Datasets:
File size: 9,924 Bytes
1640edb d852e66 73a2540 d852e66 1640edb 5ee29be 1640edb d852e66 1640edb 73a2540 23ffc42 06c2364 807471f 15eff84 9dc9dad 750b8f6 16b59b3 fc80f70 14db452 524c8ae 294daeb fc9c6e5 40aa374 20fd8c8 b46fec1 75f4e00 ffb2de9 2ecfaa7 f73b897 d44b64d b110a42 0458834 a66d0cd ec9ab02 3cccdd5 1122271 7cdfc88 d09e48a 7cb701a f60a67a 3317dc2 df3552e 9523456 0c04e5f 4f31890 83170f6 aa4c379 e9f5405 acc138a 5dd4052 aa00c92 3164c10 bd7d8e3 9651645 c4ecfbf 02f109e 8d91283 c84d64f 1430993 0f45fde 94755c1 0780ec4 a8afd64 217e7ca 64cc78f edb3448 76ac3cd 92f671c 33a192f 549a75a 31c3c37 9e3d268 f33fcb1 5ac2c15 3c895c1 8e16dd3 e17ea7e c71e897 f90ba25 7a70728 4b7b3e8 d4d474e 90343c8 fc0d8f0 f3333d7 5b6ca4f eea5572 92418aa 55b56b1 6ce48f6 6b47626 cf5d1df c07cb1a 3c18b4e e8fcc2b 6eef57c 0187a4d 615e1f1 d769d0a 4798634 b012d85 9d8091f 3d42cd7 159d8c0 c1efb7c f06d581 d5d39df 31c5b27 61f4bc2 16167ed 55db0b0 7f680ba 5ee29be e77ffa4 d852e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 Reddit Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** tensorshield/reddit_dataset_157
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5Cw1eMv2sdpn9zfbvH2Mf8V5xaoRMj6NjVQLkYq61verzNbq
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single Reddit post or comment with the following fields:
### Data Fields
- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{tensorshield2025datauniversereddit_dataset_157,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={tensorshield},
year={2025},
url={https://huggingface.co/datasets/tensorshield/reddit_dataset_157},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 222372
- **Date Range:** 2025-03-24T00:00:00Z to 2025-03-24T00:00:00Z
- **Last Updated:** 2025-03-31T04:26:13Z
### Data Distribution
- Posts: 12.27%
- Comments: 87.73%
### Top 10 Subreddits
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/CollegeBasketball | 6923 | 3.11% |
| 2 | r/AskReddit | 6302 | 2.83% |
| 3 | r/AITAH | 2617 | 1.18% |
| 4 | r/mildlyinfuriating | 1654 | 0.74% |
| 5 | r/nba | 1455 | 0.65% |
| 6 | r/Advice | 1094 | 0.49% |
| 7 | r/LAClippers | 1093 | 0.49% |
| 8 | r/moviecritic | 983 | 0.44% |
| 9 | r/MadeMeSmile | 917 | 0.41% |
| 10 | r/wallstreetbets | 910 | 0.41% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-03-31T01:44:45Z | 859 | 859 |
| 2025-03-31T01:45:28Z | 1358 | 2217 |
| 2025-03-31T01:46:30Z | 1300 | 3517 |
| 2025-03-31T01:47:15Z | 1471 | 4988 |
| 2025-03-31T02:05:19Z | 28610 | 33598 |
| 2025-03-31T02:06:17Z | 1495 | 35093 |
| 2025-03-31T02:07:15Z | 1361 | 36454 |
| 2025-03-31T02:08:16Z | 1439 | 37893 |
| 2025-03-31T02:09:15Z | 1426 | 39319 |
| 2025-03-31T02:10:16Z | 1492 | 40811 |
| 2025-03-31T02:11:15Z | 1356 | 42167 |
| 2025-03-31T02:12:17Z | 1598 | 43765 |
| 2025-03-31T02:13:15Z | 1445 | 45210 |
| 2025-03-31T02:14:15Z | 1440 | 46650 |
| 2025-03-31T02:15:16Z | 1435 | 48085 |
| 2025-03-31T02:17:16Z | 2882 | 50967 |
| 2025-03-31T02:18:15Z | 1384 | 52351 |
| 2025-03-31T02:19:19Z | 1429 | 53780 |
| 2025-03-31T02:20:15Z | 1449 | 55229 |
| 2025-03-31T02:21:17Z | 1357 | 56586 |
| 2025-03-31T02:22:14Z | 1385 | 57971 |
| 2025-03-31T02:23:14Z | 1389 | 59360 |
| 2025-03-31T02:24:22Z | 1430 | 60790 |
| 2025-03-31T02:25:14Z | 1387 | 62177 |
| 2025-03-31T02:26:14Z | 1439 | 63616 |
| 2025-03-31T02:27:16Z | 1368 | 64984 |
| 2025-03-31T02:28:15Z | 1543 | 66527 |
| 2025-03-31T02:29:17Z | 1493 | 68020 |
| 2025-03-31T02:30:16Z | 1428 | 69448 |
| 2025-03-31T02:31:14Z | 1433 | 70881 |
| 2025-03-31T02:32:16Z | 1426 | 72307 |
| 2025-03-31T02:33:14Z | 1445 | 73752 |
| 2025-03-31T02:34:15Z | 1485 | 75237 |
| 2025-03-31T02:35:15Z | 1424 | 76661 |
| 2025-03-31T02:36:16Z | 1469 | 78130 |
| 2025-03-31T02:37:14Z | 1460 | 79590 |
| 2025-03-31T02:38:15Z | 1415 | 81005 |
| 2025-03-31T02:39:18Z | 1424 | 82429 |
| 2025-03-31T02:40:14Z | 1301 | 83730 |
| 2025-03-31T02:41:14Z | 1432 | 85162 |
| 2025-03-31T02:42:14Z | 1412 | 86574 |
| 2025-03-31T02:43:15Z | 1425 | 87999 |
| 2025-03-31T02:44:15Z | 1424 | 89423 |
| 2025-03-31T02:45:16Z | 1372 | 90795 |
| 2025-03-31T02:46:14Z | 1393 | 92188 |
| 2025-03-31T02:47:14Z | 1419 | 93607 |
| 2025-03-31T02:48:14Z | 1424 | 95031 |
| 2025-03-31T03:06:16Z | 25930 | 120961 |
| 2025-03-31T03:07:13Z | 1363 | 122324 |
| 2025-03-31T03:08:14Z | 1352 | 123676 |
| 2025-03-31T03:09:15Z | 1336 | 125012 |
| 2025-03-31T03:10:14Z | 1387 | 126399 |
| 2025-03-31T03:11:13Z | 1375 | 127774 |
| 2025-03-31T03:12:14Z | 1273 | 129047 |
| 2025-03-31T03:13:13Z | 1266 | 130313 |
| 2025-03-31T03:14:13Z | 1280 | 131593 |
| 2025-03-31T03:15:15Z | 1358 | 132951 |
| 2025-03-31T03:16:13Z | 1272 | 134223 |
| 2025-03-31T03:18:13Z | 2659 | 136882 |
| 2025-03-31T03:19:14Z | 1320 | 138202 |
| 2025-03-31T03:20:15Z | 1292 | 139494 |
| 2025-03-31T03:21:14Z | 1318 | 140812 |
| 2025-03-31T03:22:14Z | 1377 | 142189 |
| 2025-03-31T03:23:13Z | 1320 | 143509 |
| 2025-03-31T03:24:13Z | 1310 | 144819 |
| 2025-03-31T03:25:14Z | 1365 | 146184 |
| 2025-03-31T03:26:13Z | 1369 | 147553 |
| 2025-03-31T03:27:14Z | 1361 | 148914 |
| 2025-03-31T03:28:15Z | 1283 | 150197 |
| 2025-03-31T03:29:14Z | 1340 | 151537 |
| 2025-03-31T03:30:15Z | 1230 | 152767 |
| 2025-03-31T03:31:13Z | 1282 | 154049 |
| 2025-03-31T03:32:14Z | 1373 | 155422 |
| 2025-03-31T03:33:13Z | 1311 | 156733 |
| 2025-03-31T03:34:12Z | 1297 | 158030 |
| 2025-03-31T03:35:13Z | 1379 | 159409 |
| 2025-03-31T03:36:14Z | 1311 | 160720 |
| 2025-03-31T03:37:12Z | 1376 | 162096 |
| 2025-03-31T03:38:14Z | 1365 | 163461 |
| 2025-03-31T03:39:13Z | 1266 | 164727 |
| 2025-03-31T03:40:14Z | 1263 | 165990 |
| 2025-03-31T03:41:13Z | 1304 | 167294 |
| 2025-03-31T03:42:14Z | 1260 | 168554 |
| 2025-03-31T03:43:12Z | 1179 | 169733 |
| 2025-03-31T03:44:19Z | 1230 | 170963 |
| 2025-03-31T03:45:14Z | 1279 | 172242 |
| 2025-03-31T03:46:14Z | 1197 | 173439 |
| 2025-03-31T03:47:14Z | 1221 | 174660 |
| 2025-03-31T03:48:14Z | 1261 | 175921 |
| 2025-03-31T03:49:14Z | 1323 | 177244 |
| 2025-03-31T04:07:16Z | 23357 | 200601 |
| 2025-03-31T04:08:15Z | 1265 | 201866 |
| 2025-03-31T04:09:14Z | 1123 | 202989 |
| 2025-03-31T04:10:20Z | 1168 | 204157 |
| 2025-03-31T04:11:16Z | 1096 | 205253 |
| 2025-03-31T04:12:14Z | 1150 | 206403 |
| 2025-03-31T04:13:16Z | 1140 | 207543 |
| 2025-03-31T04:14:13Z | 1179 | 208722 |
| 2025-03-31T04:15:23Z | 1165 | 209887 |
| 2025-03-31T04:16:14Z | 1144 | 211031 |
| 2025-03-31T04:17:15Z | 1237 | 212268 |
| 2025-03-31T04:19:21Z | 2290 | 214558 |
| 2025-03-31T04:20:21Z | 1135 | 215693 |
| 2025-03-31T04:21:15Z | 1178 | 216871 |
| 2025-03-31T04:22:14Z | 1093 | 217964 |
| 2025-03-31T04:23:13Z | 1113 | 219077 |
| 2025-03-31T04:24:14Z | 1143 | 220220 |
| 2025-03-31T04:25:20Z | 1086 | 221306 |
| 2025-03-31T04:26:13Z | 1066 | 222372 |
|