbrary
cryptext 1,0 Type Library
255Ed

lCiSEl:I Litiities [

Comialouator

Location: CHiDocuments and Settings)administr atoriMy Doouments|Wor
Language: Standsrd

22.2.1 Coding the COMTestForm program

The code to exercise the COM component is very similar to the earlier example. This time, however,

you instantiate a ContCal ¢ object and call its methods, as shown in Example 22-5.

Example 22-5. The driver program for ComCalc.dll

Private Sub btnAdd_Cick()
DimtheCal c As New Contal c
Label 1. Caption = _
t heCal c. Add(CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

Private Sub btnDivide Cick()
DimtheCal c As New Contal c
Label 1. Caption = _
theCal c. Di vi de(CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

535

Private Sub btnMultiply Cick()
DimtheCalc As New Contal c
Label 1. Caption = _
theCal c. Mul ti pl y(CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

Private Sub btnSubtract Cick()
DimtheCalc As New Contal ¢
Label 1. Caption = _
t heCal c. Subt ract (CDbl (Text 1. Text),
CDbl (Text 2. Text))
End Sub

22.2.2 Importing the COM .DLL to .NET

Now that you have a working ContCal ¢ DLL, you can import it to .NET. Before you can import it,
however, you must choose between early and late binding. When the client calls a method on the
server, the address of the server's method in memory must be resolved. That process is called binding.

With early binding, the resolution of the address of a method on the server occurs when the client
project is compiled and metadata is added to the client .NET module. With late binding, the resolution
does not happen until runtime, when COM explores the server to see if it supports the method.

Early binding has many advantages. The most significant is performance. Early-bound methods are
invoked far more quickly than late-bound methods. For the compiler to perform early binding, it must
interrogate the server's type library. For the compiler to interrogate the server's type library it must first
be imported into .NET.

22.2.3 Importing the Type Library

The VB6-created COM DLL has a type library within it, but the format of a COM type library cannot be
used by a .NET application. To solve this problem, you must import the COM type library into an
assembly. Once again, you have two ways of doing this. You can allow the Integrated Development
Environment (IDE) to import the class by registering the component, as shown in the following section,
or you can import the type library manually by using the standalone program TIbimp.exe.

TIblmp.exe will produce a proxy assembly with a manifest within it. This proxy assembly is called a
Runtime Class Wrapper (RCW). The .NET client will use the RCW to bind to the methods in the COM
object, as shown in the following section.

22.2.4 Importing Manually

Start by copying the ComCalculator.DLL file to your .NET environment and registering it with
Regsvr 32. Then you're ready to import the COM object into .NET, by running Tlbimp.exe. The syntax
is to enter the name of the COM component, followed by an optional name for the filename produced,

as shown in Figure 22-13.

Figure 22-13. Running Tlblmp.exe

536

Programming C#

|T|E:"-l"i'l']NNT'l-_Systl:rn‘EiZ'-._-:rnd.cm:

»>T 13 dll
D Ty HET :mh 1 ; 1 ion 1.8.2728_.8
Lo [e i o ht & 4 '

Tupe lihrary img

22.2.5 Creating a Test Program
Now it's time to create a driver program to test the COM object, which you'll name COVDI | Test .

If you decided not to import the library manually, you import it through the IDE. To do so, select the
COM tab on the Add Reference dialog and select the registered COM object, as shown in Figure 22-
14.

Figure 22-14. Adding a reference to ComCalculator
I B ST G D B R R R R e

HET oM | erojects |

Browise. .. |
Comporent Mame | Tupelis ver... | Path [=]
CMProps 1.0 Type Lbrary 1.0 CH\WINNT Syshem 32| cprop. .. Selact I
crfgprts OLE Control module 1.0 CHWINNT Sysbem3Zinetsrd, ..
COLBCAT 1.0 Type Library 1.0 CWINNTY Syrshem 32 cbeata...
coloader 1.0 Type Library 1.0 C:\Program Files\Comman Fil.. .
COM + 1.0 Adiin Type Libvary 1,0 CAWINNT Syvsbem 3 Comlca. ..
200 MakeZ”ab 1.0 Type Library 1.0 CWINNTY Syshem 32 catsrew. .,
20+ Services Type Library 1.0 CHWINNT Syshem 321 COMSY.
ComCakulator \MeptunsiMeptunecDocunm, .
ComExp 1.0 Type Library 1.0 CHWINNT Syshem 32l catsred. .,
ComExpS 1.0 Type Library 1.0 CWINNT Sysbem 32 comuid, dl
Common Language Runkime E.., 1.0 CWINNT\Microsoft. MET\Fra. ..
Crammne | Ao ane Roekime 1. 1.0 CIWTNNT Micraseft MFTIFrA. . LI

Component MNams [Type Source [|

| Cancel | Help I

This will invoke Tlbimp for you and will copy the resulting RCW to:

C. / Docunents and Settings/Adm ni strator/ Application
Dat a/ M crosof t/ Vi sual St udi o/ RCW

You'll have to be careful, however, because the DLL it produces has the same name as the COM DLL.

If you do use TIblmp.exe, you can add the reference from the Projects tab. Browse to the directory
where ComCalculatorDLLNET.dIl was created, and add it to the references.

In either case, you can now create the user interface, which is, again, similar to that used for testing
the ActiveX control, as shown in Figure 22-15.

Figure 22-15. The form for testing the COM object

537

B cor pll Test o] x] I

All that is left is to wire up the event handlers for the four buttons, as shown in Example 22-6.

Example 22-6. Implementing event handlers for the VB 6 COM DLL test
form

private void btnAdd Cick(
obj ect sender, System EventArgs e)

{
Doubl e left, right, result;
| eft = Doubl e. Parse(textBoxl. Text);
ri ght = Doubl e. Parse(text Box2. Text);
Contal cul at or. ConCal ¢ theCal ¢ = new ContCal cul ator. ConCal c();
result = theCalc. Add(ref left, ref right);
| abel 1. Text = result.ToString();
}
private void btnSubtract_Cick(
obj ect sender, System EventArgs e)
{
Doubl e left, right, result;
| eft = Doubl e. Parse(textBox1. Text);
ri ght = Doubl e. Parse(text Box2. Text);
ComCal cul at or. ContCal ¢ theCal ¢ = new ContCal cul ator. ConCal c();
result = theCalc.Subtract(ref left, ref right);
| abel 1. Text = result.ToString();
}
private void btnMultiply Cick(
obj ect sender, System EventArgs e)
{
Doubl e left, right, result;
| eft = Doubl e. Parse(textBoxl. Text);
ri ght = Doubl e. Parse(text Box2. Text);
ComCal cul at or. ContCal ¢ theCal ¢ = new ContCal cul ator. ConCal c();
result = theCalc. Multiply(ref left, ref right);
| abel 1. Text = result.ToString();
}
private void btnDi vide_Cick(
obj ect sender, System EventArgs e)
{
Doubl e left, right, result;
| eft = Doubl e. Parse(textBoxl. Text);
ri ght = Doubl e. Parse(text Box2. Text);
Contal cul at or. ConCal ¢ theCal ¢ = new ContCal cul ator. ConCal c();
result = theCalc.Divide(ref left, ref right);
| abel 1. Text = result.ToString();
}

538

Programming C#

Rather than referring to an ActiveX control that is on the form, you must instantiate the
Contal cul at or. ContCal c object. The COM object is then available for use as if it had been created
in a .NET assembly, and the running program works as expected, as shown in Figure 22-16.

Figure 22-16. The test driver program in action
Mo pll Test M=1E3
S
—

add | Subuact | [muipy | Divide |

2

22.2.6 Using Late Binding and Reflection

If you do not have a type library file for your third-party COM object, you must use late binding with
reflection. In Chapter 18, you saw how to invoke methods dynamically in .NET assemblies; the
process with COM objects is not terribly different.

To see how to do this, start with the application shown in Example 22-6, but remove the reference to
the imported library. The four button handlers must now be rewritten. You can no longer instantiate a
Contal cul at or . Cal c object, so instead you must invoke its methods dynamically.

Just as you saw in Chapter 18, you begin by creating a Ty pe object to hold information about the
Contal c type.

Type comCal cType;
conmCal cType = Type. Get TypeFronProgl D(" ConCal cDLL. Contal c") ;

The call to Get TypeFr onPr ogl Dinstructs the .NET Framework to open the registered COM DLL and
retrieve the necessary type information for the specified object. This is the equivalent to calling
Cet Type, as you did in Chapter 18:

Type theMat hType = Type. Get Type(" System Math");

You can now proceed exactly as you would if you were invoking this method on a class described in
a .NET assembly. You start by calling Cr eat el nst ance to get back an instance of the Contal ¢
object:

obj ect contCal cObj ect = Activator. Createlnstance(conCal cType);

You next create an array to hold the arguments, and then invoke the method using | nvokelMenber,
passing in the method you want to invoke as a string, a binder flag, a null binder, the object returned
by Cr eat el nst ance, and the input argument array:

object[] inputArgunents = {left, right };
result = (Double) contCal cType. | nvokeMenber (

"Subtract", /1 the method to invoke
Bi ndi ngFl ags. | nvokeMet hod, /1 how to bind

nul |, /' binder

comCal cnj ect, /'l the COM obj ect

i nput Argunents) ; /1 the method argunents

The results of this invocation are cast to Doubl e, and stored in the local variable r esul t. You can
then display this result in the user interface, as shown in Figure 22-17.

539

Figure 22-17. Late-binding test

jl ate Binding Test EE E
3

21
7

add | Subhiact |]

Because all four event handlers must replicate this work, differing only in the method they call, you'll
factor the common code to a private helper method named | nvoke, as shown in Example 22-7.

Example 22-7. Late binding of COM objects

private void btnAdd_d i ck(
obj ect sender, System EventArgs e)

{
I nvoke(" Add") ;
}
private void btnSubtract_Cick(
obj ect sender, System Event Args e)
{
I nvoke(" Subtract");
}
private void btnMultiply i ck(
obj ect sender, System Event Args e)
{
I nvoke(" Ml tiply");
}
private void btnbDivide Cick(
obj ect sender, System EventArgs e)
{
I nvoke("Di vi de");
}

private void | nvoke(string whi chMet hod)

Doubl e left, right, result;
| eft = Doubl e. Parse(textBoxl. Text);
ri ght = Doubl e. Parse(text Box2. Text);

/1l create a Type object to hold type infornmation
Type conCal cType;

/1 an array for the argunents
obj ect[] inputArgunents =
{left, right };

/1 get the type info fromthe COM object
contCal cType =
Type. Get TypeFr onPr ogl DX
"Contal cul at or. Contal c") ;

/'l create an instance
obj ect contal cObj ect =
Activator. Creat el nstance(contal cType) ;

Programming C#

/'l invoke the nethod dynamically and
/1 cast the result to double
result = (Double) conCal cType. | nvokeMenber (

whi chMet hod, /1 the method to invoke
Bi ndi ngFl ags. | nvokeMet hod, // how to bind

nul |, /'l binder

comCal cObj ect /1 the COM obj ect

i nput Argunents) ; /1 the method argunents

| abel 1. Text = result.ToString();
}

22.3 Exporting .NET Components

You can export your .NET class for use with existing COM components, although this is an unusual
requirement. The Regasmtool will register the metadata from your component in the system registry.

You invoke Regasmwith the name of the DLL. For example:
Regasm nyAssenbl y. dl |

This will export your component's metadata to the Registry. For example, you can create a new C#
DLL project in which you re-create your four-function calculator, as shown in Example 22-8.

Example 22-8. The four-function calculator in a DLL
usi ng System

nanespace Programr ng_CShar p

{
public class Cal cul at or
{
public Calculator()
{
}
public Double Add (Double left, Double right)
{
return left + right;
}
publ i c Doubl e Subtract (Double |eft, Double right)
{
return left - right;
}
public Double Miultiply (Double |eft, Double right)
{
return left * right;
}
publ i ¢ Doubl e Divide (Double |eft, Double right)
{
return left / right;
}
}
}

You save this to a file named Calculator.cs in a project named Pr ogr anm ngCShar pDLL. After
building this project, you can register it with:

541

Regasm Pr ogr amm ngCShar pDLL. dl |

A quick check of the Registry shows that a PROGID was created for the DLL, as shown in Figure 22-
18.

Figure 22-18. The Registry after registering the DLL

o -]

% I (DO k- 1 S0 B kel POEATER = | rene Type [
B {PUaNrNr- TR IO ASCF- S | SAA0} etk RIS 52 Frosranmng hasols. S eindser
=] Implemenbad Cateqiies
] 2R BRI - T - 4 (S E R T 251
] InprocSeneri
3 Proggd
+) {POCehiC -a - L L0 Phd-00R: 7] el 5
+) {ROCI4ET-20E0- L DD-A20] -ONPS004 MATDER |
+) SO - | -0 - D -S040 T TP |

o 12 e

i v a .|

Wy Compuuber FREY_CLASSES ADCTHCLUSD A0 2 -7 - 3 - 5207] SA4S0ar HProgid

You can now invoke the four-function calculator as a COM object using standard VBScript. For
example, you can create a tiny Windows Script Host file, as shown in Example 22-9.

Example 22-9. Invoking the Calculator COM object with a Windows
scripting host file

dimcal c

di m nmsg

di mresult

set calc = CreateObject ("Programm ngCShar pDLL. Cal cul ator™)
result = calc. Multiply(7,3)

mg = "7 * 3 =" &result &"."

Cal | MsgBox(nsg)

When this is run, a dialog box pops up to verify that the object was created and invoked, as shown in
Figure 22-19.

Figure 22-19. Late binding via COM

22.3.1 Creating a Type Library

If you wish to use early binding with your .NET DLL you will need to create a type library. You can do
so with the TI bExp (Type Library Export) utility, by writing:

Tl bExp Progranmm ngCShar pDLL.dl | /out:Calc.tlb

The result is a type lib that you can browse for and view in the OLE/COM object viewer within Visual
Studio, as shown in Figure 22-20.

Figure 22-20. Viewing the type lib contents

542

Programming C#

1Typl it Finweer _ |B] =)
Fils i
Bl o ¢
=3 o psresrated | IDL fuils (by she DLE-COE Objsct Viewex) =
- e
‘??h:.';:::“ A typalib filenams coonld not determines £ilensse:
M Msttads [
M TpSting umdy OFEE4 .lh = FFEF- - ELAR-RAVERT TREHAL) .
" varzaznil. 0}
M Getehnds cashom] '!UBSJF‘J-— DIE-1102-8F17-00A0CTREIEED. 0}
m e 1
m e Library Prograssimglihsrplll
M Zubrac {
m v TLib < TLib {EEDTFAER-1AR6-1102-9FSE—00ADC P AR1B6 DT
ampostlibl “macorlib. b 1EB®
- m Diade ## TLik : OLE hatowsatisn (000204 30=0000=0000=C08=-00000 00000446}
¥ Inkerbsd Indwfaces inportlibl "stdolis? ElB”
- et
= depeveteos _Celshi Forward dcc AT a]l sypes defized in this typelib
= (3] M interisce _Calozlst
LR ECE] i
= B uiiid{ J02E7 ZECE=JFCF=ASCE=5372 1EA4ED2F }
| Gastahicada auston| 2 S9-LHEd-41E9- '!A-'--- D10ERDZES . FrosreamiraCEharpbll Caloulstorh |
= GaitTape
onolass Caloulator
| A idefault] imtartscs Calculstor
W Sublract interface _Object
mn Fuliph ;
0 [[
Iniesined b s0es adl
= T nielae_Cobusor uiiid{ FEOEY 38 F=C 304 =30F1=B]9B=2A0CE3RECA03 }
hidden
Jdidal
nonsNTensibls.
alesutcastios
custon[IFIIFIS3=-ABEd-41E3=-9ATE=-3ED110ERDZFY, ProgramnirdlShaspDll Caloulatas}
1
:ml:" : & Calowlabor Ilispatok §
l]ﬁ']). propget] e =
Fsacy

With this type library in hand, you can import the calculator class into any COM environment.

22.4 PlInvoke

It is possible, though generally undesirable, to invoke unmanaged code from within C#. The .NET
platform invoke facility (P/ | nvoke) was originally intended only to provide access to the Windows API,
but you can use it to expose functions in any DLL.

To see how this works, let's revisit Example 21-3 from Chapter 21. You will recall that you used the
St r eamclass to rename files by invoking the MoveTo() method:

file. MoveTo(full Nane + ".bak");

You can accomplish the same thing by using Windows' kernal32.dll and invoking the MoveFi | es
method. To do so, you need to declare the method as a st at i ¢ ext er n and you need to use the
DI [mport attribute:

[DlInmport("kernel 32.dll", EntryPoint="MveFile",
Exact Spel | i ng=f al se, Char Set =Char Set . Uni code,
Set LastError=true)]
static extern bool MoveFil e(
string sourceFile, string destinationFile);

The DI | | nport Attri but e class is used to indicate that an unmanaged method will be invoked
through P/ | nvoke.

The parameters are:
EntryPoint
Indicates the name of the DLL entry point (the method) to be called.

ExactSpelling

Setting this to f al se allows matching of the entry point name without case sensitivity.
CharSet

Indicates how the string arguments to the method should be marshaled.
SetlLastError

Setting this to t r ue allows you to call Get Last Err or to check if an error occurred when
invoking this method.

The rest of the code is virtually unchanged, except for the invocation of the MoveFi | e() method
itself. Notice that MoveFi | e() is declared to be a static method of the class, so you use static
method semantics:

Tester. MoveFile(file. Full Nane,file.Full Name + ".bak");

You pass in the original filename and the new name and the file is moved, just as it was when calling
file. MoveTo().Inthis example, there is no advantage—and actually considerable
disadvantage—to using P/ | nvoke. You have left managed code, and the result is not object-oriented.
P/ | nvoke really only makes sense when you absolutely, positively need to invoke a method for which
there is no reasonable substitute within managed code. Example 22-10 shows the complete source
code for using P/ | nvoke to move the files.

Example 22-10. Using P/Invoke to call a Win32 APl method
nanespace Programm ng_CShar p
{

usi ng System

usi ng System |G,

usi ng System Runti nme. | nteropServices;

cl ass Tester

{

/1 declare the WnAPI nethod you wi sh to P/Invoke
[DillInmport("kernel 32.dl ", EntryPoi nt="MveFile",
Exact Spel | i ng=f al se, Char Set =Char Set . Uni code,
SetLastError=true)]
static extern bool MoveFil e(
string sourceFile, string destinationFile);

public static void Main()

{
/'l make an instance and run it
Tester t = new Tester();
string theDirectory = @c:\test\nedi a";
Directorylnfo dir =
new Directorylnfo(theDirectory);
t.ExploreDirectory(dir);
}

/1 Set it running with a directory nane
private void ExploreDirectory(Directorylnfo dir)

{

/1 make a new subdirectory
string newbDirectory = "newlest";
Directorylnfo newSubDir =

Programming C#

dir. Creat eSubdi rectory(newDirectory);

/1 get all the files in the directory and
/1 copy themto the new directory
Filelnfo[] filesInDir = dir.CetFiles();
foreach (Filelnfo file in fileslnDir)

{
string full Name = newSubDir. Ful | Nanme +
"\\" + file.Naneg;
file.CopyTo(full Nane);
Consol e. WiteLine("{0} copied to newTest",
file.Full Name);
}

/1 get a collection of the files copied in
filesInDir = newSubDir. GetFiles();

/] del ete sone and renane others
int counter = O;
foreach (Filelnfo file in fileslnDir)

{
string full Nane = file.Full Nane;
if (counter++ % == 0)
{
/1 PlInvoke the Wn API
Tester. MoveFi |l e(ful | Nane, full Nane + ".bak");
Console. WiteLine("{0} renanmed to {1}",
ful | Name, file. Ful | Nane);
}
el se
file.Delete();
Consol e. WiteLine("{0} deleted.",
ful | Nane) ;
}
}

/1 delete the subdirectory
newSubDi r. Del et e(true);

}
}
}
Qut put (excerpt):
c:\test\nedi a\ newTest\recycl e.wav renaned to
c:\test\nmedi a\ newTest\recycl e. wav

c:\test\nedi a\ newTest\ringi n.wav renaned to
c:\test\nedi a\ newlest\ri ngi n. wav

22.5 Pointers

Until now you've seen no code using C/C++ style pointers. Only here, in the final paragraphs of the
final pages of the book, does this topic arise, even though pointers are central to the C family of
languages. In C#, pointers are relegated to unusual and advanced programming; typically they are
used only when interoperating with COM.

C# supports the usual C pointer operators, listed in Table 22-1.

Table 22-1. C# pointer operators

Operator Meaning
& The address-of operator returns a pointer to the address of a value.
* The dereference operator returns the value at the address of a pointer.
-> The member access operator is used to access the members of a type.

The use of pointers is almost never required, and is nearly always discouraged. When you do use
pointers, you must mark your code with the C# unsaf e modifier. The code is marked unsafe because
with pointers you can manipulate memory locations directly, a feat otherwise impossible within a C#
program. In unsafe code you can directly access memory, perform conversions between pointers and
integral types, take the address of variables, and so forth. In exchange, you give up garbage collection
and protection against uninitialized variables, dangling pointers, and accessing memory beyond the
bounds of an array. In essence, unsafe code creates an island of C++-code within your otherwise safe
C# application.

As an example of when this might be useful, you'll read a file to the console by invoking two Win32
API calls: Creat eFi | e and ReadFi | e. ReadFi | e takes, as its second parameter, a pointer to a
buffer. The declaration of the two imported methods is not unlike those shown in Example 22-11.

Example 22-11. Declaring Win32 API methods for import into a C#
program

[Dil I nmport("kernel 32", SetlLastError=true)]
static extern unsafe int CreateFil e(

string fil enane,

ui nt desiredAccess,

ui nt shar eMode,

uint attributes,

uint creationDi sposition,

uint flagsAndAttri butes,

uint tenplateFile);

[Dil I nmport("kernel 32", SetlLastError=true)]
static extern unsafe bool ReadFil g(

int hFile,

voi d* | pBuffer,

i nt nBytesToRead,

i nt* nByt esRead,

i nt overl apped);

You will create a new class API Fi | eReader whose constructor will invoke the Creat eFi | e()
method. The constructor takes a filename as a parameter, and passes that flename to the
CreateFil e() method:

public APIFil eReader(string fil enane)

{
fileHandl e = CreateFil e(

filenane, [l filenane
Ceneri cRead, /'l desiredAccess
UseDef aul t, /'l shar eMbde
UseDef aul t, /1 attributes
OpenExi sting, [// creationD sposition
UseDef aul t, /'l flagsAndAttri butes
UseDef aul t); /'l templateFile

}

546

Programming C#

The API Fi | eReader class implements only one other method, Read(), which invokes

ReadFi | e(), passing in the file handle created in the class constructor, along with a pointer into a
buffer, a count of bytes to retrieve, and a reference to a variable which will hold the number of bytes
read. It is the pointer to the buffer which is of interest to us here. To use this API call you must use a
pointer.

Because you will access it with a pointer, the buffer needs to be pinned in memory; the .NET
Framework cannot be allowed to move the buffer during garbage collection. To accomplish this, you
will use the C# f | xed keyword. Fi xed allows you to get a pointer to the memory used by the buffer,
and also to mark that instance so that the garbage collector won't move it.

The block of statements following the f i xed keyword creates a scope, within which the memory will
be pinned. At the end of the fixed block the instance will be marked so that it can be moved. This is
known as declarative pinning:

public unsafe int Read(byte[] buffer, int index, int count)

{
i nt bytesRead = 0;
fixed (byte* bytePointer = buffer)

ReadFi | e(
fil eHandl e,
byt ePoi nter + i ndex,
count,
&byt esRead, 0);

}

return bytesRead;

}

Notice that the method must be marked with the unsaf e keyword. This allows you to create pointers
and creates an unsafe context. To compile this you must use the /unsafe compiler option.

The test program instantiates the API Fi | eReader and an ASCI | Encodi ng object. It passes the
filename to the constructor of the API Fi | eReader and then creates a loop to repeatedly fill its buffer
by calling the Read() method which invokes the ReadFi | e API call. What it gets back is an array of
bytes, which it converts to a string using the ASCI | Encodi ngChj ect s's Get St ri ng() method. It
passes that string to the Consol e. Wite() method, to be displayed on the console. The complete
source is shown in Example 22-12.

Example 22-12. Using pointers in a C# program
usi ng System

usi ng System Runti nme. | nt er opServi ces;

usi ng System Text;

cl ass API Fi | eReader
{
[Dil I nmport("kernel 32", SetlLastError=true)]
static extern unsafe int CreateFil e(
string fil enane,
ui nt desiredAccess,
ui nt shar eMbde,
uint attributes,
uint creationDi sposition,
uint flagsAndAttri butes,
uint tenplateFile);

[Dil I nmport("kernel 32", SetlLastError=true)]
static extern unsafe bool ReadFil g(

547

}

int hFile,

voi d* | pBuffer,

i nt nBytesToRead,
i nt* nByt esRead,
i nt overl apped);

/1 constructor opens an existing file
/1 and sets the file handl e nmember
public APIFil eReader(string fil enane)

{
fileHandl e = CreateFil e(

fil enane, /1 filename
Ceneri cRead, /1 desiredAccess
UseDef aul t /'l shar eMode
UseDef aul t, /1 attributes
OpenkExi sting, // creationDi sposition
UseDef aul t, /1 flagsAndAttri butes
UseDef aul t); /1 tenplateFile

}

public unsafe int Read(byte[] buffer, int index, int count)

{
i nt bytesRead = 0;
fixed (byte* bytePointer = buffer)

ReadFi | e(
fil eHandl e, /1 hfile
byt ePoi nter + index, /1 | pBuffer
count, /1 nByt esToRead
&byt esRead, /1 nByt esRead
0); /'l overl apped

}

return bytesRead;

}

const uint GenericRead = 0x80000000;
const uint OpenExisting 3;

const uint UseDefault =

int fileHandl e;

0;

cl ass Test

{

public static void Main()

{
/1 create an instance of the APIFil| eReader
/1 pass in the nane of an existing file
APl Fi | eReader fil eReader =
new API Fi | eReader ("nyTestFile.txt");
/'l create a buffer and an ASCI| coder
const int BuffSize = 128;
byte[] buffer = new byte[BuffSize];
ASCl | Encodi ng asci i Encoder = new ASCI | Encodi ng();
/1 read the file into the buffer and display to consol e
while (fil eReader. Read(buffer, 0, BuffSize) != 0)
{
Console. Wite("{0}", asciiEncoder.GetString(buffer));
}
}

Programming C#

}

The key section of code is shown in bold, where you create a pointer to the buffer and fix that buffer in
memory using the f i xed keyword. You need to use a pointer here because the API call demands it,
though you've seen in Chapter 21 that all this can be done without the API call at all.

549

550

Programming C#

Appendix A. C# Keywords

abstract

A class modifier that specifies that the class must be derived-from to be instantiated.

as
A binary operator type that casts the left operand to the type specified by the right operand
and that returns nul | rather than throwing an exception if the cast fails.

base
A variable with the same meaning as t hi s, except it accesses a base class implementation of
a member.

bool
A logical datatype that can be t rue or f al se.

break
A jump statement that exits a loop or swi t ch statement block.

byte
A one-byte unsigned integral datatype.

case
A selection statement that defines a particular choice in a swi t ch statement.

catch
The part of a t r ystatement that catches exceptions of a specific type defined in the cat ch
clause.

char
A two-byte Unicode character datatype.

checked
A statement or operator that enforces arithmetic bounds checking on an expression or
statement block.

class
An extendable reference type that combines data and functionality into one unit.

const

A modifier for a local variable or field declaration that indicates the value is a constant. A
const thatis evaluated at compile time and can only be a predefined type.

551

continue

decimal

default

A jump statement that skips the remaining statements in a statement block and continues to
the next iteration in a loop.

A 16-byte precise decimal datatype.

A marker in a swi t ch statement specifying the action to take when no case statements
match the swi t chexpression.

delegate

do

double

else

enum

event

explicit

extern

false

finally

552

A type for defining a method signature so that delegate instances can hold and invoke a
method or list of methods that match its signature.

A loop statement to iterate a statement block until an expression at the end of the loop
evaluates tof al se.

An eight-byte floating-point datatype.

A conditional statement that defines the action to take when a precedingi f expression
evaluates to f al se.

A value type that defines a group of named numeric constants.

A member modifier for a delegate field or property that indicates only the += and -= methods
of the delegate can be accessed.

An operator that defines an explicit conversion.

A method modifier that indicates the method is implemented with unmanaged code.

A Boolean literal.

Programming C#

The part of at r y statement to always execute when control leaves the scope of thet r y block.

fixed
A statement to pin down a reference type so that the garbage collector won't move it during
pointer arithmetic operations.
float
A four-byte floating-point datatype.
for
A loop statement that combines an initialization statement, stopping condition, and iterative
statement into one statement.
foreach
A loop statement that iterates over collections that implement | Enuner abl e.
get
The name of the accessor that returns the value of a property.
goto
A jump statement that jumps to a label within the same method and same scope as the jump
point.
if
A conditional statement that executes its statement block if its expression evaluates tot r ue.
implicit
An operator that defines an implicit conversion.
in
The operator between a type and an | Enuner abl e in a f or eachstatement.
int
A four-byte signed integral datatype.
interface
A contract that specifies the members that aclass or structcan implement to receive generic
services for that type.
internal

An access modifier that indicates a type or type member is accessible only to other types in
the same assembly.

553

A relational operator that evaluates to t r ue if the left operand's type matches, is derived from,
or implements the type specified by the right operand.

lock
A statement that acquires a lock on a reference-type object to help multiple threads cooperate.
long
An eight-byte signed integral datatype.
namespace
Maps a set of types to a common name.
new
An operator that calls a constructor on a type, allocating a new object on the heap if the type is
a reference type, or initializing the object if the type is a value type. The keyword is overloaded
to hide an inherited member.
null
A reference-type literal that indicates no object is referenced.
object
The type all other types derive from.
operator
A method modifier that overloads operators.
out
A parameter modifier that specifies the parameter is passed by reference and must be
assigned by the method being called.
override
A method modifier that indicates that a method of a class overrides a virtualmethod of a class
orinterface.
params
A parameter modifier that specifies that the last parameter of a method can accept multiple
parameters of the same type.
private
An access modifier that indicates that only the containing type can access the member.
protected

554

Programming C#

An access modifier that indicates that only the containing type or derived types can access the

member.
public
An access modifier that indicates that a type or type member is accessible to all other types.
readonly
A field modifier specifying that a field can be assigned only once, in either its declaration or its
containing type's constructor.
ref
A parameter modifier that specifies that the parameter is passed by reference and is assigned
before being passed to the method.
return
A jump statement that exits a method, specifying a return value when the method is nonvoid.
sbyte
A one-byte signed integral datatype.
sealed
A class modifier that indicates a class cannot be derived-from.
set
The name of the accessor that sets the value of a property.
short
A two-byte signed integral datatype.
sizeof
An operator that returns the size in bytes of a struct.
stackalloc
An operator that returns a pointer to a specified number of value types allocated on the stack.
static
A type member modifier that indicates that the member applies to the type rather than an
instance of the type.
string
A predefined reference type that represents an immutable sequence of Unicode characters.
struct

555

switch

A value type that combines data and functionality in one unit.

A selection statement that allows a selection of choices to be made based on the value of a
predefined type.

this
A variable that references the current instance of a classor struct.
throw
A jump statement that throws an exception when an abnormal condition has occurred.
true
A Boolean literal.
try
A statement that provides a way to handle an exception or a premature exit in a statement
block.
typeof
An operator that returns the type of an object as a Syst em Type object.
uint
A four-byte unsigned integral datatype.
ulong
An eight-byte unsigned integral datatype.
unchecked
A statement or operator that prevents arithmetic bounds checking on an expression.
unsafe
A method maodifier or statement that permits pointer arithmetic to be performed within a
particular block.
ushort
A two-byte unsigned integral datatype.
using

556

Specifies that types in a particular namespace can be referred to without requiring their fully
qualified type names. The using statement defines a scope. At the end of the scope the object
is disposed.

Programming C#

value
The name of the implicit variable set by the set accessor of a property.
virtual
A class method modifier that indicates that a method can be overridden by a derived class.
void
A keyword used in place of a type for methods that don't have a return value.
volatile
Indicates that a field may be modified by the operating system or another thread.
while

A loop statement to iterate a statement block while an expression at the start of each iteration
evaluates to f al se.

557

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming C# is an African crowned crane. This tall, skinny bird
wanders the marshes and grasslands of west and east Africa (the Western and Eastern African
crowned cranes, Balearica pavonina pavonina and Balearica regulorum gibbericeps, respectively).

Adult birds stand about three feet tall and weigh six to nine pounds. Inside their long necks is a five-
foot long windpipe-part of which is coiled inside their breastbone-giving voice to loud calls that can
carry for miles. They live for about 22 years, spending most of their waking hours looking for the
various plants, small animals, and insects they like to eat. (One crowned crane food-finding technique,
perfected during the 38 to 54 million years these birds have been around, is to stamp their feet as they
walk, flushing out tasty bugs.) They are the only type of crane to perch in trees, which they do at night
when sleeping.

Social and talkative, African crowned cranes group together in pairs or families, and the smaller
groups band together in flocks of more than 100 birds. Their elaborate mating dance has served as a
model for some of the dances of local groups of people.

Darren Kelly was the production editor and Audrey Doyle was the proofreader for Programming C#.
Mary Brady and Claire Cloutier provided quality control. Joe Wizda wrote the index. Interior
composition was done by James Carter, Matthew Hutchinson, and Edith Shapiro.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is an original antique engraving from the 19th century. Emma Colby produced the cover
layout with Quark™XPress 4.1 using Adobe's ITC Garamond font.

Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike
Sierra. The illustrations that appear in this book were produced by Robert Romano and Jessamyn
Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Leanne
Soylemez.

558

