
Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Preface

Chapter 1—Data Representations
1.1 Integer Representations

1.1.1 Unsigned Notation

1.1.2 Signed-Magnitude Notation

1.1.3 2’s Complement Notation

1.1.4 Sign Extension

1.1.4.1 Signed-Magnitude

1.1.4.2 Unsigned

1.1.4.3 2’s Complement

1.1.5 C++ Program Example

1.2 Floating Point Representation

1.2.1 IEEE 754 Standard Floating Point Representations

1.2.1.1 IEEE 32-Bit Standard

1.2.1.2 IEEE 64-bit Standard

1.2.1.3 C++ Example for IEEE Floating point

1.2.2 Bit Operators in C++

1.2.3 Examples

1.2.4 Conversion from Decimal to Binary

1.3 Character Formats—ASCII

1.4 Putting it All Together

1.5 Problems

Chapter 2—Algorithms
2.1 Order

2.1.1 Justification of Using Order as a Complexity Measure

2.2 Induction

Algorithms and Data Structures in C++:Table of Contents

2.3 Recursion

2.3.1 Factorial

2.3.2 Fibonacci Numbers

2.3.3 General Recurrence Relations

2.3.4 Tower of Hanoi

2.3.5 Boolean Function Implementation

2.4 Graphs and Trees

2.5 Parallel Algorithms

2.5.1 Speedup and Amdahls Law

2.5.2 Pipelining

2.5.3 Parallel Processing and Processor Topologies

2.5.3.1 Full Crossbar

2.5.3.2 Rectangular Mesh

2.5.3.3 Hypercube

2.5.3.4 Cube-Connected Cycles

2.6 The Hypercube Topology

2.6.1 Definitions

2.6.2 Message Passing

2.6.3 Efficient Hypercubes

2.6.3.1 Transitive Closure

2.6.3.2 Least-Weighted Path-Length

2.6.3.3 Hypercubes with Failed Nodes

2.6.3.4 Efficiency

2.6.3.5 Message Passing in Efficient Hypercubes

2.6.4 Visualizing the Hypercube: A C++ Example

2.7 Problems

Chapter 3—Data Structures and Searching
3.1 Pointers and Dynamic Memory Allocation

3.1.1 A Double Pointer Example

3.1.2 Dynamic Memory Allocation with New and Delete

3.1.3 Arrays

3.1.4 Overloading in C++

Algorithms and Data Structures in C++:Table of Contents

3.2 Arrays

3.3 Stacks

3.4 Linked Lists

3.4.1 Singly Linked Lists

3.4.2 Circular Lists

3.4.3 Doubly Linked Lists

3.5 Operations on Linked Lists

3.5.1 A Linked List Example

3.5.1.1 Bounding a Search Space

3.6 Linear Search

3.7 Binary Search

3.8 QuickSort

3.9 Binary Trees

3.9.1 Traversing the Tree

3.10 Hashing

3.11 Simulated Annealing

3.11.1 The Square Packing Problem

3.11.1.1 Program Description

3.12 Problems

Chapter 4—Algorithms for Computer Arithmetic
4.1 2’s Complement Addition

4.1.1 Full and Half Adder

4.1.2 Ripple Carry Addition

4.1.2.1 Overflow

4.1.3 Carry Lookahead Addition

4.2 A Simple Hardware Simulator in C++

4.3 2’s Complement Multiplication

4.3.1 Shift-Add Addition

4.3.2 Booth Algorithm

4.3.3 Bit-Pair Recoding

4.4 Fixed Point Division

4.4.1 Restoring Division

Algorithms and Data Structures in C++:Table of Contents

4.4.2 Nonrestoring Division

4.4.3 Shifting over 1’s and 0’s

4.4.4 Newton’s Method

4.5 Residue Number System

4.5.1 Representation in the Residue Number System

4.5.2 Data Conversion — Calculating the Value of a Number

4.5.3 C++ Implementation

4.6 Problems

Index

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Table of Contents

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Table of Contents

Preface
This text is designed for an introductory quarter or semester course in algorithms and data structures for
students in engineering and computer science. It will also serve as a reference text for programmers in
C++. The book presents algorithms and data structures with heavy emphasis on C++. Every C++
program presented is a stand-alone program. Except as noted, all of the programs in the book have been
compiled and executed on multiple platforms.

When used in a course, the students should have access to C++ reference manuals for their particular
programming environment. The instructor of the course should strive to describe to the students every
line of each program. The prerequisite knowledge for this course should be a minimal understanding of
digital logic. A high-level programming language is desirable but not required for more advanced
students.

The study of algorithms is a massive field and no single text can do justice to every intricacy or
application. The philosophy in this text is to choose an appropriate subset which exercises the unique and
more modern aspects of the C++ programming language while providing a stimulating introduction to
realistic problems.

I close with special thanks to my friend and colleague, Jeffrey H. Kulick, for his contributions to this
manuscript.

Alan Parker
Huntsville, AL
1993

Dedication

to
Valerie Anne Parker

Table of Contents

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Preface

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

Chapter 1
Data Representations
This chapter introduces the various formats used by computers for the representation of integers, floating
point numbers, and characters. Extensive examples of these representations within the C++ programming
language are provided.

1.1 Integer Representations

The tremendous growth in computers is partly due to the fact that physical devices can be built
inexpensively which distinguish and manipulate two states at very high speeds. Since computers are
devices which primarily act on two states (0 and 1), binary, octal, and hex representations are commonly
used for the representation of computer data. The representation for each of these bases is shown in Table
1.1.

Table 1.1 Number Systems

Binary Octal Hexadecimal Decimal
0 0 0 0
1 1 1 1
10 2 2 2
11 3 3 3
100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 A 10
1011 13 B 11
1100 14 C 12
1101 15 D 13
1110 16 E 14

Algorithms and Data Structures in C++:Data Representations

1111 17 F 15
10000 20 10 16

Operations in each of these bases is analogous to base 10. In base 10, for example, the decimal number
743.57 is calculated as

In a more precise form, if a number, X, has n digits in front of the decimal and m digits past the decimal

Its base 10 value would be

For hexadecimal,

For octal,

In general for base r

When using a theoretical representation to model an entity one can introduce a tremendous amount of
bias into the thought process associated with the implementation of the entity. As an example, consider
Eq. 1.6 which gives the value of a number in base r. In looking at Eq. 1.6, if a system to perform the
calculation of the value is built, the natural approach is to subdivide the task into two subtasks: a subtask
to calculate the integer portion and a subtask to calculate the fractional portion; however, this bias is
introduced by the theoretical model. Consider, for instance, an equally valid model for the value of a
number in base r. The number X is represented as

Algorithms and Data Structures in C++:Data Representations

where the decimal point appears after the kth element. X then has the value:

Based on this model a different implementation might be chosen. While theoretical models are nice, they
can often lead one astray.

As a first C++ programming example let’s compute the representation of some numbers in decimal,
octal, and hexadecimal for the integer type. A program demonstrating integer representations in decimal,
octal, and hex is shown in Code List 1.1.

Code List 1.1 Integer Example

In this sample program there are a couple of C++ constructs. The #include <iostream.h> includes the
header files which allow the use of cout, a function used for output. The second line of the program
declares an array of integers. Since the list is initialized the size need not be provided. This declaration is
equivalent to

int a[7]; — declaring an array of seven integers 0-6

a[0]=45; — initializing each entry

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-01.jpg',400,248)
javascript:displayWindow('images/01-02.jpg',400,126)

a[1]=245;

a[2]=567;

a[3]=1014;

a[4]=-45;

a[5]=-1;

a[6]=256;

The void main() declaration declares that the main program will not return a value. The sizeof operator
used in the loop for i returns the size of the array a in bytes. For this case

sizeof(a)=28

sizeof(int)=4

The cout statement in C++ is used to output the data. It is analogous to the printf statement in C but
without some of the overhead. The dec, hex, and oct keywords in the cout statement set the output to
decimal, hexadecimal, and octal respectively. The default for cout is in decimal.

At this point, the output of the program should not be surprising except for the representation of negative
numbers. The computer uses a 2’s complement representation for numbers which is discussed in Section
1.1.3 on page 7.

Code List 1.2 Program Output of Code List 1.1

Algorithms and Data Structures in C++:Data Representations

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-03.jpg',157,504)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

1.1.1 Unsigned Notation

Unsigned notation is used to represent nonnegative integers. The unsigned notation does not support
negative numbers or floating point numbers. An n-bit number, A, in unsigned notation is represented as

with a value of

Negative numbers are not representable in unsigned format. The range of numbers in an n-bit unsigned
notation is

Zero is uniquely represented in unsigned notation. The following types are used in the C++ programming
language to indicate unsigned notation:

• unsigned char (8 bits)

• unsigned short (16 bits)

• unsigned int (native machine size)

• unsigned long (machine dependent)

The number of bits for each type can be compiler dependent.

1.1.2 Signed-Magnitude Notation

Signed-magnitude numbers are used to represent positive and negative integers. Signed-magnitude
notation does not support floating-point numbers. An n-bit number, A, in signed-magnitude notation is
represented as

with a value of

Algorithms and Data Structures in C++:Data Representations

A number, A, is negative if and only if an - 1 = 1. The range of numbers in an n-bit signed magnitude
notation is

The range is symmetrical and zero is not uniquely represented. Computers do not use signed-magnitude
notation for integers because of the hardware complexity induced by the representation to support
addition.

1.1.3 2’s Complement Notation

2’s complement notation is used by almost all computers to represent positive and negative integers. An
n-bit number, A, in 2’s complement notation is represented as

with a value of

A number, A, is negative if and only if an - 1 = 1. From Eq. 1.16, the negative of A, -A, is given as

which can be written as

where is defined as the unary complement:

The one’s complement of a number, A, denoted by , is defined as

Algorithms and Data Structures in C++:Data Representations

From Eq. 1.18 it can be shown that

To see this note that

and

This yields

Inserting Eq. 1.24 into Eq. 1.22 yields

which gives

By noting

one obtains

Algorithms and Data Structures in C++:Data Representations

which is -A. So whether A is positive or negative the two’s complement of A is equivalent to -A.

Note that in this case it is a simpler way to generate the representation of -1. Otherwise you would have
to note that

Similarly

However, it is useful to know the representation in terms of the weighted bits. For instance, -5, can be
generated from the representation of -1 by eliminating the contribution of 4 in -1:

Similarly, -21, can be realized from -5 by eliminating the positive contribution of 16 from its
representation.

The operations can be done in hex as well as binary. For 8-bit 2’s complement one has

with all the operations performed in hex. After a little familiarity, hex numbers are generally easier to
manipulate. To take the one’s complement one handles each hex digit at a time. If w is a hex digit then

Algorithms and Data Structures in C++:Data Representations

the 1’s complement of w, , is given as

The range of numbers in an n-bit 2’s complement notation is

The range is not symmetric but the number zero is uniquely represented.

The representation in 2’s complement arithmetic is similar to an odometer in a car. If the car odometer is
reading zero and the car is driven one mile in reverse (-1) then the odometer reads 999999. This is
illustrated in Table 1.2.

Table 1.2 2’s Complement Odometer Analogy

8-Bit 2’s Complement
Binary Value Odometer

11111110 -2 999998
11111111 -1 999999
00000000 0 000000
00000001 1 000001
00000010 2 000002

Typically, 2’s complement representations are used in the C++ programming language with the
following declarations:

• char (8 bits)

• short (16 bits)

• int (16,32, or 64 bits)

• long (32 bits)

The number of bits for each type can be compiler dependent. An 8-bit example of the three basic integer
representations is shown in Table 1.3.

Table 1.3 8-Bit Representations

8-Bit Representations

Number Unsigned
Signed

Magnitude
2’s

Complement
-128 NR NR 10000000
-127 NR 11111111 10000001
-2 NR 10000010 11111110
-1 NR 10000001 11111111

Algorithms and Data Structures in C++:Data Representations

0 00000000 00000000
10000000

00000000

1 00000001 00000001 00000001
127 01111111 01111111 01111111
128 10000000 NR NR
255 11111111 NR NR

 .Not representable in 8-bit format.

Table 1.4 Ranges for 2’s Complement and Unsigned Notations

Bits 2’s Complement Unsigned
8 -128dAd127 0dAd255

16 -32768dAd32767 0dAd65535
32 -2147483648dAd2147483647 0dAd4294967295
n -2n - 1dAd2n - 1-1 0dAd2n - 1

The ranges for 8-, 16-, and 32-bit representations for 2’s complement and unsigned representations are
shown in Table 1.4.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Representations

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

1.1.4 Sign Extension

This section investigates the conversion from an n-bit number to an m-bit number for signed-magnitude,
unsigned, and 2’s complement. It is assumed that m>n. This problem is important due to the fact that
many processors use different sizes for their operands. As a result, to move data from one processor to
another requires a conversion. A typical problem might be to convert 32-bit formats to 64-bit formats.

Given A as

and B as

the objective is to determine bk such that B = A.

1.1.4.1 Signed-Magnitude

For signed-magnitude the bk are assigned with

1.1.4.2 Unsigned

The conversion for unsigned results in

1.1.4.3 2’s Complement

For 2’s complement there are two cases depending on the sign of the number:

(a) (an - 1 = 0) For this case, A reduces to

Algorithms and Data Structures in C++:Data Representations

It is trivial to see that the assignment of bk with

satisfies this case.

(b) (an - 1 = 1) For this case

By noting that

The assignment of bk with

satisfies the condition. The two cases can be combined into one assignment with bk as

The sign, an - 1, of A is simply extended into the higher order bits of B. This is known as sign-extension.
Sign extension is illustrated from 8-bit 2’s complement to 32-bit 2’s complement in Table 1.5.

Table 1.5 2’s Complement Sign Extension

8-Bit 32-Bit
0xff 0xffffffff
0x0f 0x0000000f
0x01 0x00000001
0x80 0xffffff80

Algorithms and Data Structures in C++:Data Representations

0xb0 0xffffffb0

1.1.5 C++ Program Example

This section demonstrates the handling of 16-bit and 32-bit data by two different processors. A simple
C++ source program is shown in Code List 1.3. The assembly code generated for the C++ program is
demonstrated for the Intel 80286 and the Motorola 68030 in Code List 1.4. A line-by-line description
follows:

• Line # 1: The 68030 executes a movew instruction moving the constant 1 to the address where
the variable i is stored. The movew—move word—instruction indicates the operation is 16 bits.

The 80286 executes a mov instruction. The mov instruction is used for 16-bit operations.

• Line # 2: Same as Line # 1 with different constants being moved.

• Line # 3: The 68030 moves j into register d0 with the movew instruction. The addw instruction
performs a word (16-bit) addition storing the result at the address of the variable i.

The 80286 executes an add instruction storing the result at the address of the variable i. The
instruction does not involve the variable j. The compiler uses the immediate data, 2, since the
assignment of j to 2 was made on the previous instruction. This is a good example of optimization
performed by a compiler. An unoptimizing compiler would execute

mov ax, WORD PTR [bp-4]

add WORD PTR [bp-2], ax

similar to the 68030 example.

• Line # 4: The 68030 executes a moveq—quick move—of the immediate data 3 to register d0. A
long move, movel, is performed moving the value to the address of the variable k. The long move
performs a 32-bit move.

The 80286 executes two immediate moves. The 32-bit data is moved to the address of the variable
k in two steps. Each step consists of a 16-bit move. The least significant word, 3, is moved first
followed by the most significant word,0.

• Line # 5: Same as Line # 4 with different constants being moved.

• Line # 6: The 68030 performs an add long instruction, addl, placing the result at the address of
the variable k.

The 80286 performs the 32-bit operation in two 16-bit instructions. The first part consists of an add
instruction, add, followed by an add with carry instruction, adc.

Code List 1.3 Assembly Language Example

Algorithms and Data Structures in C++:Data Representations

Code List 1.4 Assembly Language Code

This example demonstrates that each processor handles different data types with different instructions.
This is one of the reasons that the high level language requires the declaration of specific types.

1.2 Floating Point Representation

1.2.1 IEEE 754 Standard Floating Point Representations

Floating point is the computer’s binary equivalent of scientific notation. A floating point number has
both a fraction value or mantissa and an exponent value. In high level languages floating point is used for

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-04.jpg',97,200)
javascript:displayWindow('images/01-05.jpg',450,328)

calculations involving real numbers. Floating point operation is desirable because it eliminates the need
for careful problem scaling. IEEE Standard 754 binary floating point has become the most widely used
standard. The standard specifies a 32-bit, a 64-bit, and an 80-bit format.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Representations

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

1.2.1.1 IEEE 32-Bit Standard

The IEEE 32-bit standard is often referred to as single precision format. It consists of a 23-bit fraction or
mantissa, f, an 8-bit biased exponent, e, and a sign bit, s. Results are normalized after each operation.
This means that the most significant bit of the fraction is forced to be a one by adjusting the exponent.
Since this bit must be one it is not stored as part of the number. This is called the implicit bit. A number
then becomes

The number zero, however, cannot be scaled to begin with a one. For this case the standard indicates that
32-bits of zeros is used to represent the number zero.

1.2.1.2 IEEE 64-bit Standard

The IEEE 64-bit standard is often referred to as double precision format. It consists of a 52-bit fraction or
mantissa, f, an 11-bit biased exponent, e, and a sign bit, s. As in single precision format the results are
normalized after each operation. A number then becomes

The number zero, however, cannot be scaled to begin with a one. For this case the standard indicates that
64-bits of zeros is used to represent the number zero.

1.2.1.3 C++ Example for IEEE Floating point

A C++ source program which demonstrates the IEEE floating point format is shown in Code List 1.5.

Code List 1.5 C++ Source Program

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-06.jpg',500,854)

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-06.jpg',500,854)

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-07.jpg',500,856)

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-07.jpg',500,856)
javascript:displayWindow('images/01-08.jpg',500,778)

The output of the program is shown in Code List 1.6. The union operator allows a specific memory
location to be treated with different types. For this case the memory location holds 32 bits. It can be
treated as a long integer (an integer of 32 bits) or a floating point number. The union operator is
necessary for this program because bit operators in C and C++ do not operate on floating point numbers.
The float_point_32(float in=float(0.0)) {fp =in} function demonstrates the use of a constructor in C++.
When a variable is declared to be of type float_point_32 this function is called. If a parameter is not
specified in the declaration then the default value, for this case 0.0, is assigned. A declaration of
float_point_32 x(0.1),y; therefore, would initialize x.fp to 0.1 and y.fp to 0.0.

Code List 1.6 Output of Program in Code List 1.5

The union float_point_64 declaration allows 64 bits in memory to be thought of as one 64-bit floating
point number(double) or 2 32-bit long integers. The void float_number_32::fraction() demonstrates
scoping in C++. For this case the function fraction() is associated with the class float_number_32. Since
fraction was declared in the public section of the class float_-number_32 the function has access to all of
the public and private functions and data associated with the class float_number_32. These functions and

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-08.jpg',500,778)
javascript:displayWindow('images/01-09.jpg',400,268)

data need not be declared in the function. Notice for this example f.li is used in the function and only
mask and i are declared locally. The setw() used in the cout call in float_number_64 sets the precision of
the output. The program uses a number of bit operators in C++ which are described in the next section.

1.2.2 Bit Operators in C++

C++ has bitwise operators &, ^, |, and ~. The operators &, ^, and | are binary operators while the operator
~ is a unary operator.

• ~, 1’s complement

• &, bitwise and

• ^, bitwise exclusive or

• |, bitwise or

The behavior of each operator is shown in Table 1.6.

Table 1.6 Bit Operators in C++

a b a&b a^b a|b ~a
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 0 1 0

To test out the derivation for calculating the 2’s complement of a number derived in Section 1.1.3 a
program to calculate the negative of a number is shown in Code List 1.7. The output of the program is
shown in Code List 1.8. Problem 1.11 investigates the output of the program.

Code List 1.7 Testing the Binary Operators in C++

Algorithms and Data Structures in C++:Data Representations

Code List 1.8 Output of Program in Code List 1.7

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-10.jpg',350,386)
javascript:displayWindow('images/01-11.jpg',400,158)

A program demonstrating one of the most important uses of the OR operator, |, is shown in Code List
1.9. The output of the program is shown in Code List 1.10. Figure 1.1 demonstrates the value of x for the
program. The eight attributes are packed into one character. The character field can hold 256 = 28

combinations handling all combinations of each attribute taking on the value ON or OFF. This is the
most common use of the OR operators. For a more detailed example consider the file operation
command for opening a file. The file definitions are defined in <iostream.h> by BORLAND C++ as
shown in Table 1.7.

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-12.jpg',350,433)

Figure 1.1 Packing Attributes into One Character

Code List 1.9 Bit Operators

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-13.jpg',398,160)
javascript:displayWindow('images/01-13.jpg',398,160)
javascript:displayWindow('images/01-14.jpg',450,476)

Code List 1.10 Output of Program in Code List 1.9

Table 1.7 Fields for File Operations in C++

Source
enum open_mode {
in = 0x01, // open for reading
out = 0x02, // open for writing
ate = 0x04, // seek to eof upon original open
app = 0x08, // append mode: all additions at eof
trunc = 0x10, // truncate file if already exists
nocreate = 0x20, // open fails if file doesn’t exist
noreplace= 0x40, // open fails if file already exists
binary = 0x80 // binary (not text) file
};

A program illustrating another use is shown in Code List 1.11. If the program executes correctly the
output file, test.dat, is created with the string, “This is a test”, placed in it. The file, test.dat, is opened for
writing with ios::out and for truncation with ios::trunc. The two modes are presented together to the
ofstream constructor with the use of the or function.

Code List 1.11 Simple File I/O

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-15.jpg',550,108)
javascript:displayWindow('images/01-16.jpg',400,124)

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-17.jpg',350,286)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

1.2.3 Examples

This section presents examples of IEEE 32-bit and 64-bit floating point representations. Converting
100.5 to IEEE 32-bit notation is demonstrated in Example 1.1.

Determining the value of an IEEE 64-bit number is shown in Example 1.2. In many cases for problems
as in Example 1.1 the difficulty lies in the actual conversion from decimal to binary. The next section
presents a simple methodology for such a conversion.

1.2.4 Conversion from Decimal to Binary

This section presents a simple methodology to convert a decimal number, A, to its corresponding binary
representation. For the sake of simplicity, it is assumed the number satisfies

in which case we are seeking the ak such that

Algorithms and Data Structures in C++:Data Representations

Example 1.1 IEEE 32-Bit Format

The simple procedure is illustrated in Code List 1.12. The C Code performing the decimal to
binary conversion is shown in Code List 1.13. The output of the program is shown in Code List 1.14.
This program illustrates the use of the default value. When a variable is declared as z is by data z, z is
assigned 0.0 and precision is assigned 32. This can be seen as in the program z.prec() is never called and
the output results in 32 bits of precision. The paper conversion for 0.4 is illustrated in Example 1.3.

1.3 Character Formats—ASCII

To represent keyboard characters, a standard has been adopted to ensure compatibility across many
different machines. The most widely used standard is the ASCII (American Standard Code for
Information Interchange) character set. This set has a one byte format and is shown in Table 1.8. It
allows for 256 distinct characters and specifies the first 128. The lower ASCII characters are control
characters which were derived from their common use in earlier machines.Although the ASCII standard
is widely used, different operating systems use different file formats to represent data, even when the
data files contain only characters. Two of the most popular systems, DOS and Unix differ in their file
format. For example, the text file shown in Table 1.9 has a DOS format shown in Table 1.10 and a Unix
format shown in Table 1.11. Notice that the DOS file use a carriage return, cr, followed by a new line, nl,

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-18.jpg',400,429)
javascript:displayWindow('images/01-18.jpg',400,429)

while the Unix file uses only a new line. As a result Unix text files will be smaller than DOS text files. In
the DOS and Unix tables, underneath each character is its ASCII representation in hex. The numbering
on the left of each table is the offset in octal of the line in the file.

Example 1.2 Calculating the Value of an IEEE 64-Bit Number

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-19.jpg',450,503)
javascript:displayWindow('images/01-19.jpg',450,503)

Example 1.3 Converting 0.4 from Decimal to Binary

Code List 1.12 Decimal to Binary Conversion

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-20.jpg',400,484)
javascript:displayWindow('images/01-20.jpg',400,484)

Code List 1.13 Decimal to Conversion C++ Program

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-21.jpg',400,236)
javascript:displayWindow('images/01-22.jpg',500,887)

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-22.jpg',500,887)

Code List 1.14 Output of Program in Code List 1.13

Table 1.8 ASCII Listing

ASCII Listing

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-23.jpg',500,300)
javascript:displayWindow('images/01-24.jpg',400,250)

oo nul
08 bs
10 dle
18 can
20 sp
28 (
30 0
38 8
40 @
48 H
50 P
58 X
60

68 h
70 p
78 x

01 soh
09 ht

11 dc1
19 em
21 !
29)
31 1
39 9
41 A
49 I
51 Q
59 Y
61 a
69 i
71 q
79 y

02 stx
0a nl

12 dc2
1a sub
22 “
2a *
32 2
3a :
42 B
4a J
52 R
5a Z
62 b
6a j
72 r
7a z

03 etx
0b vt

13 dc3
1b esc
23 #
2b +
33 3
3b ;
43 C
4b K
53 S
5b [
63 c
6b k
73 s
7b {

04 eot
0c np
14 dc4
1c fs
24 $
2c ,
34 4
3c <
44 D
4c L
54 T
5c \
64 d
6c l
74 t
7c |

05 enq
0d cr

15 nak
1d gs
25 %
2d -
35 5
3d =
45 E
4d M
55 U
5d]
65 e
6d m
75 u
7d }

06 ack
0e so

16 syn
1e rs
26 &
2e .
36 6
3e >
46 F
4e N
56 V
5e ^
66 f
6e n
76 v
7e ~

07 bel
0f si

17 etb
1f us
27 ‘
2f /
37 7
3f ?
47 G
4f O
57 W
5f _
67 g
6f o
77 w
7f del

Table 1.9 Text File

Test File
This is a test file
We will look at this file under Unix and DOS

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Representations

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

1.4 Putting it All Together

This section presents an example combining ASCII, floating point, and integer types using one final C++ program.
The program is shown in Code List 1.15 and the output is shown in Code List 1.16.

The program utilizes a common memory location to store 8 bytes of data. The data will be treated as double, float,
char, int, or long. A particular memory implementation for this program is shown in Figure 1.2.

Table 1.10 DOS File Format

Table 1.11 Unix File Format (ISO)

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-25.jpg',640,348)

Figure 1.2 Memory Implementation for Variable t

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-26.jpg',600,330)
javascript:displayWindow('images/01-27.jpg',399,240)
javascript:displayWindow('images/01-27.jpg',399,240)

Figure 1.3 Mapping of each Union Entry

The organization of each union entry is shown in Figure 1.3. For the union declaration t there are only eight bytes
stored in memory. These eight bytes can be interpreted as eight individual characters or two longs or two doubles,
etc. For instance by looking at Table 1.8 one sees the value of ch[0] which is 0×41 which is the letter A. Similarly,
the value of ch[1] is 0×42 which is the letter B. When interpreted as an integer the value of i[0] is 0×41424344
which is in 2’s complement format. Converting to decimal one has i[0] with the value of

If one were to interpret 0×41424344 as an IEEE 32-bit floating point number its value would be 12.1414. If one
were to interpret 0×45464748 as an IEEE 32-bit floating point number its value would be 3172.46.

Code List 1.15 Data Representations

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-28.jpg',398,255)
javascript:displayWindow('images/01-28.jpg',398,255)

Code List 1.16 Output of Program in Code List 1.15

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-29.jpg',500,741)

There are only one’s and zero’s stored in memory and collections of bits can be interpreted to be characters or
integers or floating point numbers. To determine which kind of operations to perform the compiler must be able to
determine the type of each operation.

1.5 Problems

(1.1) Represent the following decimal numbers when possible in the format specified. 125, -1000, 267, 45,
0, 2500. Generate all answers in HEX!

a) 8-bit 2’s complement—2 hex digits

b) 16-bit 2’s complement—4 hex digits

c) 32-bit 2’s complement—8 hex digits

d) 64-bit 2’s complement—16 hex digits

(1.2) Convert the 12-bit 2’s complement numbers that follows to 32-bit 2’s complement numbers. Present
your answer with 8 hex digits.

a) 0xFA4

b) 0x802

c) 0x400

d) 0x0FF

Algorithms and Data Structures in C++:Data Representations

javascript:displayWindow('images/01-30.jpg',500,92)
javascript:displayWindow('images/01-31.jpg',500,260)

(1.3) Represent decimal 0.35 in IEEE 32-bit format and IEEE 64-bit format.

(1.4) Represent the decimal fraction 4/7 in binary.

(1.5) Represent the decimal fraction 0.3 in octal.

(1.6) Represent the decimal fraction 0.85 in hex.

(1.7) Calculate the floating point number represented by the IEEE 32-bit representation F8080000.

(1.8) Calculate the floating point number represented by the IEEE 64-bit representation
F808000000000000.

(1.9) Write down the ASCII representation for the string “Hello, how are you?”. Strings in C++ are
terminated with a 00 in hex (a null character). Terminate your string with the null character. Do not
represent the quotes in your string. The quotes in C++ are used to indicate the enclosure is a string.

(1.10) Write a C++ program that outputs “Hello World”.

(1.11) In Code List 1.8 the twos complement of the largest representable negative integer, -32768, is the
same number. Explain this result. Is the theory developed incorrect?

(1.12) In Section 1.1.4 the issue of conversion is assessed for signed-magnitude, unsigned, and 2’s
complement numbers. Is there a simple algorithm to convert an IEEE 32-bit floating point number to IEEE
64-bit floating point number?

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Representations

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

Chapter 2
Algorithms
This chapter presents the fundamental concepts for the analysis of algorithms.

2.1 Order

N denotes the set of natural numbers, {1, 2, 3, 4, 5, . . .}.

Definition 2.1

A sequence, x, over the real numbers is a function from the natural numbers into the real numbers:

x1 is used to denote the first element of the sequence, x(1) In general,

and will be written as

Unless otherwise noted, when x is a sequence and f is a function of one variable, f(x), is the sequence
obtained by applying the function f to each of the elements of x. If

then

For example,

Algorithms and Data Structures in C++:Algorithms

Definition 2.2

If x and y are sequences, then x is of order at most y, written x � O (y), if there exists a positive integer N
and a positive number k such that

Definition 2.3

If x and y are sequences then x is of order exactly y, written, x � ˜ (y), if x � ˜ (y) and y �O (x).

Definition 2.4

If x and y are sequences then x is of order at least y, written, x � © (y), if y � O (x).

Definition 2.5

The time complexity of an algorithm is the sequence

where tk is the number of time steps required for solution of a problem of size k.

Algorithms and Data Structures in C++:Algorithms

Example 2.1 Time Complexity

The calculation of the time complexity for addition is illustrated in Example 2.1. A comparison of the
order of several classical functions is shown in Table 2.1. The time required for a variety of operations on
a 100 Megaflop machine is illustrated in Table 2.2. As can be seen from Table 2.1 if a problem is truly of
exponential order then it is unlikely that a solution will ever be rendered for the case of n=100. It is this
fact that has led to the use of heuristics in order to find a “good solution” or in some cases “a solution”
for problems thought to be of exponential order. An example of Order is shown in Example 2.2. through
Example 2.4.

Table 2.1 Order Comparison

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-01.jpg',496,546)
javascript:displayWindow('images/02-01.jpg',496,546)

Function n=1 n=10 n=100 n=1000 n=10000
log(n) 0 3.32 6.64 9.97 13.3
nlog (n) 0 33.2 664 9.97×103 1.33×105

n2 1 100 10000 1×106 1×108

n5 1 1×105 1×1010 1×1015 1×1020

en 2.72 2.2×104 2.69×1043 1.97×10434 8.81×104342

n! 1 3.63×106 9.33×10157 4.02×102567 2.85×1035659

Table 2.2 Calculations for a 100 MFLOP machine

Time # of Operations
1 second 108

1 minute 6×109

1 hour 3.6×1011

1 day 8.64×1012

1 year 3.1536×1015

1 century 3.1536×1017

100 trillion years 3.1536×1029

2.1.1 Justification of Using Order as a Complexity Measure

One of the major motivations for using Order as a complexity measure is to get a handle on the inductive
growth of an algorithm. One must be extremely careful however to understand that the definition of
Order is “in the limit.” For example, consider the time complexity functions f1 and f2 defined in Example
2.6. For these functions the asymptotic behavior is exhibited when n e 1050. Although f1 � ˜ (en) it has a
value of 1 for n < 1050. In a pragmatic sense it would be desirable to have a problem with time
complexity f1 rather than f2. Typically, however, this phenomenon will not appear and generally one
might assume that it is better to have an algorithm which is ˜ (1) rather than ˜ (en). One should always
remember that the constants of order can be significant in real problems.

Algorithms and Data Structures in C++:Algorithms

Example 2.2 Order

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-02.jpg',400,646)
javascript:displayWindow('images/02-02.jpg',400,646)

Example 2.3 Order

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-03.jpg',400,354)
javascript:displayWindow('images/02-03.jpg',400,354)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

2.2 Induction

Simple induction is a two step process:

• Establish the result for the case N = 1

• Show that if is true for the case N = n then it is true for the case N = n+1

This will establish the result for all n > 1.

Induction can be established for any set which is well ordered. A well-ordered set, S, has the property
that if

then either

• x<y

• x>y or

• x = y

Algorithms and Data Structures in C++:Algorithms

Example 2.4 Order

Additionally, if S2 is a nonempty subset of S:

then S2 has a least element. An example of simple induction is shown in Example 2.5.

The well-ordering property is required for the inductive property to work. For example consider the
method of infinite descent which uses an inductive type approach. In this method it is required to
demonstrate that a specific property cannot hold for a positive integer. The approach is as follows:

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-04.jpg',492,556)
javascript:displayWindow('images/02-04.jpg',492,556)
javascript:displayWindow('images/02-05.jpg',494,820)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-05.jpg',494,820)

Example 2.5 Induction

1. Let P (k) = TRUE denote that a property holds for the value of k. Also assume that P(0) does
not hold so P(0) = FALSE.

Let S be the set that

From the well-ordering principle it is true that if S is not empty then S has a smallest member. Let j
be such a member:

2. Prove that P(j) implies P(j-1) and this will lead to a contradiction since P(0) is FALSE and j
was assumed to be minimal so that S must be empty. This implies the property does not hold for
any positive integer k. See Problem 2.1 for a demonstration of infinite descent.

2.3 Recursion

Recursion is a powerful technique for defining an algorithm.

Definition 2.6

A procedure is recursive if it is, whether directly or indirectly, defined in terms of itself.

2.3.1 Factorial

One of the simplest examples of recursion is the factorial function f(n) = n!. This function can be defined
recursively as

A simple C++ program implementing the factorial function recursively is shown in Code List 2.1. The
output of the program is shown in Code List 2.2.

Code List 2.1 Factorial

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-05.jpg',494,820)
javascript:displayWindow('images/02-05.jpg',494,820)

Code List 2.2 Output of Program in Code List 2.1

2.3.2 Fibonacci Numbers

The Fibonacci sequence, F(n), is defined recursively by the recurrence relation

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-06.jpg',300,396)
javascript:displayWindow('images/02-07.jpg',55,150)

A simple program which implements the Fibonacci sequence recursively is shown in Code List 2.3. The
output of the program is shown in Code List 2.4.

Code List 2.3 Fibonacci Sequence Generation

Code List 2.4 Output of Program in Code List 2.3

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-08.jpg',400,458)

The recursive implementation need not be the only solution. For instance in looking for a closed solution
to the relation if one assumes the form F (n) = »n one has

which assuming » ` 0

The solution via the quadratic formula yields

Because Eq. 2.7 is linear it admits solutions of the form

To satisfy the boundary conditions in Eq. 2.8 one obtains the matrix form

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-09.jpg',179,375)

multiplying both sides by the 2 × 2 matrix inverse

which yields

resulting in the closed form solution

A nonrecursive implementation of the Fibonacci series is shown in Code List 2.5. The output of the
program is the same as the recursive program given in Code List 2.4.

Code List 2.5 Fibonacci Program — Non Recursive Solution

Algorithms and Data Structures in C++:Algorithms

2.3.3 General Recurrence Relations

This section presents the methodology to handle general 2nd order recurrence relations. The recurrence
relation given by

with initial conditions:

can be solved by assuming a solution of the form R (n) = »n. This yields

If the equation has two distinct roots, »1,»2, then the solution is of the form

where the constants, C1, C2, are chosen to enforce Eq. 2.19. If the roots, however, are not distinct then an

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-10.jpg',500,217)
javascript:displayWindow('images/02-11.jpg',500,164)

alternate solution is sought:

where » is the double root of the equation. To see that the term C1n»n satisfies the recurrence relation one
should note that for the multiple root Eq. 2.18 can be written in the form

Substituting C1n»n into Eq. 2.23 and simplifying verifies the solution.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

2.3.4 Tower of Hanoi

The Tower of Hanoi problem is illustrated in Figure 2.1. The problem is to move n discs (in this case,
three) from the first peg, A, to the third peg, C. The middle peg, B, may be used to store discs during the
transfer. The discs have to be moved under the following condition: at no time may a disc on a peg have
a wider disc above it on the same peg. As long as the condition is met all three pegs may be used to
complete the transfer. For example the problem may be solved for the case of three by the following
move sequence:

where the ordered pair, (x, y), indicates to take a disk from peg x and place it on peg y.

Figure 2.1 Tower of Hanoi Problem

The problem admits a nice recursive solution. The problem is solved in terms of n by noting that to move
n discs from A to C one can move n - 1 discs from A to B move the remaining disc from A to C and then
move the n - 1 discs from B to C. This results in the relation for the number of steps, S (n), required for
size n as

with the boundary conditions

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-12.jpg',498,199)
javascript:displayWindow('images/02-12.jpg',498,199)

Eq. 2.25 admits a solution of the form

and matching the boundary conditions in Eq. 2.26 one obtains

A growing field of interest is the visualization of algorithms. For instance, one might want to animate the
solution to the Tower of Hanoi problem. Each disc move results in a new picture in the animation. If one
is to incorporate the pictures into a document then a suitable language for its representation is
PostScript.1 This format is supported by almost all word processors and as a result is encountered
frequently. A program to create the PostScript® description of the Tower of Hanoi is shown in Code List
2.6 The program creates an encapsulated postscript file shown in Code List 2.7. The word processor used
to generate this book took the output of the program in Code List 2.7 and imported it to yield Figure 2.1!
This program illustrates many features of C++.

1PostScript® is a trademark of Adobe Systems Inc.

The program utilizes only a small set of the PostScript® language. This primitive subset is described in
Table 2.3.

Table 2.3 PostScript® — Primitive Subset

Command Description
x setgray set the gray level to x.x = 1 is white and x = 0 is black. This will affect

the fill operation.
x y scale scale the X dimension by x and scale the Y dimension by y.
x setlinewidth set the linewidth to x.
x y moveto start a subpath and move to location x y on the page.
x y rlineto draw a line from current location (x1, y1) to (x1 + x, y1 + y). Make the

endpoint the current location. Appends the line to the subpath.
fill close the subpath and fill the area enclosed.
newpath create a new path with no current point.
showpage displays the page to the output device.

The program uses a number of classes in C++ which are derived from one another. This is one of the
most powerful concepts in object-oriented programming. The class structure is illustrated in Figure 2.2.

In the figure there exists a high-level base class called the graphic context. In a typical application a
number of subclasses might be derived from it. In this case the graphics context specifies the line width,
gray scale, and scale for its subsidiary objects. A derived class from the graphics context is the object
class. This class contains information about the position of the object. This attribute is common to objects
whether they are rectangles, circles, etc. A derived class from the object class is the rectangle class. For
this class, specific information about the object is kept which identifies it with a rectangle, namely the
width and the height. The draw routine overrides the virtual draw function for the object. The draw

Algorithms and Data Structures in C++:Algorithms

function in the object class is void even though for more complex examples it might have a number of
operations. The RECTANGLE class inherits all the functions from the GRAPHICS_CONTEXT class
and the OBJECT class.

In the program, the rectangle class instantiates the discs, the base, and the pegs. Notice in Figure 2.1 that
the base and pegs are drawn in a different gray scale than the discs. This is accomplished by the two calls
in main():

• peg.set_gray(0.6)

• base.set_gray(0.6)

Any object of type RECTANGLE defaults to a set_gray of 0.8 as defined in the constructor function for
the rectangle. Notice that peg is declared as a RECTANGLE and has access to the set_gray function of
the GRAPHICS_CONTEXT. The valid operations on peg are:

• peg.set_line_width(), from the GRAPHICS_CONTEXT class

• peg.set_scale(), from the GRAPHICS_CONTEXT class

• peg.set_gray(), from the GRAPHICS_CONTEXT class

• peg.location(), from the OBJECT class

• peg.set_location(), from the RECTANGLE class

• peg.set_width(), from the RECTANGLE class

• peg.set_height(), from the RECTANGLE class

• peg.draw(), from the RECTANGLE class

The virtual function draw in the OBJECT class is hidden from peg but it can be accessed in C++ using
the scoping operator with the following call:

• peg.object::draw(), uses draw from the OBJECT class

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

Hence, in the program, all the functions are available to each instance of the rectangle created. This
availability arises because the functions are declared as public in each class and each derived class is also
declared public. Without the public declarations C++ will hide the functions of the base class from the
derived class. Similarly, the data the functions access are declared as protected which makes the data
visible to the functions of the derived classes.

The first peg in the program is created with rectangle peg(80,0,40,180). The gray scale for this peg is
changed from the default of 0.8 to 0.6 with peg.set_gray(0.6). The peg is drawn to the file with
peg.draw(file). This draw operation results in the following lines placed in the file:

• newpath

• 1 setlinewidth

• 0.6 setgray

• 80 0 moveto

• 0 180 rlineto

• 40 0 rlineto

• 0 - 180 rlineto

• fill

The PostScript® action taken by the operation is summarized in Figure 2.3. Note that the rectangle in the
figure is not drawn to scale. The drawing of the base and the discs follows in an analogous fashion.

Code List 2.6 Program to Display Tower of Hanoi

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-13.jpg',500,422)

Figure 2.2 Class Structure

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-14.jpg',394,568)
javascript:displayWindow('images/02-14.jpg',394,568)
javascript:displayWindow('images/02-15.jpg',500,788)

Figure 2.3 PostScript Rendering

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-15.jpg',500,788)
javascript:displayWindow('images/02-15.jpg',500,788)
javascript:displayWindow('images/02-16.jpg',439,759)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-16.jpg',439,759)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-17.jpg',400,694)

Code List 2.7 File Created by Program in Code List 2.6

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-18.jpg',400,192)
javascript:displayWindow('images/02-19.jpg',200,521)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-19.jpg',200,521)
javascript:displayWindow('images/02-20.jpg',195,789)

2.3.5 Boolean Function Implementation

This section presents a recursive solution to providing an upper bound to the number of 2-input NAND
gates required to implement a boolean function of n boolean variables. The recursion is obtained by
noticing that a function, f(x1,x2,...,xn) of n variables can be written as

for some functions g and h of n - 1 boolean variables. The implementation is illustrated in Figure 2.4.

The number of NAND gates thus required as a function of n, C (n), can be written recursively as:

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-20.jpg',195,789)
javascript:displayWindow('images/02-21.jpg',247,398)

The solution to the simple recurrence relation yields, assuming a general form of C(n) = »n followed by a
constant to obtain the particular solution

Applying the boundary condition C (1) = 1 and C (2) = 6 one obtains

Figure 2.4 Recursive Model for Boolean Function Evaluation

2.4 Graphs and Trees

This section presents some fundamental definitions and properties of graphs.

Definition 2.7

A graph is a collection of vertices, V, and associated edges, E, given by the pair

A simple graph is shown in Figure 2.5.

In the figure the graph shown has

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-22.jpg',495,281)
javascript:displayWindow('images/02-22.jpg',495,281)

Figure 2.5 A Simple Graph

Definition 2.8

The size of a graph is the number of edges in the graph

Definition 2.9

The order of a graph G is the number of vertices in a graph

For the graph in Figure 2.5 one has

Definition 2.10

The degree of a vertex (also referred to as a node), in a graph, is the number of edges containing the
vertex.

Definition 2.11

In a graph, G = (V, E), two vertices, v1 and v2, are neighbors if

(v1,v2) � E or (v1,v2) � E

In the graph in Figure 2.5 v1 and v2 are neighbors but v1 and v3 are not neighbors.

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-23.jpg',442,206)
javascript:displayWindow('images/02-23.jpg',442,206)

Definition 2.12

If G = (V1, E1) is a graph, then H = (V2, E2) is a subgraph of G written if and .

A subgraph of the graph in Figure 2.5 is shown in Figure 2.6.

Figure 2.6 Subgraph of Graph in Figure 2.5

The subgraph is generated from the original graph by the deletion of a single edge (v2, v3).

Definition 2.13

A path is a collection of neighboring vertices.

For the graph in Figure 2.5 a valid path is

Definition 2.14

A graph is connected if for each vertex pair (vi,vj) there is a path from vi to vj.

The graph in Figure 2.5 is connected while the graph in Figure 2.6 is disconnected.

Definition 2.15

A directed graph is a graph with vertices and edges where each edge has a specific direction relative to
each of the vertices.

An example of a directed graph is shown in Figure 2.7.

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-24.jpg',448,204)
javascript:displayWindow('images/02-24.jpg',448,204)

Figure 2.7 A Directed Graph

The graph in the figure has G = (V, E) with

In a directed graph the edge (vi, vj) is not the same as the edge (vj, vi) when i ` j. The same terminology G
= (V, E) will be used for directed and undirected graphs; however, it will always be stated whether the
graph is to be interpreted as a directed or undirected graph.

The definition of path applies to a directed graph also. As shown in Figure 2.8 there is a path from v1 to
v4 but there is no path from v2 to v5.

Figure 2.8 Paths in a Directed Graph

A number of paths exist from v1 to v4, namely

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-25.jpg',442,216)
javascript:displayWindow('images/02-25.jpg',442,216)
javascript:displayWindow('images/02-26.jpg',439,197)
javascript:displayWindow('images/02-26.jpg',439,197)

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

Definition 2.16

A cycle is a path from a vertex to itself which does not repeat any vertices except the first and the last.

A graph containing no cycles is said to be acyclic. An example of cyclic and acyclic graphs is shown in
Figure 2.9.

Figure 2.9 Cyclic and Acyclic Graphs

Notice for the directed cyclic graph in Figure 2.9 that the double arrow notations between nodes v2 and v4

indicate the presence of two edges (v2, v4) and (v4, v2). In this case it is these edges which form the cycle.

Definition 2.17

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-27.jpg',446,382)
javascript:displayWindow('images/02-27.jpg',446,382)

A tree is an acyclic connected graph.

Examples of trees are shown in Figure 2.10.

Definition 2.18

An edge, e, in a connected graph, G = (V, E), is a bridge if G2 = (V, E2) is disconnected where

Figure 2.10 Trees

If the edge, e, is removed, the graph, G, is divided into two separate connected graphs. Notice that every
edge in a tree is a bridge.

Definition 2.19

A planar graph is a graph that can be drawn in the plane without any edges intersecting.

An example of a planar graph is shown in Figure 2.11. Notice that it is possible to draw the graph in the
plane with edges that cross although it is still planar.

Definition 2.20

The transitive closure of a directed graph, G = (V1, E1) is a graph, H = (V2, E2), such that,

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-28.jpg',446,300)
javascript:displayWindow('images/02-28.jpg',446,300)

Figure 2.11 Planar Graph

where f returns a set of edges. The set of edges is as follows:

Thus in Eq. 2.45, . Transitive closure is illustrated in Figure 2.12.

Figure 2.12 Transitive Closure of a Graph

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-29.jpg',444,188)
javascript:displayWindow('images/02-29.jpg',444,188)
javascript:displayWindow('images/02-30.jpg',442,233)
javascript:displayWindow('images/02-30.jpg',442,233)

2.5 Parallel Algorithms

This section presents some fundamental properties and definitions used in parallel processing.

2.5.1 Speedup and Amdahls Law

Definition 2.21

The speedup of an algorithm executed using n parallel processors is the ratio of the time for execution on
a sequential machine, TSEQ, to the time on the parallel machine, TPAR:

If an algorithm can be completely decomposed into n parallelizable units without loss of efficiency then
the Speedup obtained is

If however, only a fraction, f, of the algorithm is parallelizable then the speedup obtained is

which yields

This is known as Amdahl's Law. The ratio shows that even with an infinite amount of computing power
an algorithm with a sequential component can only achieve the speedup in Eq. 2.50. If an algorithm is
50% sequential then the maximum speedup achievable is 2. While this may be a strong argument against
the merits of parallel processing there are many important problems which have almost no sequential
components.

Definition 2.22

The efficiency of an algorithm executing on n processors is defined as the ratio of the speedup to the
number of processors:

Algorithms and Data Structures in C++:Algorithms

Using Amdahl's law

with

2.5.2 Pipelining

Pipelining is a means to achieve speedup for an algorithm by dividing the algorithm into stages. Each
stage is to be executed in the same amount of time. The flow is divided into k distinct stages. The output
of the jth stage becomes the input to the (j + 1) th stage. Pipelining is illustrated in Figure 2.13. As seen
in the figure the first output is ready after four time steps Each subsequent output is ready after one
additional time step. Pipelining becomes efficient when more than one output is required. For many
algorithms it may not be possible to subdivide the task into k equal stages to create the pipeline. When
this is the case a performance hit will be taken in generating the first output as illustrated in Figure 2.14.

Figure 2.13 A Four Stage Pipeline

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-31.jpg',449,186)
javascript:displayWindow('images/02-31.jpg',449,186)

Figure 2.14 Pipelining

In the figure TSEQ is the time for the algorithm to execute sequentially. TPS is the time for each pipeline
stage to execute. TPIPE is the time to flow through the pipe. The calculation of the time complexity
sequence to process n inputs yields

for a k-stage pipe. It follows that TPIPE (n) < TSEQ (n) when

The speedup for pipelining is

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-32.jpg',497,260)
javascript:displayWindow('images/02-32.jpg',497,260)

Example 2.6 Order

which yields

In some applications it may not be possible to keep the pipeline full at all times. This can occur when
there are dependencies on the output. This is illustrated in Example 2.7. For this case let us assume that
the addition/subtraction operation has been set up as a pipeline. The first statement in the pseudo-code
will cause the inputs x and 3 to be input to the pipeline for subtraction. After the first stage of the pipeline
is complete, however, the next operation is unknown. In this case, the result of the first statement must be
established. To determine the next operation the first operation must be allowed to proceed through the
pipe. After its completion the next operation will be determined. This process is referred to flushing the
pipe. The speedup obtained with flushing is demonstrated in Example 2.8.

Example 2.7 Output Dependency PseudoCode

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-33.jpg',444,224)
javascript:displayWindow('images/02-33.jpg',444,224)
javascript:displayWindow('images/02-34.jpg',447,159)
javascript:displayWindow('images/02-34.jpg',447,159)

Example 2.8 Pipelining

2.5.3 Parallel Processing and Processor Topologies

There are a number of common topologies used in parallel processing. Algorithms are increasingly being
developed for the parallel processing environment. Many of these topologies are widely used and have
been studied in great detail. The topologies presented here are

• Full Crossbar

• Rectangular Mesh

• Hypercube

• Cube-Connected Cycles

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-35.jpg',445,223)
javascript:displayWindow('images/02-35.jpg',445,223)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

2.5.3.1 Full Crossbar

A full crossbar topology provides connections between any two processors. This is the most complex
connection topology and requires (n (n - 1) / 2 connections. A full crossbar is shown in Figure 2.15.

In the graphical representation the crossbar has the set, V, and E with

Figure 2.15 Full Crossbar Topology

Because of the large number of edges the topology is impractical in design for large n.

2.5.3.2 Rectangular Mesh

A rectangular mesh topology is illustrated in Figure 2.16. From an implementation aspect the topology is
easily scalable. The degree of each node in a rectangular mesh is at most four. A processor on the interior
of the mesh has neighbors to the north, east, south, and west. There are several ways to implement the
exterior nodes if it is desired to maintain that all nodes have the same degree. For an example of the
external edge connection see Problem 2.5.

2.5.3.3 Hypercube

A hypercube topology is shown in Figure 2.17. If the number of nodes, n, in the hypercube satisfies n =
2d then the degree of each node is d or log (n). As a result, as n becomes large the number of edges of

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-36.jpg',448,182)
javascript:displayWindow('images/02-36.jpg',448,182)

each node increases. The magnitude of the increase is clearly more manageable than that of the full
crossbar but it can still be a significant problem with hypercube architectures containing 64K nodes. As a
result the cube-connected cycles, described in the next section, becomes more attractive due to its fixed
degree.

The vertices of an n dimensional hypercube are readily described by the binary ordered pair

Figure 2.16 Rectangular Mesh

With this description two nodes are neighbors if they differ in their representation in one location only.
For example for an 8 node hypercube with nodes enumerated

processor (0, 1, 0) has three neighbors:

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-37.jpg',446,206)
javascript:displayWindow('images/02-37.jpg',446,206)

Figure 2.17 Hypercube Topology

2.5.3.4 Cube-Connected Cycles

A cube-connected cycles topology is shown in Figure 2.18. This topology is easily formed from the
hypercube topology by replacing each hypercube node with a cycle of nodes. As a result, the new
topology has nodes, each of which, has degree 3. This has the look and feel of a hypercube yet without
the high degree. The cube-connected cycles topology has nlog n nodes.

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-38.jpg',446,266)
javascript:displayWindow('images/02-38.jpg',446,266)
javascript:displayWindow('images/02-39.jpg',447,315)

Figure 2.18 Cube-Connected Cycles

2.6 The Hypercube Topology

This section presents algorithms and issues related to the hypercube topology. The hypercube is
important due to its flexibility to efficiently simulate topologies of a similar size.

2.6.1 Definitions

Processors in a hypercube are numbered 0, ..., n - 1. The dimension, d, of a hypercube, is given as

where at this point it is assumed that n is a power of 2. A processor, x, in a hypercube has a
representation of

For a simple example of the enumeration scheme see Section 2.5.3.3 on page 75. The distance, d (x, y),
between two nodes x and y in a hypercube is given as

The distance between two nodes is the length of the shortest path connecting the nodes. Two processors,
x and y are neighbors if d (x, y) = 1. The hypercubes of dimension two and three are shown in Figure
2.19.

2.6.2 Message Passing

A common requirement of a parallel processing topology is the ability to support broadcast and message
passing algorithms between processors. A broadcast operation is an operation which supports a single
processor communicating information to all other processors. A message passing algorithm supports a
single message transfer from one processor to the next. In all cases the messages are required to traverse
the edges of the topology.

To illustrate message passing consider the case of determining the path to send a message from processor
0 to processor 7 in a 3-dimensional hypercube as shown in Figure 2.19. If the message is to traverse a
path which is of minimal length, that is d (0, 7), then it should travel over three edges. For this case there
are six possible paths:

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-39.jpg',447,315)

Figure 2.19 Hypercube Architecture

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-40.jpg',444,503)
javascript:displayWindow('images/02-40.jpg',444,503)

In general, in a hypercube of dimension d, a message travelling from processor x to processor y has d (x,
y) ! distinct paths (see Problem 2.11). One simple algorithm is to compute the exclusive-or of the source
and destination processors and traverse the edge corresponding to complementing the first bit that is set.
This is illustrated in Table 2.4 for left to right complementing and in Table 2.5 for right to left
complementing.

Table 2.4 Calculating the Message Path — Left to Right

Processor Source ProcessorDestination Exclusive-Or Next Processor
000 111 111 100
100 111 011 110
110 111 001 111

Table 2.5 Calculating the Message Path — Right to Left

Processor Source Processor Destination Exclusive-Or Next Processor
000 111 111 001
001 111 110 011
011 111 100 111

The message passing algorithm still works under certain circumstances even when the hypercube has
nodes that are faulty. This is discussed in the next section.

2.6.3 Efficient Hypercubes

This section presents the analysis of the class of hypercubes for which the message passing routines of
the previous section are valid. Examples are presented in detail for an 8-node hypercube.

2.6.3.1 Transitive Closure

Definition 2.23

The adjacency matrix, A, of a graph, G, is the matrix with elements aij such that aij = 1 implies there is an
edge from i to j. If there is no edge then aij = 0.

The adjacency matrix, A, of the transitive closure of the 8-node hypercube is simply the matrix

Algorithms and Data Structures in C++:Algorithms

For a hypercube with all functional nodes every processor is reachable.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

2.6.3.2 Least-Weighted Path-Length

Definition 2.24

The least-weighted path-length graph is the directed graph where the weights of each edge correspond to
the shortest path-length between the nodes.

The associated weighted matrix consists of the path-length between the nodes. The path-length between a
processor and itself is defined to be zero. The associated weighted matrix for an 8-node hypercube with
all functional nodes is

aij is the distance between nodes i and j. If nodes i and j are not connected via any path then aij = �.

2.6.3.3 Hypercubes with Failed Nodes

This section introduces the scenario of failed processors. It is assumed if a processors or node fails then
all edges incident on the processor are removed from the graph. The remaining processors will attempt to
function as a working subset while still using the message passing algorithms of the previous sections.
This will lead to a characterization of subcubes of a hypercube which support message passing. Consider
the scenario illustrated in Figure 2.20. In the figure there are three scenarios with failed processors.

In Figure 2.20b a single processor has failed. The remaining processors can communicate with each other
using a simple modification of the algorithm which traverses the first existing edge encountered.

Similarly, in Figure 2.20c communication is still supported via the modified algorithm. This is illustrated
in Table 2.6. Notice that in Table 2.6 the next processor after 000 was 001. For the topology in the figure
the processor did not exist so the algorithm proceeded to the next bit from right to left which gave 010.
Since this processor existed the message was sent along the path.

Algorithms and Data Structures in C++:Algorithms

Figure 2.20 Hypercube with Failed Nodes

Table 2.6 Calculating the Message Path — Right to Left for Figure 2.20c

Processor Source Processor Destination Exclusive-Or Next Processor
000 111 111 010
010 111 101 011
011 111 100 111

The scenario in Figure 2.20d is quite different. This is illustrated in Table 2.7.

In this case, the first processor considered to is 001 but it is not functional. Processor 010 is considered
next but it is not functional. For this case the modified algorithm has failed to route the message from
processor 000 to 011. There exists a path from 000 to 011 one of which is

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-41.jpg',440,516)
javascript:displayWindow('images/02-41.jpg',440,516)

Notice that the distance between the processors has increased as a result of the two processors failures.
This attribute is the motivation for the characterization of efficient hypercubes in the next section.

Table 2.7 Calculating the Message Path — Right to Left for Figure 2.20d

Processor Source Processor Destination Exclusive-Or Next Processor
000 011 011 ?

2.6.3.4 Efficiency

Definition 2.25

A subcube of a hypercube is efficient if the distance between any two functional processors in the
subcube is the same as the distance in the hypercube.

A subcube with this property is referred to as an efficient hypercube. This is equivalent to saying that if A
represents the least-weighted path-length matrix of the hypercube and B represents the least-weighted
path-length matrix of the efficient subcube then if i and j are functional processors in the subcube then bij

= aij. This elegant result is proven in Problem 2.20. The least-weighted path-length matrix for efficient
hypercubes place � in column i and row i if processor i is failed.

The cubes in Figure 2.20b and c are efficient while the cube in Figure 2.20d is not efficient. If the cube is
efficient then the modified message passing algorithm in the previous section works. The next section
implements the procedure for hypercubes with failed nodes.

2.6.3.5 Message Passing in Efficient Hypercubes

The code to simulate message passing in an efficient hypercube is shown in Code List 2.8. The output of
the program is shown in Code List 2.9. The path for communicating from 0 to 63 is given as
0-1-3-7-15-31-63 as shown in Code List 2.9. Subsequently processor 31 is deactivated and a new path is
calculated as 0-1-3-7-15-47-63 which avoids processor 31 and traverses remaining edges in the cube.
The program continues to remove nodes from the cube and still calculates the path. All the subcubes
created result in an efficient subcube.

Code List 2.8 Message Passing in an Efficient Hypercube

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-42.jpg',425,784)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-42.jpg',425,784)
javascript:displayWindow('images/02-43.jpg',425,783)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-43.jpg',425,783)

Code List 2.9 Output of Program in Code List 2.8

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-44.jpg',457,412)

2.6.4 Visualizing the Hypercube: A C++ Example

This section presents a C++ program to visualize the hypercube. A program to visualize the cube is
shown in Code List 2.10. The program was used to generate the PostScript image in Figure 2.21 for a 64
node hypercube. The program uses a class structure similar to the program to visualize the Tower of
Hanoi in Code List 2.6.

The program introduces a new PostScript construct to draw and fill a circle

x y radius angle1 angle2 arc

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-45.jpg',447,325)
javascript:displayWindow('images/02-46.jpg',448,211)

The program uses the scale operator to force the image to fill a specified area. To illustrate this, notice
that the program generated both Figure 2.21 and Figure 2.22. The nodes in Figure 2.22 are enlarged via
the scale operator while the nodes in Figure 2.21 are reduced accordingly.

The strategy in drawing the hypercube is such that only at most two processors appear in any fixed
horizontal or vertical line. The cube is grown by replications to the right and downward.

Figure 2.21 A 64-Node Hypercube

Code List 2.10 C++ Code to Visualize the Hypercube

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-47.jpg',429,423)
javascript:displayWindow('images/02-47.jpg',429,423)

Figure 2.22 An 8-Node Hypercube

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-48.jpg',448,198)
javascript:displayWindow('images/02-49.jpg',427,406)
javascript:displayWindow('images/02-49.jpg',427,406)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-50.jpg',450,295)
javascript:displayWindow('images/02-51.jpg',427,760)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-51.jpg',427,760)
javascript:displayWindow('images/02-52.jpg',425,757)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-52.jpg',425,757)
javascript:displayWindow('images/02-53.jpg',447,796)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-53.jpg',447,796)
javascript:displayWindow('images/02-54.jpg',424,755)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-54.jpg',424,755)

Code List 2.11 Output of Program in Code List 2.10

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-55.jpg',445,530)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-56.jpg',228,192)
javascript:displayWindow('images/02-57.jpg',237,810)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-57.jpg',237,810)
javascript:displayWindow('images/02-58.jpg',237,807)

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-58.jpg',237,807)

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

javascript:displayWindow('images/02-59.jpg',238,468)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

2.7 Problems

(2.1) [Infinite Descent — Difficult] Prove, using infinite descent, that there are no solutions in the
positive integers to

(2.2) [Recuffence] Find the closed form solution to the recursion relation

and write a C++ program to calculate the series via the closed form solution and print out the first
twenty terms of the series for

(2.3) [Tower of Hanoi] Write a C++ Program to solve the Tower of Hanoi problem for arbitrary n.
This program should output the move sequence for a specific solution.

(2.4) [Tower of Hanoi] Is the minimal solution to the Tower of Hanoi problem unique? Prove or
disprove your answer.

(2.5) [Rectangular Mesh] Given an 8x8 rectangular mesh with no additional edge connections
calculate the largest distance between two processors, where the distance is defined as the
minimum number of edges to traverse in a path connecting the two processors.

(2.6) [Rectangular Mesh] For a rectangular mesh with no additional edge connections formally
describe the topology in terms of vertices and edges.

(2.7) [Rectangular Mesh] Write a C++ program to generate a PostScript image file of the
rectangular mesh for 1 d n d 20 without additional external edge connections. To draw a line from
the current point to (x, y) use the primitive

followed by

Algorithms and Data Structures in C++:Algorithms

to actually draw the line. Test the output by sending the output to a PostScript printer.

(2.8) [Cube-Connected Cycles] Calculate the number of edges in a cube connected cycles
topology with nlog n nodes.

(2.9) [Tree Structure] For a graph G, which is a tree, prove that

(2.10) [Cube-Connected Cycles] For a cube-connected cycles topology formally describe the
topology in terms of vertices and edges.

(2.11) [Hypercube] Given two arbitrary nodes in a hypercube of dimension n calculate the number
of distinct shortest paths which connect two distinct nodes, A and B, as a function of the two
nodes. Use a binary representation for each of the nodes:

(2.12) [Hypercube] Given a hypercube graph of dimension n and two processors A and B what is
the minimum number of edges that can be removed such that there is no path from A to B.

(2.13) Is every edge in a tree a bridge?

(2.14) Devise a broadcast algorithm for a hypercube of arbitrary dimension. Write a C++ program
to simulate this broadcast operation on an 8-dimensional hypercube.

(2.15) Devise a message passing algorithm for a hypercube of arbitrary dimension. Write a C++
program to simulate this algorithm and demonstrate it for a 12-dimensional hypercube.

(2.16) Write a C++ program to visualize a complete binary tree. Your program should scale the
node sizes to fit on the page as a function of the dimension in a similar fashion to Code List 2.10.

(2.17) Describe in detail the function of each procedure in the code to visualize the hypercube in
Code List 2.10. Present a high-level description of the procedures render_cube and init_cube.

(2.18) Write a C++ program to display the modified adjacency matrix of an n-dimensional
hypercube similar to the matrix presented in Eq. 2.67.

(2.19) Write a C++ program to visualize a 64-node hypercube which supports message passing.
Your program should use a separate gray level to draw the source and destination processors and
should draw the edges which form the path in a different gray scale also.

(2.20) [Difficult] Prove that the modified message passing algorithm works for any two functional
processors in an efficient hypercube.

(2.21) Write a C++ program to determine if a hypercube with failed nodes is efficient.

(2.22) Calculate the least-weighted path-length matrix for each of the subcubes in Figure 2.20.

(2.23) Given a hypercube of dimension d calculate the probability that a subcube is efficient

Algorithms and Data Structures in C++:Algorithms

where the subcube is formed by the random failure of two processors.

(2.24) Modify the C++ program in Code List 2.10 to change the line width relative to the node
size. Test out the program for small and high dimensions.

(2.25) Rewrite Code List 2.10 to build the hypercube using a recursive function.

(2.26) The program in Code List 2.10 uses a simple algorithm to draw a line from each processor
node to its neighbors. As a result, the edges are drawn multiple times within in the file. Rewrite the
program to draw each line only once.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

Chapter 3
Data Structures and Searching
This chapter introduces data structures and presents algorithms for searching and sorting.

3.1 Pointers and Dynamic Memory Allocation

This section investigates pointers and dynamic memory allocation in C++. As a first example consider
the C++ source code in Code List 3.1.

Code List 3.1 Integer Pointer Example

At the beginning of the program there are two variables that are allocated. The first variable is a variable
p which is declared as a pointer to an integer. The second variable, k, is declared as an integer. The
variable p is stored at address A1. The address A1 will contain an address of a variable which will be

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-01.jpg',498,316)

interpreted as an integer. Initially this address is not assigned. The variable k is stored at address A3.
Note that the addresses of p and k do not change during the execution of the program. These addresses
are allocated initially and belong to the program for its execution life.

The statement p=new int in the program allocates room for an integer in memory and makes the pointer p
point to that location. It does not assign a value to the location that p points to. In this case p now
contains the address A4. The memory location at address A4 will contain an integer. The new operator is
a request for memory allocation. It returns a pointer to the memory type requested. In this example room
is requested for an integer.

The statement *p=7 assigns the integer 7 to the location that p points to. In this case the address A4 will
now contain a 7.

The statement k=3 assigns 3 to the address where k is located. In this case the address A3 will contain the
integer 3.

The statement delete p now requests to deallocate the memory granted to p with the new operator. In this
case p will still point to the location but the data at the location is subject to change. It can be the case
that *p is no longer 7. Note that once the memory is freed the program no longer may have a right to
access the data. The memory location A4 is free to be assigned to any other program which requests
memory space.

The statement p=&k assigns the address of k to p. The address of k is A3. For this case, p, located at A1
will now contain the address A3.

The statement *p=4 now assigns the integer 4 to the address that p points to. For this case the data at
address A3 will now contain 4.

This statement has changed the value of k. The flow for the memory is shown in Figure 3.1.

There are a number of pitfalls to be concerned with pointers. The declaration int *p does not allocate
room for the integer. It simply allocates room for a variable p which will point to an integer in memory.
As a result the following code segment is invalid:

int *p;

*p=7;

For this code segment the address that p contains is not valid. Unfortunately depending on the platform
you are using to develop your programs this might not generate an error on compilation and in some
operating systems even on execution.

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-02.jpg',350,604)

Figure 3.1 Memory Layout for C++ Program

The following code segment is acceptable

int *p, k;

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-03.jpg',360,666)
javascript:displayWindow('images/03-03.jpg',360,666)

p=&k;

*p=4;

For this code segment, p points to the address of k which has been allocated memory for an integer.

The code shown in Code List 3.2 is also valid. The output for the program is shown in Code List 3.3.

Code List 3.2 Pointer Example

Code List 3.3 Output of Program in Code List 3.2

The style of the output will change dramatically depending on the operating system and platform used to
develop the code. It is sufficient to note that for the code in Code List 3.2 p contains an address that
points to a location that contains an address that points to a location that contains an integer.

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-04.jpg',490,337)
javascript:displayWindow('images/03-05.jpg',585,137)

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

3.1.1 A Double Pointer Example

Consider the simple program which prints out the runtime, arguments provided by the user. The program
source is shown in Code List 3.4. The output of the program is shown in Code List 3.5. The program is
executed by typing in the command

ARGV1 arg1 arg2

Code List 3.4 Double Pointer Example

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-06.jpg',470,517)

Code List 3.5 Output of Program in Code List 3.4

The name of the program is ARGV1.EXE. The arguments passed to the program are arg1 and arg2. The
main procedure receives two variables, argc and argv. For this case argc will be the integer 3 since there
are 2 arguments passed to the program. It is 3 instead of 2 because argv will also hold the program name
in addition to the arguments passed as can be seen in the program output. In the program argv is a pointer
to a pointer to a character. The organization is shown in Figure 3.2. Looking at the figure one notes a

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-06.jpg',470,517)
javascript:displayWindow('images/03-07.jpg',360,534)

rather complex organization. In the figure argv is stored at memory location Al. Its value is the address
A2. The address A2 contains the address A5 which contains a contiguous set of characters. The first
character at address A5 is the letter A (in hex 41, using ASCII). The character at address A5+1 is the
letter R (in hex 52). The set of characters is terminated with a NULL character, (in hex 00). The null
character indicates the end of the string. It is used by programs which are passed the address A5 to print
the character. These programs print each consecutive character until they reach a NULL. A failure to
place a NULL character at the end of a string will result in many string operation failures in addition to
printing improperly. Remember in C/C++ a string is merely a collection of contiguous characters
terminated in a NULL.

C and C++ can treat pointers as arrays. This is a very powerful and sometimes dangerous feature. For
this example one can interpret

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-08.jpg',350,608)

Figure 3.2 Program Organization in Memory

There are only two arguments + the program name.

Remember that argv is a pointer to a char to a char, written as char **.

argv[0] is a char * or a pointer to a char.

When the io function cout receives a char * it will interpret the characters at the location as a string. In
this case during the first print loop argv[0] points to A5 where the string representing the name of the
program resides (technically, the command line argument invoking the program).

Going to the location A5 cout proceeds to print out ARGV.EXE and stops printing characters because of
the NULL character reached.

C and C++ also support pointer arithmetic. This can lead to complex expressions. For this example
argv+1 is synonymous with &argv[1] which in this case one has

In C and C++ when you name an array like x[10] then x with no brackets refers to the address of x[0]:

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-08.jpg',350,608)
javascript:displayWindow('images/03-08.jpg',350,608)

One can traverse the pointers using * or [] that is the following is identical

Notice that

Make sure you understand all the outputs of the program. If you are going to spend a lot of time
programming in C or C++ then you should review this chapter frequently until you are completely
comfortable with the concepts.

3.1.2 Dynamic Memory Allocation with New and Delete

C++ has introduced memory allocation operators new and delete to deal with requesting and freeing
memory. An example of the use of new and delete are illustrated in Code List 3.6. The output of the
program is shown in Code List 3.7. There are some important features of new and C++ illustrated in this
program.

Code List 3.6 Dynamic Memory Allocation in C++

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-09.jpg',551,424)

Code List 3.7 Output of Program in Code List 3.6

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-10.jpg',491,436)

The program declares a class called test. Two variables k and j are declared as pointers to objects of type
test. Upon declaration room is stored in memory for the pointers k and j.

A variable w of type test is created with the statement test w;. This statement illustrates the use of
constructor functions in C++. When w is created the constructor function test() is called which results in
“Constructor function called” being printed.

The statement j=new test[4]; requests memory for an array of size four for the class test. As a result of
using new the constructor function is called four times. After the statement j will point to the first
element.

The statement k = (test *) malloc(4*sizeof(test)); requests memory for an array of size 4 for the class test.

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-11.jpg',212,403)
javascript:displayWindow('images/03-12.jpg',291,124)

Using malloc, however, will not call the constructor function for the class k. As a result nothing is printed
at this point of the program.

The statement delete[] j; gives back the memory requested by the new operator earlier. The brackets []
are used when new is used to declare an array. At this point the destructor function ~test() is called for
each element in the array.

The statement free(k) gives back the memory allocated by the malloc request. As with malloc, free will
not call the destructor function.

Before the program terminates the variable local to main w will first lose its scope and as a result the
destructor function will be called for w.

In C++ new and delete should be used in lieu of malloc and free to ensure the proper calling of
constructor and destructor functions for the classes allocated. Notice that new also avoids the use of the
sizeof operator which simplifies its use.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

3.1.3 Arrays

Sequential arrays stored in memory also rely on pointers for index calculations. The array example in
Code List 3.8 demonstrates the differences between pointers and arrays for the case of the
multidimensional array. The output of the program is shown for two different platforms. Code List 3.9
shows the output of the program for a DOS system while Code List 3.10 shows the output of the program
on a Unix system. For this program two different methodologies are used for implementing the storage of
four integers. The memory allocation is illustrated in Figure 3.3. The key difference between the
implementation of the pointers and the multidimensional array is that the array a[2][2] is not a variable.
As a result, operations such as a=a+1 are invalid.

Figure 3.3 Memory Organization for Code List 3.8

Someone slightly familiar with C or C++ might be surprised to see that the output indicates that the
values of &a, a, and *a are all equal. While this looks unusual it is correct. The declaration int a[2][2] in
C and C++ declares a to be an array of arrays. In this case there are two arrays each containing two

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-13.jpg',480,347)
javascript:displayWindow('images/03-13.jpg',480,347)

integers. The first array is located at address A4 while the second array is located at the address A5.

• a - returns the starting address of the array of arrays which is given as A4 in Figure 3.3.

• *a - returns the starting address of the first array in the list which is also A4 in Figure 3.3

• &a - returns the starting address of the array a which is A4. This does not return the address of
the element (if there is one) that actually points to a. When you declare an array via int a[2][2]
there is no variable which points to the beginning of the array that the programmer can change.
The compiler basically ignores the ampersand when the variable is declared as an array.
Remember, this is the difference between pointers and arrays. The location where a points to
cannot change during the program.

The output for b follows directly the addressing as illustrated in Figure 3.3

Code List 3.8 Array Example

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-14.jpg',388,652)

Code List 3.9 Output of Code in Code List 3.8

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-14.jpg',388,652)
javascript:displayWindow('images/03-15.jpg',404,490)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-16.jpg',242,360)

Code List 3.10 Output of Code in Code List 3.8

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-17.jpg',241,359)

3.1.4 Overloading in C++

An example of overloading in C++ is shown in Code List 3.11. The output of the program is shown in

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-18.jpg',240,486)
javascript:displayWindow('images/03-19.jpg',243,167)

Code List 3.12. This program overloads the operator () which is used to index into a set of characters for
a specific data bit. The packing is illustrated in Figure 3.4 for the variable e declared in the program.

Figure 3.4 Packing Bits in Memory

Code List 3.11 Operator Overloading Example

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-20.jpg',350,271)
javascript:displayWindow('images/03-20.jpg',350,271)
javascript:displayWindow('images/03-21.jpg',398,143)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-22.jpg',339,649)

Code List 3.12 Output of Program in Code List 3.11

3.2 Arrays

This section demonstrates the creation of an array class in C++ using templates. The goal of the program
is to demonstrate the implementation of a feature of C++ which is already built in; therefore, the code is
for instructive purposes only. The code for a program to create an array class is illustrated in Code List
3.13, The output of the program is shown in Code List 3.14. The array class is declared in the program as
a generic class with a type T which is specified later when an array variable is declared. As seen in the
main function three arrays are declared: a, b, and c. The array a consists of ten integers. The array b

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-23.jpg',400,443)
javascript:displayWindow('images/03-24.jpg',343,89)

consists of five doubles. The array c consists of 3 characters. The constructor function for the array
initializes all the elements of the array to zero. The function set_data is used to assign a value to a
specific element in the array. The function print_data is used to print a specific element in the array.

Code List 3.13 Creating an Array Class in C++

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-25.jpg',344,622)

Code List 3.14 Output from Code List 3.13

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-26.jpg',341,572)

3.3 Stacks

A stack is a data structure used to store and retrieve data. The stack supports two operations push and
pop. The push operation places data on the stack and the pop operation retrieves the data from the stack.
The order in which data is retrieved from the stack determines the classification of the stack.

A FIFO (First In First Out) stack retrieves data placed on the stack first. A LIFO (Last In First Out) stack
retrieves data placed on the stack last. A LIFO stack push and pop operation is illustrated in Figure 3.5.

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-27.jpg',115,131)
javascript:displayWindow('images/03-28.jpg',93,82)

Figure 3.5 Push and Pop in a LIFO Stack

The source code to implement a LIFO stack class is shown in Code List 3.15. The output of the program
is shown in Code List 3.16. Notice that templates are used again so the type used for the stack is defined
at a later point.

Code List 3.15 LIFO Stack Class

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-29.jpg',380,439)
javascript:displayWindow('images/03-29.jpg',380,439)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-30.jpg',445,363)
javascript:displayWindow('images/03-31.jpg',450,164)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-32.jpg',439,736)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-32.jpg',439,736)
javascript:displayWindow('images/03-33.jpg',445,724)

Code List 3.16 Output of Program in Code List 3.15

3.4 Linked Lists

This section presents the linked list data structures. This is one of the most common structures in
program design.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-33.jpg',445,724)
javascript:displayWindow('images/03-34.jpg',247,477)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

3.4.1 Singly Linked Lists

A linked list with four entries is shown in Figure 3.6. As seen in the figure, there is a pointer which
points to the head of the list. Each object in the list has associated data and a pointer to the next element
in the list. The figure is shown with four objects. The final element contains a NULL pointer. This is
common practice to indicate the end of the list. The data in the linked list can be a single element or a
large collection of data.

A C++ program to demonstrate the linked list is shown in Code List 3.17. program creates a linked lists
of classes. The class template is declared as

template <class T>

class list {

private:

 list <T> * next;

 friend class start_list<T>;

 friend class iterator<T>;

public:

 T data;

};

In this declaration next is declared as a pointer to the next element in the list. Two classes are declared as
friends to the class, start_list and iterator. As a result these classes will have access to the functions and
data of the class list. data is declared as public in the class. The data type T is declared later in the
program.

The next class declared in the program is start_list which is defined as

class start_list

Algorithms and Data Structures in C++:Data Structures and Searching

 {

 list<T> *start;

 friend clas iterator<T>;

 public:

 start_list(void) { start=0;}

 ~start_list(void);

 void add(T t);

 int isMember(T t);

 }

For this class, a pointer to the start of a list is declared. The constructor function start_list() initializes
start to zero when an item of class start_list is declared. The function start_list() is declared inline. The
function add is used to add elements to the list. The destructor function ~start_list() is called when data
of type start_list lose their scope. The function ~start list() is not declared inline. The function isMember
is used to determine if a data element matches an element in any of the members of the linked list. Notice
that in the program, start_list is used to instantiate a class of type list. The add function is declared next
in the program This function creates an element of type list and appends it to the current list. If the list is
empty then the function assigns start to the beginning of the new list.

The isMember function is declared next in the program. The isMember function searches the list and tries
to find a match to the data t that is passed. If a match is found the function returns I else the function
returns 0.

The destructor function for the class, ~start_list, is defined next. The destructor function begins at the
start of the list and deletes the lists that are formed making up the entire linked list. The destructor
function in turn assigns start to null. This function will be called in the program when any data of type
start_list loses scope. This is a very powerful technique of C++. Typically the constructor functions are
used to acquire memory upon the creation of a variable and the memory is freed up via the destructor
function.

The next class defined is the iterator class. The iterator class is used to traverse the linked list. The
iterator class contains a pointer to the start of a list and a cursor to traverse the list. The class contains a
function reset which sets the cursor back to the start of the list. The constructor function for the class
accepts a parameter which is a pointer to a class of type start_list. The constructor function calls reset to
initialize cursor. The function next is used to iterate the list. The function assigns the pointer p to cursor
and cursor to cursor->next if cursor is not null.

The program then initiates a number of typedefs which create lists and pointers to list for the data types

Algorithms and Data Structures in C++:Data Structures and Searching

of string, double, int, char.

The main() routine creates a number of lists. The first list created, number, is declared with list_double
number. This list will contain a list of data elements of type double. Upon the declaration of list_double
room for the data has not been allocated and the list pointers have been set to null. The first time room
for data is allocated is during the call number.add(4.5). This adds 4.5 to the list. Subsequent calls to
number.add() append the data to the list. To access the numbers in the newly formed list a
list_double_iterator is declared with list_-double_iterator x(& number). The list_double_ptr p access the
data via calls to the iterator function x.next(). The output for the program is shown in Code List 3.18.

Code List 3.17 Linked List Source

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-35.jpg',500,89)
javascript:displayWindow('images/03-36.jpg',450,385)
javascript:displayWindow('images/03-37.jpg',450,844)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-37.jpg',450,844)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-37.jpg',450,844)
javascript:displayWindow('images/03-38.jpg',450,843)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-38.jpg',450,843)
javascript:displayWindow('images/03-39.jpg',450,819)

Figure 3.6 Linked List

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-39.jpg',450,819)
javascript:displayWindow('images/03-40.jpg',500,90)
javascript:displayWindow('images/03-41.jpg',500,304)
javascript:displayWindow('images/03-41.jpg',500,304)

Code List 3.18 Output from Code List 3.17

3.4.2 Circular Lists

A circular list with two entries is shown in Figure 3.7. A circular list contains a pointer from the last
object in the list to the first. In a sense, the new list has no beginning or end. The circular list is common
in use for storing the most recent data when limited to finite storage. A common technique is to allocate a
fixed amount of storage for a particular database and after it fills up to write over the old data by looping
back around to the beginning. Obviously, the application is limited to cases where data loss is not critical.
An example might be a database used to store the last 20 issues of The Wall Street Journal.

3.4.3 Doubly Linked Lists

A doubly linked list with two elements is shown in Figure 3.8. Doubly linked lists are used to provide
bidirectional access to the data in the list. For many searching techniques it might be useful to traverse
data from both sides of the list. A good example of this is quicksort which is discussed in Section 3.8.

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-42.jpg',150,306)

Figure 3.7 Circular List

Figure 3.8 Doubly Linked List

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-43.jpg',500,177)
javascript:displayWindow('images/03-43.jpg',500,177)
javascript:displayWindow('images/03-44.jpg',500,208)
javascript:displayWindow('images/03-44.jpg',500,208)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

3.5 Operations on Linked Lists

There are a number of operations on linked lists that are useful. These operations might be assigned to a
class from which different types of linked lists are derived. Some common operations might be

• add_object — to add an object to the linked list

• destroy_object — to destroy an object of the linked list

• find_Object — to find an object in the list

• find_member — to search the whole list for a specific member

• find_last-member — finds the last object in the list which matches the specific member

A number operations including sorting might also be defined for the linked list.

3.5.1 A Linked List Example

This section presents a complete example in C++ which demonstrates the use of linked lists to search for
the solution to a particular coffee-house game. The purpose of the game is to eliminate as many pegs as
possible on a triangular board by jumping individual pegs. The board used for this example consists of
ten slots and nine pegs. The board is numbered and initialized as shown in Figure 3.9. Initially, the nine
pegs occupy slots one through nine and slot zero is unoccupied. A peg may jump an adjacent peg
(horizontally, or diagonally) into an unoccupied slot. The peg that is jumped is removed from the board.
This is similar to capturing a piece by jumping in the game of checkers.

A valid move sequence produced by the program in Code List 3.19 is illustrated in Figure 3.9. The first
move in the game is for peg number five to jump over peg number two landing in the empty slot zero.
Peg number two is removed from the board and the game continues. The next move is to move peg
number seven, jumping over peg number four, and landing in the unoccupied slot two. Peg number four
is then removed from the board. The game continues in a similar fashion until there are no more possible
moves. At the end of the game in Figure 3.9 three pieces remain on the board: piece number five, piece
number six, and piece number eight.

The output of the program is shown in Code List 3.20. The output presents an X if there is a peg
remaining at a specific position and a 0 if there is no peg. As seen in the output file at the stage the search
is printed out there are three pegs left for each combination. The output is the exhaustive list of all
combinations which result in three pegs remaining after six moves. In all cases there are no more
additional valid moves. The paths are printed for each solution. Multiple paths give rise to the same final
peg distribution for instance

Algorithms and Data Structures in C++:Data Structures and Searching

[(5,0),(7,2),(0,5),(9,7),(6,8),(1,6)]

and

[(5,0),(7,2),(9,7),(6,8),(1,6), (0,5)]

both result in 00000XX0X0.

One of the problems with the program is the massive amount of data required to store all valid paths
which lead to a fixed peg configuration. Consider the problem of expanding the game to the “real” coffee
house game which really consists of 14 pegs initially placed on a triangle. If the program is modified to
support the new triangle then it requires too much memory to run on most workstations. As a result if the
desired problem is to find one path that is optimal a different approach described in the next section must
be taken.

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-45.jpg',450,714)

Figure 3.9 A Particular Game Sequence

3.5.1.1 Bounding a Search Space

In order to minimize the arbitrary expansion of paths for the coffee house game of size 15 the program
can be modified to remove any entries in the linked list which duplicate a configuration obtainable via
another path. If this approach is taken then only one path will be saved at each point in the iteration for a
given intermediate position. This will bound the search space at each iteration and will result in a
workable solution. Using a rather unsophisticated argument it is easy to see that the amount of memory is
reduced significantly and is realistically bounded. Since each position is represented as a sequence of 15
0’s and X’s the maximum number of positions under consideration at any time is 215. For each position
only one path is stored instead of the myriad of paths which result in the same position. This approach is
used in Problem 3.6 to find a solution for the coffee house game.

Code List 3.19 Source Code for Game Simulation

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-45.jpg',450,714)
javascript:displayWindow('images/03-45.jpg',450,714)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-46.jpg',500,478)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-47.jpg',450,745)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-47.jpg',450,745)
javascript:displayWindow('images/03-48.jpg',500,825)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-48.jpg',500,825)
javascript:displayWindow('images/03-49.jpg',500,825)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-49.jpg',500,825)
javascript:displayWindow('images/03-50.jpg',500,829)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-50.jpg',500,829)
javascript:displayWindow('images/03-51.jpg',500,830)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-51.jpg',500,830)
javascript:displayWindow('images/03-52.jpg',500,819)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-52.jpg',500,819)
javascript:displayWindow('images/03-53.jpg',500,825)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-53.jpg',500,825)
javascript:displayWindow('images/03-54.jpg',500,827)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-54.jpg',500,827)

Code List 3.20 Output of Program in Code List 3.19

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-54.jpg',500,827)
javascript:displayWindow('images/03-55.jpg',500,259)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-56.jpg',400,596)

3.6 Linear Search

A linear search is a search which proceeds in a linear fashion through a list.

The C++ code to perform a linear search on strings is shown in Code List 3.21. The output of the

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-57.jpg',280,634)

program is shown in Code List 3.22

Code List 3.21 Linear Search Code for Strings

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-58.jpg',400,589)

Code List 3.22 Output of Program in Code List 3.21

3.7 Binary Search

The binary search is used in a sorted array to search for an element. The search consists of comparing
against the middle of the list and proceeding to search the higher or lower sublist in a recursive fashion.

A binary search is shown in C++ in Code List 3.23. The output is shown in Code List 3.24. A binary
search for strings is illustrated in Code List 3.25. The output of the program is shown in Code List 3.25.

Code List 3.23 Binary Search for Integers

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-59.jpg',500,143)
javascript:displayWindow('images/03-60.jpg',260,354)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-61.jpg',300,74)
javascript:displayWindow('images/03-62.jpg',360,631)

Code List 3.24 Output of Program in Code List 3.23

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-63.jpg',180,135)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

3.8 QuickSort

The quick sort algorithm is a simple yet quick algorithm to sort a list. The algorithm is comprised of a
number of stages. At each stage a key is chosen.

Code List 3.25 Binary Search for Strings

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-64.jpg',400,653)

The algorithm starts at the left of the list until an element is found which is greater than the key. Starting
from the right, an element is searched for which is less than the key. When both the elements are found
they are exchanged. After a number of iterations the list will be divided into two lists. One list will have
all its elements less than or equal to the key and the other list will have all its elements greater than or
equal to the key. The two lists created are then each sorted by the same algorithm.

Code List 3.26 Output of Program in Code List 3.25

The internal details of a quicksort algorithm are shown in the C++ program in Code List 3.27. The output
of the program is shown in Code List 3.28.

A number of different approaches can be used to determine the key. The quicksort algorithm in this
section uses the median of three approach. In this approach a key is chosen for each search segment.

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-64.jpg',400,653)
javascript:displayWindow('images/03-65.jpg',290,333)

The key is given as the median of three on the bounds of the segment. For instance, in Code List 3.28,
the initial segment to sort contains 18 elements, indexed 0-17. The first key is determined by the
calculation

After the comparisons two lists are formed. In this case the lists are 0-8 and 9-17. Every element in the
first list will be less than or equal to the key 255 and everything in the second list will be greater than or
equal to 255. The two new lists can be sorted in parallel. This example is sequential code so that the
second list 9-17 is dealt with first.

The comparisons occurring within the first list is illustrated in Code List 3.29. Two comparisons can be
done in parallel. Starting from the left a search is made for the first element greater than 255. In this case
the first element satisfies that criteria.

Starting from the right a search is made for the first element that is less than 255. In this case it is the last
element. At this point the two elements are exchanged in the list which results in the second list in Code
List 3.29. Continuing in this manner proceeding from the left the next element in the list is searched for
which is greater than 255. In this case it is the third element in the list, 415. Proceeding from the right the
first element less than 255 found is 100. Again, 100 and 415 are exchanged resulting in the third list.
Eventually the two left and right pointers overlap indicating that the list has been successfully sorted
about the key.

C++ also provides a quicksort operator which performs the median of three sort. This is illustrated for
strings is illustrated in Code List 3.34. The output of the program is shown in Code List 3.35 A quicksort
C++ program for doubles is shown in Code List 3.30 The output is shown in Code List 3.31. A quicksort
program for integers is shown in Code List 3.32. The output is shown in Code List 3.33.

Code List 3.27 QuickSort C++ Program

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-66.jpg',480,435)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-67.jpg',350,639)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-68.jpg',370,672)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-69.jpg',354,653)

Code List 3.28 Output of Program in Code List 3.27

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-70.jpg',400,339)
javascript:displayWindow('images/03-71.jpg',401,334)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-72.jpg',360,648)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-73.jpg',380,683)

Code List 3.29 QuickSort Comparison

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-74.jpg',400,530)
javascript:displayWindow('images/03-75.jpg',400,140)

Code List 3.30 QuickSort For Double Types

Code List 3.31 Output for Program in Code List 3.30

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-76.jpg',380,112)
javascript:displayWindow('images/03-77.jpg',380,509)

Code List 3.32 QuickSort Program for Integers

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-78.jpg',120,99)
javascript:displayWindow('images/03-79.jpg',130,200)

Code List 3.33 Output for Program in Code List 3.32

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-80.jpg',400,388)
javascript:displayWindow('images/03-81.jpg',120,124)

Code List 3.34 QuickSort Program

Code List 3.35 Output of Program in Code List 3.34

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-82.jpg',130,168)
javascript:displayWindow('images/03-83.jpg',380,434)

3.9 Binary Trees

A binary tree is a common data structure used in algorithms. A typical class supporting a binary tree is

class tree

{

public:

int key;

tree * left;

tree * right;

}

A binary tree is balanced if for every node in the tree the height of the left and right subtrees are within
one.

3.9.1 Traversing the Tree

There are a number of algorithms for traversing a binary tree given a pointer to the root of the tree. The
most common strategies are preorder, inorder, and postorder. The preorder strategy visits the root prior
to visiting the left and right subtrees. The inorder strategy visits the left subtree, the root, and the right
subtree. The postorder strategy visits the left subtree, the right subtree, followed by the root. These
strategies are recursively invoked.

3.10 Hashing

Hashing is a technique in searching which is commonly used by a compiler to keep track of variable
names; however, there are many other useful applications which use this approach. The idea is to use a

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-84.jpg',130,178)

hash function, h (E) , on elements, E , to assist in locating an element. For instance a dictionary might be
defined using an array of twenty six pointers, D [26] . Each pointer points to a linked list of data for the
specific letter of the alphabet. The hashing function on the string simply returns the number of the letter
of the alphabet minus one of the first characters in the string:

There are two major operations which need to be supported for the hash table created:

• search for an element

• search for an element and insert the element if not found

• indicate if the hash table is full

The idea of hashing is to simplify the search process so the hashing function should be simple to
calculate. Additionally, there should be a simple way to locate the data, referred to as resolving
collisions, once the hash function is evaluated.

3.11 Simulated Annealing

The simulated annealing algorithm is illustrated in Figure 3.10. The goal of simulated annealing is to
attempt to find an optimum to a large-scale problem which typically cannot be found by conventional
means. The solution is sought by iterating and evaluating a cost at each stage. The algorithm maintains a
concept of a temperature. When the temperature is high the algorithm will be likely to accept a higher
cost solution. When the temperature is very low the algorithm will almost always only accept solutions
of lower cost. The temperature begins high and is cooled until an equilibrium is reached. By allowing the
initial temperature to be high the algorithm will be allowed to “climb hills” to seek a global optimum.
Without this feature it is possible to be trapped in a local minimum. This is illustrated in Figure 3.12. By
allowing the function to move to a higher value it is able to climb over the hill and find the global
minimum.

Simulated annealing is applied to the square packing problem described in the next section. This
illustrates the difficulty and complexity of searching in general problems.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

3.11.1 The Square Packing Problem

The square packing problem is as follows:

Given a list of squares (integer sides) determine the smallest square which includes the list of
squares in a nonoverlapping manner.

A given instance for the square packing problem is shown in Figure 3.11. For this figure the list of
squares provided have sides

1,1,1,1,1,2,3,3,3,3,6

An optimal solution as shown in the figure packs the squares into a 9x9 square. A C++ source program
implementing the simulated annealing algorithm for the square packing problem is shown in Code List
3.36. The output of the program is shown in Code List 3.37.

3.11.1.1 Program Description

This section describes the program. The description begins with the start of the file and proceeds
forward.

The program includes a number of files to support the functions in the program. Of importance here is
the inclusion of <sys/time.h>. This is machine dependent. This program may have to be modified to run
on different platforms. At issue is the conformance to drand48() and associated functions as well as the
time structure format.

The function drand48() returns a double random number satisfying

srand48() is used to seed the random number generator. The defined constants are shown in Table 3.1.

Table 3.1 Program Constants

Constant Meaning
NO_SQUARES The number of squares in the problem

SQUARE-SIZE-LIMIT The maximum size of the square. The squares that are
generated will have sides from 1 to SQUARE_SIZE_LIMIT.
This is used when the initial linked list is generated with
random square sides.

INITIAL_TEMPERATURE The initial temperature in the simulated annealing process.

Algorithms and Data Structures in C++:Data Structures and Searching

R The temperature cooling ratio. The temperature is cooled by
this factor each time NO_STEPS have been performed.

NO_ITERATIONS The number of times to cool. This is the number of times the
temperature is reduced by a factor of R.

NO_STEPS This is the number of steps in the algorithm to perform at the
fixed temperature.

PLUS This is the representation for the PLUS operator which is
used to represent when blocks are placed on top of each
other.

TIMES This is the representation for the TIMES operator which is
used to represent when blocks are placed next to each other.

TEST When this is defined the test data, for which the optimal
solution is known, is used.

The representation used in the program for placing the squares is a stacked base approach. Squares
placed on top of each other are noted with a +. Squares placed next to each other are noted with a *.

The notation 1 2 * means square 2 to the right of 1. The notation 1 2 + means square 1 on top of 2. The
notation is unraveled in a stack base manner so to evaluate the meaning of 0 1 2 3 *4 + * + you push
each of the elements on the stack and when you encounter an operation you remove two elements from
the stack and replace it with the modified element. The array results in the operation in Table 3.2:

Table 3.2 Interpreting Representation

Representation Meaning
0 1 2 3 * 4 + * + Original Array
0 1 5 4 + * + Block 5 created which is composed of block 2 next to 3
0 1 6 * + Block 6 created which is composed of block 5 on top of 4
07 + Block 7 created which is block 1 next to 6
8 Block 8 created which is block 0 on top of 7

A possible notation, for instance, for Figure 3.11, is

0 1 2 + * 5 + 6 + 8 9 * 10 * + 3 4 * 7 + *

This would represent the square packed into the 9x9 square. Notice that each of the blocks above contain
a number or an operation. The program elects to define the + operation as the number NO_SQUARES
and the TIMES operation as the NO_SQUARES+1. As a result the valid representations will be the
numbers 0-12.

Two stacks are defined in the program, one to store the current x width of a box and the current y width.
This is needed because when you combine squares of different sizes you end up with a rectangle. If you
combine a 1x1 with a 2x2 you will end up with a 3x2 or a 2x3.

The test data is initially stored as

0 1 2 3 4 5 6 7 8 9 10 * + * + * + * + * +

Algorithms and Data Structures in C++:Data Structures and Searching

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

The program starts with the array and perturbs it by replacing it with a neighboring array and evaluating
the cost of the string. The calculate_cost() function calculates the cost of a given array.

To calculate a neighboring array the algorithm selects a random strategy. This is a required aspect to
simulated annealing. The neighboring strategy must be random. The strategy is described in Table 3.3.

Table 3.3 Neighbor Solution Strategy

Operation Description
A_op_to_op_A() Swap an operation with an element. For instance replace 10 +

with + 10.
op_A_to_A_op() Swap an operation with an element. For instance replace + 10

with 10 +.
AB_to_BA Exchange two elements. For instance replace 4 5 + to 5 4 +.
switch_op() switch two operators in the sequence. For instance replace 4 5

* + with 4 5 + *.
ABC_op_to_AB_op_C() replace a sequence of three elements followed by an

operation to two elements followed by the operation followed
by the last element. For instance replace 2 4 3 5 + 6 with 2 4
3 + 5 6.
Notice this is similar to A_op_to_op_A().

There are certain representations which are not valid that are handled by the program. For instance

3 4 * 5 +

cannot be replaced with

3 * 4 5 +

because you need two elements for each operation you run into. In general at any point in the array the
number of elements to that point must exceed the number of operations to that point by 1. The program
ensures that only valid perturbations are considered.

The output of the program is shown in Code List 3.37. The program found an optimal solution. Since the
program is a random program it may not find the optimal solution each time. The program also doesn’t
output the square number but rather the size of the size. This increases the readability of the solution. The
solution to the problem is not unique.

Code List 3.36 Simulated Annealing

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-85.jpg',400,446)
javascript:displayWindow('images/03-86.jpg',450,79)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-87.jpg',450,173)
javascript:displayWindow('images/03-88.jpg',450,359)
javascript:displayWindow('images/03-89.jpg',485,838)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-89.jpg',485,838)
javascript:displayWindow('images/03-90.jpg',450,781)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-90.jpg',450,781)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-91.jpg',450,769)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-91.jpg',450,769)
javascript:displayWindow('images/03-92.jpg',495,856)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-92.jpg',495,856)
javascript:displayWindow('images/03-93.jpg',450,773)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-93.jpg',450,773)
javascript:displayWindow('images/03-94.jpg',485,840)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-94.jpg',485,840)
javascript:displayWindow('images/03-95.jpg',500,865)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-95.jpg',500,865)
javascript:displayWindow('images/03-96.jpg',485,839)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-96.jpg',485,839)
javascript:displayWindow('images/03-97.jpg',450,779)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-97.jpg',450,779)
javascript:displayWindow('images/03-98.jpg',500,836)

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-98.jpg',500,836)

Code List 3.37 Output of Program in Code LIST 3.36

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-98.jpg',500,836)
javascript:displayWindow('images/03-99.jpg',400,547)

Figure 3.10 Generic Simulated Annealing Algorithm

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-100.jpg',350,66)
javascript:displayWindow('images/03-101.jpg',400,486)
javascript:displayWindow('images/03-101.jpg',400,486)

Figure 3.11 A Given Instance of the Square Packing Problem

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-102.jpg',385,397)
javascript:displayWindow('images/03-102.jpg',385,397)

Figure 3.12 Hill Climbing Analogy

3.12 Problems

(3.1) [Pointers, Dynamic Memory Allocation] Write a C++ program to invert a 30 matrix with
floating point elements. Your program should only declare triple pointers in main(). Every
declaration in main() must be of the form: type * * * variable. This also applies to any loop
variables needed. No other variables outside of main() should be declared (you can use classes
outside of main()). Any memory allocated with new should be removed with delete. Input the
matrix using the cin operator and output the results using the cout operator. If the matrix is not
invertible you should print “Matrix not Invertible”.

(3.2) [Dynamic Memory Allocation, FIFO] Write a C++ program to implement a FIFO stack
which allocates space dynamically. The size of the stack should increase dynamically (via new)
with each push operation and decrease (via delete) with each pop operation. Support an operation
to print the data presently on the stack.

(3.3) [Linked Lists] Write a C++ program to maintain a linked lists of strings. The program should
support an operation to count the number of entries in the linked list which match a specific string.

(3.4) [Linked Lists, Sorting] Write an operation for the program in Problem 3.3 which will sort
the linked list in alphabetical order.

(3.5) [Linked Lists] Write a general linked list C++ program which supports operations to

• Combine two lists

Algorithms and Data Structures in C++:Data Structures and Searching

javascript:displayWindow('images/03-103.jpg',400,348)
javascript:displayWindow('images/03-103.jpg',400,348)

• Copy a list.

• Split a list at a specific location into two lists

Make sure you handle all the special cases associated with the start and end of a list.

(3.6) [Bounding] Modify the coffee house game program to find a solution where the triangle
dimension is 15. The program should use a bounding technique which results in unique
intermediate peg locations at each iteration.

(3.7) [Merging Sorted Linked Lists] Write a C++ program to merge two separate sorted lists into
one sorted list. Calculate the order of your algorithm in terms of the size of the input list, n.

(3.8) [Binary Trees] Write a C++ program which is passed a pointer to a binary tree and prints out
the keys traversed via preorder, postorder and inorder strategies. Assume your tree class is
defined as

class tree
{
public:
int key;
tree * left;
tree * right;
}

(3.9) [Balanced Trees] Write a C++ program which inserts an element anywhere into a balanced
tree and results in a tree structure which is still balanced. Assume your tree class is the one defined
in Problem 3.8.

(3.10) [Balanced Trees] Write a C++ program which deletes an element with a specific key from a
balanced tree and results in a tree structure which is still balanced. Assume your tree class is the
one defined in Problem 3.8.

(3.11) [Balanced Trees] Write a C++ program which maintains a sorted key list in a balanced
binary tree. You should Support insertion and deletion of elements in the tree. For this problem the
definition of sorted means that at each node in the tree every element in the left subtree is less than
or equal to the root key of the subtree and every element in the right subtree is greater than or
equal to the root key of the subtree. After insertions and deletions the tree should be balanced.
Assume your tree class is the one defined in Problem 3.8.

(3.12) [Order] Calculate the number of operations in terms of the size of the tree for the
performance of the algorithm in Problem 3.10.

(3.13) [Hashing — Difficult] Consider a linked list structure which supports the concept of an
element with a number of friends:

class element
{
public:
char data[100];
element * f1;

Algorithms and Data Structures in C++:Data Structures and Searching

element * f2;
element * f3;
}

Consider a number of strings, say 2000, to be placed in classes of this nature. Develop a hashing
algorithm which will use the fact that an element has three friends to determine the location of the
string given only a pointer to a root element. Support the hashing functions to search and insert
strings into the table. Try to characterize your data which would make your hashing algorithm
optimal.

(3.14) [QuickSort] Investigate different key selection strategies for the quicksort algorithm. Test
out at least five different strategies and use large lists of random data as your performance
benchmark. Compare each strategy and rate the strategies in terms of their performance.

(3.15) [Simulated Annealing] Modify Code List 3.36 to use simulated annealing to pack a number
of rectangles into a rectangle with smallest area. Support the option to pack rectangles into a
square with smallest area.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Data Structures and Searching

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

Chapter 4
Algorithms for Computer Arithmetic

4.1 2’s Complement Addition

This section presents the principles of addition, multiplication and division for fixed point 2’s
complement numbers. Examples are provided for a selection of important fixed point algorithms.

Two’s complement addition generates the sum, S, for the addition of two n-bit numbers A and B with

A C++ program simulating 8-bit two’s complement addition is shown in Code List 4.1. The output of the
program is shown in Code List 4.2

Code List 4.1 2’s Complement Addition

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-01.jpg',500,231)
javascript:displayWindow('images/04-02.jpg',500,910)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-02.jpg',500,910)

Code List 4.2 Output of Program in Code List 4.1

The programs do not check for overflow but simply simulate the additon as performed by hardware.

4.1.1 Full and Half Adder

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-02.jpg',500,910)
javascript:displayWindow('images/04-03.jpg',500,457)

In order to develop some fast algorithms for multiplication and addition it is necessary to analyze the
process of addition and multiplication at the bit level. Full and half adders are bit-level building blocks
that are used to perform addition.

A half adder is a module which inputs two signals, ai and bi, and generates a sum, si, and a carry-out ci. A
half adder does not support a carry-in. The outputs are as in Table 4.1.

Table 4.1 Half Adder Truth Table

Input Output
ai bi si ci

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

A full adder has a carry-in input, ci. A full adder is shown in Table 4.2.

Table 4.2 Full Adder Truth Table

Input Output
ai bi ci-1 si ci

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

The full adder and half adder modules are shown in Figure 4.1. The boolean equation for the output of
the full adder is

The boolean equation for the output of the half adder is

where • denotes the exclusive-or operation.

The output delay of each module can be expressed in terms of the gate delay, ”, of the technology used to

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

implement the boolean expression. The sum, si, for the full adder can be implemented as in Eq. 4.1 using
four 3-input NAND gates in parallel followed by a 4-input NAND gate. The gate delay of a k-input
NAND gate is ” so the sum is calculated in 2”. This is illustrated in Figure 4.2. For the half-adder the
sum is calculated within I ” and the carry is generated within I ”.The Output Delay for the Half Adder is
shown in Figure 4.2.

Figure 4.1 Full and Half Adder Modules

4.1.2 Ripple Carry Addition

2’s complement addition of n-bit numbers can be performed by cascading Full Adder modules and a Half
Adder module together as shown with a 4-bit example in Figure 4.3. The carry-out of each module is
passed to the carry-in of the subsequent module. The output delay for an n-bit ripple-carry adder using a
Half Adder module in the first stage is

For many applications this delay is unacceptable and can be improved dramatically.

A C++ program to perform ripple carry addition is shown in Code List 4.3. The output of the program is
shown in Code List 4.4. The program demonstrates the addition of 1 + (-1). As can be seen in the output
the carry ripples through the result at each simulation until it has passed over N bits.

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-04.jpg',500,256)
javascript:displayWindow('images/04-04.jpg',500,256)

Figure 4.2 Output Delay Calculation for a Full Adder

Figure 4.3 2’s Complement 4-Bit Adder

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-05.jpg',500,333)
javascript:displayWindow('images/04-05.jpg',500,333)
javascript:displayWindow('images/04-06.jpg',500,289)
javascript:displayWindow('images/04-06.jpg',500,289)

Figure 4.4 Output Delay Calculation for a Half Adder

Code List 4.3 Ripple Carry Addition

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-07.jpg',500,216)
javascript:displayWindow('images/04-07.jpg',500,216)
javascript:displayWindow('images/04-08.jpg',500,621)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-08.jpg',500,621)
javascript:displayWindow('images/04-09.jpg',500,927)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-09.jpg',500,927)
javascript:displayWindow('images/04-10.jpg',500,928)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-10.jpg',500,928)

Code List 4.4 Output of Program in Code List 4.3

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-11.jpg',500,228)
javascript:displayWindow('images/04-12.jpg',500,471)

4.1.2.1 Overflow

The addition of two numbers may result in an overflow. There are four cases for the generation of
overflow in 2’s complement addition:

• Positive Number + Positive Number (result may be too large)

• Positive Number + Negative Number

• Negative Number + Positive Number

• Negative Number + Negative Number (result may be too negative)

Overflow is not possible when adding numbers with opposite signs. Overflow occurs if two operands are
positive and the sum is negative or two operands are negative and the sum is positive. This results in the
boolean expression

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-12.jpg',500,471)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

The calculation of overflow for ripple-carry addition can be simplified by analyzing the carry-in and
carry-out to the final stage of the addition. This is demonstrated in Table 4.3. An overflow occurs when

Table 4.3 Carry Analysis for Overflow Detection

an-1 bn-1 sn-1 cn-1 cn-2 Overflow
0 0 0 0 0 0
0 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 0

which results in the boolean expression

4.1.3 Carry Lookahead Addition

In order to improve on the performance of the ripple-carry adder the carry-in to each stage is predicted in
advance rather than waiting for the carry-in to propagate from the previous stages. The carry-out of each
stage can be simplified from Eq. 4.2 to

or

which is written as

with

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

The interpretation of Eq. 4.10 is that at stage i a carry may be generated by the stage, (gi = 1) , or a carry
may be propagated from a previous stage, (pi = 1). When gi = 1 stage i will always have a carry-out
regardless of the carry-in. When gi = 0 stage i will have a carry when the carry-in is 1 and pi = 1, thus it is
said to have propagated the carry. The time required to produce the generate, gi, and the propagate, pi, is
1”. For the a four-bit adder as in Figure 4.3 one has

The interpretation of Eq. 4.14 is that a carry-out will occur from stage 3 of the 4-bit adder if it is

• generated in stage 3

• generated in stage 2 and propagated through stage 3

• generated in stage 1 and propagated through stage 2 and stage 3

• generated in stage 0 and propagated through stage 1 and stage 2 and stage 3

The carry of the final stage, c3, can be generated in 2” as shown in Figure 4.5. Similarly, the other carries
can be calculated in 2” or less.

Once the carries are known the sum can be generated within 2”. Thus for the four bit adder the sum can
be generated in a total of 5” with

• 1” to calculate the generates and propagates

• 2” to calculate the carries

• 2” to calculate the sums

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Figure 4.5 Delay Calculation

Using ripple-carry the four bit adder would require 7” to form the result. With the CLA adder the carries
are thus generated by separate hardware. As is common, speed is thus achieved at the cost of additional
hardware. The 4-bit CLA adder module is shown in Figure 4.3.

The CLA approach can be extended to n-bits yielding the following equation for the carry bits

with the product term evaluating to one when the indices are inconsistent. The calculation of the carries
in Eq. 4.15 can be accomplished in 2” once the generates and propagates are known; however, there is a
hardware requirement to be met. For each carry of the stage the implementation in 2” requires that the
gates have a fan-in (number of inputs, to the gate) of i + 1. For an n-bit CLA adder realized in this
manner a gate with a fan-in of n is required. This can be seen in Figure 4.5 where for a 4-bit CLA adder
the carry inputs are calculated using a 4-input NAND gate. While this is practical for a 4-bit adder it is
not practical for a 64-bit adder. As a result of this an inductive approach is needed to limit the fan-in
requirements of the gates to implement the circuit. The timing of the 4-bit CLA adder module is shown
in Figure 4.7.

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-13.jpg',500,408)
javascript:displayWindow('images/04-13.jpg',500,408)

Figure 4.6 2’s Complement 4-Bit CLA Adder Module

When an inductive approach is taken the module shown in Figure 4.3 will need to input a carry in to the
lowest stage. As a result the basic building block will be as shown in Figure 4.3. The module will be
depicted as shown in Figure 4.8. The module serves as a basic building block for a 16-bit CLA adder as
shown in Figure 4. 10. For this case there are four groups of CLA-4 building blocks. The carry lookahead
hardware module CLM (15 ’ 0) provides the carry input to each of the groups. This carry is predicted in
an analogous fashion to before. Group 0 will generate a carry if it is generated by one of the four
individual full adders within the group. One can define group generate, gg0, as

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-14.jpg',500,486)
javascript:displayWindow('images/04-14.jpg',500,486)

Figure 4.7 4-Bit CLA Adder Module Timing

Figure 4.8 2’s Complement 4-Bit Module Representation

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-15.jpg',500,371)
javascript:displayWindow('images/04-15.jpg',500,371)
javascript:displayWindow('images/04-16.jpg',500,261)
javascript:displayWindow('images/04-16.jpg',500,261)

Figure 4.9 2’s Complement 4-Bit CLA Adder Module

and group propagate, gp0, as

Similarly,

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-17.jpg',500,495)
javascript:displayWindow('images/04-17.jpg',500,495)

Figure 4.10 16-Bit CLA Adder with Group Lookahead

From these equations one can derive the group carries as gc0, the carry out of group 0,

gc1, the carry out of group 1,

gc2, the carry out of group 2,

gc3, the carry out of group 3,

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-18.jpg',500,421)
javascript:displayWindow('images/04-18.jpg',500,421)

The group carries become the carry-in to each of the CLA-4 modules. Each CLA-4 module can calculate
the individual carries within 2” after the group carries are known.

Code List 4.5 CLA Addition

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-19.jpg',500,562)
javascript:displayWindow('images/04-20.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-20.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-21.jpg',500,804)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-21.jpg',500,804)
javascript:displayWindow('images/04-22.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-22.jpg',500,807)
javascript:displayWindow('images/04-23.jpg',500,804)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-23.jpg',500,804)
javascript:displayWindow('images/04-24.jpg',500,802)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-24.jpg',500,802)
javascript:displayWindow('images/04-25.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-25.jpg',500,807)
javascript:displayWindow('images/04-26.jpg',500,803)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-26.jpg',500,803)

Code List 4.6 Output of Program in Code List 4.5

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-27.jpg',500,611)

4.2 A Simple Hardware Simulator in C++

This section starts the implementation of a simple hardware simulator in C++. The simulator will be used
to simulate the hardware required to implement the algorithms in the previous sections.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-28.jpg',500,119)
javascript:displayWindow('images/04-29.jpg',500,366)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

A simple boolean logic simulator is shown in Code List 4.7. The output of the program is shown in Code
List 4.8. The program simulates the interconnection of gates and is used to demonstrate the behavior of a
clocked D flip-flop.

The program simulates the behavior of the circuit by calculating new values in the simulation in terms of
the old values. The old values are then updated and the process is performed again. The process
continues until the new and old values are identical or until a terminal count has been reached. For this
program a terminal count of 50 is used but it is never reached in this example.

The circuit that is implemented is shown in Figure 4.11. The program allows each net to have one of
three values: 0, 1, or 2. The values are as follows:

• 0: Logical 0

• 1: Logical 1

• 2: Cannot be determined, printed out as x

All the values in the NET structure are initialized to the unknown state 2. As the inputs, clock, and data
propagate through the circuit the values are changed as they become determined.

The behavior of each gate is modelled by its associated function within the program. The gates input one
of the three states. The output is determined according to the logical function. This is illustrated in Table
4.4 for the 2-input NAND gate for all nine possibilities of the inputs.

Table 4.4 2-Input NAND behavior.

NAND behavior
x y f(x,y)
0 0 1
0 1 1
0 x 1
1 0 1
1 1 0
1 x x
x 0 1
x 1 x
x x x

The output data is shown in the timing diagram in Figure 4.13. As can be seen in the figure the circuit

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

behaves as expected. The Q and QBAR outputs remain unknown until the first rising edge of the clock
and at that point the output Q reflects the value of DATA at the clock edge. Only subsequent rising edges
of the clock cause the outputs to change. It is important to note that this specific test does not
demonstrate the validity of the device as a D flip-flop. In the absence of a theoretical proof a
considerable amount of additional testing is necessary.

There is another interesting point about the simulation which can cause problems in circuit design. By
looking at the last clock rise in Code List 4.8 one notes that QBAR makes a zero to one transition one
gate delay quicker than Q making the corresponding one to zero transition. This is illustrated in Figure
4.12. As a result, it is important to let the data stabilize prior to its use.

Figure 4.11 D Flip-Flop Circuit for Simulation

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-30.jpg',500,378)
javascript:displayWindow('images/04-30.jpg',500,378)

Figure 4.12 Transition Timing

4.3 2’s Complement Multiplication

The goal of this section is to investigate algorithms for fast multiplication of two n-bit numbers to form a
product. If two’s complement notation is used

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-31.jpg',500,276)
javascript:displayWindow('images/04-31.jpg',500,276)

Figure 4.13 Timing Diagram for Simulation

Code List 4.7 Boolean Logic Simulator

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-32.jpg',500,371)
javascript:displayWindow('images/04-32.jpg',500,371)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-33.jpg',500,377)
javascript:displayWindow('images/04-34.jpg',500,886)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-34.jpg',500,886)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-35.jpg',390,691)

Code List 4.8 Output of Program in Code List 4.7

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-36.jpg',500,403)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-37.jpg',365,500)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-38.jpg',348,730)

then when multiplying two numbers, A and B,

In order to store the result one needs to calculate the number of bits required to represent the product in
2’s complement form. By noting the range of 2’s complement from Table 1.4 on page 11 one obtains that
2n bits are required in 2’s complement form. The product is formed as

Since 2n bits are stored in the hardware for the product then overflow is not an issue.

4.3.1 Shift-Add Addition

The shift-add technique is the simple grade school technique for multiplication. In this scenario a partial
product is formed by adding as appropriate repeated shifts of the multiplicand. The core statement in
Code List 4.9 is

This statement forms the product by repeatedly evaluating the lsb of the multiplier and if it is set by
adding the shifted multiplicand. At each iteration the multiplier is shifted right to investigate the next bit
and the multiplicand is shifted left.

Code List 4.9 Shift Add Technique

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-39.jpg',500,579)

Code List 4.10 Output of Code List 4.9

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-40.jpg',400,484)

4.3.2 Booth Algorithm

The Booth algorithm is a recoding technique which attempts to recode the multiplier to speedup the
scenario where there are sequences of 1’s. As an example consider the multiplication in base 10 of
9999*7. One can evaluate the result rather quickly by performing (10000-1)*7=69993. This can be done
without the assistance of a computing device. The algorithm used is to recode the sequence of 9’s and
results in an operation which is much simpler. The technique can also be applied in binary. Instead of
sequences of 9’s however, one is interested in sequences of 1’s.

The Booth algorithm is illustrated in Figure 4.14. In the figure the product is formed as the multiplication
of A and B (A=14 and B=6). When the result is done A remains unchanged and the product is formed in
P:B where the : operator indicates register concatenation. Register B no longer contains its initial value.
This is written as

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-41.jpg',150,254)
javascript:displayWindow('images/04-42.jpg',150,193)

The destruction of register B is common because it uses one less register to form the product. The Booth
algorithm considers the lower order bit of register B in conjunction with the added bit which is initialized
to zero. The bits determine the operation according to Table 4.6.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

An example of booth recoding is illustrated in Table 4.5. In the worst case the Booth algorithm requires
that n operations be performed to compute the product. This is illustrated in the last entry in Table 4.5.
As a result the recoding operation for this operand has not simplified the problem. The average number
of operations for a random operand by the algorithm is determined in Problem 4.10. Due to the average
and worst-case complexity of the Booth algorithm a better solution is sought to find the product.

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-43.jpg',400,686)

Figure 4.14 Booth Algorithm

Table 4.5 Booth Recoding 8-Bit Example

Original Number Booth Recode
0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 -1
0 0 0 0 1 1 0 0 0 0 0 1 0 -1 0 0
0 0 0 1 1 0 1 0 0 0 1 0 -1 1 -1 0
0 1 0 1 0 1 0 1 1 -1 1 -1 1 -1 1 -1

Table 4.6 Booth Recoding

Bit Pattern Operation
0 0 product unchanged
0 1 product += a
1 0 product -=a

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-43.jpg',400,686)
javascript:displayWindow('images/04-44.jpg',500,281)
javascript:displayWindow('images/04-44.jpg',500,281)

1 1 product unchanged

Code List 4.11 Booth Algorithm

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-45.jpg',500,80)
javascript:displayWindow('images/04-46.jpg',500,826)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-46.jpg',500,826)
javascript:displayWindow('images/04-47.jpg',500,478)

Code List 4.12 Output of Program in Code List 4.11

4.3.3 Bit-Pair Recoding

The Bit-Pair recoding technique is a technique which recodes the bits by considering three bits at a time.
This technique will require n/2 additions or subtractions to compute the product. The recoding is
illustrated in Table 4.7. The bits after recoding are looked at two at a time and the respective operations
are performed. The higher order bit is weighted twice as much as the lower order bit. The C++ program
to perform bit-pair recoding is illustrated in Code List 4.13. The output is shown in Code List 4.14.

The bit pair recoding algorithm is shown in Figure 4.14. The algorithm is analogous to the Booth
recoding except that it investigates three bits at a time while the Booth algorithm looks at two bits at a
time. The bit-pair recoding algorithm needs to have access to A, -A, 2A, and -2A and as a result needs
another additional 1-bit register to the left of P which is initialized to zero.

Table 4.7 Bit-Pair Recoding

Bit
Pattern Operation

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-47.jpg',500,478)
javascript:displayWindow('images/04-48.jpg',500,287)
javascript:displayWindow('images/04-49.jpg',500,90)

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

no operation
1×a prod = prod + a;
2×a-a prod = prod + a
2×a prod = prod + 2a
-2×a prod = prod - 2a
-2×a + a prod = prod - a
-1×a prod = prod - a
no operation

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-50.jpg',400,673)

Figure 4.15 Bit Pair Recoding Algorithm

Code List 4.13 Bit-Pair Recoding Program

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-50.jpg',400,673)
javascript:displayWindow('images/04-50.jpg',400,673)
javascript:displayWindow('images/04-51.jpg',500,824)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-51.jpg',500,824)
javascript:displayWindow('images/04-52.jpg',500,829)

Code List 4.14 Output of Program in Code List 4.13

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-52.jpg',500,829)
javascript:displayWindow('images/04-53.jpg',500,154)

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-54.jpg',170,504)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

4.4 Fixed Point Division

This section presents algorithms for fixed point division. For fixed point division a 2n bit number, the
dividend, is divided by an n bit number, the divisor, to yield an n bit quotient and an n bit remainder.
Overflow can occur in the division process (see Problem 4.7).

4.4.1 Restoring Division

Restoring division is similar to the process of grade school addition. After aligning the bits appropriately
the pseudocode is shown in Table 4.8.

Table 4.8 Division PsedudoCode

if divisor < dividend
{
dividend = dividend - divisor
place a 1 in quotient field
shift dividend over
}

else
{
place a 0 in quotient
shift dividend over
}

The pseudocode in Table 4.8 is repeated until the desired precision is reached. At which point the final
dividend becomes the remainder. When this simple algorithm is executed on a computer in order for it to
test whether divisor < dividend it performs the subtraction

If the result is nonnegative then it places a 1 in the quotient field. If the result is less than zero then the
subtraction should not have occurred so the computer performs

to restore the dividend to the correct result and places a zero in the quotient field. The computer then
shifts the dividend and proceeds. This results in the pseudocode in Table 4.9.

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Table 4.9 Restoring Division PseudoCode

dividend = dividend - divisor
if dividend e 0

{
place a 1 in quotient field
}

else
{
dividend = dividend + divisor
place a 0 in the quotient field
}
shift over dividend

Problem 4.3 develops a C++ program to simulate restoring division.

4.4.2 Nonrestoring Division

Nonrestoring division is a technique which avoids the need to restore on each formation of the quotient
bit. In effect, the need to restore is delayed until the final quotient bit is formed. The algorithm avoids
this by noting that if a subtraction occurred that should not have then the next step in the algorithm would
be to restore, then shift, then subtract.

so that

It can be seen that the (restore, shift,subtract) is equivalent to a (shift,add). This is used to avoid the
restore operation and is thus called nonrestoring division. The computer does continuous shift-subtract
operations until the result is negative at which point the next operation becomes a shift-add. If on the
final cycle the result is negative the computer will add the divisor back to restore the dividend (which on
the final cycle is the remainder).

The program to perform nonrestoring division is shown in Code List 4.15. The output of the program is
shown in Code List 4.16. The program uses a similar register-saving technique to the Booth algorithm.
The program performs the division of a 2n bit number by an n bit number

At the termination of the program the remainder is in R and the quotient is in Q. The program illustrates
the division of 37/14 which yields 2 with a remainder of 9.

The program demonstrates a number of features in C++. The program introduces a class called number

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

which defines the operations for the data. The class includes data and functions:

• number: this is the constructor function for the class which is called when a variable of type
number is created

• get_value: the get_value function is used to return bit number x of the number. This is used to
access the private data of the class which is hidden from the user.

• shift_left: the shift_left function is used to perform a logical left shift on the data. This operation
is used extensively in the nonrestoring division algorithm.

• print_value: the function print_value is used to print the number and accepts a character string to
be printed before prior to the value.

• ones_complement: the ones_complement function performs the ones_complement which is used
to calculate the negative of a number in the addition process.

• operator>=: this overloads the greater than or equal operator in the program. When comparing
two objects of type number this function is called.

• operator<: this operator overloads the less than operator when comparing objects of type
number.

• operator+: this operator overloads the plus operator when comparing objects of type number.

• operator-: this operator overloads the minus operator when comparing objects of type number.

The + operator is defined first and is used in subsequent definitions of other overloaded operators. The +
operator performs a ripple-carry (see Section 4.1.2) addition of the two numbers passed and returns the
result as a number.

Rather than calculate the algorithm for the - operator it uses the newly overloaded + operator to calculate
the subtraction by noting that x-y = x + (-y) .

The >= operator uses the newly formed - operator to return the difference in x and y as a number and
accesses the most significant bit (the sign) of it to see if the difference is less than zero. It returns a value
according to the test.

The < operator performs in a similar fashion.

The left_shift_add function introduces a feature of C++ not present in C. The first parameter in the
function argument list is declared as number& B. As a result B is passed to the function as a pointer and
is automatically dereferenced on use. See Section 3.1 for a more detailed description of pointers in C++.

Code List 4.15 Nonrestoring Division

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-55.jpg',500,697)
javascript:displayWindow('images/04-56.jpg',490,940)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-56.jpg',490,940)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-56.jpg',490,940)
javascript:displayWindow('images/04-57.jpg',500,963)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-57.jpg',500,963)
javascript:displayWindow('images/04-58.jpg',500,961)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-58.jpg',500,961)

Code List 4.16 Output of Program in Code List 4.15

Previous Table of Contents Next

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-59.jpg',400,444)
javascript:displayWindow('images/04-60.jpg',300,187)

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

4.4.3 Shifting over 1’s and 0’s

If the divisor is normalized so that it begins with a 1 then the technique of the previous sections can be
improved to skip over 1’s and 0’s. Shifting over 0’s is simple to see. If 0.000010101 is divided by
0.10111 It is easy to see that the first four quotient bits are zero. So rather than performing the
subtraction, the dividend is renormalized each time a string of zero’s is encountered. Similarly, if after
each subtraction the result is a string of 1’s, then the 1’s can be skipped over placing 1’s in the quotient
bit. This technique is derived in Problem 4.5.

4.4.4 Newton’s Method

In Newton’s method the quotient to be formed is the product A (1 / B). For this case, once 1 / B is
determined a single multiplication cycle generates the desired result. Newton’s method yields the
iteration

which for the function

gives

Under suitable well known conditions xi will converge to the inverse. Hence using Newton’s algorithm
the process of division is achieved via addition and multiplication operations. The C++ source code
illustrating this technique is shown in Code List 4.17. The output of the program is shown in Code List
4.18.

Code List 4.17 Floating Point Division

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-61.jpg',400,232)
javascript:displayWindow('images/04-62.jpg',500,919)

Code List 4.18 Output of Program in Code List 4.17

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-62.jpg',500,919)
javascript:displayWindow('images/04-63.jpg',500,90)
javascript:displayWindow('images/04-64.jpg',290,776)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-64.jpg',290,776)

4.5 Residue Number System

4.5.1 Representation in the Residue Number System

The residue number systems is a system which uses an alternate way to represent numbers. For integers,
in 2’s complement notation, the representation for a number was

with a value of

For this case, a number A is represented with n binary bits. The value is relatively easy to calculate via
Eq. 4.41. A natural problem occurred with this representation for the process of addition. When n is large
the calculation of the carry-in to each stage is the dominating factor with regard to the performance of the
addition operation as noted in Section 4.1.2. Using methodologies in number theory, an alternate
representation can be used which reduces the problems of with regard to the carry-in calculation.

The residue number system uses a set of relatively prime numbers:

and represents a number A with respect to these moduli by the n-tuple:

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-65.jpg',290,232)

Two numbers are relatively prime if their greatest common divisor is one. Using the standard notation
with

to denote the greatest common divisor of x and y. The requirement on the set M is that each of the
members be pairwise relatively prime:

For example, a representation with the moduli

the number 12 is represented as

and 14 is represented as

The addition of 12 and 14 can be accomplished by adding the vector representation and performing the
modulus operation:

Notice that the result is the same obtained when representing 26 in the notation.

The Range of the Residue Number Systems

The residue number system can represent N distinct numbers with

For example, the moduli in Eq. 4.47,

The result stated in Eq. 4.51 is established in Problem 4.15.

4.5.2 Data Conversion — Calculating the Value of a Number

This section derives a method for calculating the value of a number given only its representation in terms
of the moduli. It is necessary to introduce some quantities in number theory. The Euler totient function,
Æ (n) , is defined for a number, n, as the number of positive integers satisfying

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

For example,

If n is a prime number then

defining the weights, wi, as

The vector W as

and a number A, as

The value of A is given as

This result is established in Problem 4.17. Consider the example in Eq. 4.47. For this case:

Similarly, W becomes

To calculate the number 26 from its representation in Eq. 4.50 one has

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

4.5.3 C++ Implementation

A program to simulate the Residue Number System is shown in Code List 4.19. The output of the
program is shown in Code List 4.20.

In the program a class data is declared which has the following data and functions:

• unsigned moduli[N]: this data item is used to hold the representation of each of the moduli.

• data: this is the constructor function for data which is called any time a variable is declared.

• set: this function is used to set the data’s value.

• print: this function is used to print out the moduli and the value by calling the value function.

• value: this function calculates the value of the number from its residue representation.

• operator+: the + operator has been overloaded to perform the required addition in the residue
number system.

• operator*: the * operator has been overloaded to perform multiplication in the residue number
system.

This program is a natural example for the use of the overloading operators in C++. Since the addition of
the two numbers in the residue systems consists of the respective additions of their moduli it is natural to
replace this operator for addition.

The output supplies all the moduli and prints out the relatively prime numbers at the top. Notice that the
print function takes in an optional char * to print out a small string. If the string is not supplied it defaults
to an empty string.

Code List 4.19 Residue Number System

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-66.jpg',500,769)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-66.jpg',500,769)
javascript:displayWindow('images/04-67.jpg',500,793)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-67.jpg',500,793)
javascript:displayWindow('images/04-68.jpg',500,796)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-68.jpg',500,796)

Code List 4.20 Output of Program in Code List 4.19

Code List 4.21 Euler Totient Function

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-69.jpg',450,220)
javascript:displayWindow('images/04-70.jpg',350,378)

Code List 4.22 Output of Program in Code List 4.21

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-71.jpg',450,573)

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

javascript:displayWindow('images/04-72.jpg',200,167)
file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous Table of Contents Next

4.6 Problems

(4.1) Modify Code List 4.1 to simulate 16, 32, and 64-bit 2’s complement addition. Add a
procedure to detect for overflow and indicate via output when overflow has occurred.

(4.2) Modify Code List 4.5 to simulate a CLA adder with 3 sections each with 3 groups each with
8 1-bit adders.

(4.3) Write a C++ program to simulate restoring division. Your program should support n bit
inputs. Use the overload operators to perform addition and subtraction of each of the inputs.

(4.4) Modify the Code List 4.13 to support n bit inputs. Use a similar register structure as the
example in Figure 4.14.

(4.5) First by example, then by proof, demonstrate the technique of shifting over 1’s and 0’s in
non-restoring division.

(4.6) Write a C++ program to simulate modify Code List 4.15 to shift over 1’s and 0’s.

(4.7) Derive the conditions for overflow in fixed point division.

(4.8) Add all the common logical functions to Code List 4.7.

(4.9) Rewrite Code List 4.7 to simulate a JK Flip-Flop.

(4.10) Calculate the average number of operations required in the Booth algorithm for 2’s
complement multiplication. How does this compare to the shift-add technique?

(4.11) Modify Code List 4.7 to simulate Carry Lookahead Addition at the gate level for an 8-bit
module.

(4.12) [Moderately Difficult] Modify Code List 4.13 to output, to a PostScript file, the timing
diagram for the circuit which is simulated. Make rational assumptions about the desired interface.
Use the program to generate a PostScript file for the timing diagram in Figure 4.12.

(4.13) Graphically illustrate Newton’s method described in Eq. 4.37.

(4.14) Theoretically demonstrate that the gcd function in Code List 4.21 does in fact return the
greatest common divisor of the inputs x and y.

(4.15) [Uniqueness] Show that if a residue number system is defined with moduli

and A and B are integers such that

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

and if

with

then

(4.16) If mi and mj are integers satisfying

with

and

prove that if

then

(4.17) Prove that Eq. 4.59 is true.

Previous Table of Contents Next

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

file:///reference/crc00001.html

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Table of Contents

Index

A
Acyclic graph 66

Adder

CLA adder module 200

CLA adder, 16 bit 203

full 189

half 189

output delay for half adder 193

2’s Complement 4 bit adder 192

Addition

carry lookahead 197

overflow 196

ripple carry 191, 193

2’s complement 187

Adjacency matrix 80

Algorithm

booth 223

efficiency 71

order 37

pipelining 71

time complexity 38

Algorithms and Data Structures in C++:Index

Arrays 112

class 119

example of 114

ASCII 26

B
Binary search 149

Bit operators 20

Bit-pair recoding 228

Booth algorithm 223

Bridge 67

Broadcast 78

C
Carry lookahead addition 197

Circular lists 133

CLA adder

16 bit 203

CLA adder module 200

Connected graph 65

Conversion

residue number system 246

Crossbar

topology 74

Cube-connected cycles

topology of 77

Cycle

Algorithms and Data Structures in C++:Index

in a graph 66

D
Data structures 101

Decimal to binary conversion 28

delete 102, 110

Directed graph 65

Division

fixed point 232

nonrestoring 234

restoring 233

Doubly linked lists 133

Dynamic memory allocation 101, 110

E
Efficiency 71, 83

Efficient hypercubes 80

Euler totient function 246

F
Factorial 45

Fibonacci numbers 46

FIFO 122

File formats

DOS 32

Unix 32

Fill 52

Fixed point division 232

Floating point

Newton’s method 241

Algorithms and Data Structures in C++:Index

Floating point notation 16

free 112

G
Graph 62

acyclic 66

adjacency matrix of 80

bridge 67

connected 65

cycle 66

directed 65

neighbors 64

order 63

path 64

planar 68

size 63

subgraph 64

transitive closure 68

tree 67

H
Hypercube

broadcast 78

distance between processors 78

efficiency 83

efficient 83

message passing 78, 79

path length 81

topology of 76

Hypercubes

efficient 80

Algorithms and Data Structures in C++:Index

I
IEEE 754 Floating Point Standard 16

Induction 42

infinite descent 43

Infinite descent 43

Integers 1

L
Least-weighted path length 81

LIFO 122

Linear search 148

Linked lists 126

circular lists 133

doubly linked lists 133

operations on 134

singly linked lists 126

M
malloc 112

Mathematical Induction 42

Matrix

adjacency 80

Median of three 152

Message

in a hypercube 79

Message passing

Algorithms and Data Structures in C++:Index

in a hypercube 78

Moveto 52

Multiplication

bit-pair recoding 228

booth algorithm 223

shift-add 221

2’s complement 215

N
new 102, 110

Newpath 52

Newton’s method 241

Nonrestoring division 234

O
Operator

overloading 117

Order 37

of a graph 63

Overflow

in addition 196

Overloading

of operators 117

Algorithms and Data Structures in C++:Index

P
Path 64

Pipelining 71

Planar graph 68

Pointers 101, 105

as arrays 107

double pointer example 106

Postscript 52

Procedure

recursive 45

Q
Quadratic formula 48

Quicksort 150

median of three 152

R
Rectangular mesh

topology of a 76

Recurrence relation 46

Recursion 45

tower of hanoi 51

Representations

ASCII 26

floating point 16

integer 1

Algorithms and Data Structures in C++:Index

signed-magnitude notation 6

unsigned notation 5

2’s complement notation 7

Residue number system 244

data conversion 246

range of numbers 245

representation in 244

Restoring division 233

Ripple carry addition 191

Rlineto 52

S
Searching

binary search 149

linear search 147

Setgray 52

Setlinewidth 52

Shift-add multiplication 221

Showpage 52

Sign extension 11

signed-magnitude notation 12

2’s complement notation 12

unsigned notation 12

Signed-magnitude notation 6

Simulated annealing 165

Size

of a graph 63

Sorting

Algorithms and Data Structures in C++:Index

quicksort 150

Stack

fifo 122

lifo 122

Subgraph 64

T
Time complexity 38

Topology

crossbar 74

cube-connected cycles 77

hypercube 76

rectangular mesh 75

Tower of hanoi 51

Transitive closure 68, 80

Tree 67

2’s complement notation 7

U
Unions 20, 33

Unsigned notation 5

V
Visualization 52

Table of Contents

Copyright © CRC Press LLC

Algorithms and Data Structures in C++:Index

file:///reference/crc00001.html

	Algorithms and Data Structures in C++
	Table of Contents
	Preface
	1 Data Representation
	1.1 Integer Representations
	1.1.1 Unsigned Notation
	1.1.2 Signed-Magnitude Notation
	1.1.3 2's Complement Notation
	1.1.4 Sign Extension
	1.1.5 C++ Program Example

	1.2 Floating Point Representation
	1.2.1 IEEE 754 Standard Floating Point Representations
	1.2.1.1 IEEE 32-Bit Standard
	1.2.1.2 IEEE 64-Bit Stnadard
	1.2.1.3 C++ Example for IEEE Floating Point

	1.2.2 Bit Operators in C++
	1.2.3 Examples
	1.2.4 Conversion from Decimal to Binary

	1.3 Character Formats - ASCII
	1.4 Putting it All Together
	1.5 Problems

	2 Algorithms
	2.1 Order
	2.1.1 Justification of Using Order as a Complexity Measure

	2.2 Induction
	2.3 Recursion
	2.3.1 Factorial
	2.3.2 Fibonacci Numbers
	2.3.3 General Recurrence Relations
	2.3.4 Tower of Hanoi
	2.3.5 Boolean Function Implementation

	2.4 Graphs and Trees
	2.5 Parallel Algorithms
	2.5.1 Speedup and Amdahls Law
	2.5.2 Pipelining
	2.5.3 Parallel Processing and Processor Topologies
	2.5.3.1 Full Crossbar
	2.5.3.2 Rectangular Mesh
	2.5.3.3 Hypercube
	2.5.3.4 Cube-Connected Cycles

	2.6 The Hypercube Topology
	2.6.1 Definitions
	2.6.2 Message Passing
	2.6.3 Efficient Hypercubes
	2.6.3.1 Transitive Closure
	2.6.3.2 Least-Weighted Path-Length
	2.6.3.3 Hypercubes with Failed Nodes
	2.6.3.4 Efficiency
	2.6.3.5 Message Passing in Efficient Hypercubes

	2.6.4 Visualizing the Hypercube: A C++ Example

	2.7 Problems

	3 Data Structures and Searching
	3.1 Pointers and Dynamic Memory Allocation
	3.1.1 A Double Pointer Example
	3.1.2 Dynamic Memory Allocation with New and Delete
	3.1.3 Arrays
	3.1.4 Overloading in C++

	3.2 Arrays
	3.3 Stacks
	3.4 Linked Lists
	3.4.1 Singly Linked Lists
	3.4.2 Circular Lists
	3.4.3 Doubly Linked Lists

	3.5 Operations on Linked Lists
	3.5.1 A Linked List Example

	3.6 Linear Search
	3.7 Binary Search
	3.8 QuickSort
	3.9 Binary Trees
	3.9.1 Traversing the Tree

	3.10 Hashing
	3.11 Simulated Annealing
	3.11.1 The Square Packing Problem
	3.11.1.1 Program Description

	3.12 Problems

	4 Algorithms for Computer Arithmetic
	4.1 2's Complement Addition
	4.1.1 Full and Half Adder
	4.1.2 Ripple Carry Addition
	4.1.2.1 Overflow

	4.1.3 Carry Lookahead Addition

	4.2 A Simple Hardware Simulator in C++
	4.3 2's Complement Multiplication
	4.3.1 Shift-Add Addition
	4.3.2 Booth Algorithm
	4.3.3 Bit-Pair Recoding

	4.4 Fixed Point Division
	4.4.1 Restoring Division
	4.4.2 Nonrestoring Division
	4.4.3 Shifting over 1's and 0's
	4.4.4 Newton's Method

	4.5 Residue Number System
	4.5.1 Representation in the Residue Number System
	4.5.2 Data Conversion - Calculating the Value of a Number
	4.5.3 C++ Implementation

	4.6 Problems

	Index

