path
stringlengths 7
265
| concatenated_notebook
stringlengths 46
17M
|
---|---|
.ipynb_checkpoints/Merge_Wikipedia_and_Kaggle-checkpoint.ipynb | ###Markdown
movies_df[['release_date_wiki','release_date_kaggle']].plot(x='release_date_wiki', y='release_date_kaggle', style='.')
###Code
movies_df[(movies_df['release_date_wiki'] > '1996-01-01') & (movies_df['release_date_kaggle'] < '1965-01-01')]
movies_df[(movies_df['release_date_wiki'] > '1996-01-01') & (movies_df['release_date_kaggle'] < '1965-01-01')].index
movies_df = movies_df.drop(movies_df[(movies_df['release_date_wiki'] > '1996-01-01') & (movies_df['release_date_kaggle'] < '1965-01-01')].index)
movies_df[movies_df['release_date_wiki'].isnull()]
movies_df['Language'].value_counts()
movies_df['Language'].apply(lambda x: tuple(x) if type(x) == list else x).value_counts(dropna=False)
movies_df['original_language'].value_counts(dropna=False)
movies_df[['Production company(s)','production_companies']]
movies_df.drop(columns=['title_wiki','release_date_wiki','Language','Production company(s)'], inplace=True)
def fill_missing_kaggle_data(df, kaggle_column, wiki_column):
df[kaggle_column] = df.apply(
lambda row: row[wiki_column] if row[kaggle_column] == 0 else row[kaggle_column]
, axis=1)
df.drop(columns=wiki_column, inplace=True)
fill_missing_kaggle_data(movies_df, 'runtime', 'running_time')
fill_missing_kaggle_data(movies_df, 'budget_kaggle', 'budget_wiki')
fill_missing_kaggle_data(movies_df, 'revenue', 'box_office')
movies_df
for col in movies_df.columns:
lists_to_tuples = lambda x: tuple(x) if type(x) == list else x
value_counts = movies_df[col].apply(lists_to_tuples).value_counts(dropna=False)
num_values = len(value_counts)
if num_values == 1:
print(col)
movies_df['video'].value_counts(dropna=False)
movies_df = movies_df.loc[:, ['imdb_id','id','title_kaggle','original_title','tagline','belongs_to_collection','url','imdb_link',
'runtime','budget_kaggle','revenue','release_date_kaggle','popularity','vote_average','vote_count',
'genres','original_language','overview','spoken_languages','Country',
'production_companies','production_countries','Distributor',
'Producer(s)','Director','Starring','Cinematography','Editor(s)','Writer(s)','Composer(s)','Based on'
]]
movies_df.rename({'id':'kaggle_id',
'title_kaggle':'title',
'url':'wikipedia_url',
'budget_kaggle':'budget',
'release_date_kaggle':'release_date',
'Country':'country',
'Distributor':'distributor',
'Producer(s)':'producers',
'Director':'director',
'Starring':'starring',
'Cinematography':'cinematography',
'Editor(s)':'editors',
'Writer(s)':'writers',
'Composer(s)':'composers',
'Based on':'based_on'
}, axis='columns', inplace=True)
rating_counts = ratings.groupby(['movieId','rating'], as_index=False).count() \
.rename({'userId':'count'}, axis=1) \
.pivot(index='movieId',columns='rating', values='count')
rating_counts.columns = ['rating_' + str(col) for col in rating_counts.columns]
movies_with_ratings_df = pd.merge(movies_df, rating_counts, left_on='kaggle_id', right_index=True, how='left')
movies_with_ratings_df[rating_counts.columns] = movies_with_ratings_df[rating_counts.columns].fillna(0)
movies_with_ratings_df.head()
###Output
_____no_output_____
###Markdown
Connect pandas with sql
###Code
from sqlalchemy import create_engine
pip install psycopg2-binary
from config import db_password
from config import password
db_string = f'postgres://postgres:db_password@localhost:5432/movie_data'
# {protocol}://{user}:{db_password}@{location}:{port}/{db}
engine = create_engine(db_string)
protocol='postgres'
user='postgres'
location='localhost'
port='5432'
db='movie_data'
def connect():
db_string=f'{protocol}://{user}:{db_password}@{location}:{port}/{db}'
print('connected!')
cursor=conn.cursor()
return conn,cursor
connect()
###Output
connected!
|
Exercises/03-ImageEnhancement/02-Demonstration.ipynb | ###Markdown
Setup playground
###Code
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
%matplotlib inline
###Output
_____no_output_____
###Markdown
Playing with noise generators
###Code
nimg = np.random.normal(0,1,size=[100,100])
uimg = np.random.uniform(-1,1,size=[100,100])
pimg = np.random.poisson(5,size=[100,100])
plt.figure(figsize=[15,8])
plt.subplot(1,3,1)
plt.imshow(nimg)
plt.subplot(1,3,2)
plt.imshow(uimg)
plt.subplot(1,3,3)
plt.imshow(pimg)
###Output
_____no_output_____
###Markdown
Playing with filters
###Code
gimg=ndimage.filters.gaussian_filter(nimg,1.0)
fimg=ndimage.filters.uniform_filter(nimg,3)
mimg=ndimage.filters.median_filter(nimg,3)
aimg=ndimage.filters.convolve(nimg,[[1,2,1],[2,4,2],[1,2,1]])
plt.figure(figsize=[15,13])
plt.subplot(2,2,1)
plt.imshow(gimg)
plt.title('Gaussian')
plt.subplot(2,2,2)
plt.imshow(fimg)
plt.title('Uniform')
plt.subplot(2,2,3)
plt.imshow(fimg)
plt.title('Median')
plt.subplot(2,2,4)
plt.imshow(fimg)
plt.title('Convolve (binomial)')
###Output
_____no_output_____
###Markdown
Demonstrating edge blurringWe want to observe what happens with edges when filtering Make test dataThe test data is a wedge structure with increasing gap.
###Code
img=np.zeros([100,100])
img[0:50,:]=1
for i in range(img.shape[0]) :
img[(51+int(i/10)):img.shape[0],i]=1
plt.imshow(img,cmap='gray')
###Output
_____no_output_____
###Markdown
Evaluate under different conditions - Add noise of different strength - Apply different uniform filter kernels - Observe what happens on thresholded data Make noisy image
###Code
SNR=4
sigma=1/SNR
noise=np.random.normal(0,sigma,img.shape)
nimg=img+noise
plt.imshow(nimg)
threshold = 0.5 # Threshold for segmentation
fig=plt.figure(figsize=[15,13])
for i in range(3) :
if (i==0) :
plt.subplot(3,3,i+1)
plt.imshow(0.5<nimg)
plt.title('Thresholded noisy image')
plt.subplot(3,3,3+i+1)
N=3+i*2
fimg=ndimage.filters.uniform_filter(nimg,N)
plt.imshow(fimg)
plt.subplot(3,3,6+i+1)
plt.imshow(threshold<fimg)
###Output
_____no_output_____ |
iris_decision_tree.ipynb | ###Markdown
Visualize a Decision Tree
###Code
import graphviz
import graphviz
dot_data = tree.export_graphviz(cls, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph
###Output
_____no_output_____ |
Chapter24-KerasPart2/Keras-Notebook-14-RNN-Sequence-Shapes.ipynb | ###Markdown
Copyright (c) 2017 Andrew GlassnerPermission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Deep Learning From Basics to Practice by Andrew Glassner, https://dlbasics.com, http://glassner.com------ Chapter 23: Keras Notebook 14: RNN sequence shapes
###Code
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import math
def show_output_shapes(data_shape):
def make_model(X_train, return_seqs):
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=X_train[0].shape, return_sequences=return_seqs))
model.compile(loss='mean_squared_error', optimizer='adam')
return model
data = np.zeros(data_shape)
model = make_model(data, False)
pred = model.predict(data, batch_size=1, verbose=2)
print("Input shape: ",data.shape)
print(" Without sequences: ",pred.shape)
model = make_model(data, True)
pred = model.predict(data, batch_size=1, verbose=2)
print(" With sequences: ",pred.shape)
show_output_shapes([2,5,3])
show_output_shapes([1,3,1])
show_output_shapes([1,5,1])
show_output_shapes([1,3,2])
show_output_shapes([1,5,2])
show_output_shapes([2,3,2])
show_output_shapes([2,5,2])
###Output
Input shape: (2, 5, 3)
Without sequences: (2, 4)
With sequences: (2, 5, 4)
Input shape: (1, 3, 1)
Without sequences: (1, 4)
With sequences: (1, 3, 4)
Input shape: (1, 5, 1)
Without sequences: (1, 4)
With sequences: (1, 5, 4)
Input shape: (1, 3, 2)
Without sequences: (1, 4)
With sequences: (1, 3, 4)
Input shape: (1, 5, 2)
Without sequences: (1, 4)
With sequences: (1, 5, 4)
Input shape: (2, 3, 2)
Without sequences: (2, 4)
With sequences: (2, 3, 4)
Input shape: (2, 5, 2)
Without sequences: (2, 4)
With sequences: (2, 5, 4)
|
basics/first/Ch10 Solution.ipynb | ###Markdown
Final Solution
###Code
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
oo = pd.read_csv('data/olympics.csv',skiprows=4)
oo.head()
###Output
_____no_output_____
###Markdown
In every Olympics, which US athlete has won the most total number of medals? Include the athlete's discipline.
###Code
gy = oo[oo.NOC == 'USA']
gy = gy.groupby(['Edition','Athlete','Medal']).size().unstack('Medal',fill_value=0)
gy['Total'] = gy['Gold'] + gy['Silver'] + gy['Bronze']
gy.reset_index(inplace=True)
tu = [group.sort_values('Total',ascending=False)[:1] for year,group in gy.groupby('Edition')]
tu
top = pd.DataFrame()
for i in tu:
top = top.append(i)
top
###Output
_____no_output_____ |
labs/Deep_Reinforcement_Learning/GridWorld Using Q-Learning.ipynb | ###Markdown
GridWorld using Q-LearningJay UrbainThis lab consists of two parts: - Introduction of an `epsilon-greedy` agent that solves the shortest path problem for GridWorld. In this part, the code is provided.- Extenstion of the `epsilon-greedy` agent to include additional obstacles in GridWorld. For example, an unavailable square due to a rock, a pit that the agent can fall down and immediately loose this round of a game, etc. In this part, you ar required to add this functionality to the agent.We will use Q-learning to train an `epsilon-greedy` agent to find the shortest path between position $(0, 0)$ to opposing corner $(Ny-1, Nx-1)$ of a 2D rectangular grid in the 2D GridWorld environment of size $(Ny, Nx)$.The agent is restricted to displacing itself up/down/left/right by $1$ grid square per action. The agent receives a $-0.1$ penalty for every action not reaching the terminal state (to incentivize shortest path search), and a $100$ reward upon reaching the terminal state (not necessary but helps improve the value signal). The agent exploration parameter epsilon also decays by a multiplicative constant after every training episode. Tabular forms of the action-value $Q(s,a)$, reward $R(s,a)$, and policy $P(s)$ functions are used.*Note: the optimal policy exists but is a highly degenerate solution because of the multitude of ways one can traverse down the grid in the minimum number of steps. Therefore a greedy policy that always moves the agent closer towards the goal can be considered an optimal policy (can get to the goal in Ny + Nx - 2 actions). In our example, this corresponds to actions of moving right or down to the bottom-right corner.*ReferencesDemystifying Deep Reinforcement LearningDeep Q Learning Example optimal policy: [[1 1 1 1 1 2] [1 1 1 1 1 2] [1 1 1 1 1 2] [1 1 1 1 1 2] [1 1 1 1 1 2] [1 1 1 1 1 0]] action['up'] = 0 action['right'] = 1 action['down'] = 2 action['left'] = 3 Imports
###Code
import os, sys, random, operator
import numpy as np
###Output
_____no_output_____
###Markdown
Define the agent environment
###Code
class Environment:
def __init__(self, Ny=8, Nx=8):
# Define state space
self.Ny = Ny # y grid size
self.Nx = Nx # x grid size
self.state_dim = (Ny, Nx)
# Define action space
self.action_dim = (4,) # up, right, down, left
self.action_dict = {"up": 0, "right": 1, "down": 2, "left": 3}
self.action_coords = [(-1, 0), (0, 1), (1, 0), (0, -1)] # translations
# Define rewards table
self.R = self._build_rewards() # R(s,a) agent rewards
# Check action space consistency
if len(self.action_dict.keys()) != len(self.action_coords):
exit("err: inconsistent actions given")
def reset(self):
# Reset agent state to top-left grid corner
self.state = (0, 0)
return self.state
def step(self, action):
# Evolve agent state
state_next = (self.state[0] + self.action_coords[action][0],
self.state[1] + self.action_coords[action][1])
# Collect reward
reward = self.R[self.state + (action,)]
# Terminate if we reach bottom-right grid corner
done = (state_next[0] == self.Ny - 1) and (state_next[1] == self.Nx - 1)
# Update state
self.state = state_next
return state_next, reward, done
def allowed_actions(self):
# Generate list of actions allowed depending on agent grid location
actions_allowed = []
y, x = self.state[0], self.state[1]
if (y > 0): # no passing top-boundary
actions_allowed.append(self.action_dict["up"])
if (y < self.Ny - 1): # no passing bottom-boundary
actions_allowed.append(self.action_dict["down"])
if (x > 0): # no passing left-boundary
actions_allowed.append(self.action_dict["left"])
if (x < self.Nx - 1): # no passing right-boundary
actions_allowed.append(self.action_dict["right"])
actions_allowed = np.array(actions_allowed, dtype=int)
return actions_allowed
def _build_rewards(self):
# Define agent rewards R[s,a]
r_goal = 100 # reward for arriving at terminal state (bottom-right corner)
r_nongoal = -0.1 # penalty for not reaching terminal state
R = r_nongoal * np.ones(self.state_dim + self.action_dim, dtype=float) # R[s,a]
R[self.Ny - 2, self.Nx - 1, self.action_dict["down"]] = r_goal # arrive from above
R[self.Ny - 1, self.Nx - 2, self.action_dict["right"]] = r_goal # arrive from the left
return R
###Output
_____no_output_____
###Markdown
Define the agent class
###Code
class Agent:
def __init__(self, env):
# Store state and action dimension
self.state_dim = env.state_dim
self.action_dim = env.action_dim
# Agent learning parameters
self.epsilon = 1.0 # initial exploration probability
self.epsilon_decay = 0.99 # epsilon decay after each episode
self.beta = 0.99 # learning rate
self.gamma = 0.99 # reward discount factor
# Initialize Q[s,a] table
self.Q = np.zeros(self.state_dim + self.action_dim, dtype=float)
def get_action(self, env):
# Epsilon-greedy agent policy
if random.uniform(0, 1) < self.epsilon:
# explore
return np.random.choice(env.allowed_actions())
else:
# exploit on allowed actions
state = env.state;
actions_allowed = env.allowed_actions()
Q_s = self.Q[state[0], state[1], actions_allowed]
actions_greedy = actions_allowed[np.flatnonzero(Q_s == np.max(Q_s))]
return np.random.choice(actions_greedy)
def train(self, memory):
# -----------------------------
# Update:
#
# Q[s,a] <- Q[s,a] + beta * (R[s,a] + gamma * max(Q[s,:]) - Q[s,a])
#
# R[s,a] = reward for taking action a from state s
# beta = learning rate
# gamma = discount factor
# -----------------------------
(state, action, state_next, reward, done) = memory
sa = state + (action,)
self.Q[sa] += self.beta * (reward + self.gamma*np.max(self.Q[state_next]) - self.Q[sa])
def display_greedy_policy(self):
# greedy policy = argmax[a'] Q[s,a']
greedy_policy = np.zeros((self.state_dim[0], self.state_dim[1]), dtype=int)
for x in range(self.state_dim[0]):
for y in range(self.state_dim[1]):
greedy_policy[y, x] = np.argmax(self.Q[y, x, :])
print("\nGreedy policy(y, x):")
print(greedy_policy)
print()
###Output
_____no_output_____
###Markdown
Main line execution loop
###Code
# Settings
env = Environment(Ny=8, Nx=8)
agent = Agent(env)
# Train agent
print("\nTraining agent...\n")
N_episodes = 500
for episode in range(N_episodes):
# Generate an episode
iter_episode, reward_episode = 0, 0
state = env.reset() # starting state
while True:
action = agent.get_action(env) # get action
state_next, reward, done = env.step(action) # evolve state by action
agent.train((state, action, state_next, reward, done)) # train agent
iter_episode += 1
reward_episode += reward
if done:
break
state = state_next # transition to next state
# Decay agent exploration parameter
agent.epsilon = max(agent.epsilon * agent.epsilon_decay, 0.01)
# Print
if (episode == 0) or (episode + 1) % 10 == 0:
print("[episode {}/{}] eps = {:.3F} -> iter = {}, rew = {:.1F}".format(
episode + 1, N_episodes, agent.epsilon, iter_episode, reward_episode))
# Print greedy policy
if (episode == N_episodes - 1):
agent.display_greedy_policy()
for (key, val) in sorted(env.action_dict.items(), key=operator.itemgetter(1)):
print(" action['{}'] = {}".format(key, val))
print()
###Output
Training agent...
[episode 1/500] eps = 0.990 -> iter = 200, rew = 80.1
[episode 10/500] eps = 0.904 -> iter = 144, rew = 85.7
[episode 20/500] eps = 0.818 -> iter = 108, rew = 89.3
[episode 30/500] eps = 0.740 -> iter = 46, rew = 95.5
[episode 40/500] eps = 0.669 -> iter = 28, rew = 97.3
[episode 50/500] eps = 0.605 -> iter = 48, rew = 95.3
[episode 60/500] eps = 0.547 -> iter = 26, rew = 97.5
[episode 70/500] eps = 0.495 -> iter = 38, rew = 96.3
[episode 80/500] eps = 0.448 -> iter = 46, rew = 95.5
[episode 90/500] eps = 0.405 -> iter = 22, rew = 97.9
[episode 100/500] eps = 0.366 -> iter = 24, rew = 97.7
[episode 110/500] eps = 0.331 -> iter = 14, rew = 98.7
[episode 120/500] eps = 0.299 -> iter = 14, rew = 98.7
[episode 130/500] eps = 0.271 -> iter = 20, rew = 98.1
[episode 140/500] eps = 0.245 -> iter = 16, rew = 98.5
[episode 150/500] eps = 0.221 -> iter = 18, rew = 98.3
[episode 160/500] eps = 0.200 -> iter = 20, rew = 98.1
[episode 170/500] eps = 0.181 -> iter = 16, rew = 98.5
[episode 180/500] eps = 0.164 -> iter = 18, rew = 98.3
[episode 190/500] eps = 0.148 -> iter = 16, rew = 98.5
[episode 200/500] eps = 0.134 -> iter = 20, rew = 98.1
[episode 210/500] eps = 0.121 -> iter = 14, rew = 98.7
[episode 220/500] eps = 0.110 -> iter = 14, rew = 98.7
[episode 230/500] eps = 0.099 -> iter = 16, rew = 98.5
[episode 240/500] eps = 0.090 -> iter = 14, rew = 98.7
[episode 250/500] eps = 0.081 -> iter = 18, rew = 98.3
[episode 260/500] eps = 0.073 -> iter = 14, rew = 98.7
[episode 270/500] eps = 0.066 -> iter = 14, rew = 98.7
[episode 280/500] eps = 0.060 -> iter = 14, rew = 98.7
[episode 290/500] eps = 0.054 -> iter = 14, rew = 98.7
[episode 300/500] eps = 0.049 -> iter = 14, rew = 98.7
[episode 310/500] eps = 0.044 -> iter = 16, rew = 98.5
[episode 320/500] eps = 0.040 -> iter = 14, rew = 98.7
[episode 330/500] eps = 0.036 -> iter = 14, rew = 98.7
[episode 340/500] eps = 0.033 -> iter = 18, rew = 98.3
[episode 350/500] eps = 0.030 -> iter = 14, rew = 98.7
[episode 360/500] eps = 0.027 -> iter = 14, rew = 98.7
[episode 370/500] eps = 0.024 -> iter = 14, rew = 98.7
[episode 380/500] eps = 0.022 -> iter = 14, rew = 98.7
[episode 390/500] eps = 0.020 -> iter = 14, rew = 98.7
[episode 400/500] eps = 0.018 -> iter = 14, rew = 98.7
[episode 410/500] eps = 0.016 -> iter = 14, rew = 98.7
[episode 420/500] eps = 0.015 -> iter = 14, rew = 98.7
[episode 430/500] eps = 0.013 -> iter = 14, rew = 98.7
[episode 440/500] eps = 0.012 -> iter = 14, rew = 98.7
[episode 450/500] eps = 0.011 -> iter = 14, rew = 98.7
[episode 460/500] eps = 0.010 -> iter = 14, rew = 98.7
[episode 470/500] eps = 0.010 -> iter = 16, rew = 98.5
[episode 480/500] eps = 0.010 -> iter = 14, rew = 98.7
[episode 490/500] eps = 0.010 -> iter = 14, rew = 98.7
[episode 500/500] eps = 0.010 -> iter = 14, rew = 98.7
Greedy policy(y, x):
[[1 1 1 1 1 1 2 2]
[1 1 1 1 1 1 1 2]
[1 1 1 1 1 1 1 2]
[1 1 1 1 1 1 1 2]
[1 1 1 1 1 1 1 2]
[1 1 1 1 1 1 1 2]
[1 1 1 1 1 1 1 2]
[1 1 1 1 1 1 1 0]]
action['up'] = 0
action['right'] = 1
action['down'] = 2
action['left'] = 3
|
examples/data-type-list.ipynb | ###Markdown
Data Type Lists Built-in data container-like type
###Code
odds = [1, 3, 5, 7]
print('odds are: ', odds)
print('first element', odds[0])
print('last element', odds[-1])
names = ['Curie', 'Darwing', 'Turing']
print('names is originally: ', names)
names[1] = 'Darwin'
print('final names is: ', names)
name = names[1]
print(name)
print('the first letter in name is: ', name[0])
name[0] = 'd'
name = 'darwin'# overwrite
name = 'Darwin'
print(name.lower())# casefolding
print(name)
name = 'Darwin'
#name = 'darwin'
name_casefold = name.lower()
salsa = ['peppers', 'onions', 'cilantro', 'tomatoes']
my_salsa = salsa
salsa[0] = 'hot peppers'
print('What is in my salsa', my_salsa)
###Output
What is in my salsa ['hot peppers', 'onions', 'cilantro', 'tomatoes']
###Markdown
Nested lists
###Code
fridge = [['pepper', 'squash', 'onion'], ['milk', 'eggs', 'cheese'], ['ham', 'sausage', 'bacon']]
print(fridge)
print(fridge[0])
print(fridge[-1])
print(fridge[0][0][0])
print(fridge[0] + fridge[-1])
print('get a "p": ', fridge[0][0][0])
###Output
[['pepper', 'squash', 'onion'], ['milk', 'eggs', 'cheese'], ['ham', 'sausage', 'bacon']]
['pepper', 'squash', 'onion']
['ham', 'sausage', 'bacon']
p
['pepper', 'squash', 'onion', 'ham', 'sausage', 'bacon']
get a "p": p
|
11d_viseme_image_model.ipynb | ###Markdown
Image model> Conv net, trained with fastai running in onnx.
###Code
#export
from expoco.viseme_image.data import *
from pathlib import Path
import numpy as np
import cv2, onnxruntime
###Output
_____no_output_____
###Markdown
Prepare data for inferenceWe need to replicate what fastai data loaders do ...
###Code
#export
def prepare_for_inference(image, image_size=256):
"Convert a cv2 style image to something that can be used as input to a CNN"
if image.shape[0] > image_size:
image = ImageHelper().face_crop(image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = np.transpose(image, (2, 0, 1))
image = (image/255.)
image = image.astype(np.float32)
return image
_image = np.zeros((4, 5, 3), np.uint8)
B, G, R = 255, 125, 0
_image[:,] = B, G, R
_image = prepare_for_inference(_image)
assert _image.shape == (3, 4, 5)
assert np.allclose(_image[0], R/255)
assert np.allclose(_image[1], G/255)
assert np.allclose(_image[2], B/255)
#export
class VisemeClassifier:
def __init__(self, model_path, image_size=256):
self.model = onnxruntime.InferenceSession(str(model_path))
self.image_size = image_size
self.image_helper = ImageHelper()
self.vocab = ['AH', 'EE', 'NO_EXPRESSION', 'OO']
self.item_queue = []
def _to_image(self, item):
return self.image_helper.read_image(item) if isinstance(item, (str, Path)) else item
def predict(self, items=None):
if items is None:
items = self.item_queue
self.item_queue = []
else:
items = [self._to_image(i) for i in items]
items = [prepare_for_inference(i, self.image_size) for i in items]
items = np.array(items)
model_output = self.model.run(None, {'input': items})
output = model_output[0]
class_ids = np.argmax(output, axis=1)
class_names = [self.vocab[class_id] for class_id in class_ids]
return class_names
def queue_item(self, item):
self.item_queue.append(prepare_for_inference(self._to_image(item), self.image_size))
###Output
_____no_output_____
###Markdown
`queue_item` prepares for inference as this prep is quite often slower that actually running inference
###Code
model_path = Path('models/model_20211202_143854/resnet_3_256_256.onnx')
img_path = Path('test/data/raw_images')
imgs = [img_path/'oo_1.png', img_path/'oo_2.png', img_path/'ee_1.png', img_path/'ee_2.png']
img_path = Path('test/data/processed_images')
imgs += [img_path/'ah_1.png', img_path/'ah_2.png']
viseme_classifier = VisemeClassifier(model_path)
class_names = viseme_classifier.predict(imgs)
for img in imgs:
viseme_classifier.queue_item(img)
class_names2 = viseme_classifier.predict()
assert class_names == class_names2 == ['OO', 'OO', 'EE', 'EE', 'AH', 'AH']
#hide
from nbdev.export import notebook2script
notebook2script()
###Output
Converted 00_core.ipynb.
Converted 01a_camera_capture.ipynb.
Converted 10a_viseme_tabular_identify_landmarks.ipynb.
Converted 10b_viseme_tabular_data.ipynb.
Converted 10d_viseme_tabular_model.ipynb.
Converted 10e_viseme_tabular_train_model.ipynb.
Converted 10f_viseme_tabular_test_model.ipynb.
Converted 11b_viseme_image_data.ipynb.
Converted 11d_viseme_image_model.ipynb.
Converted 11e_viseme_image_train_model.ipynb.
Converted 11f_viseme_image_test_model.ipynb.
Converted 20a_gui_capture_command.ipynb.
Converted 20a_gui_main.ipynb.
Converted 70_cli.ipynb.
Converted index.ipynb.
Converted project_lifecycle.ipynb.
|
nbs/10c-activation-function-relu.ipynb | ###Markdown
สร้าง x เป็นเลข ระหว่าง -10 บวกทีละ 0.01 ไปจนถึง 10 เราจะเอามาเป็นแกน x
###Code
x = torch.arange(-10., 10., 0.01)
x
###Output
_____no_output_____
###Markdown
นำ x ผ่าน activation ฟังก์ชัน ได้ค่า y
###Code
activation = torch.nn.Sigmoid()
y1 = activation(x)
y1
activation = torch.nn.ReLU()
y3 = activation(x)
y3
###Output
_____no_output_____
###Markdown
แสดงกราฟ
###Code
plt.ylim(top=2.0, bottom=-0.5)
plt.xlim(right=2.0, left=-2.0)
plt.grid()
plt.plot(x.numpy(), y1.numpy())
plt.plot(x.numpy(), y3.numpy())
plt.legend(['Sigmoid', 'ReLU'], loc='upper left')
plt.show()
###Output
_____no_output_____
###Markdown
Leaky ReLU ด้วยค่า negative_slope = 0.05
###Code
activation = torch.nn.LeakyReLU(0.05)
y4 = activation(x)
###Output
_____no_output_____
###Markdown
แสดงกราฟ
###Code
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,6))
fig.suptitle('Comparing ReLU and LeakyReLU')
ax1.set_xlim([-3, 3])
ax1.set_ylim([-1, 3])
ax1.grid()
ax1.set_title('ReLU')
ax2.set_xlim([-3, 3])
ax2.set_ylim([-1, 3])
ax2.grid()
ax2.set_title('LeakyReLU')
ax1.plot(x.numpy(), y3.numpy())
ax2.plot(x.numpy(), y4.numpy())
###Output
_____no_output_____ |
L-CNN.ipynb | ###Markdown
Code related to the following paper: [1] Radu Dogaru and Ioana Dogaru, "BCONV-ELM: Binary Weights Convolutional Neural Network Simulator based on Keras/Tensorflow, for Low Complexity Implementations", Proceedings of the ISEEE 2019 conference, submitted.Please cite the above paper if you found this code useful.Copyright Radu and Ioana Dogaru correspondence: [email protected] First two cells allow loading and preparing various datasest L-CNN is implemented in the third cell (it is trainable version of the lightweight architecture in [1])
###Code
# Datasets from SKLEARN - here the ORL Face recognition
# with possibility to select the fraction for training
import keras
from sklearn import datasets as dat
import numpy as np
e=dat.fetch_olivetti_faces(data_home=None, shuffle=True, random_state=0, download_if_missing=True)
k1=300
toate=400
x_train=e.images[0:k1,:,:]
x_test=e.images[k1:toate,:,:]
y_train=e.target[0:k1]
y_test=e.target[k1:toate]
if (np.ndim(x_train)==3): # E.g. MNIST or F-MNIST
x_train=np.reshape(x_train, [np.shape(x_train)[0],np.shape(x_train)[1],np.shape(x_train)[2], 1])
x_test=np.reshape(x_test, [np.shape(x_test)[0],np.shape(x_test)[1],np.shape(x_test)[2], 1] )
# place a 1 in the end to keep it compatible with kernel in conv2d
# scaling in ([0,1])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train=np.reshape(y_train, [np.shape(y_train)[0], 1])
y_test=np.reshape(y_test, [np.shape(y_test)[0], 1] )
num_classes=np.max(y_train)+1
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
inp_chan=np.shape(x_train)[3]
num_inputs = np.shape(x_test)[1]
input_shape=np.shape(x_train)[1:4]
# Datasets from Keras
import numpy as np
import keras
dataset='mnist' # mnist or f-mnist or cifar10
reduced=0
dformat='channels_last'
from keras.datasets import mnist, cifar10, cifar100, fashion_mnist
if dataset=='mnist':
(x_train, y_train), (x_test, y_test) = mnist.load_data() # incarca date nescalate
elif dataset=='cifar10':
(x_train, y_train), (x_test, y_test) = cifar10.load_data() # incarca date nescalate
elif dataset=='cifar100':
(x_train, y_train), (x_test, y_test) = cifar100.load_data() # incarca date nescalate
elif dataset=='f-mnist':
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if (np.ndim(x_train)==3): # E.g. MNIST or F-MNIST
x_train=np.reshape(x_train, [np.shape(x_train)[0],np.shape(x_train)[1],np.shape(x_train)[2], 1])
x_test=np.reshape(x_test, [np.shape(x_test)[0],np.shape(x_test)[1],np.shape(x_test)[2], 1] )
# place a 1 in the end to keep it compatible with kernel in conv2d
# scaling in ([0,1])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /=255
inp_chan=np.shape(x_train)[3]
print('Number of input channels in image:', inp_chan)
num_classes=np.max(y_train)+1
num_inputs = np.shape(x_test)[1]
input_shape=np.shape(x_train)[1:4]
# one can choose a lower numbers of training samples (when GPU MEM is overloaded)
if reduced>0:
Ntr1=reduced
x_train=x_train[0:Ntr1,:,:,:]
y_train=y_train[0:Ntr1]
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# L-CNN implementation
# Up to 3 convolution layers + MLP0 (a linear output layer - additional
# fully connected hidden layers may be added but the lightweight character
# will be lost)
#----------------- for reproductibility ----------------------
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
#----------------------------------------------------
import keras
import numpy as np # linear algebra
import keras.backend as K
import time as ti
import scipy.io as sio
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Conv2D, DepthwiseConv2D, MaxPooling2D, AveragePooling2D # straturi convolutionale si max-pooling
from keras.optimizers import RMSprop, SGD, Adadelta, Adam
import matplotlib.pyplot as plt
#========================= Parameters (model and training) ============================================
#
batch_size = 50 # useful for MNIST, CIFAR, for ORL take 1
epoci = 20 # maximal number of training epochs (the best result may be obtained earlier)
train_style = 2 # 1-standard Keras (not recommended) ; 2 epoch by epoch and keeping best test accuracy until "epoci";
#-------------- Output layer MLP (nhid1=nhid2=0 recommended for low complexity)
nhid1 = 0 # hidden-1 neurons (put 0 if nhid2=0, or a desired value)
nhid2 = 0 # hidden-2 neurons (take 0 for 0 or 1 hidden layer)
#
# ----------------- CONV expander layers (up to 3) ------------------------------------------------------------
nr_conv=2 # 0, 1, 2 sau 3 (number of convolution layers)
filtre1=64 ; filtre2=64 ; filtre3=100 # filters (kernels) per each layer
csize1=3; csize2=3 ; csize3=3 # convolution kernel size (square kernel)
psize1=4; psize2=4 ; psize3=2 # pooling size (square)
str1=2; str2=2; str3=2 # stride pooling (downsampling rate)
pad='same'; # padding style ('valid' is also an alternative)
type_conv=2 # 1='depth_wise' or 2='normal'
# ------------------- Optimizer -----------------------------------------------------------------
#myopt = SGD(lr=0.01, decay=1e-6, momentum=.9, nesterov=True)
#myopt =Adadelta(lr=.1) # implicit are lr=1 # cum influenteaza valoarea procesul de antrenare ??
myopt = RMSprop(lr=0.0005)
#myopt = Adam(lr=0.001)
#myopt = Adam()
# -------------------------- LOSS function ------------------------------------
#my_loss='mean_squared_error'
#my_loss='mean_absolute_error'
my_loss='categorical_crossentropy'
#-------------------------- MODEL DESCRIPTION ------------------------------
model = Sequential()
if nr_conv>=1:
if type_conv==2:
model.add(Conv2D(filtre1, padding=pad, kernel_size=(csize1, csize1), input_shape=input_shape))
elif type_conv==1:
model.add(DepthwiseConv2D(kernel_size=csize2, padding=pad, input_shape=input_shape, depth_multiplier=filtre1, use_bias=False))
#model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(psize1, psize1),strides=(str1,str1),padding=pad))
#model.add(Activation('relu'))
if nr_conv>=2:
if type_conv==2:
model.add(Conv2D(filtre2, padding=pad, kernel_size=(csize2, csize2)) )
elif type_conv==1:
model.add(DepthwiseConv2D(kernel_size=csize2, padding=pad, depth_multiplier=filtre2, use_bias=False))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(psize2, psize2),strides=(str2,str2),padding=pad))
#model.add(Activation('relu'))
if nr_conv==3:
if type_conv==2:
model.add(Conv2D(filtre3, padding=pad, kernel_size=(csize3, csize3)) )
elif type_conv==1:
model.add(DepthwiseConv2D(kernel_size=csize3, padding=pad, depth_multiplier=filtre3, use_bias=False))
#model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(psize3, psize3),strides=(str3,str3),padding=pad))
#model.add(Activation('relu'))
model.add(Activation('relu'))
model.add(Flatten())
#model.add(Activation('relu'))
#model.add(Dropout(0.25))
elif nr_conv==0:
model.add(Flatten(input_shape=input_shape))
# ---- first fc hidden layer
if nhid1>0:
model.add(Dense(nhid1, activation='relu'))
#model.add(Dropout(0.5))
# ---- second fc hidden layer
if nhid2>0:
model.add(Dense(nhid2, activation='relu'))
# model.add(Dropout(0.2))
# output layer
if (nhid1+nhid2)==0:
model.add(Dense(num_classes, activation='softmax',input_shape=(num_inputs,)))
else:
model.add(Dense(num_classes, activation='softmax'))
model.summary()
# --- MODEL COMPILE --------------------------------------------------------
model.compile(loss=my_loss,
optimizer=myopt, # se poate alege oricare dintre obiectele optimizer definite mai sus
metrics=['accuracy'])
# - MODEL TRAINING --------------------------------------------------
if train_style==1:
t1=ti.time()
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epoci,
verbose=2, # aici 0 (nu afiseaza nimic) 1 (detaliat) 2(numai epocile)
validation_data=(x_test, y_test))
t2=ti.time()
print(t2-t1)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
elif train_style==2:
err_test=np.zeros(epoci) # For plotting test error evolution
best_acc=0.0
best_ep=0
t1=ti.time()
for k in range(epoci):
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=1,
verbose=0, # aici 0 (nu afiseaza nimic) 1 (detaliat) 2(numai epocile)
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
err_test[k]=score[1]
if score[1]>best_acc :
print('Improved in epoch:', k, ' New accuracy: ', 100*score[1],'%')
best_acc=score[1]
best_ep=k
bp=model.get_weights()
t2=ti.time()
print('Best accuracy:', best_acc*100, '% reached in epoch: ',best_ep, ' running ',epoci,' epochs lasts ',t2-t1,' seconds')
plt.plot(err_test)
model.set_weights((bp)) # evaluete prediction time on all test samples
t1=ti.time()
score = model.evaluate(x_test, y_test, verbose=0)
t2=ti.time()
print('Test accuracy:', score[1])
print ('Time for test set : ',t2-t1)
print('Latency (per input sample):', 1000*(t2-t1)/np.shape(x_test)[0], 'ms')
# QMLP0 (quantified MLP0 module)
# Quantization of the above resulted model (only for MLP0)
# Copyright Radu and Ioana DOGARU;
#=============================================================
nb_out=8
outW=np.copy(bp)
Qout=-1+pow(2,nb_out-1)
if (nb_out >0) & (nhid1==0) :
O=np.max(np.abs(outW[0]))
outW[0]=np.round(outW[0]*(1/O)*Qout)
outW[1]=np.round(outW[1]*(1/O)*Qout)
model.set_weights(outW)
score = model.evaluate(x_test, y_test, verbose=0)
best_acc=score[1]
print('Output layer quantized with:', nb_out, 'bits')
print('Quantified accuracy is:', best_acc*100,'%')
outW=model.get_weights() # the resulting model with fixed point weights
###Output
_____no_output_____ |
notebooks/tutorial/Register.ipynb | ###Markdown
This example demonstrates the use of d-flip-flops and registers.
###Code
import magma as m
m.set_mantle_target("ice40")
###Output
_____no_output_____
###Markdown
DFFTo use a DFF we import that `mantle` circuit `DFF`.Calling `DFF()` creates an instance of a DFF.A sequential logic element like a DFF is very similarto a combinational logic element like a full adder.It has inputs and outputs.The inputs and outputs are wired up in the same way asa combinational circuit.
###Code
from loam.boards.icestick import IceStick
from mantle import DFF
icestick = IceStick()
icestick.Clock.on() # Need to turn on the clock for sequential logic
icestick.J1[0].input().on()
icestick.J3[0].output().on()
main = icestick.DefineMain()
dff = DFF()
m.wire( dff(main.J1), main.J3 )
m.EndDefine()
###Output
import lattice ice40
import lattice mantle40
###Markdown
Since a flip-flop is a sequential logic element,it has a clock.The clock generator is a peripheral on the FPGA.We need to turn it on if we want to use the clock.This creates a global clock signal on the FPGA.Note that we did not need to wire the clock to the DFF;`magma` automatically wires the clock to the flip-flop's clock input. Let's compile and build.
###Code
m.compile("build/dff", main)
%%bash
cd build
yosys -q -p 'synth_ice40 -top main -blif dff.blif' dff.v
arachne-pnr -q -d 1k -o dff.txt -p dff.pcf dff.blif
icepack dff.txt dff.bin
iceprog dff.bin
###Output
/Users/hanrahan/git/magmathon/notebooks/tutorial/build
###Markdown
If we inspect the compiled verilog, we see that our mantle `DFF` uses the `SB_DFF` ice40 primitive.
###Code
%cat build/dff.v
###Output
module main (input J1, output J3, input CLKIN);
wire inst0_Q;
SB_DFF inst0 (.C(CLKIN), .D(J1), .Q(inst0_Q));
assign J3 = inst0_Q;
endmodule
###Markdown
RegisterA register is simply an array of flip-flops.To create an instance of a register, call `Register`with the number of bits `n` in the register.
###Code
from loam.boards.icestick import IceStick
from mantle import Register
icestick = IceStick()
icestick.Clock.on() # Need to turn on the clock for sequential logic
for i in range(4):
icestick.J1[i].input().on()
icestick.J3[i].output().on()
main = icestick.DefineMain()
register4 = Register(4)
m.wire( register4(main.J1), main.J3 )
m.EndDefine()
###Output
_____no_output_____
###Markdown
Registers and DFFs are very similar to each other.The only difference is that the input and output to a DFFare `Bit` values,whereas the inputs and the outputs to registers are `Bits(n)`.
###Code
m.compile("build/register4", main)
%%bash
cd build
yosys -q -p 'synth_ice40 -top main -blif register4.blif' register4.v
arachne-pnr -q -d 1k -o register4.txt -p register4.pcf register4.blif
icepack register4.txt register4.bin
iceprog register4.bin
###Output
/Users/hanrahan/git/magmathon/notebooks/tutorial/build
###Markdown
If we inspect the compiled verilog, we see that our register is a module that instances a set of `SB_DFF`s.
###Code
%cat build/register4.v
###Output
module Register4 (input [3:0] I, output [3:0] O, input CLK);
wire inst0_Q;
wire inst1_Q;
wire inst2_Q;
wire inst3_Q;
SB_DFF inst0 (.C(CLK), .D(I[0]), .Q(inst0_Q));
SB_DFF inst1 (.C(CLK), .D(I[1]), .Q(inst1_Q));
SB_DFF inst2 (.C(CLK), .D(I[2]), .Q(inst2_Q));
SB_DFF inst3 (.C(CLK), .D(I[3]), .Q(inst3_Q));
assign O = {inst3_Q,inst2_Q,inst1_Q,inst0_Q};
endmodule
module main (input [3:0] J1, output [3:0] J3, input CLKIN);
wire [3:0] inst0_O;
Register4 inst0 (.I(J1), .O(inst0_O), .CLK(CLKIN));
assign J3 = inst0_O;
endmodule
###Markdown
Enables and ResetsThere are other flip-flops and registers with clock enablesand reset inputs.The flip-flop will only be enabled if its clock enable input is true.And it will be reset to its initial value if reset is true.To create registers with these additional inputs,set the optional arguments `has_ce` and/or `has_reset`when instancing the register.
###Code
icestick = IceStick()
icestick.Clock.on()
for i in range(4):
icestick.J1[i].input().on()
icestick.J3[i].output().on()
icestick.J1[4].input().on() # ce signal
icestick.J1[5].input().on() # reset signal
main = icestick.DefineMain()
register4 = Register(4, init=5, has_ce=True, has_reset=True )
m.wire( register4(main.J1[0:4], ce=main.J1[4], reset=main.J1[5]), main.J3)
m.EndDefine()
###Output
_____no_output_____
###Markdown
To wire the optional clock inputs, clock enable and reset,use named arguments when you call the register with its inputs.As a general rule, clock inputs are handled differently thanother inputs. Compile, build, and upload.
###Code
m.compile("build/register4ce", main)
%%bash
cd build
yosys -q -p 'synth_ice40 -top main -blif register4ce.blif' register4ce.v
arachne-pnr -q -d 1k -o register4ce.txt -p register4ce.pcf register4ce.blif
icepack register4ce.txt register4ce.bin
iceprog register4ce.bin
###Output
/Users/hanrahan/git/magmathon/notebooks/tutorial/build
|
isda_sample_notebook.ipynb | ###Markdown
Set Seed for Reproducibility
###Code
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED']=str(seed)
set_seed(72)
###Output
_____no_output_____
###Markdown
Preprocess and Load Data
###Code
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (.2023, .1994, .2010)), #CIFAR10
# transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)) #CIFAR100
# Cutout(n_holes=1, length=16), # CutOut
])
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4, fill=128),
# CIFAR10Policy(), # AutoAugment
preprocess
])
# train_transform.transforms.insert(0, RandAugment(1, 5)) #RandAugment
test_transform = preprocess
# test_transform = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (.2023, .1994, .2010)), #CIFAR10
# transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)) #CIFAR100
# ])
batch_size = 4
train_data = datasets.CIFAR10(root="./data", train=True, download=True, transform=train_transform)
test_data= datasets.CIFAR10(root="./data", train=False, download=True, transform=test_transform)
# load training data in batches
train_loader = torch.utils.data.DataLoader(
# AugMixDataset(train_data, preprocess, no_jsd=True), # Augmix
train_data,
batch_size=batch_size,
num_workers=8,
shuffle=True,
pin_memory=True
)
# load test data in batches
test_loader = torch.utils.data.DataLoader(test_data,
batch_size=batch_size,
num_workers=8,
shuffle=False,
pin_memory=True
)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
print(f'Length of train loader is {len(train_loader)}')
print(f'Length of test loader is {len(test_loader)}')
###Output
_____no_output_____
###Markdown
Build Model
###Code
model = CustomModel()
num_feature = 192*4*4
num_classes = len(classes)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model = torch.nn.DataParallel(model)
fc = Full_layer(num_feature=num_feature, num_classes=len(classes)).to(device)
fc = torch.nn.DataParallel(fc)
best_top1 = 0 # train from start
start_epoch = 0
num_epochs = 50
combine_ratio = 0.5
isda_criterion = ISDALoss(num_feature, num_classes)
ce_criterion = CrossEntropyLoss(smooth_eps=0.1).to(device)
optimizer = Lookahead(DeepMemory([{'params': model.parameters()},
{'params': fc.parameters()}], len_memory=len(train_data.data)//batch_size)) # rectified adam wtih lookahead
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_data.data)//batch_size)
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()]) +
sum([p.data.nelement() for p in fc.parameters()])
))
###Output
_____no_output_____
###Markdown
Load Checkpoints to resume training
###Code
# checkpoint = torch.load('./checkpoint/CustomModel_standard_dmla_isda_ckpt.pth')
# model.module.load_state_dict(checkpoint['model_state_dict'], strict=False)
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# fc.module.load_state_dict(checkpoint['fc'])
# start_epoch = checkpoint['epoch']
# best_loss = checkpoint['loss']
# best_top1 = checkpoint['top1'] # resume training
# best_top5 = checkpoint['top5']
# print(f'Top-1 Acc: {best_top1}\t Top-5 Acc: {best_top5}\t Best loss: {best_loss:.4f}\t Best epoch: {start_epoch}')
# print(f'Loaded checkpoint with \n {best_top1}% Top-1 Accuracy, {best_top5}% Top-5 Accuracy, after training for {start_epoch} epochs.')
###Output
_____no_output_____
###Markdown
Train Model
###Code
%%time
def train(train_loader, model, fc, criterion, optimizer, epoch):
print('Training model...\n')
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
ratio = combine_ratio * (epoch / (num_epochs))
# switch to train mode
model.train()
fc.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.to(device)
input_var = Variable(input)
target_var = Variable(target)
optimizer.zero_grad()
# compute output
loss, output = criterion(model, fc, input_var, target_var, ratio)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
loss.backward()
optimizer.step()
lr_scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 1500 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
print(' * Acc@1 {top1.avg:.3f} Acc@1 Error {top1_err:.3f}\n'
' * Acc@5 {top5.avg:.3f} Acc@5 Error {top5_err:.3f}'
.format(top1=top1, top1_err=100-top1.avg, top5=top5, top5_err=100-top5.avg))
###Output
_____no_output_____
###Markdown
Accuracy on test data
###Code
%%time
def validate(test_loader, model, fc, criterion, epoch):
print('Evaluating model on test data...\n')
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
fc.eval()
end = time.time()
for i, (input, target) in enumerate(test_loader):
target = target.to(device)
input_var = Variable(input)
target_var = Variable(target)
# compute output
with torch.no_grad():
features = model(input_var)
output = fc(features)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 250 == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(test_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Acc@1 {top1.avg:.3f} Acc@1 Error {top1_err:.3f}\n'
' * Acc@5 {top5.avg:.3f} Acc@5 Error {top5_err:.3f}'
.format(top1=top1, top1_err=100-top1.avg, top5=top5, top5_err=100-top5.avg))
return top1, top5, losses
###Output
_____no_output_____
###Markdown
Checkpoint Model
###Code
%%time
for epoch in range(start_epoch, num_epochs):
train(train_loader, model, fc, isda_criterion, optimizer, epoch)
top1, top5, losses = validate(test_loader, model, fc, ce_criterion, epoch)
if top1.avg > best_top1:
print('Saving checkpoint')
state = {
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'fc': fc.module.state_dict(),
'epoch': epoch,
'loss': losses.avg,
'top1': top1.avg,
'top5': top5.avg}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/CustomModel_standard_dmla_isda_ckpt.pth')
best_top1 = top1.avg
###Output
_____no_output_____
###Markdown
Accuracy for each class
###Code
# class_correct = list(0. for i in range(100))
# class_total = list(0. for i in range(100))
# with torch.no_grad():
# for data in test_loader:
# images, labels = data
# outputs = model(images)
# _, predicted = torch.max(outputs, 1)
# c = (predicted == labels).squeeze()
# for i in range(4):
# label = labels[i]
# class_correct[label] += c[i].item()
# class_total[label] += 1
# for i in range(10):
# print('Accuracy of %5s : %2d %%' % (
# classes[i], 100 * class_correct[i] / class_total[i]))
###Output
_____no_output_____ |
02.Mathematical Concepts/Mathematical+Concepts.ipynb | ###Markdown
Visualizing Complex Numbers
###Code
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.transforms import Affine2D
theta = 2*np.pi/5
r=np.sin(theta)
def getRectCoords(r,theta):
x= r*np.cos(theta)
y = r*np.sin(theta)
yield x
yield y
def plotComplexNumbers(x,y):
for i in getRectCoords(r,theta):
x=i
y=i+1
return plt.quiver(x,y)
def visualizeComplexNumbers():
plotComplexNumbers(r,theta)
return plt.show()
plt.axhline(0, linestyle="--", color ="black")
plt.axvline(0, linestyle="--",color ="black")
visualizeComplexNumbers()
###Output
_____no_output_____
###Markdown
Polar Plot
###Code
def getRandTheta():
theta= np.arange(-2*np.pi,2*np.pi,0.001)
r= np.sin(theta)
return(theta,r)
def plotPolar(theta,r):
theta,r=getRandTheta()
plt.polar(theta,r)
plt.plot(theta,r)
plt.show()
plotPolar(theta,r)
###Output
_____no_output_____
###Markdown
Matrix Operations 3X3 Matrices Addition
###Code
def matrixInput():
firstrow=[0,0,0]
secondrow=[0,0,0]
thirdrow =[0,0,0]
for i in range(3):
text = input().split(' ')
if i==0:
firstrow[0]=int(text[0])
firstrow[1]=int(text[1])
firstrow[2]=int(text[2])
elif i==1:
secondrow[0]=int(text[0])
secondrow[1]=int(text[1])
secondrow[2]=int(text[2])
elif i==2:
thirdrow[0]=int(text[0])
thirdrow[1]=int(text[1])
thirdrow[2]=int(text[2])
return [firstrow,secondrow,thirdrow]
FirstMatrix =matrixInput()
SecondMatrix=matrixInput()
result =[[0,0,0],
[0,0,0],
[0,0,0]]
for i in range(3):
for a in range(3):
result[i][a]=FirstMatrix[i][a]+SecondMatrix[i][a]
print(result[0])
print(result[1])
print(result[2])
###Output
_____no_output_____
###Markdown
Multiply a matrix with a scalar
###Code
scalar=int(input("Write Scalar here:"))
Matrix = matrixInput()
result =[[0,0,0],
[0,0,0],
[0,0,0]]
for i in range(3):
for a in range(3):
result[i][a]= Matrix[i][a]*scalar
print(result[0])
print(result[1])
print(result[2])
###Output
_____no_output_____
###Markdown
Multiply two 3X3 Matrices
###Code
firstMatrix=matrixInput()
secondMatrix=matrixInput()
result =np.matmul(firstMatrix,secondMatrix)
print(result[0])
print(result[1])
print(result[2])
###Output
_____no_output_____
###Markdown
Multiplying two vectors
###Code
def vectorInput():
vector=input().split(' ')
vectorNum=[]
for i in vector:
vectorNum.append(int(i))
return vectorNum
vectorOne= vectorInput()
vectorTwo = vectorInput()
result= np.dot(vectorOne,vectorTwo)
print(result)
###Output
_____no_output_____
###Markdown
Solving linear equations
###Code
a = np.array([[3,1], [1,2]])
b = np.array([9,8])
result= np.linalg.solve(a,b)
print(result)
###Output
_____no_output_____
###Markdown
Functions
###Code
a=4
b=5
c=6
x=np.arange(-2*np.pi,2*np.pi,0.001)
y=a*x+b
plt.plot(x,y)
plt.show()
x=np.arange(-2*np.pi,2*np.pi,0.001)
y=a*x**2 +b*x +c
plt.plot(x,y)
plt.show()
x=np.arange(-2*np.pi,2*np.pi,0.001)
y=np.sin(a*x+b)
plt.plot(x,y)
plt.show()
x=np.arange(-2*np.pi,2*np.pi,0.001)
y=a**(b*x)
plt.plot(x,y)
plt.show()
###Output
_____no_output_____
###Markdown
Derivative
###Code
x=1
y=x**2
def derrivative(x,y):
change=0.0000001
dy=(x+change)**2-y
dx=change
answer = dy/dx
return answer
print(derrivative(x,y))
###Output
2.0000001010878066
|
labs/3.Segmentation/mask_rcnn.ipynb | ###Markdown
Mask R-CNN DemoA quick introduction to using the pre-trained Mask R-CNN model to detect and segment objects.The model was trained on the Microsoft Common Objects in Context (MS-COCO) dataset http://cocodataset.org/home
###Code
#download pretrained model
!wget https://gmfilestore.blob.core.windows.net/pretrained/mask_rcnn_coco.h5
import os
import sys
import random
import math
import numpy as np
np.random.seed(42)
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
# Root directory of the project
ROOT_DIR = os.path.abspath("./")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version
import coco
%matplotlib inline
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")
###Output
_____no_output_____
###Markdown
ConfigurationsWe'll be using a model trained on the MS-COCO dataset. The configurations of this model are in the ```CocoConfig``` class in ```coco.py```.For inferencing, modify the configurations a bit to fit the task. To do so, sub-class the ```CocoConfig``` class and override the attributes you need to change.
###Code
class InferenceConfig(coco.CocoConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
###Output
Configurations:
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 93
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME coco
NUM_CLASSES 81
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1000
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001
###Markdown
Create Model and Load Trained Weights
###Code
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)
###Output
WARNING: Logging before flag parsing goes to stderr.
W1008 16:53:04.605910 140167099500288 deprecation_wrapper.py:119] From /anaconda/envs/azureml_py36/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
W1008 16:53:04.624322 140167099500288 deprecation_wrapper.py:119] From /anaconda/envs/azureml_py36/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
W1008 16:53:04.627759 140167099500288 deprecation_wrapper.py:119] From /anaconda/envs/azureml_py36/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
W1008 16:53:04.651838 140167099500288 deprecation_wrapper.py:119] From /anaconda/envs/azureml_py36/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1919: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.
W1008 16:53:04.654616 140167099500288 deprecation_wrapper.py:119] From /anaconda/envs/azureml_py36/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3976: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.
W1008 16:53:07.473295 140167099500288 deprecation_wrapper.py:119] From /anaconda/envs/azureml_py36/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:2018: The name tf.image.resize_nearest_neighbor is deprecated. Please use tf.compat.v1.image.resize_nearest_neighbor instead.
W1008 16:53:07.944221 140167099500288 deprecation_wrapper.py:119] From /mnt/azmnt/code/Users/gmarchet/dev/dnnworkshop5/labs/3.Segmentation/mrcnn/model.py:341: The name tf.log is deprecated. Please use tf.math.log instead.
W1008 16:53:07.953891 140167099500288 deprecation.py:323] From /mnt/azmnt/code/Users/gmarchet/dev/dnnworkshop5/labs/3.Segmentation/mrcnn/model.py:399: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
W1008 16:53:07.960452 140167099500288 deprecation.py:506] From /mnt/azmnt/code/Users/gmarchet/dev/dnnworkshop5/labs/3.Segmentation/mrcnn/model.py:423: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
W1008 16:53:08.380446 140167099500288 deprecation_wrapper.py:119] From /mnt/azmnt/code/Users/gmarchet/dev/dnnworkshop5/labs/3.Segmentation/mrcnn/model.py:720: The name tf.sets.set_intersection is deprecated. Please use tf.sets.intersection instead.
W1008 16:53:08.385413 140167099500288 deprecation_wrapper.py:119] From /mnt/azmnt/code/Users/gmarchet/dev/dnnworkshop5/labs/3.Segmentation/mrcnn/model.py:722: The name tf.sparse_tensor_to_dense is deprecated. Please use tf.sparse.to_dense instead.
W1008 16:53:08.487473 140167099500288 deprecation.py:323] From /mnt/azmnt/code/Users/gmarchet/dev/dnnworkshop5/labs/3.Segmentation/mrcnn/model.py:772: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
###Markdown
ClassificationThe model classifies objects and returns class IDs, which are integer values. For example, in the MS-COCO dataset, the 'person' class is 1 and 'teddy bear' is 88. The IDs are not always sequential. The COCO dataset, for example, has class IDs 70 and 72, but not 71.To improve consistency, the ```Dataset``` class assigns its own sequential IDs. For example, if you load the COCO dataset using our ```Dataset``` class, the 'person' class has ID = 1 (just like COCO) and the 'teddy bear' class has 78 (different from COCO). Keep that in mind when mapping class IDs to class names.To get the list of class names, load the dataset and then use the ```class_names``` property.``` Load COCO datasetdataset = coco.CocoDataset()dataset.load_coco(COCO_DIR, "train")dataset.prepare() Print class namesprint(dataset.class_names)```We don't want to download the entire COCO dataset just to run this notebook, so we're including the list of class names below. The index of the class name in the list represent its ID starting with 0.
###Code
# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
###Output
_____no_output_____
###Markdown
Run Object Detection
###Code
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
# Run detection
results = model.detect([image], verbose=1)
# Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
###Output
Processing 1 images
image shape: (448, 640, 3) min: 0.00000 max: 255.00000 uint8
molded_images shape: (1, 1024, 1024, 3) min: -123.70000 max: 151.10000 float64
image_metas shape: (1, 93) min: 0.00000 max: 1024.00000 float64
anchors shape: (1, 261888, 4) min: -0.35390 max: 1.29134 float32
|
day06/PROJECT - Speeches - Word Embeddings and Topic Modelling.ipynb | ###Markdown
Project: state-of-the-union speeches In this project, we will load and process the `us_president_speeches.csv` file, preprocess the speeches, embed their words and do topic modeling on them.**The expected answers may vary, depending on how you decide to preprocess the speeches**. Preamble
###Code
!pip install --upgrade gensim
!pip install pyldavis
from typing import List
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
nltk.download("wordnet")
nltk.download("stopwords")
from nltk import WordNetLemmatizer
from wordcloud import WordCloud
from gensim.utils import simple_preprocess
from gensim.models import Word2Vec, KeyedVectors, LdaMulticore
from gensim.corpora import Dictionary
import pyLDAvis
import pyLDAvis.gensim_models as gensimvis
###Output
[nltk_data] Downloading package wordnet to /root/nltk_data...
[nltk_data] Package wordnet is already up-to-date!
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Package stopwords is already up-to-date!
###Markdown
Loading up the data Exercise 1 Load up the `us_president_speeches.csv` into an array named `speeches` and print the first 5 rows.
###Code
###Output
_____no_output_____
###Markdown
Exercise 2 Fill in the `???`s.1. How many speeches are in the DataFrame?2. How many unique presidents are in the DataFrame?3. What's the longest speech? How long is it (in characters)? Who gave it and when?
###Code
print("Nr. Speeches", ???)
print("Nr. Presidents", ???)
print("Longest speech is at index:", ???)
print(f"It is {???} characters long.")
president = ???
year = ???
print(f"President {president} gave it in {year}")
###Output
Nr. Speeches 227
Nr. Presidents 38
Longest speech is at index: 189
It is 217947 characters long.
President Carter gave it in 1981
###Markdown
Expected solution:```Nr. Speeches 227Nr. Presidents 38Longest speech is at index: 189It is 217947 characters long.President Carter gave it in 1981``` Preprocessing the data Exercise 3 In this exercise we will write a function that cleans the column `speech` of the dataframe, and returns a corpus of type `List[List[str]]`. Include `"wa", "ha"` in your list of stopwords.
###Code
###Output
_____no_output_____
###Markdown
Define a variable `corpus` with the result of applying this function to our `speeches` df.
###Code
###Output
_____no_output_____
###Markdown
Exercise 4 Print the first 50 characters speech alongside the first 10 words of its corresponding `List[str]` inside corpus. Check that both match in a meaningful way.
###Code
###Output
Fellow-Citizens of the Senate and House of Represe
['fellow', 'citizen', 'senate', 'house', 'representative', 'vain', 'may', 'expect', 'peace', 'indian']
###Markdown
Expected answer:```Fellow-Citizens of the Senate and House of Represe['fellow', 'citizen', 'senate', 'house', 'representative', 'vain', 'may', 'expect', 'peace', 'indian']``` Exercise 5 Define a `Dictionary` on this corpus and call it `dct`. How many unique tokens are there?
###Code
###Output
_____no_output_____
###Markdown
Embedding words Exercise 6 Train a `word2vec` model using `gensim`'s `Word2Vec`. Call it `model_w2v`. Leave all the hyperparameters as the default ones.
###Code
###Output
_____no_output_____
###Markdown
Exercise 7 What's the most similar word to `woman` according to the model? What about `senate`?
###Code
###Output
_____no_output_____
###Markdown
Getting topics Exercise 8 Define a `bows` variable with the result of applying `dct.doc2bow` to all documents in `corpus`.
###Code
###Output
_____no_output_____
###Markdown
Exercise 9 Fit a Latent Dirichlet Allocation to our bags-of-words `bows` using `gensim`'s `LdaMulticore` for 5, 10, 15 and 20 topics. To get comparable results, set the `random_state` to my favorite number, 42.
###Code
###Output
_____no_output_____
###Markdown
Exercise 10 Plot a line with number of topics (5, 10, 15 and 20) in the x axis, and log-perplexity of the model in the y axis. Interpret it. What does the log-perplexity usually say?
###Code
###Output
_____no_output_____
###Markdown
Exercise 11 Use `gensimvis` to visualize the model with 20 topics. (The result might be lackluster, why?)
###Code
###Output
_____no_output_____ |
slides/data_visualization.ipynb | ###Markdown
###Code
!pip install davos
import davos
###Output
Collecting davos
Downloading davos-0.1.0-py3-none-any.whl (76 kB)
[?25l
[K |████▎ | 10 kB 22.0 MB/s eta 0:00:01
[K |████████▋ | 20 kB 9.4 MB/s eta 0:00:01
[K |████████████▉ | 30 kB 6.0 MB/s eta 0:00:01
[K |█████████████████▏ | 40 kB 5.9 MB/s eta 0:00:01
[K |█████████████████████▍ | 51 kB 5.1 MB/s eta 0:00:01
[K |█████████████████████████▊ | 61 kB 5.2 MB/s eta 0:00:01
[K |██████████████████████████████ | 71 kB 5.3 MB/s eta 0:00:01
[K |████████████████████████████████| 76 kB 2.3 MB/s
[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from davos) (21.3)
Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from davos) (57.4.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->davos) (3.0.7)
Installing collected packages: davos
Successfully installed davos-0.1.0
###Markdown
OverviewThis notebook provides an overview of some different types of plots you can make in Python. We'll be using several sample datasets that come with the scikit-learn Python toolbox: - `california`: California house prices dataset - `digits`: images of hand-drawn numerals - `wine`: wine characteristicsWe'll explore these datasets (and some others, introduced later) in a few different ways to illustrate different ways of manipulating and visualizing the data. Import libraries
###Code
#visualization tools
smuggle matplotlib.pyplot as plt #matplotlib is a basic plotting library
smuggle seaborn as sns #seaborn is a library that uses matplotlib to make styled plots
from plotly smuggle express as px #plotly express is a library for drawing interactive figures
smuggle hypertools as hyp #hypertools is a library for visualizing "high-dimensional" data
#machine learning library
from sklearn smuggle svm, metrics #sklearn is a python machine learning library
# - svm is a pattern classification tool
# - metrics is a tool for evaluating the performance
# of machine learning algorithms
from sklearn.datasets smuggle fetch_openml # function for downloading open data
from sklearn smuggle datasets # another data source
#data wrangling tools
smuggle pandas as pd
smuggle numpy as np
###Output
Collecting hypertools
Downloading hypertools-0.7.0-py3-none-any.whl (59 kB)
[K |████████████████████████████████| 59 kB 3.2 MB/s
[?25hRequirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from hypertools) (0.16.0)
Collecting PPCA>=0.0.2
Downloading ppca-0.0.4-py3-none-any.whl (6.7 kB)
Requirement already satisfied: seaborn>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from hypertools) (0.11.2)
Requirement already satisfied: matplotlib>=1.5.1 in /usr/local/lib/python3.7/dist-packages (from hypertools) (3.2.2)
Collecting deepdish
Downloading deepdish-0.3.7-py2.py3-none-any.whl (37 kB)
Requirement already satisfied: pandas>=0.18.0 in /usr/local/lib/python3.7/dist-packages (from hypertools) (1.3.5)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist-packages (from hypertools) (1.19.5)
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from hypertools) (1.4.1)
Collecting umap-learn>=0.4.6
Downloading umap-learn-0.5.2.tar.gz (86 kB)
[K |████████████████████████████████| 86 kB 4.4 MB/s
[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from hypertools) (2.23.0)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from hypertools) (1.15.0)
Collecting scikit-learn!=0.22,<0.24,>=0.19.1
Downloading scikit_learn-0.23.2-cp37-cp37m-manylinux1_x86_64.whl (6.8 MB)
[K |████████████████████████████████| 6.8 MB 47.0 MB/s
[?25hRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.5.1->hypertools) (3.0.7)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.5.1->hypertools) (1.3.2)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.5.1->hypertools) (2.8.2)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.5.1->hypertools) (0.11.0)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.18.0->hypertools) (2018.9)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn!=0.22,<0.24,>=0.19.1->hypertools) (1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn!=0.22,<0.24,>=0.19.1->hypertools) (3.1.0)
Requirement already satisfied: numba>=0.49 in /usr/local/lib/python3.7/dist-packages (from umap-learn>=0.4.6->hypertools) (0.51.2)
Collecting pynndescent>=0.5
Downloading pynndescent-0.5.6.tar.gz (1.1 MB)
[K |████████████████████████████████| 1.1 MB 44.1 MB/s
[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from umap-learn>=0.4.6->hypertools) (4.62.3)
Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in /usr/local/lib/python3.7/dist-packages (from numba>=0.49->umap-learn>=0.4.6->hypertools) (0.34.0)
Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba>=0.49->umap-learn>=0.4.6->hypertools) (57.4.0)
Requirement already satisfied: tables in /usr/local/lib/python3.7/dist-packages (from deepdish->hypertools) (3.4.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->hypertools) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->hypertools) (2021.10.8)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->hypertools) (2.10)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->hypertools) (3.0.4)
Requirement already satisfied: numexpr>=2.5.2 in /usr/local/lib/python3.7/dist-packages (from tables->deepdish->hypertools) (2.8.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from numexpr>=2.5.2->tables->deepdish->hypertools) (21.3)
Building wheels for collected packages: umap-learn, pynndescent
Building wheel for umap-learn (setup.py) ... [?25l[?25hdone
Created wheel for umap-learn: filename=umap_learn-0.5.2-py3-none-any.whl size=82708 sha256=e20dddd00dfea2586aa681bf1d2299264d55d59f0c94fc349b4b91aeced43fb4
Stored in directory: /root/.cache/pip/wheels/84/1b/c6/aaf68a748122632967cef4dffef68224eb16798b6793257d82
Building wheel for pynndescent (setup.py) ... [?25l[?25hdone
Created wheel for pynndescent: filename=pynndescent-0.5.6-py3-none-any.whl size=53943 sha256=30976985df7adf209153e39c9849226ceb4e58ce72a73dfefaa7aae4a5d0ba8c
Stored in directory: /root/.cache/pip/wheels/03/f1/56/f80d72741e400345b5a5b50ec3d929aca581bf45e0225d5c50
Successfully built umap-learn pynndescent
Installing collected packages: scikit-learn, pynndescent, umap-learn, PPCA, deepdish, hypertools
Attempting uninstall: scikit-learn
Found existing installation: scikit-learn 1.0.2
Uninstalling scikit-learn-1.0.2:
Successfully uninstalled scikit-learn-1.0.2
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
imbalanced-learn 0.8.1 requires scikit-learn>=0.24, but you have scikit-learn 0.23.2 which is incompatible.[0m
Successfully installed PPCA-0.0.4 deepdish-0.3.7 hypertools-0.7.0 pynndescent-0.5.6 scikit-learn-0.23.2 umap-learn-0.5.2
###Markdown
Load in datasets
###Code
#load the datasets
california = fetch_openml(name='house_prices', as_frame=True)
digits = datasets.load_digits()
wine = datasets.load_wine()
#convert the datasets into Pandas DataFrames
california['data']['SalePrice'] = california['target']
california = california['data'].set_index('Id')
digits = pd.DataFrame(digits['data'], index=digits['target'])
wine = pd.DataFrame(wine['data'], columns=wine['feature_names'], index=wine['target'])
california.head()
digits.head()
wine.head()
###Output
_____no_output_____
###Markdown
HypertoolsHyperTools is a nice tool for starting to explore a dataset. Plotting a dataset with HyperTools entails projecting the data onto a 3-dimensional space, where similarly valued datapoints are shown close together. Documentation for Hypertools may be found [here](https://hypertools.readthedocs.io/en/latest/).
###Code
#Digits dataset
hyp.plot(digits, 'o', hue=np.array(digits.index)); #each digit is a drawn digit, colored by the number it refers to
###Output
/usr/local/lib/python3.7/dist-packages/hypertools/plot/plot.py:509: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
kwargs[kwarg]=np.array(kwargs[kwarg])
###Markdown
Visualizing some raw dataThe `digits` dataset contains 8x8 drawings of different digits. The hypertools plot above suggests that drawings of different digits are "clustered" in different ways. Let's visualize a few example digits using seaborn heatmaps
###Code
#plot the first 10 example digits from the dataset
for i in range(10):
print(f'Digit identity: {digits.index[i]}')
sns.heatmap(np.reshape(digits.iloc[i].values, [8, 8]), cmap='gray')
plt.show()
###Output
Digit identity: 0
###Markdown
Scatterplots with plotly express
###Code
px.scatter(california, x='YearBuilt', y='SalePrice')
px.scatter_3d(wine, x='alcohol', y='magnesium', z='ash', color='hue', size='color_intensity')
###Output
_____no_output_____
###Markdown
Simple line plot with matplotlib
###Code
plt.plot(np.sort(california['YearBuilt']), 'k-');
plt.xlabel('House age rank');
plt.ylabel('Year built');
###Output
_____no_output_____
###Markdown
Grouped bar plots with seabornWe'll use a new example dataset that works well for this example: - `titanic`: list of Titanic passengers and their attributes
###Code
titanic = sns.load_dataset("titanic")
titanic.head()
#source: https://seaborn.pydata.org/examples/grouped_barplot.html
g = sns.catplot(x="class", y="survived", hue="sex", data=titanic,
height=6, kind="bar", palette="muted")
g.despine(left=True)
g.set_ylabels("survival probability")
###Output
_____no_output_____
###Markdown
Many other example plots using plotly expressWe'll use a new dataset for these examples: - `gapminder`: a dataset of life expectancy information by year and location
###Code
#source: https://nbviewer.jupyter.org/github/plotly/plotly_express/blob/master/walkthrough.ipynb
gapminder = px.data.gapminder()
gapminder2007 = gapminder.query("year == 2007")
gapminder2007.head()
px.scatter(gapminder2007, x="gdpPercap", y="lifeExp", color="continent", size="pop", size_max=60, hover_name="country")
px.scatter(gapminder2007, x="gdpPercap", y="lifeExp", color="continent", size="pop", size_max=60,
hover_name="country", facet_col="continent", log_x=True)
#neat animation
px.scatter(gapminder, x="gdpPercap", y="lifeExp",size="pop", size_max=60, color="continent", hover_name="country",
animation_frame="year", animation_group="country", log_x=True, range_x=[100,100000], range_y=[25,90],
labels=dict(pop="Population", gdpPercap="GDP per Capita", lifeExp="Life Expectancy"))
px.choropleth(gapminder, locations="iso_alpha", color="lifeExp", hover_name="country", animation_frame="year",
color_continuous_scale=px.colors.sequential.Plasma, projection="natural earth")
###Output
_____no_output_____ |
Python/AbsoluteAndOtherAlgorithms/3Activity/InfFS_50.ipynb | ###Markdown
1. Import libraries
###Code
#----------------------------Reproducible----------------------------------------------------------------------------------------
import numpy as np
import random as rn
import os
seed=0
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
rn.seed(seed)
#----------------------------Reproducible----------------------------------------------------------------------------------------
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import pandas as pd
import scipy.sparse as sparse
import scipy.io
from sklearn.linear_model import LinearRegression
import time
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import MinMaxScaler
#--------------------------------------------------------------------------------------------------------------------------------
#Import ourslef defined methods
import sys
sys.path.append(r"../Defined")
import Functions as F
###Output
Using TensorFlow backend.
###Markdown
2. Loading data
###Code
train_data_arr=np.array(pd.read_csv('../Dataset/final_X_train.txt',header=None))
test_data_arr=np.array(pd.read_csv('../Dataset/final_X_test.txt',header=None))
train_label_arr=(np.array(pd.read_csv('../Dataset/final_y_train.txt',header=None))-1)
test_label_arr=(np.array(pd.read_csv('../Dataset/final_y_test.txt',header=None))-1)
data_arr=np.r_[train_data_arr,test_data_arr]
label_arr=np.r_[train_label_arr,test_label_arr]
label_arr_onehot=label_arr#to_categorical(label_arr)
print(data_arr.shape)
print(label_arr_onehot.shape)
data_arr=MinMaxScaler(feature_range=(0,1)).fit_transform(data_arr)
key_feture_number=50
###Output
_____no_output_____
###Markdown
3. Calculation
###Code
#--------------------------------------------------------------------------------------------------------------------------------
def IsnanAndIsinf(p_data):
p_data=np.array(p_data)
for i in np.arange(p_data.shape[0]):
for j in np.arange(p_data.shape[1]):
if np.isnan(p_data[i,j]) or np.isinf(p_data[i,j]):
p_data[i,j]=0
return p_data
#--------------------------------------------------------------------------------------------------------------------------------
def write_to_csv(p_data,p_path):
dataframe = pd.DataFrame(p_data)
dataframe.to_csv(p_path, mode='a',header=False,index=False,sep=',')
del dataframe
#--------------------------------------------------------------------------------------------------------------------------------
def mse_check(train, test):
LR = LinearRegression(n_jobs = -1)
LR.fit(train[0], train[1])
MSELR = ((LR.predict(test[0]) - test[1]) ** 2).mean()
return MSELR
#--------------------------------------------------------------------------------------------------------------------------------
def InfFS(p_data_arr,p_alpha,use_specify_number=False,specify_number=50):
df = pd.DataFrame(p_data_arr)
corr_ij_spearman__=df.corr(method ='spearman')
corr_ij_spearman_=IsnanAndIsinf(corr_ij_spearman__)
corr_ij_spearman=1-np.abs(corr_ij_spearman_)
STD=np.std(p_data_arr,axis=0)
STDMatrix_=np.zeros((STD.shape[0],STD.shape[0]))
for i in np.arange(STD.shape[0]):
for j in np.arange(STD.shape[0]):
STDMatrix_[i,j]=max(STD[i],STD[j])
STDMatrix_min=STDMatrix_-np.min(STDMatrix_)
STDMatrix_max=np.max(STDMatrix_min)
STDMatrix__=STDMatrix_min/STDMatrix_max
STDMatrix=IsnanAndIsinf(STDMatrix__)
N=p_data_arr.shape[1]
eps = (5e-06) * N;
factor = 1 - eps
A = ( p_alpha*STDMatrix + (1-p_alpha)*corr_ij_spearman )
rho = np.max(np.sum(A,axis=1))
A = A / (rho+eps)
I = np.eye(A.shape[0])
r = factor/rho
y = I - ( r * A )
S=np.linalg.inv(y)
WEIGHT = np.sum( S , axis=1 )
RANKED=np.argsort(-WEIGHT)
RANKED = RANKED
WEIGHT = WEIGHT
e = np.ones(N)
t = np.dot(S, e)
nbins = 0.5*N
cnts, bins = np.histogram(t, bins=int(nbins))
thr =np.mean(cnts)
size_sub = np.sum(cnts>thr)
if use_specify_number:
size_sub=specify_number
SUBSET = RANKED[0:size_sub]
return SUBSET
#--------------------------------------------------------------------------------------------------------------------------------
def cal(p_data_arr,\
p_label_arr_onehot,\
p_key_feture_number,\
p_seed):
C_train_x,C_test_x,C_train_y,C_test_y= train_test_split(p_data_arr,p_label_arr_onehot,test_size=0.2,random_state=p_seed)
os.environ['PYTHONHASHSEED'] = str(p_seed)
np.random.seed(p_seed)
rn.seed(p_seed)
#--------------------------------------------------------------------------------------------------------------------------------
train_feature=C_train_x
test_feature=C_test_x
t_start = time.time()
train_idx=InfFS(train_feature,p_alpha,use_specify_number=True,specify_number=p_key_feture_number)
t_used=time.time() - t_start
C_train_selected_x = train_feature[:, train_idx]
test_idx=InfFS(test_feature,p_alpha,use_specify_number=True,specify_number=p_key_feture_number)
C_test_selected_x = test_feature[:, test_idx]
# Classification on original features
train_feature=C_train_x
train_label=C_train_y
test_feature=C_test_x
test_label=C_test_y
orig_train_acc,orig_test_acc=F.ETree(train_feature,train_label,test_feature,test_label,0)
# Classification on selected features
train_feature=C_train_selected_x
train_label=C_train_y
test_feature=C_test_selected_x
test_label=C_test_y
selec_train_acc,selec_test_acc=F.ETree(train_feature,train_label,test_feature,test_label,0)
# Linear reconstruction
train_feature_tuple=(C_train_selected_x,C_train_x)
test_feature_tuple=(C_test_selected_x,C_test_x)
reconstruction_loss=mse_check(train_feature_tuple, test_feature_tuple)
results=np.array([orig_train_acc,orig_test_acc,selec_train_acc,selec_test_acc,reconstruction_loss])
print(results)
return orig_train_acc,orig_test_acc,selec_train_acc,selec_test_acc,reconstruction_loss
p_data_arr=data_arr
p_alpha=0.5
p_label_arr_onehot=label_arr_onehot
p_key_feture_number=key_feture_number
p_seed=0
orig_train_acc,orig_test_acc,selec_train_acc,selec_test_acc,reconstruction_loss=cal(p_data_arr,\
p_label_arr_onehot,\
p_key_feture_number,\
p_seed)
###Output
../Defined/Functions.py:196: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
clf.fit(p_train_feature, p_train_label)
|
TimeSeries/StackedLSTMForecastModel.ipynb | ###Markdown
Stacked LSTM Forescating modelhttps://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
###Code
from numpy import array
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# Split an univariate sequence into samples
def split_sequence(sequence, n_steps):
X, y = list(), list()
for i in range(len(sequence)):
# Find the end of the pattern
end_ix = i + n_steps
# Check if we are bound by sequence
if end_ix > len(sequence) - 1:
break
# Gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
return array(X), array(y)
# Define input sequence
raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
# Choose a number of time steps
n_steps = 3
# Split into samples
X, y = split_sequence(raw_seq, n_steps)
# Reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
X = X.reshape((X.shape[0], X.shape[1], n_features))
# Define model
model = Sequential()
model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps, n_features)))
model.add(LSTM(50, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# Fit model
model.fit(X, y, epochs=200)
# Demonstrate prediction
x_input = array([70, 80, 90])
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_input)
yhat
###Output
_____no_output_____ |
Big-Data-Clusters/CU9/public/content/repair/tsg126-accept-license-terms.ipynb | ###Markdown
TSG126 - azdata fails with ‘accept the license terms to use this product’ DescriptionWhen running an `azdata` command, it fails with: ERROR: Please accept the license terms to use this product through the prompt in an interactive env, or through the environment variable ACCEPT_EULA set to 'yes' in a non-interactive env. Common functionsDefine helper functions used in this notebook.
###Code
# Define `run` function for transient fault handling, hyperlinked suggestions, and scrolling updates on Windows
import sys
import os
import re
import platform
import shlex
import shutil
import datetime
from subprocess import Popen, PIPE
from IPython.display import Markdown
retry_hints = {} # Output in stderr known to be transient, therefore automatically retry
error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help
install_hint = {} # The SOP to help install the executable if it cannot be found
def run(cmd, return_output=False, no_output=False, retry_count=0, base64_decode=False, return_as_json=False):
"""Run shell command, stream stdout, print stderr and optionally return output
NOTES:
1. Commands that need this kind of ' quoting on Windows e.g.:
kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name}
Need to actually pass in as '"':
kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name}
The ' quote approach, although correct when pasting into Windows cmd, will hang at the line:
`iter(p.stdout.readline, b'')`
The shlex.split call does the right thing for each platform, just use the '"' pattern for a '
"""
MAX_RETRIES = 5
output = ""
retry = False
# When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see:
#
# ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)')
#
if platform.system() == "Windows" and cmd.startswith("azdata sql query"):
cmd = cmd.replace("\n", " ")
# shlex.split is required on bash and for Windows paths with spaces
#
cmd_actual = shlex.split(cmd)
# Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries
#
user_provided_exe_name = cmd_actual[0].lower()
# When running python, use the python in the ADS sandbox ({sys.executable})
#
if cmd.startswith("python "):
cmd_actual[0] = cmd_actual[0].replace("python", sys.executable)
# On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail
# with:
#
# UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128)
#
# Setting it to a default value of "en_US.UTF-8" enables pip install to complete
#
if platform.system() == "Darwin" and "LC_ALL" not in os.environ:
os.environ["LC_ALL"] = "en_US.UTF-8"
# When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc`
#
if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ:
cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc")
# To aid supportability, determine which binary file will actually be executed on the machine
#
which_binary = None
# Special case for CURL on Windows. The version of CURL in Windows System32 does not work to
# get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance
# of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost
# always the first curl.exe in the path, and it can't be uninstalled from System32, so here we
# look for the 2nd installation of CURL in the path)
if platform.system() == "Windows" and cmd.startswith("curl "):
path = os.getenv('PATH')
for p in path.split(os.path.pathsep):
p = os.path.join(p, "curl.exe")
if os.path.exists(p) and os.access(p, os.X_OK):
if p.lower().find("system32") == -1:
cmd_actual[0] = p
which_binary = p
break
# Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this
# seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound)
#
# NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split.
#
if which_binary == None:
which_binary = shutil.which(cmd_actual[0])
# Display an install HINT, so the user can click on a SOP to install the missing binary
#
if which_binary == None:
print(f"The path used to search for '{cmd_actual[0]}' was:")
print(sys.path)
if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None:
display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.'))
raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)")
else:
cmd_actual[0] = which_binary
start_time = datetime.datetime.now().replace(microsecond=0)
print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)")
print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})")
print(f" cwd: {os.getcwd()}")
# Command-line tools such as CURL and AZDATA HDFS commands output
# scrolling progress bars, which causes Jupyter to hang forever, to
# workaround this, use no_output=True
#
# Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait
#
wait = True
try:
if no_output:
p = Popen(cmd_actual)
else:
p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1)
with p.stdout:
for line in iter(p.stdout.readline, b''):
line = line.decode()
if return_output:
output = output + line
else:
if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file
regex = re.compile(' "(.*)"\: "(.*)"')
match = regex.match(line)
if match:
if match.group(1).find("HTML") != -1:
display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"'))
else:
display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"'))
wait = False
break # otherwise infinite hang, have not worked out why yet.
else:
print(line, end='')
if wait:
p.wait()
except FileNotFoundError as e:
if install_hint is not None:
display(Markdown(f'HINT: Use {install_hint} to resolve this issue.'))
raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e
exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait()
if not no_output:
for line in iter(p.stderr.readline, b''):
try:
line_decoded = line.decode()
except UnicodeDecodeError:
# NOTE: Sometimes we get characters back that cannot be decoded(), e.g.
#
# \xa0
#
# For example see this in the response from `az group create`:
#
# ERROR: Get Token request returned http error: 400 and server
# response: {"error":"invalid_grant",# "error_description":"AADSTS700082:
# The refresh token has expired due to inactivity.\xa0The token was
# issued on 2018-10-25T23:35:11.9832872Z
#
# which generates the exception:
#
# UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte
#
print("WARNING: Unable to decode stderr line, printing raw bytes:")
print(line)
line_decoded = ""
pass
else:
# azdata emits a single empty line to stderr when doing an hdfs cp, don't
# print this empty "ERR:" as it confuses.
#
if line_decoded == "":
continue
print(f"STDERR: {line_decoded}", end='')
if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"):
exit_code_workaround = 1
# inject HINTs to next TSG/SOP based on output in stderr
#
if user_provided_exe_name in error_hints:
for error_hint in error_hints[user_provided_exe_name]:
if line_decoded.find(error_hint[0]) != -1:
display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.'))
# Verify if a transient error, if so automatically retry (recursive)
#
if user_provided_exe_name in retry_hints:
for retry_hint in retry_hints[user_provided_exe_name]:
if line_decoded.find(retry_hint) != -1:
if retry_count < MAX_RETRIES:
print(f"RETRY: {retry_count} (due to: {retry_hint})")
retry_count = retry_count + 1
output = run(cmd, return_output=return_output, retry_count=retry_count)
if return_output:
if base64_decode:
import base64
return base64.b64decode(output).decode('utf-8')
else:
return output
elapsed = datetime.datetime.now().replace(microsecond=0) - start_time
# WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so
# don't wait here, if success known above
#
if wait:
if p.returncode != 0:
raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n')
else:
if exit_code_workaround !=0 :
raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n')
print(f'\nSUCCESS: {elapsed}s elapsed.\n')
if return_output:
if base64_decode:
import base64
return base64.b64decode(output).decode('utf-8')
else:
return output
# Hints for tool retry (on transient fault), known errors and install guide
#
retry_hints = {'azdata': ['Endpoint sql-server-master does not exist', 'Endpoint livy does not exist', 'Failed to get state for cluster', 'Endpoint webhdfs does not exist', 'Adaptive Server is unavailable or does not exist', 'Error: Address already in use', 'Login timeout expired (0) (SQLDriverConnect)', 'SSPI Provider: No Kerberos credentials available', ], 'kubectl': ['A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond', ], 'python': [ ], }
error_hints = {'azdata': [['Please run \'azdata login\' to first authenticate', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['The token is expired', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Reason: Unauthorized', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Max retries exceeded with url: /api/v1/bdc/endpoints', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Look at the controller logs for more details', 'TSG027 - Observe cluster deployment', '../diagnose/tsg027-observe-bdc-create.ipynb'], ['provided port is already allocated', 'TSG062 - Get tail of all previous container logs for pods in BDC namespace', '../log-files/tsg062-tail-bdc-previous-container-logs.ipynb'], ['Create cluster failed since the existing namespace', 'SOP061 - Delete a big data cluster', '../install/sop061-delete-bdc.ipynb'], ['Failed to complete kube config setup', 'TSG067 - Failed to complete kube config setup', '../repair/tsg067-failed-to-complete-kube-config-setup.ipynb'], ['Data source name not found and no default driver specified', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Can\'t open lib \'ODBC Driver 17 for SQL Server', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Control plane upgrade failed. Failed to upgrade controller.', 'TSG108 - View the controller upgrade config map', '../diagnose/tsg108-controller-failed-to-upgrade.ipynb'], ['NameError: name \'azdata_login_secret_name\' is not defined', 'SOP013 - Create secret for azdata login (inside cluster)', '../common/sop013-create-secret-for-azdata-login.ipynb'], ['ERROR: No credentials were supplied, or the credentials were unavailable or inaccessible.', 'TSG124 - \'No credentials were supplied\' error from azdata login', '../repair/tsg124-no-credentials-were-supplied.ipynb'], ['Please accept the license terms to use this product through', 'TSG126 - azdata fails with \'accept the license terms to use this product\'', '../repair/tsg126-accept-license-terms.ipynb'], ], 'kubectl': [['no such host', 'TSG010 - Get configuration contexts', '../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb'], ['No connection could be made because the target machine actively refused it', 'TSG056 - Kubectl fails with No connection could be made because the target machine actively refused it', '../repair/tsg056-kubectl-no-connection-could-be-made.ipynb'], ], 'python': [['Library not loaded: /usr/local/opt/unixodbc', 'SOP012 - Install unixodbc for Mac', '../install/sop012-brew-install-odbc-for-sql-server.ipynb'], ['WARNING: You are using pip version', 'SOP040 - Upgrade pip in ADS Python sandbox', '../install/sop040-upgrade-pip.ipynb'], ], }
install_hint = {'azdata': [ 'SOP063 - Install azdata CLI (using package manager)', '../install/sop063-packman-install-azdata.ipynb' ], 'kubectl': [ 'SOP036 - Install kubectl command line interface', '../install/sop036-install-kubectl.ipynb' ], }
print('Common functions defined successfully.')
###Output
_____no_output_____
###Markdown
StepsRun `azdata` once with the ACCEPT_EULA command, e.g:
###Code
os.environ["ACCEPT_EULA"]
run('azdata bdc config list')
print("Notebook execution is complete.")
###Output
_____no_output_____ |
statrethink_stan_w08.ipynb | ###Markdown
Rethinking Statistics course in Stan - Week 8 Lecture 15: Multilevel Models- [Video](https://www.youtube.com/watch?v=AALYPv5xSos)- [Slides](https://speakerdeck.com/rmcelreath/l15-statistical-rethinking-winter-2019)Lecture 16: Multilevel Models 2- [Video](https://www.youtube.com/watch?v=ZG3Oe35R5sY)- [Slides](https://speakerdeck.com/rmcelreath/l16-statistical-rethinking-winter-2019)[Proposed problems](https://github.com/gbosquechacon/statrethinking_winter2019/blob/master/homework/week08.pdf) and [solutions in R](https://github.com/gbosquechacon/statrethinking_winter2019/blob/master/homework/week08_solutions.pdf) for the exercises of the week.
###Code
import pandas as pd
import numpy as np
from cmdstanpy import CmdStanModel
from plotnine import *
%load_ext watermark
%watermark -n -u -p pandas,numpy,cmdstanpy,plotnine
def waic(stan_fit):
log_lik = stan_fit.stan_variable('log_lik')
lik_mean = np.ma.masked_invalid(np.exp(log_lik).mean(axis=0))
lppd = np.log(lik_mean).sum()
p_waic = np.var(log_lik, axis=0).sum()
waic = -2*lppd + 2*p_waic
return round(waic, 3)
###Output
_____no_output_____
###Markdown
Exercise 1 > Revisit the Reed frog survival data, `reedfrogs`, and add the predation and size treatment variables to the varying intercepts model. Consider models with either predictor alone, both predictors, as well as a model including their interaction. What do you infer about the causal influence of these predictor variables? Also focus on the inferred variation across tanks (the σ across tanks). Explain why it changes as it does across models with different predictors included. Let's get the data.
###Code
d = pd.read_csv('./dat/reedfrogs.csv', header=0, sep=';')
d['tank'] = d.index
d['pred'] = pd.factorize(d['pred'])[0]
d['volume'] = d['size'].replace({'small':0, 'big':1})
d.tail(3)
###Output
_____no_output_____
###Markdown
Now to define a series of models. The first is just the varying intercepts model from the text. Model 1:
###Code
model = '''
data {
int n;
int tank[n];
int density[n];
int surv[n];
}
parameters {
real a_bar;
real sigma;
vector[n] a;
}
model {
// prior
a_bar ~ normal(0, 1.5);
sigma ~ exponential(1);
a ~ normal(a_bar, sigma);
// likelihood
surv ~ binomial_logit(density, a);
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) {
log_lik[i] = binomial_logit_lpmf(surv[i] | density[i], a[i]);
}
}
'''
stan_file = './stn/week08_01a.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_1a = CmdStanModel(stan_file=stan_file)
model_1a.compile()
data = d[['tank', 'density', 'surv']].copy()
data = data.to_dict(orient='list')
data['n'] = len(data['surv'])
fit_1a = model_1a.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_01a.stan to exe file /home/jovyan/work/statret/stn/week08_01a
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_01a
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Model 2 (pred):
###Code
model = '''
data {
int n;
int tank[n];
int density[n];
int pred[n];
int surv[n];
}
parameters {
real a_bar;
real sigma;
real bp;
vector[n] a;
}
transformed parameters {
vector[n] alpha;
for (i in 1:n) {alpha[i] = a[i] + bp*pred[i];}
}
model {
// prior
a_bar ~ normal(0, 1.5);
sigma ~ exponential(1);
a ~ normal(a_bar, sigma);
bp ~ normal(-0.5, 1);
// likelihood
for (i in 1:n) {surv[i] ~ binomial_logit(density[i], alpha[i]);}
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) {
log_lik[i] = binomial_logit_lpmf(surv[i] | density[i], alpha[i]);
}
}
'''
stan_file = './stn/week08_01b.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_1b = CmdStanModel(stan_file=stan_file)
model_1b.compile()
data = d[['tank', 'density', 'pred', 'surv']].copy()
data = data.to_dict(orient='list')
data['n'] = len(data['surv'])
fit_1b = model_1b.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_01b.stan to exe file /home/jovyan/work/statret/stn/week08_01b
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_01b
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Model 3 (size):
###Code
model = '''
data {
int k;
int n;
int tank[n];
int density[n];
int volume[n];
int surv[n];
}
parameters {
real a_bar;
real sigma;
vector[k] s;
vector[n] a;
}
transformed parameters {
vector[n] alpha;
for (i in 1:n) {alpha[i] = a[i] + s[volume[i]];}
}
model {
// prior
a_bar ~ normal(0, 1.5);
sigma ~ exponential(1);
a ~ normal(a_bar, sigma);
s ~ normal(0, 0.5);
// likelihood
for (i in 1:n) {surv[i] ~ binomial_logit(density[i], alpha[i]);}
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) {
log_lik[i] = binomial_logit_lpmf(surv[i] | density[i], alpha[i]);
}
}
'''
stan_file = './stn/week08_01c.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_1c = CmdStanModel(stan_file=stan_file)
model_1c.compile()
data = d[['tank', 'density', 'volume', 'surv']].copy()
data.volume = data.volume + 1
data = data.to_dict(orient='list')
data['n'] = d.surv.size
data['k'] = d.volume.nunique()
fit_1c = model_1c.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_01c.stan to exe file /home/jovyan/work/statret/stn/week08_01c
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_01c
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Model 4 (pred + size):
###Code
model = '''
data {
int n;
int k;
int tank[n];
int density[n];
int volume[n];
int pred[n];
int surv[n];
}
parameters {
real a_bar;
real sigma;
real bp;
vector[k] s;
vector[n] a;
}
transformed parameters {
vector[n] alpha;
for (i in 1:n) {alpha[i] = a[i] + bp*pred[i] + s[volume[i]];}
}
model {
// prior
a_bar ~ normal(0, 1.5);
sigma ~ exponential(1);
a ~ normal(a_bar, sigma);
s ~ normal(0, 0.5);
// likelihood
for (i in 1:n) {surv[i] ~ binomial_logit(density[i], alpha[i]);}
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) {
log_lik[i] = binomial_logit_lpmf(surv[i] | density[i], alpha[i]);
}
}
'''
stan_file = './stn/week08_01d.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_1d = CmdStanModel(stan_file=stan_file)
model_1d.compile()
data = d[['tank', 'density', 'volume', 'pred', 'surv']].copy()
data.volume = data.volume + 1
data = data.to_dict(orient='list')
data['n'] = d.surv.size
data['k'] = d.volume.nunique()
fit_1d = model_1d.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_01d.stan to exe file /home/jovyan/work/statret/stn/week08_01d
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_01d
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Model 5 (pred + size + interaction):
###Code
model = '''
data {
int n;
int k;
int tank[n];
int density[n];
int volume[n];
int pred[n];
int surv[n];
}
parameters {
real a_bar;
real sigma;
vector[k] bp;
vector[k] s;
vector[n] a;
}
transformed parameters {
vector[n] alpha;
for (i in 1:n) {alpha[i] = a[i] + bp[volume[i]]*pred[i] + s[volume[i]];}
}
model {
// prior
a_bar ~ normal(0, 1.5);
sigma ~ exponential(1);
a ~ normal(a_bar, sigma);
s ~ normal(0, 0.5);
// likelihood
for (i in 1:n) {surv[i] ~ binomial_logit(density[i], alpha[i]);}
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) {
log_lik[i] = binomial_logit_lpmf(surv[i] | density[i], alpha[i]);
}
}
'''
stan_file = './stn/week08_01e.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_1e = CmdStanModel(stan_file=stan_file)
model_1e.compile()
data = d[['tank', 'density', 'volume', 'pred', 'surv']].copy()
data.volume = data.volume + 1
data = data.to_dict(orient='list')
data['n'] = d.surv.size
data['k'] = d.volume.nunique()
fit_1e = model_1e.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_01e.stan to exe file /home/jovyan/work/statret/stn/week08_01e
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_01e
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
I coded the interaction model (`samples_5`) using a non-centered parameterization. The interaction itself is done by creating a `bp` parameter for each size value. In this way, the effect of `pred` depends upon `volume`. First let's consider the WAIC scores:
###Code
sc = {
'1' : waic(fit_1a),
'2' : waic(fit_1b),
'3' : waic(fit_1c),
'4' : waic(fit_1d),
'5' : waic(fit_1e),
}
scores = pd.DataFrame(sc.items(), columns=['model','waic'])
scores.sort_values(by='waic')
###Output
_____no_output_____
###Markdown
These models are really very similar in expected out-of-sample accuracy. The tank variation is huge. But take a look at the posterior distributions for predation and size. You'll see that predation does seem to matter, as you'd expect. Size matters a lot less. So while predation doesn't explain much of the total variation, there is plenty of evidence that it is a real effect. Remember: We don't select a model using WAIC(or LOO). A predictor can make little difference in total accuracy but still be a real causal effect.Let's look at all the sigma posterior distributions:
###Code
atts = ['sigma']
fits = {'1':fit_1a, '2':fit_1b, '3':fit_1c, '4':fit_1d, '5':fit_1e}
akk = []
for k in fits.keys():
df = fits[k].draws_pd(vars=atts)
df['model'] = k
akk.append(df)
im = pd.concat(akk)
(
ggplot(im)
+ aes(x='model', y='sigma')
+ coord_flip()
+ geom_boxplot(outlier_alpha=0.1)
+ theme_light()
+ theme(figure_size=(6, 3))
)
###Output
_____no_output_____
###Markdown
The two models that omit predation, `model_11` and `model_13`, have larger values of `sigma`. This is because predation explains some of the variation among tanks. So when you add it to the model, the variation in the tank intercepts gets smaller. Exercise 2 > In 1980, a typical Bengali woman could have 5 or more children in her lifetime. By the year 2000, a typical Bengali woman had only 2 or 3. You're going to look at a historical set of data, when contraception was widely available but many families chose not to use it. These data reside in data `bangladesh` and come from the 1988 Bangladesh Fertility Survey. Each row is one of 1934 women. There are six variables, but you can focus on two of them for this practice problem:> 1. `district`: ID number of administrative district each woman resided in2. `use.contraception`: An indicator (0/1) of whether the woman was using contraception
###Code
d = pd.read_csv('./dat/bangladesh.csv', header=0, sep=';')
d['did'] = pd.factorize(d['district'])[0]
d['conc'] = d['use.contraception']
d.head()
model = '''
data {
int n;
int k;
int did[n];
int conc[n];
}
parameters {
vector[k] alpha;
}
model {
// prior
alpha ~ normal(0, 1.5);
// likelihood
for (i in 1:n) { conc[i] ~ bernoulli_logit(alpha[did[i]]); }
}
'''
stan_file = './stn/week08_02a.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_2a = CmdStanModel(stan_file=stan_file)
model_2a.compile()
data = d[['did', 'conc']].copy()
data.did = data.did + 1
data = data.to_dict(orient='list')
data['n'] = d.conc.size
data['k'] = d.did.nunique()
fit_2a = model_2a.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_02a.stan to exe file /home/jovyan/work/statret/stn/week08_02a
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_02a
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Now for the ordinary fixed effect model:
###Code
model = '''
data {
int n;
int k;
int did[n];
int conc[n];
}
parameters {
real alpha_bar;
real sigma;
vector[k] alpha;
}
model {
// prior
alpha_bar ~ normal(0, 1.5);
sigma ~ exponential(1);
alpha ~ normal(alpha_bar, sigma);
// likelihood
for (i in 1:n) { conc[i] ~ bernoulli_logit(alpha[did[i]]); }
}
'''
stan_file = './stn/week08_02b.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_2b = CmdStanModel(stan_file=stan_file)
model_2b.compile()
data = d[['did', 'conc']].copy()
data.did = data.did + 1
data = data.to_dict(orient='list')
data['n'] = d.conc.size
data['k'] = d.did.nunique()
fit_2b = model_2b.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:compiling stan file /home/jovyan/work/statret/stn/week08_02b.stan to exe file /home/jovyan/work/statret/stn/week08_02b
INFO:cmdstanpy:compiled model executable: /home/jovyan/work/statret/stn/week08_02b
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Now let's extract the samples, compute posterior mean probabilities in each district, and plot it all:
###Code
def logit2prob(logits):
odds = np.exp(logits)
probs = odds/(1+odds)
return probs
prob2a = logit2prob(fit_2a.stan_variable(var='alpha').mean(axis=0))
prob2b = logit2prob(fit_2b.stan_variable(var='alpha').mean(axis=0))
prob_line = logit2prob(fit_2b.stan_variable(var='alpha_bar').mean(axis=0))
###Output
_____no_output_____
###Markdown
The red points are the fixed estimations. The blue points are the varying effects. As you'd expect, they are shrunk towards the mean (the _red_ line). Some are shrunk more than others. The third district from the left shrunk a lot. Let's look at the sample size in each district: district 3 has only 2 women sampled. So it shrinks a lot. There are couple of other districts, like 49 and 54, that also have very few women sampled. But their fixed estimates aren't as extreme, so they don't shrink as much as district 3 does. All of this is explained by partial pooling, of course.
###Code
im = pd.DataFrame({'model_2a':prob2a, 'model_2b':prob2b}).reset_index()
im['district'] = im.index+1
im = pd.melt(im, id_vars=['district'], value_vars=['model_2a','model_2b'], var_name='model', value_name='prob')
(
ggplot(im)
+ aes(x='district', y='prob', color='model')
+ geom_point()
+ geom_hline(yintercept=prob_line, linetype='dotted')
+ theme_light()
+ theme(figure_size=(9,2))
)
###Output
_____no_output_____
###Markdown
Exercise 3 Return to the Trolley data, (`Trolley`), from Chapter 12. Define and fit a varying intercepts model for these data. By this I mean to add an intercept parameter for the individual to the linear model. Cluster the varying intercepts on individual participants, as indicated by the unique values in the id variable. Include action, intention, and contact as before. Compare the varying intercepts model and a model that ignores individuals, using both WAIC/LOO and posterior predictions. What is the impact of individual variation in these data?
###Code
d = pd.read_csv('./dat/Trolley.csv', header=0, sep=';')
elvl = d['edu'].unique()
cat = {elvl[i]:i for i in [7 , 0 , 6 , 4 , 2 , 1, 3, 5]}
d['edu_cat'] = d.edu.replace(cat)
d['age_std'] = (d['age'] - d['age'].mean())/d['age'].std()
d['id'] = pd.factorize(d['id'])[0]
d.tail(3)
###Output
_____no_output_____
###Markdown
First, let's load the data and re-run the old model from Chapter 12:
###Code
model = '''
data {
int n;
int k;
int action[n];
int contact[n];
int intention[n];
int response[n];
}
parameters {
ordered[k] cutpoints;
real bA;
real bC;
real bI;
real bIA;
real bIC;
}
transformed parameters {
vector[n] phi;
vector[n] BI;
for (i in 1:n) {
BI[i] = bI + bIA*action[i] + bIC*contact[i];
phi[i] = bA*action[i] + bC*contact[i] + BI[i]*intention[i];
}
}
model {
// prior
cutpoints ~ normal(0,15);
bA ~ normal(0,0.5);
bC ~ normal(0,0.5);
bI ~ normal(0,0.5);
bIA ~ normal(0,0.5);
bIC ~ normal(0,0.5);
// likelihood
for (i in 1:n) { response[i] ~ ordered_logistic(phi[i], cutpoints); }
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) { log_lik[i] = ordered_logistic_lpmf(response[i] | phi[i], cutpoints); }
}
'''
stan_file = './stn/week08_03a.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_3a = CmdStanModel(stan_file=stan_file)
model_3a.compile()
data = d[['action', 'contact', 'intention', 'response']].copy()
data = data.to_dict(orient='list')
data['n'] = len(data['response'])
data['k'] = d.response.nunique()-1
fit_3a = model_3a.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:CmdStan start procesing
###Markdown
Now to run the varying intercept model, we need to build a valid individual ID variable. The IDs in the data are long tags, so we can coerce them to integers in many ways. What is important is that the index values go from 1 (_zero in python_) to the number of individuals.
###Code
model = '''
data {
int n;
int k;
int p;
int id[n];
int action[n];
int contact[n];
int intention[n];
int response[n];
}
parameters {
ordered[k] cutpoints;
vector[p] alpha;
real sigma;
real bA;
real bC;
real bI;
real bIA;
real bIC;
}
transformed parameters {
vector[n] phi;
vector[n] BI;
for (i in 1:n) {
BI[i] = bI + bIA*action[i] + bIC*contact[i];
phi[i] = alpha[id[i]] + bA*action[i] + bC*contact[i] + BI[i]*intention[i];
}
}
model {
// prior
cutpoints ~ normal(0,15);
bA ~ normal(0,0.5);
bC ~ normal(0,0.5);
bI ~ normal(0,0.5);
bIA ~ normal(0,0.5);
bIC ~ normal(0,0.5);
sigma ~ exponential(1);
alpha ~ normal(0, sigma);
// likelihood
for (i in 1:n) { response[i] ~ ordered_logistic(phi[i], cutpoints); }
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) { log_lik[i] = ordered_logistic_lpmf(response[i] | phi[i], cutpoints); }
}
'''
stan_file = './stn/week08_03b.stan'
with open(stan_file, 'w') as f:
print(model, file=f)
model_3b = CmdStanModel(stan_file=stan_file)
model_3b.compile()
data = d[['action', 'contact', 'intention', 'response', 'id']].copy()
data['id'] = data.id+1
data = data.to_dict(orient='list')
data['n'] = len(data['response'])
data['k'] = d.response.nunique()-1
data['p'] = d.id.nunique()
fit_3b = model_3b.sample(data=data, chains=4)
###Output
INFO:cmdstanpy:CmdStan start procesing
###Markdown
We can begin by comparing the posterior distributions. The original coefficients are:
###Code
fit_3a.summary().loc[['bA','bC','bI','bIA', 'bIC']]
###Output
_____no_output_____
###Markdown
And the new ones, having added the individual IDs, are:
###Code
fit_3b.summary().loc[['bA','bC','bI','bIA', 'bIC']]
###Output
_____no_output_____
###Markdown
Everything has gotten more negative. This is because there is a lot of individual variation in average rating, look at the distribution for sigma. That is on the $logit$ scale, so that's a lot of variation on the probability scale. That variation in average rating was hiding some of the effect of the treatments. We get more precision by conditioning on individual.The WAIC comparison can also help show how much variation comes from individual differences in average rating:
###Code
sc = {
'a' : waic(fit_3a),
'b' : waic(fit_3b),
}
scores = pd.DataFrame(sc.items(), columns=['model','waic'])
scores.sort_values(by='waic')
###Output
_____no_output_____ |
Data Analysis with Pandas/Pandas.ipynb | ###Markdown
Pandas * Data analysis library* Advanced version of Excel with more features than excel Topics * Series* DataFrame* Operations* Missing Data* Merging and Joining* File Reading and Writing
###Code
import pandas as pd
###Output
_____no_output_____
###Markdown
Series in Pandas
###Code
import numpy as np
import pandas as pd
pd.Series([2, 6, 10]) #Equivalent to 1D numpy array
pd.Series([2, 6, 10], index = ['a', 'b', 'c']) #Custom indexing
s1 = pd.Series([2, 6, 10], index = ['a', 'b', 'c']) #Custom indexing
s1['a']
s1[['a','c']]
pd.Series({'a1' : 5, 'b1' : 7, 'c1' : 4}) #Create Series using dict
pd.Series({'a1' : 'Hello', 'b1' : 7, 'c1' : True}) #Multiple datatypes-- objects
s1 = pd.Series([1, 3, 5], index = ['a', 'b', 'c'])
s2 = pd.Series([2, 7, 9], index = ['b', 'c', 'd'])
s1
s2
s1 * s2 #Multiplies values with same index
s1 - s2 #Performs operations on values with same index
###Output
_____no_output_____
###Markdown
DataFrame Can be considered as 2D Array
###Code
df = pd.DataFrame(data = [[2,4,6,-1],[3,-4,2,-1],[-10,3,5,-7]],
columns=['C1','C2','C3','C4'],
index=['R1','R2','R3'])
df
df.head(2) #First few rows
df['newC'] = 7 #Create new column
df
df['newC'] = df['C1'] + 5
df
df.drop('newC', axis=1) #Delete column
#Axis=0 --> row, #axis=1 -->columna
df.drop('R1', axis=0) #Delete row
df
df.drop('newC', axis=1, inplace=True) #inplace --> modify existing DataFrame
df
df.drop('R1', axis=0, inplace=True)
df
###Output
_____no_output_____
###Markdown
Select
###Code
df
df['C2']
df[['C2', 'C4']]
###Output
_____no_output_____
###Markdown
.loc(row, column) .iloc(row, column) -- refer by integer value
###Code
df
df.loc['R2', :]
df.loc['R2', ['C2', 'C3']]
df.iloc[1,:] #Refers to R3-- iloc references by integer
df.iloc[1, 1:3]
###Output
_____no_output_____
###Markdown
Index, Multiindex Single index
###Code
df = pd.DataFrame(data = [[2,4,6,-1], [3,-4,2,-1],[-10,2,5,-7]],
columns = ['C1', 'C2', 'C3', 'C4'],
index = ['R1', 'R2', 'R3'])
df
df.index #Displays indexes
df.reset_index()
df.set_index('C3', inplace=True) #Set 'C3' as index for the DataFrame
df
df['C2']
df
df.loc[2, :]
df.loc[5,:]
df.index
###Output
_____no_output_____
###Markdown
Multiindex Creates multiple primary indexes for the DataFrame
###Code
df = pd.DataFrame(data=np.array([['Math', 'C1', 's1', 93],
['Science', 'C1', 's2', 78],
['English', 'C1', 's3', 86],
['Math', 'C2', 's4', 58],
['English', 'C2', 's5', 71],
['Science', 'C2', 's6', 69]]),
columns=['Subject', 'Class', 'Student','MaxScore'])
df
df.index
df.set_index(['Class', 'Subject'], inplace=True) #Create multi-index
df
df.index
df.loc['C1'] #Returns a sub-DataFrame since it has multi-index
df.loc['C2'].loc['English'] #Multiple loc functions to grab the data
###Output
_____no_output_____ |
notebooks/experiments/03-lwt-experimental-setup-ti-mf-ps.ipynb | ###Markdown
Load Data
###Code
# set path to where repo is located
REPO_PATH = os.path.join("..", "..")
# setting path
DATA_PATH = os.path.join(REPO_PATH, "data", "evaluation")
LDA_PATH = os.path.join(REPO_PATH, "models", "lda")
# category to train
CATEGORY = "Pet_Supplies"
# LDA training parameters
EPOCHS = 10
# ti-mf training parameters, training epochs, learning, and regularisation rate
PARAMS = {"num_epochs": 5,
"learning_rate": 0.005,
"beta": 0.1}
# reproducibility checks
SEED = 42
np.random.seed(42)
# load train/test dataset and lda trained model
train = pd.read_csv(f"{DATA_PATH}/{CATEGORY}_train.csv")
test = pd.read_csv(f"{DATA_PATH}/{CATEGORY}_test.csv")
lda = pickle.load(open(f"{LDA_PATH}/{CATEGORY}_lda.model", "rb"))
# checking train dataframe
train.head().append(train.tail())
test.head().append(test.tail())
# generating test history
test_user_history = (pd.DataFrame(test.groupby(['reviewerID'])['asin']
.apply(list).reset_index()))
print(test_user_history)
###Output
reviewerID asin
0 A04173782GDZSQ91AJ7OD [B0090Z9AYS, B00CPDWT2M]
1 A042274212BJJVOBS4Q85 [B005AZ4M3Q, B00771WQIY]
2 A0436342QLT4257JODYJ [B0018CDR68, B003SJTM8Q, B00474A3DY]
3 A04795073FIBKY8GSLZYI [B001PKT30M, B005DGI2RY]
4 A06658082A27F4VB5UG8E [B000TZ1TTM, B0019VUHH0]
... ... ...
18993 AZYJE40XW6MFG [B00HVAKJZS, B00IDZT294]
18994 AZZ56WF4X19G2 [B004A7X218]
18995 AZZNK89PXD006 [B0002DHV16, B005BP8MQ8, B009RTX4SU]
18996 AZZV9PDNMCOZW [B007EQL390, B00ISBWVT6]
18997 AZZYW4YOE1B6E [B0002AQPA2, B0002AQPA2, B0002ARQV4]
[18998 rows x 2 columns]
###Markdown
Preparing Topic Vectors [Train/Load]
###Code
# # generating tokenized reviews
# processed_reviews = train["processedReviewText"].apply(lambda x: x.split())
# # instantiate lda model
# lda_model = lda.LDA(reviews=processed_reviews, n_epochs=EPOCHS)
# %%time
# # training the LDA model
# lda_model.train()
# # save model
# pickle.dump(lda_model, open(LDA_PATH, "wb"))
###Output
_____no_output_____
###Markdown
Generating User/Item Topic Vectors
###Code
user_idx_map, user_vecs, item_idx_map, item_vecs = utilities.generate_user_item_vectors(train, lda)
# converting factors into numpy obj
user_factors = user_vecs.to_numpy()
item_factors = item_vecs.to_numpy()
# check user factors
user_factors[0,:]
# check item factors
item_factors[0,:]
###Output
_____no_output_____
###Markdown
Generate N-Recommendations = {5, 10, 15, 20} Instantiate Pre-Initialised Matrix Factorization (Topic Modelling)
###Code
# instantiating ti_mf
ti_mf = algorithms.PreInitialisedMF(user_map=user_idx_map,
item_map=item_idx_map,
user_factor=user_factors,
item_factor=item_factors,
num_factors=50,
**PARAMS)
###Output
_____no_output_____
###Markdown
Training Topic Initialized-Matrix Factorization (TI-MF)
###Code
%%time
# fitting to training data
ti_mf.fit(train, verbose=True)
%%time
# generate candidate items for user to predict rating
testset = ti_mf.trainset.build_anti_testset()
%%time
# predict ratings for all pairs (u, i) that are NOT in the training set
candidate_items = ti_mf.test(testset, verbose=False)
###Output
CPU times: user 12min 8s, sys: 4min 35s, total: 16min 44s
Wall time: 19min 9s
###Markdown
Loop through N = {5, 10, 15, 20}For each top-N setting, we will generate candidates items up to *N*-items and run metrics evaluation of `Recall@N` and `Novelty@N` on all users.
###Code
# generate item popularity
item_popularity = evaluate_model.generate_item_popularity(train)
%%time
n_recommendations = {}
for n in [5, 10, 15, 20]:
# retrieve the top-n items based on similarities
top_ns = ti_mf.get_top_n(candidate_items, n)
# evaluate how well the recommended items predicted the future purchases
n_recommended_items = (evaluate_model.
evaluate_recommendations(model_name="TI-MF",
top_ns=top_ns,
user_rating_history=test_user_history,
item_popularity=item_popularity,
n=n,
mf_based=True))
# saving the n-value and recommended items
n_recommendations[n] = (top_ns, n_recommended_items)
###Output
The TI-MF has an average recall@5: 0.00351, average novelty@5: 0.91345
The TI-MF has an average recall@10: 0.00498, average novelty@10: 0.92980
The TI-MF has an average recall@15: 0.00679, average novelty@15: 0.93399
The TI-MF has an average recall@20: 0.00888, average novelty@20: 0.93343
CPU times: user 6min 23s, sys: 3min 28s, total: 9min 52s
Wall time: 13min 6s
###Markdown
Evaluate N-RecommendationsFor each top-N recommendation list, we pick a randomly sampled user to look at their *N*-number of recommendations based on their purchase history. N=5
###Code
top_ns_05 = n_recommendations[5][0]
utilities.retrieve_recommendations(train, top_ns_05, mf_based=True)
###Output
For user: A3T87QAUUPTMZK:
Purchase History:
asin title
43366 B0010OSIHW Zoo Med Eco Earth Compressed Coconut Fiber Sub...
45100 B00167VVP4 Zoo Med Eco Earth Loose Coconut Fiber Substra...
46998 B0019IJXD2 Zoo Med Reptile Fogger Terrarium Humidifier
Recommending:
asin title
0 B000MLHDS4 Wellness Pure Rewards Natural Grain Free Dog T...
1 B000255P9E Seachem Neutral Regulator
2 B001HN5Z4K Bit-O-Luv Bistro Beef Recipe Dog Treats, 4.0-O...
3 B000ILEIUE Blue Dog Bakery | Dog Treats | All-Natural | P...
4 B0012KB4D4 Purina Friskies Gravy Sensations Wet Cat Food ...
###Markdown
N=10
###Code
top_ns_10 = n_recommendations[10][0]
utilities.retrieve_recommendations(train, top_ns_10, mf_based=True)
###Output
For user: A1XEZIHQIUAOR1:
Purchase History:
asin title
1487 B000084E6V Nylabone Dental Dinosaur Chew
1727 B000084E6V Nylabone Dental Dinosaur Chew
28789 B0006VMN4O Pioneer Pet SmartCat Peek-A-Prize Toy Box with...
37658 B000JZ1WSU SmartCat 3836 Tick Tock Teaser
42603 B000XZDV44 Hill'S Science Diet Kitten Savory Salmon Entre...
43867 B0012KCUOG Whisker Lickin'S Soft & Delicious Chicken ...
Recommending:
asin title
0 B0002AQL5G API REPLACEMENT TEST TUBES WITH CAPS For Any A...
1 B000HHSLEI Pet Stages Mini Jingle Cage
2 B000255MZG API STRESS COAT Aquarium Water Conditioner
3 B0002DI1W4 CO2 Natural Plant System Bubble Counter with S...
4 B000YIYSH4 Acurel Premium Activated Filter Carbon Granule...
5 B0002563MM Clear & Flexible Air Line Tubing
6 B0002565SY Marineland Rite-Size Penguin Power Filter Cart...
7 B003JFRQQ4 Scaredy Cut Tiny Trim by Small Pet Grooming Sa...
8 B001CZXZEU Fluval External Power Filter Pre-Filter Media
9 B000F4AVPA Chuckit! Ultra Ball
###Markdown
N=15
###Code
top_ns_15 = n_recommendations[15][0]
utilities.retrieve_recommendations(train, top_ns_15, mf_based=True)
###Output
For user: A89LQAXW1IY6S:
Purchase History:
asin title
12819 B0002ARP2O Marshall Ferret Deluxe Leisure Lounge, Pattern...
12825 B0002ARP2O Marshall Ferret Deluxe Leisure Lounge, Pattern...
38837 B000MD3NLS MidWest Homes for Pets Snap'y Fit Stainless St...
42683 B000Y8UNAU Pro Select Fleece Cat Perch Covers - Comfortab...
46465 B0018CJZ32 SmartCat Corner Litter Box
Recommending:
asin title
0 B00290K0C2 LitterLocker Refill Cartridge 10 pk
1 B001OQXEHK Fresh Step Crystals, Premium Cat Litter, Scent...
2 B001U8FOES Curvations Litter Scoop Size
3 B004U8Z2YW Arm & Hammer Double Duty Clumping Litter, ...
4 B008W8IC4I Cat's Pride Fresh and Light Multi-Cat Premium ...
5 B0014CHDYO Breeze Tidy Cat Litter Pads 16.9"x11.4&qu...
6 B001HSMYSU LitterMaid Ultimate Accessories Kit for Elite...
7 B000NSGKYY Litter Locker Refill Cartridge 5 pk
8 B0015ZN54C Pureness Giant Litter Scoop
9 B005KSHGW2 Purina Pro Plan Dog Toothbrush Stick Rubber Ma...
10 B000EUC9J6 Northeastern Products Cedarific Natural Cedar ...
11 B007Z8LBZI Litter Genie Ultimate Cat Litter Disposal Syst...
12 B000PKSW5A Precious Cat Dr. Elsey's Kitten Attract Scoopa...
13 B0002DHY4K Tetra Whisper Power Filter for Aquariums, 3 Fi...
14 B007Z8LBJE LitterLocker 6-Pack Genie Refill Cartridge
###Markdown
N=20
###Code
top_ns_20 = n_recommendations[20][0]
utilities.retrieve_recommendations(train, top_ns_20, mf_based=True)
###Output
For user: A3C2ECIXEQ0YFQ:
Purchase History:
asin title
30751 B0009YS4P0 Nutri-Vet Hip & Joint Extra Strength Chewa...
37067 B000IBRI2Y Dog Dazer II Ultrasonic Dog Deterrent
40175 B000OV4VAU Nutri-Vet Alaska Salmon Oil
53623 B0029NQTI8 Pedigree Choice Cuts Variety Pack Lamb/Vegetab...
Recommending:
asin title
0 B000F4AVPA Chuckit! Ultra Ball
1 B001LNUKE6 Purebites Cheddar Cheese Dog Treats
2 B000255MZG API STRESS COAT Aquarium Water Conditioner
3 B003JFRQQ4 Scaredy Cut Tiny Trim by Small Pet Grooming Sa...
4 B0002DJVQY JW Pet Company Activitoys Triple Mirror Bird Toy
5 B0002AROVQ Marshall Ferret Litter Pan
6 B00006IX59 Chuckit! Dog Ball Launcher
7 B0006JKCN0 KONG Frog Dog Toy, Extra Small, Green
8 B0002563S6 Magic Coat Cat Tearless Shampoo, 12-Ounce
9 B0017J8NDY Mammoth Flossy Chews Cottonblend Color 5-Knot ...
10 B00025YUR2 Marineland Magnum Dual Purpose Canister Filter
11 B001B4TV2W Chuckit! Max Glow Ball,
12 B001GS71KW Precision Pet Petmate Soft Side Play Yard Heav...
13 B0002XUJFG Nature's Miracle Quick Results Training Pads
14 B000062WUT Multipet Plush Dog Toy
15 B00025646W Kordon Methylene Blue-General Disease Preventi...
16 B0002DHZ9Y Python No Spill Clean and Fill Aquarium Gravel...
17 B0017JFNNC Redbarn Naturals Bully Springs
18 B000QSON4K Greenies Pill Pockets Soft Dog Treats, Beef, C...
19 B000K9JRH8 GoCat DaBird Feather Refill, Assorted Colors, ...
###Markdown
Cross-Analysis for Cold-Start Users (<= 2 Purchased Items)For each top-N setting, we will generate candidates items up to *N*-items and run metrics evaluation of `Recall@N` and `Novelty@N` on cold-start users (e.g., users who purchased two or less items based on items per user in the training set).
###Code
cold_start_users = utilities.generate_cold_start_users(train)
for n in tuple(zip([5, 10, 15, 20], [top_ns_05, top_ns_10, top_ns_15, top_ns_20])):
cold_start_top_ns = dict(filter(lambda x: x[0] in cold_start_users, n[1].items()))
# evaluate how well the recommended items predicted the future purchases
# on cold start users
n_recommended_items = (evaluate_model.
evaluate_recommendations(model_name="TI-MF",
top_ns=cold_start_top_ns,
user_rating_history=test_user_history,
item_popularity=item_popularity,
n=n[0],
mf_based=True))
###Output
The TI-MF has an average recall@5: 0.00331, average novelty@5: 0.91336
The TI-MF has an average recall@10: 0.00452, average novelty@10: 0.92967
The TI-MF has an average recall@15: 0.00674, average novelty@15: 0.93392
The TI-MF has an average recall@20: 0.00939, average novelty@20: 0.93340
###Markdown
Generating Recommended Items DataFrame
###Code
max_recommendations = (utilities
.generate_recommendations_df(train=train,
n_recommendations=n_recommendations,
algo_name="TI-MF",
mf_based=True,
max_recommended=20))
max_recommendations
###Output
_____no_output_____
###Markdown
Store in `SQLite` DB
###Code
# engine = create_engine("sqlite:///recommender.db", echo=True)
# max_recommendations.to_sql(f"{CATEGORY}", con=engine, if_exists="append")
###Output
_____no_output_____ |
_notebooks/2020-06-28-quantization.ipynb | ###Markdown
5 Myths about quantized neural networks> A post about misconceptions and myths around quantization of neural networks- toc: false - badges: false- comments: false- categories: [jupyter, quantization]- image: images/die.jpg- author: Mathias Lechner Background: What are quantized neural networks? When we run numerical algorithms on our computer, we need to make sacrifices in terms of precision for the sake of runtime. For instance, the square root of 2 is an irrational number and has an infinite amount of decimal digits. Thus we need to decide how many digits we really need for our application.Each extra digit of precision increases the memory and time requirements to store and compute a variable.For example, the IEEE-754 standard specifies four types of floating-point formats:
###Code
#hide_input
import numpy as np
print("np.sqrt(2):")
print("float128:",str(np.sqrt(np.float128(2))))
print("float64: ",str(np.sqrt(np.float64(2))))
print("float32: ",str(np.sqrt(np.float32(2))))
print("float16: ",str(np.sqrt(np.float16(2))))
###Output
np.sqrt(2):
float128: 1.4142135623730950488
float64: 1.4142135623730951
float32: 1.4142135
float16: 1.414
###Markdown
For machine learning applications, the ```float32``` format has been the default choice, as it provides a decent performance while avoiding extreme numerical errors. However, in the past decade researcher have made the following two observations:- During the training phase, certain types of layers can be run and trained with lower precision (e.g., ```float16```)- After the training phase (=inference phase), neural networks can run with much lower precision levels without sacrificing much accuracyConsequently, Nvidia's latest [A100 GPU](https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf) supports the following six numerical format:
###Code
#hide_input
import pandas as pd
import altair as alt
df = pd.DataFrame({'Data type': ["float64"],
'TOPS': [9.7],
'Significand precision': ['52-bits'],
'Exponent': ['11-bits'],
'Comment': ['Double precision IEE-754 floating-point'],
})
df = df.append({'TOPS': 19.5,
'Data type': "float32",
'Comment': 'Single precision IEE-754 floating-point',
'Significand precision': '23-bits',
'Exponent': '8-bits',
},ignore_index=True)
df = df.append({'TOPS': 156,
'Data type': "TensorFloat32",
'Comment': '32-bit floating-point format with reduced significand precision',
'Significand precision': '10-bits',
'Exponent': '8-bits',
},ignore_index=True)
df = df.append({'TOPS': 312,
'Data type': "float16",
'Comment': 'Half precision IEE-754 floating-point',
'Significand precision': '10-bits',
'Exponent': '5-bits',
},ignore_index=True)
df = df.append({'TOPS': 312,
'Data type': "bfloat16",
'Comment': '16-bit brain-float format with larger range but reduced significand precision',
'Significand precision': '7-bits',
'Exponent': '8-bits',
},ignore_index=True)
df = df.append({'TOPS': 624,
'Data type': "int8",
'Comment': '8-bit integer format for fixed-point arithmetic',
'Significand precision': '7-bits',
'Exponent': '0-bits',
},ignore_index=True)
df[['Data type','Significand precision','Exponent']]
###Output
_____no_output_____
###Markdown
One item that stands out in this list is the last row: While all other formats are based on a floating-point representation, ```int8``` is an integer type.This raises the question: > **How can we run a neural network with integer operations?**The answer is quantization. > Quantization translates a network that operates over floating-point variables into a network that uses fixed-point arithmetic[Fixed-point arithmetic](https://en.wikipedia.org/wiki/Fixed-point_arithmetic) is a numerical format that can be implemented relatively efficiently used integer operations.For instance, we can use the first four bits of an ```int8``` value to represent the digits before the comma, and the last four bits to represent fractional digits that come after the comma:```Decimal: 0.5 + 1.25 = 1.75Binary: 0000.1000 + 0001.0100 = 0001.1100```A fixed-point addition can be implemented by simple integer addition and a fixed-point multiplication by an integer multiplication followed by a bit-wise shift operation.Obviously, the precision achieved with an 8-bit fixed-point format is not enough for training a neural network. However, most types of layers can be quantized for inferencing without suffering a significant loss in accuracy.The quantization step itself rounds the ```float32``` weight values to their nearest corresponding fixed-point value.The clear advantages of running a network using ```int8``` is that:1. It requires less memory, which improves cache and memory bandwidth efficiency.2. Can run using more efficient integer operationsIn particular, a [2017 Google paper](https://arxiv.org/pdf/1704.04760.pdf) writes:> Eight-bit integer multiplies can be 6X less energy and 6X less area than IEEE 754 16-bit floating-point multiplies and the> advantage for integer addition is 13X in energy and 38X in area [Dal16].> > ***- ''In-Datacenter Performance Analysis of a Tensor Processing Unit'' - Jouppi et al.***Despite this relatively simple concept, there are several misconceptions and myths regarding quantized neural networks: Myth 1: Quantization is only necessary for ultra-low-power embedded systemsFar from it. Datacenter applications currently benefit the most from quantization. For instance, the first generation of [Google's Tensor Processing Units (TPUs)](https://arxiv.org/pdf/1704.04760.pdf) only supported quantized networks. Computation units for floating-point arithmetic were only added in the [second generation](https://www.tomshardware.com/news/tpu-v2-google-machine-learning,35370.html).Likewise, Nvidia's [V100](https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-volta-gpu-accelerators/) and latest [A100](https://www.anandtech.com/show/15801/nvidia-announces-ampere-architecture-and-a100-products) canperform four times as many ```int8``` tensor operations compared to ```float32``` operations per second (or twice as much ```int8``` as ```float16``` tensor operations per second).This means that you can **quadruple the throughput of your datacenter application** with quantization in a best-case scenario. Myth 2: Quantization makes networks smaller but not fasterAs already hinted in the myth above, modern AI accelerators such as GPU and TPU can run integer operations faster than floating-point operations.Let's look at the compute performance of Nvidia's latest [A100 GPU](https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf):
###Code
#hide_input
points = alt.Chart(df).mark_bar().encode(
alt.X('Data type',sort=list(df['Data type']),axis=alt.Axis(labels=False,title='Data format')),
y=alt.Y('TOPS',axis=alt.Axis(title="Tera op/s")),
color=alt.Color('Data type',legend=None,scale=alt.Scale(scheme='dark2')),
tooltip=['Data type','TOPS','Comment', 'Significand precision','Exponent']
).properties(
width=600,
height=300,
title="Nvidia A100 compute performance"
)
#points
text = points.mark_text(
align='center',
fontSize=16,
baseline='middle',
dy=-10
).encode(
text='Data type'
)
points + text
###Output
_____no_output_____
###Markdown
Essentially, quantization does not only make the network smaller, but makes them also **runs faster**! Myth 3: Any layer in a neural network can be quantizedSome types of layers do not tolerate quantization very well. For example, in [a discussion of an ICLR paper by Max Welling's group](https://openreview.net/forum?id=HkxjYoCqKX¬eId=rygmk1EDT7) we see that quantizing the first or the last layer of a network results in a considerable drop in accuracy. This gap does not entirely close even if we train the network using [quantization-aware training](https://arxiv.org/pdf/1712.05877.pdf) techniques.One trick often used to avoid this drop in accuracy is not to quantize the first and the last layer. As these two layers only take up a small fraction of the computations inside a network, running the first and the last layer with ```float32``` does not hurt throughput much, but significantly benefits the accuracy of the network. However, one some end-devices, this approach is not an option. For instance, [Google's Edge TPU](https://cloud.google.com/edge-tpu) only supports ```int8```. Therefore, in such cases, every layer of the network must be quantized to 8-bit integers. Myth 4: It's easy to compare different quantization approachesComparing two different quantization methods is not a trivial job. Connecting to the discussion above, let's imagine we have a network and quantize it with two different methods to obtain network A and network B.While network A achieves a 90% accuracy by quantized all layers, network B achieves a 92% accuracy but leaves the first layer running with floating-point precision.Which method is better?The answer to this question depends on the context; which target device will the network run on?If it's a device without a floating-point unit such as the Edge TPU or a microcontroller, then method A is clearly better. Contrarily, if we plan to run the network on a V100 or A100 GPU, then method B might be the better approach.Another technique that causes a lot of misconceptions found in [the discussion of the ICLR paper by Max Welling's group](https://openreview.net/forum?id=HkxjYoCqKX¬eId=rygmk1EDT7) are **non-uniform quantization schemes**:Fixed-point formats partition the representable value range using a uniform grid, e.g., there are the same amount of intermediate values between 1.5 and 2.5 as between 2.5 and 3.5. Looking at the typical weight distribution of neural networks, we notice that they follow a Gaussian-like bell curve distribution with smaller values occurring more frequently than large weight values.
###Code
#hide
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
num_classes = 10
input_shape = (28, 28, 1)
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_train = np.expand_dims(x_train, -1)
y_train = keras.utils.to_categorical(y_train, num_classes)
model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
]
)
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=32, epochs=1, validation_split=0.1)
#hide_input
weights = model.get_weights()
weights = [weights[0].flatten(),weights[2].flatten(),weights[4].flatten()]
weights = np.concatenate(weights,axis=0)
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(8,4))
sns.distplot(weights,hist=True,norm_hist=True)
plt.title("Weight distribution of a 3-layer CNN trained on MNIST")
plt.xlabel("Weight value")
plt.ylabel("Density")
plt.show()
###Output
_____no_output_____ |
assunto-7_geopandas/assunto-7_geopandas.ipynb | ###Markdown
https://geopandas.orghttps://geopandas.org/ Geopandas é um projeto open-source que torna mais fácil lidar com dados espaciais em Python.Sua funcionalidade deriva de outras bibliotecas:- PANDAS: Combinan e estendendo as funcionalidades utilizadas pela biblioteca pandas para objetos geométricos- SHAPELY: As operações geométricas são possibilitadas por essa biblioteca- FIONA: Possibilita o acesso aos arquivos- DESCARTES E MATPLOTLIB: São utilizados para a plotagem dos mapas. InstalaçãoA instalação com os seguintes comandos dá conta da biblioteca e de suas dependências. conda install geopandas para ambientes criados e geridos com condapip install geopandas para ambienter criados e geridos com pip Para a visualização dos plots, a biblioteca matplotlib e descartes também deve ser instaladasconda install matplotlib descartespip install matplotlib descartes Funcionalidade básicaNa mesma pasta deste notebook, há uma outra pasta chamada Data. Abriremos tal arquivo para apresentar a funcionalidade básica
###Code
import geopandas as gpd ## Geopandas será usado prefixado por gpd
caminho = "Data/DAMSELFISH_distributions.shp" ## String
data = gpd.read_file(fp)## Função do gpd
type(data)
###Output
_____no_output_____
###Markdown
Um geodataframe é uma estrutura de dados tabulares com a adição de uma coluna chamada geometry.Podemos ler essa tabela chamando a variável data.
###Code
data ## Variável onde colocamos o geodataframe
###Output
_____no_output_____
###Markdown
Para olharmos apenas o topo da tabela, podemos chamar o método head do geodataframe. Por padrão, o argumento é 5, mas pode ser modificado.
###Code
data.head()
data.head(2)
###Output
_____no_output_____
###Markdown
A geometria pode ser visualizada chamando o método plot do geodataframe
###Code
data.plot()
###Output
_____no_output_____
###Markdown
Estrutura de dados GeoseriesAs series podem ser visualizadas como colunas dessa tabela.As geosseries são um tipo específico de série. São uma coleção de geometrias, possibilitando atributos e métodos tais quais áreas, coordenadas máximas e minimas e validação de geometrias.A lista completa pode ser encontrada [aqui](https://geopandas.org/reference.html). Geopandas compartilha a sintaxe do pandas para selecionar colunas nesse geodataframe. Essa sintaxe é um pouco esquisita!Sua abstração é a seguinte dataframe['coluna']
###Code
geometria = data['geometry']
type(geometria)
geometria.head() ## O método head também vale aqui
# Podemos encadear o método
# Não precisando guardar em uma variável
data['BINOMIAL'].head()
###Output
_____no_output_____
###Markdown
Um recorte de linhas da coluna pode ser feita da seguinte maneira:dataframe[linha_inicial:linha_final]
###Code
data[0:5]
###Output
_____no_output_____
###Markdown
O método .iterrows() permite passar de linha em linha desse dataframe, em um for loop
###Code
for index, row in selection.iterrows():
poly_area = row['geometry'].area
print("Polygon area at index {0} is: {1:.3f}".format(index, poly_area))
data['area'] = data.area
data.head(2)
###Output
_____no_output_____ |
notebooks/4.dpp_diversity_phrases.ipynb | ###Markdown
Dimensionality reduction
###Code
## Plot embeddings in low dim space
%matplotlib inline
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
all_cvs_numpy.shape[0]
n_comps = all_cvs_numpy.shape[0]
## Convert vectors to TSNE
tsne=TSNE(n_components=n_comps, perplexity=3, method ='exact', verbose=1)
sentences_tsne = tsne.fit_transform(all_cvs_numpy).astype('float64')
plt.figure(num=None, figsize=(16, 8), dpi=120, facecolor='w', edgecolor='k')
plt.grid()
plt.scatter(sentences_tsne[:,0], sentences_tsne[:,1])
for label, x, y in zip(CV,sentences_tsne[:,0], sentences_tsne[:,1]):
font = {'size' : 12, 'weight' : 'normal'}
plt.rc('font', **font)
plt.annotate(label.split('.')[0], xy=(x, y), xytext=(0, 0), textcoords='offset points')
import numpy as np
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP
from numpy import linalg as LA
seed = 0
rng = np.random.RandomState(seed)
eig_vecs, _ = qr(all_cvs_numpy)
eigenvals_sentences = LA.eigvals(eig_vecs).astype('float64')
DPP = FiniteDPP(kernel_type='correlation',
**{'K': (eig_vecs * eigenvals_sentences).dot(eig_vecs.T)})
DPP.plot_kernel()
rng = np.random.RandomState(seed)
DPP.flush_samples()
n_sets = 5
for _ in range(n_sets):
DPP.sample_exact(mode='GS', random_state=rng,)
for x, samp in enumerate(DPP.list_of_samples):
print("SET {} ---".format(x))
print("--- ELEMENTS {}".format(samp))
for i,j in enumerate(samp):
print(" - {}".format(CV[j]))
###Output
SET 0 ---
--- ELEMENTS [11 5 6]
- Dog Walker. Pets, 5 years. pet shop, free time, dog, walk, breed, pet, Sizes.
- Staff Accountant. Finance, 15 years. IRS, Tax, SEC Reporting, Revenue Recognition, Consolidation, market and money, financial audit, fiscal and sales.
- Senior Accountant. Finance, 18 years. Tax, IRS, SEC Reporting, Consolidation, market, Investments, sales Credit.
SET 1 ---
--- ELEMENTS [ 6 7 10]
- Senior Accountant. Finance, 18 years. Tax, IRS, SEC Reporting, Consolidation, market, Investments, sales Credit.
- Controller Accountant. Finance, 22 years. Management, SEC Reporting, Balance, sales, market, Consolidation, Revenue, Investments, audit.
- Doctor Cardiologist. Health, 22 years. Specialist cardiovascular system, patient health, treatment, disease, medical, clinical
SET 2 ---
--- ELEMENTS [10 4 5]
- Doctor Cardiologist. Health, 22 years. Specialist cardiovascular system, patient health, treatment, disease, medical, clinical
- Software Associate. Technology, 4 years. programming,Javascript, React, Angular, AWS, Python.
- Staff Accountant. Finance, 15 years. IRS, Tax, SEC Reporting, Revenue Recognition, Consolidation, market and money, financial audit, fiscal and sales.
SET 3 ---
--- ELEMENTS [3 9 2]
- Quality Assurance. Technology, 15 years. Test, Automation, Java, TDD, Python, Regression, Requirements.
- Certified Nurse. Health, 16 years. nurse, Lead, Assess patient health, treatment care plans, hospital, disease, medical records, clinical support
- Software Architect. Technology, 22 years. Oracle, programming, Java, NoSQL, Javascript,programming, Python, Go.
SET 4 ---
--- ELEMENTS [3 6 2]
- Quality Assurance. Technology, 15 years. Test, Automation, Java, TDD, Python, Regression, Requirements.
- Senior Accountant. Finance, 18 years. Tax, IRS, SEC Reporting, Consolidation, market, Investments, sales Credit.
- Software Architect. Technology, 22 years. Oracle, programming, Java, NoSQL, Javascript,programming, Python, Go.
|
Improving Deep Neural Networks Hyperparameter Tuning, Regularization and Optimization/Tensorflow_introduction.ipynb | ###Markdown
Introduction to TensorFlowWelcome to this week's programming assignment! Up until now, you've always used Numpy to build neural networks, but this week you'll explore a deep learning framework that allows you to build neural networks more easily. Machine learning frameworks like TensorFlow, PaddlePaddle, Torch, Caffe, Keras, and many others can speed up your machine learning development significantly. TensorFlow 2.3 has made significant improvements over its predecessor, some of which you'll encounter and implement here!By the end of this assignment, you'll be able to do the following in TensorFlow 2.3:* Use `tf.Variable` to modify the state of a variable* Explain the difference between a variable and a constant* Train a Neural Network on a TensorFlow datasetProgramming frameworks like TensorFlow not only cut down on time spent coding, but can also perform optimizations that speed up the code itself. Table of Contents- [1- Packages](1) - [1.1 - Checking TensorFlow Version](1-1)- [2 - Basic Optimization with GradientTape](2) - [2.1 - Linear Function](2-1) - [Exercise 1 - linear_function](ex-1) - [2.2 - Computing the Sigmoid](2-2) - [Exercise 2 - sigmoid](ex-2) - [2.3 - Using One Hot Encodings](2-3) - [Exercise 3 - one_hot_matrix](ex-3) - [2.4 - Initialize the Parameters](2-4) - [Exercise 4 - initialize_parameters](ex-4)- [3 - Building Your First Neural Network in TensorFlow](3) - [3.1 - Implement Forward Propagation](3-1) - [Exercise 5 - forward_propagation](ex-5) - [3.2 Compute the Cost](3-2) - [Exercise 6 - compute_cost](ex-6) - [3.3 - Train the Model](3-3)- [4 - Bibliography](4) 1 - Packages
###Code
import h5py
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.python.framework.ops import EagerTensor
from tensorflow.python.ops.resource_variable_ops import ResourceVariable
import time
###Output
_____no_output_____
###Markdown
1.1 - Checking TensorFlow Version You will be using v2.3 for this assignment, for maximum speed and efficiency.
###Code
tf.__version__
###Output
_____no_output_____
###Markdown
2 - Basic Optimization with GradientTapeThe beauty of TensorFlow 2 is in its simplicity. Basically, all you need to do is implement forward propagation through a computational graph. TensorFlow will compute the derivatives for you, by moving backwards through the graph recorded with `GradientTape`. All that's left for you to do then is specify the cost function and optimizer you want to use! When writing a TensorFlow program, the main object to get used and transformed is the `tf.Tensor`. These tensors are the TensorFlow equivalent of Numpy arrays, i.e. multidimensional arrays of a given data type that also contain information about the computational graph.Below, you'll use `tf.Variable` to store the state of your variables. Variables can only be created once as its initial value defines the variable shape and type. Additionally, the `dtype` arg in `tf.Variable` can be set to allow data to be converted to that type. But if none is specified, either the datatype will be kept if the initial value is a Tensor, or `convert_to_tensor` will decide. It's generally best for you to specify directly, so nothing breaks! Here you'll call the TensorFlow dataset created on a HDF5 file, which you can use in place of a Numpy array to store your datasets. You can think of this as a TensorFlow data generator! You will use the Hand sign data set, that is composed of images with shape 64x64x3.
###Code
train_dataset = h5py.File('datasets/train_signs.h5', "r")
test_dataset = h5py.File('datasets/test_signs.h5', "r")
x_train = tf.data.Dataset.from_tensor_slices(train_dataset['train_set_x'])
y_train = tf.data.Dataset.from_tensor_slices(train_dataset['train_set_y'])
x_test = tf.data.Dataset.from_tensor_slices(test_dataset['test_set_x'])
y_test = tf.data.Dataset.from_tensor_slices(test_dataset['test_set_y'])
type(x_train)
###Output
_____no_output_____
###Markdown
Since TensorFlow Datasets are generators, you can't access directly the contents unless you iterate over them in a for loop, or by explicitly creating a Python iterator using `iter` and consuming itselements using `next`. Also, you can inspect the `shape` and `dtype` of each element using the `element_spec` attribute.
###Code
print(x_train.element_spec)
print(next(iter(x_train)))
###Output
tf.Tensor(
[[[227 220 214]
[227 221 215]
[227 222 215]
...
[232 230 224]
[231 229 222]
[230 229 221]]
[[227 221 214]
[227 221 215]
[228 221 215]
...
[232 230 224]
[231 229 222]
[231 229 221]]
[[227 221 214]
[227 221 214]
[227 221 215]
...
[232 230 224]
[231 229 223]
[230 229 221]]
...
[[119 81 51]
[124 85 55]
[127 87 58]
...
[210 211 211]
[211 212 210]
[210 211 210]]
[[119 79 51]
[124 84 55]
[126 85 56]
...
[210 211 210]
[210 211 210]
[209 210 209]]
[[119 81 51]
[123 83 55]
[122 82 54]
...
[209 210 210]
[209 210 209]
[208 209 209]]], shape=(64, 64, 3), dtype=uint8)
###Markdown
The dataset that you'll be using during this assignment is a subset of the sign language digits. It contains six different classes representing the digits from 0 to 5.
###Code
unique_labels = set()
for element in y_train:
unique_labels.add(element.numpy())
print(unique_labels)
###Output
{0, 1, 2, 3, 4, 5}
###Markdown
You can see some of the images in the dataset by running the following cell.
###Code
images_iter = iter(x_train)
labels_iter = iter(y_train)
plt.figure(figsize=(10, 10))
for i in range(25):
ax = plt.subplot(5, 5, i + 1)
plt.imshow(next(images_iter).numpy().astype("uint8"))
plt.title(next(labels_iter).numpy().astype("uint8"))
plt.axis("off")
###Output
_____no_output_____
###Markdown
There's one more additional difference between TensorFlow datasets and Numpy arrays: If you need to transform one, you would invoke the `map` method to apply the function passed as an argument to each of the elements.
###Code
def normalize(image):
"""
Transform an image into a tensor of shape (64 * 64 * 3, )
and normalize its components.
Arguments
image - Tensor.
Returns:
result -- Transformed tensor
"""
image = tf.cast(image, tf.float32) / 255.0
image = tf.reshape(image, [-1,])
return image
new_train = x_train.map(normalize)
new_test = x_test.map(normalize)
new_train.element_spec
print(next(iter(new_train)))
###Output
tf.Tensor([0.8901961 0.8627451 0.8392157 ... 0.8156863 0.81960785 0.81960785], shape=(12288,), dtype=float32)
###Markdown
2.1 - Linear FunctionLet's begin this programming exercise by computing the following equation: $Y = WX + b$, where $W$ and $X$ are random matrices and b is a random vector. Exercise 1 - linear_functionCompute $WX + b$ where $W, X$, and $b$ are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, this is how to define a constant X with the shape (3,1):```pythonX = tf.constant(np.random.randn(3,1), name = "X")```Note that the difference between `tf.constant` and `tf.Variable` is that you can modify the state of a `tf.Variable` but cannot change the state of a `tf.constant`.You might find the following functions helpful: - tf.matmul(..., ...) to do a matrix multiplication- tf.add(..., ...) to do an addition- np.random.randn(...) to initialize randomly
###Code
# GRADED FUNCTION: linear_function
def linear_function():
"""
Implements a linear function:
Initializes X to be a random tensor of shape (3,1)
Initializes W to be a random tensor of shape (4,3)
Initializes b to be a random tensor of shape (4,1)
Returns:
result -- Y = WX + b
"""
np.random.seed(1)
"""
Note, to ensure that the "random" numbers generated match the expected results,
please create the variables in the order given in the starting code below.
(Do not re-arrange the order).
"""
# (approx. 4 lines)
# X = ...
# W = ...
# b = ...
# Y = ...
# YOUR CODE STARTS HERE
X = np.random.randn(3, 1)
W = np.random.randn(4, 3)
b = np.random.randn(4, 1)
Y = tf.add(tf.matmul(W, X), b)
# YOUR CODE ENDS HERE
return Y
result = linear_function()
print(result)
assert type(result) == EagerTensor, "Use the TensorFlow API"
assert np.allclose(result, [[-2.15657382], [ 2.95891446], [-1.08926781], [-0.84538042]]), "Error"
print("\033[92mAll test passed")
###Output
tf.Tensor(
[[-2.15657382]
[ 2.95891446]
[-1.08926781]
[-0.84538042]], shape=(4, 1), dtype=float64)
[92mAll test passed
###Markdown
**Expected Output**: ```result = [[-2.15657382] [ 2.95891446] [-1.08926781] [-0.84538042]]``` 2.2 - Computing the Sigmoid Amazing! You just implemented a linear function. TensorFlow offers a variety of commonly used neural network functions like `tf.sigmoid` and `tf.softmax`.For this exercise, compute the sigmoid of z. In this exercise, you will: Cast your tensor to type `float32` using `tf.cast`, then compute the sigmoid using `tf.keras.activations.sigmoid`. Exercise 2 - sigmoidImplement the sigmoid function below. You should use the following: - `tf.cast("...", tf.float32)`- `tf.keras.activations.sigmoid("...")`
###Code
# GRADED FUNCTION: sigmoid
def sigmoid(z):
"""
Computes the sigmoid of z
Arguments:
z -- input value, scalar or vector
Returns:
a -- (tf.float32) the sigmoid of z
"""
# tf.keras.activations.sigmoid requires float16, float32, float64, complex64, or complex128.
# (approx. 2 lines)
# z = ...
# a = ...
# YOUR CODE STARTS HERE
z = tf.cast(z, tf.float32)
a = tf.keras.activations.sigmoid(z)
# YOUR CODE ENDS HERE
return a
result = sigmoid(-1)
print ("type: " + str(type(result)))
print ("dtype: " + str(result.dtype))
print ("sigmoid(-1) = " + str(result))
print ("sigmoid(0) = " + str(sigmoid(0.0)))
print ("sigmoid(12) = " + str(sigmoid(12)))
def sigmoid_test(target):
result = target(0)
assert(type(result) == EagerTensor)
assert (result.dtype == tf.float32)
assert sigmoid(0) == 0.5, "Error"
assert sigmoid(-1) == 0.26894143, "Error"
assert sigmoid(12) == 0.9999939, "Error"
print("\033[92mAll test passed")
sigmoid_test(sigmoid)
###Output
type: <class 'tensorflow.python.framework.ops.EagerTensor'>
dtype: <dtype: 'float32'>
sigmoid(-1) = tf.Tensor(0.26894143, shape=(), dtype=float32)
sigmoid(0) = tf.Tensor(0.5, shape=(), dtype=float32)
sigmoid(12) = tf.Tensor(0.9999939, shape=(), dtype=float32)
[92mAll test passed
###Markdown
**Expected Output**: typeclass 'tensorflow.python.framework.ops.EagerTensor' dtype"dtype: 'float32' Sigmoid(-1)0.2689414 Sigmoid(0)0.5 Sigmoid(12)0.999994 2.3 - Using One Hot EncodingsMany times in deep learning you will have a $Y$ vector with numbers ranging from $0$ to $C-1$, where $C$ is the number of classes. If $C$ is for example 4, then you might have the following y vector which you will need to convert like this:This is called "one hot" encoding, because in the converted representation, exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In TensorFlow, you can use one line of code: - [tf.one_hot(labels, depth, axis=0)](https://www.tensorflow.org/api_docs/python/tf/one_hot)`axis=0` indicates the new axis is created at dimension 0 Exercise 3 - one_hot_matrixImplement the function below to take one label and the total number of classes $C$, and return the one hot encoding in a column wise matrix. Use `tf.one_hot()` to do this, and `tf.reshape()` to reshape your one hot tensor! - `tf.reshape(tensor, shape)`
###Code
# GRADED FUNCTION: one_hot_matrix
def one_hot_matrix(label, depth=6):
"""
Computes the one hot encoding for a single label
Arguments:
label -- (int) Categorical labels
depth -- (int) Number of different classes that label can take
Returns:
one_hot -- tf.Tensor A single-column matrix with the one hot encoding.
"""
# (approx. 1 line)
# one_hot = ...
# YOUR CODE STARTS HERE
one_hot = tf.reshape(tf.one_hot(label,depth,axis = 0), [depth, ])
# YOUR CODE ENDS HERE
return one_hot
def one_hot_matrix_test(target):
label = tf.constant(1)
depth = 4
result = target(label, depth)
print("Test 1:",result)
assert result.shape[0] == depth, "Use the parameter depth"
assert np.allclose(result, [0., 1. ,0., 0.] ), "Wrong output. Use tf.one_hot"
label_2 = [2]
result = target(label_2, depth)
print("Test 2:", result)
assert result.shape[0] == depth, "Use the parameter depth"
assert np.allclose(result, [0., 0. ,1., 0.] ), "Wrong output. Use tf.reshape as instructed"
print("\033[92mAll test passed")
one_hot_matrix_test(one_hot_matrix)
###Output
Test 1: tf.Tensor([0. 1. 0. 0.], shape=(4,), dtype=float32)
Test 2: tf.Tensor([0. 0. 1. 0.], shape=(4,), dtype=float32)
[92mAll test passed
###Markdown
**Expected output**```Test 1: tf.Tensor([0. 1. 0. 0.], shape=(4,), dtype=float32)Test 2: tf.Tensor([0. 0. 1. 0.], shape=(4,), dtype=float32)```
###Code
new_y_test = y_test.map(one_hot_matrix)
new_y_train = y_train.map(one_hot_matrix)
print(next(iter(new_y_test)))
###Output
tf.Tensor([1. 0. 0. 0. 0. 0.], shape=(6,), dtype=float32)
###Markdown
2.4 - Initialize the Parameters Now you'll initialize a vector of numbers with the Glorot initializer. The function you'll be calling is `tf.keras.initializers.GlorotNormal`, which draws samples from a truncated normal distribution centered on 0, with `stddev = sqrt(2 / (fan_in + fan_out))`, where `fan_in` is the number of input units and `fan_out` is the number of output units, both in the weight tensor. To initialize with zeros or ones you could use `tf.zeros()` or `tf.ones()` instead. Exercise 4 - initialize_parametersImplement the function below to take in a shape and to return an array of numbers using the GlorotNormal initializer. - `tf.keras.initializers.GlorotNormal(seed=1)` - `tf.Variable(initializer(shape=())`
###Code
# GRADED FUNCTION: initialize_parameters
def initialize_parameters():
"""
Initializes parameters to build a neural network with TensorFlow. The shapes are:
W1 : [25, 12288]
b1 : [25, 1]
W2 : [12, 25]
b2 : [12, 1]
W3 : [6, 12]
b3 : [6, 1]
Returns:
parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
"""
initializer = tf.keras.initializers.GlorotNormal(seed=1)
#(approx. 6 lines of code)
# W1 = ...
# b1 = ...
# W2 = ...
# b2 = ...
# W3 = ...
# b3 = ...
# YOUR CODE STARTS HERE
init = tf.keras.initializers.GlorotNormal(seed = 1)
W1 = tf.Variable(init(shape = (25, 12288)))
b1 = tf.Variable(init(shape = (25, 1)))
W2 = tf.Variable(init(shape = (12, 25)))
b2 = tf.Variable(init(shape = (12, 1)))
W3 = tf.Variable(init(shape = (6, 12)))
b3 = tf.Variable(init(shape = (6, 1)))
# YOUR CODE ENDS HERE
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
return parameters
def initialize_parameters_test(target):
parameters = target()
values = {"W1": (25, 12288),
"b1": (25, 1),
"W2": (12, 25),
"b2": (12, 1),
"W3": (6, 12),
"b3": (6, 1)}
for key in parameters:
print(f"{key} shape: {tuple(parameters[key].shape)}")
assert type(parameters[key]) == ResourceVariable, "All parameter must be created using tf.Variable"
assert tuple(parameters[key].shape) == values[key], f"{key}: wrong shape"
assert np.abs(np.mean(parameters[key].numpy())) < 0.5, f"{key}: Use the GlorotNormal initializer"
assert np.std(parameters[key].numpy()) > 0 and np.std(parameters[key].numpy()) < 1, f"{key}: Use the GlorotNormal initializer"
print("\033[92mAll test passed")
initialize_parameters_test(initialize_parameters)
###Output
W1 shape: (25, 12288)
b1 shape: (25, 1)
W2 shape: (12, 25)
b2 shape: (12, 1)
W3 shape: (6, 12)
b3 shape: (6, 1)
[92mAll test passed
###Markdown
**Expected output**```W1 shape: (25, 12288)b1 shape: (25, 1)W2 shape: (12, 25)b2 shape: (12, 1)W3 shape: (6, 12)b3 shape: (6, 1)```
###Code
parameters = initialize_parameters()
###Output
_____no_output_____
###Markdown
3 - Building Your First Neural Network in TensorFlowIn this part of the assignment you will build a neural network using TensorFlow. Remember that there are two parts to implementing a TensorFlow model:- Implement forward propagation- Retrieve the gradients and train the modelLet's get into it! 3.1 - Implement Forward Propagation One of TensorFlow's great strengths lies in the fact that you only need to implement the forward propagation function and it will keep track of the operations you did to calculate the back propagation automatically. Exercise 5 - forward_propagationImplement the `forward_propagation` function.**Note** Use only the TF API. - tf.math.add- tf.linalg.matmul- tf.keras.activations.relu
###Code
# GRADED FUNCTION: forward_propagation
@tf.function
def forward_propagation(X, parameters):
"""
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR
Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
the shapes are given in initialize_parameters
Returns:
Z3 -- the output of the last LINEAR unit
"""
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
#(approx. 5 lines) # Numpy Equivalents:
# Z1 = ... # Z1 = np.dot(W1, X) + b1
# A1 = ... # A1 = relu(Z1)
# Z2 = ... # Z2 = np.dot(W2, A1) + b2
# A2 = ... # A2 = relu(Z2)
# Z3 = ... # Z3 = np.dot(W3, A2) + b3
# YOUR CODE STARTS HERE
Z1 = tf.matmul(W1, X) + b1
A1 = tf.keras.activations.relu(Z1)
Z2 = tf.matmul(W2, A1) + b2
A2 = tf.keras.activations.relu(Z2)
Z3 = tf.matmul(W3, A2) + b3
# YOUR CODE ENDS HERE
return Z3
def forward_propagation_test(target, examples):
minibatches = examples.batch(2)
for minibatch in minibatches:
forward_pass = target(tf.transpose(minibatch), parameters)
print(forward_pass)
assert type(forward_pass) == EagerTensor, "Your output is not a tensor"
assert forward_pass.shape == (6, 2), "Last layer must use W3 and b3"
assert np.allclose(forward_pass,
[[-0.13430887, 0.14086473],
[ 0.21588647, -0.02582335],
[ 0.7059658, 0.6484556 ],
[-1.1260961, -0.9329492 ],
[-0.20181894, -0.3382722 ],
[ 0.9558965, 0.94167566]]), "Output does not match"
break
print("\033[92mAll test passed")
forward_propagation_test(forward_propagation, new_train)
###Output
tf.Tensor(
[[-0.13430887 0.14086473]
[ 0.21588647 -0.02582335]
[ 0.7059658 0.6484556 ]
[-1.1260961 -0.9329492 ]
[-0.20181894 -0.3382722 ]
[ 0.9558965 0.94167566]], shape=(6, 2), dtype=float32)
[92mAll test passed
###Markdown
**Expected output**```tf.Tensor([[-0.13430887 0.14086473] [ 0.21588647 -0.02582335] [ 0.7059658 0.6484556 ] [-1.1260961 -0.9329492 ] [-0.20181894 -0.3382722 ] [ 0.9558965 0.94167566]], shape=(6, 2), dtype=float32)``` 3.2 Compute the CostAll you have to do now is define the loss function that you're going to use. For this case, since we have a classification problem with 6 labels, a categorical cross entropy will work! Exercise 6 - compute_costImplement the cost function below. - It's important to note that the "`y_pred`" and "`y_true`" inputs of [tf.keras.losses.categorical_crossentropy](https://www.tensorflow.org/api_docs/python/tf/keras/losses/categorical_crossentropy) are expected to be of shape (number of examples, num_classes). - `tf.reduce_mean` basically does the summation over the examples.
###Code
# GRADED FUNCTION: compute_cost
def compute_cost(logits, labels):
"""
Computes the cost
Arguments:
logits -- output of forward propagation (output of the last LINEAR unit), of shape (6, num_examples)
labels -- "true" labels vector, same shape as Z3
Returns:
cost - Tensor of the cost function
"""
#(1 line of code)
# cost = ...
# YOUR CODE STARTS HERE
logits = tf.transpose(logits)
labels = tf.reshape(tf.transpose(labels),[logits.shape[0],6])
cost = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(labels, logits,from_logits=True))
# YOUR CODE ENDS HERE
return cost
def compute_cost_test(target, Y):
pred = tf.constant([[ 2.4048107, 5.0334096 ],
[-0.7921977, -4.1523376 ],
[ 0.9447198, -0.46802214],
[ 1.158121, 3.9810789 ],
[ 4.768706, 2.3220146 ],
[ 6.1481323, 3.909829 ]])
minibatches = Y.batch(2)
for minibatch in minibatches:
result = target(pred, tf.transpose(minibatch))
break
print(result)
assert(type(result) == EagerTensor), "Use the TensorFlow API"
assert (np.abs(result - (0.25361037 + 0.5566767) / 2.0) < 1e-7), "Test does not match. Did you get the mean of your cost functions?"
print("\033[92mAll test passed")
compute_cost_test(compute_cost, new_y_train )
###Output
tf.Tensor(0.4051435, shape=(), dtype=float32)
[92mAll test passed
###Markdown
**Expected output**```tf.Tensor(0.4051435, shape=(), dtype=float32)``` 3.3 - Train the ModelLet's talk optimizers. You'll specify the type of optimizer in one line, in this case `tf.keras.optimizers.Adam` (though you can use others such as SGD), and then call it within the training loop. Notice the `tape.gradient` function: this allows you to retrieve the operations recorded for automatic differentiation inside the `GradientTape` block. Then, calling the optimizer method `apply_gradients`, will apply the optimizer's update rules to each trainable parameter. At the end of this assignment, you'll find some documentation that explains this more in detail, but for now, a simple explanation will do. ;) Here you should take note of an important extra step that's been added to the batch training process: - `tf.Data.dataset = dataset.prefetch(8)` What this does is prevent a memory bottleneck that can occur when reading from disk. `prefetch()` sets aside some data and keeps it ready for when it's needed. It does this by creating a source dataset from your input data, applying a transformation to preprocess the data, then iterating over the dataset the specified number of elements at a time. This works because the iteration is streaming, so the data doesn't need to fit into the memory.
###Code
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
"""
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
Arguments:
X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
X_test -- training set, of shape (input size = 12288, number of training examples = 120)
Y_test -- test set, of shape (output size = 6, number of test examples = 120)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 10 epochs
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
costs = [] # To keep track of the cost
train_acc = []
test_acc = []
# Initialize your parameters
#(1 line)
parameters = initialize_parameters()
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
optimizer = tf.keras.optimizers.Adam(learning_rate)
# The CategoricalAccuracy will track the accuracy for this multiclass problem
test_accuracy = tf.keras.metrics.CategoricalAccuracy()
train_accuracy = tf.keras.metrics.CategoricalAccuracy()
dataset = tf.data.Dataset.zip((X_train, Y_train))
test_dataset = tf.data.Dataset.zip((X_test, Y_test))
# We can get the number of elements of a dataset using the cardinality method
m = dataset.cardinality().numpy()
minibatches = dataset.batch(minibatch_size).prefetch(8)
test_minibatches = test_dataset.batch(minibatch_size).prefetch(8)
#X_train = X_train.batch(minibatch_size, drop_remainder=True).prefetch(8)# <<< extra step
#Y_train = Y_train.batch(minibatch_size, drop_remainder=True).prefetch(8) # loads memory faster
# Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0.
#We need to reset object to start measuring from 0 the accuracy each epoch
train_accuracy.reset_states()
for (minibatch_X, minibatch_Y) in minibatches:
with tf.GradientTape() as tape:
# 1. predict
Z3 = forward_propagation(tf.transpose(minibatch_X), parameters)
# 2. loss
minibatch_cost = compute_cost(Z3, tf.transpose(minibatch_Y))
# We acumulate the accuracy of all the batches
train_accuracy.update_state(tf.transpose(Z3), minibatch_Y)
trainable_variables = [W1, b1, W2, b2, W3, b3]
grads = tape.gradient(minibatch_cost, trainable_variables)
optimizer.apply_gradients(zip(grads, trainable_variables))
epoch_cost += minibatch_cost
# We divide the epoch cost over the number of samples
epoch_cost /= m
# Print the cost every 10 epochs
if print_cost == True and epoch % 10 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
print("Train accuracy:", train_accuracy.result())
# We evaluate the test set every 10 epochs to avoid computational overhead
for (minibatch_X, minibatch_Y) in test_minibatches:
Z3 = forward_propagation(tf.transpose(minibatch_X), parameters)
test_accuracy.update_state(tf.transpose(Z3), minibatch_Y)
print("Test_accuracy:", test_accuracy.result())
costs.append(epoch_cost)
train_acc.append(train_accuracy.result())
test_acc.append(test_accuracy.result())
test_accuracy.reset_states()
return parameters, costs, train_acc, test_acc
parameters, costs, train_acc, test_acc = model(new_train, new_y_train, new_test, new_y_test, num_epochs=100)
###Output
Cost after epoch 0: 0.057612
Train accuracy: tf.Tensor(0.17314816, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.24166666, shape=(), dtype=float32)
Cost after epoch 10: 0.049332
Train accuracy: tf.Tensor(0.35833332, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.3, shape=(), dtype=float32)
Cost after epoch 20: 0.043173
Train accuracy: tf.Tensor(0.49907407, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.43333334, shape=(), dtype=float32)
Cost after epoch 30: 0.037322
Train accuracy: tf.Tensor(0.60462964, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.525, shape=(), dtype=float32)
Cost after epoch 40: 0.033147
Train accuracy: tf.Tensor(0.6490741, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.5416667, shape=(), dtype=float32)
Cost after epoch 50: 0.030203
Train accuracy: tf.Tensor(0.68333334, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.625, shape=(), dtype=float32)
Cost after epoch 60: 0.028050
Train accuracy: tf.Tensor(0.6935185, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.625, shape=(), dtype=float32)
Cost after epoch 70: 0.026298
Train accuracy: tf.Tensor(0.72407407, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.64166665, shape=(), dtype=float32)
Cost after epoch 80: 0.024799
Train accuracy: tf.Tensor(0.7425926, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.68333334, shape=(), dtype=float32)
Cost after epoch 90: 0.023551
Train accuracy: tf.Tensor(0.75277776, shape=(), dtype=float32)
Test_accuracy: tf.Tensor(0.68333334, shape=(), dtype=float32)
###Markdown
**Expected output**```Cost after epoch 0: 0.057612Train accuracy: tf.Tensor(0.17314816, shape=(), dtype=float32)Test_accuracy: tf.Tensor(0.24166666, shape=(), dtype=float32)Cost after epoch 10: 0.049332Train accuracy: tf.Tensor(0.35833332, shape=(), dtype=float32)Test_accuracy: tf.Tensor(0.3, shape=(), dtype=float32)...```Numbers you get can be different, just check that your loss is going down and your accuracy going up!
###Code
# Plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(0.0001))
plt.show()
# Plot the train accuracy
plt.plot(np.squeeze(train_acc))
plt.ylabel('Train Accuracy')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(0.0001))
# Plot the test accuracy
plt.plot(np.squeeze(test_acc))
plt.ylabel('Test Accuracy')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(0.0001))
plt.show()
###Output
_____no_output_____ |
Deep_learning.ipynb | ###Markdown
###Code
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
sns.set()
pi = np.pi
def probA_1(x, y):
# only accepts points betwen -5 and +5 in both axes
assert all(np.abs(x)<5) and all(np.abs(y)<5)
assert x.shape==y.shape
pA = stats.norm(0, 1).pdf(x)*stats.norm(0, 1).pdf(y)
pB = np.ones_like(pA)/200.
return pA/(pA+pB)
def probA_2(x, y):
# only accepts points betwen -5 and +5 in both axes
assert all(np.abs(x)<5) and all(np.abs(y)<5)
assert x.shape==y.shape
pA = (stats.norm(4, 0.5).pdf(x)*stats.norm(0, 1).pdf(y)
+ stats.norm(3, 0.5).pdf(x)*stats.norm(-3, .5).pdf(y)
+ stats.norm(-5, 0.5).pdf(x)*stats.norm(-3, 1.2).pdf(y)
+ stats.norm(1, 0.5).pdf(x)*stats.norm(1, 0.5).pdf(y))
pB = np.ones_like(pA)/200.
return pA/(pA+pB)
def probA_3(x, y):
# only accepts points betwen -5 and +5 in both axes
assert all(np.abs(x)<5) and all(np.abs(y)<5)
assert x.shape==y.shape
pA = (stats.norm(4, 0.5).pdf(x)*stats.arcsine(scale=5).pdf(y)
+ stats.hypsecant(1, 0.4).pdf(x)*stats.norm(-3, 0.2).pdf(y)
+ stats.norm(-5, 0.5).pdf(x)*stats.norm(-3, 0.2).pdf(y)
+ stats.norm(1, 0.5).pdf(x)*stats.hypsecant(1, 0.5).pdf(y))
pB = np.ones_like(pA)/200.
return pA/(pA+pB)
def plot_points(X, labels, title=None, ax=None, polar=False):
if not ax:
if polar:
fig = plt.figure(figsize=(6,6))
ax = fig.add_subplot(111, projection='polar')
else:
fig, ax = plt.subplots(figsize=(6,6))
mask = labels=='A'
A, = ax.plot(X[mask, 0], X[mask, 1], 'rx', markersize=7, label='A')
B, = ax.plot(X[~mask, 0], X[~mask, 1], 'bo', markersize=3, label='B')
fontdict={
'fontsize': 15
}
if polar:
try:
fig.set_size_inches(6*np.sqrt(2), 6*np.sqrt(2))
except:
pass
else:
ax.set_xlabel('$X_0$', fontdict=fontdict)
ax.set_ylabel('$X_1$', fontdict=fontdict)
ax.set_xticks(np.arange(-5, 6))
ax.set_yticks(np.arange(-5, 6))
ax.set_xlim((-5, 5))
ax.set_ylim((-5, 5))
ax.legend(handles=(A, B),
labels=('A', 'B'),
loc='upper right',
fancybox=True,
framealpha=1,
**fontdict)
if title:
ax.set_title(title, fontdict=fontdict)
return ax
###Output
_____no_output_____
###Markdown
---**Representations** are often necessary in order for a linear classification model to be able to separate a set of classes.These representations are made by applying [nonlinear transformations](https://www.youtube.com/watch?v=kYB8IZa5AuE) to the data.Take, for instance, the following dataset:---
###Code
# Create a simple binary classification problem requiring nonlinear separation
N = 400
X = (np.random.random((N, 2))-0.5)*10
Y = probA_1(X[:, 0], X[:, 1])
labels = np.asarray(['A' if m else 'B' for m in np.random.random(Y.shape)<Y])
plot_points(X, labels, title='True labels');
###Output
_____no_output_____
###Markdown
---Evidently, classes A and B are not [linearly separable](https://en.wikipedia.org/wiki/Linear_separability), and as such a linear classifier such as a linear [support vector machine](https://www.svm-tutorial.com/2017/02/svms-overview-support-vector-machines/) would be unable to succeed in a classification.---
###Code
from sklearn import svm
# Here, we uset he sklearn implementation of the SVM classifier with a linear kernel
# build and train the model
SVM_classifier = svm.SVC(kernel='linear')
SVM_classifier.fit(X, labels)
predictions = SVM_classifier.predict(X)
plot_points(X, predictions, title='Predictions')
# add R squared to evaluate prediction quality
R2 = 1 - np.std(labels!=predictions)/np.std(labels=='A')
plt.gcf().text(0.95, 0.5, '$R^2$: '+str(R2), fontdict={'fontsize':20});
###Output
_____no_output_____
###Markdown
---To classify these points using a linear model, we must create a an **intermediate representation** of the data such that a [hyperplane](https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47) can separate classes A and B.In this case, a [polar projection](https://en.wikipedia.org/wiki/Polar_coordinate_system) appears to be an appropriate representation. Let's try it out:$R = \sqrt{X^2+Y^2}$$\theta = arctan(\frac{Y}{X})$---
###Code
# Transform our coordinates from cartesian to polar
R = np.sqrt(X[:,0]**2 + X[:,1]**2)
ratio = X[:,1]/X[:,0]
THETA = np.arctan(ratio)+np.pi*(np.sign(X[:,0])<0)
X_radial = np.stack((THETA, R), axis=1)
plot_points(X_radial, labels, title='Polar projection of true labels', polar=True);
###Output
_____no_output_____
###Markdown
---This projection allows us to clearly see that A and B are at least somewhat separable in the **radial** direction.---
###Code
# Let's try the linear SVM classifier once more, on the polar projectionl
# build and train the model
SVM_classifier = svm.SVC(kernel='linear')
SVM_classifier.fit(X_radial, labels)
predictions = SVM_classifier.predict(X_radial)
ax = plot_points(np.stack((THETA, R), axis=1), predictions, title='Polar projection predictions', polar=True)
# add R squared to evaluate prediction quality
R2 = 1 - np.std(labels!=predictions)/np.std(labels=='A')
plt.gcf().text(0.95, 0.5, '$R^2$: '+str(round(R2,3)), fontdict={'fontsize':20});
###Output
_____no_output_____
###Markdown
---Clearly, our predictions have vastly improved! Often it is difficult or even impossible to achieve perfect classification due to inherent [stochasticity](https://www.merriam-webster.com/dictionary/stochastic) of the data. This is one of those cases!The **polar representation** has allowed our model to separate the two classes along the radial axis:---
###Code
ax = plot_points(np.stack((THETA, R), axis=1), labels, title='Polar projection deicision boundary, true labels', polar=True)
weights = SVM_classifier.coef_[0]
intercept = SVM_classifier.intercept_[0]
# plot decision boundary
x0_mesh, x1_mesh = np.meshgrid(np.linspace(-pi/2, 3*pi/2, 200), np.linspace(0, 5*np.sqrt(2), 200))
pred_mesh = SVM_classifier.predict(np.stack((x0_mesh.flatten(), x1_mesh.flatten()), axis=1)).reshape(x0_mesh.shape)
pred_mesh_bool = pred_mesh=='A'
c1 = plt.contour(x0_mesh, x1_mesh, pred_mesh_bool, levels=[0.5], alpha=0.5, linestyles='--' )
# manually add decision boundary to legend
plt.plot([], [], 'k--', alpha=0.5, label='Decision \nboundary')
ax.legend(framealpha=1);
###Output
_____no_output_____
###Markdown
---We can see that the decision boundary is a line nearly perpendicular to the $R$ axis. This is easier to see by plotting our polar coordinates in a cartesian graph:---
###Code
fig = plt.figure(figsize=(14,7))
ax = fig.add_subplot(121)
plot_points(np.stack((THETA, R), axis=1), labels, title='Polar coordinates, cartesian projection', ax=ax)
ax.set_xlim(-pi/2, 3*pi/2)
ax.set_ylim(0, 5*2**0.5)
# plot decision boundary
c1 = ax.contour(x0_mesh, x1_mesh, pred_mesh_bool, levels=[0.5], alpha=0.5, linestyles='--' )
ax.set_xlabel('Theta')
ax.set_ylabel('R')
# manually add decision boundary to legend
ax.plot([], [], 'k--', alpha=0.5, label='Decision \nboundary')
ax.legend(framealpha=1);
ax2 = fig.add_subplot(122)
plot_points(X, labels, title='Original data', ax=ax2);
###Output
_____no_output_____
###Markdown
---For this problem, a hand-made polar representation conveniently made our classes linearly separable, but suppose you have a more complex distribution...How easy would it be to design an alternative representation for the following dataset?---
###Code
N = 400
X_2 = (np.random.random((N, 2))-0.5)*10
Y_2 = probA_2(X_2[:, 0], X_2[:, 1])
labels_2 = np.asarray(['A' if m else 'B' for m in np.random.random(Y_2.shape)<Y_2])
plot_points(X_2, labels_2, title='True labels');
###Output
_____no_output_____
###Markdown
---Not easy at all!For this we turn once again to machine learning. What if our model could also **learn the intermediate representations** necessary for classification? This idea lies in the heart of deep learning.While hand-designed representations are limited by the creativity and knowledge of the human who programs them, a machine is able to learn arbitrarily complex representations, as long as we give it the **capacity** to learn them.We call these machine-learned representations **hidden representations**. This is because, since only the machine needs to process them, these representations do not need to be human-interpretable, and typically look like nonsense even to an expert.We can take this idea one step further--if the machine will learn them anyways, why limit ourselves to only a single hidden representation?This is what gives "depth" to deep learning algorithms. We allow our model to learn many hidden representations, one after another, gradually transforming the data. If this is properly done, by the final transformation our output should be **linearly separable**.Let's try this out!---
###Code
from sklearn import neural_network
# build neural net classifier
layers = (10, 10, 10,)
NN_classifier = neural_network.MLPClassifier(hidden_layer_sizes = layers,
alpha = 0.1,
learning_rate = 'invscaling',
learning_rate_init = 0.01,
max_iter = 2000)
NN_classifier.fit(X_2, labels_2)
predictions = NN_classifier.predict(X_2)
plot_points(X_2, labels_2, title='True labels');
# plot decision boundary
x0_mesh, x1_mesh = np.meshgrid(np.linspace(-5, 5, 200), np.linspace(-5, 5, 200))
pred_mesh = NN_classifier.predict(np.stack((x0_mesh.flatten(), x1_mesh.flatten()), axis=1)).reshape(x0_mesh.shape)
pred_mesh_bool = pred_mesh=='A'
c1 = plt.contour(x0_mesh, x1_mesh, pred_mesh_bool, levels=[0.5], alpha=0.5, linestyles='--' )
# add R squared to evaluate prediction quality
R2 = 1 - np.std(labels_2!=predictions)/np.std(labels_2=='A')
plt.gcf().text(0.95, 0.5, '$R^2$: '+str(round(R2,3)), fontdict={'fontsize':20});
# manually add decision boundary to legend
plt.plot([], [], 'k--', alpha=0.5, label='Decision \nboundary')
ax.legend(framealpha=1);
###Output
_____no_output_____
###Markdown
---Pretty easy right?Deep learning relies exclusively on a class of models called **[neural networks](https://www.youtube.com/watch?v=aircAruvnKk)** (I **strongly** recommend watching this series of videos).These biologically-inspired models are made up of a network of **[artifical neurons](https://en.wikipedia.org/wiki/Artificial_neuron)**.Each neuron applies a linear transformations to its inputs, followed by a simple nonlinear function (the **activation function**), such as the [softmax function](https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d).While a single neuron is very simple and easy to model by hand, by stacking many layers of these neurons and chaining them together, very complex behavior can [emerge](https://theconversation.com/emergence-the-remarkable-simplicity-of-complexity-30973).In the image below, each circle represents a single neuron, and each column of neurons is a layer in the neural network. The lines are connections between neurons, from the output of one to the input of the otherImage source: https://www.kdnuggets.com/2019/11/designing-neural-networks.html--- ---The more layers a model has, the more complex the function its transformations can represent, and as such the more complex the problems it is able to solve.Three layers may have been enough for the above problem, but deep machine vision networks may have hundreds of much larger layers, with millions and millions of parameters.Deep neural networks have proven able to learn very complex problems, as long as they consist of mapping an input vector to an output vector, and can quickly be done by a human.Other tasks that cannot be described as a vector mapping, or would take a human time to think and reflect upon, often prove beyond the scope of deep learning as of now.Let's test this for ourselves:---
###Code
N = 400
X_3 = (np.random.random((N, 2))-0.5)*10
Y_3 = probA_3(X_3[:, 0], X_3[:, 1])
labels_3 = np.asarray(['A' if m else 'B' for m in np.random.random(Y_3.shape)<Y_3])
plot_points(X_3, labels_3, title='True labels');
neural_network.MLPClassifier?
# build neural net classifier
layers = (40, 40, 40)
NN_classifier = neural_network.MLPClassifier(hidden_layer_sizes = layers,
alpha = 0.01,
activation = 'relu',
learning_rate = 'invscaling',
learning_rate_init = 0.01,
max_iter = 2000)
NN_classifier.fit(X_3, labels_3)
predictions = NN_classifier.predict(X_3)
plot_points(X_3, labels_3, title='True labels');
# plot decision boundary
x0_mesh, x1_mesh = np.meshgrid(np.linspace(-5, 5, 200), np.linspace(-5, 5, 200))
pred_mesh = NN_classifier.predict(np.stack((x0_mesh.flatten(), x1_mesh.flatten()), axis=1)).reshape(x0_mesh.shape)
pred_mesh_bool = pred_mesh=='A'
c1 = plt.contour(x0_mesh, x1_mesh, pred_mesh_bool, levels=[0.5], alpha=0.5, linestyles='--' )
# add R squared to evaluate prediction quality
R2 = 1 - np.std(labels_3!=predictions)/np.std(labels_3=='A')
plt.gcf().text(0.95, 0.5, '$R^2$: '+str(round(R2,3)), fontdict={'fontsize':20});
# manually add decision boundary to legend
plt.plot([], [], 'k--', alpha=0.5, label='Decision \nboundary')
ax.legend(framealpha=1);
###Output
_____no_output_____
###Markdown
---Although neural networks were invented in the 1940s undet he name of cybernetics, its current popularity is relatively recent, traced back to Geoffrey Hinton's landmark work from 2006.This can be attributed to two factors:- Increasing dataset sizes - Driven by the digitization of society, larger datasets give us the resources necessary to train larger and more complex models.- Increasing computational power - [More computational power](http://www.mooreslaw.org/) has allowed us to make larger and larger models. Many studies have shown that model size is the biggest contributor to its capacity, which allows us to use them for more and more complex tasks.--- ---Nearly all machine learning involves an optimization process of some sort. This is the process of **learning** the data, where the model parameters change to better model the problem we would like to solve.This is an optimization problem of the sort:- Minimize **MODEL LOSS**- Subject to **DATA**Where the variables we optimize are the parameters of the model.Some models are more complex than others. Let's compare them.---
###Code
# The parameters of the SVM classifiers are its support vectors and coefficients
n_SVM = 0
# n_SVM += np.multiply.reduce(SVM_classifier.support_vectors_.shape)
n_SVM += np.multiply.reduce(SVM_classifier.coef_.shape)
n_SVM += np.multiply.reduce(SVM_classifier.intercept_.shape)
print('The SVM classifier has {} parameters.'.format(n_SVM))
n_NN = 0
for layer in NN_classifier.coefs_:
n_NN += np.multiply.reduce(layer.shape)
for layer in NN_classifier.intercepts_:
n_NN += np.multiply.reduce(layer.shape)
print('The NN classifier has {} parameters.'.format(n_NN))
###Output
The SVM classifier has 3 parameters.
The NN classifier has 2081 parameters.
|
notebooks/idea_DBNSL-smaller.ipynb | ###Markdown
1st variant Dynamic Bayesian Network Structure Learning with hybrid network = (classic) encoder + (quantum) circuit.This is a toy example with dummy generated training data of 7 variables, that means 14 vertices (7 for t and 7 for t+1). input=(1,14)n_qubits=2 * ceil(log2(2 * nnodes)) -> for nnodes = 7, n_qubits = 8 where first four digits correspond to vertice where the edge begins and four last digits correspond to vertice where edge ends i.e. 00100101 corresponds to: vertice_2 ---> vertice_5 It was tested with two sets of test data at the end of the notebook. The last test is with real data
###Code
import pandas as pd
from torch.utils.data import Dataset
import torch
import torchvision
from torch import nn
import numpy as np
import pennylane as qml
import random
import networkx as nx
from matplotlib import pyplot as plt
path = "smaller_elu.csv"
ds = pd.read_csv(path)
ds
ds['t0'] = ds.apply(lambda x: x.t1 if pd.isna(x.t0) else x.t0, axis = 1)
ds['t1'] = ds.apply(lambda x: x.t0 if pd.isna(x.t1) else x.t1, axis = 1)
ds[ds['t0'].isnull()]
ds[ds['t1'].isnull()]
nnodes = 7
ds = ds.sort_values(by=['T', 'NAME'])
t01_list = [ds[['t0','t1']].iloc[f*nnodes:(f+1)*nnodes].values.T for f in range(len(ds)//nnodes)]
dst = pd.DataFrame({'T':range(len(ds)//nnodes), 't01':t01_list})
dst
nodes_names = {f:ds[['NAME']].iloc[0:nnodes].values[f][0] for f in range(nnodes)}
nodes_genes = {f:ds[['GENE']].iloc[0:nnodes].values[f][0] for f in range(nnodes)}
scale = np.frompyfunc(lambda x, min, max: (x-min)/(max - min), 3, 1)
def get_edges(n=4):
num_edges = random.randint(n, n+3)
e1 = [(random.randint(0, n-1),random.randint(0, (n*2)-1)) for f in range(num_edges//2)]
e2 = [(random.randint(0, (n*2)-1),random.randint(n, (n*2)-1)) for f in range(num_edges//2)]
return e1 + e2
def get_t0(edges, weights, n=4):
t0 = np.zeros(n) + 0.01
edges0 = [edge for i in range(n) for edge in edges if edge[0] == i and edge[1] < n]
if len(edges0) > 0:
t0[edges0[0][0]] = random.random()
for edge in edges0:
t0[edge[1]] += weights[edge[0]] + weights[edge[1]] * t0[edge[0]]
return t0
def get_t1(edges, weights, t0, n=4):
t1 = np.zeros(n) + 0.01
edges1 = [edge for edge in edges if edge[1] >= n]
for edge in edges1:
if edge[0] < n:
t1[edge[1]-n] += weights[edge[0]] + weights[edge[1]-n] * t0[edge[0]]
else:
t1[edge[1]-n] += weights[edge[0]-n] + weights[edge[1]-n] * t1[edge[0]-n]
return t1
# generate training dataset
exper = 1000
n_qubits = 8
arr_list = []
edges_list = []
for f in range(exper):
weights = [random.randint(1, 10)/10 for f in range(nnodes)]
edges = get_edges(n = nnodes)
t0 = get_t0(edges, weights, n = nnodes)
t1 = get_t1(edges, weights, t0, n = nnodes)
arr_list.append(scale(np.stack([t0,t1]),np.min(np.stack([t0,t1])), np.max(np.stack([t0,t1]))).astype(float))
edges_list.append(edges)
arr = np.concatenate(arr_list, axis=1)
dsa = pd.DataFrame({'t01':arr_list})
dsa
#int("110100010",2) = 418
edges_bin_list = [[np.binary_repr(ed[0], width=n_qubits//2) + np.binary_repr(ed[1], width=n_qubits//2) for ed in edges] for edges in edges_list]
ya_list = [[int(edge,2) for edge in edges] for edges in edges_bin_list]
dsa['y'] = ya_list
dsa
dev = qml.device("default.qubit", wires=n_qubits)
@qml.qnode(dev)
def qnode(inputs, weights):
qml.AngleEmbedding(inputs, wires=range(n_qubits))
qml.BasicEntanglerLayers(weights[0], wires=range(n_qubits), rotation=qml.RX)
qml.BasicEntanglerLayers(weights[1], wires=range(n_qubits), rotation=qml.RY)
qml.BasicEntanglerLayers(weights[2], wires=range(n_qubits), rotation=qml.RZ)
return qml.probs(wires=range(n_qubits))
n_layers = 2
weight_shapes = {"weights": (3, n_layers, n_qubits)}
qlayer = qml.qnn.TorchLayer(qnode, weight_shapes)
input_size = nnodes * 2
hidden_size = input_size - 2
code_size = n_qubits
encoder_hidden_layer = nn.Linear(
in_features=input_size, out_features=hidden_size
)
encoder_output_layer = nn.Linear(
in_features=hidden_size, out_features=code_size
)
layers = [encoder_hidden_layer, encoder_output_layer, qlayer]
model = torch.nn.Sequential(*layers)
#optimizer = torch.optim.SGD(model.parameters(), lr=0.2)
#criterion = torch.nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.MSELoss()
def error(predictions, y):
error = np.sum(abs(y.detach().numpy() - predictions.detach().numpy()))/len(y[0].detach().numpy())
return error
def get_ranks(outputs, y, weighted = False):
rp = np.flip(np.argsort(outputs.detach().numpy()))
if weighted:
a = [np.argwhere(rp == x)[0][1]*outputs.detach().numpy()[0][x]*len(np.nonzero(y.detach().numpy())[1]) for x in np.nonzero(y.detach().numpy())[1]]
else:
a = [np.argwhere(rp == x)[0][1] for x in np.nonzero(y.detach().numpy())[1]]
return a
def score(outputs, y, weighted = False):
ly = len(np.nonzero(y.detach().numpy())[1])
lo = len(y[0].detach().numpy())
ranks = get_ranks(outputs, y, weighted)
sr = sum(ranks)
sy = sum(range(ly))
sw = sum(range(lo-ly,lo))
return 1 - (sr - sy)/(sw - sy)
class CustomDataset(Dataset):
def __init__(self, ds, n, q, transform=None):
self.ds_full = ds
self.n = n
self.q = q
self.x_csv = self.ds_full[["t01"]]
self.y_csv = self.ds_full[["y"]]
self.transform = transform
def __len__(self):
return len(self.x_csv)
def __getitem__(self, idx):
x = np.array(self.x_csv.iloc[idx].tolist()[0])
y = np.zeros(2**self.q)
for i in self.y_csv.iloc[idx].tolist()[0]:
#011000 24
y[i] = 1/len(self.y_csv.iloc[idx].tolist()[0])
if self.transform:
x = self.transform(x)
y = self.transform(y)
return x, y
batch_size = 1
transform = torchvision.transforms.Lambda(lambda y: torch.from_numpy(y).float())
train_dataset = CustomDataset(dsa, nnodes, n_qubits, transform)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=False
)
%%time
epochs = 1
for epoch in range(epochs):
loss = 0
err = 0
metr = 0
wmetr = 0
for batch_features, y_batch in train_loader:
batch_features = batch_features.view(-1, input_size)
optimizer.zero_grad()
outputs = model(batch_features)
train_loss = criterion(outputs, y_batch)
train_loss.backward()
optimizer.step()
loss += train_loss.item()
err += error(outputs, y_batch)
metr += score(outputs, y_batch, False)
wmetr += score(outputs, y_batch, True)
loss = loss / len(train_loader)
err = err / len(train_loader)
metr = metr / len(train_loader)
wmetr = wmetr / len(train_loader)
print("epoch : {}/{}, loss = {:.6f}, error = {:.6f}, score = {:.6f}, weighted_score = {:.6f}".format(epoch + 1,
epochs,
loss,
err,
metr,
wmetr))
###Output
/home/common_user/.local/lib/python3.8/site-packages/torch/autograd/__init__.py:154: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at ../aten/src/ATen/native/Copy.cpp:244.)
Variable._execution_engine.run_backward(
###Markdown
testing with generated data
###Code
# generate Testing dataset
exper = 12
num_res = 12
arr_list = []
edges_list = []
edges = get_edges(n = nnodes)
for f in range(exper):
weights = [random.randint(1, 10)/10 for f in range(nnodes)]
t0 = get_t0(edges, weights, n = nnodes)
t1 = get_t1(edges, weights, t0, n = nnodes)
arr_list.append(scale(np.stack([t0,t1]),np.min(np.stack([t0,t1])), np.max(np.stack([t0,t1]))).astype(float))
edges_list.append(edges)
arr = np.concatenate(arr_list, axis=1)
dstest = pd.DataFrame({'t01':arr_list})
dstest
#int("110100010",2) = 418
edges_bin_list = [[np.binary_repr(ed[0], width=n_qubits//2) + np.binary_repr(ed[1], width=n_qubits//2) for ed in edges] for edges in edges_list]
ya_list = [[int(edge,2) for edge in edges] for edges in edges_bin_list]
dstest['y'] = ya_list
dstest
batch_size = 1
transform = torchvision.transforms.Lambda(lambda y: torch.from_numpy(y).float())
test_dataset = CustomDataset(dstest, nnodes, n_qubits, transform)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, pin_memory=True
)
experiments = []
outputs_list = []
for batch_features, _ in test_loader:
batch_features = batch_features.view(-1, input_size)
batch_features
outputs = model(batch_features)
outputs_list.append(outputs)
experiments.append(np.flip(np.argsort(outputs.detach().numpy())))
experiments
ol = [o.detach().numpy() for o in outputs_list]
results_list = np.mean(np.array(ol), axis=0)
norm_results_list = scale(results_list, np.min(results_list), np.max(results_list)).astype(float)
results = np.flip(np.argsort(results_list))
np.max(sum(outputs_list).detach().numpy()),np.min(sum(outputs_list).detach().numpy())
results_bin = [np.binary_repr(f, width=n_qubits) for f in results.tolist()[0]]
results_weights = [norm_results_list[0][results[0][i]] for i in range(len(results[0]))]
results.tolist()[0][:num_res], ya_list[0]
results_bin[:num_res]
#number of parameters
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
sum([np.prod(p.size()) for p in model_parameters])
def get_edges_array(n_qubits,y):
arr = [np.binary_repr(f, width=n_qubits) for f in y]
return [(int(f[:n_qubits//2],2), int(f[n_qubits//2:],2)) for f in arr]
y_edges = get_edges_array(n_qubits,ya_list[0])
p_edges = get_edges_array(n_qubits,results.tolist()[0][:num_res])
p_weights = results_weights[:num_res]
graph_y = None
graph_p = None
graph_y = nx.DiGraph()
graph_p = nx.DiGraph()
graph_y.add_nodes_from(range(nnodes*2))
graph_p.add_nodes_from(range(nnodes*2))
graph_y.add_edges_from(y_edges)
graph_p.add_edges_from(p_edges)
mapping = {0: "a0", 1: "b0", 2: "c0", 3: "d0", 4: "e0", 5: "f0", 6: "g0", 7: "a1", 8: "b1", 9: "c1",
10: "d1", 11: "e1", 12: "f1", 13: "g1"}
graph_y = nx.relabel_nodes(graph_y, mapping, copy=False)
graph_p = nx.relabel_nodes(graph_p, mapping, copy=False)
#pos = nx.shell_layout(graph_y, nlist=[range(nnodes),range(nnodes,nnodes*2)], rotate=0.1, center=(1,5))
pos = nx.bipartite_layout(graph_y, nodes=['a0','b0','c0','d0', 'e0', 'f0', 'g0'])
subax1 = plt.subplot(121)
nx.draw(graph_y, pos, node_color='c', edge_color='k', width=5.0, edge_cmap=plt.cm.Blues, with_labels=True)
subax2 = plt.subplot(122)
nx.draw(graph_p, pos, node_color='c', edge_color=p_weights, width=5.0, edge_cmap=plt.cm.Blues, with_labels=True)
plt.show()
###Output
_____no_output_____
###Markdown
testing with real data
###Code
batch_size = 1
transform = torchvision.transforms.Lambda(lambda y: torch.from_numpy(y).float())
test_dataset = CustomDataset(dst, nnodes, n_qubits, transform)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, pin_memory=True
)
experiments = []
outputs_list = []
for batch_features, _ in test_loader:
batch_features = batch_features.view(-1, input_size)
batch_features
outputs = model(batch_features)
outputs_list.append(outputs)
experiments.append(np.flip(np.argsort(outputs.detach().numpy())))
experiments
ol = [o.detach().numpy() for o in outputs_list]
results_list = np.mean(np.array(ol), axis=0)
norm_results_list = scale(results_list, np.min(results_list), np.max(results_list)).astype(float)
results = np.flip(np.argsort(results_list))
np.max(sum(outputs_list).detach().numpy()),np.min(sum(outputs_list).detach().numpy())
results_bin = [np.binary_repr(f, width=n_qubits) for f in results.tolist()[0]]
results_weights = [norm_results_list[0][results[0][i]] for i in range(len(results[0]))]
results.tolist()[0][:num_res]
results_bin[:num_res]
p_edges = get_edges_array(n_qubits,results.tolist()[0][:num_res])
p_weights = results_weights[:num_res]
graph_p = None
graph_p2 = None
graph_p = nx.DiGraph()
graph_p2 = nx.DiGraph()
graph_p.add_nodes_from(range(nnodes*2))
graph_p2.add_nodes_from(range(nnodes*2))
graph_p.add_edges_from(p_edges)
graph_p2.add_edges_from(p_edges)
rnodes = [v + '_t0' for _, v in nodes_names.items()]
rgenes = [v + '_t0' for _, v in genes_names.items()]
nodes_names.update({k:v + '_t0' for k, v in nodes_names.items()})
nodes_names.update({k + len(nodes_names):v[:-1] + '1' for k, v in nodes_names.items()})
genes_names.update({k:v + '_t0' for k, v in genes_names.items()})
genes_names.update({k + len(genes_names):v[:-1] + '1' for k, v in genes_names.items()})
graph_p = nx.relabel_nodes(graph_p, nodes_names, copy=False)
graph_p2 = nx.relabel_nodes(graph_p2, genes_names, copy=False)
#pos = nx.shell_layout(graph_y, nlist=[range(nnodes),range(nnodes,nnodes*2)], rotate=0.1, center=(1,5))
pos = nx.bipartite_layout(graph_p, nodes=rnodes)
pos2 = nx.bipartite_layout(graph_p2, nodes=rgenes)
subax1 = plt.subplot(121)
nx.draw(graph_p, pos, node_color='c', edge_color=p_weights, width=5.0, edge_cmap=plt.cm.Blues, with_labels=True)
subax2 = plt.subplot(122)
nx.draw(graph_p2, pos2, node_color='c', edge_color=p_weights, width=5.0, edge_cmap=plt.cm.Blues, with_labels=True)
plt.show()
###Output
_____no_output_____ |
Tutorial/Transforming Dictionaries to Pandas DataFrames Tutorial.ipynb | ###Markdown
Transforming Dictionaries to Pandas DataframesDictionaries of two forms can be transformed into pandas dataframes. A dictionary can have 1 layer of keys, each of which point to a list:dct = {"key1":list1, "key2:list2, "key3:list3}This results in a dataframe where the keys are interepreted as column names and the list indices are interpreted as row numbers.
###Code
dct = {"list1": [1,2,3,4,5],
"list2":[1 ** 2, 2 ** 2, 3 ** 2, 4 ** 2, 5 ** 2],
"list3":[1,4,6,3,5]}
dct
import pandas as pd
df = pd.DataFrame(dct)
df
###Output
_____no_output_____
###Markdown
The other way to create a dataframe using a dictionary is to create dictionary of dictionaries:dct = {"key1:{ind0:elem0, ind1:elem1, ind2:elem2, ind3:elem3, ind4:elem4}, "key2 :{. . .}}
###Code
#dct = {"key1:{ind0:elem0,
# ind1:elem1,
# ind2:elem2,
# ind3:elem3,
# ind4:elem4},
# "key2 :{. . .}}
# using generator function for list1
dct = {"list1":{i:i for i in range(5)},
"list2": {0:1**2,
1:2**2,
2:3**2,
3:4**2,
4:5**2},
"list3": {0:4,
1:5,
2:7,
3:5,
4:8}
}
dct
df = pd.DataFrame(dct)
df
###Output
_____no_output_____ |
Notebooks/connor_notebooks/places_of_interest/walmart_cleaning.ipynb | ###Markdown
Notebook Objectives The objective of this notebook is to transform Walmart location data for the United States and Canada downloaded from [poi factory](http://www.poi-factory.com/poifiles) for later use in the RV Nav API. This CSV was partly cleaned in MS Excel due to its smaller size. MS Excel is still a great tool for data cleaning!
###Code
import pandas as pd
import numpy as np
df = pd.read_csv('../Data/Walmart_United States & Canada.csv',
header=None,
names= ['Longitude', 'Latitude', 'Store Type',
'Store ID', 'Gas', 'Address', 'City', 'State',
'Zip Code', 'Parking', 'Phone Number'])
df.head()
df['Gas'] = df['Gas'].replace('Gas.', 'Gas')
df['Gas'].value_counts()
# Replace NaN values with 'No Gas'
df['Gas'] = df['Gas'].replace(np.nan, 'No Gas')
# Verify results
df['Gas'].value_counts()
df.head()
# Clean correct parking values
df['Parking'] = df['Parking'].replace('(NOP)', 'No Parking')
df['Parking'] = df['Parking'].replace(np.nan, 'Parking Available')
# Check Store Type Values
df['Store Type'].value_counts()
# Clean/Correct Store Types
df['Store Type'] = df['Store Type'].replace('Walmart SC', 'Walmart Supercenter')
df['Store Type'] = df['Store Type'].replace('Walmart SC', 'Walmart Supercenter')
df['Store Type'] = df['Store Type'].replace('Walmart Superenter', 'Walmart Supercenter')
df['Store Type'] = df['Store Type'].replace('Wm Nbrhd Mkt', 'Walmart Neighborhood Market')
df['Store Type'] = df['Store Type'].replace('Wm Pharm/Clinic', 'Walmart Pharmacy/Clinic')
df['Store Type'] = df['Store Type'].replace('WM Nbrhd Mkt', 'Walmart Neighborhood Market')
df['Store Type'] = df['Store Type'].replace('wm Nbrhd Mkt', 'Walmart Neighborhood Market')
# Verify corrections
df['Store Type'].value_counts()
# Check to ensure no null values or Longitude/Latitude columns
df.info()
# One last verification
df.head()
###Output
_____no_output_____
###Markdown
Our dataset is now ready to be used in our API!
###Code
df.to_csv('Walmart_API.csv')
###Output
_____no_output_____ |
inflearn_machine_learning/code/ch7/5_multiple_linear_regression_with_sklearn.ipynb | ###Markdown
The Boston Housing Datasethttps://archive.ics.uci.edu/ml/datasets/Housing
###Code
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import numpy as np
boston = load_boston()
boston["data"]
x_data = boston.data
y_data = boston.target.reshape(boston.target.size,1)
y_data.shape
from sklearn import preprocessing
minmax_scale = preprocessing.MinMaxScaler(feature_range=(0,5)).fit(x_data)
# standard_scale = preprocessing.StandardScaler().fit(x_data)
x_scaled_data = minmax_scale.transform(x_data)
x_scaled_data[:3]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x_scaled_data, y_data, test_size=0.33)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
from sklearn import linear_model
regr = linear_model.LinearRegression(fit_intercept=True,
normalize=False,
copy_X=True,
n_jobs=8)
regr.fit(X_train, y_train)
regr
regr.coef_ , regr.intercept_
# # The coefficients
print('Coefficients: ', regr.coef_)
print('intercept: ', regr.intercept_)
regr.predict(x_data[:5])
x_data[:5].dot(regr.coef_.T) + regr.intercept_
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
y_true = y_test
y_hat = regr.predict(X_test)
r2_score(y_true, y_hat), mean_absolute_error(y_true, y_hat), mean_squared_error(y_true, y_hat)
y_true = y_train
y_hat = regr.predict(X_train)
r2_score(y_true, y_hat), mean_absolute_error(y_true, y_hat), mean_squared_error(y_true, y_hat)
###Output
_____no_output_____ |
Problem 3.17.ipynb | ###Markdown
Solution {-}The derivative of a first order Markov process doesn't exist, however the derivative of second order Markov process does exist.$$S_x(j\omega) = \frac{2\sqrt{2}\omega_0^3\sigma^2}{\omega^4 + \omega_0^4}$$This can be demonstrated by a Monte Carlo simulation as follows:
###Code
from numpy import array, sqrt, random, zeros, arange
from scipy.linalg import sqrtm, inv, cholesky
import matplotlib.pyplot as plt
from lib.vanloan import numeval
dt = 1
sigma = 1
omega0 = 0.1
num = (sigma**2)*(omega0**3)*2*sqrt(2)
# Dynamic matrix
F = array([[0, 1],
[-(omega0**2), -2/sqrt(2)*omega0]])
# White noise coefficients
G = array([[0],
[sqrt(num)]])
# Van Loan
[phi, Q] = numeval(F, G, dt)
# Vector of random numbers
randn = random.randn(2, 100)
# Cholesky upper triangular
C = cholesky(Q)
wk = zeros([2, 100])
x = zeros([2, 100 + 1])
t = arange(0, 100 + 1)
# Generate white noise sequence
for i in range(0, 100):
wk[:, i] = C@randn[:, i]
for j in range(0, 100):
x[:, j + 1] = phi@x[:, j] + wk[:, j]
plt.plot(t, x[0], 'r', label='Position')
plt.plot(t, x[1], 'b', label='Velocity')
plt.title('2. order Markov process')
plt.xlabel('Time')
plt.ylabel('Position / Velocity')
plt.legend(loc='lower right')
plt.grid()
plt.show()
###Output
_____no_output_____ |
notebooks/error-analysis/Preprocessing-related/ddi-Test-Error-Analysis-Stop-Words.ipynb | ###Markdown
Error analysis for the type of examples that Stop words get wrong compared to the baseline
###Code
%load_ext autoreload
%autoreload
import os
from sys import path
import re
import pandas as pd
path.append('../../..')
import numpy as np
from scipy.stats import ttest_rel
from relation_extraction.data.converters.converter_ddi import relation_dict
output_path = '/scratch/geeticka/relation-extraction-result/ddi-analyze/'
def res(path): return os.path.join(output_path, path)
original_sentences_path = os.path.join('/scratch/geeticka/relation-extraction-result/ddi-analyze/test_original.txt')
stop_words_sentences_path = os.path.join('/crimea/geeticka/data/relation_extraction/ddi/pre-processed/punct_stop_digit/test_punct_stop_digit.txt')
relation_dict
def read_answers_line(line):
linenum, relation = line.strip().split()
return linenum, relation
def asstring(list_of_strings):
return " ".join(list_of_strings)
def read_sentence_and_entities(line):
line = line.strip().split()
sentence = line[5:]
relation = relation_dict[int(line[0])]
entity1_idx = (int(line[1]), int(line[2]))
entity2_idx = (int(line[3]), int(line[4]))
entity1 = sentence[entity1_idx[0] : entity1_idx[1] + 1]
entity2 = sentence[entity2_idx[0] : entity2_idx[1] + 1]
return relation, asstring(entity1), asstring(entity2), asstring(sentence)
needed_linenum_and_relation = {}
with open(res("answers_for_dev-stop-word.txt")) as textfile1, open(res('answers_for_dev-baseline.txt')) as textfile2, \
open(res('answers_for_dev-baseline_gold.txt')) as textfile3:
for x, y, z in zip(textfile1, textfile2, textfile3):
linenum, stop_words_relation = read_answers_line(x)
_, baseline_relation = read_answers_line(y)
_, gold_relation = read_answers_line(z)
if baseline_relation == gold_relation and stop_words_relation != gold_relation: # punct digit making mistakes
needed_linenum_and_relation[int(linenum) - 1] = (baseline_relation, stop_words_relation)
len(list(needed_linenum_and_relation.keys()))
len(list(needed_linenum_and_relation.keys()))/len(open(res('answers_for_dev-baseline_gold.txt')).readlines()) * 100
###Output
_____no_output_____
###Markdown
Remember that baseline is correct here so the first relation listed is the correct one, unlike in the i2b2 notebook where the order is reversed because baseline is the incorrect one there
###Code
interaction = 0; mechanism = 0; advice = 0; effect = 0; none = 0
print('We print the baseline first and then the stop words version. Gold relation corresponds to baseline\n\n')
curr_linenum = 0
with open(original_sentences_path) as original_sentences, open(stop_words_sentences_path) as stop_words_sentences:
for x, y in zip(original_sentences, stop_words_sentences):
needed_linenums = list(needed_linenum_and_relation.keys())
if curr_linenum in needed_linenums:
_, e1_b, e2_b, s_b = read_sentence_and_entities(x.strip())
_, e1_c, e2_c, s_c = read_sentence_and_entities(y.strip())
r_b, r_c = needed_linenum_and_relation[curr_linenum]
if r_b == 'int': interaction += 1
elif r_b == 'mechanism': mechanism += 1
elif r_b == 'advise': advice += 1
elif r_b == 'effect': effect += 1
elif r_b == 'none': none += 1
print('Predicted Relation: \t {0}, {1} \nEntities: \t {2}, {3} \t {4}, {5} \nSentences: \n\t{6} \n\t {7}'.format(
r_b, r_c, e1_b, e1_c, e2_b, e2_c, s_b, s_c))
print('\n')
curr_linenum += 1
print(interaction, mechanism, advice, effect, none)
interaction + mechanism + advice + effect + none
###Output
_____no_output_____ |
3.CNN_Basic/CNN_only_Tensorflow.ipynb | ###Markdown
TensorFlow Tutorial - 6. CNN본 문서는 TensorFlow 를 사용하여 Deep Learning을 구현하기 위한 기초적인 실습 자료이다.The code and comments are written by Dong-Hyun Kwak Upgraed to Tensorflow v1.10 by NamJungGu This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Convolutional Neural Networks이번에는 이미지 인식 분야에서 가장 성공적으로 쓰이고 있는 Convolutional Neural Networks를 실습해본다.Convolutional Neural Networks, 이하 CNN은 아래와 같은 Convolutional Layer를 여러층 가진 딥러닝 모델을 뜻한다.(출처: http://ufldl.stanford.edu/tutorial/images/Cnn_layer.png)이번에는 간단한 구조를 가진 CNN을 구현하고 방금전에 사용했던 MNIST 데이터를 학습시켜 보고, MLP와의 성능 차이를 비교해본다.아래의 코드를 보면 MLP와 전체 구조는 매우 유사한데, 중간에 Convolutional을 비롯해 처음 보는 여러 연산들이 추가 된 것을 알 수 있다. 또한 CNN을 효과적으로 학습하기 위해서는 Weight의 초기화를 0으로 하는 것이 아니라, 랜덤으로 해주어야하는데, 여기서는 간단히 가우시안을 이용하여 초기화 하였다. 그밖에 dropout과 relu 등이 사용되었다.각 함수와 연산들의 자세한 설명은 아래 코드를 보면서 하나하나 분석해보자.
###Code
%matplotlib inline
%tensorflow_version 1.15.2
import tensorflow as tf
tf.reset_default_graph()
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
# placeholder is used for feeding data.
x = tf.placeholder("float", shape=[None, 784], name = 'x') # none represents variable length of dimension. 784 is the dimension of MNIST data.
y_target = tf.placeholder("float", shape=[None, 10], name = 'y_target') # shape argument is optional, but this is useful to debug.
# reshape input data
x_image = tf.reshape(x, [-1,28,28,1], name="x_image")
# Build a convolutional layer and maxpooling with random initialization
W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name="W_conv1") # W is [row, col, channel, feature]
b_conv1 = tf.Variable(tf.zeros([32]), name="b_conv1")
h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1, name="h_conv1")
h_pool1 = tf.nn.max_pool( h_conv1 , ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name = "h_pool1")
# Repeat again with 64 number of filters
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name="W_conv2") # W is [row, col, channel, feature]
b_conv2 = tf.Variable(tf.zeros([64]), name="b_conv2")
h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2, name="h_conv2")
h_pool2 = tf.nn.max_pool( h_conv2 , ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name = "h_pool2")
# Build a fully connected layer
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64], name="h_pool2_flat")
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name = 'W_fc1')
b_fc1 = tf.Variable(tf.zeros([1024]), name = 'b_fc1')
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1, name="h_fc1")
# Dropout Layer
keep_prob = tf.placeholder("float", name="keep_prob")
h_fc1 = tf.nn.dropout(h_fc1, keep_prob, name="h_fc1_drop")
# Build a fully connected layer with softmax
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name = 'W_fc2')
b_fc2 = tf.Variable(tf.zeros([10]), name = 'b_fc2')
y=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2, name="y")
# define the Loss function
cross_entropy = -tf.reduce_sum(y_target*tf.log(y), name = 'cross_entropy')
# define optimization algorithm
#train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_target, 1))
# correct_prediction is list of boolean which is the result of comparing(model prediction , data)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# tf.cast() : changes true -> 1 / false -> 0
# tf.reduce_mean() : calculate the mean
# create summary of parameters
tf.summary.histogram('weights_1', W_conv1)
tf.summary.histogram('weights_2', W_conv2)
tf.summary.histogram('y', y)
tf.summary.scalar('cross_entropy', cross_entropy)
merged = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter("summary")
# Create Session
with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth =True))) as sess: # open a session which is a envrionment of computation graph.
sess.run(tf.global_variables_initializer())# initialize the variables
# training the MLP
for i in range(5001): # minibatch iteraction
batch = mnist.train.next_batch(100) # minibatch size
sess.run(train_step, feed_dict={x: batch[0], y_target: batch[1], keep_prob: 0.5}) # placeholder's none length is replaced by i:i+100 indexes
if i%500 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x:batch[0], y_target: batch[1], keep_prob: 1})
print ("step %d, training accuracy: %.3f"%(i, train_accuracy))
# calculate the summary and write.
summary = sess.run(merged, feed_dict={x:batch[0], y_target: batch[1], keep_prob: 1})
summary_writer.add_summary(summary , i)
# for given x, y_target data set
print ("test accuracy: %g"% sess.run(accuracy, feed_dict={x: mnist.test.images[0:250], y_target: mnist.test.labels[0:250], keep_prob: 1}))
###Output
step 0, training accuracy: 0.250
step 500, training accuracy: 0.980
step 1000, training accuracy: 0.990
step 1500, training accuracy: 0.980
step 2000, training accuracy: 0.990
step 2500, training accuracy: 1.000
step 3000, training accuracy: 0.990
step 3500, training accuracy: 0.970
step 4000, training accuracy: 1.000
step 4500, training accuracy: 1.000
step 5000, training accuracy: 1.000
test accuracy: 1
|
RFClassifier.ipynb | ###Markdown
Random ForestRandom Forests is a **slight variation of bagged trees** that has even better performance:- Exactly like bagging, we create an ensemble of decision trees using bootstrapped samples of the training set.- However, when building each tree, each time a split is considered, a **random sample of m features** is chosen as split candidates from the **full set of p features**. The split is only allowed to use **one of those m features**. - A new random sample of features is chosen for **every single tree at every single split**. - For **classification**, m is typically chosen to be the square root of p. - For **regression**, m is typically chosen to be somewhere between p/3 and p.What's the point?- Suppose there is **one very strong feature** in the data set. When using bagged trees, most of the trees will use that feature as the top split, resulting in an ensemble of similar trees that are **highly correlated**.- Averaging highly correlated quantities does not significantly reduce variance (which is the entire goal of bagging).- By randomly leaving out candidate features from each split, **Random Forests "decorrelates" the trees**, such that the averaging process can reduce the variance of the resulting model. --- Tuning n_estimatorsOne important tuning parameter is **n_estimators**, which is the number of trees that should be grown. It should be a large enough value that the error seems to have "stabilized". --- Tuning max_featuresThe other important tuning parameter is **max_features**, which is the number of features that should be considered at each split. --- Comparing Random Forests with decision trees**Advantages of Random Forests:**- Performance is competitive with the best supervised learning methods- Provides a more reliable estimate of feature importance- Allows you to estimate out-of-sample error without using train/test split or cross-validation**Disadvantages of Random Forests:**- Less interpretable- Slower to train- Slower to predict
###Code
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as sm
import scipy.stats as stats
%matplotlib inline
plt.rcParams['figure.figsize'] = 10, 7.5
plt.rcParams['axes.grid'] = True
plt.gray()
from matplotlib.backends.backend_pdf import PdfPages
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from statsmodels.stats.outliers_influence import variance_inflation_factor
from patsy import dmatrices
import sklearn.tree as dt
import sklearn.ensemble as en
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier, export_graphviz, export
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
import pydotplus as pdot
from IPython.display import Image
url = 'https://raw.githubusercontent.com/mkmritunjay/machineLearning/master/HR_comma_sep.csv'
hr_df = pd.read_csv(url)
# now we need to create dummy variables for categorical variables(dtype=object)
numerical_features = ['satisfaction_level', 'last_evaluation', 'number_project',
'average_montly_hours', 'time_spend_company']
categorical_features = ['Work_accident','promotion_last_5years', 'department', 'salary']
categorical_features
numerical_features
# A utility function to create dummy variable
def create_dummies( df, colname ):
col_dummies = pd.get_dummies(df[colname], prefix=colname)
col_dummies.drop(col_dummies.columns[0], axis=1, inplace=True)
df = pd.concat([df, col_dummies], axis=1)
df.drop( colname, axis = 1, inplace = True )
return df
for c_feature in categorical_features:
hr_df = create_dummies( hr_df, c_feature )
hr_df.head()
#Splitting the data
feature_columns = hr_df.columns.difference( ['left'] )
feature_columns
###Output
_____no_output_____
###Markdown
Train Test split
###Code
train_X, test_X, train_y, test_y = train_test_split( hr_df[feature_columns],
hr_df['left'],
test_size = 0.3,
random_state = 42 )
###Output
_____no_output_____
###Markdown
Building the model
###Code
radm_clf = RandomForestClassifier(oob_score=True,n_estimators=100 )
radm_clf.fit( train_X, train_y )
radm_test_pred = pd.DataFrame( { 'actual': test_y,
'predicted': radm_clf.predict( test_X ) } )
metrics.accuracy_score( radm_test_pred.actual, radm_test_pred.predicted )
###Output
_____no_output_____
###Markdown
Creating confusion matrix
###Code
tree_cm = metrics.confusion_matrix( radm_test_pred.predicted,
radm_test_pred.actual,
[1,0] )
sns.heatmap(tree_cm, annot=True,
fmt='.2f',
xticklabels = ["Left", "No Left"] , yticklabels = ["Left", "No Left"] )
plt.ylabel('True label')
plt.xlabel('Predicted label')
###Output
_____no_output_____
###Markdown
Find for the important features
###Code
radm_clf.feature_importances_
indices = np.argsort(radm_clf.feature_importances_)[::-1]
feature_rank = pd.DataFrame( columns = ['rank', 'feature', 'importance'] )
for f in range(train_X.shape[1]):
feature_rank.loc[f] = [f+1,
train_X.columns[indices[f]],
radm_clf.feature_importances_[indices[f]]]
sns.barplot( y = 'feature', x = 'importance', data = feature_rank )
###Output
_____no_output_____
###Markdown
Note: As per the model, the most important features which influence whether to leave the company,in descending order, are- satisfaction_level- time_spend_company- number_project- average_montly_hours- last_evaluation- work_accident
###Code
###Output
_____no_output_____ |
examples/toyB.ipynb | ###Markdown
Toy Process BMerge two files, ```alpha_norm.csv``` and ```beta.csv``` by concatenating the columns.
###Code
import pandas as pd
alpha = pd.read_csv('alpha_norm.csv')
beta = pd.read_csv('beta.csv')
beta.head()
common = pd.concat([alpha, beta], axis=1)
common.head()
common.to_csv('common.csv', index=False)
###Output
_____no_output_____ |
EuroVoc/Explore EuroVoc.ipynb | ###Markdown
Analyse EuroVocGet the number of concepts and the depth of the ontologyIt is important to have rdflib, SPARQLWrapper, pandas, and numpy* pip install rdflib* pip install SPARQLWrapper* pip install pandas* pip install numpyDownload the lastest version of EuroVoc from https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/eurovoc
###Code
from rdflib import Graph
from rdflib.namespace import RDFS
from rdflib import URIRef
import rdflib
import json
from collections import deque
import numpy as np
import pandas as pd
input_file = "eurovoc-skos-ap-eu.rdf"
g = Graph()
g.parse(input_file)
qres = g.query(
"""PREFIX skos:<http://www.w3.org/2004/02/skos/core#>
SELECT DISTINCT ?a
WHERE {
?a a skos:Concept .
}""")
topics = dict()
for row in qres:
topics[row[0]] = True
print("Number of concepts: {}".format(len(topics)))
qres = g.query(
"""PREFIX skos:<http://www.w3.org/2004/02/skos/core#>
SELECT DISTINCT ?a ?b
WHERE {
?a skos:broader ?b .
}""")
broaders = dict()
narrowers = dict()
for row in qres:
if row[0] not in broaders:
broaders[row[0]] = list()
broaders[row[0]].append(row[1])
if row[1] not in narrowers:
narrowers[row[1]] = list()
narrowers[row[1]].append(row[0])
unhier = broaders
concepts = topics
for concept, value in concepts.items():
queue = deque()
max_depth = value
queue.append({"t":concept,"d":value})
while len(queue) > 0:
dequeued = queue.popleft()
if dequeued["t"] in unhier:
broads = unhier[dequeued["t"]]
new_depth = dequeued["d"]+1
if new_depth > max_depth:
max_depth = new_depth
for broader in broads:
queue.append({"t":broader,"d":dequeued["d"]+1})
concepts[concept] = max_depth
list_of_depths = pd.DataFrame.from_dict(concepts, orient='index', columns=['depth'])
list_of_depths.sort_values('depth', inplace=True, ascending=False)
print("Concepts are ranked by maximum depth")
list_of_depths.head(20)
for k, v in broaders.items():
if len(v) > 1:
print("{} has {} parents".format(k, len(v)))
###Output
http://eurovoc.europa.eu/1236 has 4 parents
http://eurovoc.europa.eu/2084 has 6 parents
http://eurovoc.europa.eu/4092 has 4 parents
http://eurovoc.europa.eu/5693 has 2 parents
http://eurovoc.europa.eu/5563 has 4 parents
http://eurovoc.europa.eu/690 has 6 parents
http://eurovoc.europa.eu/4816 has 6 parents
http://eurovoc.europa.eu/4246 has 2 parents
http://eurovoc.europa.eu/2037 has 4 parents
http://eurovoc.europa.eu/5652 has 3 parents
http://eurovoc.europa.eu/2543 has 8 parents
http://eurovoc.europa.eu/1019 has 5 parents
http://eurovoc.europa.eu/4466 has 4 parents
http://eurovoc.europa.eu/2058 has 4 parents
http://eurovoc.europa.eu/4620 has 2 parents
http://eurovoc.europa.eu/5965 has 6 parents
http://eurovoc.europa.eu/205 has 3 parents
http://eurovoc.europa.eu/4862 has 3 parents
http://eurovoc.europa.eu/249 has 4 parents
http://eurovoc.europa.eu/4841 has 7 parents
http://eurovoc.europa.eu/314 has 6 parents
http://eurovoc.europa.eu/8373 has 2 parents
http://eurovoc.europa.eu/1220 has 2 parents
http://eurovoc.europa.eu/5709 has 6 parents
http://eurovoc.europa.eu/5713 has 5 parents
http://eurovoc.europa.eu/3416 has 3 parents
http://eurovoc.europa.eu/5469 has 4 parents
http://eurovoc.europa.eu/5020 has 5 parents
http://eurovoc.europa.eu/2138 has 4 parents
http://eurovoc.europa.eu/2286 has 7 parents
http://eurovoc.europa.eu/1318 has 6 parents
http://eurovoc.europa.eu/1774 has 4 parents
http://eurovoc.europa.eu/1899 has 7 parents
http://eurovoc.europa.eu/1532 has 6 parents
http://eurovoc.europa.eu/1819 has 4 parents
http://eurovoc.europa.eu/1196 has 5 parents
http://eurovoc.europa.eu/4580 has 6 parents
http://eurovoc.europa.eu/3784 has 3 parents
http://eurovoc.europa.eu/4320 has 5 parents
http://eurovoc.europa.eu/2224 has 4 parents
http://eurovoc.europa.eu/2055 has 5 parents
http://eurovoc.europa.eu/3833 has 5 parents
http://eurovoc.europa.eu/3763 has 6 parents
http://eurovoc.europa.eu/4572 has 5 parents
http://eurovoc.europa.eu/1611 has 3 parents
http://eurovoc.europa.eu/1124 has 4 parents
http://eurovoc.europa.eu/4782 has 2 parents
http://eurovoc.europa.eu/1613 has 4 parents
http://eurovoc.europa.eu/1649 has 3 parents
http://eurovoc.europa.eu/1968 has 2 parents
http://eurovoc.europa.eu/1518 has 3 parents
http://eurovoc.europa.eu/4376 has 4 parents
http://eurovoc.europa.eu/6036 has 5 parents
http://eurovoc.europa.eu/247 has 5 parents
http://eurovoc.europa.eu/6161 has 2 parents
http://eurovoc.europa.eu/1559 has 4 parents
http://eurovoc.europa.eu/4353 has 4 parents
http://eurovoc.europa.eu/496 has 5 parents
http://eurovoc.europa.eu/1519 has 6 parents
http://eurovoc.europa.eu/5898 has 6 parents
http://eurovoc.europa.eu/1729 has 2 parents
http://eurovoc.europa.eu/4846 has 4 parents
http://eurovoc.europa.eu/1504 has 4 parents
http://eurovoc.europa.eu/4351 has 3 parents
http://eurovoc.europa.eu/1557 has 4 parents
http://eurovoc.europa.eu/5072 has 3 parents
http://eurovoc.europa.eu/5859 has 7 parents
http://eurovoc.europa.eu/1085 has 6 parents
http://eurovoc.europa.eu/4148 has 3 parents
http://eurovoc.europa.eu/6223 has 2 parents
http://eurovoc.europa.eu/5619 has 7 parents
http://eurovoc.europa.eu/863 has 6 parents
http://eurovoc.europa.eu/841 has 5 parents
http://eurovoc.europa.eu/4212 has 4 parents
http://eurovoc.europa.eu/1768 has 3 parents
http://eurovoc.europa.eu/5100 has 6 parents
http://eurovoc.europa.eu/1767 has 3 parents
http://eurovoc.europa.eu/3401 has 5 parents
http://eurovoc.europa.eu/1291 has 2 parents
http://eurovoc.europa.eu/3410 has 4 parents
http://eurovoc.europa.eu/1182 has 6 parents
http://eurovoc.europa.eu/1216 has 3 parents
http://eurovoc.europa.eu/4772 has 3 parents
http://eurovoc.europa.eu/4732 has 2 parents
http://eurovoc.europa.eu/1355 has 4 parents
http://eurovoc.europa.eu/2222 has 2 parents
http://eurovoc.europa.eu/993 has 4 parents
http://eurovoc.europa.eu/4966 has 2 parents
http://eurovoc.europa.eu/1842 has 6 parents
http://eurovoc.europa.eu/4570 has 6 parents
http://eurovoc.europa.eu/3857 has 4 parents
http://eurovoc.europa.eu/8300 has 2 parents
http://eurovoc.europa.eu/4160 has 4 parents
http://eurovoc.europa.eu/1500 has 6 parents
http://eurovoc.europa.eu/3405 has 5 parents
http://eurovoc.europa.eu/2088 has 3 parents
http://eurovoc.europa.eu/4354 has 5 parents
http://eurovoc.europa.eu/111 has 3 parents
http://eurovoc.europa.eu/888 has 7 parents
http://eurovoc.europa.eu/4465 has 4 parents
http://eurovoc.europa.eu/1769 has 4 parents
http://eurovoc.europa.eu/6278 has 4 parents
http://eurovoc.europa.eu/1555 has 2 parents
http://eurovoc.europa.eu/4583 has 4 parents
http://eurovoc.europa.eu/1185 has 6 parents
http://eurovoc.europa.eu/3814 has 3 parents
http://eurovoc.europa.eu/1255 has 8 parents
http://eurovoc.europa.eu/451486 has 2 parents
http://eurovoc.europa.eu/1771 has 2 parents
http://eurovoc.europa.eu/4161 has 3 parents
http://eurovoc.europa.eu/1639 has 6 parents
http://eurovoc.europa.eu/5694 has 2 parents
http://eurovoc.europa.eu/1128 has 4 parents
http://eurovoc.europa.eu/1219 has 6 parents
http://eurovoc.europa.eu/336 has 6 parents
http://eurovoc.europa.eu/5860 has 7 parents
http://eurovoc.europa.eu/4324 has 4 parents
http://eurovoc.europa.eu/5454 has 3 parents
http://eurovoc.europa.eu/33 has 4 parents
http://eurovoc.europa.eu/2866 has 6 parents
http://eurovoc.europa.eu/5108 has 4 parents
http://eurovoc.europa.eu/1298 has 2 parents
http://eurovoc.europa.eu/5892 has 4 parents
http://eurovoc.europa.eu/5989 has 4 parents
http://eurovoc.europa.eu/1561 has 2 parents
http://eurovoc.europa.eu/1188 has 2 parents
http://eurovoc.europa.eu/1509 has 7 parents
http://eurovoc.europa.eu/1522 has 6 parents
http://eurovoc.europa.eu/484 has 5 parents
http://eurovoc.europa.eu/3830 has 2 parents
http://eurovoc.europa.eu/4567 has 6 parents
http://eurovoc.europa.eu/5040 has 6 parents
http://eurovoc.europa.eu/1289 has 2 parents
http://eurovoc.europa.eu/1207 has 2 parents
http://eurovoc.europa.eu/5925 has 2 parents
http://eurovoc.europa.eu/5063 has 6 parents
http://eurovoc.europa.eu/7198 has 4 parents
http://eurovoc.europa.eu/2229 has 4 parents
http://eurovoc.europa.eu/3411 has 2 parents
http://eurovoc.europa.eu/3858 has 4 parents
http://eurovoc.europa.eu/1166 has 3 parents
http://eurovoc.europa.eu/4621 has 5 parents
http://eurovoc.europa.eu/4662 has 6 parents
http://eurovoc.europa.eu/1876 has 2 parents
http://eurovoc.europa.eu/1965 has 2 parents
http://eurovoc.europa.eu/5930 has 3 parents
http://eurovoc.europa.eu/6148 has 2 parents
http://eurovoc.europa.eu/4779 has 2 parents
http://eurovoc.europa.eu/4780 has 2 parents
http://eurovoc.europa.eu/2331 has 6 parents
http://eurovoc.europa.eu/1584 has 2 parents
http://eurovoc.europa.eu/2563 has 6 parents
http://eurovoc.europa.eu/5946 has 3 parents
http://eurovoc.europa.eu/5029 has 3 parents
http://eurovoc.europa.eu/1125 has 6 parents
http://eurovoc.europa.eu/1874 has 2 parents
http://eurovoc.europa.eu/4342 has 6 parents
http://eurovoc.europa.eu/3774 has 5 parents
http://eurovoc.europa.eu/1841 has 3 parents
http://eurovoc.europa.eu/1168 has 2 parents
http://eurovoc.europa.eu/5445 has 3 parents
http://eurovoc.europa.eu/1560 has 5 parents
http://eurovoc.europa.eu/5876 has 5 parents
http://eurovoc.europa.eu/2057 has 4 parents
http://eurovoc.europa.eu/2525 has 5 parents
http://eurovoc.europa.eu/5746 has 5 parents
http://eurovoc.europa.eu/1843 has 2 parents
http://eurovoc.europa.eu/3816 has 2 parents
http://eurovoc.europa.eu/1617 has 3 parents
http://eurovoc.europa.eu/4648 has 4 parents
http://eurovoc.europa.eu/2203 has 4 parents
http://eurovoc.europa.eu/3403 has 5 parents
http://eurovoc.europa.eu/891 has 2 parents
http://eurovoc.europa.eu/1228 has 5 parents
http://eurovoc.europa.eu/235 has 3 parents
http://eurovoc.europa.eu/1208 has 5 parents
http://eurovoc.europa.eu/4848 has 2 parents
http://eurovoc.europa.eu/2027 has 3 parents
http://eurovoc.europa.eu/4707 has 4 parents
http://eurovoc.europa.eu/1712 has 7 parents
http://eurovoc.europa.eu/2547 has 3 parents
http://eurovoc.europa.eu/321 has 3 parents
http://eurovoc.europa.eu/5049 has 4 parents
http://eurovoc.europa.eu/5370 has 2 parents
http://eurovoc.europa.eu/4410 has 3 parents
http://eurovoc.europa.eu/4578 has 4 parents
http://eurovoc.europa.eu/6280 has 3 parents
http://eurovoc.europa.eu/5095 has 3 parents
http://eurovoc.europa.eu/451912 has 2 parents
http://eurovoc.europa.eu/4839 has 7 parents
http://eurovoc.europa.eu/3402 has 2 parents
http://eurovoc.europa.eu/2820 has 2 parents
http://eurovoc.europa.eu/691 has 5 parents
http://eurovoc.europa.eu/2089 has 4 parents
http://eurovoc.europa.eu/5770 has 2 parents
http://eurovoc.europa.eu/5617 has 2 parents
http://eurovoc.europa.eu/451462 has 2 parents
http://eurovoc.europa.eu/1218 has 4 parents
http://eurovoc.europa.eu/1217 has 5 parents
http://eurovoc.europa.eu/6281 has 2 parents
http://eurovoc.europa.eu/5349 has 3 parents
http://eurovoc.europa.eu/2052 has 2 parents
http://eurovoc.europa.eu/1524 has 3 parents
http://eurovoc.europa.eu/2231 has 5 parents
http://eurovoc.europa.eu/4453 has 3 parents
http://eurovoc.europa.eu/8547 has 2 parents
http://eurovoc.europa.eu/4217 has 4 parents
http://eurovoc.europa.eu/333 has 2 parents
http://eurovoc.europa.eu/1338 has 3 parents
http://eurovoc.europa.eu/1986 has 3 parents
http://eurovoc.europa.eu/2018 has 2 parents
http://eurovoc.europa.eu/4461 has 3 parents
http://eurovoc.europa.eu/2336 has 4 parents
http://eurovoc.europa.eu/5458 has 2 parents
http://eurovoc.europa.eu/5858 has 4 parents
http://eurovoc.europa.eu/3415 has 4 parents
http://eurovoc.europa.eu/5706 has 6 parents
http://eurovoc.europa.eu/4375 has 2 parents
http://eurovoc.europa.eu/3888 has 3 parents
http://eurovoc.europa.eu/5695 has 2 parents
http://eurovoc.europa.eu/1308 has 2 parents
http://eurovoc.europa.eu/1253 has 5 parents
http://eurovoc.europa.eu/4775 has 4 parents
http://eurovoc.europa.eu/5969 has 2 parents
http://eurovoc.europa.eu/4411 has 2 parents
http://eurovoc.europa.eu/726 has 2 parents
http://eurovoc.europa.eu/168 has 2 parents
http://eurovoc.europa.eu/1254 has 2 parents
http://eurovoc.europa.eu/6252 has 2 parents
http://eurovoc.europa.eu/6131 has 2 parents
http://eurovoc.europa.eu/1822 has 2 parents
http://eurovoc.europa.eu/2368 has 3 parents
http://eurovoc.europa.eu/2201 has 2 parents
http://eurovoc.europa.eu/4164 has 3 parents
http://eurovoc.europa.eu/3823 has 2 parents
http://eurovoc.europa.eu/451885 has 2 parents
http://eurovoc.europa.eu/5944 has 2 parents
http://eurovoc.europa.eu/1501 has 3 parents
http://eurovoc.europa.eu/1294 has 2 parents
http://eurovoc.europa.eu/1299 has 2 parents
http://eurovoc.europa.eu/1766 has 2 parents
|
KDEExplorersApp_withweight2.ipynb | ###Markdown
Explore Kernel Density Estimate Fitting on WNS 'Endemic Area'
###Code
import os
import ipywidgets as widgets
from ipywidgets import interact
from osgeo import gdal
import geopandas as gpd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from shapely.geometry import mapping, Polygon, MultiPolygon, LineString, Point
target_crs = {'proj': 'aea',
'lat_1': 29.5,
'lat_2': 45.5,
'lat_0': 23,
'lon_0': -96,
'x_0': 0,
'y_0': 0,
'datum': 'NAD83',
'units': 'm',
'no_defs': True}
wns_fname = os.path.join('data', "WNS_Status.shp")
wns = gpd.GeoDataFrame.from_file(wns_fname).dropna(subset=['WNS_MAP_YR'])
wns['year'] = wns.WNS_MAP_YR.str[:4].astype(int)
wns = wns.to_crs(target_crs)
wns.WNS_STATUS.unique()
states_fname = os.path.join('data', "cb_2017_us_state_20m.shp")
states = gpd.read_file(states_fname)
states_aea = states.to_crs(target_crs)
conus_states = states_aea[~states_aea.NAME.isin(['Alaska', 'Hawaii', 'Puerto Rico'])]
bounds = conus_states.bounds
x_bounds = [bounds.minx.min(), bounds.maxx.max()]
y_bounds = [bounds.miny.min(), bounds.maxy.max()]
centroids = wns.centroid
centroids = centroids.to_crs(target_crs)
wns['x'] = centroids.x
wns['y'] = centroids.y
wns['area'] = centroids.to_crs(target_crs).geometry.area
wns['area_weight'] = wns.area/wns.area.max()
# wns.head(5)
def reclass_as_pcnt(Z):
uniques = np.unique(Z)[::-1]
z_reclass = np.copy(Z)
total_dens = Z.sum()
cum_area = 0.0
for u in uniques:
cum_area += np.count_nonzero(Z==u)*u
z_reclass[Z==u] = cum_area/total_dens
return z_reclass
def create_kernel(x, y, X, Y, factor=1.2, weights=None):
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([x, y])
kernel = gaussian_kde(values, weights=weights)
kernel.set_bandwidth( factor)
Z = np.reshape(kernel(positions).T, X.shape)
return reclass_as_pcnt(Z)
def create_kernel_contours(x, y, z, levels=[0.5, 0.75, 0.95]):
cset = plt.contour(x, y, z, levels=levels, colors=['red', 'white', 'blue'], linewidths=4)
return cset
def plot_one(cset, title='', isopleth=0.75):
fig = plt.figure(figsize=(25, 15))
ax = fig.add_subplot(111)
ax.set_xlim([-3000000, 3000000])
ax.set_ylim([0, 3700000])
states_aea.plot(color='None', edgecolor='black', ax=ax, alpha=0.4)
plt.title(title,fontsize=30)
ax.set_aspect('equal')
return ax
# copied from https://gist.github.com/tillahoffmann/f844bce2ec264c1c8cb5
import numpy as np
from scipy.spatial.distance import cdist
class gaussian_kde(object):
"""Representation of a kernel-density estimate using Gaussian kernels.
Kernel density estimation is a way to estimate the probability density
function (PDF) of a random variable in a non-parametric way.
`gaussian_kde` works for both uni-variate and multi-variate data. It
includes automatic bandwidth determination. The estimation works best for
a unimodal distribution; bimodal or multi-modal distributions tend to be
oversmoothed.
Parameters
----------
dataset : array_like
Datapoints to estimate from. In case of univariate data this is a 1-D
array, otherwise a 2-D array with shape (# of dims, # of data).
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as `kde.factor`. If a callable, it should
take a `gaussian_kde` instance as only parameter and return a scalar.
If None (default), 'scott' is used. See Notes for more details.
weights : array_like, shape (n, ), optional, default: None
An array of weights, of the same shape as `x`. Each value in `x`
only contributes its associated weight towards the bin count
(instead of 1).
Attributes
----------
dataset : ndarray
The dataset with which `gaussian_kde` was initialized.
d : int
Number of dimensions.
n : int
Number of datapoints.
neff : float
Effective sample size using Kish's approximation.
factor : float
The bandwidth factor, obtained from `kde.covariance_factor`, with which
the covariance matrix is multiplied.
covariance : ndarray
The covariance matrix of `dataset`, scaled by the calculated bandwidth
(`kde.factor`).
inv_cov : ndarray
The inverse of `covariance`.
Methods
-------
kde.evaluate(points) : ndarray
Evaluate the estimated pdf on a provided set of points.
kde(points) : ndarray
Same as kde.evaluate(points)
kde.pdf(points) : ndarray
Alias for ``kde.evaluate(points)``.
kde.set_bandwidth(bw_method='scott') : None
Computes the bandwidth, i.e. the coefficient that multiplies the data
covariance matrix to obtain the kernel covariance matrix.
.. versionadded:: 0.11.0
kde.covariance_factor : float
Computes the coefficient (`kde.factor`) that multiplies the data
covariance matrix to obtain the kernel covariance matrix.
The default is `scotts_factor`. A subclass can overwrite this method
to provide a different method, or set it through a call to
`kde.set_bandwidth`.
Notes
-----
Bandwidth selection strongly influences the estimate obtained from the KDE
(much more so than the actual shape of the kernel). Bandwidth selection
can be done by a "rule of thumb", by cross-validation, by "plug-in
methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
uses a rule of thumb, the default is Scott's Rule.
Scott's Rule [1]_, implemented as `scotts_factor`, is::
n**(-1./(d+4)),
with ``n`` the number of data points and ``d`` the number of dimensions.
Silverman's Rule [2]_, implemented as `silverman_factor`, is::
(n * (d + 2) / 4.)**(-1. / (d + 4)).
Good general descriptions of kernel density estimation can be found in [1]_
and [2]_, the mathematics for this multi-dimensional implementation can be
found in [1]_.
References
----------
.. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
Visualization", John Wiley & Sons, New York, Chicester, 1992.
.. [2] B.W. Silverman, "Density Estimation for Statistics and Data
Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
Chapman and Hall, London, 1986.
.. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
.. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
conditional density estimation", Computational Statistics & Data
Analysis, Vol. 36, pp. 279-298, 2001.
Examples
--------
Generate some random two-dimensional data:
>>> from scipy import stats
>>> def measure(n):
>>> "Measurement model, return two coupled measurements."
>>> m1 = np.random.normal(size=n)
>>> m2 = np.random.normal(scale=0.5, size=n)
>>> return m1+m2, m1-m2
>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()
Perform a kernel density estimate on the data:
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)
Plot the results:
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()
"""
def __init__(self, dataset, bw_method=None, weights=None):
self.dataset = np.atleast_2d(dataset)
if not self.dataset.size > 1:
raise ValueError("`dataset` input should have multiple elements.")
self.d, self.n = self.dataset.shape
if weights is not None:
self.weights = weights / np.sum(weights)
else:
self.weights = np.ones(self.n) / self.n
# Compute the effective sample size
# http://surveyanalysis.org/wiki/Design_Effects_and_Effective_Sample_Size#Kish.27s_approximate_formula_for_computing_effective_sample_size
self.neff = 1.0 / np.sum(self.weights ** 2)
self.set_bandwidth(bw_method=bw_method)
def evaluate(self, points):
"""Evaluate the estimated pdf on a set of points.
Parameters
----------
points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and
treated as a single point.
Returns
-------
values : (# of points,)-array
The values at each point.
Raises
------
ValueError : if the dimensionality of the input points is different than
the dimensionality of the KDE.
"""
points = np.atleast_2d(points)
d, m = points.shape
if d != self.d:
if d == 1 and m == self.d:
# points was passed in as a row vector
points = np.reshape(points, (self.d, 1))
m = 1
else:
msg = "points have dimension %s, dataset has dimension %s" % (d,
self.d)
raise ValueError(msg)
# compute the normalised residuals
chi2 = cdist(points.T, self.dataset.T, 'mahalanobis', VI=self.inv_cov) ** 2
# compute the pdf
result = np.sum(np.exp(-.5 * chi2) * self.weights, axis=1) / self._norm_factor
return result
__call__ = evaluate
def scotts_factor(self):
return np.power(self.neff, -1./(self.d+4))
def silverman_factor(self):
return np.power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4))
# Default method to calculate bandwidth, can be overwritten by subclass
covariance_factor = scotts_factor
def set_bandwidth(self, bw_method=None):
"""Compute the estimator bandwidth with given method.
The new bandwidth calculated after a call to `set_bandwidth` is used
for subsequent evaluations of the estimated density.
Parameters
----------
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a
scalar, this will be used directly as `kde.factor`. If a callable,
it should take a `gaussian_kde` instance as only parameter and
return a scalar. If None (default), nothing happens; the current
`kde.covariance_factor` method is kept.
Notes
-----
.. versionadded:: 0.11
Examples
--------
>>> x1 = np.array([-7, -5, 1, 4, 5.])
>>> kde = stats.gaussian_kde(x1)
>>> xs = np.linspace(-10, 10, num=50)
>>> y1 = kde(xs)
>>> kde.set_bandwidth(bw_method='silverman')
>>> y2 = kde(xs)
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
>>> y3 = kde(xs)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
... label='Data points (rescaled)')
>>> ax.plot(xs, y1, label='Scott (default)')
>>> ax.plot(xs, y2, label='Silverman')
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
>>> ax.legend()
>>> plt.show()
"""
if bw_method is None:
pass
elif bw_method == 'scott':
self.covariance_factor = self.scotts_factor
elif bw_method == 'silverman':
self.covariance_factor = self.silverman_factor
elif np.isscalar(bw_method):
self._bw_method = 'use constant'
self.covariance_factor = lambda: self.factor / bw_method
elif callable(bw_method):
self._bw_method = bw_method
self.covariance_factor = lambda: self._bw_method(self)
else:
msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
"or a callable."
raise ValueError(msg)
self._compute_covariance()
def _compute_covariance(self):
"""Computes the covariance matrix for each Gaussian kernel using
covariance_factor().
"""
self.factor = self.covariance_factor()
# Cache covariance and inverse covariance of the data
if not hasattr(self, '_data_inv_cov'):
# Compute the mean and residuals
_mean = np.sum(self.weights * self.dataset, axis=1)
_residual = (self.dataset - _mean[:, None])
# Compute the biased covariance
self._data_covariance = np.atleast_2d(np.dot(_residual * self.weights, _residual.T))
# Correct for bias (http://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance)
self._data_covariance /= (1 - np.sum(self.weights ** 2))
self._data_inv_cov = np.linalg.inv(self._data_covariance)
self.covariance = self._data_covariance * self.factor**2
self.inv_cov = self._data_inv_cov / self.factor**2
self._norm_factor = np.sqrt(np.linalg.det(2*np.pi*self.covariance)) #* self.n
cache = {}
def interactive_plot(factor, iso=0.75, year=2017,
add_counties=False,
add_centroids=True,
add_surface=True,
weight_by_county_area=True,
weight_by_year=True):
if year in cache:
X, Y, data = cache[year]['data']
else:
cache[year] = {}
cache[year]['kernels'] = {}
data = wns[wns.year <= year]
pad=500000
X, Y = np.mgrid[x_bounds[0]-pad:x_bounds[1]+pad:100j, y_bounds[0]-pad:y_bounds[1]+pad:100j]
cache[year]['data'] = (X, Y, data)
if weight_by_year:
weights = gen_weights(data.years_pres, factor=4)#weight_f.value
else:
weights = np.ones(data.area_weight.shape)
weights /= np.sum(weights)
if weight_by_county_area:
county_weights = data.area_weight
county_weights /= np.sum(county_weights)
weights += county_weights
weights /= np.sum(weights)
weights = list(weights)
Z = create_kernel(data.x, data.y, X, Y, factor, weights=weights)
cache[year]['kernels'][factor] = Z
cset = create_kernel_contours(X, Y, Z, levels=[iso])
ax = plot_one(cset, title=f"WNS {year}-{year+1}")
if add_surface:
ax.imshow(np.rot90(Z), cmap=plt.cm.Reds_r,
extent=[X.min(), X.max(), Y.min(), Y.max()], alpha=0.6)
if add_counties:
data.to_crs(states_aea.crs).plot(column='year', cmap='plasma', ax=ax, legend=True)
if add_centroids:
data.to_crs(states_aea.crs).centroid.plot(color='grey', ax=ax)
f = widgets.FloatSlider(
value=1.2,
min=0.1,
max=4.0,
step=0.1,
description="BW Factor")
f.continuous_update = False
y = widgets.IntSlider(
value=2014,
min=wns.year.min()+1,
max=wns.year.max(),
step=1,
description="Year")
i = widgets.FloatSlider(
value=0.75,
min=0.05,
max=.99,
step=0.05,
description="Isopleth")
i.continuous_update = False
c = widgets.Checkbox(value=False, description='Show Counties')
c2 = widgets.Checkbox(value=False, description='Show Centroids')
c3 = widgets.Checkbox(value=False, description='Show KDE Surface')
c4 = widgets.Checkbox(value=True, description='Weight by county areas')
c5 = widgets.Checkbox(value=True, description='Weight by years since detection')
###Output
_____no_output_____
###Markdown
In order to weight counties we need to decide on a function to use for weighting. Let's start with a simple number of years raised to a power function, as it allows us to explore a range of curves *move the slider below to set the shape of this curve** 0.0 is no weight* 1.0 is linear***Note: Changes to this curve do not update the map until one of the widgets below is triggered***
###Code
weight_f = widgets.FloatSlider(
value=2,
min=0.0,
max=10.0,
step=0.1,
description="Weight Exponent",
layout={'width': '500px'})
def exponential(x, factor=2.0):
return x**factor
wns['years_pres'] = wns.year.max()-wns.year
def gen_weights(years_pres, factor=2.0):
weights = [exponential(weight, factor) for weight in years_pres]
# weights = [w/np.max(weights) for w in weights]
return weights
def show_weight_curve(factor=2):
print(factor)
years = list(range(0, wns.years_pres.max()))
weights = gen_weights(years, factor=factor)
weights = weights / np.max(weights)
f, ax1 = plt.subplots(1, 1, figsize=(5,5))
ax1.plot(years, weights)
ax1.set_title('County Weights by years since detection')
ax1.set_xlabel('Years since Detection (n)')
ax1.set_ylabel('Weight')
ax1.set_ylim(0,1.1)
tex = r'$n^{' + str(factor) + '}$'
ax1.text(1, 0.8, tex, fontsize=20, va='bottom')
plt.tight_layout()
_ = interact(show_weight_curve, factor=weight_f)
###Output
_____no_output_____
###Markdown
Once the weight function is finished used the sliders below to see the effect on our KDE
###Code
%matplotlib inline
_ = interact(interactive_plot, factor=f, iso=i, year=y,
add_counties=c,
add_centroids=c2,
add_surface=c3,
weight_by_county_area=c4,
weight_by_years=c5)
i.continuous_update = False
from shapely.geometry import mapping, Polygon, MultiPolygon, LineString, Point
import fiona
from fiona.crs import from_epsg
def save_isos_to_shp(outfname, cset, epsg=26912, all_iso=None, territory=1, all_data_stats=1):
# Define a polygon feature geometry with one attribute
schema = {
'geometry': 'MultiPolygon',
'properties': {'Territory':'str',
'level': 'float'},
}
# Write a new Shapefile
with fiona.open(outfname, 'w', 'ESRI Shapefile', schema, crs=wns.crs) as c:
## If there are multiple geometries, put the "for" loop here
for i in reversed(range(len(cset.collections))):
level = cset.levels[i]
polys = []
sum_area = 0
for p in cset.collections[i].get_paths():
v = p.vertices
x = v[:,0]
y = v[:,1]
this_poly = Polygon([(i[0], i[1]) for i in zip(x,y)])
sum_area += this_poly.area
polys.append(this_poly)
print('iso'+ str(int(level*100)))
multi = MultiPolygon(polys)
props = {'Territory': territory,
'level': level*100}
c.write({
'geometry': mapping(multi),
'properties': props,
})
factor = f.value
iso=i.value
year=y.value
add_counties=False
add_centroids=True
add_surface=True
weight_by_county_area=True
weight_by_year=True
if year in cache:
X, Y, data = cache[year]['data']
else:
cache[year] = {}
cache[year]['kernels'] = {}
data = wns[wns.year <= year]
pad=500000
X, Y = np.mgrid[x_bounds[0]-pad:x_bounds[1]+pad:100j, y_bounds[0]-pad:y_bounds[1]+pad:100j]
cache[year]['data'] = (X, Y, data)
if weight_by_year:
weights = gen_weights(data.years_pres, factor=4)#weight_f.value
else:
weights = np.ones(data.area_weight.shape)
weights /= np.sum(weights)
if weight_by_county_area:
county_weights = data.area_weight
county_weights /= np.sum(county_weights)
weights += county_weights
weights /= np.sum(weights)
weights = list(weights)
Z = create_kernel(data.x, data.y, X, Y, factor, weights=weights)
cache[year]['kernels'][factor] = Z
cset = create_kernel_contours(X, Y, Z, levels=[iso])
save_isos_to_shp(r"c:\temp\test3.shp", cset)
cset
weight_z = widgets.FloatSlider(
value=2,
min=0.0,
max=10.0,
step=0.1,
description="Weight Exponent",
layout={'width': '500px'})
weight_z
###Output
_____no_output_____ |
Custom Models, Layers, and Loss Functions with TensorFlow/Week 1 - Functional APIs/C1_W1_Lab_2_multi-output.ipynb | ###Markdown
Ungraded Lab: Build a Multi-output ModelIn this lab, we'll show how you can build models with more than one output. The dataset we will be working on is available from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Energy+efficiency). It is an Energy Efficiency dataset which uses the bulding features (e.g. wall area, roof area) as inputs and has two outputs: Cooling Load and Heating Load. Let's see how we can build a model to train on this data. Imports
###Code
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input
from sklearn.model_selection import train_test_split
###Output
_____no_output_____
###Markdown
UtilitiesWe define a few utilities for data conversion and visualization to make our code more neat.
###Code
def format_output(data):
y1 = data.pop('Y1')
y1 = np.array(y1)
y2 = data.pop('Y2')
y2 = np.array(y2)
return y1, y2
def norm(x):
return (x - train_stats['mean']) / train_stats['std']
def plot_diff(y_true, y_pred, title=''):
plt.scatter(y_true, y_pred)
plt.title(title)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.axis('equal')
plt.axis('square')
plt.xlim(plt.xlim())
plt.ylim(plt.ylim())
plt.plot([-100, 100], [-100, 100])
plt.show()
def plot_metrics(metric_name, title, ylim=5):
plt.title(title)
plt.ylim(0, ylim)
plt.plot(history.history[metric_name], color='blue', label=metric_name)
plt.plot(history.history['val_' + metric_name], color='green', label='val_' + metric_name)
plt.show()
###Output
_____no_output_____
###Markdown
Prepare the DataWe download the dataset and format it for training.
###Code
# Get the data from UCI dataset
URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx'
# Use pandas excel reader
df = pd.read_excel(URL)
df = df.sample(frac=1).reset_index(drop=True)
# Split the data into train and test with 80 train / 20 test
train, test = train_test_split(df, test_size=0.2)
train_stats = train.describe()
# Get Y1 and Y2 as the 2 outputs and format them as np arrays
train_stats.pop('Y1')
train_stats.pop('Y2')
train_stats = train_stats.transpose()
train_Y = format_output(train)
test_Y = format_output(test)
# Normalize the training and test data
norm_train_X = norm(train)
norm_test_X = norm(test)
###Output
_____no_output_____
###Markdown
Build the ModelHere is how we'll build the model using the functional syntax. Notice that we can specify a list of outputs (i.e. `[y1_output, y2_output]`) when we instantiate the `Model()` class.
###Code
# Define model layers.
input_layer = Input(shape=(len(train .columns),))
first_dense = Dense(units='128', activation='relu')(input_layer)
second_dense = Dense(units='128', activation='relu')(first_dense)
# Y1 output will be fed directly from the second dense
y1_output = Dense(units='1', name='y1_output')(second_dense)
third_dense = Dense(units='64', activation='relu')(second_dense)
# Y2 output will come via the third dense
y2_output = Dense(units='1', name='y2_output')(third_dense)
# Define the model with the input layer and a list of output layers
model = Model(inputs=input_layer, outputs=[y1_output, y2_output])
print(model.summary())
###Output
_____no_output_____
###Markdown
Configure parametersWe specify the optimizer as well as the loss and metrics for each output.
###Code
# Specify the optimizer, and compile the model with loss functions for both outputs
optimizer = tf.keras.optimizers.SGD(lr=0.001)
model.compile(optimizer=optimizer,
loss={'y1_output': 'mse', 'y2_output': 'mse'},
metrics={'y1_output': tf.keras.metrics.RootMeanSquaredError(),
'y2_output': tf.keras.metrics.RootMeanSquaredError()})
###Output
_____no_output_____
###Markdown
Train the Model
###Code
# Train the model for 500 epochs
history = model.fit(norm_train_X, train_Y,
epochs=500, batch_size=10, validation_data=(norm_test_X, test_Y))
###Output
_____no_output_____
###Markdown
Evaluate the Model and Plot Metrics
###Code
# Test the model and print loss and mse for both outputs
loss, Y1_loss, Y2_loss, Y1_rmse, Y2_rmse = model.evaluate(x=norm_test_X, y=test_Y)
print("Loss = {}, Y1_loss = {}, Y1_mse = {}, Y2_loss = {}, Y2_mse = {}".format(loss, Y1_loss, Y1_rmse, Y2_loss, Y2_rmse))
# Plot the loss and mse
Y_pred = model.predict(norm_test_X)
plot_diff(test_Y[0], Y_pred[0], title='Y1')
plot_diff(test_Y[1], Y_pred[1], title='Y2')
plot_metrics(metric_name='y1_output_root_mean_squared_error', title='Y1 RMSE', ylim=6)
plot_metrics(metric_name='y2_output_root_mean_squared_error', title='Y2 RMSE', ylim=7)
###Output
_____no_output_____ |
homework/nbs/lesson5.ipynb | ###Markdown
Create simple model
###Code
model = Sequential([
Embedding(vocab_size, 32, input_length=seq_len),
Flatten(),
Dense(100, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy'])
model.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=2, batch_size=64)
model.summary()
###Output
_____no_output_____
###Markdown
Single conv layer with max pooling
###Code
?Dense
conv1 = Sequential([
Embedding(vocab_size, 32, input_length=seq_len),
Convolution1D(64, 3, activation='relu'),
MaxPooling1D(),
Flatten(),
Dense(100, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
conv1.summary()
conv1.compile(loss="binary_crossentropy", optimizer=Adam(), metrics=["accuracy"])
conv1.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=2, batch_size=64)
###Output
_____no_output_____
###Markdown
Pre-trained vectors
###Code
dataset_path = '../data/glove/'
def load_vectors(name):
return (
load_array(dataset_path + name + '.dat'),
pickle.load(open(dataset_path + name + "_words.pkl")),
pickle.load(open(dataset_path + name + "_idx.pkl")),
)
vecs, words, wordidx = load_vectors('6B.100d')
def create_emb():
n_fact = vecs.shape[1]
emb = np.zeros((vocab_size, n_fact))
for i in range(1,len(emb)):
word = idx2word[i]
if word and re.match(r"^[a-zA-Z0-9\-]*$", word):
src_idx = wordidx[word]
emb[i] = vecs[src_idx]
else:
# If we can't find the word in glove, randomly initialize
emb[i] = normal(scale=0.6, size=(n_fact,))
# This is our "rare word" id - we want to randomly initialize
emb[-1] = normal(scale=0.6, size=(n_fact,))
emb/=3
return emb
emb = create_emb()
conv2 = Sequential([
Embedding(vocab_size, 100, input_length=seq_len, weights=[emb], trainable=False),
Convolution1D(64, 3, activation='relu'),
ZeroPadding1D(1),
MaxPooling1D(),
Flatten(),
Dense(100, activation='relu'),
Dropout(0.6),
Dense(1, activation='sigmoid')
])
conv1.summary()
conv2.compile(loss="binary_crossentropy", optimizer=Adam(lr=0.0005), metrics=["accuracy"])
conv2.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=2, batch_size=64)
conv2.optimizer.lr = 0.00001
conv3 = Sequential([
Embedding(vocab_size, 100, input_length=seq_len, dropout=0.2,
weights=[emb], trainable=False),
Dropout(0.25),
Convolution1D(64, 5, border_mode='same', activation='relu'),
Dropout(0.25),
MaxPooling1D(),
Flatten(),
Dense(100, activation='relu'),
Dropout(0.7),
Dense(1, activation='sigmoid')])
conv3.compile(loss="binary_crossentropy", optimizer=Adam(lr=0.0005), metrics=["accuracy"])
conv3.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=2, batch_size=64)
conv3.optimizer.lr=1e-4
conv3.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=2, batch_size=64)
###Output
_____no_output_____
###Markdown
Multi-size CNN
###Code
from keras.layers import Merge
graph_in = Input ((vocab_size, 100))
convs = [ ]
for fsz in range (3, 6):
x = Convolution1D(64, fsz, border_mode='same', activation="relu")(graph_in)
x = MaxPooling1D()(x)
x = Flatten()(x)
convs.append(x)
out = Merge(mode="concat")(convs)
graph = Model(graph_in, out)
emb = create_emb()
model = Sequential ([
Embedding(vocab_size, 100, input_length=seq_len, dropout=0.2, weights=[emb]),
Dropout (0.2),
graph,
Dropout (0.5),
Dense (100, activation="relu"),
Dropout (0.7),
Dense (1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy'])
model.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=1, batch_size=64)
model.optimizer.lr = 1E-4
###Output
_____no_output_____
###Markdown
LSTM
###Code
model = Sequential([
Embedding(vocab_size, 32, input_length=seq_len, mask_zero=True,
W_regularizer=l2(1e-6), dropout=0.2),
LSTM(100, consume_less='gpu'),
Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
model.fit(trn, labels_train, validation_data=(test, labels_test), nb_epoch=5, batch_size=64)
###Output
_____no_output_____ |
bcu/notebooks/scraping/Welcome_Week_Doc2Cal.ipynb | ###Markdown
Convert Welcome Week Schedule (.docx) into a calender file importable by google calendar (and others)
###Code
import re
from bs4 import BeautifulSoup
import requests
html_path = "/tmp/timetable.html"
ics_path = "/tmp/timetable.ics"
with open(html_path, 'r') as file:
data = file.read()
# Parse the html content
soup = BeautifulSoup(data, "lxml")
clean_time_re = re.compile("[^0-9]")
def split_time(t):
t = clean_time_re.sub("", t)
t = t.replace("00", ":00 ")
t = t.replace("30", ":30 ")
times = []
for time in t.strip().split(" "):
t1 = time.split(":")
if int(t1[0]) < 7:
times.append("%d:%s" % (int(t1[0])+12, t1[1]))
else:
times.append(time)
return times
def clean_text(t):
t = t.replace("\n", " ")
t = t.replace(" ", " ")
return t
events = []
for rowIndex, row in enumerate(soup.find("table").find_all("tr")):
r = []
for colIndex, td in enumerate(row.find_all("td")):
text = clean_text(td.text).strip()
href = ""
for link in td.find_all("a"):
href = link.get("href")
r.append(text)
if rowIndex and colIndex and len(text):
title = text.split("\n")[0]
times = split_time(r[0])
event = {"date":heading[colIndex], "from": times[0].strip(), "to": times[1].strip(), "title": title, "text": text, "href": href}
events.append(event)
if not rowIndex:
heading = r
print("read %d events" % len(events))
print(events[0])
from ics import Calendar, Event
from datetime import datetime
from dateutil import tz
date_format = '%Y-%m-%d %H:%M:%S' # Format the ics module expects the dates to be in
def make_time(event, key):
date_toks = event["date"].split("/")
t = "20%s-%s-%s %s:00" % (date_toks[2], date_toks[1], date_toks[0], event[key])
dt = datetime.strptime(t,date_format).replace(tzinfo=tz.gettz('BST'))
dt = dt.astimezone(tz.tzutc())
return dt.strftime(date_format)
c = Calendar()
for event in events:
e = Event()
e.name = event["text"]
e.begin = make_time(event, "from")
e.end = make_time(event, "to")
e.url = event["href"]
c.events.add(e)
with open(ics_path, 'w') as my_file:
my_file.writelines(c)
with open(ics_path) as myfile:
[print(next(myfile).strip()) for x in range(8)]
###Output
BEGIN:VCALENDAR
VERSION:2.0
PRODID:ics.py - http://git.io/lLljaA
BEGIN:VEVENT
DTEND:20200914T130000Z
DTSTART:20200914T120000Z
SUMMARY:Meet your Student Success Advisers (SSAs) SSAs are Arts\, Design and Media graduates who can provide lots of insider tips and support. Link to the Activity on Teams
UID:[email protected]
|
gmm_ml_synthetic_speech_detection.ipynb | ###Markdown
Spoofed Speech Detection via Maximum Likelihood Estimation of Gaussian Mixture ModelsThe goal of synthetic speech detection is to determine whether a speech segment $S$ is natural or synthetic/converted speeach.This notebook implements a Gaussian mixture model maximum likelihood (GMM-ML) classifier for synthetic (spoofed) speech detection. This approach uses regular mel frequency cepstral coefficients (MFCC) features and gives the best performance on the [ASVspoof 2015 dataset](https://www.idiap.ch/dataset/avspoof) among the standard classifiers (GMM-SV, GMM-UBM, ...). For more background information see: *Hanilçi, Cemal, Tomi Kinnunen, Md Sahidullah, and Aleksandr Sizov. "Classifiers for synthetic speech detection: a comparison." In INTERSPEECH 2015*. The scripts use the Python package [Bob.Bio.SPEAR 2.04](https://pypi.python.org/pypi/bob.bio.spear/2.0.4) for speaker recogntion.This work is part of the ["DDoS Resilient Emergency Dispatch Center"](https://www.dhs.gov/science-and-technology/news/2015/09/04/dhs-st-awards-university-houston-26m-cyber-security-research) project at the University of Houston, funded by the Department of Homeland Security (DHS).April 19, 2015Lorenzo Rossi(lorenzo **[dot]** rossi **[at]** gmail **[dot]** com)
###Code
import os
import time
import numpy as np
import pandas as pd
from bob.bio.spear import preprocessor, extractor
from bob.bio.gmm import algorithm
from bob.io.base import HDF5File
from bob.learn import em
from sklearn.metrics import classification_report, roc_curve, roc_auc_score
WAV_FOLDER = 'Wav/' #'ASV2015dataset/wav/' # Path to folder containing speakers .wav subfolders
LABEL_FOLDER = 'CM_protocol/' #'ASV2015dataset/CM_protocol/' # Path to ground truth csv files
EXT = '.wav'
%matplotlib inline
###Output
_____no_output_____
###Markdown
Loading the Ground TruthLoad the dataframes (tables) with the labels for the training, development and evaluation (hold out) sets. Each subfolder corresponds to a different speaker. For example, T1 and D4 indicate the subfolders associated to the utterances and spoofed segments of speakers T1 and D4, respectively in training and development sets. Note that number of evaluation samples >> number of development samples >> testing samples.You can either select the speakers in each set one by one, *e.g.*:```train_subfls = ['T1', 'T2']``` will only load segments from speakers T1 and T2 for training,or use all the available speakers in a certain subset by leaving the list empty, *e.g.*:```devel_subfls = [] ```will load all the available Dx speaker segments for the development stage. If you are running this notebook for the first time, you may want to start only with 2 or so speakers per set for sake of quick testing. All the scripts may take several hours to run on the full size datsets.
###Code
train_subfls = ['T1']#, 'T2', 'T3', 'T4', 'T5', 'T6', 'T7', 'T8', 'T9', 'T13'] #T13 used instead of T10 for gender balance
devel_subfls = ['D1']#, 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'D9', 'D10']
evalu_subfls = ['E1']#, 'E2', 'E3', 'E4', 'E5', 'E6','E7', 'E8', 'E9', 'E10']
train = pd.read_csv(LABEL_FOLDER + 'cm_train.trn', sep=' ', header=None, names=['folder','file','method','source'])
if len(train_subfls): train = train[train.folder.isin(train_subfls)]
train.sort_values(['folder', 'file'], inplace=True)
devel = pd.read_csv(LABEL_FOLDER + 'cm_develop.ndx', sep=' ', header=None, names=['folder','file','method','source'])
if len(devel_subfls): devel = devel[devel.folder.isin(devel_subfls)]
devel.sort_values(['folder', 'file'], inplace=True)
evalu = pd.read_csv(LABEL_FOLDER +'cm_evaluation.ndx', sep=' ', header=None, names=['folder','file','method','source'])
if len(evalu_subfls): evalu = evalu[evalu.folder.isin(evalu_subfls)]
evalu.sort_values(['folder', 'file'], inplace=True)
label_2_class = {'human':1, 'spoof':0}
print('training samples:',len(train))
print('development samples:',len(devel))
print('evaluation samples:',len(evalu))
###Output
training samples: 655
development samples: 1525
evaluation samples: 4185
###Markdown
Speech Preprocessing and MFCC ExtractionSilence removal and MFCC feature extraction for training segments. More details about the bob.bio.spear involved libraries at:https://www.idiap.ch/software/bob/docs/latest/bioidiap/bob.bio.spear/master/implemented.htmlYou can also skip this stage and load a set of feaures (see **Loading features** cell).
###Code
# Parameters
n_ceps = 60 # number of ceptral coefficients (implicit in extractor)
silence_removal_ratio = .1
subfolders = train_subfls
ground_truth = train
# initialize feature matrix
features = []
y = np.zeros((len(ground_truth),))
print("Extracting features for training stage.")
vad = preprocessor.Energy_Thr(ratio_threshold=silence_removal_ratio)
cepstrum = extractor.Cepstral()
k = 0
start_time = time.clock()
for folder in subfolders[0:n_subfls]:
print(folder, end=", ")
folder = "".join(('Wav/',folder,'/'))
f_list = os.listdir(folder)
for f_name in f_list:
# ground truth
try:
label = ground_truth[ground_truth.file==f_name[:-len(EXT)]].source.values[0]
except IndexError:
continue
y[k] = label_2_class[label]
# silence removal
x = vad.read_original_data(folder+f_name)
vad_data = vad(x)
if not vad_data[2].max():
vad = preprocessor.Energy_Thr(ratio_threshold=silence_removal_ratio*.8)
vad_data = vad(x)
vad = preprocessor.Energy_Thr(ratio_threshold=silence_removal_ratio)
# MFCC extraction
mfcc = cepstrum(vad_data)
features.append(mfcc)
k += 1
Xf = np.array(features)
print(k,"files processed in",(time.clock()-start_time)/60,"minutes.")
###Output
Extracting features for training stage.
T1, 655 files processed in 1.8766250499999992 minutes.
###Markdown
Saving features
###Code
np.save('X.npy',Xf)
np.save('y.npy',y)
print('Feature and label matrices saved to disk')
###Output
_____no_output_____
###Markdown
Loading features
###Code
# Load already extracter features to skip the preprocessing-extraction stage
Xf = np.load('train_features_10.npy')
y = np.load('y_10.npy')
###Output
_____no_output_____
###Markdown
GMM - ML Classification GMM TrainingTrain the GMMs for natural and synthetic speach. For documentation on bob.bio k-means and GMM machines see:https://pythonhosted.org/bob.learn.em/guide.htmlYou can also skip the training stage and load an already trained GMM model (see cell **Loading GMM Model**).
###Code
# Parameters of the GMM machines
n_gaussians = 128 # number of Gaussians
max_iterats = 25 # maximum number of iterations
###Output
_____no_output_____
###Markdown
GMM for natural speech
###Code
# Initialize and train k-means machine: the means will initialize EM algorithm for GMM machine
start_time = time.clock()
kmeans_nat = em.KMeansMachine(n_gaussians,n_ceps)
kmeansTrainer = em.KMeansTrainer()
em.train(kmeansTrainer, kmeans_nat, np.vstack(Xf[y==1]), max_iterations = max_iterats, convergence_threshold = 1e-5)
#kmeans_nat.means
# initialize and train GMM machine
gmm_nat = em.GMMMachine(n_gaussians,n_ceps)
trainer = em.ML_GMMTrainer(True, True, True)
gmm_nat.means = kmeans_nat.means
em.train(trainer, gmm_nat, np.vstack(Xf[y==1]), max_iterations = max_iterats, convergence_threshold = 1e-5)
#gmm_nat.save(HDF5File('gmm_nat.hdf5', 'w'))
print("Done in:", (time.clock() - start_time)/60, "minutes")
print(gmm_nat)
###Output
Done in: 1.7726312666666666 minutes
<bob.learn.em.GMMMachine object at 0x7fc500be12d0>
###Markdown
GMM for synthetic speech
###Code
# initialize and train k-means machine: the means will initialize EM algorithm for GMM machine
start_time = time.clock()
kmeans_synt = em.KMeansMachine(n_gaussians,n_ceps)
kmeansTrainer = em.KMeansTrainer()
em.train(kmeansTrainer, kmeans_synt, np.vstack(Xf[y==0]), max_iterations = max_iterats, convergence_threshold = 1e-5)
# initialize and train GMM machine
gmm_synt = em.GMMMachine(n_gaussians,n_ceps)
trainer = em.ML_GMMTrainer(True, True, True)
gmm_synt.means = kmeans_synt.means
em.train(trainer, gmm_synt, np.vstack(Xf[y==0]), max_iterations = max_iterats, convergence_threshold = 1e-5)
print("Done in:", (time.clock() - start_time)/60, "minutes")
#gmm_synt.save(HDF5File('gmm_synt.hdf5', 'w'))
print(gmm_synt)
###Output
Done in: 6.424915316666667 minutes
<bob.learn.em.GMMMachine object at 0x7fc500be1330>
###Markdown
Loading GMM model
###Code
gmm_nat = em.GMMMachine()
gmm_nat.load(HDF5File('gmm_nat.hdf5', 'r'))
gmm_synt = em.GMMMachine()
gmm_synt.load(HDF5File('gmm_synt.hdf5','r'))
np.save('p_gmm_ml_eval_10.npy',llr_score)
np.save('z_gmm_ml_eval_est_10.npy',z_gmm)
###Output
_____no_output_____
###Markdown
GMM-ML ScoringExtract the features for the testing data, compute the likelihood ratio test and compute ROC AUC and estimated EER scores.
###Code
status = 'devel' # 'devel'(= test) OR 'evalu'(= hold out)
start_time = time.clock()
if status == 'devel':
subfolders = devel_subfls
ground_truth = devel
elif status == 'evalu':
subfolders = evalu_subfls
ground_truth = evalu
n_subfls = len(subfolders)
# initialize score and class arrays
llr_gmm_score = np.zeros(len(ground_truth),)
z_gmm = np.zeros(len(ground_truth),)
print(status)
vad = preprocessor.Energy_Thr(ratio_threshold=.1)
cepstrum = extractor.Cepstral()
k = 0
thr = .5
speaker_list = ground_truth.folder.unique()
for speaker_id in speaker_list:
#speaker = ground_truth[ground_truth.folder==speaker_id]
f_list = list(ground_truth[ground_truth.folder==speaker_id].file)
folder = "".join(['Wav/',speaker_id,'/'])
print(speaker_id, end=',')
for f in f_list:
f_name = "".join([folder,f,'.wav'])
x = vad.read_original_data(f_name)
# voice activity detection
vad_data = vad(x)
if not vad_data[2].max():
vad = preprocessor.Energy_Thr(ratio_threshold=.08)
vad_data = vad(x)
vad = preprocessor.Energy_Thr(ratio_threshold=.1)
# MFCC extraction
mfcc = cepstrum(vad_data)
# Log likelihood ratio computation
llr_gmm_score[k] = gmm_nat(mfcc)-gmm_synt(mfcc)
z_gmm[k] = int(llr_gmm_score[k]>0)
k += 1
ground_truth['z'] = ground_truth.source.map(lambda x: int(x=='human'))
ground_truth['z_gmm'] = z_gmm
ground_truth['score_gmm'] = llr_gmm_score
print(roc_auc_score(ground_truth.z, ground_truth.z_gmm))
print(k,"files processed in",(time.clock()-start_time)/60,"minutes.")
# Performance evaluation
humans = z_gmm[z_dvl==0]
spoofed = z_gmm[z_dvl==1]
fnr = 100*(1-(humans<thr).sum()/len(humans))
fpr = 100*(1-(spoofed>=thr).sum()/len(spoofed))
print("ROC AUC score:", roc_auc_score(z_dvl,z_gmm))
print("False negative rate %:", fnr)
print("False positive rate %:", fpr)
print("EER %: <=", (fnr+fpr)/2)
###Output
devel
D1,0.950263157895
1525 files processed in 5.7873589999999995 minutes.
ROC AUC score: 0.950263157895
False negative rate %: 2.94736842105
False positive rate %: 7.0
EER %: <= 4.97368421053
###Markdown
EER computationAdjust the threshold $thr$ to reduce $FNR-FPR$ for a more accurate estimate of the $EER$.The Equal Error Rate ($EER$) is the value where the false negative rate ($FNR$) equals the false positive rate ($FPR$). It's an error metric commonly used to characterize biometric systems.
###Code
thr = -.115
pz = llr_gmm_score
spoofed = pz[np.array(ground_truth.z)==1]
humans = pz[np.array(ground_truth.z)==0]
fnr = 100*(humans>thr).sum()/len(humans)
fpr = 100*(spoofed<=thr).sum()/len(spoofed)
print("False negative vs positive rates %:", fnr, fpr)
print("FNR - FPR %:", fnr-fpr)
if np.abs(fnr-fpr) <.25:
print("EER =", (fnr+fpr)/2,"%")
else:
print("EER ~", (fnr+fpr)/2,"%")
###Output
False negative vs positive rates %: 3.36842105263 3.0
FNR - FPR %: 0.368421052632
EER ~ 3.18421052632 %
|
NLPAnalytics/NLP_Code_Along_Classification of Spam and Ham (NLP).ipynb | ###Markdown
NLP Code AlongFor this code along we will build a spam filter! We'll use the various NLP tools we learned about as well as a new classifier, Naive Bayes.We'll use a classic dataset for this - UCI Repository SMS Spam Detection: https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
###Code
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('nlp').getOrCreate()
data = spark.read.csv("smsspamcollection/SMSSpamCollection",inferSchema=True,sep='\t')
data.show()
data = data.withColumnRenamed('_c0','class').withColumnRenamed('_c1','text')
data.show()
###Output
+-----+--------------------+
|class| text|
+-----+--------------------+
| ham|Go until jurong p...|
| ham|Ok lar... Joking ...|
| spam|Free entry in 2 a...|
| ham|U dun say so earl...|
| ham|Nah I don't think...|
| spam|FreeMsg Hey there...|
| ham|Even my brother i...|
| ham|As per your reque...|
| spam|WINNER!! As a val...|
| spam|Had your mobile 1...|
| ham|I'm gonna be home...|
| spam|SIX chances to wi...|
| spam|URGENT! You have ...|
| ham|I've been searchi...|
| ham|I HAVE A DATE ON ...|
| spam|XXXMobileMovieClu...|
| ham|Oh k...i'm watchi...|
| ham|Eh u remember how...|
| ham|Fine if thats th...|
| spam|England v Macedon...|
+-----+--------------------+
only showing top 20 rows
###Markdown
Clean and Prepare the Data ** Create a new length feature: **
###Code
from pyspark.sql.functions import length
data = data.withColumn('length',length(data['text']))
data.show()
# Pretty Clear Difference
data.groupby('class').mean().show()
###Output
+-----+-----------------+
|class| avg(length)|
+-----+-----------------+
| ham|71.45431945307645|
| spam|138.6706827309237|
+-----+-----------------+
###Markdown
Feature Transformations
###Code
from pyspark.ml.feature import Tokenizer,StopWordsRemover, CountVectorizer,IDF,StringIndexer
tokenizer = Tokenizer(inputCol="text", outputCol="token_text")
stopremove = StopWordsRemover(inputCol='token_text',outputCol='stop_tokens')
count_vec = CountVectorizer(inputCol='stop_tokens',outputCol='c_vec')
idf = IDF(inputCol="c_vec", outputCol="tf_idf")
ham_spam_to_num = StringIndexer(inputCol='class',outputCol='label')
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.linalg import Vector
clean_up = VectorAssembler(inputCols=['tf_idf','length'],outputCol='features')
###Output
_____no_output_____
###Markdown
The ModelWe'll use Naive Bayes, but feel free to play around with this choice!
###Code
from pyspark.ml.classification import NaiveBayes
# Use defaults
nb = NaiveBayes()
###Output
_____no_output_____
###Markdown
Pipeline
###Code
from pyspark.ml import Pipeline
data_prep_pipe = Pipeline(stages=[ham_spam_to_num,tokenizer,stopremove,count_vec,idf,clean_up])
cleaner = data_prep_pipe.fit(data)
clean_data = cleaner.transform(data)
###Output
_____no_output_____
###Markdown
Training and Evaluation!
###Code
clean_data = clean_data.select(['label','features'])
clean_data.show()
(training,testing) = clean_data.randomSplit([0.7,0.3])
spam_predictor = nb.fit(training)
data.printSchema()
test_results = spam_predictor.transform(testing)
test_results.show()
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
acc_eval = MulticlassClassificationEvaluator()
acc = acc_eval.evaluate(test_results)
print("Accuracy of model at predicting spam was: {}".format(acc))
###Output
Accuracy of model at predicting spam was: 0.9248020435242028
|
backtrader_dma/Part2-Collect-Data.ipynb | ###Markdown
Disclaimer Collect dataTo run the sample strategy we need 1-day bars for a single symbol. Any symbol will work, we will use AAPL. Create a database for free sample data (if it doesn't already exist):
###Code
from quantrocket.history import create_usstock_db
create_usstock_db("usstock-free-1d", bar_size="1 day", free=True)
###Output
_____no_output_____
###Markdown
Then collect the data:
###Code
from quantrocket.history import collect_history
collect_history("usstock-free-1d")
###Output
_____no_output_____
###Markdown
Use flightlog to monitor the progress:```quantrocket.history: INFO [usstock-free-1d] Collecting FREE history from 2007 to presentquantrocket.history: INFO [usstock-free-1d] Collecting updated FREE securities listingsquantrocket.history: INFO [usstock-free-1d] Collecting additional FREE history from 2020-04 to presentquantrocket.history: INFO [usstock-free-1d] Collected 160 monthly files in quantrocket.v2.history.usstock-free-1d.sqlite``` Next we look up the Sid for AAPL (using the CLI in this example):
###Code
!quantrocket master get --symbol 'AAPL' --json | json2yml
###Output
---
-
Sid: "FIBBG000B9XRY4"
Symbol: "AAPL"
Exchange: "XNAS"
Country: "US"
Currency: "USD"
SecType: "STK"
Etf: 0
Timezone: "America/New_York"
Name: "APPLE INC"
PriceMagnifier: 1
Multiplier: 1
Delisted: 0
DateDelisted: null
LastTradeDate: null
RolloverDate: null
|
notebook/05_Feature_Extraction_with_Pretrained_Models.ipynb | ###Markdown
Feature Extraction with Pre-trained ModelsIn the earlier notebooks, we demonstrated how to build **autoencoder** as a feature extraction tool. The results of convolutional AE seemed promising for its reconstructions preserve most visible features. However, training a new model for Another way to do feature extraction is to leverage **pre-trained models** with **fine-tuning**. The [tensorflow model hub](https://tfhub.dev/) hosts many pre-trained models. For example, the [Feature vectors of ResNet-50 model pre-trained on BigEarthNet remote sensing dataset](https://tfhub.dev/google/remote_sensing/bigearthnet-resnet50/1) is a popular model for remote-sensing datasets.In this notebook, we are going to illustrate this process. Extra Data Preprocessing: ResizeThe data pre-processing functions developed earlier yields a (858,858) image. Here we add a *resize* step to change the resolutions for further processing. ([`opencv.resize`](https://pythonexamples.org/python-opencv-cv2-resize-image/) is used.)
###Code
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
import os, argparse, logging
import cv2
# Utility functions
def list_noaagridsatb1_files(dir, suffix='.v02r01.nc', to_remove=['GRIDSAT-B1.','.v02r01.nc']):
''' To scan through the sapecified dir and get the corresponding file with suffix. '''
import os
import pandas as pd
xfiles = []
for root, dirs, files in os.walk(dir, followlinks=True): # Loop through the directory
for fn in files:
if fn.endswith(suffix): # Filter files with suffix
timestamp = fn
for s in to_remove: # Removing prefix and suffix to get time-stamp
timestamp = timestamp.replace(s,'')
xfiles.append({'timestamp':timestamp, 'xuri':os.path.join(root, fn)})
return(pd.DataFrame(xfiles).sort_values('timestamp').reset_index(drop=True))
# Binary reader
def read_noaagridsatb1(furi, var='irwin_cdr', scale=0.01, offset=200, remove_na=True, crop_east_asia=True, rescale=512):
''' The method reads in a NOAA-GridSta-B1 image in netCDF4 format (.nc file).
The brightness temperature data was stored in int16 as 'irwin_cdr', with
a scal factor of 0.01 and offset of 200. The missing values is flagged as -31999.
More details of the data is described in https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_GRIDSAT-B1_V2.
Since our analysis focuss on East Asia (0-60'N, 100-160'E), we used an
option to crop the data to this region (index: lat:1000~1858, lon:4000~4858).
The output is a 2-d numpy array of float32 with shape (858, 858).
'''
import numpy as np
import netCDF4 as nc
import cv2
# Read in data
data = nc.Dataset(furi)
cdr = np.array(data.variables['irwin_cdr'])*scale+offset
# Remove missing value
if remove_na:
cdr[cdr<0] = offset
# Crop domain to East-Asia (0-60'N, 100-160'E)
if crop_east_asia:
tmp = cdr[0, 1000:1858, 4000:4858]
#output = cv2.resize(tmp, (rescale,rescale), interpolation=cv2.INTER_CUBIC)
return(tmp)
else:
return(cdr[0,:,:])
def read_multiple_noaagridsatb1(flist):
''' This method reads in a list of NOAA-GridSat-B1 images and returns a numpy array. '''
import numpy as np
data = []
for f in flist:
tmp = read_noaagridsatb1(f)
#ny, nx = tmp.shape
if tmp is not None:
#tmp = tmp.reshape((ny, nx, 1))
data.append(tmp)
return(np.array(data, dtype=np.float32))
def data_generator_ae(flist, batch_size, add_dim=False):
''' Data generator for batched processing. '''
nSample = len(flist)
# This line is just to make the generator infinite, keras needs that
while True:
batch_start = 0
batch_end = batch_size
while batch_start < nSample:
limit = min(batch_end, nSample)
X = read_multiple_noaagridsatb1(flist[batch_start:limit])
if add_dim:
X = np.expand_dims(X, axis=3)
#print(X.shape)
yield (X,X) #a tuple with two numpy arrays with batch_size samples
batch_start += batch_size
batch_end += batch_size
# End of generator
# Test
# Define parameters
datadir = 'D:/worksapce/2020Q3_representation_learning/data/noaa'
finfo = list_noaagridsatb1_files(datadir)
print(finfo.head())
# Load data
data = read_noaagridsatb1(finfo['xuri'].iloc[180])
print(data.shape)
data2 = cv2.resize(data, (512,512), interpolation=cv2.INTER_CUBIC)
# Visualize the process
%matplotlib inline
import matplotlib.pyplot as plt
plt.imshow(data)
plt.title(finfo['timestamp'].iloc[180])
plt.gray()
plt.show()
plt.imshow(data2)
plt.title(finfo['timestamp'].iloc[180])
plt.gray()
plt.show()
import tensorflow_hub as hub
model_url = "https://tfhub.dev/google/remote_sensing/bigearthnet-resnet50/1"
model = hub.load(model_url)
image = np.stack([data2,data2,data2], axis=2)
images = np.expand_dims(image, axis=0) # A batch of images with shape [batch_size, height, width, 3].
print(images.shape)
features = model.signatures['default'](tf.convert_to_tensor(images)) # Features with shape [batch_size, num_features].
%matplotlib inline
import matplotlib.pyplot as plt
for k in features.keys():
print(k + ": \t" + str(features[k].shape))
print(features['default'])
plt.plot(features['default'].numpy().flatten())
# Try a different input shape
image1 = np.stack([data,data,data], axis=2)
images = np.expand_dims(image1, axis=0)
print(images.shape)
features = model.signatures['default'](tf.convert_to_tensor(images))
for k in features.keys():
print(k + ": \t" + str(features[k].shape))
print(features['default'])
plt.plot(features['default'].numpy().flatten())
plt.show()
###Output
(1, 858, 858, 3)
block2: (1, 108, 108, 512)
default: (1, 2048)
after_root: (1, 215, 215, 64)
block3: (1, 54, 54, 1024)
block4: (1, 27, 27, 2048)
pre_logits: (1, 2048)
logits: (1, 43)
block1: (1, 215, 215, 256)
tf.Tensor([[0. 2.306268 0. ... 0. 0. 0. ]], shape=(1, 2048), dtype=float32)
|
.ipynb_checkpoints/run_eeg_notebooks-checkpoint.ipynb | ###Markdown
Ownself SSVEPBelow are codes to generate the SSVEP stimulus, using the function calls as from NeuroTechX/eeg-notebooks
###Code
counter = 0
import numpy as np
from psychopy import visual, core, event
import os
import datetime
# Initialize the SSVEP parameters
counter = counter + 1
DURATION_s = 7 # Duration in seconds
FRAME_RATE_Hz = 144 # Frame rate of PC, is 144Hz for my own laptop
# Initialize the SSVEP Visual parameters
SSVEP_FREQ_Hz = [14.4,16,18,20.57] # SSVEP Frequency in Hz. Set to factor of 144Hz
SPATIAL_FREQ = [0.01,0.01,0.01,0.01] # How thick are the vertical lines. Smaller is thick lines, big value is very thin lines
PHASE = [0.5, 0.5, 0.5, 0.5] # Phase difference between the 2 image. Takes value 0 to 1
SIZE = [8, 8, 8, 8] # Size of image
X = [-14, 14, -14, 14] # X position of image, value from (-20, 20)
Y = [ 8, 8, -7, -7] # Y position of image, value from (-10, 10)
num_class = len(SSVEP_FREQ_Hz)
# Initialize run time
TOTAL_RUN = 20
# Get directory to save data
# Directory and Data is saved in "E:\Github\gtec_Simulink\ssvep", together with the matlab .mat file
CURRENT_DIR= os.getcwd() # Use os.getcwd() for running directly on .ipynb; os.path.dirname(__file__) on .py
CURRENT_CKPT_REL = str(datetime.datetime.now()).replace('-','').replace(':','').replace('.','_').replace(' ','_')
CURRENT_CKPT_DIR = os.path.join(CURRENT_DIR, '..', 'gtec_Simulink', 'ssvep',
'training_ssvep_'+ CURRENT_CKPT_REL[6:8] +
'_' + CURRENT_CKPT_REL[4:6] +
'_' + CURRENT_CKPT_REL[0:4] +
'_' + CURRENT_CKPT_REL[9:11] +
'_' + CURRENT_CKPT_REL[11:13] +
'_' + str(counter))
os.mkdir(CURRENT_CKPT_DIR)
print('Created directory {} to store experiment results'.format(CURRENT_CKPT_DIR))
# Initialize parameters and array
frame_b4_switch = np.zeros((num_class), dtype=np.int32)
for i in range(num_class):
frame_b4_switch[i] = FRAME_RATE_Hz*100 // ( SSVEP_FREQ_Hz[i] *100) # Need x100 so that // on integer
print('Class {} with Freq {} has frame_b4_switch = {}'.format(i, SSVEP_FREQ_Hz[i], frame_b4_switch[i]))
if (100*FRAME_RATE_Hz) % ( 100*SSVEP_FREQ_Hz[i]) != 0:
print('\tWarning, SSVEP_FREQ_Hz {} for class {} is not a factor of the screen refresh rate {}'.format(SSVEP_FREQ_Hz, i, FRAME_RATE_Hz))
print('\tWill be rounded off to {} Hz so that frame_b4_switch is {}'.format(144/frame_b4_switch[i], frame_b4_switch[i]))
total_frames = DURATION_s * FRAME_RATE_Hz
track_array = np.zeros((total_frames, num_class))
for i in range(num_class):
for j in range(0, total_frames, frame_b4_switch[i]):
track_array[j,i] = 1
if j+frame_b4_switch[i]//2 < total_frames:
track_array[j+frame_b4_switch[i]//2,i] = 1
print('track_array has dimension ({},{})'.format(len(track_array.T), len(track_array)))
# print(track_array.T)
use_neg = []
for i in range(num_class):
use_neg.append(False)
# Set up graphics
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
# ref_image = []
# for i in range(num_class):
# ref_image.append( visual.Circle(win=mywin, radius=10, fillColor = 'RoyalBlue', autoDraw=True, pos = (X[i], Y[i])))
pos_image = []
for i in range(num_class):
pos_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], pos = (X[i], Y[i])) )
neg_image = []
for i in range(num_class):
neg_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], phase=PHASE[i], pos = (X[i], Y[i])) )
ref_image = []
for i in range(num_class):
ref_image.append( visual.Circle(win=mywin, radius=0.12, fillColor='black', lineColor='black', pos = (X[i], Y[i])) )
# Randomize the target class
# rand_mat = np.random.choice(TOTAL_RUN, TOTAL_RUN, replace=False)
rand_mat = np.arange(0,TOTAL_RUN)
rand_mat = rand_mat%len(SSVEP_FREQ_Hz)
symbol = np.zeros(num_class)
# Present instruction and wait for space bar
for run in range(TOTAL_RUN):
symbol = ['.', '.', '.', '.'] # Set all symbols to ' '
symbol[rand_mat[run]] = 'X' # Selected class denoted with X
text = visual.TextStim(win=mywin, text=
'{}\t\t\t\t\t\t\t\t{}\n\n \
\nLook at the corner with X \
\nPress space bar to start experiment run {} / {}\
{}\t\t\t\t\t\t\t\t{}'.format(symbol[0], symbol[1], run+1, TOTAL_RUN, symbol[2], symbol[3]), color=[-1, -1, -1])
text.draw()
mywin.flip()
event.waitKeys(keyList="space")
track_flip_time = []
# Start flicker
for j in range(total_frames):
for i in range(num_class):
if j == 0:
pos_image[i].draw()
ref_image[i].draw()
else:
if track_array[j,i] == 0:
if use_neg[i] == True: # Is using negative image, continue negative
neg_image[i].draw()
else:
pos_image[i].draw()
ref_image[i].draw()
else:
if use_neg[i] == True: # Is using negative image, switch to positive
pos_image[i].draw()
use_neg[i] = False
ref_image[i].draw()
else:
neg_image[i].draw()
use_neg[i] = True
ref_image[i].draw()
track_flip_time.append(mywin.flip())
# Save the rand_mat to text file
print('Saving rand_mat to text file')
np.savetxt(CURRENT_CKPT_DIR + '.out' , rand_mat, fmt ='%u')
# Close the SSVEP Stimulus window
mywin.close()
import numpy as np
from psychopy import visual, core, event
import os
import datetime
# Initialize the SSVEP parameters
counter = counter + 1
DURATION_s = 10 # Duration in seconds
FRAME_RATE_Hz = 144 # Frame rate of PC, is 144Hz for my own laptop
# Initialize the SSVEP Visual parameters
SSVEP_FREQ_Hz = [14.4,16,18,20.57] # SSVEP Frequency in Hz. Set to factor of 144Hz
SSVEP_FREQ_Hz = [1,1,1,1] # SSVEP Frequency in Hz. Set to factor of 144Hz
SPATIAL_FREQ = [0.01,0.01,0.01,0.01] # How thick are the vertical lines. Smaller is thick lines, big value is very thin lines
PHASE = [0.5, 0.5, 0.5, 0.5] # Phase difference between the 2 image. Takes value 0 to 1
SIZE = [8, 8, 8, 8] # Size of image
X = [-14, 14, -14, 14] # X position of image, value from (-20, 20)
Y = [ 8, 8, -7, -7] # Y position of image, value from (-10, 10)
num_class = len(SSVEP_FREQ_Hz)
# Initialize run time
TOTAL_RUN = 4
# Get directory to save data
# Directory and Data is saved in "E:\Github\gtec_Simulink\ssvep", together with the matlab .mat file
CURRENT_DIR= os.getcwd() # Use os.getcwd() for running directly on .ipynb; os.path.dirname(__file__) on .py
CURRENT_CKPT_REL = str(datetime.datetime.now()).replace('-','').replace(':','').replace('.','_').replace(' ','_')
CURRENT_CKPT_DIR = os.path.join(CURRENT_DIR, '..', 'gtec_Simulink', 'ssvep',
'training_ssvep_'+ CURRENT_CKPT_REL[6:8] +
'_' + CURRENT_CKPT_REL[4:6] +
'_' + CURRENT_CKPT_REL[0:4] +
'_' + CURRENT_CKPT_REL[9:11] +
'_' + CURRENT_CKPT_REL[11:13] +
'_' + str(counter))
os.mkdir(CURRENT_CKPT_DIR)
print('Created directory {} to store experiment results'.format(CURRENT_CKPT_DIR))
# Initialize parameters and array
frame_b4_switch = np.zeros((num_class), dtype=np.int32)
for i in range(num_class):
frame_b4_switch[i] = FRAME_RATE_Hz*100 // ( SSVEP_FREQ_Hz[i] *100) # Need x100 so that // on integer
print('Class {} with Freq {} has frame_b4_switch = {}'.format(i, SSVEP_FREQ_Hz[i], frame_b4_switch[i]))
if (100*FRAME_RATE_Hz) % ( 100*SSVEP_FREQ_Hz[i]) != 0:
print('\tWarning, SSVEP_FREQ_Hz {} for class {} is not a factor of the screen refresh rate {}'.format(SSVEP_FREQ_Hz, i, FRAME_RATE_Hz))
print('\tWill be rounded off to {} Hz so that frame_b4_switch is {}'.format(144/frame_b4_switch[i], frame_b4_switch[i]))
total_frames = DURATION_s * FRAME_RATE_Hz
track_array = np.zeros((total_frames, num_class))
for i in range(num_class):
for j in range(0, total_frames, frame_b4_switch[i]):
track_array[j,i] = 1
if j+frame_b4_switch[i]//2 < total_frames:
track_array[j+frame_b4_switch[i]//2,i] = 1
print('track_array has dimension ({},{})'.format(len(track_array.T), len(track_array)))
# print(track_array.T)
use_neg = []
for i in range(num_class):
use_neg.append(False)
# Set up graphics
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
# ref_image = []
# for i in range(num_class):
# ref_image.append( visual.Circle(win=mywin, radius=10, fillColor = 'RoyalBlue', autoDraw=True, pos = (X[i], Y[i])))
pos_image = []
for i in range(num_class):
pos_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], pos = (X[i], Y[i])) )
neg_image = []
for i in range(num_class):
neg_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], phase=PHASE[i], pos = (X[i], Y[i])) )
ref_image = []
for i in range(num_class):
ref_image.append( visual.Circle(win=mywin, radius=5, fillColor='RoyalBlue', pos = (X[i], Y[i])) )
# Randomize the target class
# rand_mat = np.random.choice(TOTAL_RUN, TOTAL_RUN, replace=False)
rand_mat = np.arange(0,TOTAL_RUN)
rand_mat = rand_mat%len(SSVEP_FREQ_Hz)
symbol = np.zeros(num_class)
# Present instruction and wait for space bar
for run in range(TOTAL_RUN):
symbol = ['.', '.', '.', '.'] # Set all symbols to ' '
symbol[rand_mat[run]] = 'X' # Selected class denoted with X
text = visual.TextStim(win=mywin, text=
'{}\t\t\t\t\t\t\t\t{}\n\n \
\nLook at the corner with X \
\nPress space bar to start experiment run {} / {}\
{}\t\t\t\t\t\t\t\t{}'.format(symbol[0], symbol[1], run+1, TOTAL_RUN, symbol[2], symbol[3]), color=[-1, -1, -1])
text.draw()
mywin.flip()
event.waitKeys(keyList="space")
track_flip_time = []
# Start flicker
for j in range(total_frames):
for i in range(num_class):
if j == 0:
pos_image[i].setAutoDraw(True)
neg_image[i].setAutoDraw(False)
ref_image[i].draw()
else:
if track_array[j,i] == 0:
ref_image[i].draw()
else:
if use_neg[i] == True: # Is using negative image, switch to positive
pos_image[i].setAutoDraw(True)
neg_image[i].setAutoDraw(False)
use_neg[i] = False
ref_image[i].draw()
else:
pos_image[i].setAutoDraw(False)
neg_image[i].setAutoDraw(True)
use_neg[i] = True
ref_image[i].draw()
track_flip_time.append(mywin.flip())
# Save the rand_mat to text file
print('Saving rand_mat to text file')
np.savetxt(CURRENT_CKPT_DIR + '.out' , rand_mat, fmt ='%u')
# Close the SSVEP Stimulus window
mywin.close()
mywin.close()
###Output
_____no_output_____
###Markdown
Below try to use PsychoPy to create flickering stimulus that are image. Attempt to stimulate the Face Form Area (FFA).
###Code
import numpy as np
from psychopy import visual, core, event
import os
import datetime
# Initialize the SSVEP parameters
counter = counter + 1
DURATION_s = 5 # Duration in seconds
FRAME_RATE_Hz = 144 # Frame rate of PC, is 144Hz for my own laptop
# Initialize the SSVEP Visual parameters
SSVEP_FREQ_Hz = [14.4,16,18,20.57] # SSVEP Frequency in Hz. Set to factor of 144Hz
SPATIAL_FREQ = [0.01,0.01,0.01,0.01] # How thick are the vertical lines. Smaller is thick lines, big value is very thin lines
PHASE = [0.5, 0.5, 0.5, 0.5] # Phase difference between the 2 image. Takes value 0 to 1
SIZE = [8, 8, 8, 8] # Size of image
X = [-14, 14, -14, 14] # X position of image, value from (-20, 20)
Y = [ 8, 8, -7, -7] # Y position of image, value from (-10, 10)
num_class = len(SSVEP_FREQ_Hz)
# Initialize run time
TOTAL_RUN = 4
# Get directory to save data
# Directory and Data is saved in "E:\Github\gtec_Simulink\ssvep", together with the matlab .mat file
CURRENT_DIR= os.getcwd() # Use os.getcwd() for running directly on .ipynb; os.path.dirname(__file__) on .py
CURRENT_CKPT_REL = str(datetime.datetime.now()).replace('-','').replace(':','').replace('.','_').replace(' ','_')
CURRENT_CKPT_DIR = os.path.join(CURRENT_DIR, '..', 'gtec_Simulink', 'ssvep',
'training_ssvep_'+ CURRENT_CKPT_REL[6:8] +
'_' + CURRENT_CKPT_REL[4:6] +
'_' + CURRENT_CKPT_REL[0:4] +
'_' + CURRENT_CKPT_REL[9:11] +
'_' + CURRENT_CKPT_REL[11:13] +
'_' + str(counter))
os.mkdir(CURRENT_CKPT_DIR)
print('Created directory {} to store experiment results'.format(CURRENT_CKPT_DIR))
# Initialize parameters and array
frame_b4_switch = np.zeros((num_class), dtype=np.int32)
for i in range(num_class):
frame_b4_switch[i] = FRAME_RATE_Hz*100 // ( SSVEP_FREQ_Hz[i] *100) # Need x100 so that // on integer
print('Class {} with Freq {} has frame_b4_switch = {}'.format(i, SSVEP_FREQ_Hz[i], frame_b4_switch[i]))
if (100*FRAME_RATE_Hz) % ( 100*SSVEP_FREQ_Hz[i]) != 0:
print('\tWarning, SSVEP_FREQ_Hz {} for class {} is not a factor of the screen refresh rate {}'.format(SSVEP_FREQ_Hz, i, FRAME_RATE_Hz))
print('\tWill be rounded off to {} Hz so that frame_b4_switch is {}'.format(144/frame_b4_switch[i], frame_b4_switch[i]))
total_frames = DURATION_s * FRAME_RATE_Hz
track_array = np.zeros((total_frames, num_class))
for i in range(num_class):
for j in range(0, total_frames, frame_b4_switch[i]):
track_array[j,i] = 1
if j+frame_b4_switch[i]//2 < total_frames:
track_array[j+frame_b4_switch[i]//2,i] = 1
print('track_array has dimension ({},{})'.format(len(track_array.T), len(track_array)))
# print(track_array.T)
use_neg = []
for i in range(num_class):
use_neg.append(False)
# Set up graphics
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
# ref_image = []
# for i in range(num_class):
# ref_image.append( visual.Circle(win=mywin, radius=10, fillColor = 'RoyalBlue', autoDraw=True, pos = (X[i], Y[i])))
pos_image = []
pos_image.append( visual.ImageStim(win=mywin, image='images\jaychou_1.jpg' , flipVert=True, pos = (X[0], Y[0])) )
pos_image.append( visual.ImageStim(win=mywin, image='images\KDEF_1.jpg' ,flipVert=False, pos = (X[1], Y[1])) )
pos_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[2], sf=SPATIAL_FREQ[2], pos = (X[2], Y[2])) )
pos_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[3], sf=SPATIAL_FREQ[3], pos = (X[3], Y[3])) )
neg_image = []
neg_image.append( visual.ImageStim(win=mywin, image='images\jaychou_2.jpg', flipVert=True, pos = (X[0], Y[0])) )
neg_image.append( visual.ImageStim(win=mywin, image='images\KDEF_2.jpg', flipVert=False, pos = (X[1], Y[1])) )
neg_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[2], sf=SPATIAL_FREQ[2], phase=PHASE[2], pos = (X[2], Y[2])) )
neg_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[3], sf=SPATIAL_FREQ[3], phase=PHASE[3], pos = (X[3], Y[3])) )
ref_image = []
ref_image.append( visual.Circle(win=mywin, radius=0.01, fillColor='black', lineColor='black', pos = (X[0], Y[0])) )
ref_image.append( visual.Circle(win=mywin, radius=0.01, fillColor='black', lineColor='black', pos = (X[1], Y[1])) )
ref_image.append( visual.Circle(win=mywin, radius=0.12, fillColor='black', lineColor='black', pos = (X[2], Y[2])) )
ref_image.append( visual.Circle(win=mywin, radius=0.12, fillColor='black', lineColor='black', pos = (X[3], Y[3])) )
# Randomize the target class
# rand_mat = np.random.choice(TOTAL_RUN, TOTAL_RUN, replace=False)
rand_mat = np.arange(0,TOTAL_RUN)
rand_mat = rand_mat%len(SSVEP_FREQ_Hz)
symbol = np.zeros(num_class)
# Present instruction and wait for space bar
for run in range(TOTAL_RUN):
symbol = ['.', '.', '.', '.'] # Set all symbols to ' '
symbol[rand_mat[run]] = 'X' # Selected class denoted with X
text = visual.TextStim(win=mywin, text=
'{}\t\t\t\t\t\t\t\t{}\n\n \
\nLook at the corner with X \
\nPress space bar to start experiment run {} / {}\
{}\t\t\t\t\t\t\t\t{}'.format(symbol[0], symbol[1], run+1, TOTAL_RUN, symbol[2], symbol[3]), color=[-1, -1, -1])
text.draw()
mywin.flip()
event.waitKeys(keyList="space")
track_flip_time = []
# Start flicker
for j in range(total_frames):
for i in range(num_class):
if j == 0:
pos_image[i].draw()
ref_image[i].draw()
else:
if track_array[j,i] == 0:
if use_neg[i] == True: # Is using negative image, continue negative
neg_image[i].draw()
else:
pos_image[i].draw()
ref_image[i].draw()
else:
if use_neg[i] == True: # Is using negative image, switch to positive
pos_image[i].draw()
use_neg[i] = False
ref_image[i].draw()
else:
neg_image[i].draw()
use_neg[i] = True
ref_image[i].draw()
track_flip_time.append(mywin.flip())
# Save the rand_mat to text file
print('Saving rand_mat to text file')
np.savetxt(CURRENT_CKPT_DIR + '.out' , rand_mat, fmt ='%u')
# Close the SSVEP Stimulus window
mywin.close()
mywin.close()
# Original code before able to make SSVEP stimulus with SSVEP frequencies that are not factors of 2 of 144Hz
import numpy as np
from psychopy import visual, core, event
import os
import datetime
# Initialize the SSVEP parameters
counter = counter + 1
DURATION_s = 1 # Duration in seconds
FRAME_RATE_Hz = 144 # Frame rate of PC, is 144Hz for my own laptop
# Initialize the SSVEP Visual parameters
# SSVEP_FREQ_Hz = [14.4, 8, 12, 9.6] # SSVEP Frequency in Hz. Set to factor of 144Hz
SSVEP_FREQ_Hz = [18,20,14.4,12] # SSVEP Frequency in Hz. Set to factor of 144Hz
SPATIAL_FREQ = [0.01,0.01,0.01,0.01] # How thick are the vertical lines. Smaller is thick lines, big value is very thin lines
PHASE = [0.5, 0.5, 0.5, 0.5] # Phase difference between the 2 image. Takes value 0 to 1
SIZE = [8, 8, 8, 8] # Size of image
X = [-14, 14, -14, 14] # X position of image, value from (-20, 20)
Y = [ 8, 8, -7, -7] # Y position of image, value from (-10, 10)
num_class = len(SSVEP_FREQ_Hz)
# Initialize run time
TOTAL_RUN = 4
# Get directory to save data
# Directory and Data is saved in "E:\Github\gtec_Simulink\ssvep", together with the matlab .mat file
CURRENT_DIR= os.getcwd() # Use os.getcwd() for running directly on .ipynb; os.path.dirname(__file__) on .py
CURRENT_CKPT_REL = str(datetime.datetime.now()).replace('-','').replace(':','').replace('.','_').replace(' ','_')
CURRENT_CKPT_DIR = os.path.join(CURRENT_DIR, '..', 'gtec_Simulink', 'ssvep',
'training_ssvep_'+ CURRENT_CKPT_REL[6:8] +
'_' + CURRENT_CKPT_REL[4:6] +
'_' + CURRENT_CKPT_REL[0:4] +
'_' + CURRENT_CKPT_REL[9:11] +
'_' + CURRENT_CKPT_REL[11:13] +
'_' + str(counter))
os.mkdir(CURRENT_CKPT_DIR)
print('Created directory {} to store experiment results'.format(CURRENT_CKPT_DIR))
# Initialize parameters and array
frame_b4_switch = np.zeros((num_class), dtype=np.int32)
for i in range(num_class):
frame_b4_switch[i] = FRAME_RATE_Hz // ( SSVEP_FREQ_Hz[i] * 2)
print('Class {} has frame_b4_switch = {}'.format(i, frame_b4_switch[i]))
if FRAME_RATE_Hz % ( SSVEP_FREQ_Hz[i] * 2) != 0:
print('Warning, SSVEP_FREQ_Hz {} for class {} is not a factor of the screen refresh rate {}'.format(SSVEP_FREQ_Hz, i, FRAME_RATE_Hz))
total_frames = DURATION_s * FRAME_RATE_Hz
track_array = np.zeros((total_frames, num_class))
for i in range(num_class):
for j in range(0, total_frames, frame_b4_switch[i]):
track_array[j,i] = 1
use_neg = []
for i in range(num_class):
use_neg.append(False)
# Set up graphics
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
# ref_image = []
# for i in range(num_class):
# ref_image.append( visual.Circle(win=mywin, radius=10, fillColor = 'RoyalBlue', autoDraw=True, pos = (X[i], Y[i])))
pos_image = []
for i in range(num_class):
pos_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], pos = (X[i], Y[i])) )
neg_image = []
for i in range(num_class):
neg_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], phase=PHASE[i], pos = (X[i], Y[i])) )
# Randomize the target class
# rand_mat = np.random.choice(TOTAL_RUN, TOTAL_RUN, replace=False) # Randomize target class
rand_mat = np.arange(0,TOTAL_RUN) # Target class in order
rand_mat = rand_mat%len(SSVEP_FREQ_Hz)
symbol = np.zeros(num_class)
print(rand_mat.shape)
# Present instruction and wait for space bar
for run in range(TOTAL_RUN):
symbol = ['.', '.', '.', '.'] # Set all symbols to ' '
symbol[rand_mat[run]] = 'X' # Selected class denoted with X
text = visual.TextStim(win=mywin, text=
'{}\t\t\t\t\t\t\t\t{}\n\n \
\nLook at the corner with X \
\nPress space bar to start experiment run {} / {}\
{}\t\t\t\t\t\t\t\t{}'.format(symbol[0], symbol[1], run+1, TOTAL_RUN, symbol[2], symbol[3]), color=[-1, -1, -1])
text.draw()
mywin.flip()
event.waitKeys(keyList="space")
track_flip_time = []
# Start flicker
for j in range(total_frames):
for i in range(num_class):
if j == 0:
pos_image[i].setAutoDraw(True)
neg_image[i].setAutoDraw(False)
else:
if track_array[j,i] == 0:
pass
else:
if use_neg[i] == True: # Is using negative image, switch to positive
pos_image[i].setAutoDraw(True)
neg_image[i].setAutoDraw(False)
use_neg[i] = False
else:
pos_image[i].setAutoDraw(False)
neg_image[i].setAutoDraw(True)
use_neg[i] = True
track_flip_time.append(mywin.flip())
# Save the rand_mat to text file
print(rand_mat)
np.savetxt(CURRENT_CKPT_DIR + '.out' , rand_mat, fmt ='%u')
# Close the SSVEP Stimulus window
mywin.close()
mywin.close()
# PsychoPy for non-flickering stimulus, just instruction to perform action resulting in artifact
import numpy as np
from psychopy import visual, core, event
import os
import datetime
# Initialize the SSVEP parameters
DURATION_s = 2 # Duration in seconds
FRAME_RATE_Hz = 144 # Frame rate of PC, is 144Hz for my own laptop
# Initialize total runs
TOTAL_RUN = 50
# Initialize the SSVEP Visual parameters
ACTION = ['Clench Left', 'Clench Right', 'Double Clench', 'Long Clench', 'Dont Move']
SSVEP_FREQ_Hz = [10,11,12,13,14] # SSVEP Frequency in Hz. Set to factor of 144Hz
SPATIAL_FREQ = [0.2, 0.2, 0.2, 0.2,0.2] # How thick are the vertical lines. Smaller is thick lines, big value is very thin lines
PHASE = [0.5, 0.5, 0.5, 0.5,0.5] # Phase difference between the 2 image. Takes value 0 to 1
SIZE = [8, 8, 8, 8,8] # Size of image
X = [-15, 15, -15, 15,15] # X position of image, value from (-20, 20)
Y = [ 8, 8, -10, -10,10] # Y position of image, value from (-10, 10)
num_class = len(SSVEP_FREQ_Hz)
# Get directory to save data
# Directory and Data is saved in "E:\Github\gtec_Simulink\ssvep", together with the matlab .mat file
CURRENT_DIR= os.getcwd() # Use os.getcwd() for running directly on .ipynb; os.path.dirname(__file__) on .py
CURRENT_CKPT_REL = str(datetime.datetime.now()).replace('-','').replace(':','').replace('.','_').replace(' ','_')
CURRENT_CKPT_DIR = os.path.join(CURRENT_DIR, '..', 'gtec_Simulink', 'artifact',
'training_ssvep_'+ CURRENT_CKPT_REL[6:8] +
'_' + CURRENT_CKPT_REL[4:6] +
'_' + CURRENT_CKPT_REL[0:4] +
'_' + CURRENT_CKPT_REL[9:11] +
'_' + CURRENT_CKPT_REL[11:13])
os.mkdir(CURRENT_CKPT_DIR)
print('Created directory {} to store experiment results'.format(CURRENT_CKPT_DIR))
# Initialize parameters and array
frame_b4_switch = np.zeros((num_class), dtype=np.int32)
for i in range(num_class):
frame_b4_switch[i] = FRAME_RATE_Hz // ( SSVEP_FREQ_Hz[i] * 2)
print('Class {} has frame_b4_switch = {}'.format(i, frame_b4_switch[i]))
if FRAME_RATE_Hz % ( SSVEP_FREQ_Hz[i] * 2) != 0:
print('Warning, SSVEP_FREQ_Hz {} for class {} is not a factor of the screen refresh rate {}'.format(SSVEP_FREQ_Hz, i, FRAME_RATE_Hz))
total_frames = DURATION_s * FRAME_RATE_Hz
track_array = np.zeros((total_frames, num_class))
for i in range(num_class):
for j in range(0, total_frames, frame_b4_switch[i]):
track_array[j,i] = 1
use_neg = []
for i in range(num_class):
use_neg.append(False)
# Set up graphics
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
pos_image = []
for i in range(num_class):
pos_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], pos = (X[i], Y[i])) )
neg_image = []
for i in range(num_class):
neg_image.append( visual.GratingStim(win=mywin, mask="circle", size=SIZE[i], sf=SPATIAL_FREQ[i], phase=PHASE[i], pos = (X[i], Y[i])) )
# Randomize the target class
rand_mat = np.random.choice(TOTAL_RUN, TOTAL_RUN, replace=False)
rand_mat = rand_mat%len(SSVEP_FREQ_Hz)
symbol = np.zeros(num_class)
print(rand_mat.shape)
# Present instruction and wait for space bar
for run in range(TOTAL_RUN):
# text = visual.TextStim(win=mywin, text=
# '{}\t\t\t\t\t\t\t\t{}\n\n \
# \nLook at the corner with X \
# \nPress space bar to start experiment run {} / {}\
# {}\t\t\t\t\t\t\t\t{}'.format(symbol[0], symbol[1], run+1, TOTAL_RUN, symbol[2], symbol[3]), color=[-1, -1, -1])
text = visual.TextStim(win=mywin, text=
'\nPerform Action = {} \
\nPress space bar to start experiment run {} / {} '.format(ACTION[rand_mat[run]], run+1, TOTAL_RUN), color=[-1, -1, -1])
text.draw()
mywin.flip()
event.waitKeys(keyList="space")
track_flip_time = []
# Start flicker
for j in range(total_frames):
for i in range(num_class):
if j == 0:
pass
# pos_image[i].setAutoDraw(True)
# neg_image[i].setAutoDraw(False)
else:
if track_array[j,i] == 0:
pass
else:
if use_neg[i] == True: # Is using negative image, switch to positive
pass
# pos_image[i].setAutoDraw(True)
# neg_image[i].setAutoDraw(False)
# use_neg[i] = False
else:
pass
# pos_image[i].setAutoDraw(False)
# neg_image[i].setAutoDraw(True)
# use_neg[i] = True
track_flip_time.append(mywin.flip())
# Save the rand_mat to text file
print(rand_mat)
np.savetxt(CURRENT_CKPT_DIR + '.out' , rand_mat, fmt ='%u')
# Close the SSVEP Stimulus window
mywin.close()
"""
Demo of the ElementArrayStim, a highly optimised stimulus for generating
arrays of similar (but not identical) elements, such as in global form
arrays or random dot stimuli.
Elements must have the same basic texture and mask, but can differ in any
other way (ori, sf, rgb...).
This demo relies on numpy arrays to manipulate stimulus characteristics.
Working with array vectors is fast, much faster than python for-loops, which
would be too slow for a large array of stimuli like this.
See also the starField demo.
"""
from __future__ import division
from builtins import range
from psychopy import visual, core, event
from psychopy.tools.coordinatetools import cart2pol
# We only need these two commands from numpy.random:
from numpy.random import random, shuffle
win = visual.Window([1024, 768], units='pix', monitor='testMonitor')
N = 500
fieldSize = 500
elemSize = 40
coherence = 0.5
# build a standard (but dynamic!) global form stimulus
xys = random([N, 2]) * fieldSize - fieldSize / 2.0 # numpy vector
globForm = visual.ElementArrayStim(win,
nElements=N, sizes=elemSize, sfs=3,
xys=xys, colors=[180, 1, 1], colorSpace='hsv')
# calculate the orientations for global form stimulus
def makeCoherentOris(XYs, coherence, formAngle):
# length along the first dimension:
nNew = XYs.shape[0]
# random orientations:
newOris = random(nNew) * 180
# select some elements to be coherent
possibleIndices = list(range(nNew)) # create an array of indices
shuffle(possibleIndices) # shuffle it 'in-place' (no new array)
coherentIndices = possibleIndices[0: int(nNew * coherence)]
# use polar coordinates; set the ori of the coherent elements
theta, radius = cart2pol(XYs[: , 0], XYs[: , 1])
newOris[coherentIndices] = formAngle - theta[coherentIndices]
return newOris
globForm.oris = makeCoherentOris(globForm.xys, coherence, 45)
# Give each element a life of 10 frames, and give it a new position after that
lives = random(N) * 10 # this will be the current life of each element
while not event.getKeys():
# take a copy of the current xy and ori values
newXYs = globForm.xys
newOris = globForm.oris
# find the dead elemnts and reset their life
deadElements = (lives > 10) # numpy vector, not standard python
lives[deadElements] = 0
# for the dead elements update the xy and ori
# random array same shape as dead elements
newXYs[deadElements, : ] = random(newXYs[deadElements, : ].shape) * fieldSize - fieldSize/2.0
# for new elements we still want same % coherent:
new = makeCoherentOris(newXYs[deadElements, : ], coherence, 45)
newOris[deadElements] = new
# update the oris and xys of the new elements
globForm.xys = newXYs
globForm.pris = newOris
globForm.draw()
win.flip()
lives = lives + 1
event.clearEvents('mouse') # only really needed for pygame windows
win.close()
core.quit()
a = np.random.choice(40, 40, replace=False)
# a.sort()
a = a%4
print(a)
b=np.zeros(4)
for i in range(40):
b = ['.', '.', '.', ',']
# print(a[i])
b[a[i]] = 'X'
print(b)
from psychopy import visual, core
# Initialize the SSVEP parameters
DURATION_s = 10 # Duration in seconds
SSVEP_FREQ_Hz = 8 # SSVEP Frequency in Hz. Set to factor of 144Hz
FRAME_RATE_Hz = 144 # Frame rate of PC, is 144Hz for my own laptop
# Initialize the SSVEP Visual parameters
SPATIAL_FREQ = 0.2 # How thick are the vertical lines. Smaller is thick lines, big value is very thin lines
PHASE = 0.1 # Phase difference between the 2 image. Takes value 0 to 1
FIRST_SIZE = 8 # Size of first image
FIRST_X = -15 # X position of first image, value from (-20, 20)
FIRST_Y = 8 # Y position of first image, value from (-10, 10)
SECOND_SIZE = 20 # Size of second image
SECOND_X = 15 # X position of second image, value from (-20, 20)
SECOND_Y = -10 # Y position of second image, value from (-10, 10)
def init_flicker_stim(frame_rate, cycle, soa):
"""Initialize flickering stimulus.
Get parameters for a flickering stimulus, based on the screen refresh
rate and the desired stimulation cycle.
Args:
frame_rate (float): screen frame rate, in Hz
cycle (tuple or int): if tuple (on, off), represents the number of
'on' periods and 'off' periods in one flickering cycle. This
supposes a "single graphic" stimulus, where the displayed object
appears and disappears in the background.
If int, represents the number of total periods in one cycle.
This supposes a "pattern reversal" stimulus, where the
displayed object appears and is replaced by its opposite.
soa (float): stimulus duration, in s
Returns:
(dict): dictionary with keys
'cycle' -> tuple of (on, off) periods in a cycle
'freq' -> stimulus frequency
'n_cycles' -> number of cycles in one stimulus trial
"""
if isinstance(cycle, tuple):
stim_freq = frame_rate / sum(cycle)
n_cycles = int(soa * stim_freq)
else:
stim_freq = frame_rate / cycle
cycle = (cycle, cycle)
n_cycles = int(soa * stim_freq) / 2
return {"cycle": cycle, "freq": stim_freq, "n_cycles": n_cycles}
# Generate stimulus pattern and confirm with printout the SSVEP stimulus frequency
stim_patterns = [init_flicker_stim(FRAME_RATE_Hz, FRAME_RATE_Hz//SSVEP_FREQ_Hz, DURATION_s),]
print("Flickering frequencies (Hz): {}\n".format([stim_patterns[0]["freq"]]))
import timeit # To check on elapsed time
tic=timeit.default_timer()
# Set up graphics
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
# First image
grating = visual.GratingStim(win=mywin, mask="circle", size=FIRST_SIZE, sf=SPATIAL_FREQ, pos = (FIRST_X, FIRST_Y))
# Second image
grating_neg = visual.GratingStim(win=mywin, mask="circle", size=SECOND_SIZE, sf=SPATIAL_FREQ, phase=PHASE, pos = (SECOND_X, SECOND_Y))
# Present flickering stim
ind = 0 # ind is a index used if there is more than 1 SSVEP stimulus pattern
for _ in range(int(stim_patterns[ind]["n_cycles"])):
grating.setAutoDraw(True)
for _ in range(int(stim_patterns[ind]["cycle"][0])):
mywin.flip()
grating.setAutoDraw(False)
grating_neg.setAutoDraw(True)
for _ in range(stim_patterns[ind]["cycle"][1]):
mywin.flip()
grating_neg.setAutoDraw(False)
# Close the SSVEP Stimulus window
mywin.close()
# Print elapsed time
toc=timeit.default_timer()
print("Elapsed time is {}s".format(toc - tic))
mywin.close()
mywin = visual.Window([1536, 864], monitor="testMonitor", units="deg", fullscr=True)
for i in range(1440):
a = mywin.flip(clearBuffer=True)
print(a)
mywin.close()
1183.3108047000005-1182.3108608000002
mywin.close()
###Output
_____no_output_____
###Markdown
Running psychopy
###Code
from psychopy import visual, core
win = visual.Window()
msg = visual.TextStim(win, text="Hello All")
msg.draw()
win.flip()
core.wait(1)
win.close()
from psychopy import visual, core
win = visual.Window([400,400])
message = visual.TextStim(win, text='hello')
message.autoDraw = True # Automatically draw every frame
win.flip()
core.wait(2.0)
message.text = 'world' # Change properties of existing stim
win.flip()
core.wait(2.0)
win.close()
from psychopy import visual, core
# Setup stimulus
win = visual.Window([400, 400])
gabor = visual.GratingStim(win, tex='sin', mask='gauss', sf=5,
name='gabor', autoLog=False)
fixation = visual.GratingStim(win, tex=None, mask='gauss', sf=0, size=0.02,
name='fixation', autoLog=False)
# Let's draw a stimulus for 200 frames, drifting for frames 50:100
for frameN in range(3000): # For exactly 200 frames
if 10 <= frameN < 1500: # Present fixation for a subset of frames
fixation.draw()
if 50 <= frameN < 3000: # Present stim for a different subset
gabor.phase += 0.1 # Increment by 10th of cycle
gabor.draw()
win.flip()
win.close()
from psychopy import event
event.globalKeys.clear()
import timeit
tic=timeit.default_timer()
mywin = visual.Window([800,600], monitor="testMonitor", units="deg")
grating = visual.GratingStim(win=mywin, mask="circle", size=3, pos=[-4,0], sf=3)
fixation = visual.GratingStim(win=mywin, size=0.5, pos=[0,0], sf=0, rgb=-1)
grating.draw()
fixation.draw()
mywin.update()
for frameN in range(1440):
grating.setPhase(0.05, '+') # advance phase by 0.05 of a cycle
fixation.setPhase(0.05, '+')
grating.draw()
fixation.draw()
mywin.update()
toc=timeit.default_timer()
mywin.close()
toc - tic #elapsed time in seconds
144
mywin = visual.Window([800,600], monitor="testMonitor", units="deg")
grating = visual.GratingStim(win=mywin, mask="circle", size=3, pos=[-4,0], sf=3)
mywin.update()
mywin.close()
%matplotlib inline
###Output
_____no_output_____
###Markdown
SSVEP run experimentThis example demonstrates the initiation of an EEG stream with eeg-notebooks, and how to run an experiment. Codes are all extracted from https://github.com/NeuroTechX/eeg-notebooks, which makes use of psychopy
###Code
# Code to directly run NeuroTechX/eeg-notebooks
from eegnb.experiments.visual_ssvep import ssvep
ssvep.present()
mywin.close()
import os
from eegnb import generate_save_fn
from eegnb.devices.eeg import EEG
from eegnb.experiments.visual_ssvep import ssvep
# Define some variables
board_name = 'muse'
experiment = 'visual_ssvep'
subject = 'test'
record_duration=120
###Output
_____no_output_____
###Markdown
Initiate EEG deviceStart EEG device
###Code
eeg_device = EEG(device=board_name)
# Create save file name
save_fn = generate_save_fn(board_name, experiment, subject)
print(save_fn)
###Output
_____no_output_____
###Markdown
Run Experiment
###Code
ssvep.present(duration=record_duration, eeg=eeg_device, save_fn=save_fn)
###Output
_____no_output_____ |
Coursera/Introduction to Programming with MATLAB/Week-8/Assignment/Solution-7.ipynb | ###Markdown
problem integerize.m:
###Code
function cl = integerize(A)
cls = {'int8'; 'int16'; 'int32'; 'int64'};
cl = 'NONE';
mx = max(A(:));
mn = min(A(:));
for ii = 1:length(cls)
if intmax(cls{ii}) >= mx && intmin(cls{ii}) <= mn
cl = cls{ii};
break;
end
end
end
###Output
_____no_output_____
###Markdown
Or
###Code
function Name = integerize (A) DataType = {'int8', 'int16', 'int32', 'int64', 'NONE'};
Limit = [2^7, 2^15, 2^31, 2^63, realmax];
A(A<0) = A(A<0) + 1; % must do this for negatives!!!!!
Name = DataType{max(abs(A(:))) < Limit};
end
###Output
_____no_output_____
###Markdown
problem year2016.m:
###Code
function month = year2016(m)
if ~isscalar(m) || m < 1 || m > 12 || m ~= floor(m)
month = [];
return;
end
days = ([31 29 31 30 31 30 31 31 30 31 30 31]);
ms = {'January'; 'February'; 'March'; 'April'; 'May'; 'June'; ...
'July'; 'August'; 'September'; 'October'; 'November'; 'December'};
ds = {'Sun'; 'Mon'; 'Tue'; 'Wed'; 'Thu'; 'Fri'; 'Sat'};
start = 4; % Jan 1, 2016 was a Friday. US week starts on Sunday.
% We'll add ii and 1 below because rem(n,7) returns numbers
% 0-6 and we need indexes 1-7.
start = start + sum(days(1:m-1));
for ii = 1:days(m)
month(ii).month = ms{m};
month(ii).date = ii;
month(ii).day = ds{rem(start+ii,7)+1};
end
end
###Output
_____no_output_____
###Markdown
problem palin_product.m: Naive implementation. Slow for many cases:
###Code
function n = palin_product(dig, lim)
n = 0;
for ii = 10^(dig-1):10^dig-1
for jj = 10^(dig-1):ii
p = ii*jj;
if p >= lim
continue;
elseif palindrome(p) && p > n
n = p;
end
end
end
end
function isp = palindrome(p)
txt = num2str(p);
isp = strcmp(txt,txt(end:-1:1));
end
###Output
_____no_output_____
###Markdown
Version optimized for speed. Most of the time, the inner loop ends early:
###Code
function n = palin_product(dig, lim)
n = 0;
for ii = 10^dig-1 : -1 : 10^(dig-1) % going from large to small
for jj = min(10^dig-1,floor((lim-1)/ii)) : -1 : 10^(dig-1) % check numbers under lim
p = ii*jj;
if p < n % gone under the current max
continue; % no need to go further in the inner loop
elseif palindrome(p)
n = p; % found a larger one
continue; % no need to go further in the inner loop
end
end
end
end
function isp = palindrome(p)
txt = num2str(p);
isp = strcmp(txt,txt(end:-1:1));
end
###Output
_____no_output_____
###Markdown
Vectorized solution, but needs lots of memory:
###Code
function n = palin_product (dig,lim)
% a is the smallest dig-digit number that can be formed. If the smallest possible
% product (a^2) is smaller than the specified limit, we determine b, the largest
% dig-digit number that can be formed. We then build the square outer product of a:b.
% Logically indexing into to this matrix for elements less than lim creates a column
% vector P of candidate products. We convert each of these to a string, reverse its
% characters, and convert it back to a number, to form the column vector Q. Finally,
% we return the maximum element in P which has the same value in both P and Q.
n = 0;
a = 10^(dig-1);
if lim>a^2
b = 10^dig - 1;
P = (a:b)' * (a:b);
P = P(P<lim);
Q = str2num(fliplr(num2str(P)));
n = max(P(P==Q));
end
end
###Output
_____no_output_____
###Markdown
problem dial.m: Traditional solution:
###Code
function num = dial(str)
num = uint64(0);
if length(str) > 16
return;
end
for ii = 1:length(str)
if str(ii) >= 'A' && str(ii) <= 'Z'
str(ii) = map(str(ii));
elseif ~(str(ii) >= '0' && str(ii) <= '9')
return;
end
end
num = uint64(str2num(str));
end
function ch = map(ch)
m = '22233344455566677778889999';
ch = m(ch - 'A' + 1);
end
###Output
_____no_output_____
###Markdown
Vectorized version:
###Code
function ph = dial(str)
code = '0123456789xxxxxxx22233344455566677778889999'; % x represents invalid character
ph = '0';
n = str-'0'+1; % index into the vector code
if ~((sum(str(n <= 0)) + sum(n > length(code))) || ... % checks for indexes out of range
sum(code(n) == 'x') || ... % checks for any x-s
length(str) > 16 ) % checks too long input
ph = code(n); % mapping with a single command
end
ph = uint64(str2num(ph)); % convert string to number and uint64
end
###Output
_____no_output_____
###Markdown
Another vectorized version:
###Code
function n = dial (s)
if ~all(ismember(s,['0':'9','A':'Z'])) || length(s) > 16
n = uint64(0);
else
map = '22233344455566677778889999';
s(s>='A') = map(s(s>='A')-64);
n = uint64(str2double(s)) ;
end
end
###Output
_____no_output_____
###Markdown
problem logi_unpack.m:
###Code
function L = logiunpack(cv)
n = length(cv);
L = false(n);
for ii = 1:n
for jj = 1:length(cv{ii})
L(ii,cv{ii}(jj)) = true;
end
end
end
###Output
_____no_output_____
###Markdown
problem logi_pack.m:
###Code
function cv = logipack(L)
[r c] = size(L);
cv = cell(1,r);
for ii = 1:r
cv{ii} = find(L(ii,:));
if isempty(cv{ii}) % find can return 1x0 empty arrays
cv{ii} = []; % so we make sure it is 0x0
end
end
end
###Output
_____no_output_____
###Markdown
problem centuries.m: Problem is small enough so there is no real need to get fancy:
###Code
function c = centuries(n)
if ~isscalar(n) || n < 1 || n > 3000 || n ~= floor(n)
c = '';
else
cents = {'I'; 'II'; 'III'; 'IV'; 'V'; 'VI'; 'VII'; 'VIII'; 'IX'; 'X';
'XI'; 'XII'; 'XIII'; 'XIV'; 'XV'; 'XVI'; 'XVII'; 'XVIII'; 'XIX'; 'XX';
'XXI'; 'XXII'; 'XXIII'; 'XXIV'; 'XXV'; 'XXVI'; 'XXVII'; 'XXVIII'; 'XXIX'; 'XXX'};
c = cents{ceil(n/100)};
end
end
###Output
_____no_output_____
###Markdown
Nevertheless, here is a general solution:
###Code
function c = centuries (y)
c = '';
if isscalar(y) && rem(y,1)==0 && y>0 && y<=3000
c = A2R(fix((y-1)/100)+1);
end
end
function R = A2R (A)
% Converts Arabic numbers to Roman strings.
Roman = {'I' 'IV' 'V' 'IX' 'X' 'XL' 'L' 'XC' 'C' 'CD' 'D' 'CM' 'M'};
Arabic = {1 4 5 9 10 40 50 90 100 400 500 900 1000};
R = ''; k = 13;
while k>0 % remove largest modulii first
if A>=Arabic{k} % if value>current modulus
A = A-Arabic{k}; % remove modulus from value
R = [R Roman{k}]; % append Roman character
else
k = k-1; % else consider next smaller modulus
end
end
end
###Output
_____no_output_____
###Markdown
problem find_zero.m:
###Code
function x = find_zero (f, x1,x2)
x = (x1+x2)/2.0; % find interval midpoint
while abs(f(x)) > 1e-10 % are we there yet?
if f(x1)*f(x)>0 % if f(left) and f(mid) have the same sign
x1 = x; % move left to mid
else
x2 = x; % move right to mid
end
x = (x1+x2)/2.0; % recalculate midpoint
end
end
###Output
_____no_output_____ |
Basic_Quantum/Uncomputation.ipynb | ###Markdown
Uncomputation
###Code
%matplotlib inline
from qiskit import *
###Output
_____no_output_____
###Markdown
To compute $a \wedge b \wedge c$, we need two working qubits. We need to split the computation into two parts: $a \wedge b \wedge c = (a \wedge b) \wedge c$Moreover, it is good practice to clean the working qubit that only contains an intermediate result: that is called uncomputation
###Code
circuit = QuantumCircuit(5, 2)
# Steps to change qubits to 1 for test purposes
_ = circuit.x(0)
_ = circuit.x(1)
_ = circuit.x(2)
_ = circuit.barrier()
###Output
_____no_output_____
###Markdown
Firstly, we calculate $a \wedge b$ in the first working qubit.
###Code
_ = circuit.ccx(0, 1, 3)
circuit.draw(output="mpl")
###Output
_____no_output_____
###Markdown
Secondly, we calculate $(a \wedge b) \wedge c$ using both the third qubit and the first working qubit. The second working qubit is the target.
###Code
_ = circuit.ccx(2, 3, 4)
circuit.draw(output="mpl")
###Output
_____no_output_____
###Markdown
We now uncompute $a \wedge b$ in the first working qubit. That way, we can reuse it later if needed.To do so, we remember that the Toffoli gate is the inverse of itself: $(a \wedge b) \oplus (a \wedge b) = 0$
###Code
_ = circuit.ccx(0, 1, 3)
circuit.draw(output="mpl")
###Output
_____no_output_____
###Markdown
Lastly, we measure both working qubits: one should contain the AND and the other should always be zero
###Code
# Measure (x^y^z) and working qubuit in classical bit
_ = circuit.barrier()
_ = circuit.measure(4, 0)
_ = circuit.measure(3, 1)
circuit.draw(output="mpl")
# Simulate
simulator = Aer.get_backend("qasm_simulator")
job = execute(circuit, backend=simulator, shots=1024)
result = job.result()
counts = result.get_counts()
# Plot results
visualization.plot_histogram(counts)
###Output
_____no_output_____ |
basic_usage.ipynb | ###Markdown
signedfacLet $X$ denote an $N\times M$ matrix. Optionally, let $C,D$ give covariate information about each row and/or each column. Let $k\in \mathbb{N}$.`signedfac` is a package for obtaining low-dimensional summaries of the rows and columns of the matrix $X$. It achieves this by fitting a model family $p(x;B_U,B_V,\mu_U,\Sigma_U,\mu_V,\sigma_V,\theta)$ to the observed matrix $X$. This model family is defined by the following generative story:$$U_i \sim \mathcal{N}(\mu_U + B_U C_i,\Sigma_U)\qquad U_i \in \mathbb{R}^k, i\in \{0\cdots N-1\}$$$$V_j \sim \mathcal{N}(\mu_V + B_V D_j,\Sigma_V)\qquad V_j \in \mathbb{R}^k, j\in \{0\cdots N-1\}$$$$X_{ij}|U,V \sim \mathrm{datamodel}(\cdot ; U_i^\top V_j, \theta_j)$$At the moment, $\mathrm{datamodel}$ can be one of the following:1. `normal` -- $p(x;w,\theta) = \mathcal{N}(x; w,\theta)$2. `negativebinomial` -- $p(x;w,\theta) = \mathrm{NegativeBinomial}(x;\ \mathrm{logit}(w),\theta)$3. `bernoulli` -- $p(x;w) = \mathrm{Bernoulli}(x;\ \mathrm{logit}(w))$Once this model is fit, the `signedfac` package estimates the posterior means, $\mathbb{E}[U,V|X]$. These low-dimensional posterior means can be understood as summaries of each row and each column. These representations can be used for visualization or downstream analysis.
###Code
%load_ext autoreload
%autoreload 2
import numpy as np
import matplotlib.pylab as plt
import numpy.random as npr
import signedfac
import scipy as sp
import scipy.special
###Output
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
###Markdown
example usageFirst we'll make some simulated data. Note we will not simulate directly from the true prior -- in practice the prior is basically never right. It is, however, essential to have this prior to avoid overfitting in data-starved situations. Even though we're not sampling from the prior, we'll be able to use `signedfac` to detect the overall structure of what's going on in the data.
###Code
# we'll design it so that there are two different kinds of rows. the first 25 will be one way
# the second 25 will be another way
U=npr.randn(50,2); U[:25]+=8
# we'll do the same for columns. the first 10 will be one way, the second 10 another
V=npr.randn(80,2); V[:10]+=8
# make data
X=npr.randn(50,80)[email protected]
# initialize model, using the "normal" datamodel -- this is just a standard factor analysis model.
# if your data is really normal and you don't have covariates
# and you don't want to use GPU-accleration, you could use
# sklearn.linear_decomposition.FactorAnalysis for this instead
model=signedfac.initialize(X,2,'normal')
# send data to tensorflow (& to the GPU if you have one)
X_tf = signedfac.to_tensorflow(X)
# initialize trainer. this object fits the model
trainer=signedfac.Trainer(X_tf,model)
# train the model, using 10 iterations
trainer.train_tqdm_notebook(maxiter=10)
# look at losses over time
trainer.status()
# get low-dimensional summaries
row_loadings=model.row_loadings
col_loadings=model.col_loadings
plt.subplot(1,2,1)
plt.scatter(row_loadings[:,0],row_loadings[:,1],c=np.r_[0:len(row_loadings)]>=25)
plt.title("we are able to detect the \n fact that there are two \n different kinds of rows")
plt.subplot(1,2,2)
plt.scatter(col_loadings[:,0],col_loadings[:,1],c=np.r_[0:len(col_loadings)]>=10)
plt.title("same with columns")
###Output
_____no_output_____
###Markdown
negative binomial example
###Code
U=npr.randn(50,2)*.1; U[:25]+=.5
V=npr.randn(80,2)*.1; V[:10]+=3.5
thetas=npr.rand(80)*3+2
X=npr.negative_binomial(thetas[None,:],sp.special.expit([email protected]))
plt.imshow(X)
plt.colorbar()
model=signedfac.initialize(X,2,'negativebinomial',diagsig=True)
X_tf = signedfac.to_tensorflow(X)
trainer=signedfac.Trainer(X_tf,model)
trainer.train_tqdm_notebook(maxiter=500)
trainer.status()
plt.title("we do a reasonable job of estimating thetas \n (the estimator is negatively biased tho)")
plt.scatter(thetas,model.thetas.numpy())
plt.plot([0,5],[0,5],'r-')
plt.xlabel("true theta")
plt.ylabel('estimate')
row_loadings=model.row_loadings
col_loadings=model.col_loadings
plt.gcf().set_size_inches(10,5)
plt.subplot(1,2,1)
plt.scatter(row_loadings[:,0],row_loadings[:,1],c=np.r_[0:len(row_loadings)]>=25)
plt.title("we are able to detect the \n fact that there are two \n different kinds of rows")
plt.subplot(1,2,2)
plt.scatter(col_loadings[:,0],col_loadings[:,1],c=np.r_[0:len(col_loadings)]>=10)
plt.title("same with columns");
###Output
_____no_output_____
###Markdown
a dastardly caseWhat if some columns are identically zero? We don't want the algorithm to utterly fail...
###Code
U=npr.randn(50,2); U[:25]+=8
V=npr.randn(80,2); V[:10]+=8
X=npr.randn(50,80)[email protected]
X[:,25:30]=0
Xnb=npr.poisson(np.exp(X/30))
Xnb[:,25:30]=0
model=signedfac.initialize(X,2,'normal')
X_tf = signedfac.to_tensorflow(X)
trainer=signedfac.Trainer(X_tf,model)
trainer.train_tqdm_notebook(maxiter=10)
trainer.status()
model.thetas.numpy().min()
model=signedfac.initialize(Xnb,2,'negativebinomial')
X_tf = signedfac.to_tensorflow(Xnb)
trainer=signedfac.Trainer(X_tf,model)
trainer.train_tqdm_notebook(maxiter=300)
trainer.status()
model.thetas.numpy().min()
###Output
_____no_output_____
###Markdown
zfoo=model._get_zeta(X_tf).numpy()
###Code
zfoo2=model._get_zeta(X_tf).numpy()
zfoo
zfoo2[25],zfoo[25]
plt.scatter(zfoo,zfoo2)
###Output
_____no_output_____ |
code/PyTorch EfficientFPN Code.ipynb | ###Markdown
About this notebook- Starter using PyTorch Directory settings
###Code
# ====================================================
# Directory settings
# ====================================================
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1' # specify GPUs locally
OUTPUT_DIR = './submission'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
dataset_path = './data/data'
anns_file_path = dataset_path + '/' + 'train.json'
###Output
_____no_output_____
###Markdown
Data Loading
###Code
import os
import random
import time
import json
import warnings
warnings.filterwarnings('ignore')
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from utils import label_accuracy_score
import cv2
import numpy as np
import pandas as pd
# 전처리를 위한 라이브러리
from pycocotools.coco import COCO
import torchvision
import torchvision.transforms as transforms
import albumentations as A
from albumentations.pytorch import ToTensorV2
# 시각화를 위한 라이브러리
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
# Read annotations
with open(anns_file_path, 'r') as f:
dataset = json.loads(f.read())
categories = dataset['categories']
anns = dataset['annotations']
imgs = dataset['images']
nr_cats = len(categories)
nr_annotations = len(anns)
nr_images = len(imgs)
# Load categories and super categories
cat_names = []
super_cat_names = []
super_cat_ids = {}
super_cat_last_name = ''
nr_super_cats = 0
for cat_it in categories:
cat_names.append(cat_it['name'])
super_cat_name = cat_it['supercategory']
# Adding new supercat
if super_cat_name != super_cat_last_name:
super_cat_names.append(super_cat_name)
super_cat_ids[super_cat_name] = nr_super_cats
super_cat_last_name = super_cat_name
nr_super_cats += 1
# Count annotations
cat_histogram = np.zeros(nr_cats,dtype=int)
for ann in anns:
cat_histogram[ann['category_id']] += 1
# Convert to DataFrame
df = pd.DataFrame({'Categories': cat_names, 'Number of annotations': cat_histogram})
df = df.sort_values('Number of annotations', 0, False)
# category labeling
sorted_temp_df = df.sort_index()
# background = 0 에 해당되는 label 추가 후 기존들을 모두 label + 1 로 설정
sorted_df = pd.DataFrame(["Backgroud"], columns = ["Categories"])
sorted_df = sorted_df.append(sorted_temp_df, ignore_index=True)
category_names = list(sorted_df.Categories)
def get_classname(classID, cats):
for i in range(len(cats)):
if cats[i]['id']==classID:
return cats[i]['name']
return "None"
class CustomDataLoader(Dataset):
"""COCO format"""
def __init__(self, data_dir, mode = 'train', transform = None):
super().__init__()
self.mode = mode
self.transform = transform
self.coco = COCO(data_dir)
def __getitem__(self, index: int):
# dataset이 index되어 list처럼 동작
image_id = self.coco.getImgIds(imgIds=index)
image_infos = self.coco.loadImgs(image_id)[0]
# cv2 를 활용하여 image 불러오기
images = cv2.imread(os.path.join(dataset_path, image_infos['file_name']))
images = cv2.cvtColor(images, cv2.COLOR_BGR2RGB).astype(np.float32)
if (self.mode in ('train', 'val')):
ann_ids = self.coco.getAnnIds(imgIds=image_infos['id'])
anns = self.coco.loadAnns(ann_ids)
# Load the categories in a variable
cat_ids = self.coco.getCatIds()
cats = self.coco.loadCats(cat_ids)
# masks : size가 (height x width)인 2D
# 각각의 pixel 값에는 "category id + 1" 할당
# Background = 0
masks = np.zeros((image_infos["height"], image_infos["width"]))
# Unknown = 1, General trash = 2, ... , Cigarette = 11
for i in range(len(anns)):
className = get_classname(anns[i]['category_id'], cats)
pixel_value = category_names.index(className)
masks = np.maximum(self.coco.annToMask(anns[i])*pixel_value, masks)
masks = masks.astype(np.float32)
# transform -> albumentations 라이브러리 활용
if self.transform is not None:
transformed = self.transform(image=images, mask=masks)
images = transformed["image"]
masks = transformed["mask"]
return images, masks
if self.mode == 'test':
# transform -> albumentations 라이브러리 활용
if self.transform is not None:
transformed = self.transform(image=images)
images = transformed["image"]
return images, image_infos
def __len__(self) -> int:
# 전체 dataset의 size를 return
return len(self.coco.getImgIds())
###Output
_____no_output_____
###Markdown
CFG
###Code
# ====================================================
# CFG
# ====================================================
class CFG:
debug=False
img_size=512
max_len=275
print_freq=1000
num_workers=4
model_name='timm-efficientnet-b5' #['timm-efficientnet-b4', 'tf_efficientnet_b0_ns']
size=512 # [512, 1024]
freeze_epo = 0
warmup_epo = 1
cosine_epo = 39 #14 #19
warmup_factor=10
scheduler='GradualWarmupSchedulerV2' # ['ReduceLROnPlateau', 'CosineAnnealingLR', 'CosineAnnealingWarmRestarts', 'GradualWarmupSchedulerV2', 'get_linear_schedule_with_warmup']
epochs=freeze_epo + warmup_epo + cosine_epo # not to exceed 9h #[1, 5, 10]
factor=0.2 # ReduceLROnPlateau
patience=4 # ReduceLROnPlateau
eps=1e-6 # ReduceLROnPlateau
T_max=4 # CosineAnnealingLR
T_0=4 # CosineAnnealingWarmRestarts
encoder_lr=3e-5 #[1e-4, 3e-5]
min_lr=1e-6
batch_size=24 + 0 #[64, 256 + 128, 512, 1024, 512 + 256 + 128, 2048]
weight_decay=1e-6
gradient_accumulation_steps=1
max_grad_norm=5
dropout=0.5
seed=42
smoothing=0.05
n_fold=5
trn_fold=[0]
trn_fold=[0, 1, 2, 3, 4] # [0, 1, 2, 3, 4]
train=True
apex=False
log_day='0505'
model_type=model_name
version='v1-1'
load_state=False
cutmix=False
pesudo=False
#if CFG.apex:
from torch.cuda.amp import autocast, GradScaler
if CFG.debug:
CFG.epochs = 2
train = train.sample(n=2, random_state=CFG.seed).reset_index(drop=True)
import wandb
###Output
_____no_output_____
###Markdown
Library
###Code
# ====================================================
# Library
# ====================================================
import sys
#sys.path.append('../input/pytorch-image-models/pytorch-image-models-master')
import os
import gc
import re
import math
import time
import random
import shutil
import pickle
from pathlib import Path
from contextlib import contextmanager
from collections import defaultdict, Counter
import scipy as sp
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
from sklearn import preprocessing
from sklearn.model_selection import StratifiedKFold, GroupKFold, KFold
from functools import partial
import cv2
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam, SGD
import torchvision.models as models
from torch.nn.parameter import Parameter
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, CosineAnnealingLR, ReduceLROnPlateau
from warmup_scheduler import GradualWarmupScheduler
# from transformers import get_linear_schedule_with_warmup
from albumentations.pytorch import ToTensorV2
from albumentations import ImageOnlyTransform
import albumentations as A
import segmentation_models_pytorch as smp
import warnings
warnings.filterwarnings('ignore')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
###Output
_____no_output_____
###Markdown
Utils
###Code
# ====================================================
# Utils
# ====================================================
def init_logger(log_file=OUTPUT_DIR+'train.log'):
from logging import getLogger, INFO, FileHandler, Formatter, StreamHandler
logger = getLogger(__name__)
logger.setLevel(INFO)
handler1 = StreamHandler()
handler1.setFormatter(Formatter("%(message)s"))
handler2 = FileHandler(filename=log_file)
handler2.setFormatter(Formatter("%(message)s"))
logger.addHandler(handler1)
logger.addHandler(handler2)
return logger
LOGGER = init_logger()
def seed_torch(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_torch(seed=CFG.seed)
###Output
_____no_output_____
###Markdown
Dataset 정의 및 DataLoader 할당
###Code
from albumentations import (
Compose, OneOf, Normalize, Resize, RandomResizedCrop, RandomCrop, HorizontalFlip, VerticalFlip,
RandomBrightness, RandomContrast, RandomBrightnessContrast, Rotate, ShiftScaleRotate, Cutout,
IAAAdditiveGaussianNoise, Transpose, Blur, GaussNoise, MotionBlur, MedianBlur, OpticalDistortion, ElasticTransform,
GridDistortion, IAAPiecewiseAffine, CLAHE, IAASharpen, IAAEmboss, HueSaturationValue, ToGray, JpegCompression
)
# collate_fn needs for batch
def collate_fn(batch):
return tuple(zip(*batch))
train_transform = A.Compose([
A.VerticalFlip(p=.25),
A.Cutout(num_holes=10,
max_h_size=int(.1 * CFG.img_size), max_w_size=int(.1 * CFG.img_size),
p=.25),
A.ShiftScaleRotate(p=.25),
A.RandomResizedCrop(CFG.size, CFG.size, scale = [0.75, 1], p=1),
A.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)
),
ToTensorV2(transpose_mask=False)
])
val_transform = A.Compose([
A.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0
),
ToTensorV2(transpose_mask=False)
])
test_transform = A.Compose([
A.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0
),
ToTensorV2(transpose_mask=False)
])
###Output
_____no_output_____
###Markdown
MODEL
###Code
class Encoder(nn.Module):
def __init__(self, model_name='timm-efficientnet-b4', pretrained=False):
super().__init__()
self.encoder = smp.FPN(encoder_name=model_name, encoder_weights="noisy-student", classes=12) # [imagenet, noisy-student]
#@autocast()
def forward(self, x):
x = self.encoder(x)
return x
###Output
_____no_output_____
###Markdown
Helper functions
###Code
#!pip install -q git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git
class GradualWarmupSchedulerV2(GradualWarmupScheduler):
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
super(GradualWarmupSchedulerV2, self).__init__(optimizer, multiplier, total_epoch, after_scheduler)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
if self.multiplier == 1.0:
return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs]
else:
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
#https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch
class DiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(DiceLoss, self).__init__()
def forward(self, inputs, targets, smooth=1):
#comment out if your model contains a sigmoid or equivalent activation layer
inputs = F.sigmoid(inputs)
#flatten label and prediction tensors
inputs = inputs.view(-1)
targets = targets.view(-1)
intersection = (inputs * targets).sum()
dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)
return 1 - dice
class DiceBCELoss(nn.Module):
# Formula Given above.
def __init__(self, weight=None, size_average=True):
super(DiceBCELoss, self).__init__()
def forward(self, inputs, targets, smooth=1):
#comment out if your model contains a sigmoid or equivalent activation layer
BCE = F.binary_cross_entropy_with_logits(inputs, targets, reduction='mean')
inputs = F.sigmoid(inputs)
#flatten label and prediction tensors
inputs = inputs.view(-1)
targets = targets.view(-1)
intersection = (inputs * targets).mean()
dice_loss = 1 - (2.*intersection + smooth)/(inputs.mean() + targets.mean() + smooth)
Dice_BCE = 0.9*BCE + 0.1*dice_loss
return Dice_BCE.mean()
import numpy as np
def _fast_hist(label_true, label_pred, n_class):
mask = (label_true >= 0) & (label_true < n_class)
hist = np.bincount(n_class * label_true[mask].astype(int) + label_pred[mask],
minlength=n_class ** 2).reshape(n_class, n_class)
return hist
def label_accuracy_score(hist):
"""
Returns accuracy score evaluation result.
- [acc]: overall accuracy
- [acc_cls]: mean accuracy
- [mean_iu]: mean IU
- [fwavacc]: fwavacc
"""
acc = np.diag(hist).sum() / hist.sum()
with np.errstate(divide='ignore', invalid='ignore'):
acc_cls = np.diag(hist) / hist.sum(axis=1)
acc_cls = np.nanmean(acc_cls)
with np.errstate(divide='ignore', invalid='ignore'):
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
mean_iu = np.nanmean(iu)
freq = hist.sum(axis=1) / hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
return acc, acc_cls, mean_iu, iu, fwavacc
def add_hist(hist, label_trues, label_preds, n_class):
"""
stack hist(confusion matrix)
"""
for lt, lp in zip(label_trues, label_preds):
hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
return hist
# ====================================================
# Helper functions
# ====================================================
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (remain %s)' % (asMinutes(s), asMinutes(rs))
def train_fn(train_loader, encoder, criterion,
optimizer, epoch,
scheduler, device):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
miou_score = AverageMeter()
# switch to train mode
encoder.train()
scaler = torch.cuda.amp.GradScaler()
start = end = time.time()
global_step = 0
hist = np.zeros((12, 12))
for step, (images, targets) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
#images = torch.stack(images) # (batch, channel, height, width)
#targets = torch.stack(targets).long() # (batch, channel, height, width)
images = images.to(device)
targets = targets.to(device).long()
batch_size = images.size(0)
if CFG.cutmix:
# generate mixed sample
lam = np.random.beta(1., 1.)
rand_index = torch.randperm(batch_size).cuda()
bbx1, bby1, bbx2, bby2 = rand_bbox(images.size(), lam)
images[:, :, bbx1:bbx2, bby1:bby2] = images[rand_index, :, bbx1:bbx2, bby1:bby2]
targets[:, bbx1:bbx2, bby1:bby2] = targets[rand_index, bbx1:bbx2, bby1:bby2]
# =========================
# zero_grad()
# =========================
optimizer.zero_grad()
if CFG.apex:
with autocast():
y_preds = encoder(images)
loss = criterion(y_preds, targets)
scaler.scale(loss).backward()
else:
y_preds = encoder(images)
loss = criterion(y_preds, targets)
loss.backward()
# record loss
losses.update(loss.item(), batch_size)
if CFG.gradient_accumulation_steps > 1:
loss = loss / CFG.gradient_accumulation_steps
#loss.backward()
encoder_grad_norm = torch.nn.utils.clip_grad_norm_(encoder.parameters(), CFG.max_grad_norm)
if (step + 1) % CFG.gradient_accumulation_steps == 0:
if CFG.apex:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
global_step += 1
# record dice_coeff
y_preds = torch.argmax(y_preds.squeeze(), dim=1).detach().cpu().numpy()
hist = add_hist(hist, targets.detach().cpu().numpy(), y_preds, n_class=12)
acc, acc_cls, mIoU, iu, fwavacc = label_accuracy_score(hist)
miou_score.update(mIoU, batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % CFG.print_freq == 0 or step == (len(train_loader)-1):
print('Epoch: [{0}][{1}/{2}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Elapsed {remain:s} '
'Loss: {loss.val:.4f}({loss.avg:.4f}) '
'MioU: {miou.val:.4f}({miou.avg:.4f}) '
'Encoder Grad: {encoder_grad_norm:.4f} '
'Encoder LR: {encoder_lr:.6f} '
.format(
epoch+1, step, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, miou=miou_score,
remain=timeSince(start, float(step+1)/len(train_loader)),
encoder_grad_norm=encoder_grad_norm,
encoder_lr=scheduler.get_lr()[0],
))
acc, acc_cls, mIoU, iu, fwavacc = label_accuracy_score(hist)
return losses.avg, mIoU
def valid_fn(valid_loader, encoder, criterion, device):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
miou_score = AverageMeter()
# switch to evaluation mode
encoder.eval()
#trues = []
#preds = []
start = end = time.time()
hist = np.zeros((12, 12))
for step, (images, targets) in enumerate(valid_loader):
# measure data loading time
data_time.update(time.time() - end)
# images = torch.stack(images) # (batch, channel, height, width)
# targets = torch.stack(targets).long() # (batch, channel, height, width)
images = images.to(device)
targets = targets.to(device).long()
batch_size = images.size(0)
with torch.no_grad():
y_preds = encoder(images)
loss = criterion(y_preds, targets)
losses.update(loss.item(), batch_size)
# record dice_coeff
y_preds = torch.argmax(y_preds.squeeze(), dim=1).detach().cpu().numpy()
hist = add_hist(hist, targets.detach().cpu().numpy(), y_preds, n_class=12)
acc, acc_cls, mIoU, iu, fwavacc = label_accuracy_score(hist)
miou_score.update(mIoU, batch_size)
#trues.append(labels.to('cpu').numpy())
#preds.append(y_preds.sigmoid().to('cpu').numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % CFG.print_freq == 0 or step == (len(valid_loader)-1):
print('EVAL: [{0}/{1}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Elapsed {remain:s} '
'Loss: {loss.val:.4f}({loss.avg:.4f}) '
'MioU: {miou.val:.4f}({miou.avg:.4f}) '
.format(
step, len(valid_loader), batch_time=batch_time,
data_time=data_time, loss=losses, miou=miou_score,
remain=timeSince(start, float(step+1)/len(valid_loader)),
))
#preds = np.concatenate(preds)
acc, acc_cls, mIoU, iu, fwavacc = label_accuracy_score(hist)
print(iu)
return losses.avg, mIoU
###Output
_____no_output_____
###Markdown
Train loop
###Code
# from segmentation_models.losses import bce_jaccard_loss
from losses.soft_ce import SoftCrossEntropyLoss
from losses.lovasz import LovaszLoss
from utils import rand_bbox, copyblob, FocalLoss
criterion = SoftCrossEntropyLoss(smooth_factor=CFG.smoothing, ignore_index=1) #['SoftCrossEntropyLoss(smooth_factor=CFG.smoothing, ignore_index=1)', DiceBCELoss()', 'DiceLoss()', 'nn.BCEWithLogitsLoss()']
# ====================================================
# Train loop
# ====================================================
def train_loop(fold):
LOGGER.info(f"========== fold: {fold} training ==========")
# ====================================================
# loader
# ====================================================
# train.json / validation.json / test.json 디렉토리 설정
if CFG.pesudo:
train_path = dataset_path + f'/train_data_pesudo{fold}.json'
else:
train_path = dataset_path + f'/train_data{fold}.json'
val_path = dataset_path + f'/valid_data{fold}.json'
# train dataset
train_dataset = CustomDataLoader(data_dir=train_path, mode='train', transform=train_transform)
# validation dataset
val_dataset = CustomDataLoader(data_dir=val_path, mode='val', transform=val_transform)
# DataLoader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=CFG.batch_size,
num_workers=CFG.num_workers,
pin_memory=True,
drop_last=True,
shuffle=True)
valid_loader = torch.utils.data.DataLoader(dataset=val_dataset,
batch_size=CFG.batch_size,
num_workers=CFG.num_workers,
pin_memory=True,
# drop_last=True,
shuffle=False)
# ====================================================
# scheduler
# ====================================================
def get_scheduler(optimizer):
if CFG.scheduler=='ReduceLROnPlateau':
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=CFG.factor, patience=CFG.patience, verbose=True, eps=CFG.eps)
elif CFG.scheduler=='CosineAnnealingLR':
scheduler = CosineAnnealingLR(optimizer, T_max=CFG.T_max, eta_min=CFG.min_lr, last_epoch=-1)
elif CFG.scheduler=='CosineAnnealingWarmRestarts':
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=CFG.T_0, T_mult=1, eta_min=CFG.min_lr, last_epoch=-1)
elif CFG.scheduler=='GradualWarmupSchedulerV2':
scheduler_cosine=torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, CFG.cosine_epo)
scheduler_warmup=GradualWarmupSchedulerV2(optimizer, multiplier=CFG.warmup_factor, total_epoch=CFG.warmup_epo, after_scheduler=scheduler_cosine)
scheduler=scheduler_warmup
return scheduler
# ====================================================
# model & optimizer
# ====================================================
encoder = Encoder(CFG.model_name, pretrained=True)
encoder.to(device)
if len(os.environ['CUDA_VISIBLE_DEVICES'].split(',')) > 1:
#print('DataParallel')
encoder = nn.DataParallel(encoder)
optimizer = Adam(encoder.parameters(), lr=CFG.encoder_lr, weight_decay=CFG.weight_decay, amsgrad=False)
scheduler = get_scheduler(optimizer)
# Log the network weight histograms (optional)
#wandb.watch(encoder, log='all')
# ====================================================
# loop
# ====================================================
#criterion = nn.BCEWithLogitsLoss()
criterion = SoftCrossEntropyLoss(smooth_factor=CFG.smoothing, ignore_index=1) #['SoftCrossEntropyLoss(smooth_factor=CFG.smoothing, ignore_index=1)', DiceBCELoss()', 'DiceLoss()', 'nn.BCEWithLogitsLoss()']
# criterion = FocalLoss()
best_score = 0
best_loss = np.inf
for epoch in range(CFG.epochs):
start_time = time.time()
# train
avg_loss, avg_tr_miou = train_fn(train_loader, encoder, criterion, optimizer, epoch, scheduler, device)
# eval
avg_val_loss, avg_val_miou = valid_fn(valid_loader, encoder, criterion, device)
# scoring
#score = get_score(valid_labels, text_preds)
score = avg_val_miou
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(score)
elif isinstance(scheduler, CosineAnnealingLR):
scheduler.step()
elif isinstance(scheduler, CosineAnnealingWarmRestarts):
scheduler.step()
elif isinstance(scheduler, GradualWarmupSchedulerV2):
scheduler.step(epoch)
elapsed = time.time() - start_time
LOGGER.info(f'Epoch {epoch+1} - avg_train_loss: {avg_loss:.4f} time: {elapsed:.0f}s')
LOGGER.info(f'Epoch {epoch+1} - Score: {avg_val_miou:.4f}')
wandb.log({
"avg_loss": avg_loss,
"avg_val_loss": avg_val_loss,
"Score": score,
'epoch': epoch,
"lr": optimizer.param_groups[0]["lr"],
})
model_to_save = encoder.module if hasattr(encoder, 'module') else encoder
if score > best_score:
best_score = score
LOGGER.info(f'Epoch {epoch+1} - Save Best Score: {best_score:.4f} Model')
torch.save({'encoder': model_to_save.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
#'text_preds': text_preds,
},
OUTPUT_DIR+f'{CFG.log_day}_d{CFG.dropout}_s{CFG.seed}_{CFG.model_name}_{CFG.version}_fold{fold}_best.pth')
best_oof = avg_val_miou
# print(best_oof)
# return best_oof #text_preds
###Output
_____no_output_____
###Markdown
Main
###Code
# ====================================================
# main
# ====================================================
def main(rank=0, world_size=0):
"""
Prepare: 1.train 2.folds
"""
#rank = 2
#world_size = 2
if CFG.train:
# train
oof_df = pd.DataFrame()
for fold in range(CFG.n_fold):
if fold in CFG.trn_fold:
# train
seed_torch(seed=CFG.seed)
wandb.init(project='Trash-Segmentation', name=f'{CFG.log_day}_{CFG.model_type}+FPN+AUG_{CFG.version}_fold{fold}', entity='choco_9966')
config = wandb.config # Initialize config
config.batch_size = CFG.batch_size
config.encoder_lr = CFG.encoder_lr
config.seed = CFG.seed
config.weight_decay = CFG.weight_decay
config.gradient_accumulation_steps = CFG.gradient_accumulation_steps
config.scheduler = CFG.scheduler
config.model_name = CFG.model_name
config.apex = CFG.apex
config.num_workers = CFG.num_workers
config.img_size = CFG.size
config.print_freq = CFG.print_freq
config.n_fold = CFG.n_fold
config.train = CFG.train
config.epochs = CFG.epochs
# config.inference = CFG.inference
# config.swa = CFG.swa
# config.swa_start = CFG.swa_start
# config.swa_lr = CFG.swa_lr
# config.swa = CFG.swa
config.smoothing = CFG.smoothing
train_loop(fold)
wandb.join()
if __name__ == '__main__':
main()
def test(models, data_loader, device):
size = 256
transform = A.Compose([A.Resize(256, 256)])
print('Start prediction.')
file_name_list = []
preds_array = np.empty((0, size*size), dtype=np.long)
with torch.no_grad():
for step, (imgs, image_infos) in enumerate(test_loader):
# inference (512 x 512)
for n, model in enumerate(models):
model = model.to(device)
model.eval()
if n == 0:
outs = model(torch.stack(imgs).to(device))
else:
outs += model(torch.stack(imgs).to(device))
oms = torch.argmax(outs.squeeze(), dim=1).detach().cpu().numpy()
# resize (256 x 256)
temp_mask = []
for img, mask in zip(np.stack(imgs), oms):
transformed = transform(image=img, mask=mask)
mask = transformed['mask']
temp_mask.append(mask)
oms = np.array(temp_mask)
oms = np.around(oms.reshape([oms.shape[0], size*size])).astype(int)
preds_array = np.vstack((preds_array, oms))
file_name_list.append([i['file_name'] for i in image_infos])
print("End prediction.")
file_names = [y for x in file_name_list for y in x]
return file_names, preds_array
test_path = dataset_path + f'/test.json'
# test dataset
test_dataset = CustomDataLoader(data_dir=test_path, mode='test', transform=test_transform)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=CFG.batch_size,
num_workers=CFG.num_workers,
pin_memory=True,
shuffle=False,
collate_fn=collate_fn)
class Encoder(nn.Module):
def __init__(self, model_name='timm-efficientnet-b4', pretrained=False):
super().__init__()
self.encoder = smp.FPN(encoder_name=model_name, encoder_weights="noisy-student", classes=12) # [imagenet, noisy-student]
#@autocast()
def forward(self, x):
x = self.encoder(x)
return x
# 추론을 실행하기 전에는 반드시 설정 (batch normalization, dropout 를 평가 모드로 설정)
# model.eval()
models = []
for fold in range(5):
model_path = f'./submission{CFG.log_day}_d{CFG.dropout}_s{CFG.seed}_{CFG.model_name}_{CFG.version}_fold{fold}_best.pth'
checkpoint = torch.load(model_path, map_location=device)
model = Encoder(CFG.model_name, pretrained=False)
model.load_state_dict(checkpoint['encoder'])
models += [model]
###Output
_____no_output_____
###Markdown
Multi Scale TTA (No ttach package)
###Code
import argparse
import scipy
import os
import numpy as np
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from scipy import ndimage
from tqdm import tqdm
from math import ceil
from glob import glob
from PIL import Image
from collections import OrderedDict
import numpy as np
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_softmax, create_pairwise_bilateral
'''
# Default Values are
apperance_kernel = [8, 164, 100] # PairwiseBilateral [sxy, srgb, compat]
spatial_kernel = [3, 10] # PairwiseGaussian [sxy, compat]
# or if you want to to specify seprately for each XY direction and RGB color channel then
apperance_kernel = [(1.5, 1.5), (64, 64, 64), 100] # PairwiseBilateral [sxy, srgb, compat]
spatial_kernel = [(0.5, 0.5), 10] # PairwiseGaussian [sxy, compat]
'''
# https://www.programcreek.com/python/example/106424/pydensecrf.densecrf.DenseCRF2D
h, w = 512, 512
def dense_crf(probs, img=None, n_classes=12, n_iters=10, scale_factor=1):
c,h,w = probs.shape
if img is not None:
assert(img.shape[1:3] == (h, w))
img = np.transpose(img,(1,2,0)).copy(order='C')
img = np.uint8(255 * img)
d = dcrf.DenseCRF2D(w, h, n_classes) # Define DenseCRF model.
unary = unary_from_softmax(probs)
unary = np.ascontiguousarray(unary)
d.setUnaryEnergy(unary)
d.addPairwiseGaussian(sxy=(3,3), compat=10)
d.addPairwiseBilateral(sxy=10, srgb=5, rgbim=np.copy(img), compat=10)
Q = d.inference(n_iters)
preds = np.array(Q, dtype=np.float32).reshape((n_classes, h, w))
return preds
scales = [0.75, 1.0, 1.25]
def multi_scale_predict(model, image, scales, num_classes, device, flip=False):
input_size = (image.size(2), image.size(3))
upsample = nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
total_predictions = np.zeros((image.size(0), num_classes, image.size(2), image.size(3)))
image = image.data.data.cpu().numpy()
for scale in scales:
scaled_img = ndimage.zoom(image, (1.0, 1.0, float(scale), float(scale)), order=1, prefilter=False)
scaled_img = torch.from_numpy(scaled_img).to(device)
scaled_prediction = upsample(model(scaled_img).cpu())
if flip:
fliped_img = scaled_img.flip(-1).to(device)
fliped_predictions = upsample(model(fliped_img).cpu())
scaled_prediction = 0.5 * (fliped_predictions.flip(-1) + scaled_prediction)
total_predictions += scaled_prediction.data.cpu().numpy()
total_predictions /= len(scales)
return total_predictions
invTrans = transforms.Compose([ transforms.Normalize(mean = [ 0., 0., 0. ],
std = [ 1/0.229, 1/0.224, 1/0.225 ]),
transforms.Normalize(mean = [ -0.485, -0.456, -0.406 ],
std = [ 1., 1., 1. ]),
])
def test(models, data_loader, device):
size = 256
transform = A.Compose([A.Resize(256, 256)])
print('Start prediction.')
file_name_list = []
preds_array = np.empty((0, size*size), dtype=np.long)
with torch.no_grad():
for step, (imgs, image_infos) in enumerate(test_loader):
# inference (512 x 512)
for n, model in enumerate(models):
model = model.to(device)
model.eval()
if n == 0:
outs = multi_scale_predict(model, torch.stack(imgs).to(device), scales, 12, device, flip=True)
else:
outs += multi_scale_predict(model, torch.stack(imgs).to(device), scales, 12, device, flip=True)
probs_array = []
for image, prob in zip(imgs, outs):
prob = F.softmax(torch.from_numpy(prob), dim=0)
prob = dense_crf(img=np.around(invTrans(image).cpu().numpy()).astype(float), probs=prob.cpu().numpy())
probs_array += [np.argmax(prob, axis=0)]
oms = np.array(probs_array)
# oms = np.argmax(outs.squeeze(), axis=1)
# resize (256 x 256)
temp_mask = []
for img, mask in zip(np.stack(imgs), oms):
transformed = transform(image=img, mask=mask)
mask = transformed['mask']
temp_mask.append(mask)
oms = np.array(temp_mask)
oms = np.around(oms.reshape([oms.shape[0], size*size])).astype(int)
preds_array = np.vstack((preds_array, oms))
file_name_list.append([i['file_name'] for i in image_infos])
print("End prediction.")
file_names = [y for x in file_name_list for y in x]
return file_names, preds_array
%%time
# sample_submisson.csv 열기
submission = pd.read_csv('./submission/sample_submission.csv', index_col=None)
# test set에 대한 prediction
model = model.to(device)
file_names, preds = test(models, test_loader, device)
# PredictionString 대입
for file_name, string in zip(file_names, preds):
submission = submission.append({"image_id" : file_name, "PredictionString" : ' '.join(str(e) for e in string.tolist())},
ignore_index=True)
submission.to_csv("./submission/0505_EfficientFPNB4_5FOLD_FLIP_CRF2.csv", index=False)
###Output
_____no_output_____
###Markdown
Multi Scale TTA (ttach package)
###Code
import ttach as tta
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.VerticalFlip(),
tta.Scale(scales=[0.75, 1, 1.25]),
tta.Multiply(factors=[0.9, 1, 1.1]),
]
)
models = []
for fold in range(5):
model_path = f'./submission{CFG.log_day}_d{CFG.dropout}_s{CFG.seed}_{CFG.model_name}_{CFG.version}_fold{fold}_best.pth'
checkpoint = torch.load(model_path, map_location=device)
model = Encoder(CFG.model_name, pretrained=False)
model.load_state_dict(checkpoint['encoder'])
tta_model = tta.SegmentationTTAWrapper(model, transforms)
models += [tta_model]
def test(models, data_loader, device):
size = 256
transform = A.Compose([A.Resize(256, 256)])
print('Start prediction.')
file_name_list = []
preds_array = np.empty((0, size*size), dtype=np.long)
with torch.no_grad():
for step, (imgs, image_infos) in enumerate(test_loader):
# inference (512 x 512)
for n, model in enumerate(models):
model = model.to(device)
model.eval()
if n == 0:
outs = model(torch.stack(imgs).to(device))
else:
outs += model(torch.stack(imgs).to(device))
probs_array = []
for image, prob in zip(imgs, outs):
prob = F.softmax(prob, dim=0)
prob = dense_crf(img=np.around(invTrans(image).cpu().numpy()).astype(float), probs=prob.cpu().numpy())
probs_array += [np.argmax(prob, axis=0)]
oms = np.array(probs_array)
# oms = np.argmax(outs.squeeze(), axis=1)
# resize (256 x 256)
temp_mask = []
for img, mask in zip(np.stack(imgs), oms):
transformed = transform(image=img, mask=mask)
mask = transformed['mask']
temp_mask.append(mask)
oms = np.array(temp_mask)
oms = np.around(oms.reshape([oms.shape[0], size*size])).astype(int)
preds_array = np.vstack((preds_array, oms))
file_name_list.append([i['file_name'] for i in image_infos])
print("End prediction.")
file_names = [y for x in file_name_list for y in x]
return file_names, preds_array
%%time
# sample_submisson.csv 열기
submission = pd.read_csv('./submission/sample_submission.csv', index_col=None)
# test set에 대한 prediction
model = model.to(device)
file_names, preds = test(models, test_loader, device)
# PredictionString 대입
for file_name, string in zip(file_names, preds):
submission = submission.append({"image_id" : file_name, "PredictionString" : ' '.join(str(e) for e in string.tolist())},
ignore_index=True)
submission.to_csv("./submission/0505_EfficientFPNB4_5FOLD_FLIP_CRF3.csv", index=False)
###Output
_____no_output_____ |
1 Longest Even Length Word.ipynb | ###Markdown
Longest Even Length WordConsider a string, sentence, of space-separated words where each word is a substring consisting of English alphabetic letters only.We want to find the first word in sentence having a length which is both an even number and greater than orequal to the length of any other word of even length in the sentence. For example, if sentence is `Time to write great code` , then the word we're looking for is Time .While code and Time are of maximal length, Time occurs first. If sentence is `Write code for a great time` , then the word we're looking for is code.
###Code
data1 = 'One great way to make predictions about an unfamiliar nonfiction text is to take a walk through the book before reading.'
data2 = 'photographs or other images, readers can start to get a sense about the topic. This scanning and skimming helps set the expectation for the reading.'
data3 = ' testing very9 important'
#Importing necessary packages
import pandas as pd
import numpy as np
#Function for Splitting Words
def splitword(data):
temp={}
data.lower()
split_data=data.split()
for i in range(0,len(split_data)):
temp.update({split_data[i]:len(split_data[i])})
output=pd.DataFrame(temp.items(),columns=['word','count'])
return output
#Function for finding Longest Even word
def q01_longest_even_word(sentence):
test=splitword(sentence)#Call to the function created above
if (test['count']%2==0).any():
output=test.word[test[test['count']%2==0]['count'].idxmax()]
else:
output=0
return output
q01_longest_even_word(data3)
###Output
_____no_output_____ |
tutorial_part1/Signals and Systems.ipynb | ###Markdown
\tableofcontents% These TeX commands run at the start to remove section numbering\renewcommand{\thesection}{\hspace*{-1.0em}}\renewcommand{\thesubsection}{\hspace*{-1.0em}}\renewcommand{\thesubsubsection}{\hspace*{-1.0em}}
###Code
%pylab inline
#%matplotlib qt
from __future__ import division # use so 1/2 = 0.5, etc.
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.pyaudio_helper as pah
import sk_dsp_comm.iir_design_helper as iir_d
import scipy.signal as signal
import time
import sys
import imp # for module development and reload()
from IPython.display import Audio, display
from IPython.display import Image, SVG
pylab.rcParams['savefig.dpi'] = 100 # default 72
#pylab.rcParams['figure.figsize'] = (6.0, 4.0) # default (6,4)
#%config InlineBackend.figure_formats=['png'] # default for inline viewing
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing
#%config InlineBackend.figure_formats=['pdf'] # render pdf figs for LaTeX
#Image('filename.png',width='80%')
def FT_approx(x,t,Nfft):
'''
Approximate the Fourier transform of a finite duration
signal using scipy.signal.freqz()
Inputs
------
x = input signal array
t = time array used to create x(t)
Nfft = the number of frequency domain points used to
approximate X(f) on the interval [fs/2,fs/2], where
fs = 1/Dt. Dt being the time spacing in array t
Return
------
f = frequency axis array in Hz
X = the Fourier transform approximation (complex)
Mark Wickert, January 2015
'''
fs = 1/(t[1] - t[0])
t0 = (t[-1]+t[0])/2 # time delay at center
N0 = len(t)/2 # FFT center in samples
f = arange(-1/2,1/2,1/Nfft)
w, X = signal.freqz(x,1,2*pi*f)
X /= fs # account for dt = 1/fs in integral
X *= exp(-1j*2*pi*f*fs*t0)# time interval correction
X *= exp(1j*2*pi*f*N0)# FFT time interval is [0,Nfft-1]
F = f*fs
return F, X
###Output
_____no_output_____
###Markdown
Signals Using the signal primitives `ss.rect(t,tau)` and `ss.tri(t,tau)` synthesize the following signal and also plot the corresponding frequency spectra.
###Code
Image('images/Pulse_Signal_Modeling.png',width='100%')
###Output
_____no_output_____
###Markdown
* In working the examples below it worth recalling how re-mapping the argument of a function can be used to shift a function right or left
###Code
Image('images/Shifting_Functions.png',width='100%')
###Output
_____no_output_____
###Markdown
Example: $x_5(t)$
###Code
t = arange(-4,4,.01)
x5 = ss.tri(t-1,1) - ss.tri(t+1,1)
plot(t,x5)
ylabel(r'Amplitude')
xlabel(r'Times (s)')
title(r'The Finte Energy Signal $x_5(t)$')
grid();
###Output
_____no_output_____
###Markdown
The spectrum (Fourier transform)$$ X_5(f) = \int_{-\infty}^\infty x(t) e^{-j2\pi ft}\, dt $$is numerically computed using `FT_approx()`.
###Code
F, X5 = FT_approx(x5,t,4096)
plot(F, abs(X5))
xlim([-5,5])
title(r'Spectrum Magnitude $|X_5(f)|$')
ylabel(r'Magnitude')
xlabel(r'Frequency (Hz)')
grid();
###Output
_____no_output_____
###Markdown
Example: The Bi-Phase PulseThis pulse is used in Manchester encoding of a bit stream.$$ p(t) = \Pi\left(\frac{t-T/4}{T/2}\right) - \Pi\left(\frac{t-3T/4}{T/2}\right)$$When each bit in a bit stream is mapped to the time axis using this pulse shape1. There is a transition for every bit making sychronization easier2. The spectrum does not contain and zero frequency components3. Unfortunately the spectrum is wide than the simple rectangle $\pm 1 \times \Pi\big(t/T\big)$ pulse shape
###Code
# Complete this example by plottont $p(t)$ for $T = 1$ and plotting the spectrum.
# Overlay the spectrum of $\Pi(t/T)$ for $T=1$
# Code here
###Output
_____no_output_____
###Markdown
**Complete a Few Other Examples from the $3\times 2$ Plot Figure Above** (time permitting) Raised Cosine and Square-root Raised CosineThe module `digitalcom` utilizes this pulse shape in many of its functions. More later in **Part3**
###Code
Ns = 8 # samples per bit period
p_RC = ss.rc_imp(Ns,0.35) # 0.35 is a popular excess bandwidth factor
p_SRC = ss.sqrt_rc_imp(Ns,0.35)
n = arange(len(p_RC))
plot(n/Ns,p_RC)
plot(n/Ns,p_SRC)
legend((r'Raised Cosine',r'Square-root RC'),loc='best')
title(r'RC and SRC Pulse Shapes (functions are discrete)')
ylabel(r'Amplitude')
xlabel(r'Bit Period ($n/N_s$)')
grid()
###Output
_____no_output_____
###Markdown
Plot the spectrum magnitude (Fourier transform) by repurposing the function `freqz_resp_list(b,a=np.array([1]),mode = 'dB',fs=1.0,Npts = 1024)` found in the module `iir_design_helper`
###Code
import sk_dsp_comm.iir_design_helper as iir_d
iir_d.freqz_resp_list([p_RC,p_SRC],[1,1],'dB',8.0)
title(r'Spectral Comparison Between RC and SRC Pulse Shapes')
ylabel(r'Spectral Density (dB)')
xlabel(r'Bit Rate Normalized Frequency $f/R_b$')
ylim([-80,20])
legend((r'RC',r'SRC'),loc='best')
grid();
# Repeat the above pulse shape modeling for alpha = 0.5 and 0.25
# Overlay plots of just the SRC spectrum for alpha = 0.25, 0.35, 0.5
###Output
_____no_output_____
###Markdown
AliasingIn `sigsys` the function `f_prin = prin_alias(f,fs)` finds the *principal alias* of a sinusoidal signal relative to the sampling rate $f_s$:
###Code
# Some examples
(ss.prin_alias(25,100),ss.prin_alias(300,200),ss.prin_alias(18000,44100))
f = arange(64,72,.01)
f_prin = ss.prin_alias(f,8) # Sampling frequency is 8 MHz
plot(f,f_prin)
title(r'Under Sampling a Signal Over 64-72 MHz with $f_s = 8$ MHz')
ylabel(r'Output Frequency (MHz)')
xlabel(r'Input Frequency (MHz)')
grid();
###Output
_____no_output_____ |
tabular-playground-series-feb-2022-2/test-estimators.ipynb | ###Markdown
'Native'のみ: 0.971659944'Native'と'MultipliedATGC'の時: 0.96771621252403
###Code
estimators = [
('rf', RandomForestClassifier(random_state=0, n_jobs=-1)),
('ert', ExtraTreesClassifier(random_state=0, n_jobs=-1))
]
final_estimator = VotingClassifier(
estimators=[
('rf', RandomForestClassifier(random_state=0, n_jobs=-1)),
('ert', ExtraTreesClassifier(random_state=0, n_jobs=-1))
],
voting='soft',
n_jobs=-1
)
model = StackingClassifier(
estimators=estimators,
final_estimator=final_estimator,
n_jobs=-1
)
cv_score = cross_val_score(model, X_train, y_train, n_jobs=-1, verbose=2)
print(cv_score)
print(np.mean(cv_score))
# model.fit(X_train, y_train)
# y_pred=model.predict(X_test)
# save_submission(y_pred, np.mean(cv_score), 'target','rf-ert-stacking-voting')
n_stack = 3
estimatorss = [[
] for i in range(3)]
estimatorss
###Output
_____no_output_____ |
XGBoost-RFECV-RoF-Vancouver.ipynb | ###Markdown
In this note book the following steps are taken:1. Find the best hyper parameters for estimator2. Find the most important features by tunned random forest3. Comapring r2 of the tuuned full model and model with selected features4. Furthur step is finding tuned model with selected features and comparing the hyper parameters
###Code
#import data
Data=pd.read_csv("Vancouver-Transfomed-Data.csv")
X = Data.iloc[:,:-1]
y = Data.iloc[:,-1]
#split test and training set. total number of data is 330 so the test size cannot be large
np.random.seed(60)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,
random_state = 1000)
regressors = {}
regressors.update({"XGBoost": XGBRegressor(random_state=1000)})
FEATURE_IMPORTANCE = {"XGBoost"}
#Define range of hyperparameters for estimator
np.random.seed(60)
parameters = {}
parameters.update({"XGBoost": {
"regressor__learning_rate":[0.001,0.01,0.02,0.1,0.25,0.5,1],
"regressor__gamma":[0.001,0.01,0.02,0.1,0.25,0.5,1],
"regressor__max_depth" : [5,10,15,20],
"regressor__reg_alpha":[0.001,0.01,0.02,0.1],
"regressor__reg_lambda":[0.001,0.01,0.02,0.1],
"regressor__min_child_weight":[0.001,0.01,0.02,0.1]}
})
# Make correlation matrix
corr_matrix = X_train.corr(method = "spearman").abs()
# Draw the heatmap
sns.set(font_scale = 1.0)
f, ax = plt.subplots(figsize=(11, 9))
sns.heatmap(corr_matrix, cmap= "YlGnBu", square=True, ax = ax)
f.tight_layout()
plt.savefig("correlation_matrix.png", dpi = 1080)
# Select upper triangle of matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k = 1).astype(np.bool))
# Find index of feature columns with correlation greater than 0.8
to_drop = [column for column in upper.columns if any(upper[column] > 0.8)]
# Drop features
X_train = X_train.drop(to_drop, axis = 1)
X_test = X_test.drop(to_drop, axis = 1)
X_train
FEATURE_IMPORTANCE = {"XGBoost"}
selected_regressor = "XGBoost"
regressor = regressors[selected_regressor]
results = {}
for regressor_label, regressor in regressors.items():
# Print message to user
print(f"Now tuning {regressor_label}.")
scaler = StandardScaler()
steps = [("scaler", scaler), ("regressor", regressor)]
pipeline = Pipeline(steps = steps)
#Define parameters that we want to use in gridsearch cv
param_grid = parameters[selected_regressor]
# Initialize GridSearch object for estimator
gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3, n_jobs= -1, verbose = 1, scoring = r2_score, n_iter=20)
# Fit gscv (Tunes estimator)
print(f"Now tuning {selected_regressor}. Go grab a beer or something.")
gscv.fit(X_train, np.ravel(y_train))
#Getting the best hyperparameters
best_params = gscv.best_params_
best_params
#Getting the best score of model
best_score = gscv.best_score_
best_score
#Check overfitting of the estimator
from sklearn.model_selection import cross_val_score
mod = XGBRegressor(gamma= 0.01,
learning_rate= 0.5,
max_depth=10,
min_child_weight= 0.001,
reg_alpha=0.001,
reg_lambda = 0.01 ,random_state=10000)
scores_test = cross_val_score(mod, X_test, y_test, scoring='r2', cv=5)
scores_test
tuned_params = {item[11:]: best_params[item] for item in best_params}
regressor.set_params(**tuned_params)
#Find r2 of the model with all features (Model is tuned for all features)
results={}
model=regressor.set_params(gamma= 0.01,
learning_rate= 0.5,
max_depth=10,
min_child_weight= 0.001,
reg_alpha=0.001,
reg_lambda = 0.01 ,random_state=10000)
model.fit(X_train,y_train)
y_pred = model.predict(X_test)
R2 = metrics.r2_score(y_test, y_pred)
results = {"classifier": model,
"Best Parameters": best_params,
"Training r2": best_score*100,
"Test r2": R2*100}
results
# Select Features using RFECV
class PipelineRFE(Pipeline):
# Source: https://ramhiser.com/post/2018-03-25-feature-selection-with-scikit-learn-pipeline/
def fit(self, X, y=None, **fit_params):
super(PipelineRFE, self).fit(X, y, **fit_params)
self.feature_importances_ = self.steps[-1][-1].feature_importances_
return self
steps = [("scaler", scaler), ("regressor", regressor)]
pipe = PipelineRFE(steps = steps)
np.random.seed(60)
# Initialize RFECV object
feature_selector = RFECV(pipe, cv = 5, step = 1, verbose = 1)
# Fit RFECV
feature_selector.fit(X_train, np.ravel(y_train))
# Get selected features
feature_names = X_train.columns
selected_features = feature_names[feature_selector.support_].tolist()
performance_curve = {"Number of Features": list(range(1, len(feature_names) + 1)),
"R2": feature_selector.grid_scores_}
performance_curve = pd.DataFrame(performance_curve)
# Performance vs Number of Features
# Set graph style
sns.set(font_scale = 1.75)
sns.set_style({"axes.facecolor": "1.0", "axes.edgecolor": "0.85", "grid.color": "0.85",
"grid.linestyle": "-", 'axes.labelcolor': '0.4', "xtick.color": "0.4",
'ytick.color': '0.4'})
colors = sns.color_palette("RdYlGn", 20)
line_color = colors[3]
marker_colors = colors[-1]
# Plot
f, ax = plt.subplots(figsize=(13, 6.5))
sns.lineplot(x = "Number of Features", y = "R2", data = performance_curve,
color = line_color, lw = 4, ax = ax)
sns.regplot(x = performance_curve["Number of Features"], y = performance_curve["R2"],
color = marker_colors, fit_reg = False, scatter_kws = {"s": 200}, ax = ax)
# Axes limits
plt.xlim(0.5, len(feature_names)+0.5)
plt.ylim(0.60, 1)
# Generate a bolded horizontal line at y = 0
ax.axhline(y = 0.625, color = 'black', linewidth = 1.3, alpha = .7)
# Turn frame off
ax.set_frame_on(False)
# Tight layout
plt.tight_layout()
#Define new training and test set based based on selected features by RFECV
X_train_rfecv = X_train[selected_features]
X_test_rfecv= X_test[selected_features]
np.random.seed(60)
regressor.fit(X_train_rfecv, np.ravel(y_train))
#Finding important features
np.random.seed(60)
feature_importance = pd.DataFrame(selected_features, columns = ["Feature Label"])
feature_importance["Feature Importance"] = regressor.feature_importances_
feature_importance = feature_importance.sort_values(by="Feature Importance", ascending=False)
feature_importance
# Initialize GridSearch object for model with selected features
np.random.seed(60)
gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3, n_jobs= -1, verbose = 1, scoring = r2_score, n_iter=20)
#Tuning random forest classifier with selected features
np.random.seed(60)
gscv.fit(X_train_rfecv,y_train)
#Getting the best parameters of model with selected features
best_params = gscv.best_params_
best_params
#Getting the score of model with selected features
best_score = gscv.best_score_
best_score
#Check overfitting of the tuned model with selected features
from sklearn.model_selection import cross_val_score
mod = XGBRegressor(gamma= 0.001,
learning_rate= 0.5,
max_depth=15,
min_child_weight= 0.001,
reg_alpha=0.02,
reg_lambda = 0.02 ,random_state=10000)
scores_test = cross_val_score(mod, X_test_rfecv, y_test, scoring='r2', cv=5)
scores_test
results={}
model=regressor.set_params(gamma= 0.001,
learning_rate= 0.5,
max_depth=15,
min_child_weight= 0.001,
reg_alpha=0.02,
reg_lambda = 0.02 ,random_state=10000)
model.fit(X_train_rfecv,y_train)
y_pred = model.predict(X_test_rfecv)
R2 = metrics.r2_score(y_test, y_pred)
results = {"classifier": model,
"Best Parameters": best_params,
"Training r2": best_score*100,
"Test r2": R2*100}
results
###Output
_____no_output_____ |
PDA/jupyter/jupyterNotebooks/assignments/03Collections_Assignments.ipynb | ###Markdown
Programming and Data Analytics 1 2021/2022Sant'Anna School of Advanced Studies, Pisa, ItalyCourse responsibleAndrea Vandin [email protected] Daniele Licari [email protected] Assignments forLecture 3: Collections---
###Code
#@title RUN, BUT DO NOT MODIFY
!curl -O https://raw.githubusercontent.com/EMbeDS-education/StatsAndComputing20212022/main/PDA/jupyter/jupyterNotebooks/assignments/auto_testing.py
%reload_ext autoreload
%autoreload 2
from auto_testing import *
###Output
_____no_output_____
###Markdown
Assignment 03.01: Play with lists StatementWrite a program that - Reads two integers `a` and `b` - prints `a` and `b`- Creates a list (`lst1`) of 10 elements containing value 0 in each entry - sets to value `a` the entries in position 1 and 3 - sets to value `b` the entries in position 2 and 4 - prints this list- Creates a list (`lst2`) of 10 elements containing values from 0 to 9 included - prints this list- Prints `True` if the `lst1` is smaller than `lst2`, and `False` otherwise- Concatenates the two lists in list `lst3` - prints `lst3` Example input 1```1``````2``` Example output 1```12[0, 1, 2, 1, 2, 0, 0, 0, 0, 0][0, 1, 2, 3, 4, 5, 6, 7, 8, 9]True[0, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``` Example input 2```2``````1``` Example output 2```21[0, 2, 1, 2, 1, 0, 0, 0, 0, 0][0, 1, 2, 3, 4, 5, 6, 7, 8, 9]False[0, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``` Write your solution here* Do not change the first line (`def ...():`)* Maintain the given indentation* You can run some tests by yourself by decommenting the last line
###Code
def asgn03_01Play_with_lists():
# This program reads a number and prints it
a = int(input())
print(a)
# Change it according to the assignment description
#You can test independently your solution by executing the following line
#asgn03_01Play_with_lists()
###Output
_____no_output_____
###Markdown
Run the following cells to perform the provided tests
###Code
#@title RUN and TEST ALL
from IPython.display import display, Markdown
inputs=[[0,0],[1,2],[2,1]]
expected_outputs=[["0","0","[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]","[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]","True","[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"],\
["1","2","[0, 1, 2, 1, 2, 0, 0, 0, 0, 0]","[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]","True","[0, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"], \
["2","1","[0, 2, 1, 2, 1, 0, 0, 0, 0, 0]","[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]","False","[0, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"]]
for k in range(len(inputs)):
display(Markdown(f'{k+1}. TEST {inputs[k]} = {",".join(expected_outputs[k])}'))
print('-'*60)
run_and_test(inputs[k],expected_outputs[k],asgn03_01Play_with_lists)
###Output
_____no_output_____
###Markdown
Assignment 03.02: Play with lists and sets StatementWrite a program that - Reads a string `s` - Creates a list `lst` containing as elements the characters in `s` in the same order in which they appear in `s` - sets the string `'1'` as the value of the first entry of `lst` - prints `lst`- Creates a set `st` containing the characters in the list - prints the length of `st` - prints the minimum element in `st` - prints the maximum element in `st`- Creates a list `lst2` containing the elements in `st` - prints the length of `lst2` - prints the minimum element in `lst2` - prints the maximum element in `lst2` - sorts `lst2` - appends string `'!'` at the end of `lst2` - prints `lst2` Example input 1```abba``` Example output 1```['1', 'b', 'b', 'a']31b31b['1', 'a', 'b', '!']``` Example input 2```ciaomondo``` Example output 2```['1', 'i', 'a', 'o', 'm', 'o', 'n', 'd', 'o']71o71o['1', 'a', 'd', 'i', 'm', 'n', 'o', '!']``` Write your solution here* Do not change the first line (`def ...():`)* Maintain the given indentation* You can run some tests by yourself by decommenting the last line
###Code
def asgn03_02Play_with_lists_and_sets():
# This program reads a number and prints it
a = int(input())
print(a)
# Change it according to the assignment description
#You can test independently your solution by executing the following line
#asgn03_02Play_with_lists_and_sets()
###Output
_____no_output_____
###Markdown
Run the following cells to perform the provided tests
###Code
#@title RUN and TEST ALL
from IPython.display import display, Markdown
inputs=[['abba'],['ciaomondo']]
expected_outputs=[["['1', 'b', 'b', 'a']","3","1","b","3","1","b","['1', 'a', 'b', '!']"],\
["['1', 'i', 'a', 'o', 'm', 'o', 'n', 'd', 'o']","7","1","o","7","1","o","['1', 'a', 'd', 'i', 'm', 'n', 'o', '!']"], \
]
for k in range(len(inputs)):
display(Markdown(f'{k+1}. TEST {inputs[k]} = {",".join(expected_outputs[k])}'))
print('-'*60)
run_and_test(inputs[k],expected_outputs[k],asgn03_02Play_with_lists_and_sets)
###Output
_____no_output_____
###Markdown
Assignment 03.03: Play with matrices StatementWrite a program that reads a string of digits `s`, and creates a 2-dimensional list (a matrix of size 2 times the length of s) containing- in the first row: the digits in `s`- in the second row: twice the value of each digit in `s` Finally, your program should print the list Example input 1```123``` Example output 1```[[1, 2, 3], [2, 4, 6]]``` Example input 2```12345``` Example output 2```[[1, 2, 3, 4, 5], [2, 4, 6, 8, 10]]``` Write your solution here* Do not change the first line (`def ...():`)* Maintain the given indentation* You can run some tests by yourself by decommenting the last line
###Code
def asgn03_03Play_with_matrices():
# This program reads a number and prints it
s = input()
# Change it according to the assignment description
#You can test independently your solution by executing the following line
#asgn03_03Play_with_matrices()
###Output
_____no_output_____
###Markdown
Run the following cells to perform the provided tests
###Code
#@title RUN and TEST ALL
from IPython.display import display, Markdown
inputs=[['123'],['12345'],['56734']]
expected_outputs=[["[[1, 2, 3], [2, 4, 6]]"],\
["[[1, 2, 3, 4, 5], [2, 4, 6, 8, 10]]"], \
["[[5, 6, 7, 3, 4], [10, 12, 14, 6, 8]]"]]
for k in range(len(inputs)):
display(Markdown(f'{k+1}. TEST {inputs[k]} = {",".join(expected_outputs[k])}'))
print('-'*60)
run_and_test(inputs[k],expected_outputs[k],asgn03_03Play_with_matrices)
###Output
_____no_output_____
###Markdown
Assignment 03.04: Play with dictionaries StatementWrite a program that - Reads three strings `st1`, `st2`, and `st3` given in 3 lines- Creates a dictionary (`d1`) mapping each string to its upper-case version- Prints such dictionary `d1` Example input 1```Andrea``````Daniele``````Giulio``` Example output 1```{'Andrea': 'ANDREA', 'Daniele': 'DANIELE', 'Giulio': 'GIULIO'}``` Example input 2```Andrea``````Daniele``````Andrea``` Example output 2```{'Andrea': 'ANDREA', 'Daniele': 'DANIELE'}``` Write your solution here* Do not change the first line (`def ...():`)* Maintain the given indentation* You can run some tests by yourself by decommenting the last line
###Code
def asgn03_04Play_with_dictionaries():
# This program reads a string and prints it
s = input()
print(s)
# Change it according to the assignment description
#You can test independently your solution by executing the following line
#asgn03_04Play_with_dictionaries()
###Output
_____no_output_____
###Markdown
Run the following cells to perform the provided tests
###Code
#@title RUN and TEST ALL
from IPython.display import display, Markdown
inputs=[['Andrea','Daniele','Andrea'],['Andrea','Daniele','Giulio'],['ANDREA','DANIELE','GIULIO']]
expected_outputs=[["{'Andrea': 'ANDREA', 'Daniele': 'DANIELE'}"],\
["{'Andrea': 'ANDREA', 'Daniele': 'DANIELE', 'Giulio': 'GIULIO'}"], \
["{'ANDREA': 'ANDREA', 'DANIELE': 'DANIELE', 'GIULIO': 'GIULIO'}"]]
for k in range(len(inputs)):
display(Markdown(f'{k+1}. TEST {inputs[k]} = {",".join(expected_outputs[k])}'))
print('-'*60)
run_and_test(inputs[k],expected_outputs[k],asgn03_04Play_with_dictionaries)
###Output
_____no_output_____
###Markdown
Assignment 03.05: Dictionaries and numbers StatementWrite a program that - Reads a string containing only digits- Creates a dictionary (`d1`) casting each character in a string (a string representation of a digit) to its `int` counterpart- Prints this dictionary `d1`**Note**- The length of the input string is not known a prior. Your implementation should work with strings of any length. Example input 1```12345``` Example output 1```{'1': 1, '2': 2, '3': 3, '4': 4, '5': 5}``` HintIn class we have seen how to create dictionaries using list comprehension. With that in mind, solving this exercise requires just a few lines of code Write your solution here* Do not change the first line (`def ...():`)* Maintain the given indentation* You can run some tests by yourself by decommenting the last line
###Code
def asgn03_05Dictionaries_and_numbers():
# This program reads a string and prints it
s = input()
print(s)
# Change it according to the assignment description
#You can test independently your solution by executing the following line
#asgn03_05Dictionaries_and_numbers()
###Output
_____no_output_____
###Markdown
Run the following cells to perform the provided tests
###Code
#@title RUN and TEST ALL
from IPython.display import display, Markdown
inputs=[['123'],['12345'],['123456789']]
expected_outputs=[["{'1': 1, '2': 2, '3': 3}"],\
["{'1': 1, '2': 2, '3': 3, '4': 4, '5': 5}"], \
["{'1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}"]]
for k in range(len(inputs)):
display(Markdown(f'{k+1}. TEST {inputs[k]} = {",".join(expected_outputs[k])}'))
print('-'*60)
run_and_test(inputs[k],expected_outputs[k],asgn03_05Dictionaries_and_numbers)
###Output
_____no_output_____
###Markdown
Assignment 03.06: Play with class 3 StatementWrite a program that - Reads three integers: - `start` - `stop` - `step`- Creates a range `r` using these three parameters- Creates a list `x` containing the elements in `r`- Creates a list `y` containing the square of each element in `r`- Creates a dictionary `d` that maps each element in `x` with the corresponding one in `y`- Prints `d` Example input 1```0``````6``````1``` Example output 1```{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}``` Example input 2```0``````100``````10``` Example output 2```{0: 0, 10: 100, 20: 400, 30: 900, 40: 1600, 50: 2500, 60: 3600, 70: 4900, 80: 6400, 90: 8100}``` Write your solution here* Do not change the first line (`def ...():`)* Maintain the given indentation* You can run some tests by yourself by decommenting the last line
###Code
def asgn03_06Play_with_class_3():
# This program reads a string and prints it
s = input()
print(s)
# Change it according to the assignment description
#You can test independently your solution by executing the following line
# asgn03_06Play_with_class_3()
###Output
_____no_output_____
###Markdown
Run the following cells to perform the provided tests
###Code
#@title RUN and TEST ALL
from IPython.display import display, Markdown
inputs=[[0,6,1],[0,30,2],[0,100,10]]
expected_outputs=[["{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}"],\
["{0: 0, 2: 4, 4: 16, 6: 36, 8: 64, 10: 100, 12: 144, 14: 196, 16: 256, 18: 324, 20: 400, 22: 484, 24: 576, 26: 676, 28: 784}"], \
["{0: 0, 10: 100, 20: 400, 30: 900, 40: 1600, 50: 2500, 60: 3600, 70: 4900, 80: 6400, 90: 8100}"]]
for k in range(len(inputs)):
display(Markdown(f'{k+1}. TEST {inputs[k]} = {",".join(expected_outputs[k])}'))
print('-'*60)
run_and_test(inputs[k],expected_outputs[k],asgn03_06Play_with_class_3)
###Output
_____no_output_____ |
scripts/rebuttal/figR3-01.moisture_source_seperation.AR_boundary.ipynb | ###Markdown
only use the abs version AR see final script at :/pic/projects/hyperion/chen423/tools/paper_tools/AR-SST/step5.moisture_decomposition.py
###Code
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
scenario = 'HIST'
year = 2003
month = 10
para_b = int(10)
reffile = '/raid1/chen423/serdp/data/ref_data/wrf_ref/geo_em.d01.nc'
landmask = xr.open_dataset(reffile).LANDMASK.values[0,para_b:(450-para_b),para_b:(450-para_b)]
ETdir = '/home/chen423/.tmp/AR-SST/%s/moisture/ET/' % (scenario)
uIVTdir = '/home/chen423/.tmp/AR-SST/%s/moisture/uIVT/' % (scenario)
ARdir = '/home/chen423/.tmp/AR-SST/%s/AR_tagged/Gershunov/SERDP6km_adj/' % (scenario)
ETfile = ETdir + 'WRF_NARR.%s.SFCEVP.%d.%d.nc' % (scenario, year, month)
uIVTfile = uIVTdir + 'WRF_NARR.%s.uIVT.%d.%d.nc' % (scenario, year, month)
ARfile = ARdir + 'WRF_ARtag_adj.%s.Gershunov.%d.%d.ARabs.nc' % (scenario, year, month)
ETdata = xr.open_dataset(ETfile).SFCEVP.values[:,para_b:(450-para_b),para_b:(450-para_b)]
uIVTdata = xr.open_dataset(uIVTfile).uIVT.values[:,para_b:(450-para_b),para_b:(450-para_b)]
ARtag = xr.open_dataset(ARfile).AR_tag.values[:,para_b:(450-para_b),para_b:(450-para_b)]
def compute_moisture_intensity(in_ARtag, in_uIVT, in_ET, ref_mask):
uIVT_total = in_uIVT[:,0][in_ARtag[:,0]==1].sum()*6000*86400
ET_total = in_ET[(in_ARtag==1)&(ref_mask==0)].sum()*6000*6000
if (ET_total+uIVT_total)==0:
out_ratio = -9999
else:
out_ratio = ET_total/(ET_total+uIVT_total)
return out_ratio
nt = ARtag.shape[0]
testdata = np.zeros(nt)
for t in np.arange(nt):
testdata[t] = compute_moisture_intensity(ARtag[t], uIVTdata[t], ETdata[int(np.floor(t/4))], landmask)
print(t)
testdata
plt.scatter(np.arange(nt)[testdata>0], testdata[testdata>0])
fig_debug = plt.figure()
plt.subplot(1,2,1)
plt.pcolormesh(ARtag[9,0:430,0:200])
plt.subplot(1,2,2)
plt.pcolormesh(uIVTdata[9,0:430,0:200])
plt.colorbar()
plt.show()
plt.close()
del(fig_debug)
plt.pcolormesh(landmask)
plt.colorbar()
###Output
_____no_output_____ |
notebook/Graphviz playground and note.ipynb | ###Markdown
Graphviz PlayGrounds
###Code
%pylab inline --no-import-all
import pygraphviz as pgv
from IPython.display import Image as Image
import numpy as np
from numpy.random import *
A = pgv.AGraph() # Create Graph
n = 10
path="./assets/"
for i in range(n):
node_a = randint(n)
node_b = randint(n)+1
A.add_node(node_a)
A.add_node(node_b)
# We can userriibute handring after pygraphviz-0.36
A.add_edge(node_a, node_b, label=randint(10)+1)
A.layout(prog='neato')
A.draw(path+'graph.png')
A.draw(path+'graph.eps') # We can saved eps format.
Image(filename=path+'graph.png')
###Output
Populating the interactive namespace from numpy and matplotlib
|
pytorch_mnist/.ipynb_checkpoints/pytorch_mnist-checkpoint.ipynb | ###Markdown
MNIST Training using PyTorch Contents1. [Background](Background)1. [Setup](Setup)1. [Data](Data)1. [Train](Train)1. [Host](Host)--- BackgroundMNIST is a widely used dataset for handwritten digit classification. It consists of 70,000 labeled 28x28 pixel grayscale images of hand-written digits. The dataset is split into 60,000 training images and 10,000 test images. There are 10 classes (one for each of the 10 digits). This tutorial will show how to train and test an MNIST model on SageMaker using PyTorch.For more information about the PyTorch in SageMaker, please visit [sagemaker-pytorch-containers](https://github.com/aws/sagemaker-pytorch-containers) and [sagemaker-python-sdk](https://github.com/aws/sagemaker-python-sdk) github repositories.--- Setup_This notebook was created and tested on an ml.m4.xlarge notebook instance._Let's start by creating a SageMaker session and specifying:- The S3 bucket and prefix that you want to use for training and model data. This should be within the same region as the Notebook Instance, training, and hosting.- The IAM role arn used to give training and hosting access to your data. See the documentation for how to create these. Note, if more than one role is required for notebook instances, training, and/or hosting, please replace the `sagemaker.get_execution_role()` with a the appropriate full IAM role arn string(s). Upgrade sagemaker sdk to v2
###Code
!pip install sagemaker --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
import boto3
import sagemaker
sagemaker_session = sagemaker.Session()
bucket = sagemaker_session.default_bucket()
prefix = "sagemaker/DEMO-pytorch-mnist"
role = sagemaker.get_execution_role(sagemaker_session=sagemaker_session)
print("Sagemaker SDK version: {0}".format(sagemaker.__version__))
print("Sagemaker Execute Role: {0}".format(role))
print("Bucket: {0}".format(bucket))
###Output
Sagemaker SDK version: 2.51.0
Sagemaker Execute role: arn:aws-cn:iam::188642756190:role/service-role/AmazonSageMaker-ExecutionRole-20200605T111655
Bucket: sagemaker-cn-northwest-1-188642756190
###Markdown
Data Getting the data
###Code
from torchvision import datasets, transforms
datasets.MNIST(
"data",
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
)
###Output
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to data/MNIST/raw/train-images-idx3-ubyte.gz
###Markdown
Uploading the data to S3We are going to use the `sagemaker.Session.upload_data` function to upload our datasets to an S3 location. The return value inputs identifies the location -- we will use later when we start the training job.
###Code
inputs = sagemaker_session.upload_data(path="data", bucket=bucket, key_prefix=prefix)
print("input spec (in this case, just an S3 path): {}".format(inputs))
###Output
input spec (in this case, just an S3 path): s3://sagemaker-cn-northwest-1-188642756190/sagemaker/DEMO-pytorch-mnist
###Markdown
Train Training scriptThe `mnist.py` script provides all the code we need for training and hosting a SageMaker model (`model_fn` function to load a model).The training script is very similar to a training script you might run outside of SageMaker, but you can access useful properties about the training environment through various environment variables, such as:* `SM_MODEL_DIR`: A string representing the path to the directory to write model artifacts to. These artifacts are uploaded to S3 for model hosting.* `SM_NUM_GPUS`: The number of gpus available in the current container.* `SM_CURRENT_HOST`: The name of the current container on the container network.* `SM_HOSTS`: JSON encoded list containing all the hosts .Supposing one input channel, 'training', was used in the call to the PyTorch estimator's `fit()` method, the following will be set, following the format `SM_CHANNEL_[channel_name]`:* `SM_CHANNEL_TRAINING`: A string representing the path to the directory containing data in the 'training' channel.For more information about training environment variables, please visit [SageMaker Containers](https://github.com/aws/sagemaker-containers).A typical training script loads data from the input channels, configures training with hyperparameters, trains a model, and saves a model to `model_dir` so that it can be hosted later. Hyperparameters are passed to your script as arguments and can be retrieved with an `argparse.ArgumentParser` instance.Because the SageMaker imports the training script, you should put your training code in a main guard (``if __name__=='__main__':``) if you are using the same script to host your model as we do in this example, so that SageMaker does not inadvertently run your training code at the wrong point in execution.For example, the script run by this notebook:
###Code
!pygmentize mnist.py
###Output
[34mimport[39;49;00m [04m[36margparse[39;49;00m
[34mimport[39;49;00m [04m[36mjson[39;49;00m
[34mimport[39;49;00m [04m[36mlogging[39;49;00m
[34mimport[39;49;00m [04m[36mos[39;49;00m
[34mimport[39;49;00m [04m[36msys[39;49;00m
[34mimport[39;49;00m [04m[36msagemaker_containers[39;49;00m
[34mimport[39;49;00m [04m[36mtorch[39;49;00m
[34mimport[39;49;00m [04m[36mtorch.distributed[39;49;00m [34mas[39;49;00m [04m[36mdist[39;49;00m
[34mimport[39;49;00m [04m[36mtorch.nn[39;49;00m [34mas[39;49;00m [04m[36mnn[39;49;00m
[34mimport[39;49;00m [04m[36mtorch.nn.functional[39;49;00m [34mas[39;49;00m [04m[36mF[39;49;00m
[34mimport[39;49;00m [04m[36mtorch.optim[39;49;00m [34mas[39;49;00m [04m[36moptim[39;49;00m
[34mimport[39;49;00m [04m[36mtorch.utils.data[39;49;00m
[34mimport[39;49;00m [04m[36mtorch.utils.data.distributed[39;49;00m
[34mfrom[39;49;00m [04m[36mtorchvision[39;49;00m [34mimport[39;49;00m datasets, transforms
logger = logging.getLogger([31m__name__[39;49;00m)
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
[37m# Based on https://github.com/pytorch/examples/blob/master/mnist/main.py[39;49;00m
[34mclass[39;49;00m [04m[32mNet[39;49;00m(nn.Module):
[34mdef[39;49;00m [32m__init__[39;49;00m([36mself[39;49;00m):
[36msuper[39;49;00m(Net, [36mself[39;49;00m).[32m__init__[39;49;00m()
[36mself[39;49;00m.conv1 = nn.Conv2d([34m1[39;49;00m, [34m10[39;49;00m, kernel_size=[34m5[39;49;00m)
[36mself[39;49;00m.conv2 = nn.Conv2d([34m10[39;49;00m, [34m20[39;49;00m, kernel_size=[34m5[39;49;00m)
[36mself[39;49;00m.conv2_drop = nn.Dropout2d()
[36mself[39;49;00m.fc1 = nn.Linear([34m320[39;49;00m, [34m50[39;49;00m)
[36mself[39;49;00m.fc2 = nn.Linear([34m50[39;49;00m, [34m10[39;49;00m)
[34mdef[39;49;00m [32mforward[39;49;00m([36mself[39;49;00m, x):
x = F.relu(F.max_pool2d([36mself[39;49;00m.conv1(x), [34m2[39;49;00m))
x = F.relu(F.max_pool2d([36mself[39;49;00m.conv2_drop([36mself[39;49;00m.conv2(x)), [34m2[39;49;00m))
x = x.view(-[34m1[39;49;00m, [34m320[39;49;00m)
x = F.relu([36mself[39;49;00m.fc1(x))
x = F.dropout(x, training=[36mself[39;49;00m.training)
x = [36mself[39;49;00m.fc2(x)
[34mreturn[39;49;00m F.log_softmax(x, dim=[34m1[39;49;00m)
[34mdef[39;49;00m [32m_get_train_data_loader[39;49;00m(batch_size, training_dir, is_distributed, **kwargs):
logger.info([33m"[39;49;00m[33mGet train data loader[39;49;00m[33m"[39;49;00m)
dataset = datasets.MNIST(
training_dir,
train=[36mTrue[39;49;00m,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(([34m0.1307[39;49;00m,), ([34m0.3081[39;49;00m,))]
),
)
train_sampler = (
torch.utils.data.distributed.DistributedSampler(dataset) [34mif[39;49;00m is_distributed [34melse[39;49;00m [36mNone[39;49;00m
)
[34mreturn[39;49;00m torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=train_sampler [35mis[39;49;00m [36mNone[39;49;00m,
sampler=train_sampler,
**kwargs
)
[34mdef[39;49;00m [32m_get_test_data_loader[39;49;00m(test_batch_size, training_dir, **kwargs):
logger.info([33m"[39;49;00m[33mGet test data loader[39;49;00m[33m"[39;49;00m)
[34mreturn[39;49;00m torch.utils.data.DataLoader(
datasets.MNIST(
training_dir,
train=[36mFalse[39;49;00m,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(([34m0.1307[39;49;00m,), ([34m0.3081[39;49;00m,))]
),
),
batch_size=test_batch_size,
shuffle=[36mTrue[39;49;00m,
**kwargs
)
[34mdef[39;49;00m [32m_average_gradients[39;49;00m(model):
[37m# Gradient averaging.[39;49;00m
size = [36mfloat[39;49;00m(dist.get_world_size())
[34mfor[39;49;00m param [35min[39;49;00m model.parameters():
dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM)
param.grad.data /= size
[34mdef[39;49;00m [32mtrain[39;49;00m(args):
is_distributed = [36mlen[39;49;00m(args.hosts) > [34m1[39;49;00m [35mand[39;49;00m args.backend [35mis[39;49;00m [35mnot[39;49;00m [36mNone[39;49;00m
logger.debug([33m"[39;49;00m[33mDistributed training - {}[39;49;00m[33m"[39;49;00m.format(is_distributed))
use_cuda = args.num_gpus > [34m0[39;49;00m
logger.debug([33m"[39;49;00m[33mNumber of gpus available - {}[39;49;00m[33m"[39;49;00m.format(args.num_gpus))
kwargs = {[33m"[39;49;00m[33mnum_workers[39;49;00m[33m"[39;49;00m: [34m1[39;49;00m, [33m"[39;49;00m[33mpin_memory[39;49;00m[33m"[39;49;00m: [36mTrue[39;49;00m} [34mif[39;49;00m use_cuda [34melse[39;49;00m {}
device = torch.device([33m"[39;49;00m[33mcuda[39;49;00m[33m"[39;49;00m [34mif[39;49;00m use_cuda [34melse[39;49;00m [33m"[39;49;00m[33mcpu[39;49;00m[33m"[39;49;00m)
[34mif[39;49;00m is_distributed:
[37m# Initialize the distributed environment.[39;49;00m
world_size = [36mlen[39;49;00m(args.hosts)
os.environ[[33m"[39;49;00m[33mWORLD_SIZE[39;49;00m[33m"[39;49;00m] = [36mstr[39;49;00m(world_size)
host_rank = args.hosts.index(args.current_host)
os.environ[[33m"[39;49;00m[33mRANK[39;49;00m[33m"[39;49;00m] = [36mstr[39;49;00m(host_rank)
dist.init_process_group(backend=args.backend, rank=host_rank, world_size=world_size)
logger.info(
[33m"[39;49;00m[33mInitialized the distributed environment: [39;49;00m[33m'[39;49;00m[33m{}[39;49;00m[33m'[39;49;00m[33m backend on {} nodes. [39;49;00m[33m"[39;49;00m.format(
args.backend, dist.get_world_size()
)
+ [33m"[39;49;00m[33mCurrent host rank is {}. Number of gpus: {}[39;49;00m[33m"[39;49;00m.format(dist.get_rank(), args.num_gpus)
)
[37m# set the seed for generating random numbers[39;49;00m
torch.manual_seed(args.seed)
[34mif[39;49;00m use_cuda:
torch.cuda.manual_seed(args.seed)
train_loader = _get_train_data_loader(args.batch_size, args.data_dir, is_distributed, **kwargs)
test_loader = _get_test_data_loader(args.test_batch_size, args.data_dir, **kwargs)
logger.debug(
[33m"[39;49;00m[33mProcesses {}/{} ({:.0f}[39;49;00m[33m%[39;49;00m[33m) of train data[39;49;00m[33m"[39;49;00m.format(
[36mlen[39;49;00m(train_loader.sampler),
[36mlen[39;49;00m(train_loader.dataset),
[34m100.0[39;49;00m * [36mlen[39;49;00m(train_loader.sampler) / [36mlen[39;49;00m(train_loader.dataset),
)
)
logger.debug(
[33m"[39;49;00m[33mProcesses {}/{} ({:.0f}[39;49;00m[33m%[39;49;00m[33m) of test data[39;49;00m[33m"[39;49;00m.format(
[36mlen[39;49;00m(test_loader.sampler),
[36mlen[39;49;00m(test_loader.dataset),
[34m100.0[39;49;00m * [36mlen[39;49;00m(test_loader.sampler) / [36mlen[39;49;00m(test_loader.dataset),
)
)
model = Net().to(device)
[34mif[39;49;00m is_distributed [35mand[39;49;00m use_cuda:
[37m# multi-machine multi-gpu case[39;49;00m
model = torch.nn.parallel.DistributedDataParallel(model)
[34melse[39;49;00m:
[37m# single-machine multi-gpu case or single-machine or multi-machine cpu case[39;49;00m
model = torch.nn.DataParallel(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
[34mfor[39;49;00m epoch [35min[39;49;00m [36mrange[39;49;00m([34m1[39;49;00m, args.epochs + [34m1[39;49;00m):
model.train()
[34mfor[39;49;00m batch_idx, (data, target) [35min[39;49;00m [36menumerate[39;49;00m(train_loader, [34m1[39;49;00m):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
[34mif[39;49;00m is_distributed [35mand[39;49;00m [35mnot[39;49;00m use_cuda:
[37m# average gradients manually for multi-machine cpu case only[39;49;00m
_average_gradients(model)
optimizer.step()
[34mif[39;49;00m batch_idx % args.log_interval == [34m0[39;49;00m:
logger.info(
[33m"[39;49;00m[33mTrain Epoch: {} [{}/{} ({:.0f}[39;49;00m[33m%[39;49;00m[33m)] Loss: {:.6f}[39;49;00m[33m"[39;49;00m.format(
epoch,
batch_idx * [36mlen[39;49;00m(data),
[36mlen[39;49;00m(train_loader.sampler),
[34m100.0[39;49;00m * batch_idx / [36mlen[39;49;00m(train_loader),
loss.item(),
)
)
test(model, test_loader, device)
save_model(model, args.model_dir)
[34mdef[39;49;00m [32mtest[39;49;00m(model, test_loader, device):
model.eval()
test_loss = [34m0[39;49;00m
correct = [34m0[39;49;00m
[34mwith[39;49;00m torch.no_grad():
[34mfor[39;49;00m data, target [35min[39;49;00m test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=[36mFalse[39;49;00m).item() [37m# sum up batch loss[39;49;00m
pred = output.max([34m1[39;49;00m, keepdim=[36mTrue[39;49;00m)[[34m1[39;49;00m] [37m# get the index of the max log-probability[39;49;00m
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= [36mlen[39;49;00m(test_loader.dataset)
logger.info(
[33m"[39;49;00m[33mTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}[39;49;00m[33m%[39;49;00m[33m)[39;49;00m[33m\n[39;49;00m[33m"[39;49;00m.format(
test_loss, correct, [36mlen[39;49;00m(test_loader.dataset), [34m100.0[39;49;00m * correct / [36mlen[39;49;00m(test_loader.dataset)
)
)
[34mdef[39;49;00m [32mmodel_fn[39;49;00m(model_dir):
device = torch.device([33m"[39;49;00m[33mcuda[39;49;00m[33m"[39;49;00m [34mif[39;49;00m torch.cuda.is_available() [34melse[39;49;00m [33m"[39;49;00m[33mcpu[39;49;00m[33m"[39;49;00m)
model = torch.nn.DataParallel(Net())
[34mwith[39;49;00m [36mopen[39;49;00m(os.path.join(model_dir, [33m"[39;49;00m[33mmodel.pth[39;49;00m[33m"[39;49;00m), [33m"[39;49;00m[33mrb[39;49;00m[33m"[39;49;00m) [34mas[39;49;00m f:
model.load_state_dict(torch.load(f))
[34mreturn[39;49;00m model.to(device)
[34mdef[39;49;00m [32msave_model[39;49;00m(model, model_dir):
logger.info([33m"[39;49;00m[33mSaving the model.[39;49;00m[33m"[39;49;00m)
path = os.path.join(model_dir, [33m"[39;49;00m[33mmodel.pth[39;49;00m[33m"[39;49;00m)
[37m# recommended way from http://pytorch.org/docs/master/notes/serialization.html[39;49;00m
torch.save(model.cpu().state_dict(), path)
[34mif[39;49;00m [31m__name__[39;49;00m == [33m"[39;49;00m[33m__main__[39;49;00m[33m"[39;49;00m:
parser = argparse.ArgumentParser()
[37m# Data and model checkpoints directories[39;49;00m
parser.add_argument(
[33m"[39;49;00m[33m--batch-size[39;49;00m[33m"[39;49;00m,
[36mtype[39;49;00m=[36mint[39;49;00m,
default=[34m64[39;49;00m,
metavar=[33m"[39;49;00m[33mN[39;49;00m[33m"[39;49;00m,
help=[33m"[39;49;00m[33minput batch size for training (default: 64)[39;49;00m[33m"[39;49;00m,
)
parser.add_argument(
[33m"[39;49;00m[33m--test-batch-size[39;49;00m[33m"[39;49;00m,
[36mtype[39;49;00m=[36mint[39;49;00m,
default=[34m1000[39;49;00m,
metavar=[33m"[39;49;00m[33mN[39;49;00m[33m"[39;49;00m,
help=[33m"[39;49;00m[33minput batch size for testing (default: 1000)[39;49;00m[33m"[39;49;00m,
)
parser.add_argument(
[33m"[39;49;00m[33m--epochs[39;49;00m[33m"[39;49;00m,
[36mtype[39;49;00m=[36mint[39;49;00m,
default=[34m10[39;49;00m,
metavar=[33m"[39;49;00m[33mN[39;49;00m[33m"[39;49;00m,
help=[33m"[39;49;00m[33mnumber of epochs to train (default: 10)[39;49;00m[33m"[39;49;00m,
)
parser.add_argument(
[33m"[39;49;00m[33m--lr[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mfloat[39;49;00m, default=[34m0.01[39;49;00m, metavar=[33m"[39;49;00m[33mLR[39;49;00m[33m"[39;49;00m, help=[33m"[39;49;00m[33mlearning rate (default: 0.01)[39;49;00m[33m"[39;49;00m
)
parser.add_argument(
[33m"[39;49;00m[33m--momentum[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mfloat[39;49;00m, default=[34m0.5[39;49;00m, metavar=[33m"[39;49;00m[33mM[39;49;00m[33m"[39;49;00m, help=[33m"[39;49;00m[33mSGD momentum (default: 0.5)[39;49;00m[33m"[39;49;00m
)
parser.add_argument([33m"[39;49;00m[33m--seed[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mint[39;49;00m, default=[34m1[39;49;00m, metavar=[33m"[39;49;00m[33mS[39;49;00m[33m"[39;49;00m, help=[33m"[39;49;00m[33mrandom seed (default: 1)[39;49;00m[33m"[39;49;00m)
parser.add_argument(
[33m"[39;49;00m[33m--log-interval[39;49;00m[33m"[39;49;00m,
[36mtype[39;49;00m=[36mint[39;49;00m,
default=[34m100[39;49;00m,
metavar=[33m"[39;49;00m[33mN[39;49;00m[33m"[39;49;00m,
help=[33m"[39;49;00m[33mhow many batches to wait before logging training status[39;49;00m[33m"[39;49;00m,
)
parser.add_argument(
[33m"[39;49;00m[33m--backend[39;49;00m[33m"[39;49;00m,
[36mtype[39;49;00m=[36mstr[39;49;00m,
default=[36mNone[39;49;00m,
help=[33m"[39;49;00m[33mbackend for distributed training (tcp, gloo on cpu and gloo, nccl on gpu)[39;49;00m[33m"[39;49;00m,
)
[37m# Container environment[39;49;00m
parser.add_argument([33m"[39;49;00m[33m--hosts[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mlist[39;49;00m, default=json.loads(os.environ[[33m"[39;49;00m[33mSM_HOSTS[39;49;00m[33m"[39;49;00m]))
parser.add_argument([33m"[39;49;00m[33m--current-host[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mstr[39;49;00m, default=os.environ[[33m"[39;49;00m[33mSM_CURRENT_HOST[39;49;00m[33m"[39;49;00m])
parser.add_argument([33m"[39;49;00m[33m--model-dir[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mstr[39;49;00m, default=os.environ[[33m"[39;49;00m[33mSM_MODEL_DIR[39;49;00m[33m"[39;49;00m])
parser.add_argument([33m"[39;49;00m[33m--data-dir[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mstr[39;49;00m, default=os.environ[[33m"[39;49;00m[33mSM_CHANNEL_TRAINING[39;49;00m[33m"[39;49;00m])
parser.add_argument([33m"[39;49;00m[33m--num-gpus[39;49;00m[33m"[39;49;00m, [36mtype[39;49;00m=[36mint[39;49;00m, default=os.environ[[33m"[39;49;00m[33mSM_NUM_GPUS[39;49;00m[33m"[39;49;00m])
train(parser.parse_args())
###Markdown
Run training in SageMakerThe `PyTorch` class allows us to run our training function as a training job on SageMaker infrastructure. We need to configure it with our training script, an IAM role, the number of training instances, the training instance type, and hyperparameters. In this case we are going to run our training job on 2 ```ml.c4.xlarge``` instances. But this example can be ran on one or multiple, cpu or gpu instances ([full list of available instances](https://aws.amazon.com/sagemaker/pricing/instance-types/)). The hyperparameters parameter is a dict of values that will be passed to your training script -- you can see how to access these values in the `mnist.py` script above.
###Code
from sagemaker.pytorch import PyTorch
estimator = PyTorch(
sagemaker_session=sagemaker_session,
entry_point="mnist.py",
role=role,
framework_version="1.6.0",
py_version="py3",
instance_count=1,
instance_type='ml.m5.xlarge',
use_spot_instances=True,
max_run= 3600,
max_wait=7200,
hyperparameters={"epochs": 6, "backend": "gloo"},
)
###Output
_____no_output_____
###Markdown
After we've constructed our `PyTorch` object, we can fit it using the data we uploaded to S3. SageMaker makes sure our data is available in the local filesystem, so our training script can simply read the data from disk.
###Code
estimator.fit({"training": "s3://sagemaker-cn-northwest-1-188642756190/sagemaker/DEMO-pytorch-mnist"})
###Output
2021-08-04 02:49:52 Starting - Starting the training job...
2021-08-04 02:49:55 Starting - Launching requested ML instances...
2021-08-04 02:50:44 Starting - Preparing the instances for training............
2021-08-04 02:52:37 Downloading - Downloading input data...
2021-08-04 02:53:16 Training - Training image download completed. Training in progress..[34mbash: cannot set terminal process group (-1): Inappropriate ioctl for device[0m
[34mbash: no job control in this shell[0m
[34m2021-08-04 02:53:16,146 sagemaker-training-toolkit INFO Imported framework sagemaker_pytorch_container.training[0m
[34m2021-08-04 02:53:16,161 sagemaker-training-toolkit INFO No GPUs detected (normal if no gpus installed)[0m
[34m2021-08-04 02:53:16,169 sagemaker_pytorch_container.training INFO Block until all host DNS lookups succeed.[0m
[34m2021-08-04 02:53:19,246 sagemaker_pytorch_container.training INFO Invoking user training script.[0m
[34m2021-08-04 02:53:19,503 sagemaker-training-toolkit INFO No GPUs detected (normal if no gpus installed)[0m
[34m2021-08-04 02:53:19,513 sagemaker-training-toolkit INFO No GPUs detected (normal if no gpus installed)[0m
[34m2021-08-04 02:53:19,523 sagemaker-training-toolkit INFO No GPUs detected (normal if no gpus installed)[0m
[34m2021-08-04 02:53:19,532 sagemaker-training-toolkit INFO Invoking user script
[0m
[34mTraining Env:
[0m
[34m{
"additional_framework_parameters": {},
"channel_input_dirs": {
"training": "/opt/ml/input/data/training"
},
"current_host": "algo-1",
"framework_module": "sagemaker_pytorch_container.training:main",
"hosts": [
"algo-1"
],
"hyperparameters": {
"backend": "gloo",
"epochs": 6
},
"input_config_dir": "/opt/ml/input/config",
"input_data_config": {
"training": {
"TrainingInputMode": "File",
"S3DistributionType": "FullyReplicated",
"RecordWrapperType": "None"
}
},
"input_dir": "/opt/ml/input",
"is_master": true,
"job_name": "pytorch-training-2021-08-04-02-49-51-901",
"log_level": 20,
"master_hostname": "algo-1",
"model_dir": "/opt/ml/model",
"module_dir": "s3://sagemaker-cn-northwest-1-188642756190/pytorch-training-2021-08-04-02-49-51-901/source/sourcedir.tar.gz",
"module_name": "mnist",
"network_interface_name": "eth0",
"num_cpus": 4,
"num_gpus": 0,
"output_data_dir": "/opt/ml/output/data",
"output_dir": "/opt/ml/output",
"output_intermediate_dir": "/opt/ml/output/intermediate",
"resource_config": {
"current_host": "algo-1",
"hosts": [
"algo-1"
],
"network_interface_name": "eth0"
},
"user_entry_point": "mnist.py"[0m
[34m}
[0m
[34mEnvironment variables:
[0m
[34mSM_HOSTS=["algo-1"][0m
[34mSM_NETWORK_INTERFACE_NAME=eth0[0m
[34mSM_HPS={"backend":"gloo","epochs":6}[0m
[34mSM_USER_ENTRY_POINT=mnist.py[0m
[34mSM_FRAMEWORK_PARAMS={}[0m
[34mSM_RESOURCE_CONFIG={"current_host":"algo-1","hosts":["algo-1"],"network_interface_name":"eth0"}[0m
[34mSM_INPUT_DATA_CONFIG={"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}}[0m
[34mSM_OUTPUT_DATA_DIR=/opt/ml/output/data[0m
[34mSM_CHANNELS=["training"][0m
[34mSM_CURRENT_HOST=algo-1[0m
[34mSM_MODULE_NAME=mnist[0m
[34mSM_LOG_LEVEL=20[0m
[34mSM_FRAMEWORK_MODULE=sagemaker_pytorch_container.training:main[0m
[34mSM_INPUT_DIR=/opt/ml/input[0m
[34mSM_INPUT_CONFIG_DIR=/opt/ml/input/config[0m
[34mSM_OUTPUT_DIR=/opt/ml/output[0m
[34mSM_NUM_CPUS=4[0m
[34mSM_NUM_GPUS=0[0m
[34mSM_MODEL_DIR=/opt/ml/model[0m
[34mSM_MODULE_DIR=s3://sagemaker-cn-northwest-1-188642756190/pytorch-training-2021-08-04-02-49-51-901/source/sourcedir.tar.gz[0m
[34mSM_TRAINING_ENV={"additional_framework_parameters":{},"channel_input_dirs":{"training":"/opt/ml/input/data/training"},"current_host":"algo-1","framework_module":"sagemaker_pytorch_container.training:main","hosts":["algo-1"],"hyperparameters":{"backend":"gloo","epochs":6},"input_config_dir":"/opt/ml/input/config","input_data_config":{"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}},"input_dir":"/opt/ml/input","is_master":true,"job_name":"pytorch-training-2021-08-04-02-49-51-901","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://sagemaker-cn-northwest-1-188642756190/pytorch-training-2021-08-04-02-49-51-901/source/sourcedir.tar.gz","module_name":"mnist","network_interface_name":"eth0","num_cpus":4,"num_gpus":0,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_host":"algo-1","hosts":["algo-1"],"network_interface_name":"eth0"},"user_entry_point":"mnist.py"}[0m
[34mSM_USER_ARGS=["--backend","gloo","--epochs","6"][0m
[34mSM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate[0m
[34mSM_CHANNEL_TRAINING=/opt/ml/input/data/training[0m
[34mSM_HP_BACKEND=gloo[0m
[34mSM_HP_EPOCHS=6[0m
[34mPYTHONPATH=/opt/ml/code:/opt/conda/bin:/opt/conda/lib/python36.zip:/opt/conda/lib/python3.6:/opt/conda/lib/python3.6/lib-dynload:/opt/conda/lib/python3.6/site-packages
[0m
[34mInvoking script with the following command:
[0m
[34m/opt/conda/bin/python3.6 mnist.py --backend gloo --epochs 6
[0m
[34mDistributed training - False[0m
[34mNumber of gpus available - 0[0m
[34mGet train data loader[0m
[34mGet test data loader[0m
[34mProcesses 60000/60000 (100%) of train data[0m
[34mProcesses 10000/10000 (100%) of test data[0m
[34m[2021-08-04 02:53:20.857 algo-1:26 INFO utils.py:27] RULE_JOB_STOP_SIGNAL_FILENAME: None[0m
[34m[2021-08-04 02:53:21.141 algo-1:26 INFO profiler_config_parser.py:102] Unable to find config at /opt/ml/input/config/profilerconfig.json. Profiler is disabled.[0m
[34m[2021-08-04 02:53:21.141 algo-1:26 INFO json_config.py:91] Creating hook from json_config at /opt/ml/input/config/debughookconfig.json.[0m
[34m[2021-08-04 02:53:21.141 algo-1:26 INFO hook.py:199] tensorboard_dir has not been set for the hook. SMDebug will not be exporting tensorboard summaries.[0m
[34m[2021-08-04 02:53:21.142 algo-1:26 INFO hook.py:253] Saving to /opt/ml/output/tensors[0m
[34m[2021-08-04 02:53:21.142 algo-1:26 INFO state_store.py:67] The checkpoint config file /opt/ml/input/config/checkpointconfig.json does not exist.[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.conv1.weight count_params:250[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.conv1.bias count_params:10[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.conv2.weight count_params:5000[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.conv2.bias count_params:20[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.fc1.weight count_params:16000[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.fc1.bias count_params:50[0m
[34m[2021-08-04 02:53:21.167 algo-1:26 INFO hook.py:550] name:module.fc2.weight count_params:500[0m
[34m[2021-08-04 02:53:21.168 algo-1:26 INFO hook.py:550] name:module.fc2.bias count_params:10[0m
[34m[2021-08-04 02:53:21.168 algo-1:26 INFO hook.py:552] Total Trainable Params: 21840[0m
[34m[2021-08-04 02:53:21.168 algo-1:26 INFO hook.py:413] Monitoring the collections: losses[0m
[34m[2021-08-04 02:53:21.170 algo-1:26 INFO hook.py:476] Hook is writing from the hook with pid: 26
[0m
[34mTrain Epoch: 1 [6400/60000 (11%)] Loss: 1.935915[0m
[34mTrain Epoch: 1 [12800/60000 (21%)] Loss: 1.211672[0m
[34mTrain Epoch: 1 [19200/60000 (32%)] Loss: 0.880198[0m
[34mTrain Epoch: 1 [25600/60000 (43%)] Loss: 0.596671[0m
[34mTrain Epoch: 1 [32000/60000 (53%)] Loss: 0.537024[0m
[34mTrain Epoch: 1 [38400/60000 (64%)] Loss: 0.696666[0m
[34mTrain Epoch: 1 [44800/60000 (75%)] Loss: 0.492262[0m
[34mTrain Epoch: 1 [51200/60000 (85%)] Loss: 0.595390[0m
[34mTrain Epoch: 1 [57600/60000 (96%)] Loss: 0.437477[0m
[34mTest set: Average loss: 0.2071, Accuracy: 9391/10000 (94%)
[0m
[34mTrain Epoch: 2 [6400/60000 (11%)] Loss: 0.739252[0m
[34mTrain Epoch: 2 [12800/60000 (21%)] Loss: 0.396193[0m
[34mTrain Epoch: 2 [19200/60000 (32%)] Loss: 0.404517[0m
[34mTrain Epoch: 2 [25600/60000 (43%)] Loss: 0.655186[0m
[34mTrain Epoch: 2 [32000/60000 (53%)] Loss: 0.604028[0m
[34mTrain Epoch: 2 [38400/60000 (64%)] Loss: 0.431388[0m
[34mTrain Epoch: 2 [44800/60000 (75%)] Loss: 0.297259[0m
[34mTrain Epoch: 2 [51200/60000 (85%)] Loss: 0.556284[0m
[34mTrain Epoch: 2 [57600/60000 (96%)] Loss: 0.294674[0m
[34mTest set: Average loss: 0.1323, Accuracy: 9598/10000 (96%)
[0m
[34mTrain Epoch: 3 [6400/60000 (11%)] Loss: 0.417698[0m
[34mTrain Epoch: 3 [12800/60000 (21%)] Loss: 0.220523[0m
[34mTrain Epoch: 3 [19200/60000 (32%)] Loss: 0.150998[0m
[34mTrain Epoch: 3 [25600/60000 (43%)] Loss: 0.305187[0m
[34mTrain Epoch: 3 [32000/60000 (53%)] Loss: 0.180535[0m
[34mTrain Epoch: 3 [38400/60000 (64%)] Loss: 0.359533[0m
[34mTrain Epoch: 3 [44800/60000 (75%)] Loss: 0.195364[0m
[34mTrain Epoch: 3 [51200/60000 (85%)] Loss: 0.204428[0m
[34mTrain Epoch: 3 [57600/60000 (96%)] Loss: 0.303194[0m
[34mTest set: Average loss: 0.1028, Accuracy: 9683/10000 (97%)
[0m
[34mTrain Epoch: 4 [6400/60000 (11%)] Loss: 0.385129[0m
[34mTrain Epoch: 4 [12800/60000 (21%)] Loss: 0.314084[0m
[34mTrain Epoch: 4 [19200/60000 (32%)] Loss: 0.307006[0m
[34mTrain Epoch: 4 [25600/60000 (43%)] Loss: 0.157440[0m
[34mTrain Epoch: 4 [32000/60000 (53%)] Loss: 0.201386[0m
[34mTrain Epoch: 4 [38400/60000 (64%)] Loss: 0.124630[0m
[34mTrain Epoch: 4 [44800/60000 (75%)] Loss: 0.276066[0m
[34mTrain Epoch: 4 [51200/60000 (85%)] Loss: 0.226980[0m
[34mTrain Epoch: 4 [57600/60000 (96%)] Loss: 0.340483[0m
[34mTest set: Average loss: 0.0904, Accuracy: 9712/10000 (97%)
[0m
[34mTrain Epoch: 5 [6400/60000 (11%)] Loss: 0.175094[0m
[34mTrain Epoch: 5 [12800/60000 (21%)] Loss: 0.276447[0m
[34mTrain Epoch: 5 [19200/60000 (32%)] Loss: 0.300416[0m
[34mTrain Epoch: 5 [25600/60000 (43%)] Loss: 0.089050[0m
[34mTrain Epoch: 5 [32000/60000 (53%)] Loss: 0.224019[0m
[34mTrain Epoch: 5 [38400/60000 (64%)] Loss: 0.080593[0m
[34mTrain Epoch: 5 [44800/60000 (75%)] Loss: 0.133747[0m
[34mTrain Epoch: 5 [51200/60000 (85%)] Loss: 0.381174[0m
[34mTrain Epoch: 5 [57600/60000 (96%)] Loss: 0.106297[0m
[34mTest set: Average loss: 0.0761, Accuracy: 9761/10000 (98%)
[0m
[34mTrain Epoch: 6 [6400/60000 (11%)] Loss: 0.224328[0m
[34mTrain Epoch: 6 [12800/60000 (21%)] Loss: 0.235598[0m
[34mTrain Epoch: 6 [19200/60000 (32%)] Loss: 0.126070[0m
[34mTrain Epoch: 6 [25600/60000 (43%)] Loss: 0.195561[0m
[34mTrain Epoch: 6 [32000/60000 (53%)] Loss: 0.213003[0m
[34mTrain Epoch: 6 [38400/60000 (64%)] Loss: 0.156561[0m
[34mTrain Epoch: 6 [44800/60000 (75%)] Loss: 0.159231[0m
[34mTrain Epoch: 6 [51200/60000 (85%)] Loss: 0.156286[0m
[34mTrain Epoch: 6 [57600/60000 (96%)] Loss: 0.276445[0m
[34mTest set: Average loss: 0.0696, Accuracy: 9790/10000 (98%)
[0m
[34mSaving the model.[0m
[34mINFO:__main__:Train Epoch: 1 [6400/60000 (11%)] Loss: 1.935915[0m
[34mINFO:__main__:Train Epoch: 1 [12800/60000 (21%)] Loss: 1.211672[0m
[34mINFO:__main__:Train Epoch: 1 [19200/60000 (32%)] Loss: 0.880198[0m
[34mINFO:__main__:Train Epoch: 1 [25600/60000 (43%)] Loss: 0.596671[0m
[34mINFO:__main__:Train Epoch: 1 [32000/60000 (53%)] Loss: 0.537024[0m
[34mINFO:__main__:Train Epoch: 1 [38400/60000 (64%)] Loss: 0.696666[0m
[34mINFO:__main__:Train Epoch: 1 [44800/60000 (75%)] Loss: 0.492262[0m
[34mINFO:__main__:Train Epoch: 1 [51200/60000 (85%)] Loss: 0.595390[0m
[34mINFO:__main__:Train Epoch: 1 [57600/60000 (96%)] Loss: 0.437477[0m
[34m/opt/conda/lib/python3.6/site-packages/torch/nn/_reduction.py:44: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
warnings.warn(warning.format(ret))[0m
[34mINFO:__main__:Test set: Average loss: 0.2071, Accuracy: 9391/10000 (94%)
[0m
[34mINFO:__main__:Train Epoch: 2 [6400/60000 (11%)] Loss: 0.739252[0m
[34mINFO:__main__:Train Epoch: 2 [12800/60000 (21%)] Loss: 0.396193[0m
[34mINFO:__main__:Train Epoch: 2 [19200/60000 (32%)] Loss: 0.404517[0m
[34mINFO:__main__:Train Epoch: 2 [25600/60000 (43%)] Loss: 0.655186[0m
[34mINFO:__main__:Train Epoch: 2 [32000/60000 (53%)] Loss: 0.604028[0m
[34mINFO:__main__:Train Epoch: 2 [38400/60000 (64%)] Loss: 0.431388[0m
[34mINFO:__main__:Train Epoch: 2 [44800/60000 (75%)] Loss: 0.297259[0m
[34mINFO:__main__:Train Epoch: 2 [51200/60000 (85%)] Loss: 0.556284[0m
[34mINFO:__main__:Train Epoch: 2 [57600/60000 (96%)] Loss: 0.294674[0m
[34mINFO:__main__:Test set: Average loss: 0.1323, Accuracy: 9598/10000 (96%)
[0m
[34mINFO:__main__:Train Epoch: 3 [6400/60000 (11%)] Loss: 0.417698[0m
[34mINFO:__main__:Train Epoch: 3 [12800/60000 (21%)] Loss: 0.220523[0m
[34mINFO:__main__:Train Epoch: 3 [19200/60000 (32%)] Loss: 0.150998[0m
[34mINFO:__main__:Train Epoch: 3 [25600/60000 (43%)] Loss: 0.305187[0m
[34mINFO:__main__:Train Epoch: 3 [32000/60000 (53%)] Loss: 0.180535[0m
[34mINFO:__main__:Train Epoch: 3 [38400/60000 (64%)] Loss: 0.359533[0m
[34mINFO:__main__:Train Epoch: 3 [44800/60000 (75%)] Loss: 0.195364[0m
[34mINFO:__main__:Train Epoch: 3 [51200/60000 (85%)] Loss: 0.204428[0m
[34mINFO:__main__:Train Epoch: 3 [57600/60000 (96%)] Loss: 0.303194[0m
[34mINFO:__main__:Test set: Average loss: 0.1028, Accuracy: 9683/10000 (97%)
[0m
[34mINFO:__main__:Train Epoch: 4 [6400/60000 (11%)] Loss: 0.385129[0m
[34mINFO:__main__:Train Epoch: 4 [12800/60000 (21%)] Loss: 0.314084[0m
[34mINFO:__main__:Train Epoch: 4 [19200/60000 (32%)] Loss: 0.307006[0m
[34mINFO:__main__:Train Epoch: 4 [25600/60000 (43%)] Loss: 0.157440[0m
[34mINFO:__main__:Train Epoch: 4 [32000/60000 (53%)] Loss: 0.201386[0m
[34mINFO:__main__:Train Epoch: 4 [38400/60000 (64%)] Loss: 0.124630[0m
[34mINFO:__main__:Train Epoch: 4 [44800/60000 (75%)] Loss: 0.276066[0m
[34mINFO:__main__:Train Epoch: 4 [51200/60000 (85%)] Loss: 0.226980[0m
[34mINFO:__main__:Train Epoch: 4 [57600/60000 (96%)] Loss: 0.340483[0m
[34mINFO:__main__:Test set: Average loss: 0.0904, Accuracy: 9712/10000 (97%)
[0m
[34mINFO:__main__:Train Epoch: 5 [6400/60000 (11%)] Loss: 0.175094[0m
[34mINFO:__main__:Train Epoch: 5 [12800/60000 (21%)] Loss: 0.276447[0m
[34mINFO:__main__:Train Epoch: 5 [19200/60000 (32%)] Loss: 0.300416[0m
[34mINFO:__main__:Train Epoch: 5 [25600/60000 (43%)] Loss: 0.089050[0m
[34mINFO:__main__:Train Epoch: 5 [32000/60000 (53%)] Loss: 0.224019[0m
[34mINFO:__main__:Train Epoch: 5 [38400/60000 (64%)] Loss: 0.080593[0m
[34mINFO:__main__:Train Epoch: 5 [44800/60000 (75%)] Loss: 0.133747[0m
[34mINFO:__main__:Train Epoch: 5 [51200/60000 (85%)] Loss: 0.381174[0m
[34mINFO:__main__:Train Epoch: 5 [57600/60000 (96%)] Loss: 0.106297[0m
[34mINFO:__main__:Test set: Average loss: 0.0761, Accuracy: 9761/10000 (98%)
[0m
[34mINFO:__main__:Train Epoch: 6 [6400/60000 (11%)] Loss: 0.224328[0m
[34mINFO:__main__:Train Epoch: 6 [12800/60000 (21%)] Loss: 0.235598[0m
[34mINFO:__main__:Train Epoch: 6 [19200/60000 (32%)] Loss: 0.126070[0m
[34mINFO:__main__:Train Epoch: 6 [25600/60000 (43%)] Loss: 0.195561[0m
[34mINFO:__main__:Train Epoch: 6 [32000/60000 (53%)] Loss: 0.213003[0m
[34mINFO:__main__:Train Epoch: 6 [38400/60000 (64%)] Loss: 0.156561[0m
[34mINFO:__main__:Train Epoch: 6 [44800/60000 (75%)] Loss: 0.159231[0m
[34mINFO:__main__:Train Epoch: 6 [51200/60000 (85%)] Loss: 0.156286[0m
[34mINFO:__main__:Train Epoch: 6 [57600/60000 (96%)] Loss: 0.276445[0m
[34mINFO:__main__:Test set: Average loss: 0.0696, Accuracy: 9790/10000 (98%)
[0m
[34mINFO:__main__:Saving the model.
[0m
[34m2021-08-04 02:55:00,337 sagemaker-training-toolkit INFO Reporting training SUCCESS[0m
2021-08-04 02:55:11 Uploading - Uploading generated training model
2021-08-04 02:55:11 Completed - Training job completed
Training seconds: 154
Billable seconds: 43
Managed Spot Training savings: 72.1%
###Markdown
Host Create endpointAfter training, we use the `PyTorch` estimator object to build and deploy a `PyTorchPredictor`. This creates a Sagemaker Endpoint -- a hosted prediction service that we can use to perform inference.As mentioned above we have implementation of `model_fn` in the `mnist.py` script that is required. We are going to use default implementations of `input_fn`, `predict_fn`, `output_fn` and `transform_fm` defined in [sagemaker-pytorch-containers](https://github.com/aws/sagemaker-pytorch-containers).The arguments to the deploy function allow us to set the number and type of instances that will be used for the Endpoint. These do not need to be the same as the values we used for the training job. For example, you can train a model on a set of GPU-based instances, and then deploy the Endpoint to a fleet of CPU-based instances, but you need to make sure that you return or save your model as a cpu model similar to what we did in `mnist.py`. Here we will deploy the model to a single ```ml.m4.xlarge``` instance.
###Code
predictor = estimator.deploy(initial_instance_count=1, instance_type="ml.m5.xlarge")
###Output
-------------!
###Markdown
EvaluateWe can now use this predictor to classify hand-written digits. Drawing into the image box loads the pixel data into a `data` variable in this notebook, which we can then pass to the `predictor`.
###Code
from IPython.display import HTML
HTML(open("input.html").read())
import numpy as np
image = np.array([data], dtype=np.float32)
response = predictor.predict(image)
prediction = response.argmax(axis=1)[0]
print(prediction)
###Output
5
###Markdown
CleanupAfter you have finished with this example, remember to delete the prediction endpoint to release the instance(s) associated with it
###Code
estimator.delete_endpoint()
###Output
_____no_output_____ |
notebook/4_classification/6_CFU/sampling_test /c_undersampling.ipynb | ###Markdown
Balance the dataset
###Code
df["IsBadBuy"].value_counts()
df[df["IsBadBuy"]==0]["IsBadBuy"].value_counts()
remove_n = 41411
drop_indices = np.random.choice(df[df["IsBadBuy"]==0].index, remove_n, replace=False)
df_subset = df.drop(drop_indices)
print(df_subset["IsBadBuy"].value_counts())
###Output
0 6854
1 6672
Name: IsBadBuy, dtype: int64
###Markdown
Label Encoder and one hot encoder
###Code
df_subset = pd.get_dummies(df_subset)
df_subset = pd.get_dummies(df_subset, columns=['WheelTypeID'])
df_subset.columns
###Output
_____no_output_____
###Markdown
Train/Test partitioning
###Code
attributes = [col for col in df_subset.columns if col != 'IsBadBuy']
x = df_subset[attributes].values
y = df_subset['IsBadBuy']
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.3, random_state=1, stratify=y)
###Output
_____no_output_____
###Markdown
Grid Search
###Code
def report(results, n_top=3):
configurations = {}
c_i = 0
for i in range(1, n_top + 1):
candidates = np.flatnonzero(results['rank_test_score'] == i)
for candidate in candidates:
print("Model with rank: {0}".format(i))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
results['mean_test_score'][candidate],
results['std_test_score'][candidate]))
print("Parameters: {0}".format(results['params'][candidate]))
print("")
configurations[c_i] = results['params'][candidate]
c_i += 1
return configurations
param_list = {'criterion': ['gini', 'entropy'],
'max_depth': [None] + list(np.arange(2, 10)),
'min_samples_split': list(np.arange(2, 40)),
'min_samples_leaf': list(np.arange(1, 40)),
}
clf = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1)
random_search = RandomizedSearchCV(clf, param_distributions=param_list, n_iter=10000, scoring='roc_auc', n_jobs = 4, verbose = 1)
random_search.fit(x, y)
cnfs = report(random_search.cv_results_, n_top=3)
###Output
Fitting 5 folds for each of 10000 candidates, totalling 50000 fits
###Markdown
Perform Clustering
###Code
models = []
y_pred_vals = []
y_pred_trains = []
hyper_ps = random_search.cv_results_
for cnf in cnfs.values():
criterion = cnf['criterion']
max_depth = cnf['max_depth']
min_samples_split = cnf['min_samples_split']
min_samples_leaf = cnf['min_samples_leaf']
clf = DecisionTreeClassifier(criterion=criterion, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf)
clf = clf.fit(x_train, y_train)
models.append(clf)
y_pred = clf.predict(x_val)
y_pred_tr = clf.predict(x_train)
y_pred_vals.append(y_pred)
y_pred_trains.append(y_pred_tr)
###Output
_____no_output_____
###Markdown
Analyze the classification results
###Code
for i in range(0,5):
print("model {}".format(i))
print('Train Accuracy %s' % accuracy_score(y_train, y_pred_trains[i]))
print('Train F1-score %s' % f1_score(y_train, y_pred_trains[i], average=None))
print()
print('Test Accuracy %s' % accuracy_score(y_val, y_pred_vals[i]))
print('Test F1-score %s' % f1_score(y_val, y_pred_vals[i], average=None))
print(classification_report(y_val, y_pred_vals[i]))
confusion_matrix(y_val, y_pred_vals[i])
###Output
model 0
Train Accuracy 0.6158639628221377
Train F1-score [0.62739473 0.60359673]
Test Accuracy 0.6153277476589453
Test F1-score [0.63035757 0.59902389]
precision recall f1-score support
0 0.61 0.65 0.63 2056
1 0.62 0.58 0.60 2002
accuracy 0.62 4058
macro avg 0.62 0.61 0.61 4058
weighted avg 0.62 0.62 0.61 4058
model 1
Train Accuracy 0.6158639628221377
Train F1-score [0.62739473 0.60359673]
Test Accuracy 0.6153277476589453
Test F1-score [0.63035757 0.59902389]
precision recall f1-score support
0 0.61 0.65 0.63 2056
1 0.62 0.58 0.60 2002
accuracy 0.62 4058
macro avg 0.62 0.61 0.61 4058
weighted avg 0.62 0.62 0.61 4058
model 2
Train Accuracy 0.6158639628221377
Train F1-score [0.62739473 0.60359673]
Test Accuracy 0.6153277476589453
Test F1-score [0.63035757 0.59902389]
precision recall f1-score support
0 0.61 0.65 0.63 2056
1 0.62 0.58 0.60 2002
accuracy 0.62 4058
macro avg 0.62 0.61 0.61 4058
weighted avg 0.62 0.62 0.61 4058
model 3
Train Accuracy 0.6158639628221377
Train F1-score [0.62739473 0.60359673]
Test Accuracy 0.6153277476589453
Test F1-score [0.63035757 0.59902389]
precision recall f1-score support
0 0.61 0.65 0.63 2056
1 0.62 0.58 0.60 2002
accuracy 0.62 4058
macro avg 0.62 0.61 0.61 4058
weighted avg 0.62 0.62 0.61 4058
model 4
Train Accuracy 0.6158639628221377
Train F1-score [0.62739473 0.60359673]
Test Accuracy 0.6153277476589453
Test F1-score [0.63035757 0.59902389]
precision recall f1-score support
0 0.61 0.65 0.63 2056
1 0.62 0.58 0.60 2002
accuracy 0.62 4058
macro avg 0.62 0.61 0.61 4058
weighted avg 0.62 0.62 0.61 4058
###Markdown
Analyze the classification performance
###Code
roc_auc_models = []
for i in range(0,5):
fpr, tpr, _ = roc_curve(y_val, y_pred_vals[i])
roc_auc = auc(fpr, tpr)
roc_auc = roc_auc_score(y_val, y_pred_vals[i], average=None)
print("model {} - roc_auc: {}".format(i, roc_auc))
roc_auc_models.append(roc_auc)
###Output
model 0 - roc_auc: 0.6148955616368067
model 1 - roc_auc: 0.6148955616368067
model 2 - roc_auc: 0.6148955616368067
model 3 - roc_auc: 0.6148955616368067
model 4 - roc_auc: 0.6148955616368067
###Markdown
Choose the best model Visualize the decision tree
###Code
dot_data = tree.export_graphviz(models[0], out_file=None,
feature_names=attributes,
class_names=['BadBuy' if x == 1 else 'GoodBuy' for x in clf.classes_],
filled=True, rounded=True,
special_characters=True,
max_depth=4)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())
###Output
_____no_output_____
###Markdown
Evaluate the performance
###Code
plt.figure(figsize=(8, 5))
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % (roc_auc_models[0]))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.tick_params(axis='both', which='major')
plt.legend(loc="lower right", fontsize=14, frameon=False)
plt.show()
###Output
_____no_output_____
###Markdown
Features Importance
###Code
for col, imp in zip(attributes, models[2].feature_importances_):
print(col, imp)
###Output
_____no_output_____
###Markdown
Model evaluation on test set
###Code
df_test = pd.read_csv('../../data/test.csv')
cl_test.cleaning(df_test)
df_test.columns
df_test = pd.get_dummies(df_test)
df_test = pd.get_dummies(df_test, columns=['WheelTypeID'])
df_test.columns
attributes = [col for col in df_test.columns if col != 'IsBadBuy']
x_test = df_test[attributes].values
y_test = df_test['IsBadBuy']
y_pred_test = models[0].predict(x_test)
print('Test Accuracy %s' % accuracy_score(y_test, y_pred_test))
print('Test F1-score %s' % f1_score(y_test, y_pred_test, average=None))
print(classification_report(y_test, y_pred_test))
# Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),
("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
disp = plot_confusion_matrix(models[0], x_test, y_test,
cmap=plt.cm.Blues,
normalize=normalize)
disp.ax_.set_title(title)
print(title)
print(disp.confusion_matrix)
plt.show()
fpr, tpr, _ = roc_curve(y_test, y_pred_test)
roc_auc = auc(fpr, tpr)
roc_auc = roc_auc_score(y_test, y_pred_test, average=None)
print("model {} - roc_auc: {}".format(0, roc_auc))
roc_auc_models.append(roc_auc)
plt.figure(figsize=(8, 5))
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % (roc_auc))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.tick_params(axis='both', which='major')
plt.legend(loc="lower right", fontsize=14, frameon=False)
plt.show()
###Output
_____no_output_____ |
10.The Requests-HTML Package/Section 10 - Exploring the package capabilities.ipynb | ###Markdown
Exploring the requests-html capabilities
###Code
# Official documentation of the requests-html package: https://requests-html.readthedocs.io/en/latest/
###Output
_____no_output_____
###Markdown
Initial setup
###Code
# Loading the necessary packages
from requests_html import HTMLSession
# establish/open a session
session = HTMLSession()
# submitting a GET request
r = session.get("https://en.wikipedia.org/wiki/Association_football")
r.status_code
# The html response to the GET request is contained in the '.html' method
r.html
###Output
_____no_output_____
###Markdown
Links
###Code
# We can extract all link addresses directly with '.links'
urls = r.html.links
urls
# Note that those are the relative URLs
# To get absolute URLs we can use '.absolute_links' instead of '.links'
full_path_urls = r.html.absolute_links
full_path_urls
# An important thing to note is that these links (given by both methods) are returned in a SET, not a LIST
type(urls)
###Output
_____no_output_____
###Markdown
Searching for elements
###Code
# A quick note: requests-html uses CSS selectors for searching
# We will cover them in the next section,
# but here is a more thorough look into it: https://www.w3schools.com/cssref/css_selectors.asp
# We can search for elements similarly to Beautiful Soup using the find() method
# It behaves as find_all()
# find all 'a' tags
links = r.html.find("a")
links
links[4]
# To get the raw HTML of an element use the '.html' method
links[4].html
type(links[4].html)
# To extract the text inside an element, use ".text", just like in Beautiful Soup
links[4].text
# To obtain a dictionary of the element's attributes, use '.attrs' (exactly as in Beautiful Soup)
links[10].attrs
# This package offers a couple of ways to filter tags based off text
# Choose only those tags that contain the string 'wikipedia' in their text (not in the 'href' attribute)
# Note: this is not case-sensitive
r.html.find("a", containing = "wikipedia")
# display the text of those tags
[tag.text for tag in r.html.find("a", containing = "wikipedia")]
# If we wish to find only the first element (similarly to Beautiful Soup .find()) we need to specify the 'first' parameter
r.html.find("p", first = True)
###Output
_____no_output_____ |
notebooks/OscoNet introduction.ipynb | ###Markdown
OscoNet: Inferring oscillatory gene networksThis notebook provides an introduction to the bootstrap hypothesis test described in more detaild in the [paper](https://www.biorxiv.org/content/10.1101/600049v1).
###Code
%matplotlib inline
from OscopeBootstrap import qvalue
from OscopeBootstrap.create_edge_network_represention import create_edge_network_representation
from OscopeBootstrap.SyntheticDataset import GetSimISyntheticData, true_adj_matrix
from OscopeBootstrap.oscope_tf import bootstrap_hypothesis_test, get_accuracy, get_metrics_for_different_qvalue_thresholds
from matplotlib import pyplot as plt
import numpy as np
###Output
_____no_output_____
###Markdown
First create a synthetic dataset containing one group of co-oscillating genes
###Code
NG = 10 # half gene cluster size so we have a total of 10 co-oscillating genes
G = 80 # number of genes
N = 1000 # cells
ngroups = 2 # one cluster
data_df, phaseG, angularSpeed = GetSimISyntheticData(NG=NG, G=G, ngroups=ngroups, N=N, noiseLevel=0)
adjacency_matrix_true = true_adj_matrix(G, angularSpeed) # True adjacency matrix
ppp=data_df.iloc
NG
###Output
_____no_output_____
###Markdown
Show an example of each type of gene expression in the synthetic data1. Strong oscillator which has little noise1. Weak oscillator with higher noise1. White noise gene (no oscillation)For more information on how these are generate see the docstring for `GetSimISyntheticData` and the supplementary materialof the original [Oscope paper](https://www.nature.com/articles/nmeth.3549).
###Code
_, ax = plt.subplots(3, sharex=True, sharey=True)
ax[0].plot(np.arange(N), data_df.iloc[0, :], 'bo'); ax[0].set_title('strong oscillator')
ax[1].plot(np.arange(N), data_df.iloc[NG, :], 'bo'); ax[1].set_title('weak-noisy oscillator')
ax[2].plot(np.arange(N), data_df.iloc[2*NG, :], 'bo'); ax[2].set_title('white noise gene')
###Output
_____no_output_____
###Markdown
Apply the hypothesis testThis can take 30seconds - 1 minute depending on your hardware.
###Code
n_bootstrap = 100 # number of bootstrap samples
grid_points_in_search = 10 # grid size for phase shift parameter estimation.,
alpha = 0.001 # significance level
adjacency_matrix, qvalues, cost_matrix = bootstrap_hypothesis_test(n_bootstrap, data_df.values, alpha=alpha,
grid_points_in_search=grid_points_in_search)
###Output
/Users/luisacutillo/GitProjects/Elli/FullOscoNet/OscopeBootstrap/oscope_tf.py:222: RuntimeWarning: invalid value encountered in multiply
psi_ng = np.zeros((G, G)) * np.inf
###Markdown
Calculate diagnostics
###Code
correct_ratio = get_accuracy(adjacency_matrix, adjacency_matrix_true)
print(f'Ratio of correctly identified pairs {correct_ratio:.2f}')
TPR, FDR, _ = get_metrics_for_different_qvalue_thresholds(qvalues, adjacency_matrix_true, np.array([alpha]))
print(f'True positive rate {float(TPR):.2f}, False discovery rate {float(FDR):.2f}')
###Output
Ratio of correctly identified pairs 0.99
True positive rate 1.00, False discovery rate 0.05
###Markdown
Show true and estimated adjacency matricesThe matrix shown 20 X 20 as we have G=20 genes in our example.Each entry (i, j) shows if gene i is found to be co-oscillating with gene j.
###Code
_, ax = plt.subplots(1, 2, figsize=(20, 7))
ax[0].imshow(adjacency_matrix_true); ax[0].set_title('true adjacency matrix')
ax[1].imshow(adjacency_matrix); ax[1].set_title('estimated adjacency matrix')
###Output
_____no_output_____
###Markdown
We can see the hypothesis test correctly identifies the cluster whilst also having false positives. Calculate edge network representation needed for network analysisThis creates a dataframe with 3 columns, the gene names of all significant pairs and the cost of that interaction. The cost is defined in Equation (1) in the paper - the smaller, the stronger the interaction. This edge network can then be passed in to the network analysis code. The cost value may be interpreted as a weight in the graph and hence we pass in the reciprocal of the `cost_matrix`. The user could also pass in `qvalues` instead of the `cost_matrix` to obtain a weight based on value.
###Code
gene_names = [f'gene{i}' for i in range(G)]
edge_network = create_edge_network_representation(adjacency_matrix, 1/cost_matrix, gene_names)
edge_network
###Output
_____no_output_____ |
Crash Course on Python/WEEK 6/Final Project - Word Cloud/utf-8''C1M6L2_Final_Project_V3.ipynb | ###Markdown
Final Project - Word Cloud For this project, you'll create a "word cloud" from a text by writing a script. This script needs to process the text, remove punctuation, ignore case and words that do not contain all alphabets, count the frequencies, and ignore uninteresting or irrelevant words. A dictionary is the output of the `calculate_frequencies` function. The `wordcloud` module will then generate the image from your dictionary. For the input text of your script, you will need to provide a file that contains text only. For the text itself, you can copy and paste the contents of a website you like. Or you can use a site like [Project Gutenberg](https://www.gutenberg.org/) to find books that are available online. You could see what word clouds you can get from famous books, like a Shakespeare play or a novel by Jane Austen. Save this as a .txt file somewhere on your computer.Now you will need to upload your input file here so that your script will be able to process it. To do the upload, you will need an uploader widget. Run the following cell to perform all the installs and imports for your word cloud script and uploader widget. It may take a minute for all of this to run and there will be a lot of output messages. But, be patient. Once you get the following final line of output, the code is done executing. Then you can continue on with the rest of the instructions for this notebook.**Enabling notebook extension fileupload/extension...****- Validating: OK**
###Code
# Here are all the installs and imports you will need for your word cloud script and uploader widget
!pip install wordcloud
!pip install fileupload
!pip install ipywidgets
!jupyter nbextension install --py --user fileupload
!jupyter nbextension enable --py fileupload
import wordcloud
import numpy as np
from matplotlib import pyplot as plt
from IPython.display import display
import fileupload
import io
import sys
###Output
Requirement already satisfied: wordcloud in /opt/conda/lib/python3.6/site-packages (1.7.0)
Requirement already satisfied: numpy>=1.6.1 in /opt/conda/lib/python3.6/site-packages (from wordcloud) (1.15.4)
Requirement already satisfied: pillow in /opt/conda/lib/python3.6/site-packages (from wordcloud) (5.4.1)
Requirement already satisfied: matplotlib in /opt/conda/lib/python3.6/site-packages (from wordcloud) (3.0.3)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (1.0.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (2.3.1)
Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (2.8.0)
Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from cycler>=0.10->matplotlib->wordcloud) (1.12.0)
Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib->wordcloud) (40.8.0)
Requirement already satisfied: fileupload in /opt/conda/lib/python3.6/site-packages (0.1.5)
Requirement already satisfied: ipywidgets>=5.1 in /opt/conda/lib/python3.6/site-packages (from fileupload) (7.4.2)
Requirement already satisfied: traitlets>=4.2 in /opt/conda/lib/python3.6/site-packages (from fileupload) (4.3.2)
Requirement already satisfied: notebook>=4.2 in /opt/conda/lib/python3.6/site-packages (from fileupload) (5.7.5)
Requirement already satisfied: widgetsnbextension~=3.4.0 in /opt/conda/lib/python3.6/site-packages (from ipywidgets>=5.1->fileupload) (3.4.2)
Requirement already satisfied: ipython>=4.0.0; python_version >= "3.3" in /opt/conda/lib/python3.6/site-packages (from ipywidgets>=5.1->fileupload) (7.4.0)
Requirement already satisfied: ipykernel>=4.5.1 in /opt/conda/lib/python3.6/site-packages (from ipywidgets>=5.1->fileupload) (5.1.0)
Requirement already satisfied: nbformat>=4.2.0 in /opt/conda/lib/python3.6/site-packages (from ipywidgets>=5.1->fileupload) (4.4.0)
Requirement already satisfied: ipython_genutils in /opt/conda/lib/python3.6/site-packages (from traitlets>=4.2->fileupload) (0.2.0)
Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from traitlets>=4.2->fileupload) (1.12.0)
Requirement already satisfied: decorator in /opt/conda/lib/python3.6/site-packages (from traitlets>=4.2->fileupload) (4.3.2)
Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (0.6.0)
Requirement already satisfied: jupyter-client>=5.2.0 in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (5.2.4)
Requirement already satisfied: nbconvert in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (5.4.1)
Requirement already satisfied: jinja2 in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (2.10)
Requirement already satisfied: pyzmq>=17 in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (18.0.1)
Requirement already satisfied: jupyter-core>=4.4.0 in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (4.4.0)
Requirement already satisfied: Send2Trash in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (1.5.0)
Requirement already satisfied: terminado>=0.8.1 in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (0.8.1)
Requirement already satisfied: tornado<7,>=4.1 in /opt/conda/lib/python3.6/site-packages (from notebook>=4.2->fileupload) (6.0.2)
Requirement already satisfied: setuptools>=18.5 in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (40.8.0)
Requirement already satisfied: jedi>=0.10 in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (0.13.3)
Requirement already satisfied: pickleshare in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (0.7.5)
Requirement already satisfied: prompt_toolkit<2.1.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (2.0.9)
Requirement already satisfied: pygments in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (2.3.1)
Requirement already satisfied: backcall in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (0.1.0)
Requirement already satisfied: pexpect in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (4.6.0)
Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /opt/conda/lib/python3.6/site-packages (from nbformat>=4.2.0->ipywidgets>=5.1->fileupload) (3.0.1)
Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from jupyter-client>=5.2.0->notebook>=4.2->fileupload) (2.8.0)
Requirement already satisfied: mistune>=0.8.1 in /opt/conda/lib/python3.6/site-packages (from nbconvert->notebook>=4.2->fileupload) (0.8.4)
Requirement already satisfied: entrypoints>=0.2.2 in /opt/conda/lib/python3.6/site-packages (from nbconvert->notebook>=4.2->fileupload) (0.3)
Requirement already satisfied: bleach in /opt/conda/lib/python3.6/site-packages (from nbconvert->notebook>=4.2->fileupload) (3.1.0)
Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.6/site-packages (from nbconvert->notebook>=4.2->fileupload) (1.4.2)
Requirement already satisfied: testpath in /opt/conda/lib/python3.6/site-packages (from nbconvert->notebook>=4.2->fileupload) (0.4.2)
Requirement already satisfied: defusedxml in /opt/conda/lib/python3.6/site-packages (from nbconvert->notebook>=4.2->fileupload) (0.5.0)
Requirement already satisfied: MarkupSafe>=0.23 in /opt/conda/lib/python3.6/site-packages (from jinja2->notebook>=4.2->fileupload) (1.1.1)
Requirement already satisfied: parso>=0.3.0 in /opt/conda/lib/python3.6/site-packages (from jedi>=0.10->ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (0.3.4)
Requirement already satisfied: wcwidth in /opt/conda/lib/python3.6/site-packages (from prompt_toolkit<2.1.0,>=2.0.0->ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (0.1.7)
Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.6/site-packages (from pexpect->ipython>=4.0.0; python_version >= "3.3"->ipywidgets>=5.1->fileupload) (0.6.0)
Requirement already satisfied: attrs>=17.4.0 in /opt/conda/lib/python3.6/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=5.1->fileupload) (19.1.0)
Requirement already satisfied: pyrsistent>=0.14.0 in /opt/conda/lib/python3.6/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=5.1->fileupload) (0.14.11)
Requirement already satisfied: webencodings in /opt/conda/lib/python3.6/site-packages (from bleach->nbconvert->notebook>=4.2->fileupload) (0.5.1)
Requirement already satisfied: ipywidgets in /opt/conda/lib/python3.6/site-packages (7.4.2)
Requirement already satisfied: ipython>=4.0.0; python_version >= "3.3" in /opt/conda/lib/python3.6/site-packages (from ipywidgets) (7.4.0)
Requirement already satisfied: traitlets>=4.3.1 in /opt/conda/lib/python3.6/site-packages (from ipywidgets) (4.3.2)
Requirement already satisfied: nbformat>=4.2.0 in /opt/conda/lib/python3.6/site-packages (from ipywidgets) (4.4.0)
Requirement already satisfied: widgetsnbextension~=3.4.0 in /opt/conda/lib/python3.6/site-packages (from ipywidgets) (3.4.2)
Requirement already satisfied: ipykernel>=4.5.1 in /opt/conda/lib/python3.6/site-packages (from ipywidgets) (5.1.0)
Requirement already satisfied: setuptools>=18.5 in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets) (40.8.0)
Requirement already satisfied: jedi>=0.10 in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets) (0.13.3)
Requirement already satisfied: decorator in /opt/conda/lib/python3.6/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets) (4.3.2)
###Markdown
Whew! That was a lot. All of the installs and imports for your word cloud script and uploader widget have been completed. **IMPORTANT!** If this was your first time running the above cell containing the installs and imports, you will need save this notebook now. Then under the File menu above, select Close and Halt. When the notebook has completely shut down, reopen it. This is the only way the necessary changes will take affect.To upload your text file, run the following cell that contains all the code for a custom uploader widget. Once you run this cell, a "Browse" button should appear below it. Click this button and navigate the window to locate your saved text file.
###Code
# This is the uploader widget
def _upload():
_upload_widget = fileupload.FileUploadWidget()
def _cb(change):
global file_contents
decoded = io.StringIO(change['owner'].data.decode('utf-8'))
filename = change['owner'].filename
print('Uploaded `{}` ({:.2f} kB)'.format(
filename, len(decoded.read()) / 2 **10))
file_contents = decoded.getvalue()
_upload_widget.observe(_cb, names='data')
display(_upload_widget)
_upload()
###Output
_____no_output_____
###Markdown
Write a function in the cell below that iterates through the words in *file_contents*, removes punctuation, and counts the frequency of each word. Oh, and be sure to make it ignore word case, words that do not contain all alphabets and boring words like "and" or "the". Then use it in the `generate_from_frequencies` function to generate your very own word cloud!**Hint:** Try storing the results of your iteration in a dictionary before passing them into wordcloud via the `generate_from_frequencies` function.
###Code
def calculate_frequencies(file_contents):
# Here is a list of punctuations and uninteresting words you can use to process your text
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
uninteresting_words = ["the", "a", "to", "if", "is", "it", "of", "and", "or", "an", "as", "i", "me", "my", \
"we", "our", "ours", "you", "your", "yours", "he", "she", "him", "his", "her", "hers", "its", "they", "them", \
"their", "what", "which", "who", "whom", "this", "that", "am", "are", "was", "were", "be", "been", "being", \
"have", "has", "had", "do", "does", "did", "but", "at", "by", "with", "from", "here", "when", "where", "how", \
"all", "any", "both", "each", "few", "more", "some", "such", "no", "nor", "too", "very", "can", "will", "just"]
# LEARNER CODE START HERE
file_contents2 = ""
for index, char in enumerate(file_contents):
if char.isalpha() == True or char.isspace():
file_contents2 += char
file_contents2 = file_contents2.split()
file_without_uninteresting_words = []
for word in file_contents2:
if word.lower() not in uninteresting_words and word.isalpha() == True:
file_without_uninteresting_words.append(word)
frequencies = {}
for word in file_without_uninteresting_words:
if word.lower() not in frequencies:
frequencies[word.lower()] = 1
else:
frequencies[word.lower()] += 1
#wordcloud
cloud = wordcloud.WordCloud()
cloud.generate_from_frequencies(frequencies)
return cloud.to_array()
###Output
_____no_output_____
###Markdown
If you have done everything correctly, your word cloud image should appear after running the cell below. Fingers crossed!
###Code
# Display your wordcloud image
myimage = calculate_frequencies(file_contents)
plt.imshow(myimage, interpolation = 'nearest')
plt.axis('off')
plt.show()
###Output
_____no_output_____ |
notebooks/CaptumBERTSequenceClassification.ipynb | ###Markdown
Interpretation of BertForSequenceClassification in captum
###Code
!pip install transformers
!pip install captum
from transformers import BertTokenizer, BertForSequenceClassification, BertConfig
from captum.attr import visualization as viz
from captum.attr import IntegratedGradients, LayerConductance, LayerIntegratedGradients
from captum.attr import configure_interpretable_embedding_layer, remove_interpretable_embedding_layer
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load model
model = BertForSequenceClassification.from_pretrained("checkpoints/bert_disc_model", return_dict=False)
model.to(device)
model.eval()
model.zero_grad()
# load tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def predict(inputs):
return model(inputs)[0]
ref_token_id = tokenizer.pad_token_id # A token used for generating token reference
sep_token_id = tokenizer.sep_token_id # A token used as a separator between question and text and it is also added to the end of the text.
cls_token_id = tokenizer.cls_token_id # A token used for prepending to the concatenated question-text word sequence
def construct_input_ref_pair(text, ref_token_id, sep_token_id, cls_token_id):
text_ids = tokenizer.encode(text, add_special_tokens=False)
# construct input token ids
input_ids = [cls_token_id] + text_ids + [sep_token_id]
# construct reference token ids
ref_input_ids = [cls_token_id] + [ref_token_id] * len(text_ids) + [sep_token_id]
return torch.tensor([input_ids], device=device), torch.tensor([ref_input_ids], device=device), len(text_ids)
def construct_input_ref_token_type_pair(input_ids, sep_ind=0):
seq_len = input_ids.size(1)
token_type_ids = torch.tensor([[0 if i <= sep_ind else 1 for i in range(seq_len)]], device=device)
ref_token_type_ids = torch.zeros_like(token_type_ids, device=device)# * -1
return token_type_ids, ref_token_type_ids
def construct_input_ref_pos_id_pair(input_ids):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
# we could potentially also use random permutation with `torch.randperm(seq_length, device=device)`
ref_position_ids = torch.zeros(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
ref_position_ids = ref_position_ids.unsqueeze(0).expand_as(input_ids)
return position_ids, ref_position_ids
def construct_attention_mask(input_ids):
return torch.ones_like(input_ids)
def custom_forward(inputs):
preds = predict(inputs)
return torch.softmax(preds, dim = 1)[0][0].unsqueeze(-1)
lig = LayerIntegratedGradients(custom_forward, model.bert.embeddings)
text = "These tests do not work as expected."
input_ids, ref_input_ids, sep_id = construct_input_ref_pair(text, ref_token_id, sep_token_id, cls_token_id)
token_type_ids, ref_token_type_ids = construct_input_ref_token_type_pair(input_ids, sep_id)
position_ids, ref_position_ids = construct_input_ref_pos_id_pair(input_ids)
attention_mask = construct_attention_mask(input_ids)
indices = input_ids[0].detach().tolist()
all_tokens = tokenizer.convert_ids_to_tokens(indices)
model(input_ids)
predict(input_ids)
custom_forward(input_ids)
attributions, delta = lig.attribute(inputs=input_ids,
baselines=ref_input_ids,
return_convergence_delta=True)
score = predict(input_ids)
print('Question: ', text)
print('Predicted Answer: ' + str(torch.argmax(score[0]).cpu().numpy()) + ', prob ungrammatical: ' + str(torch.softmax(score, dim = 1)[0][0].cpu().detach().numpy()))
def summarize_attributions(attributions):
attributions = attributions.sum(dim=-1).squeeze(0)
attributions = attributions / torch.norm(attributions)
return attributions
attributions_sum = summarize_attributions(attributions)
# storing couple samples in an array for visualization purposes
score_vis = viz.VisualizationDataRecord(
attributions_sum,
torch.softmax(score, dim = 1)[0][0],
torch.argmax(torch.softmax(score, dim = 1)[0]),
0,
text,
attributions_sum.sum(),
all_tokens,
delta)
print('\033[1m', 'Visualization For Score', '\033[0m')
viz.visualize_text([score_vis])
attributions_sum
###Output
_____no_output_____ |
sample_windows3.ipynb | ###Markdown
Chapter 8 - 포인터 1.1 메모리 주서와 주소연산자 & 주소 개념**메모리 공간은 바이트마다 고유한 주소(address)가 있다.** 마치 아파트 각 세대마다 고유 번호가 있는 것과 같다. 아파트의 호수로 집을 찾듯이 주소를 이용하여 메모리의 위치를 파악할 수 있다. 메모리 주소는 0부터 바이트마다 1씩 증가한다. **메모리 주소는 저장 장소인 변수 이름과 함께 기억 장소를 참조하는 또 다른 방법이다.** 이 주소값을 이용하면 보다 편리하고 융통성 있는 프로그램을 만들 수 있다. 그러나 메모리 주소를 잘못 다루면 시스템에 심각한 문제를 일으킬 수 있다. 또한 메모리 주소를 처음 학습하는 사람에겐 좀 어려울 수 있다.
###Code
co1 = CompileOutputOnly('exer8_1')
cio1 = CompileInputOuput('exer8_9')
saq1 = ShortAnswerQuestion('(1) 메모리 공간은 바이트마다 고유한 ____(이)가 있다.', ['주소', '주소값', 'address', 'Address'], ' 주소를 말한다.', ' 주소를 이용하여 메모리의 위치를 파악할 수 있다.')
cq1 = ChoiceQuestion("""(2) 배열 선언
double a[] = {2, 4, 5, 7, 8, 9};
에서 *a와 *(a+2)의 참조값은 각각 무엇인가?
""", ['4, 7', '2, 5', '5, 8', '2, 4'], 1, ' 인덱스는 0부터 시작한다.', ' *a는 2, *(a+2)는 5이다.')
cq2 = ChoiceQuestion("""다음은 여러 포인터와 선언에 대한 설명이다. 다음 중에서 잘못 설명하고 있는 것은 무엇인가?""", ['double형 포인터 선언: double *pd;', 'int형 포인터 원소 4개인 배열 선언: int *p[4];', '일차원 배열 int a[3]의 배열 포인터 선언: int *p;', '이차원 배열 int b[3][4]의 배열 포인터 선언: int *p[3][4];'], 3, ' 이차원 배열 포인터는 *를 두개 붙여 선언한다.', ' int **p로 선언한다.')
rate = AchieveRate()
add_link_buttons(1, 'sample_windows2.ipynb')
###Output
_____no_output_____ |
Stock Market Analysis of Big Techs.ipynb | ###Markdown
Stock Market Analysis for Tech StocksIn this project, we'll analyse data from the stock market for some technology stocks. Again, we'll use Pandas to extract and analyse the information, visualise it, and look at different ways to analyse the risk of a stock, based on its performance history. Here are the questions we'll try to answer:- What was the change in a stock's price over time?- What was the daily return average of a stock?- What was the moving average of various stocks?- What was the correlation between daily returns of different stocks?- How much value do we put at risk by investing in a particular stock?- How can we attempt to predict future stock behaviour?
###Code
#Python Data Analysis imports
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
#Visualisation imports
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
%matplotlib inline
#To grab stock data
from pandas_datareader import DataReader
from datetime import datetime
#To handle floats in Python 2
#from __future__ import division
###Output
_____no_output_____
###Markdown
We're going to analyse some tech stocks, and it seems like a good idea to look at their performance over the last year. We can create a list with the stock names, for future looping.
###Code
#We're going to analyse stock info for Apple, Google, Microsoft, and Amazon
tech_list = ['AAPL','GOOG','MSFT','AMZN','YHOO']
#Setting the end date to today
end = datetime.now()
#Start date set to 1 year back
start = datetime(end.year-1,end.month,end.day)
#Using Yahoo Finance to grab the stock data
for stock in tech_list:
globals()[stock] = DataReader('GOOGL','yahoo',start,end) #The globals method sets the stock name to a global variable
###Output
_____no_output_____
###Markdown
Thanks to the globals method, Apple's stock data will be stored in the AAPL global variable dataframe. Let's see if that worked.
###Code
AAPL.head()
#Basic stats for Apple's Stock
AAPL.describe()
###Output
_____no_output_____
###Markdown
And that easily, we can make out what the stock's minimum, maximum, and average price was for the last year.
###Code
#Some basic info about the dataframe
AAPL.info()
###Output
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 253 entries, 2020-06-29 to 2021-06-29
Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 High 253 non-null float64
1 Low 253 non-null float64
2 Open 253 non-null float64
3 Close 253 non-null float64
4 Volume 253 non-null int64
5 Adj Close 253 non-null float64
dtypes: float64(5), int64(1)
memory usage: 13.8 KB
###Markdown
No missing info in the dataframe above, so we can go about our business. What's the change in stock's price over time?
###Code
#Plotting the stock's adjusted closing price using pandas
AAPL['Adj Close'].plot(legend=True,figsize=(12,5))
###Output
_____no_output_____
###Markdown
Similarily, we can plot change in a stock's volume being traded, over time.
###Code
#Plotting the total volume being traded over time
AAPL['Volume'].plot(legend=True,figsize=(12,5))
###Output
_____no_output_____
###Markdown
What was the moving average of various stocks? Let's check out the moving average for stocks over a 10, 20 and 50 day period of time. We'll add that information to the stock's dataframe.
###Code
ma_day = [10,20,50]
for ma in ma_day:
column_name = "MA for %s days" %(str(ma))
AAPL[column_name] = AAPL['Adj Close'].rolling(window=ma,center=False).mean()
AAPL.tail()
AAPL[['Adj Close','MA for 10 days','MA for 20 days','MA for 50 days']].plot(subplots=False,figsize=(12,5))
###Output
_____no_output_____
###Markdown
Moving averages for more days have a smoother plot, as they're less reliable on daily fluctuations. So even though, Apple's stock has a slight dip near the start of September, it's generally been on an upward trend since mid-July. What was the daily return average of a stock?
###Code
#The daily return column can be created by using the percentage change over the adjusted closing price
AAPL['Daily Return'] = AAPL['Adj Close'].pct_change()
AAPL['Daily Return'].tail()
#Plotting the daily return
AAPL['Daily Return'].plot(figsize=(14,5),legend=True,linestyle='--',marker='o')
sns.distplot(AAPL['Daily Return'].dropna(),bins=100,color='red')
###Output
_____no_output_____
###Markdown
Positive daily returns seem to be slightly more frequent than negative returns for Apple. What was the correlation between daily returns of different stocks?
###Code
#Reading just the 'Adj Close' column this time
close_df = DataReader(tech_list,'yahoo',start,end)['Adj Close']
close_df.tail()
###Output
_____no_output_____
###Markdown
Everything works as expected. Just as we did earlier, we can use Pandas' pct_change method to get the daily returns of our stocks.
###Code
rets_df = close_df.pct_change()
rets_df.tail()
###Output
_____no_output_____
###Markdown
Let's try creating a scatterplot to visualise any correlations between different stocks. First we'll visualise a scatterplot for the relationship between the daily return of a stock to itself.
###Code
sns.jointplot('GOOG','GOOG',rets_df,kind='scatter',color='green')
###Output
_____no_output_____
###Markdown
As expected, the relationship is perfectly linear because we're trying to correlate something with itself. Now, let's check out the relationship between Google and Apple's daily returns.
###Code
sns.jointplot('GOOG','AAPL',rets_df,kind='scatter')
###Output
_____no_output_____
###Markdown
There seems to be a minor correlation between the two stocks, looking at the figure above. The Pearson R Correlation Coefficient value of 0.45 echoes that sentiment.But what about other combinations of stocks? Quick and dirty overarching visualisation of the scatterplots and histograms of daily returns of our stocks. To see the actual numbers for the correlation coefficients, we can use seaborn's corrplot method. Google and Microsoft seem to have the highest correlation. But another interesting thing to note is that all tech companies that we explored are positively correlated. How much value do we put at risk by investing in a particular stock? A basic way to quantify risk is to compare the expected return (which can be the mean of the stock's daily returns) with the standard deviation of the daily returns.
###Code
rets = rets_df.dropna()
###Output
_____no_output_____
###Markdown
We'd want a stock to have a high expected return and a low risk; Google and Microsoft seem to be the safe options for that. Meanwhile, Yahoo and Amazon stocks have higher expected returns, but also have a higher risk Value at RiskWe can treat _Value at risk_ as the amount of money we could expect to lose for a given confidence interval. We'll use the 'Bootstrap' method and the 'Monte Carlo Method' to extract this value.__Bootstrap Method__Using this method, we calculate the empirical quantiles from a histogram of daily returns. The quantiles help us define our confidence interval.
###Code
sns.distplot(AAPL['Daily Return'].dropna(),bins=100,color='purple')
###Output
_____no_output_____
###Markdown
To recap, our histogram for Apple's stock looked like the above. And our daily returns dataframe looked like:
###Code
rets.head()
#Using Pandas built in qualtile method
rets['AAPL'].quantile(0.05)
###Output
_____no_output_____
###Markdown
The 0.05 empirical quantile of daily returns is at -0.019. This means that with 95% confidence, the worst daily loss will not exceed 2.57% (of the investment). How can we attempt to predict future stock behaviour?__Monte Carlo Method__Check out this [link](http://www.investopedia.com/articles/07/montecarlo.asp) for more info on the Monte Carlo method. In short: in this method, we run simulations to predict the future many times, and aggregate the results in the end for some quantifiable value.
###Code
days = 365
#delta t
dt = 1/365
mu = rets.mean()['GOOG']
sigma = rets.std()['GOOG']
#Function takes in stock price, number of days to run, mean and standard deviation values
def stock_monte_carlo(start_price,days,mu,sigma):
price = np.zeros(days)
price[0] = start_price
shock = np.zeros(days)
drift = np.zeros(days)
for x in xrange(1,days):
#Shock and drift formulas taken from the Monte Carlo formula
shock[x] = np.random.normal(loc=mu*dt,scale=sigma*np.sqrt(dt))
drift[x] = mu * dt
#New price = Old price + Old price*(shock+drift)
price[x] = price[x-1] + (price[x-1] * (drift[x]+shock[x]))
return price
###Output
_____no_output_____
###Markdown
We're going to run the simulation of Google stocks. Let's check out the opening value of the stock.
###Code
GOOG.head()
###Output
_____no_output_____
###Markdown
Let's do a simulation of 100 runs, and plot them.
###Code
start_price = 622.049 #Taken from above
for run in xrange(100):
plt.plot(stock_monte_carlo(start_price,days,mu,sigma))
plt.xlabel('Days')
plt.ylabel('Price')
plt.title('Monte Carlo Analysis for Google')
runs = 10000
simulations = np.zeros(runs)
for run in xrange(runs):
simulations[run] = stock_monte_carlo(start_price,days,mu,sigma)[days-1]
q = np.percentile(simulations,1)
plt.hist(simulations,bins=200)
plt.figtext(0.6,0.8,s="Start price: $%.2f" %start_price)
plt.figtext(0.6,0.7,"Mean final price: $%.2f" % simulations.mean())
plt.figtext(0.6,0.6,"VaR(0.99): $%.2f" % (start_price -q,))
plt.figtext(0.15,0.6, "q(0.99): $%.2f" % q)
plt.axvline(x=q, linewidth=4, color='r')
plt.title(u"Final price distribution for Google Stock after %s days" %days, weight='bold')
###Output
_____no_output_____ |
modules/module_20/vowpal-wabbit.ipynb | ###Markdown
Source: https://analyticsindiamag.com/guide-to-vowpal-wabbit-a-state-of-the-art-library-for-interactive-machine-learning/
###Code
import numpy as np
import pandas as pd
import sklearn
from vowpalwabbit import pyvw
training_data =[{'action': 1, 'cost': 2, 'prob': 0.3, 'f1': 'a', 'f2': 'c', 'f3': ''}, {'action': 3, 'cost': 1, 'prob': 0.2, 'f1': 'b', 'f2': 'd', 'f3': ''}, {'action': 4, 'cost': 0, 'prob': 0.6, 'f1': 'a', 'f2': 'b', 'f3': ''},
{'action': 2, 'cost': 1, 'prob': 0.4, 'f1': 'a', 'f2': 'b', 'f3': 'c'},
{'action': 3, 'cost': 2, 'prob': 0.7, 'f1': 'a', 'f2': 'd', 'f3': ''}]
training_df = pd.DataFrame(training_data)
# create a column named ‘index’
training_df['index'] = range(1, len(training_df) + 1)
# set the newly created column as the index column
training_df = training_df.set_index("index")
testing_data = [{'f1': 'b', 'f2': 'c', 'f3': ''},
{'f1': 'a', 'f2': '', 'f3': 'b'},
{'f1': 'b', 'f2': 'b', 'f3': ''},
{'f1': 'a', 'f2': '', 'f3': 'b'}]
testing_df = pd.DataFrame(testing_data)
# Add index to data frame
testing_df['index'] = range(1, len(testing_df) + 1)
testing_df = testing_df.set_index("index")
testing_data = [{'f1': 'b', 'f2': 'c', 'f3': ''},
{'f1': 'a', 'f2': '', 'f3': 'b'},
{'f1': 'b', 'f2': 'b', 'f3': ''},
{'f1': 'a', 'f2': '', 'f3': 'b'}]
testing_df = pd.DataFrame(testing_data)
# Add index to data frame
testing_df['index'] = range(1, len(testing_df) + 1)
testing_df = testing_df.set_index("index")
vw = pyvw.vw("--cb 4")
#Extract action, its cost, probability and features of each training sample
for i in training_df.index:
action = training_df.loc[i, "action"]
cost = training_df.loc[i, "cost"]
probability = training_df.loc[i, "prob"]
feature1 = training_df.loc[i, "f1"]
feature2 = training_df.loc[i, "f2"]
feature3 = training_df.loc[i, "f3"]
# Construct the ith example in the required vw format.
learn_ex = (str(action) + ":" + str(cost) + ":" + str(probability) +
" | " + str(feature1) + " " + str(feature2) + " " + str(feature3))
#Perform actual learning by calling learn() on the ith example
vw.learn(learn_ex)
###Output
1.145833 0.000000 8 8.0 3:0:0.6 3:0... 12
|
src/04_word2vec/05_w2v_results_socdiv.ipynb | ###Markdown
Visualizing Word2Vec Models Trained on Biomedical Abstracts in PubMed A Comparison of Race and Diversity Over Time Brandon Kramer - University of Virginia's Biocomplexity Institute This notebook explores two Word2Vec models trained the PubMed database taken from January 2021. Overall, I am interested in testing whether diversity and racial terms are becoming more closely related over time. To do this, I [trained](https://github.com/brandonleekramer/diversity/blob/master/src/04_word_embeddings/03_train_word2vec.ipynb) two models (one from 1990-2000 data and then a random sample of the 2010-2020 data). Now, I will visualize the results of these models to see which words are similar to race/diversity as well as plotting some comparisons of these two terms over time.For those unfamiliar with Word2Vec, it might be worth reading [this post from Connor Gilroy](https://ccgilroy.github.io/community-discourse/introduction.html) - a sociologist that details how word embeddings can help us better understand the concept of "community." The post contains information on how Word2Vec and other word embedding approaches can teach us about word/document similarity, opposite words, and historical changes in words. Basically, Word2Vec turns all of the words in the corpus into a number based on how they are used in the context of 5-word windows (a parameter I defined in this model), making all of the words directly compariable to one another within a vector space. The end result is that we are able to compare how similar or different words are or, as we will see below, how similar or different words become over time. As we will come to see, this approach is useful but not perfect for dealing with our case due to the polysemy of 'diversity.' Import packages and ingest data Let's load all of our packages and the `.bin` files that hold our models.
###Code
# load packages
import os
from itertools import product
import pandas.io.sql as psql
import pandas as pd
from pandas import DataFrame
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.patches import Rectangle
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
# load data
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/word_embeddings/")
earlier_model = Word2Vec.load("word2vec_1990_2000_socdiv_0821.bin")
later_model_original = Word2Vec.load("word2vec_2010_2020_socdiv_0821.bin")
###Output
_____no_output_____
###Markdown
Normalizing Our Results
###Code
# http://www-personal.umich.edu/~tdszyman/misc/InsightSIGNLP16.pdf
# https://github.com/williamleif/histwords
# https://gist.github.com/zhicongchen/9e23d5c3f1e5b1293b16133485cd17d8 <<<<<<
# https://github.com/nikhgarg/EmbeddingDynamicStereotypes/blob/master/dataset_utilities/normalize_vectors.py
def intersection_align_gensim(m1, m2, words=None):
"""
Intersect two gensim word2vec models, m1 and m2.
Only the shared vocabulary between them is kept.
If 'words' is set (as list or set), then the vocabulary is intersected with this list as well.
Indices are re-organized from 0..N in order of descending frequency (=sum of counts from both m1 and m2).
These indices correspond to the new syn0 and syn0norm objects in both gensim models:
-- so that Row 0 of m1.syn0 will be for the same word as Row 0 of m2.syn0
-- you can find the index of any word on the .index2word list: model.index2word.index(word) => 2
The .vocab dictionary is also updated for each model, preserving the count but updating the index.
"""
# Get the vocab for each model
vocab_m1 = set(m1.wv.index_to_key)
vocab_m2 = set(m2.wv.index_to_key)
# Find the common vocabulary
common_vocab = vocab_m1 & vocab_m2
if words: common_vocab &= set(words)
# If no alignment necessary because vocab is identical...
if not vocab_m1 - common_vocab and not vocab_m2 - common_vocab:
return (m1,m2)
# Otherwise sort by frequency (summed for both)
common_vocab = list(common_vocab)
common_vocab.sort(key=lambda w: m1.wv.get_vecattr(w, "count") + m2.wv.get_vecattr(w, "count"), reverse=True)
# print(len(common_vocab))
# Then for each model...
for m in [m1, m2]:
# Replace old syn0norm array with new one (with common vocab)
indices = [m.wv.key_to_index[w] for w in common_vocab]
old_arr = m.wv.vectors
new_arr = np.array([old_arr[index] for index in indices])
m.wv.vectors = new_arr
# Replace old vocab dictionary with new one (with common vocab)
# and old index2word with new one
new_key_to_index = {}
new_index_to_key = []
for new_index, key in enumerate(common_vocab):
new_key_to_index[key] = new_index
new_index_to_key.append(key)
m.wv.key_to_index = new_key_to_index
m.wv.index_to_key = new_index_to_key
print(len(m.wv.key_to_index), len(m.wv.vectors))
return (m1,m2)
def smart_procrustes_align_gensim(base_embed, other_embed, words=None):
"""
Original script: https://gist.github.com/quadrismegistus/09a93e219a6ffc4f216fb85235535faf
Procrustes align two gensim word2vec models (to allow for comparison between same word across models).
Code ported from HistWords <https://github.com/williamleif/histwords> by William Hamilton <[email protected]>.
First, intersect the vocabularies (see `intersection_align_gensim` documentation).
Then do the alignment on the other_embed model.
Replace the other_embed model's syn0 and syn0norm numpy matrices with the aligned version.
Return other_embed.
If `words` is set, intersect the two models' vocabulary with the vocabulary in words (see `intersection_align_gensim` documentation).
"""
# patch by Richard So [https://twitter.com/richardjeanso) (thanks!) to update this code for new version of gensim
# base_embed.init_sims(replace=True)
# other_embed.init_sims(replace=True)
# make sure vocabulary and indices are aligned
in_base_embed, in_other_embed = intersection_align_gensim(base_embed, other_embed, words=words)
# get the (normalized) embedding matrices
base_vecs = in_base_embed.wv.get_normed_vectors()
other_vecs = in_other_embed.wv.get_normed_vectors()
# just a matrix dot product with numpy
m = other_vecs.T.dot(base_vecs)
# SVD method from numpy
u, _, v = np.linalg.svd(m)
# another matrix operation
ortho = u.dot(v)
# Replace original array with modified one, i.e. multiplying the embedding matrix by "ortho"
other_embed.wv.vectors = (other_embed.wv.vectors).dot(ortho)
return other_embed
later_model = smart_procrustes_align_gensim(earlier_model, later_model_original)
###Output
78100 78100
78100 78100
###Markdown
Analyzing Most Similar Words **What words are most similar to "racial," "ethnicity", and "diversity"?** As we can see below, "racial" and "ethnicity" is mostly similar to other racialized and/or gendered terms in both the 1990-2000 and 2010-20 periods. "Diversity", on the other hand, is most similar to heterogeneity, divergence and complexity in 1990-2000 and then richness, divergence and diversification in 2010-2020. Overall, this tells us a different version of the same story we saw when analyzing Hypothesis 1: "diversity" rarely refers to social diversity along racial or classed lines. Diversity is mostly used as a biological term. Even here, richness, along with evenness, are measure within Simpson's Index for measuring ecological biodiversity (e.g. [Stirling et al. 2001](https://www.journals.uchicago.edu/doi/abs/10.1086/321317?casa_token=Fb4sojZm9XgAAAAA:BV-t4e5f3SZ05gTJZRUydcQvHTYg47f1qRu51CixgF-b_HnGVXuPQFaqf_Lp88Tvy51Gnp7iw4yG)).
###Code
# average of earlier model
earlier_race = earlier_model.wv.most_similar(positive=['race', 'racial', 'racially'], topn=50)
earlier_race = pd.DataFrame(earlier_race).rename(columns={0: "term", 1: "score"})
earlier_race['year'] = '1990-2000'
earlier_race.reset_index(inplace=True)
earlier_race = earlier_race.rename(columns = {'index':'rank'})
# average of later model
later_race = later_model.wv.most_similar(positive=['race', 'racial', 'racially'], topn=50)
later_race = pd.DataFrame(later_race).rename(columns={0: "term", 1: "score"})
later_race['year'] = '2010-2020'
later_race.reset_index(inplace=True)
later_race = later_race.rename(columns = {'index':'rank'})
# merge the tables for comparison
top_race_vectors = pd.merge(earlier_race, later_race, on=["rank"])
top_race_vectors
# average of earlier model
earlier_ethnicity = earlier_model.wv.most_similar(positive=['ethnic', 'ethnicity', 'ethnically'], topn=50)
earlier_ethnicity = pd.DataFrame(earlier_ethnicity).rename(columns={0: "term", 1: "score"})
earlier_ethnicity['year'] = '1990-2000'
earlier_ethnicity.reset_index(inplace=True)
earlier_ethnicity = earlier_ethnicity.rename(columns = {'index':'rank'})
# average of later model
later_ethnicity = later_model.wv.most_similar(positive=['ethnic', 'ethnicity', 'ethnically'], topn=50)
later_ethnicity = pd.DataFrame(later_ethnicity).rename(columns={0: "term", 1: "score"})
later_ethnicity['year'] = '2010-2020'
later_ethnicity.reset_index(inplace=True)
later_ethnicity = later_ethnicity.rename(columns = {'index':'rank'})
# merge the tables for comparison
top_ethnicity_vectors = pd.merge(earlier_ethnicity, later_ethnicity, on=["rank"])
top_ethnicity_vectors
# average of earlier model
earlier_diversity = earlier_model.wv.most_similar(positive=['socialdiverse', 'socialdiversity'], topn=50)
earlier_diversity = pd.DataFrame(earlier_diversity).rename(columns={0: "term", 1: "score"})
earlier_diversity['year'] = '1990-2000'
earlier_diversity.reset_index(inplace=True)
earlier_diversity = earlier_diversity.rename(columns = {'index':'rank'})
# average of later model
later_diversity = later_model.wv.most_similar(positive=['socialdiverse', 'socialdiversity'], topn=50)
later_diversity = pd.DataFrame(later_diversity).rename(columns={0: "term", 1: "score"})
later_diversity['year'] = '2010-2020'
later_diversity.reset_index(inplace=True)
later_diversity = later_diversity.rename(columns = {'index':'rank'})
# merge the tables for comparison
top_diversity_vectors = pd.merge(earlier_diversity, later_diversity, on=["rank"])
top_diversity_vectors
###Output
_____no_output_____
###Markdown
Comparing Race and Diversity That makes it a little difficult to directly compare the terms, so let's use the `wv.similarity()` function to directly look at that. This basically allows you to directly compare the two words to see how close they are in the vector space. To make this process a little more efficient, we are going to make our own function named `w2v_similarities_over_time()` and then compare all the relevant terms. Following [Garg et al. (2018)](https://www.pnas.org/content/115/16/E3635.short), we also decided to average some of the terms in our dictionaries since it gets a little cumbersome trying to interpret the multiple outcomes of very similiary terms like diversity/diverse, race/racial, ethnic/ethnicity, etc.
###Code
def w2v_similarities_over_time(df, w2v_m1, w2v_m2):
'''
function compares several word2vec vectors from two different years
and then examines how those several comparisons change over time
----------------------------------------------------------------
1) first it takes a dictionary of words and creates its product
2) compares all of those words within the vector space of w2v_m1
3) compares all of those words within the vector space of w2v_m2
4) examines changes in the comparisons of w2v_m1 and w2v_m2 over time
'''
df = list(product(df['term'], df['term']))
df = pd.DataFrame(df, columns=['term1','term2'])
cos_sim_m1 = []
for index, row in df.iterrows():
cos_sim_m1.append(w2v_m1.wv.similarity(row[0],row[1]))
cos_sim_m1 = DataFrame(cos_sim_m1, columns=['cos_sim_m1'])
df = df.merge(cos_sim_m1, left_index=True, right_index=True)
cos_sim_m2 = []
for index, row in df.iterrows():
cos_sim_m2.append(w2v_m2.wv.similarity(row[0],row[1]))
cos_sim_m2 = DataFrame(cos_sim_m2, columns=['cos_sim_m2'])
df = df.merge(cos_sim_m2, left_index=True, right_index=True)
df["cos_sim_diffs"] = df["cos_sim_m1"] - df["cos_sim_m2"]
df_matrix = df.pivot("term1", "term2", "cos_sim_diffs")
return df_matrix
###Output
_____no_output_____
###Markdown
Let's pull in our dictionaries but filter to only the race and diversity entries:
###Code
race_diversity_early = earlier_model.wv.similarity('race','socialdiversity')
race_diversity_later = later_model.wv.similarity('race','socialdiversity')
racial_diversity_early = earlier_model.wv.similarity('racial','socialdiversity')
racial_diversity_later = later_model.wv.similarity('racial','socialdiversity')
ethnic_diversity_early = earlier_model.wv.similarity('ethnic','socialdiversity')
ethnic_diversity_later = later_model.wv.similarity('ethnic','socialdiversity')
ethnicity_diversity_early = earlier_model.wv.similarity('ethnicity','socialdiversity')
ethnicity_diversity_later = later_model.wv.similarity('ethnicity','socialdiversity')
black_div_early = earlier_model.wv.similarity('black','socialdiversity')
black_div_later = later_model.wv.similarity('black','socialdiversity')
afam_div_early = earlier_model.wv.similarity('africanamerican','socialdiversity')
afam_div_later = later_model.wv.similarity('africanamerican','socialdiversity')
white_div_early = earlier_model.wv.similarity('white','socialdiversity')
white_div_later = later_model.wv.similarity('white','socialdiversity')
caucasian_div_early = earlier_model.wv.similarity('caucasian','socialdiversity')
caucasian_div_later = later_model.wv.similarity('caucasian','socialdiversity')
hisp_div_early = earlier_model.wv.similarity('hispanic','socialdiversity')
hisp_div_later = later_model.wv.similarity('hispanic','socialdiversity')
asian_div_early = earlier_model.wv.similarity('asian','socialdiversity')
asian_div_later = later_model.wv.similarity('asian','socialdiversity')
latino_div_early = earlier_model.wv.similarity('latino','socialdiversity')
latino_div_later = later_model.wv.similarity('latino','socialdiversity')
native_div_early = earlier_model.wv.similarity('native','socialdiversity')
native_div_later = later_model.wv.similarity('native','socialdiversity')
print('Overall Comparisons of Racial and Diversity Terms:')
print('Race and socialdiversity: 1990-2000 score:', race_diversity_early, ' 2010-2020 score:', race_diversity_later, ' Difference is:', race_diversity_later-race_diversity_early )
print('Racial and socialdiversity: 1990-2000 score:', racial_diversity_early, ' 2010-2020 score:', racial_diversity_later, ' Difference is:', racial_diversity_later-racial_diversity_early)
print('Ethnic and socialdiversity: 1990-2000 score:', ethnic_diversity_early, ' 2010-2020 score:', ethnic_diversity_later, ' Difference is:', ethnic_diversity_later-ethnic_diversity_early)
print('Ethnicity and socialdiversity: 1990-2000 score:', ethnicity_diversity_early, ' 2010-2020 score:', ethnicity_diversity_later, ' Difference is:', ethnicity_diversity_later-ethnicity_diversity_early)
print('Black and socialdiversity: 1990-1995 score:', black_div_early, ' 2015-2020 score:', black_div_later, ' Difference is:', black_div_later-black_div_early)
print('African American and socialdiversity: 1990-1995 score:', afam_div_early, ' 2015-2020 score:', afam_div_later, ' Difference is:', afam_div_later-afam_div_early)
print('White and socialdiversity: 1990-1995 score:', white_div_early, ' 2015-2020 score:', white_div_later, ' Difference is:', white_div_later-white_div_early)
print('Caucasian and socialdiversity: 1990-1995 score:', caucasian_div_early, ' 2015-2020 score:', caucasian_div_later, ' Difference is:', caucasian_div_later-caucasian_div_early)
print('Hispanic and socialdiversity: 1990-1995 score:', hisp_div_early, ' 2015-2020 score:', hisp_div_later, ' Difference is:', hisp_div_later-hisp_div_early)
print('Latino and socialdiversity: 1990-1995 score:', latino_div_early, ' 2015-2020 score:', latino_div_later, ' Difference is:', latino_div_later-latino_div_early)
print('Asian and socialdiversity: 1990-1995 score:', asian_div_early, ' 2015-2020 score:', asian_div_later, ' Difference is:', asian_div_later-asian_div_early)
print('Native and socialdiversity: 1990-1995 score:', native_div_early, ' 2015-2020 score:', native_div_later, ' Difference is:', native_div_early-native_div_later)
###Output
Overall Comparisons of Racial and Diversity Terms:
Race and socialdiversity: 1990-2000 score: 0.1456064 2010-2020 score: 0.09730333 Difference is: -0.048303068
Racial and socialdiversity: 1990-2000 score: 0.3118446 2010-2020 score: 0.20273337 Difference is: -0.10911122
Ethnic and socialdiversity: 1990-2000 score: 0.3323195 2010-2020 score: 0.23735352 Difference is: -0.09496598
Ethnicity and socialdiversity: 1990-2000 score: 0.17747341 2010-2020 score: 0.17145237 Difference is: -0.0060210377
Black and socialdiversity: 1990-1995 score: 0.14626867 2015-2020 score: 0.10616236 Difference is: -0.040106304
African American and socialdiversity: 1990-1995 score: 0.19208874 2015-2020 score: 0.099406496 Difference is: -0.09268224
White and socialdiversity: 1990-1995 score: 0.10028377 2015-2020 score: 0.08158496 Difference is: -0.018698812
Caucasian and socialdiversity: 1990-1995 score: 0.31263688 2015-2020 score: 0.09052864 Difference is: -0.22210824
Hispanic and socialdiversity: 1990-1995 score: 0.24034366 2015-2020 score: 0.110881895 Difference is: -0.12946177
Latino and socialdiversity: 1990-1995 score: 0.22484964 2015-2020 score: 0.16707414 Difference is: -0.057775497
Asian and socialdiversity: 1990-1995 score: 0.36033434 2015-2020 score: 0.1751638 Difference is: -0.18517053
Native and socialdiversity: 1990-1995 score: 0.075064 2015-2020 score: 0.092080116 Difference is: -0.017016113
###Markdown
To interpret these scores, we have to know that a value of 1 means that two words have a perfect relationship, 0 means the two words have no relationship, and -1 means that they are perfect opposites ([Stack Overflow 2017](https://stackoverflow.com/questions/42381902/interpreting-negative-word2vec-similarity-from-gensim), [Google Groups 2019](https://groups.google.com/g/gensim/c/SZ1yct-7CuU)). Thus, when we compare all of the race, racial, ethnic and ethnicity vectors to diverse and diversity, we actually see that they are becoming *less* similar over time. Thus, despite our earlier hypotheses indicating that diversity is rising while racial terms decline, it does not seem to be the case that the two are being used in similar ways over time. It is worth noting that a number of things could complicate this interpretation, including the polysemy of diversity. Next, we will create a plot for this. We have to keep this grey scale, because sociologists are still living in the late 1900s. Before moving on to plots of these vectors, let's take a look at specific racial terms and see how they compare to diversity.
###Code
plt.figure(figsize=(6, 4))
sns.set_style("white")
d = {'group': [
'Asian', 'Latino', 'Hispanic', 'Caucasian', 'White',
'Black', 'African American', 'Ethnicity', 'Ethnic', 'Racial', 'Race'
],
'1990-2000': [
asian_div_early, latino_div_early, hisp_div_early, caucasian_div_early, white_div_early,
black_div_early, afam_div_early, ethnicity_diversity_early, ethnic_diversity_early, racial_diversity_early, race_diversity_early
],
'2010-2020': [
asian_div_later, latino_div_later, hisp_div_later, caucasian_div_later, white_div_later,
black_div_later, afam_div_later, ethnicity_diversity_later, ethnic_diversity_later, racial_diversity_later, race_diversity_later
]}
df = pd.DataFrame(data=d)
ordered_df = df
my_range=range(1,len(df.index)+1)
plt.hlines(y=my_range, xmin=ordered_df['1990-2000'], xmax=ordered_df['2010-2020'], color='lightgrey', alpha=0.4)
plt.scatter(ordered_df['1990-2000'], my_range, color='red', alpha=1, label='1990-2000')
plt.scatter(ordered_df['2010-2020'], my_range, color='skyblue', alpha=0.8 , label='2010-2020')
#plt.scatter(ordered_df['1990-2000'], my_range, color='black', alpha=1, label='1990-2000')
#plt.scatter(ordered_df['2010-2020'], my_range, color='dimgrey', alpha=0.4 , label='2010-2020')
plt.legend()
# Add title and axis names
plt.yticks(my_range, ordered_df['group'])
plt.title("Figure 4. Comparison of Racial/Ethnic Word Vectors Relative \n to the Social Diversity Vector for 1990-2000 and 2010-2020 Word2Vec Models", loc='center')
plt.xlabel('Cosine Similarity Scores')
#plt.ylabel('All Terms Compared to Diversity')
top_race_vectors.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/race_vectors_socdiv_0921.csv')
top_ethnicity_vectors.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/ethnicity_vectors_socdiv_0921.csv')
top_diversity_vectors.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/diversity_vectors_socdiv_0921.csv')
ordered_df.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/select_wv_comps_socdiv_0921.csv')
###Output
_____no_output_____
###Markdown
Overall, this approach gave us some mixed results. Asian and diversity/diverse become significantly more dissimilar while white and diversity/diverse become more similar. Once could argue that this supports Berrey's argument about diversity being used to reinforce whiteness, but it also might just be diverse/diversity being more to describe variation in neuroscience where a common term is 'white matter.' In the end, it might just be the case that the Word2Vec model's inability to deal with polysemy does not help us answer our research question. Before concluding that, let's look at visual plots of our vectors. Singular Value Decomposition In order to do that, we have to reduce the 512 dimension model into just 2 dimensions using the `TSNE` package. We will do this for both models, which will take around 30 minutes to run. Scroll down to see the results...
###Code
%%capture
earlier_vocab = list(earlier_model.wv.vocab)
earlier_x = earlier_model[earlier_vocab]
earlier_tsne = TSNE(n_components=2)
earlier_tsne_x = earlier_tsne.fit_transform(earlier_x)
df_earlier = pd.DataFrame(earlier_tsne_x, index=earlier_vocab, columns=['x', 'y'])
later_vocab = list(later_model.wv.vocab)
later_x = later_model[later_vocab]
later_tsne = TSNE(n_components=2)
later_tsne_x = later_tsne.fit_transform(later_x)
df_later = pd.DataFrame(later_tsne_x, index=later_vocab, columns=['x', 'y'])
keys = ['race', 'racial', 'ethnic', 'ethnicity', 'diverse', 'diversity']
earlier_embedding_clusters = []
earlier_word_clusters = []
for word in keys:
earlier_embeddings = []
earlier_words = []
for similar_word, _ in earlier_model.wv.most_similar(word, topn=30):
earlier_words.append(similar_word)
earlier_embeddings.append(earlier_model[similar_word])
earlier_embedding_clusters.append(earlier_embeddings)
earlier_word_clusters.append(earlier_words)
earlier_embedding_clusters = np.array(earlier_embedding_clusters)
n, m, k = earlier_embedding_clusters.shape
e_tsne_model_en_2d = TSNE(perplexity=15, n_components=2, init='pca', n_iter=3500, random_state=32)
e_embeddings_en_2d = np.array(e_tsne_model_en_2d.fit_transform(earlier_embedding_clusters.reshape(n * m, k))).reshape(n, m, 2)
later_embedding_clusters = []
later_word_clusters = []
for word in keys:
later_embeddings = []
later_words = []
for similar_word, _ in later_model.wv.most_similar(word, topn=30):
later_words.append(similar_word)
later_embeddings.append(later_model[similar_word])
later_embedding_clusters.append(later_embeddings)
later_word_clusters.append(later_words)
later_embedding_clusters = np.array(later_embedding_clusters)
n, m, k = later_embedding_clusters.shape
l_tsne_model_en_2d = TSNE(perplexity=15, n_components=2, init='pca', n_iter=3500, random_state=32)
l_embeddings_en_2d = np.array(l_tsne_model_en_2d.fit_transform(later_embedding_clusters.reshape(n * m, k))).reshape(n, m, 2)
###Output
_____no_output_____
###Markdown
Plotting the Results of the Word2Vec Models (1990-95 vs 2015-20)
###Code
def tsne_plot_similar_words(title, labels, earlier_embedding_clusters, earlier_word_clusters, a, filename=None):
plt.figure(figsize=(16, 9))
colors = cm.rainbow(np.linspace(0, 1, len(labels)))
for label, earlier_embeddings, earlier_words, color in zip(labels, earlier_embedding_clusters, earlier_word_clusters, colors):
x = earlier_embeddings[:, 0]
y = earlier_embeddings[:, 1]
plt.scatter(x, y, c=color, alpha=a, label=label)
for i, word in enumerate(earlier_words):
plt.annotate(word, alpha=0.5, xy=(x[i], y[i]), xytext=(5, 2),
textcoords='offset points', ha='right', va='bottom', size=10)
plt.legend(loc=4)
plt.title(title)
plt.grid(True)
if filename:
plt.savefig(filename, format='png', dpi=150, bbox_inches='tight')
plt.show()
early_plot = tsne_plot_similar_words('Comparing the Use of Race, Ethnicity and Diversity (Word2Vec Model of 1990-2000 PubMed Data)',
keys, e_embeddings_en_2d, earlier_word_clusters, 0.7, 'earlier_comparison.png')
early_plot
###Output
_____no_output_____
###Markdown
Now we can look at how the words in each vector of race, racial, ethnic, ethnicity, diversity and diverse. When we start to look at the specific terms of interest, we find racial and ethnic are the far left or toward the bottom-center. Other variants of these terms are more centered in the plot. On the other hand, diversity and diverse are both clustered toward the top-right, which means that race and diversity are fairly far away in the vector space.
###Code
def tsne_plot_similar_words(title, labels, later_embedding_clusters, later_word_clusters, a, filename=None):
plt.figure(figsize=(16, 9))
colors = cm.rainbow(np.linspace(0, 1, len(labels)))
for label, later_embeddings, later_words, color in zip(labels, later_embedding_clusters, later_word_clusters, colors):
x = later_embeddings[:, 0]
y = later_embeddings[:, 1]
plt.scatter(x, y, c=color, alpha=a, label=label)
for i, word in enumerate(later_words):
plt.annotate(word, alpha=0.5, xy=(x[i], y[i]), xytext=(5, 2),
textcoords='offset points', ha='right', va='bottom', size=10)
plt.legend(loc=4)
plt.title(title)
plt.grid(True)
if filename:
plt.savefig(filename, format='png', dpi=150, bbox_inches='tight')
plt.show()
later_plot = tsne_plot_similar_words('Comparing the Use of Race, Ethnicity and Diversity (Word2Vec Model of 2010-2020 PubMed Data)',
keys, l_embeddings_en_2d, later_word_clusters,
0.7, 'later_comparison.png')
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/word_embeddings/")
plt.savefig('later_comparison.png')
later_plot
###Output
_____no_output_____
###Markdown
When we look at the same vectors in the 2015-20 model, it seems like the vectors are more closely related overall. However, when we look closer we see that the 'race' and 'ethnicity' are up in the top-left corner while 'racial' and 'ethnic' are in the top-right corner. Both sets are still fairly separated from the red and orange diversity vectors. Although these plots do not show this as clear as one might want, our analyses above do suggest that diverse and diversity as well as race, racial, ethnic, and ethinicity are being used more dissimilarly over time. The challenging thing about this analysis disentangling the polysemy from how diversity is used. If we were able to 'disentange' the use of diveristy in its more general sense compared to its usage in the context of equity, inclusion and justice discussions, would we find that the two words are becoming more similar over time? Does diversity replace race/ethnicity?: Contextualizing Word Vectors with Heat MapsAfter consulting some colleagues, we thought about two potential ways to test this. The first would be to turn to BERT or ELMo ([Fonteyn 2019](https://laurenthelinguist.files.wordpress.com/2019/08/sle_2019_bert.pdf); [Rakhmanberdieva 2019](https://towardsdatascience.com/word-representation-in-natural-language-processing-part-iii-2e69346007f)), which would allow us to identify the contexual variations in how diversity is used. The problem is that BERT, for example, is trained on Wikipedia data that is not historical. There are BERT options like PubMedBERT and BioBERT, but they are trained on the entirety of the PubMed abstracts, which fails to help us identify historical variations in how the terms change. Moreover, it would not make much sense to fine tune a BERT model on the same data in which it was already trained on. Thus, we ruled out BERT as an option. Instead, we decided to continue using Word2Vec and instead compare the diveristy vector to a myriad of other vectors that we measured in H1. Our logic was that if we see diversity become more semantically similar to other diversity-related vectors over time time, while also moving further away from the racial/ethic vectors, we could infer that diversity is actually replacing race/ethnicity in biomedical abstracts over time. To do this, I developed a function named `w2v_similarities_over_time()` that calculates the difference between all the words witin a dictionary of terms and then compares how they have changed relative to one another over time. Specifically, I will be comparing how diverse and diversity change relative to the terms in our race/ethnicity, sex/gender, sexuality, social class, and cultural/equity categories from [Hypotheses 1 and 2](https://growthofdiversity.netlify.app/methods/). Then, I will visualize the results of these models comparisons using some heat maps.First step is importing our H1 library so we can pluck out all of the vectors for a heat map in a relatively automated manner.
###Code
# load dictionary of words
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
h1_dictionary = pd.read_csv("diversity_project - tree_data.csv")
h1_dictionary = h1_dictionary[h1_dictionary['viz_embeddings'] == 1].drop(['hypothesis', 'viz_embeddings', 'mean_embeddings'], axis=1)
h1_dictionary = h1_dictionary.replace({'category': {'asian|black|hispanic_latinx|white': 'race_ethnicity'}}, regex=True)
h1_dictionary = h1_dictionary.replace({'category': {'sex_gender|sexuality': 'gender_sexuality'}}, regex=True)
h1_dictionary = h1_dictionary.replace({'category': {'cultural|equity': 'cultural_equity'}}, regex=True)
h1_dictionary = h1_dictionary.replace({'category': {'minority': 'social_class'}}, regex=True).sort_values(by=['category', 'term'])
#recode for social diversity
h1_dictionary = h1_dictionary.replace({'term': {'diverse': 'socialdiverse'}}, regex=True).sort_values(by=['category', 'term'])
h1_dictionary = h1_dictionary.replace({'term': {'diversely': 'socialdiversely'}}, regex=True).sort_values(by=['category', 'term'])
h1_dictionary = h1_dictionary.replace({'term': {'diversified': 'socialdiversified'}}, regex=True).sort_values(by=['category', 'term'])
h1_dictionary = h1_dictionary.replace({'term': {'diversification': 'socialdiversification'}}, regex=True).sort_values(by=['category', 'term'])
h1_dictionary = h1_dictionary.replace({'term': {'diversifying': 'socialdiversifying'}}, regex=True).sort_values(by=['category', 'term'])
h1_dictionary = h1_dictionary.replace({'term': {'diversity': 'socialdiversity'}}, regex=True).sort_values(by=['category', 'term'])
# manual deletion after chatting with catherine
h1_dictionary = h1_dictionary[~h1_dictionary['term'].isin(['socialdiverse', 'negro', 'ethnic', 'racist', 'racial',
'homosexual', 'men', 'women', 'inequality', 'equality'])]
h1_dictionary
#h1_dictionary[h1_dictionary['category'].isin(['diversity'])]
###Output
_____no_output_____
###Markdown
Next, we will define our `w2v_similarities_over_time()` function.
###Code
def w2v_similarities_over_time(df, w2v_m1, w2v_m2):
'''
function compares several word2vec vectors from two different years
and then examines how those several comparisons change over time
----------------------------------------------------------------
1) first it takes a dictionary of words and creates its product
2) compares all of those words within the vector space of w2v_m1
3) compares all of those words within the vector space of w2v_m2
4) examines changes in the comparisons of w2v_m1 and w2v_m2 over time
'''
df = list(product(df['term'], df['term']))
df = pd.DataFrame(df, columns=['term1','term2'])
cos_sim_m1 = []
for index, row in df.iterrows():
cos_sim_m1.append(w2v_m1.wv.similarity(row[0],row[1]))
cos_sim_m1 = DataFrame(cos_sim_m1, columns=['cos_sim_m1'])
df = df.merge(cos_sim_m1, left_index=True, right_index=True)
cos_sim_m2 = []
for index, row in df.iterrows():
cos_sim_m2.append(w2v_m2.wv.similarity(row[0],row[1]))
cos_sim_m2 = DataFrame(cos_sim_m2, columns=['cos_sim_m2'])
df = df.merge(cos_sim_m2, left_index=True, right_index=True)
df["cos_sim_diffs"] = df["cos_sim_m2"] - df["cos_sim_m1"]
df_matrix = df.pivot("term1", "term2", "cos_sim_diffs")
return df_matrix
###Output
_____no_output_____
###Markdown
And check to make sure we get the same results as above...
###Code
race_ethnicity = h1_dictionary[(h1_dictionary['category'] == 'race_ethnicity') |
(h1_dictionary['category'] == 'diversity')]
race_ethnicity_matrix = w2v_similarities_over_time(race_ethnicity, earlier_model, later_model)
race_ethnicity_matrix
###Output
_____no_output_____
###Markdown
These do look similar to the basic plot we created above.So now we will create each of our four heat maps and combine them into a joint figure for publication (again in grey scale for the sociologists)...
###Code
sns.set(rc={'figure.figsize':(8,5)})
sns.set_style("whitegrid")
cultural_equity = h1_dictionary[(h1_dictionary['category'] == 'cultural_equity') |
(h1_dictionary['category'] == 'diversity')]
cultural_equity = cultural_equity[~cultural_equity['term'].isin(['interlinguistic', 'oppressive', 'religion', 'religiosity'])]
cultural_equity_matrix = w2v_similarities_over_time(cultural_equity, earlier_model, later_model)
cmap = sns.diverging_palette(20, 230, as_cmap=True)
#cmap = sns.cubehelix_palette(200, hue=0.05, rot=0, light=0, dark=0.9)
#corr_cultural = cultural_equity_matrix.corr()
#mask_cultural = np.triu(np.ones_like(corr_cultural, dtype=bool))
cultural_equity_heatmap = sns.heatmap(cultural_equity_matrix, center=0, #mask=mask_cultural,
cmap=cmap)
race_ethnicity = h1_dictionary[(h1_dictionary['category'] == 'race_ethnicity') |
(h1_dictionary['category'] == 'diversity')]
race_ethnicity_matrix = w2v_similarities_over_time(race_ethnicity, earlier_model, later_model)
#corr_race = race_ethnicity_matrix.corr()
#mask_race = np.triu(np.ones_like(corr_race, dtype=bool))
race_ethnicity_heatmap = sns.heatmap(race_ethnicity_matrix, #mask=mask_race,
center=0, cmap=cmap).set_title("Figure 4B. Racial and Ethnic Vectors")
gender_sexuality = h1_dictionary[(h1_dictionary['category'] == 'gender_sexuality') |
(h1_dictionary['category'] == 'diversity')]
gender_sexuality_matrix = w2v_similarities_over_time(gender_sexuality, earlier_model, later_model)
#corr_gender = gender_sexuality_matrix.corr()
#mask_gender = np.triu(np.ones_like(corr_gender, dtype=bool))
gender_sexuality_heatmap = sns.heatmap(gender_sexuality_matrix, center=0, #mask=mask_gender,
cmap=cmap).set_title("Figure 4C. Gender and Sexuality Vectors")
social_class = h1_dictionary[(h1_dictionary['category'] == 'social_class') |
(h1_dictionary['category'] == 'diversity')]
social_class_matrix = w2v_similarities_over_time(social_class, earlier_model, later_model)
#corr_class = social_class_matrix.corr()
#mask_class = np.triu(np.ones_like(corr_class, dtype=bool))
social_class_heatmap = sns.heatmap(social_class_matrix, center=0, #mask=mask_class,
cmap=cmap).set_title("Figure 4D. Socio-Economic Vectors")
sns.set(rc={'figure.figsize':(14,9)})
sns.set_style("whitegrid")
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, constrained_layout=False)
# race/ethnicity
race_ethnicity_g = sns.heatmap(race_ethnicity_matrix, center=0, cmap=cmap, ax=ax1)
race_ethnicity_labels = race_ethnicity['term'].sort_values().tolist()
N = len(race_ethnicity_labels)
race_label = 'socialdiversity'
race_index = race_ethnicity_labels.index(race_label)
x, y, w, h = 0, race_index, N, 1
for _ in range(2):
race_ethnicity_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
race_ethnicity_g.set_title("Figure 5A. Racial and Ethnic Vectors")
race_ethnicity_g.set(xlabel=None)
race_ethnicity_g.set(ylabel=None)
race_ethnicity_g.set_xticklabels(race_ethnicity_g.get_xticklabels(), rotation=40, horizontalalignment='right')
## cultural
cultural_equity_g = sns.heatmap(cultural_equity_matrix, center=0, cmap=cmap, ax=ax2)
cultural_labels = cultural_equity['term'].sort_values().tolist()
N = len(cultural_labels)
cultural_label = 'socialdiversity'
cultural_index = cultural_labels.index(cultural_label)
x, y, w, h = 0, cultural_index, N, 1
for _ in range(2):
cultural_equity_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
cultural_equity_g.set_title("Figure 5B. Cultural and Equity/Justice Vectors")
cultural_equity_g.set(xlabel=None)
cultural_equity_g.set(ylabel=None)
cultural_equity_g.set_xticklabels(cultural_equity_g.get_xticklabels(), rotation=40, horizontalalignment='right')
# socio-economic
social_class_g = sns.heatmap(social_class_matrix, center=0, cmap=cmap, ax=ax3)
ses_labels = social_class['term'].sort_values().tolist()
N = len(ses_labels)
ses_label = 'socialdiversity'
ses_index = ses_labels.index(ses_label)
x, y, w, h = 0, ses_index, N, 1
for _ in range(2):
social_class_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
social_class_g.set_title("Figure 5C. Socio-Economic Vectors")
social_class_g.set(xlabel=None)
social_class_g.set(ylabel=None)
social_class_g.set_xticklabels(social_class_g.get_xticklabels(), rotation=40, horizontalalignment='right')
# sex/gender
gender_sexuality_g = sns.heatmap(gender_sexuality_matrix, center=0, cmap=cmap, ax=ax4)
gender_labels = gender_sexuality['term'].sort_values().tolist()
N = len(gender_labels)
gender_label = 'socialdiversity'
gender_index = gender_labels.index(gender_label)
x, y, w, h = 0, gender_index, N, 1
for _ in range(2):
gender_sexuality_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
gender_sexuality_g.set_title("Figure 5D. Gender and Sexuality Vectors")
gender_sexuality_g.set(xlabel=None)
gender_sexuality_g.set(ylabel=None)
gender_sexuality_g.set_xticklabels(gender_sexuality_g.get_xticklabels(), rotation=40, horizontalalignment='right')
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5)
###Output
_____no_output_____
###Markdown
The final product provides some interesting results. It sure looks like diversity is generally more similar to most of the vectors apart from the race/ethnicity vectors, which could suggest that diversity is replacing race/ethnicity within in the context of articles that are examining other historically underrepresented populations in biomedical research.
###Code
# load dictionary of words
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
national_terms = pd.read_csv("diversity_project - national_embeddings.csv")
national_terms = national_terms.replace({'term': {'diversity': 'socialdiversity'}}, regex=True)
national_terms.head()
sns.set(rc={'figure.figsize':(8,5)})
sns.set_style("whitegrid")
national_asian = national_terms[(national_terms['category'] == 'asian') |
(national_terms['category'] == 'diversity')]
national_asian_matrix = w2v_similarities_over_time(national_asian, earlier_model, later_model)
cmap = sns.diverging_palette(20, 230, as_cmap=True)
national_asian_heatmap = sns.heatmap(national_asian_matrix, center=0, cmap=cmap)
sns.set(rc={'figure.figsize':(8,5)})
sns.set_style("whitegrid")
national_europe = national_terms[(national_terms['category'] == 'europe') |
(national_terms['category'] == 'diversity')]
national_europe_matrix = w2v_similarities_over_time(national_europe, earlier_model, later_model)
cmap = sns.diverging_palette(20, 230, as_cmap=True)
national_europe_heatmap = sns.heatmap(national_europe_matrix, center=0, cmap=cmap)
sns.set(rc={'figure.figsize':(8,5)})
sns.set_style("whitegrid")
national_americas = national_terms[(national_terms['category'] == 'americas') |
(national_terms['category'] == 'diversity')]
national_americas_matrix = w2v_similarities_over_time(national_americas, earlier_model, later_model)
cmap = sns.diverging_palette(20, 230, as_cmap=True)
national_americas_heatmap = sns.heatmap(national_americas_matrix, center=0, cmap=cmap)
sns.set(rc={'figure.figsize':(8,5)})
sns.set_style("whitegrid")
national_africa = national_terms[(national_terms['category'] == 'africa') |
(national_terms['category'] == 'diversity')]
national_africa_matrix = w2v_similarities_over_time(national_africa, earlier_model, later_model)
cmap = sns.diverging_palette(20, 230, as_cmap=True)
national_africa_heatmap = sns.heatmap(national_africa_matrix, center=0, cmap=cmap)
sns.set(rc={'figure.figsize':(14,9)})
sns.set_style("whitegrid")
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, constrained_layout=False)
## cultural
national_asian_g = sns.heatmap(national_asian_matrix, center=0, cmap=cmap, ax=ax1)
national_asian_labels = national_asian['term'].sort_values().tolist()
N = len(national_asian_labels)
national_asian_label = 'socialdiversity'
national_asian_index = national_asian_labels.index(national_asian_label)
x, y, w, h = 0, national_asian_index, N, 1
for _ in range(2):
national_asian_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
national_asian_g.set_title("Figure 6A. Top-10 Asian Vectors")
national_asian_g.set(xlabel=None)
national_asian_g.set(ylabel=None)
national_asian_g.set_xticklabels(national_asian_g.get_xticklabels(), rotation=40, horizontalalignment='right')
# race/ethnicity
national_europe_g = sns.heatmap(national_europe_matrix, center=0, cmap=cmap, ax=ax2)
national_europe_labels = national_europe['term'].sort_values().tolist()
N = len(national_europe_labels)
national_europe_label = 'socialdiversity'
national_europe_index = national_europe_labels.index(national_europe_label)
x, y, w, h = 0, national_europe_index, N, 1
for _ in range(2):
national_europe_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
national_europe_g.set_title("Figure 6B. Top-10 European Vectors")
national_europe_g.set(xlabel=None)
national_europe_g.set(ylabel=None)
national_europe_g.set_xticklabels(national_europe_g.get_xticklabels(), rotation=40, horizontalalignment='right')
# sex/gender
national_americas_g = sns.heatmap(national_americas_matrix, center=0, cmap=cmap, ax=ax3)
national_americas_labels = national_americas['term'].sort_values().tolist()
N = len(national_americas_labels)
national_americas_label = 'socialdiversity'
national_americas_index = national_americas_labels.index(national_americas_label)
x, y, w, h = 0, national_americas_index, N, 1
for _ in range(2):
national_americas_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
national_americas_g.set_title("Figure 6C. Top-10 American Vectors")
national_americas_g.set(xlabel=None)
national_americas_g.set(ylabel=None)
national_americas_g.set_xticklabels(national_americas_g.get_xticklabels(), rotation=40, horizontalalignment='right')
# socio-economic
national_africa_g = sns.heatmap(national_africa_matrix, center=0, cmap=cmap, ax=ax4)
national_africa_labels = national_africa['term'].sort_values().tolist()
N = len(national_africa_labels)
national_africa_label = 'socialdiversity'
national_africa_index = national_africa_labels.index(national_africa_label)
x, y, w, h = 0, national_africa_index, N, 1
for _ in range(2):
national_africa_g.add_patch(Rectangle((x, y), w, h, fill=False, edgecolor='black', lw=2, clip_on=False))
x, y, w, h = y, x, h, w
national_africa_g.set_title("Figure 6D. Top-10 African Vectors")
national_africa_g.set(xlabel=None)
national_africa_g.set(ylabel=None)
national_africa_g.set_xticklabels(national_africa_g.get_xticklabels(), rotation=40, horizontalalignment='right')
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5)
###Output
_____no_output_____
###Markdown
Mean Differences Let's define a function that compares the mean differences for all terms within each category so that we can make better sense of the visualizations.
###Code
def w2v_sim_mean_comps(df, w2v_m1, w2v_m2):
df = list(product(df['term'], df['term']))
df = pd.DataFrame(df, columns=['term1','term2'])
cos_sim_m1 = []
for index, row in df.iterrows():
cos_sim_m1.append(w2v_m1.wv.similarity(row[0],row[1]))
cos_sim_m1 = DataFrame(cos_sim_m1, columns=['cos_sim_m1'])
df = df.merge(cos_sim_m1, left_index=True, right_index=True)
cos_sim_m2 = []
for index, row in df.iterrows():
cos_sim_m2.append(w2v_m2.wv.similarity(row[0],row[1]))
cos_sim_m2 = DataFrame(cos_sim_m2, columns=['cos_sim_m2'])
df = df.merge(cos_sim_m2, left_index=True, right_index=True)
df["cos_sim_diffs"] = df["cos_sim_m2"] - df["cos_sim_m1"]
return df
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
h1_allterms = pd.read_csv("diversity_project - tree_data.csv")
h1_allterms = h1_allterms[h1_allterms['term'].isin(list(earlier_model.wv.key_to_index))]
h1_allterms['term'] = h1_allterms['term'].str.replace('_', '', regex=True)
h1_allterms = h1_allterms[~h1_allterms['term'].isin(['intersexual'])]
h1_allterms = h1_allterms.replace({'term': {'diverse': 'socialdiverse'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversely': 'socialdiversely'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversified': 'socialdiversified'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversification': 'socialdiversification'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversifying': 'socialdiversifying'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversity': 'socialdiversity'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
h1_allterms = pd.read_csv("diversity_project - tree_data.csv")
h1_allterms = h1_allterms[h1_allterms['term'].isin(list(earlier_model.wv.key_to_index))]
h1_allterms['term'] = h1_allterms['term'].str.replace('_', '', regex=True)
h1_allterms = h1_allterms[~h1_allterms['term'].isin(['intersexual'])]
h1_allterms = h1_allterms.replace({'term': {'diverse': 'socialdiverse'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversely': 'socialdiversely'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversified': 'socialdiversified'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversification': 'socialdiversification'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversifying': 'socialdiversifying'}}, regex=True).sort_values(by=['category', 'term'])
h1_allterms = h1_allterms.replace({'term': {'diversity': 'socialdiversity'}}, regex=True).sort_values(by=['category', 'term'])
list_of_terms = ['cultural', 'disability', 'equity', 'lifecourse', 'migration',
'minority', 'race_ethnicity', 'sex_gender', 'sexuality', 'social_class']
aggregated_means = pd.DataFrame(columns = ['term1', 'term2', 'cos_sim_m1', 'cos_sim_m2', 'cos_sim_diffs', 'group'])
for term in list_of_terms:
tmp_dictionary = h1_allterms[(h1_allterms['category'] == term) | (h1_allterms['term'] == 'socialdiversity')]
comp_outcomes = w2v_sim_mean_comps(tmp_dictionary, earlier_model, later_model)
comp_outcomes = comp_outcomes[(comp_outcomes['term1'] == 'socialdiversity') & (comp_outcomes['term2'] != 'socialdiversity')]
comp_outcomes['group'] = [term] * len(comp_outcomes)
aggregated_means = pd.concat([aggregated_means, comp_outcomes])
aggregated_means = aggregated_means.groupby(by=["group"]).mean().round(3)
aggregated_means.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/socdiv_mean_h1_comps_0921.csv')
aggregated_means
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
h3_dictionary = pd.read_csv("diversity_project - h3_dictionary.csv")
h3_dictionary = h3_dictionary[h3_dictionary['term'].isin(list(earlier_model.wv.key_to_index))]
h3_dictionary = h3_dictionary.drop(['str_type','regional','subclass','source','date_added'], axis=1)
category_analysis = h3_dictionary.drop(['continental'], axis=1)
#category_analysis = category_analysis[category_analysis['mean_embeddings'] == 1]
#category_analysis = category_analysis.drop(['mean_embeddings'], axis=1)
#category_analysis = category_analysis[~category_analysis['term'].str.contains("s$")]
category_analysis = category_analysis[~category_analysis['term'].str.contains("_")]
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
h3_div_subset = pd.read_csv("diversity_project - tree_data.csv")
h3_div_subset = h3_div_subset.drop(['viz_embeddings','mean_embeddings','hypothesis'], axis=1)
h3_div_subset = h3_div_subset[h3_div_subset['category'] == 'diversity']
h3_div_subset = h3_div_subset[['term', 'category']]
h3_div_subset = h3_div_subset.replace({'term': {'diverse': 'socialdiverse'}}, regex=True).sort_values(by=['category', 'term'])
h3_div_subset = h3_div_subset.replace({'term': {'diversely': 'socialdiversely'}}, regex=True).sort_values(by=['category', 'term'])
h3_div_subset = h3_div_subset.replace({'term': {'diversified': 'socialdiversified'}}, regex=True).sort_values(by=['category', 'term'])
h3_div_subset = h3_div_subset.replace({'term': {'diversification': 'socialdiversification'}}, regex=True).sort_values(by=['category', 'term'])
h3_div_subset = h3_div_subset.replace({'term': {'diversifying': 'socialdiversifying'}}, regex=True).sort_values(by=['category', 'term'])
h3_div_subset = h3_div_subset.replace({'term': {'diversity': 'socialdiversity'}}, regex=True).sort_values(by=['category', 'term'])
category_analysis = pd.concat([category_analysis, h3_div_subset])
category_analysis
list_of_terms = ['continental', 'directional', 'national', 'omb/us census', 'race/ethnicity', 'subcontinental', 'subnational']
aggregated_means = pd.DataFrame(columns = ['term1', 'term2', 'cos_sim_m1', 'cos_sim_m2', 'cos_sim_diffs', 'group'])
for term in list_of_terms:
tmp_dictionary = category_analysis[(category_analysis['category'] == term) | (category_analysis['term'] == 'socialdiversity')]
comp_outcomes = w2v_sim_mean_comps(tmp_dictionary, earlier_model, later_model)
comp_outcomes = comp_outcomes[(comp_outcomes['term1'] == 'socialdiversity') & (comp_outcomes['term2'] != 'socialdiversity')]
comp_outcomes['group'] = [term] * len(comp_outcomes)
aggregated_means = pd.concat([aggregated_means, comp_outcomes])
aggregated_means = aggregated_means.groupby(by=["group"]).mean().round(3)
aggregated_means.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/socdiv_mean_h3_comps_0921.csv')
aggregated_means
os.chdir("/sfs/qumulo/qhome/kb7hp/git/diversity/data/dictionaries/")
h3_dictionary = pd.read_csv("diversity_project - h3_dictionary.csv")
h3_dictionary = h3_dictionary[h3_dictionary['term'].isin(list(earlier_model.wv.key_to_index))]
h3_dictionary = h3_dictionary.drop(['str_type','regional','subclass','source','date_added'], axis=1)
national_means = h3_dictionary[h3_dictionary['category'] == 'national']
#national_means = national_means[national_means['mean_embeddings'] == 1]
national_means = national_means.drop(['category','mean_embeddings'], axis=1)
national_means = national_means.rename(columns={'continental': 'category'})
national_means = national_means[~national_means['term'].str.contains("s$")]
national_means = national_means[~national_means['term'].str.contains("_")]
national_means = pd.concat([national_means, h3_div_subset])
national_means
list_of_terms = ['africa', 'asia', 'europe', 'north america', 'oceania', 'south america']
aggregated_means = pd.DataFrame(columns = ['term1', 'term2', 'cos_sim_m1', 'cos_sim_m2', 'cos_sim_diffs', 'group'])
for term in list_of_terms:
tmp_dictionary = national_means[(national_means['category'] == term) | (national_means['term'] == 'socialdiversity')]
comp_outcomes = w2v_sim_mean_comps(tmp_dictionary, earlier_model, later_model)
comp_outcomes = comp_outcomes[(comp_outcomes['term1'] == 'socialdiversity') & (comp_outcomes['term2'] != 'socialdiversity')]
comp_outcomes['group'] = [term] * len(comp_outcomes)
aggregated_means = pd.concat([aggregated_means, comp_outcomes])
aggregated_means = aggregated_means.groupby(by=["group"]).mean().round(3)
aggregated_means.to_csv('/sfs/qumulo/qhome/kb7hp/git/diversity/data/final_data/socdiv_mean_pop_comps_0921.csv')
aggregated_means
###Output
_____no_output_____ |
Assignment-day_1.ipynb | ###Markdown
Questions 1:Given the following jumbled word, OBANWRI guess the correct English word.A. RANIBOWB. RAINBOWC. BOWRANID. ROBWANI
###Code
input_word =input("Enter Your choice for jumbled word OBANWRI : A. RANIBOW , B. RAINBOW, C. BOWRANI, D. ROBWANI : " )
if input_word.title() == 'A':
print("Your choice is Worng")
elif input_word.title() =='B':
print("Your choice is Right")
elif input_word.title() =='C':
print("Your choice is Worng")
elif input_word.title() =='D':
print("Your choice is Worng")
else:
print("You Entered Worng Choice For given jumbled word")
###Output
Enter Your choice for jumbled word OBANWRI : A. RANIBOW , B. RAINBOW, C. BOWRANI, D. ROBWANI : b
Your choice is Right
###Markdown
Questions 2:Write a program which prints “LETS UPGRADE”. (Please note that you have toprint in ALL CAPS as given)
###Code
firstWord = 'lets'
lastWord = 'upgrade'
print(firstWord.upper() +' '+ lastWord.upper())
###Output
LETS UPGRADE
###Markdown
Questions 3:Write a program that takes cost price and selling price as input and displays whether the transaction is aProfit or a Loss or Neither.
###Code
print("Enter the Cost price of commodity : ")
costPrice = int(input())
print("Enter the selling price of commodity : ")
sellPrice = int(input())
transaction = sellPrice - costPrice
if transaction > 0 :
print("You Earned a profit of : " , transaction)
elif transaction < 0 :
print("You are in loss of : ", transaction)
else:
print("You had neither in loss nor in profit ")
###Output
Enter the Cost price of commodity :
50
Enter the selling price of commodity :
100
You Earned a profit of : 50
###Markdown
Questions 4:Write a program that takes cost price and selling price as input and displays whether the transaction is aProfit or a Loss or Neither.INPUT FORMATThe first line contains the cost price.The second line contains the selling price.OUTPUT FORMATPrint "Profit" if the transaction is a profit or "Loss" if it is a loss. If it is neitherprofit nor loss, print "Neither". (You must not have quotes in your output)NOTE:Please stick to the input and output format. Don't add anything extra like'Enter cost price', 'Enter selling price', etc.
###Code
costPrice = int(input())
sellPrice = int(input())
transaction = sellPrice - costPrice
if transaction > 0 :
print("Profit")
elif transaction < 0 :
print("Loss")
else:
print("Neither")
###Output
23
43
Profit
###Markdown
Questions 5:Write a program that takes an amount in Indian Rupees as input. You need to find its equivalentin Euro and display it. Assume 1 Euro equals Rs. 80.Please note that you are expected to stick to the given input and outputformat as in sample test cases. Please don't add any extra lines such as'Enter a number', etc.Your program should take only one number as input and display the output.
###Code
indianRu = int(input())
euro = indianRu/80
print(euro)
###Output
500
6.25
|
11 - Introduction to Python/8_Iteration/6_Iterating over Dictionaries (6:21)/Iterating over Dictionaries - Exercise_Py3.ipynb | ###Markdown
Iterating over Dictionaries In this exercise you will use the same dictionaries as the ones we used in the lesson - "prices" and "quantity". This time, don't just calculate all the money Jan spent. Calculate how much she spent on products with a price of 5 dollars or more.
###Code
prices = {
"box_of_spaghetti" : 4,
"lasagna" : 5,
"hamburger" : 2
}
quantity = {
"box_of_spaghetti" : 6,
"lasagna" : 10,
"hamburger" : 0
}
money_spent = 0
###Output
_____no_output_____
###Markdown
And how much did Jan spent on products that cost less than 5 dollars?
###Code
prices = {
"box_of_spaghetti" : 4,
"lasagna" : 5,
"hamburger" : 2
}
quantity = {
"box_of_spaghetti" : 6,
"lasagna" : 10,
"hamburger" : 0
}
money_spent = 0
###Output
_____no_output_____ |
d2l-en/chapter_attention-mechanism/seq2seq-attention.ipynb | ###Markdown
Sequence to Sequence with Attention MechanismIn this section, we add the attention mechanism to the sequence to sequencemodel introduced in :numref:`chapter_seq2seq`to explicitly select state. :numref:`fig_s2s_attention` shows the modelarchitecture for a decoding time step. As can be seen, the memory of theattention layer consists of the encoder outputs of each time step. Duringdecoding, the decoder output from the previous time step is used as the query,the attention output is then fed into the decoder with the input to provideattentional context information.:label:`fig_s2s_attention`The layer structure in the encoder and the decoder is shown in :numref:`fig_s2s_attention_details`.:label:`fig_s2s_attention_details`
###Code
import d2l
from mxnet import nd
from mxnet.gluon import rnn, nn
###Output
_____no_output_____
###Markdown
DecoderNow let's implement the decoder of this model. We add a MLP attention layer which has the same hidden size as the LSTM layer. The state passed from the encoder to the decoder contains three items:- the encoder outputs of all time steps, which are used as the attention layer's memory with identical keys and values- the hidden state of the last time step that is used to initialize the encoder's hidden state- valid lengths of the decoder inputs so the attention layer will not consider encoder outputs for padding tokens.In each time step of decoding, we use the output of the last RNN layer as the query for the attention layer. Its output is then concatenated with the input embedding vector to feed into the RNN layer. Despite the RNN layer hidden state also contains history information from decoder, the attention output explicitly selects the encoder outputs that are correlated to the query and suspends other non-correlated information.
###Code
class Seq2SeqAttentionDecoder(d2l.Decoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
self.attention_cell = d2l.MLPAttention(num_hiddens, dropout)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Dense(vocab_size, flatten=False)
def init_state(self, enc_outputs, enc_valid_len, *args):
outputs, hidden_state = enc_outputs
# Transpose outputs to (batch_size, seq_len, hidden_size)
return (outputs.swapaxes(0,1), hidden_state, enc_valid_len)
def forward(self, X, state):
enc_outputs, hidden_state, enc_valid_len = state
X = self.embedding(X).swapaxes(0, 1)
outputs = []
for x in X:
# query shape: (batch_size, 1, hidden_size)
query = hidden_state[0][-1].expand_dims(axis=1)
# context has same shape as query
context = self.attention_cell(
query, enc_outputs, enc_outputs, enc_valid_len)
# concatenate on the feature dimension
x = nd.concat(context, x.expand_dims(axis=1), dim=-1)
# reshape x to (1, batch_size, embed_size+hidden_size)
out, hidden_state = self.rnn(x.swapaxes(0, 1), hidden_state)
outputs.append(out)
outputs = self.dense(nd.concat(*outputs, dim=0))
return outputs.swapaxes(0, 1), [enc_outputs, hidden_state,
enc_valid_len]
###Output
_____no_output_____
###Markdown
Use the same hyper-parameters to create an encoder and decoder as in :numref:`chapter_seq2seq`, we get the same decoder output shape, but the state structure is changed.
###Code
encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8,
num_hiddens=16, num_layers=2)
encoder.initialize()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8,
num_hiddens=16, num_layers=2)
decoder.initialize()
X = nd.zeros((4, 7))
state = decoder.init_state(encoder(X), None)
out, state = decoder(X, state)
out.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape
###Output
_____no_output_____
###Markdown
TrainingAgain, we use the same training hyper-parameters as in:numref:`chapter_seq2seq`. The training loss is similar to the seq2seq model, because thesequences in the training dataset are relative short. The additional attentionlayer doesn't lead to a significant different. But due to both attention layercomputational overhead and we unroll the time steps in the decoder, this modelis much slower than the seq2seq model.
###Code
embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
batch_size, num_steps = 64, 10
lr, num_epochs, ctx = 0.005, 200, d2l.try_gpu()
src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(
len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(
len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
model = d2l.EncoderDecoder(encoder, decoder)
d2l.train_s2s_ch8(model, train_iter, lr, num_epochs, ctx)
###Output
loss 0.031, 4992 tokens/sec on gpu(0)
###Markdown
Lastly, we predict several sample examples.
###Code
for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
print(sentence + ' => ' + d2l.predict_s2s_ch8(
model, sentence, src_vocab, tgt_vocab, num_steps, ctx))
###Output
Go . => va !
|
Examples/Google Drive Integration - Workbook.ipynb | ###Markdown
Information * Test Project ID: optimum-column-273718* Project Name: PozzoIntegrationT1* Organization: uw.edu* Location: uw.edu Goals * integration of Gdrive API and Python * done - use of a client_secrets.json file a Group Project request for API access* Movement through Gdrive * done - relys on file/folder ID's - need to read and save the ones you want* Uploading a new folder - or updating an existing folder from python information * Done - will download it to the current folder but will rewrite every time it is downloaded and can then be read into python* Pulling information from Gdrive into Python - saving as a dataframe * Done - can be pulled into Python and edited as a dataframe. * pickling useful fileID's and saving the file paths for ease of use* * searching title names - within the Gdrive folder itself * search loops that loop through all folders/files until there is a match* searching the information within the Gdrive folder itself* * Modifying metadata*?* to update information* * Optimizing Gdrive structure for searching - * Branching of structure? by instrument? by person? by experiment? by materials? by date? * Project - instrument - person - date? * Instrument - person - experiment - date? * Pozzo Group - All Data - ()* Organize HDF5 files in Gdrive? how does the connections work? Imports
###Code
import pandas as pd
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
gauth = GoogleAuth()
#creates browser to ask for consent to modify files in the name of the API project (Pozzo Lab Group)
gauth.LocalWebserverAuth()
drive = GoogleDrive(gauth)
###Output
Your browser has been opened to visit:
https://accounts.google.com/o/oauth2/auth?client_id=166164154392-i4l5heveqn5jq5gjsr4pcdn53m8ql5r3.apps.googleusercontent.com&redirect_uri=http%3A%2F%2Flocalhost%3A8080%2F&scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive&access_type=offline&response_type=code
Authentication successful.
###Markdown
View all folders and files in your Google Drive
###Code
filelist = drive.ListFile({'q':"'root' in parents and trashed = false"}).GetList()
for file in filelist:
print('Title: %s, ID: %s' % (file['title'], file['id']))
if(file['title'] == 'Pozzo Group'):
fileID = file['id']
print(fileID)
###Output
Title: Recipes, ID: 1Sl_R4-T_R507dmiYZfWCng5cSJwc-Olc
Title: Lit Review, ID: 1ItbY0Lbz_O8pS59yl8GfkbWZ2LAFz5zs
Title: Polymer Lit Review, ID: 17c-kCk3jvKu1qcGmnzDwoOvfClV27Hf0
Title: Polymer Blends, ID: 1AsYXaij5sFtIpFWoxDtYjmvkUB7ut8zY
Title: Drafts.pdf, ID: 1io6O364YXNlzgkdWyOzUxMNbjVxZ1u4K
Title: Science as Art, ID: 1H-4hSRnJyOlo8UzQs5aSkP9JNfZa6493
Title: Blends Paper, ID: 1M08wCd1PWl-yKvil89IMhxUJEa6VnvZE
Title: FacultyMeetings2020-ToFaculty, ID: 10JotGiYWTRWsaA3uVhCSq3O8WaInQEZIIs-e1YAcKfI
Title: FacultyMeetings2020-ToFaculty.xlsx, ID: 1b4949qLsUTxbW_JZ6GJ-EcmgKZOy1GSQ
Title: McAleer Money: Pallicera, ID: 1J08pSvqxWz4hfNzz6L7_cAJs1OQg7-Ju
Title: ACES, ID: 0BxITy4q3C1SYWmg5YlNHcjlfVEE
Title: Note Jan 21, 2020.pdf, ID: 1w_Zk8a8L63OFNilooGU0cN70OqO8FyTr
Title: FY20_ACES Budget_APPROVED, ID: 1eGUoKTSLGn1WMsCTGSP6o2ubmI8AeFQcckREKFOY-g4
Title: FY20_ACES Budget_APPROVED.pdf, ID: 0BwGCEaO99URQYjlySG9jS04tRUo2SF9ta1BWWjRFWWFzSHFN
Title: NCEC2020 schedule_Sageedits_v3, ID: 1eK_QrqrW7KyBG-2DeS0OIoOKPs1gysR6vwWV5CbmMOw
Title: NCEC2020 schedule_ASMedits_v2.docx, ID: 0BwGCEaO99URQSWVhV0tlUUdlYXVVVnF3TzVQcHU2N0NUZlM4
Title: Pozzo Group, ID: 0BxuawDMj8CGPV2cyU0lvcHQ3clU
Title: Controlled Systems, ID: 1vBh0kg7DeAgSfDYpEN8rAwSHSLnIIaPm
Title: NCEC2020_Poster_v2, ID: 1FodfTycb7uHkj8cnhIJk6ldJgLkgJeA_aeNRRkG5QKc
Title: NCEC2020_Poster_v2.pdf, ID: 0BwGCEaO99URQOFpGeWhNR2RKWThfYzBuc2ZxNExwdnRIcjNV
Title: Calibration of Opentrons Data, ID: 1r2dxUNLJlFGxSpL3NlJucerffeclqKbH_x6i8mR369c
Title: VSANS Contrast Matching Drug Movement For Caitlyn, ID: 1DwSiSAKj0FAAacnsgcmOiIkHb7rbq6RzejO6zQtOaKA
Title: VSANS Contrast Matching Drug Movement For Caitlyn.docx, ID: 0BwGCEaO99URQdDFoTU40OHNCVFZjU2sxaHJNd2ZyVVdJYXdF
Title: NCNR_SANS_20190416_LDP_CMW, ID: 10AQYBPhFTsWK6fFHH6_PIxlWgG0IfjOLRnwd4nMIIDA
Title: NCNR_SANS_20190416_LDP_CMW, ID: 1hnOcDedQepVlYCQofr2zH5YymlhQ5zt8r4JLpgg8waA
Title: NCNR_SANS_20190416_LDP_CMW, ID: 1qVKEecQXYkSwu-8v-tFjwDkuKeM_rFT5OGdmP9xCLRU
Title: NCNR_SANS_20190416_LDP_CMW.docx, ID: 0BwGCEaO99URQZXh6QWNyd1hJRU9BMk9LaTU5c3c4TUlfWnlB
Title: Contact Tracker, ID: 1zH9D2oKqYchnoWkDmGXmfK_Aw4UhPnpAK3GX0fShtX0
Title: Contact Tracker.xlsx, ID: 0BwGCEaO99URQd2RubmVSaFJaLVZ2bDVWZ29Bb3lWR0Fhd2pn
Title: Photos, ID: 12Rbd9qjBvkDQJ0nw3bSrev-KcIzb6Mk7
Title: Schools Information list v2, ID: 1WoxXlSKpcIsFQDG123FzXStdgo1fLVsVQx8MYVrOoV4
Title: Candy and Snacks that are Iconic (TM) to American culture, ID: 1Nu4eaz2ofE1n1Ejta-FpBmBPNMUAwLONcnmhdy1qhRc
Title: Drafts, ID: 10KS9yBhBawNot4zCtHzK8c932RRKJFNM6lbM59L9j5I
Title: Jones Foster Accelerator, ID: 1-Afd6Mkthtmoczw5jIdVh06ome1EQIg0
Title: NIST VSANS (8/12-8/16), ID: 10Wyh1CsHoJ0BgCFCImLSu0dyoleS9zx1
Title: July 18th 2019, ID: 1Ie1_clIVbD3rb_I-ZegHF-QzFZtmvP0o17QrAENePu8
Title: Scattering Sample Prep, ID: 1zvNJHpkX_H6KBiXO4vZUXSrUyBNxsTb9dS_qmZ1pfH8
Title: Scattering sample preparation, ID: 17KuqEiPxi0KqRVRHWvrSZ9otya5nUIPG8Y0CbDpxKiI
Title: 20190630_134413.mp4, ID: 1-3fRUP1m3ketPA3D3VxgA4xMRmd88GWI
Title: PeerEval19pABET, ID: 1gGRU_Rk7mf5wHVHtrvoCJ6Wzcxy9ytUDWUsxaoMTFa4
Title: PeerEval19pABET.docx, ID: 0BwGCEaO99URQTVlzbVJjSm9HVk1mN1pzaVBNNURtdlYwQmdV
Title: for sage, ID: 1q-UyE-b2LHK4newahChghxY7wt5M1_TjxYn_09elSDU
Title: for sage.pdf, ID: 0BwGCEaO99URQdDBQeU05QWJZbXBhZm9XT0VDQ2hHNllXdzJJ
Title: Colloidal Systems, ID: 1JVOA-RkU51slQLVgyXTmFK8h-tfIVOB-
Title: Colloids Lab, ID: 1idjem9fwXDZpYWBUxN7rZ0ELytPPtIKk
Title: ACES officer bios, ID: 1eekJ40dqR5LD6kvDrEVx7wuSHaDxN1DnJyUBoifiPK4
Title: [Rafael_C._Gonzalez,_Richard_E._Woods,_Steven_L._E(b-ok.cc) (1), ID: 15r1jHh7fp2YIAV_SDnOUV4Q0mDE4RB4V36T91PX7OrY
Title: Colloids HW3.docx, ID: 1O-0sCPbQr3j7T2IZAkPvp39v-LIaSxyT
Title: Math, ID: 11qSoymfacIHzxrkzWfdE8WCtyXlapDcp
Title: D&D, ID: 1fRfdOKQlJbGnBnu3a-6cKsb6Zygh20eh
Title: Research Notes, ID: 1eb533JwOp6Mbn2B0J48Drfis9391pPvH
Title: Trainings, ID: 1FlmMP4_tXo080NFsJwXwSqN6aKNfQkeO
Title: Pozzo Group Safety Training Handout, ID: 1R4gwZJlwHX6WAWAtUGWQz31HneA7klfta6PsjKz2kio
Title: Pozzo Group Safety Training Handout.docx, ID: 0BwGCEaO99URQalRYYjFja0lxVF9uTXlMMXRtdU9SQXNPOVdN
Title: NIFTI and UWIN Drafts, ID: 1lw1ze50RgqFWSmeLXSWR7lty4rjwWqjsI1ukmQpA5jI
Title: NIFTI and UWIN Drafts, ID: 1L8Z41xRZCEQFGeh17kmQXodlQf2UqUuN_Uv9ZhzpjgQ
Title: NIFTI and UWIN Drafts.docx, ID: 1hS2OQxX2vRn0NnUYP2TDSP6V_nkI0vLe
Title: Thermodynamics, ID: 13VQpInwheo7Xbo3hlAJxbyPcHCeWh5Nr
Title: Transport, ID: 1t3qRg6h2mHoAf1B7K6OZJnelneEbtmIu
Title: Orientation, ID: 1Vznfwxxo0kIVwbE-nVn5J0nZNb7s4XSo
0BxuawDMj8CGPV2cyU0lvcHQ3clU
###Markdown
File ID's are the method of Gdrive for working through file paths - you have to know the ID of the file you want Into a folder within the root folder- replace the 'root' in the 'q': "...." with the fileID of the folder you wish to go into
###Code
filelist2 = drive.ListFile({'q':"'0BxuawDMj8CGPV2cyU0lvcHQ3clU' in parents and trashed = false"}).GetList()
for file in filelist2:
#print('Title: %s, ID: %s' % (file['title'], file['id']))
if(file['title'] == 'EscalateTesting'):
fileID2 = file['id']
print(fileID2)
folder_mime = drive.CreateFile({'id': fileID2})
mime = folder_mime['mimeType']
string = 'the mimetype is {}'.format(mime)
print(string)
###Output
the mimetype is application/vnd.google-apps.folder
###Markdown
Three folders deep
###Code
filelist3 = drive.ListFile({'q':"'1jTd692l4o_8TnHpIXg3uHMGRIdlCSIYd' in parents and trashed = false"}).GetList()
for file in filelist3:
print('Title: %s, ID: %s' % (file['title'], file['id']))
if(file['title'] == 'Wfracs.csv'):
filedown = file['id']
print(filedown)
print( id_chem)
print(id_stock)
insert = str('9984039423')
variable_string = "'q': '{} in parents and trashed = false'".format(insert)
print(variable_string)
###Output
_____no_output_____
###Markdown
Search all folders and find the file ID with the title as specified
###Code
goal = 'Wfracs.csv'
goal_id = 0
filelist = drive.ListFile({'q':"'root' in parents and trashed = false"}).GetList()
# Try separating into separate functions - one that will enter a folder and get the file list
# the other that will find the goal? - needs to be able to search all the layers of all the
# folders - currently can go three deep and thats it.
def filesearch(filelist, goal):
for file in filelist:
hold_name = file['title']
if file['title'] == goal:
goal_id = file['id']
return goal_id
elif file['mimeType'] == 'application/vnd.google-apps.folder':
hold_id = file['id']
hold_name = file['title']
filelist2 = drive.ListFile({'q':"'{}' in parents and trashed = false".format(hold_id)}).GetList()
for file in filelist2:
if file['title'] == goal:
goal_id = file['id']
return goal_id
elif file['mimeType'] == 'application/vnd.google-apps.folder':
hold_id = file['id']
hold_name = file['title']
filelist3 = drive.ListFile({'q':"'{}' in parents and trashed = false".format(hold_id)}).GetList()
for file in filelist3:
if file['title'] == goal:
goal_id = file['id']
return goal_id
else:
pass
#print('file not found in folder {}'.format(hold_name))
else:
pass
#print('file not found in folder {}'.format(hold_name))
else:
pass
#print('file not found in folder {}'.format(hold_name))
#print('file not found within three folders of starting location')
filesearch(filelist, goal)
###Output
_____no_output_____
###Markdown
Upload a file into a folder
###Code
#Creation of the desired file in the place you desire -
#can change location using the folder ID in the parents section
file1 = drive.CreateFile({"mimeType": "text/csv", "parents": [{"kind": "drive#fileLink", "id": fileID2}], "title": 'test_file.csv'})
#uploading the file
file1.Upload()
print('Created file %s with mimeType %s' % (file1['title'], file1['mimeType']))
###Output
Created file test_file.csv with mimeType text/csv
###Markdown
Download a file (to your computer and then) into python
###Code
print(filedown)
file_tdown = drive.CreateFile({'id': filedown})
content = file_tdown.GetContentFile('Wfracs.csv')
df = pd.read_csv('Wfracs.csv')
###Output
_____no_output_____
###Markdown
All together: Creation, upload, download, edit, re-uploadExample is done with `chemical_inventory.xlsx` and `stock_specification.csv`
###Code
# For files that are already created, read files into python (need to be in folder
# or have a specified path) they can then be edited or changed in python as needed
stock_spec = pd.read_csv('stock_specification.csv')
chem_inv = pd.read_excel('chemical_inventory.xlsx')
# Uploading files to the specified folder of the Gdrive - the mime type needs
# to be changed to reflect the correct file and the "parents" need to have the
# file ID of the contianing folder. Files are directly uploaded from file location
# so if there are edits done in the notebook they will need to be re-downloaded
file_up = drive.CreateFile({"mimeType": "text/csv", "parents": [{"kind": "drive#fileLink", "id": fileID2}], "title": 'stock_specifications.csv'})
file_up.SetContentFile('stock_specification.csv')
file_up.Upload()
print('Created file %s with mimeType %s' % (file_up['title'], file1['mimeType']))
#pydrive will also assume mimeType and the title from the file being uploaded
file_up = drive.CreateFile({"parents": [{"kind": "drive#fileLink", "id": fileID2}]})
file_up.SetContentFile('chemical_inventory.xlsx')
file_up.Upload()
print('Created file %s with mimeType %s' % (file_up['title'], file1['mimeType']))
# # FILESEARCH IS CURRENTLY INEFFICENT: NEED TO REFINE - works. kind-of
# # using the filesearch function - find the ID's of the files you are looking to
# # download to python one at a time
# filelist = drive.ListFile({'q':"'root' in parents and trashed = false"}).GetList()
# goal = 'stock_specification.csv'
# id_stock = filesearch(filelist, goal)
# goal = 'chemical_inventory.xlsx'
# id_chem = filesearch(filelist, goal)
id_stock = '1iBFJ-JHr8Fx1do-85QF5To1fPur85Yz1'
id_chem = '1hLY4iEEao5LXzqkQqsfDgm5f_a-rUwKB'
file_down = drive.CreateFile({'id': id_stock})
down_stock = file_down.GetContentFile('stock_specification.csv')
df_stock = pd.read_csv('stock_specification.csv')
file_down = drive.CreateFile({'id': id_chem})
down_chem = file_down.GetContentFile('chemical_inventory.xlsx')
df_chem = pd.read_excel('chemical_inventory.xlsx')
# Edit as desired and then SAVE FILE TO COMPUTER
# Upload (manually) to the same file ID as before
# This will overwrite the file that is currently on the drive.
file_up = drive.CreateFile({ "parents": [{"kind": "drive#fileLink", "id": fileID2}], "id": id_stock})
file_up.SetContentFile('stock_specification.csv')
file_up.Upload()
print('Created file %s with mimeType %s' % (file_up['title'], file1['mimeType']))
file_up = drive.CreateFile({"parents": [{"kind": "drive#fileLink", "id": fileID2}], "id": id_chem})
file_up.SetContentFile('chemical_inventory.xlsx')
file_up.Upload()
print('Created file %s with mimeType %s' % (file_up['title'], file1['mimeType']))
###Output
Created file stock_specifications.csv with mimeType text/csv
Created file chemical_inventory.xlsx with mimeType text/csv
|
_build/jupyter_execute/notebooks/Lesson_2.ipynb | ###Markdown
2. Τιμές, τύποι και μεταβλητές. Συμβολοσειρές Σταθερές (Constants)H Python δεν διαθέτει προκαθορισμένες *σταθερές* όπως άλλες γλώσσες προγραμματισμού.Όμως κατά σύμβαση και όχι κατά κανόνα έχει συμφωνηθεί οι *σταθερές* να ονοματίζονται με κεφαλαίους χαρακτήρες.Η αδυναμία της Python στην περίπτωση της δήλωσης *σταθερών* είναι ότι επιτρέπεται η αλλαγή των τιμών τουςΠαρακάτω παρατίθεται ένα παράδειγμα δήλωσης *σταθερών*.
###Code
RATIO_FEET_TO_METERS = 3.281
RATIO_LB_TO_KG = 2.205
PI = 3.14
###Output
_____no_output_____
###Markdown
Κυριολεκτικές σταθερές (literal constants)Η κυριολεκτική *σταθερά* ή τιμή είναι ένας αριθμός, ή χαρακτήρας ή μιά συμβολοσειρά. Για παράδειγμα τα παρακάτωαποτελούν τιμές: *3.25* (στην python η υποδιαστολή ορίζεται με . και όχι ,), *"ένα τυχαίο κείμενο"*, *5.25e-1*.Αυτές οι τιμές δεν μεταβάλλονται κατά τη διάρκεια εκτέλεσης του προγράμματος γι' αυτό και λέγονται σταθερές. Μπορούν να εκχωρηθούν σε μεταβλητέςκαι να χρησιμοποιηθούν σαν τελεστέοι σε λογικές εκφράσεις ή σαν παραμέτροι σε συναρτήσεις. Τύποι δεδομένωνΟι τιμές ανήκουν σε τρεις τύπους δεδομένων (data types) ή κλάσσεις (class):- τους ακέραιους αριθμούς (integer) π.χ. το 15 - τους αριθμούς κινητής υποδιαστολής (floating point) π.χ. το 201.25)- τις συμβολοσειρές (string) π.χ. το "Time is money" Με την εντολή `type` ο διερμηνευτής μας απαντάει με τον τύπο της τιμής, όπως παρακάτω:
###Code
type("No news, good news.")
###Output
_____no_output_____
###Markdown
Η Python είναι *Dynamic typing* δηλαδή δεν ο τύπος των μεταβλητών δεν προκαθορίζεται κατά την συγγραφή αλλά κατά την εκτέλεση. Κανόνες ονοματοδοσίας μεταβλητώνΤα ονόματα των μεταβλητών στην Python υπακούουν στους παρακάτω κανόνες:- Το όνομα μίας μεταβλητής μπορεί να ξεκινά από ένα γράμμα ή από κάτω πάυλα.- Το όνομα μίας μεταβλητής δεν μπορεί με αριθμό.- Το όνομα μίας μεταβλητής μπορεί να περιέχει μόνο αλφαριθμητικούς χαρακτήρες.- Στα ονόματα των μεταβλήτών γίνεται διάκριση ανάμεσα σε πεζά και κεφαλαία (case sensitive).- Οι δεσμευμένες λέξεις της Python (keywords) δεν μπορούν να χρησιμοποιηθούν σε ονόματα μεταβλητών. Συμβολοσειρές (Strings) Μια συμβολοσειρά είναι μια ακολουθία από χαρακτήρες όπως το `"Το πεπρωμένον φυγείν αδύνατον."`.Μπορεί να είναι σε κάθε γλώσσα που υποστηρίζεται από το πρώτυπου Unicode. Οι συμβολοσειρές περικλείονται σε μονά, διπλά ή τριπλά εισαγωγικά. Με τριπλά εισαγωγικά μπορούν να ενσωματωθούν με ευκολία συμβολοσειρές σε πολλές γραμμές και πολλαπλά εισαγωγικά εντός αυτόν.Ακολουθούν παραδείγματα συμβολοσειρά.
###Code
"My name is Bond, James Bond."
'There is no smoke without fire'
'''
No bees no honey, no work no money.
A little is better than none
What’s done cannot be undone
'''
###Output
_____no_output_____
###Markdown
Χαρακτήρες διαφυγής,κενά, νέες γραμμές Μπορούμε να σπάσουμε μια συμβολοσειρά κατά την συγγραφή σε νέα γραμμή με τον χαρακτήρα `\` και κατά την εκτέλεση με τον χαρακτήρα `\n` π.χ.
###Code
message = 'There is no smoke \
without fire'
print(message)
message = 'There is no smoke \nwithout fire'
print(message)
###Output
There is no smoke
without fire
###Markdown
Ή να ορίσουμε κενά με το `\t`
###Code
message = 'There is no smoke \twithout fire'
print(message)
###Output
There is no smoke without fire
###Markdown
Ο χαρακτήρας `\` είναι χαρακτήρας διαφυγής που απενεργοποιεί την ειδική λειτουργία των παραπάνω ή την παράθεση εισαγωγικών μεσα σε εισαγωγικά.
###Code
print('There is no smoke \\n without fire')
print('Where there\'s a will, there\'s a way')
###Output
Where there's a will, there's a way
###Markdown
Ανεπεξέργαστες συμβολοσειρές (Raw Strings)Παρόμοιο αποτέλεσμα με τα παραπάνω πετυχαίνουμε τις ανεπεξέργαστες συμβολοσειρές οι οποίες ορίζονται με ένα r σαν πρόθεμα
###Code
print(r"It was made by \n συνέχεια")
###Output
It was made by \n συνέχεια
###Markdown
Αφαίρεση κενώνΣε αρκετές περιπτώσεις οι συμβολοσειρές περιέχουν κενά είτε στην αρχή είτε στο τέλος.Για παράδειγμα οι παρακάτω συμβολοσειρές δεν είναι το ίδιες για την Python. Και επιβεβαιώνεται σε μέσω ελέγχου ισότητας.
###Code
departmentA='ΤΜΧΠΑ'
departmentB = ' ΤΜΧΠΑ '
print(departmentA == departmentB) #not equal
###Output
False
###Markdown
Για την αφαίρεση των κένων αριστερά, δεξιά ή ταυτόχρονα και στις δύο πλευρές της συμβολοσειρας χρησιμοποιούμε την μέθοδο `strip` και τις παραλλαγές της `rstrip` και `lstrip`
###Code
print(departmentB.rstrip())
print(departmentB.lstrip())
print(departmentB.strip())
###Output
ΤΜΧΠΑ
ΤΜΧΠΑ
ΤΜΧΠΑ
###Markdown
Συνένωση (Concatenation) συμβολοσειρώνΗ απλή παράθεση συμβολοσειρών οδηγεί στην συνενωσή τους δηλ.
###Code
message = "Curiosity " "killed " 'the ' '''cat'''
print(message)
###Output
Curiosity killed the cat
###Markdown
Συνένωση συμβολοσειρών και μεταβλητώνΗ συνένωση μεταβλητών και συμβολοσειρών γίνεται με τον τελεστη `+`.
###Code
city='Βόλος'
perifereia='Θεσσαλία'
print('O '+city+' είναι πόλη της Ελλάδα στην ' +perifereia)
###Output
O Βόλος είναι πόλη της Ελλάδα στην Θεσσαλία
###Markdown
Η μέθοδος formatΆλλη μια πιο πρακτική μέθοδος κατά την συννένωση μεταβλητών και συμβολοσειρών είναι η μέθοδος format.
###Code
print('O {0} έχει υψόμετρο {1} μέτρα'.format("Όλυμπος", 2918))
print('O {} έχει υψόμετρο {} μέτρα'.format("Όλυμπος", 2918))
print('O {name} έχει υψόμετρο {height} μέτρα'.format(name="Σμόλικας", height= 2637 ))
###Output
O Όλυμπος έχει υψόμετρο 2918 μέτρα
O Όλυμπος έχει υψόμετρο 2918 μέτρα
O Σμόλικας έχει υψόμετρο 2637 μέτρα
###Markdown
Δεσμευμένες λέξεις (reserved words)Ορισμένες λέξεις έχουν ιδιαίτερη σημασία για την python και δεν μπορούν να χρησιμοποιηθούν σαν ονόματα μεταβλητών. Τα παρακάτω κομμάτια κώδικα θα εκδηλώσουν σφάλμα μεταγλώττισης.
###Code
class="Πρώτο εξάμηνο"
break='Πότε θα κάνουμε διάλειμμα;'
###Output
_____no_output_____
###Markdown
Πρόκειται για 33 λέξεις στην τρέχουσα έκδοση της Python.Μπορούμε να δούμε ποιές είναι αυτές οι δεσμεύνες λέξεις με την παρακάτω εντολή:
###Code
help("keywords")
###Output
Here is a list of the Python keywords. Enter any keyword to get more help.
False class from or
None continue global pass
True def if raise
and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not
###Markdown
Η εντολή help Γενικά με την εντολή `help` καλούμε για βοήθεια και πληροφορίες την Python:
###Code
help(print)
help(abs)
help(max)
###Output
Help on built-in function max in module builtins:
max(...)
max(iterable, *[, default=obj, key=func]) -> value
max(arg1, arg2, *args, *[, key=func]) -> value
With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the largest argument.
###Markdown
Αλλαγή Πεζών Κεφαλαίων (Convert case)Μπορούμε να κάνουμε αλλαγή ανάμεσα σε κεφαλαία και πεζά με τις παρακάτω μεθόδους συμβολοσειρών:`upper()`, `title()`, `lower()`.Αξίζει να σημειώσουμε ότι οι μέθοδοι αυτές δεν έχουν επίδραση στην μεταβλητή που τις καλούμε αλλά πρέπει να επαναεκχωρήσουμε το αποτέλεσμα της μεθόδου στην μεταβλητή με το ίδιο όνομα.
###Code
agios="άγιος νικόλαος"
print(agios.upper())
print(agios) # ο agios παραμένει "άγιος νικόλαος"
print(agios.title())
print('ΑΓΊΑ ΕΛΈΝΗ'.lower())
agios = agios.upper()
print(agios) # ο agios μετά την εκχώρηση στην ίδια μεταβλητή γινεται ΆΓΙΟΣ ΝΙΚΌΛΑΟΣ
###Output
ΆΓΙΟΣ ΝΙΚΌΛΑΟΣ
άγιος νικόλαος
Άγιος Νικόλαος
αγία ελένη
ΆΓΙΟΣ ΝΙΚΌΛΑΟΣ
###Markdown
Οι συμβολοσειρές είναι μη μεταβαλλόμενη δομή δεδομένωνΟι συμβολοσειρές αποτελούνται από ακολουθίες χαρακτήρων με σταθερό μέγεθοςκαι μη μεταβαλλόμενα περιεχόμενα. Αυτό σημαίνει ότι δεν είναι δυνατόν να προστίθενται ή να αφαιρούνταιχαρακτήρες, ούτε να τροποποιούνται τα περιεχόμενα του αλφαριθμητικού. Πρόκειται για μια μη μεταβαλλόμενη (immutable) δομή της Python.Η αρίθμηση των χαρακτήρων σε ένα αλφαριθμητικό ξεκινάει από το 0. Έτσι στην συμβολοσειρά `country = Ελλάδα` έχουμε:`country[0]` → Ε (η αρίθμηση ξεκινά από το 0)`country[1]` → λ`country[2]` → λ`country[3]` → ά`country[4]` → δ`country[5]` → αΗ παραπάνω συμβολοσειρά έχει μήκος 6 χαρακτήρες. Μήκος συμβολοσειράςΜέσω της συνάρτησης `len` η Python μας επιστρέφει το μήκος συμβολοσειράς δηλαδή το πλήθος των χαρακτήρων (μαζί με τα κενά) από τους οποιούς αποτελείται.
###Code
message = 'Ή τώρα ή ποτέ.'
len(message)
###Output
_____no_output_____
###Markdown
Η μέθοδος findΗ μέθοδος `find` μας επιτρέπει να αναζητήσουμε μια συμβολοσειρά μέσα σε μια άλλη συμβολοσειρά. Η μέθοδος μας επιστρέφει την τοποθεσία από την ξεκινάει η αναζητούμενη συμβολοσειρά δηλαδή τον δείκτη (index) στην οποία εντοπίζεταιο πρώτος χαρακτηρας της αναζητούμενης συμβολοσειράς μέσα στα περιεχόμενα της αρχικής συμβολοσειράς.Στην παρακάτω συμβολοσειρά θα αναζητήσουμε την λέξη `ποτέ`.
###Code
stixos = 'Η Ελλάδα ποτέ δεν πεθαίνει'
index = stixos.find('ποτέ')
###Output
_____no_output_____
###Markdown
Κανονικά αν πάμε στον χαρακτήρα με ευρετηρίο (index) 9 πρέπει να εντοπίσουμε τον πρώτο χαρακτήρα της συμβολοσειράς που είναι το `π`.Πράγματι:
###Code
stixos[index]
###Output
_____no_output_____
###Markdown
Αν δεν εντοπιστεί η λέξη που αναζητούμε στην συμβολοσειρά η Python θα επιστρέψει: `-1`
###Code
stixos.find('πάντα')
###Output
_____no_output_____
###Markdown
Η αναζήτηση είναι case sensitive δηλαδή γίνεται διάκριση ανάμεσα σε πεζά και κεφαλαία.
###Code
stixos.find('Ελλάδα') # επιστρέφει τον δείκτη 2 γιατί εντοπίστηκε η λέξη κλειδί
stixos.find('ΕΛΛΆΔΑ') # επιστρέφει -1 γιατί δεν εντοπίστηκε η λέξη κλειδί
###Output
_____no_output_____
###Markdown
Μια άλλη σημαντική μέθοδος των συμβολοσειρών είναι η μέθοδος `replace` κατά την οποία μπορούμε να αντικαταστήσουμε τα περιεχόμενα μιας συμβολοσειράς. Στην πρώτη παράμετρο ορίζουμε την συμβολοσειρά που θέλουμε να αντικαταστήσουμε με την δεύτερη παράμετρο.
###Code
stixos.replace('ποτέ', 'πάντα')
###Output
_____no_output_____ |
DistribuicaoMedicamentos.ipynb | ###Markdown
Distribuicao de medicamentos para Covid19https://opendatasus.saude.gov.br/dataset/distribuicao-de-medicamentos-covid-19
###Code
#importando bibliotecas
import pandas as pd
df = pd.read_excel(r'atualizacao-de-medicamentos.xlsx')
df.head()
#Tipos dos registros
df.dtypes
df.info()
#Análise estatistica basica do dataframe
df.describe()
#Análise de amostras
df.sample(5)
#Tipos de medicamentos
df['ITEM'].unique()
df['ITEM'].nunique()
len(df['ITEM'])
df['ITEM'].value_counts()
#Quantidade de medicamentos distribuidos por UF
df.groupby(['UF', 'ITEM'])['QUANTIDADE'].sum()
#Visualização da tabela de colunas com string
df.select_dtypes('object')
#Visualização nome das colunas tipo string
df.select_dtypes('object').columns
#Remove espacos em branco dos textos
for registro in df.select_dtypes('object').columns:
df[registro] = df[registro].str.strip()
print("Removido espaço em branco dos textos")
#Quantidade de medicamentos por UF
df['UF'].value_counts()
#Exibir grafico da distribuição de medicamentos por UF
%matplotlib inline
df['UF'].value_counts().plot.barh()
#Analise de programa de saude para COVID19
df[df['PROGRAMA DE SAÚDE'] == 'COVID-19']['UF'].value_counts()
df[df['PROGRAMA DE SAÚDE'] == 'COVID-19']['UF'].value_counts().plot.barh()
#Verificar onde a quantidade é nula
df[df['QUANTIDADE'].isnull()]
###Output
_____no_output_____ |
.ipynb_checkpoints/OptionsPricingEvaluation-checkpoint.ipynb | ###Markdown
Black-Scholes European Option Pricing Script
###Code
# File Contains: Python code containing closed-form solutions for the valuation of European Options,
# for backward compatability with Python 2.7
from __future__ import division
# import necessary libaries
import math
import numpy as np
from scipy.stats import norm
from scipy.stats import mvn
# Plotting
import matplotlib.pylab as pl
import numpy as np
###Output
_____no_output_____
###Markdown
Option Pricing Theory: Black-Scholes modelBlack Scholes genre option models widely used to value European options. The original “Black Scholes” model was published in 1973 for non-dividend paying stocks. Since that time, a wide variety of extensions to the original Black Scholes model have been created. Modifications of the formula are used to price other financial instruments like dividend paying stocks, commodity futures, and FX forwards. Mathematically, these formulas are nearly identical. The primary difference between these models is whether the asset has a carrying cost (if the asset has a cost or benefit associated with holding it) and how the asset gets present valued. To illustrate this relationship, a “generalized” form of the Black Scholes equation is shown below.The Black Scholes model is based on number of assumptions about how financial markets operate. Black Scholes style models assume:1. **Arbitrage Free Markets**. Black Scholes formulas assume that traders try to maximize their personal profits and don’t allow arbitrage opportunities (riskless opportunities to make a profit) to persist. 2. **Frictionless, Continuous Markets**. This assumption of frictionless markets assumes that it is possible to buy and sell any amount of the underlying at any time without transaction costs.3. **Risk Free Rates**. It is possible to borrow and lend money at a risk-free interest rate4. **Log-normally Distributed Price Movements**. Prices are log-normally distributed and described by Geometric Brownian Motion5. **Constant Volatility**. The Black Scholes genre options formulas assume that volatility is constant across the life of the option contract. In practice, these assumptions are not particularly limiting. The primary limitation imposed by these models is that it is possible to (reasonably) describe the dispersion of prices at some point in the future in a mathematical equation. An important concept of Black Scholes models is that the actual way that the underlying asset drifts over time isn't important to the valuation. Since European options can only be exercised when the contract expires, it is only the distribution of possible prices on that date that matters - the path that the underlying took to that point doesn't affect the value of the option. This is why the primary limitation of the model is being able to describe the dispersion of prices at some point in the future, not that the dispersion process is simplistic.The generalized Black-Scholes formula can found below (see *Figure 1 – Generalized Black Scholes Formula*). While these formulas may look complicated at first glance, most of the terms can be found as part of an options contract or are prices readily available in the market. The only term that is difficult to calculate is the implied volatility (σ). Implied volatility is typically calculated using prices of other options that have recently been traded.>*Call Price*>\begin{equation}C = Fe^{(b-r)T} N(D_1) - Xe^{-rT} N(D_2)\end{equation}>*Put Price*>\begin{equation}P = Xe^{-rT} N(-D_2) - Fe^{(b-r)T} N(-D_1)\end{equation}>*with the following intermediate calculations*>\begin{equation}D_1 = \frac{ln\frac{F}{X} + (b+\frac{V^2}{2})T}{V*\sqrt{T}}\end{equation}>\begin{equation}D_2 = D_1 - V\sqrt{T}\end{equation}>*and the following inputs*>| Symbol | Meaning |>|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|>| F or S | **Underlying Price**. The price of the underlying asset on the valuation date. S is used commonly used to represent a spot price, F a forward price |>| X | **Strike Price**. The strike, or exercise, price of the option. |>| T | **Time to expiration**. The time to expiration in years. This can be calculated by comparing the time between the expiration date and the valuation date. T = (t_1 - t_0)/365 |>| t_0 | **Valuation Date**. The date on which the option is being valued. For example, it might be today’s date if the option we being valued today. |>| t_1 | **Expiration Date**. The date on which the option must be exercised. |>| V | **Volatility**. The volatility of the underlying security. This factor usually cannot be directly observed in the market. It is most often calculated by looking at the prices for recent option transactions and back-solving a Black Scholes style equation to find the volatility that would result in the observed price. This is commonly abbreviated with the greek letter sigma,σ, although V is used here for consistency with the code below. |>| q | **Continuous Yield**. Used in the Merton model, this is the continuous yield of the underlying security. Option holders are typically not paid dividends or other payments until they exercise the option. As a result, this factor decreases the value of an option. |>| r | **Risk Free Rate**. This is expected return on a risk-free investment. This is commonly a approximated by the yield on a low-risk government bond or the rate that large banks borrow between themselves (LIBOR). The rate depends on tenor of the cash flow. For example, a 10-year risk-free bond is likely to have a different rate than a 20-year risk-free bond.[DE1] |>| rf | **Foreign Risk Free Rate**. Used in the Garman Kohlhagen model, this is the risk free rate of the foreign currency. Each currency will have a risk free rate. |>*Figure 1 - Generalized Black Scholes Formula* Model ImplementationThese functions encapsulate a generic version of the pricing formulas. They are primarily intended to be called by the other functions within this libary. The following functions will have a fixed interface so that they can be called directly for academic applicaitons that use the cost-of-carry (b) notation: _GBS() A generalized European option model _GBS_ImpliedVol() A generalized European option implied vol calculator The other functions in this libary are called by the four main functions and are not expected to be interface safe (the implementation and interface may change over time). Implementation for European Options
###Code
# The primary class for calculating Generalized Black Scholes option prices and deltas
# It is not intended to be part of this module's public interface
# Inputs: option_type = "p" or "c", fs = price of underlying, x = strike, t = time to expiration, r = risk free rate
# b = cost of carry, v = implied volatility
# Outputs: value, delta, gamma, theta, vega, rho
def _gbs(option_type, fs, x, t, r, b, v):
_debug("Debugging Information: _gbs()")
# -----------
# Create preliminary calculations
t__sqrt = math.sqrt(t)
d1 = (math.log(fs / x) + (b + (v * v) / 2) * t) / (v * t__sqrt)
d2 = d1 - v * t__sqrt
if option_type == "c":
# it's a call
_debug(" Call Option")
value = fs * math.exp((b - r) * t) * norm.cdf(d1) - x * math.exp(-r * t) * norm.cdf(d2)
delta = math.exp((b - r) * t) * norm.cdf(d1)
gamma = math.exp((b - r) * t) * norm.pdf(d1) / (fs * v * t__sqrt)
theta = -(fs * v * math.exp((b - r) * t) * norm.pdf(d1)) / (2 * t__sqrt) - (b - r) * fs * math.exp(
(b - r) * t) * norm.cdf(d1) - r * x * math.exp(-r * t) * norm.cdf(d2)
vega = math.exp((b - r) * t) * fs * t__sqrt * norm.pdf(d1)
rho = x * t * math.exp(-r * t) * norm.cdf(d2)
else:
# it's a put
_debug(" Put Option")
value = x * math.exp(-r * t) * norm.cdf(-d2) - (fs * math.exp((b - r) * t) * norm.cdf(-d1))
delta = -math.exp((b - r) * t) * norm.cdf(-d1)
gamma = math.exp((b - r) * t) * norm.pdf(d1) / (fs * v * t__sqrt)
theta = -(fs * v * math.exp((b - r) * t) * norm.pdf(d1)) / (2 * t__sqrt) + (b - r) * fs * math.exp(
(b - r) * t) * norm.cdf(-d1) + r * x * math.exp(-r * t) * norm.cdf(-d2)
vega = math.exp((b - r) * t) * fs * t__sqrt * norm.pdf(d1)
rho = -x * t * math.exp(-r * t) * norm.cdf(-d2)
_debug(" d1= {0}\n d2 = {1}".format(d1, d2))
_debug(" delta = {0}\n gamma = {1}\n theta = {2}\n vega = {3}\n rho={4}".format(delta, gamma,
theta, vega,
rho))
return value, delta, gamma, theta, vega, rho
###Output
_____no_output_____
###Markdown
Implementation: Implied VolatilityThis section implements implied volatility calculations. It contains implementation of a **Newton-Raphson Search.** This is a fast implied volatility search that can be used when there is a reliable estimate of Vega (i.e., European options)
###Code
# ----------
# Find the Implied Volatility of an European (GBS) Option given a price
# using Newton-Raphson method for greater speed since Vega is available
#def _gbs_implied_vol(option_type, fs, x, t, r, b, cp, precision=.00001, max_steps=100):
# return _newton_implied_vol(_gbs, option_type, x, fs, t, b, r, cp, precision, max_steps)
###Output
_____no_output_____
###Markdown
Public Interface for valuation functionsThis section encapsulates the functions that user will call to value certain options. These function primarily figure out the cost-of-carry term (b) and then call the generic version of the function (like _GBS() or _American). All of these functions return an array containg the premium and the greeks.
###Code
# ---------------------------
# Black Scholes: stock Options (no dividend yield)
# Inputs:
# option_type = "p" or "c"
# fs = price of underlying
# x = strike
# t = time to expiration
# v = implied volatility
# r = risk free rate
# q = dividend payment
# b = cost of carry
# Outputs:
# value = price of the option
# delta = first derivative of value with respect to price of underlying
# gamma = second derivative of value w.r.t price of underlying
# theta = first derivative of value w.r.t. time to expiration
# vega = first derivative of value w.r.t. implied volatility
# rho = first derivative of value w.r.t. risk free rates
def BlackScholes(option_type, fs, x, t, r, v):
b = r
return _gbs(option_type, fs, x, t, r, b, v)
###Output
_____no_output_____
###Markdown
Public Interface for implied Volatility Functions
###Code
# Inputs:
# option_type = "p" or "c"
# fs = price of underlying
# x = strike
# t = time to expiration
# v = implied volatility
# r = risk free rate
# q = dividend payment
# b = cost of carry
# Outputs:
# value = price of the option
# delta = first derivative of value with respect to price of underlying
# gamma = second derivative of value w.r.t price of underlying
# theta = first derivative of value w.r.t. time to expiration
# vega = first derivative of value w.r.t. implied volatility
# rho = first derivative of value w.r.t. risk free rates
#def euro_implied_vol(option_type, fs, x, t, r, q, cp):
# b = r - q
# return _gbs_implied_vol(option_type, fs, x, t, r, b, cp)
###Output
_____no_output_____
###Markdown
Implementation: Helper FunctionsThese functions aren't part of the main code but serve as utility function mostly used for debugging
###Code
# ---------------------------
# Helper Function for Debugging
# Prints a message if running code from this module and _DEBUG is set to true
# otherwise, do nothing
# Developer can toggle _DEBUG to True for more messages
# normally this is set to False
_DEBUG = False
def _debug(debug_input):
if (__name__ is "__main__") and (_DEBUG is True):
print(debug_input)
###Output
_____no_output_____
###Markdown
Real Calculations of Options Prices
###Code
bs = BlackScholes('c', fs=60, x=65, t=0.25, r=0.08, v=0.30)
optionPrice = bs[0]
optionPrice
###Output
_____no_output_____
###Markdown
Option prices charts
###Code
stockPrices = np.arange(50, 100, 1)
prices = stockPrices * 0
stockPrice = 60
strike = 65
timeToExpiration = 0.25
impliedVolatility = 0.30
riskFreeRate = 0.05
pl.title('Stock Option Price')
for i in range(len(stockPrices)):
prices[i] = BlackScholes('c', stockPrices[i], strike, t = timeToExpiration, r = riskFreeRate, v = impliedVolatility)[0]
pl.plot(stockPrices, prices, label = 'Option Price')
pl.xlabel("Stock Price")
pl.ylabel("Option Price")
pl.grid(True)
pl.show()
timeToExpiration = np.arange(0.1, 1, 0.05)
prices = timeToExpiration * 0
stockPrice = 60
strike = 65
#timeToExpiration = 0.25
impliedVolatility = 0.30
riskFreeRate = 0.05
pl.title('Stock Option Price')
for i in range(len(prices)):
prices[i] = BlackScholes('c', stockPrice, strike, t = timeToExpiration[i], r = riskFreeRate, v = impliedVolatility)[0]
pl.plot(timeToExpiration, prices, label = 'Option Price')
pl.xlabel("Time to Expiry")
pl.ylabel("Option Price")
pl.grid(True)
pl.show()
strikes = np.arange(50, 80, 1)
prices = strikes * 0
stockPrice = 60
strike = 65
timeToExpiration = 0.25
impliedVolatility = 0.30
riskFreeRate = 0.05
pl.title('Stock Option Price')
for i in range(len(prices)):
prices[i] = BlackScholes('c', stockPrice, strikes[i], t = timeToExpiration, r = riskFreeRate, v = impliedVolatility)[0]
pl.plot(strikes, prices, label = 'Option Price')
pl.xlabel("Striking Price")
pl.ylabel("Option Price")
pl.grid(True)
pl.show()
strikes = np.arange(50, 80, 1)
prices = strikes * 0
stockPrice = 60
strike = 65
timeToExpiration = 0.25
impliedVolatility = 0.30
riskFreeRate = 0.05
pl.title('Stock Put Option Price')
for i in range(len(prices)):
prices[i] = BlackScholes('p', stockPrice, strikes[i], t = timeToExpiration, r = riskFreeRate, v = impliedVolatility)[0]
pl.plot(strikes, prices, label = 'Option Price')
pl.xlabel("Striking Price")
pl.ylabel("Option Price")
pl.grid(True)
pl.show()
###Output
_____no_output_____ |
tips/.ipynb_checkpoints/RealNVP_tutorial-checkpoint.ipynb | ###Markdown
RealNVP RealNVPNICEを先行研究に、より高性能な Flow base Model を提案した。Coupling Layer と呼ばれる Flow で主題となるヤコビアンの計算できる関数で、これを提案したことが 1st Contribution. Coupling LayerCoupling Layer は次のような変換を行う。 Forward\begin{eqnarray*}x_{1:d}, x_{d+1:D} &=& split(x) \\y_{1:d}&=&x_{1:d} \\y_{d+1:D}&=&s \odot x_{d+1:D} + t \\y &=& concat(y_{1:d}, y_{d+1:D}) \\where && \log{s}, t = NN(x_{1:d}) \\\end{eqnarray*} Inverse\begin{eqnarray*}y_{1:d}, y_{d+1:D} &=& split(y) \\x_{1:d}&=&y_{1:d} \\x_{d+1:D}&=& (y_{d+1:D} - t) / s \\x &=& concat(x_{1:d},x_{d+1:D}) \\where && \log{s}, t = NN(y_{1:d}) \\\end{eqnarray*} Forward Jacobianまずヤコビ行列を求める。\begin{eqnarray*}\frac{\partial y}{\partial x} = \begin{bmatrix}\frac{\partial y_{1:d}}{\partial x_{1:d}} & \frac{\partial y_{1:d}}{\partial x_{d+1:D}} \\\frac{\partial y_{d+1:D}}{\partial x_{1:d}} & \frac{\partial y_{d+1:D}}{\partial x_{d+1:D}}\end{bmatrix}=\begin{bmatrix}\mathbb{I}_d & 0 \\\frac{\partial y_{d+1:D}}{\partial x_{1:d}} & diag(s)\end{bmatrix}\end{eqnarray*}ヤコビアンはヤコビ行列の行列式である。三角行列の行列式は対角成分の積であるから、\begin{eqnarray*}det|\cfrac{dy}{dx}| = \Pi{s}\end{eqnarray*}ヤコビアンは一般に絶対値を付けられる値で、計算の都合上これを対数で表現すると\begin{eqnarray*}\log{|det|\cfrac{dy}{dx}||} = \Sigma{|s|}\end{eqnarray*} Inverse Jacobian同様にヤコビ行列を求める。\begin{eqnarray*}\frac{\partial y}{\partial x} = \begin{bmatrix}\frac{\partial x_{1:d}}{\partial y_{1:d}} & \frac{\partial x_{1:d}}{\partial y_{d+1:D}} \\\frac{\partial x_{d+1:D}}{\partial y_{1:d}} & \frac{\partial x_{d+1:D}}{\partial y_{d+1:D}}\end{bmatrix}=\begin{bmatrix}\mathbb{I}_d & 0 \\\frac{\partial x_{d+1:D}}{\partial y_{1:d}} & diag(\frac{y_{1:d}}{\log{s}})\end{bmatrix}\end{eqnarray*}同様に\begin{eqnarray*}\log{|det|\cfrac{dx}{dy}||} = - \Sigma{|s|}\end{eqnarray*} 問題設定2次元の Double Moon 分布から 2次元の多変量標準正規分布(2変量標準正規分布) との変換を行います。ref [PyTorchでRealNVP](https://qiita.com/cross32768/items/87036cc35c5367050b04) Tensorflow を用いて解く
###Code
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
tfb = tfp.bijectors
print('tensorflow: ', tf.__version__)
print('tensorflow-probability: ', tfp.__version__)
###Output
tensorflow: 2.0.0-rc0
tensorflow-probability: 0.8.0-rc0
###Markdown
2変量正規分布の作成
###Code
mvn = tfd.MultivariateNormalDiag(loc=[0., 0.], scale_diag=[1., 1.])
mvn_samples = mvn.sample(5000)
plt.figure(figsize=(5,5))
plt.xlim([-4, 4])
plt.ylim([-4, 4])
plt.scatter(mvn_samples[:, 0], mvn_samples[:, 1], s=15)
###Output
_____no_output_____
###Markdown
Double Moon 分布の作成
###Code
def gen_double_moon_samples(num_samples):
assert num_samples % 2 == 0, "[Requirement] num_samples % 2 == 0"
x1_1 = tfd.Normal(loc=4.0, scale=4.0)
x1_1_samples = x1_1.sample(num_samples // 2)
x1_2 = tfd.Normal(
loc=0.25 * (x1_1_samples - 4) ** 2 - 20,
scale=tf.ones_like(num_samples / 2) * 2
)
x1_2_samples = x1_2.sample()
x2_1 = tfd.Normal(loc=4.0, scale=4.0)
x2_1_samples = x2_1.sample(num_samples // 2)
x2_2 = tfd.Normal(
loc=-0.25 * (x2_1_samples - 4) ** 2 + 20,
scale=tf.ones_like(num_samples / 2) * 2,
)
x2_2_samples = x2_2.sample()
x1_samples = tf.stack([x1_1_samples * 0.2, x1_2_samples * 0.1], axis=1)
x2_samples = tf.stack([x2_1_samples * 0.2 - 2, x2_2_samples * 0.1], axis=1)
x_samples = tf.concat([x1_samples, x2_samples], axis=0)
return x_samples
base_samples = gen_double_moon_samples(50000)
base_samples = tf.random.shuffle(base_samples)
plt.figure(figsize=(5, 5))
plt.xlim([-4, 4])
plt.ylim([-4, 4])
plt.scatter(base_samples[:, 0], base_samples[:, 1], s=15)
###Output
_____no_output_____
###Markdown
データセットの作成
###Code
SHUFFLE_BUFFER_SIZE = 10000
BATCH_SIZE = 10000
train_dataset = (
tf.data.Dataset.from_tensor_slices(base_samples)
.shuffle(SHUFFLE_BUFFER_SIZE)
.batch(BATCH_SIZE)
)
for i in train_dataset.take(1):
print('data samples: ', len(i))
plt.figure(figsize=(5, 5))
plt.xlim([-4, 4])
plt.ylim([-4, 4])
plt.scatter(i[:, 0], i[:, 1], s=15)
###Output
data samples: 10000
###Markdown
NN レイヤーの作成
###Code
from tensorflow.keras.layers import Layer, Dense, BatchNormalization, ReLU
from tensorflow.keras import Model
class NN(Layer):
def __init__(self, input_shape, n_hidden=[512, 512], activation="relu", name="nn"):
super(NN, self).__init__(name="nn")
layer_list = []
for i, hidden in enumerate(n_hidden):
layer_list.append(Dense(hidden, activation=activation, name='dense_{}_1'.format(i)))
layer_list.append(Dense(hidden, activation=activation, name='dense_{}_2'.format(i)))
self.layer_list = layer_list
self.log_s_layer = Dense(input_shape, activation="tanh", name='log_s')
self.t_layer = Dense(input_shape, name='t')
def call(self, x):
y = x
for layer in self.layer_list:
y = layer(y)
log_s = self.log_s_layer(y)
t = self.t_layer(y)
return log_s, t
def nn_test():
nn = NN(1, [512, 512])
x = tf.keras.Input([1])
log_s, t = nn(x)
# Non trainable params: -> Batch Normalization's params
tf.keras.Model(x, [log_s, t], name="nn_test").summary()
nn_test()
nn = NN(1, [512, 512])
x = tf.random.normal([100, 1])
with tf.GradientTape() as t:
t.watch(x)
y = nn(x)
loss = - tf.reduce_mean(y - x)
optimizer = tf.optimizers.Adam(learning_rate=0.0001)
grads = t.gradient(loss, nn.trainable_variables)
optimizer.apply_gradients(zip(grads, nn.trainable_variables))
print(loss)
###Output
tf.Tensor(0.097440206, shape=(), dtype=float32)
###Markdown
RealNVP レイヤーの作成
###Code
class RealNVP(tfb.Bijector):
def __init__(
self,
input_shape,
n_hidden=[512, 512],
# this bijector do vector wise quantities.
forward_min_event_ndims=1,
validate_args: bool = False,
name="real_nvp",
):
"""
Args:
input_shape:
input_shape,
ex. [28, 28, 3] (image) [2] (x-y vector)
"""
super(RealNVP, self).__init__(
validate_args=validate_args, forward_min_event_ndims=forward_min_event_ndims, name=name
)
assert input_shape[-1] % 2 == 0
self.input_shape = input_shape
nn_layer = NN(input_shape[-1] // 2, n_hidden)
nn_input_shape = input_shape.copy()
nn_input_shape[-1] = input_shape[-1] // 2
x = tf.keras.Input(nn_input_shape)
log_s, t = nn_layer(x)
self.nn = Model(x, [log_s, t], name="nn")
def _forward(self, x):
x_a, x_b = tf.split(x, 2, axis=-1)
y_b = x_b
log_s, t = self.nn(x_b)
s = tf.exp(log_s)
y_a = s * x_a + t
y = tf.concat([y_a, y_b], axis=-1)
return y
def _inverse(self, y):
y_a, y_b = tf.split(y, 2, axis=-1)
x_b = y_b
log_s, t = self.nn(y_b)
s = tf.exp(log_s)
x_a = (y_a - t) / s
x = tf.concat([x_a, x_b], axis=-1)
return x
def _forward_log_det_jacobian(self, x):
_, x_b = tf.split(x, 2, axis=-1)
log_s, t = self.nn(x_b)
return log_s
def realnvp_test():
realnvp = RealNVP(input_shape=[2], n_hidden=[512, 512])
x = tf.keras.Input([2])
y = realnvp.forward(x)
print('trainable_variables :', len(realnvp.trainable_variables))
Model(x, y, name="realnvp_test").summary()
realnvp_test()
###Output
trainable_variables : 12
Model: "realnvp_test"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_9 (InputLayer) [(None, 2)] 0
__________________________________________________________________________________________________
tf_op_layer_split_1 (TensorFlow [(None, 1), (None, 1 0 input_9[0][0]
__________________________________________________________________________________________________
nn (Model) [(None, 1), (None, 1 790018 tf_op_layer_split_1[0][1]
__________________________________________________________________________________________________
tf_op_layer_Exp_1 (TensorFlowOp [(None, 1)] 0 nn[1][0]
__________________________________________________________________________________________________
tf_op_layer_mul_1 (TensorFlowOp [(None, 1)] 0 tf_op_layer_Exp_1[0][0]
tf_op_layer_split_1[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_1 (TensorFlowOp [(None, 1)] 0 tf_op_layer_mul_1[0][0]
nn[1][1]
__________________________________________________________________________________________________
tf_op_layer_concat_1 (TensorFlo [(None, 2)] 0 tf_op_layer_add_1[0][0]
tf_op_layer_split_1[0][1]
==================================================================================================
Total params: 790,018
Trainable params: 790,018
Non-trainable params: 0
__________________________________________________________________________________________________
###Markdown
TransformedDistribution の作成
###Code
num_realnvp = 4
bijector_chain = []
for i in range(num_realnvp):
bijector_chain.append(RealNVP(input_shape=[2], n_hidden=[256, 256]))
bijector_chain.append(tfp.bijectors.Permute([1, 0]))
flow = tfd.TransformedDistribution(
distribution=mvn,
bijector=tfb.Chain(list(reversed(bijector_chain)))
)
print('trainable_variables: ', len(flow.bijector.trainable_variables))
###Output
trainable_variables: 48
###Markdown
学習前のサンプリング結果
###Code
samples = flow.sample(10000)
plt.figure(figsize=(5, 5))
plt.xlim([-4, 4])
plt.ylim([-4, 4])
plt.scatter(samples[:, 0], samples[:, 1], s=15)
for targets in train_dataset.take(1):
targets = targets
#print(flow.bijector.inverse(targets))
print(tf.reduce_sum(flow.bijector.inverse_log_det_jacobian(targets, event_ndims=1)))
res = flow.bijector.inverse(targets)
print(tf.reduce_mean(flow.log_prob(res)))
print(flow.log_prob(res).shape)
targets.shape
plt.scatter(targets[:,0], targets[:,1])
plt.scatter(res[:, 0], res[:,1])
###Output
tf.Tensor(-35.19041, shape=(), dtype=float32)
tf.Tensor(-4.382125, shape=(), dtype=float32)
(10000, 10000)
###Markdown
学習
###Code
!rm -r checkpoints
@tf.function
def loss(targets):
return - tf.reduce_mean(flow.log_prob(targets))
optimizer = tf.optimizers.Adam(learning_rate=0.001)
log = tf.summary.create_file_writer('checkpoints')
avg_loss = tf.keras.metrics.Mean(name='loss', dtype=tf.float32)
n_epochs = 200
for epoch in range(n_epochs):
for targets in train_dataset:
with tf.GradientTape() as tape:
log_prob_loss = loss(targets)
grads = tape.gradient(log_prob_loss, flow.trainable_variables)
optimizer.apply_gradients(zip(grads, flow.trainable_variables))
avg_loss.update_state(log_prob_loss)
if tf.equal(optimizer.iterations % 1000, 0):
with log.as_default():
tf.summary.scalar("loss", avg_loss.result(), step=optimizer.iterations)
print(
"Step {} Loss {:.6f}".format(
optimizer.iterations, avg_loss.result()
)
)
avg_loss.reset_states()
###Output
Step <tf.Variable 'Adam/iter:0' shape=() dtype=int64, numpy=1000> Loss 1.837895
###Markdown
推論 順方向
###Code
base = flow.distribution.sample(10000)
targets = flow.sample(10000)
plt.scatter(base[:, 0], base[:, 1], s=15)
plt.scatter(targets[:, 0], targets[:, 1], s=15)
###Output
_____no_output_____
###Markdown
逆方向
###Code
targets = gen_double_moon_samples(10000)
base = flow.bijector.inverse(targets)
targets.shape
plt.scatter(base[:, 0], base[:,1], s=15)
plt.scatter(targets[:,0], targets[:,1], s=15)
###Output
_____no_output_____ |
doc2vec_training.ipynb | ###Markdown
Doc2vec TrainingInstall packages to environment.
###Code
!pip install -U -q PyDrive
!pip install gensim
# For Gensim
!pip install testfixtures
!pip install scikit-learn
###Output
_____no_output_____
###Markdown
Run the following snippet to load article json files from Google Drive. Utility function save_to_drive can be used to save files to Google Drive. Useful for training models in Google Collab.
###Code
# from pydrive.auth import GoogleAuth
# from pydrive.drive import GoogleDrive
# from google.colab import auth
# from oauth2client.client import GoogleCredentials
# from google.colab import auth
# import io
# from googleapiclient.http import MediaIoBaseDownload
# from googleapiclient.http import MediaFileUpload
#
# auth.authenticate_user()
# from googleapiclient.discovery import build
# drive_service = build('drive', 'v3')
#
#
#
# files_to_load = list()
#
# files_to_load.append({
# "file_name": "all_articles.json",
# "id": "19ErkUdKHwJO46T3u_LnoUhU-Ol4Om90W",
# "is_binary": 0
# })
#
#
# def download_from_drive(file_id):
#
# request = drive_service.files().get_media(fileId=file_id)
# downloaded = io.BytesIO()
# downloader = MediaIoBaseDownload(downloaded, request)
# done = False
# while done is False:
# # _ is a placeholder for a progress object that we ignore.
# # (Our file is small, so we skip reporting progress.)
# _, done = downloader.next_chunk()
#
# downloaded.seek(0)
# read = downloaded.read()
# return read
#
#
# def save_to_drive(filename):
#
# file_metadata = {
# 'name': filename,
# 'mimeType': 'text/plain'
# }
# media = MediaFileUpload(filename,
# mimetype='text/plain',
# resumable=True)
# created = drive_service.files().create(body=file_metadata,
# media_body=media,
# fields='id').execute()
# print('File ID: {}'.format(created.get('id')))
#
# # Download all the Google Drive files
# for file in files_to_load:
# print(file)
#
# # load document
# doc = download_from_drive(file["id"])
#
# text_file = str()
# if file["is_binary"]:
# text_file = open(file["file_name"], "wb")
#
# else:
# doc = doc.decode("utf-8")
# text_file = open(file["file_name"], "w")
#
# text_file.write(doc)
# text_file.close()
#
# print("loaded: " + file["file_name"])
print("Files loaded")
###Output
_____no_output_____
###Markdown
Finding optimal Doc2vec model for IMDB article sentiment predictionDownload the [Large Movie Review Dataset](http://ai.stanford.edu/~amaas/data/sentiment/).Load dataset of articles.
###Code
from gensim.utils import to_unicode
from nltk.tokenize import word_tokenize
import collections
import tarfile
import re
import random
from random import shuffle
random.seed(10)
number_of_articles = 100000
SentimentDocument = collections.namedtuple('SentimentDocument', 'words tags split sentiment')
def create_sentiment_document(name, text, index):
# Split the name of a movie review file into train/test, and +/- sentiment
_, split, sentiment_str, _ = name.split('/')
sentiment = {'pos': 1.0, 'neg': 0.0, 'unsup': None}[sentiment_str]
if sentiment is None:
split = 'extra'
tokens = word_tokenize(to_unicode(text))
return SentimentDocument(tokens, [index], split, sentiment)
def extract_documents(imdb_file):
index = 0
with tarfile.open(imdb_file, mode='r:gz') as tar:
for member in tar.getmembers():
if re.match(r'aclImdb/(train|test)/(pos|neg|unsup)/\d+_\d+.txt$', member.name):
member_bytes = tar.extractfile(member).read()
member_text = member_bytes.decode('utf-8', errors='replace')
assert member_text.count('\n') == 0
yield create_sentiment_document(member.name, member_text, index)
index += 1
print("Loading documents ...")
alldocs = list(extract_documents('aclImdb_v1.tar.gz'))
shuffle(alldocs)
alldocs = alldocs[:number_of_articles]
print(f"Total docs {len(alldocs)}")
###Output
_____no_output_____
###Markdown
Based on the [“Distributed Representations of Sentences and Documents”](http://cs.stanford.edu/~quocle/paragraph_vector.pdf) paper [Radim Hurek's](https://radimrehurek.com/gensim/auto_examples/howtos/run_doc2vec_imdb.html) reproduction of the experiment the `Doc2Vec(dbow,d100,n5,mc2,t8` model produces the lowest error rate in sentiment classification (10.3%).This model is a concatenation of the Distributed Bag of Words model model and the DM/mean model.To analyze whether further preprocessing of the text improves the quality of the embeddings we will train a model model for Text that went through a preprocessing pipeline containing:- Frequency based summarization, lematization, stopword removal, and contraction expansion- Lematization, stopword removal- Contraction expansion, stopword removal- Raw textTo evaluate the quality of the embeddings, we will check the accuracy of the sentiment analysis model trained to predict the sentiment based on the document embedding.Define all of the preproccesing functions.
###Code
from string import punctuation
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
nltk.download('stopwords')
def substitute_contraction(word):
"""
Substitutes the contraction with expanded form
Substates non-ascii quotes
:param word:
:return:
The substituted contraction or the original token
"""
# Replace unicode commas
punctuation = {0x2018: 0x27, 0x2019: 0x27, 0x201C: 0x22, 0x201D: 0x22}
w = word.translate(punctuation)
contractions = get_contraction_dict()
if w in contractions.keys():
subbed = contractions[w]
return subbed
else:
return w
def get_contraction_dict():
return {
"ain't": "is not",
"aren't": "are not",
"can't": "cannot",
"can't've": "cannot have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldn't've": "could not have",
"didn't": "did not",
"doesn't": "does not",
"don't": "do not",
"hadn't": "had not",
"hadn't've": "had not have",
"hasn't": "has not",
"haven't": "have not",
"he'd": "he would",
"he'd've": "he would have",
"he'll": "he will",
"he'll've": "he will have",
"he's": "he has",
"how'd": "how did",
"how'd'y": "how do you",
"how'll": "how will",
"how's": "how is",
"I'd": "I would",
"I'd've": "I would have",
"I'll": "I will",
"I'll've": "I shall have",
"I'm": "I am",
"I've": "I have",
"isn't": "is not",
"it'd": "it would",
"it'd've": "it would have",
"it'll": "it will",
"it'll've": "it shall have",
"it's": "it is",
"let's": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightn't": "might not",
"mightn't've": "might not have",
"must've": "must have",
"mustn't": "must not",
"mustn't've": "must not have",
"needn't": "need not",
"needn't've": "need not have",
"o'clock": "of the clock",
"oughtn't": "ought not",
"oughtn't've": "ought not have",
"shan't": "shall not",
"sha'n't": "shall not",
"shan't've": "shall not have",
"she'd": "she would",
"she'd've": "she would have",
"she'll": "she will",
"she'll've": "she will have",
"she's": "she is",
"should've": "should have",
"shouldn't": "should not",
"shouldn't've": "should not have",
"so've": "so have",
"so's": "so is",
"that'd": "that had",
"that'd've": "that would have",
"that's": "that is",
"there'd": "there would",
"there'd've": "there would have",
"there's": "there is",
"they'd": "they would",
"they'd've": "they would have",
"they'll": "they will",
"they'll've": "they will have",
"they're": "they are",
"they've": "they have",
"to've": "to have",
"wasn't": "was not",
"we'd": "we would",
"we'd've": "we would have",
"we'll": "we will",
"we'll've": "we will have",
"we're": "we are",
"we've": "we have",
"weren't": "were not",
"what'll": "what will",
"what'll've": "what will have",
"what're": "what are",
"what's": "what is",
"what've": "what have",
"when's": "when is",
"when've": "when have",
"where'd": "where did",
"where's": "where is",
"where've": "where have",
"who'll": "who will",
"who'll've": "who will have",
"who's": "who is",
"who've": "who have",
"why's": "why is",
"why've": "why have",
"will've": "will have",
"won't": "will not",
"won't've": "will not have",
"would've": "would have",
"wouldn't": "would not",
"wouldn't've": "would not have",
"y'all": "you all",
"y'all'd": "you all would",
"y'all'd've": "you all would have",
"y'all're": "you all are",
"y'all've": "you all have",
"you'd": "you would",
"you'd've": "you would have",
"you'll": "you will",
"you'll've": "you will have",
"you're": "you are",
"you've": "you have"
}
class LanguageProcessor:
def __init__(self):
"""
All of the natural processing functionality
"""
self.lemmatizer = WordNetLemmatizer()
self.punctuation_list = [c for c in punctuation]
# TODO: make this a set
self.STOPWORDS = stopwords.words()
# TODO: Get more complete list and read it from file
MORESTOP = ['will', 'thing', 'n\'t', '\'\'', '\'s', '``', '\'re', '\'', 'mr', 'mr.', '--', '...', '..', '->', '\'.',
'\' \'', ' .', '’',
'“', '”', "", "\n"]
self.STOPWORDS.extend(MORESTOP)
def substitute_contractions(self, words):
"""
Loop through words and sub contractions
:param text:
:return:
"""
subbed = []
for word in words:
subbed.append(substitute_contraction(word))
return subbed
def get_non_stopwords(self, words, substitute_contractions=True, stem=True):
"""
Returns a list of lowercase non-stopwords in the text.
non-stopwords are anything that is not punctuation or stopwords
Numerical values are NOT FILTERED OUT
:param text:
:param stem:
:return:
"""
if substitute_contractions:
words = self.substitute_contractions(words)
non_stop_words = []
# Loop through tokens
for word in words:
# Slowing things down
token = self.remove_punctuation(word.lower())
if token not in self.STOPWORDS:
# Check if token contains punctuation
if token not in self.punctuation_list:
if stem:
non_stop_words.append(self.get_word_lemma(token))
else:
non_stop_words.append(token)
return non_stop_words
def get_word_lemma(self, word):
"""
Helper to allows customization to stemming process, like checking for trailing e's
:param word:
:return:
"""
lema = self.lemmatizer.lemmatize(word)
return lema
def remove_punctuation(self, text):
"""
Helper function to remove all non-acsii charcters
:param text:
:return:
"""
return ''.join([i if ord(i) < 128 else '' for i in text])
def is_text_token(self, token):
"""
Checks if not punc or numerical, or non-acsii
:param token:
:return:
"""
if len(token) == 1:
if ord(token) < 128 and token not in punctuation and not token.isdigit():
return True
else:
return False
else:
if not token.isdigit():
return True
else:
return False
# Perform each type of preprocesing
corpora = ["lem+stop+con", "stop+con", "stop", "none"]
processed_texts = {cor:[] for cor in corpora}
processor = LanguageProcessor()
# # Reload processed text
# import pickle
# # Loading files from pickle
# processed_texts = pickle.load(open("processed_text.pkl", "rb"))
###Output
[nltk_data] Downloading package stopwords to
[nltk_data] /Users/milanarezina/nltk_data...
[nltk_data] Package stopwords is already up-to-date!
###Markdown
Prepare the documents for each type of preprocessing.- lem = lematization- stop = stopword removal- con = expanded contractions
###Code
print("Pre-processing Text...")
print("Processing lem+stop+con")
for doc in alldocs:
words = processor.get_non_stopwords(doc.words, substitute_contractions=True, stem=True)
doc2 = SentimentDocument(words, doc.tags, doc.split, doc.sentiment)
processed_texts["lem+stop+con"].append(doc2)
print("Processing stop+con")
for doc in alldocs:
words = processor.get_non_stopwords(doc.words, substitute_contractions=True, stem=False)
doc2 = SentimentDocument(words, doc.tags, doc.split, doc.sentiment)
processed_texts["stop+con"].append(doc2)
print("Processing stop")
for doc in alldocs:
words = processor.get_non_stopwords(doc.words, substitute_contractions=False, stem=False)
doc2 = SentimentDocument(words, doc.tags, doc.split, doc.sentiment)
processed_texts["stop"].append(doc2)
processed_texts["none"] = alldocs
print("Completed Pre-processing")
###Output
_____no_output_____
###Markdown
Setup for evaluating models.
###Code
from sklearn.linear_model import LogisticRegression
import numpy as np
from gensim.models.doc2vec import Doc2Vec
from gensim.test.test_doc2vec import ConcatenatedDoc2Vec
import multiprocessing
# Keep track of the error rates for each model
error_rates = {}
def logistic_regression_predictor(X, y):
"""
Return the predictor after fitting a model on embeddings and sentiment class
:param X:
Embeddings
:param y:
Sentiment class
:return:
"""
clf = LogisticRegression(random_state=0, verbose=True).fit(X, y)
return clf
def model_error_rate(doc2vec_model, train, test):
"""
Test error rate of regression model that uses the doc2vec embeddings to predict sentiment class
:param doc2vec_model:
:param train:
:param test:
:return:
"""
train_y = [doc.sentiment for doc in train_docs]
train_x = [doc2vec_model.docvecs[doc.tags[0]] for doc in train_docs]
test_x = [doc2vec_model.docvecs[doc.tags[0]] for doc in test_docs]
test_y = [doc.sentiment for doc in test]
print("Sample Data", train_x[:1], train_y[:1])
print(f"""Train / test data breakdown:
Train positive sentiment samples {train_y.count(1.0)} out of {len(train_y)}
Test positive sentiment samples {test_y.count(1.0)} out of {len(test_y)}""")
predictor = logistic_regression_predictor(train_x, train_y)
test_predictions = predictor.predict(test_x)
corrects = sum(np.rint(test_predictions) == test_y)
errors = len(test_predictions) - corrects
error_rate = float(errors) / len(test_predictions)
return error_rate, errors, len(test_predictions), predictor
# Common Doc2vec configuration
common_kwargs = dict(
vector_size=100, epochs=20, min_count=2,
sample=0, workers=multiprocessing.cpu_count(), negative=5, hs=0,
)
# Doc2vec models for each type of preproccesing
models_by_corpora = {}
###Output
_____no_output_____
###Markdown
Train and evalute a PV-DBOW (paragraph vector distributed bag of words) model for each of the types of preprocessing.
###Code
for model in corpora:
# TODO: Concatenated doc2vec model perform slightly better, however it is missing
# tags property in it's implementation.
# 2nd best model used
models_by_corpora[model] = Doc2Vec(dm=0, **common_kwargs)
print("Training Doc2Vec models ...")
# Evaluate Doc2vec for each type of preproccesing
for corpus in corpora:
model = models_by_corpora[corpus]
docs = processed_texts[corpus]
print("-"*20)
print(f"Training model on: {corpus} documents ...")
# Split into train / test sets
train_docs = [doc for doc in docs if doc.split == 'train']
test_docs = [doc for doc in docs if doc.split == 'test']
model.build_vocab(docs)
model.train(docs, total_examples=len(docs), epochs=model.epochs)
err_rate, err_count, test_count, predictor = model_error_rate(model, train_docs, test_docs)
error_rates[str(model)] = err_rate
print(f"Error rate: {err_rate} for model {str(model)} trained on {corpus}")
###Output
Training Doc2Vec models ...
--------------------
Model trained on: lem+stop+con
Sample Data [array([ 0.19048014, 0.18574472, 0.19675452, 0.34363356, -0.05429327,
-0.34967002, -0.9629098 , 0.5046224 , 0.3553929 , -0.02000841,
0.42241308, 0.31711754, -0.1987363 , -0.11315008, -0.06220058,
-0.0768768 , 0.22785848, 0.2949146 , -0.39035028, 0.26064464,
-0.11486331, 0.13627096, 0.38031614, 0.03657763, 0.4365639 ,
-0.5859031 , -0.7461953 , 0.551983 , -0.7311374 , 0.46559998,
-0.38593325, -0.44615978, -0.30371758, -0.05886084, 0.11023851,
-0.15133354, 0.37857378, -0.35254526, -0.05427878, -0.0111264 ,
-0.5489169 , 0.41485846, 0.50775194, 0.36012176, -0.171678 ,
0.24442673, -0.64688766, -0.28453165, -0.38347286, 0.4489134 ,
-0.25286022, 0.00631496, 0.04119195, -0.15534724, 0.68830603,
-0.23483275, 0.14449677, -0.4099465 , 0.12440899, 0.09973439,
-0.0247636 , 0.02926677, -0.54103404, 0.4465653 , -0.11672283,
0.64713603, -0.64009285, -0.18964896, 0.1096048 , -0.38112378,
0.26582056, 0.0032023 , -0.12880178, 0.65239453, 0.16594951,
-0.16200961, -0.60751504, -0.16466144, 0.23449329, 0.22097771,
0.4549512 , -0.19687998, -0.09566788, -0.24440518, 0.73698527,
0.81102914, -0.0922519 , 0.53137237, 0.67719966, -0.64504015,
0.19332719, 0.03491812, -0.28868482, 0.43951693, -0.5848366 ,
0.28153417, 0.11109039, 0.36863866, 0.01903613, -0.09364004],
dtype=float32)] [1.0]
Train / test data breakdown:
Train positive sentiment samples 0 out of 25000
Test positive sentiment samples 0 out of 25000
###Markdown
For the PV-DBOW model no performing any preproccesing produces the highest accuracy.Train and evalute a PV-DM (paragraph vector distributed memory) model for each of the types of preprocessing.
###Code
for model in corpora:
# TODO: Concatenated doc2vec model perform slightly better, however it is missing
# tags property in it's implementation.
# 2nd best model used
models_by_corpora[model + "+dm"] = Doc2Vec(dm=1, **common_kwargs)
print("Training Doc2Vec models ...")
# Evaluate Doc2vec for each type of preproccesing
for corpus in corpora:
model = models_by_corpora[corpus + "+dm"]
docs = processed_texts[corpus]
print("-"*20)
print(f"Training model on: {corpus} documents ...")
# Split into train / test sets
train_docs = [doc for doc in docs if doc.split == 'train']
test_docs = [doc for doc in docs if doc.split == 'test']
model.build_vocab(docs)
model.train(docs, total_examples=len(docs), epochs=model.epochs)
err_rate, err_count, test_count, predictor = model_error_rate(model, train_docs, test_docs)
error_rates[str(model)] = err_rate
print(f"Error rate: {err_rate} for model {str(model)} trained on {corpus}")
###Output
Training Doc2Vec models ...
--------------------
Training model on: lem+stop+con documents ...
Sample Data [array([ 4.8964587e-01, -5.8797348e-02, -2.6077956e-01, 4.5133162e-01,
-1.5007243e-01, 3.4983036e-01, -1.4829528e-01, 1.1516626e+00,
-1.4036475e-01, -4.4391423e-01, 2.6714194e-01, 2.4020796e-01,
1.8720028e-01, -3.7481549e-01, 1.1214490e+00, 4.3689597e-01,
-6.3363835e-02, -9.4921246e-02, -2.2934680e-01, -3.0742434e-01,
1.7611554e-01, -1.1198944e-03, -1.1979154e-01, -1.4307345e-01,
3.8967717e-01, 7.8051817e-01, 4.0083644e-01, 3.1800258e-01,
7.9142708e-01, -1.3788615e-01, -6.3872203e-02, -1.8768595e-01,
-3.5029519e-01, -3.0670562e-01, -4.6106091e-01, 5.6179827e-01,
2.3946853e-01, 4.8041072e-01, -4.1785136e-01, 2.2026943e-01,
9.6610361e-01, -4.8661163e-01, -2.3579098e-01, -7.3455429e-01,
1.0253838e+00, 5.8691138e-01, 6.9736248e-01, -9.4024286e-02,
-6.7753464e-01, 8.4717132e-02, -3.2288906e-01, -7.3024648e-01,
3.4105018e-01, 1.7702815e-01, 3.6370891e-01, -3.6651492e-01,
6.7028689e-01, -6.2619513e-01, 6.6040194e-01, -2.7155226e-01,
-4.5966882e-01, -2.7968913e-01, 7.3509771e-01, 1.1075566e+00,
-1.0244410e+00, -8.6179145e-02, 3.3973897e-01, -4.9158314e-01,
-1.1459063e+00, -8.8120483e-02, 3.0649221e-01, 2.3029993e-01,
6.6662967e-01, -1.8320113e-02, -5.7732028e-01, 8.4852487e-01,
-2.4082957e-01, 1.8521760e-01, -1.3982904e-01, 4.1279918e-01,
8.7412250e-01, -1.5827331e-01, -4.5995748e-01, -1.0220734e+00,
-5.9550828e-01, -5.1611763e-01, -1.5298973e-01, -1.1561557e+00,
-2.3052068e-01, 3.2421118e-01, 8.4572953e-01, 8.6495228e-02,
1.7998239e-01, -5.6005919e-01, 3.4209199e-02, -3.1384557e-01,
6.2168914e-01, -3.9444017e-01, 1.3564380e-01, 6.4791024e-01],
dtype=float32)] [1.0]
Train / test data breakdown:
Train positive sentiment samples 12500 out of 25000
Test positive sentiment samples 12500 out of 25000
|
SOSS/PSFs/soss_webbpsf_and_convolution_kernels.ipynb | ###Markdown
This notebook has 2 purposes: 1) Generates WebbPSF psfs 10x oversampled - At steps of 0.05 microns between 0.5 and 5.2 microns (or user defined wavelengths). - It is for the NIRISS SOSS mode. - Note that the output is in the native detector coordinate system (not DMS) 2) Generate the spectral convolution kernels - At the same wavelengths as the PSFs - At various oversampling of pixels (1 to 10 oversampling) 1) Generate WebbPSF PSFsRun this Jupyter notebook - or call the function in another script
###Code
import soss_generate_webbpsf as sosspsf
# Call the PSF generation function to generate a monochromatic PSF at the desired wavelengths.
# If no wavelengths are specified, PSFs will be generated for all wavelengths from 0.5-5.2µm.
# The PSFs can either be returned directly (e.g. the example below), or written to disk
#by toggling the save_to_disk keywork True/False.
mono_psf = sosspsf.loicpsf(wavelist=[1e-6], save_to_disk=False)
import matplotlib.pyplot as plt
import numpy as np
# Display the PSF we generated.
plt.imshow(np.log10(mono_psf[0]))
###Output
_____no_output_____
###Markdown
2) Generate the spectral convolution kernel
###Code
import soss_generate_convolution_kernel as sossker
###Output
_____no_output_____
###Markdown
To generate the matrices of kernels that extend to a semi_width of 7 native pixels where the first argument is the output path. You need to create the output directory manually first.
###Code
sossker.generate_kernel('/Users/albert/NIRISS/SOSSpipeline/convolution_kernels/',
psf_path = '/Users/albert/NIRISS/SOSSpipeline/webbpsf_psfs/',
verbose=False,kernel_semi_width=5)
###Output
/Users/albert/NIRISS/SOSSpipeline/webbpsf_psfs/
0 [0. 0.00489702 0.01195705 0.05821312 0.25878236 0.39727762
0.16759176 0.0565195 0.03055499 0.01081957 0.00338701]
1 [0. 0.00286759 0.01176933 0.05726486 0.2549394 0.4353044
0.14714649 0.04229379 0.03504945 0.01091439 0.0024503 ]
2 [0. 0.00735438 0.00959247 0.06321221 0.24406136 0.45299971
0.13494669 0.03666811 0.02953399 0.019807 0.00182407]
3 [0. 0.00946932 0.00809061 0.06446443 0.22412019 0.47876552
0.12197278 0.0423255 0.02308966 0.02246274 0.00523924]
4 [0. 0.00655181 0.0052943 0.06049408 0.21475311 0.50373213
0.11957097 0.04257051 0.02223096 0.01598665 0.00881548]
5 [2.50140514e-04 0.00000000e+00 5.93765092e-03 5.27160288e-02
2.05965614e-01 5.14815143e-01 1.37784168e-01 4.14340613e-02
2.24978021e-02 9.29789495e-03 9.30149691e-03]
6 [0.00234198 0. 0.01033506 0.04552525 0.21122931 0.4993198
0.15345349 0.04283099 0.01879918 0.00827535 0.00788959]
7 [0.00000000e+00 3.13742265e-04 1.30696389e-02 3.70634239e-02
1.86435619e-01 5.09026824e-01 1.83805775e-01 4.66707647e-02
1.27063274e-02 8.51887445e-03 2.38900967e-03]
8 [0.00098729 0.00350165 0.01771111 0.02958606 0.18453101 0.49422513
0.19401439 0.05069405 0.01126732 0.01348198 0. ]
9 [0.00372539 0.00590994 0.01998115 0.02122576 0.19726639 0.47901444
0.19370919 0.05326526 0.01117611 0.01472638 0. ]
10 [0.00201538 0.00557067 0.01929712 0.01187424 0.22236153 0.46526496
0.19782487 0.05265181 0.01257584 0.01056358 0. ]
11 [0. 0.00638105 0.01890212 0.00673037 0.23241511 0.46121005
0.19766817 0.05028628 0.01756016 0.0075543 0.00129239]
12 [0. 0.00744196 0.01891313 0.00561915 0.23207299 0.46388504
0.19707011 0.04642688 0.02077572 0.00582617 0.00196886]
13 [0. 0.00700394 0.01771327 0.0054043 0.23469673 0.47014039
0.19680242 0.0416652 0.01981032 0.00365048 0.00311296]
14 [0. 0.00592157 0.01524692 0.00550511 0.23494351 0.48443342
0.19212649 0.03712469 0.01814394 0.00168204 0.00487232]
15 [0. 0.0058899 0.01233409 0.00630645 0.23197283 0.49863717
0.18563594 0.03375107 0.01757498 0.00230507 0.00559252]
16 [0. 0.00784782 0.00936906 0.00789869 0.2283222 0.50860599
0.17802111 0.03242383 0.0174921 0.00572131 0.0042979 ]
17 [0. 0.01130389 0.0064005 0.009516 0.22674618 0.51675915
0.1674723 0.03340957 0.01764007 0.00894473 0.00180759]
18 [0.00000000e+00 1.46894388e-02 3.63590897e-03 1.02908753e-02
2.29767202e-01 5.21921023e-01 1.55615799e-01 3.59884334e-02
1.79846194e-02 1.01041027e-02 2.59758616e-06]
19 [0.00057453 0.01690478 0.00183155 0.01054726 0.23528346 0.52117884
0.14466676 0.03988766 0.0186307 0.01049444 0. ]
20 [8.12356764e-04 1.64607964e-02 0.00000000e+00 9.96473548e-03
2.41994677e-01 5.22311604e-01 1.35008073e-01 4.45733379e-02
1.85372365e-02 1.01179492e-02 2.19234001e-04]
21 [0.00269603 0.01517329 0. 0.01095355 0.24407689 0.52052169
0.12364966 0.0512747 0.01920317 0.01040803 0.00204298]
22 [0.00432339 0.01239155 0. 0.01215263 0.24085249 0.52862063
0.11030315 0.05971068 0.01913194 0.00918964 0.0033239 ]
23 [0.00564237 0.00892448 0. 0.01336399 0.23397571 0.54341888
0.09679168 0.06950059 0.01802339 0.0066724 0.00368651]
24 [0.00671904 0.00496221 0. 0.01407397 0.23194157 0.55580874
0.08600714 0.07818495 0.01571813 0.00370216 0.00288208]
25 [0.00735257 0.00077883 0. 0.01396687 0.23461449 0.56451857
0.07819931 0.08576314 0.0126288 0.0009574 0.00122002]
26 [0.01009521 0. 0.00308036 0.01581392 0.23213431 0.55563005
0.07349487 0.0934212 0.01202012 0.00195189 0.00235808]
27 [0.01236207 0. 0.00667845 0.01730611 0.2343416 0.53975921
0.07044598 0.09912626 0.01212708 0.00398771 0.00386552]
28 [0.01320835 0. 0.00997792 0.0179282 0.24076919 0.52383789
0.06791361 0.10320256 0.0122842 0.00603885 0.00483924]
29 [0.01270014 0. 0.0129119 0.01798989 0.24777289 0.51103364
0.06586911 0.1061106 0.01244029 0.00804798 0.00512357]
30 [0.01122141 0. 0.01558032 0.01775746 0.25426529 0.5016541
0.06439632 0.10770263 0.01271966 0.00998878 0.00471404]
31 [0.00919996 0. 0.01808997 0.01740833 0.25979179 0.49516133
0.06361257 0.10793112 0.01331237 0.01173663 0.00375593]
32 [0.00696987 0. 0.02052062 0.01703416 0.26431658 0.49066647
0.06355347 0.10694138 0.01441564 0.01307739 0.00250442]
33 [0.00472993 0. 0.02291011 0.01666909 0.2679644 0.48735117
0.06415236 0.10501316 0.01619019 0.01378764 0.00123195]
34 [2.56585453e-03 0.00000000e+00 2.52546010e-02 1.63125191e-02
2.70832420e-01 4.84703222e-01 6.52980091e-02 1.02433397e-01
1.87489485e-02 1.37086748e-02 1.42355341e-04]
35 [0.00114311 0.00066431 0.02798812 0.01648518 0.27174898 0.47961722
0.06703041 0.09933641 0.0226439 0.01334236 0. ]
36 [0.00000000e+00 1.53145619e-03 3.07033057e-02 1.67698935e-02
2.71706283e-01 4.74125655e-01 6.91261650e-02 9.58922961e-02
2.74568512e-02 1.23426169e-02 3.45477632e-04]
37 [0. 0.00347018 0.03389776 0.01784432 0.26901373 0.46465569
0.0717681 0.09207962 0.03365842 0.01162219 0.00199 ]
38 [0. 0.00538125 0.0367586 0.01875643 0.26597639 0.45606573
0.07473283 0.08792048 0.04027391 0.01042095 0.00371342]
39 [0. 0.00729579 0.03926391 0.0195001 0.26265718 0.44828807
0.07811767 0.08334529 0.0471239 0.00898221 0.00542589]
40 [0. 0.00922233 0.0413852 0.02007106 0.25913939 0.44128036
0.08201916 0.07833835 0.05398011 0.00754524 0.00701879]
41 [0. 0.01115448 0.04309832 0.020475 0.25555585 0.43498188
0.08647473 0.07296609 0.06058879 0.00632974 0.00837512]
42 [0. 0.01308094 0.04439073 0.02073272 0.25208689 0.42929764
0.09142605 0.0673768 0.06670522 0.00551854 0.00938446]
43 [0. 0.0149917 0.04526392 0.02087722 0.24891181 0.42411459
0.09673286 0.0617671 0.07213647 0.00524215 0.00996218]
44 [0. 0.01688407 0.04573179 0.02095518 0.24619968 0.4193083
0.10218245 0.05634186 0.07676344 0.00556904 0.01006419]
45 [0. 0.01875981 0.04581711 0.0210171 0.24406124 0.41477155
0.10754917 0.05126813 0.08055407 0.00650892 0.00969291]
46 [0. 0.02084757 0.0454266 0.02137315 0.24474844 0.40970421
0.11085121 0.04723494 0.0831397 0.00779003 0.00888416]
47 [0. 0.02270933 0.04479493 0.02157166 0.24390001 0.40553633
0.11541918 0.04310323 0.08547907 0.00975037 0.00773589]
48 [0. 0.02455854 0.04386011 0.02187553 0.24367021 0.40147087
0.11943023 0.03946323 0.08722045 0.01214485 0.00630599]
49 [0. 0.02639592 0.04263519 0.02231522 0.24408825 0.3974937
0.12276885 0.03628136 0.08846362 0.01488016 0.00467772]
50 [0. 0.02821161 0.04112686 0.022909 0.24514106 0.39362997
0.12539756 0.03348501 0.08930482 0.01786816 0.00292594]
51 [0. 0.03010538 0.03917735 0.02390784 0.24797646 0.38967461
0.12634549 0.03119621 0.08976038 0.02074963 0.00110666]
52 [0.00074142 0.03233039 0.03744823 0.02549716 0.24937681 0.3837353
0.12697001 0.02944652 0.09003261 0.02442157 0. ]
53 [0.00252451 0.03502659 0.03617745 0.02786457 0.24889801 0.37493493
0.12705518 0.02846979 0.09009781 0.02895116 0. ]
54 [0.00422226 0.03746546 0.03464536 0.03028511 0.24900125 0.36691621
0.12670766 0.02752731 0.08993411 0.03329526 0. ]
55 [0.00583571 0.03961367 0.03284703 0.03275049 0.24965583 0.35973489
0.12605842 0.02653608 0.0895437 0.03742418 0. ]
56 [0.00736985 0.04143798 0.03078205 0.03525496 0.25082437 0.35342819
0.12523591 0.02543175 0.08891348 0.04132145 0. ]
57 [0.00882879 0.04290449 0.02845402 0.03779269 0.25246956 0.34802531
0.12436234 0.02416547 0.08801933 0.044978 0. ]
58 [0.01047379 0.04416435 0.02559917 0.04125929 0.25613812 0.34258925
0.12185137 0.02301483 0.08703802 0.04787181 0. ]
59 [0.01185571 0.04482086 0.02276664 0.0440232 0.25873471 0.33885697
0.12100306 0.02136593 0.08558915 0.05098377 0. ]
60 [0.01313387 0.04500996 0.01972825 0.04675894 0.26163836 0.3361454
0.12049117 0.01945489 0.08376768 0.05387146 0. ]
61 [0.01428615 0.044712 0.01648437 0.04946968 0.26489524 0.33447292
0.12035242 0.01727721 0.08153796 0.05651205 0. ]
62 [0.01528839 0.04391128 0.01303409 0.05216583 0.26855599 0.33384856
0.12061057 0.01483531 0.07887022 0.05887977 0. ]
|
notebooks/2. Segmentation.ipynb | ###Markdown
Segmentation
###Code
%reload_ext autoreload
%autoreload 2
%matplotlib inline
from usal_echo.d04_segmentation.create_seg_view import create_seg_view
from usal_echo.d04_segmentation.segment_view import run_segment
from usal_echo.d04_segmentation.generate_masks import generate_masks
from usal_echo.d04_segmentation.evaluate_masks import evaluate_masks
with open("./conf/local/path_parameters.yml") as f:
paths = yaml.safe_load(f)
dcm_dir = os.path.expanduser(paths["dcm_dir"])
img_dir = os.path.expanduser(paths["img_dir"])
segmentation_dir = os.path.expanduser(paths["segment_dir"])
model_dir = os.path.expanduser(paths["model_dir"])
classification_model = paths["classification_model"]
###Output
_____no_output_____
###Markdown
Update the name of the image/dicom directory.
###Code
dir_name = "specify name of directory with images"
dcm_dir_path = os.path.join(dcm_dir, dir_name)
img_dir_path = os.path.join(img_dir, dir_name)
run_segment(dcm_dir_path, model_dir, img_dir_path, classification_model)
create_seg_view()
generate_masks(dcm_dir_path)
evaluate_masks()
###Output
_____no_output_____ |
07_DijkstrasAlgorithm.ipynb | ###Markdown
MSDS 432, Assignment 7 - Dijkstra's Algorithm Author: Brandon Moretz
###Code
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from time import time
import matplotlib.style as style
from collections import deque, defaultdict
np.random.seed(323) # static seed so results are reproducible
style.use('seaborn-poster') # sets the size of the charts
style.use('ggplot') # set the theme for matplotlib
%%javascript
IPython.OutputArea.prototype._should_scroll = function(lines) {
return false;
}
###Output
_____no_output_____
###Markdown
Helper Utilities
###Code
infinity = float("inf")
###Output
_____no_output_____
###Markdown
Sample Data
###Code
%%html
<img src="img/RoadTrip_NYC_to_L.A.jpg",width=60,height=60>
###Output
_____no_output_____
###Markdown
Initialize each of our nodes in the graph
###Code
graph = {}
graph['NYC'] = {}
graph['DC'] = {}
graph['Atlanta'] = {}
graph['New Orleans'] = {}
graph['Dallas'] = {}
graph['Indianapolis'] = {}
graph['Kansas City'] = {}
graph['Denver'] = {}
graph['Pittsburgh'] = {}
graph['Cincinatti'] = {}
graph['St Louis'] = {}
graph['OK City'] = {}
graph['Alburqurque'] = {}
graph['Salt Lake City'] = {}
graph['Phoenix'] = {}
graph['Las Vegas'] = {}
graph['San Diego'] = {}
graph['Los Angeles'] = {}
###Output
_____no_output_____
###Markdown
Neighbor relationships
###Code
graph['NYC']['DC'] = 2
graph['NYC']['Pittsburgh'] = 7
graph['NYC']['Indianapolis'] = 11
graph['DC']['Atlanta'] = 2
graph['Atlanta']['New Orleans'] = 2
graph['New Orleans']['Dallas'] = 2
graph['Dallas']['Alburqurque'] = 2
graph['Alburqurque']['Phoenix'] = 2
graph['Phoenix']['Las Vegas'] = 2
graph['Phoenix']['San Diego'] = 5
graph['San Diego']['Los Angeles'] = 2
graph['Las Vegas']['San Diego'] = 2
graph['Las Vegas']['Los Angeles'] = 5
graph['Indianapolis']['Kansas City'] = 8
graph['Kansas City']['Denver'] = 7
graph['Denver']['Salt Lake City'] = 6
graph['Salt Lake City']['Las Vegas'] = 9
graph['Pittsburgh']['Cincinatti'] = 6
graph['Cincinatti']['St Louis'] = 8
graph['St Louis']['OK City'] = 7
graph['OK City']['Alburqurque'] = 9
###Output
_____no_output_____
###Markdown
Cost table
###Code
costs = {}
costs['NYC'] = 0
costs['DC'] = 2
costs['Atlanta'] = 2
costs['New Orleans'] = 2
costs['Dallas'] = 2
costs['Indianapolis'] = 11
costs['Kansas City'] = 7
costs['Denver'] = infinity
costs['Pittsburgh'] = 7
costs['Cincinatti'] = infinity
costs['St Louis'] = infinity
costs['OK City'] = infinity
costs['Alburqurque'] = 2
costs['Salt Lake City'] = 9
costs['Phoenix'] = 2
costs['Las Vegas'] = 2
costs['San Diego'] = 5
costs['Los Angeles'] = infinity
###Output
_____no_output_____
###Markdown
Initialize Parents
###Code
parents = {}
parents['DC'] = 'NYC'
parents['Atlanta'] = 'DC'
parents['New Orleans'] = 'Atlanta'
parents['Dallas'] = 'New Orleans'
parents['Indianapolis'] = 'NYC'
parents['Kansas City'] = 'Indianapolis'
parents['Denver'] = 'Kansas City'
parents['Pittsburgh'] = 'NYC'
parents['Cincinatti'] = 'Pittsburgh'
parents['St Louis'] = 'Cincinatti'
parents['OK City'] = 'St Louis'
parents['Alburqurque'] = 'Dallas'
parents['Salt Lake City'] = 'Denver'
parents['Phoenix'] = 'Alburqurque'
parents['Las Vegas'] = 'Phoenix'
parents['San Diego'] = 'Phoenix'
parents['Los Angeles'] = 'San Diego'
processed = []
###Output
_____no_output_____
###Markdown
Search Functions
###Code
def BFS(graph, start, finish):
# keep track of processed nodes
processed = []
# keep track of all the paths to be checked
queue = [[start]]
# return path if start is goal
if start == finish:
return "Arrived."
# We need to check all possible paths
while queue:
# Take the first path
path = queue.pop(0)
# Find the last possible destination on this path
node = path[-1]
if node not in processed:
neighbors = graph[node]
# go through all neighbor nodes, make a new path and
# push it into the queue
for neighbor in neighbors:
newPath = list(path)
newPath.append(neighbor)
queue.append(newPath)
# return path if neighbour is goal
if neighbor == finish:
cost = getRouteCost(newPath)
return (newPath, cost)
# mark node as processed
processed.append(node)
# in case there's no path between the 2 nodes
return "There is no route."
# function to find the lowest cost node, check neighboring costs, and updating
# the costs and parents to reflect the cheapest path
def findLowestCostNode(costs):
lowestCost = float("inf")
lowestCostNode = None
for node in costs:
cost = costs[node]
if cost < lowestCost and node not in processed:
lowestCost = cost
lowestCostNode = node
return lowestCostNode
# implementation of Dijkstra's Algorithm for weighted graph traversal
def dijkstra(graph, costs, dest):
totalCost = 0
path = []
node = findLowestCostNode(costs) # Find lowest cost, unprocessed node
while node is not None and node != dest: # While loop ends when all nodes have been processed
path.append(node)
cost = costs[node]
totalCost += cost
neighbors = graph[node]
for n in neighbors.keys(): # Go through all neighors of node in question
newCost = cost + neighbors[n] # Find cost to get to node through neighbor
if costs[n] > newCost: # If it is cheaper this way
costs[n] = newCost # update the cost to reflect this
parents[n] = node # This node is now the parent of the neighbor
processed.append(node) # mark the node as processed
node = findLowestCostNode(costs) # Process the next node and loop
path.append(node)
return (path, totalCost)
def getRouteCost(path):
cost = 0
for index in range(len(path)-1):
cost += graph[path[index]][path[index+1]]
return cost
###Output
_____no_output_____
###Markdown
Benchmark
###Code
bfsPath = BFS(graph, 'NYC', 'Los Angeles')
djkPath = dijkstra(graph, costs, 'Los Angeles')
###Output
_____no_output_____
###Markdown
Breadth-First Search
###Code
print("The shortest route is: {0}, total cost: {1}".format(bfsPath[0], bfsPath[1]))
###Output
The shortest route is: ['NYC', 'Indianapolis', 'Kansas City', 'Denver', 'Salt Lake City', 'Las Vegas', 'Los Angeles'], total cost: 46
###Markdown
Dijkstra's
###Code
print("The cheapest route is: {0}, total cost: {1}".format(djkPath[0], djkPath[1]))
###Output
The cheapest route is: ['NYC', 'DC', 'Atlanta', 'New Orleans', 'Dallas', 'Alburqurque', 'Phoenix', 'Las Vegas', 'San Diego', 'Los Angeles'], total cost: 18
###Markdown
Results
###Code
# Create the output metrics DataFrame
results = pd.DataFrame(columns = ['Method', 'Length', 'Cost'])
results.loc[0] = ['BFS', len(bfsPath[0]), bfsPath[1]]
results.loc[1] = ['Dijkstra', len(djkPath[0]), djkPath[1]]
results
###Output
_____no_output_____
###Markdown
Summary
###Code
results.plot.bar(x='Method', y='Cost', align='center', alpha=0.5)
plt.ylabel('Total Travel Time')
plt.title('Search Time')
plt.show()
results.plot.bar(x='Method', y='Length', align='center', alpha=0.5)
plt.ylabel('Number of Cities Visited')
plt.title('Search Time')
plt.show()
###Output
_____no_output_____ |
Model backlog/Train XGBM/13-melanoma-5fold-xgbm-basic-features.ipynb | ###Markdown
Dependencies
###Code
import warnings, json, re, math
from melanoma_utility_scripts import *
from kaggle_datasets import KaggleDatasets
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold, RandomizedSearchCV, GridSearchCV
from xgboost import XGBClassifier
SEED = 42
seed_everything(SEED)
warnings.filterwarnings("ignore")
###Output
_____no_output_____
###Markdown
Model parameters
###Code
config = {
"N_FOLDS": 5,
"N_USED_FOLDS": 5,
"DATASET_PATH": 'melanoma-256x256'
}
with open('config.json', 'w') as json_file:
json.dump(json.loads(json.dumps(config)), json_file)
config
###Output
_____no_output_____
###Markdown
Load data
###Code
database_base_path = '/kaggle/input/siim-isic-melanoma-classification/'
train = pd.read_csv(f"/kaggle/input/{config['DATASET_PATH']}/train.csv")
test = pd.read_csv(database_base_path + 'test.csv')
print('Train samples: %d' % len(train))
display(train.head())
print(f'Test samples: {len(test)}')
display(test.head())
###Output
Train samples: 33126
###Markdown
Missing values
###Code
# age_approx (mean)
train['age_approx'].fillna(train['age_approx'].mean(), inplace=True)
test['age_approx'].fillna(train['age_approx'].mean(), inplace=True)
# anatom_site_general_challenge (NaN)
train['anatom_site_general_challenge'].fillna('NaN', inplace=True)
test['anatom_site_general_challenge'].fillna('NaN', inplace=True)
# sex (mode)
train['sex'].fillna(train['sex'].mode()[0], inplace=True)
test['sex'].fillna(train['sex'].mode()[0], inplace=True)
###Output
_____no_output_____
###Markdown
Feature engineering
###Code
### Label ecoding
enc = LabelEncoder()
train['sex_enc'] = enc.fit_transform(train['sex'].astype('str'))
test['sex_enc'] = enc.transform(test['sex'].astype('str'))
### One-hot ecoding
# train = pd.concat([train, pd.get_dummies(train['sex'], prefix='sex_enc', drop_first=True)], axis=1)
# test = pd.concat([test, pd.get_dummies(test['sex'], prefix='sex_enc', drop_first=True)], axis=1)
### Mean ecoding
# Sex
train['sex_mean'] = train['sex'].map(train.groupby(['sex'])['target'].mean())
test['sex_mean'] = test['sex'].map(train.groupby(['sex'])['target'].mean())
# # External features
# train_img_ft = pd.read_csv('../input/landscape/TrainSuperTab.csv')
# test_img_ft = pd.read_csv('../input/landscape/TestSuperTab.csv')
# ext_fts = ['V1', 'V2', 'V3', 'V4','V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12',
# 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25',
# 'V26', 'V27', 'V28', 'V29', 'V30', 'V31', 'V32', 'V33', 'V34', 'V35', 'V36', 'V37']
# for ft in ext_fts:
# train[ft] = train_img_ft[ft]
# test[ft] = test_img_ft[ft]
print('Train set')
display(train.head())
print('Test set')
display(test.head())
###Output
Train set
###Markdown
Model
###Code
features = ['age_approx', 'sex_mean']
ohe_features = [col for col in train.columns if 'enc' in col]
features += ohe_features
# External features
# features += ext_fts
print(features)
# Hyperparameter grid
param_grid = {
'max_depth': list(range(2, 12, 2)),
'learning_rate': list(np.logspace(np.log10(0.005), np.log10(0.5), base=10, num=1000)),
'reg_alpha': list(np.linspace(0, 1)),
'reg_lambda': list(np.linspace(0, 1)),
'colsample_bytree': list(np.linspace(0.3, 1, 10)),
'subsample': list(np.linspace(0.5, 1, 100)),
'scale_pos_weight': list(np.linspace(1, (len(train[train['target'] == 0]) / len(train[train['target'] == 1])), 10)),
}
skf = KFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED)
def get_idxs():
for fold,(idxT, idxV) in enumerate(skf.split(np.arange(15))):
x_train = train[train['tfrecord'].isin(idxT)]
x_valid = train[~train['tfrecord'].isin(idxT)]
yield x_train.index, x_valid.index
# Model
model = XGBClassifier(n_estimators=300, random_state=SEED)
grid_search = RandomizedSearchCV(param_distributions=param_grid, estimator=model, scoring='roc_auc',
cv=iter(get_idxs()), n_jobs=-1, n_iter=100, verbose=1)
result = grid_search.fit(train[features], train['target'])
print("Best: %f using %s" % (result.best_score_, result.best_params_))
means = result.cv_results_['mean_test_score']
stds = result.cv_results_['std_test_score']
params = result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
params = result.best_params_
###Output
Fitting 5 folds for each of 100 candidates, totalling 500 fits
###Markdown
Training
###Code
skf = KFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED)
test['target'] = 0
model_list = []
for fold,(idxT, idxV) in enumerate(skf.split(np.arange(15))):
print(f'\nFOLD: {fold+1}')
print(f'TRAIN: {idxT} VALID: {idxV}')
train[f'fold_{fold+1}'] = train.apply(lambda x: 'train' if x['tfrecord'] in idxT else 'validation', axis=1)
x_train = train[train['tfrecord'].isin(idxT)]
y_train = x_train['target']
x_valid = train[~train['tfrecord'].isin(idxT)]
y_valid = x_valid['target']
model = XGBClassifier(**params, random_state=SEED)
model.fit(x_train[features], y_train, eval_set=[(x_valid[features], y_valid)], eval_metric='auc', verbose=0)
model_list.append(model)
# Evaludation
preds = model.predict_proba(train[features])[:, 1]
train[f'pred_fold_{fold+1}'] = preds
# Inference
preds = model.predict_proba(test[features])[:, 1]
test[f'pred_fold_{fold+1}'] = preds
test['target'] += preds / config['N_USED_FOLDS']
###Output
FOLD: 1
TRAIN: [ 1 2 3 4 5 6 7 8 10 12 13 14] VALID: [ 0 9 11]
FOLD: 2
TRAIN: [ 0 1 2 3 4 6 7 9 10 11 12 14] VALID: [ 5 8 13]
FOLD: 3
TRAIN: [ 0 3 4 5 6 7 8 9 10 11 12 13] VALID: [ 1 2 14]
FOLD: 4
TRAIN: [ 0 1 2 3 5 6 8 9 11 12 13 14] VALID: [ 4 7 10]
FOLD: 5
TRAIN: [ 0 1 2 4 5 7 8 9 10 11 13 14] VALID: [ 3 6 12]
###Markdown
Model evaluation
###Code
def func(x):
if x['fold_1'] == 'validation':
return x['pred_fold_1']
elif x['fold_2'] == 'validation':
return x['pred_fold_2']
elif x['fold_3'] == 'validation':
return x['pred_fold_3']
elif x['fold_4'] == 'validation':
return x['pred_fold_4']
elif x['fold_5'] == 'validation':
return x['pred_fold_5']
train['pred'] = train.apply(lambda x: func(x), axis=1)
auc_oof = roc_auc_score(train['target'], train['pred'])
print(f'Overall OOF AUC = {auc_oof:.3f}')
df_oof = train[['image_name', 'target', 'pred']]
df_oof.to_csv('oof.csv', index=False)
display(df_oof.head())
display(df_oof.describe().T)
###Output
Overall OOF AUC = 0.660
###Markdown
Feature importance
###Code
for n_fold, model in enumerate(model_list):
print(f'Fold: {n_fold + 1}')
feature_importance = model.get_booster().get_score(importance_type='weight')
keys = list(feature_importance.keys())
values = list(feature_importance.values())
importance = pd.DataFrame(data=values, index=keys,
columns=['score']).sort_values(by='score',
ascending=False)
plt.figure(figsize=(16, 8))
sns.barplot(x=importance.score.iloc[:20],
y=importance.index[:20],
orient='h',
palette='Reds_r')
plt.show()
###Output
Fold: 1
###Markdown
Model evaluation
###Code
display(evaluate_model(train, config['N_USED_FOLDS']).style.applymap(color_map))
display(evaluate_model_Subset(train, config['N_USED_FOLDS']).style.applymap(color_map))
###Output
_____no_output_____
###Markdown
Adversarial Validation
###Code
### Adversarial set
adv_train = train.copy()
adv_test = test.copy()
adv_train['dataset'] = 1
adv_test['dataset'] = 0
x_adv = pd.concat([adv_train, adv_test], axis=0)
y_adv = x_adv['dataset']
### Adversarial model
model_adv = XGBClassifier(**params, random_state=SEED)
model_adv.fit(x_adv[features], y_adv, eval_metric='auc', verbose=0)
### Preds
preds = model_adv.predict_proba(x_adv[features])[:, 1]
### Plot feature importance and ROC AUC curve
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
# Feature importance
feature_importance = model_adv.get_booster().get_score(importance_type='weight')
keys = list(feature_importance.keys())
values = list(feature_importance.values())
importance = pd.DataFrame(data=values, index=keys,
columns=['score']).sort_values(by='score',
ascending=False)
ax1.set_title('Feature Importances')
sns.barplot(x=importance.score.iloc[:20],
y=importance.index[:20],
orient='h',
palette='Reds_r',
ax=ax1)
# Plot ROC AUC curve
fpr_train, tpr_train, _ = roc_curve(y_adv, preds)
roc_auc_train = auc(fpr_train, tpr_train)
ax2.set_title('ROC AUC curve')
ax2.plot(fpr_train, tpr_train, color='blue', label='Adversarial AUC = %0.2f' % roc_auc_train)
ax2.legend(loc = 'lower right')
ax2.plot([0, 1], [0, 1],'r--')
ax2.set_xlim([0, 1])
ax2.set_ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
###Output
_____no_output_____
###Markdown
Visualize predictions
###Code
train['pred'] = 0
for n_fold in range(config['N_USED_FOLDS']):
train['pred'] += train[f'pred_fold_{n_fold+1}'] / config['N_FOLDS']
print('Label/prediction distribution')
print(f"Train positive labels: {len(train[train['target'] > .5])}")
print(f"Train positive predictions: {len(train[train['pred'] > .5])}")
print(f"Train positive correct predictions: {len(train[(train['target'] > .5) & (train['pred'] > .5)])}")
print('Top 10 samples')
display(train[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis',
'target', 'pred'] + [c for c in train.columns if (c.startswith('pred_fold'))]].head(10))
print('Top 10 positive samples')
display(train[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis',
'target', 'pred'] + [c for c in train.columns if (c.startswith('pred_fold'))]].query('target == 1').head(10))
print('Top 10 predicted positive samples')
display(train[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis',
'target', 'pred'] + [c for c in train.columns if (c.startswith('pred_fold'))]].query('pred > .5').head(10))
###Output
Label/prediction distribution
Train positive labels: 584
Train positive predictions: 0
Train positive correct predictions: 0
Top 10 samples
###Markdown
Visualize test predictions
###Code
print(f"Test predictions {len(test[test['target'] > .5])}|{len(test[test['target'] <= .5])}")
print('Top 10 samples')
display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target'] +
[c for c in test.columns if (c.startswith('pred_fold'))]].head(10))
print('Top 10 positive samples')
display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target'] +
[c for c in test.columns if (c.startswith('pred_fold'))]].query('target > .5').head(10))
###Output
Test predictions 0|10982
Top 10 samples
###Markdown
Test set predictions
###Code
submission = pd.read_csv(database_base_path + 'sample_submission.csv')
submission['target'] = test['target']
fig = plt.subplots(figsize=(20, 6))
plt.hist(submission['target'], bins=100)
plt.title('Preds', size=18)
plt.show()
display(submission.head(10))
display(submission.describe())
submission[['image_name', 'target']].to_csv('submission.csv', index=False)
###Output
_____no_output_____ |
mlflow/databricks_mlflow_boston_dataset.ipynb | ###Markdown
MLflow
###Code
# Импорт библиотек
import mlflow
import mlflow.sklearn
import pandas as pd
import numpy as np
from numpy import savetxt
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
###Output
_____no_output_____
###Markdown
Загрузка данных
###Code
boston = load_boston()
X = pd.DataFrame(boston.data)
X.columns = [_.lower() for _ in boston.feature_names]
y = pd.DataFrame(boston.target)
y.columns=['target']
df = pd.concat([X,y], axis=1)
df.head(5)
###Output
_____no_output_____
###Markdown
Разбиение датасета на тренировочный и тестовый массив данных
###Code
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, train_size=0.7, random_state=42, shuffle=True)
###Output
_____no_output_____
###Markdown
"Подключение" ноутбука к созданному эксперименту
###Code
mlflow.set_experiment('/Experiment/boston')
###Output
_____no_output_____
###Markdown
MLflow
###Code
with mlflow.start_run():
n_estimators = 100
max_depth = 7
max_features = 5
rf = RandomForestRegressor(n_estimators = n_estimators, max_depth = max_depth, max_features = max_features)
rf.fit(X_train, y_train)
predictions = rf.predict(X_test)
mlflow.log_param("num_trees", n_estimators)
mlflow.log_param("max_depth", max_depth)
mlflow.log_param("max_feat", max_features)
mse = mean_squared_error(y_test, predictions)
mlflow.log_metric("mse", mse)
mlflow.sklearn.log_model(rf, "random-forest-model")
savetxt('predictions.csv', predictions, delimiter=',')
mlflow.log_artifact("predictions.csv")
###Output
_____no_output_____ |
AAMY/image_classification_with_cnns.ipynb | ###Markdown
###Code
###Output
_____no_output_____
###Markdown
Image Classification with Convolutional Neural NetworksIn this tutorial, we'll build and train a neural network to classifiy images of clothing, like sneakers and shirts.It's okay if you don't understand everything. This is a fast-paced overview of a complete TensorFlow program, withh explanations along the way. The goal is to get the general sense of a TensorFlow project, not to catch every detail.This guide uses [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train models in TensorFlow. Install and import dependenciesWe'll need [TensorFlow Datasets](https://www.tensorflow.org/datasets/), an API that simplifies downloading and accessing datasets, and provides several sample datasets to work with. We're also using a few helper libraries..
###Code
!pip install -U tensorflow_datasets
from __future__ import absolute_import, division, print_function, unicode_literals
# Import TensorFlow and TensorFlow Datasets
import tensorflow as tf
import tensorflow_datasets as tfds
tf.logging.set_verbosity(tf.logging.ERROR)
# Helper libraries
import math
import numpy as np
import matplotlib.pyplot as plt
# Improve progress bar display
import tqdm
import tqdm.auto
tqdm.tqdm = tqdm.auto.tqdm
print(tf.__version__)
# This will go away in the future.
# If this gives an error, you mighjt be running TensorFlow 2 or above
# If so, the just comment out this line and run this cell again
tf.enable_eager_execution()
###Output
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
1.13.1
###Markdown
Import the Fashion MNIST datasetThis guide uses the [Fashion MNIST](https://github.com/zalandorearch/fashion-mnist) dataset, which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution(28 $\times$ 28 pixels), as seen here: Figure 1 Fashion-MNIST samples (by Zalando, MIT License). Fashion MNIST is intended as a drop-in replacement for the classic [MNIST](http://yann.lecun.com/exdb/mnist/) dataset -- often used as the "Hello, World" of mechine learning programs for computer vision. The MNIST dataset contains images of handwritten digits(0, 1, 2, etc) in an identical format to the articles of clothing we'll use here.This guide uses Fashion MNIST for variety, and because it's a slightly more chhallenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code.We will use 60,000 images to train the network and 10,000 images to evaluate how accurateoy the network learned to classify images. You can access thhe Fashion MNIST directly from TensorFlow, using the [Datasets](https://www.tensorflow.org/datasets) API:
###Code
dataset, metadata = tfds.load('fashion_mnist', as_supervised=True, with_info=True)
train_dataset, test_dataset = dataset['train'], dataset['test']
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
###Output
_____no_output_____
###Markdown
Explore the dataLet's explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, and 10000 images in the test set:
###Code
num_train_examples = metadata.splits['train'].num_examples
num_test_examples = metadata.splits['test'].num_examples
print("Number of training examples: {}".format(num_train_examples))
print("Number of test examples: {}".format(num_test_examples))
###Output
Number of training examples: 60000
Number of test examples: 10000
###Markdown
Preporcess the dataThe value of each pixel in the image data is an integer in the range [0, 255]. For the model to work properly, these values need tob e normalized to the range [0, 1]. So here we create a normalization function, and then apply it to each image in the test and train datasets..
###Code
def normalize(images, labels):
images = tf.cast(images, tf.float32)
images /= 255
return images, labels
# The map function applies the normalize function to eachh element in the train
# and test datasets
train_dataset = train_dataset.map(normalize)
test_dataset = test_dataset.map(normalize)
###Output
_____no_output_____
###Markdown
Explore the processed dataLet's plot an image to see what it looks like.
###Code
# Take an single image, and remove the color dimensioin by reshaping
for image, label in test_dataset.take(1):
break
image = image.numpy().reshape((28,28))
# Plot the image - voila a piece of fashion clothing
plt.figure()
plt.imshow(image, cmap=plt.cm.binary)
plt.colorbar()
plt.grid(False)
plt.show()
plt.figure(figsize=(10,10))
i = 0
for (image, label) in test_dataset.take(25):
image = image.numpy().reshape((28,28))
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(image, cmap=plt.cm.binary)
plt.xlabel(class_names[label])
i += 1
plt.show()
###Output
_____no_output_____
###Markdown
Build the modelBuilding the nueral network requires configuring the layers of the model, the compling the model. Setup the layersThe basic building block of a neural network is the layer. A layer extracts a representation from th data fed into it. Hopefully, a series of connected layers results in representation that is meaningful for the problem at hand.Much of deep learning consists of chaining together simple layers. Most layers, like `tf.keras.layers.Dense`, have internal parameters which are adjusted ("learned") during training.
###Code
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), padding='same', activation=tf.nn.relu,
input_shape=(28,28,1)),
tf.keras.layers.MaxPooling2D((2,2), strides=2),
tf.keras.layers.Conv2D(64, (3,3), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPooling2D((2,2), strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
###Output
_____no_output_____
###Markdown
This network layers are:* "convolutions" `tf.keras.layers.Conv2D` and `MaxPooling2D`-- Network start with pairs of Conv/MaxPool. The first layer is a Conv2D filters (3,3) being applied to the input image, retaining the original image size by using padding, and creating 32 output(convoluted) images (so this layer creates 32 convoluted images of the same size as input). After that, the 32 oupts are reduced in size using a MaxPooling2D (2,2) with a stride of 2. The next Conv2D also has a (3,3) kernel, takes 32 images as input and and creates 64 outputs whichh are again reduced in siz e by a MaxPooling2D layer. So far in the course, we have described what a Convolution does, but we haven't yet covered how you chain multiples of these together. We will get back to this in lesson 4 when we use color images. At this point, it's enough if you understand the kind of operation a convolutional filter performs* **output** `tf.keras.layers.Dense` -- A 128-neuron, followed by 10-node *softmax* layer. Each node represents a class of clothing. As in the previous layer, the final layer takes input from the 128 nodes in the layer before it, and outputs a value in the range `[0,1]`, representing the probability that the image belongs to that class. The sum of all 10 node values is 1. Compile the modelBefore the model is ready for training, it needs a few more setting. These are added during the model's *compile* step:* *Loss function* -- An algorithm for measuring how far the model's outpus are from the desired output. Thhe goal of training is this measures loss..* *Optimizer* --Used to monitor the training and testing steps. Thhe following example uses *accuracy*, the faction of the images that are correctly classified.
###Code
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
###Output
_____no_output_____
###Markdown
Train the modelFirst, we define the iteration behavior for the train dataset:1. Repeat forever by specifying `dataset.repeat()`(the `epochs` parameter described below limits how long we perform training)2. The `dataset.batch(32)` tells `model.fit` to use batches of 32 images and labels when updating the model variables.3. And `dataset.batch(32)` tells `model.fit` to use batches of 32 images and labels when updating the model variables.Training is performed by calling thhe `model.fit` method: 1. Feed the training data to the model using `train_dataset`.2. The model learns to associate images and labels.3. The `epochs=5` parameter limits training to 5 full iterations of the training dataset, so a total of 5 * 60000 = 300000 exmples..(Don't worry about `steps_per_epoch`, the requirement to have thhis flag will soon be removed)
###Code
BATCH_SIZE = 32
train_dataset = train_dataset.repeat().shuffle(num_train_examples).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE)
model.fit(train_dataset, epochs=10, steps_per_epoch=math.ceil(num_train_examples/BATCH_SIZE))
###Output
Epoch 1/10
1875/1875 [==============================] - 29s 16ms/step - loss: 0.4016 - acc: 0.8546
Epoch 2/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.2586 - acc: 0.9061
Epoch 3/10
1875/1875 [==============================] - 18s 10ms/step - loss: 0.2105 - acc: 0.9227
Epoch 4/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1828 - acc: 0.9324
Epoch 5/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1561 - acc: 0.9416
Epoch 6/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1337 - acc: 0.9510
Epoch 7/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1098 - acc: 0.9594
Epoch 8/10
1875/1875 [==============================] - 18s 10ms/step - loss: 0.0913 - acc: 0.9671
Epoch 9/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.0800 - acc: 0.9707
Epoch 10/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.0652 - acc: 0.9757
###Markdown
As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.97(or 97%) on the training data Evaluate accuracyNext, compare how the model performs on the test dataset. Use all examples we have in the test dataset to assess accuracy.
###Code
test_loss, test_accuracy = model.evaluate(test_dataset, steps=math.ceil(num_test_examples/32))
print('Accuracy on test dataset: ', test_accuracy)
num_test_examples/32
###Output
_____no_output_____
###Markdown
As it turns out, thhe accuracy on the test dataset is smaller than the accuracy on the training dataset. This is completely normal, since the model was trained on the `train_dataset`. When the model sess images it has never seen during training, (that is, form the `test_dataset`), we can expect performance to go down.
###Code
###Output
_____no_output_____
###Markdown
Make predictions and exploreWith the model trained, we can use it to make predictions about some images.
###Code
for test_images, test_labels in test_dataset.take(1):
test_images = test_images.numpy()
print(test_images[].shape)
test_labels = test_labels.numpy()
predictions = model.predict(test_images)
predictions.shape
predictions
print(np.argmax(predictions[0]))
test_labels[0]
###Output
6
###Markdown
We can graph this to look at the full set of 10 class predictions
###Code
def plot_image(i, predictions_array, true_labels, images):
prediction_array, true_label, img = predictions_array[i], true_labels[i], images[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img[...,0], cmap=plt.cm.binary)
predicted_label = np.argmax(prediction_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(prediction_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions, test_labels)
# Grab an image form the test dataset
img = test_images[0]
print(img.shape)
img = np.array([img])
print(img.shape)
predictions_single = model.predict(img)
print(predictions_single)
np.argmax(predictions_single[0])
###Output
_____no_output_____ |
Model backlog/Deep Learning/DenseNet121/[140th] - Fine-tune - DenseNet121 - Original size.ipynb | ###Markdown
Model parameters
###Code
# Model parameters
BATCH_SIZE = 128
EPOCHS = 30
LEARNING_RATE = 0.0001
HEIGHT = 224
WIDTH = 224
CANAL = 3
N_CLASSES = labels.shape[0]
ES_PATIENCE = 3
DECAY_DROP = 0.5
DECAY_EPOCHS = 10
def f2_score_thr(threshold=0.5):
def f2_score(y_true, y_pred):
beta = 2
y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold), K.floatx())
true_positives = K.sum(K.clip(y_true * y_pred, 0, 1), axis=1)
predicted_positives = K.sum(K.clip(y_pred, 0, 1), axis=1)
possible_positives = K.sum(K.clip(y_true, 0, 1), axis=1)
precision = true_positives / (predicted_positives + K.epsilon())
recall = true_positives / (possible_positives + K.epsilon())
return K.mean(((1+beta**2)*precision*recall) / ((beta**2)*precision+recall+K.epsilon()))
return f2_score
def custom_f2(y_true, y_pred):
beta = 2
tp = np.sum((y_true == 1) & (y_pred == 1))
tn = np.sum((y_true == 0) & (y_pred == 0))
fp = np.sum((y_true == 0) & (y_pred == 1))
fn = np.sum((y_true == 1) & (y_pred == 0))
p = tp / (tp + fp + K.epsilon())
r = tp / (tp + fn + K.epsilon())
f2 = (1+beta**2)*p*r / (p*beta**2 + r + 1e-15)
return f2
def step_decay(epoch):
initial_lrate = LEARNING_RATE
drop = DECAY_DROP
epochs_drop = DECAY_EPOCHS
lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop))
return lrate
train_datagen=ImageDataGenerator(rescale=1./255, validation_split=0.25)
train_generator=train_datagen.flow_from_dataframe(
dataframe=train,
directory="../input/imet-2019-fgvc6/train",
x_col="id",
y_col="attribute_ids",
batch_size=BATCH_SIZE,
shuffle=True,
class_mode="categorical",
target_size=(HEIGHT, WIDTH),
subset='training')
valid_generator=train_datagen.flow_from_dataframe(
dataframe=train,
directory="../input/imet-2019-fgvc6/train",
x_col="id",
y_col="attribute_ids",
batch_size=BATCH_SIZE,
shuffle=True,
class_mode="categorical",
target_size=(HEIGHT, WIDTH),
subset='validation')
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_dataframe(
dataframe=test,
directory = "../input/imet-2019-fgvc6/test",
x_col="id",
target_size=(HEIGHT, WIDTH),
batch_size=1,
shuffle=False,
class_mode=None)
###Output
Found 81928 images belonging to 1103 classes.
Found 27309 images belonging to 1103 classes.
Found 7443 images.
###Markdown
Model
###Code
def create_model(input_shape, n_out):
input_tensor = Input(shape=input_shape)
base_model = applications.DenseNet121(weights=None, include_top=False,
input_tensor=input_tensor)
base_model.load_weights('../input/densenet-keras/DenseNet-BC-121-32-no-top.h5')
x = GlobalAveragePooling2D()(base_model.output)
x = Dropout(0.5)(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
final_output = Dense(n_out, activation='sigmoid', name='final_output')(x)
model = Model(input_tensor, final_output)
return model
# warm up model
# first: train only the top layers (which were randomly initialized)
model = create_model(input_shape=(HEIGHT, WIDTH, CANAL), n_out=N_CLASSES)
for layer in model.layers:
layer.trainable = False
for i in range(-5,0):
model.layers[i].trainable = True
optimizer = optimizers.Adam(lr=LEARNING_RATE)
metrics = ["accuracy", "categorical_accuracy"]
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=ES_PATIENCE)
callbacks = [es]
model.compile(optimizer=optimizer, loss="binary_crossentropy", metrics=metrics)
model.summary()
###Output
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D (None, 230, 230, 3) 0 input_1[0][0]
__________________________________________________________________________________________________
conv1/conv (Conv2D) (None, 112, 112, 64) 9408 zero_padding2d_1[0][0]
__________________________________________________________________________________________________
conv1/bn (BatchNormalization) (None, 112, 112, 64) 256 conv1/conv[0][0]
__________________________________________________________________________________________________
conv1/relu (Activation) (None, 112, 112, 64) 0 conv1/bn[0][0]
__________________________________________________________________________________________________
zero_padding2d_2 (ZeroPadding2D (None, 114, 114, 64) 0 conv1/relu[0][0]
__________________________________________________________________________________________________
pool1 (MaxPooling2D) (None, 56, 56, 64) 0 zero_padding2d_2[0][0]
__________________________________________________________________________________________________
conv2_block1_0_bn (BatchNormali (None, 56, 56, 64) 256 pool1[0][0]
__________________________________________________________________________________________________
conv2_block1_0_relu (Activation (None, 56, 56, 64) 0 conv2_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_1_conv (Conv2D) (None, 56, 56, 128) 8192 conv2_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_1_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block1_1_relu (Activation (None, 56, 56, 128) 0 conv2_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_2_conv (Conv2D) (None, 56, 56, 32) 36864 conv2_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_concat (Concatenat (None, 56, 56, 96) 0 pool1[0][0]
conv2_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block2_0_bn (BatchNormali (None, 56, 56, 96) 384 conv2_block1_concat[0][0]
__________________________________________________________________________________________________
conv2_block2_0_relu (Activation (None, 56, 56, 96) 0 conv2_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block2_1_conv (Conv2D) (None, 56, 56, 128) 12288 conv2_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block2_1_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block2_1_relu (Activation (None, 56, 56, 128) 0 conv2_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block2_2_conv (Conv2D) (None, 56, 56, 32) 36864 conv2_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block2_concat (Concatenat (None, 56, 56, 128) 0 conv2_block1_concat[0][0]
conv2_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block3_0_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block2_concat[0][0]
__________________________________________________________________________________________________
conv2_block3_0_relu (Activation (None, 56, 56, 128) 0 conv2_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block3_1_conv (Conv2D) (None, 56, 56, 128) 16384 conv2_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block3_1_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block3_1_relu (Activation (None, 56, 56, 128) 0 conv2_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block3_2_conv (Conv2D) (None, 56, 56, 32) 36864 conv2_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block3_concat (Concatenat (None, 56, 56, 160) 0 conv2_block2_concat[0][0]
conv2_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block4_0_bn (BatchNormali (None, 56, 56, 160) 640 conv2_block3_concat[0][0]
__________________________________________________________________________________________________
conv2_block4_0_relu (Activation (None, 56, 56, 160) 0 conv2_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block4_1_conv (Conv2D) (None, 56, 56, 128) 20480 conv2_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block4_1_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block4_1_relu (Activation (None, 56, 56, 128) 0 conv2_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block4_2_conv (Conv2D) (None, 56, 56, 32) 36864 conv2_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block4_concat (Concatenat (None, 56, 56, 192) 0 conv2_block3_concat[0][0]
conv2_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block5_0_bn (BatchNormali (None, 56, 56, 192) 768 conv2_block4_concat[0][0]
__________________________________________________________________________________________________
conv2_block5_0_relu (Activation (None, 56, 56, 192) 0 conv2_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block5_1_conv (Conv2D) (None, 56, 56, 128) 24576 conv2_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block5_1_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block5_1_relu (Activation (None, 56, 56, 128) 0 conv2_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block5_2_conv (Conv2D) (None, 56, 56, 32) 36864 conv2_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block5_concat (Concatenat (None, 56, 56, 224) 0 conv2_block4_concat[0][0]
conv2_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block6_0_bn (BatchNormali (None, 56, 56, 224) 896 conv2_block5_concat[0][0]
__________________________________________________________________________________________________
conv2_block6_0_relu (Activation (None, 56, 56, 224) 0 conv2_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv2_block6_1_conv (Conv2D) (None, 56, 56, 128) 28672 conv2_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv2_block6_1_bn (BatchNormali (None, 56, 56, 128) 512 conv2_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block6_1_relu (Activation (None, 56, 56, 128) 0 conv2_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block6_2_conv (Conv2D) (None, 56, 56, 32) 36864 conv2_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block6_concat (Concatenat (None, 56, 56, 256) 0 conv2_block5_concat[0][0]
conv2_block6_2_conv[0][0]
__________________________________________________________________________________________________
pool2_bn (BatchNormalization) (None, 56, 56, 256) 1024 conv2_block6_concat[0][0]
__________________________________________________________________________________________________
pool2_relu (Activation) (None, 56, 56, 256) 0 pool2_bn[0][0]
__________________________________________________________________________________________________
pool2_conv (Conv2D) (None, 56, 56, 128) 32768 pool2_relu[0][0]
__________________________________________________________________________________________________
pool2_pool (AveragePooling2D) (None, 28, 28, 128) 0 pool2_conv[0][0]
__________________________________________________________________________________________________
conv3_block1_0_bn (BatchNormali (None, 28, 28, 128) 512 pool2_pool[0][0]
__________________________________________________________________________________________________
conv3_block1_0_relu (Activation (None, 28, 28, 128) 0 conv3_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block1_1_conv (Conv2D) (None, 28, 28, 128) 16384 conv3_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block1_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block1_1_relu (Activation (None, 28, 28, 128) 0 conv3_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block1_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block1_concat (Concatenat (None, 28, 28, 160) 0 pool2_pool[0][0]
conv3_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block2_0_bn (BatchNormali (None, 28, 28, 160) 640 conv3_block1_concat[0][0]
__________________________________________________________________________________________________
conv3_block2_0_relu (Activation (None, 28, 28, 160) 0 conv3_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block2_1_conv (Conv2D) (None, 28, 28, 128) 20480 conv3_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block2_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block2_1_relu (Activation (None, 28, 28, 128) 0 conv3_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block2_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block2_concat (Concatenat (None, 28, 28, 192) 0 conv3_block1_concat[0][0]
conv3_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block3_0_bn (BatchNormali (None, 28, 28, 192) 768 conv3_block2_concat[0][0]
__________________________________________________________________________________________________
conv3_block3_0_relu (Activation (None, 28, 28, 192) 0 conv3_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block3_1_conv (Conv2D) (None, 28, 28, 128) 24576 conv3_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block3_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block3_1_relu (Activation (None, 28, 28, 128) 0 conv3_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block3_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block3_concat (Concatenat (None, 28, 28, 224) 0 conv3_block2_concat[0][0]
conv3_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block4_0_bn (BatchNormali (None, 28, 28, 224) 896 conv3_block3_concat[0][0]
__________________________________________________________________________________________________
conv3_block4_0_relu (Activation (None, 28, 28, 224) 0 conv3_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block4_1_conv (Conv2D) (None, 28, 28, 128) 28672 conv3_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block4_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block4_1_relu (Activation (None, 28, 28, 128) 0 conv3_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block4_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block4_concat (Concatenat (None, 28, 28, 256) 0 conv3_block3_concat[0][0]
conv3_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block5_0_bn (BatchNormali (None, 28, 28, 256) 1024 conv3_block4_concat[0][0]
__________________________________________________________________________________________________
conv3_block5_0_relu (Activation (None, 28, 28, 256) 0 conv3_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block5_1_conv (Conv2D) (None, 28, 28, 128) 32768 conv3_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block5_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block5_1_relu (Activation (None, 28, 28, 128) 0 conv3_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block5_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block5_concat (Concatenat (None, 28, 28, 288) 0 conv3_block4_concat[0][0]
conv3_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block6_0_bn (BatchNormali (None, 28, 28, 288) 1152 conv3_block5_concat[0][0]
__________________________________________________________________________________________________
conv3_block6_0_relu (Activation (None, 28, 28, 288) 0 conv3_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block6_1_conv (Conv2D) (None, 28, 28, 128) 36864 conv3_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block6_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block6_1_relu (Activation (None, 28, 28, 128) 0 conv3_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block6_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block6_concat (Concatenat (None, 28, 28, 320) 0 conv3_block5_concat[0][0]
conv3_block6_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block7_0_bn (BatchNormali (None, 28, 28, 320) 1280 conv3_block6_concat[0][0]
__________________________________________________________________________________________________
conv3_block7_0_relu (Activation (None, 28, 28, 320) 0 conv3_block7_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block7_1_conv (Conv2D) (None, 28, 28, 128) 40960 conv3_block7_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block7_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block7_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block7_1_relu (Activation (None, 28, 28, 128) 0 conv3_block7_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block7_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block7_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block7_concat (Concatenat (None, 28, 28, 352) 0 conv3_block6_concat[0][0]
conv3_block7_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block8_0_bn (BatchNormali (None, 28, 28, 352) 1408 conv3_block7_concat[0][0]
__________________________________________________________________________________________________
conv3_block8_0_relu (Activation (None, 28, 28, 352) 0 conv3_block8_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block8_1_conv (Conv2D) (None, 28, 28, 128) 45056 conv3_block8_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block8_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block8_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block8_1_relu (Activation (None, 28, 28, 128) 0 conv3_block8_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block8_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block8_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block8_concat (Concatenat (None, 28, 28, 384) 0 conv3_block7_concat[0][0]
conv3_block8_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block9_0_bn (BatchNormali (None, 28, 28, 384) 1536 conv3_block8_concat[0][0]
__________________________________________________________________________________________________
conv3_block9_0_relu (Activation (None, 28, 28, 384) 0 conv3_block9_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block9_1_conv (Conv2D) (None, 28, 28, 128) 49152 conv3_block9_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block9_1_bn (BatchNormali (None, 28, 28, 128) 512 conv3_block9_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block9_1_relu (Activation (None, 28, 28, 128) 0 conv3_block9_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block9_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block9_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block9_concat (Concatenat (None, 28, 28, 416) 0 conv3_block8_concat[0][0]
conv3_block9_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block10_0_bn (BatchNormal (None, 28, 28, 416) 1664 conv3_block9_concat[0][0]
__________________________________________________________________________________________________
conv3_block10_0_relu (Activatio (None, 28, 28, 416) 0 conv3_block10_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block10_1_conv (Conv2D) (None, 28, 28, 128) 53248 conv3_block10_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block10_1_bn (BatchNormal (None, 28, 28, 128) 512 conv3_block10_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block10_1_relu (Activatio (None, 28, 28, 128) 0 conv3_block10_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block10_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block10_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block10_concat (Concatena (None, 28, 28, 448) 0 conv3_block9_concat[0][0]
conv3_block10_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block11_0_bn (BatchNormal (None, 28, 28, 448) 1792 conv3_block10_concat[0][0]
__________________________________________________________________________________________________
conv3_block11_0_relu (Activatio (None, 28, 28, 448) 0 conv3_block11_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block11_1_conv (Conv2D) (None, 28, 28, 128) 57344 conv3_block11_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block11_1_bn (BatchNormal (None, 28, 28, 128) 512 conv3_block11_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block11_1_relu (Activatio (None, 28, 28, 128) 0 conv3_block11_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block11_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block11_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block11_concat (Concatena (None, 28, 28, 480) 0 conv3_block10_concat[0][0]
conv3_block11_2_conv[0][0]
__________________________________________________________________________________________________
conv3_block12_0_bn (BatchNormal (None, 28, 28, 480) 1920 conv3_block11_concat[0][0]
__________________________________________________________________________________________________
conv3_block12_0_relu (Activatio (None, 28, 28, 480) 0 conv3_block12_0_bn[0][0]
__________________________________________________________________________________________________
conv3_block12_1_conv (Conv2D) (None, 28, 28, 128) 61440 conv3_block12_0_relu[0][0]
__________________________________________________________________________________________________
conv3_block12_1_bn (BatchNormal (None, 28, 28, 128) 512 conv3_block12_1_conv[0][0]
__________________________________________________________________________________________________
conv3_block12_1_relu (Activatio (None, 28, 28, 128) 0 conv3_block12_1_bn[0][0]
__________________________________________________________________________________________________
conv3_block12_2_conv (Conv2D) (None, 28, 28, 32) 36864 conv3_block12_1_relu[0][0]
__________________________________________________________________________________________________
conv3_block12_concat (Concatena (None, 28, 28, 512) 0 conv3_block11_concat[0][0]
conv3_block12_2_conv[0][0]
__________________________________________________________________________________________________
pool3_bn (BatchNormalization) (None, 28, 28, 512) 2048 conv3_block12_concat[0][0]
__________________________________________________________________________________________________
pool3_relu (Activation) (None, 28, 28, 512) 0 pool3_bn[0][0]
__________________________________________________________________________________________________
pool3_conv (Conv2D) (None, 28, 28, 256) 131072 pool3_relu[0][0]
__________________________________________________________________________________________________
pool3_pool (AveragePooling2D) (None, 14, 14, 256) 0 pool3_conv[0][0]
__________________________________________________________________________________________________
conv4_block1_0_bn (BatchNormali (None, 14, 14, 256) 1024 pool3_pool[0][0]
__________________________________________________________________________________________________
conv4_block1_0_relu (Activation (None, 14, 14, 256) 0 conv4_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block1_1_conv (Conv2D) (None, 14, 14, 128) 32768 conv4_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block1_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block1_1_relu (Activation (None, 14, 14, 128) 0 conv4_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block1_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block1_concat (Concatenat (None, 14, 14, 288) 0 pool3_pool[0][0]
conv4_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block2_0_bn (BatchNormali (None, 14, 14, 288) 1152 conv4_block1_concat[0][0]
__________________________________________________________________________________________________
conv4_block2_0_relu (Activation (None, 14, 14, 288) 0 conv4_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block2_1_conv (Conv2D) (None, 14, 14, 128) 36864 conv4_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block2_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block2_1_relu (Activation (None, 14, 14, 128) 0 conv4_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block2_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block2_concat (Concatenat (None, 14, 14, 320) 0 conv4_block1_concat[0][0]
conv4_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block3_0_bn (BatchNormali (None, 14, 14, 320) 1280 conv4_block2_concat[0][0]
__________________________________________________________________________________________________
conv4_block3_0_relu (Activation (None, 14, 14, 320) 0 conv4_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block3_1_conv (Conv2D) (None, 14, 14, 128) 40960 conv4_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block3_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block3_1_relu (Activation (None, 14, 14, 128) 0 conv4_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block3_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block3_concat (Concatenat (None, 14, 14, 352) 0 conv4_block2_concat[0][0]
conv4_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block4_0_bn (BatchNormali (None, 14, 14, 352) 1408 conv4_block3_concat[0][0]
__________________________________________________________________________________________________
conv4_block4_0_relu (Activation (None, 14, 14, 352) 0 conv4_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block4_1_conv (Conv2D) (None, 14, 14, 128) 45056 conv4_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block4_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block4_1_relu (Activation (None, 14, 14, 128) 0 conv4_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block4_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block4_concat (Concatenat (None, 14, 14, 384) 0 conv4_block3_concat[0][0]
conv4_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block5_0_bn (BatchNormali (None, 14, 14, 384) 1536 conv4_block4_concat[0][0]
__________________________________________________________________________________________________
conv4_block5_0_relu (Activation (None, 14, 14, 384) 0 conv4_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block5_1_conv (Conv2D) (None, 14, 14, 128) 49152 conv4_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block5_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block5_1_relu (Activation (None, 14, 14, 128) 0 conv4_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block5_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block5_concat (Concatenat (None, 14, 14, 416) 0 conv4_block4_concat[0][0]
conv4_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block6_0_bn (BatchNormali (None, 14, 14, 416) 1664 conv4_block5_concat[0][0]
__________________________________________________________________________________________________
conv4_block6_0_relu (Activation (None, 14, 14, 416) 0 conv4_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block6_1_conv (Conv2D) (None, 14, 14, 128) 53248 conv4_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block6_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block6_1_relu (Activation (None, 14, 14, 128) 0 conv4_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block6_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block6_concat (Concatenat (None, 14, 14, 448) 0 conv4_block5_concat[0][0]
conv4_block6_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block7_0_bn (BatchNormali (None, 14, 14, 448) 1792 conv4_block6_concat[0][0]
__________________________________________________________________________________________________
conv4_block7_0_relu (Activation (None, 14, 14, 448) 0 conv4_block7_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block7_1_conv (Conv2D) (None, 14, 14, 128) 57344 conv4_block7_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block7_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block7_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block7_1_relu (Activation (None, 14, 14, 128) 0 conv4_block7_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block7_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block7_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block7_concat (Concatenat (None, 14, 14, 480) 0 conv4_block6_concat[0][0]
conv4_block7_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block8_0_bn (BatchNormali (None, 14, 14, 480) 1920 conv4_block7_concat[0][0]
__________________________________________________________________________________________________
conv4_block8_0_relu (Activation (None, 14, 14, 480) 0 conv4_block8_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block8_1_conv (Conv2D) (None, 14, 14, 128) 61440 conv4_block8_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block8_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block8_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block8_1_relu (Activation (None, 14, 14, 128) 0 conv4_block8_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block8_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block8_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block8_concat (Concatenat (None, 14, 14, 512) 0 conv4_block7_concat[0][0]
conv4_block8_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block9_0_bn (BatchNormali (None, 14, 14, 512) 2048 conv4_block8_concat[0][0]
__________________________________________________________________________________________________
conv4_block9_0_relu (Activation (None, 14, 14, 512) 0 conv4_block9_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block9_1_conv (Conv2D) (None, 14, 14, 128) 65536 conv4_block9_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block9_1_bn (BatchNormali (None, 14, 14, 128) 512 conv4_block9_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block9_1_relu (Activation (None, 14, 14, 128) 0 conv4_block9_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block9_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block9_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block9_concat (Concatenat (None, 14, 14, 544) 0 conv4_block8_concat[0][0]
conv4_block9_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block10_0_bn (BatchNormal (None, 14, 14, 544) 2176 conv4_block9_concat[0][0]
__________________________________________________________________________________________________
conv4_block10_0_relu (Activatio (None, 14, 14, 544) 0 conv4_block10_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block10_1_conv (Conv2D) (None, 14, 14, 128) 69632 conv4_block10_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block10_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block10_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block10_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block10_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block10_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block10_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block10_concat (Concatena (None, 14, 14, 576) 0 conv4_block9_concat[0][0]
conv4_block10_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block11_0_bn (BatchNormal (None, 14, 14, 576) 2304 conv4_block10_concat[0][0]
__________________________________________________________________________________________________
conv4_block11_0_relu (Activatio (None, 14, 14, 576) 0 conv4_block11_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block11_1_conv (Conv2D) (None, 14, 14, 128) 73728 conv4_block11_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block11_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block11_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block11_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block11_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block11_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block11_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block11_concat (Concatena (None, 14, 14, 608) 0 conv4_block10_concat[0][0]
conv4_block11_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block12_0_bn (BatchNormal (None, 14, 14, 608) 2432 conv4_block11_concat[0][0]
__________________________________________________________________________________________________
conv4_block12_0_relu (Activatio (None, 14, 14, 608) 0 conv4_block12_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block12_1_conv (Conv2D) (None, 14, 14, 128) 77824 conv4_block12_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block12_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block12_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block12_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block12_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block12_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block12_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block12_concat (Concatena (None, 14, 14, 640) 0 conv4_block11_concat[0][0]
conv4_block12_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block13_0_bn (BatchNormal (None, 14, 14, 640) 2560 conv4_block12_concat[0][0]
__________________________________________________________________________________________________
conv4_block13_0_relu (Activatio (None, 14, 14, 640) 0 conv4_block13_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block13_1_conv (Conv2D) (None, 14, 14, 128) 81920 conv4_block13_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block13_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block13_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block13_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block13_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block13_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block13_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block13_concat (Concatena (None, 14, 14, 672) 0 conv4_block12_concat[0][0]
conv4_block13_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block14_0_bn (BatchNormal (None, 14, 14, 672) 2688 conv4_block13_concat[0][0]
__________________________________________________________________________________________________
conv4_block14_0_relu (Activatio (None, 14, 14, 672) 0 conv4_block14_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block14_1_conv (Conv2D) (None, 14, 14, 128) 86016 conv4_block14_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block14_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block14_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block14_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block14_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block14_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block14_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block14_concat (Concatena (None, 14, 14, 704) 0 conv4_block13_concat[0][0]
conv4_block14_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block15_0_bn (BatchNormal (None, 14, 14, 704) 2816 conv4_block14_concat[0][0]
__________________________________________________________________________________________________
conv4_block15_0_relu (Activatio (None, 14, 14, 704) 0 conv4_block15_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block15_1_conv (Conv2D) (None, 14, 14, 128) 90112 conv4_block15_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block15_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block15_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block15_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block15_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block15_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block15_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block15_concat (Concatena (None, 14, 14, 736) 0 conv4_block14_concat[0][0]
conv4_block15_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block16_0_bn (BatchNormal (None, 14, 14, 736) 2944 conv4_block15_concat[0][0]
__________________________________________________________________________________________________
conv4_block16_0_relu (Activatio (None, 14, 14, 736) 0 conv4_block16_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block16_1_conv (Conv2D) (None, 14, 14, 128) 94208 conv4_block16_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block16_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block16_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block16_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block16_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block16_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block16_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block16_concat (Concatena (None, 14, 14, 768) 0 conv4_block15_concat[0][0]
conv4_block16_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block17_0_bn (BatchNormal (None, 14, 14, 768) 3072 conv4_block16_concat[0][0]
__________________________________________________________________________________________________
conv4_block17_0_relu (Activatio (None, 14, 14, 768) 0 conv4_block17_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block17_1_conv (Conv2D) (None, 14, 14, 128) 98304 conv4_block17_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block17_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block17_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block17_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block17_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block17_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block17_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block17_concat (Concatena (None, 14, 14, 800) 0 conv4_block16_concat[0][0]
conv4_block17_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block18_0_bn (BatchNormal (None, 14, 14, 800) 3200 conv4_block17_concat[0][0]
__________________________________________________________________________________________________
conv4_block18_0_relu (Activatio (None, 14, 14, 800) 0 conv4_block18_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block18_1_conv (Conv2D) (None, 14, 14, 128) 102400 conv4_block18_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block18_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block18_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block18_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block18_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block18_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block18_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block18_concat (Concatena (None, 14, 14, 832) 0 conv4_block17_concat[0][0]
conv4_block18_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block19_0_bn (BatchNormal (None, 14, 14, 832) 3328 conv4_block18_concat[0][0]
__________________________________________________________________________________________________
conv4_block19_0_relu (Activatio (None, 14, 14, 832) 0 conv4_block19_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block19_1_conv (Conv2D) (None, 14, 14, 128) 106496 conv4_block19_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block19_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block19_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block19_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block19_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block19_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block19_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block19_concat (Concatena (None, 14, 14, 864) 0 conv4_block18_concat[0][0]
conv4_block19_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block20_0_bn (BatchNormal (None, 14, 14, 864) 3456 conv4_block19_concat[0][0]
__________________________________________________________________________________________________
conv4_block20_0_relu (Activatio (None, 14, 14, 864) 0 conv4_block20_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block20_1_conv (Conv2D) (None, 14, 14, 128) 110592 conv4_block20_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block20_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block20_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block20_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block20_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block20_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block20_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block20_concat (Concatena (None, 14, 14, 896) 0 conv4_block19_concat[0][0]
conv4_block20_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block21_0_bn (BatchNormal (None, 14, 14, 896) 3584 conv4_block20_concat[0][0]
__________________________________________________________________________________________________
conv4_block21_0_relu (Activatio (None, 14, 14, 896) 0 conv4_block21_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block21_1_conv (Conv2D) (None, 14, 14, 128) 114688 conv4_block21_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block21_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block21_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block21_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block21_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block21_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block21_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block21_concat (Concatena (None, 14, 14, 928) 0 conv4_block20_concat[0][0]
conv4_block21_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block22_0_bn (BatchNormal (None, 14, 14, 928) 3712 conv4_block21_concat[0][0]
__________________________________________________________________________________________________
conv4_block22_0_relu (Activatio (None, 14, 14, 928) 0 conv4_block22_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block22_1_conv (Conv2D) (None, 14, 14, 128) 118784 conv4_block22_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block22_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block22_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block22_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block22_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block22_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block22_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block22_concat (Concatena (None, 14, 14, 960) 0 conv4_block21_concat[0][0]
conv4_block22_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block23_0_bn (BatchNormal (None, 14, 14, 960) 3840 conv4_block22_concat[0][0]
__________________________________________________________________________________________________
conv4_block23_0_relu (Activatio (None, 14, 14, 960) 0 conv4_block23_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block23_1_conv (Conv2D) (None, 14, 14, 128) 122880 conv4_block23_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block23_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block23_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block23_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block23_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block23_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block23_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block23_concat (Concatena (None, 14, 14, 992) 0 conv4_block22_concat[0][0]
conv4_block23_2_conv[0][0]
__________________________________________________________________________________________________
conv4_block24_0_bn (BatchNormal (None, 14, 14, 992) 3968 conv4_block23_concat[0][0]
__________________________________________________________________________________________________
conv4_block24_0_relu (Activatio (None, 14, 14, 992) 0 conv4_block24_0_bn[0][0]
__________________________________________________________________________________________________
conv4_block24_1_conv (Conv2D) (None, 14, 14, 128) 126976 conv4_block24_0_relu[0][0]
__________________________________________________________________________________________________
conv4_block24_1_bn (BatchNormal (None, 14, 14, 128) 512 conv4_block24_1_conv[0][0]
__________________________________________________________________________________________________
conv4_block24_1_relu (Activatio (None, 14, 14, 128) 0 conv4_block24_1_bn[0][0]
__________________________________________________________________________________________________
conv4_block24_2_conv (Conv2D) (None, 14, 14, 32) 36864 conv4_block24_1_relu[0][0]
__________________________________________________________________________________________________
conv4_block24_concat (Concatena (None, 14, 14, 1024) 0 conv4_block23_concat[0][0]
conv4_block24_2_conv[0][0]
__________________________________________________________________________________________________
pool4_bn (BatchNormalization) (None, 14, 14, 1024) 4096 conv4_block24_concat[0][0]
__________________________________________________________________________________________________
pool4_relu (Activation) (None, 14, 14, 1024) 0 pool4_bn[0][0]
__________________________________________________________________________________________________
pool4_conv (Conv2D) (None, 14, 14, 512) 524288 pool4_relu[0][0]
__________________________________________________________________________________________________
pool4_pool (AveragePooling2D) (None, 7, 7, 512) 0 pool4_conv[0][0]
__________________________________________________________________________________________________
conv5_block1_0_bn (BatchNormali (None, 7, 7, 512) 2048 pool4_pool[0][0]
__________________________________________________________________________________________________
conv5_block1_0_relu (Activation (None, 7, 7, 512) 0 conv5_block1_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block1_1_conv (Conv2D) (None, 7, 7, 128) 65536 conv5_block1_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block1_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block1_1_relu (Activation (None, 7, 7, 128) 0 conv5_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block1_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block1_concat (Concatenat (None, 7, 7, 544) 0 pool4_pool[0][0]
conv5_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block2_0_bn (BatchNormali (None, 7, 7, 544) 2176 conv5_block1_concat[0][0]
__________________________________________________________________________________________________
conv5_block2_0_relu (Activation (None, 7, 7, 544) 0 conv5_block2_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block2_1_conv (Conv2D) (None, 7, 7, 128) 69632 conv5_block2_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block2_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block2_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block2_1_relu (Activation (None, 7, 7, 128) 0 conv5_block2_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block2_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block2_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block2_concat (Concatenat (None, 7, 7, 576) 0 conv5_block1_concat[0][0]
conv5_block2_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_0_bn (BatchNormali (None, 7, 7, 576) 2304 conv5_block2_concat[0][0]
__________________________________________________________________________________________________
conv5_block3_0_relu (Activation (None, 7, 7, 576) 0 conv5_block3_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_1_conv (Conv2D) (None, 7, 7, 128) 73728 conv5_block3_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_1_relu (Activation (None, 7, 7, 128) 0 conv5_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_concat (Concatenat (None, 7, 7, 608) 0 conv5_block2_concat[0][0]
conv5_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block4_0_bn (BatchNormali (None, 7, 7, 608) 2432 conv5_block3_concat[0][0]
__________________________________________________________________________________________________
conv5_block4_0_relu (Activation (None, 7, 7, 608) 0 conv5_block4_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block4_1_conv (Conv2D) (None, 7, 7, 128) 77824 conv5_block4_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block4_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block4_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block4_1_relu (Activation (None, 7, 7, 128) 0 conv5_block4_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block4_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block4_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block4_concat (Concatenat (None, 7, 7, 640) 0 conv5_block3_concat[0][0]
conv5_block4_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block5_0_bn (BatchNormali (None, 7, 7, 640) 2560 conv5_block4_concat[0][0]
__________________________________________________________________________________________________
conv5_block5_0_relu (Activation (None, 7, 7, 640) 0 conv5_block5_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block5_1_conv (Conv2D) (None, 7, 7, 128) 81920 conv5_block5_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block5_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block5_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block5_1_relu (Activation (None, 7, 7, 128) 0 conv5_block5_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block5_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block5_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block5_concat (Concatenat (None, 7, 7, 672) 0 conv5_block4_concat[0][0]
conv5_block5_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block6_0_bn (BatchNormali (None, 7, 7, 672) 2688 conv5_block5_concat[0][0]
__________________________________________________________________________________________________
conv5_block6_0_relu (Activation (None, 7, 7, 672) 0 conv5_block6_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block6_1_conv (Conv2D) (None, 7, 7, 128) 86016 conv5_block6_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block6_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block6_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block6_1_relu (Activation (None, 7, 7, 128) 0 conv5_block6_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block6_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block6_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block6_concat (Concatenat (None, 7, 7, 704) 0 conv5_block5_concat[0][0]
conv5_block6_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block7_0_bn (BatchNormali (None, 7, 7, 704) 2816 conv5_block6_concat[0][0]
__________________________________________________________________________________________________
conv5_block7_0_relu (Activation (None, 7, 7, 704) 0 conv5_block7_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block7_1_conv (Conv2D) (None, 7, 7, 128) 90112 conv5_block7_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block7_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block7_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block7_1_relu (Activation (None, 7, 7, 128) 0 conv5_block7_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block7_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block7_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block7_concat (Concatenat (None, 7, 7, 736) 0 conv5_block6_concat[0][0]
conv5_block7_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block8_0_bn (BatchNormali (None, 7, 7, 736) 2944 conv5_block7_concat[0][0]
__________________________________________________________________________________________________
conv5_block8_0_relu (Activation (None, 7, 7, 736) 0 conv5_block8_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block8_1_conv (Conv2D) (None, 7, 7, 128) 94208 conv5_block8_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block8_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block8_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block8_1_relu (Activation (None, 7, 7, 128) 0 conv5_block8_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block8_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block8_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block8_concat (Concatenat (None, 7, 7, 768) 0 conv5_block7_concat[0][0]
conv5_block8_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block9_0_bn (BatchNormali (None, 7, 7, 768) 3072 conv5_block8_concat[0][0]
__________________________________________________________________________________________________
conv5_block9_0_relu (Activation (None, 7, 7, 768) 0 conv5_block9_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block9_1_conv (Conv2D) (None, 7, 7, 128) 98304 conv5_block9_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block9_1_bn (BatchNormali (None, 7, 7, 128) 512 conv5_block9_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block9_1_relu (Activation (None, 7, 7, 128) 0 conv5_block9_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block9_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block9_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block9_concat (Concatenat (None, 7, 7, 800) 0 conv5_block8_concat[0][0]
conv5_block9_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block10_0_bn (BatchNormal (None, 7, 7, 800) 3200 conv5_block9_concat[0][0]
__________________________________________________________________________________________________
conv5_block10_0_relu (Activatio (None, 7, 7, 800) 0 conv5_block10_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block10_1_conv (Conv2D) (None, 7, 7, 128) 102400 conv5_block10_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block10_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block10_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block10_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block10_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block10_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block10_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block10_concat (Concatena (None, 7, 7, 832) 0 conv5_block9_concat[0][0]
conv5_block10_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block11_0_bn (BatchNormal (None, 7, 7, 832) 3328 conv5_block10_concat[0][0]
__________________________________________________________________________________________________
conv5_block11_0_relu (Activatio (None, 7, 7, 832) 0 conv5_block11_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block11_1_conv (Conv2D) (None, 7, 7, 128) 106496 conv5_block11_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block11_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block11_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block11_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block11_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block11_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block11_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block11_concat (Concatena (None, 7, 7, 864) 0 conv5_block10_concat[0][0]
conv5_block11_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block12_0_bn (BatchNormal (None, 7, 7, 864) 3456 conv5_block11_concat[0][0]
__________________________________________________________________________________________________
conv5_block12_0_relu (Activatio (None, 7, 7, 864) 0 conv5_block12_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block12_1_conv (Conv2D) (None, 7, 7, 128) 110592 conv5_block12_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block12_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block12_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block12_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block12_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block12_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block12_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block12_concat (Concatena (None, 7, 7, 896) 0 conv5_block11_concat[0][0]
conv5_block12_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block13_0_bn (BatchNormal (None, 7, 7, 896) 3584 conv5_block12_concat[0][0]
__________________________________________________________________________________________________
conv5_block13_0_relu (Activatio (None, 7, 7, 896) 0 conv5_block13_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block13_1_conv (Conv2D) (None, 7, 7, 128) 114688 conv5_block13_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block13_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block13_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block13_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block13_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block13_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block13_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block13_concat (Concatena (None, 7, 7, 928) 0 conv5_block12_concat[0][0]
conv5_block13_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block14_0_bn (BatchNormal (None, 7, 7, 928) 3712 conv5_block13_concat[0][0]
__________________________________________________________________________________________________
conv5_block14_0_relu (Activatio (None, 7, 7, 928) 0 conv5_block14_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block14_1_conv (Conv2D) (None, 7, 7, 128) 118784 conv5_block14_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block14_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block14_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block14_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block14_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block14_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block14_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block14_concat (Concatena (None, 7, 7, 960) 0 conv5_block13_concat[0][0]
conv5_block14_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block15_0_bn (BatchNormal (None, 7, 7, 960) 3840 conv5_block14_concat[0][0]
__________________________________________________________________________________________________
conv5_block15_0_relu (Activatio (None, 7, 7, 960) 0 conv5_block15_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block15_1_conv (Conv2D) (None, 7, 7, 128) 122880 conv5_block15_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block15_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block15_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block15_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block15_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block15_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block15_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block15_concat (Concatena (None, 7, 7, 992) 0 conv5_block14_concat[0][0]
conv5_block15_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block16_0_bn (BatchNormal (None, 7, 7, 992) 3968 conv5_block15_concat[0][0]
__________________________________________________________________________________________________
conv5_block16_0_relu (Activatio (None, 7, 7, 992) 0 conv5_block16_0_bn[0][0]
__________________________________________________________________________________________________
conv5_block16_1_conv (Conv2D) (None, 7, 7, 128) 126976 conv5_block16_0_relu[0][0]
__________________________________________________________________________________________________
conv5_block16_1_bn (BatchNormal (None, 7, 7, 128) 512 conv5_block16_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block16_1_relu (Activatio (None, 7, 7, 128) 0 conv5_block16_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block16_2_conv (Conv2D) (None, 7, 7, 32) 36864 conv5_block16_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block16_concat (Concatena (None, 7, 7, 1024) 0 conv5_block15_concat[0][0]
conv5_block16_2_conv[0][0]
__________________________________________________________________________________________________
bn (BatchNormalization) (None, 7, 7, 1024) 4096 conv5_block16_concat[0][0]
__________________________________________________________________________________________________
relu (Activation) (None, 7, 7, 1024) 0 bn[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_1 (Glo (None, 1024) 0 relu[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 1024) 0 global_average_pooling2d_1[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 1024) 1049600 dropout_1[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 1024) 0 dense_1[0][0]
__________________________________________________________________________________________________
final_output (Dense) (None, 1103) 1130575 dropout_2[0][0]
==================================================================================================
Total params: 9,217,679
Trainable params: 2,180,175
Non-trainable params: 7,037,504
__________________________________________________________________________________________________
###Markdown
Train top layers
###Code
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size
STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size
history = model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=EPOCHS,
callbacks=callbacks,
verbose=2,
max_queue_size=16, workers=3, use_multiprocessing=True)
###Output
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/30
- 705s - loss: 0.0447 - acc: 0.9850 - categorical_accuracy: 0.0385 - val_loss: 0.0149 - val_acc: 0.9971 - val_categorical_accuracy: 0.0783
Epoch 2/30
- 684s - loss: 0.0166 - acc: 0.9970 - categorical_accuracy: 0.0737 - val_loss: 0.0138 - val_acc: 0.9971 - val_categorical_accuracy: 0.0911
Epoch 3/30
- 682s - loss: 0.0149 - acc: 0.9971 - categorical_accuracy: 0.0938 - val_loss: 0.0132 - val_acc: 0.9972 - val_categorical_accuracy: 0.1161
Epoch 4/30
- 677s - loss: 0.0141 - acc: 0.9971 - categorical_accuracy: 0.1080 - val_loss: 0.0130 - val_acc: 0.9972 - val_categorical_accuracy: 0.1420
Epoch 5/30
- 683s - loss: 0.0136 - acc: 0.9971 - categorical_accuracy: 0.1157 - val_loss: 0.0127 - val_acc: 0.9972 - val_categorical_accuracy: 0.1053
Epoch 6/30
- 684s - loss: 0.0133 - acc: 0.9971 - categorical_accuracy: 0.1196 - val_loss: 0.0127 - val_acc: 0.9972 - val_categorical_accuracy: 0.1186
Epoch 7/30
- 678s - loss: 0.0129 - acc: 0.9972 - categorical_accuracy: 0.1247 - val_loss: 0.0126 - val_acc: 0.9972 - val_categorical_accuracy: 0.1008
Epoch 8/30
- 689s - loss: 0.0127 - acc: 0.9972 - categorical_accuracy: 0.1276 - val_loss: 0.0124 - val_acc: 0.9972 - val_categorical_accuracy: 0.1136
Epoch 9/30
- 684s - loss: 0.0125 - acc: 0.9972 - categorical_accuracy: 0.1292 - val_loss: 0.0124 - val_acc: 0.9972 - val_categorical_accuracy: 0.1326
Epoch 10/30
- 679s - loss: 0.0123 - acc: 0.9972 - categorical_accuracy: 0.1335 - val_loss: 0.0123 - val_acc: 0.9972 - val_categorical_accuracy: 0.1199
Epoch 11/30
- 686s - loss: 0.0122 - acc: 0.9972 - categorical_accuracy: 0.1321 - val_loss: 0.0122 - val_acc: 0.9972 - val_categorical_accuracy: 0.1143
Epoch 12/30
- 686s - loss: 0.0120 - acc: 0.9972 - categorical_accuracy: 0.1384 - val_loss: 0.0123 - val_acc: 0.9972 - val_categorical_accuracy: 0.1285
Epoch 13/30
- 678s - loss: 0.0120 - acc: 0.9972 - categorical_accuracy: 0.1375 - val_loss: 0.0122 - val_acc: 0.9972 - val_categorical_accuracy: 0.1204
Epoch 14/30
- 688s - loss: 0.0119 - acc: 0.9972 - categorical_accuracy: 0.1384 - val_loss: 0.0124 - val_acc: 0.9972 - val_categorical_accuracy: 0.1152
Epoch 15/30
- 686s - loss: 0.0118 - acc: 0.9972 - categorical_accuracy: 0.1438 - val_loss: 0.0123 - val_acc: 0.9972 - val_categorical_accuracy: 0.1155
Epoch 16/30
- 671s - loss: 0.0117 - acc: 0.9972 - categorical_accuracy: 0.1383 - val_loss: 0.0123 - val_acc: 0.9972 - val_categorical_accuracy: 0.1296
Epoch 00016: early stopping
###Markdown
Fine-tune the complete model
###Code
for layer in model.layers:
layer.trainable = True
metrics = ["accuracy", "categorical_accuracy"]
lrate = LearningRateScheduler(step_decay)
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=(ES_PATIENCE))
callbacks = [es]
optimizer = optimizers.Adam(lr=0.0001)
model.compile(optimizer=optimizer, loss="binary_crossentropy", metrics=metrics)
model.summary()
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size
STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size
history = model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=EPOCHS,
callbacks=callbacks,
verbose=2,
max_queue_size=16, workers=3, use_multiprocessing=True)
###Output
Epoch 1/30
###Markdown
Complete model graph loss
###Code
sns.set_style("whitegrid")
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharex='col', figsize=(20,7))
ax1.plot(history.history['loss'], label='Train loss')
ax1.plot(history.history['val_loss'], label='Validation loss')
ax1.legend(loc='best')
ax1.set_title('Loss')
ax2.plot(history.history['acc'], label='Train Accuracy')
ax2.plot(history.history['val_acc'], label='Validation accuracy')
ax2.legend(loc='best')
ax2.set_title('Accuracy')
ax3.plot(history.history['categorical_accuracy'], label='Train Cat Accuracy')
ax3.plot(history.history['val_categorical_accuracy'], label='Validation Cat Accuracy')
ax3.legend(loc='best')
ax3.set_title('Cat Accuracy')
plt.xlabel('Epochs')
sns.despine()
plt.show()
###Output
_____no_output_____
###Markdown
Find best threshold value
###Code
lastFullValPred = np.empty((0, N_CLASSES))
lastFullValLabels = np.empty((0, N_CLASSES))
for i in range(STEP_SIZE_VALID+1):
im, lbl = next(valid_generator)
scores = model.predict(im, batch_size=valid_generator.batch_size)
lastFullValPred = np.append(lastFullValPred, scores, axis=0)
lastFullValLabels = np.append(lastFullValLabels, lbl, axis=0)
print(lastFullValPred.shape, lastFullValLabels.shape)
def find_best_fixed_threshold(preds, targs, do_plot=True):
score = []
thrs = np.arange(0, 0.5, 0.01)
for thr in thrs:
score.append(custom_f2(targs, (preds > thr).astype(int)))
score = np.array(score)
pm = score.argmax()
best_thr, best_score = thrs[pm], score[pm].item()
print(f'thr={best_thr:.3f}', f'F2={best_score:.3f}')
if do_plot:
plt.plot(thrs, score)
plt.vlines(x=best_thr, ymin=score.min(), ymax=score.max())
plt.text(best_thr+0.03, best_score-0.01, f'$F_{2}=${best_score:.3f}', fontsize=14);
plt.show()
return best_thr, best_score
threshold, best_score = find_best_fixed_threshold(lastFullValPred, lastFullValLabels, do_plot=True)
###Output
thr=0.140 F2=0.393
###Markdown
Apply model to test set and output predictions
###Code
test_generator.reset()
STEP_SIZE_TEST = test_generator.n//test_generator.batch_size
preds = model.predict_generator(test_generator, steps=STEP_SIZE_TEST)
predictions = []
for pred_ar in preds:
valid = []
for idx, pred in enumerate(pred_ar):
if pred > threshold:
valid.append(idx)
if len(valid) == 0:
valid.append(np.argmax(pred_ar))
predictions.append(valid)
filenames = test_generator.filenames
label_map = {valid_generator.class_indices[k] : k for k in valid_generator.class_indices}
results = pd.DataFrame({'id':filenames, 'attribute_ids':predictions})
results['id'] = results['id'].map(lambda x: str(x)[:-4])
results['attribute_ids'] = results['attribute_ids'].apply(lambda x: list(map(label_map.get, x)))
results["attribute_ids"] = results["attribute_ids"].apply(lambda x: ' '.join(x))
results.to_csv('submission.csv',index=False)
results.head(10)
###Output
_____no_output_____ |
spamIt.ipynb | ###Markdown
Spam or Ham?Implement a spam filter in Python using the Naive Bayes algorithm to classify the emails as spam or not-spam (a.k.a. ham). Check ModulesCheck your system for the required dependencies.
###Code
import sys
dependencies = ["nltk", "numpy", "pandas", "scipy", "sklearn", "pickle", "re"]
for module in dependencies:
print("\nChecking for " + module + "...")
try:
# Import module from string variable:
# https://stackoverflow.com/questions/8718885/import-module-from-string-variable
# To import using a variable, call __import__(name)
module_obj = __import__(module)
# To contain the module, create a global object using globals()
globals()[module] = module_obj
except ImportError:
print("Install " + module + " before continuing")
print("In a terminal type the following commands:")
print("python get-pip.py")
print("pip install " + module + "\n")
sys.exit(1)
print("\nSystem is ready!")
###Output
Checking for nltk...
Checking for numpy...
Checking for pandas...
Checking for scipy...
Checking for sklearn...
Checking for pickle...
Checking for re...
System is ready!
###Markdown
Download DatasetDownload a set of spam and ham actual emails. Each email is a separate plain text file. Unzip the compressed tar files, read the text and load it into a Pandas Dataframe. Convert the dataframe to a Pickle object.
###Code
import urllib.request
import os
import tarfile
import pickle
import pandas as pd
print("Downloading Enron emails in the Downloads folder...")
# Get the user's Downloads folder path
downloads = os.path.join(os.environ['HOME'] + "/Downloads")
url = "http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/"
enron_dir = os.path.join(downloads, 'Enron emails')
enron_files = ['enron1.tar.gz', 'enron2.tar.gz', 'enron3.tar.gz',
'enron4.tar.gz', 'enron5.tar.gz', 'enron6.tar.gz']
def download():
""" Download Enron emails if missing. """
# Create the directories.
if not os.path.exists(enron_dir):
os.makedirs(enron_dir)
# Download the files that not exist.
for file in enron_files:
path = os.path.join(enron_dir, file)
if not os.path.exists(path):
urllib.request.urlretrieve(url + file, path)
def extract_emails(fname):
""" Extract the zipped emails and load them into a pandas df.
Args:
fname (str): the files with tar.gz extension
Returns:
pandas df: a pandas dataframe of emails
"""
rows = []
tfile = tarfile.open(fname, 'r:gz')
for member in tfile.getmembers():
if 'ham' in member.name:
f = tfile.extractfile(member)
if f is not None:
row = f.read()
rows.append({'message': row, 'class': 'ham'})
if 'spam' in member.name:
f = tfile.extractfile(member)
if f is not None:
row = f.read()
rows.append({'message': row, 'class': 'spam'})
tfile.close()
return pd.DataFrame(rows)
def populate_df_and_pickle():
""" Populate the df with all the emails and save it to a pickle object. """
if not os.path.exists(downloads + "/emails.pickle"):
emails_df = pd.DataFrame({'message': [], 'class': []})
for file in enron_files:
unzipped_file = extract_emails(os.path.join(enron_dir, file))
emails_df = emails_df.append(unzipped_file)
emails_df.to_pickle(downloads + "/emails.pickle")
if __name__ == '__main__':
download()
populate_df_and_pickle()
print("Download, unzip, and save to pickle done!")
with open(downloads + '/emails.pickle', 'rb') as f:
emails_df = pickle.load(f)
# Translate bytes objects into strings.
emails_df['message'] = emails_df['message'].apply(lambda x: x.decode('latin-1'))
# Reset pandas df index.
emails_df = emails_df.reset_index(drop=True)
# Map 'spam' to 1 and 'ham' to 0.
emails_df['class'] = emails_df['class'].map({'spam':1, 'ham':0})
print(emails_df.index)
emails_df.shape
emails_df.iloc[25000].values
###Output
_____no_output_____
###Markdown
Clean the DataRemove the punctuation, any urls and numbers. Finally, convert every word to lower case.
###Code
from string import punctuation
import re
def clean_email(email):
""" Remove all punctuation, urls, numbers, and newlines.
Convert to lower case.
Args:
email (unicode): the email
Returns:
email (unicode): only the text of the email
"""
email = re.sub(r'http\S+', ' ', email)
email = re.sub("\d+", " ", email)
email = email.replace('\n', ' ')
email = email.translate(str.maketrans("", "", punctuation))
email = email.lower()
return email
emails_df['message'] = emails_df['message'].apply(clean_email)
emails_df.iloc[25000].values
###Output
_____no_output_____
###Markdown
Prepare the DataSplit the text string into individual words and stem each word. Remove english stop words. Split and StemSplit the text by white spaces and link the different forms of the same word to each other, using stemming. For example "responsiveness" and "response" have the same stem/root - "respons". Remove Stop WordsSome words such as “the” or “is” appear in all emails and don’t have much content to them. These words are not going to help the algorithm distinguish spam from ham. Such words are called stopwords and they can be disregarded during classification.
###Code
from nltk.stem.snowball import SnowballStemmer
# nltk.download('wordnet') # uncomment to download 'wordnet'
from nltk.corpus import wordnet as wn
def preproces_text(email):
""" Split the text string into individual words, stem each word,
and append the stemmed word to words. Make sure there's a single
space between each stemmed word.
Args:
email (unicode): the email
Returns:
words (unicode): the text of the email
"""
words = ""
# Create the stemmer.
stemmer = SnowballStemmer("english")
# Split text into words.
email = email.split()
for word in email:
# Optional: remove unknown words.
# if wn.synsets(word):
words = words + stemmer.stem(word) + " "
return words
emails_df['message'] = emails_df['message'].apply(preproces_text)
emails_df.iloc[25000].values
###Output
_____no_output_____
###Markdown
Machine Learning Vectorize Words and Split Data to Train/Test SetsTransform the words into a tf-idf matrix using the sklearn TfIdf transformation. Then, create train/test sets with the `train_test_split` function, using `stratify` parameter. The dataset is highly unbalanced and the `stratify` parameter will make a split so that the proportion of values in the sample produced will be the same as the proportion of values provided to parameter `stratify`. For example, if variable y is 0 and 1 and there are 30% of 0's and 70% of 1's, `stratify=y` will make sure that the random split has 30% of 0's and 75% of 1's.
###Code
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
# Define the independent variables as Xs.
Xs = emails_df['message'].values
# Define the target (dependent) variable as Ys.
Ys = emails_df['class'].values
# Vectorize words - Turn the text numerical feature vectors,
# using the strategy of tokenization, counting and normalization.
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
Xs = vectorizer.fit_transform(Xs)
# Create a train/test split using 20% test size.
X_train, X_test, y_train, y_test = train_test_split(Xs,
Ys,
test_size=0.2,
shuffle=True,
random_state=0,
stratify=Ys)
feature_names = vectorizer.get_feature_names()
print("Number of different words: {0}".format(len(feature_names)))
print("Word example: {0}".format(feature_names[5369]))
# Check the split printing the shape of each set.
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)
###Output
Number of different words: 119405
Word example: arcadian
(26972, 119405) (26972,)
(6744, 119405) (6744,)
###Markdown
Train a ClassifierTrain a Naive Bayes classifier and evaluate the performance with the accuracy score.
###Code
from sklearn.naive_bayes import MultinomialNB
# Create classifier.
clf = MultinomialNB()
# Fit the classifier on the training features and labels.
clf.fit(X_train, y_train)
# Make prediction - Store predictions in a list named pred.
pred = clf.predict(X_test)
# Calculate the accuracy on the test data.
print("Accuracy: {}".format(clf.score(X_test, y_test)))
###Output
Accuracy: 0.9847271648873073
###Markdown
Identify the Most Powerful FeaturesPrint the 10 most important features.
###Code
def get_most_important_features(vectorizer, classifier, n=None):
feature_names = vectorizer.get_feature_names()
top_features = sorted(zip(classifier.coef_[0], feature_names))[-n:]
for coef, feat in top_features:
print(coef, feat)
get_most_important_features(vectorizer, clf, 10)
###Output
-7.10193040638 money
-7.08106062291 price
-7.07724882029 onlin
-7.07696063312 offer
-7.06439782381 www
-7.04630242466 softwar
-6.97568091654 email
-6.94140085524 click
-6.65836580587 com
-6.59068342497 http
###Markdown
ExamplesLet's try out our classifier.
###Code
email = ["Hello George, how about a game of tennis tomorrow?",
"Hello, click here if you want to satisfy your wife tonight",
"We offer free viagra!!! Click here now!!!",
"Dear Sara, I prepared the annual report. Please check the attachment.",
"Hi David, will we go for cinema tonight?",
"Best holidays offers only here!!!"]
examples = vectorizer.transform(email)
predictions = clf.predict(examples)
predictions
###Output
_____no_output_____ |
ATR/JupyterNotbook/LOG2ADL.ipynb | ###Markdown
Log2Csv ConverterATRで取得したデータをADLtaggerで扱えるように形式変換する. 処理できるATRのセンサで取得したデータは日分のみ(timestampで日にちを確定できない) [次でバックして!!!] timestampの小数点以下の0が桁落ち ==> str.zfill(3) + .astype(str)を使え!!!
###Code
import os
import shutil # shutil.rmtree(path)でdirectory tree全体を削除(空でなくても)
import pandas as pd
import datetime as dt
import csv
class Log2ADL(object):
"""
Convert log files which generated by ATR acceleration sensor into ADL tagger format
"""
def __init__(self, date_str, t_shift, path_to_log_dir='./log/', path_to_output_dir='./ADL/'):
"""
Argument
--------
date_str: str, the date which logs were recorded. (ex. '2017-09-21')
t_shift: int, to adjust timestump between PC and ATR sensors.[ms]
path_log_dir/path_output_dir: Path to the log/output file directory
"""
self.path_to_log_dir = path_to_log_dir
self.path_to_output_dir = path_to_output_dir
# タイムスタンプを合わせるための基準時刻を生成
self.base_timestamp = dt.datetime.strptime(date_str, '%Y-%m-%d') + dt.timedelta(milliseconds=t_shift)
print("Class was successfully generated [base_timestump=",self.base_timestamp,"]")
"""Read Log Files"""
def read_logs(self):
# Step.1: 処理するLogファイルの一覧を取得
print("Step1: Get log files.")
log_list = os.listdir(self.path_to_log_dir)
print(">> Success: ",log_list, "\n")
# Step.2: logファイルをデータフレームに変換
print("Step2: Convert log files to pd.DataFrame.")
df = []
for file_name in log_list:
if file_name.find('.log') > 0:
path_to_file = self.path_to_log_dir + file_name
with open(path_to_file, 'r') as f:
reader, x = csv.reader(f), []
for row in reader:
if "ags" in row: x.append(row)
print(">> Read CSV ["+ path_to_file + '] ==> Sucess(', len(x), "rows)")
df = df + x
self.df = pd.DataFrame(df, columns=["sensor", "time_ATR", "accX", "accY", "accZ", "gyroX", "gyroY", "gyroZ"])
print(">> Success: df.shape=", self.df.shape, "\n")
return self.df
"""Add Timestamps"""
def generate_timestamp(self,time):
"""Convert an ATR timestamp into a datetime object"""
# Params >> time(integer or str)
# Return >> datetime.datatime
# Convert milliseconds to r60
milliseconds, time = time%1000, int(time/1000)
seconds, time = time%60, int(time/60)
minutes, time = time%60, int(time/60)
hours, time = time%60, int(time/60)
# Error Check
if time > 1:
print(">> Error: timestamp of ATR sensor is invaild format.")
# 基準時間と合わせる
new_time = self.base_timestamp + dt.timedelta(milliseconds=milliseconds, seconds=seconds, minutes=minutes, hours=hours)
return new_time
def add_timestamps(self):
print("Step3: Add Timestamps.")
df = self.df.sort_values(by=["time_ATR"], ascending=True).reset_index(drop=True)
df["timestamp"] = df["time_ATR"].apply(self.generate_timestamp)
df["time"], df["time_milli"] = df["timestamp"].dt.strftime('%Y%m%d_%H:%M:%S.'), df["timestamp"].dt.microsecond // 1000
df["time"] = df["time"].astype(str) + df["time_milli"].astype(str).str.zfill(3)
#df["time"] = df["timestamp"].apply(lambda x: x.strftime('%Y%m%d_%H:%M:%S.') + "%03d" % (x.microsecond // 1000))
df["group"] = df["timestamp"].dt.strftime('%Y%m%d_%H%M')
self.df = df
print(">> Success: df.shape=", self.df.shape, "\n")
return df
"""Write output"""
def activate_dir(self, target_path, dir_name):
if not os.path.isdir(target_path+dir_name):
# 存在しない場合はディレクトリを作成
os.mkdir(target_path+dir_name)
if os.path.isdir(target_path+dir_name):
print(">> Directory was created ["+ target_path+dir_name +"]")
return target_path + dir_name + '/'
def to_csvs(self):
print("Step4: Write CSVs.")
groups = self.df["group"].drop_duplicates().reset_index(drop=True)
df = self.df
# Outディレクトリをクリア
if os.path.isdir(self.path_to_output_dir):
shutil.rmtree(self.path_to_output_dir)
os.mkdir(self.path_to_output_dir)
print(">> Clean output directory.")
for group in groups:
# 書き込む行を選択
df_selected = df[df["group"] == group].sort_values(by=["timestamp"])
# 書き込むディレクトリを選択: Acc
## ディレクトリの確認
target_path = self.activate_dir(self.path_to_output_dir, "acc2")
target_path = self.activate_dir(target_path, "acc2_R")
## 書き込みファイルを指定
target_file_name = group+"00_acc2.csv"
# CSV書き込み
df_selected[["time", "accX", "accY", "accZ"]].to_csv(target_path+'/'+target_file_name, index=False, header=["time", "x", "y", "z"])
print(">> write", target_path+target_file_name)
# 書き込むディレクトリを選択: Gyro
## ディレクトリの確認
target_path = self.activate_dir(self.path_to_output_dir, "Gyro")
target_path = self.activate_dir(target_path, "gyro")
## 書き込みファイルを指定
target_file_name = group+"00_gyro.csv"
# CSV書き込み
df_selected[["time", "accX", "accY", "accZ"]].to_csv(target_path+'/'+target_file_name, index=False, header=["time", "x", "y", "z"])
print(">> write", target_path+target_file_name)
print(">> Success:", len(groups), "files were created.\n")
# converter = Log2ADL('2017-09-21', 100)
# df_foo = converter.read_logs()
# df_foo = converter.add_timestamps()
# df_foo = converter.to_csvs()
"""
Main 関数
"""
ts_minutes = 10
ts_seconds = ts_minutes*60 + 88 - 5 + 0.45
ts_ms = ts_seconds*1000
print("ts_ms:", ts_ms)
converter = Log2ADL('2018-01-31', ts_ms, path_to_log_dir='./data/log/', path_to_output_dir='./data/ADL/')
df_foo = converter.read_logs()
#converter.df = converter.df[:50000]
df_foo = converter.add_timestamps()
converter.to_csvs()
display(df_foo.head())
"""
Main 関数: 2018.02.01
"""
ts_minutes = 0
ts_seconds = ts_minutes*60
ts_ms = ts_seconds*1000
print("ts_ms:", ts_ms)
sub_name = "45_maekawa"
path_to_log_dir = "/root/upconversion/data/2018_01_16/{}/log/".format(sub_name)
path_to_output_dir = "/root/upconversion/data/2018_01_16/{}/data/".format(sub_name)
converter = Log2ADL('2018-02-04', ts_ms, path_to_log_dir=path_to_log_dir, path_to_output_dir=path_to_output_dir)
df_foo = converter.read_logs()
#converter.df = converter.df[:50000]
df_foo = converter.add_timestamps()
converter.to_csvs()
display(df_foo.head())
###Output
ts_ms: 0
Class was successfully generated [base_timestump= 2018-02-04 00:00:00 ]
Step1: Get log files.
>> Success: ['45_maekawa.log']
Step2: Convert log files to pd.DataFrame.
>> Read CSV [/root/upconversion/data/2018_01_16/45_maekawa/log/45_maekawa.log] ==> Sucess( 714080 rows)
>> Success: df.shape= (714080, 8)
Step3: Add Timestamps.
>> Success: df.shape= (714080, 12)
Step4: Write CSVs.
>> Clean output directory.
>> Directory was created [/root/upconversion/data/2018_01_16/45_maekawa/data/acc2]
>> Directory was created [/root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R]
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121300_acc2.csv
>> Directory was created [/root/upconversion/data/2018_01_16/45_maekawa/data/Gyro]
>> Directory was created [/root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro]
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121300_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121400_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121400_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121500_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121500_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121600_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121600_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121700_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121700_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121800_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121800_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_121900_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_121900_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_122000_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_122000_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_122100_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_122100_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_122200_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_122200_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_122300_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_122300_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_122400_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_122400_gyro.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/acc2/acc2_R/20180204_122500_acc2.csv
>> write /root/upconversion/data/2018_01_16/45_maekawa/data/Gyro/gyro/20180204_122500_gyro.csv
>> Success: 13 files were created.
|
Customer-Segmentation-using-Python-in-ML.ipynb | ###Markdown
Customer Segmentation using Python in Machine Learning __Author: Soma Dey__ 1. Importing the dataset and all required libraries
###Code
# 'Numpy' is used for mathematical operations on large, multi-dimensional arrays and matrices
import numpy as np
# 'Pandas' is used for data manipulation and analysis
import pandas as pd
# 'Matplotlib' is a data visualization library for 2D and 3D plots, built on numpy
import matplotlib.pyplot as plt
%matplotlib inline
# 'Seaborn' is based on matplotlib; used for plotting statistical graphics
import seaborn as sns
# suppress display of warnings
import warnings
warnings.filterwarnings("ignore")
#Load the data into a pandas dataFrame
df = pd.read_csv("C:/Users/SOMA/Documents/Python_Projects/Data Set/Mall_Customers.csv")
#Read the dataset
df.head() #printing first 5 records of the dataset
#Now printing last 5 records of the dataset
df.tail()
df.info()
df.shape
###Output
_____no_output_____
###Markdown
- **This Customer Segmentation dataset has 200 rows and 5 columns** 2. Exploratory Data Analysis
###Code
# Now we have to find out gender distribution between males and females.
genders=df.Gender.value_counts()
plt.figure(figsize=(10,5))
sns.barplot(x=genders.index, y=genders.values)
plt.show()
# Now I have visualized the different customers with age groups
age18_25 = df.Age[(df.Age<=25)&(df.Age>=18)]
age26_35 = df.Age[(df.Age<=35)&(df.Age>=26)]
age36_45 = df.Age[(df.Age<=45)&(df.Age>=36)]
age46_55 = df.Age[(df.Age<=55)&(df.Age>=46)]
age55above = df.Age[(df.Age>=56)]
x=["18-25","26-35","36-45","46-55","Above55"]
y=[len(age18_25.values), len(age26_35.values),len(age36_45.values),len(age46_55.values),len(age55above.values)]
plt.figure(figsize=(15,6))
plt.title=("Number of customers and ages")
plt.xlabel=("Ages")
plt.ylabel=("Number of customers")
sns.barplot(x=x,y=y)
plt.show()
###Output
_____no_output_____
###Markdown
- **So by this, we can say that customers of age group 26-35 are more in number than the other age groups**
###Code
# Now we are going to visualize the highest spending scores among the customers
ss1_20= df["Spending Score (1-100)"][(df["Spending Score (1-100)"]>=1) &(df["Spending Score (1-100)"]<=20)]
ss21_40= df["Spending Score (1-100)"][(df["Spending Score (1-100)"]>=21) &(df["Spending Score (1-100)"]<=40)]
ss41_60= df["Spending Score (1-100)"][(df["Spending Score (1-100)"]>=41) &(df["Spending Score (1-100)"]<=60)]
ss61_80= df["Spending Score (1-100)"][(df["Spending Score (1-100)"]>=61) &(df["Spending Score (1-100)"]<=80)]
ss81_100= df["Spending Score (1-100)"][(df["Spending Score (1-100)"]>=81) &(df["Spending Score (1-100)"]<=100)]
x=["1-20","21-40","41-60","61-80","81-100"]
y=[len(ss1_20.values), len(ss21_40.values),len(ss41_60.values),len(ss61_80.values),len(ss81_100.values)]
plt.figure(figsize=(10,6))
plt.title=("Spending scores of the customers")
plt.xlabel=("Spending Scores")
plt.ylabel=("score of customers")
sns.barplot(x=x , y=y)
plt.show()
###Output
_____no_output_____
###Markdown
- **So based on the bar graph we can see that the majority of spending scores among the customers is between 41-60**
###Code
# Now we are going to visualize the annual income of the customers
ai0_30 = df["Annual Income (k$)"][(df["Annual Income (k$)"]>=0)&(df["Annual Income (k$)"]<=30)]
ai31_60 = df["Annual Income (k$)"][(df["Annual Income (k$)"]>=31)&(df["Annual Income (k$)"]<=60)]
ai61_90 = df["Annual Income (k$)"][(df["Annual Income (k$)"]>=61)&(df["Annual Income (k$)"]<=90)]
ai91_120 = df["Annual Income (k$)"][(df["Annual Income (k$)"]>=91)&(df["Annual Income (k$)"]<=120)]
ai121_150 = df["Annual Income (k$)"][(df["Annual Income (k$)"]>=121)&(df["Annual Income (k$)"]<=150)]
x=["0-30","31-60", "61-90","91-120","121-150"]
y=[len(ai0_30.values), len(ai31_60.values), len(ai61_90.values),len(ai91_120.values), len(ai121_150.values)]
plt.figure(figsize=(15,6))
plt.title=("Annual Income of customers")
plt.xlabel=("Annual Income in k$")
plt.ylabel=("Number of customers")
sns.barplot(x=x,y=y)
plt.show()
###Output
_____no_output_____
###Markdown
- __The graph obtained shows that the majority of customers have the annual income between 61-90$__ 3. Finding the optimum number of clusters
###Code
from sklearn.cluster import KMeans
x = df.iloc[:, [3,4]].values
wcss=[] #Within cluster sum of squares
for i in range(1,11):
kmeans=KMeans(n_clusters=i , init='k-means++',
max_iter = 300, n_init = 10, random_state=0)
kmeans.fit(x)
wcss.append(kmeans.inertia_)
#Ploting Elbow Method
plt.figure(figsize=(12,6))
plt.scatter(range(1, 11), wcss,marker="s",c="black")
plt.plot(range(1,11),wcss,c="red")
plt.xlabel=('KValue')
plt.ylabel=('WCSS')
#for value of k from 1 to 10 in graph
plt.xticks(np.arange(1,11,1))
plt.title=("Elbow Graph")
plt.show()
###Output
_____no_output_____
###Markdown
+ **In this method, the number of clusters are varies within a certain range. For each number, within-cluster sum of square (wcss) value is calculated and stored in a list. These value are then plotted against the range of number of clusters used before. The location of bend in the 2d plot indicates the appropiate number of clusters**+ **From the obtained graph we can observe that at point 5 there is a maximum inflection in the curve. So we can use 5 clusters in K means algorithm** 4. Modeling and visualization with KMeans Algorithm
###Code
kmeansmodel = KMeans(n_clusters=5, init='k-means++', random_state=0)
y_kmeans = kmeansmodel.fit_predict(x)
#predicted values
y_kmeans
#Visualizing the K-means Clusters
sns.set_style("whitegrid");
plt.figure(figsize=(12,7))
plt.scatter(x[y_kmeans==0,0], x[y_kmeans==0,1], s=80,c='red', label='customer1' , marker="*")
plt.scatter(x[y_kmeans==1,0], x[y_kmeans==1,1], s=80,c='blue', label='customer2' , marker="*")
plt.scatter(x[y_kmeans==2,0], x[y_kmeans==2,1], s=80,c='green', label='customer3' , marker="*")
plt.scatter(x[y_kmeans==3,0], x[y_kmeans==3,1], s=80,c='orange', label='customer4' , marker="*")
plt.scatter(x[y_kmeans==4,0], x[y_kmeans==4,1], s=80,c='purple', label='customer5' , marker="*")
plt.scatter(kmeans.cluster_centers_[:,0] , kmeans.cluster_centers_[:,1], s=100, c="black", label="centroids")
plt.title = (str('cluster of customers'))
plt.xlabel = (str('Annual Income'))
plt.ylabel = (str('Spending Scores'))
plt.legend()
plt.show()
###Output
_____no_output_____ |
ProcessingDigitalGlobeTifData.ipynb | ###Markdown
1. Setting Up Colab on the Google VMHow to use the Colab interface on a remote Google virtual machine that is mounted with a Google Bucket. Initial Set Up *(only has to be done once per account)*(Locally)1. `gcloud init` (if you haven’t already)2. `gcloud compute config-ssh` (if you haven’t already, create your password)(On VM)0. Start VM (if it isn't already) on the Google VM page and under the connect column, go to the SSH tab and select 'Open in browser window'1. Follow the instructions for installing gcsfuse here https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/docs/installing.md2. Install conda>`wget http://repo.continuum.io/archive/Anaconda3-4.0.0-Linux-x86_64.sh`>`bash Anaconda3-4.0.0-Linux-x86_64.sh`>Note that if this gives you an error involving unpackaging the zip file, try:>`sudo apt-get install bzip2`>`rm -r /home//anaconda3`3. `source ~/.bashrc`4. `conda install jupyter`5. `conda install tornado=4.5.3` (resolving depending issue)6. `pip install jupyter_http_over_ws`7. `pip install requests==2.4.3`8. `jupyter serverextension enable --py jupyter_http_over_ws`9. `conda upgrade ipykernel`*In order to run colab (or any notebook) from a VM, we have to run the notebook from the VM, and then pipe the output of that VM on to our local machine (we'll be using port 8888). Once we do this, we can have a display run 'locally' (either through Jupyter notebook or colab).* Running the VM on Colab(Locally)1. In your terminal, run:>`gcloud compute ssh --zone us-west1-b dfd-cpu-instance -- -L 8888:localhost:8888`>(replace us-west1-b and dfd-cpu-instance with your VM's region and instance name respectively)(On VM)1. Start VM (if it isn't already) on the Google VM page and under the connect column, go to the SSH tab and select 'Open in browser window' and under the connect column, go to the SSH tab and select 'Open in browser window.' If you are already in the VM, make sure you are in your home directory.3. `mkdir satellite && cd satellite` (we called our data directory satellite but you can call it anything you want)4. Check if there's anything in this directory. If not, run (in the satellite folder): `gcsfuse tent-bucket .`5. In the pop-up terminal, type:`jupyter notebook --NotebookApp.allow_origin='https://colab.research.google.com' --port=8888 --no-browser`6. Copy and paste link in URL it prints out (it will direct to a jupyter notebook page)7. From here you can directly create/run notebooks, or go to the next step to connect to the colab8. In the colab, go to the runtime option (click the down arrow), connect to 'local' and make sure the port is 8888 (or whatever you set it as in part 6)9. Now you can run the rest of this colab! :) 2. Processing Digital Globe Data in to Image FilesProcessing our Digital Globe Data, which exists as TIF files in to consumable chunks of images and geo-mapping the correpsonding structures in our labelling data to each output image.
###Code
# Install necessary imports for processing TIF files
!pip install rasterio
# Import necessary libraries
import base64
import json
import pandas as pd
from PIL import Image
from io import BytesIO
from collections import defaultdict
# import geopandas as gpd
# from geopandas import GeoDataFrame
import descartes
from shapely.geometry import Point
import numpy as np
from rasterio.io import MemoryFile
import rasterio
import rasterio.features
import rasterio.warp
from rasterio.plot import show
import random
import glob
# This is the directory of the mounted google bucket
GOOGLE_BUCKET_DIR = 'satellite/'
# NOTE: I added 'labels' directory before each file now that it is local
# and we are storing the geojson rating data here
REGION_MAPPINGS = {
'Africa1': {
'qc': GOOGLE_BUCKET_DIR + 'labels/africa1_qcexport_20180906.geojson',
'raw': GOOGLE_BUCKET_DIR + 'labels/africa1_rawtags_20180906.geojson'},
'Africa2': {
'qc': GOOGLE_BUCKET_DIR + 'labels/africa2_qcexport_20180927.geojson',
'raw': GOOGLE_BUCKET_DIR + 'labels/africa2_rawtags_20180927.geojson'},
'Bangladesh': {
'qc': GOOGLE_BUCKET_DIR + 'labels/bangladesh_qcexport_20180906.geojson',
'raw': GOOGLE_BUCKET_DIR + 'labels/bangladesh_rawtags_20180906.geojson'},
'WesternAsia': {
'qc': GOOGLE_BUCKET_DIR + 'labels/westernAsia_qcexport_20180906.geojson',
'raw': GOOGLE_BUCKET_DIR + 'labels/westernAsia_rawtags_20180906.geojson'}
}
COLORS = {'UNHCR Tent': 'r',
'Administrative Structure': 'm',
'Round Earthen Structure': 'c',
'Other Tent': 'y'}
CHIP_URL_PREFIX = 'https://s3.amazonaws.com/explorationlab/chips/'
def get_features(filepath, region):
"""
Featurize datasets (QC and Raw) according to the following schema from the
stored json object. Note that we:
1) Ignore the metadata tags and only use the 'feature tag'
2) Expand the geography tag within the feature tag to 'latitude',
'longitude', and 'coordinate_type' keys, in addition to the raw geojson
3) Convert date features to pandas Timestamp and confidence score to float
QC datasets
id: unique identifier
label: name for the feature type
score: the CrowdRank confidence score of the assigned attribute, relative to other tags in the dataset. (floating point 0-1 with 0=no confidence, 1= fully confident)
agreement: number of other taggers who placed the same tag type on this point
chip_url: link to a .jpg image chip hosted on aws with the identified feature in the center of the image
timestamp: Date/time in GMT of the last QC batch
acquisition_date: Date the image was collected
sensor: the DigitalGlobe satellite that captured the image
catalog_id: DigitalGlobe identifier for the image strips collected by our satellites
map_id: unique identifier for each lattice cell across the imagery
Raw tags
id: unique identifier
tagger_id: unique identifier of the user
map_view_id: not too helpful for you, but I can use this to link back to another table in the database for the map/image seen by the crowd
type_id: database tag for the feature type
label: name for the feature type
timestamp: time in GMT that tag was placed
"""
with open(filepath) as f:
content = f.read()
obj = json.loads(content)
data = defaultdict(list)
for x in obj['features']:
data['latitude'].append(x['geometry']['coordinates'][1])
data['longitude'].append(x['geometry']['coordinates'][0])
data['coordinate_type'].append(x['geometry']['type'])
for key in x['properties'].keys():
if key == 'acquisition_date' or key == 'timestamp':
data[key].append(pd.Timestamp(x['properties'][key]))
elif key == 'score':
data[key].append(float(x['properties'][key]))
elif key == 'chip_url':
data[key].append(x['properties'][key].replace(CHIP_URL_PREFIX, ''))
else:
data[key].append(x['properties'][key])
df = pd.DataFrame.from_dict(dict(data))
df['region'] = region
# Clean data a little - group all 'Other Tent ...' together in an 'Other' category
df['label'] = df['label'].apply(lambda x: 'Other Tent' if x.startswith('Other Tent') else x)
return df
def lonlat2xy(lon_in, lat_in, lon1, lon2, lat1, lat2, w, h):
"""Simple function to calcualte x/y coordinates based on lon/lat coordinate"""
x = w * (lon_in - lon1) / (lon2 - lon1)
y = h * (lat_in - lat1) / (lat2 - lat1)
return x, y
def xy2lonlat(x_in, y_in, lon1, lon2, lat1, lat2, w, h):
"""Simple function to calcualte lat/lon coordinates based on x/y coordinate"""
lon = lon1 + (lon2 - lon1) * x_in / w
lat = lat1 + (lat2 - lat1) * y_in / h
return lon, lat
def get_cropped_images(tif_path, labels, xcrop, ycrop):
"""
Output image crops and corresponding labels for a given tif file and all
labels.
tif_path: path to the tif file we want to get images out of
labels: pandas dataframe containing the tomnod data ratings file (processed
in get_features method above)
xcrop: width of desired crop (geospatial)
ycrop: height of desired crop (geospatial)
"""
with rasterio.open(tif_path) as dataset:
# Read the dataset's valid data mask as a ndarray.
mask = dataset.dataset_mask()
big_lon1, big_lat1 = 0, 0
big_lon2, big_lat2 = 0, 0
# Extract feature shapes and values from the array.
for geom, val in rasterio.features.shapes(
mask, transform=dataset.transform):
# Transform shapes from the dataset's own coordinate
# reference system to CRS84 (EPSG:4326).
geom = rasterio.warp.transform_geom(
dataset.crs, 'EPSG:4326', geom, precision=10)
# Get coordinates from the dataset
[big_lon1, big_lat1] = geom['coordinates'][0][0]
[big_lon2, big_lat2] = geom['coordinates'][0][2]
w, h = dataset.profile['width'], dataset.profile['height']
# Assign crop sizes according to the resolution
lon_crop = xcrop/w * (big_lon2 - big_lon1)
lat_crop = ycrop/h * (big_lat2 - big_lat1)
# Flip dimension order to have channel last instead of first
big_im = np.transpose(dataset.read(), (1,2,0))
ims, labels_crops = [], []
# Iterate through each crop grid and calculate its labels
for x1 in range(0, w, xcrop):
for y1 in range(0, h, ycrop):
# Calculate lat/lon boundaries for crop
lon1, lat1 = xy2lonlat(
x1, y1, big_lon1, big_lon2, big_lat1, big_lat2, w, h)
lon2, lat2 = lon1 + lon_crop, lat1 + lat_crop
min_lon, max_lon = min(lon1, lon2), max(lon1, lon2)
min_lat, max_lat = min(lat1, lat2), max(lat1, lat2)
# Get all structures within this range and create the label
labels_crop = labels[(labels.latitude > min_lat) &
(labels.latitude < max_lat) &
(labels.longitude > min_lon) &
(labels.longitude < max_lon)]
labels_crop['tile_min_lat'] = big_lat1
labels_crop['tile_max_lat'] = big_lat2
labels_crop['tile_min_lon'] = big_lon1
labels_crop['tile_max_lon'] = big_lon2
labels_crop['min_lat'], labels_crop['max_lat'] = min_lat, max_lat
labels_crop['min_lon'], labels_crop['max_lon'] = min_lon, max_lon
labels_crop['x'], labels_crop['y'] = lonlat2xy(
labels_crop.longitude, labels_crop.latitude, lon1, lon2, lat1, lat2,
xcrop, ycrop)
# Create the cropped images
im = big_im[y1:y1+ycrop, x1:x1+xcrop, :]
ims.append(im)
labels_crops.append(labels_crop)
return ims, labels_crops
def upload_crops(ims, labels_crops, tif_prefix, dest=''):
"""
Upload an array of image and labels for crops to a filepath
ims: array of images
labels_crops: array of pandas dataframes containing labels w.r.t each image
tf_prefix: tif_id to store the images under
"""
indices = [i for i in range(len(labels_crops)) if not labels_crops[i].empty]
if len(indices) == 0:
return
region = labels_crops[indices[0]].region.unique()[0]
for i in indices:
png_filename = '%s%s/%s_%d.png' % (dest, region, tif_prefix, i)
print('Outputting: %s' % png_filename)
img = ims[i]
if img.shape[-1] == 1:
img = np.squeeze(np.stack((img,) * 3, -1))
Image.fromarray(img.astype('uint8')).save(png_filename)
csv_filename = '%s%s/%s_%d.csv' % (dest, region, tif_prefix, i)
labels_crops[i].to_csv(csv_filename, encoding='utf-8')
# For the project, we copied all the code above and then moved all the code
# below under the main function (commented out below). This allowed us to run
# a script processing on all examples remotely and detach the thread.
# Note that this can also be adapted to run on the colab (although this may take
# significantly slower as the .tif files will not be mounted on the file system)
# if __name__ == "__main__":
qc = pd.DataFrame()
for region in REGION_MAPPINGS.keys():
if len(qc) == 0:
qc = get_features(REGION_MAPPINGS[region]['qc'], region)
else:
qc = qc.append(get_features(REGION_MAPPINGS[region]['qc'], region))
all_tifs = glob.glob(GOOGLE_BUCKET_DIR + '*/*.tif')
failed_indices = []
CROP_SIZE = 500
for i in range(10):
tif = all_tifs[i]
print("Processing index %d, tile %s" % (i,tif))
tif_prefix = (tif.split('/')[-1]).split('.')[0]
# try:
ims, labels_crops = get_cropped_images(tif, qc, CROP_SIZE, CROP_SIZE)
upload_crops(ims, labels_crops, tif_prefix)
# except:
# failed_indices.append(i)
print("Failed indices:")
for idx in failed_indices:
print(idx)
###Output
Processing index 0, tile satellite/10200100058D0600/10200100058D0600_BROWSE.tif
|
04RNN/04Character_Level_RNN_sol.ipynb | ###Markdown
Character-Level LSTM in PyTorch이번 실습을 통해 character-level LSTM 를 구현하자. 특정 text에서 문자를 하나씩 학습한다. 그리고 학습한 것을 바탕으로 새로운 문자를 생성하여 문장을 만든다. Anna Karenina라는 소설을 사용하여 모형을 구현해 보자. **소설을 학습하고 소설과 유사한 문장을 생성하는 실습을 해보자.**아래 그림은 일반적인 character-wise RNN의 구조를 나타낸다.
###Code
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
###Output
_____no_output_____
###Markdown
Load in DataAnna Karenina text file을 다운로드하여 학습에 사용할 수 있도록 전처리를 수행한다.
###Code
# open text file and read in data as `text`
with open('./data/anna.txt', 'r') as f:
text = f.read()
###Output
_____no_output_____
###Markdown
처음 100 개 문자를 확인해 보자.
###Code
text[:100]
###Output
_____no_output_____
###Markdown
Tokenization문자를 숫자로 전환하기 위한 **dictionary**를 생성한다. 문자를 숫자로 Encoding하여 모형의 input data로 사용한다.
###Code
# encode the text and map each character to an integer and vice versa
# we create two dictionaries:
# 1. int2char, which maps integers to characters
# 2. char2int, which maps characters to unique integers
chars = tuple(set(text))
int2char = dict(enumerate(chars))
char2int = {ch: ii for ii, ch in int2char.items()}
# encode the text
encoded = np.array([char2int[ch] for ch in text], dtype=np.int64)
###Output
_____no_output_____
###Markdown
처음 100개 문자를 확인하여 문자가 숫자로 인코딩 되었음을 확인해 보자.
###Code
encoded[:100]
###Output
_____no_output_____
###Markdown
Pre-processing the dataLSTM에서는 input을 **one-hot encoded** 으로 사용한다. 따라서 우리가 인코딩한 문자도 one-hot encoding 방식으로 변환해야 한다.
###Code
def one_hot_encode(arr, n_labels):
# Initialize the the encoded array
one_hot = np.zeros((np.multiply(*arr.shape), n_labels), dtype=np.float32)
# Fill the appropriate elements with ones
one_hot[np.arange(one_hot.shape[0]), arr.flatten()] = 1.
# Finally reshape it to get back to the original array
one_hot = one_hot.reshape((*arr.shape, n_labels))
return one_hot
# check that the function works as expected
test_seq = np.array([[3, 5, 1]])
one_hot = one_hot_encode(test_seq, 8)
print(one_hot)
###Output
[[[0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0.]]]
###Markdown
Making training mini-batches모형을 훈련하기 위해 mini-batches 를 생성한다. 생성되는 batches 는 아래와 비슷하게 될 것이다:이 예에서 encoded characters 를 `arr` 라고 하자. 이를 주어진 `batch_size`로 multiple sequences로 나눈다, 각각의 sequences는 `seq_length` 길이를 가진다. Creating Batches**1. 먼저 full mini-batches로 나누고 남은 문자는 모두 삭제한다.**각 batch는 $N \times M$ 의 문자를 가진다.(여기서 $N$ 은 batch size = 하나의 batch에 들어가는 sequence 개수) 그리고 $M$ 은 sequence_length 이다. 그 다음에 batches의 총 갯수인 $K$는 `arr` 의 길이를 하나의 batch에 들어가는 문자의 갯수(=$N \times M$)로 나누면 된다. `arr`에서 필요한 총 문자의 갯수는 $N * M * K$이 된다.**2. `arr`를 $N$ batches로 나눈다.** `arr.reshape(size)`를 사용한다. `size` tuple값으로 준다. 하나의 batch 당 $N$ sequences가 있다. 따라서 $N$이 첫번째 차원값이 된다. reshape를 하고 나면 $N \times (M * K)$이 된다.**3. 이 array를 사용하여 mini-batches를 생성한다.**$N \times (M * K)$ array에 대해서 각각의 batch $N \times M$ window를 가진다. 윈도우는`seq_length`만큼 이동한다. input array와 target arrays를 생성한다. targets은 단지 inputs 을 one character shift한 것이다. `range` 함수를 사용하는데 이때 interval option을 seq_length로 주면 된다. > **실습 :** 아래에 batches 를 생성하는 function를 작성하자. 쉽지 않은 실습이므로 해답 내용을 참조하여 작성해 보자.
###Code
def get_batches(arr, batch_size, seq_length):
'''Create a generator that returns batches of size
batch_size x seq_length from arr.
Arguments
---------
arr: Array you want to make batches from
batch_size: Batch size, the number of sequences per batch
seq_length: Number of encoded chars in a sequence
'''
## TODO: Get the number of batches we can make
n_batches = len(arr) // (batch_size*seq_length) #정수나누기해야한다.
## TODO: Keep only enough characters to make full batches
arr = arr[:batch_size*seq_length*n_batches]
## TODO: Reshape into batch_size rows
arr = arr.reshape((batch_size, -1))
## TODO: Iterate over the batches using a window of size seq_length
for n in range(0, arr.shape[1], seq_length):
# The features
x = arr[:, n:n+seq_length]
# The targets, shifted by one ==> y는 target으로 x값을 1만큼 shift해서 생성한다
y = np.zeros_like(x)
try :
y[:, :-1], y[:, -1] = x[:, 1:], arr[:, n+seq_length]
except IndexError:
y[:, :-1], y[:, -1] = x[:, 1:], arr[:, 0]
yield x, y
# yield는 generator를 return한다.
###Output
_____no_output_____
###Markdown
Test Your Implementationbatch가 제대로 생성되는지 테스트 해본다. 일단 batch size 는 8 그리고 50 sequence length로 설정해 보자.
###Code
batches = get_batches(encoded, 8, 50)
x, y = next(batches)
# printing out the first 10 items in a sequence
print('x\n', x[:10, :10])
print('\ny\n', y[:10, :10])
###Output
x
[[54 28 58 59 46 56 22 47 70 45]
[ 0 74 40 47 46 28 58 46 47 58]
[56 40 41 47 74 22 47 58 47 38]
[ 0 47 46 28 56 47 24 28 57 56]
[47 0 58 4 47 28 56 22 47 46]
[24 52 0 0 57 74 40 47 58 40]
[47 48 40 40 58 47 28 58 41 47]
[71 33 7 74 40 0 44 77 20 47]]
y
[[28 58 59 46 56 22 47 70 45 45]
[74 40 47 46 28 58 46 47 58 46]
[40 41 47 74 22 47 58 47 38 74]
[47 46 28 56 47 24 28 57 56 38]
[ 0 58 4 47 28 56 22 47 46 56]
[52 0 0 57 74 40 47 58 40 41]
[48 40 40 58 47 28 58 41 47 0]
[33 7 74 40 0 44 77 20 47 67]]
###Markdown
--- Defining the network with PyTorch아래와 같은 network를 구성해 보자. Model Structure`__init__` 는 다음과 같이 작성한다:* 필요한 dictionary를 생성한다.* LSTM layer는 input size (characters 갯수), hidden layer size `n_hidden`, layers 갯수 `n_layers`, dropout 확률로 `drop_prob`, 그리고 batch_first = True로 설정한다.* dropout layer 를 설정한다.* fully-connected layer는 input size `n_hidden`와 output size (characters의 갯수)로 생성한다.* 최종적으로 weight를 초기화한다. --- LSTM Inputs/Outputs기본적으로 [LSTM layer](https://pytorch.org/docs/stable/nn.htmllstm) 은 다음과 같이 작성한다.```pythonself.lstm = nn.LSTM(input_size, n_hidden, n_layers, dropout=drop_prob, batch_first=True)````input_size` 는 characters의 갯수이다. sequential input을 받고 `n_hidden`는 hidden layers 에서의 unit 개수이다. dropout을 설정할 수 있다. 마지막으로 `forward` function에서 LSTM cells을 쌓아 올린다.hidden state 의 초기 상태는 모두 0으로 초기화한다.```pythonself.init_hidden()```
###Code
# check if GPU is available
train_on_gpu = torch.cuda.is_available()
if(train_on_gpu):
print('Training on GPU!')
else:
print('No GPU available, training on CPU; consider making n_epochs very small.')
class CharRNN(nn.Module):
def __init__(self, tokens, n_hidden=256, n_layers=2,
drop_prob=0.5, lr=0.001):
super().__init__()
self.drop_prob = drop_prob
self.n_layers = n_layers
self.n_hidden = n_hidden
self.lr = lr
# creating character dictionaries
self.chars = tokens
self.int2char = dict(enumerate(self.chars))
self.char2int = {ch: ii for ii, ch in self.int2char.items()}
## TODO: define the layers of the model
self.lstm = nn.LSTM(len(self.chars), n_hidden, n_layers, dropout=drop_prob, batch_first=True)
self.dropout = nn.Dropout(p=drop_prob)
self.fc = nn.Linear(n_hidden, len(self.chars))
def forward(self, x, hidden):
''' Forward pass through the network.
These inputs are x, and the hidden/cell state `hidden`. '''
## TODO: Get the outputs and the new hidden state from the lstm
r_output, hidden = self.lstm(x, hidden) # lstm 수행하면 수행 결과와 새로운 히든이 출력으로.
out = self.dropout(r_output) # lstm출력을 dropout하여
out = out.contiguous().view(-1, self.n_hidden) # shape 바꾸어서 다음 layer로 stack
out = self.fc(out)
# return the final output and the hidden state
return out, hidden
def init_hidden(self, batch_size):
''' Initializes hidden state '''
# Create two new tensors with sizes n_layers x batch_size x n_hidden,
# initialized to zero, for hidden state and cell state of LSTM
weight = next(self.parameters()).data
if (train_on_gpu):
hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda(),
weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda())
else:
hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_(),
weight.new(self.n_layers, batch_size, self.n_hidden).zero_())
return hidden
###Output
_____no_output_____
###Markdown
Time to train훈련하기 위한 epochs수와 learning rate,그리고 기타 parameters를 적절히 설정한다.Adam optimizer 와 cross entropy loss 를 사용한다. > * gradient가 지수 함수로 증가하는 경우가 있을 수 있다. 이 문제는 exploding gradient 문제로 잘 알려져 있다. [`clip_grad_norm_`](https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html) 를 사용하여 gradients exploding을 방지한다.
###Code
def train(net, data, epochs=10, batch_size=10, seq_length=50, lr=0.001, clip=5, val_frac=0.1, print_every=10):
''' Training a network
Arguments
---------
net: CharRNN network
data: text data to train the network
epochs: Number of epochs to train
batch_size: Number of mini-sequences per mini-batch, aka batch size
seq_length: Number of character steps per mini-batch
lr: learning rate
clip: gradient clipping
val_frac: Fraction of data to hold out for validation
print_every: Number of steps for printing training and validation loss
'''
net.train()
opt = torch.optim.Adam(net.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# create training and validation data
val_idx = int(len(data)*(1-val_frac))
data, val_data = data[:val_idx], data[val_idx:]
if(train_on_gpu):
net.cuda()
counter = 0
n_chars = len(net.chars)
for e in range(epochs):
# initialize hidden state
h = net.init_hidden(batch_size)
for x, y in get_batches(data, batch_size, seq_length):
counter += 1
# One-hot encode our data and make them Torch tensors
x = one_hot_encode(x, n_chars)
inputs, targets = torch.from_numpy(x), torch.from_numpy(y)
if(train_on_gpu):
inputs, targets = inputs.cuda(), targets.cuda()
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
h = tuple([each.data for each in h])
# zero accumulated gradients
net.zero_grad()
# get the output from the model
output, h = net(inputs, h)
# calculate the loss and perform backprop
loss = criterion(output, targets.view(batch_size*seq_length))
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
nn.utils.clip_grad_norm_(net.parameters(), clip)
opt.step()
# loss stats
if counter % print_every == 0:
# Get validation loss
val_h = net.init_hidden(batch_size)
val_losses = []
net.eval()
for x, y in get_batches(val_data, batch_size, seq_length):
# One-hot encode our data and make them Torch tensors
x = one_hot_encode(x, n_chars)
x, y = torch.from_numpy(x), torch.from_numpy(y)
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
val_h = tuple([each.data for each in val_h])
inputs, targets = x, y
if(train_on_gpu):
inputs, targets = inputs.cuda(), targets.cuda()
output, val_h = net(inputs, val_h)
val_loss = criterion(output, targets.view(batch_size*seq_length))
val_losses.append(val_loss.item())
net.train() # reset to train mode after iterationg through validation data
print("Epoch: {}/{}...".format(e+1, epochs),
"Step: {}...".format(counter),
"Loss: {:.4f}...".format(loss.item()),
"Val Loss: {:.4f}".format(np.mean(val_losses)))
###Output
_____no_output_____
###Markdown
Instantiating the modelNetwork instance를 생성하고 hyperparameters를 설정한다. 그리고 mini-batches sizes를 설정하고 training한다.
###Code
## TODO: set you model hyperparameters
# define and print the net
n_hidden= 512
n_layers= 2
net = CharRNN(chars, n_hidden, n_layers)
print(net)
###Output
CharRNN(
(lstm): LSTM(83, 512, num_layers=2, batch_first=True, dropout=0.5)
(dropout): Dropout(p=0.5, inplace=False)
(fc): Linear(in_features=512, out_features=83, bias=True)
)
###Markdown
Set your training hyperparameters!
###Code
batch_size = 128
seq_length = 100
n_epochs = 1 # start small if you are just testing initial behavior
print('Training the model...')
# train the model
train(net, encoded,
epochs=n_epochs, batch_size=batch_size,
seq_length=seq_length, lr=0.001,
print_every=10)
###Output
Epoch: 1/1... Step: 10... Loss: 3.2768... Val Loss: 3.2368
Epoch: 1/1... Step: 20... Loss: 3.1438... Val Loss: 3.1355
Epoch: 1/1... Step: 30... Loss: 3.1416... Val Loss: 3.1234
Epoch: 1/1... Step: 40... Loss: 3.1145... Val Loss: 3.1191
Epoch: 1/1... Step: 50... Loss: 3.1443... Val Loss: 3.1169
Epoch: 1/1... Step: 60... Loss: 3.1202... Val Loss: 3.1156
Epoch: 1/1... Step: 70... Loss: 3.1051... Val Loss: 3.1135
Epoch: 1/1... Step: 80... Loss: 3.1223... Val Loss: 3.1092
Epoch: 1/1... Step: 90... Loss: 3.1138... Val Loss: 3.0970
Epoch: 1/1... Step: 100... Loss: 3.0803... Val Loss: 3.0663
Epoch: 1/1... Step: 110... Loss: 3.0323... Val Loss: 3.0133
Epoch: 1/1... Step: 120... Loss: 2.9059... Val Loss: 2.8930
Epoch: 1/1... Step: 130... Loss: 2.8215... Val Loss: 2.7923
###Markdown
Hyperparameters설정이 필요한 hyperparameters 는 다음과 같다..* `n_hidden` - The number of units in the hidden layers.* `n_layers` - Number of hidden LSTM layers to use.* `batch_size` - Number of sequences running through the network in one pass.* `seq_length` - Number of characters in the sequence. 보통 큰 값으로 설정하면 더 긴 내용을 학습할 수 있다.너무 크게 하면 학습이 오래 걸린다. * `lr` - Learning rate for training Tips and Tricks> Validation Loss vs. Training Loss을 확인한다.>- 보통 training loss와 validation loss 의 차이가 심하면 **overfitting**된다고 본다. 그런 경우에는 network size를 줄이거나 dropout을 설정한다.>- 만약, training/validation loss가 같으면 **underfitting**되었다고 본다. 그럴 경우에는 layer의 갯수, layer당 unit의 갯수를 증가한다.> 적절한 hyper parameter를 설정한다.> 중요한 parameters는 `n_hidden`,`n_layers` 2개 이다. 이 parameter는 데이터셋의 크기에 따라 달라진다. 보통의 경우에는 전체 train resource를 고려하여 좀 더 큰 네트워크를 만들어서 train을 진행한다. validation, train loss를 살펴보고 overfitting 되면 dropout 등을 추가적으로 주고 훈련을 진행한다. 이때 validation loss가 최소가 되는 모형을 최종적인 모형으로 저장한다. Checkpoint훈련이 종료되면 최종적인 모형을 저장한다.
###Code
# change the name, for saving multiple files
model_name = 'rnn_1_epoch.net'
checkpoint = {'n_hidden': net.n_hidden,
'n_layers': net.n_layers,
'state_dict': net.state_dict(),
'tokens': net.chars}
with open(model_name, 'wb') as f:
torch.save(checkpoint, f)
###Output
_____no_output_____
###Markdown
--- Making Predictions모형이 잘 작동하여 문장을 제대로 생성하는지 확인해 본다. A note on the `predict` functionRNN의 출력 값은 주어진 입력값 다음에 나올 문자를 예측하여 출력한다. 문자의 score값을 출력하므로 이를 확률로 전환해야 한다. 확률로 전환하기 위해 softmax함수를 사용한다.> softmax function를 적용하면 주어진 입력 다음에 나올 문자에 대한 확률값을 출력하게 된다. Top K sampling다음 나올 문자의 확률이 높은 k개의 문자만이 최종 출력되도록 해야한다.
###Code
def predict(net, char, h=None, top_k=None):
''' Given a character, predict the next character.
Returns the predicted character and the hidden state.
'''
# tensor inputs
x = np.array([[net.char2int[char]]])
x = one_hot_encode(x, len(net.chars))
inputs = torch.from_numpy(x)
if(train_on_gpu):
inputs = inputs.cuda()
# detach hidden state from history
h = tuple([each.data for each in h])
# get the output of the model
out, h = net(inputs, h)
# get the character probabilities
p = F.softmax(out, dim=1).data
if(train_on_gpu):
p = p.cpu() # move to cpu
# get top characters
if top_k is None:
top_ch = np.arange(len(net.chars))
else:
p, top_ch = p.topk(top_k)
top_ch = top_ch.numpy().squeeze()
# select the likely next character with some element of randomness
p = p.numpy().squeeze()
char = np.random.choice(top_ch, p=p/p.sum())
# return the encoded value of the predicted char and the hidden state
return net.int2char[char], h
###Output
_____no_output_____
###Markdown
Priming and generating text 보통 문장의 시작 단어를 prime 값(=초기값)으로 준다. 그러면 이 문자열을 기반으로 하여 문장을 생성한다.
###Code
def sample(net, size, prime='The', top_k=None):
if(train_on_gpu):
net.cuda()
else:
net.cpu()
net.eval() # eval mode
# First off, run through the prime characters
chars = [ch for ch in prime]
h = net.init_hidden(1)
for ch in prime:
char, h = predict(net, ch, h, top_k=top_k)
chars.append(char)
# Now pass in the previous character and get a new one
for ii in range(size):
char, h = predict(net, chars[-1], h, top_k=top_k)
chars.append(char)
return ''.join(chars)
print(sample(net, 1000, prime='Anna', top_k=5))
###Output
Annas
ootied he oe an oose he aas hed
taree he tatin an to sine hadd aosse nas tetin tise ha hera had an oo hater natian the hh hetthes ond aetins hosinn ate ande atit oad, oan he tian tan ansee ahed aad, ans ans het hind tisdinsetisesiod toe sasind, her nnt an shi tone hod hertit attat thad sines hes ind ate ne hhr se hasdised hir hottes hhe an tote aa tan thes ote ter to sisro tare he ae sintes ho teet at aons herteed terereta toteestin aat ho ao ae ho an sin toee hor tetittere tond, thot ion the sori ae hede hantia shis hin ao has tine te aane hes oteire sat ios tins he she tontee hit tae heteran tae atrettat intiad tore toesitistit ind oad ate sititrin hored hotie ten oo the toed so se sha he toesse tho an ho hod the seese thes ot at ho had waterar tat tot an san she sar san aad tene thr to hh aes ae ood hod an tane ton he aodd an hira hhe his oas aer tat he hh he het oade ne toe hh atret tons has tare tot ao at hhise tie ton seee sa nhos ha he aos hir ned ho oe sot ane aond sote
###Markdown
Loading a checkpoint
###Code
# Here we have loaded in a model that trained over 20 epochs `rnn_20_epoch.net`
with open('rnn_20_epoch.net', 'rb') as f:
checkpoint = torch.load(f, map_location=lambda storage, loc: storage)
loaded = CharRNN(checkpoint['tokens'], n_hidden=checkpoint['n_hidden'], n_layers=checkpoint['n_layers'])
loaded.load_state_dict(checkpoint['state_dict'])
# Sample using a loaded model
print(sample(loaded, 2000, top_k=5, prime="And Levin said"))
###Output
And Levin said to herself, to be answered, and to the club changes of his
hat for the
doctor's perfect woman when she could not be a pretty doctor's conversation. All the times on the churce of what it was the first time an old meant which, still seemed to her heart, but he could not be seen in speaking. She was chief that she went, and held his face all that he had nothing, and he felt that the money, she had been
a stepped and a man who had been almost all
the secretary, his eyes of the princess at the clear on the feeling that something were strange feeling for him, to ask an instant that he was this tone that he did
not know them, but he saw at the table of his from her, as to her hands, he had not to
decide. The
strength of his shoted weight, to be told her face
and he felt that it was a cried of
his hands to
his hands.
"You're seeing there about it."
"I have been at a
little of taken," said Stepan Arkadyevitch, louking at her hands, and so struck
his brother and talked with her hat, and as a carefully repont with his study with seciness with the steps of the statements at the memory,
which had to be still to be the stop, he shaded him, the peasants, as it were, with a colored hearted
looking approach and her
sister's carriage was the station of socance. And so he said his frings and his stopped strange woman, said
his
brother.
The convincions were so must be found
herself, were a strange sound of the mistress
and significantly only a cheeks, the cheer of the streams, she
had taken up a sort, but were a partier, he was carrying himself out on the starts of all the country and his crowned attention.
"There's nothing it all
at out that some seemed a men. And when I'm such a side of his
fach,
though I do the same, and what he can be decented, and I am to go into the stairs and with him. And you've cried them to be done?" said Levin,
liking his
eyes off. The day to the sick coan had and the doctor was not the
starl of his hands when she had been the forest and heally would ha
|
notebooks/PytorchNoteBook.ipynb | ###Markdown
Model Interpretation
###Code
#prediction = predict_probability(real_model, validation_transforms, image_path)
interpret_model(real_model,validation_transforms, image_path, label_idx, use_cpu=True, intrepret_type="integrated gradients")
interpret_model(real_model,validation_transforms, image_path, label_idx, use_cpu=True, intrepret_type="gradient shap")
interpret_model(real_model,validation_transforms, image_path, label_idx, use_cpu=True, intrepret_type="saliency")
interpret_model(real_model,validation_transforms, image_path2, label_idx, use_cpu=True, intrepret_type="integrated gradients")
interpret_model(real_model,validation_transforms, image_path2, label_idx, use_cpu=True, intrepret_type="gradient shap")
interpret_model(real_model,validation_transforms, image_path2, label_idx, use_cpu=True, intrepret_type="saliency")
#train data directory
test_dir = 'C:/Peter Moss AML Leukemia Research/Dataset/all_test/'
test_csv = 'C:/Peter Moss AML Leukemia Research/Dataset/test.csv'
label_csv = pd.read_csv(test_csv)
testset = LeukemiaDataset(df_data=label_csv, data_dir=test_dir, transform=validation_transforms)
test_data_loader = DataLoader(testset, batch_size=batch_size, shuffle=True)
show_predictions(model=real_model, class_names=class_name, test_data_loader=test_data_loader, n_images=6)
###Output
_____no_output_____ |
C4 Machine Learning II/LABS_PROJECT/Tech_Fun_C4_P7_Game_AI_Reinforcement_Learning.ipynb | ###Markdown
Technology Fundamentals Course 4, Project Part 7: Reinforcement Learning**Instructor**: Wesley Beckner**Contact**: [email protected]**Teaching Assitants**: Varsha Bang, Wesley Beckner**Contact**: [email protected], [email protected] this lesson we'll abandon the world of heuristical agents and embrace the wilds of reinforcement learning--- 6.0 Preparing Environment and Importing Data[back to top](top) 6.0.1 Import Packages[back to top](top) baselines requires an older version of TF
###Code
pip install tensorflow==1.15.0
###Output
Collecting tensorflow==1.15.0
[?25l Downloading https://files.pythonhosted.org/packages/92/2b/e3af15221da9ff323521565fa3324b0d7c7c5b1d7a8ca66984c8d59cb0ce/tensorflow-1.15.0-cp37-cp37m-manylinux2010_x86_64.whl (412.3MB)
[K |████████████████████████████████| 412.3MB 41kB/s
[?25hCollecting keras-applications>=1.0.8
[?25l Downloading https://files.pythonhosted.org/packages/71/e3/19762fdfc62877ae9102edf6342d71b28fbfd9dea3d2f96a882ce099b03f/Keras_Applications-1.0.8-py3-none-any.whl (50kB)
[K |████████████████████████████████| 51kB 6.1MB/s
[?25hRequirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (1.1.0)
Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (0.12.0)
Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (1.12.1)
Collecting gast==0.2.2
Downloading https://files.pythonhosted.org/packages/4e/35/11749bf99b2d4e3cceb4d55ca22590b0d7c2c62b9de38ac4a4a7f4687421/gast-0.2.2.tar.gz
Collecting tensorboard<1.16.0,>=1.15.0
[?25l Downloading https://files.pythonhosted.org/packages/1e/e9/d3d747a97f7188f48aa5eda486907f3b345cd409f0a0850468ba867db246/tensorboard-1.15.0-py3-none-any.whl (3.8MB)
[K |████████████████████████████████| 3.8MB 28.8MB/s
[?25hRequirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (0.36.2)
Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (3.3.0)
Collecting tensorflow-estimator==1.15.1
[?25l Downloading https://files.pythonhosted.org/packages/de/62/2ee9cd74c9fa2fa450877847ba560b260f5d0fb70ee0595203082dafcc9d/tensorflow_estimator-1.15.1-py2.py3-none-any.whl (503kB)
[K |████████████████████████████████| 512kB 46.4MB/s
[?25hRequirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (1.1.2)
Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (3.17.3)
Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (1.34.1)
Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (0.8.1)
Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (1.15.0)
Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (0.2.0)
Requirement already satisfied: numpy<2.0,>=1.16.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==1.15.0) (1.19.5)
Requirement already satisfied: h5py in /usr/local/lib/python3.7/dist-packages (from keras-applications>=1.0.8->tensorflow==1.15.0) (3.1.0)
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0) (3.3.4)
Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0) (57.0.0)
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0) (1.0.1)
Requirement already satisfied: cached-property; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from h5py->keras-applications>=1.0.8->tensorflow==1.15.0) (1.5.2)
Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0) (4.6.0)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0) (3.4.1)
Requirement already satisfied: typing-extensions>=3.6.4; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0) (3.7.4.3)
Building wheels for collected packages: gast
Building wheel for gast (setup.py) ... [?25l[?25hdone
Created wheel for gast: filename=gast-0.2.2-cp37-none-any.whl size=7557 sha256=5f1c2a767c53a986bb5923c892c6890ec5f3f2e14774d7f2cf76d0c88ae6beed
Stored in directory: /root/.cache/pip/wheels/5c/2e/7e/a1d4d4fcebe6c381f378ce7743a3ced3699feb89bcfbdadadd
Successfully built gast
[31mERROR: tensorflow-probability 0.13.0 has requirement gast>=0.3.2, but you'll have gast 0.2.2 which is incompatible.[0m
[31mERROR: kapre 0.3.5 has requirement tensorflow>=2.0.0, but you'll have tensorflow 1.15.0 which is incompatible.[0m
Installing collected packages: keras-applications, gast, tensorboard, tensorflow-estimator, tensorflow
Found existing installation: gast 0.4.0
Uninstalling gast-0.4.0:
Successfully uninstalled gast-0.4.0
Found existing installation: tensorboard 2.5.0
Uninstalling tensorboard-2.5.0:
Successfully uninstalled tensorboard-2.5.0
Found existing installation: tensorflow-estimator 2.5.0
Uninstalling tensorflow-estimator-2.5.0:
Successfully uninstalled tensorflow-estimator-2.5.0
Found existing installation: tensorflow 2.5.0
Uninstalling tensorflow-2.5.0:
Successfully uninstalled tensorflow-2.5.0
Successfully installed gast-0.2.2 keras-applications-1.0.8 tensorboard-1.15.0 tensorflow-1.15.0 tensorflow-estimator-1.15.1
###Markdown
install baselines from openAI
###Code
!apt-get update
!apt-get install -y cmake libopenmpi-dev python3-dev zlib1g-dev
!pip install "stable-baselines[mpi]==2.9.0"
# Check version of tensorflow
import tensorflow as tf
tf.__version__
from gym import spaces
import gym
from stable_baselines.common.env_checker import check_env
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def n_step_ai(board, win_patterns, player_label, n_steps=3):
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
avail_moves = {i: 1 for i in board.keys() if board[i] == ' '}
for move in avail_moves.keys():
temp_board = board.copy()
temp_board[move] = player_label
score = get_minimax(n_steps, temp_board, player_label)
avail_moves[move] = score
##########################################
### The rest of our ai agent harness is the same
##########################################
# first grab max score
max_score = max(avail_moves.values())
# then select all moves that have this max score
valid = []
for key, value in avail_moves.items():
if value == max_score:
valid.append(key)
# return a random selection of the moves with the max score
move = random.choice(valid)
return move
def minimax(depth, board, maximizing_player, player_label, verbiose=False):
# infer the opponent
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
# set the available moves
avail_moves = [i for i in board.keys() if board[i] == ' ']
# check if the depth is 0, or stalemate/winner has been reached
# if so this is the basecase and we want to return get_score()
terminal_move = is_terminal_node(board, avail_moves)
if terminal_move or depth == 0:
score = get_score(board, player_label, win_patterns)
if verbiose:
print('{} score: {}. depth: {}'.format(board, score, depth))
return score
### in the following we want to search through every possible board at the
### current level (the possible moves for the current player, given that the
### player is either the one whose turn it is or the imagined opponent)
# call minimax where it is the current players turn and so we want to
# maximize the score
if maximizing_player:
score = -np.Inf
for move in avail_moves:
new_board = board.copy()
new_board[move] = player_label
score = max(score, minimax(depth-1, new_board, False, player_label, verbiose))
if verbiose:
print('{} max. score: {}. depth: {}'.format(board, score, depth))
return score
# call minimax where it is the opponent players turn and so we want to
# minimize the score
elif not maximizing_player:
score = np.Inf
for move in avail_moves:
new_board = board.copy()
new_board[move] = opponent
score = min(score, minimax(depth-1, new_board, True, player_label, verbiose))
if verbiose:
print('{} min. score: {}. depth: {}'.format(board, score, depth))
return score
def is_terminal_node(board, avail_moves):
if check_winning(board, win_patterns):
return True
elif check_stalemate(board, win_patterns):
return True
else:
return False
def get_score(board, player_label, win_patterns):
# this will look somewhat similar to our 1-step lookahead algorithm
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
score = 0
for pattern in win_patterns:
values = [board[i] for i in pattern]
# if the opponent wins, the score is -100
if values == [opponent, opponent, opponent]:
score = -100
elif values == [player_label, player_label, player_label]:
score = 100
return score
# we're going to pull out and reformat some of our helper functions in the
# TicTacToe class
win_patterns = [[1,2,3], [4,5,6], [7,8,9],
[1,4,7], [2,5,8], [3,6,9],
[1,5,9], [7,5,3]]
def check_winning(board, win_patterns):
for pattern in win_patterns:
values = [board[i] for i in pattern]
if values == ['X', 'X', 'X'] or values == ['O', 'O', 'O']:
return True
return False
def check_stalemate(board, win_patterns):
if (' ' not in board.values()) and (check_winning(board, win_patterns) == ''):
return True
return False
def get_minimax(depth, board, player_label, verbiose=False):
score = minimax(depth-1, board, False, player_label, verbiose=verbiose)
return score
def n_step_ai_temp(board, win_patterns, player_label, n_steps, verbiose=False):
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
avail_moves = {i: 1 for i in board.keys() if board[i] == ' '}
for move in avail_moves.keys():
temp_board = board.copy()
temp_board[move] = player_label
score = get_minimax(n_steps, temp_board, player_label, verbiose=verbiose)
avail_moves[move] = score
return avail_moves
def one_step_ai(board, win_patterns, player_label):
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
avail_moves = {i: 1 for i in board.keys() if board[i] == ' '}
temp_board = board.copy()
########################################
# we're going to change the following lines, instead of caring
# whether we've found the best move, we want to update the move
# with a score
########################################
# check if the opponent has a winning move first, we will overwrite
# the score for this move if it is also a winning move for the current
# player
for move in avail_moves.keys():
temp_board[move] = opponent
for pattern in win_patterns:
values = [temp_board[i] for i in pattern]
if values == [opponent, opponent, opponent]:
avail_moves[move] = 10
temp_board[move] = ' '
for move in avail_moves.keys():
temp_board[move] = player_label
for pattern in win_patterns:
values = [temp_board[i] for i in pattern]
if values == [player_label, player_label, player_label]:
avail_moves[move] = 100
temp_board[move] = ' '
# first grab max score
max_score = max(avail_moves.values())
# then select all moves that have this max score
valid = []
for key, value in avail_moves.items():
if value == max_score:
valid.append(key)
# return a random selection of the moves with the max score
move = random.choice(valid)
return move
class TicTacToe:
# can preset winner and starting player
def __init__(self, winner='', start_player=''):
self.winner = winner
self.start_player = start_player
self.board = {1: ' ',
2: ' ',
3: ' ',
4: ' ',
5: ' ',
6: ' ',
7: ' ',
8: ' ',
9: ' ',}
self.win_patterns = [[1,2,3], [4,5,6], [7,8,9],
[1,4,7], [2,5,8], [3,6,9],
[1,5,9], [7,5,3]]
# the other functions are now passed self
def visualize_board(self):
print(
"|{}|{}|{}|\n|{}|{}|{}|\n|{}|{}|{}|\n".format(*self.board.values())
)
def check_winning(self):
for pattern in self.win_patterns:
values = [self.board[i] for i in pattern]
if values == ['X', 'X', 'X']:
self.winner = 'X' # we update the winner status
return "'X' Won!"
elif values == ['O', 'O', 'O']:
self.winner = 'O'
return "'O' Won!"
return ''
def check_stalemate(self):
if (' ' not in self.board.values()) and (self.check_winning() == ''):
self.winner = 'Stalemate'
return "It's a stalemate!"
class GameEngine(TicTacToe):
def __init__(self, setup='auto', user_ai=None):
super().__init__()
self.setup = setup
self.user_ai = user_ai
def heuristic_ai(self, player_label):
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
avail_moves = [i for i in self.board.keys() if self.board[i] == ' ']
temp_board = self.board.copy()
middle = 5
corner = [1,3,7,9]
side = [2,4,6,8]
# first check for a winning move
move_found = False
for move in avail_moves:
temp_board[move] = player_label
for pattern in self.win_patterns:
values = [temp_board[i] for i in pattern]
if values == [player_label, player_label, player_label]:
move_found = True
break
if move_found:
break
else:
temp_board[move] = ' '
# check if the opponent has a winning move
if move_found == False:
for move in avail_moves:
temp_board[move] = opponent
for pattern in self.win_patterns:
values = [temp_board[i] for i in pattern]
if values == [opponent, opponent, opponent]:
move_found = True
break
if move_found:
break
else:
temp_board[move] = ' '
# check if middle avail
if move_found == False:
if middle in avail_moves:
move_found = True
move = middle
# check corners
if move_found == False:
move_corner = [val for val in avail_moves if val in corner]
if len(move_corner) > 0:
move = random.choice(move_corner)
move_found = True
# check side
if move_found == False:
move_side = [val for val in avail_moves if val in side]
if len(move_side) > 0:
move = random.choice(move_side)
move_found = True
return move
def random_ai(self):
while True:
move = random.randint(1,9)
if self.board[move] != ' ':
continue
else:
break
return move
def setup_game(self):
if self.setup == 'user':
players = int(input("How many Players? (type 0, 1, or 2)"))
self.player_meta = {'first': {'label': 'X',
'type': 'ai'},
'second': {'label': 'O',
'type': 'human'}}
if players != 2:
##########
# Allow the user to set the ai level
##########
### if they have not provided an ai_agent
if self.user_ai == None:
level = int(input("select AI level (1, 2)"))
if level == 1:
self.ai_level = 1
elif level == 2:
self.ai_level = 2
else:
print("Unknown AI level entered, this will cause problems")
else:
self.ai_level = 3
if players == 1:
first = input("who will go first? (X, (AI), or O (Player))")
if first == 'O':
self.player_meta = {'second': {'label': 'X',
'type': 'ai'},
'first': {'label': 'O',
'type': 'human'}}
elif players == 0:
first = random.choice(['X', 'O'])
if first == 'O':
self.player_meta = {'second': {'label': 'X',
'type': 'ai'},
'first': {'label': 'O',
'type': 'ai'}}
else:
self.player_meta = {'first': {'label': 'X',
'type': 'ai'},
'second': {'label': 'O',
'type': 'ai'}}
elif self.setup == 'auto':
first = random.choice(['X', 'O'])
if first == 'O':
self.start_player = 'O'
self.player_meta = {'second': {'label': 'X',
'type': 'ai'},
'first': {'label': 'O',
'type': 'ai'}}
else:
self.start_player = 'X'
self.player_meta = {'first': {'label': 'X',
'type': 'ai'},
'second': {'label': 'O',
'type': 'ai'}}
##########
# and automatically set the ai level otherwise
##########
if self.user_ai == None:
self.ai_level = 2
else:
self.ai_level = 3
def play_game(self):
while True:
for player in ['first', 'second']:
self.visualize_board()
player_label = self.player_meta[player]['label']
player_type = self.player_meta[player]['type']
if player_type == 'human':
move = input("{}, what's your move?".format(player_label))
# we're going to allow the user to quit the game from the input line
if move in ['q', 'quit']:
self.winner = 'F'
print('quiting the game')
break
move = int(move)
if self.board[move] != ' ':
while True:
move = input("{}, that position is already taken! "\
"What's your move?".format(player_label))
move = int(move)
if self.board[move] != ' ':
continue
else:
break
else:
##########
# Our level 1 ai agent (random)
##########
if self.ai_level == 1:
move = self.random_ai()
##########
# Our level 2 ai agent (heuristic)
##########
elif self.ai_level == 2:
move = self.heuristic_ai(player_label)
##########
# Our user-defined AI agent
##########
elif self.ai_level == 3:
move = self.user_ai(self.board, self.win_patterns, player_label)
self.board[move] = player_label
# the winner varaible will now be check within the board object
self.check_winning()
self.check_stalemate()
if self.winner == '':
continue
elif self.winner == 'Stalemate':
print(self.check_stalemate())
self.visualize_board()
break
else:
print(self.check_winning())
self.visualize_board()
break
if self.winner != '':
return self
###Output
_____no_output_____
###Markdown
6.0.2 Run Tests
###Code
def test_n_step_ai():
random.seed(42)
game = GameEngine(setup='auto', user_ai=n_step_ai)
game.setup_game()
game.play_game()
# check that the winner is X
assert game.winner == 'X', "Winner should be X!"
# check that the ai level is set to 3 which means our engine is properly
# accessing the user defined ai
assert game.ai_level == 3, "The engine is not using the user defined AI!"
test_n_step_ai()
###Output
| | | |
| | | |
| | | |
|X| | |
| | | |
| | | |
|X| | |
| | |O|
| | | |
|X| |X|
| | |O|
| | | |
|X|O|X|
| | |O|
| | | |
|X|O|X|
| |X|O|
| | | |
|X|O|X|
|O|X|O|
| | | |
'X' Won!
|X|O|X|
|O|X|O|
| | |X|
###Markdown
6.1 Reinforcement Learning: Reset, Step, and RewardFirstly, to interact with OpenAI Gym, we need to include a method of reseting the current game. 6.1.2 Reset
###Code
class GameEngine(TicTacToe):
def __init__(self, setup='auto', user_ai=None):
super().__init__()
self.setup = setup
self.user_ai = user_ai
def heuristic_ai(self, player_label):
opponent = ['X', 'O']
opponent.remove(player_label)
opponent = opponent[0]
avail_moves = [i for i in self.board.keys() if self.board[i] == ' ']
temp_board = self.board.copy()
middle = 5
corner = [1,3,7,9]
side = [2,4,6,8]
# first check for a winning move
move_found = False
for move in avail_moves:
temp_board[move] = player_label
for pattern in self.win_patterns:
values = [temp_board[i] for i in pattern]
if values == [player_label, player_label, player_label]:
move_found = True
break
if move_found:
break
else:
temp_board[move] = ' '
# check if the opponent has a winning move
if move_found == False:
for move in avail_moves:
temp_board[move] = opponent
for pattern in self.win_patterns:
values = [temp_board[i] for i in pattern]
if values == [opponent, opponent, opponent]:
move_found = True
break
if move_found:
break
else:
temp_board[move] = ' '
# check if middle avail
if move_found == False:
if middle in avail_moves:
move_found = True
move = middle
# check corners
if move_found == False:
move_corner = [val for val in avail_moves if val in corner]
if len(move_corner) > 0:
move = random.choice(move_corner)
move_found = True
# check side
if move_found == False:
move_side = [val for val in avail_moves if val in side]
if len(move_side) > 0:
move = random.choice(move_side)
move_found = True
return move
def random_ai(self):
while True:
move = random.randint(1,9)
if self.board[move] != ' ':
continue
else:
break
return move
def setup_game(self):
if self.setup == 'user':
players = int(input("How many Players? (type 0, 1, or 2)"))
self.player_meta = {'first': {'label': 'X',
'type': 'ai'},
'second': {'label': 'O',
'type': 'human'}}
if players != 2:
##########
# Allow the user to set the ai level
##########
### if they have not provided an ai_agent
if self.user_ai == None:
level = int(input("select AI level (1, 2)"))
if level == 1:
self.ai_level = 1
elif level == 2:
self.ai_level = 2
else:
print("Unknown AI level entered, this will cause problems")
else:
self.ai_level = 3
if players == 1:
first = input("who will go first? (X, (AI), or O (Player))")
if first == 'O':
self.player_meta = {'second': {'label': 'X',
'type': 'ai'},
'first': {'label': 'O',
'type': 'human'}}
elif players == 0:
first = random.choice(['X', 'O'])
if first == 'O':
self.player_meta = {'second': {'label': 'X',
'type': 'ai'},
'first': {'label': 'O',
'type': 'ai'}}
else:
self.player_meta = {'first': {'label': 'X',
'type': 'ai'},
'second': {'label': 'O',
'type': 'ai'}}
elif self.setup == 'auto':
first = random.choice(['X', 'O'])
if first == 'O':
self.start_player = 'O'
self.player_meta = {'second': {'label': 'X',
'type': 'ai'},
'first': {'label': 'O',
'type': 'ai'}}
else:
self.start_player = 'X'
self.player_meta = {'first': {'label': 'X',
'type': 'ai'},
'second': {'label': 'O',
'type': 'ai'}}
##########
# and automatically set the ai level otherwise
##########
if self.user_ai == None:
self.ai_level = 2
else:
self.ai_level = 3
def play_game(self):
while True:
for player in ['first', 'second']:
self.visualize_board()
player_label = self.player_meta[player]['label']
player_type = self.player_meta[player]['type']
if player_type == 'human':
move = input("{}, what's your move?".format(player_label))
# we're going to allow the user to quit the game from the input line
if move in ['q', 'quit']:
self.winner = 'F'
print('quiting the game')
break
move = int(move)
if self.board[move] != ' ':
while True:
move = input("{}, that position is already taken! "\
"What's your move?".format(player_label))
move = int(move)
if self.board[move] != ' ':
continue
else:
break
else:
##########
# Our level 1 ai agent (random)
##########
if self.ai_level == 1:
move = self.random_ai()
##########
# Our level 2 ai agent (heuristic)
##########
elif self.ai_level == 2:
move = self.heuristic_ai(player_label)
##########
# Our user-defined AI agent
##########
elif self.ai_level == 3:
move = self.user_ai(self.board, self.win_patterns, player_label)
self.board[move] = player_label
# the winner varaible will now be check within the board object
self.check_winning()
self.check_stalemate()
if self.winner == '':
continue
elif self.winner == 'Stalemate':
print(self.check_stalemate())
self.visualize_board()
break
else:
print(self.check_winning())
self.visualize_board()
break
if self.winner != '':
return self
####################################
# Adding our ability to reset the game
####################################
def reset_game(self):
self.board = {1: ' ',
2: ' ',
3: ' ',
4: ' ',
5: ' ',
6: ' ',
7: ' ',
8: ' ',
9: ' ',}
self.winner = ''
self.setup_game()
###Output
_____no_output_____
###Markdown
Let's test our reset:
###Code
game = GameEngine('auto')
game.setup_game()
game.play_game()
game.reset_game()
game.play_game()
###Output
| | | |
| | | |
| | | |
| | | |
| |X| |
| | | |
| | |O|
| |X| |
| | | |
| | |O|
| |X| |
| | |X|
|O| |O|
| |X| |
| | |X|
|O|X|O|
| |X| |
| | |X|
|O|X|O|
| |X| |
| |O|X|
|O|X|O|
| |X| |
|X|O|X|
|O|X|O|
|O|X| |
|X|O|X|
It's a stalemate!
|O|X|O|
|O|X|X|
|X|O|X|
###Markdown
This `reset_game` function works the way we intend. However, the big step we will have to make from our current tic tac toe module to one usable by OpenAI is to work with integers rather than strings in our board representation. 6.1.3 Observation and Action SpacesThe following are the important changes we will have to make to our game class in order to work with OpenAI's built-in reinforcement learning algorithms:``` the board now has integers as values instead of stringsself.board = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0,} the available token spaces, note that in order to access our board dictionary these actions will need to be re-indexed to 1self.action_space = spaces.Discrete(9) the observation space requires int rep for player tokensself.observation_space = spaces.Box(low=0, high=2, shape=(9,), dtype=np.int)self.reward_range = (-10, 1) we will redefine our player labels as intsself.player_label = 1self.opponent_label = 2``` Let's take a look at our redefined action space:
###Code
board = {1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,}
state = np.array(list(board.values())).reshape(9,)
state
###Output
_____no_output_____
###Markdown
Does this align with a random sample of the observation space? It should if it is going to work!
###Code
box = spaces.Box(low=0, high=2, shape=(9,), dtype=np.int)
box.sample()
###Output
_____no_output_____
###Markdown
Let's break this down. For 1 of 9 spaces (defined by shape in `spaces.Box`), the game board can take on the value of 0, 1, or 2 (defined by low and high in `spaces.Box`). When we sample from box we get a random snapshot of how the bored could possibly look. The way we've defined `state` is such that it too, represents how the board could possibly look. `state` will be returned by both `reset` and `step` when we go to wrap all of this in our game environment. 6.1.4 StepOur Reinforcement Learning (RL) agent will have much less information available to them than our prior algorithms. For this we need to define our reward system a little differently. Given a current board the agent receives:* +10 for playing a winning move* -100 for playing an invalid move * -10 if the opponent wins the next move* 1/9 for playing a valid move
###Code
class TicTacToeGym(GameEngine, gym.Env):
def __init__(self, user_ai=None, ai_level=1):
super().__init__()
self.setup = 'auto'
# the default behavior will be no user_ai and ai_level set to 1 (random)
self.user_ai = user_ai
self.ai_level = ai_level
# the board now has integers as values instead of strings
self.board = {1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,}
# the available token spaces, note that in order to access our board
# dictionary these actions will need to be re-indexed to 1
self.action_space = spaces.Discrete(9)
# the observation space requires int rep for player tokens
self.observation_space = spaces.Box(low=0, high=2, shape=(9,), dtype=np.int)
self.reward_range = (-10, 1)
# we will redefine our player labels as ints
self.player_label = 1
self.opponent_label = 2
# for StableBaselines
self.spec = None
self.metadata = None
##############################################################################
# we will have to redefine any function in our previous module that makes use
# of the string entries, X and O on the board. We need to replace the logic
# with 1's and 2's
##############################################################################
def check_winning(self):
for pattern in self.win_patterns:
values = [self.board[i] for i in pattern]
if values == [1, 1, 1]:
self.winner = 'X' # we update the winner status
return "'X' Won!"
elif values == [2, 2, 2]:
self.winner = 'O'
return "'O' Won!"
return ''
def check_stalemate(self):
if (0 not in self.board.values()) and (self.check_winning() == ''):
self.winner = 'Stalemate'
return "It's a stalemate!"
def reset_game(self):
overwrite_ai = self.ai_level
self.board = {1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,}
self.winner = ''
self.setup_game()
self.ai_level = overwrite_ai
# depending now on if X or O is first will need to take the AI's first step
if self.start_player == 'O':
move = self.random_ai()
self.board[move] = 2
def reset(self):
self.reset_game()
state = np.array(list(self.board.values())).reshape(9,)
return state
def random_ai(self):
while True:
move = random.randint(1,9)
if self.board[move] != 0:
continue
else:
break
return move
##############################################################################
# we will have to recycle a lot of what was previously wrapped up in
# play_game() since gym needs access to every point after the Reinf AI
# makes a move
##############################################################################
def step(self, action):
# gym discrete indexes at 0, our board indexes at 1
move = action + 1
# Check if agent's move is valid
avail_moves = [i for i in self.board.keys() if self.board[i] == 0]
is_valid = move in avail_moves
# if valid, then play the move, and let the other opponent make a move
# as well
if is_valid: # Play the move
# update board
self.board[move] = self.player_label
self.check_winning()
self.check_stalemate()
if self.winner == '':
##################################################################
# instead of continuing as we did in our play_game loop we will
# take one additional step for the AI and then let openAI gym
# handle incrementing between steps.
##################################################################
##########
# Our level 1 ai agent (random)
##########
# if self.ai_level == 1:
move = self.random_ai()
# ##########
# # Our level 2 ai agent (heuristic)
# ##########
# elif self.ai_level == 2:
# move = self.heuristic_ai('O')
# ##########
# # Our user-defined AI agent
# ##########
# elif self.ai_level == 3:
# move = self.user_ai(self.board, self.win_patterns, 'O')
self.board[move] = self.opponent_label
self.check_winning()
self.check_stalemate()
if self.winner == '':
reward, done, info = 1/9, False, {}
if self.winner == 'Stalemate':
reward, done, info = -1, True, {}
elif self.winner == 'X':
reward, done, info = 100, True, {}
elif self.winner == 'O':
reward, done, info = -10, True, {}
else: # End the game and penalize agent
reward, done, info = -100, True, {}
state = np.array(list(self.board.values())).reshape(9,)
return state, reward, done, info
###Output
_____no_output_____
###Markdown
6.1.5 Testing the EnvironmentWe can check that the environment is compatible with gym using `check_env`. Notice the below doesn't return any error messages. This means everything is working ok!
###Code
env = TicTacToeGym()
check_env(env)
###Output
_____no_output_____
###Markdown
We can also define a model from OpenAI and see how our game board updates in a single step with the new wrapper
###Code
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
env = TicTacToeGym()
model = PPO2(MlpPolicy, env, verbose=1)
# test our reset function
obs = env.reset()
# the start player should randomly select between X and O
print('the start player: {}'.format(env.start_player))
# we should return an action from model.predict
action, _states = model.predict(obs)
print("the taken action: {}".format(action))
# we divert default behavior of setup_game by saving and reestablishing our
# user input ai_level
print("AI level: {}".format(env.ai_level))
# check the board update from env.step()
obs, rewards, dones, info = env.step(action)
print(obs)
print("Should be blank if no winner: [{}]".format(env.check_winning()))
###Output
the start player: O
the taken action: 7
AI level: 1
[0 2 0 0 0 0 0 1 2]
Should be blank if no winner: []
###Markdown
And we can still visualize the board:
###Code
env.visualize_board()
###Output
|0|2|0|
|0|0|0|
|0|1|2|
###Markdown
And check that our untrained model will win approx half the time:
###Code
winners = []
for j in range(1000):
obs = env.reset()
for i in range(10):
action, _states = model.predict(obs)
# print(action)
obs, rewards, dones, info = env.step(action)
# env.visualize_board()
if env.winner != '':
winners.append(env.winner)
break
pd.DataFrame(winners).value_counts()
###Output
_____no_output_____
###Markdown
6.1.6 Training the ModelNow we will train the PPO2 model on our environment!
###Code
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
env = TicTacToeGym()
model = PPO2(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=100000)
obs = env.reset()
for i in range(10):
action, _states = model.predict(obs)
print(action)
obs, rewards, dones, info = env.step(action)
env.visualize_board()
if env.winner != '':
print(env.winner)
break
winners = []
for j in range(1000):
obs = env.reset()
for i in range(10):
action, _states = model.predict(obs)
# print(action)
obs, rewards, dones, info = env.step(action)
# env.visualize_board()
if env.winner != '':
winners.append(env.winner)
break
###Output
_____no_output_____
###Markdown
Let's see how many times our trained model won:
###Code
pd.DataFrame(winners).value_counts()
###Output
_____no_output_____
###Markdown
Not terrible! Could be better! Let's play against our model 6.1.7 Play Against the Model To make our model compatible with the old `play_game` method, we will need a way to convert to and rom int vs string representations on our board. Let's test this:
###Code
value_map = {' ': 0,
'X': 1,
'O': 2}
board = {1: 'X',
2: ' ',
3: ' ',
4: ' ',
5: ' ',
6: ' ',
7: ' ',
8: ' ',
9: ' ',}
for key in board.keys():
board[key] = value_map[board[key]]
board
###Output
_____no_output_____
###Markdown
And now we can wrap it up into a new ai function:
###Code
def rl_ai(board, win_patterns, player_label, model=model):
# note that we are simply leaving win_patterns and player_label
# here so that we can use the game engine as defined in prior
# sessions, these inputs are ignored.
ai_board = board.copy()
value_map = {' ': 0,
'X': 1,
'O': 2}
for key in ai_board.keys():
ai_board[key] = value_map[ai_board[key]]
obs = np.array(list(ai_board.values())).reshape(9,)
action, _states = model.predict(obs)
move = action + 1
return move
game = GameEngine('user', user_ai=rl_ai)
game.setup_game()
game.play_game()
###Output
How many Players? (type 0, 1, or 2)1
who will go first? (X, (AI), or O (Player))X
| | | |
| | | |
| | | |
| | | |
| |X| |
| | | |
O, what's your move?1
|O| | |
| |X| |
| | | |
|O| | |
| |X| |
|X| | |
O, what's your move?2
|O|O| |
| |X| |
|X| | |
'X' Won!
|O|O|X|
| |X| |
|X| | |
###Markdown
Notice any interesting behaviors about the model? 6.2 Improve the ModelHow can we improve this puppy? What about training the model against a smarter opponent? changing the reward values? training for longer? OR trying a different reinforcement learning model? Try any or all of these and see what works!
###Code
class TicTacToeGym(GameEngine, gym.Env):
def __init__(self, user_ai=None, ai_level=1):
super().__init__()
self.setup = 'auto'
# the default behavior will be no user_ai and ai_level set to 1 (random)
self.user_ai = user_ai
self.ai_level = ai_level
# the board now has integers as values instead of strings
self.board = {1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,}
# the available token spaces, note that in order to access our board
# dictionary these actions will need to be re-indexed to 1
self.action_space = spaces.Discrete(9)
# the observation space requires int rep for player tokens
self.observation_space = spaces.Box(low=0, high=2, shape=(9,), dtype=np.int)
self.reward_range = (-10, 1)
# we will redefine our player labels as ints
self.player_label = 1
self.opponent_label = 2
# for StableBaselines
self.spec = None
self.metadata = None
##############################################################################
# we will have to redefine any function in our previous module that makes use
# of the string entries, X and O on the board. We need to replace the logic
# with 1's and 2's
##############################################################################
def check_winning(self):
for pattern in self.win_patterns:
values = [self.board[i] for i in pattern]
if values == [1, 1, 1]:
self.winner = 'X' # we update the winner status
return "'X' Won!"
elif values == [2, 2, 2]:
self.winner = 'O'
return "'O' Won!"
return ''
def check_stalemate(self):
if (0 not in self.board.values()) and (self.check_winning() == ''):
self.winner = 'Stalemate'
return "It's a stalemate!"
def reset_game(self):
overwrite_ai = self.ai_level
self.board = {1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,}
self.winner = ''
self.setup_game()
self.ai_level = overwrite_ai
# depending now on if X or O is first will need to take the AI's first step
if self.start_player == 'O':
move = self.random_ai()
self.board[move] = 2
def reset(self):
self.reset_game()
state = np.array(list(self.board.values())).reshape(9,)
return state
def random_ai(self):
while True:
move = random.randint(1,9)
if self.board[move] != 0:
continue
else:
break
return move
def heuristic_ai(self, player_label):
opponent = [1, 2]
opponent.remove(player_label)
opponent = opponent[0]
avail_moves = [i for i in self.board.keys() if self.board[i] == 0]
temp_board = self.board.copy()
middle = 5
corner = [1,3,7,9]
side = [2,4,6,8]
# first check for a winning move
move_found = False
for move in avail_moves:
temp_board[move] = player_label
for pattern in self.win_patterns:
values = [temp_board[i] for i in pattern]
if values == [player_label, player_label, player_label]:
move_found = True
break
if move_found:
break
else:
temp_board[move] = 0
# check if the opponent has a winning move
if move_found == False:
for move in avail_moves:
temp_board[move] = opponent
for pattern in self.win_patterns:
values = [temp_board[i] for i in pattern]
if values == [opponent, opponent, opponent]:
move_found = True
break
if move_found:
break
else:
temp_board[move] = 0
# check if middle avail
if move_found == False:
if middle in avail_moves:
move_found = True
move = middle
# check corners
if move_found == False:
move_corner = [val for val in avail_moves if val in corner]
if len(move_corner) > 0:
move = random.choice(move_corner)
move_found = True
# check side
if move_found == False:
move_side = [val for val in avail_moves if val in side]
if len(move_side) > 0:
move = random.choice(move_side)
move_found = True
return move
##############################################################################
# we will have to recycle a lot of what was previously wrapped up in
# play_game() since gym needs access to every point after the Reinf AI
# makes a move
##############################################################################
def step(self, action):
# gym discrete indexes at 0, our board indexes at 1
move = action + 1
# Check if agent's move is valid
avail_moves = [i for i in self.board.keys() if self.board[i] == 0]
is_valid = move in avail_moves
# if valid, then play the move, and let the other opponent make a move
# as well
if is_valid: # Play the move
# update board
self.board[move] = self.player_label
self.check_winning()
self.check_stalemate()
if self.winner == '':
##################################################################
# instead of continuing as we did in our play_game loop we will
# take one additional step for the AI and then let openAI gym
# handle incrementing between steps.
##################################################################
##########
# Our level 1 ai agent (random)
##########
if self.ai_level == 1:
move = self.random_ai()
# ##########
# # Our level 2 ai agent (heuristic)
# ##########
elif self.ai_level == 2:
move = self.heuristic_ai(self.player_label)
# ##########
# # Our user-defined AI agent
# ##########
# elif self.ai_level == 3:
# move = self.user_ai(self.board, self.win_patterns, 'O')
self.board[move] = self.opponent_label
self.check_winning()
self.check_stalemate()
if self.winner == '':
reward, done, info = 1/9, False, {}
if self.winner == 'Stalemate':
reward, done, info = -10, True, {}
elif self.winner == 'X':
reward, done, info = 50, True, {}
elif self.winner == 'O':
reward, done, info = -50, True, {}
else: # End the game and penalize agent
reward, done, info = -100, True, {}
state = np.array(list(self.board.values())).reshape(9,)
return state, reward, done, info
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
env = TicTacToeGym(ai_level=1)
model = PPO2(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=100000)
winners = []
for j in range(1000):
obs = env.reset()
for i in range(10):
action, _states = model.predict(obs)
# print(action)
obs, rewards, dones, info = env.step(action)
# env.visualize_board()
if env.winner != '':
winners.append(env.winner)
break
pd.DataFrame(winners).value_counts()
game = GameEngine('user', user_ai=rl_ai)
game.setup_game()
game.play_game()
###Output
_____no_output_____ |
Docker_containers/1. Basic manual/1. Basics.ipynb | ###Markdown
Docker containers* Course link: https://carpentries-incubator.github.io/docker-introduction/* Video: https://www.youtube.com/watch?v=HelrQnm3v4g Containers are independent OS-level virtualization to deliver software in packages.They ensure:* Standardisation* Portability* Reliability* ReproducibilityIt avoids package/ software conflicts. Can use multiple versions of same package simultaneously. The main program you want to use likely depends on many, many, different other programs (including the operating system!), creating a very complex, and often fragile system. One change or missing piece may stop the whole thing from working or break something that was already running. It’s no surprise that this situation is sometimes informally termed “dependency hell”.For example, in conda the base environment often becomes a dependency hell. What is a Container? What is Docker?Docker is a tool that allows you to build what are called “containers”. A situation* Software A works on Ubuntu* Software B works on Arch LinuxWe want another filesystem that we could use to chain together both the software in a "pipeline". Containers can make it possible with something called a "**container host**". VirtualisationContainer are virtual computers on host computer. A container can be considered as a lightweight virtual machine. Underneath the container is usually the Linux kernel with some filesystem."**container image**" is a recipe or a template for a container.Container is – a self-contained, complete, separate computer filesystem. * documentation – there is a clear record of what software and software dependencies were used, from bottom to top.* portability – the container can be used on any computer that has Docker installed – it doesn’t matter whether the computer is Mac, Windows or Linux-based.* reproducibility – you can use the exact same software and environment on your computer and on other resources (like a large-scale computing cluster).* configurability – containers can be sized to take advantage of more resources (memory, CPU, etc.) on large systems (clusters) or less, depending on the circumstances. Potential applications* Using containers solely on your own computer to use a specific software tool or to test out a tool (possibly to avoid a difficult and complex installation process, to save your time or to avoid dependency hell).* Creating a Dockerfile that generates a container image with software that you specify installed, then sharing a container image generated using this Dockerfile with your collaborators for use on their computers or a remote computing resource (e.g. cloud-based or HPC system).* Archiving the container images so you can repeat analysis/modelling using the same software and configuration in the future – capturing your workflow. Docker command line* Install Docker using these instructions: https://carpentries-incubator.github.io/docker-introduction/setup.html* Create an account here: https://hub.docker.com/* Download this intro file: https://carpentries-incubator.github.io/docker-introduction/files/docker-intro.zip* For windows: https://docs.docker.com/docker-for-windows/install/* For Linux: https://docs.docker.com/install/linux/docker-ce/ubuntu/ Install using the repository* sudo apt-get update* sudo apt-get install \ ca-certificates \ curl \ gnupg \ lsb-release* curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg* echo \ "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null* sudo docker run hello-world If you are getting error for permission `Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.40/containers/json: dial unix /var/run/docker.sock: connect: permission denied` Then grant a permission using `sudo chmod 666 /var/run/docker.sock` You should be able to run this to see `Docker Client` and `Docker Server`.```console(base) hell@Dell-Precision-T1600:~$ docker versionClient: Docker Engine - Community Version: 20.10.12 API version: 1.41 Go version: go1.16.12 Git commit: e91ed57 Built: Mon Dec 13 11:45:33 2021 OS/Arch: linux/amd64 Context: default Experimental: trueServer: Docker Engine - Community Engine: Version: 20.10.12 API version: 1.41 (minimum version 1.12) Go version: go1.16.12 Git commit: 459d0df Built: Mon Dec 13 11:43:42 2021 OS/Arch: linux/amd64 Experimental: false containerd: Version: 1.4.12 GitCommit: 7b11cfaabd73bb80907dd23182b9347b4245eb5d runc: Version: 1.0.2 GitCommit: v1.0.2-0-g52b36a2 docker-init: Version: 0.19.0 GitCommit: de40ad0``` Copy pasteYou can save the version name in a text file.```console (base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker --versionDocker version 20.10.12, build e91ed57(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker --version>>version.txt``` Docker is working correctly ?You will see contents in the directory.```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container lsCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES```if you get `Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?` then something is wrong. Getting help* General help: `docker --help`* Command specific: `docker COMMAND --help````console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container --helpUsage: docker container COMMANDManage containersCommands: attach Attach local standard input, output, and error streams to a running container commit Create a new image from a container's changes cp Copy files/folders between a container and the local filesystem create Create a new container diff Inspect changes to files or directories on a container's filesystem exec Run a command in a running container export Export a container's filesystem as a tar archive inspect Display detailed information on one or more containers kill Kill one or more running containers logs Fetch the logs of a container ls List containers pause Pause all processes within one or more containers port List port mappings or a specific mapping for the container prune Remove all stopped containers rename Rename a container restart Restart one or more containers rm Remove one or more containers run Run a command in a new container start Start one or more stopped containers stats Display a live stream of container(s) resource usage statistics stop Stop one or more running containers top Display the running processes of a container unpause Unpause all processes within one or more containers update Update configuration of one or more containers wait Block until one or more containers stop, then print their exit codesRun 'docker container COMMAND --help' for more information on a command.``` Docker Command Line Interface (CLI) syntax`docker [command] [subcommand] [additional options]`Let us start with prebuilt images, then we will create our own images. Downloading docker image The `docker image` command is used to interact with Docker container images. ```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker image lsREPOSITORY TAG IMAGE ID CREATED SIZEhello-world latest feb5d9fea6a5 4 months ago 13.3kB``` Download image using pull`docker image pull image_name````console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker image pull hello-worldUsing default tag: latestlatest: Pulling from library/hello-worldDigest: sha256:97a379f4f88575512824f3b352bc03cd75e239179eea0fecc38e597b2209f49aStatus: Image is up to date for hello-world:latestdocker.io/library/hello-world:latest(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker image lsREPOSITORY TAG IMAGE ID CREATED SIZEhello-world latest feb5d9fea6a5 4 months ago 13.3kB``` The `Hello World` image is available here https://hub.docker.com/_/hello-world. We can download the image using `docker image pull image_name`. Running a containerUse command `docker container run container_name`.```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker image lsREPOSITORY TAG IMAGE ID CREATED SIZEhello-world latest feb5d9fea6a5 4 months ago 13.3kB(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container run hello-worldHello from Docker!This message shows that your installation appears to be working correctly.To generate this message, Docker took the following steps: 1. The Docker client contacted the Docker daemon. 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. (amd64) 3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading. 4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal.To try something more ambitious, you can run an Ubuntu container with: $ docker run -it ubuntu bashShare images, automate workflows, and more with a free Docker ID: https://hub.docker.com/For more examples and ideas, visit: https://docs.docker.com/get-started/``` Downloading alpine image```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker image pull alpineUsing default tag: latestlatest: Pulling from library/alpine59bf1c3509f3: Pull complete Digest: sha256:21a3deaa0d32a8057914f36584b5288d2e5ecc984380bc0118285c70fa8c9300Status: Downloaded newer image for alpine:latestdocker.io/library/alpine:latest```The container needs extra command.```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container run alpine cat /etc/os-releaseNAME="Alpine Linux"ID=alpineVERSION_ID=3.15.0PRETTY_NAME="Alpine Linux v3.15"HOME_URL="https://alpinelinux.org/"BUG_REPORT_URL="https://bugs.alpinelinux.org/"``` Print Hello world using alpine image```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container run alpine echo 'hello world'hello world``` Running containers interactivelyWe wanted to keep the container running so we could log into it and test drive more commands? The way to do this is by adding the interactive flags `-i` and `-t` (usually combined as `-it`) to the docker container run command and provide a shell (`bash`,`sh`, etc.) as our command. The alpine Docker container image doesn’t include bash so we need to use `sh`. Technically, the interactive flag is just `-i` – the extra `-t` (combined as -it above) is the “pseudo-TTY” option, a fancy term that means a text interface. This allows you to connect to a shell, like `sh`, using a command line. Since you usually want to have a command line when running interactively, it makes sense to use the two together.The prompt would change to this.```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container run -it alpine sh/ ``` ```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container run -it alpine sh/ pwd// lsbin etc lib mnt proc run srv tmp vardev home media opt root sbin sys usr/ whoamiroot/ echo $PATH/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin/ cat /etc/os-releaseNAME="Alpine Linux"ID=alpineVERSION_ID=3.15.0PRETTY_NAME="Alpine Linux v3.15"HOME_URL="https://alpinelinux.org/"BUG_REPORT_URL="https://bugs.alpinelinux.org/"/ exit(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ ``` Installing UbuntuFind different versions of `Ubuntu` here https://hub.docker.com/search?q=ubnutu%20&type=image&sort=updated_at&order=desc.Installing one of them:```console(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker pull xufuhe/ubnutuUsing default tag: latestlatest: Pulling from xufuhe/ubnutud5c6f90da05d: Pull complete 1300883d87d5: Pull complete c220aa3cfc1b: Pull complete 2e9398f099dc: Pull complete dc27a084064f: Pull complete Digest: sha256:34471448724419596ca4e890496d375801de21b0e67b81a77fd6155ce001edadStatus: Downloaded newer image for xufuhe/ubnutu:latestdocker.io/xufuhe/ubnutu:latest(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker image lsREPOSITORY TAG IMAGE ID CREATED SIZEalpine latest c059bfaa849c 2 months ago 5.59MBhello-world latest feb5d9fea6a5 4 months ago 13.3kBxufuhe/ubnutu latest ccc7a11d65b1 4 years ago 120MB(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ docker container run -it xufuhe/ubnutu sh cat /etc/os-releaseNAME="Ubuntu"VERSION="16.04.3 LTS (Xenial Xerus)"ID=ubuntuID_LIKE=debianPRETTY_NAME="Ubuntu 16.04.3 LTS"VERSION_ID="16.04"HOME_URL="http://www.ubuntu.com/"SUPPORT_URL="http://help.ubuntu.com/"BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"VERSION_CODENAME=xenialUBUNTU_CODENAME=xenial apt-get --helpapt 1.2.24 (amd64)Usage: apt-get [options] command apt-get [options] install|remove pkg1 [pkg2 ...] apt-get [options] source pkg1 [pkg2 ...]apt-get is a command line interface for retrieval of packagesand information about them from authenticated sources andfor installation, upgrade and removal of packages togetherwith their dependencies.Most used commands: update - Retrieve new lists of packages upgrade - Perform an upgrade install - Install new packages (pkg is libc6 not libc6.deb) remove - Remove packages purge - Remove packages and config files autoremove - Remove automatically all unused packages dist-upgrade - Distribution upgrade, see apt-get(8) dselect-upgrade - Follow dselect selections build-dep - Configure build-dependencies for source packages clean - Erase downloaded archive files autoclean - Erase old downloaded archive files check - Verify that there are no broken dependencies source - Download source archives download - Download the binary package into the current directory changelog - Download and display the changelog for the given packageSee apt-get(8) for more information about the available commands.Configuration options and syntax is detailed in apt.conf(5).Information about how to configure sources can be found in sources.list(5).Package and version choices can be expressed via apt_preferences(5).Security details are available in apt-secure(8). This APT has Super Cow Powers. exit(base) hell@Dell-Precision-T1600:~/Desktop/Docker$ ``` Shorthands`docker container run xufuhe/ubuntu cat /etc/os-release``docker container run xufuhe/ubuntu apt-get --help` More options* `--rm`: this option guarantees that any running container is completely removed from your computer after the container is stopped. * `--name=`: By default, Docker assigns a random name and ID number to each container instance that you run on your computer. If you want to be able to more easily refer to a specific running container, you can assign it a name using this option. Summary* The `docker image pull` command downloads Docker container images from the internet.* The `docker image ls` command lists Docker container images that are (now) on your computer.* The `docker container run` command creates running containers from container images and can run commands inside them.* When using the `docker container run` command, a container can run a default action (if it has one), a user specified action, or a shell to be used interactively. Cleaning up containers Removing containerThe command `docker ps` serves the same purpose as `docker container ls`.Use `docker ps --all` to see all running or tracked containers.```console(base) hell@Dell-Precision-T1600:~$ docker ps --allCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES1b5e9aa58feb xufuhe/ubnutu "sh" 5 hours ago Exited (0) 5 hours ago nervous_shaw21333093a18b alpine "sh" 6 hours ago Exited (0) 6 hours ago epic_jang644d45eaf5f6 alpine "sh" 6 hours ago Exited (130) 6 hours ago vigorous_hypatia77194213259d alpine "echo 'hello world'" 6 hours ago Exited (0) 6 hours ago vigorous_cray184fbf917972 alpine "cat /etc/os-release" 6 hours ago Exited (0) 6 hours ago dreamy_sinoussi8045747df6d4 alpine "/bin/sh" 6 hours ago Exited (0) 6 hours ago amazing_hawking009e47dc71a8 hello-world "/hello" 6 hours ago Exited (0) 6 hours ago serene_murdockddd7faafe140 hello-world "/hello" 7 hours ago Exited (0) 7 hours ago peaceful_liskov``` Remove a container`docker container rm CONTAINER_ID````console(base) hell@Dell-Precision-T1600:~$ docker container rm ddd7faafe140ddd7faafe140``` Remove all containers`docker container prune````console(base) hell@Dell-Precision-T1600:~$ docker container pruneWARNING! This will remove all stopped containers.Are you sure you want to continue? [y/N] yDeleted Containers:1b5e9aa58feb4fc84d1330f2447acd2d109b316d8cc74121bb1fe65811754ba921333093a18b17e6f9f3b8b3c715444188200aaae10e885e74495e81451554fa644d45eaf5f650044bc70082a62502b22158757a5d9308a4296053e6013111cb77194213259dd34ed51fefa048ab8b861e4138c897cce43c98da097154ae1bdd184fbf917972bafcf475d486bff80bd1c44d893bc32075f4931a04b87492f8968045747df6d48e23ed3baf682f24967abd08df9f5c99d8a7341695cae7ab8ac0009e47dc71a89f981cda1a23cdf7fcb7e42e56c2db134db60847424029bd5874Total reclaimed space: 55B(base) hell@Dell-Precision-T1600:~$ docker ps --allCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES``` Removing images`docker image rm image_name````console(base) hell@Dell-Precision-T1600:~$ docker image lsREPOSITORY TAG IMAGE ID CREATED SIZEalpine latest c059bfaa849c 2 months ago 5.59MBhello-world latest feb5d9fea6a5 4 months ago 13.3kBxufuhe/ubnutu latest ccc7a11d65b1 4 years ago 120MB(base) hell@Dell-Precision-T1600:~$ docker image rm xufuhe/ubnutu:latest Untagged: xufuhe/ubnutu:latestUntagged: xufuhe/ubnutu@sha256:34471448724419596ca4e890496d375801de21b0e67b81a77fd6155ce001edadDeleted: sha256:ccc7a11d65b1b5874b65adb4b2387034582d08d65ac1817ebc5fb9be1baa5f88Deleted: sha256:cb5450c7bb149c39829e9ae4a83540c701196754746e547d9439d9cc59afe798Deleted: sha256:364dc483ed8e64e16064dc1ecf3c4a8de82fe7f8ed757978f8b0f9df125d67b3Deleted: sha256:4f10a8fd56139304ad81be75a6ac056b526236496f8c06b494566010942d8d32Deleted: sha256:508ceb742ac26b43bdda819674a5f1d33f7b64c1708e123a33e066cb147e2841Deleted: sha256:8aa4fcad5eeb286fe9696898d988dc85503c6392d1a2bd9023911fb0d6d27081(base) hell@Dell-Precision-T1600:~$ docker image lsREPOSITORY TAG IMAGE ID CREATED SIZEalpine latest c059bfaa849c 2 months ago 5.59MBhello-world latest feb5d9fea6a5 4 months ago 13.3kB``` The reason that there are a few lines of output, is that a given container image may have been formed by merging multiple underlying layers. Any layers that are used by multiple Docker container images will only be stored once. Finding Containers on Docker HubThe Docker Hub is an online repository of container images, a vast number of which are publicly available.There are official images endorsed by Docker itself. They are reliable (no malware) and stable. Official Python image Exploring Container image versionsA single Docker Hub page can have many different versions of container images, based on the version of the software inside. hese versions are indicated by “tags”. When referring to the specific version of a container image by its tag, you use a colon `:` like this: CONTAINER_IMAGE_NAME:TAG* For Python 3.8: `docker image pull python:3.8`* For Python 3.6: `docker image pull python:3.6` Other image providers* ContinuumIO (developer of Anaconda): https://hub.docker.com/u/continuumio* rocker for R langauge: https://hub.docker.com/u/rockerTo download Individually managed containers:OWNER/CONTAINER_IMAGE_NAME:TAG Docker Hub is a repositorySo, to acquire an image from a repository with specific version.OWNER/REPOSITORY:TAG
###Code
# Creating your own Container images
* If you want custom images for your task then create your own docker.
* If you want to run a code written in older version of let's say Tensorflow.
* Share you workflow with someone else
###Output
_____no_output_____ |
course/chapter2/section5_pt.ipynb | ###Markdown
Handling multiple sequences (PyTorch) Install the Transformers and Datasets libraries to run this notebook.
###Code
! pip install datasets transformers[sentencepiece]
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequence = "I've been waiting for a HuggingFace course my whole life."
tokens = tokenizer.tokenize(sequence)
ids = tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor(ids)
model(input_ids)
tokenized_inputs = tokenizer(sequence, return_tensors="pt")
print(tokenized_inputs["input_ids"])
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequence = "I've been waiting for a HuggingFace course my whole life."
tokens = tokenizer.tokenize(sequence)
ids = tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor([ids])
print("Input IDs:", input_ids)
output = model(input_ids)
print("Logits:", output.logits)
batched_ids = [
[200, 200, 200],
[200, 200]
]
padding_id = 100
batched_ids = [
[200, 200, 200],
[200, 200, padding_id]
]
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequence1_ids = [[200, 200, 200]]
sequence2_ids = [[200, 200]]
batched_ids = [[200, 200, 200], [200, 200, tokenizer.pad_token_id]]
print(model(torch.tensor(sequence1_ids)).logits)
print(model(torch.tensor(sequence2_ids)).logits)
print(model(torch.tensor(batched_ids)).logits)
batched_ids = [
[200, 200, 200],
[200, 200, tokenizer.pad_token_id]
]
attention_mask = [
[1, 1, 1],
[1, 1, 0]
]
outputs = model(torch.tensor(batched_ids), attention_mask=torch.tensor(attention_mask))
print(outputs.logits)
sequence = sequence[:max_sequence_length]
###Output
_____no_output_____ |
ar_fps_post_statistics.ipynb | ###Markdown
Sheet 1 - all runs
###Code
def add_all_runs_sheet(c_df, writer):
c_df.to_excel(writer, sheet_name='All runs', index=False)
###Output
_____no_output_____
###Markdown
Sheet 2 - only non-outliers from all runs
###Code
def add_runs_without_outliers(c_df, writer, outlier_threshold=120):
no_outliers_df = c_df[c_df['AR_fps'] >= outlier_threshold]
no_outliers_df.to_excel(writer, sheet_name='Runs without outliers', index=False)
return no_outliers_df
###Output
_____no_output_____
###Markdown
Sheet 3 - only outliers from all runs
###Code
def add_outlier_runs(c_df, writer, outlier_threshold=120):
with_outliers_df = c_df[c_df['AR_fps'] < outlier_threshold]
with_outliers_df.to_excel(writer, sheet_name='Outlier runs', index=False)
return with_outliers_df
###Output
_____no_output_____
###Markdown
Sheet 4 - add statistics (min, max, stddev, etc.) for FPS (runs without outliers)
###Code
def add_statistics(c_df, writer):
sliced_df = c_df[['run', 'AR_fps']].copy()
desc_df = sliced_df.describe()
median_series = sliced_df.median()
fps_stat_df = pd.DataFrame(columns=['Min', 'Max', 'Average', 'Median', 'Std Deviation'])
fps_stat_df['Min'] = [desc_df["AR_fps"]["min"]]
fps_stat_df['Max'] = [desc_df["AR_fps"]["max"]]
fps_stat_df['Average'] = [desc_df["AR_fps"]["mean"]]
fps_stat_df['Median'] = [median_series["AR_fps"]]
fps_stat_df['Std Deviation'] = [desc_df["AR_fps"]["std"]]
# Round to 4 decimals
fps_stat_df = fps_stat_df.round(4)
# Write the sliced_df to excel
sliced_df.to_excel(writer, sheet_name='Statistics', index=False)
#get a pointer to the same sheet to write other dfs and text to the same sheet
curr_sheet = writer.sheets['Statistics']
# Write text and fps_stat_df
#curr_sheet.write(1, 4, "Statistics, # of Frames Delay")
curr_sheet['E2'] = "Statistics of FPS values"
fps_stat_df.to_excel(writer, startrow=2, startcol=4, sheet_name='Statistics', index=False)
return fps_stat_df
###Output
_____no_output_____
###Markdown
Sheet 5 - Analyze AR_fps column from all runs
###Code
def fps_all_analysis(c_df, writer):
curr_row = 0
fps_col_series = c_df['AR_fps'].copy()
# Convert the column to dataframe with unique values and their count
fps_unique_count_df = fps_col_series.value_counts().sort_index().to_frame()
fps_unique_count_df.rename_axis('FPS unique values', inplace=True)
fps_unique_count_df.rename(columns={'AR_fps':'count'})
fps_unique_count_df['% of FPS value Distribution'] = round(fps_col_series.value_counts(normalize=True)*100, 2)
fps_unique_count_df.sort_index()
fps_unique_count_df.to_excel(writer, sheet_name='FPS_Distribution', index=True)
# Get current sheet pointer for future writing
curr_sheet = writer.sheets['FPS_Distribution']
# Add grand total of runs
curr_row = len(fps_unique_count_df) + 2 # update current row val
curr_sheet.cell(row=curr_row, column=1).value = 'Grand Total'
curr_sheet.cell(row=curr_row, column=2).value = fps_unique_count_df.sum()[0]
curr_sheet.cell(row=curr_row, column=3).value = round(fps_unique_count_df['% of FPS value Distribution'].sum())
# Add 3D pie chart image on the excel sheet
data = fps_unique_count_df['% of FPS value Distribution'].values.tolist()
labels = fps_unique_count_df.index.values.tolist()
plt.title("Distribution of Frame Delay values, in %'")
patches = plt.pie(data, labels=labels, autopct='%1.1f%%', startangle=120)
plt.legend(labels, loc=5)
piefile = f"{final_excel_file}_FPS_Distribution.png"
plt.savefig(piefile, dpi = 100)
img = openpyxl.drawing.image.Image(piefile)
img.anchor = 'G4'
curr_sheet.add_image(img)
plt.close('all')
print(f"Saved pie chart: {piefile}")
###Output
_____no_output_____
###Markdown
MAIN
###Code
#main
if is_interactive():
input_excel = 'input/consolidation_result_ARGlass_TypeA.xlsx'
else:
input_excel = sys.argv[1]
# get the name of input excel file, discard the extension
input_excel_name, _ = os.path.splitext(os.path.basename(input_excel))
# Create output prerequisites.
#1. check if output dir exists, if not create
output_dir = 'output'
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
# Create output file name
output_file_name = f'{input_excel_name}_post_analysis.xlsx'
# Create output file path
final_excel_file = os.path.join(output_dir,output_file_name)
# Create ExcelWriter object to populate output excel file
writer = pd.ExcelWriter(final_excel_file, engine='openpyxl')
print(f"*** Working on folder: {input_excel} ***")
# Get the input excel sheet into a dataframe
c_df = pd.read_excel(input_excel, 0, index_col=None)
##### Add required sheets #######
# Sheet 1 - all runs
print("Working on Sheet 1 - All runs")
add_all_runs_sheet(c_df, writer)
print(f"Total runs: {len(c_df)} ")
print("DONE!\n")
# Sheet 2 - only non-outliers from all runs
print("Working on Sheet 2 - only non-outliers from all runs")
no_outliers_df = add_runs_without_outliers(c_df, writer)
print(f"Total non-outlier runs: {len(no_outliers_df)} ")
print("DONE!\n")
# Sheet 3 - only outliers from all runs
print("Working on Sheet 3 - only ourtliers from all runs")
with_outliers_df = add_outlier_runs(c_df, writer)
print(f"Total outlier runs: {len(with_outliers_df)} ")
print("DONE!\n")
# Sheet 4 - add statistics (min, max, stddev, etc.) for frame delay (runs without outliers)
print("Working on Sheet 4 - add statistics (min, max, stddev, etc.) for 'AR_fps' values for non-outlier runs")
fps_stat_df = add_statistics(no_outliers_df, writer)
print("DONE!\n")
# Sheet 5 - Analyze frame delay column from all runs
print("Working on Sheet 5 - Analyze frame delay column from all runs")
fps_all_analysis(c_df, writer)
print("DONE!\n")
# Final step. Save the Excel writer object and close it
print(f"Consolidating all sheets in final Excel: {final_excel_file}")
writer.save()
writer.close()
print("DONE!")
###Output
_____no_output_____ |
seminars/06/06_naive_bayes_cs_template.ipynb | ###Markdown
Naive Bayes V tomto notebooku se budeme zabývat využitím klasifikace pomocí Naivního Bayese. Speciálně se budeme soustředit na klasifikaci textů. Základem pro tento dokument je tutorial ze scikit-learn zaměřený na analýzu textů [zde](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html).
###Code
import pandas as pd
import numpy as np
from scipy.special import logsumexp
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt
import matplotlib
%matplotlib inline
np.set_printoptions(precision=5, suppress=True) # suppress scientific float notation (so 0.000 is printed as 0.)
###Output
_____no_output_____
###Markdown
Načtení datVyužijeme data ze zdroje [20 Newsgroups](http://qwone.com/~jason/20Newsgroups/), který obsahuje různě kategorizované texty z internetových diskusí.Pro jednoduchost se zaměříme pouze na dvě kategorie - hokej a auta.
###Code
categories = ['rec.sport.hockey', 'rec.autos']
train_data = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=1)
test_data = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=1)
# Prozkoumání testovacích dat
print('Kategorie:', test_data.target_names)
print('Train data length:', len(train_data.data))
# print(train_data.data[0])
print('Kategorie prvního dokumentu:',train_data.target_names[train_data.target[0]])
###Output
Kategorie: ['rec.autos', 'rec.sport.hockey']
Train data length: 1194
Kategorie prvního dokumentu: rec.autos
###Markdown
Transformace do bag-of-words reprezentacePoužijeme k tomu CountVectorizer ze scikit-learn.
###Code
# Nejprve načteme slovník
with open('vocabulary.txt','r') as f:
vocab=f.read().splitlines()
print(len(vocab))
count_vect = CountVectorizer(vocabulary = vocab)
X_train_counts = count_vect.fit_transform(train_data.data)
print('Bag of words shape', X_train_counts.shape)
print('Bag of words type', type(X_train_counts))
###Output
Bag of words shape (1194, 61188)
Bag of words type <class 'scipy.sparse.csr.csr_matrix'>
###Markdown
Výstupem je scipy.sparse matrix.
###Code
# zobrazení prvního řádku - tj.příznaků prvního dokumentu
X_train_counts[0,:20].toarray()
###Output
_____no_output_____
###Markdown
We can also extract the vocabulary...
###Code
# several words from the dictionary together with their indices in the dictionary
print(type(count_vect.vocabulary_))
print(len(count_vect.vocabulary_))
print(len(vocab))
print({vocab[i]:X_train_counts[0,i] for i in range(20)})
###Output
<class 'dict'>
61188
61188
{'archive': 0, 'name': 0, 'atheism': 0, 'resources': 0, 'alt': 0, 'last': 0, 'modified': 0, 'december': 0, 'version': 0, 'atheist': 0, 'addresses': 0, 'of': 6, 'organizations': 0, 'usa': 0, 'freedom': 0, 'from': 2, 'religion': 0, 'foundation': 0, 'darwin': 0, 'fish': 0}
###Markdown
TASK 1 - aplikujte nejprve jednoduchý model - Bernoulli Naive Bayes* Reprezentujte dokument pomocí indikátorů výskytů slov ze slovníku vocab* Natrénujte Naivního Bayese s Bernoulliho rozdělením příznaků* Otestujte kvalitu predikce na ručně určených dokumentech* Odhadněte přesnost (acccuracy) predikce s využitím testovací množiny test_data
###Code
# Vlastní dokumenty pro testování
docs_new = ["Lets play hockey.", "I don't like their seats"]
# alternatives to play with
# docs_new = ["Lets play hockey.", "I don't like their game"]
# Your code here
###Output
_____no_output_____
###Markdown
TASK 2 - aplikujte složitější model - Multinomial Naive Bayes* Reprezentujte dokument pomocí počtů výskytů slov ze slovníku vocab - tj. bag-of-words reprezentace* Natrénujte multinomického naivního Bayese* Otestujte kvalitu predikce na ručně určených dokumentech* Odhadněte přesnost (acccuracy) predikce s využitím testovací množiny test_data
###Code
# Your code here
###Output
_____no_output_____
###Markdown
Task 3 - Implementujte Naivní Bayesův klasifikátor v situaci, kdy má část příznaků kategorické a část Bernoulliho rozdělení* První příznak je kategorický (se třemi kategoriemi)* Zbývajících 10 příznaků má Bernoulliho rozdělení**Hint** - kategorický příznak převeďte na 3 indikátorové příznaky a odděleně použijte MultinomialNB.Potom zvlášt odhadněte zbylé Bernoulliho příznaky a na závěr získané pravděpodobnosti pronásobte. Pozor - je třeba v jednom z modelů zafixovat rozdělení $Y$ na rovnoměrné - aby se pravděpodobnosti $P(Y = y)$ nenásobili dvakrát.
###Code
# Vytvoření datasetu
class_count = 10
X00 = np.random.choice(3, size = (class_count,1), p = [0.4,0.4,0.2])
X01 = np.random.choice(3, size = (class_count,1), p = [0.2,0.5,0.3])
X0 = np.concatenate([X00,X01])
print(X0.shape)
X10 = np.random.choice(2, size = (class_count,5), p = [0.4,0.6])
X11 = np.random.choice(2, size = (class_count,5), p = [0.6,0.4])
X1 = np.concatenate([X10,X11])
print(X1.shape)
X20 = np.random.choice(2, size = (class_count,5), p = [0.4,0.6])
X21 = np.random.choice(2, size = (class_count,5), p = [0.2,0.8])
X2 = np.concatenate([X20,X21])
print(X2.shape)
X = np.concatenate([X0,X1,X2],axis = 1)
print(X.shape)
Y = np.concatenate([np.ones(class_count-3), np.zeros(class_count+3)])
print(Y)
# Your code here
###Output
_____no_output_____ |
ml_fundamentals/.ipynb_checkpoints/04_ml_feature_selection-checkpoint.ipynb | ###Markdown
Feature Selection TechniquesWhat is?
###Code
# import data
gdmobile = 'https://drive.google.com/uc?export=download&id='+'https://drive.google.com/file/d/175nU7CtUXmKQ7T75pZwcsOQZcKLa959v/view?usp=drivesdk'.split('/')[-2]
import pandas as pd
df = pd.read_csv(gdmobile)
df.head()
###Output
_____no_output_____
###Markdown
Univariate Selection
###Code
x = df.iloc[:,:-1]
y = df['price_range']
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
# Apply KBest Algorithm
ordered_rank_features = SelectKBest(score_func=chi2,k=20)
ordered_feature=ordered_rank_features.fit(x,y)
ordered_feature
dfscores=pd.DataFrame(ordered_feature.scores_,columns=['Score'])
dfcolumns=pd.DataFrame(x.columns)
features_rank=pd.concat([dfcolumns,dfscores],axis=1)
features_rank.columns=['Features','Score']
features_rank.nlargest(10,'Score')
###Output
_____no_output_____
###Markdown
Feature ImportanceThis technique provides a score for each feature in the dataset. Higher the score, more relevant is the data.
###Code
from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
%matplotlib inline
model = ExtraTreesClassifier()
model.fit(x,y)
print(model.feature_importances_)
ranked_features=pd.Series(model.feature_importances_,index=x.columns)
ranked_features.nlargest(10).plot(kind='barh')
plt.show()
###Output
_____no_output_____
###Markdown
CorrelationCorrelation being negative or positiveIf two 'features' are highly correlated, we can drop one of the features
###Code
df.corr()
# Can also be done using Seaborn
import seaborn as sns
corr=df.iloc[:,:-1].corr()
top_features=corr.index
plt.figure(figsize=(20,20))
sns.heatmap(df[top_features].corr(),annot=True)
threshold=0.5
# find and remove the highly correlated features
def correlation(dataset,threshold):
col_corr=set() # Set of all the names of correlated columns
corr_matrix = dataset.corr()
for i in range(len(corr_matrix.columns)):
for j in range(i):
if abs(corr_matrix.iloc[i,j]) > threshold: # we are interested in absolute coeff value
colname = corr_matrix.columns[i] # getting the name of column
col_corr.add(colname)
return col_corr
correlation(df.iloc[:,:-1],threshold)
###Output
_____no_output_____ |
NYC Taxi 3 - Simple Featuretools.ipynb | ###Markdown
A Featuretools Baseline The following tutorial illustrates a featuretools baseline model for the NYC Taxi Trip Duration competition on Kaggle. This notebook follows the structure of the previous worksheet, but uses deep feature synthesis to create the model.Step 1: Download raw data As always, if you have not yet downloaded the data it can be found at the Kaggle website. After installing featuretools following the instructions in the documentation you can run the following.
###Code
import pandas as pd
import numpy as np
import featuretools as ft
import taxi_utils
ft.__version__
TRAIN_DIR = "data/train.csv"
TEST_DIR = "data/test.csv"
data_train, data_test = taxi_utils.read_data(TRAIN_DIR, TEST_DIR)
data_train.head(5)
###Output
_____no_output_____
###Markdown
Step 2: Prepare the Data Let's create another column to define test and train datasets.
###Code
data_train['test_data'] = False
data_test['test_data'] = True
###Output
_____no_output_____
###Markdown
We can now combine the data.
###Code
data = pd.concat([data_train, data_test], sort=True)
###Output
_____no_output_____
###Markdown
Step 3: Create baseline features using DFS Instead of manually creating features, such as month of pickup_datetime, we can let featuretools come up with them. Within featuretools there is a standard format for representing data that is used to set up predictions and build features. A EntitySet stores information about entities (database table), variables (columns in database tables), relationships, and the data itself. First, we create the EntitySet.
###Code
es = ft.EntitySet("taxi")
###Output
_____no_output_____
###Markdown
We can then use the `entity_from_dataframe` method to add an Entity called trips. We want to track the `id`, the `time_index` and specify other types of variables we care about in this entity. As a note: Featuretools will try to interpret the types of variables. We can override this interpretation by specifying the types. In this case, I wanted passenger_count to be a type of Ordinal, and vendor_id to be of type Categorical.
###Code
from featuretools import variable_types as vtypes
trip_variable_types = {
'passenger_count': vtypes.Ordinal,
'vendor_id': vtypes.Categorical,
}
es.entity_from_dataframe(entity_id="trips",
dataframe=data,
index="id",
time_index='pickup_datetime',
variable_types=trip_variable_types)
es['trips'].df
###Output
_____no_output_____
###Markdown
We can also normalize some of the columns to create new entities. So a vendors entity is created based on the unique values in the vendor_id column in trips.
###Code
es.normalize_entity(base_entity_id="trips",
new_entity_id="vendors",
index="vendor_id")
es.normalize_entity(base_entity_id="trips",
new_entity_id="passenger_cnt",
index="passenger_count")
###Output
_____no_output_____
###Markdown
We can specify the time for each instance of the target_entity to calculate features. The timestamp represents the last time data can be used for calculating features by DFS. This is specified using a dataframe of cutoff times. Below we can see that the cutoff time for each trip is the pickup time.
###Code
cutoff_time = es['trips'].df[['id', 'pickup_datetime']]
es.add_interesting_values()
###Output
_____no_output_____
###Markdown
Visualize EntitySet
###Code
es.plot()
###Output
_____no_output_____
###Markdown
Given this dataset, we would have about 2 million unique cutoff times. This is a good use case to use the approximate features parameter of DFS. In a large dataset, direct features that are aggregations on the prediction entity may not change much from cutoff time to cutoff time. Calculating the aggregation features at specific times every hour and using it for all cutoff times within the hour would save time and perhaps not lose much information. The approximate parameter in DFS lets you specify a window size to use when approximating these direct aggregation features.We now create features using DFS.Note, we can use an already calculated feature_matrix by doing the following:You must copy and run the code.```pythonfeature_matrix = pd.read_csv('https://s3.amazonaws.com/featuretools-static/nyc_taxi/fm_simple.csv', index_col='id')features = feature_matrix.columns.values```
###Code
trans_primitives = ['Minute', 'Hour', 'Day', 'Week', 'Month', 'Weekday', 'Is_weekend']
feature_matrix, features = ft.dfs(entityset=es,
target_entity="trips",
trans_primitives=trans_primitives,
drop_contains=['trips.test_data'],
verbose=True,
cutoff_time=cutoff_time,
approximate='36d')
###Output
Built 96 features
Elapsed: 06:20 | Remaining: 00:00 | Progress: 100%|██████████| Calculated: 11/11 chunks
###Markdown
Here are the features created. Notice how some of the features match the manually created features in the previous notebook.
###Code
print(len(features))
features[:25]
###Output
_____no_output_____
###Markdown
Step 3: Build the Model We need to retrieve our labels for the train dataset, so we should merge our current feature matrix with the original dataset. We also get the log of the trip duration so that a more linear relationship can be found.
###Code
# separates the whole feature matrix into train data feature matrix, train data labels, and test data feature matrix
X_train, labels, X_test = taxi_utils.get_train_test_fm(feature_matrix)
labels = np.log(labels.values + 1)
model = taxi_utils.train_xgb(X_train, labels)
###Output
[0] train-rmse:5.00535 valid-rmse:5.00507
Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping.
Will train until valid-rmse hasn't improved in 60 rounds.
[10] train-rmse:1.00739 valid-rmse:1.00793
[20] train-rmse:0.575585 valid-rmse:0.577753
[30] train-rmse:0.5238 valid-rmse:0.527231
[40] train-rmse:0.49523 valid-rmse:0.500017
[50] train-rmse:0.475479 valid-rmse:0.481395
[60] train-rmse:0.463175 valid-rmse:0.470005
[70] train-rmse:0.453555 valid-rmse:0.461199
[80] train-rmse:0.448871 valid-rmse:0.457243
[90] train-rmse:0.445029 valid-rmse:0.453938
[100] train-rmse:0.436242 valid-rmse:0.445635
[110] train-rmse:0.434033 valid-rmse:0.443912
[120] train-rmse:0.425273 valid-rmse:0.435776
[130] train-rmse:0.422681 valid-rmse:0.433628
[140] train-rmse:0.417246 valid-rmse:0.428812
[150] train-rmse:0.415018 valid-rmse:0.427003
[160] train-rmse:0.412853 valid-rmse:0.425193
[170] train-rmse:0.407265 valid-rmse:0.420134
[180] train-rmse:0.401503 valid-rmse:0.414888
[190] train-rmse:0.400381 valid-rmse:0.414263
[200] train-rmse:0.398285 valid-rmse:0.412464
[210] train-rmse:0.39587 valid-rmse:0.410498
[220] train-rmse:0.394325 valid-rmse:0.409322
[226] train-rmse:0.390858 valid-rmse:0.40626
Modeling RMSLE 0.40626
###Markdown
Step 4: Make a Submission
###Code
submission = taxi_utils.predict_xgb(model, X_test)
submission.head(5)
submission.to_csv('trip_duration_ft_simple.csv', index=True, index_label='id')
###Output
_____no_output_____
###Markdown
This solution: Received a score of 0.45288 on the Kaggle competition. Placed 685 out of 1257. Beat 45% of competitors on the Kaggle competition. Scored 4% better than the baseline solution Had a modeling RMSLE of 0.40196December 27, 2017.Additional AnalysisLet's look at how important each feature was for the model.
###Code
feature_names = X_train.columns.values
ft_importances = taxi_utils.feature_importances(model, feature_names)
ft_importances
###Output
_____no_output_____ |
Notebook/starter model.ipynb | ###Markdown
Starter Project Creating a Basic LSTM Classifier using Pytorch Section 1.1 Initialization
###Code
#importing libraries
import pandas as pd
import nltk
from nltk.corpus import stopwords
import re
from wordsegment import segment, load
from nltk.tokenize import TweetTokenizer
STOPWORDS = set(stopwords.words('english'))
###Output
_____no_output_____
###Markdown
Section 1.1.1 Initializing Tokenizer, in case you don't know what a tokenizer is please visit: https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
###Code
# in our model we will be using tweet tokenizer
# we have reduced the lenght of the text, and using preserve_case as False we turn all charecters to lower case
tknzr = TweetTokenizer(reduce_len=True, preserve_case=False, strip_handles=False)
###Output
_____no_output_____
###Markdown
Section 1.1.2 Creating the Pre-Processing Function here we remove unwanted symbols and numbers from our text and change known emoji symbols to their text value
###Code
def text_preprocess(text):
text = str(text)
FLAGS = re.MULTILINE | re.DOTALL
eyes = r"[8:=;]"
nose = r"['`\-]?"
def re_sub(pattern, repl):
return re.sub(pattern, repl, text, flags=FLAGS)
text = re_sub(r"https?:\/\/\S+\b|www\.(\w+\.)+\S*", "<url>")
text = re_sub(r"/"," / ")
text = re_sub(r"@\w+", "<user>")
text = re_sub(r"{}{}[)dD]+|[)dD]+{}{}".format(eyes, nose, nose, eyes), "<smile>")
text = re_sub(r"{}{}p+".format(eyes, nose), "<lolface>")
text = re_sub(r"{}{}\(+|\)+{}{}".format(eyes, nose, nose, eyes), "<sadface>")
text = re_sub(r"{}{}[\/|l*]".format(eyes, nose), "<neutralface>")
text = re_sub(r"<3","<heart>")
text = re_sub(r"[-+]?[.\d]*[\d]+[:,.\d]*", "<number>")
text = re_sub(r"([!?.]){2,}", r"\1 <repeat>")
text = re_sub(r"\b(\S*?)(.)\2{2,}\b", r"\1\2 <elong>")
text = " ".join([word for word in str(text).split() if word not in STOPWORDS])
tokens = tknzr.tokenize(text.lower())
return " ".join(tokens)
###Output
_____no_output_____
###Markdown
Section 1.1.3 Importing the dataset and pre-processing it We turn the sentiment labels to numerical values for the machine to understand You can download the dataset from [here](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews)
###Code
# we import the dataset using read_csv function from the pandas library
# just replace INPUTPATH with your input path
df = pd.read_csv("INPUTPATH.csv")
# visualizing the firt 5 rows of our dataset
df.head()
# encoding sentiment labels to numerical values
encode_label = {'negative' : 0, 'positive' : 1}
df['sentiment'] = df['sentiment'].map(encode_label)
# visualizing the firt 5 rows of our dataset again
df.head()
# pre-processing the dataset
df['review'] = df['review'].apply(text_preprocess)
# visualizing the firt 5 rows of our dataset again after pre-processing
df.head()
###Output
_____no_output_____
###Markdown
Section 1.1.4 Saving the pre-processed dataset
###Code
# we use the to_csv function from the pandas library to export our dataframe as a csv file
#just replace destination_folder with your outputpath
# Trim text and titletext to first_n_words
train_test_ratio = 0.10
train_valid_ratio = 0.80
first_n_words = 500
df_raw['review'] = df_raw['review'].apply(trim_string)
# Splits dataset according to label
df_real = df_raw[df_raw['sentiment'] == 0]
df_fake = df_raw[df_raw['sentiment'] == 1]
# Train-test split
df_real_full_train, df_real_test = train_test_split(df_real, train_size = train_test_ratio, random_state = 1)
df_fake_full_train, df_fake_test = train_test_split(df_fake, train_size = train_test_ratio, random_state = 1)
# Train-valid split
df_real_train, df_real_valid = train_test_split(df_real_full_train, train_size = train_valid_ratio, random_state = 1)
df_fake_train, df_fake_valid = train_test_split(df_fake_full_train, train_size = train_valid_ratio, random_state = 1)
# Concatenate splits of different labels
df_train = pd.concat([df_real_train, df_fake_train], ignore_index=True, sort=False)
df_valid = pd.concat([df_real_valid, df_fake_valid], ignore_index=True, sort=False)
df_test = pd.concat([df_real_test, df_fake_test], ignore_index=True, sort=False)
# Write preprocessed data for train, test and validation
df_train.to_csv(destination_folder + '/train.csv', index=False)
df_valid.to_csv(destination_folder + '/valid.csv', index=False)
df_test.to_csv(destination_folder + '/test.csv', index=False)
###Output
_____no_output_____
###Markdown
Section 2.1 Training the Starter Model
###Code
# importing important libraries needed for this section
import matplotlib.pyplot as plt
import pandas as pd
import torch
# Preliminaries
from torchtext.data import Field, TabularDataset, BucketIterator
# Models
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
# Training
import torch.optim as optim
# Evaluation
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import seaborn as sns
#Sets device as GPU or CPU for training depending on your local machine
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
###Output
_____no_output_____
###Markdown
Section 2.1.1 Loading the pre-processed dataset and creating Training, Testing and Validation SetsWe import the csv file we have saved above and create the iterators for Train set, Validation set and Test set.
###Code
# Define columns to read.
#text_field will contain our text from the movie reviews
text_field = Field(lower=True, include_lengths=True, batch_first=True)
#label_field will contain the labels respective to each review
label_field = Field(sequential=False, use_vocab=False, batch_first=True, dtype=torch.float)
#final list containing the labels and the text
fields = [('sentiment', label_field), ('review', text_field)]
#we use TabularDataset to create a Dataset for training, validation and testing purpose, the path of each file is passed as the argument
train, valid, test = TabularDataset.splits(path=destination_folder, train='train.csv', validation='valid.csv', test='test.csv',
format='CSV', fields=fields, skip_header=True)
#BucketIterator is used to create iterations of the complete sets in the defined batch sizes
#Batch size is the number of examples after which the weights of the network are updated
#A smaller batch size means the weights of the network are updated more freqeuntly and a large batch size would mean less updates
train_iter = BucketIterator(train, batch_size=64, sort_key=lambda x: len(x.review),
device=device, sort=True, sort_within_batch=True)
valid_iter = BucketIterator(valid, batch_size=64, sort_key=lambda x: len(x.review),
device=device, sort=True, sort_within_batch=True)
test_iter = BucketIterator(test, batch_size=64, sort_key=lambda x: len(x.review),
device=device, sort=True, sort_within_batch=True)
# Vocabulary
#this creates the vocabulary for our model, any word that occurs more than three times is added to our vocaublary file
text_field.build_vocab(train, min_freq=3)
###Output
_____no_output_____
###Markdown
Section 2.1.2 Creating the model architectureWe have defined a simple LSTM model having 128 units, with a bidirecational layer. This is followed be a Dropout layer which drops off random words from training sentences. In the end we have a linear layer, where input units are set as 2 * output units of LSTM layer
###Code
class LSTM(nn.Module):
def __init__(self, dimension=128):
super(LSTM, self).__init__()
self.embedding = nn.Embedding(len(text_field.vocab), 500)
self.dimension = dimension
self.lstm = nn.LSTM(input_size=500,
hidden_size=dimension,
num_layers=1,
batch_first=True,
bidirectional=True)
self.drop = nn.Dropout(p=0.3)
self.fc = nn.Linear(2*dimension, 1)
def forward(self, text, text_len):
text_emb = self.embedding(text)
packed_input = pack_padded_sequence(text_emb, text_len, batch_first=True, enforce_sorted=False)
packed_output, _ = self.lstm(packed_input)
output, _ = pad_packed_sequence(packed_output, batch_first=True)
out_forward = output[range(len(output)), text_len - 1, :self.dimension]
out_reverse = output[:, 0, self.dimension:]
out_reduced = torch.cat((out_forward, out_reverse), 1)
text_fea = self.drop(out_reduced)
text_fea = self.fc(text_fea)
text_fea = torch.squeeze(text_fea, 1)
text_out = torch.sigmoid(text_fea)
return text_out
###Output
_____no_output_____
###Markdown
Section 2.1.3 Saving the modelWe use the save state dictionary method to save a model, in this case, a dictionary is created where the keys are the layer names and the value pairs contain the weight matrix for the layer. While using this method, each time we want to load a model, we need to define a copy of the original model which will hold the loaded weights.
###Code
def save_checkpoint(save_path, model, optimizer, valid_loss):
if save_path == None:
return
state_dict = {'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'valid_loss': valid_loss}
torch.save(state_dict, save_path)
print(f'Model saved to ==> {save_path}')
def load_checkpoint(load_path, model, optimizer):
if load_path==None:
return
state_dict = torch.load(load_path, map_location=device)
print(f'Model loaded from <== {load_path}')
model.load_state_dict(state_dict['model_state_dict'])
optimizer.load_state_dict(state_dict['optimizer_state_dict'])
return state_dict['valid_loss']
def save_metrics(save_path, train_loss_list, valid_loss_list, global_steps_list):
if save_path == None:
return
state_dict = {'train_loss_list': train_loss_list,
'valid_loss_list': valid_loss_list,
'global_steps_list': global_steps_list}
torch.save(state_dict, save_path)
print(f'Model saved to ==> {save_path}')
def load_metrics(load_path):
if load_path==None:
return
state_dict = torch.load(load_path, map_location=device)
print(f'Model loaded from <== {load_path}')
return state_dict['train_loss_list'], state_dict['valid_loss_list'], state_dict['global_steps_list']
###Output
_____no_output_____
###Markdown
Section 2.1.4 Training the ModelIn this section we add the training part of our model, that trains it on the training set
###Code
def train(model,
optimizer,
criterion = nn.BCELoss(),
train_loader = train_iter,
valid_loader = valid_iter,
num_epochs = 5,
eval_every = len(train_iter) // 2,
file_path = destination_folder,
best_valid_loss = float("Inf")):
# initialize running values
running_loss = 0.0
valid_running_loss = 0.0
global_step = 0
train_loss_list = []
valid_loss_list = []
global_steps_list = []
# training loop
model.train()
for epoch in range(num_epochs):
for (labels, (title, title_len)), _ in train_loader:
labels = labels.to(device)
title = title.to(device)
title_len = title_len.to(device)
output = model(title, title_len)
loss = criterion(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update running values
running_loss += loss.item()
global_step += 1
# evaluation step
if global_step % eval_every == 0:
model.eval()
with torch.no_grad():
# validation loop
for (labels, (title, title_len)), _ in valid_loader:
labels = labels.to(device)
title = title.to(device)
title_len = title_len.to(device)
output = model(title, title_len)
loss = criterion(output, labels)
valid_running_loss += loss.item()
# evaluation
average_train_loss = running_loss / eval_every
average_valid_loss = valid_running_loss / len(valid_loader)
train_loss_list.append(average_train_loss)
valid_loss_list.append(average_valid_loss)
global_steps_list.append(global_step)
# resetting running values
running_loss = 0.0
valid_running_loss = 0.0
model.train()
# print progress
print('Epoch [{}/{}], Step [{}/{}], Train Loss: {:.4f}, Valid Loss: {:.4f}'
.format(epoch+1, num_epochs, global_step, num_epochs*len(train_loader),
average_train_loss, average_valid_loss))
# checkpoint
if best_valid_loss > average_valid_loss:
best_valid_loss = average_valid_loss
save_checkpoint(file_path + '\model.pt', model, optimizer, best_valid_loss)
save_metrics(file_path + '\metrics.pt', train_loss_list, valid_loss_list, global_steps_list)
save_metrics(file_path + '\metrics.pt', train_loss_list, valid_loss_list, global_steps_list)
print('Finished Training!')
model = LSTM().to(device)
pretrainedPath = torch.load('modelFinal.pth')
model.load_state_dict(pretrainedPath, strict=False)
optimizer = optim.Adam(model.parameters(), lr=0.00001)
train(model=model, optimizer=optimizer, num_epochs=12)
###Output
_____no_output_____
###Markdown
Section 2.1.4 Testing the ModelIn this section we add the testing part of our model, that tests it on the testing set
###Code
def evaluate(model, test_loader, version='title', threshold=0.5):
y_pred = []
y_true = []
model.eval()
with torch.no_grad():
for (labels, (title, title_len)), _ in test_loader:
labels = labels.to(device)
title = title.to(device)
title_len = title_len.to(device)
output = model(title, title_len)
output = (output > threshold).int()
y_pred.extend(output.tolist())
y_true.extend(labels.tolist())
print('Classification Report:')
print(classification_report(y_true, y_pred, labels=[1,0], digits=4))
cm = confusion_matrix(y_true, y_pred, labels=[1,0])
ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax, cmap='Blues', fmt="d")
ax.set_title('Confusion Matrix')
ax.set_xlabel('Predicted Labels')
ax.set_ylabel('True Labels')
ax.xaxis.set_ticklabels(['FAKE', 'REAL'])
ax.yaxis.set_ticklabels(['FAKE', 'REAL'])
best_model = LSTM().to(device)
optimizer = optim.Adam(best_model.parameters(), lr=0.001)
load_checkpoint(destination_folder + '\model.pt', best_model, optimizer)
evaluate(best_model, test_iter)
#final save for the model
torch.save(model.state_dict(), "modelFinalTransfer.pth")
###Output
_____no_output_____ |
Recommendation_system_assignment_final_.ipynb | ###Markdown
SGD Algorithm to predict movie ratings **There will be some functions that start with the word "grader" ex: grader_matrix(), grader_mean(), grader_dim() etc, you should not change those function definition.Every Grader function has to return True.** 1. Download the data from here 2. The data will be of this format, each data point is represented as a triplet of user_id, movie_id and rating user_idmovie_idrating772363471208564140143129845850452357275 Task 1 Predict the rating for a given (user_id, movie_id) pair Predicted rating $\hat{y}_{ij}$ for user i, movied j pair is calcuated as $\hat{y}_{ij} = \mu + b_i + c_j + u_i^T v_j$ , here we will be finding the best values of $b_{i}$ and $c_{j}$ using SGD algorithm with the optimization problem for N users and M movies is defined as $$L = \min_{ b, c, \{ u_i \}_{i=1}^N, \{ v_j \}_{j=1}^M}\quad\alpha \Big( \sum_{j} \sum_{k} v_{jk}^2 + \sum_{i} \sum_{k} u_{ik}^2 + \sum_{i} b_i^2 + \sum_{j} c_i^2 \Big)+ \sum_{i,j \in \mathcal{I}^{\text{train}}} (y_{ij} - \mu - b_i - c_j - u_i^T v_j)^2$$ \(\mu\) : scalar mean rating\(b_i\) : scalar bias term for user \(i\)\(c_j\) : scalar bias term for movie \(j\)\(u_i\) : K-dimensional vector for user \(i\)\(v_j\) : K-dimensional vector for movie \(j\) $ \ $ *. We will be giving you some functions, please write code in that functions only.*. After every function, we will be giving you expected output, please make sure that you get that output. 1. Construct adjacency matrix with the given data, assuming its graph and the weight of each edge is the rating given by user to the movie you can construct this matrix like $A[i][j]=r_{ij}$ here $i$ is user_id, $j$ is movie_id and $r_{ij}$ is rating given by user $i$ to the movie $j$ Hint : you can create adjacency matrix using csr_matrix2. We will Apply SVD decomposition on the Adjaceny matrix link1, link2 and get three matrices $U, \sum, V$ such that $U \times \sum \times V^T = A$, if $A$ is of dimensions $N \times M$ then U is of $N \times k$, $\sum$ is of $k \times k$ and $V$ is $M \times k$ dimensions. *. So the matrix $U$ can be represented as matrix representation of users, where each row $u_{i}$ represents a k-dimensional vector for a user *. So the matrix $V$ can be represented as matrix representation of movies, where each row $v_{j}$ represents a k-dimensional vector for a movie.3. Compute $\mu$ , $\mu$ represents the mean of all the rating given in the dataset.(write your code in def m_u())4. For each unique user initilize a bias value $B_{i}$ to zero, so if we have $N$ users $B$ will be a $N$ dimensional vector, the $i^{th}$ value of the $B$ will corresponds to the bias term for $i^{th}$ user (write your code in def initialize())5. For each unique movie initilize a bias value $C_{j}$ zero, so if we have $M$ movies $C$ will be a $M$ dimensional vector, the $j^{th}$ value of the $C$ will corresponds to the bias term for $j^{th}$ movie (write your code in def initialize())6. Compute dL/db_i (Write you code in def derivative_db())7. Compute dL/dc_j(write your code in def derivative_dc()8. Print the mean squared error with predicted ratings.for each epoch: for each pair of (user, movie): b_i = b_i - learning_rate * dL/db_i c_j = c_j - learning_rate * dL/dc_jpredict the ratings with formula$\hat{y}_{ij} = \mu + b_i + c_j + \text{dot_product}(u_i , v_j) $9. you can choose any learning rate and regularization term in the range $10^{-3} \text{ to } 10^2$ 10. __bonus__: instead of using SVD decomposition you can learn the vectors $u_i$, $v_j$ with the help of SGD algo similar to $b_i$ and $c_j$
###Code
import warnings
warnings.filterwarnings("ignore")
###Output
_____no_output_____
###Markdown
Task 2 As we know U is the learned matrix of user vectors, with its i-th row as the vector ui for user i. Each row of U can be seen as a "feature vector" for a particular user.The question we'd like to investigate is this: do our computed per-user features that are optimized for predicting movie ratings contain anything to do with gender?The provided data file user_info.csv contains an is_male column indicating which users in the dataset are male. Can you predict this signal given the features U?> __Note 1__ : there is no train test split in the data, the goal of this assignment is to give an intution about how to do matrix factorization with the help of SGD and application of truncated SVD. for better understanding of the collabarative fillerting please check netflix case study. > __Note 2__ : Check if scaling of $U$, $V$ matrices improve the metric Reading the csv file
###Code
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix
from sklearn import tree
from google.colab import files
import io
import pandas as pd
uploaded = files.upload ()
data=pd.read_csv(io.BytesIO(uploaded['ratings_train.csv']))
data.head()
data.shape
###Output
_____no_output_____
###Markdown
Create your adjacency matrix
###Code
users =data['user_id'].unique()
len(users)
items = data['item_id'].unique()
len(items)
ratings = data['rating']
ratings.shape
#csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix((data['rating'],(data['user_id'],data['item_id'])))# write your code of adjacency matrix here
adjacency_matrix.shape
adj = adjacency_matrix.toarray()
adj[0][0]
###Output
_____no_output_____
###Markdown
Grader function - 1
###Code
def grader_matrix(matrix):
assert(matrix.shape==(943,1681))
return True
grader_matrix(adjacency_matrix)
###Output
_____no_output_____
###Markdown
**The unique items in the given csv file are 1662 only . But the id's vary from 0-1681 but they are not continuous and hence you'll get matrix of size 943x1681.** SVD decompostion Sample code for SVD decompostion
###Code
from sklearn.utils.extmath import randomized_svd
import numpy as np
matrix = np.random.random((20, 10))
U, Sigma, VT = randomized_svd(matrix, n_components=5,n_iter=5, random_state=None)
print(U.shape)
print(Sigma.shape)
print(VT.T.shape)
###Output
(20, 5)
(5,)
(10, 5)
###Markdown
Write your code for SVD decompostion
###Code
# Please use adjacency_matrix as matrix for SVD decompostion
# You can choose n_components as your choice
from sklearn.utils.extmath import randomized_svd
import numpy as np
U, Sigma, VT = randomized_svd(adjacency_matrix, n_components=50,n_iter=5, random_state=None)
print(U.shape)
print(Sigma.shape)
print(VT.T.shape)
###Output
(943, 50)
(50,)
(1681, 50)
###Markdown
Compute mean of ratings
###Code
def m_u(ratings):
'''In this function, we will compute mean for all the ratings'''
# you can use mean() function to do this
# check this (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html) link for more details.
Mean = np.round(np.mean(ratings),3)
return Mean
mu=m_u(data['rating'])
print(mu)
###Output
3.529
###Markdown
Grader function -2
###Code
def grader_mean(mu):
assert(np.round(mu,3)==3.529)
return True
mu=m_u(data['rating'])
grader_mean(mu)
###Output
_____no_output_____
###Markdown
Initialize $B_{i}$ and $C_{j}$ Hint : Number of rows of adjacent matrix corresponds to user dimensions($B_{i}$), number of columns of adjacent matrix corresponds to movie dimensions ($C_{j}$)
###Code
def initialize(dim):
'''In this function, we will initialize bias value 'B' and 'C'.'''
# initalize the value to zeros
# return output as a list of zeros
Bi = np.zeros(dim)
return Bi
dim=adjacency_matrix.shape[0]# give the number of dimensions for b_i (Here b_i corresponds to users)
b_i=initialize(dim)
b_i.sum()
dim= adjacency_matrix.shape[1]# give the number of dimensions for c_j (Here c_j corresponds to movies)
c_j=initialize(dim)
c_j.sum()
###Output
_____no_output_____
###Markdown
Grader function -3
###Code
def grader_dim(b_i,c_j):
assert(len(b_i)==943 and np.sum(b_i)==0)
assert(len(c_j)==1681 and np.sum(c_j)==0)
return True
grader_dim(b_i,c_j)
###Output
_____no_output_____
###Markdown
Compute dL/db_i
###Code
data['rating'].shape
def derivative_db(user_id,item_id,rating,U,V,mu,alpha,b,c):
'''In this function, we will compute dL/db_i'''
alpha = 0.01
p1 = 2*b-2*(rating-mu-b-c-np.dot(U[user_id],V[:,item_id]))
#print(mu+np.sum(np.dot(U,V)))
return p1
###Output
_____no_output_____
###Markdown
Grader function -4
###Code
def grader_db(value):
assert(np.round(value,3)==-0.931)
return True
U1, Sigma, V1 = randomized_svd(adjacency_matrix, n_components=2,n_iter=5, random_state=24)
# Please don't change random state
# Here we are considering n_componets = 2 for our convinence
alpha=0.01
b = 0
c = 0
value=derivative_db(312,98,4,U1,V1,mu,alpha,b,c)
print(np.round(value,3))
grader_db(value)
###Output
-0.932
###Markdown
Compute dL/dc_j
###Code
def derivative_dc(user_id,item_id,rating,U,V,mu,alpha,b,c):
'''In this function, we will compute dL/dc_j'''
alpha = 0.01
p1 = 2*c-2*(rating-mu-b-c-np.dot(U[user_id],V[:,item_id]))
return p1
###Output
_____no_output_____
###Markdown
Grader function - 5
###Code
def grader_dc(value):
assert(np.round(value,3)==-2.929)
return True
U1, Sigma, V1 = randomized_svd(adjacency_matrix, n_components=2,n_iter=5, random_state=24)
# Please don't change random state
# Here we are considering n_componets = 2 for our convinence
r=0.01
value=derivative_dc(58,504,5,U1,V1,mu,alpha,b,c)
print(round(value,3))
grader_dc(value)
#print(value)
U1.shape
###Output
-2.93
###Markdown
Compute MSE (mean squared error) for predicted ratings for each epoch, print the MSE value for each epoch: for each pair of (user, movie): b_i = b_i - learning_rate * dL/db_i c_j = c_j - learning_rate * dL/dc_jpredict the ratings with formula$\hat{y}_{ij} = \mu + b_i + c_j + \text{dot_product}(u_i , v_j) $
###Code
adj = adjacency_matrix.toarray()
from tqdm import tqdm
Y = []
alpha = 0.01
i = 50
MSE = []
learning_rate = 0.01
mu=m_u(data['rating'])
y_ = np.zeros((943,1681))
b_i_new = b_i
c_j_new = c_j
mse = 0
count = 0
while(i>0):
mse = 0
for j in range(len(users)):
for k in range(len(items)):
u = users[j]
m = items[k]
if adj[j][k] != 0:
db = derivative_db(u,m,adj[j][k],U,VT,mu,alpha,b_i[j],c_j[k]) # finding db
dc = derivative_dc(u,m,adj[j][k],U,VT,mu,alpha,b_i[j],c_j[k]) #finding dc
b_i_new[j] = b_i[j] - learning_rate*db
c_j_new[k] = c_j[k] - learning_rate*dc
y_[i][j] = b_i[j]+c_j[k]+mu+np.dot(U[users[j]],VT[:,items[k]])
b_i[j] = b_i_new[j]
c_j[k] = c_j_new[k]
mse+=(adj[j][k]-(b_i_new[j]+c_j_new[k]+mu+np.dot(U[users[j]],VT[:,items[k]])))**2 #finding mean squared error
MSE.append(mse/89992)
i-=1
MSE
###Output
_____no_output_____
###Markdown
Plot epoch number vs MSE * epoch number on X-axis* MSE on Y-axis
###Code
import matplotlib.pyplot as plt
plt.plot(np.arange(1,51),MSE)
plt.xlabel('epoch')
plt.ylabel('MSE')
plt.title('MSE v/s epoches')
###Output
_____no_output_____
###Markdown
Task 2 - For this task you have to consider the user_matrix U and the user_info.csv file.- You have to consider is_male columns as output features and rest as input features. Now you have to fit a model by posing this problem as binary classification task.- You can apply any model like Logistic regression or Decision tree and check the performance of the model. - Do plot confusion matrix after fitting your model and write your observations how your model is performing in this task.- Optional work- You can try scaling your U matrix.Scaling means changing the values of n_componenets while performing svd and then check your results.
###Code
U
data1 = pd.read_csv('user_info.csv.txt')
data1.shape
target = data1['is_male']
target
data1 = data1.drop(['is_male'],axis = 1)
data2 = pd.DataFrame(U)
data1.shape
data2.shape
data = pd.concat([data1,data2],axis = 1)
data
data.isna().sum()
data.duplicated().sum()
target.value_counts()
from sklearn.model_selection import train_test_split
X_train , X_test ,y_train, y_test = train_test_split(data,target,test_size = 0.33,random_state = 10)
print(X_train.shape,y_train.shape)
print(X_test.shape,y_test.shape)
from sklearn.model_selection import RandomizedSearchCV
from sklearn.linear_model import LogisticRegression
Logistic = LogisticRegression(random_state = 10)
param = [{'C': [10**-4, 10**-2, 10**0, 10**2, 10**4]}]
model = RandomizedSearchCV(Logistic,param,random_state = 10)
model.fit(X_train,y_train)
model.best_estimator_
model1 = LogisticRegression(C = 10000,random_state=10)
model1.fit(X_train,y_train)
y_pred = model1.predict(X_test)
plot_confusion_matrix(model1,X_test,y_test)
plt.show()
roc_auc_score(y_test, model1.predict_proba(X_test)[:, 1])
###Output
_____no_output_____ |
Maintenance/Prediction of IOT system failures based on sensor data/notebook.ipynb | ###Markdown
Prediction of fire protection system failures based on sensor data Business Understanding With the help of the Inveron hazard management system, the plants already equipped with sensors can be be monitored and controlled manually, for example from a control station. from a control station. Inveron is a software that bundles and visualizes all sensor data from the fire protection systems and visualizes them. In addition, with the help of Inveron, test alarms can be triggered or alarms can be reset. The Inveron hazard management system already processes a lot of sensor data that can be used in the local system environment, for example thesecurity center of an industrial company. Specificmaintenance intervals tell Minimax service technicians when a system should be serviced. maintenance. In addition to monitoring its own sensor data, Inveron can also monitor third-party data. monitor. For example, connected video cameras can be used for fire detection. can be used for fire detection. Also burglar alarm systems, systems for fence monitoring or gate control systems. Open interfaces (OPC, Modbus, Profibus, BAC-net) allow long-term usability when individual components are exchange of individual components. 2.1. Import of Relevant Modules
###Code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Setting seed for reproducability
np.random.seed(9876)
PYTHONHASHSEED = 0
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix, recall_score, precision_score
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Activation
%matplotlib inline
###Output
_____no_output_____
###Markdown
2.2. load Data
###Code
#load training data
train_df = pd.read_csv('https://storage.googleapis.com/ml-service-repository-datastorage/Prediction_of_IOT_system_failures_based_on_sensor_data_PM_train.txt', sep=" ", header=None)
train_df.drop(train_df.columns[[26, 27]], axis=1, inplace=True)
train_df.columns = ['id', 'zyklus', 'setting1', 'setting2', 'setting3', 's1', 's2', 's3',
's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14',
's15', 's16', 's17', 's18', 's19', 's20', 's21']
# load testdata
test_df = pd.read_csv('https://storage.googleapis.com/ml-service-repository-datastorage/Prediction_of_IOT_system_failures_based_on_sensor_data_PM_test.txt', sep=" ", header=None)
test_df.drop(test_df.columns[[26, 27]], axis=1, inplace=True)
test_df.columns = ['id', 'zyklus', 'setting1', 'setting2', 'setting3', 's1', 's2', 's3',
's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14',
's15', 's16', 's17', 's18', 's19', 's20', 's21']
# load truth data
truth_df = pd.read_csv('https://storage.googleapis.com/ml-service-repository-datastorage/Prediction_of_IOT_system_failures_based_on_sensor_data_PM_truth.txt', sep=" ", header=None)
truth_df.drop(truth_df.columns[[1]], axis=1, inplace=True)
###Output
_____no_output_____
###Markdown
2.4. Descriptive Analytics
###Code
def attribute_description(data):
longestColumnName = len(max(np.array(data.columns), key=len))
print("| Feature | Data Type|")
print("|-----|------|")
for col in data.columns:
description = ''
col_dropna = data[col].dropna()
example = col_dropna.sample(1).values[0]
if type(example) == str:
description = 'str '
if len(col_dropna.unique()) < 10:
description += '{'
description += '; '.join([ f'"{name}"' for name in col_dropna.unique()])
description += '}'
else:
description += '[ example: "'+ example + '" ]'
elif (type(example) == np.int32) and (len(col_dropna.unique()) < 10) :
description += 'dummy int32 {'
description += '; '.join([ f'{name}' for name in sorted(col_dropna.unique())])
description += '}'
else:
try:
description = example.dtype
except:
description = type(example)
print("|" + col.ljust(longestColumnName)+ f'| {description} |')
attribute_description(train_df)
train_df = train_df.sort_values(['id','zyklus'])
train_df.head()
###Output
_____no_output_____
###Markdown
3. Data Preparation 3.1 check for null values
###Code
print(train_df.isna().sum())
print(test_df.isna().sum())
###Output
id 0
zyklus 0
setting1 0
setting2 0
setting3 0
s1 0
s2 0
s3 0
s4 0
s5 0
s6 0
s7 0
s8 0
s9 0
s10 0
s11 0
s12 0
s13 0
s14 0
s15 0
s16 0
s17 0
s18 0
s19 0
s20 0
s21 0
dtype: int64
###Markdown
There are no Null values there is no missing data 2.1 calculate the remaining days until failureIm ersten Schritt haben wir nun die Daten eingeladen und werden den Trainingsdatensatz nun mit einer weiteren Spalte versehen, nämlich der verbleibenden Zyklen bis zum Austausch des Feuermelders bzw. Bauteils. Im Testdatensatz wird eine weitere Spalten für die binäre Unterscheidung bzw. Klassifikation angelegt. Herauszufinden ist, ob ein spezifischer Feuermelder (ID) innerhalb w1-Zyklen ausfällt, weshalb hier für w1 ein fiktiver Wert von 1 gewählt wird (1 Tag).
###Code
remaining_days_until_F = pd.DataFrame(train_df.groupby('id')['zyklus'].max()).reset_index()
remaining_days_until_F.columns = ['id', 'max']
train_df = train_df.merge(remaining_days_until_F, on=['id'], how='left')
train_df['remaining_days_until_Failure'] = train_df['max'] - train_df['zyklus']
train_df.drop('max', axis=1, inplace=True)
train_df.head()
w1 = 20
w0 = 10
train_df['label1'] = np.where(train_df['remaining_days_until_Failure'] <= w1, 1, 0 )
train_df['label2'] = train_df['label1']
train_df.loc[train_df['remaining_days_until_Failure'] <= w0, 'label2'] = 2
train_df.head()
###Output
_____no_output_____
###Markdown
The cycle column "cycle" is to be normalized by means of a MinMax normalization, which is why a column with the normalized values is also created
###Code
train_df['Zyklus normalisiert'] = train_df['zyklus']
cols_normalize = train_df.columns.difference(['id','zyklus','remaining_days_until_Failure','label1','label2'])
minmax = preprocessing.MinMaxScaler()
norm_train_df = pd.DataFrame(minmax.fit_transform(train_df[cols_normalize]),
columns=cols_normalize,
index=train_df.index)
join_df = train_df[train_df.columns.difference(cols_normalize)].join(norm_train_df)
train_df = join_df.reindex(columns = train_df.columns)
train_df.head()
###Output
_____no_output_____
###Markdown
Da nun eine Normalisierung der Trainingsdaten stattgefunden hat, wird für die Testdaten ebenfalls eine Normalisierung der Zyklen durchgeführt.
###Code
test_df['Zyklus normalisiert'] = test_df['zyklus']
norm_test_df = pd.DataFrame(minmax.transform(test_df[cols_normalize]),
columns=cols_normalize,
index=test_df.index)
test_join_df = test_df[test_df.columns.difference(cols_normalize)].join(norm_test_df)
test_df = test_join_df.reindex(columns = test_df.columns)
test_df = test_df.reset_index(drop=True)
test_df.head()
###Output
_____no_output_____
###Markdown
Next, we use the truth data to generate the labels for the test data.
###Code
verbleibende_zyklen = pd.DataFrame(test_df.groupby('id')['zyklus'].max()).reset_index()
verbleibende_zyklen.columns = ['id', 'max']
truth_df.columns = ['more']
truth_df['id'] = truth_df.index + 1
truth_df['max'] = verbleibende_zyklen['max'] + truth_df['more']
truth_df.drop('more', axis=1, inplace=True)
test_df = test_df.merge(truth_df, on=['id'], how='left')
test_df['remaining_days_until_Failure'] = test_df['max'] - test_df['zyklus']
test_df.drop('max', axis=1, inplace=True)
test_df.head()
###Output
_____no_output_____
###Markdown
Next, we use the truth data to generate the labels for the test data.
###Code
test_df['label1'] = np.where(test_df['remaining_days_until_Failure'] <= w1, 1, 0 )
test_df['label2'] = test_df['label1']
test_df.loc[test_df['remaining_days_until_Failure'] <= w0, 'label2'] = 2
test_df.head()
###Output
_____no_output_____
###Markdown
Now we look at the data structure
###Code
train_df.info()
###Output
<class 'pandas.core.frame.DataFrame'>
Int64Index: 20631 entries, 0 to 20630
Data columns (total 30 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 20631 non-null int64
1 zyklus 20631 non-null int64
2 setting1 20631 non-null float64
3 setting2 20631 non-null float64
4 setting3 20631 non-null float64
5 s1 20631 non-null float64
6 s2 20631 non-null float64
7 s3 20631 non-null float64
8 s4 20631 non-null float64
9 s5 20631 non-null float64
10 s6 20631 non-null float64
11 s7 20631 non-null float64
12 s8 20631 non-null float64
13 s9 20631 non-null float64
14 s10 20631 non-null float64
15 s11 20631 non-null float64
16 s12 20631 non-null float64
17 s13 20631 non-null float64
18 s14 20631 non-null float64
19 s15 20631 non-null float64
20 s16 20631 non-null float64
21 s17 20631 non-null float64
22 s18 20631 non-null float64
23 s19 20631 non-null float64
24 s20 20631 non-null float64
25 s21 20631 non-null float64
26 remaining_days_until_Failure 20631 non-null int64
27 label1 20631 non-null int32
28 label2 20631 non-null int32
29 Zyklus normalisiert 20631 non-null float64
dtypes: float64(25), int32(2), int64(3)
memory usage: 5.2 MB
###Markdown
It can be seen that all data have either the float or int data type, there are no categorical variables in the data set. Now we display the individual variables in a histogram in order to determine whether all variables can be used meaningfully for the model. The just created columns, as well as "id" are not considered, since these are used for the evaluation and it does not make sense to check here. 3.3 analyse the histogram's of all features
###Code
def plot_hist(variable):
print("min {} : {} ".format(variable, min(train_df[variable])))
print("max {} : {}".format(variable, max(train_df[variable])))
plt.figure(figsize=(9,3))
plt.hist(train_df[variable], color="orange", ec="orange", edgecolor='green')
plt.xlabel(variable)
plt.ylabel("Frequenz")
plt.title("distribution of the {} variable ".format(variable))
plt.show()
numericVar = ["zyklus", "setting1", "setting2","setting3", "s1", "s2", "s3",
"s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11", "s12",
"s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21"]
for n in numericVar:
plot_hist(n)
###Output
min zyklus : 1
max zyklus : 362
###Markdown
We see that some variables are just constants. These can be deleted as they do not contain any useful information about the state of the plant. The following columns are deleted: 'setting3', 's1', 's5', 's10', 's16 ', 's18', 's19'.
###Code
train_df.drop(columns=['setting3', 's1', 's5', 's10', 's16', 's18', 's19'],inplace=True)
test_df.drop(columns=['setting3', 's1', 's5', 's10', 's16', 's18', 's19'],inplace=True)
train_df2 = train_df
test_df2 = test_df
###Output
_____no_output_____
###Markdown
4. Modelling and Evaluation After the data has been prepared, the modeling can begin. We will build a Long Short-Term Memory Layer Recurrent Neural Network using the KERAS library. Keras requires a three-dimensional numpy array (inputs: A 3D tensor with shape [batch, timesteps, feature]), see also: https://keras.io/api/layers/recurrent_layers/lstm/ ). Therefore, in the next step, our features or variables are put into this three-dimensional shape.At the same time the window size is defined, because LSTMs have the advantage to remember things from long sequences without a direct abstraction. Translated with www.DeepL.com/Translator (free version)
###Code
window_size = 25
def generate_sequenze(dataframe_id, laenge_sequenz, spalten_sequenz):
array = dataframe_id[spalten_sequenz].values
anzahl_elemente = array.shape[0]
for start, stop in zip(range(0, anzahl_elemente-laenge_sequenz), range(laenge_sequenz, anzahl_elemente)):
yield array[start:stop, :]
spalten_sensoren = ['s2', 's3','s4', 's6', 's7', 's8', 's9', 's11', 's12', 's13', 's14', 's15', 's17', 's20', 's21',]
spalten_sequenz = ['setting1', 'setting2', 'Zyklus normalisiert']
spalten_sequenz.extend(spalten_sensoren)
generierung_sequenz = (list(generate_sequenze(train_df2[train_df2['id']==id], window_size, spalten_sequenz))
for id in train_df2['id'].unique())
array_sequenz = np.concatenate(list(generierung_sequenz)).astype(np.float32)
array_sequenz.shape
def ueberschrift_generieren(dataframe_id, laenge_sequenz, ueberschrift):
array_daten = dataframe_id[ueberschrift].values
elemente_numerisch = array_daten.shape[0]
return array_daten[laenge_sequenz:elemente_numerisch, :]
ueberschriften_generieren = [ueberschrift_generieren(train_df[train_df['id']==id], window_size, ['label1'])
for id in train_df2['id'].unique()]
ueb_array = np.concatenate(ueberschriften_generieren).astype(np.float32)
ueb_array.shape
###Output
_____no_output_____
###Markdown
In the next step, an LSTM network is created, since the data is now available in three-dimensional form. For this, the network is created with 100 units in the first step and a second one with 50 units. Dropout is used to avoid overfitting. Finally, a single layer, our output layer with a single unit and sigma activation, is generated, since there is a binary classification problem here.
###Code
spalten = array_sequenz.shape[2]
ausgabe = ueb_array.shape[1]
model = Sequential()
model.add(LSTM(
input_shape=(window_size, spalten),
units=200,
return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(
units=100,
return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(units=ausgabe, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(array_sequenz, ueb_array, epochs=10, batch_size=200, validation_split=0.05, verbose=1)
###Output
Epoch 1/10
87/87 [==============================] - 17s 151ms/step - loss: 0.2726 - accuracy: 0.8735 - val_loss: 0.1108 - val_accuracy: 0.9592
Epoch 2/10
87/87 [==============================] - 12s 136ms/step - loss: 0.0972 - accuracy: 0.9615 - val_loss: 0.0681 - val_accuracy: 0.9625
Epoch 3/10
87/87 [==============================] - 12s 144ms/step - loss: 0.0629 - accuracy: 0.9746 - val_loss: 0.1099 - val_accuracy: 0.9570
Epoch 4/10
87/87 [==============================] - 12s 132ms/step - loss: 0.0610 - accuracy: 0.9746 - val_loss: 0.0787 - val_accuracy: 0.9647
Epoch 5/10
87/87 [==============================] - 11s 130ms/step - loss: 0.0585 - accuracy: 0.9763 - val_loss: 0.0731 - val_accuracy: 0.9614
Epoch 6/10
87/87 [==============================] - 11s 130ms/step - loss: 0.0539 - accuracy: 0.9774 - val_loss: 0.0571 - val_accuracy: 0.9757
Epoch 7/10
87/87 [==============================] - 11s 126ms/step - loss: 0.0547 - accuracy: 0.9774 - val_loss: 0.0520 - val_accuracy: 0.9757
Epoch 8/10
87/87 [==============================] - 11s 122ms/step - loss: 0.0498 - accuracy: 0.9791 - val_loss: 0.0562 - val_accuracy: 0.9735
Epoch 9/10
87/87 [==============================] - 10s 118ms/step - loss: 0.0462 - accuracy: 0.9813 - val_loss: 0.0450 - val_accuracy: 0.9802
Epoch 10/10
87/87 [==============================] - 10s 114ms/step - loss: 0.0452 - accuracy: 0.9811 - val_loss: 0.0322 - val_accuracy: 0.9879
###Markdown
4.2. Evaluation
###Code
scores = model.evaluate(array_sequenz, ueb_array, verbose=1, batch_size=200)
print('accuracy: {}'.format(scores[1]))
y_pred = model.predict(array_sequenz,verbose=1, batch_size=200)
y_pred = np.round(y_pred).astype(int)
y_true = ueb_array
print('confusion Matrix')
konfusionsmatrix = confusion_matrix(y_true, y_pred)
konfusionsmatrix
accuracy = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
print( 'accuracy = ', accuracy, '\n', 'recall = ', recall)
###Output
accuracy = 0.859552931252636
recall = 0.9704761904761905
###Markdown
In the next step we will compare the test data, for this we have saved the last working state of the cycle for each fire detector in the test data. To be able to compare the results, we use the last sequence for each fire detector in the test data.
###Code
testdaten_vergleich = [test_df[test_df['id']==id][spalten_sequenz].values[ - window_size:]
for id in test_df['id'].unique() if len(test_df[test_df['id']==id]) >= window_size]
testdaten_vergleich = np.asarray(testdaten_vergleich).astype(np.float32)
testdaten_vergleich.shape
y2 = [len(test_df[test_df['id']==id]) >= window_size for id in test_df['id'].unique()]
ueb_array_test_last = test_df.groupby('id')['label1'].nth(-1)[y2].values
ueb_array_test_last = ueb_array_test_last.reshape(ueb_array_test_last.shape[0],1).astype(np.float32)
ueb_array_test_last.shape
print(testdaten_vergleich.shape)
print(ueb_array_test_last.shape)
werte_testdaten = model.evaluate(testdaten_vergleich, ueb_array_test_last, verbose=2)
print('accuracy: {}'.format(werte_testdaten[1]))
testdaten_y = model.predict(testdaten_vergleich)
testdaten_y = np.round(testdaten_y).astype(int)
wahrheit_y = ueb_array_test_last
print('confusion Matrix')
konfusionsmatrix2 = confusion_matrix(wahrheit_y, testdaten_y)
konfusionsmatrix2
testdaten_genauigkeit = precision_score(wahrheit_y, testdaten_y)
recall_test = recall_score(wahrheit_y, testdaten_y)
f1_test = 2 * (testdaten_genauigkeit * recall_test) / (testdaten_genauigkeit + recall_test)
print( 'Precision: ', testdaten_genauigkeit, '\n', 'recall: ', recall_test,'\n', 'F1-score:', f1_test )
results_df = pd.DataFrame([[werte_testdaten[1],testdaten_genauigkeit,recall_test,f1_test]],
columns = ['Accuracy', 'Precision', 'Recall', 'F1-score'],
index = ['LSTM'])
results_df
###Output
_____no_output_____ |
src/model_selection/model_selection_all_combined_v2.ipynb | ###Markdown
Import libraries and read in trainval and test datasets
###Code
#merge data from several states
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
trainval = pd.read_csv('./data/trainval_all_combined_v2.csv')
trainval.head()
test = pd.read_csv('./data/test_all_combined_v2.csv')
test.head()
###Output
_____no_output_____
###Markdown
Convert columns and check for any remaining missing values
###Code
# Convert columns and check for any remaining missing values
cat_col = ['gender','breeds.primary','breed_popularity','contact.address.state','state_region','cg_adpt_time']
trainval[cat_col]=trainval[cat_col].astype('category')
test[cat_col]=test[cat_col].astype('category')
# Check for any missing data
print("Table size -", end=' ')
print(trainval.shape)
print("Checking for missing values..")
# Number of missing values in each column of training data
missing_val_count_by_column = (trainval.isnull().sum())
print(missing_val_count_by_column[missing_val_count_by_column > 0])
# Get names of columns with missing values
#missing_cols = [col for col in extension_data.columns
# if extension_train[col].isnull().any()]
len(trainval)
###Output
_____no_output_____
###Markdown
Divide into features and target
###Code
# Divide into features and target#test with small number of features, take off name_pop for now
X_features = ['age', 'gender', 'size',
'breeds.primary','breeds.mixed', 'breed_popularity',
'log_breed_pop', 'log_dog_pop', 'state_population',
'state_area', 'state_region','contact.address.state']
trainval_X = trainval[X_features]
trainval_X.head()
trainval_y = trainval['cg_adpt_time']
trainval_y.head()
###Output
_____no_output_____
###Markdown
Split trainval into train and validation
###Code
from sklearn.model_selection import train_test_split
train_X, val_X, train_y, val_y = train_test_split(trainval_X, trainval_y, test_size=0.2)
print('Training set size = {} and Validation set size = {}'.format(len(train_X),len(val_X)))
train_X.head()
from sklearn.preprocessing import OneHotEncoder
oh = OneHotEncoder(handle_unknown='ignore', sparse=False)
cat_col = ['gender','breeds.primary','breed_popularity','contact.address.state','state_region','cg_adpt_time']
train_X.dtypes
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings('ignore', category = FutureWarning)
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
import time
from sklearn.metrics import precision_recall_fscore_support as score
from sklearn.metrics import accuracy_score
train_y.dtypes
###Output
_____no_output_____
###Markdown
Make a pipeline of random forest
###Code
from sklearn.pipeline import Pipeline
def train_RF(n_est, depth):
rf = RandomForestClassifier(n_estimators=n_est, max_depth=depth, n_jobs=-1)
pipeline_temp = Pipeline(steps=[('preprocessor', oh),('model', rf)])
start = time.time()
pipeline_temp.fit(train_X, train_y)
end = time.time()
fit_time = end - start
#scores= -1 * cross_val_score(pipeline_temp, train_X, train_y,cv=5,scoring='neg_mean_absolute_error')
start = time.time()
y_pred = pipeline_temp.predict(val_X)
end = time.time()
predict_time = end - start
#r2s= cross_val_score(pipeline_temp, train_X, train_y,cv=5,scoring='r2')
#print('Est: {} / Depth: {} ---- MAE: {} R^2: {}'.format(n_est,depth,round(scores.mean(), 3),round(r2s.mean(), 3)))
print('Est: {} / Depth: {} ---- Fit time: {} / Predict time: {} / Accuracy: {}'.format(
n_est,depth,fit_time, predict_time, round((y_pred==val_y).sum()/len(y_pred), 3)))
###Output
_____no_output_____
###Markdown
Tune hyperparameters
###Code
for n_est in [10, 50, 100, 200]:
for depth in [10, 50, 100, None]:
train_RF(n_est, depth)
for n_est in [100, 150, 200, 250]:
for depth in [30, 40, 50, 60]:
train_RF(n_est, depth)
rf = RandomForestClassifier(n_estimators=150, max_depth=30, n_jobs=-1)
pipeline_temp2 = Pipeline(steps=[('preprocessor', oh),('model', rf)])
start = time.time()
pipeline_temp2.fit(train_X, train_y)
end = time.time()
fit_time = end - start
#scores= -1 * cross_val_score(pipeline_temp, train_X, train_y,cv=5,scoring='neg_mean_absolute_error')
y_pred = pipeline_temp2.predict(val_X)
round((y_pred==val_y).sum()/len(y_pred), 3)
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
rf = RandomForestClassifier(n_estimators=150, max_depth=30, n_jobs=-1)
categorical_features = ['gender','breeds.primary','breed_popularity','contact.address.state','state_region']
categorical_transformer = Pipeline(steps=[
('onehot', OneHotEncoder(handle_unknown='ignore', sparse=False))])
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)], remainder='passthrough')
pipeline_temp = Pipeline(steps=[('preprocessor', preprocessor),('model', rf)])
start = time.time()
pipeline_temp.fit(train_X, train_y)
end = time.time()
###Output
_____no_output_____
###Markdown
look for feature importances in one hot encoded
###Code
pipeline_temp['model'].feature_importances_
y_pred = pipeline_temp.predict(val_X)
round((y_pred==val_y).sum()/len(y_pred), 3)
def train_RF_2(n_est, depth):
categorical_features = ['gender', 'state_region']
categorical_transformer = Pipeline(steps=[
('onehot', OneHotEncoder(handle_unknown='ignore', sparse=False))])
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)], remainder='passthrough')
pipeline_temp = Pipeline(steps=[('preprocessor', preprocessor),('model', rf)])
start = time.time()
pipeline_temp.fit(train_X, train_y)
end = time.time()
fit_time = end - start
#scores= -1 * cross_val_score(pipeline_temp, train_X, train_y,cv=5,scoring='neg_mean_absolute_error')
start = time.time()
y_pred = pipeline_temp.predict(val_X)
end = time.time()
predict_time = end - start
#r2s= cross_val_score(pipeline_temp, train_X, train_y,cv=5,scoring='r2')
#print('Est: {} / Depth: {} ---- MAE: {} R^2: {}'.format(n_est,depth,round(scores.mean(), 3),round(r2s.mean(), 3)))
print('Est: {} / Depth: {} ---- Fit time: {} / Predict time: {} / Accuracy: {}'.format(
n_est,depth,fit_time, predict_time, round((y_pred==val_y).sum()/len(y_pred), 3)))
for n_est in [100, 150, 200, 250]:
for depth in [30, 40, 50, 60]:
train_RF_2(n_est, depth)
y_pred_train = pipeline_temp.predict(train_X)
round((y_pred_train==train_y).sum()/len(y_pred_train), 3)
from sklearn.metrics import confusion_matrix
confusion_matrix(val_y, y_pred, labels=["< 1 week" , "1 - 2 weeks", "< 1 month", "< 3 months", "> 3 months"])
plt.bar(range(len(pipeline_temp['model'].feature_importances_)), pipeline_temp['model'].feature_importances_)
plt.show()
###Output
_____no_output_____
###Markdown
Gradient Boosting
###Code
from sklearn.ensemble import GradientBoostingClassifier
oh2 = OneHotEncoder(handle_unknown='ignore', sparse=False)
gb = GradientBoostingClassifier(n_estimators=150, max_depth=30, learning_rate=0.3)
pipeline_temp2 = Pipeline(steps=[('preprocessor', oh2),('model', gb)])
pipeline_temp2.fit(train_X, train_y)
y_pred2 = pipeline_temp2.predict(val_X)
round((y_pred2==val_y).sum()/len(y_pred), 3)
import pickle
filename = './models/rfpipe_cg.pkl'
pickle.dump(pipeline_temp, open(filename, 'wb'))
import pickle
filename = './models/gbpipe_cg.pkl'
pickle.dump(pipeline_temp2, open(filename, 'wb'))
###Output
_____no_output_____ |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.