updating stats and prmu categories
Browse files- README.md +3 -3
- prmu.py +103 -0
- stats.ipynb +184 -0
README.md
CHANGED
|
@@ -38,9 +38,9 @@ Details about the process can be found in `prmu.py`.
|
|
| 38 |
|
| 39 |
The dataset contains the following test split:
|
| 40 |
|
| 41 |
-
| Split | # documents |
|
| 42 |
-
| :---------
|
| 43 |
-
| Test | 400 |
|
| 44 |
|
| 45 |
The following data fields are available :
|
| 46 |
|
|
|
|
| 38 |
|
| 39 |
The dataset contains the following test split:
|
| 40 |
|
| 41 |
+
| Split | # documents | #words | # keyphrases | % Present | % Reordered | % Mixed | % Unseen |
|
| 42 |
+
| :--------- |------------:|-----------:|-------------:|----------:|------------:|--------:|---------:|
|
| 43 |
+
| Test | 400 | 156.9 | 11.81 | 40.60 | 7.32 | 19.28 | 32.80 |
|
| 44 |
|
| 45 |
The following data fields are available :
|
| 46 |
|
prmu.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import sys
|
| 4 |
+
import json
|
| 5 |
+
import spacy
|
| 6 |
+
|
| 7 |
+
from nltk.stem.snowball import SnowballStemmer as Stemmer
|
| 8 |
+
|
| 9 |
+
nlp = spacy.load("fr_core_news_sm")
|
| 10 |
+
|
| 11 |
+
# https://spacy.io/usage/linguistic-features#native-tokenizer-additions
|
| 12 |
+
|
| 13 |
+
from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
| 14 |
+
from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS
|
| 15 |
+
from spacy.util import compile_infix_regex
|
| 16 |
+
|
| 17 |
+
# Modify tokenizer infix patterns
|
| 18 |
+
infixes = (
|
| 19 |
+
LIST_ELLIPSES
|
| 20 |
+
+ LIST_ICONS
|
| 21 |
+
+ [
|
| 22 |
+
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
|
| 23 |
+
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
|
| 24 |
+
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
| 25 |
+
),
|
| 26 |
+
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
| 27 |
+
# ✅ Commented out regex that splits on hyphens between letters:
|
| 28 |
+
# r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
| 29 |
+
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
|
| 30 |
+
]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
infix_re = compile_infix_regex(infixes)
|
| 34 |
+
nlp.tokenizer.infix_finditer = infix_re.finditer
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def contains(subseq, inseq):
|
| 38 |
+
return any(inseq[pos:pos + len(subseq)] == subseq for pos in range(0, len(inseq) - len(subseq) + 1))
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def find_pmru(tok_title, tok_text, tok_kp):
|
| 42 |
+
"""Find PRMU category of a given keyphrase."""
|
| 43 |
+
|
| 44 |
+
# if kp is present
|
| 45 |
+
if contains(tok_kp, tok_title) or contains(tok_kp, tok_text):
|
| 46 |
+
return "P"
|
| 47 |
+
|
| 48 |
+
# if kp is considered as absent
|
| 49 |
+
else:
|
| 50 |
+
|
| 51 |
+
# find present and absent words
|
| 52 |
+
present_words = [w for w in tok_kp if w in tok_title or w in tok_text]
|
| 53 |
+
|
| 54 |
+
# if "all" words are present
|
| 55 |
+
if len(present_words) == len(tok_kp):
|
| 56 |
+
return "R"
|
| 57 |
+
# if "some" words are present
|
| 58 |
+
elif len(present_words) > 0:
|
| 59 |
+
return "M"
|
| 60 |
+
# if "no" words are present
|
| 61 |
+
else:
|
| 62 |
+
return "U"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
if __name__ == '__main__':
|
| 66 |
+
|
| 67 |
+
data = []
|
| 68 |
+
|
| 69 |
+
# read the dataset
|
| 70 |
+
with open(sys.argv[1], 'r') as f:
|
| 71 |
+
# loop through the documents
|
| 72 |
+
for line in f:
|
| 73 |
+
doc = json.loads(line.strip())
|
| 74 |
+
|
| 75 |
+
print(doc['id'])
|
| 76 |
+
|
| 77 |
+
title_spacy = nlp(doc['title'])
|
| 78 |
+
abstract_spacy = nlp(doc['abstract'])
|
| 79 |
+
|
| 80 |
+
title_tokens = [token.text for token in title_spacy]
|
| 81 |
+
abstract_tokens = [token.text for token in abstract_spacy]
|
| 82 |
+
|
| 83 |
+
title_stems = [Stemmer('french').stem(w.lower()) for w in title_tokens]
|
| 84 |
+
abstract_stems = [Stemmer('french').stem(w.lower()) for w in abstract_tokens]
|
| 85 |
+
|
| 86 |
+
keyphrases_stems = []
|
| 87 |
+
for keyphrase in doc['keyphrases']:
|
| 88 |
+
keyphrase_spacy = nlp(keyphrase)
|
| 89 |
+
keyphrase_tokens = [token.text for token in keyphrase_spacy]
|
| 90 |
+
keyphrase_stems = [Stemmer('french').stem(w.lower()) for w in keyphrase_tokens]
|
| 91 |
+
keyphrases_stems.append(keyphrase_stems)
|
| 92 |
+
|
| 93 |
+
prmu = [find_pmru(title_stems, abstract_stems, kp) for kp in keyphrases_stems]
|
| 94 |
+
|
| 95 |
+
if doc['prmu'] != prmu:
|
| 96 |
+
print("PRMU categories are not identical!")
|
| 97 |
+
|
| 98 |
+
doc['prmu'] = prmu
|
| 99 |
+
data.append(json.dumps(doc))
|
| 100 |
+
|
| 101 |
+
# write the json
|
| 102 |
+
with open(sys.argv[2], 'w') as o:
|
| 103 |
+
o.write("\n".join(data))
|
stats.ipynb
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "eba2ee81",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stderr",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"No config specified, defaulting to: wikinews/raw\n",
|
| 14 |
+
"Reusing dataset wikinews (/Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___wikinews/raw/1.0.0/aa15bd435a75a532fac6070fe8169812db6efd9d00c6fbac93992165536d8183)\n"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"data": {
|
| 19 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 20 |
+
"model_id": "51588bf1a2714239b22d99eeac8f0db7",
|
| 21 |
+
"version_major": 2,
|
| 22 |
+
"version_minor": 0
|
| 23 |
+
},
|
| 24 |
+
"text/plain": [
|
| 25 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"output_type": "display_data"
|
| 30 |
+
}
|
| 31 |
+
],
|
| 32 |
+
"source": [
|
| 33 |
+
"from datasets import load_dataset\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"dataset = load_dataset('taln-ls2n/termith-eval')"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 2,
|
| 41 |
+
"id": "4ba72244",
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"data": {
|
| 46 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 47 |
+
"model_id": "dc2eac8de82a4851901c76d873c7546f",
|
| 48 |
+
"version_major": 2,
|
| 49 |
+
"version_minor": 0
|
| 50 |
+
},
|
| 51 |
+
"text/plain": [
|
| 52 |
+
" 0%| | 0/399 [00:00<?, ?it/s]"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"output_type": "display_data"
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"name": "stdout",
|
| 60 |
+
"output_type": "stream",
|
| 61 |
+
"text": [
|
| 62 |
+
"# keyphrases: 11.81\n",
|
| 63 |
+
"% P: 40.60\n",
|
| 64 |
+
"% R: 7.32\n",
|
| 65 |
+
"% M: 19.28\n",
|
| 66 |
+
"% U: 32.80\n"
|
| 67 |
+
]
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"source": [
|
| 71 |
+
"from tqdm.notebook import tqdm\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"P, R, M, U, nb_kps = [], [], [], [], []\n",
|
| 74 |
+
" \n",
|
| 75 |
+
"for sample in tqdm(dataset['test']):\n",
|
| 76 |
+
" nb_kps.append(len(sample[\"keyphrases\"]))\n",
|
| 77 |
+
" P.append(sample[\"prmu\"].count(\"P\") / nb_kps[-1])\n",
|
| 78 |
+
" R.append(sample[\"prmu\"].count(\"R\") / nb_kps[-1])\n",
|
| 79 |
+
" M.append(sample[\"prmu\"].count(\"M\") / nb_kps[-1])\n",
|
| 80 |
+
" U.append(sample[\"prmu\"].count(\"U\") / nb_kps[-1])\n",
|
| 81 |
+
" \n",
|
| 82 |
+
"print(\"# keyphrases: {:.2f}\".format(sum(nb_kps)/len(nb_kps)))\n",
|
| 83 |
+
"print(\"% P: {:.2f}\".format(sum(P)/len(P)*100))\n",
|
| 84 |
+
"print(\"% R: {:.2f}\".format(sum(R)/len(R)*100))\n",
|
| 85 |
+
"print(\"% M: {:.2f}\".format(sum(M)/len(M)*100))\n",
|
| 86 |
+
"print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": 3,
|
| 92 |
+
"id": "52dda817",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"import spacy\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"nlp = spacy.load(\"fr_core_news_sm\")\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# https://spacy.io/usage/linguistic-features#native-tokenizer-additions\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER\n",
|
| 103 |
+
"from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS\n",
|
| 104 |
+
"from spacy.util import compile_infix_regex\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"# Modify tokenizer infix patterns\n",
|
| 107 |
+
"infixes = (\n",
|
| 108 |
+
" LIST_ELLIPSES\n",
|
| 109 |
+
" + LIST_ICONS\n",
|
| 110 |
+
" + [\n",
|
| 111 |
+
" r\"(?<=[0-9])[+\\-\\*^](?=[0-9-])\",\n",
|
| 112 |
+
" r\"(?<=[{al}{q}])\\.(?=[{au}{q}])\".format(\n",
|
| 113 |
+
" al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES\n",
|
| 114 |
+
" ),\n",
|
| 115 |
+
" r\"(?<=[{a}]),(?=[{a}])\".format(a=ALPHA),\n",
|
| 116 |
+
" # ✅ Commented out regex that splits on hyphens between letters:\n",
|
| 117 |
+
" # r\"(?<=[{a}])(?:{h})(?=[{a}])\".format(a=ALPHA, h=HYPHENS),\n",
|
| 118 |
+
" r\"(?<=[{a}0-9])[:<>=/](?=[{a}])\".format(a=ALPHA),\n",
|
| 119 |
+
" ]\n",
|
| 120 |
+
")\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"infix_re = compile_infix_regex(infixes)\n",
|
| 123 |
+
"nlp.tokenizer.infix_finditer = infix_re.finditer"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": 4,
|
| 129 |
+
"id": "047ab1cc",
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [
|
| 132 |
+
{
|
| 133 |
+
"data": {
|
| 134 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 135 |
+
"model_id": "7d2dc99496ef4579b3b027ca651ed359",
|
| 136 |
+
"version_major": 2,
|
| 137 |
+
"version_minor": 0
|
| 138 |
+
},
|
| 139 |
+
"text/plain": [
|
| 140 |
+
" 0%| | 0/399 [00:00<?, ?it/s]"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"output_type": "display_data"
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"name": "stdout",
|
| 148 |
+
"output_type": "stream",
|
| 149 |
+
"text": [
|
| 150 |
+
"avg doc len: 156.9\n"
|
| 151 |
+
]
|
| 152 |
+
}
|
| 153 |
+
],
|
| 154 |
+
"source": [
|
| 155 |
+
"doc_len = []\n",
|
| 156 |
+
"for sample in tqdm(dataset['test']):\n",
|
| 157 |
+
" doc_len.append(len(nlp(sample[\"title\"])) + len(nlp(sample[\"abstract\"])))\n",
|
| 158 |
+
" \n",
|
| 159 |
+
"print(\"avg doc len: {:.1f}\".format(sum(doc_len)/len(doc_len))) "
|
| 160 |
+
]
|
| 161 |
+
}
|
| 162 |
+
],
|
| 163 |
+
"metadata": {
|
| 164 |
+
"kernelspec": {
|
| 165 |
+
"display_name": "Python 3 (ipykernel)",
|
| 166 |
+
"language": "python",
|
| 167 |
+
"name": "python3"
|
| 168 |
+
},
|
| 169 |
+
"language_info": {
|
| 170 |
+
"codemirror_mode": {
|
| 171 |
+
"name": "ipython",
|
| 172 |
+
"version": 3
|
| 173 |
+
},
|
| 174 |
+
"file_extension": ".py",
|
| 175 |
+
"mimetype": "text/x-python",
|
| 176 |
+
"name": "python",
|
| 177 |
+
"nbconvert_exporter": "python",
|
| 178 |
+
"pygments_lexer": "ipython3",
|
| 179 |
+
"version": "3.9.10"
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"nbformat": 4,
|
| 183 |
+
"nbformat_minor": 5
|
| 184 |
+
}
|