Datasets:
File size: 11,428 Bytes
c6b7aff 1295a23 bd7b9d7 1295a23 c6b7aff 1295a23 c6b7aff 1295a23 c6b7aff 317bfc7 5fa5183 0dd86e6 5860814 53ead40 62c64b7 6b8375a 19700bf 66cda27 0d70d36 6f181ab ce5f1f9 45b2647 777fcdc 2696b87 cf16fb3 aa8175f 25f01ba 1d15a3b 9ffec34 37f34bd 67a2227 8aa7cd6 db21f85 2cd8903 9147ff6 93928e4 3e20d11 83ecee6 c02f7e4 b01f745 04b0023 74cd256 c8e7b4e 5a96877 7bbe955 96b74fc 43ff267 37b4701 8f8cb6b f9123ab 31609c6 546ffb4 f7ca05f 9e40085 71cd028 b028cdc c17f5cc 8385e3d f94fe90 d52a845 7250735 2f60480 c113cd7 bd7b9d7 3c6dec0 d94ed61 7443567 657f6d1 d217883 b4a095e c4ef12d 87130d5 dc72297 6aa2742 561f50d afad144 1101658 c3d9b16 163cd86 24d8a8a f04d227 8ac749c 4e01c9b ce062df 357ef7f b928438 6d94e00 fcac635 0f3055c 4ea617e f452ca7 93f9344 4da34e1 bb64844 8f39624 e1b310b a812b24 8d177f3 9f30aa4 df575ab 2418834 3df00e3 ae252db dc7500a af162b9 ef92e02 1576b40 7a09efd 38cf0c2 e6e7e82 5cb5554 27c68e9 8309d99 0f7f3b0 f272c61 792e47e 7660447 839632d eb84f48 0196d7f 037e1f0 972ebf0 2c2a172 29299e5 9f390ac 32b1158 b2d4156 5bc1d03 d620268 0f66672 bb43b5d 5be3d1f 85cada6 427d22c 3bcbdbd 2f95371 8729f30 f3d2408 97b50c0 3960ae8 f5fc421 a76adea 37929b4 0e62d2c e286783 f902f49 3f9ede3 1295a23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 Reddit Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** tensorshield/reddit_dataset_84
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5FRBuueXh8KqcVvVCWBFqZcvkQhvDs356Ba4et7k8YC98VrL
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single Reddit post or comment with the following fields:
### Data Fields
- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{tensorshield2025datauniversereddit_dataset_84,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={tensorshield},
year={2025},
url={https://huggingface.co/datasets/tensorshield/reddit_dataset_84},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 1325908
- **Date Range:** 2025-03-23T00:00:00Z to 2025-03-24T00:00:00Z
- **Last Updated:** 2025-03-31T02:04:20Z
### Data Distribution
- Posts: 12.26%
- Comments: 87.74%
### Top 10 Subreddits
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/AskReddit | 30144 | 2.27% |
| 2 | r/CollegeBasketball | 21119 | 1.59% |
| 3 | r/AITAH | 16679 | 1.26% |
| 4 | r/soccer | 8575 | 0.65% |
| 5 | r/Cricket | 8211 | 0.62% |
| 6 | r/mildlyinfuriating | 8160 | 0.62% |
| 7 | r/politics | 6820 | 0.51% |
| 8 | r/moviecritic | 6641 | 0.50% |
| 9 | r/Advice | 6141 | 0.46% |
| 10 | r/NASCAR | 5763 | 0.43% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-03-30T12:30:31Z | 1119 | 1119 |
| 2025-03-30T12:31:20Z | 1029 | 2148 |
| 2025-03-30T12:32:18Z | 1056 | 3204 |
| 2025-03-30T12:33:36Z | 1163 | 4367 |
| 2025-03-30T12:34:19Z | 1102 | 5469 |
| 2025-03-30T12:35:21Z | 1133 | 6602 |
| 2025-03-30T12:36:19Z | 1109 | 7711 |
| 2025-03-30T12:37:20Z | 1147 | 8858 |
| 2025-03-30T12:38:20Z | 1171 | 10029 |
| 2025-03-30T12:39:19Z | 1057 | 11086 |
| 2025-03-30T12:40:20Z | 1189 | 12275 |
| 2025-03-30T12:41:20Z | 1103 | 13378 |
| 2025-03-30T12:42:21Z | 1144 | 14522 |
| 2025-03-30T18:02:36Z | 506280 | 520802 |
| 2025-03-30T18:03:07Z | 4650 | 525452 |
| 2025-03-30T18:03:36Z | 890 | 526342 |
| 2025-03-30T18:04:22Z | 1287 | 527629 |
| 2025-03-30T18:05:23Z | 1716 | 529345 |
| 2025-03-30T18:06:23Z | 1785 | 531130 |
| 2025-03-30T18:07:23Z | 1702 | 532832 |
| 2025-03-30T18:08:22Z | 1688 | 534520 |
| 2025-03-30T18:09:21Z | 1831 | 536351 |
| 2025-03-30T18:11:33Z | 1717 | 538068 |
| 2025-03-30T18:12:02Z | 2836 | 540904 |
| 2025-03-30T18:12:34Z | 1064 | 541968 |
| 2025-03-30T18:13:26Z | 1509 | 543477 |
| 2025-03-30T18:14:25Z | 1825 | 545302 |
| 2025-03-30T18:15:31Z | 1850 | 547152 |
| 2025-03-30T18:16:23Z | 1872 | 549024 |
| 2025-03-30T18:17:22Z | 1613 | 550637 |
| 2025-03-30T18:18:24Z | 1666 | 552303 |
| 2025-03-30T18:19:23Z | 1906 | 554209 |
| 2025-03-30T18:20:45Z | 1985 | 556194 |
| 2025-03-30T18:21:26Z | 1836 | 558030 |
| 2025-03-30T18:22:26Z | 1742 | 559772 |
| 2025-03-30T18:23:21Z | 1740 | 561512 |
| 2025-03-30T18:24:24Z | 1671 | 563183 |
| 2025-03-30T18:25:24Z | 1684 | 564867 |
| 2025-03-30T18:26:22Z | 1633 | 566500 |
| 2025-03-30T18:27:25Z | 1852 | 568352 |
| 2025-03-30T18:28:25Z | 1670 | 570022 |
| 2025-03-30T18:29:31Z | 1845 | 571867 |
| 2025-03-30T18:30:29Z | 1666 | 573533 |
| 2025-03-30T18:31:28Z | 1571 | 575104 |
| 2025-03-30T18:32:32Z | 1662 | 576766 |
| 2025-03-30T18:33:23Z | 1787 | 578553 |
| 2025-03-30T18:34:23Z | 1706 | 580259 |
| 2025-03-30T18:35:23Z | 1707 | 581966 |
| 2025-03-30T18:36:22Z | 1767 | 583733 |
| 2025-03-30T18:37:23Z | 1764 | 585497 |
| 2025-03-30T18:38:26Z | 1827 | 587324 |
| 2025-03-30T18:39:24Z | 1514 | 588838 |
| 2025-03-30T18:40:26Z | 1681 | 590519 |
| 2025-03-30T18:41:21Z | 1603 | 592122 |
| 2025-03-30T18:42:28Z | 1637 | 593759 |
| 2025-03-30T18:43:22Z | 1747 | 595506 |
| 2025-03-31T00:03:39Z | 537146 | 1132652 |
| 2025-03-31T00:04:02Z | 5923 | 1138575 |
| 2025-03-31T00:04:26Z | 679 | 1139254 |
| 2025-03-31T00:05:16Z | 1311 | 1140565 |
| 2025-03-31T00:06:19Z | 1673 | 1142238 |
| 2025-03-31T00:07:15Z | 1490 | 1143728 |
| 2025-03-31T00:08:13Z | 1449 | 1145177 |
| 2025-03-31T00:09:13Z | 1587 | 1146764 |
| 2025-03-31T00:10:13Z | 1604 | 1148368 |
| 2025-03-31T00:11:19Z | 1592 | 1149960 |
| 2025-03-31T00:12:19Z | 1524 | 1151484 |
| 2025-03-31T00:13:30Z | 1596 | 1153080 |
| 2025-03-31T00:14:18Z | 1610 | 1154690 |
| 2025-03-31T00:15:15Z | 1454 | 1156144 |
| 2025-03-31T00:16:21Z | 1671 | 1157815 |
| 2025-03-31T00:17:14Z | 1314 | 1159129 |
| 2025-03-31T00:18:21Z | 1520 | 1160649 |
| 2025-03-31T00:19:36Z | 1629 | 1162278 |
| 2025-03-31T00:20:30Z | 1531 | 1163809 |
| 2025-03-31T00:21:20Z | 1494 | 1165303 |
| 2025-03-31T00:22:14Z | 1444 | 1166747 |
| 2025-03-31T00:23:20Z | 1603 | 1168350 |
| 2025-03-31T00:24:20Z | 1404 | 1169754 |
| 2025-03-31T00:25:26Z | 1548 | 1171302 |
| 2025-03-31T00:26:22Z | 1553 | 1172855 |
| 2025-03-31T00:27:25Z | 1454 | 1174309 |
| 2025-03-31T00:28:16Z | 1485 | 1175794 |
| 2025-03-31T00:29:27Z | 1597 | 1177391 |
| 2025-03-31T00:30:18Z | 1345 | 1178736 |
| 2025-03-31T00:31:40Z | 1995 | 1180731 |
| 2025-03-31T00:32:24Z | 911 | 1181642 |
| 2025-03-31T00:33:17Z | 1569 | 1183211 |
| 2025-03-31T00:34:28Z | 1440 | 1184651 |
| 2025-03-31T00:35:18Z | 1515 | 1186166 |
| 2025-03-31T00:36:16Z | 1558 | 1187724 |
| 2025-03-31T00:37:15Z | 1503 | 1189227 |
| 2025-03-31T00:38:13Z | 1452 | 1190679 |
| 2025-03-31T00:39:16Z | 1538 | 1192217 |
| 2025-03-31T00:40:17Z | 1536 | 1193753 |
| 2025-03-31T00:41:14Z | 1441 | 1195194 |
| 2025-03-31T00:42:14Z | 1546 | 1196740 |
| 2025-03-31T00:43:14Z | 1578 | 1198318 |
| 2025-03-31T00:44:14Z | 1529 | 1199847 |
| 2025-03-31T01:04:18Z | 32427 | 1232274 |
| 2025-03-31T01:05:13Z | 1462 | 1233736 |
| 2025-03-31T01:06:14Z | 1570 | 1235306 |
| 2025-03-31T01:07:13Z | 1559 | 1236865 |
| 2025-03-31T01:08:17Z | 1567 | 1238432 |
| 2025-03-31T01:09:16Z | 1505 | 1239937 |
| 2025-03-31T01:10:14Z | 1523 | 1241460 |
| 2025-03-31T01:11:14Z | 1589 | 1243049 |
| 2025-03-31T01:12:15Z | 1511 | 1244560 |
| 2025-03-31T01:13:13Z | 1636 | 1246196 |
| 2025-03-31T01:14:17Z | 1700 | 1247896 |
| 2025-03-31T01:17:11Z | 4356 | 1252252 |
| 2025-03-31T01:17:44Z | 1491 | 1253743 |
| 2025-03-31T01:18:23Z | 986 | 1254729 |
| 2025-03-31T01:19:14Z | 1635 | 1256364 |
| 2025-03-31T01:20:15Z | 1716 | 1258080 |
| 2025-03-31T01:21:19Z | 1633 | 1259713 |
| 2025-03-31T01:22:14Z | 1347 | 1261060 |
| 2025-03-31T01:23:14Z | 1521 | 1262581 |
| 2025-03-31T01:24:20Z | 3122 | 1265703 |
| 2025-03-31T01:25:25Z | 1639 | 1267342 |
| 2025-03-31T01:26:17Z | 1261 | 1268603 |
| 2025-03-31T01:27:19Z | 1555 | 1270158 |
| 2025-03-31T01:28:12Z | 1299 | 1271457 |
| 2025-03-31T01:29:12Z | 1475 | 1272932 |
| 2025-03-31T01:30:12Z | 1537 | 1274469 |
| 2025-03-31T01:31:12Z | 1530 | 1275999 |
| 2025-03-31T01:32:14Z | 1532 | 1277531 |
| 2025-03-31T01:33:12Z | 1452 | 1278983 |
| 2025-03-31T01:34:12Z | 1409 | 1280392 |
| 2025-03-31T01:35:13Z | 1504 | 1281896 |
| 2025-03-31T01:36:16Z | 1627 | 1283523 |
| 2025-03-31T01:37:14Z | 1462 | 1284985 |
| 2025-03-31T01:38:14Z | 1493 | 1286478 |
| 2025-03-31T01:39:17Z | 1502 | 1287980 |
| 2025-03-31T01:40:16Z | 1526 | 1289506 |
| 2025-03-31T01:41:16Z | 1526 | 1291032 |
| 2025-03-31T01:42:16Z | 1512 | 1292544 |
| 2025-03-31T01:44:04Z | 2708 | 1295252 |
| 2025-03-31T01:44:40Z | 911 | 1296163 |
| 2025-03-31T01:45:32Z | 1350 | 1297513 |
| 2025-03-31T01:46:30Z | 1189 | 1298702 |
| 2025-03-31T01:47:15Z | 1444 | 1300146 |
| 2025-03-31T02:04:20Z | 25762 | 1325908 |
|