desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Metric for number of predicted => active cells per column for each sequence
@return (Metric) metric'
| def mmGetMetricSequencesPredictedActiveCellsPerColumn(self):
| self._mmComputeTransitionTraces()
numCellsPerColumn = []
for predictedActiveCells in self._mmData['predictedActiveCellsForSequence'].values():
cellsForColumn = self.mapCellsToColumns(predictedActiveCells)
numCellsPerColumn += [len(x) for x in cellsForColumn.values()]
return Metric(self, '# predicted => active cells per column for each sequence', numCellsPerColumn)
|
'Metric for number of sequences each predicted => active cell appears in
Note: This metric is flawed when it comes to high-order sequences.
@return (Metric) metric'
| def mmGetMetricSequencesPredictedActiveCellsShared(self):
| self._mmComputeTransitionTraces()
numSequencesForCell = defaultdict((lambda : 0))
for predictedActiveCells in self._mmData['predictedActiveCellsForSequence'].values():
for cell in predictedActiveCells:
numSequencesForCell[cell] += 1
return Metric(self, '# sequences each predicted => active cells appears in', numSequencesForCell.values())
|
'Pretty print the connections in the temporal memory.
TODO: Use PrettyTable.
@return (string) Pretty-printed text'
| def mmPrettyPrintConnections(self):
| text = ''
text += 'Segments: (format => (#) [(source cell=permanence ...), ...]\n'
text += '------------------------------------\n'
columns = range(self.numberOfColumns())
for column in columns:
cells = self.cellsForColumn(column)
for cell in cells:
segmentDict = dict()
for seg in self.connections.segmentsForCell(cell):
synapseList = []
for synapse in self.connections.synapsesForSegment(seg):
synapseData = self.connections.dataForSynapse(synapse)
synapseList.append((synapseData.presynapticCell, synapseData.permanence))
synapseList.sort()
synapseStringList = ['{0:3}={1:.2f}'.format(sourceCell, permanence) for (sourceCell, permanence) in synapseList]
segmentDict[seg] = '({0})'.format(' '.join(synapseStringList))
text += 'Column {0:3} / Cell {1:3}: DCTB ({2}) {3}\n'.format(column, cell, len(segmentDict.values()), '[{0}]'.format(', '.join(segmentDict.values())))
if (column < (len(columns) - 1)):
text += '\n'
text += '------------------------------------\n'
return text
|
'Pretty print the cell representations for sequences in the history.
@param sortby (string) Column of table to sort by
@return (string) Pretty-printed text'
| def mmPrettyPrintSequenceCellRepresentations(self, sortby='Column'):
| self._mmComputeTransitionTraces()
table = PrettyTable(['Pattern', 'Column', 'predicted=>active cells'])
for (sequenceLabel, predictedActiveCells) in self._mmData['predictedActiveCellsForSequence'].iteritems():
cellsForColumn = self.mapCellsToColumns(predictedActiveCells)
for (column, cells) in cellsForColumn.iteritems():
table.add_row([sequenceLabel, column, list(cells)])
return table.get_string(sortby=sortby).encode('utf-8')
|
'Computes the transition traces, if necessary.
Transition traces are the following:
predicted => active cells
predicted => inactive cells
predicted => active columns
predicted => inactive columns
unpredicted => active columns'
| def _mmComputeTransitionTraces(self):
| if (not self._mmTransitionTracesStale):
return
self._mmData['predictedActiveCellsForSequence'] = defaultdict(set)
self._mmTraces['predictedActiveCells'] = IndicesTrace(self, 'predicted => active cells (correct)')
self._mmTraces['predictedInactiveCells'] = IndicesTrace(self, 'predicted => inactive cells (extra)')
self._mmTraces['predictedActiveColumns'] = IndicesTrace(self, 'predicted => active columns (correct)')
self._mmTraces['predictedInactiveColumns'] = IndicesTrace(self, 'predicted => inactive columns (extra)')
self._mmTraces['unpredictedActiveColumns'] = IndicesTrace(self, 'unpredicted => active columns (bursting)')
predictedCellsTrace = self._mmTraces['predictedCells']
for (i, activeColumns) in enumerate(self.mmGetTraceActiveColumns().data):
predictedActiveCells = set()
predictedInactiveCells = set()
predictedActiveColumns = set()
predictedInactiveColumns = set()
for predictedCell in predictedCellsTrace.data[i]:
predictedColumn = self.columnForCell(predictedCell)
if (predictedColumn in activeColumns):
predictedActiveCells.add(predictedCell)
predictedActiveColumns.add(predictedColumn)
sequenceLabel = self.mmGetTraceSequenceLabels().data[i]
if (sequenceLabel is not None):
self._mmData['predictedActiveCellsForSequence'][sequenceLabel].add(predictedCell)
else:
predictedInactiveCells.add(predictedCell)
predictedInactiveColumns.add(predictedColumn)
unpredictedActiveColumns = (activeColumns - predictedActiveColumns)
self._mmTraces['predictedActiveCells'].data.append(predictedActiveCells)
self._mmTraces['predictedInactiveCells'].data.append(predictedInactiveCells)
self._mmTraces['predictedActiveColumns'].data.append(predictedActiveColumns)
self._mmTraces['predictedInactiveColumns'].data.append(predictedInactiveColumns)
self._mmTraces['unpredictedActiveColumns'].data.append(unpredictedActiveColumns)
self._mmTransitionTracesStale = False
|
'Returns plot of the cell activity.
@param title (string) an optional title for the figure
@param showReset (bool) if true, the first set of cell activities
after a reset will have a gray background
@param resetShading (float) if showReset is true, this float specifies the
intensity of the reset background with 0.0
being white and 1.0 being black
@param activityType (string) The type of cell activity to display. Valid
types include "activeCells",
"predictiveCells", "predictedCells",
and "predictedActiveCells"
@return (Plot) plot'
| def mmGetCellActivityPlot(self, title='', showReset=False, resetShading=0.25, activityType='activeCells'):
| if (activityType == 'predictedActiveCells'):
self._mmComputeTransitionTraces()
cellTrace = copy.deepcopy(self._mmTraces[activityType].data)
for i in xrange(len(cellTrace)):
cellTrace[i] = self.getCellIndices(cellTrace[i])
return self.mmGetCellTracePlot(cellTrace, self.numberOfCells(), activityType, title, showReset, resetShading)
|
'@param monitor (MonitorMixinBase) Monitor Mixin instance that generated
this trace
@param title (string) Title
@param data (list) List of numbers to compute metric from'
| def __init__(self, monitor, title, data):
| self.monitor = monitor
self.title = title
self.min = None
self.max = None
self.sum = None
self.mean = None
self.standardDeviation = None
self._computeStats(data)
|
'@param monitor (MonitorMixinBase) Monitor Mixin instance that generated
this plot
@param title (string) Plot title'
| def __init__(self, monitor, title, show=True):
| self._monitor = monitor
self._title = title
self._fig = self._initFigure()
self._show = show
if self._show:
plt.ion()
plt.show()
|
'Adds a graph to the plot\'s figure.
@param data See matplotlib.Axes.plot documentation.
@param position A 3-digit number. The first two digits define a 2D grid
where subplots may be added. The final digit specifies the nth grid
location for the added subplot
@param xlabel text to be displayed on the x-axis
@param ylabel text to be displayed on the y-axis'
| def addGraph(self, data, position=111, xlabel=None, ylabel=None):
| ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel)
ax.plot(data)
plt.draw()
|
'Adds a histogram to the plot\'s figure.
@param data See matplotlib.Axes.hist documentation.
@param position A 3-digit number. The first two digits define a 2D grid
where subplots may be added. The final digit specifies the nth grid
location for the added subplot
@param xlabel text to be displayed on the x-axis
@param ylabel text to be displayed on the y-axis'
| def addHistogram(self, data, position=111, xlabel=None, ylabel=None, bins=None):
| ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel)
ax.hist(data, bins=bins, color='green', alpha=0.8)
plt.draw()
|
'Adds an image to the plot\'s figure.
@param data a 2D array. See matplotlib.Axes.imshow documentation.
@param position A 3-digit number. The first two digits define a 2D grid
where subplots may be added. The final digit specifies the nth grid
location for the added subplot
@param xlabel text to be displayed on the x-axis
@param ylabel text to be displayed on the y-axis
@param cmap color map used in the rendering
@param aspect how aspect ratio is handled during resize
@param interpolation interpolation method'
| def add2DArray(self, data, position=111, xlabel=None, ylabel=None, cmap=None, aspect='auto', interpolation='nearest', name=None):
| if (cmap is None):
cmap = cm.Greys
ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel)
ax.imshow(data, cmap=cmap, aspect=aspect, interpolation=interpolation)
if self._show:
plt.draw()
if (name is not None):
if (not os.path.exists('log')):
os.mkdir('log')
plt.savefig('log/{name}.png'.format(name=name), bbox_inches='tight', figsize=(8, 6), dpi=400)
|
'Adds a subplot to the plot\'s figure at specified position.
@param position A 3-digit number. The first two digits define a 2D grid
where subplots may be added. The final digit specifies the nth grid
location for the added subplot
@param xlabel text to be displayed on the x-axis
@param ylabel text to be displayed on the y-axis
@returns (matplotlib.Axes) Axes instance'
| def _addBase(self, position, xlabel=None, ylabel=None):
| ax = self._fig.add_subplot(position)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
|
'Note: If you set the kwarg "mmName", then pretty-printing of traces and
metrics will include the name you specify as a tag before every title.'
| def __init__(self, *args, **kwargs):
| self.mmName = kwargs.get('mmName')
if ('mmName' in kwargs):
del kwargs['mmName']
super(MonitorMixinBase, self).__init__(*args, **kwargs)
self._mmTraces = None
self._mmData = None
self.mmClearHistory()
|
'Clears the stored history.'
| def mmClearHistory(self):
| self._mmTraces = {}
self._mmData = {}
|
'Returns pretty-printed table of traces.
@param traces (list) Traces to print in table
@param breakOnResets (BoolsTrace) Trace of resets to break table on
@return (string) Pretty-printed table of traces.'
| @staticmethod
def mmPrettyPrintTraces(traces, breakOnResets=None):
| assert (len(traces) > 0), 'No traces found'
table = PrettyTable((['#'] + [trace.prettyPrintTitle() for trace in traces]))
for i in xrange(len(traces[0].data)):
if (breakOnResets and breakOnResets.data[i]):
table.add_row((['<reset>'] * (len(traces) + 1)))
table.add_row(([i] + [trace.prettyPrintDatum(trace.data[i]) for trace in traces]))
return table.get_string().encode('utf-8')
|
'Returns pretty-printed table of metrics.
@param metrics (list) Traces to print in table
@param sigFigs (int) Number of significant figures to print
@return (string) Pretty-printed table of metrics.'
| @staticmethod
def mmPrettyPrintMetrics(metrics, sigFigs=5):
| assert (len(metrics) > 0), 'No metrics found'
table = PrettyTable(['Metric', 'mean', 'standard deviation', 'min', 'max', 'sum'])
for metric in metrics:
table.add_row(([metric.prettyPrintTitle()] + metric.getStats()))
return table.get_string().encode('utf-8')
|
'Returns list of default traces. (To be overridden.)
@param verbosity (int) Verbosity level
@return (list) Default traces'
| def mmGetDefaultTraces(self, verbosity=1):
| return []
|
'Returns list of default metrics. (To be overridden.)
@param verbosity (int) Verbosity level
@return (list) Default metrics'
| def mmGetDefaultMetrics(self, verbosity=1):
| return []
|
'Returns plot of the cell activity. Note that if many timesteps of
activities are input, matplotlib\'s image interpolation may omit activities
(columns in the image).
@param cellTrace (list) a temporally ordered list of sets of cell
activities
@param cellCount (int) number of cells in the space being rendered
@param activityType (string) type of cell activity being displayed
@param title (string) an optional title for the figure
@param showReset (bool) if true, the first set of cell activities
after a reset will have a grayscale background
@param resetShading (float) applicable if showReset is true, specifies the
intensity of the reset background with 0.0
being white and 1.0 being black
@return (Plot) plot'
| def mmGetCellTracePlot(self, cellTrace, cellCount, activityType, title='', showReset=False, resetShading=0.25):
| plot = Plot(self, title)
resetTrace = self.mmGetTraceResets().data
data = numpy.zeros((cellCount, 1))
for i in xrange(len(cellTrace)):
if (showReset and resetTrace[i]):
activity = (numpy.ones((cellCount, 1)) * resetShading)
else:
activity = numpy.zeros((cellCount, 1))
activeIndices = cellTrace[i]
activity[list(activeIndices)] = 1
data = numpy.concatenate((data, activity), 1)
plot.add2DArray(data, xlabel='Time', ylabel=activityType, name=title)
return plot
|
'Translate parameters and initialize member variables
specific to TemporalMemory'
| def __init__(self, columnDimensions=(2048,), cellsPerColumn=32, activationThreshold=13, initialPermanence=0.21, connectedPermanence=0.5, minThreshold=10, maxNewSynapseCount=20, permanenceIncrement=0.1, permanenceDecrement=0.1, seed=42):
| numberOfCols = 1
for n in columnDimensions:
numberOfCols *= n
super(TemporalMemoryShim, self).__init__(numberOfCols=numberOfCols, cellsPerColumn=cellsPerColumn, initialPerm=initialPermanence, connectedPerm=connectedPermanence, minThreshold=minThreshold, newSynapseCount=maxNewSynapseCount, permanenceInc=permanenceIncrement, permanenceDec=permanenceDecrement, permanenceMax=1.0, globalDecay=0, activationThreshold=activationThreshold, seed=seed)
self.connections = Connections((numberOfCols * cellsPerColumn))
self.predictiveCells = set()
|
'Feeds input record through TM, performing inference and learning.
Updates member variables with new state.
@param activeColumns (set) Indices of active columns in `t`'
| def compute(self, activeColumns, learn=True):
| bottomUpInput = numpy.zeros(self.numberOfCols, dtype=dtype)
bottomUpInput[list(activeColumns)] = 1
super(TemporalMemoryShim, self).compute(bottomUpInput, enableLearn=learn, enableInference=True)
predictedState = self.getPredictedState()
self.predictiveCells = set(numpy.flatnonzero(predictedState))
|
'Process one input sample.
This method is called by outer loop code outside the nupic-engine. We
use this instead of the nupic engine compute() because our inputs and
outputs aren\'t fixed size vectors of reals.
:param recordNum: Record number of this input pattern. Record numbers
normally increase sequentially by 1 each time unless there are missing
records in the dataset. Knowing this information insures that we don\'t get
confused by missing records.
:param patternNZ: List of the active indices from the output below. When the
input is from TemporalMemory, this list should be the indices of the
active cells.
:param classification: Dict of the classification information where:
- bucketIdx: list of indices of the encoder bucket
- actValue: list of actual values going into the encoder
Classification could be None for inference mode.
:param learn: (bool) if true, learn this sample
:param infer: (bool) if true, perform inference
:return: Dict containing inference results, there is one entry for each
step in self.steps, where the key is the number of steps, and
the value is an array containing the relative likelihood for
each bucketIdx starting from bucketIdx 0.
There is also an entry containing the average actual value to
use for each bucket. The key is \'actualValues\'.
for example:
.. code-block:: python
{1 : [0.1, 0.3, 0.2, 0.7],
4 : [0.2, 0.4, 0.3, 0.5],
\'actualValues\': [1.5, 3,5, 5,5, 7.6],'
| def compute(self, recordNum, patternNZ, classification, learn, infer):
| if (self.verbosity >= 1):
print ' learn:', learn
print ' recordNum:', recordNum
print (' patternNZ (%d):' % len(patternNZ)), patternNZ
print ' classificationIn:', classification
if (len(self._patternNZHistory) > 0):
if (recordNum < self._patternNZHistory[(-1)][0]):
raise ValueError('the record number has to increase monotonically')
if ((len(self._patternNZHistory) == 0) or (recordNum > self._patternNZHistory[(-1)][0])):
self._patternNZHistory.append((recordNum, patternNZ))
retval = {}
if (max(patternNZ) > self._maxInputIdx):
newMaxInputIdx = max(patternNZ)
for nSteps in self.steps:
self._weightMatrix[nSteps] = numpy.concatenate((self._weightMatrix[nSteps], numpy.zeros(shape=((newMaxInputIdx - self._maxInputIdx), (self._maxBucketIdx + 1)))), axis=0)
self._maxInputIdx = int(newMaxInputIdx)
if (classification is not None):
if (type(classification['bucketIdx']) is not list):
bucketIdxList = [classification['bucketIdx']]
actValueList = [classification['actValue']]
numCategory = 1
else:
bucketIdxList = classification['bucketIdx']
actValueList = classification['actValue']
numCategory = len(classification['bucketIdx'])
else:
if learn:
raise ValueError('classification cannot be None when learn=True')
actValueList = None
bucketIdxList = None
if infer:
retval = self.infer(patternNZ, actValueList)
if (learn and (classification['bucketIdx'] is not None)):
for categoryI in range(numCategory):
bucketIdx = bucketIdxList[categoryI]
actValue = actValueList[categoryI]
if (bucketIdx > self._maxBucketIdx):
for nSteps in self.steps:
self._weightMatrix[nSteps] = numpy.concatenate((self._weightMatrix[nSteps], numpy.zeros(shape=((self._maxInputIdx + 1), (bucketIdx - self._maxBucketIdx)))), axis=1)
self._maxBucketIdx = int(bucketIdx)
while (self._maxBucketIdx > (len(self._actualValues) - 1)):
self._actualValues.append(None)
if (self._actualValues[bucketIdx] is None):
self._actualValues[bucketIdx] = actValue
elif (isinstance(actValue, int) or isinstance(actValue, float) or isinstance(actValue, long)):
self._actualValues[bucketIdx] = (((1.0 - self.actValueAlpha) * self._actualValues[bucketIdx]) + (self.actValueAlpha * actValue))
else:
self._actualValues[bucketIdx] = actValue
for (learnRecordNum, learnPatternNZ) in self._patternNZHistory:
error = self._calculateError(recordNum, bucketIdxList)
nSteps = (recordNum - learnRecordNum)
if (nSteps in self.steps):
for bit in learnPatternNZ:
self._weightMatrix[nSteps][bit, :] += (self.alpha * error[nSteps])
if (infer and (self.verbosity >= 1)):
print ' inference: combined bucket likelihoods:'
print ' actual bucket values:', retval['actualValues']
for (nSteps, votes) in retval.items():
if (nSteps == 'actualValues'):
continue
print (' %d steps: ' % nSteps), _pFormatArray(votes)
bestBucketIdx = votes.argmax()
print (' most likely bucket idx: %d, value: %s' % (bestBucketIdx, retval['actualValues'][bestBucketIdx]))
print
return retval
|
'Return the inference value from one input sample. The actual
learning happens in compute().
:param patternNZ: list of the active indices from the output below
:param classification: dict of the classification information:
bucketIdx: index of the encoder bucket
actValue: actual value going into the encoder
:return: dict containing inference results, one entry for each step in
self.steps. The key is the number of steps, the value is an
array containing the relative likelihood for each bucketIdx
starting from bucketIdx 0.
for example:
.. code-block:: python
{\'actualValues\': [0.0, 1.0, 2.0, 3.0]
1 : [0.1, 0.3, 0.2, 0.7]
4 : [0.2, 0.4, 0.3, 0.5]}'
| def infer(self, patternNZ, actValueList):
| if ((self.steps[0] == 0) or (actValueList is None)):
defaultValue = 0
else:
defaultValue = actValueList[0]
actValues = [(x if (x is not None) else defaultValue) for x in self._actualValues]
retval = {'actualValues': actValues}
for nSteps in self.steps:
predictDist = self.inferSingleStep(patternNZ, self._weightMatrix[nSteps])
retval[nSteps] = predictDist
return retval
|
'Perform inference for a single step. Given an SDR input and a weight
matrix, return a predicted distribution.
:param patternNZ: list of the active indices from the output below
:param weightMatrix: numpy array of the weight matrix
:return: numpy array of the predicted class label distribution'
| def inferSingleStep(self, patternNZ, weightMatrix):
| outputActivation = weightMatrix[patternNZ].sum(axis=0)
expOutputActivation = numpy.exp(outputActivation)
predictDist = (expOutputActivation / numpy.sum(expOutputActivation))
return predictDist
|
'Calculate error signal
:param bucketIdxList: list of encoder buckets
:return: dict containing error. The key is the number of steps
The value is a numpy array of error at the output layer'
| def _calculateError(self, recordNum, bucketIdxList):
| error = dict()
targetDist = numpy.zeros((self._maxBucketIdx + 1))
numCategories = len(bucketIdxList)
for bucketIdx in bucketIdxList:
targetDist[bucketIdx] = (1.0 / numCategories)
for (learnRecordNum, learnPatternNZ) in self._patternNZHistory:
nSteps = (recordNum - learnRecordNum)
if (nSteps in self.steps):
predictDist = self.inferSingleStep(learnPatternNZ, self._weightMatrix[nSteps])
error[nSteps] = (targetDist - predictDist)
return error
|
'Explicitly implement this for unit testing. The flatIdx is not designed
to be consistent after serialize / deserialize, and the synapses might not
enumerate in the same order.'
| def __eq__(self, other):
| return ((self.cell == other.cell) and (sorted(self._synapses, key=(lambda x: x._ordinal)) == sorted(other._synapses, key=(lambda x: x._ordinal))))
|
'Explicitly implement this for unit testing. Allow floating point
differences for synapse permanence.'
| def __eq__(self, other):
| return ((self.segment.cell == other.segment.cell) and (self.presynapticCell == other.presynapticCell) and (abs((self.permanence - other.permanence)) < EPSILON))
|
'Returns the segments that belong to a cell.
:param cell: (int) Cell index
:returns: (list) Segment objects representing segments on the given cell.'
| def segmentsForCell(self, cell):
| return self._cells[cell]._segments
|
'Returns the synapses on a segment.
:param segment: (int) Segment index
:returns: (set) Synapse objects representing synapses on the given segment.'
| def synapsesForSegment(self, segment):
| return segment._synapses
|
'Returns the data for a synapse.
.. note:: This method exists to match the interface of the C++ Connections.
This allows tests and tools to inspect the connections using a common
interface.
:param synapse: (:class:`Synapse`)
:returns: Synapse data'
| def dataForSynapse(self, synapse):
| return synapse
|
'Returns the data for a segment.
.. note:: This method exists to match the interface of the C++ Connections.
This allows tests and tools to inspect the connections using a common
interface.
:param segment (:class:`Segment`)
:returns: segment data'
| def dataForSegment(self, segment):
| return segment
|
'Returns a :class:`Segment` object of the specified segment using data from
the ``self._cells`` array.
:param cell: (int) cell index
:param idx: (int) segment index on a cell
:returns: (:class:`Segment`) Segment object with index idx on the specified cell'
| def getSegment(self, cell, idx):
| return self._cells[cell]._segments[idx]
|
'Get the segment with the specified flatIdx.
:param flatIdx: (int) The segment\'s flattened list index.
:returns: (:class:`Segment`)'
| def segmentForFlatIdx(self, flatIdx):
| return self._segmentForFlatIdx[flatIdx]
|
'Get the needed length for a list to hold a value for every segment\'s
flatIdx.
:returns: (int) Required list length'
| def segmentFlatListLength(self):
| return self._nextFlatIdx
|
'Returns the synapses for the source cell that they synapse on.
:param presynapticCell: (int) Source cell index
:returns: (set) :class:`Synapse` objects'
| def synapsesForPresynapticCell(self, presynapticCell):
| return self._synapsesForPresynapticCell[presynapticCell]
|
'Adds a new segment on a cell.
:param cell: (int) Cell index
:returns: (int) New segment index'
| def createSegment(self, cell):
| cellData = self._cells[cell]
if (len(self._freeFlatIdxs) > 0):
flatIdx = self._freeFlatIdxs.pop()
else:
flatIdx = self._nextFlatIdx
self._segmentForFlatIdx.append(None)
self._nextFlatIdx += 1
ordinal = self._nextSegmentOrdinal
self._nextSegmentOrdinal += 1
segment = Segment(cell, flatIdx, ordinal)
cellData._segments.append(segment)
self._segmentForFlatIdx[flatIdx] = segment
return segment
|
'Destroys a segment.
:param segment: (:class:`Segment`) representing the segment to be destroyed.'
| def destroySegment(self, segment):
| for synapse in segment._synapses:
self._removeSynapseFromPresynapticMap(synapse)
self._numSynapses -= len(segment._synapses)
segments = self._cells[segment.cell]._segments
i = segments.index(segment)
del segments[i]
self._freeFlatIdxs.append(segment.flatIdx)
self._segmentForFlatIdx[segment.flatIdx] = None
|
'Creates a new synapse on a segment.
:param segment: (:class:`Segment`) Segment object for synapse to be synapsed
to.
:param presynapticCell: (int) Source cell index.
:param permanence: (float) Initial permanence of synapse.
:returns: (:class:`Synapse`) created synapse'
| def createSynapse(self, segment, presynapticCell, permanence):
| idx = len(segment._synapses)
synapse = Synapse(segment, presynapticCell, permanence, self._nextSynapseOrdinal)
self._nextSynapseOrdinal += 1
segment._synapses.add(synapse)
self._synapsesForPresynapticCell[presynapticCell].add(synapse)
self._numSynapses += 1
return synapse
|
'Destroys a synapse.
:param synapse: (:class:`Synapse`) synapse to destroy'
| def destroySynapse(self, synapse):
| self._numSynapses -= 1
self._removeSynapseFromPresynapticMap(synapse)
synapse.segment._synapses.remove(synapse)
|
'Updates the permanence for a synapse.
:param synapse: (class:`Synapse`) to be updated.
:param permanence: (float) New permanence.'
| def updateSynapsePermanence(self, synapse, permanence):
| synapse.permanence = permanence
|
'Compute each segment\'s number of active synapses for a given input.
In the returned lists, a segment\'s active synapse count is stored at index
``segment.flatIdx``.
:param activePresynapticCells: (iter) Active cells.
:param connectedPermanence: (float) Permanence threshold for a synapse to be
considered connected
:returns: (tuple) (``numActiveConnectedSynapsesForSegment`` [list],
``numActivePotentialSynapsesForSegment`` [list])'
| def computeActivity(self, activePresynapticCells, connectedPermanence):
| numActiveConnectedSynapsesForSegment = ([0] * self._nextFlatIdx)
numActivePotentialSynapsesForSegment = ([0] * self._nextFlatIdx)
threshold = (connectedPermanence - EPSILON)
for cell in activePresynapticCells:
for synapse in self._synapsesForPresynapticCell[cell]:
flatIdx = synapse.segment.flatIdx
numActivePotentialSynapsesForSegment[flatIdx] += 1
if (synapse.permanence > threshold):
numActiveConnectedSynapsesForSegment[flatIdx] += 1
return (numActiveConnectedSynapsesForSegment, numActivePotentialSynapsesForSegment)
|
'Returns the number of segments.
:param cell: (int) Optional parameter to get the number of segments on a
cell.
:returns: (int) Number of segments on all cells if cell is not specified, or
on a specific specified cell'
| def numSegments(self, cell=None):
| if (cell is not None):
return len(self._cells[cell]._segments)
return (self._nextFlatIdx - len(self._freeFlatIdxs))
|
'Returns the number of Synapses.
:param segment: (:class:`Segment`) Optional parameter to get the number of
synapses on a segment.
:returns: (int) Number of synapses on all segments if segment is not
specified, or on a specified segment.'
| def numSynapses(self, segment=None):
| if (segment is not None):
return len(segment._synapses)
return self._numSynapses
|
'Return a numeric key for sorting this segment. This can be used with the
python built-in ``sorted()`` function.
:param segment: (:class:`Segment`) within this :class:`Connections`
instance.
:returns: (float) A numeric key for sorting.'
| def segmentPositionSortKey(self, segment):
| return (segment.cell + (segment._ordinal / float(self._nextSegmentOrdinal)))
|
'Writes serialized data to proto object.
:param proto: (DynamicStructBuilder) Proto object'
| def write(self, proto):
| protoCells = proto.init('cells', self.numCells)
for i in xrange(self.numCells):
segments = self._cells[i]._segments
protoSegments = protoCells[i].init('segments', len(segments))
for (j, segment) in enumerate(segments):
synapses = segment._synapses
protoSynapses = protoSegments[j].init('synapses', len(synapses))
for (k, synapse) in enumerate(sorted(synapses, key=(lambda s: s._ordinal))):
protoSynapses[k].presynapticCell = synapse.presynapticCell
protoSynapses[k].permanence = synapse.permanence
|
'Reads deserialized data from proto object
:param proto: (DynamicStructBuilder) Proto object
:returns: (:class:`Connections`) instance'
| @classmethod
def read(cls, proto):
| protoCells = proto.cells
connections = cls(len(protoCells))
for (cellIdx, protoCell) in enumerate(protoCells):
protoCell = protoCells[cellIdx]
protoSegments = protoCell.segments
connections._cells[cellIdx] = CellData()
segments = connections._cells[cellIdx]._segments
for (segmentIdx, protoSegment) in enumerate(protoSegments):
segment = Segment(cellIdx, connections._nextFlatIdx, connections._nextSegmentOrdinal)
segments.append(segment)
connections._segmentForFlatIdx.append(segment)
connections._nextFlatIdx += 1
connections._nextSegmentOrdinal += 1
synapses = segment._synapses
protoSynapses = protoSegment.synapses
for (synapseIdx, protoSynapse) in enumerate(protoSynapses):
presynapticCell = protoSynapse.presynapticCell
synapse = Synapse(segment, presynapticCell, protoSynapse.permanence, ordinal=connections._nextSynapseOrdinal)
connections._nextSynapseOrdinal += 1
synapses.add(synapse)
connections._synapsesForPresynapticCell[presynapticCell].add(synapse)
connections._numSynapses += 1
return connections
|
'Equality operator for Connections instances.
Checks if two instances are functionally identical
:param other: (:class:`Connections`) Connections instance to compare to'
| def __eq__(self, other):
| for i in xrange(self.numCells):
segments = self._cells[i]._segments
otherSegments = other._cells[i]._segments
if (len(segments) != len(otherSegments)):
return False
for j in xrange(len(segments)):
segment = segments[j]
otherSegment = otherSegments[j]
synapses = segment._synapses
otherSynapses = otherSegment._synapses
if (len(synapses) != len(otherSynapses)):
return False
for synapse in synapses:
found = False
for candidate in otherSynapses:
if (synapse == candidate):
found = True
break
if (not found):
return False
if (len(self._synapsesForPresynapticCell) != len(self._synapsesForPresynapticCell)):
return False
for i in self._synapsesForPresynapticCell.keys():
synapses = self._synapsesForPresynapticCell[i]
otherSynapses = other._synapsesForPresynapticCell[i]
if (len(synapses) != len(otherSynapses)):
return False
for synapse in synapses:
found = False
for candidate in otherSynapses:
if (synapse == candidate):
found = True
break
if (not found):
return False
if (self._numSynapses != other._numSynapses):
return False
return True
|
'Non-equality operator for Connections instances.
Checks if two instances are not functionally identical
:param other: (:class:`Connections`) Connections instance to compare to'
| def __ne__(self, other):
| return (not self.__eq__(other))
|
'List of our member variables that we don\'t need to be saved.'
| def _getEphemeralMembers(self):
| return []
|
'Initialize all ephemeral members after being restored to a pickled state.'
| def _initEphemerals(self):
| self.segmentUpdates = {}
self.resetStats()
self._prevInfPatterns = []
self._prevLrnPatterns = []
stateShape = (self.numberOfCols, self.cellsPerColumn)
self.lrnActiveState = {}
self.lrnActiveState['t'] = numpy.zeros(stateShape, dtype='int8')
self.lrnActiveState['t-1'] = numpy.zeros(stateShape, dtype='int8')
self.lrnPredictedState = {}
self.lrnPredictedState['t'] = numpy.zeros(stateShape, dtype='int8')
self.lrnPredictedState['t-1'] = numpy.zeros(stateShape, dtype='int8')
self.infActiveState = {}
self.infActiveState['t'] = numpy.zeros(stateShape, dtype='int8')
self.infActiveState['t-1'] = numpy.zeros(stateShape, dtype='int8')
self.infActiveState['backup'] = numpy.zeros(stateShape, dtype='int8')
self.infActiveState['candidate'] = numpy.zeros(stateShape, dtype='int8')
self.infPredictedState = {}
self.infPredictedState['t'] = numpy.zeros(stateShape, dtype='int8')
self.infPredictedState['t-1'] = numpy.zeros(stateShape, dtype='int8')
self.infPredictedState['backup'] = numpy.zeros(stateShape, dtype='int8')
self.infPredictedState['candidate'] = numpy.zeros(stateShape, dtype='int8')
self.cellConfidence = {}
self.cellConfidence['t'] = numpy.zeros(stateShape, dtype='float32')
self.cellConfidence['t-1'] = numpy.zeros(stateShape, dtype='float32')
self.cellConfidence['candidate'] = numpy.zeros(stateShape, dtype='float32')
self.colConfidence = {}
self.colConfidence['t'] = numpy.zeros(self.numberOfCols, dtype='float32')
self.colConfidence['t-1'] = numpy.zeros(self.numberOfCols, dtype='float32')
self.colConfidence['candidate'] = numpy.zeros(self.numberOfCols, dtype='float32')
|
'@internal
Return serializable state. This function will return a version of the
__dict__ with all "ephemeral" members stripped out. "Ephemeral" members
are defined as those that do not need to be (nor should be) stored
in any kind of persistent file (e.g., NuPIC network XML file.)'
| def __getstate__(self):
| state = self.__dict__.copy()
for ephemeralMemberName in self._getEphemeralMembers():
state.pop(ephemeralMemberName, None)
state['_random'] = self._getRandomState()
state['version'] = TM_VERSION
return state
|
'@internal
Set the state of ourself from a serialized state.'
| def __setstate__(self, state):
| self._setRandomState(state['_random'])
del state['_random']
version = state.pop('version')
assert (version == TM_VERSION)
self.__dict__.update(state)
|
'Populate serialization proto instance.
:param proto: (BacktrackingTMProto) the proto instance to populate'
| def write(self, proto):
| proto.version = TM_VERSION
self._random.write(proto.random)
proto.numberOfCols = self.numberOfCols
proto.cellsPerColumn = self.cellsPerColumn
proto.initialPerm = float(self.initialPerm)
proto.connectedPerm = float(self.connectedPerm)
proto.minThreshold = self.minThreshold
proto.newSynapseCount = self.newSynapseCount
proto.permanenceInc = float(self.permanenceInc)
proto.permanenceDec = float(self.permanenceDec)
proto.permanenceMax = float(self.permanenceMax)
proto.globalDecay = float(self.globalDecay)
proto.activationThreshold = self.activationThreshold
proto.doPooling = self.doPooling
proto.segUpdateValidDuration = self.segUpdateValidDuration
proto.burnIn = self.burnIn
proto.collectStats = self.collectStats
proto.verbosity = self.verbosity
proto.pamLength = self.pamLength
proto.maxAge = self.maxAge
proto.maxInfBacktrack = self.maxInfBacktrack
proto.maxLrnBacktrack = self.maxLrnBacktrack
proto.maxSeqLength = self.maxSeqLength
proto.maxSegmentsPerCell = self.maxSegmentsPerCell
proto.maxSynapsesPerSegment = self.maxSynapsesPerSegment
proto.outputType = self.outputType
proto.activeColumns = self.activeColumns
cellListProto = proto.init('cells', len(self.cells))
for (i, columnSegments) in enumerate(self.cells):
columnSegmentsProto = cellListProto.init(i, len(columnSegments))
for (j, cellSegments) in enumerate(columnSegments):
cellSegmentsProto = columnSegmentsProto.init(j, len(cellSegments))
for (k, segment) in enumerate(cellSegments):
segment.write(cellSegmentsProto[k])
proto.lrnIterationIdx = self.lrnIterationIdx
proto.iterationIdx = self.iterationIdx
proto.segID = self.segID
if (self.currentOutput is not None):
proto.currentOutput = self.currentOutput.tolist()
proto.pamCounter = self.pamCounter
proto.collectSequenceStats = self.collectSequenceStats
proto.resetCalled = self.resetCalled
proto.avgInputDensity = (self.avgInputDensity or (-1.0))
proto.learnedSeqLength = self.learnedSeqLength
proto.avgLearnedSeqLength = self.avgLearnedSeqLength
proto.prevLrnPatterns = self._prevLrnPatterns
proto.prevInfPatterns = self._prevInfPatterns
segmentUpdatesListProto = proto.init('segmentUpdates', len(self.segmentUpdates))
for (i, (key, updates)) in enumerate(self.segmentUpdates.iteritems()):
cellSegmentUpdatesProto = segmentUpdatesListProto[i]
cellSegmentUpdatesProto.columnIdx = key[0]
cellSegmentUpdatesProto.cellIdx = key[1]
segmentUpdatesProto = cellSegmentUpdatesProto.init('segmentUpdates', len(updates))
for (j, (lrnIterationIdx, segmentUpdate)) in enumerate(updates):
segmentUpdateWrapperProto = segmentUpdatesProto[j]
segmentUpdateWrapperProto.lrnIterationIdx = lrnIterationIdx
segmentUpdate.write(segmentUpdateWrapperProto.segmentUpdate)
proto.cellConfidenceT = self.cellConfidence['t'].tolist()
proto.cellConfidenceT1 = self.cellConfidence['t-1'].tolist()
proto.cellConfidenceCandidate = self.cellConfidence['candidate'].tolist()
proto.colConfidenceT = self.colConfidence['t'].tolist()
proto.colConfidenceT1 = self.colConfidence['t-1'].tolist()
proto.colConfidenceCandidate = self.colConfidence['candidate'].tolist()
proto.lrnActiveStateT = self.lrnActiveState['t'].tolist()
proto.lrnActiveStateT1 = self.lrnActiveState['t-1'].tolist()
proto.infActiveStateT = self.infActiveState['t'].tolist()
proto.infActiveStateT1 = self.infActiveState['t-1'].tolist()
proto.infActiveStateBackup = self.infActiveState['backup'].tolist()
proto.infActiveStateCandidate = self.infActiveState['candidate'].tolist()
proto.lrnPredictedStateT = self.lrnPredictedState['t'].tolist()
proto.lrnPredictedStateT1 = self.lrnPredictedState['t-1'].tolist()
proto.infPredictedStateT = self.infPredictedState['t'].tolist()
proto.infPredictedStateT1 = self.infPredictedState['t-1'].tolist()
proto.infPredictedStateBackup = self.infPredictedState['backup'].tolist()
proto.infPredictedStateCandidate = self.infPredictedState['candidate'].tolist()
proto.consolePrinterVerbosity = self.consolePrinterVerbosity
|
'Deserialize from proto instance.
:param proto: (BacktrackingTMProto) the proto instance to read from'
| @classmethod
def read(cls, proto):
| assert (proto.version == TM_VERSION)
obj = object.__new__(cls)
obj._random = Random()
obj._random.read(proto.random)
obj.numberOfCols = int(proto.numberOfCols)
obj.cellsPerColumn = int(proto.cellsPerColumn)
obj._numberOfCells = (obj.numberOfCols * obj.cellsPerColumn)
obj.initialPerm = numpy.float32(proto.initialPerm)
obj.connectedPerm = numpy.float32(proto.connectedPerm)
obj.minThreshold = int(proto.minThreshold)
obj.newSynapseCount = int(proto.newSynapseCount)
obj.permanenceInc = numpy.float32(proto.permanenceInc)
obj.permanenceDec = numpy.float32(proto.permanenceDec)
obj.permanenceMax = numpy.float32(proto.permanenceMax)
obj.globalDecay = numpy.float32(proto.globalDecay)
obj.activationThreshold = int(proto.activationThreshold)
obj.doPooling = proto.doPooling
obj.segUpdateValidDuration = int(proto.segUpdateValidDuration)
obj.burnIn = int(proto.burnIn)
obj.collectStats = proto.collectStats
obj.verbosity = int(proto.verbosity)
obj.pamLength = int(proto.pamLength)
obj.maxAge = int(proto.maxAge)
obj.maxInfBacktrack = int(proto.maxInfBacktrack)
obj.maxLrnBacktrack = int(proto.maxLrnBacktrack)
obj.maxSeqLength = int(proto.maxSeqLength)
obj.maxSegmentsPerCell = proto.maxSegmentsPerCell
obj.maxSynapsesPerSegment = proto.maxSynapsesPerSegment
obj.outputType = proto.outputType
obj.activeColumns = [int(col) for col in proto.activeColumns]
obj.cells = [[] for _ in xrange(len(proto.cells))]
for (columnSegments, columnSegmentsProto) in zip(obj.cells, proto.cells):
columnSegments.extend([[] for _ in xrange(len(columnSegmentsProto))])
for (cellSegments, cellSegmentsProto) in zip(columnSegments, columnSegmentsProto):
for segmentProto in cellSegmentsProto:
segment = Segment.read(segmentProto, obj)
cellSegments.append(segment)
obj.lrnIterationIdx = int(proto.lrnIterationIdx)
obj.iterationIdx = int(proto.iterationIdx)
obj.segID = int(proto.segID)
obj.pamCounter = int(proto.pamCounter)
obj.collectSequenceStats = proto.collectSequenceStats
obj.resetCalled = proto.resetCalled
avgInputDensity = proto.avgInputDensity
if (avgInputDensity < 0.0):
obj.avgInputDensity = None
else:
obj.avgInputDensity = avgInputDensity
obj.learnedSeqLength = int(proto.learnedSeqLength)
obj.avgLearnedSeqLength = proto.avgLearnedSeqLength
obj._initEphemerals()
obj.currentOutput = numpy.array(proto.currentOutput, dtype='float32')
for pattern in proto.prevLrnPatterns:
obj.prevLrnPatterns.append([v for v in pattern])
for pattern in proto.prevInfPatterns:
obj.prevInfPatterns.append([v for v in pattern])
for cellWrapperProto in proto.segmentUpdates:
key = (cellWrapperProto.columnIdx, cellWrapperProto.cellIdx)
value = []
for updateWrapperProto in cellWrapperProto.segmentUpdates:
segmentUpdate = SegmentUpdate.read(updateWrapperProto.segmentUpdate, obj)
value.append((int(updateWrapperProto.lrnIterationIdx), segmentUpdate))
obj.segmentUpdates[key] = value
numpy.copyto(obj.cellConfidence['t'], proto.cellConfidenceT)
numpy.copyto(obj.cellConfidence['t-1'], proto.cellConfidenceT1)
numpy.copyto(obj.cellConfidence['candidate'], proto.cellConfidenceCandidate)
numpy.copyto(obj.colConfidence['t'], proto.colConfidenceT)
numpy.copyto(obj.colConfidence['t-1'], proto.colConfidenceT1)
numpy.copyto(obj.colConfidence['candidate'], proto.colConfidenceCandidate)
numpy.copyto(obj.lrnActiveState['t'], proto.lrnActiveStateT)
numpy.copyto(obj.lrnActiveState['t-1'], proto.lrnActiveStateT1)
numpy.copyto(obj.infActiveState['t'], proto.infActiveStateT)
numpy.copyto(obj.infActiveState['t-1'], proto.infActiveStateT1)
numpy.copyto(obj.infActiveState['backup'], proto.infActiveStateBackup)
numpy.copyto(obj.infActiveState['candidate'], proto.infActiveStateCandidate)
numpy.copyto(obj.lrnPredictedState['t'], proto.lrnPredictedStateT)
numpy.copyto(obj.lrnPredictedState['t-1'], proto.lrnPredictedStateT1)
numpy.copyto(obj.infPredictedState['t'], proto.infPredictedStateT)
numpy.copyto(obj.infPredictedState['t-1'], proto.infPredictedStateT1)
numpy.copyto(obj.infPredictedState['backup'], proto.infPredictedStateBackup)
numpy.copyto(obj.infPredictedState['candidate'], proto.infPredictedStateCandidate)
obj.consolePrinterVerbosity = int(proto.consolePrinterVerbosity)
return obj
|
'@internal
Patch __getattr__ so that we can catch the first access to \'cells\' and load.
This function is only called when we try to access an attribute that doesn\'t
exist. We purposely make sure that "self.cells" doesn\'t exist after
unpickling so that we\'ll hit this, then we can load it on the first access.
If this is called at any other time, it will raise an AttributeError.
That\'s because:
- If \'name\' is "cells", after the first call, self._realCells won\'t exist
so we\'ll get an implicit AttributeError.
- If \'name\' isn\'t "cells", I\'d expect our super wouldn\'t have __getattr__,
so we\'ll raise our own Attribute error. If the super did get __getattr__,
we\'ll just return what it gives us.'
| def __getattr__(self, name):
| try:
return super(BacktrackingTM, self).__getattr__(name)
except AttributeError:
raise AttributeError(("'TM' object has no attribute '%s'" % name))
|
'Implemented in
:meth:`nupic.algorithms.backtracking_tm_cpp.BacktrackingTMCPP.saveToFile`.'
| def saveToFile(self, filePath):
| pass
|
'Implemented in
:meth:`nupic.algorithms.backtracking_tm_cpp.BacktrackingTMCPP.loadFromFile`.'
| def loadFromFile(self, filePath):
| pass
|
'@internal
Return the random number state.
This is used during unit testing to generate repeatable results.'
| def _getRandomState(self):
| return pickle.dumps(self._random)
|
'@internal Set the random number state.
This is used during unit testing to generate repeatable results.'
| def _setRandomState(self, state):
| self._random = pickle.loads(state)
|
'Reset the state of all cells.
This is normally used between sequences while training. All internal states
are reset to 0.'
| def reset(self):
| if (self.verbosity >= 3):
print '\n==== RESET ====='
self.lrnActiveState['t-1'].fill(0)
self.lrnActiveState['t'].fill(0)
self.lrnPredictedState['t-1'].fill(0)
self.lrnPredictedState['t'].fill(0)
self.infActiveState['t-1'].fill(0)
self.infActiveState['t'].fill(0)
self.infPredictedState['t-1'].fill(0)
self.infPredictedState['t'].fill(0)
self.cellConfidence['t-1'].fill(0)
self.cellConfidence['t'].fill(0)
self.segmentUpdates = {}
self._internalStats['nInfersSinceReset'] = 0
self._internalStats['curPredictionScore'] = 0
self._internalStats['curPredictionScore2'] = 0
self._internalStats['curFalseNegativeScore'] = 0
self._internalStats['curFalsePositiveScore'] = 0
self._internalStats['curMissing'] = 0
self._internalStats['curExtra'] = 0
self._internalStats['prevSequenceSignature'] = None
if self.collectSequenceStats:
if (self._internalStats['confHistogram'].sum() > 0):
sig = self._internalStats['confHistogram'].copy()
sig.reshape((self.numberOfCols * self.cellsPerColumn))
self._internalStats['prevSequenceSignature'] = sig
self._internalStats['confHistogram'].fill(0)
self.resetCalled = True
self._prevInfPatterns = []
self._prevLrnPatterns = []
|
'Reset the learning and inference stats. This will usually be called by
user code at the start of each inference run (for a particular data set).'
| def resetStats(self):
| self._stats = dict()
self._internalStats = dict()
self._internalStats['nInfersSinceReset'] = 0
self._internalStats['nPredictions'] = 0
self._internalStats['curPredictionScore'] = 0
self._internalStats['curPredictionScore2'] = 0
self._internalStats['predictionScoreTotal2'] = 0
self._internalStats['curFalseNegativeScore'] = 0
self._internalStats['falseNegativeScoreTotal'] = 0
self._internalStats['curFalsePositiveScore'] = 0
self._internalStats['falsePositiveScoreTotal'] = 0
self._internalStats['pctExtraTotal'] = 0
self._internalStats['pctMissingTotal'] = 0
self._internalStats['curMissing'] = 0
self._internalStats['curExtra'] = 0
self._internalStats['totalMissing'] = 0
self._internalStats['totalExtra'] = 0
self._internalStats['prevSequenceSignature'] = None
if self.collectSequenceStats:
self._internalStats['confHistogram'] = numpy.zeros((self.numberOfCols, self.cellsPerColumn), dtype='float32')
|
'Return the current learning and inference stats. This returns a dict
containing all the learning and inference stats we have collected since the
last :meth:`resetStats` call. If :class:`BacktrackingTM` ``collectStats``
parameter is False, then None is returned.
:returns: (dict) The following keys are returned in the dict when
``collectStats`` is True:
- ``nPredictions``: the number of predictions. This is the total
number of inferences excluding burn-in and the last inference.
- ``curPredictionScore``: the score for predicting the current input
(predicted during the previous inference)
- ``curMissing``: the number of bits in the current input that were
not predicted to be on.
- ``curExtra``: the number of bits in the predicted output that are
not in the next input
- ``predictionScoreTotal``: the sum of every prediction score to date
- ``predictionScoreAvg``: ``predictionScoreTotal / nPredictions``
- ``pctMissingTotal``: the total number of bits that were missed over
all predictions
- ``pctMissingAvg``: ``pctMissingTotal / nPredictions``
- ``prevSequenceSignature``: signature for the sequence immediately
preceding the last reset. \'None\' if ``collectSequenceStats`` is
False.'
| def getStats(self):
| if (not self.collectStats):
return None
self._stats['nPredictions'] = self._internalStats['nPredictions']
self._stats['curMissing'] = self._internalStats['curMissing']
self._stats['curExtra'] = self._internalStats['curExtra']
self._stats['totalMissing'] = self._internalStats['totalMissing']
self._stats['totalExtra'] = self._internalStats['totalExtra']
nPredictions = max(1, self._stats['nPredictions'])
self._stats['curPredictionScore2'] = self._internalStats['curPredictionScore2']
self._stats['predictionScoreAvg2'] = (self._internalStats['predictionScoreTotal2'] / nPredictions)
self._stats['curFalseNegativeScore'] = self._internalStats['curFalseNegativeScore']
self._stats['falseNegativeAvg'] = (self._internalStats['falseNegativeScoreTotal'] / nPredictions)
self._stats['curFalsePositiveScore'] = self._internalStats['curFalsePositiveScore']
self._stats['falsePositiveAvg'] = (self._internalStats['falsePositiveScoreTotal'] / nPredictions)
self._stats['pctExtraAvg'] = (self._internalStats['pctExtraTotal'] / nPredictions)
self._stats['pctMissingAvg'] = (self._internalStats['pctMissingTotal'] / nPredictions)
self._stats['prevSequenceSignature'] = self._internalStats['prevSequenceSignature']
return self._stats
|
'Called at the end of learning and inference, this routine will update
a number of stats in our _internalStats dictionary, including our computed
prediction score.
:param stats internal stats dictionary
:param bottomUpNZ list of the active bottom-up inputs
:param predictedState The columns we predicted on the last time step (should
match the current bottomUpNZ in the best case)
:param colConfidence Column confidences we determined on the last time step'
| def _updateStatsInferEnd(self, stats, bottomUpNZ, predictedState, colConfidence):
| if (not self.collectStats):
return
stats['nInfersSinceReset'] += 1
(numExtra2, numMissing2, confidences2) = self._checkPrediction(patternNZs=[bottomUpNZ], output=predictedState, colConfidence=colConfidence)
(predictionScore, positivePredictionScore, negativePredictionScore) = confidences2[0]
stats['curPredictionScore2'] = float(predictionScore)
stats['curFalseNegativeScore'] = (1.0 - float(positivePredictionScore))
stats['curFalsePositiveScore'] = float(negativePredictionScore)
stats['curMissing'] = numMissing2
stats['curExtra'] = numExtra2
if (stats['nInfersSinceReset'] <= self.burnIn):
return
stats['nPredictions'] += 1
numExpected = max(1.0, float(len(bottomUpNZ)))
stats['totalMissing'] += numMissing2
stats['totalExtra'] += numExtra2
stats['pctExtraTotal'] += ((100.0 * numExtra2) / numExpected)
stats['pctMissingTotal'] += ((100.0 * numMissing2) / numExpected)
stats['predictionScoreTotal2'] += float(predictionScore)
stats['falseNegativeScoreTotal'] += (1.0 - float(positivePredictionScore))
stats['falsePositiveScoreTotal'] += float(negativePredictionScore)
if self.collectSequenceStats:
cc = (self.cellConfidence['t-1'] * self.infActiveState['t'])
sconf = cc.sum(axis=1)
for c in range(self.numberOfCols):
if (sconf[c] > 0):
cc[c, :] /= sconf[c]
self._internalStats['confHistogram'] += cc
|
'Print an integer array that is the same shape as activeState.
:param aState: TODO: document'
| def printState(self, aState):
| def formatRow(var, i):
s = ''
for c in range(self.numberOfCols):
if ((c > 0) and ((c % 10) == 0)):
s += ' '
s += str(var[(c, i)])
s += ' '
return s
for i in xrange(self.cellsPerColumn):
print formatRow(aState, i)
|
'Print a floating point array that is the same shape as activeState.
:param aState: TODO: document
:param maxCols: TODO: document'
| def printConfidence(self, aState, maxCols=20):
| def formatFPRow(var, i):
s = ''
for c in range(min(maxCols, self.numberOfCols)):
if ((c > 0) and ((c % 10) == 0)):
s += ' '
s += (' %5.3f' % var[(c, i)])
s += ' '
return s
for i in xrange(self.cellsPerColumn):
print formatFPRow(aState, i)
|
'Print up to maxCols number from a flat floating point array.
:param aState: TODO: document
:param maxCols: TODO: document'
| def printColConfidence(self, aState, maxCols=20):
| def formatFPRow(var):
s = ''
for c in range(min(maxCols, self.numberOfCols)):
if ((c > 0) and ((c % 10) == 0)):
s += ' '
s += (' %5.3f' % var[c])
s += ' '
return s
print formatFPRow(aState)
|
'TODO: document
:param printPrevious:
:param printLearnState:
:return:'
| def printStates(self, printPrevious=True, printLearnState=True):
| def formatRow(var, i):
s = ''
for c in range(self.numberOfCols):
if ((c > 0) and ((c % 10) == 0)):
s += ' '
s += str(var[(c, i)])
s += ' '
return s
print '\nInference Active state'
for i in xrange(self.cellsPerColumn):
if printPrevious:
print formatRow(self.infActiveState['t-1'], i),
print formatRow(self.infActiveState['t'], i)
print 'Inference Predicted state'
for i in xrange(self.cellsPerColumn):
if printPrevious:
print formatRow(self.infPredictedState['t-1'], i),
print formatRow(self.infPredictedState['t'], i)
if printLearnState:
print '\nLearn Active state'
for i in xrange(self.cellsPerColumn):
if printPrevious:
print formatRow(self.lrnActiveState['t-1'], i),
print formatRow(self.lrnActiveState['t'], i)
print 'Learn Predicted state'
for i in xrange(self.cellsPerColumn):
if printPrevious:
print formatRow(self.lrnPredictedState['t-1'], i),
print formatRow(self.lrnPredictedState['t'], i)
|
'TODO: document
:param y:
:return:'
| def printOutput(self, y):
| print 'Output'
for i in xrange(self.cellsPerColumn):
for c in xrange(self.numberOfCols):
print int(y[(c, i)]),
print
|
'TODO: document
:param x:
:return:'
| def printInput(self, x):
| print 'Input'
for c in xrange(self.numberOfCols):
print int(x[c]),
print
|
'Print the parameter settings for the TM.'
| def printParameters(self):
| print 'numberOfCols=', self.numberOfCols
print 'cellsPerColumn=', self.cellsPerColumn
print 'minThreshold=', self.minThreshold
print 'newSynapseCount=', self.newSynapseCount
print 'activationThreshold=', self.activationThreshold
print
print 'initialPerm=', self.initialPerm
print 'connectedPerm=', self.connectedPerm
print 'permanenceInc=', self.permanenceInc
print 'permanenceDec=', self.permanenceDec
print 'permanenceMax=', self.permanenceMax
print 'globalDecay=', self.globalDecay
print
print 'doPooling=', self.doPooling
print 'segUpdateValidDuration=', self.segUpdateValidDuration
print 'pamLength=', self.pamLength
|
'Print the list of ``[column, cellIdx]`` indices for each of the active cells
in state.
:param state: TODO: document
:param andValues: TODO: document'
| def printActiveIndices(self, state, andValues=False):
| if (len(state.shape) == 2):
(cols, cellIdxs) = state.nonzero()
else:
cols = state.nonzero()[0]
cellIdxs = numpy.zeros(len(cols))
if (len(cols) == 0):
print 'NONE'
return
prevCol = (-1)
for (col, cellIdx) in zip(cols, cellIdxs):
if (col != prevCol):
if (prevCol != (-1)):
print '] ',
print ('Col %d: [' % col),
prevCol = col
if andValues:
if (len(state.shape) == 2):
value = state[(col, cellIdx)]
else:
value = state[col]
print ('%d: %s,' % (cellIdx, value)),
else:
print ('%d,' % cellIdx),
print ']'
|
'Called at the end of inference to print out various diagnostic
information based on the current verbosity level.
:param output: TODO: document
:param learn: TODO: document'
| def printComputeEnd(self, output, learn=False):
| if (self.verbosity >= 3):
print '----- computeEnd summary: '
print 'learn:', learn
print ('numBurstingCols: %s, ' % self.infActiveState['t'].min(axis=1).sum()),
print ('curPredScore2: %s, ' % self._internalStats['curPredictionScore2']),
print ('curFalsePosScore: %s, ' % self._internalStats['curFalsePositiveScore']),
print ('1-curFalseNegScore: %s, ' % (1 - self._internalStats['curFalseNegativeScore']))
print 'numSegments: ', self.getNumSegments(),
print 'avgLearnedSeqLength: ', self.avgLearnedSeqLength
print ('----- infActiveState (%d on) ------' % self.infActiveState['t'].sum())
self.printActiveIndices(self.infActiveState['t'])
if (self.verbosity >= 6):
self.printState(self.infActiveState['t'])
print ('----- infPredictedState (%d on)-----' % self.infPredictedState['t'].sum())
self.printActiveIndices(self.infPredictedState['t'])
if (self.verbosity >= 6):
self.printState(self.infPredictedState['t'])
print ('----- lrnActiveState (%d on) ------' % self.lrnActiveState['t'].sum())
self.printActiveIndices(self.lrnActiveState['t'])
if (self.verbosity >= 6):
self.printState(self.lrnActiveState['t'])
print ('----- lrnPredictedState (%d on)-----' % self.lrnPredictedState['t'].sum())
self.printActiveIndices(self.lrnPredictedState['t'])
if (self.verbosity >= 6):
self.printState(self.lrnPredictedState['t'])
print '----- cellConfidence -----'
self.printActiveIndices(self.cellConfidence['t'], andValues=True)
if (self.verbosity >= 6):
self.printConfidence(self.cellConfidence['t'])
print '----- colConfidence -----'
self.printActiveIndices(self.colConfidence['t'], andValues=True)
print '----- cellConfidence[t-1] for currently active cells -----'
cc = (self.cellConfidence['t-1'] * self.infActiveState['t'])
self.printActiveIndices(cc, andValues=True)
if (self.verbosity == 4):
print 'Cells, predicted segments only:'
self.printCells(predictedOnly=True)
elif (self.verbosity >= 5):
print 'Cells, all segments:'
self.printCells(predictedOnly=False)
print
elif (self.verbosity >= 1):
print 'TM: learn:', learn
print ('TM: active outputs(%d):' % len(output.nonzero()[0])),
self.printActiveIndices(output.reshape(self.numberOfCols, self.cellsPerColumn))
|
'TODO: document
:return:'
| def printSegmentUpdates(self):
| print '=== SEGMENT UPDATES ===, Num = ', len(self.segmentUpdates)
for (key, updateList) in self.segmentUpdates.iteritems():
(c, i) = (key[0], key[1])
print c, i, updateList
|
'TODO: document
:param c:
:param i:
:param onlyActiveSegments:
:return:'
| def printCell(self, c, i, onlyActiveSegments=False):
| if (len(self.cells[c][i]) > 0):
print 'Column', c, 'Cell', i, ':',
print len(self.cells[c][i]), 'segment(s)'
for (j, s) in enumerate(self.cells[c][i]):
isActive = self._isSegmentActive(s, self.infActiveState['t'])
if ((not onlyActiveSegments) or isActive):
isActiveStr = ('*' if isActive else ' ')
print (' %sSeg #%-3d' % (isActiveStr, j)),
s.debugPrint()
|
'TODO: document
:param predictedOnly:
:return:'
| def printCells(self, predictedOnly=False):
| if predictedOnly:
print '--- PREDICTED CELLS ---'
else:
print '--- ALL CELLS ---'
print 'Activation threshold=', self.activationThreshold,
print 'min threshold=', self.minThreshold,
print 'connected perm=', self.connectedPerm
for c in xrange(self.numberOfCols):
for i in xrange(self.cellsPerColumn):
if ((not predictedOnly) or self.infPredictedState['t'][(c, i)]):
self.printCell(c, i, predictedOnly)
|
':param c: (int) column index
:param i: (int) cell index within column
:returns: (int) the total number of synapses in cell (c, i)'
| def getNumSegmentsInCell(self, c, i):
| return len(self.cells[c][i])
|
':returns: (int) the total number of synapses'
| def getNumSynapses(self):
| nSyns = self.getSegmentInfo()[1]
return nSyns
|
':returns: (int) the average number of synapses per segment'
| def getNumSynapsesPerSegmentAvg(self):
| return (float(self.getNumSynapses()) / max(1, self.getNumSegments()))
|
':returns: (int) the total number of segments'
| def getNumSegments(self):
| nSegs = self.getSegmentInfo()[0]
return nSegs
|
':returns: (int) the total number of cells'
| def getNumCells(self):
| return (self.numberOfCols * self.cellsPerColumn)
|
':param c: (int) column index
:param i: (int) cell index in column
:param segIdx: (int) segment index to match
:returns: (list) representing the the segment on cell (c, i) with index
``segIdx``.
[ [segmentID, sequenceSegmentFlag, positiveActivations,
totalActivations, lastActiveIteration,
lastPosDutyCycle, lastPosDutyCycleIteration],
[col1, idx1, perm1],
[col2, idx2, perm2], ...'
| def getSegmentOnCell(self, c, i, segIdx):
| seg = self.cells[c][i][segIdx]
retlist = [[seg.segID, seg.isSequenceSeg, seg.positiveActivations, seg.totalActivations, seg.lastActiveIteration, seg._lastPosDutyCycle, seg._lastPosDutyCycleIteration]]
retlist += seg.syns
return retlist
|
'Store a dated potential segment update. The "date" (iteration index) is used
later to determine whether the update is too old and should be forgotten.
This is controlled by parameter ``segUpdateValidDuration``.
:param c: TODO: document
:param i: TODO: document
:param segUpdate: TODO: document'
| def _addToSegmentUpdates(self, c, i, segUpdate):
| if ((segUpdate is None) or (len(segUpdate.activeSynapses) == 0)):
return
key = (c, i)
if self.segmentUpdates.has_key(key):
self.segmentUpdates[key] += [(self.lrnIterationIdx, segUpdate)]
else:
self.segmentUpdates[key] = [(self.lrnIterationIdx, segUpdate)]
|
'Remove a segment update (called when seg update expires or is processed)
:param updateInfo: (tuple) (creationDate, SegmentUpdate)'
| def _removeSegmentUpdate(self, updateInfo):
| (creationDate, segUpdate) = updateInfo
key = (segUpdate.columnIdx, segUpdate.cellIdx)
self.segmentUpdates[key].remove(updateInfo)
|
'Computes output for both learning and inference. In both cases, the
output is the boolean OR of ``activeState`` and ``predictedState`` at ``t``.
Stores ``currentOutput`` for ``checkPrediction``.
:returns: TODO: document'
| def _computeOutput(self):
| if (self.outputType == 'activeState1CellPerCol'):
mostActiveCellPerCol = self.cellConfidence['t'].argmax(axis=1)
self.currentOutput = numpy.zeros(self.infActiveState['t'].shape, dtype='float32')
numCols = self.currentOutput.shape[0]
self.currentOutput[(xrange(numCols), mostActiveCellPerCol)] = 1
activeCols = self.infActiveState['t'].max(axis=1)
inactiveCols = numpy.where((activeCols == 0))[0]
self.currentOutput[inactiveCols, :] = 0
elif (self.outputType == 'activeState'):
self.currentOutput = self.infActiveState['t']
elif (self.outputType == 'normal'):
self.currentOutput = numpy.logical_or(self.infPredictedState['t'], self.infActiveState['t'])
else:
raise RuntimeError('Unimplemented outputType')
return self.currentOutput.reshape((-1)).astype('float32')
|
'Return the current active state. This is called by the node to
obtain the sequence output of the TM.
:returns: TODO: document'
| def _getActiveState(self):
| return self.infActiveState['t'].reshape((-1)).astype('float32')
|
':returns: numpy array of predicted cells, representing the current predicted
state. ``predictedCells[c][i]`` represents the state of the i\'th cell in
the c\'th column.'
| def getPredictedState(self):
| return self.infPredictedState['t']
|
'This function gives the future predictions for <nSteps> timesteps starting
from the current TM state. The TM is returned to its original state at the
end before returning.
1. We save the TM state.
2. Loop for nSteps
a. Turn-on with lateral support from the current active cells
b. Set the predicted cells as the next step\'s active cells. This step
in learn and infer methods use input here to correct the predictions.
We don\'t use any input here.
3. Revert back the TM state to the time before prediction
:param nSteps: (int) The number of future time steps to be predicted
:returns: all the future predictions - a numpy array of type "float32" and
shape (nSteps, numberOfCols). The ith row gives the tm prediction for
each column at a future timestep (t+i+1).'
| def predict(self, nSteps):
| pristineTPDynamicState = self._getTPDynamicState()
assert (nSteps > 0)
multiStepColumnPredictions = numpy.zeros((nSteps, self.numberOfCols), dtype='float32')
step = 0
while True:
multiStepColumnPredictions[step, :] = self.topDownCompute()
if (step == (nSteps - 1)):
break
step += 1
self.infActiveState['t-1'][:, :] = self.infActiveState['t'][:, :]
self.infPredictedState['t-1'][:, :] = self.infPredictedState['t'][:, :]
self.cellConfidence['t-1'][:, :] = self.cellConfidence['t'][:, :]
self.infActiveState['t'][:, :] = self.infPredictedState['t-1'][:, :]
self.infPredictedState['t'].fill(0)
self.cellConfidence['t'].fill(0.0)
self._inferPhase2()
self._setTPDynamicState(pristineTPDynamicState)
return multiStepColumnPredictions
|
'Any newly added dynamic states in the TM should be added to this list.
Parameters:
retval: The list of names of TM dynamic state variables.'
| def _getTPDynamicStateVariableNames(self):
| return ['infActiveState', 'infPredictedState', 'lrnActiveState', 'lrnPredictedState', 'cellConfidence', 'colConfidence']
|
'Parameters:
retval: A dict with all the dynamic state variable names as keys and
their values at this instant as values.'
| def _getTPDynamicState(self):
| tpDynamicState = dict()
for variableName in self._getTPDynamicStateVariableNames():
tpDynamicState[variableName] = copy.deepcopy(self.__dict__[variableName])
return tpDynamicState
|
'Set all the dynamic state variables from the <tpDynamicState> dict.
<tpDynamicState> dict has all the dynamic state variable names as keys and
their values at this instant as values.
We set the dynamic state variables in the tm object with these items.'
| def _setTPDynamicState(self, tpDynamicState):
| for variableName in self._getTPDynamicStateVariableNames():
self.__dict__[variableName] = tpDynamicState.pop(variableName)
|
'Update our moving average of learned sequence length.'
| def _updateAvgLearnedSeqLength(self, prevSeqLength):
| if (self.lrnIterationIdx < 100):
alpha = 0.5
else:
alpha = 0.1
self.avgLearnedSeqLength = (((1.0 - alpha) * self.avgLearnedSeqLength) + (alpha * prevSeqLength))
|
':returns: Moving average of learned sequence length'
| def getAvgLearnedSeqLength(self):
| return self.avgLearnedSeqLength
|
'This "backtracks" our inference state, trying to see if we can lock onto
the current set of inputs by assuming the sequence started up to N steps
ago on start cells.
This will adjust @ref infActiveState[\'t\'] if it does manage to lock on to a
sequence that started earlier. It will also compute infPredictedState[\'t\']
based on the possibly updated @ref infActiveState[\'t\'], so there is no need to
call inferPhase2() after calling inferBacktrack().
This looks at:
- ``infActiveState[\'t\']``
This updates/modifies:
- ``infActiveState[\'t\']``
- ``infPredictedState[\'t\']``
- ``colConfidence[\'t\']``
- ``cellConfidence[\'t\']``
How it works:
This method gets called from :meth:`updateInferenceState` when we detect
either of the following two conditions:
#. The current bottom-up input had too many un-expected columns
#. We fail to generate a sufficient number of predicted columns for the
next time step.
Either of these two conditions indicate that we have fallen out of a
learned sequence.
Rather than simply "giving up" and bursting on the unexpected input
columns, a better approach is to see if perhaps we are in a sequence that
started a few steps ago. The real world analogy is that you are driving
along and suddenly hit a dead-end, you will typically go back a few turns
ago and pick up again from a familiar intersection.
This back-tracking goes hand in hand with our learning methodology, which
always tries to learn again from start cells after it loses context. This
results in a network that has learned multiple, overlapping paths through
the input data, each starting at different points. The lower the global
decay and the more repeatability in the data, the longer each of these
paths will end up being.
The goal of this function is to find out which starting point in the past
leads to the current input with the most context as possible. This gives us
the best chance of predicting accurately going forward. Consider the
following example, where you have learned the following sub-sequences which
have the given frequencies:
? - Q - C - D - E 10X seq 0
? - B - C - D - F 1X seq 1
? - B - C - H - I 2X seq 2
? - B - C - D - F 3X seq 3
? - Z - A - B - C - D - J 2X seq 4
? - Z - A - B - C - H - I 1X seq 5
? - Y - A - B - C - D - F 3X seq 6
W - X - Z - A - B - C - D <= input history
current time step
Suppose, in the current time step, the input pattern is D and you have not
predicted D, so you need to backtrack. Suppose we can backtrack up to 6
steps in the past, which path should we choose? From the table above, we can
see that the correct answer is to assume we are in seq 4. How do we
implement the backtrack to give us this right answer? The current
implementation takes the following approach:
#. Start from the farthest point in the past.
#. For each starting point S, calculate the confidence of the current
input, conf(startingPoint=S), assuming we followed that sequence.
Note that we must have learned at least one sequence that starts at
point S.
#. If conf(startingPoint=S) is significantly different from
conf(startingPoint=S-1), then choose S-1 as the starting point.
The assumption here is that starting point S-1 is the starting point of
a learned sub-sequence that includes the current input in it\'s path and
that started the longest ago. It thus has the most context and will be
the best predictor going forward.
From the statistics in the above table, we can compute what the confidences
will be for each possible starting point:
startingPoint confidence of D
B (t-2) 4/6 = 0.667 (seq 1,3)/(seq 1,2,3)
Z (t-4) 2/3 = 0.667 (seq 4)/(seq 4,5)
First of all, we do not compute any confidences at starting points t-1, t-3,
t-5, t-6 because there are no learned sequences that start at those points.
Notice here that Z is the starting point of the longest sub-sequence leading
up to the current input. Event though starting at t-2 and starting at t-4
give the same confidence value, we choose the sequence starting at t-4
because it gives the most context, and it mirrors the way that learning
extends sequences.
:param activeColumns: (list) of active column indices'
| def _inferBacktrack(self, activeColumns):
| numPrevPatterns = len(self._prevInfPatterns)
if (numPrevPatterns <= 0):
return
currentTimeStepsOffset = (numPrevPatterns - 1)
self.infActiveState['backup'][:, :] = self.infActiveState['t'][:, :]
self.infPredictedState['backup'][:, :] = self.infPredictedState['t-1'][:, :]
badPatterns = []
inSequence = False
candConfidence = None
candStartOffset = None
for startOffset in range(0, numPrevPatterns):
if ((startOffset == currentTimeStepsOffset) and (candConfidence is not None)):
break
if (self.verbosity >= 3):
print (('Trying to lock-on using startCell state from %d steps ago:' % ((numPrevPatterns - 1) - startOffset)), self._prevInfPatterns[startOffset])
inSequence = False
for offset in range(startOffset, numPrevPatterns):
if (offset == currentTimeStepsOffset):
totalConfidence = self.colConfidence['t'][activeColumns].sum()
self.infPredictedState['t-1'][:, :] = self.infPredictedState['t'][:, :]
inSequence = self._inferPhase1(self._prevInfPatterns[offset], useStartCells=(offset == startOffset))
if (not inSequence):
break
if (self.verbosity >= 3):
print (' backtrack: computing predictions from ', self._prevInfPatterns[offset])
inSequence = self._inferPhase2()
if (not inSequence):
break
if (not inSequence):
badPatterns.append(startOffset)
continue
candConfidence = totalConfidence
candStartOffset = startOffset
if ((self.verbosity >= 3) and (startOffset != currentTimeStepsOffset)):
print ((' # Prediction confidence of current input after starting %d steps ago:' % ((numPrevPatterns - 1) - startOffset)), totalConfidence)
if (candStartOffset == currentTimeStepsOffset):
break
self.infActiveState['candidate'][:, :] = self.infActiveState['t'][:, :]
self.infPredictedState['candidate'][:, :] = self.infPredictedState['t'][:, :]
self.cellConfidence['candidate'][:, :] = self.cellConfidence['t'][:, :]
self.colConfidence['candidate'][:] = self.colConfidence['t'][:]
break
if (candStartOffset is None):
if (self.verbosity >= 3):
print 'Failed to lock on. Falling back to bursting all unpredicted.'
self.infActiveState['t'][:, :] = self.infActiveState['backup'][:, :]
self._inferPhase2()
else:
if (self.verbosity >= 3):
print (('Locked on to current input by using start cells from %d steps ago:' % ((numPrevPatterns - 1) - candStartOffset)), self._prevInfPatterns[candStartOffset])
if (candStartOffset != currentTimeStepsOffset):
self.infActiveState['t'][:, :] = self.infActiveState['candidate'][:, :]
self.infPredictedState['t'][:, :] = self.infPredictedState['candidate'][:, :]
self.cellConfidence['t'][:, :] = self.cellConfidence['candidate'][:, :]
self.colConfidence['t'][:] = self.colConfidence['candidate'][:]
for i in range(numPrevPatterns):
if ((i in badPatterns) or ((candStartOffset is not None) and (i <= candStartOffset))):
if (self.verbosity >= 3):
print ('Removing useless pattern from history:', self._prevInfPatterns[0])
self._prevInfPatterns.pop(0)
else:
break
self.infPredictedState['t-1'][:, :] = self.infPredictedState['backup'][:, :]
|
'Update the inference active state from the last set of predictions
and the current bottom-up.
This looks at:
- ``infPredictedState[\'t-1\']``
This modifies:
- ``infActiveState[\'t\']``
:param activeColumns: (list) active bottom-ups
:param useStartCells: (bool) If true, ignore previous predictions and simply
turn on the start cells in the active columns
:returns: (bool) True if the current input was sufficiently predicted, OR if
we started over on startCells. False indicates that the current input
was NOT predicted, and we are now bursting on most columns.'
| def _inferPhase1(self, activeColumns, useStartCells):
| self.infActiveState['t'].fill(0)
numPredictedColumns = 0
if useStartCells:
for c in activeColumns:
self.infActiveState['t'][(c, 0)] = 1
else:
for c in activeColumns:
predictingCells = numpy.where((self.infPredictedState['t-1'][c] == 1))[0]
numPredictingCells = len(predictingCells)
if (numPredictingCells > 0):
self.infActiveState['t'][(c, predictingCells)] = 1
numPredictedColumns += 1
else:
self.infActiveState['t'][c, :] = 1
if (useStartCells or (numPredictedColumns >= (0.5 * len(activeColumns)))):
return True
else:
return False
|
'Phase 2 for the inference state. The computes the predicted state, then
checks to insure that the predicted state is not over-saturated, i.e.
look too close like a burst. This indicates that there were so many
separate paths learned from the current input columns to the predicted
input columns that bursting on the current input columns is most likely
generated mix and match errors on cells in the predicted columns. If
we detect this situation, we instead turn on only the start cells in the
current active columns and re-generate the predicted state from those.
This looks at:
- `` infActiveState[\'t\']``
This modifies:
- `` infPredictedState[\'t\']``
- `` colConfidence[\'t\']``
- `` cellConfidence[\'t\']``
:returns: (bool) True if we have a decent guess as to the next input.
Returning False from here indicates to the caller that we have
reached the end of a learned sequence.'
| def _inferPhase2(self):
| self.infPredictedState['t'].fill(0)
self.cellConfidence['t'].fill(0)
self.colConfidence['t'].fill(0)
for c in xrange(self.numberOfCols):
for i in xrange(self.cellsPerColumn):
for s in self.cells[c][i]:
numActiveSyns = self._getSegmentActivityLevel(s, self.infActiveState['t'], connectedSynapsesOnly=False)
if (numActiveSyns < self.activationThreshold):
continue
if (self.verbosity >= 6):
print ('incorporating DC from cell[%d,%d]: ' % (c, i)),
s.debugPrint()
dc = s.dutyCycle()
self.cellConfidence['t'][(c, i)] += dc
self.colConfidence['t'][c] += dc
if self._isSegmentActive(s, self.infActiveState['t']):
self.infPredictedState['t'][(c, i)] = 1
sumConfidences = self.colConfidence['t'].sum()
if (sumConfidences > 0):
self.colConfidence['t'] /= sumConfidences
self.cellConfidence['t'] /= sumConfidences
numPredictedCols = self.infPredictedState['t'].max(axis=1).sum()
if (numPredictedCols >= (0.5 * self.avgInputDensity)):
return True
else:
return False
|
'Update the inference state. Called from :meth:`compute` on every iteration.
:param activeColumns: (list) active column indices.'
| def _updateInferenceState(self, activeColumns):
| self.infActiveState['t-1'][:, :] = self.infActiveState['t'][:, :]
self.infPredictedState['t-1'][:, :] = self.infPredictedState['t'][:, :]
self.cellConfidence['t-1'][:, :] = self.cellConfidence['t'][:, :]
self.colConfidence['t-1'][:] = self.colConfidence['t'][:]
if (self.maxInfBacktrack > 0):
if (len(self._prevInfPatterns) > self.maxInfBacktrack):
self._prevInfPatterns.pop(0)
self._prevInfPatterns.append(activeColumns)
inSequence = self._inferPhase1(activeColumns, self.resetCalled)
if (not inSequence):
if (self.verbosity >= 3):
print 'Too much unpredicted input, re-tracing back to try and lock on at an earlier timestep.'
self._inferBacktrack(activeColumns)
return
inSequence = self._inferPhase2()
if (not inSequence):
if (self.verbosity >= 3):
print 'Not enough predictions going forward, re-tracing back to try and lock on at an earlier timestep.'
self._inferBacktrack(activeColumns)
|
'A utility method called from learnBacktrack. This will backtrack
starting from the given startOffset in our prevLrnPatterns queue.
It returns True if the backtrack was successful and we managed to get
predictions all the way up to the current time step.
If readOnly, then no segments are updated or modified, otherwise, all
segment updates that belong to the given path are applied.
This updates/modifies:
- lrnActiveState[\'t\']
This trashes:
- lrnPredictedState[\'t\']
- lrnPredictedState[\'t-1\']
- lrnActiveState[\'t-1\']
:param startOffset: Start offset within the prevLrnPatterns input history
:param readOnly:
:return: True if we managed to lock on to a sequence that started
earlier.
If False, we lost predictions somewhere along the way
leading up to the current time.'
| def _learnBacktrackFrom(self, startOffset, readOnly=True):
| numPrevPatterns = len(self._prevLrnPatterns)
currentTimeStepsOffset = (numPrevPatterns - 1)
if (not readOnly):
self.segmentUpdates = {}
if (self.verbosity >= 3):
if readOnly:
print (('Trying to lock-on using startCell state from %d steps ago:' % ((numPrevPatterns - 1) - startOffset)), self._prevLrnPatterns[startOffset])
else:
print (('Locking on using startCell state from %d steps ago:' % ((numPrevPatterns - 1) - startOffset)), self._prevLrnPatterns[startOffset])
inSequence = True
for offset in range(startOffset, numPrevPatterns):
self.lrnPredictedState['t-1'][:, :] = self.lrnPredictedState['t'][:, :]
self.lrnActiveState['t-1'][:, :] = self.lrnActiveState['t'][:, :]
inputColumns = self._prevLrnPatterns[offset]
if (not readOnly):
self._processSegmentUpdates(inputColumns)
if (offset == startOffset):
self.lrnActiveState['t'].fill(0)
for c in inputColumns:
self.lrnActiveState['t'][(c, 0)] = 1
inSequence = True
else:
inSequence = self._learnPhase1(inputColumns, readOnly=readOnly)
if ((not inSequence) or (offset == currentTimeStepsOffset)):
break
if (self.verbosity >= 3):
print ' backtrack: computing predictions from ', inputColumns
self._learnPhase2(readOnly=readOnly)
return inSequence
|
'This "backtracks" our learning state, trying to see if we can lock onto
the current set of inputs by assuming the sequence started up to N steps
ago on start cells.
This will adjust @ref lrnActiveState[\'t\'] if it does manage to lock on to a
sequence that started earlier.
:returns: >0 if we managed to lock on to a sequence that started
earlier. The value returned is how many steps in the
past we locked on.
If 0 is returned, the caller needs to change active
state to start on start cells.
How it works:
This method gets called from updateLearningState when we detect either of
the following two conditions:
#. Our PAM counter (@ref pamCounter) expired
#. We reached the max allowed learned sequence length
Either of these two conditions indicate that we want to start over on start
cells.
Rather than start over on start cells on the current input, we can
accelerate learning by backtracking a few steps ago and seeing if perhaps
a sequence we already at least partially know already started.
This updates/modifies:
- @ref lrnActiveState[\'t\']
This trashes:
- @ref lrnActiveState[\'t-1\']
- @ref lrnPredictedState[\'t\']
- @ref lrnPredictedState[\'t-1\']'
| def _learnBacktrack(self):
| numPrevPatterns = (len(self._prevLrnPatterns) - 1)
if (numPrevPatterns <= 0):
if (self.verbosity >= 3):
print 'lrnBacktrack: No available history to backtrack from'
return False
badPatterns = []
inSequence = False
for startOffset in range(0, numPrevPatterns):
inSequence = self._learnBacktrackFrom(startOffset, readOnly=True)
if inSequence:
break
badPatterns.append(startOffset)
if (not inSequence):
if (self.verbosity >= 3):
print 'Failed to lock on. Falling back to start cells on current time step.'
self._prevLrnPatterns = []
return False
if (self.verbosity >= 3):
print (('Discovered path to current input by using start cells from %d steps ago:' % (numPrevPatterns - startOffset)), self._prevLrnPatterns[startOffset])
self._learnBacktrackFrom(startOffset, readOnly=False)
for i in range(numPrevPatterns):
if ((i in badPatterns) or (i <= startOffset)):
if (self.verbosity >= 3):
print ('Removing useless pattern from history:', self._prevLrnPatterns[0])
self._prevLrnPatterns.pop(0)
else:
break
return (numPrevPatterns - startOffset)
|
'Compute the learning active state given the predicted state and
the bottom-up input.
:param activeColumns list of active bottom-ups
:param readOnly True if being called from backtracking logic.
This tells us not to increment any segment
duty cycles or queue up any updates.
:returns: True if the current input was sufficiently predicted, OR
if we started over on startCells. False indicates that the current
input was NOT predicted, well enough to consider it as "inSequence"
This looks at:
- @ref lrnActiveState[\'t-1\']
- @ref lrnPredictedState[\'t-1\']
This modifies:
- @ref lrnActiveState[\'t\']
- @ref lrnActiveState[\'t-1\']'
| def _learnPhase1(self, activeColumns, readOnly=False):
| self.lrnActiveState['t'].fill(0)
numUnpredictedColumns = 0
for c in activeColumns:
predictingCells = numpy.where((self.lrnPredictedState['t-1'][c] == 1))[0]
numPredictedCells = len(predictingCells)
assert (numPredictedCells <= 1)
if (numPredictedCells == 1):
i = predictingCells[0]
self.lrnActiveState['t'][(c, i)] = 1
continue
numUnpredictedColumns += 1
if readOnly:
continue
(i, s, numActive) = self._getBestMatchingCell(c, self.lrnActiveState['t-1'], self.minThreshold)
if ((s is not None) and s.isSequenceSegment()):
if (self.verbosity >= 4):
print 'Learn branch 0, found segment match. Learning on col=', c
self.lrnActiveState['t'][(c, i)] = 1
segUpdate = self._getSegmentActiveSynapses(c, i, s, self.lrnActiveState['t-1'], newSynapses=True)
s.totalActivations += 1
trimSegment = self._adaptSegment(segUpdate)
if trimSegment:
self._trimSegmentsInCell(c, i, [s], minPermanence=1e-05, minNumSyns=0)
else:
i = self._getCellForNewSegment(c)
if (self.verbosity >= 4):
print 'Learn branch 1, no match. Learning on col=', c,
print ', newCellIdxInCol=', i
self.lrnActiveState['t'][(c, i)] = 1
segUpdate = self._getSegmentActiveSynapses(c, i, None, self.lrnActiveState['t-1'], newSynapses=True)
segUpdate.sequenceSegment = True
self._adaptSegment(segUpdate)
numBottomUpColumns = len(activeColumns)
if (numUnpredictedColumns < (numBottomUpColumns / 2)):
return True
else:
return False
|
'Compute the predicted segments given the current set of active cells.
:param readOnly True if being called from backtracking logic.
This tells us not to increment any segment
duty cycles or queue up any updates.
This computes the lrnPredictedState[\'t\'] and queues up any segments that
became active (and the list of active synapses for each segment) into
the segmentUpdates queue
This looks at:
- @ref lrnActiveState[\'t\']
This modifies:
- @ref lrnPredictedState[\'t\']
- @ref segmentUpdates'
| def _learnPhase2(self, readOnly=False):
| self.lrnPredictedState['t'].fill(0)
for c in xrange(self.numberOfCols):
(i, s, numActive) = self._getBestMatchingCell(c, self.lrnActiveState['t'], minThreshold=self.activationThreshold)
if (i is None):
continue
self.lrnPredictedState['t'][(c, i)] = 1
if readOnly:
continue
segUpdate = self._getSegmentActiveSynapses(c, i, s, activeState=self.lrnActiveState['t'], newSynapses=(numActive < self.newSynapseCount))
s.totalActivations += 1
self._addToSegmentUpdates(c, i, segUpdate)
if self.doPooling:
predSegment = self._getBestMatchingSegment(c, i, self.lrnActiveState['t-1'])
segUpdate = self._getSegmentActiveSynapses(c, i, predSegment, self.lrnActiveState['t-1'], newSynapses=True)
self._addToSegmentUpdates(c, i, segUpdate)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.