Datasets:
Tasks:
Text Classification
Sub-tasks:
acceptability-classification
Languages:
English
Size:
10K<n<100K
Tags:
cola
License:
File size: 7,107 Bytes
7f2be74 e89effe 7f2be74 e89effe 7f2be74 9696f56 1ffd6eb 9696f56 7f2be74 1ffd6eb 7f2be74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""BLIMP Acceptability"""
from __future__ import absolute_import, division, print_function
import csv
import os
import textwrap
import six
import datasets
_Blimp_CITATION = r"""
@article{warstadt2019blimp,
author = {Warstadt, Alex and Parrish, Alicia and Liu, Haokun and Mohananey, Anhad and Peng, Wei and Wang, Sheng-Fu and Bowman, Samuel R.},
title = {BLiMP: The Benchmark of Linguistic Minimal Pairs for English},
journal = {Transactions of the Association for Computational Linguistics},
volume = {8},
number = {},
pages = {377-392},
year = {2020},
doi = {10.1162/tacl\_a\_00321},
URL = {https://doi.org/10.1162/tacl_a_00321},
eprint = {https://doi.org/10.1162/tacl_a_00321},
abstract = { We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4\%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands. }
}
@inproceedings{sileo2021analysis,
title={Analysis and Prediction of NLP Models Via Task Embeddings},
author={Damien Sileo and Marie-Francine Moens},
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
year={2022},
}
"""
_Blimp_DESCRIPTION = """\
Acceptable/non acceptable sentences (recasted as a classification task)
"""
DATA_URL = "https://www.dropbox.com/s/28s8qj97nuiwyoh/blimp.zip?dl=1"
def get_labels(task):
return ["unacceptable","acceptable"]
class BlimpConfig(datasets.BuilderConfig):
"""BuilderConfig for Blimp."""
def __init__(
self,
text_features,
label_classes=None,
**kwargs,
):
"""BuilderConfig for Blimp.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(BlimpConfig, self).__init__(
version=datasets.Version("1.0.0", ""), **kwargs
)
self.text_features = text_features
self.label_column = "label"
self.label_classes = get_labels(self.name)
self.data_url = DATA_URL
self.data_dir = os.path.join("blimp", self.name)
self.citation = textwrap.dedent(_Blimp_CITATION)
self.description = ""
self.url = ""
class Blimp(datasets.GeneratorBasedBuilder):
"""The General Language Understanding Evaluation (Blimp) benchmark."""
BUILDER_CONFIG_CLASS = BlimpConfig
BUILDER_CONFIGS = [
BlimpConfig(
name=name,
text_features={"sentence": "sentence"},
) for name in ["semantics","syntax","morphology","syntax+semantics",="syntax_semantics"]
]
def _info(self):
features = {
text_feature: datasets.Value("string")
for text_feature in six.iterkeys(self.config.text_features)
}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(
names=self.config.label_classes
)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_Blimp_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _Blimp_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.tsv"),
"split": "train",
},
),
]
def _generate_examples(self, data_file, split):
label_classes = self.config.label_classes
with open(data_file) as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_ALL)
for n, row in enumerate(reader):
example = {
feat: row[col]
for feat, col in six.iteritems(self.config.text_features)
}
example["idx"] = n
if self.config.label_column in row:
label = row[self.config.label_column]
if label_classes and label not in label_classes:
print(row)
continue
example["label"] = process_label(label)
else:
example["label"] = process_label(-1)
example['sentence'] = example['text']
del example['text']
yield example["idx"], example
|