Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Tags:
toxic
Libraries:
Datasets
pandas
License:
File size: 6,925 Bytes
a7f4ddb
94b761c
 
 
 
 
 
 
 
 
 
8d9e9a2
 
 
 
 
4e0c8e3
0f61521
 
 
 
 
433d479
c3d067b
 
433d479
25f3015
 
0f61521
7c03c95
 
433d479
25f3015
 
0f61521
25f3015
 
433d479
8be292e
 
0f61521
25f3015
 
433d479
25f3015
 
0f61521
dc59018
 
b7d60b9
64419b8
 
b7d60b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64419b8
 
0f61521
 
 
433d479
 
 
 
0f61521
 
433d479
 
0f61521
 
433d479
 
0f61521
 
433d479
 
0f61521
 
b7d60b9
 
 
 
 
 
 
 
 
 
 
 
8d9e9a2
 
 
 
 
 
94b761c
3e5272b
8d9e9a2
 
 
 
 
3e5272b
 
 
 
 
 
 
0e8f0cf
 
3e5272b
2735e9f
8d9e9a2
 
 
 
 
 
3e5272b
0af9ffa
 
3bfc11e
 
 
 
 
8d9e9a2
3bfc11e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
language:
- en
- ru
- uk
- es
- de
- ar
- am
- hi
- zh
- it
- fr
- he
- ja
- tt
license: openrail++
dataset_info:
  features:
  - name: text
    dtype: string
  splits:
  - name: am
    num_bytes: 3540
    num_examples: 245
  - name: es
    num_bytes: 14683
    num_examples: 1195
  - name: ru
    num_bytes: 4174135
    num_examples: 140517
  - name: uk
    num_bytes: 153865
    num_examples: 7356
  - name: en
    num_bytes: 39323
    num_examples: 3386
  - name: zh
    num_bytes: 45303
    num_examples: 3839
  - name: ar
    num_bytes: 6050
    num_examples: 430
  - name: hi
    num_bytes: 2771
    num_examples: 133
  - name: de
    num_bytes: 3036
    num_examples: 247
  - name: it
    num_bytes: 10139
    num_examples: 815
  - name: fr
    num_bytes: 21216
    num_examples: 1287
  - name: he
    num_bytes: 11893
    num_examples: 731
  - name: hin
    num_bytes: 2201
    num_examples: 209
  - name: tt
    num_bytes: 414993
    num_examples: 15629
  - name: ja
    num_bytes: 4822
    num_examples: 328
  download_size: 2254939
  dataset_size: 4907970
configs:
- config_name: default
  data_files:
  - split: am
    path: data/am-*
  - split: es
    path: data/es-*
  - split: ru
    path: data/ru-*
  - split: uk
    path: data/uk-*
  - split: en
    path: data/en-*
  - split: zh
    path: data/zh-*
  - split: ar
    path: data/ar-*
  - split: hi
    path: data/hi-*
  - split: de
    path: data/de-*
  - split: it
    path: data/it-*
  - split: fr
    path: data/fr-*
  - split: he
    path: data/he-*
  - split: hin
    path: data/hin-*
  - split: tt
    path: data/tt-*
  - split: ja
    path: data/ja-*
task_categories:
- token-classification
tags:
- toxic
size_categories:
- 10K<n<100K
---

# Multilingual Toxic Lexicon

**[2025]** The lexicon is extended to new languages! Now also included: Italian, French, Hebrew, Hindi, Japanese, Tatar. The list is used on [TextDetox 2025](https://pan.webis.de/clef25/pan25-web/text-detoxification.html) shared task.

**[2024]** The compilation for 9 languages (English, Russian, Ukrainian, Spanish, German, Amharic, Arabic, Chinese, Hindi) toxic words lists which is used for [TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) shared task.

The list of original sources:
* English: [link](https://github.com/coffee-and-fun/google-profanity-words/blob/main/data/en.txt)
* Russian: [link](https://github.com/s-nlp/rudetoxifier/blob/main/data/train/MAT_FINAL_with_unigram_inflections.txt)
* Ukrainian: [link](https://github.com/saganoren/obscene-ukr)
* Spanish: [link](https://github.com/facebookresearch/flores/blob/main/toxicity/README.md)
* German: [link](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words)
* Amhairc: ours
* Arabic: ours
* Hindi: [link](https://github.com/facebookresearch/flores/blob/main/toxicity/README.md)
* Chinese: [link](https://arxiv.org/abs/2108.03070)
* Italian: [link1](https://github.com/facebookresearch/flores/blob/main/toxicity/README.md), [link2](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words)
* French: [link1](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words), [link2](https://fr.wiktionary.org/wiki/Cat%C3%A9gorie:Termes_vulgaires_en_fran%C3%A7ais), [link3](https://fr.wiktionary.org/wiki/Cat%C3%A9gorie:Insultes_en_fran%C3%A7ais)
* Hebrew: [link](https://github.com/NataliaVanetik/HebrewOffensiveLanguageDatasetForTheDetoxificationProject)
* Hinglish: [link](https://github.com/pmathur5k10/Hinglish-Offensive-Text-Classification/blob/main/Hinglish_Profanity_List.csv)
* Japanese: [link](https://github.com/MosasoM/inappropriate-words-ja/tree/master)
* Tatar: [link](https://github.com/facebookresearch/flores/blob/main/toxicity/README.md) combined with translated keywords in Russian.

We also added toxic words from Toxicity-200 [corpus](https://github.com/facebookresearch/flores/blob/main/toxicity/README.md) from Facebook Research for all the languages.

All credits go to the authors of the original toxic words lists.

## Citation
If you would like to acknowledge our work, please, cite the following manuscripts:

**[2024]**
```
@inproceedings{dementieva2024overview,
  title={Overview of the Multilingual Text Detoxification Task at PAN 2024},
  author={Dementieva, Daryna and Moskovskiy, Daniil and Babakov, Nikolay and Ayele, Abinew Ali and Rizwan, Naquee and Schneider, Frolian and Wang, Xintog and Yimam, Seid Muhie and Ustalov, Dmitry and Stakovskii, Elisei and Smirnova, Alisa and Elnagar, Ashraf and Mukherjee, Animesh and Panchenko, Alexander},
  booktitle={Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum},
  editor={Guglielmo Faggioli and Nicola Ferro and Petra Galu{\v{s}}{\v{c}}{\'a}kov{\'a} and Alba Garc{\'i}a Seco de Herrera},
  year={2024},
  organization={CEUR-WS.org}
}
```

```
@inproceedings{DBLP:conf/ecir/BevendorffCCDEFFKMMPPRRSSSTUWZ24,
  author       = {Janek Bevendorff and
                  Xavier Bonet Casals and
                  Berta Chulvi and
                  Daryna Dementieva and
                  Ashaf Elnagar and
                  Dayne Freitag and
                  Maik Fr{\"{o}}be and
                  Damir Korencic and
                  Maximilian Mayerl and
                  Animesh Mukherjee and
                  Alexander Panchenko and
                  Martin Potthast and
                  Francisco Rangel and
                  Paolo Rosso and
                  Alisa Smirnova and
                  Efstathios Stamatatos and
                  Benno Stein and
                  Mariona Taul{\'{e}} and
                  Dmitry Ustalov and
                  Matti Wiegmann and
                  Eva Zangerle},
  editor       = {Nazli Goharian and
                  Nicola Tonellotto and
                  Yulan He and
                  Aldo Lipani and
                  Graham McDonald and
                  Craig Macdonald and
                  Iadh Ounis},
  title        = {Overview of {PAN} 2024: Multi-author Writing Style Analysis, Multilingual
                  Text Detoxification, Oppositional Thinking Analysis, and Generative
                  {AI} Authorship Verification - Extended Abstract},
  booktitle    = {Advances in Information Retrieval - 46th European Conference on Information
                  Retrieval, {ECIR} 2024, Glasgow, UK, March 24-28, 2024, Proceedings,
                  Part {VI}},
  series       = {Lecture Notes in Computer Science},
  volume       = {14613},
  pages        = {3--10},
  publisher    = {Springer},
  year         = {2024},
  url          = {https://doi.org/10.1007/978-3-031-56072-9\_1},
  doi          = {10.1007/978-3-031-56072-9\_1},
  timestamp    = {Fri, 29 Mar 2024 23:01:36 +0100},
  biburl       = {https://dblp.org/rec/conf/ecir/BevendorffCCDEFFKMMPPRRSSSTUWZ24.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```