Algorithms and Data Structures in C++:Table of Contents

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Preface

Chapter 1—Data Representations
1.1 Integer Representations
1.1.1 Unsigned Notation
1.1.2 Signed-M agnitude Notation
1.1.32’s Complement Notation

1.1.4 Sign Extension
1.1.4.1 Signed-M agnitude
1.1.4.2 Unsigned
1.1.4.3 2’s Complement

1.1.5 C++ Program Example

1.2 Floating Point Representation
1.2.1 |EEE 754 Standard Floating Point Representations
1.2.1.1 |EEE 32-Bit Standard
1.2.1.2 |[EEE 64-bit Standard
1.2.1.3 C++ Examplefor | EEE Floating point
1.2.2 Bit Operatorsin C++
1.2.3 Examples

1.2.4 Conversion from Decimal to Binary
1.3 Character Formats—ASCI |
1.4 Putting it All Together
1.5 Problems

Chapter 2—Algorithms
2.1 Order
2.1.1 Justification of Using Order asa Complexity Measure

2.2 Induction

Algorithms and Data Structures in C++:Table of Contents
2.3 Recursion
2.3.1 Factorial
2.3.2 Fibonacci Numbers

2.3.3 General Recurrence Relations

2.3.4 Tower of Hanoi

2.3.5 Boolean Function | mplementation

2.4 Graphsand Trees
2.5 Parallel Algorithms
2.5.1 Speedup and AmdahlsL aw
2.5.2 Pipelining
2.5.3 Parallel Processing and Processor Topologies
2.5.3.1 Full Crossbar
2.5.3.2 Rectangular Mesh
2.5.3.3 Hypercube
2.5.3.4 Cube-Connected Cycles
2.6 The Hyper cube Topology
2.6.1 Definitions
2.6.2 M essage Passing

2.6.3 Efficient Hyper cubes

2.6.3.1 Transitive Closure

2.6.3.2 L east-Weighted Path-L ength

2.6.3.3 Hypercubes with Failed Nodes

2.6.3.4 Efficiency

2.6.3.5 M essage Passing in Efficient Hyper cubes

2.6.4 Visualizing the Hypercube: A C++ Example
2.7 Problems

Chapter 3—Data Structures and Sear ching

3.1 Pointersand Dynamic Memory Allocation

3.1.1 A Double Pointer Example

3.1.2 Dynamic Memory Allocation with New and Delete
3.1.3 Arrays
3.1.4 Overloading in C++

Algorithms and Data Structures in C++:Table of Contents

3.2 Arrays
3.3 Stacks

3.4 Linked Lists
3.4.1Singly Linked Lists
3.4.2 Circular Lists
3.4.3 Doubly Linked Lists
3.5 Operationson Linked Lists
3.5.1 A Linked List Example
3.5.1.1 Bounding a Sear ch Space
3.6 Linear Search
3.7 Binary Search
3.8 QuickSort
3.9Binary Trees

3.9.1TraversingtheTree
3.10 Hashing
3.11 Simulated Annealing
3.11.1 The Sguar e Packing Problem
3.11.1.1 Program Description
3.12 Problems

Chapter 4—Algorithmsfor Computer Arithmetic
4.1 2’s Complement Addition
4.1.1 Full and Half Adder
4.1.2 Ripple Carry Addition
4.1.2.1 Overflow
4.1.3 Carry L ookahead Addition
4.2 A Simple Hardware Simulator in C++

4.3 2's Complement Multiplication
4.3.1 Shift-Add Addition
4.3.2 Booth Algorithm
4.3.3 Bit-Pair Recoding

4.4 Fixed Point Division
4.4.1 Restoring Division

Algorithms and Data Structures in C++:Table of Contents
4.4.2 Nonrestoring Division
4.4.3 Shiftingover 'sand 0’'s
4.4.4 Newton’s M ethod
4.5 Residue Number System
4.5.1 Representation in the Residue Number System

4.5.2 Data Conversion — Calculating the Value of a Number

4.5.3 C++ Implementation
4.6 Problems

| ndex

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Preface

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Table of Contents

Preface

Thistext is designed for an introductory quarter or semester course in algorithms and data structures for
students in engineering and computer science. It will also serve as areference text for programmersin
C++. The book presents algorithms and data structures with heavy emphasis on C++. Every C++
program presented is a stand-alone program. Except as noted, al of the programsin the book have been
compiled and executed on multiple platforms.

When used in a course, the students should have access to C++ reference manuals for their particular
programming environment. The instructor of the course should strive to describe to the students every
line of each program. The prerequisite knowledge for this course should be a minimal understanding of
digital logic. A high-level programming language is desirable but not required for more advanced
students.

The study of algorithmsis amassive field and no single text can do justice to every intricacy or
application. The philosophy in this text isto choose an appropriate subset which exercises the unique and
more modern aspects of the C++ programming language while providing a stimulating introduction to
realistic problems.

| close with special thanks to my friend and colleague, Jeffrey H. Kulick, for his contributions to this
manuscript.

Alan Parker
Huntsville, AL
1993

Dedication

to
Valerie Anne Parker

Table of Contents

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Representations

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

Chapter 1
Data Representations

This chapter introduces the various formats used by computers for the representation of integers, floating
point numbers, and characters. Extensive examples of these representations within the C++ programming
language are provided.

1.1 Integer Representations

The tremendous growth in computers is partly due to the fact that physical devices can be built
inexpensively which distinguish and manipulate two states at very high speeds. Since computers are
devices which primarily act on two states (0 and 1), binary, octal, and hex representations are commonly
used for the representation of computer data. The representation for each of these basesis shown in Table
1.1.

Table 1.1 Number Systems

| Binary | Octal | Hexadecimal | Decimal
0 0 | 0 |0
1 1 1 1
| 10 | 2 | 2 | 2
] 11 | 3 | 3 | 3
] 100 | 4 | 4 | 4
’ 101 | 5 | 5 | 5
] 110 | 6 | 6 | 6
’ 111 | 7 | 7 | 4
] 1000 | 10 | 8 | 8
] 1001 | 11 | 9 | 9
] 1010 | 12 | A | 10
’ 1011 | 13 | B | 11
’ 1100 | 14 | C | 12
’ 1101 | 15 | D | 13
’ 1110 | 16 | E | 14

Algorithms and Data Structures in C++:Data Representations
[111 [17 F [15
[10000 [20 | 10 [16

Operations in each of these bases is analogous to base 10. In base 10, for example, the decimal number
743.57 is calculated as

0 - -2
743,57 = 7% 10 +4x10' +3x10 +5% 10" +7x 10 (1.1)
In amore precise form, if anumber, X, has n digitsin front of the decimal and m digits past the decimal
X=a, a, ,.a4a.b b _,..D0bb, (1.2)

Its base 10 value would be
n=1 m=1
' —k
X=Yal0+> b, _,_,10 0<a,b<9 (13)

For hexadecimal,

. ,-)
= Y al6+> b, | 16 0O<a,b,<F (14)
For octal,
m =1
X = Za3’+ Zb i 0<a,b,<7 (1.5)
J=0

In general for baser

n—1 m=1

] -k
X = z;]jr"+ Ebm-l-tr 0<a,bsr-1 (1.6)

When using a theoretical representation to model an entity one can introduce a tremendous amount of
bias into the thought process associated with the implementation of the entity. As an example, consider
Eq. 1.6 which givesthe value of anumber in baser. Inlooking at Eg. 1.6, if a system to perform the
calculation of the value is built, the natural approach is to subdivide the task into two subtasks. a subtask
to calculate the integer portion and a subtask to calculate the fractional portion; however, thisbiasis
introduced by the theoretical model. Consider, for instance, an equally valid model for the value of a
number in base r. The number X is represented as

X=a_ .a a (1.7)

”-l H‘_I-I-I-I-ﬂkil'akd.l“- U

Algorithms and Data Structures in C++:Data Representations
where the decimal point appears after the kth element. X then has the value:
L
X=r|¥Ya/ (1.8)
j=0

Based on this model a different implementation might be chosen. While theoretical models are nice, they
can often lead one astray.

Asafirst C++ programming example let's compute the representation of some numbersin decimal,
octal, and hexadecimal for the integer type. A program demonstrating integer representations in decimal,
octal, and hex isshown in Code List 1.1.

CodeList 1.1 Integer Example

C++ Source Program
shinclude <iostream.h>

int a| |={45,245,567,1014,-45,-1,256};

void main()

{

int i;

for(i=0i<sizeof(a)/sizeof{int);i++)
|

cout << endl << endl << “In decimal * << dec << alh];

C++ Source Program

cout << endl << “In hex * << hex << ali};

cout << endl << “In octal * << oct << a[i];

In this sample program there are a couple of C++ constructs. The #include <iostream.h> includes the
header files which allow the use of cout, afunction used for output. The second line of the program
declares an array of integers. Since thelist isinitialized the size need not be provided. This declaration is
equivaent to

int a[7]; — declaring an array of seven integers 0-6

a[0]=45; — initializing each entry

javascript:displayWindow('images/01-01.jpg',400,248)
javascript:displayWindow('images/01-02.jpg',400,126)

Algorithms and Data Structures in C++:Data Representations
a[1]=245;
a[2]=567;
a[3]=1014;
a[4]=-45;
a5]=-1,
a[6]=256;
The void main() declaration declares that the main program will not return avalue. The sizeof operator
used in the loop for i returns the size of the array a in bytes. For this case
sizeof(a)=28
sizeof(int)=4
The cout statement in C++ is used to output the data. It is analogous to the printf statement in C but

without some of the overhead. The dec, hex, and oct keywords in the cout statement set the output to
decimal, hexadecimal, and octal respectively. The default for cout isin decimal.

At this point, the output of the program should not be surprising except for the representation of negative
numbers. The computer uses a 2’ s complement representation for numbers which is discussed in Section
1.1.3 onpage .

CodeList 1.2 Program Output of Code List 1.1

Algorithms and Data Structures in C++:Data Representations

C++ Output

In decimal 45
In hex 24
In octal 55

In decimal 245
In hex 5
In octal 365

In decimal 567
In hex 237
I octal 16T

In decimal 1014
In hex 366
In actal 1766

In decimal -45
In hex 3
In octal 37TTTTTTT3

In decimal -1
In hex TR
In actal 37777777777

In decimal 256
In hex 100
In octal 400

Previous|Table of Contents

Next

Copyright © CRC Press LLC

javascript:displayWindow('images/01-03.jpg',157,504)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Representations

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

1.1.1 Unsigned Notation

Unsigned notation is used to represent nonnegative integers. The unsigned notation does not support
negative numbers or floating point numbers. An n-bit number, A, in unsigned notation is represented as

A=a, a, ,..q, (1.9)
with avalue of
n—1
A=Ya2 ae {01} (1.10)
k=0

Negative numbers are not representable in unsigned format. The range of numbersin an n-bit unsigned
notation is

0<A<2"-1 (1.11)
Zero is uniquely represented in unsigned notation. The following types are used in the C++ programming
language to indicate unsigned notation:
 unsigned char (8 hits)
* unsigned short (16 bits)
 unsigned int (native machine size)
« unsigned long (machine dependent)

The number of bits for each type can be compiler dependent.
1.1.2 Signed-Magnitude Notation

Signed-magnitude numbers are used to represent positive and negative integers. Signed-magnitude
notation does not support floating-point numbers. An n-bit number, A, in signed-magnitude notation is
represented as

’ . o (1.12)

with avalue of

Algorithms and Data Structures in C++:Data Representations
n-2
v ﬂh o I R
A= (-1) 2 a2 a.e {0,1} (1.13)
=10

A number, A, isnegativeif and only if a,_, = 1. The range of numbersin an n-bit signed magnitude
notation is

1 1

vl Gy o T | (1.14)

Therangeis symmetrical and zero is not uniquely represented. Computers do not use signed-magnitude
notation for integers because of the hardware complexity induced by the representation to support
addition.

1.1.3 2’'s Complement Notation

2's complement notation is used by almost al computers to represent positive and negative integers. An
n-bit number, A, in 2's complement notation is represented as

A=a _.a _,...a, (1.15)
with avalue of
n—12
A Zagz* —a,_ 2" ae {01} (1.16)
k=0

A number, A, isnegativeif and only if a,_, = 1. From Eq. 1.16, the negative of A, -A, isgiven as

n—2
A=Y -a2 |+a, 2" (1.17)
k=0
which can be written as
n=12
A =1+ Z{a_k}f g (1.18)
k=0

where x isdefined as the unary complement:

e), ifx=10 (1.19)
0,ifx=1

The one’s complement of anumber, A, denoted by A, is defined as

Algorithms and Data Structures in C++:Data Representations

A=a _ 18, _q--4g

From Eg. 1.18 it can be shown that

-A=1+A4

To see this note that

H=—.ﬂﬂ_i "‘2"&

and
=2 n-2
Y a2+ Y a2
k=0 k=0
rR=-2 n-2
=Y (g+a)2 =Y 2'=2"""-1
k=) k=0
Thisyields
"-2. n=2
Ya2=2""-1-Y 42
k=0 k=0

Inserting Eq. 1.24 into Eq. 1.22 yields
=2
242 o= Va2t
k=0

A+l =-a

n=1

which gives

A+1= (1-a,_)) —Za,,

By noting

one obtains

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.27)

(1.25)

(1.26)

Algorithms and Data Structures in C++:Data Representations
n=-2
- n-1 2 k
k=0

which is-A. So whether A is positive or negative the two's complement of A is equivalent to -A.

0000 0001 = +1
11111 ll-::]l (8-bit 1's complement)
e .

1111 1111 = -1 (8-bit 2’s complement)

Note that in this caseit isasimpler way to generate the representation of -1. Otherwise you would have
to note that

-~ 128464 +32+16+8+4+2+1 = =1 (1.29)
Similarly

1111 1111=~1
0000 Dﬂﬂ? (8-bit 1's complement)
+

(000 0001= 1 (8-bit 2's complement)

However, it isuseful to know the representation in terms of the weighted bits. For instance, -5, can be
generated from the representation of -1 by eliminating the contribution of 4 in -1:

/ weight of 4
=] = 1111 1111 8-bit 2’s complement
=5=1111 1011

Similarly, -21, can be realized from -5 by eliminating the positive contribution of 16 from its
representation.

weight of 16

-5 =1111 1011 -bit 2’
-21=1110 1011

The operations can be done in hex aswell as binary. For 8-bit 2's complement one has

—1 = FF (1.30)
1 = FF+1 = 00+1 =01 (1.31)

with all the operations performed in hex. After alittle familiarity, hex numbers are generaly easier to
manipulate. To take the one’'s complement one handles each hex digit at atime. If wisahex digit then

Algorithms and Data Structures in C++:Data Representations

the 1's complement of w, w, is given as

w=F-w (1.32)
A S FA =S (1.33)
The range of numbersin an n-bit 2's complement notation is
-] -1
I, B € e S, (1.34)

The range is not symmetric but the number zero is uniquely represented.

The representation in 2's complement arithmetic is similar to an odometer in acar. If the car odometer is
reading zero and the car is driven one mile in reverse (-1) then the odometer reads 999999. Thisis
illustrated in Table 1.2.

Table 1.2 2’'s Complement Odometer Analogy

| 8-Bit 2's Complement

| Binary | Value | Odometer
[11111110 | 2 [999998

[1111 | 1 | 999999

] 00000000 | 0 | 000000

] 00000001 | 1 | 000001

] 00000010 | 2 | 000002

Typicaly, 2's complement representations are used in the C++ programming language with the
following declarations:

e char (8 bits)

* short (16 hits)

* int (16,32, or 64 hits)
* long (32 hits)

The number of bits for each type can be compiler dependent. An 8-bit example of the three basic integer
representationsis shown in Table 1.3.

Table 1.3 8-Bit Representations

8-Bit Representations

| | Signed
Number Unsigned Magnitude
12 |N R |N R |1000OOOO
12 |N R |11111111 |10000001
2 |N R |10000010 |11111110
1 |N R |10000001 |11111111

2's
Complement

(00]

\l

Algorithms and Data Structures in C++:Data Representations

0 00000000 |oooooooo |oooooooo
10000000

1 (00000001 00000001 |00000001

127 01111111 [01111111 [01111111

128 10000000 |NR INR

[255 11111111 NR INR

.Not representable in 8-bit format.

Table 1.4 Rangesfor 2's Complement and Unsigned Notations

| #Bits | 2's Complement | Unsigned
8 | ~128dAd127 | 0dAd255

| 16 | -32768dAd32767 ’ 0dAd65535

| 32 | -2147483648dAd2147483647 ’ 0dAd4294967295
| -2n-1dAd2n- 11 | 0dAd2"- 1

Therangesfor 8-, 16-, and 32-bit representations for 2's complement and unsigned representations are

shownin Table 1.4.

Previous|Table of Contents

Next

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Representations

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

1.1.4 Sign Extension

This section investigates the conversion from an n-bit number to an m-bit number for signed-magnitude,
unsigned, and 2's complement. It is assumed that m>n. This problem is important due to the fact that
many processors use different sizes for their operands. As aresult, to move data from one processor to
another requires aconversion. A typical problem might be to convert 32-bit formats to 64-bit formats.

Given Aas
A=a _ia, _,...a, (1.35)
and B as
BEbm—lbm-Z“'bﬂ (1.36)
the objective is to determine b, such that B = A.
1.1.4.1 Signed-Magnitude

For signed-magnitude the b, are assigned with

a, 0sksn-2
b, = 0, nsk<m-2 (1.37)

a k= m-1

= |*

1.1.4.2 Unsigned
The conversion for unsigned resultsin
a 0<ksn-1
b, = { & (1.38)
0, n<k<m
1.1.4.3 2’s Complement

For 2's complement there are two cases depending on the sign of the number:

(@ (a,., = 0) For this case, A reducesto

Algorithms and Data Structures in C++:Data Representations
=12
A= 2 a ﬂ,Ek (1.39)
k=0

Itistrivial to see that the assignment of b, with

<k=n-
b, = {ﬂk’ Osksn-2 (1.40)
0, n—-1sk<m

satisfies this case.

(b) (a,., =1) For thiscase
n=2
A= Zakz*‘ = (1.41)
=0
By noting that

z | T . iy (1.42)

=p-1

The assignment of b, with

<k<n-—
b, = {ak, 0<k<sn-2 (1.43)

satisfies the condition. The two cases can be combined into one assignment with b, as

<k<n-—
b = { a, 0<ksn-2 (149
a

k
a_pp N-1Sk<m

Thesign, a,_,, of Aissimply extended into the higher order bits of B. Thisis known as sign-extension.
Sign extension isillustrated from 8-bit 2's complement to 32-bit 2's complement in Table 1.5.

Table 1.5 2's Complement Sign Extension

[8Bit | 32-Bit

[oxff | OXFFFFFFT
[ox0f | 0x0000000F
[ox01 | 0x00000001
[Ox80 | OXFFffffeo

Algorithms and Data Structures in C++:Data Representations

[Oxb0 | OXFFfFffo0

1.1.5 C++ Program Example

This section demonstrates the handling of 16-bit and 32-bit data by two different processors. A simple
C++ source program is shown in Code List 1.3. The assembly code generated for the C++ program is
demonstrated for the Intel 80286 and the Motorola 68030 in Code List 1.4. A line-by-line description
follows:

» Line# 1. The 68030 executes a movew instruction moving the constant 1 to the address where
the variable| is stored. The movew—move word—instruction indicates the operation is 16 bits.

The 80286 executes a mov instruction. The mov instruction is used for 16-bit operations.
* Line# 2: Same as Line# 1 with different constants being moved.

» Line# 3: The 68030 moves| into register dO with the movew instruction. The addw instruction
performs aword (16-bit) addition storing the result at the address of the variableii.

The 80286 executes an add instruction storing the result at the address of the variablei. The
instruction does not involve the variable j. The compiler uses the immediate data, 2, since the
assignment of | to 2 was made on the previous instruction. Thisis a good example of optimization
performed by a compiler. An unoptimizing compiler would execute

mov ax, WORD PTR [bp-4]
add WORD PTR [bp-2], ax

similar to the 68030 example.

» Line# 4: The 68030 executes a moveg—quick move—of the immediate data 3 to register d0. A
long move, movel, is performed moving the value to the address of the variable k. The long move
performs a 32-bit move.

The 80286 executes two immediate moves. The 32-bit datais moved to the address of the variable
k in two steps. Each step consists of a 16-bit move. The least significant word, 3, is moved first
followed by the most significant word,0.

* Line#5: Same as Line # 4 with different constants being moved.

» Line# 6: The 68030 performs an add long instruction, addl, placing the result at the address of
the variable k.

The 80286 performs the 32-bit operation in two 16-bit instructions. The first part consists of an add
instruction, add, followed by an add with carry instruction, adc.

Code List 1.3 Assembly Language Example

Algorithms and Data Structures in C++:Data Representations

Line & | CCode
woid maind) !
|

short ij;

long k.;

i=l"
=i
=i+
k=3
I=4:
k=k+l;
!

= S ¥ N A U X

CodelList 1.4 Assembly Language Code

Line# 68030 80286
1 movew #1,a6@(-2) | mov WORD PTR [bp-2],1
2 movew #2,a6@(—4) | mov WORD PTR [bp-4],2

movew ab@(—4),d0 | add WORD PTR [bp-2],2
addw d0,a6@(-2)

4 moveq #3,d0 mov WORD PTR [bp-8],3
movel d0,a6@(-8) mov WORD PTR [bp-6].0
2 moveq #4,d0 mov WORD PTR [bp-12].4
movel d0,a6@(-12) | mov WORD PTR [bp-10],0
6 addl d0,a6@(-8) add WORD PTR [bp-8],4
adc WORD PTR [bp-6],0

This example demonstrates that each processor handles different data types with different instructions.
Thisis one of the reasons that the high level language requires the declaration of specific types.

1.2 Floating Point Representation

1.2.1 IEEE 754 Standard Floating Point Representations

Floating point is the computer’s binary equivalent of scientific notation. A floating point number has
both a fraction value or mantissa and an exponent value. In high level languages floating point is used for

javascript:displayWindow('images/01-04.jpg',97,200)
javascript:displayWindow('images/01-05.jpg',450,328)

Algorithms and Data Structures in C++:Data Representations

calculations involving real numbers. Floating point operation is desirable because it eliminates the need
for careful problem scaling. IEEE Standard 754 binary floating point has become the most widely used
standard. The standard specifies a 32-bit, a 64-bit, and an 80-bit format.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Representations

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

1.2.1.1 IEEE 32-Bit Standard

The |EEE 32-bit standard is often referred to as single precision format. It consists of a 23-bit fraction or
mantissa, f, an 8-bit biased exponent, e, and asign bit, s. Results are normalized after each operation.
This means that the most significant bit of the fraction isforced to be a one by adjusting the exponent.
Since this bit must be one it is not stored as part of the number. Thisis called the implicit bit. A number
then becomes

0 el g el (1.45)

The number zero, however, cannot be scaled to begin with a one. For this case the standard indicates that
32-hits of zerosis used to represent the number zero.

1.2.1.2 IEEE 64-bit Standard

The |EEE 64-bit standard is often referred to as double precision format. It consists of a 52-hit fraction or
mantissa, f, an 11-bit biased exponent, e, and asign bit, s. Asin single precision format the results are
normalized after each operation. A number then becomes

enip (1.46)

The number zero, however, cannot be scaled to begin with aone. For this case the standard indicates that
64-bits of zerosis used to represent the number zero.

1.2.1.3 C++ Example for IEEE Floating point

A C++ source program which demonstrates the | EEE floating point format is shown in Code List 1.5.
CodeList 1.5 C++ Source Program

C++ Source
#include <stdio.h>

#include <iostream.h>

#include <iomanip.h>

union float_point_32 {

javascript:displayWindow('images/01-06.jpg',500,854)

Algorithms and Data Structures in C++:Data Representations
float fp;
long li;
float_point_32(float in= float(0.0))
(
fp=in;)

union float_point_64 |

double fp;
long li[2];
float_point_64(double in = double(0.0))

{

fp=in; |

| K
class float_number_32 |

float_point_32 f;
public:
float_number_32(float in=float(0.0)) |f.fp=in; }
float fp() { return f.fp;}
long li() { return f.1i;}
long sign() {return f.1i&0xB000000071:0; }
long exponent()

{ return (f.1i&0xTFRO0000)>>23;)
void fraction();
void print() {
cout << “Floating point =" << f.fp <<
* 32-bit Representation = * << hex << setfill(*0") << setw(8)

<< f.li << dec << endl

javascript:displayWindow('images/01-06.jpg',500,854)

Algorithms and Data Structures in C++:Data Representations

C++ Source

<< “sign =* << sign() << * biased exponent = * << exponent() <<
“ unbiased exponent = ** << exponent()-127
<< endl << “fraction = **;
fraction();
cout << endl << endl;
)
void fleat_number_32::fraction()

[
unsigned long mask=0x400000;
int i;
if (f.li==0) cout << “0.”; else cout << *1.";
for(i=(};i<23:i++) |

ifimask&f.11) cout << 1™

else cout << 0",

mask = mask >> 1; }
|

class float_number_64 |
float_point_64 f;
public:
float_number_64(double in=double(0.0)) {f.fp=in;)
double fp() [return f.fp;}
long li_ms() { return £.1i[1];}
long li_ls() { return f.1i[0];}
long sign() {return £.1i[0]&0xB000000071:0; }
long exponent()
[return (f.1i] 1]&0x 7ff00000)>>20; }

void fraction();

javascript:displayWindow('images/01-07.jpg',500,856)

Algorithms and Data Structures in C++:Data Representations

void print() {

cout << “Floating point = * << f.fp <<

*“ 64-bit Representation = * << hex << setfill(*0") << setw(8)
<< li_ms() << setw(8) << li_ls() << dec << endl;

<< “sign =" << sign() << * biased exponent = ** << exponent() <<

C++ Source

* unbiased exponent = * << exponent()-1023

<< endl << “fraction =*;

fraction();

cout << endl << endl;

s

void float_number_64::fraction()

{

unsigned long mask=0x80000;

int i,

if ((FL[OIE L]])==0) cout << “0."; else
cout << “1.";
for(i=0.i<20;i++) |
ifitmask&f.1i[1]) cout << *1™;
else cout << 0",
mask = mask >> 1; |
mask=0x80000000;
for(i=0;i<32;i++) |
iffmask&f.1i[0]) cout << *1™;
else cout << 0™,
mask = mask >> |; |

void main()

javascript:displayWindow('images/01-07.jpg',500,856)
javascript:displayWindow('images/01-08.jpg',500,778)

Algorithms and Data Structures in C++:Data Representations

I
Aoat_number_32 x(0.1).y(-5.0);
foat_number_64 z(0.1);
x.print();
y.print();
z.print(),

I

The output of the program is shown in Code List 1.6. The union operator allows a specific memory
location to be treated with different types. For this case the memory location holds 32 bits. It can be
treated as along integer (an integer of 32 bits) or afloating point number. The union operator is
necessary for this program because bit operatorsin C and C++ do not operate on floating point numbers.
Thefloat_point_32(float in=float(0.0)) {fp =in} function demonstrates the use of a constructor in C++.
When avariable is declared to be of type float_point_32 thisfunction is called. If a parameter is not
specified in the declaration then the default value, for this case 0.0, is assigned. A declaration of
float_point_32 x(0.1),y; therefore, would initialize x.fp to 0.1 and y.fp to 0.0.

Code List 1.6 Output of Programin Code List 1.5

C++ Output

Floating point = 0.1 32-bit representation = 3decceed

sign = () biased exponent = 123 unbiased exponent = —4
fraction = 1100110011001 10011001101

Floating point = -5 32-bit representation = cOa(0000
sign = | biased exponent = 129 unbiased exponent = 2
fraction = 1.01000000000CO0000C00000

Floating point = 0.1 64-bit representation = 3fbS99990494000,
sign = | biased exponent = 1019 unbiased exponent = -

fraction =
TOOODTOON PO O] TOOE 1O OO TOO1 10011001 100 10011010

The union float_point_64 declaration alows 64 bits in memory to be thought of as one 64-bit floating
point number(double) or 2 32-bit long integers. The void float_number 32::fraction() demonstrates
scoping in C++. For this case the function fraction() is associated with the class float_number _32. Since
fraction was declared in the public section of the class float_-number_32 the function has access to al of
the public and private functions and data associated with the class float_number_32. These functions and

javascript:displayWindow('images/01-08.jpg',500,778)
javascript:displayWindow('images/01-09.jpg',400,268)

Algorithms and Data Structures in C++:Data Representations

data need not be declared in the function. Notice for this examplef.li is used in the function and only
mask and i are declared locally. The setw() used in the cout call in float_number 64 sets the precision of
the output. The program uses a number of bit operatorsin C++ which are described in the next section.

1.2.2 Bit Operators in C++

C++ has bitwise operators &, ”, |, and ~. The operators &, *, and | are binary operators while the operator
~isaunary operator.

~, 1's complement

&, bitwise and

A, bitwise exclusive or
* |, bitwise or

The behavior of each operator isshownin Table 1.6.
Table 1.6 Bit Operatorsin C++

la | b | | a&b | ab | ab | -a
) ojoj | o | o | o |1
)ofrj | o | 1 | 1t |1
)rjoj o | 1] 1 JO
vy 71 fo6 1 o

To test out the derivation for calculating the 2's complement of a number derived in Section 1.1.3 a
program to calcul ate the negative of a number is shown in Code List 1.7. The output of the program is
shown in Code List 1.8. Problem 1.11 investigates the output of the program.

Code List 1.7 Testing the Binary Operators in C++

Algorithms and Data Structures in C++:Data Representations

C++ Source Code

#include <iostream_hz
class data
[
int x;
public:
void set(int y) | x=y;]
voud print() |
cout << “The value of x is * << x << endl;
cout << “The value of the 2's complement of x is *

<< ~x+| << end] << endl:

k

void main()
{

data x:

x.5et(T); x.print();

C++ Source Code

x.5et(—100); x.print();
x.set(0); x.print();
X.5et(| <<sizeof(int)*8-1); x.print();

X.set({ | <<sizeof(int)*8—1)+1); x.print();

}

Code List 1.8 Output of Programin Code List 1.7

javascript:displayWindow('images/01-10.jpg',350,386)
javascript:displayWindow('images/01-11.jpg',400,158)

Algorithms and Data Structures in C++:Data Representations

C++ Output

The value of x is 7

The value of the 2’s complement of x is -7

The value of x 15 =100

The value of the 2's complement of x is 100

The value of x is 0

The value of the 2's complement of x is 0

The value of x is —32768
The value of the 2's complement of x is 32768

The value of x is -=32767
The value of the 2's complement of x is 32767

A program demonstrating one of the most important uses of the OR operator, |, is shown in Code List
1.9. The output of the program is shown in Code List 1.10. Figure 1.1 demonstrates the value of x for the
program. The eight attributes are packed into one character. The character field can hold 256 = 28
combinations handling all combinations of each attribute taking on the value ON or OFF. Thisisthe
most common use of the OR operators. For a more detailed example consider the file operation
command for opening afile. The file definitions are defined in <iostream.h> by BORLAND C++ as
shown in Table 1.7.

javascript:displayWindow('images/01-12.jpg',350,433)

Algorithms and Data Structures in C++:Data Representations

x=0x29
00101001 '\\
X ATTRIBUTEO ON
ATTRIBUTES ON ATTRIBUTE3 ON
ATTRIBUTET OFF

Figure 1.1 Packing Attributesinto One Character
CodeList 1.9 Bit Operators

C++ Source Code

#include <iostream.hz
#define ATTRIBUTED Ox1
#define ATTRIBUTE] 0x2
#idefine ATTRIBUTE2 Ox4
#tdefine ATTRIBUTES Ox8
#define ATTRIBUTE4 0x10
#define ATTRIBUTES 0x20
ftdefine ATTRIBUTEG 0x40
#define ATTRIBUTET 0x80
typedef unsigned char attribute;
vold maini()

l

attribute x:

K=ATTRIBUTENATTRIBUTE3ATTRIBUTES:

/fTest 1o sce if a has desired attribute;

IMx&ATTRIBUTES) cout << “x has attribute ATTRIBUTES®” << endl;
else cout << “x does not have attribute ATTRIBUTEG™ << endl;

I x&ATTRIBUTES) cout << “x has attnibute ATTRIBUTE3” << endl:
else cout << “x does nol have attribute ATTRIBUTEY" << endl;

f{x&(ATTRIBUTE2IATTRIBUTED)) cout << *“x has at least onc of the attnbutes:”

javascript:displayWindow('images/01-13.jpg',398,160)
javascript:displayWindow('images/01-13.jpg',398,160)
javascript:displayWindow('images/01-14.jpg',450,476)

Algorithms and Data Structures in C++:Data Representations

C++ Source Code
“ATTRIBUTE2, ATTRIBUTE(<< end]l:

coul << “x has a hex value: * << hex <<(int) x << endl;

J

Code List 1.10 Output of Program in Code List 1.9

C++ Output

% does not have attribute ATTRIBUTEG

x has attribute ATTRIBUTES

x has at least one of the attributes: ATTRIBUTEZ, ATTRIBUTED

x has a hex value: 29

Table 1.7 Fields for File Operationsin C++

|Source

enum open_mode {

in = 0x01, // open for reading

out = 0x02, // open for writing

ate = 0x04, // seek to eof upon original open

app = 0x08, // append mode: all additions at eof
trunc = 0x10, // truncate file if already exists
nocreate = 0x20, // open failsif file doesn't exist
noreplace= 0x40, // open failsif file already exists
binary = 0x80 // binary (not text) file

};

A program illustrating another use is shown in Code List 1.11. If the program executes correctly the
output file, test.dat, is created with the string, “ Thisisatest”, placed in it. Thefile, test.dat, is opened for
writing with ios.:out and for truncation with ios::trunc. The two modes are presented together to the
ofstream constructor with the use of the or function.

CodelList 1.11 SimpleFile1/O

javascript:displayWindow('images/01-15.jpg',550,108)
javascript:displayWindow('images/01-16.jpg',400,124)

Algorithms and Data Structures in C++:Data Representations

C++ Source

#include <fstream.h>

vold maini)

ofstream file(“test.dat” 10s::cutlios:: trunc);

if{!file)
{

cout << “Could not open file"<< endl;

returm;

file << “This is a test’™;

}

Previous

Table of Contents

Next

Copyright © CRC Press LLC

javascript:displayWindow('images/01-17.jpg',350,286)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Representations

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

1.2.3 Examples

This section presents examples of |EEE 32-bit and 64-bit floating point representations. Converting
100.5 to |EEE 32-bit notation is demonstrated in Example 1.1.

Determining the value of an |EEE 64-bit number is shown in Example 1.2. In many cases for problems
asin Example 1.1 the difficulty liesin the actual conversion from decimal to binary. The next section
presents a simple methodology for such a conversion.

1.2.4 Conversion from Decimal to Binary

This section presents a simple methodology to convert a decimal number, A, to its corresponding binary
representation. For the sake of simplicity, it is assumed the number satisfies

0<A<I] (1.47)

in which case we are seeking the a, such that

A= Z”tft (1.48)

Algorithms and Data Structures in C++:Data Representations

Representing 100.5 in |IEEE 32-Bit Formal

Step 1 Convert number 1o binary
100.5 = 1100100.1

Step 2 Scale the number so the fraction
begins with a 1

1005 = 1.1ﬂﬂ10{31125

Step 3 For sign bit place 0 if positive, 1 if negative
sign bit =0

Step 4 Calculate 8-bit exponent field in binary
exp = 127 + 6 = 133 = 10000101

Step 5 Strip fraction which follows 1.
fraction = 1001001

Step 6 Combine bits together

0 10000101 10010010000000000000000
5 exp fraction

slep [Convert 1o hex
42090000

Angwer: 42030000

Example 1.1 |EEE 32-Bit Format

The simple procedureisillustrated in Code Li st 1. 12. The C Code performing the decimal to
binary conversion is shown in Code List 1.13. The output of the program is shown in Code List 1.14.
This program illustrates the use of the default value. When avariableisdeclared aszisby data z, zis
assigned 0.0 and precision is assigned 32. This can be seen asin the program z.prec() is never called and
the output resultsin 32 bits of precision. The paper conversion for 0.4 isillustrated in Example 1.3.

1.3 Character Formats—ASCI|I

To represent keyboard characters, a standard has been adopted to ensure compatibility across many
different machines. The most widely used standard isthe ASCII (American Standard Code for
Information Interchange) character set. This set has a one byte format and is shown in Table 1.8. It
allows for 256 distinct characters and specifies the first 128. The lower ASCII characters are control
characters which were derived from their common use in earlier machines.Although the ASCII standard
iswidely used, different operating systems use different file formats to represent data, even when the
datafiles contain only characters. Two of the most popular systems, DOS and Unix differ in their file
format. For example, the text file shown in Table 1.9 has a DOS format shown in Table 1.10 and a Unix
format shown in Table 1.11. Notice that the DOS file use a carriage return, cr, followed by anew line, nl,

javascript:displayWindow('images/01-18.jpg',400,429)
javascript:displayWindow('images/01-18.jpg',400,429)

Algorithms and Data Structures in C++:Data Representations

while the Unix file uses only anew line. Asaresult Unix text fileswill be smaller than DOS text files. In
the DOS and Unix tables, underneath each character isits ASCII representation in hex. The numbering
on the left of each table is the offset in octal of thelinein thefile.

Find the value of the IEEE 64-bit number given by the 16 hex digits
4042900000000000

Step 1 Convert to binary and identify sign, exponent, and fraction.
0100 0000 0100 0010 1001 0000... 0000

it -

™

00101001
Fraction

100 0000 0100

N
Sign Bil Exponent

Step 2 Calculate Exponent

Exponent = 100 0000 0100 = 1028
Exponent value = 1028-1023 =5

Step 3 Calculate Fraction

Add implicit 1
Fraction = 1.00101001

Step 4 Put it together
Result = 1.00101001x2

= 100101.001 = 37.125

Answer: 37,125

Example 1.2 Calculating the Value of an |EEE 64-Bit Number

javascript:displayWindow('images/01-19.jpg',450,503)
javascript:displayWindow('images/01-19.jpg',450,503)

Algorithms and Data Structures in C++:Data Representations

— 0.4 0.0

double number
0.8 >1? NO place A

double number 0.01
1.6 =17 YES
| place 1

subtract 1
0.6

double number 0.011
1.2 >17? YES *

| place 1

subtract 1
0.2

& dﬂuhle?nuanher 0.0110
0.4=1"N
process repeats place 0 +

0.4=0,0110011001100110
0.4 =00710

Example 1.3 Converting 0.4 from Decimal to Binary

CodeList 1.12 Decimal to Binary Conversion

javascript:displayWindow('images/01-20.jpg',400,484)
javascript:displayWindow('images/01-20.jpg',400,484)

Algorithms and Data Structures in C++:Data Representations

Pseudo-Code
l;=I|. = = -
While [M(ilrﬂ Precision Required)
A 2A
it A=l |
A=A
a, =1
}
else a, = 0
k=k+]

CodeList 1.13 Decimal to Conversion C++ Program

C++ Source

{f This program demonstrates the conversion of a decimal number

// to a binary number for numbers of type double

{f Numbers must be of the form (XXX xxxxx

#include <iostream.h>

class data |
double d;

unsigned int precision;

public:
data(double in=0.0) [d=in;precision=32;]
void prec(unsigned int p) { precision=p;)
void binary_calc(double in);
void value() | cout << “Decimal value =" << d << endl; |
void binary() | cout << “Binary value =*; binary_calc(d),
cout << endl << endl; }
b

void data::binary_calc(double in)

javascript:displayWindow('images/01-21.jpg',400,236)
javascript:displayWindow('images/01-22.jpg',500,887)

Algorithms and Data Structures in C++:Data Representations

I
int 1;
cout << “(." ; /f program works on this format of numbers only

for(i=0;i<precision;i++)

{
in*=2.0;
if(in>=1)
{
in-=1;
cout << 1™
|

else cout << *“0™;
}i
]

void main()

{

javascript:displayWindow('images/01-22.jpg',500,887)

Algorithms and Data Structures in C++:Data Representations

C++ Source

data x(0.7), y(0.1), z;
X.prec(20);

x.value();

x.binary();
y.prec(32);

y.value();

y.binary();

z.value();

z.binary();

|

Code List 1.14 Output of Program in Code List 1.13

C++ Output

Decimal value = (0.7
Binary value = 0.10110011001100110011

Decimal value = (0.1
Binary value = 0.00011001100110011001100110011001

Decimal value =0
Binary value = 0.00000000000000000000000000000000

Table 1.8 ASCII Listing

IASCII Listing

javascript:displayWindow('images/01-23.jpg',500,300)
javascript:displayWindow('images/01-24.jpg',400,250)

Algorithms and Data Structures in C++:Data Representations

We will look at this file under Unix and DOS

Previous

Table of Contents

Next

0o nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht Oanl Ob vt Oc np Od cr Oe so Of s
10dle 11 dcl 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em lasub 1b esc Icfs 1dgs lers 1f us
20 sp 21! 22" 23 # 24°% 25 % 26 & 27"
28 (29) 2a* 2b + 2c, 2d - 2e . 2f /
300 311 322 333 344 355 366 377
388 399 3a: 3b; 3c< 3d= 3e> 3f?
40 @ 41 A 42 B 43C 44D 45E 46 F 47 G
48 H 49 | 4ad 4b K 4c L 4dM 4eN 4f O
50P 51Q 52 R 53S 54T 55U 56 V 57 W
58 X 59Y 5aZ 50] 5c\ 5d] 5en 5f
60 61 a 62 b 63 cC 64 d 65e 66 f 679
68 h 69 i 6a] 6b k 6C | 6d m 6en 6f o
70p 71q 72r 73s 74t 75u 76V 77w
78 X 79y 7Taz 7b{ 7c| 7d} 7e~ 7f del
Table 1.9 Text File
Test File
Thisisatest file

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Representations

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

1.4 Putting it All Together

This section presents an example combining ASCI|, floating point, and integer types using one final C++ program.
The program is shown in Code List 1.15 and the output is shown in Code List 1.16.

The program utilizes acommon memory location to store 8 bytes of data. The data will be treated as double, float,
char, int, or long. A particular memory implementation for this program is shown in Figure 1.2.

Table 1.10 DOS File Format

DOS File Format

0000000 T h i s sp i s sp a sp t e s t sp f
5468 6973 2069 7320 6120 7465 7374 2066

0000020 i 1 e er nl W e sp w i 1 1 sp 1 o o
696c 650d 0as57 6520 7769 6cbe 206c 6f6f
0000040 k sp a t sp t h i 5 sp £ i 1 e sp u
6b20 6174 2074 6869 7320 6669 Bcho 2075
0000060 n d e r sp U n i ® sp a n d sp D]
be6d 6572 2055 6269 7820 blbe 6420 444f
0000100 S cr nl
530d 0al0
0000103

Table 1.11 Unix File Format (1SO)

javascript:displayWindow('images/01-25.jpg',640,348)

Algorithms and Data Structures in C++:Data Representations

ISO File Format

0000000 T h i s Sp i 5 sp a
S468 6973 2069 7320
0000020 i 1 e nl W e sp w i
696c 650a 5765 2077
0000040 sp a t sp ¢t h i s sp
2061 7420 7468 6973
00000860 d & r sp U n i x sp
6465 1220 356e 6978
0000100 nl

sp
6120
1
696¢c
£
2066
a

2061

s)

e 3
7465

sp 1
6c20

l e
636C

d sp
tebd

t
7374

[Tad 33
Sp
6520
D
2044

0alo
0000101

< Note: This is a particular |

42 implementation for a given machine.
A different machine might elect to

43 store the data differently. The
important part is that the differences
be transparent to the user.

44

45

46 All values are in hax.

47

48

Figure 1.2 Memory Implementation for Variable t

javascript:displayWindow('images/01-26.jpg',600,330)
javascript:displayWindow('images/01-27.jpg',399,240)
javascript:displayWindow('images/01-27.jpg',399,240)

Algorithms and Data Structures in C++:Data Representations

chl0]
ch[1]
ch(2)]
ch{3]
chl4]
ch(5)
ch[8]
ch[7]

f[0] i[o) I[0]

fl1] i(1] If1]

Figure 1.3 Mapping of each Union Entry

The organization of each union entry is shown in Figure 1.3. For the union declaration t there are only eight bytes
stored in memory. These eight bytes can be interpreted as eight individual characters or two longs or two doubles,
etc. For instance by looking at Table 1.8 one sees the value of ch[0] which is 0x41 which isthe letter A. Similarly,
the value of ch[1] is 0x42 which isthe letter B. When interpreted as an integer the value of i[0] is 0x41424344
whichisin 2's complement format. Converting to decimal one hasi[0] with the value of

i[0] = 68+ 67(256) +ﬁﬁ{2515]} +65[25153} = 1094861636 (1.49)

If one wereto interpret 0x41424344 as an | EEE 32-bit floating point number its value would be 12.1414. If one
were to interpret 0x45464748 as an | EEE 32-bit floating point number its value would be 3172.46.

Code List 1.15 Data Representations

javascript:displayWindow('images/01-28.jpg',398,255)
javascript:displayWindow('images/01-28.jpg',398,255)

Algorithms and Data Structures in C++:Data Representations

C++ Source

#include <iostream.h>

union test

|

double d;

float f]2];

char ch[8];

int i[2];

long 1[2];

)i

void main()

[

union test t;

int i;

cout << “The size of double is ** << sizeof(double) << endl;
cout << “The size of float is “ << sizeof(float) << endl;
cout << “The size of char is * << sizeof(char) << endl;
cout << “The size of int is ** << sizeof(int) << endl;

cout << “The size of long is * << sizeof(long) << endl;
t.1[0]=0x41424344;

t.1[1]=0x45464748;

cout << “As characters: “; for(i=0;i<8;i++) cout << t.ch[i]; cout << endl,
cout << “As a double: * << t.d << endl;

cout << “As two integers: * << Li[0] << * “ << t.i[1] << end];
cout << “As two longs: ¥ << tl[0] << * << tI[1] << endl;
cout << “As two floats: * << t.f[0] << * << t.f[1] << end];

}

CodeList 1.16 Output of Program in Code List 1.15

javascript:displayWindow('images/01-29.jpg',500,741)

Algorithms and Data Structures in C++:Data Representations

C++ Output
The size of double i1s 8

The size of float is 4

C++ Output

The size of charis 1

The size of int is 4

The size of long is 4

As characters: ABCDEFGH

As a double: 2.39374¢+06

As two integers: 1094861636 1162233672
As two longs: 1094861636 1162233672
As two floats: 12.1414 3172.46

There are only one’s and zero’ s stored in memory and collections of bits can be interpreted to be characters or
integers or floating point numbers. To determine which kind of operations to perform the compiler must be able to
determine the type of each operation.

1.5 Problems

(1.1) Represent the following decimal numbers when possible in the format specified. 125, -1000, 267, 45,
0, 2500. Generate all answersin HEX!

a) 8-hit 2's complement—2 hex digits
b) 16-bit 2's complement—4 hex digits
¢) 32-hit 2's complement—38 hex digits
d) 64-bit 2's complement—16 hex digits

(1.2) Convert the 12-bit 2's complement numbers that follows to 32-bit 2's complement numbers. Present
your answer with 8 hex digits.

a) OxFA4
b) 0x802
c) 0x400
d) OxOFF

javascript:displayWindow('images/01-30.jpg',500,92)
javascript:displayWindow('images/01-31.jpg',500,260)

Algorithms and Data Structures in C++:Data Representations
(1.3) Represent decimal 0.35 in |EEE 32-bit format and |EEE 64-bit format.
(1.4) Represent the decimal fraction 4/7 in binary.
(1.5) Represent the decimal fraction 0.3 in octal.
(1.6) Represent the decimal fraction 0.85 in hex.
(1.7) Calculate the floating point number represented by the IEEE 32-bit representation FS080000.

(1.8) Calculate the floating point number represented by the |EEE 64-bit representation
F808000000000000.

(1.9) Write down the ASCII representation for the string “Hello, how areyou?’. Stringsin C++ are

terminated with a 00 in hex (anull character). Terminate your string with the null character. Do not
represent the quotes in your string. The quotes in C++ are used to indicate the enclosure is a string.

(1.10) Write a C++ program that outputs “Hello World”.

(1.12) In Code List 1.8 the twos complement of the largest representabl e negative integer, -32768, is the
same number. Explain this result. Is the theory developed incorrect?

(1.12) In Section 1.1.4 the issue of conversion is assessed for signed-magnitude, unsigned, and 2's
complement numbers. Is there a simple algorithm to convert an IEEE 32-bit floating point number to |EEE
64-bit floating point number?

Previous|Table of Contents|Next

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

Chapter 2
Algorithms

This chapter presents the fundamental concepts for the analysis of algorithms.

2.1 Order

N denotes the set of natural numbers, {1, 2, 3,4, 5, .. .}.

Definition 2.1

A sequence, X, over the real numbersis afunction from the natural numbers into the real numbers:

x:N—>R

X, 1S used to denote the first element of the sequence, x(1) In general,

X =001y o020 oo X (M) 0}
and will be written as
X = XyyXgy eeny Xy oo (2.1)
m

Unless otherwise noted, when x is a sequence and f is afunction of one variable, f(X), is the sequence
obtained by applying the function f to each of the elements of x. If

y =f(x)

then

Fpo= f(*r;_-)

For example,

Algorithms and Data Structures in C++:Algorithms

4 = s e, o s

ix = 3.1:1, 33:2, - 3.1'",

Definition 2.2

If x and y are sequences, then x is of order at most y, written x O (y), if there exists a positive integer N
and a positive number k such that

X sKy. for all n>N (2.2)
|
Definition 2.3

If X and y are sequences then x is of order exactly y, written, x " (y), if x " (y)andy O (X).

|
Definition 2.4

If X and y are sequencesthen x is of order at least y, written, x © (y), ify O (X).
|

Definition 2.5
The time complexity of an algorithm is the sequence

A

where t, is the number of time steps required for solution of a problem of size k.
M

Algorithms and Data Structures in C++:Algorithms

Find the time complexity sequence for the addition of 2k numbers.
Assume an infinite number of processors are available and each pro-
cessor is capable of performing the addition of two numbers in a single

time step.

Solution: If addition is performed in a tree-like manner, the time for
computation with k processors is

t, = [og 2k = 1+ log k1

t={1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6, ...}

FROQGORORORONOROFORO
4) ©) (@O)
rlugzﬂc-l @@

X &
X (30

Example 2.1 Time Complexity

The calculation of the time complexity for addition isillustrated in Example 2.1. A comparison of the
order of severa classical functionsis shown in Table 2.1. The time required for a variety of operations on
a 100 Megaflop machineisillustrated in Table 2.2. As can be seen from Table 2.1 if aproblem istruly of
exponential order then it isunlikely that a solution will ever be rendered for the case of n=100. It isthis
fact that has led to the use of heuristicsin order to find a*“good solution” or in some cases “a solution”
for problems thought to be of exponential order. An example of Order is shown in Example 2.2. through
Example 2.4.

Table 2.1 Order Comparison

javascript:displayWindow('images/02-01.jpg',496,546)
javascript:displayWindow('images/02-01.jpg',496,546)

Algorithms and Data Structures in C++:Algorithms

IFunction In=1 In=10 In=100 In=1000 In=10000
llog(n) [332 6.64 [9.97 133
Inlog (n) 0 133.2 1664 19.97x103 11.33x10°
2 1 100 10000 [1x108 [1x108
8 1 [1x105 [1x10m0 [1x10% [1x10%
[272 [22x107 2.69x10% [1.97x10% [8.81x10%%
n! 1 [363x106 [0.33x10%7 [4.02x10% [2.85%10%%9
Table 2.2 Calculations for a 100 MFLOP machine

Time i# of Operations

|1 second 108

1 minute 6% 10°

[hour [3.6x10m

’1 day |8.64>< 1012

Tyear [3.1536% 10%5

|1 century 3.1536x 1017

1100 trillion years 3.1536% 102

2.1.1 Justification of Using Order as a Complexity Measure

One of the major motivations for using Order as a complexity measure is to get a handle on the inductive
growth of an algorithm. One must be extremely careful however to understand that the definition of
Order is“in the limit.” For example, consider the time complexity functions f, and f, defined in Example
2.6. For these functions the asymptotic behavior is exhibited when n e 10%0. Although f, ™ (e") it hasa
value of 1 for n < 10%, In a pragmatic sense it would be desirable to have a problem with time
complexity f, rather than f,. Typically, however, this phenomenon will not appear and generally one
might assume that it is better to have an algorithm whichis™ (1) rather than ™ (). One should aways
remember that the constants of order can be significant in real problems.

Algorithms and Data Structures in C++:Algorithms

Solution:

= nlogn
S0

nlogne Q{log (n!))

Similarly

n R
g o) 2 Jig 1)
og (n}) 2‘3’22

nlog (n)

I
log (n!) 2 :

S0

nlog (n) € O (log (n!))

log (n!) Elng(g)+ Iﬂg(

Show that nlogn e G (log (n!))

log(n!) =log (1 X2X...n)
=log (1) +log(2) + ..
<log(n) +log(n) +..

Jdog (n)
Jdog (n)

ii+l]+
2

log (n!) = glﬂg (n) - ;lﬂg (2)

n=10

..+ log(n)

Example 2.2 Order

javascript:displayWindow('images/02-02.jpg',400,646)
javascript:displayWindow('images/02-02.jpg',400,646)

Algorithms and Data Structures in C++:Algorithms

Find a sequence f such

Solution:

One possible instance is

that

fe€ 0O(n) and fg Q(n)

-
#. n odd
f(n) = { e
n,neven
Example 2.3 Order
Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/02-03.jpg',400,354)
javascript:displayWindow('images/02-03.jpg',400,354)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

2.2 Induction

Simple induction is atwo step process.
» Establish theresult for thecase N =1
» Show that if istruefor the case N = n then it istrue for the case N = n+1

Thiswill establish theresult for all n> 1.

Induction can be established for any set which iswell ordered. A well-ordered set, S has the property
that if

X,y S
then elther
° X<y

o X>Y Or
° X:y

Algorithms and Data Structures in C++:Algorithms

If fe O(g)and ge O (h) prove that fe O(h)

Solution: From the definition of order there exists
N, N, k, k; such that

- n>=N
and

8, Skyh

A
therefore,

sk kh n>max(N,N,)

with k; = k,k, and N, = max(N.N,)}

one has

which gives the desired result. O3

Example 2.4 Order

Additionaly, if & isanonempty subset of S,
S cS g 17,
then & has aleast element. An example of simple induction is shown in Example 2.5.

The well-ordering property is required for the inductive property to work. For example consider the
method of infinite descent which uses an inductive type approach. In this method it isrequired to
demonstrate that a specific property cannot hold for a positive integer. The approach is as follows:

javascript:displayWindow('images/02-04.jpg',492,556)
javascript:displayWindow('images/02-04.jpg',492,556)
javascript:displayWindow('images/02-05.jpg',494,820)

Algorithms and Data Structures in C++:Algorithms

Show using induction that

IIr=

Z 1 Gty 1
1:II{I+_§'}|:2+_;I'} n+2
Step 1: Establish the case for n = 0.

1 I
] -

(1+0)(2+0) 0+2

Step 2: Assume true for # and establish the case for n+ 1.

Let

i

I
{ } = s i S
L s 1D (4]
j=0

then

|
+r+ D (2+n+1)

f(n+1) = f(n) +

1 o I
n+2 (n+2)(n+3)

I
|

_1—-(n+3)
(n+2) (n+3)

1l
|
1

javascript:displayWindow('images/02-05.jpg',494,820)

Algorithms and Data Structures in C++:Algorithms

1
S (n+1) 42

Example 2.5 Induction

1. Let P (k) = TRUE denote that a property holds for the value of k. Also assume that P(0) does
not hold so P(0) = FALSE.

Let Sbe the set that
§ = {k: P(k)= TRUE} 20 B T (2.3)

From the well-ordering principleit istrue that if Sisnot empty then Shas a smallest member. Let |
be such a member:

j = min (P (k) = TRUE) (2.4)
k

2. Provethat P(j) implies P(j-1) and thiswill lead to a contradiction since P(0) is FALSE and j
was assumed to be minimal so that S must be empty. Thisimplies the property does not hold for
any positive integer k. See Problem 2.1 for a demonstration of infinite descent.

2.3 Recursion

Recursion is a powerful technique for defining an algorithm.
Definition 2.6

A procedureisrecursiveif it is, whether directly or indirectly, defined in terms of itself.
)
2.3.1 Factorial

One of the ssimplest examples of recursion is the factorial function f(n) = n!. This function can be defined
recursively as

f(0) =1 (2.5)
f(n) = nf(n—1) n>0 (2.6)

A simple C++ program implementing the factorial function recursively isshown in Code List 2.1. The
output of the program is shown in Code List 2.2.

CodelList 2.1 Factoria

javascript:displayWindow('images/02-05.jpg',494,820)
javascript:displayWindow('images/02-05.jpg',494,820)

Algorithms and Data Structures in C++:Algorithms

C++ Source Prugram

EEE . —— |

fiinclude <iostream.h>
double fact{double x)

{

if(x==1.0) return(1.0};
else return(x*fact(x—1.0));

main()

{

int 1;

for(1=1;1<10;i++) cout << fact(i) << end|;

|

Code List 2.2 Output of Programin Code List 2.1

1

e

L]

24

134
T
S
40320
362880

2.3.2 Fibonacci Numbers

The Fibonacci sequence, F(n), is defined recursively by the recurrence relation
F(n) =F(n-1)+F(n-2)
F(0) =0 F(l) =1

(2.7)
(2.8)

javascript:displayWindow('images/02-06.jpg',300,396)
javascript:displayWindow('images/02-07.jpg',55,150)

Algorithms and Data Structures in C++:Algorithms

A simple program which implements the Fibonacci sequence recursively isshownin Code List 2.3. The
output of the program is shown in Code List 2.4.

Code List 2.3 Fibonacci Sequence Generation

C++ Source Code
#include <iostream.h>
#include <math.h>

int f(int x)

{

if(x>1) return f(x—1)+f(x-2);
else if{(x==1) return 1;

else return O;

)

void main()
|
int x;
for(x=0;x<20;x++)
|
cout << “The value for* << x << is * << fix) << endl;

}

1

Code List 2.4 Output of Programin Code List 2.3

javascript:displayWindow('images/02-08.jpg',400,458)

Algorithms and Data Structures in C++:Algorithms

C++ Output
The value for 715 13

The value for 8 is 21
The value for 9 is 34
The value for 10 is 55
The value for 11 is 89
The value for 12 is 144
The value for 13 is 233
The value for 14 is 377
The value for 15 is 610
The value for 16 is 987
The value for 17 is 1597
The value for 18 is 2584
The value for 19 is 4181

The recursive implementation need not be the only solution. For instance in looking for a closed solution
to therelation if one assumes the form F (n) = »" one has

H 1 n-2

A =% X (2.9)

which assuming » ~ 0

2
A =A+1 (2.10)
The solution viathe quadratic formulayields
1245

2
Because Eq. 2.7 islinear it admits solutions of the form

1+2~f5)”+3[1:£]"

To satisfy the boundary conditions in Eq. 2.8 one obtains the matrix form

(2.11)

F(n) = A((2.12)

javascript:displayWindow('images/02-09.jpg',179,375)

Algorithms and Data Structures in C++:Algorithms

T3 -

=
]
|

1 1 [“'
A _ |0
il [

2 2

multiplying both sides by the 2 x 2 matrix inverse

i -5
Al -1 2 o
| =i (2.14)
Lﬂ J5| 1445 s
L 2 i
which yields
A= ig (2.15)
5
B = ~§ (2.16)

resulting in the closed form solution

e f[(nﬁ)_[ﬂ)] L

2 2

A nonrecursive implementation of the Fibonacci seriesis shown in Code List 2.5. The output of the
program is the same as the recursive program given in Code List 2.4,

CodeList 2.5 Fibonacci Program — Non Recursive Solution

Algorithms and Data Structures in C++:Algorithms

C4++ Source Code

#include <iostream.h>

#include <math.h>

void main()

{

double x,y;

for(y=0.0;y<20.0;y++)
{

C++ Source Code
x=sqrt(5.0)/5.0*pow(0.5+sqrt(5.0)/2.0,y);
x—=sqrt(3.0)/5.0*pow(0.5-sqr1(5.0)/2.0,y);
cout << “The value for * <<y << * is * << (int) (x+0.5) << endl;

)

}

2.3.3 General Recurrence Relations

This section presents the methodology to handle general 2nd order recurrence relations. The recurrence
relation given by

aR(n) = bBR(n—-1) +cR(n-2) (2.18)
with initial conditions:
R(©) =d R(l1) = e (2.19)

can be solved by assuming a solution of the form R (n) = »". Thisyields

2
ah —bA—-c =10 (2.20)
If the equation has two distinct roots, »,,»,, then the solution is of the form
R(n) = C A +C,A, (2.21)

where the constants, C,, C,, are chosen to enforce Eq. 2.19. If the roots, however, are not distinct then an

javascript:displayWindow('images/02-10.jpg',500,217)
javascript:displayWindow('images/02-11.jpg',500,164)

Algorithms and Data Structures in C++:Algorithms

alternate solution is sought:
R(n) = C;nA"+C,\" (2.22)

where » is the double root of the equation. To see that the term C,n»" satisfies the recurrence relation one
should note that for the multiple root Eg. 2.18 can be written in the form

R(n) = 2AR(n—1) -1'R(n-2) (2.23)
Substituting C,n»" into Eq. 2.23 and simplifying verifies the solution.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

2.3.4 Tower of Hanoi

The Tower of Hanoi problemisillustrated in Figure 2.1. The problem isto move n discs (in this case,
three) from the first peg, A, to the third peg, C. The middle peg, B, may be used to store discs during the
transfer. The discs have to be moved under the following condition: at no time may a disc on a peg have
awider disc above it on the same peg. Aslong as the condition is met all three pegs may be used to
complete the transfer. For example the problem may be solved for the case of three by the following
move sequence:

(A, C), (A, B), (C,B), (A C), (B,A), (B,(), (A, () (2.24)
where the ordered pair, (X,), indicates to take adisk from peg x and place it on peg y.

Figure 2.1 Tower of Hanoi Problem

The problem admits a nice recursive solution. The problem is solved in terms of n by noting that to move
n discsfrom A to C one can move n - 1 discs from A to B move the remaining disc from A to C and then
movethe n - 1 discsfrom B to C. Thisresultsin the relation for the number of steps, S(n), required for
sizenas

S(n) =285(n-1) +1 (2.25)

with the boundary conditions

S(1) =1 $(2) =3 (2.26)

javascript:displayWindow('images/02-12.jpg',498,199)
javascript:displayWindow('images/02-12.jpg',498,199)

Algorithms and Data Structures in C++:Algorithms

Eq. 2.25 admits a solution of the form

S(n) = A2 +B (2.27)

and matching the boundary conditionsin Eq. 2.26 one obtains

s(n) =2"-1 (2.28)

A growing field of interest is the visualization of algorithms. For instance, one might want to animate the
solution to the Tower of Hanoi problem. Each disc move resultsin anew picture in the animation. If one
Isto incorporate the pictures into a document then a suitable language for its representation is
PostScript.r Thisformat is supported by almost all word processors and as aresult is encountered
frequently. A program to create the PostScript® description of the Tower of Hanoi is shown in Code List
2.6 The program creates an encapsulated postscript file shown in Code List 2.7. The word processor used
to generate this book took the output of the program in Code List 2.7 and imported it to yield Figure 2.1!
This program illustrates many features of C++.

1PostScript® is atrademark of Adobe Systems Inc.

The program utilizes only a small set of the PostScript® language. This primitive subset is described in
Table 2.3.

Table 2.3 PostScript® — Primitive Subset

|Command IDescription

X setgray set the gray level to x.x = 1iswhiteand x = 0 is black. Thiswill affect
the fill operation.

Ixy scale scale the X dimension by x and scalethe Y dimension by .

Ix setlinewidth |set the linewidth to x.

|x y moveto]start a subpath and move to location x y on the page.

xyrlineto draw aline from current location (x,, y,) to (X, + X, y; +y). Make the
endpoint the current location. Appends the line to the subpath.

fill |close the subpath and fill the area enclosed.

Inewpath |create a new path with no current point.

|showpage |displays the page to the output device.

The program uses a number of classesin C++ which are derived from one another. Thisis one of the
most powerful concepts in object-oriented programming. The class structure isillustrated in Figure 2.2.

In the figure there exists a high-level base class called the graphic context. In atypical application a
number of subclasses might be derived from it. In this case the graphics context specifies the line width,
gray scale, and scale for its subsidiary objects. A derived class from the graphics context is the object
class. This class contains information about the position of the object. This attribute is common to objects
whether they are rectangles, circles, etc. A derived class from the object classis the rectangle class. For
this class, specific information about the object is kept which identifiesit with arectangle, namely the
width and the height. The draw routine overrides the virtual draw function for the object. The draw

Algorithms and Data Structures in C++:Algorithms

function in the object classis void even though for more complex examples it might have a number of
operations. The RECTANGLE classinherits all the functions from the GRAPHICS CONTEXT class
and the OBJECT class.

In the program, the rectangle class instantiates the discs, the base, and the pegs. Notice in Figure 2.1 that
the base and pegs are drawn in adifferent gray scale than the discs. Thisis accomplished by the two calls
in main():

* peg.set_gray(0.6)
» base.set_gray(0.6)

Any object of type RECTANGLE defaultsto aset_gray of 0.8 as defined in the constructor function for
the rectangle. Notice that peg is declared asa RECTANGLE and has access to the set_gray function of
the GRAPHICS CONTEXT. The valid operations on peg are:

* peg.set_line width(), from the GRAPHICS CONTEXT class
» peg.set_scale(), from the GRAPHICS CONTEXT class

» peg.set_gray(), from the GRAPHICS CONTEXT class

* peg.location(), from the OBJECT class

* peg.set_location(), from the RECTANGLE class

* peg.set_width(), from the RECTANGLE class

» peg.set_height(), from the RECTANGLE class

 peg.draw(), from the RECTANGLE class

The virtual function draw in the OBJECT classis hidden from peg but it can be accessed in C++ using
the scoping operator with the following call:

* peg.object::draw(), uses draw from the OBJECT class

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

Hence, in the program, al the functions are available to each instance of the rectangle created. This
availability arises because the functions are declared as public in each class and each derived classis also
declared public. Without the public declarations C++ will hide the functions of the base class from the
derived class. Similarly, the data the functions access are declared as protected which makes the data
visible to the functions of the derived classes.

Thefirst peg in the program is created with rectangle peg(80,0,40,180). The gray scalefor thispegis
changed from the default of 0.8 to 0.6 with peg.set_gray(0.6). The peg is drawn to the file with
peg.draw(file). This draw operation resultsin the following lines placed in thefile:

* newpath

1 setlinewidth
0.6 setgray

80 0 moveto
0 180 rlineto
40 O rlineto
0-180rlineto
o fill

The PostScript® action taken by the operation is summarized in Figure 2.3. Note that the rectangle in the
figureis not drawn to scale. The drawing of the base and the discs follows in an anal ogous fashion.

Code List 2.6 Program to Display Tower of Hanoi

Algorithms and Data Structures in C++:Algorithms

C++ Source

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
//This program creates an encapsulated postscript file
ffto draw the Tower of Hanoi
class graphics_context |
protected:
double line_w;
double x_scale, y_scale;
double gray;
public:
void set_line_width{double x=1.0) {line_w=x;};
void set_scale(double x=1.0, double y=1.0)
{ x_scale=x;y_scale=y; |,

void set_gray(double x=0.0) {gray=x;};

javascript:displayWindow('images/02-13.jpg',500,422)

Algorithms and Data Structures in C++:Algorithms

GRAPHICS_CONTEXT

functions

set_line_width
set_scale
sel_gray

OBJECT

_ virtual
function function

location draw

RECTANGLE

function

set_location
set width
set_height
draw

DERIVED
CLASS

DERIVED
CLASS

Figure 2.2 Class Structure

newpath
start new path - no current point

1 setlinewidth
set the hine width to 1

{80,0) current point

javascript:displayWindow('images/02-14.jpg',394,568)
javascript:displayWindow('images/02-14.jpg',394,568)
javascript:displayWindow('images/02-15.jpg',500,788)

Algorithms and Data Structures in C++:Algorithms

0.6 setgray
set the gray level to 0.6

80 0 moveto
start a new subpath
go to iocation 80 O

0 180 rlineto

draw a relative iine from
the currant point

add the line to the subpath

40 0 rlinelo]
draw a relative line from the

o the subpath

current point and add the line

0 =180 rlinato

point and add the line to the
subpalh

draw a relative line from the current

fill
close the subpath
and fill the area.

.

(80,180)
(80,0}
(120,180)
(80,0)
(80,0) (120,0)

180

Figure 2.3 PostScript Rendering

I C++ Source

| L

javascript:displayWindow('images/02-15.jpg',500,788)
javascript:displayWindow('images/02-15.jpg',500,788)
javascript:displayWindow('images/02-16.jpg',439,759)

Algorithms and Data Structures in C++:Algorithms

class object : public graphics_context |

i

protected:

double x_loc, y_loc;

public:

void location{double x=0.0, double y=0.0) | x_loc=x; y_loc=y; };

virtual void draw() | }:

class rectangle : public object {

protected:
double width, height;
public:
rectangle(double x=0.0, double y=0.0, double w=1.0,
double h=1.0) | x_loc=x; y_loc=y; width=w; height=h,
set_scale();
set_line_width();
set_gray(0.8);)
void set_location{double x, double y) | x_loc=x; y_loc=y; |;
void set_width{double w) | width=w; };
void set_height(double h} | height=h; };
void draw(ofstreamé& file)
|
file << “newpath™ << endl;
file << line_w << * setlinewidth”™ << endl;
file << gray << ™ setgray” << endl;
file << x_loc << ™ " << y_loc << ™ moveto” << endl;
file << “0* << height*y_scale << * rlineto” << endl;
file << width*x_scale << “ 0 rlineto” << endl;
file << “0* << -height*y_scale << * rlineto"” << endl;
file << “fill” << endl;
b

javascript:displayWindow('images/02-16.jpg',439,759)

Algorithms and Data Structures in C++:Algorithms

C++ Source

void main()
{
ofstream file(“tower.eps™.ios:;outlios: trunc);
if(!file)
{
cout << “Could not open file\n™;
retum;
)
// Add standard postscript header
file << *“%!PS-Adobe-2.0 EPSF-2.0" << endl;
file << *“%% BoundingBox: 0 0 300 90" << endl;
file << “%%Creator: Alan Parker” << endl;
file << "% %EndComments” << endl;
file << “(0.8 setgray™ << endl;
file << “0.5 0.5 scale” << end]l;
/f create the first peg and draw it
rectangle peg(80,0,40,180);
peg.set_gray((.6); .
peg.draw(file);
peg.set_location(280,0);
peg.draw(file);
peg.set_location(480,0);
peg.draw(file);
{! create the base
rectangle base({0,0,600,20);
base.set_gray(0.6);
base.draw(file);
{f create the disc and draw it
rectangle disc(20,20,160,20%;
disc.draw(file);
disc.set_location(40,40);
disc.set_width(120);

javascript:displayWindow('images/02-17.jpg',400,694)

Algorithms and Data Structures in C++:Algorithms

C++ Source

disc.draw(hile);

disc.set_location(60,60);

disc_set_width(80);

disc.draw(file);

/f Close file with standard trailer

file << “showpage” << endl << “%%Trailer” << endl;
file.close();

Code List 2.7 File Created by Program in Code List 2.6

File Tower.eps
%!PS-Adobe-2.0 EPSF-2.0
%% BoundingBox: 00 300 90
%% Creator: Alan Parker
0% EndComments

0.8 setgray

0.5 0.5 scale

newpath

1 setlinewidth

0.6 setgray

80 () moveto

0 180 rlineto

40 0 rlineto

0 -180 rlineto

fill

newpath

1 setlinewidth

0.6 setgray

280 0 moveto

0 180 rlineto

javascript:displayWindow('images/02-18.jpg',400,192)
javascript:displayWindow('images/02-19.jpg',200,521)

Algorithms and Data Structures in C++:Algorithms

\| 40 0 rlineto |

File Tower.eps
0 —180 rlineto
fill

newpath

1 setlinewidth
0.6 setgray
480 0 moveto
0 180 rlineto
40 0 rlineto

(0 <180 rlineto
fill

newpath

1 setlinewidth
0.6 setgray

0 0 moveto

() 20 rlineto
600 0 rlineto
() =20 rlineto
fill

newpath

| sethinewidth
(.8 setgray

20 20 movero
(0 20 rlineto
160 O rlineto
{0 =20 rlineto
fill

newpath

| sethnewidth

javascript:displayWindow('images/02-19.jpg',200,521)
javascript:displayWindow('images/02-20.jpg',195,789)

Algorithms and Data Structures in C++:Algorithms
(0.8 setgray
40 40 moveto
{0 20 rlineto
120 0 rlineto

File Tower.eps
0 =20 rlineto
fill

newpath

1 setlinewidth
0.8 setgray
60 60 moveto
0 20 rlineto
80 O rlineto

0 -20 rlineto
fill

showpage
%% Trailer

2.3.5 Boolean Function Implementation

This section presents a recursive solution to providing an upper bound to the number of 2-input NAND
gates required to implement a boolean function of n boolean variables. The recursion is obtained by
noticing that afunction, f(x;,x,....,X;,) of n variables can be written as

FlxXe onX) =X 20X 0nX,) +X (X, ..00% _,) (2.29)
for some functions g and h of n - 1 boolean variables. The implementation isillustrated in Figure 2.4.

The number of NAND gates thus required as afunction of n, C (n), can be written recursively as.

C(n) =2C(n-1) +4 (2.30)

javascript:displayWindow('images/02-20.jpg',195,789)
javascript:displayWindow('images/02-21.jpg',247,398)

Algorithms and Data Structures in C++:Algorithms

The solution to the simple recurrence relation yields, assuming a general form of C(n) = »" followed by a
constant to obtain the particular solution

C(n) = A2 +B (2.31)
Applying the boundary condition C (1) = 1 and C (2) = 6 one obtains

(X, ... — J ||
{-I] xn—l} f[xlp i IH}
xn_: E)
- & T, SR B

Figure 2.4 Recursive Model for Boolean Function Evaluation
C(n) =5(2") -4 (2.32)
2.4 Graphs and Trees

This section presents some fundamental definitions and properties of graphs.
Definition 2.7
A graphisacollection of vertices, V, and associated edges, E, given by the pair

G = (V,E) (2.33)
|
A simple graph is shown in Figure 2.5.

In the figure the graph shown has
V= {v,vun} (2.34)

E={ (“p 'l-’z}m (v "’3): (v v)} (2.33)

javascript:displayWindow('images/02-22.jpg',495,281)
javascript:displayWindow('images/02-22.jpg',495,281)

Algorithms and Data Structures in C++:Algorithms

Edge

{FT '|,r3}

v

Figure2.5 A Simple Graph

Definition 2.8

The size of agraph isthe number of edgesin the graph
size (G) = |E|

|

Definition 2.9

The order of agraph G isthe number of verticesin agraph
order (G) = |V
4
For the graph in Figure 2.5 one has
size(G) = 2 order(G) =3
Definition 2.10

(2.36)

(2.37)

(2.38)

The degree of avertex (also referred to as anode), in agraph, isthe number of edges containing the

vertex.

|
Definition 2.11

Inagraph, G = (V, E), two vertices, v, and v,, are neighbors if

(Vi,v,) Eor(vy,v,) E

O

In the graph in Figure 2.5 v, and v, are neighbors but v, and v, are not neighbors.

javascript:displayWindow('images/02-23.jpg',442,206)
javascript:displayWindow('images/02-23.jpg',442,206)

Algorithms and Data Structures in C++:Algorithms

Definition 2.12

If G=(V,, E)) isagraph, then H = (V,, E,) isasubgraph of G written CirSad.
4
A subgraph of the graph in Figure 2.5 is shown in Figure 2.6.

r
L |

Figure 2.6 Subgraph of Graphin Figure 2.5
The subgraph is generated from the original graph by the deletion of a single edge (v,, Vs).
Definition 2.13

A path isacollection of neighboring vertices.

)
For the graph in Figure 2.5 avalid path is

path = (v, v, v3) (2.39)
Definition 2.14

A graph is connected if for each vertex pair (v;,v)) there is a path from v, to v.
)
The graph in Figure 2.5 is connected while the graph in Figure 2.6 is disconnected.

Definition 2.15

A directed graph is a graph with vertices and edges where each edge has a specific direction relative to
each of the vertices.

)
An example of adirected graph is shown in Figure 2.7.

javascript:displayWindow('images/02-24.jpg',448,204)
javascript:displayWindow('images/02-24.jpg',448,204)

Algorithms and Data Structures in C++:Algorithms

v ¥q

Figure 2.7 A Directed Graph
The graph in the figure has G = (V, E) with
V= {"']1 Vs 1"3} (2.40)

E . {{vp pz]'l [1"2! 1"'3}:! {vj'l Pz}'l [PE!‘“}} {2'11}

In adirected graph the edge (v;, V) is not the same as the edge (v, v)) wheni * j. The same terminology G
= (V, E) will be used for directed and undirected graphs; however, it will always be stated whether the
graph isto be interpreted as a directed or undirected graph.

The definition of path appliesto a directed graph also. As shown in Figure 2.8 there is a path from v, to
v, but there is no path from v, to v,

Figure 2.8 Pathsin aDi r-écted“Graph

A number of paths exist from v, to v,, namely

pl o (1'1: Vay Vo -"’4] Py = (pp Va,]'"4] Py ™ {pp 1"4] (2.42)

javascript:displayWindow('images/02-25.jpg',442,216)
javascript:displayWindow('images/02-25.jpg',442,216)
javascript:displayWindow('images/02-26.jpg',439,197)
javascript:displayWindow('images/02-26.jpg',439,197)

Algorithms and Data Structures in C++:Algorithms

Previous

Table of Contents

Next

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

Definition 2.16

A cycleisapath from avertex to itself which does not repeat any vertices except the first and the last.
|

A graph containing no cyclesis said to be acyclic. An example of cyclic and acyclic graphsis shown in
Figure 2.9.

An Undirected Acyclic Graph

(=0

A Directed Acyclic Graph
(DAG)

A Directed Cyclic Graph

Figure2.9 Q/clié and Acyclic Graphs

Notice for the directed cyclic graph in Figure 2.9 that the double arrow notations between nodes v, and v,
indicate the presence of two edges (v,, v,) and (v,, V,). In this case it is these edges which form the cycle.

Definition 2.17

javascript:displayWindow('images/02-27.jpg',446,382)
javascript:displayWindow('images/02-27.jpg',446,382)

Algorithms and Data Structures in C++:Algorithms

A treeisan acyclic connected graph.

A

Examples of trees are shown in Figure 2.10.

Definition 2.18

An edge, e, in aconnected graph, G = (V, E), isabridge if G2 = (V, E2) is disconnected where

E'=E-e (2.43)

(a) (b)

Figure 2.10 Trees

O

If the edge, €, isremoved, the graph, G, is divided into two separate connected graphs. Notice that every
edgein atreeisabridge.

Definition 2.19

A planar graph is agraph that can be drawn in the plane without any edges intersecting.
)

An example of aplanar graph is shown in Figure 2.11. Notice that it is possible to draw the graph in the
plane with edges that cross although it is still planar.

Definition 2.20
The transitive closure of a directed graph, G = (V,, E,) isagraph, H = (V,, E,), such that,

javascript:displayWindow('images/02-28.jpg',446,300)
javascript:displayWindow('images/02-28.jpg',446,300)

Algorithms and Data Structures in C++:Algorithms

V, =V, (2.44)

Figure2.11 Planar Graph
E, =f{V1,E|} (2.45)
where f returns a set of edges. The set of edgesis asfollows:
(v, vy) € f(V,E|) if there is a path from v, to v, (2.46)
M

Thusin Eq. 2.45, =2 Transitive closure isillustrated in Fi gure 2.12.

Graph Transitive Closure

Fi gure 2.12 Transitive Closure of a Graph

javascript:displayWindow('images/02-29.jpg',444,188)
javascript:displayWindow('images/02-29.jpg',444,188)
javascript:displayWindow('images/02-30.jpg',442,233)
javascript:displayWindow('images/02-30.jpg',442,233)

Algorithms and Data Structures in C++:Algorithms

2.5 Parallel Algorithms
This section presents some fundamental properties and definitions used in parallel processing.

2.5.1 Speedup and Amdahls Law

Definition 2.21

The speedup of an algorithm executed using n parallel processorsisthe ratio of the time for execution on
asequential machine, Tg, to the time on the parallel machine, Tppg:

(2.47)

O

If an algorithm can be completely decomposed into n parallelizable units without loss of efficiency then
the Speedup obtained is

Tseq
Tseo

f

Speedup (n) = A (2.48)

If however, only afraction, f, of the algorithm is parallelizable then the speedup obtained is

T
Speedup (n) = “‘j, = 2 - (2.49)
] - +—JT 1-f+=
(a-n+l)rg, 1-741
which yields
lim (Speedup (n)) = i_]_f {2.50)

Thisis known as Amdahl's Law. The ratio shows that even with an infinite amount of computing power
an algorithm with a sequential component can only achieve the speedup in Eq. 2.50. If an algorithm is
50% sequential then the maximum speedup achievableis 2. While this may be a strong argument against
the merits of parallel processing there are many important problems which have aimost no sequential
components.

Definition 2.22

The efficiency of an algorithm executing on n processorsis defined as the ratio of the speedup to the
number of processors:

Algorithms and Data Structures in C++:Algorithms

Efficiency (n) = piceaay Un) (2.51)
n
3
Using Amdahl's law
1
Efficiency (n) = 2.52
y (n) T (2.52)
with
lim (Efficiency (n)) = 0 when f# 1 (2.53)

i e o
2.5.2 Pipelining

Pipelining is a means to achieve speedup for an algorithm by dividing the algorithm into stages. Each
stage isto be executed in the same amount of time. The flow is divided into k distinct stages. The output
of the jth stage becomes the input to the (j + 1) th stage. Pipelining isillustrated in Figure 2.13. As seen
in the figure the first output is ready after four time steps Each subsequent output is ready after one
additional time step. Pipelining becomes efficient when more than one output is required. For many
algorithms it may not be possible to subdivide the task into k equal stages to create the pipeline. When
thisis the case a performance hit will be taken in generating the first output asillustrated in Figure 2.14.

Input . Output
——»{A (B C|Df—
—b A B | C i b p——
| A|lB|C|D
Input 4 T =
——»{ A|B|C D |

Figure 2.13 A Four Stage Pipeline

javascript:displayWindow('images/02-31.jpg',449,186)
javascript:displayWindow('images/02-31.jpg',449,186)

Algorithms and Data Structures in C++:Algorithms

T,E'EEI'
Tps Tpg Tpg Tps
o -
T ok

Figure 2.14 Pipelining

In the figure Ty isthe time for the algorithm to execute sequentially. Tpgis the time for each pipeline
stage to execute. T, iSthe time to flow through the pipe. The calculation of the time complexity
sequence to process n inputs yields

TSEQ{H) = nTsEQ (2.54)
Topg (0} = KToc+ (n—1) T, (2.55)
for ak-stage pipe. It follows that Tppe (N) < T (N) When
T,.(k—1)
i (2.56)
TSEQ = Tps

The speedup for pipelining is

Te. (n) T
S(n) = SEQ _ SEQ @.57)
Tpipe(n) (k=1)Tpg

javascript:displayWindow('images/02-32.jpg',497,260)
javascript:displayWindow('images/02-32.jpg',497,260)

Algorithms and Data Structures in C++:Algorithms

M
o { l", n< 10

€, HEIGW

50

fz _ { 'EJ'I1 ne ID:‘i[I
I, nz10

f€0(e) and fr€ O(1)

Example 2.6 Order
which yields

LA PS

(2.58)

In some applications it may not be possible to keep the pipeline full at all times. This can occur when
there are dependencies on the output. Thisisillustrated in Example 2.7. For this case let us assume that
the addition/subtraction operation has been set up as a pipeline. The first statement in the pseudo-code
will cause the inputs x and 3 to be input to the pipeline for subtraction. After the first stage of the pipeline
Is complete, however, the next operation is unknown. In this case, the result of the first statement must be
established. To determine the next operation the first operation must be allowed to proceed through the
pipe. After its completion the next operation will be determined. This process is referred to flushing the

pipe. The speedup obtained with flushing is demonstrated in Example 2.8.

1 If x> 3 then

. y=y+4
else

2 y=y-2

Example 2.7 Output Dependency PseudoCode

javascript:displayWindow('images/02-33.jpg',444,224)
javascript:displayWindow('images/02-33.jpg',444,224)
javascript:displayWindow('images/02-34.jpg',447,159)
javascript:displayWindow('images/02-34.jpg',447,159)

Algorithms and Data Structures in C++:Algorithms

Determine the speedup, in the limit, for a k-stage pipe over a sequential
algorithm if the pipe has to be flushed 40% of the time.

Solution:

Toper (1) = (040 kT g+ (0.60) T

Teopn (1) 7
S(n) = SEQ N _ SEQ s
Topp () Tpc (0.4k 4 0.6)

Example 2.8 Pipelining

2.5.3 Parallel Processing and Processor Topologies

There are anumber of common topologies used in parallel processing. Algorithms are increasingly being
developed for the parallel processing environment. Many of these topologies are widely used and have
been studied in great detail. The topologies presented here are

 Full Crossbar

» Rectangular Mesh

» Hypercube

» Cube-Connected Cycles

Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/02-35.jpg',445,223)
javascript:displayWindow('images/02-35.jpg',445,223)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

2.5.3.1 Full Crossbar

A full crossbar topology provides connections between any two processors. Thisis the most complex
connection topology and requires (n (n- 1) / 2 connections. A full crossbar is shown in Figure 2.15.

In the graphical representation the crossbar has the set, V, and E with

Each processor has a connection
to every other processor,

Figure 2.15 Full Crossbar Topology
V={p,0<i<n} (2.59)
E = {{pl.,pj],ﬂﬂi{n,ﬂﬂjﬂn} (2.60)
Because of the large number of edges the topology isimpractical in design for large n.
2.5.3.2 Rectangular Mesh

A rectangular mesh topology isillustrated in Figure 2.16. From an implementation aspect the topology is
easily scalable. The degree of each node in arectangular mesh is at most four. A processor on the interior
of the mesh has neighbors to the north, east, south, and west. There are several ways to implement the
exterior nodesiif it is desired to maintain that all nodes have the same degree. For an example of the
external edge connection see Problem 2.5.

2.5.3.3 Hypercube

A hypercube topology is shown in Figure 2.17. If the number of nodes, n, in the hypercube satisfiesn =
24 then the degree of each nodeisd or log (n). Asaresult, as n becomes large the number of edges of

javascript:displayWindow('images/02-36.jpg',448,182)
javascript:displayWindow('images/02-36.jpg',448,182)

Algorithms and Data Structures in C++:Algorithms

each node increases. The magnitude of the increase is clearly more manageable than that of the full
crossbar but it can still be a significant problem with hypercube architectures containing 64K nodes. Asa
result the cube-connected cycles, described in the next section, becomes more attractive due to its fixed
degree.

The vertices of an n dimensional hypercube are readily described by the binary ordered pair

(o Xy -y Xy_) X; € {0, 1} (2.61)

Figure2.16 Rectangular Mesh

With this description two nodes are neighbors if they differ in their representation in one location only.
For example for an 8 node hypercube with nodes enumerated

(0,0,0) (0,0,1) (0,1,0) (0,1, 1)
(1,0,0) (1,0,1) (1, 1,0) (1,1, 1)

processor (0, 1, 0) has three neighbors:

(0,1, 1) (0,0,0) (1, 1,0

(2.62)

javascript:displayWindow('images/02-37.jpg',446,206)
javascript:displayWindow('images/02-37.jpg',446,206)

Algorithms and Data Structures in C++:Algorithms

Figure 2.17 Hypercube Topology
2.5.3.4 Cube-Connected Cycles

A cube-connected cycles topology is shown in Figure 2.18. Thistopology is easily formed from the
hypercube topology by replacing each hypercube node with a cycle of nodes. As aresult, the new
topology has nodes, each of which, has degree 3. This has the look and feel of a hypercube yet without
the high degree. The cube-connected cycles topology has nlog n nodes.

/’O

javascript:displayWindow('images/02-38.jpg',446,266)
javascript:displayWindow('images/02-38.jpg',446,266)
javascript:displayWindow('images/02-39.jpg',447,315)

Algorithms and Data Structures in C++:Algorithms

Figure 2.18 Cube-Connected Cycles

2.6 The Hypercube Topology

This section presents algorithms and issues related to the hypercube topology. The hypercubeis
important due to its flexibility to efficiently ssmulate topologies of asimilar size.

2.6.1 Definitions
Processors in a hypercube are numbered 0, ..., n- 1. Thedimension, d, of ahypercube, is given as
d = logn (2.63)

where at this point it is assumed that n is apower of 2. A processor, X, in a hypercube has a
representation of

X = (X Xps erns Xy o) X; € {0, 1} (2.64)

For a simple example of the enumeration scheme see Section 2.5.3.3 on page 75. The distance, d (X, y),
between two nodes x and y in ahypercubeis given as

d-1
d(xy) = Y |x-y (2.65)
k=0

The distance between two nodes is the length of the shortest path connecting the nodes. Two processors,
x and y are neighborsif d (X, y) = 1. The hypercubes of dimension two and three are shown in Figure
2.19.

2.6.2 Message Passing

A common requirement of a parallel processing topology is the ability to support broadcast and message
passing algorithms between processors. A broadcast operation is an operation which supportsasingle
processor communicating information to al other processors. A message passing algorithm supports a
single message transfer from one processor to the next. In all cases the messages are required to traverse
the edges of the topology.

To illustrate message passing consider the case of determining the path to send a message from processor
0 to processor 7 in a 3-dimensional hypercube as shown in Figure 2.19. If the message isto traverse a
path which is of minimal length, that isd (0, 7), then it should travel over three edges. For this case there
are six possible paths:

javascript:displayWindow('images/02-39.jpg',447,315)

Algorithms and Data Structures in C++:Algorithms

000 -001-011-111
000 - 001 - 101 =111
000 -010-011-111
000 -010-110-111
000 - 100 - 101 =111
000-100-110-111

00 01
10 11
010

000 001

011
100
110 111
101

Figure 2.19 Hypercube Architecture

javascript:displayWindow('images/02-40.jpg',444,503)
javascript:displayWindow('images/02-40.jpg',444,503)

Algorithms and Data Structures in C++:Algorithms

In general, in a hypercube of dimension d, a message travelling from processor x to processor y has d (X,
y) ! distinct paths (see Problem 2.11). One simple agorithm is to compute the exclusive-or of the source
and destination processors and traverse the edge corresponding to complementing the first bit that is set.
Thisisillustrated in Table 2.4 for left to right complementing and in Table 2.5 for right to left
complementing.

Table 2.4 Calculating the M essage Path — L eft to Right

| Processor Source | Processor Destination | Exclusive-Or | Next Processor

| 000 | 111 | 111 | 100

| 100 | 111 | 011 | 110

| 110 | 111 | 001 | 111
Table 2.5 Calculating the Message Path — Right to Left

| Processor Source | Processor Destination | Exclusive-Or | Next Processor

| 000 | 111 | 111 | 001

| 001 | m | 110 | 011

| 011 | 111 | 100 | 111

The message passing algorithm still works under certain circumstances even when the hypercube has
nodes that are faulty. Thisis discussed in the next section.

2.6.3 Efficient Hypercubes

This section presents the analysis of the class of hypercubes for which the message passing routines of
the previous section are valid. Examples are presented in detail for an 8-node hypercube.

2.6.3.1 Transitive Closure

Definition 2.23

The adjacency matrix, A, of agraph, G, isthe matrix with elements a; such that a; = 1 impliesthereisan
edgefromi toj. If thereis no edge then a; = 0.

O

The adjacency matrix, A, of the transitive closure of the 8-node hypercube is simply the matrix

=

(2.66)

e e e e e s
e e e e B S S
— e e e b e S s

]
1
1
1
1
1
1
1

- e e s e

1
1
1
1
1
1
1
[

T T
|—|-—|-|-|—||-|-|-|—-r-|—-_|

Algorithms and Data Structures in C++:Algorithms

For a hypercube with all functional nodes every processor is reachable.

Previous|Table of Contents|Next

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

2.6.3.2 Least-Weighted Path-Length

Definition 2.24

The least-weighted path-length graph is the directed graph where the weights of each edge correspond to
the shortest path-length between the nodes.

O

The associated weighted matrix consists of the path-length between the nodes. The path-length between a
processor and itself is defined to be zero. The associated weighted matrix for an 8-node hypercube with
all functional nodesis

lor1121223
10212132
12012312
a_|21103221 (2.67)
12230112
2132102 1|
23121201
32212110

a,; isthe distance between nodesi and j. If nodesi and j are not connected via any path then a; = .

2.6.3.3 Hypercubes with Failed Nodes

This section introduces the scenario of failed processors. It is assumed if a processors or node fails then
all edgesincident on the processor are removed from the graph. The remaining processors will attempt to
function as a working subset while still using the message passing algorithms of the previous sections.
Thiswill lead to a characterization of subcubes of a hypercube which support message passing. Consider
the scenario illustrated in Figure 2.20. In the figure there are three scenarios with failed processors.

In Figure 2.20b a single processor has failed. The remaining processors can communicate with each other
using a simple modification of the algorithm which traverses the first existing edge encountered.

Similarly, in Figure 2.20c communication is still supported via the modified algorithm. Thisisillustrated
in Table 2.6. Notice that in Table 2.6 the next processor after 000 was 001. For the topology in the figure
the processor did not exist so the algorithm proceeded to the next bit from right to left which gave 010.
Since this processor existed the message was sent along the path.

Algorithms and Data Structures in C++:Algorithms

0 1
2
4 e
6
a) all processors functional b) processor 7 fails

: ®
) &

4 a5
l ;
: O—C

c) processaors 6,1 fail d) processors 1,2 fail

Figure 2.20 Hypercube with Failed Nodes
Table 2.6 Calculating the Message Path — Right to Left for Figure 2.20c

| Processor Source | Processor Destination | Exclusive-Or | Next Processor
| 000 | 111 | 111 | 010
| 010 | 111 | 101 | 011
| 011 | 111 | 100 | 111

The scenario in Figure 2.20d is quite different. Thisisillustrated in Table 2.7.

In this case, the first processor considered to is 001 but it is not functional. Processor 010 is considered
next but it is not functional. For this case the modified algorithm has failed to route the message from
processor 000 to 011. There exists a path from 000 to 011 one of which is

javascript:displayWindow('images/02-41.jpg',440,516)
javascript:displayWindow('images/02-41.jpg',440,516)

Algorithms and Data Structures in C++:Algorithms

000-100-101-111-011

Notice that the distance between the processors has increased as a result of the two processors failures.
This attribute is the motivation for the characterization of efficient hypercubes in the next section.

Table 2.7 Calculating the Message Path — Right to Left for Figure 2.20d

| Processor Source | Processor Destination | Exclusive-Or | Next Processor
| 000 ’ 011 | 011 | ?

2.6.3.4 Efficiency

Definition 2.25

A subcube of ahypercube is efficient if the distance between any two functional processorsin the
subcube is the same as the distance in the hypercube.

O

A subcube with this property is referred to as an efficient hypercube. Thisis equivalent to saying that if A
represents the least-weighted path-length matrix of the hypercube and B represents the |east-weighted
path-length matrix of the efficient subcube then if i and j are functional processors in the subcube then by,

= ;. This elegant result is proven in Problem 2.20. The least-weighted path-length matrix for efficient
hypercubes place incolumni and row i if processor i isfailed.

The cubes in Figure 2.20b and c are efficient while the cube in Figure 2.20d is not efficient. If the cubeis
efficient then the modified message passing algorithm in the previous section works. The next section
implements the procedure for hypercubes with failed nodes.

2.6.3.5 Message Passing in Efficient Hypercubes

The code to simulate message passing in an efficient hypercube is shown in Code List 2.8. The output of
the program is shown in Code List 2.9. The path for communicating from O to 63 is given as
0-1-3-7-15-31-63 as shown in Code List 2.9. Subsequently processor 31 is deactivated and a new path is
calculated as 0-1-3-7-15-47-63 which avoids processor 31 and traverses remaining edges in the cube.
The program continues to remove nodes from the cube and still calculates the path. All the subcubes
created result in an efficient subcube.

CodeList 2.8 Message Passing in an Efficient Hypercube

C++ Source Code
#include <iostream. h>

#define TRUE 1
#define FALSE ()
#tdefine ACTIVE 1

javascript:displayWindow('images/02-42.jpg',425,784)

Algorithms and Data Structures in C++:Algorithms

#define INACTIVE O
#define NO_PROCESSORS 64
#define DIMENSION 6
class node |
private:
int number;
int status;
public:
node(int num={) { number=0; status=ACTIVE;};
int proc_num() | return number; };
int pstatus() [return status; };
void set_status{int stat) { status=stat; };

void set_numiint num) { number = num; |;

node hyp[NO_PROCESSORS];

void path_cale(node pl, node p2)

{

int p3;

int edge;

int 1,],2;

int ex_or;

p3=pl.proc_num();

edge =1;

cout << “Calculating path from * << pl_proc_num() <<

1o << p2.proc_num() << endl;

C++ Source Code

cout << pl.proc_num() << “ *;
for(j=0;j<DIMENSION;j++) {

javascript:displayWindow('images/02-42.jpg',425,784)
javascript:displayWindow('images/02-43.jpg',425,783)

Algorithms and Data Structures in C++:Algorithms

ex_or=p3*p2.proc_num();

edge=1;

Z=CX_0T,

for(i=0;i<DIMENSION;i++)
|
if((2%62==1)&& (hyp[p3“edge]).pstatus()==ACTIVE) {
cout << hyp[p3tedge].proc_num() << *;

p3=p3tedge.
break;
}

edge*=2,;

z=>>1;

|

!

cout << ** Inactive Processors: **;
for(j=0; j<NO_PROCESSORS; j++) if (hyplj].pstatus()==INACTIVE)

cout << hyp[j].proc_num() << **;

cout << endl
= L e s e S o e e e e sle e e ofe e e e e e e e e e o e i e e e e e e e ol e 0 o o o o T

< e e o o e e 00 o o o o o o o e o ok oY

<< endl;
)i
void init_cube()
l
int i;
for(i=0:i<NO_PROCESSORS;i++) hyp[i].set_num(i);
H
void main()
{

init_cube();

javascript:displayWindow('images/02-43.jpg',425,783)

Algorithms and Data Structures in C++:Algorithms

C++ Source Code

path_calc(hyp[0]Lhyp[63]);
hyp[31].set_status(INACTIVE);
path_cale(hyp[0],hyp[63]);
hyp[15].set_status(INACTIVE),
path_calc(hyp[0].hyp[63]);
hyp[1].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
hyp[2].set_status(INACTIVE);
path_calc(hyp[0].hyp[63]);
hyp[7].set_status(INACTIVE);
hyp[23].set_status(INACTIVE);
hyp[55].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
path_calc(hyp[42],hyp[6]);

b

CodeList 2.9 Output of Program in Code List 2.8

javascript:displayWindow('images/02-44.jpg',457,412)

Algorithms and Data Structures in C++:Algorithms

C++ Output
Calculating path from 0 to 63
01371531 63 Inactive Processors:

e e e e e e e e e e e e e e e e e o e e e e e o e e e e e e e e o e e e e e e e e e e e e e ok e

Calculating path from 0 to 63

0137154763 Inactive Processors: 31

o ol o 0 ol 3 e o ol o ol e o ol e e e e o o o e o o o o e e o o e o o oo e e o o o o e o
Calculating path from 0 to 63

01372355 63 Inactive Processors: 15 31

e ofe e e e e i e e e e ke e ke ok ek e e ko ek ek ek ko ko ke ke ke ke ke sk ek bk ko kk k k k ko kk k
Calculating path from 0 to 63

0023723 55 63 Inactive Processors: 1 15 31

e e e ol o o o o o s e e o o oo e e e o o o ol e e o e e o o o ol e o e ol ol ol o oo ol e oo il e ol ol ol ol e e e e e ol ol e o ke e

Calculating path from 0 to 63

C++ Output
0457235563 Inactive Processors: 1 2 15 31

e ol ke e s e e o o o ol e ok o e o e o ol o ol ol okl e e e e ol ol o ok ol o ol ol e o ool oo o ol o o e ol ol ol o e o o e ol e o o
Calculating path from 0 to 63

045132961 63 Inactive Processors: 1 27 1523 31 55

EEREEF LR RS EE RS R R EEEERREREREE R EEEE R R R EEEEECECE R CEE R R R,
Calculating path from 42 10 6

42 46 38 6 Inactive Processors: 127 1523 31 55

T T T T P P P Y P T T T T T I T T I T o TS

2.6.4 Visualizing the Hypercube: A C++ Example

This section presents a C++ program to visualize the hypercube. A program to visualize the cubeis
shown in Code List 2.10. The program was used to generate the PostScript image in Figure 2.21 for a 64
node hypercube. The program uses a class structure similar to the program to visualize the Tower of
Hanoi in Code List 2.6.

The program introduces a new PostScript construct to draw and fill acircle

Xy radiusanglel angle2 arc

javascript:displayWindow('images/02-45.jpg',447,325)
javascript:displayWindow('images/02-46.jpg',448,211)

Algorithms and Data Structures in C++:Algorithms

The program uses the scale operator to force the image to fill a specified area. To illustrate this, notice
that the program generated both Figure 2.21 and Figure 2.22. The nodes in Figure 2.22 are enlarged via
the scale operator while the nodes in Figure 2.21 are reduced accordingly.

The strategy in drawing the hypercube is such that only at most two processors appear in any fixed
horizontal or vertical line. The cube is grown by replications to the right and downward.

1
e

|
\
1

11
11
|

—

Figure 2.21 A 64-Node Hypercube
CodeList 2.10 C++ Codeto Visualize the Hypercube

javascript:displayWindow('images/02-47.jpg',429,423)
javascript:displayWindow('images/02-47.jpg',429,423)

Algorithms and Data Structures in C++:Algorithms

C++ Code

#include <iostream.h>
#include <iomanip.h>

#include <fstream.h>

#include <math.h>

#define NO_PROCESSORS 64
#define DIMENSION 6
#define RIGHT 1

ole
%’

Figure 2.22 An 8-Node Hypercube

javascript:displayWindow('images/02-48.jpg',448,198)
javascript:displayWindow('images/02-49.jpg',427,406)
javascript:displayWindow('images/02-49.jpg',427,406)

Algorithms and Data Structures in C++:Algorithms

C++ Code

#define DOWN 0

class cube
|
public:
int x; int v,

class graphics_context {

protected:
double line_w:

C++ Code

double x_scale, y_scale;
double gray;
public:
void set_line_width(double x=1.0) {line_w=x;};
void set_scale{double x=1.0, double y=1.0)
{x_scale=x;y_scale=y;]
void set_gray(double x=0.0) {gray=x;];
h

class object : public graphics_context {
protected:
double x_loc, y_loc;

public:
void location(double x=0.0, double y=0.0)
{ x_loc=x; y_loc=y; };

double xlocation() | return x_loc; }:

javascript:displayWindow('images/02-50.jpg',450,295)
javascript:displayWindow('images/02-51.jpg',427,760)

Algorithms and Data Structures in C++:Algorithms

double ylocation() | return y_loc; |;

b

class node : public object |

protected:

double radius;

private:
int number;

public:

node(int num=0, double x=0.0, double y=0.0, double r=0.5)

{ number=num;

x_loc=x; y_loc=y; radius=r;
set_scale();
set_line_width();
set_gray();

C++ Code

B
int proc_num()} { return number; };
void set_num({int num) [number = num; };
void set_location(double x, double ¥) | x_loc=x; y_loc=y; |;
void set_radius(double r) | radius=r; };
void draw(ofstreamd& file)

{

file << “newpath™ << endl;

file << line_w << * setlinewidth™ << endl;

file << gray << * setgray” << endl;

file << x_loc << ** << y_loc << * << radius <<
* 0360 arc fill” << endl;

e hoam TR DNGWDOOOD 0T,

javascript:displayWindow('images/02-51.jpg',427,760)
javascript:displayWindow('images/02-52.jpg',425,757)

Algorithms and Data Structures in C++:Algorithms
LELIG LY PP AW I PR Do A Tl |

int p2{int x}
{
return (int) pow(2.0,(double) x);

b
void 1nit_cube()

|
int i;
int dim. line processor;
int translation;
int direction=RIGHT;
cube temp[NO_PROCESSORS];
for(i=0;i<NO_PROCESSORS;i++) hyp[i].set_numii);
hyp[0].set_location{1,1);
hyp[1].set_location{2,1);
hyp[2].set_location(1,2);

hyp(3].set_location(2,2);

C++ Code

for(i={k1<NO_PROCESSORS;i++)
|
temp[1]. x=hyph].xlocation();
templi]. y=hyplil.ylocationd);
|
for(dim=3:dim<=DIMENSION:dim++) |
translation=1;
for(line=1;line<=p2{dim-1):line++)
|
for{processor={);processor<p2{dim-1);processor++)
|
if{direction==RIGHT)
ifthyp[processor].ylocation()==ling)

javascript:displayWindow('images/02-52.jpg',425,757)
javascript:displayWindow('images/02-53.jpg',447,796)

Algorithms and Data Structures in C++:Algorithms
temp|processor]. y=translation++;
if(direction=DOWN)
if(hyplprocessor].xlocation()==line)

temp|processor]. x=translation++;

)
if{direction=RIGHT)
1
for(i=0;i<p2{dim—1);i++)
I
temp[i+p2(dim—1)].x=temp[i].x+p2(dim-2);
temp[i+p2(dim—1)].y=templ[i].y;
I
}
if{direction==D0WN)
4
for(i=0;1<p2{dim-1);i++)
|
temp[i+p2{dim—1)].y=temp[i].y+p2({dim-2);

C++ Code

templi+p2{dim—1)].x=temp[i].x:
}
I
direction={direction+1)%2;
for(i=0;1<NO_PROCESSORS;i++)
hyp[i].set_location(temp(i].xtemp[i].y);

voild drawline(ofstreamd file, int 1, int)

javascript:displayWindow('images/02-53.jpg',447,796)
javascript:displayWindow('images/02-54.jpg',424,755)

Algorithms and Data Structures in C++:Algorithms

1

file << hyp[i].xlocation() << * * << hyp[i].ylocation()
<< " moveto” << endl;

file << hyp|j].xlocation() << * * << hyp[j].ylocation()

<< * lineto stroke™ << endl;

void render_cube(ofstream&: file)

{

int i;

for(i=0;1<p2{ DIMENSION);i++)

!

int k=1,j;

fm{j:ﬂ;j{D]hTENSIDN;j-I—I—H
drawline{file,i,i"k);
k*=2;
}

for(i=0;i<NO_PROCESSORS;1++)
hypli].draw(file});
|

void main()

javascript:displayWindow('images/02-54.jpg',424,755)

Algorithms and Data Structures in C++:Algorithms

C++ Code

|
init_cube();
ofstream file(“hyperl.ps",ios::outlios::trunc);
if(!file)
{
cout << “Could not open file\n™;
retum;
)
/f Add standard postscript header
file << “%!PS-Adobe=2.0 EPSF-2.0" << endl;
file << “%%BoundingBox: 0 0 300 300" << endl;
file << "% %Creator: Alan Parker” << endl;
file << “%%EndComments” << endl;
fhle << "0.0 setgray™ << endl;
double scale = 300.0/(pow(2.0,DIMENSION-1)+2.0);
file << scale << ™ * << scale << * scale™ << endl;
file << 1.5/scale << * setlinewidth” << endl;
render_cube(file):
file << “showpage™ << endl << “%%Trailer” << endl;

file.close();

Code List 2.11 Output of Program in Code List 2.10

javascript:displayWindow('images/02-55.jpg',445,530)

Algorithms and Data Structures in C++:Algorithms

C++ File Created

% !PS—Adobe-2.0 EPSF-2.0
%% BoundingBox: 0 0 300 300
%% Creator: Alan Parker

%% EndComments

0.0 setgray

50 50 scale

0.03 setlinewidth

C-++ File Created

1 1 moveto
2 2 lineto stroke
1 1 moveto
1 3 lineto stroke
1 1 moveto
3 1 lineto stroke
2 2 moveto
1 1 hineto stroke
2 2 moveto
2 4 lineto stroke
2 2 moveto
4 2 lineto stroke
1 3 moveto
2 4 lineto stroke
1 3 moveto
1 1 lineto stroke
1 3 moveto
3 3 lineto stroke
2 4 moveto
1 3 lineto stroke

~ a

javascript:displayWindow('images/02-56.jpg',228,192)
javascript:displayWindow('images/02-57.jpg',237,810)

Algorithms and Data Structures in C++:Algorithms

£ 4 moveto
2 2 lineto stroke
2 4 moveto
4 4 lineto stroke
3 1 moveto
4 2 lineto stroke
3 1 moveto
3 3 lineto stroke
3 1 moveto
1 1 lineto stroke
4 2 moveto

3 1 lineto stroke

C++ File Created

4 2 moveto
4 4 lineto stroke
4 2 moveto
2 2 lineto stroke
3 3 moveto
4 4 lineto stroke
3 3 movelo
3 1 lineto stroke
3 3 moveto
I 3 lineto stroke
4 4 moveto
3 3 lineto stroke
4 4 movelo
4 2 lineto stroke
4 4 movero

2 4 lineto stroke

newnath

javascript:displayWindow('images/02-57.jpg',237,810)
javascript:displayWindow('images/02-58.jpg',237,807)

Algorithms and Data Structures in C++:Algorithms

sam Ty prwmws

I setlinewidth

0 setgray

110.50 360 arc fill
newpath

1 setlinewidth

0 setgray

220.50 360 arc fill
newpath

1 setlinewidth

0 setgray

1 30.50 360 arc fill
newpath

1 setlinewidth

0 setgray
2 40.50 360 arc fill

javascript:displayWindow('images/02-58.jpg',237,807)

Algorithms and Data Structures in C++:Algorithms

C++ File Created

newpath

1 setlinewidth

0 setgray
310.50360 arc fili
newpath

1 setlinewidth

0 setgray

4 2 0.5 0 360 arc fill
newpath

I setlinewidth

0 selgray

33 0.5 0360 arc fill
newpath

1 setlinewidth

0 setgray

4 4 0.5 0360 arc fill
showpage

%% Trailer

Previous

Table of Contents

Next

Copyright © CRC Press LLC

javascript:displayWindow('images/02-59.jpg',238,468)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

2.7 Problems

(2.1) [Infinite Descent — Difficult] Prove, using infinite descent, that there are no solutionsin the
positive integersto

4 4 4
X +y =z
(2.2) [Recuffence] Find the closed form solution to the recursion relation
F(0) = a
F(l) = b

Finy = Fin-1)-F(n-2)

and write a C++ program to calculate the series via the closed form solution and print out the first
twenty terms of the seriesfor

a=>J> b = =5
(2.3) [Tower of Hanoi] Write a C++ Program to solve the Tower of Hanoi problem for arbitrary n.
This program should output the move sequence for a specific solution.

(2.4) [Tower of Hanoi] I'sthe minimal solution to the Tower of Hanoi problem unique? Prove or
disprove your answer.

(2.5) [Rectangular Mesh] Given an 8x8 rectangular mesh with no additional edge connections
calculate the largest distance between two processors, where the distance is defined as the
minimum number of edges to traverse in a path connecting the two processors.

(2.6) [Rectangular Mesh] For arectangular mesh with no additional edge connections formally
describe the topology in terms of vertices and edges.

(2.7) [Rectangular Mesh] Write a C++ program to generate a PostScript image file of the
rectangular mesh for 1 d n d 20 without additional external edge connections. To draw aline from
the current point to (x, y) use the primitive

x vy lineto
followed by

Algorithms and Data Structures in C++:Algorithms

gsave
stroke
grestore

to actually draw the line. Test the output by sending the output to a PostScript printer.

(2.8) [Cube-Connected Cycles] Calculate the number of edgesin a cube connected cycles
topology with nlog n nodes.

(2.9) [Tree Structure] For agraph G, which isatree, prove that

order (G) = size(G) +1

(2.10) [Cube-Connected Cycles] For a cube-connected cycles topology formally describe the
topology in terms of vertices and edges.

(2.11) [Hypercube] Given two arbitrary nodes in a hypercube of dimension n calculate the number
of distinct shortest paths which connect two distinct nodes, A and B, as afunction of the two
nodes. Use a binary representation for each of the nodes:

A= {a[r-'al""‘an—l} B = {hﬂ‘bl""’bﬂ—]}
a,be {0,1}

(2.12) [Hypercube] Given a hypercube graph of dimension n and two processors A and B what is
the minimum number of edges that can be removed such that there is no path from A to B.
(2.13) Isevery edgein atree abridge?

(2.14) Devise a broadcast algorithm for a hypercube of arbitrary dimension. Write a C++ program
to simulate this broadcast operation on an 8-dimensional hypercube.

(2.15) Devise amessage passing algorithm for a hypercube of arbitrary dimension. Write a C++
program to simulate this algorithm and demonstrate it for a 12-dimensional hypercube.

(2.16) Write a C++ program to visualize a complete binary tree. Y our program should scale the
node sizes to fit on the page as a function of the dimension in a similar fashion to Code List 2.10.

(2.17) Describein detail the function of each procedure in the code to visualize the hypercube in
Code List 2.10. Present a high-level description of the procedures render _cube and init_cube.

(2.18) Write a C++ program to display the modified adjacency matrix of an n-dimensional
hypercube similar to the matrix presented in Eq. 2.67.

(2.19) Write a C++ program to visualize a 64-node hypercube which supports message passing.
Y our program should use a separate gray level to draw the source and destination processors and
should draw the edges which form the path in a different gray scale also.

(2.20) [Difficult] Prove that the modified message passing agorithm works for any two functional
processors in an efficient hypercube.

(2.21) Write a C++ program to determine if a hypercube with failed nodes is efficient.
(2.22) Cadculate the least-weighted path-length matrix for each of the subcubesin Figure 2.20.
(2.23) Given a hypercube of dimension d calculate the probability that a subcube is efficient

Algorithms and Data Structures in C++:Algorithms
where the subcube is formed by the random failure of two processors.

(2.24) Modify the C++ program in Code List 2.10 to change the line width relative to the node
size. Test out the program for small and high dimensions.

(2.25) Rewrite Code List 2.10 to build the hypercube using a recursive function.

(2.26) The program in Code List 2.10 uses a simple algorithm to draw aline from each processor
node to its neighbors. As aresult, the edges are drawn multiple times within in the file. Rewrite the
program to draw each line only once.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

Chapter 3
Data Structures and Searching

This chapter introduces data structures and presents algorithms for searching and sorting.

3.1 Pointers and Dynamic Memory Allocation

This section investigates pointers and dynamic memory allocation in C++. As afirst example consider
the C++ source code in Code List 3.1.

Code List 3.1 Integer Pointer Example

C++ Source Code
void main()

{

int *p, k;

P = new int;
*p=7;

k=3,

delete p;
p=&k;
*p=4;

}

At the beginning of the program there are two variables that are allocated. Thefirst variableisavariable
p which is declared as a pointer to an integer. The second variable, k, is declared as an integer. The
variable p is stored at address Al. The address A1 will contain an address of a variable which will be

javascript:displayWindow('images/03-01.jpg',498,316)

Algorithms and Data Structures in C++:Data Structures and Searching

interpreted as an integer. Initially this addressis not assigned. The variable k is stored at address A3.
Note that the addresses of p and k do not change during the execution of the program. These addresses
are dlocated initially and belong to the program for its execution life.

The statement p=new int in the program allocates room for an integer in memory and makes the pointer p
point to that location. It does not assign a value to the location that p points to. In this case p now
contains the address A4. The memory location at address A4 will contain an integer. The new operator is
arequest for memory allocation. It returns a pointer to the memory type requested. In this example room
Is requested for an integer.

The statement *p=7 assigns the integer 7 to the location that p pointsto. In this case the address A4 will
now containa.

The statement k=3 assigns 3 to the address where k is located. In this case the address A3 will contain the
integer 3.

The statement delete p now requests to deallocate the memory granted to p with the new operator. In this
case p will still point to the location but the data at the location is subject to change. It can be the case
that *p isno longer 7. Note that once the memory is freed the program no longer may have aright to
access the data. The memory location A4 is free to be assigned to any other program which requests
memory space.

The statement p=&k assigns the address of k to p. The address of kis A3. For this case, p, located at A1
will now contain the address A3.

The statement * p=4 now assigns the integer 4 to the address that p points to. For this case the data at
address A3 will now contain 4.

This statement has changed the value of k. The flow for the memory is shown in Figure 3.1.

There are anumber of pitfalls to be concerned with pointers. The declaration int * p does not allocate
room for the integer. It simply allocates room for avariable p which will point to an integer in memory.
As aresult the following code segment isinvalid:

int *p;

* p:7,
For this code segment the address that p contains is not valid. Unfortunately depending on the platform

you are using to develop your programs this might not generate an error on compilation and in some
operating systems even on execution.

Algorithms and Data Structures in C++:Data Structures and Searching

At Program Stan

A2 ?

Al A2

A3 ?

Ad ?
p=new int

A2 ?

Al ﬁ.;

A3 T

g

A2

Al

A3

Ad

A2

Al

A3

Ad

Ip=?

?

Ad

k=3

Ad

javascript:displayWindow('images/03-02.jpg',350,604)

Algorithms and Data Structures in C++:Data Structures and Searching

A2

Al

A4

'F):--l1.

?

A3

FIGURE 3.1 Memory Layoul for C++ Program (continued)
delete p
A2 ?
Al Ad
A3 3
Ad ?
p=&k
A2 7
Al A3
A3 3
A4 [2

Figure3.1 Memory Layout for C++ Program

The following code segment is acceptable
int*p, k;

javascript:displayWindow('images/03-03.jpg',360,666)
javascript:displayWindow('images/03-03.jpg',360,666)

Algorithms and Data Structures in C++:Data Structures and Searching
p=&k;
* p=4’
For this code segment, p points to the address of k which has been alocated memory for an integer.
The code shown in Code List 3.2 isalso valid. The output for the program is shown in Code List 3.3.

Code List 3.2 Pointer Example

C++ Source Code

#include <iostream.h>

void main()

|

int * * p;

p = new int *;

*p = new int;

*4p=7;

cout << “The value of pis ™ << p << endl;

cout << “The value of *p is " << *p << endl;
cout << “The value of **p is * << **p << endl;

J

Code List 3.3 Output of Programin Code List 3.2

C++ Output

The value of p 1s Ox1eb4d
The value of *p is 0x2530

The value of **pis 7

The style of the output will change dramatically depending on the operating system and platform used to
develop the code. It is sufficient to note that for the code in Code List 3.2 p contains an address that
points to a location that contains an address that points to alocation that contains an integer.

javascript:displayWindow('images/03-04.jpg',490,337)
javascript:displayWindow('images/03-05.jpg',585,137)

Algorithms and Data Structures in C++:Data Structures and Searching

Previous

Table of Contents

Next

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

3.1.1 A Double Pointer Example

Consider the simple program which prints out the runtime, arguments provided by the user. The program
sourceis shown in Code List 3.4. The output of the program is shown in Code List 3.5. The program s
executed by typing in the command

ARGV1 argl arg2
Code List 3.4 Double Pointer Example

C++ Source Code

#include <iostream.h>

void main(int argc, char * * argv)
|
int i;
for(i=0;i<argc,i++)
cout << “ Argument * << i <<™is * << argv|i] << endl;
for(i=0;i<argc;i++)
cout << * Argument * << i << is * << *(argv+i) << endl;
for(i=0;i<arge;i++,argv++)
cout << * Argument * << i<<™is* << *argv << endl;
argv--;
cout << * Lets look at &((*argv)[1]) : * << &{(*argv)[1]) << endl ;
cout << * Lets look at (*argv)[1] : * << (*argv)[1] << endl;
cout << * Lets look at (*argv)[4]+0x32 : ** << (*argv)[4]+0x32 << endl;
cout << * Lets look at (char) (*argv)[4]+0x32 : *
<< (char) ((*argv)[4]+0x32) << endl;
// Restore argv

argv-=2,

el oo T ata laals o s lTIFTTY o 6 5 5 cac:FTTFTT & 2 acwadl.

javascript:displayWindow('images/03-06.jpg',470,517)

Algorithms and Data Structures in C++:Data Structures and Searching
COUE S LCLS IHIK @l argv il i) << argvpijll) << CIimi;

cout << ™ Should be the same as *(*(argv+1)+1) : * << *(*(argv+1)+1) << endl;
|

CodeList 3.5 Output of Program in Code List 3.4

C++ Output
Argument 0 is ARGV.EXE
Argument 1 is argl

Argument 2 is arg2

Argument 0 1s ARGV.EXE
Argument 1 is argl

Argument 2 is arg?2

Argument 0 is ARGV.EXE
Argument 1 is argl

Argument 2 is arg2

Lets look at &((*argv)[1]) : rg2
Lets look at (*argv)[1] :r

Lets look at (*argv)[4]+0x32 : 50
Lets look at (char) (*argv)[4]+0x32 : 2
Lets look at argv[1][1]:r

Should be the same as *(*(argv+1)+1):r

The name of the program is ARGV 1.EXE. The arguments passed to the program are argl and arg2. The
main procedure receives two variables, argc and argv. For this case argc will be the integer 3 since there
are 2 arguments passed to the program. It is 3 instead of 2 because argv will also hold the program name
in addition to the arguments passed as can be seen in the program output. In the program argv is a pointer
to a pointer to a character. The organization is shown in Figure 3.2. Looking at the figure one notes a

javascript:displayWindow('images/03-06.jpg',470,517)
javascript:displayWindow('images/03-07.jpg',360,534)

Algorithms and Data Structures in C++:Data Structures and Searching

rather complex organization. In the figure argv is stored at memory location Al. Its value is the address
A2. The address A2 contains the address A5 which contains a contiguous set of characters. The first
character at address A5 isthe letter A (in hex 41, using ASCII). The character at address A5+1 isthe
letter R (in hex 52). The set of charactersisterminated with a NULL character, (in hex 00). The null
character indicates the end of the string. It is used by programs which are passed the address A5 to print
the character. These programs print each consecutive character until they reach aNULL. A failure to
place aNULL character at the end of astring will result in many string operation failures in addition to
printing improperly. Remember in C/C++ astring is merely a collection of contiguous characters
terminated inaNULL.

C and C++ can treat pointers as arrays. Thisisavery powerful and sometimes dangerous feature. For
this example one can interpret

A Dxal
R Ox52
O Oxd7
WV 0x56
Ox2E A2
E (x45
X Ox58
E Ox45 AS
L RER N A6
AT
a Dxl prog name AS
rx72
g Ox6T
1 0x31 el =
(0 Ox0N)
arg2 AT
a il
rix/2
£ 67

javascript:displayWindow('images/03-08.jpg',350,608)

Algorithms and Data Structures in C++:Data Structures and Searching

20x32

R

Figure 3.2 Program Organization in Memory

argv[0] = A5
argv|l]| = A6
argv[2] = A7

argv[3] = undefined,
There are only two arguments + the program name.
Remember that argv is a pointer to a char to a char, written as char **.
argv[0] isachar * or apointer to achar.

When theio function cout receives achar * it will interpret the characters at the location asa string. In
this case during the first print loop argv[0] pointsto A5 where the string representing the name of the
program resides (technically, the command line argument invoking the program).

Going to the location A5 cout proceeds to print out ARGV.EXE and stops printing characters because of
the NULL character reached.

C and C++ aso support pointer arithmetic. This can lead to complex expressions. For this example
argv+1 is synonymous with &argv[1] which in this case one has

argv+] = A3
argv+2 = Ad
argv+0 = A2
argv[0] = A5
argv[1] = Ab
argvl2] = A7
&argv[0] = A2
&argv[l] = A3
&argv[2] = Ad
argvy = A2

argv = &argv[(]

In C and C++ when you name an array like x[10] then x with no brackets refers to the address of x[0]:

javascript:displayWindow('images/03-08.jpg',350,608)
javascript:displayWindow('images/03-08.jpg',350,608)

Algorithms and Data Structures in C++:Data Structures and Searching

x = &x[0]
One can traverse the pointers using * or [] that isthe following isidentical

*x = x[0]
*(x+1) =x[1])
*[K+2] = .‘-1'.[2]

Notice that

argv[0] = A5
argv[0][0] = A’
argv[0][1] = 'R’
argv[1]|0] ="a’
argv|1|[1]="r

Make sure you understand all the outputs of the program. If you are going to spend alot of time

programming in C or C++ then you should review this chapter frequently until you are completely
comfortable with the concepts.

3.1.2 Dynamic Memory Allocation with New and Delete

C++ hasintroduced memory allocation operators new and delete to deal with requesting and freeing
memory. An example of the use of new and delete areillustrated in Code List 3.6. The output of the

program is shown in Code List 3.7. There are some important features of new and C++ illustrated in this
program.

CodeList 3.6 Dynamic Memory Allocation in C++

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source

/f This program demonstrates the differences between new

// and malloc

#include <iostream.h>

#include <malloc.h>

#include <new.h>

class

test

I
public:
lest() { coul << "Constructor function called™ << endl; }

~test() | cout << “Destructor function called™ << endl:)

2

javascript:displayWindow('images/03-09.jpg',551,424)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source

void main()
{
test * k, *j; // Declare pointers to class test
test w; // Declare a variable test to investigate constructor functions
cout << “At Point 1" << endl;
j = new test[4]; // Request an array of class objects of size 9
cout << “At Point 2" << endl;
k = (test *) malloc(4*sizeof(test)); // Request array
| cout << “At Point 3" << endl;
delete[] j; // Give back memory allocated
cout << “At Point 4” << endl;
free(k); // Give back memory allocated

cout << “At Point 5" << endl:

}

Code List 3.7 Output of Program in Code List 3.6

javascript:displayWindow('images/03-10.jpg',491,436)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output
Constructor function called

At Point 1

Constructor function called
Constructor function called
Constructor function called
Constructor function called
At Point 2

At Point 3

Destructor function called
Destructor function called
Destructor function called
Destructor function called

At Point 4

C++ Output
At Point 5

Destructor function called

The program declares a class called test. Two variables k and j are declared as pointers to objects of type
test. Upon declaration room is stored in memory for the pointersk and j.

A variable w of typetest is created with the statement test w;. This statement illustrates the use of
constructor functionsin C++. When w is created the constructor function test() is called which resultsin
“Constructor function called” being printed.

The statement j=new test[4] ; requests memory for an array of size four for the classtest. As aresult of
using new the constructor function is called four times. After the statement | will point to the first
element.

The statement k = (test *) malloc(4* sizeof(test)); requests memory for an array of size 4 for the class test.

javascript:displayWindow('images/03-11.jpg',212,403)
javascript:displayWindow('images/03-12.jpg',291,124)

Algorithms and Data Structures in C++:Data Structures and Searching

Using malloc, however, will not call the constructor function for the class k. As aresult nothing is printed
at this point of the program.

The statement delete]] j; gives back the memory requested by the new operator earlier. The brackets[]
are used when new is used to declare an array. At this point the destructor function ~test() is called for
each element in the array.

The statement free(k) gives back the memory allocated by the malloc request. As with malloc, free will
not call the destructor function.

Before the program terminates the variable local to main w will first lose its scope and as aresult the
destructor function will be called for w.

In C++ new and delete should be used in lieu of malloc and free to ensure the proper calling of
constructor and destructor functions for the classes allocated. Notice that new also avoids the use of the
sizeof operator which simplifiesits use.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

3.1.3 Arrays

Sequential arrays stored in memory also rely on pointers for index calculations. The array examplein
Code List 3.8 demonstrates the differences between pointers and arrays for the case of the
multidimensional array. The output of the program is shown for two different platforms. Code List 3.9
shows the output of the program for a DOS system while Code List 3.10 shows the output of the program
on a Unix system. For this program two different methodologies are used for implementing the storage of
four integers. The memory allocation isillustrated in Figure 3.3. The key difference between the
implementation of the pointers and the multidimensional array isthat the array a[2][2] is not avariable.

As aresult, operations such asa=a+1 areinvalid.

Ad
a[0][0]
Memory Map for A
a[0][1) Sl
ASL a0
a[1](1]
A2
Al
AD / A2
Al ” A3
n T
Memory Map for B

b[0]10]

b[O][1]

b[1][0]

b[1][1]

Figure 3.3 Memory Organization for Code List 3.8

Someone dlightly familiar with C or C++ might be surprised to see that the output indicates that the
values of &4, a, and *a are all equal. While thislooks unusual it is correct. The declaration int a[2][2] in
C and C++ declaresa to be an array of arrays. In this case there are two arrays each containing two

javascript:displayWindow('images/03-13.jpg',480,347)
javascript:displayWindow('images/03-13.jpg',480,347)

Algorithms and Data Structures in C++:Data Structures and Searching
integers. Thefirst array islocated at address A4 while the second array islocated at the address A5.
 a- returnsthe starting address of the array of arrays which is given as A4 in Figure 3.3.
* *a - returns the starting address of thefirst array in the list whichisalso A4 in Figure 3.3

» &a - returns the starting address of the array awhich is A4. This does not return the address of
the element (if there is one) that actually pointsto a. When you declare an array viaint a[2] [2]
there is no variable which points to the beginning of the array that the programmer can change.
The compiler basically ignores the ampersand when the variable is declared as an array.
Remember, thisis the difference between pointers and arrays. The location where a pointsto
cannot change during the program.

The output for b follows directly the addressing asillustrated in Figure 3.3
CodeList 3.8 Array Example

C++ Source Code

#include <iostream.h>

/f This program demonstrates multidimensional addressing
//in C and C++
void main()

|

int a[2][2]:

int ¥ * b;

b = new int * [2];
b[0] = new int [2];
bl1] = new int [2];
blO][0]=1;
b[0][1]=2;
b[1][0]=3;
bl1][1]=4;
a[0][0]=1;
a[0][1]=2;
a[1][0]=3;
a[1][1]=4;

cout << “The size of int is ** << sizeof(int) << endl:

javascript:displayWindow('images/03-14.jpg',388,652)

Algorithms and Data Structures in C++:Data Structures and Searching

T T

cout << “The size of a is * << sizeof(a) << endl;
cout << “The size of b is ** << sizeof(b) << endl;
cout << “The value of a is * << a << endl;

cout << “The value of *(a) is * << *a << endl;

cout << “The value of &a is * << &a << endl;

C++ Source Code

cout << “The value of **a is “ << **a << endl;

cout << “The value of a+1 is * << a+] <<endl;

cout << “The value of *(a+1) is * << *(a+1) << endl;
cout << “The value of **(a+1) is ** << **(a+1) << endl;
cout << “The value of *a[l] is * << *a[l] << end],

cout << “The value of (*a)[1] is ** << (*a)[1] << end];
cout << “The value of b is * << b << endl;

cout << “The value of &b is * << &b << endl;

cout << “The value of b+1 is * << b+] << endl,

cout << “The value of *(b) is ** << *b << end|l;

cout << “The value of *(b+1) is * << *(b+1) << endl;
cout << “The value of **(b+1) is * << **(b+1) << endl;
cout << “The value of **b is ** << **b << end|;

cout << “The value of (*b)[1] is " << (*b)[1] << endl,
cout << “The value of *b[1] is * << *b[1] << endl;
cout << “The value of b[1][0] is * << b[1][0] << endl,

}

Code List 3.9 Output of Code in Code List 3.8

javascript:displayWindow('images/03-14.jpg',388,652)
javascript:displayWindow('images/03-15.jpg',404,490)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output (DOS)

The size of int 1s 2

The size of ais 8

The size of b is 2

The value of a is Oxffee
The value of *(a) is Oxffee
The value of &a is Oxffee
The value of **ais 1

The value of a+1 is Oxfff2
The value of *(a+1) is Oxfff2
The value of **(a+1) is 3
The value of *a[l] is 3

javascript:displayWindow('images/03-16.jpg',242,360)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output (DOS)

The value of (*a)[1] is 2
The value of b is Ox10f8
The value of &b is Oxffec
The value of b+1 is Ox10fa
The value of *(b) is 0x1100
The value of *(b+1) is Ox1108
The value of **(b+1) is 3
The value of **bis 1

The value of (*b)[1] is 2
The value of *b[1] is 3

The value of b[1][0] i5 3

Code List 3.10 Output of Codein Code List 3.8

javascript:displayWindow('images/03-17.jpg',241,359)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output (UNIX)

The size of int is 4

The size of ais 16

The sizeof bis 4

The value of a is Oxf7fffb80
The value of *(a) is Oxf7fffb80
The value of &a is Oxf7fffb80

The value of **ais 1

The value of a+1 is Oxf7fffb88
The value of *(a+1) 1s Oxf7fffb88
The value of **(a+1) is 3

| The value of *a[1] is 3

The value of (*a)[1] is 2

The value of b is Ox1cba0

The value of &b is Oxf7fffb7c
The value of b+1 is Ox1cbad
The value of *(b) is Ox 1cbb0
The value of *(b+1) is Ox1cbcO

C++ Output (UNIX)

The value of **(b+1) is 3
The value of **b is 1
The value of (*b)[1] is 2
The value of *b[1] is 3
The value of b[1][0] is 3

3.1.4 Overloading in C++

An example of overloading in C++ isshown in Code List 3.11. The output of the program is shown in

javascript:displayWindow('images/03-18.jpg',240,486)
javascript:displayWindow('images/03-19.jpg',243,167)

Algorithms and Data Structures in C++:Data Structures and Searching

Code List 3.12. This program overloads the operator () which is used to index into a set of characters for
aspecific data bit. The packing isillustrated in Figure 3.4 for the variable e declared in the program.

Packing 37 bits
into 5 characters
in memory

o | Do | o0 | o5

Figure 3.4 Packing Bitsin Memory
Code List 3.11 Operator Overloading Example

C++ Source
/{ This program demonstrates packing bits in memory

/1 It illustrates the use of operator overloading in C++
#include <iostream.h>
class binary_data

{

javascript:displayWindow('images/03-20.jpg',350,271)
javascript:displayWindow('images/03-20.jpg',350,271)
javascript:displayWindow('images/03-21.jpg',398,143)

Algorithms and Data Structures in C++:Data Structures and Searching

C#+ Source

unsigned char * data;
public:
nt size;
binary_datalint size)
{
data = new unsigned char|size/8+(size%e87?1:0)];
binary_data::size=size;
int iz
for(i=0;i<size;i++) assigni(i,0);
|
~binary_data()
{
delete[] data;
|
int operator() (int index);
void assign{int index.int value);
void print();
B
void binary _data::print()
[
int i;
for{imsize—1;=lii--) cout << (*this)h(i);
|
int binary_data::operator() (int index)
[
unsigned char mask=0x1<<index%8;
return ((({this->data)[index/3] 8cmask)?1:0);
|
void binary_data::assign({int index, int value)
[
iffvalue) data index/8]l=value<<index%:H;
clse dataf index/8)&=~(0x | <<index8);

javascript:displayWindow('images/03-22.jpg',339,649)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source

}
void main()
|
binary_data g(4);
binary_data d(9);
binary_data e(37);

q.assign(0,1);

q.assign(2.1);

q.assign(3,1);

| q-assign(2.q(1)):

d.assign(3,1);

d.assign(4,1);

c.assign(36,1);

cassign(l4,1);

cout << “The value of g is *; g.prini(); cout << endl;
cout << “The value of d is “; d.prini(); cout << endl;
cout << "The value of ¢ 15 ™; e.print(); cout << endl;
|

CodelList 3.12 Output of Program in Code List 3.11

C++ Output

The value of q is 1001

The value of d is 000011000
The value of ¢ 15 TOOBOOOOCOCOOOOOMN T OCOOCOOOOOOO0

3.2 Arrays

This section demonstrates the creation of an array classin C++ using templates. The goal of the program
isto demonstrate the implementation of afeature of C++ which is aready built in; therefore, the codeis
for instructive purposes only. The code for a program to create an array classisillustrated in Code List
3.13, The output of the program is shown in Code List 3.14. The array classis declared in the program as
ageneric classwith atype T which is specified later when an array variable is declared. As seenin the
main function three arrays are declared: a, b, and c. The array a consists of ten integers. The array b

javascript:displayWindow('images/03-23.jpg',400,443)
javascript:displayWindow('images/03-24.jpg',343,89)

Algorithms and Data Structures in C++:Data Structures and Searching

consists of five doubles. The array ¢ consists of 3 characters. The constructor function for the array
initializes al the elements of the array to zero. The function set_data isused to assign avalueto a
specific element in the array. The function print_data is used to print a specific element in the array.

Code List 3.13 Creating an Array Classin C++

C++ Source

/{ This program creates a template to create an array.

/f C4++ supports arrays already so this is for instructive
/{ purposes only
#include <iostream.h>
template<class T, int size>
class array |
private:
T data[size];
public:
array(void);
T get_data(int 1);
void set_data(int i, T x);
void print_data(char * x, int 1);
b
// Imtialization constructor for array
template<class T, int size>
array<T, size>:array(void)
[int i; for(i=0;i<size;i++) data[i]= 0; }
/{ function to retrieve element i
template<class T, int size>
T array<T,size>::get_data(int i)
|

return datali];

/f function to print element |

template<class T, int size>

javascript:displayWindow('images/03-25.jpg',344,622)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source

void array<T,size>::prini_data{char * x, int i)
|
cout << X << “[* << i <<] =" << data[i] << endl;
}
/f function to assign a value to element i
template<class T, int size>
void array<T,size>::set_data(int i, T x)
|
data[i]=x;

vord main()

I
array<int,10> a;
array<double,5> b;
array<char,3> c;
a.print_data(“a" 3);
b.print_data(“b" 4);
b.set_data(4,4.7);
a.set_data(3,10.8);
a.print_data("a",3);
b.print_data(*b" 4);
c.set_data(2,'n");
c.prnint_data(“c",2);

1

Code List 3.14 Output from Code List 3.13

javascript:displayWindow('images/03-26.jpg',341,572)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ output
a[3]=0
b[4]=0
a[3]=10

C++ output i
bl4]=4.7
c[2] =n

3.3 Stacks

A stack is a data structure used to store and retrieve data. The stack supports two operations push and
pop. The push operation places data on the stack and the pop operation retrieves the data from the stack.
The order in which datais retrieved from the stack determines the classification of the stack.

A FIFO (First In First Out) stack retrieves data placed on the stack first. A LIFO (Last In First Out) stack
retrieves data placed on the stack last. A LIFO stack push and pop operation isillustrated in Figure 3.5.

javascript:displayWindow('images/03-27.jpg',115,131)
javascript:displayWindow('images/03-28.jpg',93,82)

Algorithms and Data Structures in C++:Data Structures and Searching

Push Item 1 Push Item 1
Push Item 2 Push Item 2
Push Item 3 Push ltem 3
Push Item 4 Push [tem 4
Push [tem 5
SP Item 4
Item 3 SP Item 5
Item 2 Item 4
Ttem 1 Item 3
[tem 2
Push Item 5 Item 1
SP "'fr_ Item 5 Pop
Item 4 Sp — Y ltem4
Item 3 Item 3
[tem 2 Itemn 2
Item 1 Item 1
Push Operation Pop Operation

Figure 3.5 Push and Pop in aLIFO Stack

The source code to implement a LIFO stack classis shown in Code List 3.15. The output of the program

isshown in Code List 3.16. Notice that templates are used again so the type used for the stack is defined
at alater point.

CodelList 3.15 LIFO Stack Class

javascript:displayWindow('images/03-29.jpg',380,439)
javascript:displayWindow('images/03-29.jpg',380,439)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source

Jf This programs creates a stack class with push and pop operations
tinclude <iostream h>
[fDefine the stack class, set default stack size to 2
// use a template so you can define the type at a later point
template<class T.int size=2>
Class stack |
private: T data]size]:
int stack_ptr,
public:
stack{void);
voud pushiT x);
T pop();
b
/! Constructor function to zero elements in stack
Jf and to initialize data

C++ Source

template<class T, it size>
stack<T,size>::stackivoid)
{
int i;
for(i=0;i<size;i++) datafi]=0;
stack_ptr=0;

javascript:displayWindow('images/03-30.jpg',445,363)
javascript:displayWindow('images/03-31.jpg',450,164)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source

)
/f push data onto stack
template<class T, int size>
vord stack<T,sizc>::push(T x)

{
if(stack_ptr>=siz¢)
{
cout << “Cannot push data: stack full” << endl;
retum;
[
data]stack_pir++]=x;

cout << "Placed ** << x << * on stack” << endl;
returm;
|
template<class T, int size>
T stack<Tsize>::pop()
|
if{siack_pir<=0)

|
cout << *Cannot pop data: stack empty™ << endl;

return data[0] ;
!

cout << “Popped " << data[--stack_pir] << * from stack™ << endl;

return data[stack_ptr];

}

void main{)
|
/f create a stack of integers

stack<int, 10> s;

s.push(45);

5.popl),

ff iry 10 pop an emply stack

javascript:displayWindow('images/03-32.jpg',439,736)

Algorithms and Data Structures in C++:Data Structures and Searching

™=

_l:-H Source

s.pop();
s.push(56);
s.push(29),
s.push(31);
s.pop():

s.popd):
/f create a stack of doubles

stack<double,2> d;
d.push(4.5);
d.push(5.9),
{/ try to push on a full stack
d.push(7.2);
d.pop().
d.pop();
/I try 10 pop an empty stack
d.pop():
Ml declare a stack of characters - use default size
stack<char> c;
char w;
c.push(‘n’),
c.push(‘l’);
JI try to push on a full stack
c.push('w’);
c.pop();
{f grab the stack value
w=c.pop();
cout << [got that character ** * << w <<
* *# that was popped.” << endl;
// iry 1o pop an cmply stack

c.popl);
]

javascript:displayWindow('images/03-32.jpg',439,736)
javascript:displayWindow('images/03-33.jpg',445,724)

Algorithms and Data Structures in C++:Data Structures and Searching

Code List 3.16 Output of Program in Code List 3.15

Ce++ Output

Placed 45 on stack

Popped 45 from stack
Cannot pop data: stack empty
Placed 56 on stack

Placed 29 on stack

Placed 31 on stack

Popped 31 from stack
Popped 29 from stack

Placed 4.5 on stack

Flaced 5.9 on stack

Cannot push data: stack full
Popped 5.9 from stack
Popped 4.5 from stack
Cannot pop data: stack empty

Placed n on stack

Placed | on stack

Cannot push data: stack full
Popped | from stack

Popped n from stack
I got that character ** n ** that was popped.

Cannot pop data: stack empty

3.4 Linked Lists

This section presents the linked list data structures. Thisis one of the most common structures in
program design.

Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/03-33.jpg',445,724)
javascript:displayWindow('images/03-34.jpg',247,477)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

3.4.1 Singly Linked Lists

A linked list with four entriesis shown in Figure 3.6. As seen in the figure, there is a pointer which
points to the head of the list. Each object in the list has associated data and a pointer to the next element
in the list. The figure is shown with four objects. The final element containsaNULL pointer. Thisis
common practice to indicate the end of the list. The datain the linked list can be asingle element or a
large collection of data.

A C++ program to demonstrate the linked list is shown in Code List 3.17. program creates alinked lists
of classes. The class template is declared as

tenpl ate <class T>

class list {

private:
list <T> * next;
friend class start_I|ist<T>;
friend class iterator<T>;
public:
T dat a;
b

In this declaration next is declared as a pointer to the next element in the list. Two classes are declared as
friendsto the class, start_list and iterator. As aresult these classes will have access to the functions and
data of the classlist. data is declared as public in the class. The datatype T is declared later in the
program.

The next class declared in the program is start_list which is defined as

class start |ist

Algorithms and Data Structures in C++:Data Structures and Searching

{

| ist<T> *start;

friend clas iterator<T>,
publ i c:

start list(void) { start=0;}
~start _|ist(void);

void add(T t);

I nt isMenber(T t);

}

For this class, a pointer to the start of alist is declared. The constructor function start_list() initializes
start to zero when an item of class start_list isdeclared. The function start_list() isdeclared inline. The
function add is used to add elements to the list. The destructor function ~start_list() is called when data
of type start_list lose their scope. The function ~start list() is not declared inline. The function isMember
Is used to determine if a data element matches an element in any of the members of the linked list. Notice
that in the program, start_list isused to instantiate a class of type list. The add function is declared next
in the program This function creates an element of type list and appendsiit to the current list. If thelistis
empty then the function assigns start to the beginning of the new list.

The isMember function is declared next in the program. The isMember function searches the list and tries
to find a match to the datat that is passed. If a match isfound the function returns | else the function
returns 0.

The destructor function for the class, ~start_list, is defined next. The destructor function begins at the
start of the list and deletes the lists that are formed making up the entire linked list. The destructor
function in turn assigns start to null. Thisfunction will be called in the program when any data of type
start_list loses scope. Thisisavery powerful technigue of C++. Typically the constructor functions are
used to acquire memory upon the creation of a variable and the memory is freed up viathe destructor
function.

The next class defined isthe iterator class. Theiterator classis used to traverse the linked list. The
iterator class contains a pointer to the start of alist and a cursor to traverse the list. The class contains a
function reset which sets the cursor back to the start of the list. The constructor function for the class
accepts a parameter which is apointer to a class of type start_list. The constructor function calls reset to
initialize cursor. The function next is used to iterate the list. The function assigns the pointer p to cursor
and cursor to cursor->next if cursor isnot null.

The program then initiates a number of typedefs which create lists and pointersto list for the data types

Algorithms and Data Structures in C++:Data Structures and Searching

of string, double, int, char.

The main() routine creates a number of lists. Thefirst list created, number, is declared with list_double
number. Thislist will contain alist of data elements of type double. Upon the declaration of list_double
room for the data has not been allocated and the list pointers have been set to null. The first time room
for datais allocated is during the call number.add(4.5). This adds 4.5 to the list. Subsequent calls to
number.add() append the data to the list. To access the numbersin the newly formed list a

list_double iterator isdeclared with list_-double iterator x(& number). Thelist_double ptr p accessthe
dataviacallsto the iterator function x.next(). The output for the program is shown in Code List 3.18.

CodelList 3.17 Linked List Source

C++ Linked List Source Code

/f This program creates a template to create a linked list

/f of data. A function to add data is provided as well as a

C++ Linked List Source Code

/{ function to search for a member

#include <iostream.h>
{/ This is used to instantiate the data
template<class T>
class list{
private:
list<T> * next;
friend class start_list<T>;
friend class iterator<T>;
public:
T data;
|
template<class T>

| C++ Linked List Source Code

| class start_list

javascript:displayWindow('images/03-35.jpg',500,89)
javascript:displayWindow('images/03-36.jpg',450,385)
javascript:displayWindow('images/03-37.jpg',450,844)

Algorithms and Data Structures in C++:Data Structures and Searching

{
list<T> * start;
friend class iterator<T>;
public:
start_list(void) { start=0;)
~start_list(void);
void add(T t);
int isMember(T t);
}

template<class T>

void start_list<T>::add(T t)
{
list<T> *p=start, *q=start, *r;
while(p!=0) {q=p; p=p->next; }
r=new list<T>;
r->data = t; r->next = 0;
if(start) g->next = r; else start=r;
)

/f This will not test if the list contains a specific string
template<class T>
int start_list<T>::isMember(T t)
{
list<T>> *p=start, *q=start;
while(p!=0)
{
q=p;
p=p->next;

javascript:displayWindow('images/03-37.jpg',450,844)

Algorithms and Data Structures in C++:Data Structures and Searching

if(q->data==t) retum 1;
]

C++ Linked List Source Code

return O;

)

template<class T> start_list<T>::~start_list(void)
{
list<T> * p = start, *q;
while(p!=0) { q=p; p=p->next; delete q; }
start=();
|

template<class T>
class iterator
{
start_list<T> *I;
list<T> *cursor;
public:
void reset(void) {cursor=1->start; }
iterator(start_list<T> *1i)
{ 1=li; reset(); }
list<T> *next(void);
}

template<class T> list<T> * iterator<T>::next(void)

{

list<T> * p = cursor;

javascript:displayWindow('images/03-37.jpg',450,844)
javascript:displayWindow('images/03-38.jpg',450,843)

Algorithms and Data Structures in C++:Data Structures and Searching

if(cursor) cursor=cursor->next;
return p;
}

typedef start_list<char *> list_string;
typedef start_list<double> list_double;
typedef start_list<int> list_int;

C++ Linked List Source Code

typedef start_list<char> list_char;
typedef list<char *> * list_string_ptr;
typedef list<double> * list_double_ptr;
typedef list<int> * list_int_ptr;
typedef list<char> * list_char_ptr;
typedef iterator<char *> list_string_iterator;
typedef iterator<double> list_double_iterator;
typedef iterator<int> list_int_iterator;
typedef iterator<char> list_char_iterator;
void main{)
(
list_double number;
list_double_ptr p;
list_stning str;
list_string_ptr q;
number.add(4.5);
number.add(5.7);
number.add(3.4);
str.add(“Hello\n™);
str.add("“This is a *);

javascript:displayWindow('images/03-38.jpg',450,843)
javascript:displayWindow('images/03-39.jpg',450,819)

Algorithms and Data Structures in C++:Data Structures and Searching

str.add(“Test\n™);
list_double_iterator x(&number);
list_string_iterator y(&str);
cout << “List: * <<endl;
while((p=x.next())!=0) cout << “Item * << p->data << endl;
if(number.isMember(4.5)) cout << “4.5 is in list"<<endl;
else cout << 4.5 is not in list”<< endl;
if(number.isMember(4.4999))
cout << “4.4999 is in list"<<endl;
else cout << “4.4999 is not in list” << endl;

cout << endl << “List: " << endl;

C++ Linked List Source Code
while((g=y.next())!=0) cout << g->data;
I
head
DATA DATA
PTR PTR
DATA DATA
PTR 0

Figure3.6 Linked List

javascript:displayWindow('images/03-39.jpg',450,819)
javascript:displayWindow('images/03-40.jpg',500,90)
javascript:displayWindow('images/03-41.jpg',500,304)
javascript:displayWindow('images/03-41.jpg',500,304)

Algorithms and Data Structures in C++:Data Structures and Searching

CodeList 3.18 Output from Code List 3.17

C++ Output

List:

Item 4.5

Item 5.7

Item 3.4

4.5 15 in hist
4.4999 1s not in list

List;
Hello
This is a Test

3.4.2 Circular Lists

A circular list with two entriesis shown in Figure 3.7. A circular list contains a pointer from the last
object in thelist to the first. In a sense, the new list has no beginning or end. The circular list is common
in use for storing the most recent data when limited to finite storage. A common technique isto allocate a
fixed amount of storage for a particular database and after it fills up to write over the old data by |ooping
back around to the beginning. Obviously, the application is limited to cases where data loss is not critical.
An example might be a database used to store the last 20 issues of The Wall Street Journal.

3.4.3 Doubly Linked Lists

A doubly linked list with two elementsis shown in Figure 3.8. Doubly linked lists are used to provide
bidirectional accessto the datain the list. For many searching techniques it might be useful to traverse
data from both sides of thelist. A good example of thisis quicksort which is discussed in Section 3.8.

javascript:displayWindow('images/03-42.jpg',150,306)

Algorithms and Data Structures in C++:Data Structures and Searching

> —

DATA DATA

PTR PTR
Figure3.7 Circular List
Data Data
0 PTR_PREV
PTR_NEXT 0
Figure 3.8 Doubly Linked List
Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/03-43.jpg',500,177)
javascript:displayWindow('images/03-43.jpg',500,177)
javascript:displayWindow('images/03-44.jpg',500,208)
javascript:displayWindow('images/03-44.jpg',500,208)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

3.5 Operations on Linked Lists

There are anumber of operations on linked lists that are useful. These operations might be assigned to a
class from which different types of linked lists are derived. Some common operations might be

» add_object — to add an object to the linked list

* destroy_object — to destroy an object of the linked list

 find _Object — to find an object inthe list

 find_member — to search the whole list for a specific member

« find_last-member — finds the last object in the list which matches the specific member

A number operations including sorting might also be defined for the linked list.
3.5.1 A Linked List Example

This section presents a compl ete example in C++ which demonstrates the use of linked lists to search for
the solution to a particular coffee-house game. The purpose of the game isto eliminate as many pegs as
possible on atriangular board by jumping individual pegs. The board used for this example consists of
ten slots and nine pegs. The board is numbered and initialized as shown in Figure 3.9. Initially, the nine
pegs occupy slots one through nine and slot zero is unoccupied. A peg may jump an adjacent peg
(horizontally, or diagonally) into an unoccupied slot. The peg that is jumped is removed from the board.
Thisis similar to capturing a piece by jumping in the game of checkers.

A valid move sequence produced by the program in Code List 3.19 isillustrated in Figure 3.9. The first
move in the gameis for peg number five to jump over peg number two landing in the empty slot zero.
Peg number two is removed from the board and the game continues. The next move isto move peg
number seven, jumping over peg number four, and landing in the unoccupied slot two. Peg number four
is then removed from the board. The game continuesin asimilar fashion until there are no more possible
moves. At the end of the game in Figure 3.9 three pieces remain on the board: piece number five, piece
number six, and piece number eight.

The output of the program is shown in Code List 3.20. The output presents an X if thereis a peg
remaining at a specific position and a0 if thereisno peg. As seen in the output file at the stage the search
is printed out there are three pegs left for each combination. The output is the exhaustive list of all
combinations which result in three pegs remaining after six moves. In all cases there are no more
additional valid moves. The paths are printed for each solution. Multiple paths give rise to the same fina
peg distribution for instance

Algorithms and Data Structures in C++:Data Structures and Searching

[(5,0).(7,2),(0,5),(9,7),(6,8),(1.6)]

and

[(5,0),(7.2).(9.7).(6,8).(1.6), (0,5)]

both result in 00000X X0XO.

One of the problems with the program is the massive amount of data required to store al valid paths
which lead to afixed peg configuration. Consider the problem of expanding the game to the “real” coffee
house game which really consists of 14 pegsinitially placed on atriangle. If the program is modified to
support the new triangle then it requires too much memory to run on most workstations. As aresult if the
desired problem is to find one path that is optimal a different approach described in the next section must

be taken.

ONONONO
ONONO
OO
©

MO N
O
® O
O[ﬂ:}}

O Initially

® OO0
OO0 @
Q) O
.(lﬂ}

000
® 0 O
® O
.»:5.01

® O 0 O
Q) 1O
ON _
.{9,21

javascript:displayWindow('images/03-45.jpg',450,714)

Algorithms and Data Structures in C++:Data Structures and Searching

 HON N AN NON NO
@ O O O 0 @
0 (D 1)
.W} Om,ia

Figure 3.9 A Particular Game Sequence

3.5.1.1 Bounding a Search Space

In order to minimize the arbitrary expansion of paths for the coffee house game of size 15 the program
can be modified to remove any entriesin the linked list which duplicate a configuration obtainable via
another path. If this approach is taken then only one path will be saved at each point in the iteration for a
given intermediate position. Thiswill bound the search space at each iteration and will result in a
workable solution. Using a rather unsophisticated argument it is easy to see that the amount of memory is
reduced significantly and is realistically bounded. Since each position is represented as a sequence of 15
0’'sand X’ s the maximum number of positions under consideration at any timeis 215. For each position
only one path is stored instead of the myriad of paths which result in the same position. This approach is
used in Problem 3.6 to find a solution for the coffee house game.

Code List 3.19 Source Code for Game Simulation

javascript:displayWindow('images/03-45.jpg',450,714)
javascript:displayWindow('images/03-45.jpg',450,714)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

#include <iomanip.h>

/* relationship array defining legal movements on triangle */

int rship[][3]={
10,2,5),
{0,1,3],
12,5,9],
12,4,7],
[1,3,6),
[1.4.8),
13,1,0},
{3.4,5],
{5,2,0],
[5.4,3),
(6,3,1},
16,7.8],
{7.4,2},
{7.8,9],
[8,7,6],

javascript:displayWindow('images/03-46.jpg',500,478)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

(84.,1),
19.8,7),
{9,5,2)

[

#define pri

#define printlist

#define max_level 7

#define triangle_size 10

#define testpoint 0
class path
|
public:
int src;
int dest;
path * next;
path * prev;
)i
class instance
{
public:
char config[triangle_size];
path * pa;
int elements;

instance * next;

instance * prev,

IH

class relation

{
public:
int del;
int from;

salabl s W aacaka

javascript:displayWindow('images/03-47.jpg',450,745)

Algorithms and Data Structures in C++:Data Structures and Searching
“ Ieiamnomn - nex;

C++ Source Code

h
void path_copy(path * old, path * * pstart)
I
path *ptemp, *ptemp2;
*pstart=new path;
(*pstart)->src=o0ld->src;
(*pstart)->dest=old->dest;
(*pstart)-=next=NULL,;
(*pstart)->prev=NULL;
ptemp=old->next;
ptemp2=*psiart;
while{ptemp!=NULL)
{
ptemp2->nexi= new path;
ptemp2->next->prev=ptemp2,
ptempl=ptemp2->next;
ptemp2->sre=ptemp->sIc;
ptemp2->dest=ptemp->dest;
ptemp2->next=NLLL,;
ptemp=ptemp->next,

|
void path_mem_free(path * list)
[
path * temp, * temp2;
if{list==NULL) return;

temp=list;

javascript:displayWindow('images/03-47.jpg',450,745)
javascript:displayWindow('images/03-48.jpg',500,825)

Algorithms and Data Structures in C++:Data Structures and Searching
if(temp==NULL) return;
while(temp-=next'=NULL) temp=temp->next;
while(temp->prev!=NULL)

{
temp2=temp;

C++ Source Code

tlemp=temp->prev;
delete temp2,

}
delete temp;

|

void struct_mem_free(instance * list)
{
instance * temp, * lemp2;
if(list==NULL) return;
temp=hst;
while{temp!=NULL)
|
path_mem_free(temp->pa);
temp=temp->next;
}
temp=»Mhst;
while(temp->next!=NULL) temp=temp->next;
while(temp->previ=NULL)
l
templ=temp;
temp=temp->prev,
delete temp2;

javascript:displayWindow('images/03-48.jpg',500,825)
javascript:displayWindow('images/03-49.jpg',500,825)

Algorithms and Data Structures in C++:Data Structures and Searching

delete temp;
}
void add_to_new(relation * rel,instance * old,instance * * new_l, int node)
I

path * temp_path;

instance * temp;

int i;

if{*new_| == NULL)

{

C++ Source Code

*new_| = new instance;
for(i=0;i<triangle_size;i++)
(*new_l)->configli]=old->config[i];
(*new_l)->config|node)=1;
(*new_l)->config{rel->del]=0;
(*new_l)->config{rel->from|=0;
(*new_1)}->next=NULL;
(*new_1)->prev=NULL;
if{old->pa==NULL)
{
(*new_l)->pa = new path;
(*new_I}->pa->src=rel->from;
(*new_l)->pa->dest=node;
(*new_1)->pa->next=NULL;
(*new_1)->pa->prev=NULL,;

else

mallh Aamsd nld seas lasae aaibii

javascript:displayWindow('images/03-49.jpg',500,825)
javascript:displayWindow('images/03-50.jpg',500,829)

Algorithms and Data Structures in C++:Data Structures and Searching
[EC U BL KRR R R ML L= P T R L

(*new_l}->pa=temp_path;
while{temp_path->next!=NULL)
temp_path=temp_path->nex;
temp_path->next = new path;
lemp_path->next->prev=temp_path;
lemp_path=temp_path->next;
temp_path->sre=rel->from;
temp_path->dest=node;
temp_path->next=NULL;

else

C++ Source Code

temp=*new_l;

while(temp->next!=NULL) temp=temp->next;

temp->nexi=new instance;

for(i=0;i<triangle_size;i++)
(temp->next)->config[i]=old->config(i];

(temp->next)->config[node]=1;

(temp->next)->config[rel->del]=0;

(temp-=next)->config[rel->from|=();

(temp->next)->next=NULL;

(temp->next)->prev=temp;

temp=temp->next;

if{old->pa==NULL)

|

temp->pa = new path;

javascript:displayWindow('images/03-50.jpg',500,829)
javascript:displayWindow('images/03-51.jpg',500,830)

Algorithms and Data Structures in C++:Data Structures and Searching
temp->pa->sre=rel->from;
temp->pa->dest=node;
temp->pa->next=NULL;
temp->pa->prev=NULL,;

else

path_copy{old->pa,&temp_path);
temp->pa=temp_path;
while(temp_path->next!=NULL)
temp_path=temp_path->next;
temp_path->next = new path;
temp_path->next->prev=temp_path;
temp_path=temp_path->next;
temp_path->src=rel->from,
terp_path->dest=node;
ternp_path->next=NULL;

C++ Source Code

void check_move(relation * rel.instance * old,instance * * new_L int node)

|
while(rel'=NULL)

1
ifi (old->config[rel->from]==1) &&

(old->config[rel->del}==1))

add to newirel old new | noded:

javascript:displayWindow('images/03-51.jpg',500,830)
javascript:displayWindow('images/03-52.jpg',500,819)

Algorithms and Data Structures in C++:Data Structures and Searching

e mms mmm = g m gy m e e T m oy e e

rel=rel-=next;

E
void print_list{instance * list)-
11
path * pa;
int i;
#ifdef printlist
for(i=0;i<triangle_size;i++)
|
if(list->config(i]==0)
cout << “0™;
else cout << “X™;
=
cout << ™™,
#endif
pa = list->pa;
cout << “[*;
while(pa!=NULL)
E

cout << (" << pa->src << *,” << pa->dest << ™),

C++ Source Code

pa=pa->next;
if (pa) cout << *,";

!

cout << “|" << endl;

javascript:displayWindow('images/03-52.jpg',500,819)
javascript:displayWindow('images/03-53.jpg',500,825)

Algorithms and Data Structures in C++:Data Structures and Searching
I

void main(}
I

int i,node, level;
instance * old_list, * new _list, *tmp_list, *tmp2;
relation * rel|triangle_size], * temp;
int RCNT = sizeof(rship)/(3*sizeof(int));
/¥ generate data for the initial instance */f
old_list = new instance;
for(i={hi<triangle_size;i++) old_list->config[i]=1;
ald_list->config|testpoint |=0;
old_list->elements=14;
old_list->next=NULL;
old_list->prev=NULL;
old_list->pa=NULL;
new_list=NULL;
/*end code for initial instance */
print_list{old_list);
/* code to define relationships */
for(i=0;i<triangle_size;i++) rel[1] = NULL;
for(i=0; i< RCNT ;i++)
{

node=rship[i][0];

if (rel[node]==NULL)}

|

rel[node]=new relation;

rel[node]->del=rship[i][1];

C++ Source Code

rel[node]->from=rship[i][2];

javascript:displayWindow('images/03-53.jpg',500,825)
javascript:displayWindow('images/03-54.jpg',500,827)

Algorithms and Data Structures in C++:Data Structures and Searching

rel[node]->next=NULL;

else

{
temp = rel[node];
while(temp->next != NULL) temp = temp->next,
temp->next = new relation;
lemp=lemp->next;
temp->next = NULL;
temp->del = rship[1][1];
lemp->from=rship[i][2];

)

}i*end for*/

/* end code to define relationships */
for(level=0;level<max_level;level++)

|

tmp2=o0ld_list;

while(old_list!=NULL){
for(i=0)i<triangle_size;i++)
I
if(old_list->configli]==0)
/* found candidate for expansion */
check _move(rel[1],0ld_list,&new_list,i);
} /* end for */
old_list=old_list->next;

M

{* end do */

struct_mem_free(tmp2);

#ifdef pri

tmp_list=new list:

javascript:displayWindow('images/03-54.jpg',500,827)

Algorithms and Data Structures in C++:Data Structures and Searching

‘ while(tmp_list!=NULL)

C++ Source Code

if(level== max_level-2) print_list(tmp_list);

tmp_list=tmp_list->next;

#endif
old_hst=new_list;
new_list=NULL;
}/* end for(level.... */

Code List 3.20 Output of Program in Code List 3.19

javascript:displayWindow('images/03-54.jpg',500,827)
javascript:displayWindow('images/03-55.jpg',500,259)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output

OXXXXXXXXX]

00000XX0XO0 [(5,0),(7,2),(0,5),(3,0),(9,2),(0,5)]
X0000X00XO0 [(5,0),(7,2),(0,5),(3,0),(9,7),(6,8)]
00000XX0XO [(5,0),(7,2),(0,5),(9,2),(3,0),(0,5)]
X0000X00XO0 [(5,0),(7,2),(0,5),(9,7),(3,0),(6,8)]
X0000X00XO [(5,0),(7,2),(0,5),(9,7),(6,8),(3,0)]
00000XXO0XO [(5,0),(7,2),(0,5),(9,7),(6,8),(1,6)]
X0000X00XO0 [(5,0,(7,2),(9,7),(0,5),(3,0),(6,8)]
X0000X00XO0 [(5,0),(7,2),(9,7),(0,5),(6,8),(3,0)]
00000XX0XO [(5,0),(7,2),(9,7),(0,5),(6,8),(1,6)]
X0000X00XO0 [(5,0),(7,2),(9,7),(6,8),(0,5),(3,0)]
00000XX0XO [(5,0),(7,2),(9,7),(6,8),(0,5),(1,6)]
00000XX0XO0 [(5,0),(7,2),(9,7),(6,8),(1,6),(0,5)]
OXX000X000 [(5,0),(3,5),(9,2),(0,3),(6,1),(8,6)]
OXX000000X [(5,0),(3,5),(9,2),(0,3),(6,1).(7,9)]
OXX000000X [(5,0),(3,5),(9,2),(0,3),(7,9),(6,1)]
OXX000X000 [(5,0),(3,5),(9,2),(0,5),(7,9),(9,2)]
OXX000000X [(5,0),(3,5),(9,2),(7,9),(0,3),(6,1)]
OXX000X000 [(5,0),(3,5),(9,2),(7,9),(0,5),(9,2)]

javascript:displayWindow('images/03-56.jpg',400,596)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output

0XX000X000 [(5,0).(3.5),(0,3),(6,1),(9,2).(8,6)]
OXX000000X [(5.0),3,5).00,3),(6,1).(9.2).(7.9)]
OXX000X000 [(5.0).(3.5).00,3).(6,1).(8,6).(9.2)]
OXX000X000 [(5.0),(3.5).00,3).09.2).(6,1).(8,6)]
OXX000000X [(5.0).(3.5).(0,3),09,2).(6,1)(7.9)]
OXX000000X [(50),(3,5)(0,3)(9.2)(7.9).(6,1)]
000X000XO0X [(3.0).(8,1)40,3),05,0),06,1).(0,3)]
XO0X000X00 [(3,0),(8,1)40,3),(5,0),(6,8).(9.7]
Q00X000XO0X [(3,0),(8,1)40,3),06,1),(5,0),(0,3)]
X00X000X00 [(3.00.(8,1).00,3),06,8),(5,00.(9,7)]
XOO0X000X00 [(3,0),(8,1)40,3),06,8),(9,7).(5.0)]
Q00X000X0X [(3.00.(8,1)40,3).06,8).(9.7).(2.9]
X0O0X000X00 [(3.0).(8.1).06,8).00,3).(5,00.(9.7)]
XOOX000X00 [(3,0),(8,1),(6,8).40,3),(9,7).(5,0)]
QOO0X000XO0X [(3.00.(8,1)06,8).00,3),(9,7).(2,9)]
X0O0X000X00 [(3.0).(8.1).06,8).09.7).00,3),(5.0)]
QOOX000XO0X [(3.0).(8,1).(6.8).09,7),(0,3).(2,9)]
QOOXO0O0XO0X [(3,0).(8,1).06,8).09,7).,(2.9).(0,3)]
OXXO000000X [(3.0),(5,3).06,1),00,3),(8,6),(6,1)]
OXXO000X000 [(3,0),(5,3),(6,1),(0,5),{9,2),(8,6)]
OXX000000X [(3,0),(5,3),06,1).40,5).(9.2)(7.9)]
OXXO000X000 [(3.0),(5,3).06,1).00.5).(8.6).(9.2)]
OXXO000000X [(3,0),(5,3).(6,1).(8,6),(0,3),(6,1)]
OXX000X000 [(3.0),(5.3).06,1).(8,6).00,5).(9.2)]
OXX000X000 [(3.0).5,3).(0.5).(6,1).(9.2).(8.6)]
OXXO000000X [(3.0).(5,3).(0,5),(6,1),(9.2)(7,9)]
OXXO000X000 [(3.0),(5,3).00,5),(6,1),(8,6),(9.2)]
OXX000X000 [(3,0),(5.3).00,5).09,2).(6,1).(8.6)]
OXXO000000X [(3,0),(5,3),(0,5),(9,2),6,1)(7,9]
OXX000000X [(3,0),(5,3).(0,5).(9,2).(7.9)(6,1)]

3.6 Linear Search

A linear search is a search which proceedsin alinear fashion through alist.

The C++ code to perform alinear search on stringsis shown in Code List 3.21. The output of the

javascript:displayWindow('images/03-57.jpg',280,634)

Algorithms and Data Structures in C++:Data Structures and Searching

program is shown in Code List 3.22
CodelList 3.21 Linear Search Code for Strings

C++ Source Code

#include <stdlib.h>
#include <iostream.h>

#include <string.h>

Jf Initialize the array Note that array must be sorted
char array[][10] = [“Datal™, “Data2”, “Data3”,"Datad4”, “Data5”, “Data6",
“Data7"”, “Data8™};

Jf function used by bsearch to compare data
int compare({const void * i, const void * j)

[

cout << (char *) i <<* is compared to *;
coul << (char *) j << endl;

returni stremp{{char *) i(char *) j));

J

int find{char * key)

[

int * ptr;

size_t number_elements=8;

pir = {int *) lfind(key,(void *) array &number_elements, 10} compare;
retumiptr!=NULLY);

)

void main(void)

if{find(*“Datal ™)) cout << “Datal is in list” << endl;

javascript:displayWindow('images/03-58.jpg',400,589)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code
else cout << “Datal 15 not in list” << endl;

if(find(*Datal2™)) cout << “Datal2 is in list” << endl;

else cout << *Datal2 is not in list” << endl;

}

Code List 3.22 Output of Program in Code List 3.21

C++ Output

Datal is compared to Datal

Datal is in list

Datal2 is compared to Datal
Datal2 is compared to Data2
Datal2 is compared to Data3
Datal2 is compared to Data4
Datal2 is compared to Data5
Datal2 is compared to Data6
Datal2 is compared to Data7
Datal2 is compared to Data8

Datal2 is not in list

3.7 Binary Search

The binary search is used in a sorted array to search for an element. The search consists of comparing
against the middle of the list and proceeding to search the higher or lower sublist in arecursive fashion.

A binary search is shown in C++ in Code List 3.23. The output is shown in Code List 3.24. A binary
search for stringsisillustrated in Code List 3.25. The output of the program is shown in Code List 3.25.

CodelList 3.23 Binary Search for Integers

javascript:displayWindow('images/03-59.jpg',500,143)
javascript:displayWindow('images/03-60.jpg',260,354)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

#include <sidlib.h>

#include <1ostream.he

C++ Source Code

/f Initialize the array
int array[] = { 100,200,50,80,90,600) ;

ff function used by bsearch to compare data
int compare(const void * i, const void * j)

{

return(*(int *) i — *(int *) j);

)

int find(int key)
I

int * ptr;

ptr = (int *) bsearch(&key,array.6,sizeof(int),compare);
return(ptr!=NULL);

}

vold main({void)
{
if(find(80)) cout << “80 is in list” << endl;
else cout << “80 is not in list” << endl;
if(find(81)) cout << “81 is in list” << endl;

else cout << “E1 15 not 1n hist” << endl;

javascript:displayWindow('images/03-61.jpg',300,74)
javascript:displayWindow('images/03-62.jpg',360,631)

Algorithms and Data Structures in C++:Data Structures and Searching

CodeList 3.24 Output of Program in Code List 3.23

C++ Output

80 1s 1n list

81 i1s not 1n list

Previous

Table of Contents

Next

Copyright © CRC Press LLC

javascript:displayWindow('images/03-63.jpg',180,135)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

3.8 QuickSort

The quick sort algorithm is asimple yet quick algorithm to sort alist. The algorithm is comprised of a
number of stages. At each stage akey is chosen.

Code List 3.25 Binary Search for Strings

C++ Source Code

#include <sidhib.h>

finclude <iosiream. o>

finclude <sining.h>

ff Initialize the array Note that array must be sorted
char array[][10] = {“Datal ™, “Data2”, *Data3™,"Datad4”, “Datas”, *Data”,
“Datad”, "Datak”™ };

[f function used by bsearch to compare data
int compare(const voud * 1, const voud *)
[

cout << (char *) 1 <<* is compared to **;

cout << (char *) j << endl;
return{stremp{(char *} 1,{char *) j));

| |

int find{char * key)
|
int * ptr;

ptr = (int *) bsearch(key,(void *) array. X, 1{).compare);

return{ptr!=NLLL);

i

javascript:displayWindow('images/03-64.jpg',400,653)

Algorithms and Data Structures in C++:Data Structures and Searching

void main(void)

{

i And™ Datal "y cowt << “Datal s in hst™ << endl;
else cout << “Datal 15 not im List” << endl;

if(find(*Datal 2™)) cout << “Datal2 is in list™ << endl;
else cout << “Datal2 is not in list”™ << endl;

I

The algorithm starts at the left of the list until an element isfound which is greater than the key. Starting
from the right, an element is searched for which is less than the key. When both the elements are found
they are exchanged. After anumber of iterationsthe list will be divided into two lists. One list will have
all its elements less than or equal to the key and the other list will have al its elements greater than or
equal to the key. The two lists created are then each sorted by the same algorithm.

Code List 3.26 Output of Program in Code List 3.25

C++ Output

Datal is compared to Data5
Datal is compared to Data3
Datal is compared to Data2
Datal 1s compared to Datal
Datal is in list

| Datal2 is compared to Data5
Datal 2 1s compared to Data7

| Datal2 is compared to Data6

Datal 2 15 not in hist

Theinternal details of a quicksort algorithm are shown in the C++ program in Code List 3.27. The output
of the program is shown in Code List 3.28.

A number of different approaches can be used to determine the key. The quicksort algorithm in this
section uses the median of three approach. In this approach akey is chosen for each search segment.

javascript:displayWindow('images/03-64.jpg',400,653)
javascript:displayWindow('images/03-65.jpg',290,333)

Algorithms and Data Structures in C++:Data Structures and Searching

The key is given as the median of three on the bounds of the segment. For instance, in Code List 3.28,
theinitial segment to sort contains 18 elements, indexed 0-17. Thefirst key is determined by the
calculation

h_},=‘ [III]]+I|E]+1[[T]]J
' : (3.1)
=1{3W+1§55+12}J=IEJ — 255

3

After the comparisonstwo lists are formed. In this case the lists are 0-8 and 9-17. Every element in the
first list will be less than or equal to the key 255 and everything in the second list will be greater than or
egual to 255. The two new lists can be sorted in parallel. This exampleis sequential code so that the
second list 9-17 is dealt with first.

The comparisons occurring within the first list isillustrated in Code List 3.29. Two comparisons can be
donein parallel. Starting from the left a search is made for the first element greater than 255. In this case
the first element satisfies that criteria

Starting from the right a search is made for the first element that is less than 255. In thiscase it isthe last
element. At this point the two elements are exchanged in the list which resultsin the second list in Code
List 3.29. Continuing in this manner proceeding from the left the next element in the list is searched for
which is greater than 255. In this case it is the third element in the list, 415. Proceeding from the right the
first element less than 255 found is 100. Again, 100 and 415 are exchanged resulting in the third list.
Eventually the two left and right pointers overlap indicating that the list has been successfully sorted
about the key.

C++ also provides a quicksort operator which performs the median of three sort. Thisisillustrated for
stringsisillustrated in Code List 3.34. The output of the program is shown in Code List 3.35 A quicksort
C++ program for doublesis shown in Code List 3.30 The output is shown in Code List 3.31. A quicksort
program for integersis shown in Code List 3.32. The output is shown in Code List 3.33.

Code List 3.27 QuickSort C++ Program

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

#include <iostream.h>

ff Data for the sort algorithm
int data|] = {300,200,415,406,433,89 42 767,
455,321,309,1045,114,87,-6,89,100,12}:

ff This is the class for the subsets of the data to be sorted
class subset

|

public:

int left:

int right;

subset * next;

b

javascript:displayWindow('images/03-66.jpg',480,435)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

/f The primary class
class array

subset * list;

public:

vioid print_dartal);

int get_key(subset * list);

void print_key(subset * list);

void exchange(int i, int j);

void compare(int *i, int *j, int k);

void quick_sort();

array() { list = new subset;
list-=lefi=0);

hist-=next=MNLULL:
l

#f This functions prints the value of the data
void array::print_data()
[

int i

counl << endl;

ff This returns the key for the first bounds in the list
int array:gel_kevisubset ® lisi)
|
return (data] list-=left]+data[list-=right]+
data[(list->left+list->right)/2])/3;

list->nght=sizeofidata)/sizeof{int)}-1;

for{i={i<sizeof{data)sizeofiint)i++) coul << data[i] <<

javascript:displayWindow('images/03-67.jpg',350,639)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

]

i This prints the value of the key for the pointer passed

vond array:iprint_keyv(subset * List)
|
cout << “Present key = * << get_key(list) << endl;
|

voud array::exchange(int i, int j)
{
int imp;
tmp = datafi];
data[i]=data[)]:
datal j|=tmp;
!

/f This routine compares data within the bounds to the key k
f This routing performs at most one exchange
void armay:;:compare(int *iint *j, int k)

|

int m=*i,n="j;

for(:m<*pm++) if{datalm]=k) break;

for(:n=*i:n- -) ifidata[n]<k) break:

it{m=<n} exchange({m.n);

*iI=m;

1‘j=n:

|

void array::quick_sort()

javascript:displayWindow('images/03-68.jpg',370,672)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code
while(hst!=NULL)
|
int i,5.kK;

subset * tmp=list->nexl;

subset * newl:

i=list-=left;

j=list->nght;

k=get_key(list);

cout << endl << *Working on list ¥ << i <<™ " << j << endl;
print_key(list):

print_data();

while(i<j) compare(&i,&j.k);

if{list->left < j)
{
cout << “create new list = << list->left
< * ™ j << endl;
newl = new subsel;
newl->lefl = list->lefi;
newl->nght =);
newl->nexi=tmp;

imp=newl;

|
ifihst->nght > 1)
[
coul << “create new list ¥ << i
<< < list->right << endl:
newl = new subset;
newl-s=lefts i)

newl->right = list->right;

javascript:displayWindow('images/03-69.jpg',354,653)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

newl-=next=tmp;
tmp=newl;

print_data();
delete list;
list=tmp:
|
|

void main()
{
array X,
x.quick_sort();

|

CodelList 3.28 Output of Program in Code List 3.27

C++ Output

Working on list 0 17

Present key = 255

300200415406 433 89 42 767 455 321 309 1045 114 87 -6 89 100 12
create new list 08

create new list 9 17

12 200 100 89 -6 89 42 87 114 321 309 1045 455 767 433 406 415 300

Working on list 9 17

Present key = 462

12200 100839 -6 89 42 87 114 321 309 1045 455 76T 433 406 415 300
create new list 9 15

create new list 16 17

12 200 100 89 -6 89 42 87 114 321 309 300 455 415 433 406 767 1045

javascript:displayWindow('images/03-70.jpg',400,339)
javascript:displayWindow('images/03-71.jpg',401,334)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output

Working on list 16 17

Present key = 859

12 200 100 89 -6 89 42 B7 114 321 309 300 455 415 433 406 767 1045
12 200 100 89 —6 89 42 87 114 321 309 300 455 415 433 406 76T 1045

Working on list 9 15

Present key = 394

12 2000 1000 B9 —6 B9 47 BT 114 321 300 300 455 415 433 406 76T 1045
create new list 9 11

create new list 12 15

12 200 100 89 —6 B9 42 87 114 321 300 300 455 415 433 406 767 1045

Working on list 12 15

Present key = 425

12 200 100 89 —6 89 42 87 114 321 309 300 455 415 433 406 767 1045
create new list 12 13

create new list 14 15
12 2000 100 89 —6 80 42 87 114 321 300 300 406 415 433 455 767 1045

Working on list 14 15

Present key = 440

12 200 100 B9 —6 89 42 87 114 321 309 300 406 415 433 455 767 1045
12 200 100 89 -6 89 42 87 114 321 309 300 406 415 433 455 767 1045

Working on list 12 13

Present key = 409

12 200 10089 68942 87 114 321 309 300 406 415 433 455 767 1045
12 200 100 89 -6 89 42 87 114 321 309 300 406 415 433 455 767 1045

Warking on list 9 11
Present key = 310

javascript:displayWindow('images/03-72.jpg',360,648)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output

12200 100 89 =6 82 42 87 114 321 309 300 406 415433 455 767 1045
create mnew list 9 10
12200 100 89 -6 8942 87 114 300 309 321 406 415433 455 767 1045

Working on hist 9 10

Present key = 303

12 200 100 89 —6 B9 42 87 114 300 309 321 406 415 433 455 767 1045
12 200 100 89 =6 89 42 87 114 300 309 321 406 415 433 455 767 1045

Working on list 0 8

Present key = 4()

12 200 100 89 —6 89 42 87 114 300 309 321 406 415 433 455 767 1045
create new list 0 |

create new list 2 8

12 —6 100 89 200 89 42 87 114 300 3089 321 406 415 433 455 767 1045

Working on list 2 8

Present key = 101

126 100 89 200 89 42 87 114 300 309 321 406 415 433 455 767 1045
create new list 2 6

create new list T 8

12 -6 100 89 87 8942 200 114 300 309 321 406 415 433 455 767 1045

Working on list 7 8

Present key =171

12 =6 100 B9 87 8942 200 114 300 309 321 406 415 433 455 767 1045
12 -6 100 89 87 89 42 114 200 300 309 321 406 415 433 455 767 1045

Working on list 2 6
Present key =76
126 100 89 87 89 42 114 200 300 309 321 406 415 433 455 767 1045

create new hist 3 6

javascript:displayWindow('images/03-73.jpg',380,683)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output

12 -6 42 89 87 89 100 114 200 300 309 321 406 415 433 455 767 1045

Working on list 3 6

Present key =92

12 -6 .42 89 B7 89 100 114 200 300 309 321 406 415 433 455 767 1045
create new list 3 5

12 642 89 87 89 100 114 200 300 309 321 406 415 433 455 767 1045

Working on hist 3 5

Present key = 88

12 -6 42 89 87 89 100 114 200 300 309 321 406 415 433 455 767 1045
create new list 4 5

12 -6 42 87 89 89 100 114 200 300 309 321 406 415 433 455 767 1045

Working on list 4 5

Present key = 89

12 -6 42 87 89 89 100 114 200 300 309 321 406 415 433 455 767 1043
12 -6 42 87 89 89 100 114 200 300 309 321 406 415 433 455 767 1045

Working on list 0 1

Present key =6

12 —642 87 89 89 100 114 200 300 309 321 406 415 433 455 767 1045
—6 1242 87 89 89 100 114 200 300 309 321 406 415 433 455 767 1045

Code List 3.29 QuickSort Comparison

Comparisons on First List 0-17

Working on list 0 17

Present key = 255

300 200 415 406 433 89 42 767 455 321 309 1045 114 87 -6 89 100 12
12 200 415 406 433 B9 42 767 455 321 309 1045 114 87 -6 89 100 300
12 200 100 406 433 89 42 767 455 321 309 1045 114 87 -6 89 415 300

javascript:displayWindow('images/03-74.jpg',400,530)
javascript:displayWindow('images/03-75.jpg',400,140)

Algorithms and Data Structures in C++:Data Structures and Searching

Comparisons on First List 0-17

12 200 100 89 433 89 42 767 455 321 309 1045 114 87 -6 406 415 300
12 200 100 89 —6 89 42 767 455 321 309 1045 114 87 433 406 415 300
12 200 100 89 —6 89 42 87 455 321 309 1045 114 767 433 406 415 300
12200 100 89 -6 89 42 87 114 321 309 1045 455 767 433 406 415 300

Code List 3.30 QuickSort For Double Types

C++ Source Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
int user_sort(const void *a, const void *b);
double age[]={45.0,25.5,12,29,37.37.41.1};
voild main()
{
int i;
gsort((void *)age,7, sizeof(double),user_sort);
for(i=0;1<7;i++) cout << age[i] <<endl;
]
int user_sort(const void *a, const void *b)
I
if(*(double *) a < *(double *)b) return —1;
if{ *(double *) a > *(double *)b) return 1;

return 0;

CodeList 3.31 Output for Program in Code List 3.30

javascript:displayWindow('images/03-76.jpg',380,112)
javascript:displayWindow('images/03-77.jpg',380,509)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output
12

25.5

C++ Output
29

37
L ¥
41.1
45

Code List 3.32 QuickSort Program for Integers

javascript:displayWindow('images/03-78.jpg',120,99)
javascript:displayWindow('images/03-79.jpg',130,200)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
int user_sort{const void *a, const void *b);
int age[]={4,14,7,34,23,26,43};
void main()
{
int i;
gsort{{void *)age,7 sizeof(int),user_sort);
for(i=0;i<7;i++) cout << age[i] <<endl;
|
int user_sort(const void *a, const void *b)
{
return{ *{int *)a - *(int *)b);

|

Code List 3.33 Output for Program in Code List 3.32

C++ Output
4
-

14

javascript:displayWindow('images/03-80.jpg',400,388)
javascript:displayWindow('images/03-81.jpg',120,124)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output
23

26
34
43

Code List 3.34 QuickSort Program

C++ Source Code

#include <stdio.h>
#include <stdlib.h>
#include <string. h>
#include <iostream.h>
int user_sort(const void *a, const void *b);
char names[][10]={"Jones","Gaede”,"Wells"”,"Nichols" } ;
void main()
I
int 1;
gsort((void *)names,4,10,user_sort);
for(i=0;i<4:i++) cout << names|i] <<endl;
|
int user_sort(const void *a, const void *b)
i
return(stremp((char *)a,(char *)b));
|

Code List 3.35 Output of Program in Code List 3.34

javascript:displayWindow('images/03-82.jpg',130,168)
javascript:displayWindow('images/03-83.jpg',380,434)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Output

Gaede
Jones
Nichols
Wells

3.9 Binary Trees

A binary tree is a common data structure used in algorithms. A typical class supporting abinary treeis

cl ass tree

{

public:

I nt key;

tree * left;
tree * right;

}

A binary treeis balanced if for every node in the tree the height of the left and right subtrees are within
one.

3.9.1 Traversing the Tree

There are anumber of algorithms for traversing a binary tree given a pointer to the root of the tree. The
most common strategies are preorder, inorder, and postorder. The preorder strategy visits the root prior
to visiting the left and right subtrees. The inorder strategy visits the left subtree, the root, and the right
subtree. The postorder strategy visits the left subtree, the right subtree, followed by the root. These
strategies are recursively invoked.

3.10 Hashing

Hashing is atechnique in searching which is commonly used by a compiler to keep track of variable
names, however, there are many other useful applications which use this approach. Theideaisto usea

javascript:displayWindow('images/03-84.jpg',130,178)

Algorithms and Data Structures in C++:Data Structures and Searching

hash function, h (E) , on elements, E , to assist in locating an element. For instance a dictionary might be
defined using an array of twenty six pointers, D [26] . Each pointer pointsto alinked list of datafor the
specific letter of the alphabet. The hashing function on the string simply returns the number of the letter
of the alphabet minus one of the first charactersin the string:

h{ace) = 0 h(zebra) = 25 (3.2)

There are two major operations which need to be supported for the hash table created:
 search for an element
 search for an element and insert the element if not found
e indicateif the hash tableisfull

The idea of hashing isto simplify the search process so the hashing function should be ssmple to
calculate. Additionally, there should be a simple way to locate the data, referred to as resolving
collisions, once the hash function is evaluated.

3.11 Simulated Annealing

The simulated annealing algorithm isillustrated in Figure 3.10. The goal of simulated annealing isto
attempt to find an optimum to alarge-scale problem which typically cannot be found by conventional
means. The solution is sought by iterating and evaluating a cost at each stage. The algorithm maintains a
concept of atemperature. When the temperature is high the algorithm will be likely to accept a higher
cost solution. When the temperature is very low the algorithm will almost always only accept solutions
of lower cost. The temperature begins high and is cooled until an equilibrium is reached. By allowing the
initial temperature to be high the algorithm will be allowed to “climb hills’ to seek a global optimum.
Without thisfeature it is possible to be trapped in alocal minimum. Thisisillustrated in Figure 3.12. By
allowing the function to move to a higher value it is able to climb over the hill and find the global
minimum.

Simulated annealing is applied to the square packing problem described in the next section. This
Illustrates the difficulty and complexity of searching in general problems.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

3.11.1 The Square Packing Problem

The sgquare packing problem is as follows:

Given a list of squares (integer sides) determine the smallest square which includes the list of
sgquares in a nonoverlapping manner.

A given instance for the square packing problem is shown in Figure 3.11. For thisfigure the list of
squares provided have sides

1,1,1,1,1,2,3,3,3,3,6

An optimal solution as shown in the figure packs the squares into a 9x9 square. A C++ source program
implementing the simulated annealing algorithm for the square packing problem is shown in Code List
3.36. The output of the program is shown in Code List 3.37.

3.11.1.1 Program Description

This section describes the program. The description begins with the start of the file and proceeds
forward.

The program includes a number of filesto support the functionsin the program. Of importance hereis
theinclusion of <sys/time.h>. Thisis machine dependent. This program may have to be modified to run
on different platforms. At issue is the conformance to drand48() and associated functions as well asthe
time structure format.

The function drand48() returns a double random number satisfying

0<drandd8 <1 (3.3)

srand48() is used to seed the random number generator. The defined constants are shown in Table 3.1.
Table 3.1 Program Constants

Constant | Meaning
NO_SQUARES |The number of squaresin the problem

generated will have sidesfrom 1 to SQUARE_SIZE LIMIT.
Thisisused when theinitial linked list is generated with
random square sides.

| SQUARE-SIZE-LIMIT The maximum size of the square. The squares that are
|

INITIAL_ TEMPERATURE ITheinitial temperature in the simulated annealing process.

Algorithms and Data Structures in C++:Data Structures and Searching

R The temperature cooling ratio. The temperature is cooled by
this factor each time NO_STEPS have been performed.
NO_ITERATIONS The number of timesto cool. Thisisthe number of timesthe
temperature is reduced by afactor of R.
NO _STEPS Thisisthe number of stepsin the algorithm to perform at the
fixed temperature.

PLUS Thisisthe representation for the PLUS operator whichis
used to represent when blocks are placed on top of each
other.

TIMES Thisisthe representation for the TIMES operator which is
used to represent when blocks are placed next to each other.

TEST When thisis defined the test data, for which the optimal
solution is known, is used.

The representation used in the program for placing the squares is a stacked base approach. Squares
placed on top of each other are noted with a+. Squares placed next to each other are noted with a*.

The notation 1 2 * means square 2 to the right of 1. The notation 1 2 + means square 1 on top of 2. The
notation is unraveled in a stack base manner so to evaluate the meaningof 012 3*4 + * + you push
each of the elements on the stack and when you encounter an operation you remove two elements from
the stack and replace it with the modified element. The array resultsin the operation in Table 3.2:

Table 3.2 Interpreting Representation
|Representation ~ [Meaning
0123*4+*+ |Origina Array

0154+* + IBlock 5 created which is composed of block 2 next to 3
016* + IBlock 6 created which is composed of block 5 on top of 4
07 + IBlock 7 created which isblock 1 next to 6

8 IBlock 8 created which is block 0 on top of 7

A possible notation, for instance, for Figure 3.11, is
(0J1j2]+ > 5|+ |6 |+ |89 " JI0]* [+ [3]4]* |7][+]"

Thiswould represent the square packed into the 9x9 sgquare. Notice that each of the blocks above contain
anumber or an operation. The program elects to define the + operation as the number NO_SQUARES
and the TIMES operation asthe NO_SQUARES+1. As aresult the valid representations will be the
numbers 0-12.

Two stacks are defined in the program, one to store the current x width of abox and the current y width.
Thisis needed because when you combine squares of different sizes you end up with arectangle. If you
combine a 1x1 with a 2x2 you will end up with a 3x2 or a 2x3.

Thetest dataisinitially stored as
of1[2[3[a[s5[6[7[8[0[10[* [+ [*[+[*[+[*[+T[*]+

Algorithms and Data Structures in C++:Data Structures and Searching

Previous

Table of Contents

Next

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Data Structures and Searching

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

The program starts with the array and perturbs it by replacing it with a neighboring array and evaluating
the cost of the string. The calculate _cost() function calculates the cost of a given array.

To calculate a neighboring array the algorithm selects a random strategy. Thisis arequired aspect to
simulated annealing. The neighboring strategy must be random. The strategy is described in Table 3.3.

Table 3.3 Neighbor Solution Strategy

| Operation | Description
A op_to_op_A() Swap an operation with an element. For instance replace 10 +
with + 10.
op A to A op() Swap an operation with an element. For instance replace + 10
with 10 +.
AB to BA |Exchange two elements. For instancereplace4 5 +to 54 +.
switch_op() switch two operators in the sequence. For instance replace 4 5
+with45+,
ABC op_to AB op_C() replace a sequence of three elements followed by an
operation to two elements followed by the operation followed
by the last element. For instancereplace24 35+ 6 with2 4
3+56.
Noticethisissimilar to A_op to op A().

There are certain representations which are not valid that are handled by the program. For instance
34*5+

cannot be replaced with
3*45+

because you need two elements for each operation you run into. In general at any point in the array the
number of elements to that point must exceed the number of operations to that point by 1. The program
ensures that only valid perturbations are considered.

The output of the program is shown in Code List 3.37. The program found an optimal solution. Since the
program is arandom program it may not find the optimal solution each time. The program also doesn’t
output the square number but rather the size of the size. This increases the readability of the solution. The
solution to the problem is not unique.

Code List 3.36 Simulated Annealing

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

#include <math.h>

#include <stdlib.h>

#include <sysftime.h>

#include <iostream.h>

extern double drand4®();

extern long Irand48(/*long*/);
extern int rand();

extern void srand48(long seedval);
#define NO_SQUARES 11
#define SQUARE_SIZE_LIMIT 6
#define INITIAL_TEMPERATURE 70.0
ftdefine R 0.8

fidefine NO_ITERATIONS 20
#define NO_STEPS 10000
#define PLUS NO_SQUARES
#define TIMES NO_SQUARES+1
#define TRUE 1

#define FALSE 0

#idefine TEST

int op[2*NO_SQUARES-1];

C++ Source Code

int present_op[2*NO_SQUARES-1];
int data[NO_SQUARES];

javascript:displayWindow('images/03-85.jpg',400,446)
javascript:displayWindow('images/03-86.jpg',450,79)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

int stack_x[NO_SQUARES], stack_y[NO_SQUARES];
int stack_pointer;

int x0_val, y0_val;

int x1_wval, y1_wval;

#ifdef TEST

int test_set[NO_SQUARES]}=(1,1,1,1,1,2,3,3,3,3,6};

C++ Source Code

#endif
{f list structure passed to progam

class square_list |

public:
int side;
square_list * next;
b
void get_list_start(square_list * * Jist)
{
int i;

struct square_list * build_list, * list_start;
build_list=new square_list;

list_start = build_list;
for(i=0;i<NO_SQUARES:i++)

C++ Source Code

{
#ifndef TEST

#endif
#ifdef TEST

build_list->side = (Irand48()>>4)%(SQUARE_SIZE_LIMIT)+1;

javascript:displayWindow('images/03-87.jpg',450,173)
javascript:displayWindow('images/03-88.jpg',450,359)
javascript:displayWindow('images/03-89.jpg',485,838)

Algorithms and Data Structures in C++:Data Structures and Searching

DULIa_NST->510€ = E51_SCI[1];

#endif
build_list->next = new square_list;
build_list=build_list->next;
}
#ifndef TEST
build_list->side = rand()%(SQUARE_SIZE_LIMIT)+1;
#endif

build_list->next = NULL,;
*list = list_start;

f*t*il*:ﬁ:luh:l:#Iﬂht!H:llhtlﬂt-’ﬁt#tﬂttttttit*tt:t#***t**#***#*#*****#**}
/* create initial operation array */
/* operations are alternately chosen PLUS and TIMES */
void create_operation_array()
|
int 1,;
for(i=0;i<NO_SQUARES;i++) opli]=i;
for(j=0;j<NO_SQUARES;j++) op[i++]=PLUS + i%2,

f:hl:t!ttt**lﬂltl*l*lttitﬂltﬂ*IIHF*ttt*#*t**********************‘*f

/* remove data from stack */

void pop()
{

stack_pointer- -;

C++ Source Code

x1_val=x0 val:

javascript:displayWindow('images/03-89.jpg',485,838)
javascript:displayWindow('images/03-90.jpg',450,781)

Algorithms and Data Structures in C++:Data Structures and Searching

y1_val=y(_wval;

x0_wval=stack_x[stack_pointer];

y0_wval=stack_y[stack_pointer];
}

f*****##*#*#*#t#**####*####!*.iﬂﬁ.i*ﬁ#ﬂ*#ﬁﬁ&ﬁ*ﬁﬁﬁ#i#########f

/* push data on to stack */

void push(int x, int y)

{
stack_x[stack_pointer]=x;
stack_y[stack_pointer]=y;
stack_pointer++;

J

I#*##*#t***tH#tt*t##ii**#t#*###*t#t# ,,,,,,,,, *########1##!
* pieces side by side */
void merge_times()

{

if(y0_val <= y1_val) y0_val = v1_val;
x0_val += x1_val;
I

fttttttttittttlt*tti#i#*i***#*t*#t###*##*######*m*******.m*tf

/* pieces on top of each other */

void merge_plus()

|
if(x0_val <= x1_val) x0_val = x1_val;
y0_val += y1_val,

}

J e e ey

/* calculate the cost of op array */
int calculate_cost()
|

int i;

javascript:displayWindow('images/03-90.jpg',450,781)

Algorithms and Data Structures in C++:Data Structures and Searching

C++ Source Code

stack_pointer=0;
for(i=0;i<2*NO_SQUARES—-1;i++)
I
switch(op[i])
I
case PLUS:
pop();
pop();
merge_plus(};
push(x0_val y0_val);
break;

case TIMES:
popl);
pop();
merge_times();
push(x0_val,y0_val);
break;

/* data */

default:
push(data[op(i]].datalop[i]]);
break;

}
pop();
if(x0_val>=y0_val) return(x0_val*x0_val);
else return(y(_val*y0_val);
]

JPEEEEE R R R R RSN R R R R SRR R TR R R Rk d

javascript:displayWindow('images/03-91.jpg',450,769)

Algorithms and Data Structures in C++:Data Structures and Searching

int 15_dataint x)

// function to determine if an item is data or an operation */ ‘

C++ Source Code

|
if((op[x]!=TIMES)&&(op[x]!=PLUS)) return(TRUE);
else return(FALSE);

}

‘f;ﬁ't*!’tt*‘#t!**H**I'ﬂt#'ﬁtﬂl’***1!#*t#**#I'ltﬁ"ltﬂt##t#*‘**tt*t**t**tf
/f neighbor solution calculations */
void switch_op()

int i,j.k,loc;

k=-1;

/* choose random operator */
J = Irand48()%(NO_SQUARES-1),

f* search for location */
for(i=0;i<2*NO_SQUARES-1;i++)
{
if({(op[i]J==PLUS)l(op[i]==TIMES))
I

k++;

if(k==)) loc=i;

javascript:displayWindow('images/03-91.jpg',450,769)
javascript:displayWindow('images/03-92.jpg',495,856)

Algorithms and Data Structures in C++:Data Structures and Searching

ff swap */
if{op[loc]==PLUS) op[loc]=TIMES;
else op[loc]=PLUS;

}

J e L L L L

/* neighbor solution calculations */
void ABC_op_to_AB_op_C()

C++ Source Code

I
int 1,j,k,tlemp;
k=0,
for(i=0;i<2*NO_SQUARES—:i++)
if((is_data(i))&&(is_data(i+1)&&(is_data(i+2))
&&(lis_data(i+3))) k++;
if{k==0) return;
j=lrandd8()%k;
k=0;
for(i=0;i<2*NO_SQUARES—4;i++)
if((is_data(i))&&(is_data(i+1))8&(is_data(i+2))
&&(lis_data(i+3)) & &(k++==]}))

temp=op[i+2];
opli+2]=op[i+3];
op[i+3]=temp;
retum;

Ilﬂii'h!Ii!llll!ltttttttt#t##t####Hl*ilhIhIllllliiﬁlilllll'ﬁiEll‘l‘t‘l"#’!”l”l’!!*****’j

/* neighbor solution calculations */
vl o At A aml)

javascript:displayWindow('images/03-92.jpg',495,856)
javascript:displayWindow('images/03-93.jpg',450,773)

Algorithms and Data Structures in C++:Data Structures and Searching

TorAmE g s m_whw s m__w s

{

int i,j,k,temp;

k=0

for(i=0,i<2*NO_SQUARES-2;i++)
ifi{(is_data(i))&&(is_data(i+1))) k++;

if(k==0) return;

j=lrand48()%k;

k=0;

for(i=();i<2*NO_SQUARES-2;i++)
if((Yis_data(i))&&(is_data(i+1))&&(k++==]))

C++ Source Code

|
temp=opli];
opli]=opli+1];
opli+1]=temp;

refurn;

Fﬂ*!*ttt*tt***l-’#**t**l:-’hl:**-’#**1:*1!:-*****#***t*#i**#**:ﬁ*t*t***;

/* neighbor solution calculations */

void A_op_to_op_A()

[
int i,j,k temp;
int operations=0);
int data_ item={);
k=();
for(i=0;i<2*NO_SQUARES-3;i++)
{

ifiie datafity data item44+ #lee oneratinned4--

javascript:displayWindow('images/03-93.jpg',450,773)
javascript:displayWindow('images/03-94.jpg',485,840)

Algorithms and Data Structures in C++:Data Structures and Searching

ifi{(1s_data(1))&&(lis_data(i+1))
&&(data_item>=(operations+3))) k++;

!

ifik==0) return;

j=lrand48()%k;

k=0;

data_item=0;

operations=();

for(i=0;1<2*NO_SQUARES-3;i++) |

if(is_data(i)) data_item++; else operations++;

if((is_data(i))&&(!is_data(i+1))
&&(data_item>=(operations+3))& &(k++==j))

{
C++ Source Code

temp=opl[i];
opli]=opli+1];
op[i+1]=temp;
return;

}

)

]

[RRRRFRRFRRREFEERRRRERREFERER R R R R R R R R Rk |

/* neighbor solution calculations */
void AB_to_BA()
{

int i,},k,m,n;

javascript:displayWindow('images/03-94.jpg',485,840)
javascript:displayWindow('images/03-95.jpg',500,865)

Algorithms and Data Structures in C++:Data Structures and Searching

int K1,temp;
i=lrand48()%NO_SQUARES;
j=Irand48()%NO_SQUARES:;
while(i==j) i=lrand48()%NO_SQUARES;

k1=0;
for(k=0;k<2*NO_SQUARES-1;k++)
{
if(is_data(k))
{
if(i==k1) m=k;
if(j==k1) n=k;
K14+
l
]
temp=op|[m};
op[m]=op[n];
opln]=temp;

)

JREEE Rk Rk R Rk kR kR kR Rk ok ook |

/* sample data for which optimal is known = 81 */

C++ Source Code

void sample_data()
[

int i;

for(i=0;i<NO_SQUARES:;i++) data[i1]=2;
I

‘ln'!k!k*#!k-lﬂ':-t!l:#!k-i!:*i-ﬂ:ﬁ#l*tlﬂt*t!t:ltﬂ:l!tHlllltﬁ#ltﬁtﬂt*t#t!*t#t*#‘t‘!

/* randomly select neighbor of op */

javascript:displayWindow('images/03-95.jpg',500,865)
javascript:displayWindow('images/03-96.jpg',485,839)

Algorithms and Data Structures in C++:Data Structures and Searching

void neighbor_solution()

{
switch((lrand48()>>4)%35)

|
case 4. A_op_to_op_A();

break;

case 3;
op_A_to_A_op();
break;

case 2:
AB_to_BA();
break;

case 1:
switch_op();
break;

case 0:
ABC_op_to_AB_op_C();
break;

default:
break;

1

‘f*!lll!::ll:t*-*ltl*ltlt:l!*:lIh:l!l:tH:l!l:*I':llt*t'lht'-tﬂttt.‘*tti*iti#!’**#**#‘p’

/* function to accept neighbor */

C++ Source Code

void accept_neighbor()
|

javascript:displayWindow('images/03-96.jpg',485,839)
javascript:displayWindow('images/03-97.jpg',450,779)

Algorithms and Data Structures in C++:Data Structures and Searching
int 1,
for(i=0;i<2*NO_SQUARES-1;i++) present_op[i]=op[il:

F****mauum:ltmt:attittt*#tt##**#ttt*l:llllilllllllllll!ll.ﬂﬂlﬂlt!hih!ﬂl****#il'

f* print final output */
void print_results(int optimal_cost)
{
int i;
cout << “Calculated cost * << optimal_cost << endl;
for(i=0;i<2*NO_SQUARES-1;i++)
| switch{present_opli])

{

case PLUS: cout << "+ ",
break;

case TIMES: cout << “* *;
break;

default:

cout << data[present_op[i]] <<**;
break;
I

I

cout << endl;

}

‘H:t*.*ttt*mg***mﬂﬁmm**1.t#d-:l::l::l-:I:H-H-:H-H-lhllutlti!tttlt*ttttt**t**f

/* main program */
main{)
|

int ijk;

Cas Snurea Coda

javascript:displayWindow('images/03-97.jpg',450,779)
javascript:displayWindow('images/03-98.jpg',500,836)

Algorithms and Data Structures in C++:Data Structures and Searching

ko m

class square_list ¥ list_start;

int optimal_cost, random_neighbor_cost;

int cost;

double temperature=INITIAL_TEMPERATURE;

double probability,random_0_1;

/* set random number generator */

struct timeval tp;

struct timezone tzp;

gettimeofday(&tp,&izp);

srand48(tp.tv_usec);

/* get external list */

get_list_start(&list_start);

/* create operation array for neighbor solution */

create_operation_array();

[* create present active optimal operation_array */

for(i=0;i<2*NO_SQUARES—1;i++) present_op(i]=opl[i];

/* get data */

i=0;

while(list_start!=NULL)

|
datafi1++]=list_start->side;
list_start=list_start->next;

|

/* use sample data from handout if defined at
beginning of program*/

optimal_cost=calculate_cost();

/* perform annealing */

for(j=0;j<NO_ITERATIONS;j++)

javascript:displayWindow('images/03-98.jpg',500,836)

Algorithms and Data Structures in C++:Data Structures and Searching

{
for(i=0;i<NO_STEPS;i++)

C++ Source Code

for(k=0k<2*NO_SQUARES—1;k+4)
oplk]=present_oplk];
neighbor_solution();
cost=calculate_cost();
ificost<=optimal_cost)
[
accept_neighbor();
optimal_cost=cost;
)
else |
probability =
expi—{cost-optimal_cost)/temperature);
random_0_1 = drand48();
ifirandom_0_1 <= probability)
{
accept_neighbor();
optimal _cost=cost;
B
]
)
temperature*=§;

|

print_resultsioptimal _cost);

return 1,

|

CodeList 3.37 Output of Program in Code LIST 3.36

javascript:displayWindow('images/03-98.jpg',500,836)
javascript:displayWindow('images/03-99.jpg',400,547)

Algorithms and Data Structures in C++:Data Structures and Searching

Output of Program in Code List 3.36

Calculated cost B1
11+2*11*1*3+3++33%06+*

begin

Start with Initial Solution, § = So

Start with Initial Temperature, T = T
while(not satisfied) do
begin
while (not in equilibrium} do
begin

5715 some random neighbor of §

Calculate Cost differential:
(6=Cost(5') = Cost(5))
Assign a probability, prob,

prob = min{l, e .5.-'r}

if random (0, 1) < prob then § = §'

end;
Update Temperature T;

end;

Output solution §

Figure 3.10 Generic Simulated Annealing Algorithm

javascript:displayWindow('images/03-100.jpg',350,66)
javascript:displayWindow('images/03-101.jpg',400,486)
javascript:displayWindow('images/03-101.jpg',400,486)

Algorithms and Data Structures in C++:Data Structures and Searching

1
0
2 3 4
5
7
6
8 | 9 |10

Figure3.11 A Given Instance of the Square Packing Problem

javascript:displayWindow('images/03-102.jpg',385,397)
javascript:displayWindow('images/03-102.jpg',385,397)

Algorithms and Data Structures in C++:Data Structures and Searching

Point A

global
minimum

local minimum e
i

Figure 3.12 Hill Climbing Analogy
3.12 Problems

(3.1) [Pointers, Dynamic Memory Allocation] Write a C++ program to invert a 30 matrix with
floating point elements. Y our program should only declare triple pointers in main(). Every
declaration in main() must be of the form: type* * * variable. This also appliesto any loop
variables needed. No other variables outside of main() should be declared (you can use classes
outside of main()). Any memory allocated with new should be removed with delete. Input the
matrix using the cin operator and output the results using the cout operator. If the matrix is not
invertible you should print “Matrix not Invertible”.

(3.2) [Dynamic Memory Allocation, FIFO] Write a C++ program to implement a FIFO stack
which allocates space dynamically. The size of the stack should increase dynamically (via new)
with each push operation and decrease (via delete) with each pop operation. Support an operation
to print the data presently on the stack.

(3.3) [Linked Lists] Write a C++ program to maintain alinked lists of strings. The program should
support an operation to count the number of entriesin the linked list which match a specific string.

(3.4) [Linked Lists, Sorting] Write an operation for the program in Problem 3.3 which will sort
the linked list in alphabetical order.

(3.5) [Linked Lists] Write ageneral linked list C++ program which supports operations to

e Combinetwo lists

javascript:displayWindow('images/03-103.jpg',400,348)
javascript:displayWindow('images/03-103.jpg',400,348)

Algorithms and Data Structures in C++:Data Structures and Searching
» Copy alist.
» Split alist at a specific location into two lists

Make sure you handle all the special cases associated with the start and end of alist.

(3.6) [Bounding] Modify the coffee house game program to find a solution where the triangle
dimension is 15. The program should use a bounding technique which results in unique
intermediate peg locations at each iteration.

(3.7) [Merging Sorted Linked Lists] Write a C++ program to merge two separate sorted listsinto
one sorted list. Calculate the order of your algorithm in terms of the size of the input list, n.

(3.8) [Binary Trees|] Write a C++ program which is passed a pointer to abinary tree and prints out
the keys traversed via preorder, postorder and inorder strategies. Assume your tree classis
defined as

class tree

{

public:

i nt key;

tree * left;

tree * right,;

}

(3.9) [Balanced Trees|] Write a C++ program which inserts an element anywhere into a balanced
tree and results in atree structure which is still balanced. Assume your tree class is the one defined
in Problem 3.8.

(3.10) [Balanced Trees] Write a C++ program which deletes an element with a specific key from a
balanced tree and results in atree structure which is still balanced. Assume your tree classisthe
one defined in Problem 3.8.

(3.11) [Balanced Trees] Write a C++ program which maintains a sorted key list in a balanced
binary tree. Y ou should Support insertion and deletion of elementsin the tree. For this problem the
definition of sorted meansthat at each node in the tree every element in the left subtree isless than
or equal to the root key of the subtree and every element in the right subtree is greater than or
equal to the root key of the subtree. After insertions and deletions the tree should be balanced.
Assume your tree classis the one defined in Problem 3.8.

(3.12) [Order] Calculate the number of operations in terms of the size of the tree for the
performance of the algorithm in Problem 3.10.

(3.13) [Hashing — Difficult] Consider alinked list structure which supports the concept of an
element with a number of friends:

cl ass el enent

{

publ i c:

char dat a[100];
elenment * f1;

Algorithms and Data Structures in C++:Data Structures and Searching

el ement * f2;
el enent * f3;

}

Consider a number of strings, say 2000, to be placed in classes of this nature. Develop a hashing
algorithm which will use the fact that an element has three friends to determine the location of the
string given only a pointer to aroot element. Support the hashing functions to search and insert
strings into the table. Try to characterize your data which would make your hashing algorithm
optimal.

(3.14) [QuickSort] Investigate different key selection strategies for the quicksort algorithm. Test
out at least five different strategies and use large lists of random data as your performance
benchmark. Compare each strategy and rate the strategies in terms of their performance.

(3.15) [Simulated Annealing] Modify Code List 3.36 to use simulated annealing to pack a number
of rectangles into arectangle with smallest area. Support the option to pack rectanglesinto a
square with smallest area.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

Chapter 4
Algorithms for Computer Arithmetic

4.1 2’s Complement Addition

This section presents the principles of addition, multiplication and division for fixed point 2's
complement numbers. Examples are provided for a selection of important fixed point algorithms.

Two's complement addition generates the sum, S for the addition of two n-bit numbers A and B with

A=a, ,.4
B = bﬂ_1,..bn
=35 _,..5

A C++ program simulating 8-bit two’s complement addition is shown in Code List 4.1. The output of the
program is shown in Code List 4.2

CodeList 4.1 2’s Complement Addition

C++ Source Code

#include <iostream.h>

unsigned char a[] = {Oxfa,0x13,0xc4,0xff,0x80};
unsigned char b[] = {0x06, 0xdf,0xa6,0xfe,0x80};
#define NINPUTS (sizeof(a)/sizeof(unsigned char))

void main()

{

unsigned char sum;

javascript:displayWindow('images/04-01.jpg',500,231)
javascript:displayWindow('images/04-02.jpg',500,910)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source Code

int overflow, carry;

register int i;

unsigned char add(unsigned char augend,unsigned char addend,
int * ovflp,int *carryp);

int b2w(unsigned char n);

carry=0;

for(i=0;i<NINPUTS;i++)

{

cout << “a="* << b2w(a[i]) << * b=" << b2w(b[i]) << endl;

sum = add(a[i], b[i], &overflow, &carry);

cout << “sum =" << b2w(sum) << * overflow= * << overflow <<

“ carry= " << carry << endl << endl;

}

}
unsigned char add(unsigned char augend,unsigned char addend,

int * ovflp,int *carryp)
{
unsigned int sum;
| unsigned char rtn;
sum = augend+addend;
rtn = sum;
if(carryp!=0) *carryp=(sumé&0x100)>>8;
if(ovflp!=0) *ovflp=(((augend&0x80)==(addend&0x80))
& &((sum&0x80)!=(augend&0x80)));

javascript:displayWindow('images/04-02.jpg',500,910)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

return rin;

}

int b2w(unsigned char n)

{
return (((n&0x80)==0)(n&0xff):(nl(-1<<8)));

}

Code List 4.2 Output of Programin Code List 4.1

C++ Output
a=-6b=06
sum = 0 overflow= 0 carry= 1

a= 19 b=-33
sum = =14 overflow= 0 carry= 0

a= —60 b= -90
sum = 106 overflow= 1 carry= 1

a=-1b=-2

sum = -3 overflow= 0 carry= 1

| a=-128 b=-128

sum = 0 overflow= 1 carry= |

The programs do not check for overflow but simply simulate the additon as performed by hardware.

4.1.1 Full and Half Adder

javascript:displayWindow('images/04-02.jpg',500,910)
javascript:displayWindow('images/04-03.jpg',500,457)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

In order to develop some fast algorithms for multiplication and addition it is necessary to analyze the
process of addition and multiplication at the bit level. Full and half adders are bit-level building blocks
that are used to perform addition.

A half adder is a module which inputs two signals, a and b;, and generates a sum, s, and a carry-out ¢,. A
half adder does not support a carry-in. The outputs are asin Table 4.1.

Table 4.1 Half Adder Truth Table
Input Output

o

(@]

R = O oL
=lliaEe)
O k| | ol »
R Ol Ol O

A full adder has a carry-in input, ¢,. A full adder isshown in Table 4.2.
Table 4.2 Full Adder Truth Table

| I nput | Output

| & ’ b, | Ci1 | S | G
0o o6] o | o |0
o jJ o jJ 1+ | 1] 0
ot | o6 |1]0
o |t 1+ J o |1
 t o | o |1] o0
|t o6 7 1 o |1
|t 1] o o |1
|+ 1] r 717t

The full adder and half adder modules are shown in Figure 4.1. The boolean equation for the output of
the full adder is

s; = abc,_+abc, +abgc, +abg,_, (4.3)
¢, =abec, +abe,_ tabce, . + “.-bff;- , (4.2)
The boolean equation for the output of the half adder is
s; =abtab, =a @b, (4.3)
where « denotes the exclusive-or operation.
c; = ab, (4.4)

The output delay of each module can be expressed in terms of the gate delay, ”, of the technology used to

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

implement the boolean expression. The sum, s, for the full adder can be implemented asin Eq. 4.1 using
four 3-input NAND gatesin parallel followed by a4-input NAND gate. The gate delay of a k-input
NAND gateis” sothesumiscaculated in 2”. Thisisillustrated in Figure 4.2. For the half-adder the
sum is calculated within | ” and the carry is generated within | ”. The Output Delay for the Half Adder is
shown in Figure 4.2.

Figure4.1 Full and Half Adder Modules

4.1.2 Ripple Carry Addition

2's complement addition of n-bit numbers can be performed by cascading Full Adder modules and a Half
Adder module together as shown with a4-bit example in Figure 4.3. The carry-out of each moduleis
passed to the carry-in of the subsequent module. The output delay for an n-bit ripple-carry adder using a
Half Adder module in thefirst stageis

Output Delay = (2Zn—-1)A
For many applications this delay is unacceptable and can be improved dramatically.

A C++ program to perform ripple carry addition is shown in Code List 4.3. The output of the programis
shown in Code List 4.4. The program demonstrates the addition of 1 + (-1). As can be seen in the output
the carry ripples through the result at each simulation until it has passed over N hits.

javascript:displayWindow('images/04-04.jpg',500,256)
javascript:displayWindow('images/04-04.jpg',500,256)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

L1l JJLQ
§

s

Figure4.2 Output Delay Calculation for a Full Adder

a, b, a, b, a, b, a, b,
Cy Full €2 Full € Full o Half

<4— Adder [Adder [Adder [Adder

rooor vy

¥a ¥3 5 o

! i

Figure 4.3 2's Complement 4-Bit Adder

javascript:displayWindow('images/04-05.jpg',500,333)
javascript:displayWindow('images/04-05.jpg',500,333)
javascript:displayWindow('images/04-06.jpg',500,289)
javascript:displayWindow('images/04-06.jpg',500,289)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Figure4.4 Output Delay Calculation for a Half Adder
CodeList 4.3 Ripple Carry Addition

C++ Source Code

/I This program simulates Ripple Carry Addition

#include <iostream.h>
#define N 16
class DATA
I
public:
char a,b, carry_in, sum, carry_out;

35

class FADDER
[
public:
DATA d_old, d_new;
FADDER(){ d_old.a=d_old.b=d_old.carry_in

javascript:displayWindow('images/04-07.jpg',500,216)
javascript:displayWindow('images/04-07.jpg',500,216)
javascript:displayWindow('images/04-08.jpg',500,621)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

=d_old.sum=d_old.carry_out=0;}
void add();
void update_data() {d_old=d_new;
)i

void FADDER::add()

C++ Source Code

{

d_new.sum=d_old.a"d_old.b"d_old.carry_in;

d_new.carry_out=d_old.a&d_old.b | d_old.a&d_old.carry_in
| d_old.b&d_old.carry_in;

d_new.a=d_old.a;

d_new.b=d_old.b;

d_new.carry_in=d_old.carry_in;

|

void set_carry_in(FADDER * f)
{
int i:
for(i=1;1<N;i++)

fli).d_old.carry_in=f]i-1].d_old.carry_out;

void set_data(int A, int B, FADDER * f)
[

javascript:displayWindow('images/04-08.jpg',500,621)
javascript:displayWindow('images/04-09.jpg',500,927)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

int i;
unsigned int mask=0x1;
for(i=0;i<N;i++)
{
fli].d_old.a=A&mask;
fli).d_old.b=B&mask;
A>>=];
B>>=1;
}
}

void full_add(FADDER *f)
{

C++ Source Code

int 1;
for(i=0:1<N;i++) f[1].add();
J

void update(FADDER *f)
{

int i;
for(i=0;i<N;i++) f]i].update_data();

void print_data(FADDER *f)

javascript:displayWindow('images/04-09.jpg',500,927)
javascript:displayWindow('images/04-10.jpg',500,928)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

{

int i;

cout << “A=";

for(i=N-1;i>=0;1— -) cout << (f[1].d_old.a? “1™:"0");
cout<<"“ B ="

for(i=N-1;i>=0;i- =) cout << (f]i].d_old.b? “1":"0™);
cout <<* SUM ="

for(i=N-1;1>=0;i- -) cout << (f[1].d_old.sum? “17:"0");

cout << endl:

void main()
{
FADDER f[N];
set_data(1,-1,f);
print_data(f);
int i;
for(i=0;i<N;i++)
{
set_carry_in(f);

javascript:displayWindow('images/04-10.jpg',500,928)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source Code

full_add(f);

update(f);
print_data(f);

Code List 4.4 Output of Program in Code List 4.3

C++ Output

A = 0000000000000001 B = 1111111111111111 SUM = 0000000000000000
A = 0000000000000001 B=1111111111111111 SUM = 1111111111111110
A = 0000000000000001 B=1111111111111111 SUM = 1111111111111100
A = 0000000000000001 B=1111111111111111 SUM = 1111111111111000
A = 0000000000000001 B = 111T111111111111 SUM = 111111111 110000
A = 0000000000000001 B=1111111111111111 SUM = 1111111111100000
A = 0000000000000001 B=1111111111111111 SUM = 1111111111000000
A = 0000000000000001 B = 1111111111111111 SUM = 1111111110000000
A = 0000000000000001 B = 1111111111111111 SUM = 1111111100000000
A = 0000000000000001 B = 1111111111111111 SUM = 1111111000000000
A = 0000000000000001 B = 1111111111111111 SUM = 1111110000000000
A = 0000000000000001 B = 1111111111111111 SUM = 1111100000000000
A = 0000000000000001 B = 1111111111111111 SUM = 1111000000000000
A = 0000000000000001 B = 1111111111111111 SUM = 1110000000000000
A = 0000000000000001 B = 1111111111111111 SUM = 1100000000000000
A = 0000000000000001 B = 1T11111111111111 SUM = 1000000000000000
A = 0000000000000001 B = 1111111111111111 SUM = 0000000000000000

javascript:displayWindow('images/04-11.jpg',500,228)
javascript:displayWindow('images/04-12.jpg',500,471)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

4.1.2.1 Overflow

The addition of two numbers may result in an overflow. There are four cases for the generation of
overflow in 2's complement addition:

* Positive Number + Positive Number (result may be too large)
 Positive Number + Negative Number
» Negative Number + Positive Number
» Negative Number + Negative Number (result may be too negative)
Overflow is not possible when adding numbers with opposite signs. Overflow occursif two operands are

positive and the sum is negative or two operands are negative and the sum is positive. Thisresultsin the
boolean expression

Overflow =a,_ b, _ 5,1+ a,_ P, 15,1 (4.5)

=1"r=1r=1

Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/04-12.jpg',500,471)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

The calculation of overflow for ripple-carry addition can be simplified by analyzing the carry-in and
carry-out to the final stage of the addition. Thisis demonstrated in Table 4.3. An overflow occurs when

Table 4.3 Carry Analysis for Overflow Detection

| a1 | b1 ’ Sh-1 | Ch-1 | Ch2 | Overflow
o [o [o | o [o | 0
o 7 o J 't 7 o | 1]| 1
o+ 7 r 7y o0 7t 7 0] 1
1 [1 [1 | 1T | 1 | 0
o G (4.6)
which results in the boolean expression
Overflow=1c,_,®c,_, (4.7)

4.1.3 Carry Lookahead Addition

In order to improve on the performance of the ripple-carry adder the carry-in to each stageis predicted in
advance rather than waiting for the carry-in to propagate from the previous stages. The carry-out of each
stage can be simplified from Eq. 4.2 to

c, = ::l*.bl.+ ac;_+bc;_, (4.8)
or
¢, =ab+(a+b)c,_, (4.9)
which iswritten as
C; = 8 TP
with

g = ab;

p;=a,+b,

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

The interpretation of Eq. 4.10 isthat at stage i acarry may be generated by the stage, (g, = 1) , or acarry
may be propagated from a previous stage, (p, = 1). When g; = 1 stage i will always have a carry-out
regardless of the carry-in. When g, = 0 stage i will have a carry when the carry-inis1 and p, = 1, thusitis
said to have propagated the carry. The time required to produce the generate, g;, and the propagate, p;, is
1”. For the afour-bit adder as in Figure 4.3 one has

€o = & (4.11)
¢, =8 tp¢ (4.12)
€2 = 837 PC) = 8,1 P28, P3P 18y (4.13)
€3 = 83FP3C; = 81T P38+ PyPo8, +P3PyP 8, (4.14)

The interpretation of EQ. 4.14 is that a carry-out will occur from stage 3 of the 4-bit adder if itis
 generated in stage 3
 generated in stage 2 and propagated through stage 3
» generated in stage 1 and propagated through stage 2 and stage 3
 generated in stage 0 and propagated through stage 1 and stage 2 and stage 3

The carry of the final stage, c3, can be generated in 2” as shown in Figure 4.5. Similarly, the other carries
can be calculated in 2" or less.

Once the carries are known the sum can be generated within 2”. Thus for the four bit adder the sum can
be generated in atotal of 5" with

 1” to calculate the generates and propagates
e 2" to calculate the carries
e 2" to calculate the sums

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Py —
T

py — 1A
Py —
Py
80

14

Figure4.5 Delay Calculation

Using ripple-carry the four bit adder would require 77 to form the result. With the CLA adder the carries
are thus generated by separate hardware. Asis common, speed is thus achieved at the cost of additional
hardware. The 4-bit CLA adder module is shown in Figure 4.3.

The CLA approach can be extended to n-bits yielding the following equation for the carry bits

¢, = ,EE. L l'[p,,]g,. (4.15)

=f+

with the product term evaluating to one when the indices are inconsistent. The calculation of the carries
in Eq. 4.15 can be accomplished in 2” once the generates and propagates are known; however, thereisa
hardware requirement to be met. For each carry of the stage the implementation in 2” requires that the
gates have afan-in (number of inputs, to the gate) of i + 1. For an n-bit CLA adder realized in this
manner a gate with afan-in of nisrequired. This can be seen in Figure 4.5 where for a4-bit CLA adder
the carry inputs are calculated using a4-input NAND gate. While thisis practical for a4-bit adder it is
not practical for a64-bit adder. As aresult of this an inductive approach is needed to limit the fan-in
requirements of the gates to implement the circuit. The timing of the 4-bit CLA adder module is shown
in Figure 4.7.

javascript:displayWindow('images/04-13.jpg',500,408)
javascript:displayWindow('images/04-13.jpg',500,408)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

a, by, a, b, a, b, a, b,

PY VY VY by

Carry Lookahead Hardware
Module (CLM 0)
a, by a, b? a, b, a, bﬂ
Full Full Full Half
%' | Adder [| Adder [| Adder Adder
(FA 3) (FA 2) (FA 1) (HA)
53 eF 5 To

Figure4.6 2's Complement 4-Bit CLA Adder Module

When an inductive approach is taken the module shown in Figure 4.3 will need to input a carry in to the
lowest stage. As aresult the basic building block will be as shown in Figure 4.3. The module will be
depicted as shown in Figure 4.8. The module serves as a basic building block for a 16-bit CLA adder as
shown in Figure 4. 10. For this case there are four groups of CLA-4 building blocks. The carry lookahead
hardware module CLM (15’ 0) provides the carry input to each of the groups. This carry is predicted in
an analogous fashion to before. Group O will generate a carry if it is generated by one of the four

individual full adders within the group. One can define group generate, gg,, as

88y = B ¥ P18y T P1P38| TPaPyP 18

(4.16)

javascript:displayWindow('images/04-14.jpg',500,486)
javascript:displayWindow('images/04-14.jpg',500,486)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

CALCULATION
X505 05050505
AN
FAl i:t:‘:#:i:‘-:t:‘*‘ﬁ ﬁ
PPN
AR CARRY
DI H AR CALCULATION
FA2 11:1:1-:1:&:1:1:*:1
a%a%ata% %% %" E
FA3 GEMNERATE/
PROPAGATE
———— ‘ CALCULATION
CLM —-—
——— LEGEND
1A 24 3A 4A 5A

TIME -

Figure4.7 4-Bit CLA Adder Module Timing

@3bp,y G0 b, a4, b, g

VU T -

Ck+3
- CLA-4
Si s ‘il.- +2 S+ 1 i

Figure 4.8 2's Complement 4-Bit Modul e Representation

javascript:displayWindow('images/04-15.jpg',500,371)
javascript:displayWindow('images/04-15.jpg',500,371)
javascript:displayWindow('images/04-16.jpg',500,261)
javascript:displayWindow('images/04-16.jpg',500,261)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

a3 bpes Gua byyr 4 by 4,
Carry Lookahead Hardware
Module
CLM(k—=k+3)
03 0543 Aypr byys a1 Oy a, b,
Full Full Full Full 4J
% | Adder [| Adder [| Adder [| Adder
(FA k+3) (FA k+2) (FAk+1) (FA k)
S-I.'+3 Sl:l-?. s.hrl St
Figure4.9 2's Complement 4-Bit CLA Adder Module
and group propagate, gp,, as
= PaPsP Py (4.17)
Similarly,
881 = 871 P85t P1Pg8s Y PP P84 (4.18)
8P, = P.P¢PsPs (4.19)
8 = B tP18 1ot PP 1p8e TP 1P 1oPo8s (4.20)
883 = 815t P 158141 P 5P 14813 T P15P14P 13812 (4.21)

javascript:displayWindow('images/04-17.jpg',500,495)
javascript:displayWindow('images/04-17.jpg',500,495)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

8Py = P1sP1aP13P 2 (4.22)
a5 Pisq
Carry Lookahead Hardware
Module
CLM(15-0)
Q502 Pisz | 9 bus ay4 by @30 b5

vy (4 [vy | 4

- | CLA4 = | CLA4 | | CLA4 |= CLA~4<—I

Group 3 Group 2 Group 1 Group 0
F1s:2 s 74 530

Figure4.10 16-Bit CLA Adder with Group L ookahead

From these equations one can derive the group carries as gc,, the carry out of group O,

8Cy = 884> (4.23)
gc,, the carry out of group 1,
BC, = B8 T &P 88y (4.24)
gc,, the carry out of group 2,
gc, = g, tBP,88, T 8P,8P 88, (4.25)
gc,, the carry out of group 3,

8Cy = B8, Y 8P 88, T EP,8P, 88, EP,8P,8P 8Py (4.26)

javascript:displayWindow('images/04-18.jpg',500,421)
javascript:displayWindow('images/04-18.jpg',500,421)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

The group carries become the carry-in to each of the CLA-4 modules. Each CLA-4 module can calculate
theindividual carrieswithin 2" after the group carries are known.

CodelList 4.5 CLA Addition

C++ Source
/*This code simulates a 64-bit CLA adder with 4 Sections, 16 Groups
64 Full Adders */

#include <stdio.h>

#hnclude <iostream.h>

#define ADDER_SIZE 64

#define NUMBER_OF_GROUPS 16

#define NUMBER_OF_SECTIONS 4

#define SECTION_SIZE NUMBER_OF_GROUPS/NUMBER_OF_SECTIONS
#define GROUP_SIZE ADDER_SIZE/NUMBER_OF_GROUPS

#define ZERO 0

#define ONE 1|

void get_data();

void print_signal();

void calc_gen_prop();

void calc_group_gen_prop();
void calc_section_carries();
void main();

typedef int SIGNAL;

C++ Source
void get_data(SIGNAL *a SIGNAL *b)

{

javascript:displayWindow('images/04-19.jpg',500,562)
javascript:displayWindow('images/04-20.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

unsigned long a_mign, a_low, b_nign, b_low;
unsigned int mask;
int 1;
a_high=0xfOf0f0f0;
a_low=0xfOf0f0f0;
b_high=0x00000000;
b_low=0x fTiiH;
for(i=0;i<64;i++)
{
a[i]=ZERO;
bli]=ZERO;
|
mask=1;
for(i=0;i<32;i++)
{
ifimask&a_low) a[i]=ONE;
if(mask&b_low) bli]=ONE;
mask=mask<<l;
)
mask=1;
for(i=32;i<64;i++)
{
ifimask&a_high) a[i]=ONE;
if(mask&b_high) b[i]=ONE;
mask=mask<<l;
I
|
void print_signal(SIGNAL * a,int len)
!

int 1;

javascript:displayWindow('images/04-20.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source

for(i=len—1;i>=0;i- -) cout << (a[i}]==ZERO)?"0":"1";
}

void calc_gen_prop(SIGNAL *a,SIGNAL *b,
SIGNAL *generate, SIGNAL *propagaie)
{
int i;
for(i=0;i<cADDER_SIZE:i++)
I
generate[i]=a[i]&&bli];
propagate(i]=a[i]lib[i];
}
)
void calc_group_gen_prop(SIGNAL * generate, SIGNAL * propagate,
SIGNAL * group_generate, SIGNAL * group_propagate)
{
int i,j,k;
SIGNAL parual_product, sum;
for(i=0;i<NUMBER_OF_GROUPS;i++)
|
group_generate[i]=ZERO;
for(j=0;j<GROUP_SIZE;j++)
|
partial_product=generate[GROUP_SIZE*i+j];
for(k=1; k< GROUP_SIZE-j; k++)
I
partial_product=partial_product
&&propagate[GROUP_SIZE*i+j+k];
)

javascript:displayWindow('images/04-21.jpg',500,804)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
group_generate[i] = group_generate[i]llpartial _product;
|

C++ Source

}
for(i=0;i<NUMBER_OF_GROUPS;i++)

|

group_propagate[i]=ONE;

for(j=0;j<GROUP_SIZE;j++)

group_propagate[i]=group_propagate
&&propagate| GROUP_SIZE*1+)];

void calc_section_gen_prop(SIGNAL * group_gen, SIGNAL * group_prop,
SIGNAL *section_gen, SIGNAL *section_prop)

i

int ij.k;

SIGNAL partial_product;

for(i=0;i<NUMBER_OF_SECTIONS;i++)
|
section_gen[i]=ZERO;
for(j=0;j<SECTION_SIZE;j++)
I
partial_product=group_gen[SECTION_SIZE*i+j]:
for(k=1; k< SECTION_SIZE~j; k++)
|
partial_product=

javascript:displayWindow('images/04-21.jpg',500,804)
javascript:displayWindow('images/04-22.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

| partial_proaucta &
group_prop| SECTION_SIZE*i+j+k];
)
section_gen(i] = section_gen(i]llpanial_product;
|

)
| for(i=0;i<NUMBER_OF_SECTIONS;i++)

C++ Source

[
section_propli]=ONE;
for(j=0;j<SECTION_SIZE:j++)
section_prop[i]= section_prop(i]
&&group_prop[SECTION_SIZE*i+j];

void cale_section_carries(SIGNAL * sec_carry SIGNAL * sec_gen,
SIGNAL *sec_prop)
!
int i,j,k;
SIGNAL partial_product;
sec_carry[0]=sec_gen[0];
for(i=1;i<NUMBER_OF_SECTIONS;i++)
{
sec_carry[i]=sec_gen[i]li(sec_prop[i]&&sec_carry[i-1]);
I

void calc_group_camies(SIGNAL * group_cames, SIGNAL * group_gen,

javascript:displayWindow('images/04-22.jpg',500,807)
javascript:displayWindow('images/04-23.jpg',500,804)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

|
int i, j;

SIGNAL * group_prop, SIGNAL * sec_carries)

for(i=0;i<NUMBER_OF_SECTIONS;i++)

{

i?(group_carries[i*SECTION_SIZE]=group_gen[i*SECTION_SIZE]I
group_propli* SECTION_SIZE]&&sec_carries[i-1]):
(group_carries[0]=group_gen[0]);

C++ Source

{

int ij;

for(j=1;j<SECTION_SIZE;j++)
|
group_carries[i*SECTION_SIZE+j]=
group_gen[i*SECTION_SIZE+j]ll
group_prop[i*SECTION_SIZE+j]
&&group_cames[i*SECTION_SIZE+j-1];

void calc_camies(SIGNAL * carry, SIGNAL * gen,

SIGNAL *prop, SIGNAL *group_carry)

for(i=0,i<NUMBER_OF_GROUPS;i++)
|

javascript:displayWindow('images/04-23.jpg',500,804)
javascript:displayWindow('images/04-24.jpg',500,802)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

i?(carry[i*GROUP_SIZE]=gen[i*GROUP_SIZE]I
prop[i*GROUP_SIZE]
& &group_carry[i—1]):(carry[0]=gen[0]);

for(j=1;j<GROUP_SIZE;j++)
l

carry[i*GROUP_SIZE+j]=
gen[i*GROUP_SIZE+i]ll
propli*GROUP_SIZE+i]
&&carry[i*GROUP_SIZE+j-1);

C++ Source

void adder(SIGNAL *sum, SIGNAL a, SIGNAL b,SIGNAL ¢)
{

(a*b)N *sum=0NE):(*sum=ZERQ);

}

void calc_sum(SIGNAL * SUM,SIGNAL *A SIGNAL *B,SIGNAL *CARRY)
{

int 1;

adder(SUM,A[0],B[0],0);

for(i=1:i<ADDER_SIZE;i++)

adder(SUM+i,A[1],B[i), CARRY[i-1])

}

void print_results(SIGNAL *A SIGNAL *B.SIGNAL *GENERATE,

javascript:displayWindow('images/04-24.jpg',500,802)
javascript:displayWindow('images/04-25.jpg',500,807)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

SIGNAL *PROPAGATE,SIGNAL *GROUP_GENERATE,
SIGNAL *GROUP_PROPAGATE,SIGNAL *SECTION_GENERATE,
SIGNAL *SECTION_PROPAGATE,SIGNAL *SECTION_CARRY,
SIGNAL *GROUP_CARRY,SIGNAL *CARRY,SIGNAL *SUM)

{

cout << “A =",

print_signal(A,64);

cout << endl <<“B =",

print_signal(B,64);

cout << endl << “SUM =*;

print_signal(SUM,64);

cout << endl << “CARRY =";

print_signal(CARRY.64);

cout << endl << “GENERATE =*;

print_signal(GENERATE,64);

cout << endl << “PROPAGATE =*;

print_signal(PROPAGATE,64);

C++ Source

cout << endl << “GROUP_GENERATE = *;
print_signal(GROUP_GENERATE. 16);

cout << endl << “*GROUP_PROPAGATE =*;
print_signal(GROUP_PROPAGATE, 16);

cout << endl << “SECTION_GENERATE =*;
print_signal(SECTION_GENERATE 4).

cout << endl << “SECTION_PROPAGATE =*;
print_signal(SECTION_PROPAGATE.4);
coul << endl << “SECTION_CARRY =*;
print_signal(SECTION_CARRY 4):

cout << endl << “GROUP_CARRY =*;

javascript:displayWindow('images/04-25.jpg',500,807)
javascript:displayWindow('images/04-26.jpg',500,803)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
print_signal(GROUP_CARRY, 16);
cout << endl;

}

void main()

/* declare data*/

SIGNAL A|[ADDER_SIZE]. BIADDER_SIZE];

SIGNAL GENERATE[ADDER_SIZE], PROPAGATE[ADDER _SIZE];

SIGNAL GROUP_GENERATE[NUMBER_OF_GROUPS].
GROUP_PROPAGATE[NUMBER_OF_GROUPS];

SIGNAL SECTION_GENERATE[NUMBER _OF_SECTIONS];

SIGNAL SECTION_PROPAGATE[NUMBEE_OF_SECTIONS];

SIGNAL SECTION_CARRY[NUMBER_OF_SECTIONS]:

SIGNAL GROUP_CARRY[NUMBER_OF_GROUPS];

SIGNAL CARRY[ADDER_SIZE];

SIGNAL SUM[ADDER_SIZE]:

get_data(A.B);

javascript:displayWindow('images/04-26.jpg',500,803)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source

calc_gen_prop(A.B,GENERATE,PROPAGATE),

calc_group_gen_prop(GENERATE,PROPAGATE,
GROUP_GENERATE,.GROUP_PROPAGATE);

calc_section_gen_prop{GROUP_GENERATE, GROUP_PROPAGATE,
SECTION _GENERATE, SECTION_PROPAGATE);

cale_section_carries(SECTION_CARRY,
SECTION_GENERATE. SECTION_PROPAGATE);

cale_group_carries(GROUP_CARRY,GROUP_GENERATE,
GROUP_PROPAGATE,SECTION_CARRY):

cale _cammies(CARRY GENERATE PROPAGATE.GROUP_CARRY);

calc_sum(SUM.A . B,CARRY);

print_results(A,B,GENERATE,PROPAGATE,
GROUP_GENERATE.GROUP_PROPAGATE,

SECTION_GENERATE, SECTION_PROPAGATE,
SECTION_CARRY.GROUP_CARRY,CARRY,SUM);

}

Code List 4.6 Output of Program in Code List 4.5

javascript:displayWindow('images/04-27.jpg',500,611)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output
A=

TR 100001 10000 LT RN IR nnn o000 100001111
B=
TR e e e e e e e n e e e e e 1 10000000000000000

C4++ Output
SUM =

I o0 o000 I o00001 11100010000 |
CARRY =

ITTRRRET R e e n e e e e 1000000000000 1111
GENERATE =

IR e e e e e noo00 1 11 100001111
PROPAGATE =

THERTIRE I e o000 11 1o000T IR ELRERT L n e e n e N1 0000000000000000
GROUP_GENERATE = 1111111111110101

GROUP_PROPAGATE = 1111010111110000

SECTION_GENERATE = 1110

SECTION_PROPAGATE = 1110

SECTION_CARRY = 1110

GROUP_CARRY = 1111111111110001

4.2 A Simple Hardware Simulator in C++

This section starts the implementation of a simple hardware simulator in C++. The simulator will be used
to simulate the hardware required to implement the algorithms in the previous sections.

Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/04-28.jpg',500,119)
javascript:displayWindow('images/04-29.jpg',500,366)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Previous|Table of Contents|Next

A simple boolean logic simulator is shown in Code List 4.7. The output of the program is shown in Code
List 4.8. The program simulates the interconnection of gates and is used to demonstrate the behavior of a
clocked D flip-flop.

The program simulates the behavior of the circuit by calculating new valuesin the ssmulation in terms of
the old values. The old values are then updated and the process is performed again. The process
continues until the new and old values are identical or until aterminal count has been reached. For this
program aterminal count of 50 is used but it is never reached in this example.

The circuit that isimplemented is shown in Figure 4.11. The program allows each net to have one of
threevalues: 0, 1, or 2. The values are as follows:

» 0: Logica 0

e 1. Logica 1

2. Cannot be determined, printed out as x

All thevaluesin the NET structure are initialized to the unknown state 2. Asthe inputs, clock, and data
propagate through the circuit the values are changed as they become determined.

The behavior of each gate is modelled by its associated function within the program. The gates input one
of the three states. The output is determined according to the logical function. Thisisillustrated in Table
4.4 for the 2-input NAND gate for al nine possibilities of the inputs.

Table 4.4 2-Input NAND behavior.

| NAND behavior

| X | y | f(x.y)
| 0 | 0 | 1
| 0 | 1 | 1
| 0 | X | 1
| 1 | 0 | 1
| 1 | 1 | 0
| 1 X | X
| X | 0 | 1
| X | 1 | X
| X | X | X

The output datais shown in the timing diagram in Figure 4.13. As can be seen in the figure the circuit

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

behaves as expected. The Q and QBAR outputs remain unknown until the first rising edge of the clock
and at that point the output Q reflects the value of DATA at the clock edge. Only subsequent rising edges
of the clock cause the outputs to change. It isimportant to note that this specific test does not
demonstrate the validity of the device asaD flip-flop. In the absence of atheoretical proof a
considerable amount of additional testing is necessary.

There is another interesting point about the simulation which can cause problemsin circuit design. By

looking at the last clock rise in Code List 4.8 one notes that QBAR makes a zero to one transition one

gate delay quicker than Q making the corresponding one to zero transition. Thisisillustrated in Figure
4.12. Asaresult, it isimportant to let the data stabilize prior to its use.

outl

15

clock

U
5

gbar

data },.
out?

Figure 4.11 D Flip-Flop Circuit for Simulation

javascript:displayWindow('images/04-30.jpg',500,378)
javascript:displayWindow('images/04-30.jpg',500,378)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

1A
[

QBAR

Figure4.12 Transition Timing

4.3 2’s Complement Multiplication

The goal of this section is to investigate algorithms for fast multiplication of two n-bit numbersto form a
product. If two’'s complement notation is used

javascript:displayWindow('images/04-31.jpg',500,276)
javascript:displayWindow('images/04-31.jpg',500,276)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

CLOCK
DATA
Q
oar RREERRRES

Figure 4.13 Timing Diagram for Simulation
CodeList 4.7 Boolean Logic Simulator

javascript:displayWindow('images/04-32.jpg',500,371)
javascript:displayWindow('images/04-32.jpg',500,371)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Simulator

/* This program implements a simple simulator for boolean logic */
#include <iostream.h>

class NET

{

public:

int new_value;

int old;

NET (int x=2, int y=2) | new_value=x; old=x;}
char print();

F

char NET::print()

C++ Simulator

{
return (old? (old-17 *x": *1"):"0%);

+

class NET clock, data, s, r, outl, out2, q, qbar;

int nand(int x, int y)
|
if{(x==0)ll(y==0)) return(1); else

|
if((x==1)&&(y==1))return(0);

alea ratuiend e

javascript:displayWindow('images/04-33.jpg',500,377)
javascript:displayWindow('images/04-34.jpg',500,886)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

el % LR LR e

]

int nand3(int x,int y,int z)

{

if{(x==0)lI(y==0)ll{z==0)) return(1); else
{
if((x==1)&&(y==1)&&(z==1))return(D);
else return(2);
}

}

void update()

{

s.0ld=s.new_value;
r.old=r.new_value;
q.old=q.new_value;
gbar.old=gbar.new_value;
outl.old=outl.new_value;

out2.old=out2.new_value;

)

javascript:displayWindow('images/04-34.jpg',500,886)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Simulator

void print_resuli()
l
coul << “Clock * << clock.prini() << * Data * << data.prini()
<< " Q" << q.prini() << * QBAR * << gbar.print() << endl;

voud simulate(int ¢lint da)

{

int stable=(),count=();

clock.old=cl; data.old=da;

cout << “Clock = * << ¢clock.print() << * Data = * << data.print() << endl;

while((!stable)&&(count<30))
i
stable=1;
s.new_value=nand{out |l .old.clock.old);
r.new_value=nand 3(s.old clock.old.owm2.old);
out l.new_value=nand(s.old,out2.old);
out.new_value=nand{data.old,r.old);
q-new_value=nand(gbar.old.s.old);
gbar.ncw_valuesnand(r.old.q.old);
ifig.old '= q.new_value) stable=0;
ifigbar.old != gbarnew_valuc) stable=();
iffout .old '= outl.new_value) stable=(0;
ilflow2.0ld '= oul2.new_value) stable=0);
if{s.old '= s.new_value) stable=0;
ilir.old != nnew_value) stable=();
update();
if{(*stable)icount==0)) prini_result();
COUNT++;
|

Cowl << L L P R L LR R R LR LR LR < :I-u:":

javascript:displayWindow('images/04-35.jpg',390,691)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Simulator

}

void main()

{
simulate(0,0);
simulate(0,1);
simulate(0,0);
simulate(0,1);
simulate(1,1);
simulate(1,0);
simulate(1,0);
simulate(0,0);
simulate(1,0);

J

Code List 4.8 Output of Program in Code List 4.7

javascript:displayWindow('images/04-36.jpg',500,403)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output

Clock =0 Data =0

Clock 0 Data 0 Q x QBAR x

Clock 0 Data 0 Q x QBAR x

s 3 3 e 3 e she e o e ofe s sfe e e e s e ade o ofe s ofe she ofe s e ok e ke e e ek
Clock =0 Data = 1

Clock 0 Data 1 Q x QBAR x

Clock 0 Data 1 Q x QBAR x

RS EE R R ES R EEE EE R EEE R R R L
Clock=0Data=0

Clock 0 Data 0 Q x QBAR x

Clock 0 Data 0 Q x QBAR x

ok sk o f sk e sfe sk e e o e she o o ok e ofe s e Sk o sl she e 3B 3 e 3 e e o e e
Clock =0 Data =1

Clock O Data 1 Q x QBAR x

javascript:displayWindow('images/04-37.jpg',365,500)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output

Clock O Data 1 Q x QBAR x

a2 e i e o ke i e o o o ke i e o ok ok e i e o ok i e ok ok ke o i o o ok ke
Clock =1 Data=1

Clock 1 Data 1 Q x QBAR x

Clock 1 Datal Q 1 QBAR x

Clock 1 Datal Q 1 QBAR 0

s s s s o e s o s ok ok ol ok ol ok koo o o ok ek ok ok ok
Clock =1 Data=0

Clock 1 Data0 Q 1 QBAR 0

2k e e e o ke ok e i e o ke ok e e e ok e i e o ke ok e i ke o ok ke e o ke ok e
Clock=1Data=0

Clock 1 Data0 Q 1 QBAR 0

e i 3 e e o e o o o e ol e ol e ol o ke e ke kol R ke ok R ok ke ok ok ok ol ok
Clock =0Data=0

Clock 0 Data0 Q 1 QBAR 0

Clock 0 Data0 Q 1 QBAR O
dokkokdkekkkokokk ok Rk okok ko ko ko kok Rk Rk Rk Rk
Clock =1 Data=0

Clock 1 Data0 Q 1 QBAR 0

Clock 1 Data0 Q 1 QBAR 1

Clock 1 Data0 Q 0 QBAR 1

ok s 3 o e e o sk s obe e o abe o s e ok ok s o e e s ok sl e e ok s ok e ok ok ok

javascript:displayWindow('images/04-38.jpg',348,730)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

then when multiplying two numbers, A and B,
A=a _,a _,..d4, (4.27)

B=b, b, ,.b, (4.28)

n=1

In order to store the result one needs to cal cul ate the number of bits required to represent the product in
2's complement form. By noting the range of 2's complement from Table 1.4 on page 11 one obtains that
2n bits are required in 2's complement form. The product is formed as

P =p,y \Pyp_z---Pg (4.29)

Since 2n bits are stored in the hardware for the product then overflow isnot an issue.
4.3.1 Shift-Add Addition

The shift-add technique is the simple grade school technique for multiplication. In this scenario a partial
product is formed by adding as appropriate repeated shifts of the multiplicand. The core statement in
CodelList4.9is

if(b&0x01) prod+=a; b=b>>1;a*=2;

This statement forms the product by repeatedly evaluating the Isb of the multiplier and if it is set by
adding the shifted multiplicand. At each iteration the multiplier is shifted right to investigate the next bit
and the multiplicand is shifted |eft.

Code List 4.9 Shift Add Technique

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source

/[This program demonstrates 2’s complement multiplication using a
// shift-add technique
#include <stdio.h>
#include <iostream.h>
class operands |
// private data
private:
int a,b,prod;
I/ public functions
public:
void set_a(int x) { a=x;)
void set_b(int x) { b=x;}
void print_operands(void)
[cout <<“A="<<a<<" B="<<b<<endl)
void print_product(void)
{ cout << *Product= * << prod << endl << endl;}
void iterate(void)
{if(b&0x01) prod+=a; b=b>>1;a*=2;}
void compute_product(void);
[/declare constructor to initialize a,b,prod

javascript:displayWindow('images/04-39.jpg',500,579)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source
operands(void) | a=b=prod=(); |;
H

Il

void operands::compute_product(void)
{int i; prod=0; for(i=0;i<sizeof(int)*8;i++) iterate(); }

int data[][2] = { [40,5], {-20,57},{30,40},(-1,-4} };

void main()
{
operands op; // here the private data is initialize 1o 0
int i;
for(i=0:i<sizeof(data)/sizeof(int)/2;i++)
f
op.set_a(data[i][0]);
op.set_b(datali][1])
op.print_operands();
op.compute_product(); // This destroys the operands
op.print_product();

}

Code List 4.10 Output of Code List 4.9

javascript:displayWindow('images/04-40.jpg',400,484)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output
A=40B=5
Product= 200

A=-20B=57
Product= <1140

A= 30 B=40

C++ Output
Product= 1200

A=-1 B=-4
Product= 4

4.3.2 Booth Algorithm

The Booth algorithm is a recoding technique which attempts to recode the multiplier to speedup the
scenario where there are sequences of 1's. As an example consider the multiplication in base 10 of
9999* 7. One can evaluate the result rather quickly by performing (10000-1)* 7=69993. This can be done
without the assistance of a computing device. The algorithm used is to recode the sequence of 9's and
results in an operation which is much ssimpler. The technique can also be applied in binary. Instead of
sequences of 9's however, oneisinterested in sequencesof 1's.

The Booth algorithm isillustrated in Figure 4.14. In the figure the product is formed as the multiplication
of A and B (A=14 and B=6). When the result is done A remains unchanged and the product isformed in
P:B where the : operator indicates register concatenation. Register B no longer containsitsinitial value.
Thisiswritten as

P.B«— AXB (4.30)

javascript:displayWindow('images/04-41.jpg',150,254)
javascript:displayWindow('images/04-42.jpg',150,193)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

The destruction of register B is common because it uses one less register to form the product. The Booth
algorithm considers the lower order bit of register B in conjunction with the added bit which isinitialized
to zero. The bits determine the operation according to Table 4.6.

|Previ ous|TabI e of Contents|Next |

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Previous

Table of Contents|Next

An example of booth recoding isillustrated in Table 4.5. In the worst case the Booth algorithm requires
that n operations be performed to compute the product. Thisisillustrated in the last entry in Table 4.5.
As aresult the recoding operation for this operand has not ssmplified the problem. The average number
of operations for arandom operand by the algorithm is determined in Problem 4.10. Due to the average
and worst-case complexity of the Booth algorithm a better solution is sought to find the product.

Initially

rcgister A -A

0011 0 11 001 0

register P register B

0000 0 001 110 0
P
shift

00 00 0 0000 1]l 0
A EEEE—

1 10010 Qo=

1 1 00 0 000 0 1)1 0
shift

1 1 1 0 1 0 000 O0]1]
f—rrrree——
shift

1 1 11 0 1 00 0 00 | |
¢

nonoa1o n

javascript:displayWindow('images/04-43.jpg',400,686)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

L] L 3 E B LY L d{.ju ﬂ
001 010 1 00 0 0|0 |
- shift
O o o0 1 01 01 0 0 0|0 0
‘__

Do shift

0O 00 01 0 1 01 0 010

shift
0O 000011010100
Product = 84 Diciie

Figure 4.14 Booth Algorithm

Table 4.5 Booth Recoding 8-Bit Example

|Original Number

|Booth Recode

0ofjojojojo 1]1]1Jojojojojf1]o0]o0j-1
| 0jojojo 11]0jojojojoj1 o]-1]0]0O
jojojoj 11 joj1jojojojfijoj-1]1]-1]0O
jojtrtjojt1jofi1jojij1j-1tj1j-1]1]-1]1]-1
Table 4.6 Booth Recoding

Bit Pattern |Operation

| 0 | 0 |productunchanged

| 0 | 1 |product+=a

| 1 | 0 |product-=a

javascript:displayWindow('images/04-43.jpg',400,686)
javascript:displayWindow('images/04-44.jpg',500,281)
javascript:displayWindow('images/04-44.jpg',500,281)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

| 1 | 1 |productunchanged

Code List 4.11 Booth Algorithm

C++ Source

/fThis program demonstrates 2's complement multiplication using a
/f booth recoding technique

C++ Source

#include <iostream.h>
class operands |
/f private data
private:
int a,b,prod;
[/ public functions
public:
void set_a(int x) | a=x;)
void set_b(int x) | b=x;}
void print_operands(void)
[cout << “A=*"<<ca<<* B=" << b << endl;)
void print_product(void)
{cout << “Product= * << prod << endl << endl;)
void iterate(void);
void compute_product(void):
ffdeclare constructor to initialize a,b,prod
operands(void){ a=b=prod=0;);
B

void operands::iterate(void)

{
switch(b&0x3) |

javascript:displayWindow('images/04-45.jpg',500,80)
javascript:displayWindow('images/04-46.jpg',500,826)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
case 1: prod+=a; break;
case 2: prod-=a; break;
default: break;

]

b=b>>1; a*=2;
}

void operands::compute_product(void)
l

C++ Source

int i; prod=0;
if(b&0x1) prod-=a; a*=2;
for(i=1;i1<sizeof(int)*8;1++) iterate();
]
int data[)[2] = {{2.1}, {-20,57},{30,40},{-1,-4}};
void main()
[
operands op; // here the private data is initialized to 0
int 1;
for(i=0;1<sizeof(data)/sizeof(int)/2:1++)
[
op.set_a(data[i][0]),
op.set_b(data[i][1]);
op.print_operands();
op.compute_product(); // This changes the operands a and b
op.print_product();

javascript:displayWindow('images/04-46.jpg',500,826)
javascript:displayWindow('images/04-47.jpg',500,478)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
== |

Code List 4.12 Output of Program in Code List 4.11

C++ Program Output
A=2B=1
Product= 2

A=-20 B=57
Product= —-1140

A= 30 B=40
Product= 1200

C++ Program Output
A=-] B=-4

Product= 4

4.3.3 Bit-Pair Recoding

The Bit-Pair recoding technique is a technique which recodes the bits by considering three bits at atime.
This technique will require n/2 additions or subtractions to compute the product. The recoding is
illustrated in Table 4.7. The bits after recoding are looked at two at atime and the respective operations
are performed. The higher order bit is weighted twice as much as the lower order bit. The C++ program
to perform bit-pair recoding isillustrated in Code List 4.13. The output is shown in Code List 4.14.

The bit pair recoding algorithm is shown in Figure 4.14. The algorithm is analogous to the Booth
recoding except that it investigates three bits at a time while the Booth algorithm looks at two bits at a
time. The bit-pair recoding algorithm needsto have accessto A, -A, 2A, and -2A and as aresult needs
another additional 1-bit register to the left of P which isinitialized to zero.

Table 4.7 Bit-Pair Recoding

Bit
Pattern Operation

javascript:displayWindow('images/04-47.jpg',500,478)
javascript:displayWindow('images/04-48.jpg',500,287)
javascript:displayWindow('images/04-49.jpg',500,90)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

0 0 0 no operation
0 0 1 1xa prod = prod + a;
0 1 0 2xa-a prod = prod + a
0 1 1 2%xa prod = prod + 2a
1 0 0 -2Xa prod = prod - 2a
1 0 1 -2xa+ a prod = prod - a
1 1 0 -1xa prod = prod - a
1 1 1 no operation
Iminally
register A -A
001110 110010
2A -2A
01011100 1{1 001 00
register P register B
0 0O 000O0O0 0O 0011 0 0
I“
Add (-2A)
1 1 001 00
1 1 001 00 000 111 0 0
shifl twice
| 1 1 1 0 0 1 000001 I
< =
Add 2A
¢ 011100
0 0101 01 000 0]0 1 1
shift twice
0 0 001 01 010000 0
+

shift twice

javascript:displayWindow('images/04-50.jpg',400,673)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

OO0 0001|011 0 1100

Done

Figure4.15 Bit Pair Recoding Algorithm
Code List 4.13 Bit-Pair Recoding Program

C++ Source

[This program demonstrates 2's complement multiplication using a
// bit pair recoding technique
#include <iostream.h>
class operands |
/I private data
private:
int a,b,prod;
/f public functions
public:
void set_a(int x) | a=x;)
void set_b{int x) [b=x;}
void print_operands(void)
[cout << “A=* << a<<"“ B=" << b <<endl;)
void print_product(void)
| cout << *Product = * << prod << endl << endl; }
void iterate(void);
void compute_product(void);
ffdeclare constructor to initialize a,b,prod
operands(void)| a=b=prod=0; }:

K
void operands::iterate(void)

javascript:displayWindow('images/04-50.jpg',400,673)
javascript:displayWindow('images/04-50.jpg',400,673)
javascript:displayWindow('images/04-51.jpg',500,824)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

{
switch(b&0x7) {
case (): break;
case |: prod+=a; break;
case 2: prod+=a; break;
case 3: prod+=2*a; break;
case 4: prod—=2*%a; break;
case J: prod—=a; break;
case 6: prod—=a; break;
case T: break:
C++ Source
default: break;
l
b=b>>2; a*=4;
|
void operands::compute_product(void)
]
int i; prod=0,
J/ Take care of the first case which is special
switch(b&0x3)
i
case 0: break;

case 1: prod+=a; break;
case 2: prod-=2*a; break;
case 3: break;

default: break;

]

javascript:displayWindow('images/04-51.jpg',500,824)
javascript:displayWindow('images/04-52.jpg',500,829)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
a*=4; b=b>>1;

for(i=1 i<sizeof(int)*4;1++) iterate();

!

int data[][2]) = {{2,1}, {-20,57},{30,40),{-1,—4},{178-178} };

void main()

[
operands op; // here the private data is initialized 1o 0

int i;

for(i=0;i<sizeof(data)/sizeof(int)/2;1++)

l
op.set_a(data[i][0]);
op.set_b(data[i][1]);

C++ Source

op.print_operands();
op.compute_product(); // This changes the operands a and b
op.print_product();

|

Code List 4.14 Output of Program in Code List 4.13

javascript:displayWindow('images/04-52.jpg',500,829)
javascript:displayWindow('images/04-53.jpg',500,154)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output

A=2B=1
Product =2

A= =20 B=57
Product = -1140

A=30B=40
Product = 1200

A=-1 B=-4
Product = 4

A=178 B=-178
Product = -31684

Previous|Table of Contents|Next

Copyright © CRC Press LLC

javascript:displayWindow('images/04-54.jpg',170,504)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

4.4 Fixed Point Division

This section presents algorithms for fixed point division. For fixed point division a 2n bit number, the
dividend, is divided by an n bit number, the divisor, to yield an n bit quotient and an n bit remainder.
Overflow can occur in the division process (see Problem 4.7).

4.4.1 Restoring Division

Restoring division is similar to the process of grade school addition. After aligning the bits appropriately
the pseudocode is shown in Table 4.8.

Table 4.8 Division PsedudoCode

if divisor < dividend
{
dividend = dividend - divisor
placealin quotient field
shift dividend over

}
{

place a0 in quotient
shift dividend over

}

The pseudocode in Table 4.8 is repeated until the desired precision is reached. At which point the final
dividend becomes the remainder. When this simple algorithm is executed on a computer in order for it to
test whether divisor < dividend it performs the subtraction

dividend = dividend — divisor (4.31)

If the result is nonnegative then it placesa 1 in the quotient field. If the result isless than zero then the
subtraction should not have occurred so the computer performs

dividend = dividend + divisor (4.32)

to restore the dividend to the correct result and places a zero in the quotient field. The computer then
shifts the dividend and proceeds. This results in the pseudocode in Table 4.9.

ese

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Table 4.9 Restoring Division PseudoCode

dividend = dividend - divisor

if dividend e 0
{
placeal in quotient field
}
else
{

dividend = dividend + divisor
place a0 in the quotient field

}
shift over dividend

Problem 4.3 develops a C++ program to simulate restoring division.
4.4.2 Nonrestoring Division

Nonrestoring division is a technique which avoids the need to restore on each formation of the quotient
bit. In effect, the need to restore is delayed until the final quotient bit is formed. The algorithm avoids
this by noting that if a subtraction occurred that should not have then the next step in the algorithm would
be to restore, then shift, then subtract.

dividend’ = dividend - divisor (4.33)
dividend” = 2X (dividend” + divisor) — divisor (4.34)
S0 that
dividend” = 2 ¥ dividend' + divisor (4.35)

It can be seen that the (restore, shift,subtract) is equivalent to a (shift,add). Thisis used to avoid the
restore operation and is thus called nonrestoring division. The computer does continuous shift-subtract
operations until the result is negative at which point the next operation becomes a shift-add. If on the
final cycle the result is negative the computer will add the divisor back to restore the dividend (which on
the final cycleisthe remainder).

The program to perform nonrestoring division is shown in Code List 4.15. The output of the programis
shown in Code List 4.16. The program uses a similar register-saving technique to the Booth agorithm.
The program performs the division of a 2n bit number by an n bit number

i (4.36)
B

At the termination of the program the remainder isin R and the quotient isin Q. The program illustrates
the division of 37/14 which yields 2 with aremainder of 9.

The program demonstrates a number of featuresin C++. The program introduces a class called number

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
which defines the operations for the data. The class includes data and functions:

» number: thisisthe constructor function for the class which is called when avariable of type
number is created

» get value: the get_value function is used to return bit number x of the number. Thisis used to
access the private data of the class which is hidden from the user.

 shift_left: the shift_left function is used to perform alogical left shift on the data. This operation
IS used extensively in the nonrestoring division algorithm.

 print_value: the function print_valueis used to print the number and accepts a character string to
be printed before prior to the value.

» ones_complement: the ones_complement function performs the ones_complement which is used
to calculate the negative of a number in the addition process.

* operator>=: this overloads the greater than or equal operator in the program. When comparing
two objects of type number this function is called.

 operator<: this operator overloads the less than operator when comparing objects of type
number .

 operator+: this operator overloads the plus operator when comparing objects of type number.
* operator-: this operator overloads the minus operator when comparing objects of type number.
The + operator is defined first and is used in subsequent definitions of other overloaded operators. The +

operator performs aripple-carry (see Section 4.1.2) addition of the two numbers passed and returns the
result as a number.

Rather than calculate the algorithm for the - operator it uses the newly overloaded + operator to calculate
the subtraction by noting that x-y = x + (-y) .

The >= operator uses the newly formed - operator to return the differencein x and y as a number and
accesses the most significant bit (the sign) of it to seeif the differenceisless than zero. It returns avalue
according to the test.

The < operator performsin asimilar fashion.

The left_shift_add function introduces a feature of C++ not present in C. The first parameter in the
function argument list is declared as number& B. Asaresult B is passed to the function as a pointer and
Is automatically dereferenced on use. See Section 3.1 for amore detailed description of pointersin C++.

Code List 4.15 Nonrestoring Division

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source Code

#include <iostream.h>
#define N 32

class number

{

private:
char value[N];
public:
number(long x=0);
char get_value(int x) | return value[x];}
void shift_left();

void print_value(char * x);

number ones_complement();

friend int operator>=(number x,number y);
friend int operator<(number x,number y);
friend number operator+(number x, number y);

friend number operator—<(number x, number y);

number number::ones_complement()

javascript:displayWindow('images/04-55.jpg',500,697)
javascript:displayWindow('images/04-56.jpg',490,940)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
W DUUTGE WaUuT

number x;
for(i=0;1<N;i++) if(value[i]==0) x.value[i]=1; else x.value[i]=0;
return x;

i

void number::number{long x)

{
int i;
unsigned long mask=0x1:
for(i=0;i<N;i++)
[value[i]=(x&mask?1:0);
mask<<=1;
¥
}

void number::shift_left()

{
int i;
for(i=1;i1<N;i++) value[N-i]=value[N-1-i];
value[0]=0.0;
|

void number::print_value(char * x)

javascript:displayWindow('images/04-56.jpg',490,940)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic
int 1;

coul << X;
for(i=N-1:i>=0;i- =) | cout << (char) (value[i]+0x30); }
cout << endl:

number operator+(number x, number y)

C++ Source Code
W |
| int i; |
int carry=0;
for(i=0;i<N;i++)
{
switch (x.value[i]*4+y.value[i]*2+carry) |
(
case 3: I
case 5: |
case 0:
case 7:

x.value[i]=x.value[i]*y.value[i] carry; |

carry=1;
break;

default: x.value[i1]=x.value[1]*y.value[i1] carry;
carry=0;

javascript:displayWindow('images/04-56.jpg',490,940)
javascript:displayWindow('images/04-57.jpg',500,963)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

break:

return x;

}

number operator—(number x, number y)
{

return (x+y.ones_complement()+1);

}

int operator>=(number x, number y)
{
if ((x—y).get_value(N-1)==1) return 0; else return 1;

I-

C++ Source Code

int operator<(number x,number y)

(

if ((x—y).get_value(N—-1)==1) return 1; else return 0;

!

void left_shift_add(number& B, number& R, number& Q)
[

javascript:displayWindow('images/04-57.jpg',500,963)
javascript:displayWindow('images/04-58.jpg',500,961)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

R.shift_left();
R=R+Q.get_value(N-1);
Q.shift_lefu();

R=R+B;

if(R>=0) Q=Q+1;

void left_shift_subtract(number& B, number& R, number& Q)
[

R.shift_left();

R=R+(Q).get_value(N-1);

Q.shift_left();

R=R-B;

if(R>=0) Q=Q+1;

void restore(numberd&: B, numberé& R)

{
R=R+B .

void main()

{

javascript:displayWindow('images/04-58.jpg',500,961)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source Code

number B(14),R(0),Q(37);

int j;

B.print_value("B =");
R@ﬁl‘ﬂ_‘ﬂlﬂt["ﬂ - u}:
Q.print_value("Q = “);

for(j=0;j<N:j++)
|
if(R>=0) left_shift_subtract(B,R.Q); else
left_shift_add(B.R,Q);

|
if(R<0) restore(B,R);

cout << “Calculation Done” << endl;
R.print_value("R =*;
Q.print_value(*Q =*);

|

Code List 4.16 Output of Program in Code List 4.15

C++ Output

B = 00000000000000000000000000001110
R = 00000000000000000000000000000000
Q = 00000000000000000000000000 100101
Calculation Done

R = 00000000000000000000000000001001
Q = 00000000000000000000000000000010

Previous|Table of Contents|Next

javascript:displayWindow('images/04-59.jpg',400,444)
javascript:displayWindow('images/04-60.jpg',300,187)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

4.4.3 Shifting over 1's and 0’s

If the divisor is normalized so that it begins with a 1 then the technique of the previous sections can be
improved to skip over 1'sand 0’'s. Shifting over 0'sissimpleto see. If 0.000010101 isdivided by
0.10111 It is easy to see that the first four quotient bits are zero. So rather than performing the
subtraction, the dividend is renormalized each time a string of zero’sis encountered. Similarly, if after
each subtraction the result isastring of 1's, then the 1’ s can be skipped over placing 1's in the quotient
bit. Thistechniqueis derived in Problem 4.5.

4.4.4 Newton’s Method
In Newton’s method the quotient to be formed is the product A (1 / B). For thiscase, once 1/ Bis

determined a single multiplication cycle generates the desired result. Newton’s method yields the
iteration

f(x;)
X1 T %™ 3 - (4.37)
fix)
which for the function
I
f(x) = -=-B (4.38)
X
gives
X, =X (2—8x) (4.39)

i+

Under suitable well known conditions x; will converge to the inverse. Hence using Newton'’s algorithm

the process of division is achieved via addition and multiplication operations. The C++ source code
illustrating this technique is shown in Code List 4.17. The output of the program is shown in Code List
4.18.

Code List 4.17 Floating Point Division

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source Code

#include <iostream.h>

#include <math.h>

// This program simulates Newton's method to perform
M The division A/B

class data

|
private:
double value:

C++ Source Code

double iter;
public:
data(double x=1.0) { value = x; iter=1.0; }
void print() { cout << “lteration value is * << iter <<endl; }
void iterate() { iter = iter*(2—iter*value);)
double error() { return fabs(iter—1.0/value); };
double inverse() | return 1.0/value; };
void simulate();

b

void data::simulate()

{

cout << “Calculating inverse for x=" << value << endl,
while(error()>1.0e-5) { iterate(); print();)
cout << endl
<< “True inverse is 1/x="" << inverse() << endl;

javascript:displayWindow('images/04-61.jpg',400,232)
javascript:displayWindow('images/04-62.jpg',500,919)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

cout << “Error 1s * << error() <<

<< endl <<

s 3t o e sk o o o ok e ok ok ke ook ek kel e ke ol ok ook ek ol k™ < Eﬂdl,

void main()
{
data x;:
x=.1;
x.simulate();
x=7%
x.simulate();
x=().5;
x.simulate();
x=1.0;

C++ Source Code

%.simulate();

)

CodeList 4.18 Output of Program in Code List 4.17

C++ Output

Calculating inverse for x= 0.7

Iteration value is 1.3
Iteration value is 1.417
Iteration value is 1.428478

javascript:displayWindow('images/04-62.jpg',500,919)
javascript:displayWindow('images/04-63.jpg',500,90)
javascript:displayWindow('images/04-64.jpg',290,776)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Iteration value is 1.428571

True inverse is 1/x=1.428571

Error is 6.149532e-09

e e e ofe e oo e o oo e e ofe e ok e e e o o el e oo oo e
Calculating inverse for x= (.75
Iteration value is 1.25

Iteration value is 1.328125

Iteration value is 1.333313

Iteration value is 1.333333

True inverse is 1/x=1.333333

Error is 3.104409e-10
kRkxkRRRERRbkRhbhRh kbbb hh b kb kkE
Calculating inverse for x= 0.5
[teration value is 1.5

Iteration value is 1.875

Iteration value is 1.992187

Iteration value is 1.999969

Iteration value is 2

True inverse is 1/x=2

—

javascript:displayWindow('images/04-64.jpg',290,776)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output
Error is 4.656613e-10

o ol e o e o ol sl e e ol ol o e e s ol ool e o e e e ol o ol e o e

Calculating inverse for x= 1

True inverse is 1/x=1

Erroris 0

s e s e o e e e e e e e e e s oo oo o e ol ool ol ook ok o

4.5 Residue Number System
4.5.1 Representation in the Residue Number System

The residue number systems is a system which uses an alternate way to represent numbers. For integers,
in 2's complement notation, the representation for a number was

A=a,_.,a _,..4, (4.40)
with avalue of
n-2
A= zakzk -a,_ 2" a,e {0,1} (4.41)
k=0

For this case, a number A is represented with n binary bits. The value isrelatively easy to calculate via
Eq. 4.41. A natural problem occurred with this representation for the process of addition. When nislarge
the calculation of the carry-in to each stage is the dominating factor with regard to the performance of the
addition operation as noted in Section 4.1.2. Using methodol ogies in number theory, an alternate
representation can be used which reduces the problems of with regard to the carry-in calculation.

The residue number system uses a set of relatively prime numbers:
M= {mym,...m _} (4.42)
and represents a number A with respect to these moduli by the n-tuple:

A= (Amndmﬂ,.ﬂ.mndm!.....Amﬁdmn_l] (4.43)

A= {Hu,ﬂl,...,ﬂ"_l] (4.44)

javascript:displayWindow('images/04-65.jpg',290,232)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Two numbers are relatively prime if their greatest common divisor is one. Using the standard notation
with

(x,¥) .45

to denote the greatest common divisor of x and y. The requirement on the set M is that each of the
members be pairwise relatively prime:

(m, mj} = 1 0<i,jsn—1 (4.46)
For example, a representation with the moduli
M= {235"1711} (4.47)
the number 12 is represented as
(0,0,2,5,1) = 12 (4.48)
and 14 isrepresented as
0,2,4,0,3) =14 (4.49)

The addition of 12 and 14 can be accomplished by adding the vector representation and performing the
modulus operation:

(0,0,2,5.1) + (0,2,4,0,3) = ((0+0)mod2, (0+2)mod3,...)
= (0,2,1,5,4)

Notice that the result is the same obtained when representing 26 in the notation.

(4.50)

The Range of the Residue Number Systems
The residue number system can represent N distinct numbers with

n=1
N = Hmf (4.51)
=10

For example, the moduli in Eqg. 4.47,
N=2x3x5xTx11 = 2310 (4.52)
The result stated in Eq. 4.51 is established in Problem 4.15.

4.5.2 Data Conversion — Calculating the Value of a Number

This section derives a method for calculating the value of a number given only its representation in terms
of the moduli. It is necessary to introduce some quantities in number theory. The Euler totient function,
A (n) , isdefined for a number, n, as the number of positive integers satisfying

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

(n, k) =1 1<k<n (4.53)
For example,
¢(1) =1
®(2) =1 (4.54)
¢(3) =2
If nisaprime number then
¢o(n) =n-1 (4.55)
defining the weights, w,, as
Pim,)
N]
w, = [— (4.56)
mi.
The vector W as
w = (wﬂ"wl*”"wn—l} {45?_]
and anumber A, as
A= [-:1{}, Ays eens @y _ 1) (4.58)
Thevalue of Aisgiven as
n=1
value (A) = (W-A)modN = [zwﬁm}mndﬁ (4.59)
i=0
Thisresult is established in Problem 4.17. Consider the example in Eq. 4.47. For this case:
N N
Wy S === 1158 (4.60)
m, 2

Similarly, W becomes

W = (1155, 1540, 1386, 330, 210) (4.61)
To calculate the number 26 from its representation in Eg. 4.50 one has

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Value (A) = (1155, 1540, 1386, 330, 210) - (0, 2,1, 5,4)
= (2-1540+ 1386+ 5- 330+ 4 - 210) mod 2310 (4.62)
= 6956mod 2310 = 26

4.5.3 C++ Implementation

A program to simulate the Residue Number System is shown in Code List 4.19. The output of the
program is shown in Code List 4.20.
In the program a class data is declared which has the following data and functions:

 unsigned moduli[N]: this dataitem is used to hold the representation of each of the moduli.
data: thisisthe constructor function for data which is called any time avariable is declared.
set: this function is used to set the data' s value.
print: thisfunction is used to print out the moduli and the value by calling the value function.
value: this function calculates the value of the number from its residue representation.

operator+: the + operator has been overloaded to perform the required addition in the residue
number system.

 operator*: the * operator has been overloaded to perform multiplication in the residue number
System.

This program is a natural example for the use of the overloading operators in C++. Since the addition of
the two numbers in the residue systems consists of the respective additions of their moduli it is natural to
replace this operator for addition.

The output supplies all the moduli and prints out the relatively prime numbers at the top. Notice that the
print function takes in an optional char * to print out a small string. If the string is not supplied it defaults
to an empty string.

CodeList 4.19 Residue Number System

C++ Source

{// This program simulates addition and multiplication in the residue number system
#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

#include <string.h>

unsigned long rprime[]={7,15,31,32};

unsigned long eul(]=(6,8,30,16};

unsigned long weights[4];

#define N sizeof(rprime)/sizeof(long)

javascript:displayWindow('images/04-66.jpg',500,769)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

class data
{
unsigned int moduli[N];
public:
data{unsigned long x=0);
void set(unsigned long x=0);
void print(char * x = “*);
unsigned long value();
friend data operator+(data x,data y);
friend data operator*(data x,data v);
K
/f constructor function
data::data(unsigned long x)
{
int i;
for(i=0;i<N;i++) moduli[i]=x%rprime[i];
!
void data::set{unsigned long x)
{
int i;
for(i=0;1<N;1++) moduli[i]=x%rprime[i];
!

C++ Source

void data::print(char * x)

|

int i;

cout << setw(7) << x;

for(i=0;i<Ni++) cout << * * << setw(2) << modulili];
cout << * * * << value() << endl;

javascript:displayWindow('images/04-66.jpg',500,769)
javascript:displayWindow('images/04-67.jpg',500,793)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

unsigned long data::value()
{
int i;
unsigned long x=0);
unsigned long prod=1;
for(i=0;i<N;i++) prod*=rprime[i];
for(i=0;1<N;i1++) x=(x+moduli[i]*weights[i])%prod;
return x;
|
[foverload addition operator
data operator+{data a, data b)
{
data c;
int i;
for(i=0;i<N;i++) c.moduli[i] = (a.moduli[i]+b.moduli[i])%rprime[i];
return c;
]
ffoverload multiplication operator
data operator*{data a, data b)
|
data c;
int i;
for(i=0;i<N;i++) c.moduli[i] = (a.moduli[i]*b.moduli[i] }¥erprime[i];
retum c;
|

C++ Source

void header()
I

int i;

ln“l" “WI—‘ L

javascript:displayWindow('images/04-67.jpg',500,793)
javascript:displayWindow('images/04-68.jpg',500,796)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

I P,
cout << setiosflags(ios::left);
for(i=0;1<N;i4++) prod*=rprime[i]; cout << “Range Handled 010 ™
<< prod-1 << endl << endl;
cout << setw(7) << “Comment™;
for(i=0;i<N;i++) cout<< * ** << setw(2) << rprime[i];
cout << * * Value” << endl;
for(i=0:1<34:14++) cout << **""; cout << endl;
/f Caclulate weights
for(i=0;i<N;i++)
|
unsigned long k:
k=prod/rprime([i];
weights[i]=1;
int j;
for(j=();j<eul[i];j++) weights[i]=(weights[i]*k)%prod;
|
l—
void main()
{
header();
data x(29),y(30);
X.print(“x=29");
y.print(“y=30"),
X=X+Y;
X.print(“x=x+y");
X=X+2;
x.print(“x=x+2");

x=x*3:

javascript:displayWindow('images/04-68.jpg',500,796)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source

int i;

I

x.print(“x=x*)
/f Let's look at the weights

char s[8], num(2];
for{i=0;i<N;i++)

| strepy(s,"weight™); x.set{weighis[i]);
x.print(strcat{s.itoali,num,10))):)

Code List 4.20 Output of Program in Code List 4.19

C++ Output

Range Handled O to 104159
Comment 7 15 31 32 * Value
AREARAR AR AR AR R AR ARAR AR AR ARAR R R
x=29 1 14 29 2% *» 29
y=30 2 0 30 30 * 30
K=x+y 3 14 28 27T * 59
K=y +2 5 1 30 29 * 81
Ky * 3 1 3 28 23 *» 183
weight0 1 0 O 0 * 44640
weightl 0 1 0 0 * 97216
weightz2 0 0 1 0 * 43680
weigﬁia a o O 1 =* 22785

CodelList 4.21 Euler Totient Function

javascript:displayWindow('images/04-69.jpg',450,220)
javascript:displayWindow('images/04-70.jpg',350,378)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Source

#include <iostream.h>
/I This program determines the Euler totient function
unsigned long rprime[]=(7.15,31,32};
#define N sizeof(rprime)/sizeof(long)
unsigned long ged(unsigned long x, unsigned long y)
|
while(y!=0) |
unsigned temp=y;
y=x%y;
x=temp;
I
retum x;
]
void main()
|
unsigned long i,j,value;
for(i=0;i<N;i++)
|
value=0;
for(j=1;j<rprime[i];j++) if(gcd(j,rprime[i])==1) value++;
cout << “The value for * << rprime[i] << * is * << value << endl;
|

Code List 4.22 Output of Program in Code List 4.21

javascript:displayWindow('images/04-71.jpg',450,573)

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

C++ Output

The value for 715 6
The value for 151s 8
The value for 31 is 30
The value for 32 is 16

Previous

Table of Contents

Next

Copyright © CRC Press LLC

javascript:displayWindow('images/04-72.jpg',200,167)
file:///reference/crc00001.html

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

Algorithms and Data Structures in C++
by Alan Parker

CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

|Previ ous|TabI e of Contents|Next |

4.6 Problems

(4.1) Modify Code List 4.1 to simulate 16, 32, and 64-bit 2's complement addition. Add a
procedure to detect for overflow and indicate via output when overflow has occurred.

(4.2) Modify Code List 4.5 to simulate a CLA adder with 3 sections each with 3 groups each with
8 1-bit adders.

(4.3) Write a C++ program to simulate restoring division. Y our program should support n bit
inputs. Use the overload operators to perform addition and subtraction of each of the inputs.

(4.4) Modify the Code List 4.13 to support n bit inputs. Use asimilar register structure asthe
example in Figure 4.14.

(4.5) First by example, then by proof, demonstrate the technique of shifting over 1'sand 0'sin
non-restoring division.

(4.6) Write a C++ program to simulate modify Code List 4.15 to shift over 1'sand O's.

(4.7) Derivethe conditions for overflow in fixed point division.

(4.8) Add al the common logical functionsto Code List 4.7.

(4.9) Rewrite Code List 4.7 to simulate a JK Flip-Flop.

(4.10) Cadculate the average number of operations required in the Booth algorithm for 2's
complement multiplication. How does this compare to the shift-add technique?

(4.11) Modify Code List 4.7 to smulate Carry Lookahead Addition at the gate level for an 8-bit
module.

(4.12) [Moderately Difficult] Modify Code List 4.13 to output, to a PostScript file, the timing
diagram for the circuit which is simulated. Make rational assumptions about the desired interface.
Use the program to generate a PostScript file for the timing diagram in Figure 4.12.

(4.13) Graphically illustrate Newton's method described in Eq. 4.37.

(4.14) Theoretically demonstrate that the gcd function in Code List 4.21 doesin fact return the
greatest common divisor of the inputs x and y.

(4.15) [Uniqueness] Show that if aresidue number system is defined with moduli
M= {m,m, ...,m”_]}

and A and B are integers such that

0<A<N 0<B<N N=[]]m

Algorithms and Data Structures in C++:Algorithms for Computer Arithmetic

and if
a, = b, 0<i<N
with
a, = Amodm, b, = Bmodm,
then
A=B

(4.16) If m and m are integers satisfying

O<i<m-1

{mf,m}}l = (m,—~1)5,.+1
: O<jsm-1

with
& = { l, (i=j)
|
4 0, otherwise
and
n=
N = Hmr.
i=0
prove that if
Pl
()
W =] —
I .
I
then

(4.17) Provethat Eq. 4.59 istrue.

Previous|Table of Contents Next|

Copyright © CRC Press LLC

file:///reference/crc00001.html

Algorithms and Data Structures in C++:Index

Algorithms and Data Structures in C++
by Alan Parker
CRC Press, CRC Press LLC

ISBN: 0849371716 Pub Date: 08/01/93

Table of Contents

Index
A
Acyclic graph 66
Adder
CLA adder module 200
CLA adder, 16 bit 203
full 189
half 189

output delay for half adder 193
2's Complement 4 bit adder 192

Addition

carry lookahead 197
overflow 196

ripple carry 191, 193
2's complement 187

Adjacency matrix 80
Algorithm

booth 223
efficiency 71

order 37

pipelining 71

time complexity 38

Algorithms and Data Structures in C++:Index

Arrays 112

class 119
example of 114

ASCII 26

Binary search 149
Bit operators 20
Bit-pair recoding 228
Booth agorithm 223
Bridge 67

Broadcast 78

Carry lookahead addition 197
Circular lists 133
CLA adder

16 bit 203
CLA adder module 200
Connected graph 65
Conversion

residue number system 246
Crossbar

topology 74

Cube-connected cycles

topology of 77

Cycle

Algorithms and Data Structures in C++:Index

in agraph 66

Data structures 101

Decimal to binary conversion 28
delete 102, 110

Directed graph 65

Division

fixed point 232
nonrestoring 234
restoring 233

Doubly linked lists 133
Dynamic memory allocation 101, 110

Efficiency 71, 83
Efficient hypercubes 80
Euler totient function 246

Factorial 45
Fibonacci numbers 46
FIFO 122

File formats

DOS 32
Unix 32

Fill 52
Fixed point division 232
Floating point

Newton’s method 241

Algorithms and Data Structures in C++:Index

Floating point notation 16
free 112

G
Graph 62

acyclic 66
adjacency matrix of 80
bridge 67

connected 65

cycle 66

directed 65
neighbors 64

order 63

path 64

planar 68

Size 63

subgraph 64
transitive closure 68
tree 67

Hypercube

broadcast 78

distance between processors 78
efficiency 83

efficient 83

message passing 78, 79

path length 81

topology of 76

Hypercubes

efficient 80

Algorithms and Data Structures in C++:Index

|EEE 754 Floating Point Standard 16
Induction 42

infinite descent 43

Infinite descent 43
Integers 1

L east-weighted path length 81
LIFO 122

Linear search 148

Linked lists 126

circular lists 133
doubly linked lists 133
operations on 134
singly linked lists 126

malloc 112
Mathematical Induction 42
Matrix

adjacency 80

Median of three 152
Message

in a hypercube 79

M essage passing

Algorithms and Data Structures in C++:Index

in a hypercube 78

Moveto 52
Multiplication

bit-pair recoding 228
booth algorithm 223

shift-add 221
2's complement 215

new 102, 110

Newpath 52

Newton’s method 241
Nonrestoring division 234

Operator

overloading 117
Order 37

of agraph 63
Overflow

in addition 196
Overloading

of operators 117

Algorithms and Data Structures in C++:Index

P
Path 64
Pipelining 71
Planar graph 68
Pointers 101, 105

asarrays 107
double pointer example 106

Postscript 52
Procedure

recursive 45

Quadratic formula 48
Quicksort 150

median of three 152

Rectangular mesh

topology of a 76

Recurrence relation 46
Recursion 45

tower of hanoi 51
Representations
ASCII 26

floating point 16
integer 1

Algorithms and Data Structures in C++:Index
signed-magnitude notation 6
unsigned notation 5
2's complement notation 7

Residue number system 244

data conversion 246
range of numbers 245
representation in 244

Restoring division 233
Ripple carry addition 191
Rlineto 52

Searching

binary search 149
linear search 147

Setgray 52

Setlinewidth 52

Shift-add multiplication 221
Showpage 52

Sign extension 11

signed-magnitude notation 12
2's complement notation 12
unsigned notation 12
Signed-magnitude notation 6
Simulated annealing 165
Size

of agraph 63

Sorting

Algorithms and Data Structures in C++:Index
guicksort 150
Stack

fifo 122
lifo 122

Subgraph 64

Time complexity 38
Topology

crossbar 74
cube-connected cycles 77
hypercube 76

rectangular mesh 75

Tower of hanoi 51
Transitive closure 68, 80
Tree 67

2's complement notation 7

Unions 20, 33
Unsigned notation 5

Visuadlization 52

Table of Contents

Copyright © CRC Press LLC

file:///reference/crc00001.html

	Algorithms and Data Structures in C++
	Table of Contents
	Preface
	1 Data Representation
	1.1 Integer Representations
	1.1.1 Unsigned Notation
	1.1.2 Signed-Magnitude Notation
	1.1.3 2's Complement Notation
	1.1.4 Sign Extension
	1.1.5 C++ Program Example

	1.2 Floating Point Representation
	1.2.1 IEEE 754 Standard Floating Point Representations
	1.2.1.1 IEEE 32-Bit Standard
	1.2.1.2 IEEE 64-Bit Stnadard
	1.2.1.3 C++ Example for IEEE Floating Point

	1.2.2 Bit Operators in C++
	1.2.3 Examples
	1.2.4 Conversion from Decimal to Binary

	1.3 Character Formats - ASCII
	1.4 Putting it All Together
	1.5 Problems

	2 Algorithms
	2.1 Order
	2.1.1 Justification of Using Order as a Complexity Measure

	2.2 Induction
	2.3 Recursion
	2.3.1 Factorial
	2.3.2 Fibonacci Numbers
	2.3.3 General Recurrence Relations
	2.3.4 Tower of Hanoi
	2.3.5 Boolean Function Implementation

	2.4 Graphs and Trees
	2.5 Parallel Algorithms
	2.5.1 Speedup and Amdahls Law
	2.5.2 Pipelining
	2.5.3 Parallel Processing and Processor Topologies
	2.5.3.1 Full Crossbar
	2.5.3.2 Rectangular Mesh
	2.5.3.3 Hypercube
	2.5.3.4 Cube-Connected Cycles

	2.6 The Hypercube Topology
	2.6.1 Definitions
	2.6.2 Message Passing
	2.6.3 Efficient Hypercubes
	2.6.3.1 Transitive Closure
	2.6.3.2 Least-Weighted Path-Length
	2.6.3.3 Hypercubes with Failed Nodes
	2.6.3.4 Efficiency
	2.6.3.5 Message Passing in Efficient Hypercubes

	2.6.4 Visualizing the Hypercube: A C++ Example

	2.7 Problems

	3 Data Structures and Searching
	3.1 Pointers and Dynamic Memory Allocation
	3.1.1 A Double Pointer Example
	3.1.2 Dynamic Memory Allocation with New and Delete
	3.1.3 Arrays
	3.1.4 Overloading in C++

	3.2 Arrays
	3.3 Stacks
	3.4 Linked Lists
	3.4.1 Singly Linked Lists
	3.4.2 Circular Lists
	3.4.3 Doubly Linked Lists

	3.5 Operations on Linked Lists
	3.5.1 A Linked List Example

	3.6 Linear Search
	3.7 Binary Search
	3.8 QuickSort
	3.9 Binary Trees
	3.9.1 Traversing the Tree

	3.10 Hashing
	3.11 Simulated Annealing
	3.11.1 The Square Packing Problem
	3.11.1.1 Program Description

	3.12 Problems

	4 Algorithms for Computer Arithmetic
	4.1 2's Complement Addition
	4.1.1 Full and Half Adder
	4.1.2 Ripple Carry Addition
	4.1.2.1 Overflow

	4.1.3 Carry Lookahead Addition

	4.2 A Simple Hardware Simulator in C++
	4.3 2's Complement Multiplication
	4.3.1 Shift-Add Addition
	4.3.2 Booth Algorithm
	4.3.3 Bit-Pair Recoding

	4.4 Fixed Point Division
	4.4.1 Restoring Division
	4.4.2 Nonrestoring Division
	4.4.3 Shifting over 1's and 0's
	4.4.4 Newton's Method

	4.5 Residue Number System
	4.5.1 Representation in the Residue Number System
	4.5.2 Data Conversion - Calculating the Value of a Number
	4.5.3 C++ Implementation

	4.6 Problems

	Index

