Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -9,6 +9,11 @@ language:
|
|
9 |
- zh
|
10 |
- ar
|
11 |
- hi
|
|
|
|
|
|
|
|
|
|
|
12 |
license: openrail++
|
13 |
size_categories:
|
14 |
- 10K<n<100K
|
@@ -103,24 +108,36 @@ configs:
|
|
103 |
path: data/ja-*
|
104 |
---
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
Namely, for each language, we provide 5k subparts of the datasets -- 2.5k toxic and 2.5k non-toxic samples.
|
108 |
|
109 |
The list of original sources:
|
110 |
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
|
111 |
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
|
112 |
-
* Ukrainian:
|
113 |
* Spanish: [CLANDESTINO, the Spanish toxic language dataset](https://github.com/microsoft/Clandestino/tree/main)
|
114 |
* German: [DeTox-Dataset](https://github.com/hdaSprachtechnologie/detox), [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
|
115 |
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
|
116 |
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
|
117 |
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
All credits go to the authors of the original
|
120 |
|
121 |
## Citation
|
122 |
If you would like to acknowledge our work, please, cite the following manuscripts:
|
123 |
|
|
|
|
|
124 |
```
|
125 |
@inproceedings{dementieva2024overview,
|
126 |
title={Overview of the Multilingual Text Detoxification Task at PAN 2024},
|
|
|
9 |
- zh
|
10 |
- ar
|
11 |
- hi
|
12 |
+
- it
|
13 |
+
- fr
|
14 |
+
- he
|
15 |
+
- ja
|
16 |
+
- tt
|
17 |
license: openrail++
|
18 |
size_categories:
|
19 |
- 10K<n<100K
|
|
|
108 |
path: data/ja-*
|
109 |
---
|
110 |
|
111 |
+
# Multilingual Toxicity Detection Dataset
|
112 |
+
|
113 |
+
**[2025]** We extend our binary toxicity classification dataset to **more languages**! Now also covered: Italian, French, Hebrew, Hindglish, Japanese, Tatar. The data is prepared for [TextDetox 2025](https://pan.webis.de/clef25/pan25-web/text-detoxification.html) shared task.
|
114 |
+
|
115 |
+
**[2024]** For the shared task [TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html), we provide a compilation of binary toxicity classification datasets for each language.
|
116 |
Namely, for each language, we provide 5k subparts of the datasets -- 2.5k toxic and 2.5k non-toxic samples.
|
117 |
|
118 |
The list of original sources:
|
119 |
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
|
120 |
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
|
121 |
+
* Ukrainian: [ours](https://huggingface.co/datasets/ukr-detect/ukr-toxicity-dataset)
|
122 |
* Spanish: [CLANDESTINO, the Spanish toxic language dataset](https://github.com/microsoft/Clandestino/tree/main)
|
123 |
* German: [DeTox-Dataset](https://github.com/hdaSprachtechnologie/detox), [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
|
124 |
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
|
125 |
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
|
126 |
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)
|
127 |
+
* Italian: [AMI](https://github.com/dnozza/ami2020), [HODI](https://github.com/HODI-EVALITA/HODI_2023), [Jigsaw Multilingual Toxic Comment](https://www.kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification/overview)
|
128 |
+
* French: []
|
129 |
+
* Hebrew: [Hebrew Offensive Language Dataset](https://github.com/NataliaVanetik/HebrewOffensiveLanguageDatasetForTheDetoxificationProject/blob/main/OLaH-dataset-filtered.xlsx)
|
130 |
+
* Hinglish: []
|
131 |
+
* Japanese: [filtered](https://huggingface.co/datasets/sobamchan/ja-toxic-text-classification-open2ch) [2chan posts](https://huggingface.co/datasets/p1atdev/open2ch) by Perspective API;
|
132 |
+
* Tatar: ours.
|
133 |
|
134 |
+
All credits go to the authors of the original corpora.
|
135 |
|
136 |
## Citation
|
137 |
If you would like to acknowledge our work, please, cite the following manuscripts:
|
138 |
|
139 |
+
**[2024]**
|
140 |
+
|
141 |
```
|
142 |
@inproceedings{dementieva2024overview,
|
143 |
title={Overview of the Multilingual Text Detoxification Task at PAN 2024},
|