path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
ipynb/test_perm.ipynb
###Markdown A notebook to test permuting a list of things. ###Code import os import numpy as np import pprint import scipy.stats as stats import yaml import itertools as ite def print_iter(iterable): for i, x in enumerate(iterable): print('{:2}: {}'.format(i+1, x)) ###Output _____no_output_____ ###Markdown Self Cartesian product ###Code print_iter(ite.product('abc', repeat=2)) ###Output _____no_output_____ ###Markdown Cartesian product ###Code print_iter(ite.product('ABC', 'de', [0, 1])) print_iter(ite.permutations('abc')) class A(object): pass str(A) import collections d = collections.OrderedDict() d['a'] = 1 d['c'] = 3 d['b'] = 2 for x in d.items(): print(x) for x in ite.zip_longest( ('a','b','c'), (1, 2)): print(x) ###Output _____no_output_____
work/Geodescriber.ipynb
###Markdown Developing the Geodescriber TitleLoad a geostore via LMIPy. Use OSM revese geocoding to generate data for bounds of a geometry. Create a title based on the agreement between the bounds. EE query Dynamic Paragraph creation Translate to a different languageUse Translation service to return response in a target language. ###Code #!pip install geocoder #!pip install googletrans #!pip install LMIPy #!pip install earthengine-api #!pip install oauth2client import geocoder # https://geocoder.readthedocs.io/ from googletrans import Translator #https://py-googletrans.readthedocs.io/en/latest/#googletrans-languages import LMIPy # Area between spain and france atts={'geojson': {'type': 'FeatureCollection', 'features': [{'type': 'Feature', 'properties': {}, 'geometry': {'type': 'Polygon', 'coordinates': [[[-0.87890625, 43.329173667843904], [-1.6149902343749998, 42.75104599038353], [-1.1865234375, 42.35854391749705], [-0.6427001953125, 42.755079545072135], [-0.45043945312499994, 42.9524020856897], [-0.87890625, 43.329173667843904]]]}}]}} g1 = LMIPy.Geometry(attributes=atts)#, server='http://localhost:9000') g1 g1.shape()[0] # Weird area in Spain atts= {'geojson': {'type': 'FeatureCollection', 'features': [{'type': 'Feature', 'properties': {}, 'geometry': {'type': 'Polygon', 'coordinates': [[[-4.866943359375, 41.69752591075902], [-5.756835937499999, 41.31907562295139], [-5.592041015625, 41.08763212467916], [-4.89990234375, 41.13729606112276], [-4.7021484375, 41.08763212467916], [-4.41650390625, 40.57224011776902], [-4.72412109375, 40.12849105685408], [-5.042724609375, 39.926588421909436], [-5.218505859375, 39.58029027440865], [-4.801025390625, 39.36827914916014], [-4.02099609375, 39.37677199661635], [-3.7902832031250004, 40.07807142745009], [-4.02099609375, 40.522150985623796], [-4.515380859375, 41.104190944576466], [-4.383544921875, 41.376808565702355], [-4.32861328125, 41.65649719441145], [-4.866943359375, 41.69752591075902]]]}}]}} g2 = LMIPy.Geometry(attributes=atts) #, server='http://localhost:9000') g2 g2.shape()[0] # Worker functions for generating a title def reverse_geocode_a_geostore(geostore): """ Take an LMIPy.Geostore object and return geocoding results on the min/max coordinate locations""" s = geostore.shape()[0] min_coords = [s.bounds[1], s.bounds[0]] max_coords = [s.bounds[3], s.bounds[2]] geocode_results = [] for coords in [min_coords, max_coords]: geocode_results.append(geocoder.osm(coords, method='reverse')) return geocode_results def create_title_elements(geostore): """Take revsere geocoding results for upper and lower corners of a polygons bounds, Extract the region, county, country, continent attributes of the locations. Use the overlap to set an appropriate title. """ geocode_results = reverse_geocode_a_geostore(geostore) key_locations = [] for result in geocode_results: d = {} try: d['region'] = result.geojson.get('features')[0].get('properties').get('region') except: d['region'] = None try: d['county'] = result.geojson.get('features')[0].get('properties').get('county') except: d['county'] = None try: d['country'] = result.geojson.get('features')[0].get('properties').get('country') except: d['country'] = None try: d['continent'] = continent_lookup[iso_to_continent[result.geojson.get('features')[0].get('properties').get('country_code').upper()]] except: d['continent'] = None key_locations.append(d) # Check for overlap between upper and lower bounds same_region = key_locations[0].get('region') == key_locations[1].get('region') same_county = key_locations[0].get('county') == key_locations[1].get('county') same_country = key_locations[0].get('country') == key_locations[1].get('country') same_continent = key_locations[0].get('continent') == key_locations[1].get('continent') # Set a title if same_region: title= [key_locations[0]['region'], key_locations[0]['county']] elif same_county: title= [key_locations[0]['county'], key_locations[0]['country']] elif same_country: title = [key_locations[0]['country'], key_locations[0]['continent']] elif same_continent: title = [key_locations[0]['continent']] else: title = None return title def create_title(title_elements): """Create a string(title) from a list input.""" if len(title_elements) == 2: return f"Area in {title_elements[0]}, {title_elements[1]}" elif len(title_elements) == 1: return f"Area in {title_elements[0]}" else: return None # geocode_results = reverse_geocode_a_geostore(g) # geocode_results # g1 = LMIPy.Geometry('f6726c97139f362ca9a10d70dc686375', server='http://localhost:9000') g title_elements = create_title_elements(g) title = create_title(title_elements) title ###Output _____no_output_____ ###Markdown Check speed of response and translationN.b. title and paragraph should be translated together and split to save on requests ###Code %%time title_elements = create_title_elements(g2) title = create_title(title_elements) print(title) create_title(title_elements) %%time title = create_title(g2) title translator= Translator(to_lang="es") translation = translator.translate(title) translation translator= Translator(to_lang="fr") translation = translator.translate(title) translation geostore2 = LMIPy.Geometry('f6726c97139f362ca9a10d70dc686375', server='http://localhost:9000') geostore2 # Test of geometry in RW API g = LMIPy.Geometry('37bd82f55b0a98dca94a46ad7789e2a3') title = create_title(g) title translator.translate(title) ###Output _____no_output_____ ###Markdown Earth Engine portion* Step 1 - Build a layer with multiple bands which we can intersect against in EE* Step 2 - Run a Zonal stats reducer on the area* Step 3 - Create a decision tree and dynamic sentence* Include: amount of tree cover area, elevation (split into categories), biogeophysical regions? land-cover classes? protected areas? ###Code import ee ee.Initialize() def get_region(geom): """Take a valid geojson object, iterate over all features in that object. Build up a list of EE Polygons, and finally return an EE Feature collection. New as of 19th Sep 2017 (needed to fix a bug where the old function ignored multipolys) """ polygons = [] for feature in geom.get('features'): shape_type = feature.get('geometry').get('type') coordinates = feature.get('geometry').get('coordinates') if shape_type == 'MultiPolygon': polygons.append(ee.Geometry.MultiPolygon(coordinates)) elif shape_type == 'Polygon': polygons.append(ee.Geometry.Polygon(coordinates)) else: pass return ee.FeatureCollection(polygons) g = LMIPy.Geometry(id_hash="c9d9da7b63f1983ff8d274e9f15efbf7") # area in spain with no Intact forest g = LMIPy.Geometry(id_hash="9d7a5615df0543881a0f710fa61a1382") # area in georgia with Intact Forest # Grab the layer img = ee.Image('users/benlaken/geodesriber-asset') # Create an EE feature from a geostore object region = get_region(g2.attributes.get('geojson')) stats = img.reduceRegion(**{ 'reducer': ee.Reducer.frequencyHistogram(), 'geometry': region, 'bestEffort': True, }).getInfo() stats # Some sentences will either have a null case or be None. If they are none, they should not be used to build the para. not_intact = stats.get('intact2016').get('0', None) is_intact = stats.get('intact2016').get('1', None) intact_sentence = None if is_intact: # intact > 50% if is_intact/not_intact > 0.75: intact_sentence = "This region contains a large amount of Intact Forest." elif is_intact/not_intact > 0.5: intact_sentence = "This region contains Intact Forest." else: intact_sentence = "This region contains some Intact Forest." else: intact_sentence = 'This region has no Intact Forest.' intact_sentence is_mountain = stats.get('isMountain').get('1') not_mountain = stats.get('isMountain').get('0') mountain_sentence = None if is_mountain: if is_mountain/not_mountain > 0.75: mountain_sentence = "a mountainous area" elif is_mountain/not_mountain > 0.5: mountain_sentence = "a mix of lowland and mountains areas" else: mountain_sentence = "a predominanty lowland area" else: mountain_sentence = "A lowland area." mountain_sentence # koppen_sentence = None # total = 0 # for item in stats.get('koppen'): # total += stats.get('koppen').get(item) # for item in stats.get('koppen'): # tmp_description = koppen_translated[item] # tmp_proportion = stats.get('koppen').get(item)/ total # print(tmp_description, tmp_proportion) # if tmp_proportion > 0.75: # koppen_sentence = f"The majority of the area has a {tmp_description}." # koppen_sentence def give_sorted_d(lookup_dic, key): """Return a dic with keys as integer percentage of coverage proportion.""" total = 0 for item in stats.get(key): total += stats.get(key).get(item) tmp_d = {} for item in stats.get(key): tmp_proportion = int((stats.get(key).get(item)/ total) * 100) #print(item, tmp_proportion) tmp_d[tmp_proportion] = lookup_dic[item] s_dic = {} for kk in sorted(tmp_d,reverse=True): s_dic[kk] = tmp_d[kk] return s_dic # create a sorted list of items to deal with possilities of different Koppen climates tmp_d = give_sorted_d(lookup_dic=koppen_translated, key='koppen') proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: koppen_sentence = f"The area has a predominantly {tmp_d[proportion_list[0]]}." elif proportion_list[0] > 50: koppen_sentence = f"The majority of the region has {tmp_d[proportion_list[0]]}. It also has areas of {tmp_d[proportion_list[1]]}." else: koppen_sentence = f"The area has mixed environmental conditions, including {tmp_d[proportion_list[0]]}, and {tmp_d[proportion_list[1]]}." koppen_sentence stats ## Need to extract the mapping between the biome number and biome name and ecoregion number and name from the shapefile ecoregion_sentence = None tmp_d = give_sorted_d(ecoid_to_ecoregion,'ecoregion') tmp_d proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: ecoregion_sentence = f"The region's habitat is comprised of {tmp_d[proportion_list[0]]}." elif proportion_list[0] > 50: ecoregion_sentence = f"The majority of the regions habitat is comprised of {tmp_d[proportion_list[0]]}. It also includes areas of {tmp_d[proportion_list[1]]}." else: ecoregion_sentence = f"The region is made up of different habitats, including {tmp_d[proportion_list[0]]}, and {tmp_d[proportion_list[1]]}" ecoregion_sentence biome_sentence = None tmp_d = give_sorted_d(biomeNum_2_biomeName,'biome') proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: biome_sentence = f"It is part of the {tmp_d[proportion_list[0]]} biome." elif proportion_list[0] > 50: biome_sentence = f"The majority of the region is comprised of {tmp_d[proportion_list[0]]}. It also includes areas of {tmp_d[proportion_list[1]]}." else: biome_sentence = f"The region is made up of several types of biomes, including {tmp_d[proportion_list[0]]}, and {tmp_d[proportion_list[1]]}." biome_sentence area_sentence = f"Area of {g.attributes.get('areaHa') * 0.01:3,.0f}km² located in {mountain_sentence} in {title_elements[0]}." area_sentence description = f"{area_sentence} {biome_sentence} {koppen_sentence} {ecoregion_sentence} {intact_sentence}" description translator= Translator(to_lang="fr") title_translation = translator.translate(title) description_translation = translator.translate(description) print(title_translation) print(description_translation) translator= Translator(to_lang="es") title_translation = translator.translate(title) description_translation = translator.translate(description) print(title_translation) print(description_translation) translator= Translator(to_lang="ro") title_translation = translator.translate(title) description_translation = translator.translate(description) print(title_translation) print(description_translation) translator= Translator(to_lang="de") title_translation = translator.translate(title) description_translation = translator.translate(description) print(title_translation) print(description_translation) translator= Translator(to_lang="nl") title_translation = translator.translate(title) description_translation = translator.translate(description) print(title_translation) print(description_translation) #print(f"{area_sentence} {koppen_sentence} {mountain_sentence} {ecoregion_sentence} {intact_sentence} {biome_sentence}") ###Output _____no_output_____ ###Markdown App version Input a geostore ID, + optional app arguments and language arguments. Output serilized title, description, and dictionary of data ###Code import geocoder from googletrans import Translator #https://py-googletrans.readthedocs.io/en/latest/#googletrans-languages import LMIPy import ee ee.Initialize() def reverse_geocode_a_geostore(geostore): """ Take an LMIPy.Geostore object and return geocoding results on the min/max coordinate locations""" s = geostore.shape()[0] min_coords = [s.bounds[1], s.bounds[0]] max_coords = [s.bounds[3], s.bounds[2]] geocode_results = [] for coords in [min_coords, max_coords]: geocode_results.append(geocoder.osm(coords, method='reverse', lang_code='en')) return geocode_results def create_title_elements(geostore): """Take revsere geocoding results for upper and lower corners of a polygons bounds, Extract the region, county, country, continent attributes of the locations. Use the overlap to set an appropriate title. """ geocode_results = reverse_geocode_a_geostore(geostore) key_locations = [] for result in geocode_results: d = {} try: d['region'] = result.geojson.get('features')[0].get('properties').get('region') except: d['region'] = None try: d['county'] = result.geojson.get('features')[0].get('properties').get('county') except: d['county'] = None try: d['country'] = result.geojson.get('features')[0].get('properties').get('country') except: d['country'] = None try: d['continent'] = continent_lookup[iso_to_continent[result.geojson.get('features')[0].get('properties').get('country_code').upper()]] except: d['continent'] = None key_locations.append(d) # Check for overlap between upper and lower bounds same_region = check_equivence(key_locations[0].get('region'), key_locations[1].get('region')) same_county = check_equivence(key_locations[0].get('county'), key_locations[1].get('county')) same_country = check_equivence(key_locations[0].get('country'), key_locations[1].get('country')) same_continent = check_equivence(key_locations[0].get('continent'), key_locations[1].get('continent')) # Set a title if same_region: return [key_locations[0]['region'], key_locations[0]['county']] elif same_county: return [key_locations[0]['county'], key_locations[0]['country']] elif same_country: return [key_locations[0]['country'], key_locations[0]['continent']] elif same_continent: return [key_locations[0]['continent']] elif key_locations[0]['continent'] is not None and key_locations[1]['continent'] is not None: return [key_locations[0]['continent'], [key_locations[1]['continent']], True] else: return None def check_equivence(item1, item2): """Check to see if the two items are equal and neither is equal to None""" if item1 is None or item2 is None: return None else: return item1 == item2 def create_title(title_elements): """Create a string(title) from a list input.""" if not title_elements: return "Area of interest" if len(title_elements) == 3: return f"Area between {title_elements[0]} and {title_elements[1]}" elif len(title_elements) == 2: return f"Area in {title_elements[0]}, {title_elements[1]}" elif len(title_elements) == 1: return f"Area in {title_elements[0]}" else: return "Area of Interest" def get_region(geom): """Take a valid geojson object, iterate over all features in that object. Build up a list of EE Polygons, and finally return an EE Feature collection. New as of 19th Sep 2017 (needed to fix a bug where the old function ignored multipolys) """ polygons = [] for feature in geom.get('features'): shape_type = feature.get('geometry').get('type') coordinates = feature.get('geometry').get('coordinates') if shape_type == 'MultiPolygon': polygons.append(ee.Geometry.MultiPolygon(coordinates)) elif shape_type == 'Polygon': polygons.append(ee.Geometry.Polygon(coordinates)) else: pass return ee.FeatureCollection(polygons) def give_sorted_d(lookup_dic, key, stats): """Return a dic with keys as integer percentage of coverage proportion.""" total = 0 for item in stats.get(key): total += stats.get(key).get(item) tmp_d = {} for item in stats.get(key): tmp_proportion = int((stats.get(key).get(item)/ total) * 100) #print(item, tmp_proportion) tmp_d[tmp_proportion] = lookup_dic[item] s_dic = {} for kk in sorted(tmp_d,reverse=True): s_dic[kk] = tmp_d[kk] return s_dic def gen_ecoregion_sentence(stats): ecoregion_sentence = None tmp_d = give_sorted_d(ecoid_to_ecoregion, 'ecoregion', stats) proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: ecoregion_sentence = f"The region's habitat is comprised of {tmp_d[proportion_list[0]]}." elif proportion_list[0] > 50: ecoregion_sentence = f"The majority of the regions habitat is comprised of {tmp_d[proportion_list[0]]}. It also includes areas of {tmp_d[proportion_list[1]]}." else: ecoregion_sentence = f"The region is made up of different habitats, including {tmp_d[proportion_list[0]]}, and {tmp_d[proportion_list[1]]}" return ecoregion_sentence def gen_intact_sentence(stats): not_intact = stats.get('intact2016').get('0', None) is_intact = stats.get('intact2016').get('1', None) intact_sentence = None if is_intact: if is_intact/not_intact > 0.75: intact_sentence = "This region contains a large amount of Intact Forest." elif is_intact/not_intact > 0.5: intact_sentence = "This region contains Intact Forest." else: intact_sentence = "This region contains some Intact Forest." else: intact_sentence = 'This region has no Intact Forest.' return intact_sentence def gen_mountain_sentence(stats): is_mountain = stats.get('isMountain').get('1') not_mountain = stats.get('isMountain').get('0') mountain_sentence = None if is_mountain: if is_mountain/not_mountain > 0.75: mountain_sentence = "a mountainous area" elif is_mountain/not_mountain > 0.5: mountain_sentence = "a mix of lowland and mountains areas" else: mountain_sentence = "a predominanty lowland area" else: mountain_sentence = "A lowland area." return mountain_sentence def gen_koppen_sentence(stats): # create a sorted list of items to deal with possilities of different Koppen climates tmp_d = give_sorted_d(lookup_dic=koppen_translated, key='koppen',stats=stats) proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: koppen_sentence = f"The area has a predominantly {tmp_d[proportion_list[0]]}." elif proportion_list[0] > 50: koppen_sentence = f"The majority of the region has {tmp_d[proportion_list[0]]}. It also has areas of {tmp_d[proportion_list[1]]}." else: koppen_sentence = f"The most common environmental conditions of the area are {tmp_d[proportion_list[0]]}." return koppen_sentence def gen_ecoregion_sentence(stats): ecoregion_sentence = None tmp_d = give_sorted_d(ecoid_to_ecoregion, 'ecoregion', stats) proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: ecoregion_sentence = f"The region's habitat is comprised of {tmp_d[proportion_list[0]]}." elif proportion_list[0] > 50: ecoregion_sentence = f"The majority of the regions habitat is comprised of {tmp_d[proportion_list[0]]}. It also includes areas of {tmp_d[proportion_list[1]]}." else: ecoregion_sentence = f"The region is made up of different habitats, including {tmp_d[proportion_list[0]]}, and {tmp_d[proportion_list[1]]}." return ecoregion_sentence def gen_biome_sentence(stats): biome_sentence = None tmp_d = give_sorted_d(biomeNum_2_biomeName,'biome', stats) proportion_list = list(tmp_d.keys()) if proportion_list[0] > 75: biome_sentence = f"It is part of the {tmp_d[proportion_list[0]]} biome." elif proportion_list[0] > 50: biome_sentence = f"The majority of the region is comprised of {tmp_d[proportion_list[0]]}. It also includes areas of {tmp_d[proportion_list[1]]}." else: biome_sentence = f"The region is made up of several types of biomes, including {tmp_d[proportion_list[0]]}, and {tmp_d[proportion_list[1]]}." return biome_sentence def human_format(num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 # add more suffixes if you need them return '%.2f%s' % (num, ['', 'k', 'M', 'G', 'T', 'P'][magnitude]) def gen_area_sentence(g, app, mountain_sentence, title_elements): if app == 'gfw': area_sentence = f"Area of {human_format(g.attributes.get('areaHa'))}ha located in {mountain_sentence} in {title_elements[0]}." else: area_sentence = f"Area of {g.attributes.get('areaHa') * 0.01:3,.0f}km² located in {mountain_sentence} in {title_elements[0]}." return area_sentence def main(geostore_id, lang='en', app='gfw'): g = LMIPy.Geometry(geostore_id) title_elements = create_title_elements(g) title = create_title(title_elements) img = ee.Image('users/benlaken/geodesriber-asset') # Grab the layer region = get_region(g.attributes.get('geojson')) # Create an EE feature from a geostore object stats = img.reduceRegion(**{'reducer': ee.Reducer.frequencyHistogram(), 'geometry': region, 'bestEffort': True, }).getInfo() ecoregion_sentence = gen_ecoregion_sentence(stats) intact_sentence = gen_intact_sentence(stats) mountain_sentence = gen_mountain_sentence(stats) koppen_sentence = gen_koppen_sentence(stats) ecoregion_sentence = gen_ecoregion_sentence(stats) biome_sentence = gen_biome_sentence(stats) area_sentence = gen_area_sentence(g=g, app=app, mountain_sentence=mountain_sentence, title_elements=title_elements) description = f"{area_sentence} {biome_sentence} {koppen_sentence} {ecoregion_sentence} {intact_sentence}" if lang is not 'en': translator = Translator() r = translator.translate(text=[title, description], dest=lang, src='en') title = r[0].text description = r[1].text return {'title':title, 'description':description, 'lang': lang, 'stats': stats} create_title_elements(g) ## <<---- need to invetigate the reverse geocoder (should be returning english translations) from pprint import pprint %%time main(gg.id) gx = LMIPy.Geometry(id_hash='fb47822bbb56e89be6ac07b9ed52a28d') %%time main(gx.id) %%time response = main(geostore_id='fb47822bbb56e89be6ac07b9ed52a28d', lang='en') pprint(response) %%time pprint(main('cf1874cd07c7e5f6adcf2f969bdd8e27', lang='en')) %%time #pprint(main('489e154c4b463835691c2da1e12910a6')) %%time #pprint(main('6f78821e65d893842606fead7c2d7924', lang='es', app='soilwatch')) ###Output _____no_output_____ ###Markdown Dependent/lookup info ###Code continent_lookup = {'AF':'Africa', 'AN':'Antarctica', 'AS':'Asia', 'EU':'Europe', 'NA':'North america', 'OC':'Oceania', 'SA':'South america'} iso_to_continent = {'AD':'EU', 'AE':'AS', 'AF':'AS', 'AG':'NA', 'AI':'NA', 'AL':'EU', 'AM':'AS', 'AO':'AF', 'AP':'AS', 'AN':'NA', 'AQ':'AN', 'AR':'SA', 'AS':'OC', 'AT':'EU', 'AU':'OC', 'AW':'NA', 'AX':'EU', 'AZ':'AS', 'BA':'EU', 'BB':'NA', 'BD':'AS', 'BE':'EU', 'BF':'AF', 'BG':'EU', 'BH':'AS', 'BI':'AF', 'BJ':'AF', 'BL':'NA', 'BM':'NA', 'BN':'AS', 'BO':'SA', 'BR':'SA', 'BS':'NA', 'BT':'AS', 'BV':'AN', 'BW':'AF', 'BY':'EU', 'BZ':'NA', 'CA':'NA', 'CC':'AS', 'CD':'AF', 'CF':'AF', 'CG':'AF', 'CH':'EU', 'CI':'AF', 'CK':'OC', 'CL':'SA', 'CM':'AF', 'CN':'AS', 'CO':'SA', 'CR':'NA', 'CU':'NA', 'CV':'AF', 'CX':'AS', 'CY':'AS', 'CZ':'EU', 'DE':'EU', 'DJ':'AF', 'DK':'EU', 'DM':'NA', 'DO':'NA', 'DZ':'AF', 'EC':'SA', 'EE':'EU', 'EG':'AF', 'EH':'AF', 'ER':'AF', 'ES':'EU', 'ET':'AF', 'EU':'EU', 'FI':'EU', 'FJ':'OC', 'FK':'SA', 'FM':'OC', 'FO':'EU', 'FR':'EU', 'FX':'EU', 'GA':'AF', 'GB':'EU', 'GD':'NA', 'GE':'AS', 'GF':'SA', 'GG':'EU', 'GH':'AF', 'GI':'EU', 'GL':'NA', 'GM':'AF', 'GN':'AF', 'GP':'NA', 'GQ':'AF', 'GR':'EU', 'GS':'AN', 'GT':'NA', 'GU':'OC', 'GW':'AF', 'GY':'SA', 'HK':'AS', 'HM':'AN', 'HN':'NA', 'HR':'EU', 'HT':'NA', 'HU':'EU', 'ID':'AS', 'IE':'EU', 'IL':'AS', 'IM':'EU', 'IN':'AS', 'IO':'AS', 'IQ':'AS', 'IR':'AS', 'IS':'EU', 'IT':'EU', 'JE':'EU', 'JM':'NA', 'JO':'AS', 'JP':'AS', 'KE':'AF', 'KG':'AS', 'KH':'AS', 'KI':'OC', 'KM':'AF', 'KN':'NA', 'KP':'AS', 'KR':'AS', 'KW':'AS', 'KY':'NA', 'KZ':'AS', 'LA':'AS', 'LB':'AS', 'LC':'NA', 'LI':'EU', 'LK':'AS', 'LR':'AF', 'LS':'AF', 'LT':'EU', 'LU':'EU', 'LV':'EU', 'LY':'AF', 'MA':'AF', 'MC':'EU', 'MD':'EU', 'ME':'EU', 'MF':'NA', 'MG':'AF', 'MH':'OC', 'MK':'EU', 'ML':'AF', 'MM':'AS', 'MN':'AS', 'MO':'AS', 'MP':'OC', 'MQ':'NA', 'MR':'AF', 'MS':'NA', 'MT':'EU', 'MU':'AF', 'MV':'AS', 'MW':'AF', 'MX':'NA', 'MY':'AS', 'MZ':'AF', 'NA':'AF', 'NC':'OC', 'NE':'AF', 'NF':'OC', 'NG':'AF', 'NI':'NA', 'NL':'EU', 'NO':'EU', 'NP':'AS', 'NR':'OC', 'NU':'OC', 'NZ':'OC', 'O1':'--', 'OM':'AS', 'PA':'NA', 'PE':'SA', 'PF':'OC', 'PG':'OC', 'PH':'AS', 'PK':'AS', 'PL':'EU', 'PM':'NA', 'PN':'OC', 'PR':'NA', 'PS':'AS', 'PT':'EU', 'PW':'OC', 'PY':'SA', 'QA':'AS', 'RE':'AF', 'RO':'EU', 'RS':'EU', 'RU':'EU', 'RW':'AF', 'SA':'AS', 'SB':'OC', 'SC':'AF', 'SD':'AF', 'SE':'EU', 'SG':'AS', 'SH':'AF', 'SI':'EU', 'SJ':'EU', 'SK':'EU', 'SL':'AF', 'SM':'EU', 'SN':'AF', 'SO':'AF', 'SR':'SA', 'ST':'AF', 'SV':'NA', 'SY':'AS', 'SZ':'AF', 'TC':'NA', 'TD':'AF', 'TF':'AN', 'TG':'AF', 'TH':'AS', 'TJ':'AS', 'TK':'OC', 'TL':'AS', 'TM':'AS', 'TN':'AF', 'TO':'OC', 'TR':'EU', 'TT':'NA', 'TV':'OC', 'TW':'AS', 'TZ':'AF', 'UA':'EU', 'UG':'AF', 'UM':'OC', 'US':'NA', 'UY':'SA', 'UZ':'AS', 'VA':'EU', 'VC':'NA', 'VE':'SA', 'VG':'NA', 'VI':'NA', 'VN':'AS', 'VU':'OC', 'WF':'OC', 'WS':'OC', 'YE':'AS', 'YT':'AF', 'ZA':'AF', 'ZM':'AF', 'ZW':'AF'} koppen = { '11': 'Af', '12': 'Am', '13': 'As', '14': 'Aw', '21': 'BWk', '22': 'BWh', '26': 'BSk', '27': 'BSh', '31': 'Cfa', '32': 'Cfb', '33': 'Cfc', '34': 'Csa', '35': 'Csb', '36': 'Csc', '37': 'Cwa', '38': 'Cwb', '39': 'Cwc', '41': 'Dfa', '42': 'Dfb', '43': 'Dfc', '44': 'Dfd', '45': 'Dsa', '46': 'Dsb', '47': 'Dsc', '48': 'Dsd', '49': 'Dwa', '50': 'Dwb', '51': 'Dwc', '52': 'Dwd', '61': 'EF', '62': 'ET' } koppen_translated = { '11': 'equatorial, humid climate', '12': 'equatorial, with monsoonal rainfall', '13': 'equatorial climate with dry summers', '14': 'equatorial climate with dry winters', '21': 'arid desert climate with cold temperatures', '22': 'arid desert climate with hot temperatures', '26': 'semi-arid climate with cold temperatures', '27': 'semi-arid climate with hot temperatures', '31': 'warm and temperate climate with high humidity and hot summers', '32': 'warm and temperate climate with high humidity and warm summers', '33': 'warm and temperate climate with high humidity and cool summers', '34': 'warm and temperate climate with dry, hot summers', '35': 'warm and temperate climate with dry summers', '36': 'warm and temperate climate with dry, cool summers', '37': 'warm and temperate climate with dry winters and hot summers', '38': 'warm and temperate climate with dry winters and warm summers', '39': 'warm and temperate climate with dry winters and cool summers', '41': 'snowy, humid climate with hot summers', '42': 'snowy, humid climate with warm summers', '43': 'snowy, humid climate with cool summers', '44': 'snowy, humid, and continental climate', '45': 'snowy climate with dry, hot summers', '46': 'snowy climate with dry warm summers', '47': 'snowy climate with dry cool summers', '48': 'snowy climate with dry summers and extremly continental temperatures', '49': 'snowy climate with dry winters and hot summers', '50': 'snowy climate with dry winters and warm summers', '51': 'snowy climate with dry winters and cool summers', '52': 'snowy climate with dry winters and extremley continental temperatures', '61': 'polar, perpetual frost climate', '62': 'polar tundra climate' } #http://koeppen-geiger.vu-wien.ac.at/data/legend.txt ecoid_to_ecoregion = {'0': 'rock and ice', '1': 'Albertine Rift montane forests', '2': 'Cameroon Highlands forests', '3': 'Central Congolian lowland forests', '4': 'Comoros forests', '5': 'Congolian coastal forests', '6': 'Cross-Niger transition forests', '7': 'Cross-Sanaga-Bioko coastal forests', '8': 'East African montane forests', '9': 'Eastern Arc forests', '10': 'Eastern Congolian swamp forests', '11': 'Eastern Guinean forests', '12': 'Ethiopian montane forests', '13': 'Granitic Seychelles forests', '14': 'Guinean montane forests', '15': 'Knysna-Amatole montane forests', '16': 'Kwazulu Natal-Cape coastal forests', '17': 'Madagascar humid forests', '18': 'Madagascar subhumid forests', '19': 'Maputaland coastal forests and woodlands', '20': 'Mascarene forests', '21': 'Mount Cameroon and Bioko montane forests', '22': 'Niger Delta swamp forests', '23': 'Nigerian lowland forests', '24': 'Northeast Congolian lowland forests', '25': 'Northern Swahili coastal forests', '26': 'Northwest Congolian lowland forests', '27': 'São Tomé, Príncipe, and Annobón forests', '28': 'Southern Swahili coastal forests and woodlands', '29': 'Western Congolian swamp forests', '30': 'Western Guinean lowland forests', '31': 'Cape Verde Islands dry forests', '32': 'Madagascar dry deciduous forests', '33': 'Zambezian evergreen dry forests', '34': 'Angolan mopane woodlands', '35': 'Angolan scarp savanna and woodlands', '36': 'Angolan wet miombo woodlands', '37': 'Ascension scrub and grasslands', '38': 'Central bushveld', '39': 'Central Zambezian wet miombo woodlands', '40': 'Drakensberg Escarpment savanna and thicket', '41': 'Drakensberg grasslands', '42': 'Dry miombo woodlands', '43': 'East Sudanian savanna', '44': 'Guinean forest-savanna', '45': 'Horn of Africa xeric bushlands', '46': 'Itigi-Sumbu thicket', '47': 'Kalahari Acacia woodlands', '48': 'Limpopo lowveld', '49': 'Mandara Plateau woodlands', '50': 'Masai xeric grasslands and shrublands', '51': 'Northern Acacia-Commiphora bushlands and thickets', '52': 'Northern Congolian Forest-Savanna', '53': 'Sahelian Acacia savanna', '54': 'Serengeti volcanic grasslands', '55': 'Somali Acacia-Commiphora bushlands and thickets', '56': 'South Arabian fog woodlands, shrublands, and dune', '57': 'Southern Acacia-Commiphora bushlands and thickets', '58': 'Southern Congolian forest-savanna', '59': 'Southwest Arabian montane woodlands and grasslands', '60': 'St. Helena scrub and woodlands', '61': 'Victoria Basin forest-savanna', '62': 'West Sudanian savanna', '63': 'Western Congolian forest-savanna', '64': 'Zambezian Baikiaea woodlands', '65': 'Zambezian mopane woodlands', '66': 'Zambezian-Limpopo mixed woodlands', '67': 'Amsterdam-Saint Paul Islands temperate grasslands', '68': 'Tristan Da Cunha-Gough Islands shrub and grasslands', '69': 'East African halophytics', '70': 'Etosha Pan halophytics', '71': 'Inner Niger Delta flooded savanna', '72': 'Lake Chad flooded savanna', '73': 'Makgadikgadi halophytics', '74': 'Sudd flooded grasslands', '75': 'Zambezian coastal flooded savanna', '76': 'Zambezian flooded grasslands', '77': 'Angolan montane forest-grassland', '78': 'East African montane moorlands', '79': 'Ethiopian montane grasslands and woodlands', '80': 'Ethiopian montane moorlands', '81': 'Highveld grasslands', '82': 'Jos Plateau forest-grassland', '83': 'Madagascar ericoid thickets', '84': 'Mulanje Montane forest-grassland', '85': 'Nyanga-Chimanimani Montane forest-grassland', '86': 'Rwenzori-Virunga montane moorlands', '87': 'Southern Rift Montane forest-grassland', '88': 'Albany thickets', '89': 'Fynbos shrubland', '90': 'Renosterveld shrubland', '91': 'Aldabra Island xeric scrub', '92': 'Djibouti xeric shrublands', '93': 'Eritrean coastal desert', '94': 'Gariep Karoo', '95': 'Hobyo grasslands and shrublands', '96': 'Ile Europa and Bassas da India xeric scrub', '97': 'Kalahari xeric savanna', '98': 'Kaokoveld desert', '99': 'Madagascar spiny thickets', '100': 'Madagascar succulent woodlands', '101': 'Nama Karoo shrublands', '102': 'Namaqualand-Richtersveld steppe', '103': 'Namib Desert', '104': 'Namibian savanna woodlands', '105': 'Socotra Island xeric shrublands', '106': 'Somali montane xeric woodlands', '107': 'Southwest Arabian coastal xeric shrublands', '108': 'Southwest Arabian Escarpment shrublands and woodlands', '109': 'Southwest Arabian highland xeric scrub', '110': 'Succulent Karoo xeric shrublands', '111': 'Central African mangroves', '112': 'East African mangroves', '113': 'Guinean mangroves', '114': 'Madagascar mangroves', '115': 'Red Sea mangroves', '116': 'Southern Africa mangroves', '117': 'Adelie Land tundra', '118': 'Central South Antarctic Peninsula tundra', '119': 'Dronning Maud Land tundra', '120': 'East Antarctic tundra', '121': 'Ellsworth Land tundra', '122': 'Ellsworth Mountains tundra', '123': 'Enderby Land tundra', '124': 'Marie Byrd Land tundra', '125': 'North Victoria Land tundra', '126': 'Northeast Antarctic Peninsula tundra', '127': 'Northwest Antarctic Peninsula tundra', '128': 'Prince Charles Mountains tundra', '129': 'Scotia Sea Islands tundra', '130': 'South Antarctic Peninsula tundra', '131': 'South Orkney Islands tundra', '132': 'South Victoria Land tundra', '133': 'Southern Indian Ocean Islands tundra', '134': 'Transantarctic Mountains tundra', '135': 'Admiralty Islands lowland rain forests', '136': 'Banda Sea Islands moist deciduous forests', '137': 'Biak-Numfoor rain forests', '138': 'Buru rain forests', '139': 'Central Range Papuan montane rain forests', '140': 'Halmahera rain forests', '141': 'Huon Peninsula montane rain forests', '142': 'Lord Howe Island subtropical forests', '143': 'Louisiade Archipelago rain forests', '144': 'New Britain-New Ireland lowland rain forests', '145': 'New Britain-New Ireland montane rain forests', '146': 'New Caledonia rain forests', '147': 'Norfolk Island subtropical forests', '148': 'Northern New Guinea lowland rain and freshwater swamp forests', '149': 'Northern New Guinea montane rain forests', '150': 'Queensland tropical rain forests', '151': 'Seram rain forests', '152': 'Solomon Islands rain forests', '153': 'Southeast Papuan rain forests', '154': 'Southern New Guinea freshwater swamp forests', '155': 'Southern New Guinea lowland rain forests', '156': 'Sulawesi lowland rain forests', '157': 'Sulawesi montane rain forests', '158': 'Trobriand Islands rain forests', '159': 'Vanuatu rain forests', '160': 'Vogelkop montane rain forests', '161': 'Vogelkop-Aru lowland rain forests', '162': 'Yapen rain forests', '163': 'Lesser Sundas deciduous forests', '164': 'New Caledonia dry forests', '165': 'Sumba deciduous forests', '166': 'Timor and Wetar deciduous forests', '167': 'Chatham Island temperate forests', '168': 'Eastern Australian temperate forests', '169': 'Fiordland temperate forests', '170': 'Nelson Coast temperate forests', '171': 'New Zealand North Island temperate forests', '172': 'New Zealand South Island temperate forests', '173': 'Northland temperate kauri forests', '174': 'Rakiura Island temperate forests', '175': 'Richmond temperate forests', '176': 'Southeast Australia temperate forests', '177': 'Tasmanian Central Highland forests', '178': 'Tasmanian temperate forests', '179': 'Tasmanian temperate rain forests', '180': 'Westland temperate forests', '181': 'Arnhem Land tropical savanna', '182': 'Brigalow tropical savanna', '183': 'Cape York Peninsula tropical savanna', '184': 'Carpentaria tropical savanna', '185': 'Einasleigh upland savanna', '186': 'Kimberly tropical savanna', '187': 'Mitchell Grass Downs', '188': 'Trans Fly savanna and grasslands', '189': 'Victoria Plains tropical savanna', '190': 'Canterbury-Otago tussock grasslands', '191': 'Eastern Australia mulga shrublands', '192': 'Southeast Australia temperate savanna', '193': 'Australian Alps montane grasslands', '194': 'New Zealand South Island montane grasslands', '195': 'Papuan Central Range sub-alpine grasslands', '196': 'Antipodes Subantarctic Islands tundra', '197': 'Coolgardie woodlands', '198': 'Esperance mallee', '199': 'Eyre and York mallee', '200': 'Flinders-Lofty montane woodlands', '201': 'Hampton mallee and woodlands', '202': 'Jarrah-Karri forest and shrublands', '203': 'Murray-Darling woodlands and mallee', '204': 'Naracoorte woodlands', '205': 'Southwest Australia savanna', '206': 'Southwest Australia woodlands', '207': 'Carnarvon xeric shrublands', '208': 'Central Ranges xeric scrub', '209': 'Gibson desert', '210': 'Great Sandy-Tanami desert', '211': 'Great Victoria desert', '212': 'Nullarbor Plains xeric shrublands', '213': 'Pilbara shrublands', '214': 'Simpson desert', '215': 'Tirari-Sturt stony desert', '216': 'Western Australian Mulga shrublands', '217': 'New Guinea mangroves', '218': 'Andaman Islands rain forests', '219': 'Borneo lowland rain forests', '220': 'Borneo montane rain forests', '221': 'Borneo peat swamp forests', '222': 'Brahmaputra Valley semi-evergreen forests', '223': 'Cardamom Mountains rain forests', '224': 'Chao Phraya freshwater swamp forests', '225': 'Chao Phraya lowland moist deciduous forests', '226': 'Chin Hills-Arakan Yoma montane forests', '227': 'Christmas and Cocos Islands tropical forests', '228': 'East Deccan moist deciduous forests', '229': 'Eastern Java-Bali montane rain forests', '230': 'Eastern Java-Bali rain forests', '231': 'Greater Negros-Panay rain forests', '232': 'Hainan Island monsoon rain forests', '233': 'Himalayan subtropical broadleaf forests', '234': 'Irrawaddy freshwater swamp forests', '235': 'Irrawaddy moist deciduous forests', '236': 'Jian Nan subtropical evergreen forests', '237': 'Kayah-Karen montane rain forests', '238': 'Lower Gangetic Plains moist deciduous forests', '239': 'Luang Prabang montane rain forests', '240': 'Luzon montane rain forests', '241': 'Luzon rain forests', '242': 'Malabar Coast moist forests', '243': 'Maldives-Lakshadweep-Chagos Archipelago tropical moist forests', '244': 'Meghalaya subtropical forests', '245': 'Mentawai Islands rain forests', '246': 'Mindanao montane rain forests', '247': 'Mindanao-Eastern Visayas rain forests', '248': 'Mindoro rain forests', '249': 'Mizoram-Manipur-Kachin rain forests', '250': 'Myanmar coastal rain forests', '251': 'Nansei Islands subtropical evergreen forests', '252': 'Nicobar Islands rain forests', '253': 'North Western Ghats moist deciduous forests', '254': 'North Western Ghats montane rain forests', '255': 'Northern Annamites rain forests', '256': 'Northern Indochina subtropical forests', '257': 'Northern Khorat Plateau moist deciduous forests', '258': 'Northern Thailand-Laos moist deciduous forests', '259': 'Northern Triangle subtropical forests', '260': 'Northern Vietnam lowland rain forests', '261': 'Orissa semi-evergreen forests', '262': 'Palawan rain forests', '263': 'Peninsular Malaysian montane rain forests', '264': 'Peninsular Malaysian peat swamp forests', '265': 'Peninsular Malaysian rain forests', '266': 'Red River freshwater swamp forests', '267': 'South China Sea Islands', '268': 'South China-Vietnam subtropical evergreen forests', '269': 'South Taiwan monsoon rain forests', '270': 'South Western Ghats moist deciduous forests', '271': 'South Western Ghats montane rain forests', '272': 'Southern Annamites montane rain forests', '273': 'Southwest Borneo freshwater swamp forests', '274': 'Sri Lanka lowland rain forests', '275': 'Sri Lanka montane rain forests', '276': 'Sulu Archipelago rain forests', '277': 'Sumatran freshwater swamp forests', '278': 'Sumatran lowland rain forests', '279': 'Sumatran montane rain forests', '280': 'Sumatran peat swamp forests', '281': 'Sundaland heath forests', '282': 'Sundarbans freshwater swamp forests', '283': 'Taiwan subtropical evergreen forests', '284': 'Tenasserim-South Thailand semi-evergreen rain forests', '285': 'Tonle Sap freshwater swamp forests', '286': 'Tonle Sap-Mekong peat swamp forests', '287': 'Upper Gangetic Plains moist deciduous forests', '288': 'Western Java montane rain forests', '289': 'Western Java rain forests', '290': 'Central Deccan Plateau dry deciduous forests', '291': 'Central Indochina dry forests', '292': 'Chhota-Nagpur dry deciduous forests', '293': 'East Deccan dry-evergreen forests', '294': 'Irrawaddy dry forests', '295': 'Khathiar-Gir dry deciduous forests', '296': 'Narmada Valley dry deciduous forests', '297': 'North Deccan dry deciduous forests', '298': 'South Deccan Plateau dry deciduous forests', '299': 'Southeast Indochina dry evergreen forests', '300': 'Southern Vietnam lowland dry forests', '301': 'Sri Lanka dry-zone dry evergreen forests', '302': 'Himalayan subtropical pine forests', '303': 'Luzon tropical pine forests', '304': 'Northeast India-Myanmar pine forests', '305': 'Sumatran tropical pine forests', '306': 'Eastern Himalayan broadleaf forests', '307': 'Northern Triangle temperate forests', '308': 'Western Himalayan broadleaf forests', '309': 'Eastern Himalayan subalpine conifer forests', '310': 'Western Himalayan subalpine conifer forests', '311': 'Terai-Duar savanna and grasslands', '312': 'Rann of Kutch seasonal salt marsh', '313': 'Kinabalu montane alpine meadows', '314': 'Aravalli west thorn scrub forests', '315': 'Deccan thorn scrub forests', '316': 'Godavari-Krishna mangroves', '317': 'Indus Valley desert', '318': 'Thar desert', '319': 'Indochina mangroves', '320': 'Indus River Delta-Arabian Sea mangroves', '321': 'Myanmar Coast mangroves', '322': 'Sunda Shelf mangroves', '323': 'Sundarbans mangroves', '324': 'Sonoran-Sinaloan subtropical dry forest', '325': 'Bermuda subtropical conifer forests', '326': 'Sierra Madre Occidental pine-oak forests', '327': 'Sierra Madre Oriental pine-oak forests', '328': 'Allegheny Highlands forests', '329': 'Appalachian mixed mesophytic forests', '330': 'Appalachian Piedmont forests', '331': 'Appalachian-Blue Ridge forests', '332': 'East Central Texas forests', '333': 'Eastern Canadian Forest-Boreal transition', '334': 'Eastern Great Lakes lowland forests', '335': 'Gulf of St. Lawrence lowland forests', '336': 'Interior Plateau US Hardwood Forests', '337': 'Mississippi lowland forests', '338': 'New England-Acadian forests', '339': 'Northeast US Coastal forests', '340': 'Ozark Highlands mixed forests', '341': 'Ozark Mountain forests', '342': 'Southern Great Lakes forests', '343': 'Upper Midwest US forest-savanna transition', '344': 'Western Great Lakes forests', '345': 'Alberta-British Columbia foothills forests', '346': 'Arizona Mountains forests', '347': 'Atlantic coastal pine barrens', '348': 'Blue Mountains forests', '349': 'British Columbia coastal conifer forests', '350': 'Central British Columbia Mountain forests', '351': 'Central Pacific Northwest coastal forests', '352': 'Central-Southern Cascades Forests', '353': 'Colorado Rockies forests', '354': 'Eastern Cascades forests', '355': 'Fraser Plateau and Basin conifer forests', '356': 'Great Basin montane forests', '357': 'Klamath-Siskiyou forests', '358': 'North Cascades conifer forests', '359': 'Northern California coastal forests', '360': 'Northern Pacific Alaskan coastal forests', '361': 'Northern Rockies conifer forests', '362': 'Okanogan dry forests', '363': 'Piney Woods', '364': 'Puget lowland forests', '365': 'Queen Charlotte Islands conifer forests', '366': 'Sierra Nevada forests', '367': 'South Central Rockies forests', '368': 'Wasatch and Uinta montane forests', '369': 'Alaska Peninsula montane taiga', '370': 'Central Canadian Shield forests', '371': 'Cook Inlet taiga', '372': 'Copper Plateau taiga', '373': 'Eastern Canadian forests', '374': 'Eastern Canadian Shield taiga', '375': 'Interior Alaska-Yukon lowland taiga', '376': 'Mid-Canada Boreal Plains forests', '377': 'Midwest Canadian Shield forests', '378': 'Muskwa-Slave Lake taiga', '379': 'Northern Canadian Shield taiga', '380': 'Northern Cordillera forests', '381': 'Northwest Territories taiga', '382': 'Southern Hudson Bay taiga', '383': 'Watson Highlands taiga', '384': 'Western Gulf coastal grasslands', '385': 'California Central Valley grasslands', '386': 'Canadian Aspen forests and parklands', '387': 'Central US forest-grasslands transition', '388': 'Central Tallgrass prairie', '389': 'Central-Southern US mixed grasslands', '390': 'Cross-Timbers savanna-woodland', '391': 'Edwards Plateau savanna', '392': 'Flint Hills tallgrass prairie', '393': 'Mid-Atlantic US coastal savannas', '394': 'Montana Valley and Foothill grasslands', '395': 'Nebraska Sand Hills mixed grasslands', '396': 'Northern Shortgrass prairie', '397': 'Northern Tallgrass prairie', '398': 'Palouse prairie', '399': 'Southeast US conifer savannas', '400': 'Southeast US mixed woodlands and savannas', '401': 'Texas blackland prairies', '402': 'Western shortgrass prairie', '403': 'Willamette Valley oak savanna', '404': 'Ahklun and Kilbuck Upland Tundra', '405': 'Alaska-St. Elias Range tundra', '406': 'Aleutian Islands tundra', '407': 'Arctic coastal tundra', '408': 'Arctic foothills tundra', '409': 'Beringia lowland tundra', '410': 'Beringia upland tundra', '411': 'Brooks-British Range tundra', '412': 'Canadian High Arctic tundra', '413': 'Canadian Low Arctic tundra', '414': 'Canadian Middle Arctic Tundra', '415': 'Davis Highlands tundra', '416': 'Interior Yukon-Alaska alpine tundra', '417': 'Kalaallit Nunaat Arctic steppe', '418': 'Kalaallit Nunaat High Arctic tundra', '419': 'Ogilvie-MacKenzie alpine tundra', '420': 'Pacific Coastal Mountain icefields and tundra', '421': 'Torngat Mountain tundra', '422': 'California coastal sage and chaparral', '423': 'California interior chaparral and woodlands', '424': 'California montane chaparral and woodlands', '425': 'Santa Lucia Montane Chaparral and Woodlands', '426': 'Baja California desert', '427': 'Central Mexican matorral', '428': 'Chihuahuan desert', '429': 'Colorado Plateau shrublands', '430': 'Great Basin shrub steppe', '431': 'Gulf of California xeric scrub', '432': 'Meseta Central matorral', '433': 'Mojave desert', '434': 'Snake-Columbia shrub steppe', '435': 'Sonoran desert', '436': 'Tamaulipan matorral', '437': 'Tamaulipan mezquital', '438': 'Wyoming Basin shrub steppe', '439': 'Alto Paraná Atlantic forests', '440': 'Araucaria moist forests', '441': 'Atlantic Coast restingas', '442': 'Bahia coastal forests', '443': 'Bahia interior forests', '444': 'Bolivian Yungas', '445': 'Caatinga Enclaves moist forests', '446': 'Caqueta moist forests', '447': 'Catatumbo moist forests', '448': 'Cauca Valley montane forests', '449': 'Cayos Miskitos-San Andrés and Providencia moist forests', '450': 'Central American Atlantic moist forests', '451': 'Central American montane forests', '452': 'Chiapas montane forests', '453': 'Chimalapas montane forests', '454': 'Chocó-Darién moist forests', '455': 'Cocos Island moist forests', '456': 'Cordillera La Costa montane forests', '457': 'Cordillera Oriental montane forests', '458': 'Costa Rican seasonal moist forests', '459': 'Cuban moist forests', '460': 'Eastern Cordillera Real montane forests', '461': 'Eastern Panamanian montane forests', '462': 'Fernando de Noronha-Atol das Rocas moist forests', '463': 'Guianan freshwater swamp forests', '464': 'Guianan Highlands moist forests', '465': 'Guianan lowland moist forests', '466': 'Guianan piedmont moist forests', '467': 'Gurupa várzea', '468': 'Hispaniolan moist forests', '469': 'Iquitos várzea', '470': 'Isthmian-Atlantic moist forests', '471': 'Isthmian-Pacific moist forests', '472': 'Jamaican moist forests', '473': 'Japurá-Solimões-Negro moist forests', '474': 'Juruá-Purus moist forests', '475': 'Leeward Islands moist forests', '476': 'Madeira-Tapajós moist forests', '477': 'Magdalena Valley montane forests', '478': 'Magdalena-Urabá moist forests', '479': 'Marañón dry forests', '480': 'Marajó várzea', '481': 'Mato Grosso tropical dry forests', '482': 'Monte Alegre várzea', '483': 'Napo moist forests', '484': 'Negro-Branco moist forests', '485': 'Northeast Brazil restingas', '486': 'Northwest Andean montane forests', '487': 'Oaxacan montane forests', '488': 'Orinoco Delta swamp forests', '489': 'Pantanos de Centla', '490': 'Pantepui forests and shrublands', '491': 'Pernambuco coastal forests', '492': 'Pernambuco interior forests', '493': 'Peruvian Yungas', '494': 'Petén-Veracruz moist forests', '495': 'Puerto Rican moist forests', '496': 'Purus várzea', '497': 'Purus-Madeira moist forests', '498': 'Rio Negro campinarana', '499': 'Santa Marta montane forests', '500': 'Serra do Mar coastal forests', '501': 'Sierra de los Tuxtlas', '502': 'Sierra Madre de Chiapas moist forests', '503': 'Solimões-Japurá moist forests', '504': 'Southern Andean Yungas', '505': 'Southwest Amazon moist forests', '506': 'Talamancan montane forests', '507': 'Tapajós-Xingu moist forests', '508': 'Tocantins/Pindare moist forests', '509': 'Trindade-Martin Vaz Islands tropical forests', '510': 'Trinidad and Tobago moist forest', '511': 'Uatumã-Trombetas moist forests', '512': 'Ucayali moist forests', '513': 'Venezuelan Andes montane forests', '514': 'Veracruz moist forests', '515': 'Veracruz montane forests', '516': 'Western Ecuador moist forests', '517': 'Windward Islands moist forests', '518': 'Xingu-Tocantins-Araguaia moist forests', '519': 'Yucatán moist forests', '520': 'Apure-Villavicencio dry forests', '521': 'Bajío dry forests', '522': 'Balsas dry forests', '523': 'Bolivian montane dry forests', '524': 'Brazilian Atlantic dry forests', '525': 'Caatinga', '526': 'Cauca Valley dry forests', '527': 'Central American dry forests', '528': 'Chiapas Depression dry forests', '529': 'Chiquitano dry forests', '530': 'Cuban dry forests', '531': 'Ecuadorian dry forests', '532': 'Hispaniolan dry forests', '533': 'Islas Revillagigedo dry forests', '534': 'Jalisco dry forests', '535': 'Jamaican dry forests', '536': 'Lara-Falcón dry forests', '537': 'Lesser Antillean dry forests', '538': 'Magdalena Valley dry forests', '539': 'Maracaibo dry forests', '540': 'Maranhão Babaçu forests', '541': 'Panamanian dry forests', '542': 'Patía valley dry forests', '543': 'Puerto Rican dry forests', '544': 'Sierra de la Laguna dry forests', '545': 'Sinaloan dry forests', '546': 'Sinú Valley dry forests', '547': 'Southern Pacific dry forests', '548': 'Trinidad and Tobago dry forest', '549': 'Tumbes-Piura dry forests', '550': 'Veracruz dry forests', '551': 'Yucatán dry forests', '552': 'Bahamian pineyards', '553': 'Central American pine-oak forests', '554': 'Cuban pine forests', '555': 'Hispaniolan pine forests', '556': 'Sierra de la Laguna pine-oak forests', '557': 'Sierra Madre de Oaxaca pine-oak forests', '558': 'Sierra Madre del Sur pine-oak forests', '559': 'Trans-Mexican Volcanic Belt pine-oak forests', '560': 'Juan Fernández Islands temperate forests', '561': 'Magellanic subpolar forests', '562': 'San Félix-San Ambrosio Islands temperate forests', '563': 'Valdivian temperate forests', '564': 'Belizian pine savannas', '565': 'Beni savanna', '566': 'Campos Rupestres montane savanna', '567': 'Cerrado', '568': 'Clipperton Island shrub and grasslands', '569': 'Dry Chaco', '570': 'Guianan savanna', '571': 'Humid Chaco', '572': 'Llanos', '573': 'Miskito pine forests', '574': 'Uruguayan savanna', '575': 'Espinal', '576': 'Humid Pampas', '577': 'Low Monte', '578': 'Patagonian steppe', '579': 'Cuban wetlands', '580': 'Enriquillo wetlands', '581': 'Everglades flooded grasslands', '582': 'Guayaquil flooded grasslands', '583': 'Orinoco wetlands', '584': 'Pantanal', '585': 'Paraná flooded savanna', '586': 'Southern Cone Mesopotamian savanna', '587': 'Central Andean dry puna', '588': 'Central Andean puna', '589': 'Central Andean wet puna', '590': 'Cordillera Central páramo', '591': 'Cordillera de Merida páramo', '592': 'High Monte', '593': 'Northern Andean páramo', '594': 'Santa Marta páramo', '595': 'Southern Andean steppe', '596': 'Chilean Matorral', '597': 'Araya and Paria xeric scrub', '598': 'Atacama desert', '599': 'Caribbean shrublands', '600': 'Cuban cactus scrub', '601': 'Galápagos Islands xeric scrub', '602': 'Guajira-Barranquilla xeric scrub', '603': 'La Costa xeric shrublands', '604': 'Malpelo Island xeric scrub', '605': 'Motagua Valley thornscrub', '606': 'Paraguaná xeric scrub', '607': 'San Lucan xeric scrub', '608': 'Sechura desert', '609': 'St. Peter and St. Paul Rocks', '610': 'Tehuacán Valley matorral', '611': 'Amazon-Orinoco-Southern Caribbean mangroves', '612': 'Bahamian-Antillean mangroves', '613': 'Mesoamerican Gulf-Caribbean mangroves', '614': 'Northern Mesoamerican Pacific mangroves', '615': 'South American Pacific mangroves', '616': 'Southern Atlantic Brazilian mangroves', '617': 'Southern Mesoamerican Pacific mangroves', '618': 'Carolines tropical moist forests', '619': 'Central Polynesian tropical moist forests', '620': 'Cook Islands tropical moist forests', '621': 'Eastern Micronesia tropical moist forests', '622': 'Fiji tropical moist forests', '623': "Hawai'i tropical moist forests", '624': 'Kermadec Islands subtropical moist forests', '625': 'Marquesas tropical moist forests', '626': 'Ogasawara subtropical moist forests', '627': 'Palau tropical moist forests', '628': 'Rapa Nui and Sala y Gómez subtropical forests', '629': 'Samoan tropical moist forests', '630': 'Society Islands tropical moist forests', '631': 'Tongan tropical moist forests', '632': 'Tuamotu tropical moist forests', '633': 'Tubuai tropical moist forests', '634': 'Western Polynesian tropical moist forests', '635': 'Fiji tropical dry forests', '636': "Hawai'i tropical dry forests", '637': 'Marianas tropical dry forests', '638': 'Yap tropical dry forests', '639': "Hawai'i tropical high shrublands", '640': "Hawai'i tropical low shrublands", '641': "Northwest Hawai'i scrub", '642': 'Guizhou Plateau broadleaf and mixed forests', '643': 'Yunnan Plateau subtropical evergreen forests', '644': 'Appenine deciduous montane forests', '645': 'Azores temperate mixed forests', '646': 'Balkan mixed forests', '647': 'Baltic mixed forests', '648': 'Cantabrian mixed forests', '649': 'Caspian Hyrcanian mixed forests', '650': 'Caucasus mixed forests', '651': 'Celtic broadleaf forests', '652': 'Central Anatolian steppe and woodlands', '653': 'Central China Loess Plateau mixed forests', '654': 'Central European mixed forests', '655': 'Central Korean deciduous forests', '656': 'Changbai Mountains mixed forests', '657': 'Changjiang Plain evergreen forests', '658': 'Crimean Submediterranean forest complex', '659': 'Daba Mountains evergreen forests', '660': 'Dinaric Mountains mixed forests', '661': 'East European forest steppe', '662': 'Eastern Anatolian deciduous forests', '663': 'English Lowlands beech forests', '664': 'European Atlantic mixed forests', '665': 'Euxine-Colchic broadleaf forests', '666': 'Hokkaido deciduous forests', '667': 'Huang He Plain mixed forests', '668': 'Madeira evergreen forests', '669': 'Manchurian mixed forests', '670': 'Nihonkai evergreen forests', '671': 'Nihonkai montane deciduous forests', '672': 'North Atlantic moist mixed forests', '673': 'Northeast China Plain deciduous forests', '674': 'Pannonian mixed forests', '675': 'Po Basin mixed forests', '676': 'Pyrenees conifer and mixed forests', '677': 'Qin Ling Mountains deciduous forests', '678': 'Rodope montane mixed forests', '679': 'Sarmatic mixed forests', '680': 'Sichuan Basin evergreen broadleaf forests', '681': 'Southern Korea evergreen forests', '682': 'Taiheiyo evergreen forests', '683': 'Taiheiyo montane deciduous forests', '684': 'Tarim Basin deciduous forests and steppe', '685': 'Ussuri broadleaf and mixed forests', '686': 'Western European broadleaf forests', '687': 'Western Siberian hemiboreal forests', '688': 'Zagros Mountains forest steppe', '689': 'Alps conifer and mixed forests', '690': 'Altai montane forest and forest steppe', '691': 'Caledon conifer forests', '692': 'Carpathian montane forests', '693': 'Da Hinggan-Dzhagdy Mountains conifer forests', '694': 'East Afghan montane conifer forests', '695': 'Elburz Range forest steppe', '696': 'Helanshan montane conifer forests', '697': 'Hengduan Mountains subalpine conifer forests', '698': 'Hokkaido montane conifer forests', '699': 'Honshu alpine conifer forests', '700': 'Khangai Mountains conifer forests', '701': 'Mediterranean conifer and mixed forests', '702': 'Northeast Himalayan subalpine conifer forests', '703': 'Northern Anatolian conifer and deciduous forests', '704': 'Nujiang Langcang Gorge alpine conifer and mixed forests', '705': 'Qilian Mountains conifer forests', '706': 'Qionglai-Minshan conifer forests', '707': 'Sayan montane conifer forests', '708': 'Scandinavian coastal conifer forests', '709': 'Tian Shan montane conifer forests', '710': 'East Siberian taiga', '711': 'Iceland boreal birch forests and alpine tundra', '712': 'Kamchatka taiga', '713': 'Kamchatka-Kurile meadows and sparse forests', '714': 'Northeast Siberian taiga', '715': 'Okhotsk-Manchurian taiga', '716': 'Sakhalin Island taiga', '717': 'Scandinavian and Russian taiga', '718': 'Trans-Baikal conifer forests', '719': 'Urals montane forest and taiga', '720': 'West Siberian taiga', '721': 'Alai-Western Tian Shan steppe', '722': 'Al-Hajar foothill xeric woodlands and shrublands', '723': 'Al-Hajar montane woodlands and shrublands', '724': 'Altai steppe and semi-desert', '725': 'Central Anatolian steppe', '726': 'Daurian forest steppe', '727': 'Eastern Anatolian montane steppe', '728': 'Emin Valley steppe', '729': 'Faroe Islands boreal grasslands', '730': 'Gissaro-Alai open woodlands', '731': 'Kazakh forest steppe', '732': 'Kazakh steppe', '733': 'Kazakh upland steppe', '734': 'Mongolian-Manchurian grassland', '735': 'Pontic steppe', '736': 'Sayan Intermontane steppe', '737': 'Selenge-Orkhon forest steppe', '738': 'South Siberian forest steppe', '739': 'Syrian xeric grasslands and shrublands', '740': 'Tian Shan foothill arid steppe', '741': 'Amur meadow steppe', '742': 'Bohai Sea saline meadow', '743': 'Nenjiang River grassland', '744': 'Nile Delta flooded savanna', '745': 'Saharan halophytics', '746': 'Suiphun-Khanka meadows and forest meadows', '747': 'Tigris-Euphrates alluvial salt marsh', '748': 'Yellow Sea saline meadow', '749': 'Altai alpine meadow and tundra', '750': 'Central Tibetan Plateau alpine steppe', '751': 'Eastern Himalayan alpine shrub and meadows', '752': 'Ghorat-Hazarajat alpine meadow', '753': 'Hindu Kush alpine meadow', '754': 'Karakoram-West Tibetan Plateau alpine steppe', '755': 'Khangai Mountains alpine meadow', '756': 'Kopet Dag woodlands and forest steppe', '757': 'Kuh Rud and Eastern Iran montane woodlands', '758': 'Mediterranean High Atlas juniper steppe', '759': 'North Tibetan Plateau-Kunlun Mountains alpine desert', '760': 'Northwestern Himalayan alpine shrub and meadows', '761': 'Ordos Plateau steppe', '762': 'Pamir alpine desert and tundra', '763': 'Qilian Mountains subalpine meadows', '764': 'Sayan alpine meadows and tundra', '765': 'Southeast Tibet shrublands and meadows', '766': 'Sulaiman Range alpine meadows', '767': 'Tian Shan montane steppe and meadows', '768': 'Tibetan Plateau alpine shrublands and meadows', '769': 'Western Himalayan alpine shrub and meadows', '770': 'Yarlung Zanbo arid steppe', '771': 'Cherskii-Kolyma mountain tundra', '772': 'Chukchi Peninsula tundra', '773': 'Kamchatka tundra', '774': 'Kola Peninsula tundra', '775': 'Northeast Siberian coastal tundra', '776': 'Northwest Russian-Novaya Zemlya tundra', '777': 'Novosibirsk Islands Arctic desert', '778': 'Russian Arctic desert', '779': 'Russian Bering tundra', '780': 'Scandinavian Montane Birch forest and grasslands', '781': 'Taimyr-Central Siberian tundra', '782': 'Trans-Baikal Bald Mountain tundra', '783': 'Wrangel Island Arctic desert', '784': 'Yamal-Gydan tundra', '785': 'Aegean and Western Turkey sclerophyllous and mixed forests', '786': 'Anatolian conifer and deciduous mixed forests', '787': 'Canary Islands dry woodlands and forests', '788': 'Corsican montane broadleaf and mixed forests', '789': 'Crete Mediterranean forests', '790': 'Cyprus Mediterranean forests', '791': 'Eastern Mediterranean conifer-broadleaf forests', '792': 'Iberian conifer forests', '793': 'Iberian sclerophyllous and semi-deciduous forests', '794': 'Illyrian deciduous forests', '795': 'Italian sclerophyllous and semi-deciduous forests', '796': 'Mediterranean Acacia-Argania dry woodlands and succulent thickets', '797': 'Mediterranean dry woodlands and steppe', '798': 'Mediterranean woodlands and forests', '799': 'Northeast Spain and Southern France Mediterranean forests', '800': 'Northwest Iberian montane forests', '801': 'Pindus Mountains mixed forests', '802': 'South Apennine mixed montane forests', '803': 'Southeast Iberian shrubs and woodlands', '804': 'Southern Anatolian montane conifer and deciduous forests', '805': 'Southwest Iberian Mediterranean sclerophyllous and mixed forests', '806': 'Tyrrhenian-Adriatic sclerophyllous and mixed forests', '807': 'Afghan Mountains semi-desert', '808': 'Alashan Plateau semi-desert', '809': 'Arabian desert', '810': 'Arabian sand desert', '811': 'Arabian-Persian Gulf coastal plain desert', '812': 'Azerbaijan shrub desert and steppe', '813': 'Badghyz and Karabil semi-desert', '814': 'Baluchistan xeric woodlands', '815': 'Caspian lowland desert', '816': 'Central Afghan Mountains xeric woodlands', '817': 'Central Asian northern desert', '818': 'Central Asian riparian woodlands', '819': 'Central Asian southern desert', '820': 'Central Persian desert basins', '821': 'East Arabian fog shrublands and sand desert', '822': 'East Sahara Desert', '823': 'East Saharan montane xeric woodlands', '824': 'Eastern Gobi desert steppe', '825': 'Gobi Lakes Valley desert steppe', '826': 'Great Lakes Basin desert steppe', '827': 'Junggar Basin semi-desert', '828': 'Kazakh semi-desert', '829': 'Kopet Dag semi-desert', '830': 'Mesopotamian shrub desert', '831': 'North Arabian desert', '832': 'North Arabian highland shrublands', '833': 'North Saharan Xeric Steppe and Woodland', '834': 'Paropamisus xeric woodlands', '835': 'Qaidam Basin semi-desert', '836': 'Red Sea coastal desert', '837': 'Red Sea-Arabian Desert shrublands', '838': 'Registan-North Pakistan sandy desert', '839': 'Saharan Atlantic coastal desert', '840': 'South Arabian plains and plateau desert', '841': 'South Iran Nubo-Sindian desert and semi-desert', '842': 'South Sahara desert', '843': 'Taklimakan desert', '844': 'Tibesti-Jebel Uweinat montane xeric woodlands', '845': 'West Sahara desert', '846': 'West Saharan montane xeric woodlands'} biomeNum_2_biomeName = { '1': 'Tropical and Subtropical Moist Broadleaf Forests', '2': 'Tropical and Subtropical Dry Broadleaf Forests', '3': 'Tropical and Subtropical Coniferous Forests', '4': 'Temperate Broadleaf and Mixed Forests', '5': 'Temperate Conifer Forests', '6': 'Boreal Forests/Taiga', '7': 'Tropical and Subtropical Grasslands, Savannas and Shrublands', '8': 'Temperate Grasslands, Savannas and Shrublands', '9': 'Flooded Grasslands and Savannas', '10': 'Montane Grasslands and Shrublands', '11': 'Tundra', '12': 'Mediterranean Forests, Woodlands and Scrub', '13': 'Deserts and Xeric Shrublands', '14': 'Mangroves'} ###Output _____no_output_____
notebooks/tils-project.ipynb
###Markdown TILs-projectThis notebook is a copy of `4. Investestigating Survival/Recurrance` with changes as to match the endpoints studied by Felicia Leion. ###Code import pandas as pd from itertools import combinations import regex as re import seaborn as sns import numpy as np import matplotlib.pyplot as plt import numpy as np from numba import jit from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt sns.set() sns.set_style("whitegrid", {'axes.grid' : False}) matplotlib.rcParams['font.family'] = "sans" df_pat = pd.read_excel('../data/tnbc2/256_TNBC__F_LEION_till_arvid.xlsx') df_pat["nodes"] = df_pat["Positive nodes"] df_pat["age"] = df_pat["Age at diagnosis"] df_pat["size"] = df_pat["Size (mm)"] df_pat = df_pat.replace(-0.99, np.NaN) df_pat = df_pat.replace("N/D", np.NaN) df_pat = df_pat.replace("x", np.NaN) #df_pat = df_pat[~df_pat["TILs helsnitt"].isna()] df_pat["treated"] = df_pat["Chemo (schema)"].apply(lambda x: x != "None") df_pat["relapse"] = df_pat["Relapse yes 1 no 0"].astype(np.bool) df_pat["dead"] = df_pat["Dead yes 1 no 0"].astype(np.bool) df_pat["distant_relapse"] = (df_pat["Months_surgery_distant_relapse"] > 0) df_pat["OS"] = ~df_pat["dead"] # Overall Survival df_pat["IDFS"] = ~df_pat["relapse"] # Invasive Disease Free Survival (not relapse) df_pat["DRFI"] = ~df_pat["distant_relapse"] # Distant Relapse Free Survival (not distant relapse) df_pat = df_pat[df_pat["treated"]] df_pat["IDFS"].value_counts() def pat_id_wsi(image_id): try: return int(re.findall(r"\d+", image_id)[0]) except: return np.NaN def pat_id_tma(image_name): block, nr, letter = re.findall(r"Block_(\d).*_(.*)_([A-Z])_", image_name)[0] block_start = [1, 59, 113, 172, 210] start = block_start[int(block)-1] letter = letter.lower() key = np.array([i for i in range(start, start + int(10*12/2)) for n in range(2)]).reshape((10,12)) pat_id = key[int(nr)-1][11 - (ord(letter) - 97)] return pat_id def _tma_id(patient_id): block_start = [1, 59, 113, 172, 210] start = [s for s in block_start if patient_id >= s][-1] block = block_start.index(start) + 1 key = np.array([i for i in range(start, start + int(10*12/2)) for n in range(2)]).reshape((10,12)) Y, X = np.where(key == patient_id) letters = [chr(11 - (x - 97)).upper() for x in X] numbers = list(Y + 1) return block, letters, numbers with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also pass #print(df_wsi.sort_values("TMAid")) #print(df_wsi["TMAid"].value_counts()) from joblib import Memory memory = Memory('./cache/') def extract_features(path): df = pd.read_feather(path) return df def merge_patient_data_wsi(df_wsi, df_pat): df_pat["STR"] = df_pat["TILs helsnitt"] df_wsi["TMAid"] = df_wsi["image_id"].apply(pat_id_wsi) df_mean = df_wsi.groupby("TMAid").mean().reset_index() df_all = pd.merge(df_pat, df_mean, how='left', on=["TMAid"]) return df_all.sort_values("TMAid") def merge_patient_data_tma(df_tma, df_pat): df_pat["STR"] = df_pat["TILs TMA"] df_tma["TMAid"] = df_tma["image_id"].apply(pat_id_tma) df_mean = df_tma.groupby("TMAid").mean().reset_index() df_all = pd.merge(df_pat, df_mean, how='left', on=["TMAid"]) return df_all.sort_values("TMAid") def tma_df(): df_tma = pd.read_feather('./tma_quip2_0.2_5_1.0.feather') df_pat["STR"] = df_pat["TILs TMA"] df_tma["TMAid"] = df_tma["image_id"].apply(pat_id_tma) df_mean = df_tma.groupby("TMAid").mean().reset_index() df_all = pd.merge(df_pat, df_mean, how='left', on=["TMAid"]) df_all = merge_patient_data_tma(df_tma, df_pat) return df_all def wsi_df(): df_wsi = pd.read_feather('./wsi_quip2_0.2_5_1.0_100.feather') df_pat["STR"] = df_pat["TILs helsnitt"] df_wsi["TMAid"] = df_wsi["image_id"].apply(pat_id_wsi) df_mean = df_wsi.groupby("TMAid").mean().reset_index() df_all = pd.merge(df_pat, df_mean, how='left', on=["TMAid"]) df_all = merge_patient_data_wsi(df_wsi, df_pat) return df_all # Agrees with Felicias report df = tma_df() print(df["OS"].value_counts()) print(df["IDFS"].value_counts()) print(df["DRFI"].value_counts()) print() df = wsi_df() print(df["OS"].value_counts()) print(df["IDFS"].value_counts()) print(df["DRFI"].value_counts()) len(df[["IDFS", "n_immune"]]["n_immune"].dropna()) import statsmodels.api as sm from numpy import mean from numpy import std from sklearn.model_selection import StratifiedKFold from sklearn import preprocessing from numpy.linalg import LinAlgError from statsmodels.tools.sm_exceptions import PerfectSeparationError from sklearn.neural_network import MLPClassifier def _results_to_pandas(summary): return pd.read_html(summary.tables[1].as_html(), header=0, index_col=0)[0] def logit(x_train, y_train, x_val, y_val): try: model = sm.Logit(y_train, x_train).fit(disp=False) return model.predict(x_val), model except (LinAlgError, PerfectSeparationError): return np.random.rand(*y_val.shape), None def cross_validation(y, X, model = logit): if len(y.shape) > 1: y = y.iloc[:,0] X = (X-X.mean())/X.std() X = pd.DataFrame(X) X["Intercept"] = 1.0 true, pred, = ([], []) summaries = [] cv_outer = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) for train_val_idx, test_idx in cv_outer.split(X, y): X_train_val, X_test = X.iloc[train_val_idx], X.iloc[test_idx] y_train_val, y_test = y.iloc[train_val_idx], y.iloc[test_idx] cv_inner = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) for train_idx, val_idx in cv_inner.split(X_train_val, y_train_val): x_train, x_val = X_train_val.iloc[train_idx], X_train_val.iloc[val_idx] y_train, y_val = y_train_val.iloc[train_idx], y_train_val.iloc[val_idx] #x_train, y_train = pipeline.fit_resample(x_train, y_train) y_pred, m = model(x_train, y_train, x_val, y_val) true.extend(list(y_val)) pred.extend(list(y_pred)) if m: summaries.append(_results_to_pandas(m.summary())) if summaries: result = sum(summaries) / len(summaries) else: result = None return true, pred, result def cross_validation_test(y, X, model = logit): if len(y.shape) > 1: y = y.iloc[:,0] X = (X-X.mean())/X.std() X["Intercept"] = 1.0 true, pred, = ([], []) summaries = [] cv_outer = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) for train_val_idx, test_idx in cv_outer.split(X, y): X_train_val, X_test = X.iloc[train_val_idx], X.iloc[test_idx] y_train_val, y_test = y.iloc[train_val_idx], y.iloc[test_idx] y_pred, m = model(X_train_val, y_train_val, X_test, y_test) true.extend(list(y_test)) pred.extend(list(y_pred)) if m: summaries.append(_results_to_pandas(m.summary())) if summaries: result = sum(summaries) / len(summaries) else: result = None return true, pred, result from sklearn.metrics import roc_curve, roc_auc_score def plot_roc(df, endpoint, feature, label, ax): df = df[[endpoint, feature]].dropna() n = len(df) true, pred, summary = cross_validation(df[endpoint], df[feature]) auc = round(roc_auc_score(true, pred), 2) fpr, tpr, _ = roc_curve(true, pred) ax.plot(fpr, tpr, label=f"{label} (AUC={auc})", linewidth=4) ax.legend(loc="lower right") wsi = wsi_df() tma = tma_df() fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(12,8), sharex=True, sharey=True) plt.tight_layout() pad = 5 ax = axs[0,0] ax.set_title("OS", size="large") ax.annotate("WSI", xy=(0, 0.5), xytext=(-ax.yaxis.labelpad - pad, 0), xycoords=ax.yaxis.label, textcoords='offset points', size='large', ha='right', va='center') plot_roc(wsi, "OS", "n_immune", "AI-counted TILs", ax) plot_roc(wsi, "OS", "STR", "estimated TILS", ax) ax = axs[1,0] ax.annotate("TMA", xy=(0, 0.5), xytext=(-ax.yaxis.labelpad - pad, 0), xycoords=ax.yaxis.label, textcoords='offset points', size='large', ha='right', va='center') plot_roc(tma, "OS", "n_immune", "AI-counted TILs", ax) plot_roc(tma, "OS", "STR", "estimated TILS", ax) ax = axs[0,1] ax.set_title("DRFI", size="large") plot_roc(wsi, "DRFI", "n_immune", "AI-counted TILs", ax) plot_roc(wsi, "DRFI", "STR", "estimated TILS", ax) ax = axs[1,1] plot_roc(tma, "DRFI", "n_immune", "AI-counted TILs", ax) plot_roc(tma, "DRFI", "STR", "estimated TILS", ax) ax = axs[0,2] ax.set_title("IDFS", size="large") plot_roc(wsi, "IDFS", "n_immune", "AI-counted TILs", ax) plot_roc(wsi, "IDFS", "STR", "estimated TILS", ax) ax = axs[1,2] plot_roc(tma, "IDFS", "n_immune", "AI-counted TILs", ax) plot_roc(tma, "IDFS", "STR", "estimated TILS", ax) from itertools import combinations, chain, product, permutations from tqdm import tqdm from patsy import dmatrices, dmatrix from scipy.stats import pearsonr group = ["distant_relapse"] image_features = set([ "STR", "n_immune", "n_tumor", "tumor_area", "immune_area", 'tumor_k_100', 'immune_k_100', "t_tils_100", "s_tils_100", ]) pat_features = set(['age', 'nodes', "size"]) all_features = image_features.union(pat_features) def label(feature): r = re.findall("\d{1,3}", feature) if feature == "n_immune": return "$N_i$" elif feature == "n_tumor": return "$N_t$" elif feature == "immune_area": return "$A_i$" elif feature == "tumor_area": return "$A_t$" elif feature.startswith("s_tils"): return "$N_{is}(" + r[0] + ")$" elif feature.startswith("t_tils"): return "$N_{it}(" + r[0] + ")$" elif feature.startswith("immune_k"): return "$K_{i}(" + r[0] + ")$" elif feature.startswith("tumor_k"): return "$K_{t}(" + r[0] + ")$" elif feature == "nodes": return "$N_n$" elif feature == "STR": return feature else: return feature.title() pd.options.mode.chained_assignment = None def try_interactions(data, features, target, n_features = [1], test=False): d = [] for f in tqdm(list(chain(*[combinations(features, i) for i in n_features]))): f = list(f) nona = data[f + [target]].dropna() y = nona[target] X = nona[f] if test: true, pred, results = cross_validation_test(y, X, logit) else: true, pred, results = cross_validation(y, X, logit) auc = roc_auc_score(true, pred) fpr, tpr, thresholds = roc_curve(true, pred) d.append({ "formula" : f, "AUC" : auc, "tpr" : tpr, "fpr" : fpr, "thresh" : thresholds, "model" : results, "target" : target }) return pd.DataFrame(d).sort_values("AUC", ascending=False).reset_index() def best_features(df,features, target, n=10): result = [] for f in features: y, X = dmatrices(f"{target} ~ {f}", df, NA_action='drop', return_type='dataframe') true, pred, _ = cross_validation(y, X, logit) auc = roc_auc_score(true, pred) result.append((f, auc)) return [f[0] for f in sorted(result, key = lambda x: x[1], reverse=True)[:n]] def filter_correlated(df, corr_limit = 0.9): corr_matrix = df.corr().abs() upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool)) to_drop = [column for column in upper.columns if any(upper[column] > corr_limit)] return df.drop(to_drop, axis=1) def high_correlation(df, corr_limit): return [(a,b) for a, b in combinations(df.columns, 2) if df[[a,b]].corr().iloc[0,1] > corr_limit] def worse_predictor(df, feature_pairs, target): f = [] for a, b in feature_pairs: f.append(min(a,b, key = lambda x: auc_formula(df, f"{target} ~ {x}"))) return set(f) def auc_formula(data, formula, test=False): y, X = dmatrices(formula, data, NA_action='drop', return_type='dataframe') if test: true, pred, m = cross_validation_test(y, X, logit) else: true, pred, m = cross_validation(y, X, logit) auc = roc_auc_score(true, pred) fpr, tpr, _ = roc_curve(true, pred) return fpr, tpr, auc, m # All single image features test = True n_features = [1] feat = image_features #df_treated = df_all[df_all["treated"]==True] distant_img = try_interactions(df_treated, feat, "distant_relapse", n_features, test=test) local_img = try_interactions(df_treated, feat, "local_relapse", n_features, test=test) dead_img = try_interactions(df_treated, feat, "dead", n_features, test=test) def format_df(df): df["label"] = df["formula"].apply(lambda x: label(x[0])) df["coef"] = df["model"].apply(lambda x: x.iloc[0]["coef"]) df = df.round(2) return df[["label", "AUC", "coef"]].add_prefix(df["target"].iloc[0]+"_") latex = pd.concat([format_df(distant_img), format_df(local_img), format_df(dead_img)], axis=1).to_latex(index=False, escape=False) print(IMAGE_TYPE) print(latex) sns.scatterplot(data=df_all, x="immune_k_100", y="n_immune") plt.xscale('log') plt.yscale('log') # Best features according to validation score test = False features = all_features n_features = range(1,len(all_features)+1) df_treated = df_all[df_all["treated"]] distant_treated = try_interactions(df_treated, features, "distant_relapse", n_features, test=test) local_treated = try_interactions(df_treated,features, "local_relapse", n_features, test=test) dead_treated = try_interactions(df_treated, features, "dead", n_features, test=test) pd.concat([distant_treated, local_treated, dead_treated]).to_pickle(f"combinations_{IMAGE_TYPE}.pickle") # All single patient data predictors test = True n_features = [1] df_treated_pat = df_pat[df_pat["treated"]] distant_pat = try_interactions(df_treated_pat, pat_features, "distant_relapse", n_features, test=test) local_pat = try_interactions(df_treated_pat, pat_features, "local_relapse", n_features, test=test) dead_pat = try_interactions(df_treated_pat, pat_features, "dead", n_features, test=test) latex = pd.concat([format_df(distant_pat), format_df(local_pat), format_df(dead_pat)], axis=1).to_latex(index=False, escape=False) print(latex) def plot_roc(df, df_treated, img_type): r = lambda x: round(x, 2) selected_all = df["formula"].iloc[0] selected_model = df[df["formula"].apply(lambda x: "STR" not in x and not set(x).intersection(pat_features))]["formula"].iloc[0] selected_pat = df[df["formula"].apply(lambda x: not set(x).intersection(image_features))]["formula"].iloc[0] formula_all = f"{df['target'].iloc[0]} ~ -1 + {'+'.join(selected_all)}" formula_model = f"{df['target'].iloc[0]} ~ -1 + {'+'.join(selected_model)}" formula_pat = f"{df['target'].iloc[0]} ~ -1 + {'+'.join(selected_pat)}" formula_str = f"{df['target'].iloc[0]} ~ -1 + STR" _, _, auc_val_all, _ = auc_formula(df_treated, formula_all, test=False) _, _, auc_val_model, _ = auc_formula(df_treated, formula_model, test=False) _, _, auc_val_pat, _ = auc_formula(df_treated, formula_pat, test=False) _, _, auc_val_str, _ = auc_formula(df_treated, formula_str, test=False) print("all", [label(f) for f in selected_all], round(auc_val_all, 2)) print("model", [label(f) for f in selected_model], round(auc_val_model,2 )) print("pat", [label(f) for f in selected_pat], round(auc_val_pat, 2)) print("str", ["STR"], formula_str, round(auc_val_str, 2)) fpr_all, tpr_all, auc_all, res = auc_formula(df_treated, formula_all, test=True) fpr_model, tpr_model, auc_model, res = auc_formula(df_treated, formula_model, test=True) fpr_pat, tpr_pat, auc_pat, res = auc_formula(df_treated, formula_pat, test=True) fpr_str, tpr_str, auc_str, res = auc_formula(df_treated, formula_str, test=True) plt.plot(fpr_model, tpr_model, label=f"Computed metrics ({img_type}), AUC: {r(auc_model)}", linewidth=4) plt.plot(fpr_str, tpr_str, label=f"Estimated stromal TILs ({img_type}), AUC: {r(auc_str)}", linewidth=4) plt.plot(fpr_pat, tpr_pat, label=f"Patient data, AUC: {r(auc_pat)}", linewidth=4) plt.plot(fpr_all, tpr_all, label=f"All features, AUC: {r(auc_all)}", linewidth=5, linestyle=':') plt.ylabel("True positive rate", fontsize=15) plt.xlabel("False positive rate", fontsize=15) plt.legend(fontsize=14, title = "Feature set", loc = "lower right") fig_options = { 'bbox_inches' : 'tight' } IMAGE_TYPE = "WSI" print(IMAGE_TYPE) font_size_title = 16 df = pd.read_pickle(f"./combinations_{IMAGE_TYPE}.pickle") df_treated = pd.read_pickle(f"./df_treated_{IMAGE_TYPE}.pickle") plt.figure(figsize=(8,8)) plt.title(f"ROC Distant relapse from {IMAGE_TYPE}", fontsize=font_size_title) target = "distant_relapse" print(target) plot_roc(df[df["target"] == target], df_treated, IMAGE_TYPE) plt.savefig(f"../docs/roc_{IMAGE_TYPE}_{target}.svg", **fig_options) plt.figure(figsize=(8,8)) plt.title(f"ROC Local relapse from {IMAGE_TYPE}", fontsize=font_size_title) target = "local_relapse" print(target) plot_roc(df[df["target"] == target], df_treated, IMAGE_TYPE) plt.savefig(f"../docs/roc_{IMAGE_TYPE}_{target}.svg", **fig_options) plt.figure(figsize=(8,8)) plt.title(f"ROC Mortality from {IMAGE_TYPE}", fontsize=font_size_title) target = "dead" print(target) plot_roc(df[df["target"] == target], df_treated, IMAGE_TYPE) plt.savefig(f"../docs/roc_{IMAGE_TYPE}_{target}.svg", **fig_options) IMAGE_TYPE = "TMA" print("\n" + IMAGE_TYPE) font_size_title = 16 print(target) df = pd.read_pickle(f"./combinations_{IMAGE_TYPE}.pickle") df_treated = pd.read_pickle(f"./df_treated_{IMAGE_TYPE}.pickle") plt.figure(figsize=(8,8)) plt.title(f"ROC Distant relapse from {IMAGE_TYPE}", fontsize=font_size_title) target = "distant_relapse" print(target) plot_roc(df[df["target"] == target], df_treated, IMAGE_TYPE) plt.savefig(f"../docs/roc_{IMAGE_TYPE}_{target}.svg", **fig_options) plt.figure(figsize=(8,8)) plt.title(f"ROC Local relapse from {IMAGE_TYPE}", fontsize=font_size_title) target = "local_relapse" print(target) plot_roc(df[df["target"] == target], df_treated, IMAGE_TYPE) plt.savefig(f"../docs/roc_{IMAGE_TYPE}_{target}.svg", **fig_options) plt.figure(figsize=(8,8)) plt.title(f"ROC Mortality from {IMAGE_TYPE}", fontsize=font_size_title) target = "dead" plot_roc(df[df["target"] == target], df_treated, IMAGE_TYPE) plt.savefig(f"../docs/roc_{IMAGE_TYPE}_{target}.svg", **fig_options) formula_distant = f"distant_relapse ~ -1 + {distant_treated['formula'].iloc[0]}" formula_local = f"local_relapse ~ -1 + {local_treated['formula'].iloc[0]}" formula_dead = f"dead ~ -1 + {dead_treated['formula'].iloc[0]}" print(formula_distant) print(formula_local) print(formula_dead) def plot_roc(fpr, tpr, **kwargs): sns.lineplot(x=fpr, y=tpr, linewidth=4, estimator=None, **kwargs) plt.xlabel("False positive rate") def legend(df): terms = df["formula"].iloc[0].split('+') plt.legend(loc='lower right', title = f"{'+'.join([label(term) for term in terms])}") plt.figure(figsize=(15, 5)) plt.suptitle("Best predictors using WSIs and patient data", fontsize=16, y=1) plt.tight_layout() matplotlib.rcParams['font.size'] = 20 plt.subplot(131) fpr, tpr, auc, res = auc_formula(df_all[df_all["treated"]], formula_distant, test=True) plot_roc(fpr, tpr, label="Test AUC: " + str(round(auc,2))) fpr, tpr, auc, res = auc_formula(df_all[df_all["treated"]], formula_distant, test=False) plot_roc(fpr, tpr, label="Validation AUC: " + str(round(auc,2))) legend(distant_treated) plt.title("Distant relapse", fontsize=15) plt.ylabel("True positive rate") print("\tDISTANT RELAPSE:") print(res) plt.subplot(132) fpr, tpr, auc, res = auc_formula(df_all[df_all["treated"]], formula_local, test=True) plot_roc(fpr, tpr, label="Test AUC: " + str(round(auc,2))) fpr, tpr, auc, res = auc_formula(df_all[df_all["treated"]], formula_local, test=False) plot_roc(fpr, tpr, label="Validation AUC: " + str(round(auc,2))) legend(local_treated) plt.title("Local relapse", fontsize=15) print("\tLOCAL RELAPSE:") print(res) plt.subplot(133) fpr, tpr, auc, res = auc_formula(df_all[df_all["treated"]], formula_dead, test=True) plot_roc(fpr, tpr, label="Test AUC: " + str(round(auc,2))) fpr, tpr, auc, res = auc_formula(df_all[df_all["treated"]], formula_dead, test=False) plot_roc(fpr, tpr, label="Validation AUC: " + str(round(auc,2))) legend(dead_treated) plt.title("Fatality", fontsize=15) print("\tOVER ALL SURVIVAL:") print(res) plt.savefig("../docs/roc_best_predictors_wsi.svg", bbox_inches='tight') # Without intercept # With intercept plt.figure(figsize=(8,8)) plt.title("Local relapse, 800 tiles") for n, row in df_distant.iloc[0:20].iterrows(): plt.plot(*row["roc"], label=f"{round(row['AUC'],3)} {row['formula']}") plt.legend() plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) def test_samples(df_wsi, formula): d = [] n_max = df_wsi["image_id"].value_counts().min() for n in tqdm(np.logspace(0, np.log10(n_max), num=1000)[::-1]): for i in range(1): df_wsi_sample = df_wsi.groupby("image_id").sample(int(n), replace=False) df = merge_patient_data_wsi(df_wsi_sample, df_pat[df_pat["treated"]]) y, X = dmatrices(formula, df, NA_action = "drop", return_type="dataframe") true, pred, _ = cross_validation(y, X, logit) auc = roc_auc_score(true, pred) tpr, fpr, thresholds = roc_curve(true, pred) d.append({ "Number of samples" : n, "formula" : formula, "AUC" : auc, "roc" : (tpr, fpr), "thresh" : thresholds, }) return pd.DataFrame(d) #results_distant = test_samples(df_wsi, df_distant["formula"].iloc[0]) results_distant = test_samples(df_wsi, "distant_relapse ~ n_immune") results_local = test_samples(df_wsi, "local_relapse ~ n_immune + s_tils_100 + t_tils_100") results_dead = test_samples(df_wsi, "dead ~ n_immune + t_tils_100 + n_tumor") results_distant["Outcome"] = "Distant relapse" results_local["Outcome"] = "Local relapse" results_dead["Outcome"] = "Fatality" df = pd.concat([results_distant, results_local, results_dead]) plt.figure(figsize=(8,8)) sns.scatterplot(data=df, x_jitter=True,y="AUC", x="Number of samples", hue="Outcome", style="Outcome", s=40) plt.xscale('log') plt.xlabel("Number of WSI-samples") plt.title("AUC vs. WSI-sample size", fontsize=16) plt.savefig("../docs/auc_sample_size.svg", **fig_options) plt.xlim((1,600)) results_local = test_samples(df_wsi, df_local["formula"].iloc[0]) plt.figure() sns.boxplot(data=results_distant, y="AUC", x="n_samples") formula = "distant_relapse ~ n_tumor*(tumor_tils1+tumor_cluster)" print(results_distant["formula"].iloc[0]) df_wsi_sample = df_wsi.groupby("image_id").sample(400, replace=False) df = merge_patient_data(df_wsi_sample, df_pat[df_pat["treated"] == 1]) df = df[features + ["distant_relapse"]].replace([np.inf, -np.inf], np.nan).dropna() y, X = dmatrices(formula, df, NA_action="drop") true, pred = cross_validation(y, X, logit) auc = roc_auc_score(true, pred) tpr, fpr, thresholds = roc_curve(true, pred) print(auc) df_all["nodes"].isna().value_counts() import os from shutil import copyfile path = "../data/tnbc_wsi/images/" for image_name in os.listdir(path): pat_id = pat_id_wsi(image_name) if pat_id in df_pat.index and df_pat.loc[pat_id]["treated"]: copyfile(os.path.join(path, image_name), "../data/tnbc_wsi/treated/" + image_name) df_pat["treated"].value_counts() ###Output _____no_output_____
notebooks/02-tuning/01-tune-with-ice.ipynb
###Markdown Import data ###Code X = pd.read_csv(processed_root('cervical_cancer_risks/X.csv')) y = pd.read_csv(processed_root('cervical_cancer_risks/y.csv'))['Biopsy'] ###Output _____no_output_____ ###Markdown Train-validation split ###Code X_train, X_val, y_train, y_val = train_test_split(X, y, train_size = 0.9, test_size = 0.1, random_state = 42) ###Output _____no_output_____ ###Markdown Functions ###Code def brier_score(y_pred, y_true): return np.mean(y_pred - y_val)**2 ###Output _____no_output_____ ###Markdown Base model ###Code rf = RandomForestClassifier(n_estimators = 500) rf.fit(X_train, y_train) y_pred = rf.predict(X_val) print(f"Brier score: {brier_score(y_pred, y_val):.5f}") np.mean(y_pred==y_val) ###Output _____no_output_____ ###Markdown Tune model ###Code ice = ICE("binary", time = False) feature = "Age" max_depths = [i for i in range(1,50,1)] val_loss = [] val_accuracy = [] rf_fi = [] ice_fi = [] ice_fi_normalized = [] for md in max_depths: rf = RandomForestClassifier(max_depth = md, n_estimators = 500) rf.fit(X_train, y_train) # val loss y_pred = rf.predict_proba(X_val)[:,1] val_loss.append(brier_score(y_pred, y_val)) # val accuracy y_pred = rf.predict(X_val) val_accuracy.append(np.mean(y_pred == y_val)) # rf feature importance rf_fi.append(rf.feature_importances_[X_train.columns == feature].item()) # ice feature impact ice.fit_single_feature(X, rf, "Age") fis = ice.get_feature_impact("Age") ice_fi.append(fis['fi']) ice_fi_normalized.append(fis['fi_normalized']) tune_results = pd.DataFrame({'max_depth':max_depths, 'brier':val_loss, 'accuracy':val_accuracy, 'rf_fi':rf_fi, 'ice_fi':ice_fi, 'ice_fi_normalized':ice_fi_normalized}) fig, ax = plt.subplots() ax.plot('max_depth', 'rf_fi', data = tune_results, label = 'Random Forest FI') ax.plot('max_depth', 'ice_fi_normalized', data = tune_results, label = 'ICE FI') ax.legend() ###Output _____no_output_____
save_and_load.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Save and load models View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Model progress can be saved during—and after—training. This means a model can resume where it left off and avoid long training times. Saving also means you can share your model and others can recreate your work. When publishing research models and techniques, most machine learning practitioners share:* code to create the model, and* the trained weights, or parameters, for the modelSharing this data helps others understand how the model works and try it themselves with new data.Caution: Be careful with untrusted code—TensorFlow models are code. See [Using TensorFlow Securely](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for details. OptionsThere are different ways to save TensorFlow models—depending on the API you're using. This guide uses [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train models in TensorFlow. For other approaches, see the TensorFlow [Save and Restore](https://www.tensorflow.org/guide/saved_model) guide or [Saving in eager](https://www.tensorflow.org/guide/eagerobject-based_saving). Setup Installs and imports Install and import TensorFlow and dependencies: ###Code try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass !pip install pyyaml h5py # Required to save models in HDF5 format from __future__ import absolute_import, division, print_function, unicode_literals import os import tensorflow as tf from tensorflow import keras print(tf.version.VERSION) ###Output _____no_output_____ ###Markdown Get an example datasetTo demonstrate how to save and load weights, you'll use the [MNIST dataset](http://yann.lecun.com/exdb/mnist/). To speed up these runs, use the first 1000 examples: ###Code (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Define a model Start by building a simple sequential model: ###Code # Define a simple sequential model def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation='relu', input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10) ]) model.compile(optimizer='adam', loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) return model # Create a basic model instance model = create_model() # Display the model's architecture model.summary() ###Output _____no_output_____ ###Markdown Save checkpoints during training You can use a trained model without having to retrain it, or pick-up training where you left off—in case the training process was interrupted. The `tf.keras.callbacks.ModelCheckpoint` callback allows to continually save the model both *during* and at *the end* of training. Checkpoint callback usageCreate a `tf.keras.callbacks.ModelCheckpoint` callback that saves weights only during training: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Create a callback that saves the model's weights cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1) # Train the model with the new callback model.fit(train_images, train_labels, epochs=10, validation_data=(test_images,test_labels), callbacks=[cp_callback]) # Pass callback to training # This may generate warnings related to saving the state of the optimizer. # These warnings (and similar warnings throughout this notebook) # are in place to discourage outdated usage, and can be ignored. ###Output _____no_output_____ ###Markdown This creates a single collection of TensorFlow checkpoint files that are updated at the end of each epoch: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Create a new, untrained model. When restoring a model from weights-only, you must have a model with the same architecture as the original model. Since it's the same model architecture, you can share weights despite that it's a different *instance* of the model.Now rebuild a fresh, untrained model, and evaluate it on the test set. An untrained model will perform at chance levels (~10% accuracy): ###Code # Create a basic model instance model = create_model() # Evaluate the model loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Then load the weights from the checkpoint and re-evaluate: ###Code # Loads the weights model.load_weights(checkpoint_path) # Re-evaluate the model loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Restored model, accuracy: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Checkpoint callback optionsThe callback provides several options to provide unique names for checkpoints and adjust the checkpointing frequency.Train a new model, and save uniquely named checkpoints once every five epochs: ###Code # Include the epoch in the file name (uses `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Create a callback that saves the model's weights every 5 epochs cp_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_path, verbose=1, save_weights_only=True, period=5) # Create a new model instance model = create_model() # Save the weights using the `checkpoint_path` format model.save_weights(checkpoint_path.format(epoch=0)) # Train the model with the new callback model.fit(train_images, train_labels, epochs=50, callbacks=[cp_callback], validation_data=(test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Now, look at the resulting checkpoints and choose the latest one: ###Code !ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest from google.colab import drive drive.mount('/content/drive') ###Output _____no_output_____ ###Markdown Note: the default tensorflow format only saves the 5 most recent checkpoints.To test, reset the model and load the latest checkpoint: ###Code # Create a new model instance model = create_model() # Load the previously saved weights model.load_weights(latest) # Re-evaluate the model loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Restored model, accuracy: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown What are these files? The above code stores the weights to a collection of [checkpoint](https://www.tensorflow.org/guide/saved_modelsave_and_restore_variables)-formatted files that contain only the trained weights in a binary format. Checkpoints contain:* One or more shards that contain your model's weights.* An index file that indicates which weights are stored in a which shard.If you are only training a model on a single machine, you'll have one shard with the suffix: `.data-00000-of-00001` Manually save weightsYou saw how to load the weights into a model. Manually saving them is just as simple with the `Model.save_weights` method. By default, `tf.keras`—and `save_weights` in particular—uses the TensorFlow [checkpoint](../../guide/checkpoint.ipynb) format with a `.ckpt` extension (saving in [HDF5](https://js.tensorflow.org/tutorials/import-keras.html) with a `.h5` extension is covered in the [Save and serialize models](../../guide/keras/save_and_serializeweights-only_saving_in_savedmodel_format) guide): ###Code # Save the weights model.save_weights('./checkpoints/my_checkpoint') # Create a new model instance model = create_model() # Restore the weights model.load_weights('./checkpoints/my_checkpoint') # Evaluate the model loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Restored model, accuracy: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Save the entire modelCall [`model.save`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelsave) to save the a model's architecture, weights, and training configuration in a single file/folder. This allows you to export a model so it can be used without access to the original Python code*. Since the optimizer-state is recovered, you can resume training from exactly where you left off.Saving a fully-functional model is very useful—you can load them in TensorFlow.js ([HDF5](https://js.tensorflow.org/tutorials/import-keras.html), [Saved Model](https://js.tensorflow.org/tutorials/import-saved-model.html)) and then train and run them in web browsers, or convert them to run on mobile devices using TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Saved Model](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_))\*Custom objects (e.g. subclassed models or layers) require special attention when saving and loading. See the **Saving custom objects** section below HDF5 formatKeras provides a basic save format using the [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) standard. ###Code # Create and train a new model instance. model = create_model() model.fit(train_images, train_labels, epochs=5) # Save the entire model to a HDF5 file. # The '.h5' extension indicates that the model should be saved to HDF5. model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Now, recreate the model from that file: ###Code # Recreate the exact same model, including its weights and the optimizer new_model = tf.keras.models.load_model('my_model.h5') # Show the model architecture new_model.summary() ###Output _____no_output_____ ###Markdown Check its accuracy: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print('Restored model, accuracy: {:5.2f}%'.format(100*acc)) ###Output _____no_output_____ ###Markdown This technique saves everything:* The weight values* The model's configuration(architecture)* The optimizer configurationKeras saves models by inspecting the architecture. Currently, it is not able to save TensorFlow optimizers (from `tf.train`). When using those you will need to re-compile the model after loading, and you will lose the state of the optimizer. SavedModel format The SavedModel format is another way to serialize models. Models saved in this format can be restored using `tf.keras.models.load_model` and are compatible with TensorFlow Serving. The [SavedModel guide](https://www.tensorflow.org/guide/saved_model) goes into detail about how to serve/inspect the SavedModel. The section below illustrates the steps to saving and restoring the model. ###Code # Create and train a new model instance. model = create_model() model.fit(train_images, train_labels, epochs=5) # Save the entire model as a SavedModel. !mkdir -p saved_model model.save('saved_model/my_model') ###Output _____no_output_____ ###Markdown The SavedModel format is a directory containing a protobuf binary and a Tensorflow checkpoint. Inspect the saved model directory: ###Code # my_model directory !ls saved_model # Contains an assets folder, saved_model.pb, and variables folder. !ls saved_model/my_model ###Output _____no_output_____ ###Markdown Reload a fresh Keras model from the saved model: ###Code new_model = tf.keras.models.load_model('saved_model/my_model') # Check its architecture new_model.summary() ###Output _____no_output_____ ###Markdown The restored model is compiled with the same arguments as the original model. Try running evaluate and predict with the loaded model: ###Code # Evaluate the restored model loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print('Restored model, accuracy: {:5.2f}%'.format(100*acc)) print(new_model.predict(test_images).shape) ###Output _____no_output_____
Jupyter Notebooks/Data Extraction - Preferred.ipynb
###Markdown New way of data extraction 3. Extracting the title, id, url and post content of submissions for each flair obtained above. Extracting 500 posts of each flair. ###Code newDataset = [] for flair in possibleflairs: for sub in india_subreddit.search(flair, limit=500): newDataset.append([sub.title, sub.id, sub.url, sub.selftext, flair]) newDataset = pd.DataFrame(newDataset, columns=['Title', 'id', 'url', 'content', 'flair']) newDataset ###Output _____no_output_____ ###Markdown 4. save the data in a csv ###Code newDataset.to_csv('newdataset.csv', index=False) #index=False will prevent the row numbers from being saved as an independent column/attribute in the saved csv file ###Output _____no_output_____ ###Markdown The second method to extract more features (like comments) ###Code newDataset = { 'Title' : [], 'ID' : [], 'Url' : [], 'Content' : [], 'Comments' : [], 'Flair' : [] } for flair in possibleflairs: subreddits = india_subreddit.search(flair, limit=10) for sub in subreddits: newDataset['Title'].append(sub.title) newDataset['ID'].append(sub.id) newDataset['Url'].append(sub.url) newDataset['Content'].append(sub.selftext) newDataset['Flair'].append(flair) # newDataset.append([sub.title, sub.id, sub.url, sub.selftext, flair]) sub.comments.replace_more(limit=None) comment = '' for top_level_comment in sub.comments: comment = comment + ' ' + top_level_comment.body newDataset["Comments"].append(comment) newDataset = pd.DataFrame(newDataset) newDataset newDataset.to_csv('morefeaturesDataset.csv', index=False) ###Output _____no_output_____ ###Markdown Preferred form of data extraction, that extracts data based on post flairs and not the hottest posts (as done in Data Extraction file) ###Code import pandas as pd import praw #PRAW is the API being used to scrap data from Reddit ### Creating a reddit instance by authenticating ourselves reddit = praw.Reddit(client_id='', client_secret='', user_agent='', password='', username='') ###Output _____no_output_____ ###Markdown Note: The client_id, client_secret and password are anonymised to prevent privacy 1. get subreddit info of india subreddit ###Code india_subreddit = reddit.subreddit('India') ###Output _____no_output_____ ###Markdown 2. Extracting the possible flairs ###Code def get_possible_flairs(subreddit): possibleflairs = [] for template in subreddit.flair.link_templates: possibleflairs.append(template["text"]) return possibleflairs possibleflairs = get_possible_flairs(india_subreddit) possibleflairs ###Output _____no_output_____
ASCAD_variable_key/ASCAD_variable_key.ipynb
###Markdown DataLoader ###Code ### handle the dataset class TorchDataset(Dataset): def __init__(self, trs_file, label_file, trace_num, trace_offset, trace_length): self.trs_file = trs_file self.label_file = label_file self.trace_num = trace_num self.trace_offset = trace_offset self.trace_length = trace_length self.ToTensor = transforms.ToTensor() def __getitem__(self, i): index = i % self.trace_num trace = self.trs_file[index,:] label = self.label_file[index] trace = trace[self.trace_offset:self.trace_offset+self.trace_length] trace = np.reshape(trace,(1,-1)) trace = self.ToTensor(trace) trace = np.reshape(trace, (1,-1)) label = torch.tensor(label, dtype=torch.long) return trace.float(), label def __len__(self): return self.trace_num ### data loader for training def load_training(batch_size, kwargs): data = TorchDataset(**kwargs) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=1, pin_memory=True) return train_loader ### data loader for testing def load_testing(batch_size, kwargs): data = TorchDataset(**kwargs) test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=1, pin_memory=True) return test_loader ###Output _____no_output_____ ###Markdown Arrays and Functions ###Code Sbox = [99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22] HW_byte = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8] ### To train a network def train(epoch, model, scheduler): """ - epoch : the current epoch - model : the current model - learning_rate : learning rate """ # enter training mode model.train() # Instantiate the Iterator iter_ = iter(train_loader) # get the number of batches num_iter = len(train_loader) clf_criterion = nn.CrossEntropyLoss() # train on each batch of data for i in range(1, num_iter+1): data, label = iter_.next() if cuda: data, label = data.cuda(), label.cuda() data, label = Variable(data), Variable(label) optimizer.zero_grad() prediction = model(data) loss = clf_criterion(prediction, label) preds = prediction.data.max(1, keepdim=True)[1] correct_batch = preds.eq(label.data.view_as(preds)).sum() # optimzie the cross-entropy loss loss.backward() optimizer.step() scheduler.step() if i % log_interval == 0: print('Train Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAcc: {:.6f}%'.format( epoch, i * len(data), len(train_loader) * batch_size, 100. * i / len(train_loader), loss.data, float(correct_batch) * 100. /batch_size)) ### validation def validation(model): # enter evaluation mode model.eval() valid_loss = 0 # the number of correct prediction correct_valid = 0 clf_criterion = nn.CrossEntropyLoss() for data, label in valid_loader: if cuda: data, label = data.cuda(), label.cuda() data, label = Variable(data), Variable(label) valid_preds = model(data) # sum up batch loss valid_loss += clf_criterion(valid_preds, label) # get the index of the max probability pred = valid_preds.data.max(1)[1] # get the number of correct prediction correct_valid += pred.eq(label.data.view_as(pred)).cpu().sum() valid_loss /= len(valid_loader) valid_acc = 100. * correct_valid / len(valid_loader.dataset) print('Validation: loss: {:.4f}, accuracy: {}/{} ({:.6f}%)'.format( valid_loss.data, correct_valid, len(valid_loader.dataset), valid_acc)) return valid_loss, valid_acc ### test/attack def test(model, disp_GE=True, model_flag='pretrained'): """ - model : the current model - disp_GE : whether to attack/calculate guessing entropy (GE) - model_flag : a string for naming GE result """ # enter evaluation mode model.eval() test_loss = 0 # the number of correct prediction correct = 0 epoch = 0 clf_criterion = nn.CrossEntropyLoss() # Initialize the prediction and label lists(tensors) predlist=torch.zeros(0,dtype=torch.long, device='cpu') lbllist=torch.zeros(0,dtype=torch.long, device='cpu') test_preds_all = torch.zeros((test_num, class_num), dtype=torch.float, device='cpu') for data, label in test_loader: if cuda: data, label = data.cuda(), label.cuda() data, label = Variable(data), Variable(label) test_preds = model(data) # sum up batch loss test_loss += clf_criterion(test_preds, label) # get the index of the max probability pred = test_preds.data.max(1)[1] # get the softmax results for attack/showing guessing entropy softmax = nn.Softmax(dim=1) test_preds_all[epoch*batch_size:(epoch+1)*batch_size, :] =softmax(test_preds) # get the predictions (predlist) and real labels (lbllist) for showing confusion matrix predlist=torch.cat([predlist,pred.view(-1).cpu()]) lbllist=torch.cat([lbllist,label.view(-1).cpu()]) # get the number of correct prediction correct += pred.eq(label.data.view_as(pred)).cpu().sum() epoch += 1 test_loss /= len(test_loader) print('test loss: {:.4f}, test accuracy: {}/{} ({:.2f}%)\n'.format( test_loss.data, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # get the confusion matrix confusion_mat = confusion_matrix(lbllist.numpy(), predlist.numpy()) # show the confusion matrix # plot_sonfusion_matrix(confusion_mat, classes = range(class_num)) # show the guessing entropy and success rate if disp_GE: plot_guessing_entropy(test_preds_all.numpy(), real_key, model_flag) ### show the guessing entropy and success rate def plot_guessing_entropy(preds, real_key, model_flag): """ - preds : the probability for each class (n*256 for a byte, n*9 for Hamming weight) - real_key : the key of the target device - model_flag : a string for naming GE result """ # GE/SR is averaged over 100 attacks num_averaged = 100 # max trace num for attack trace_num_max = 500 # the step trace num increases step = 1 if trace_num_max > 400 and trace_num_max < 1000: step = 2 if trace_num_max >= 1000 and trace_num_max < 5000: step = 4 if trace_num_max >= 5000 and trace_num_max < 10000: step = 5 guessing_entropy = np.zeros((num_averaged, int(trace_num_max/step))) # attack multiples times for average for time in range(num_averaged): # select the attack traces randomly random_index = list(range(plaintext.shape[0])) random.shuffle(random_index) random_index = random_index[0:trace_num_max] # initialize score matrix score_mat = np.zeros((trace_num_max, 256)) for key_guess in range(0, 256): for i in range(0, trace_num_max): initialState = plaintext[random_index[i]] ^ key_guess sout = Sbox[initialState] if labeling_method == 'identity': label = sout elif labeling_method == 'hw': label = HW_byte[sout] score_mat[i, key_guess] = preds[random_index[i], label] score_mat = np.log(score_mat + 1e-40) for i in range(0, int(trace_num_max/step)): log_likelihood = np.sum(score_mat[0:i*step+1,:], axis=0) ranked = np.argsort(log_likelihood)[::-1] guessing_entropy[time,i] = list(ranked).index(real_key) guessing_entropy = np.mean(guessing_entropy,axis=0) plt.figure(figsize=(20,10)) plt.subplot(1, 1, 1) plt.grid(True) x = range(0, trace_num_max, step) p1, = plt.plot(x, guessing_entropy[0:int(trace_num_max/step)],color='red') plt.xlabel('Number of trace') plt.ylabel('Guessing entropy') #np.save('./results/bilinear_entropy_'+ labeling_method + '_ascad_fixed_' + model_flag + '_'+ desync, guessing_entropy) plt.show() ### show the confusion matrix def plot_sonfusion_matrix(cm, classes, normalize=False, title='Confusion matrix',cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() plt.ylim((len(classes)-0.5, -0.5)) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predict label') plt.show() # correlation of two matrix def Matrix_Cor(X, Y): if X.shape[0] != Y.shape[0]: print("X and Y have wrong shape") return # print( # "Start calculating the correlation between power trace and intermedia data_file_path" # ) N, col_X = X.shape col_Y = Y.shape[1] Sum_of_X = X.sum(axis=0) # print(Sum_of_X.shape) Sum_of_Y = Y.sum(axis=0) # print(Sum_of_Y.shape) Sum_of_X2 = (X * X).sum(axis=0) # print(Sum_of_X2.shape) Sum_of_Y2 = (Y * Y).sum(axis=0) # print(Sum_of_Y2.shape) Sum_of_XY = (X.T).dot(Y) # print(Sum_of_XY.shape) r = N * Sum_of_XY - Sum_of_X.reshape( (col_X, 1)).dot(Sum_of_Y.reshape(1, col_Y)) r = r / np.sqrt( (N * Sum_of_X2 - Sum_of_X * Sum_of_X).reshape(col_X, 1).dot( (N * Sum_of_Y2 - Sum_of_Y * Sum_of_Y).reshape(1, col_Y))) # print( # "Finished.The correlation matrix is retured.\nPlease run CPA(result=result) to see the key rank." # ) return r.T ###Output _____no_output_____ ###Markdown Setups ###Code real_key = 34 # key value labeling_method = 'identity' # labeling of trace preprocess = 'feature_standardization' # preprocess method batch_size = 600 total_epoch = 50 lr = 0.005 # learning rate log_interval = 100 # epoch interval to log training information train_num = 195000 valid_num = 5000 test_num = 100000 trace_offset = 0 trace_length = 1400 file_path = './Data/ASCAD_var/' desync = 'desync_0' no_cuda =False cuda = not no_cuda and torch.cuda.is_available() seed = 8 torch.manual_seed(seed) if cuda: torch.cuda.manual_seed(seed) if labeling_method == 'identity': class_num = 256 elif labeling_method == 'hw': class_num = 9 # to load traces and labels X_train = np.load(file_path + 'X_train.npy') Y_train = np.load(file_path + 'Y_train.npy') X_attack = np.load(file_path + 'X_attack.npy') Y_attack = np.load(file_path + 'Y_attack.npy') # to load plaintexts plaintext = np.load(file_path + 'plaintexts_attack.npy') plaintext = plaintext[0:test_num,2] # preprocess of traces if preprocess == 'feature_standardization': scaler = preprocessing.StandardScaler() X_train = scaler.fit_transform(X_train) X_attack = scaler.transform(X_attack) elif preprocess == 'feature_scaling': scaler = preprocessing.MinMaxScaler(feature_range=(-1,1)) X_train = scaler.fit_transform(X_train) X_attack = scaler.transform(X_attack) elif preprocess == 'horizontal_standardization': mn = np.repeat(np.mean(X_train, axis=1, keepdims=True), X_train.shape[1], axis=1) std = np.repeat(np.std(X_train, axis=1, keepdims=True), X_train.shape[1], axis=1) X_train = (X_train - mn)/std mn = np.repeat(np.mean(X_attack, axis=1, keepdims=True), X_attack.shape[1], axis=1) std = np.repeat(np.std(X_attack, axis=1, keepdims=True), X_attack.shape[1], axis=1) X_attack = (X_attack - mn)/std elif preprocess == 'horizontal_scaling': scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)).fit(X_train.T) X_train = scaler.transform(X_train.T).T scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)).fit(X_attack.T) X_attack = scaler.transform(X_attack.T).T # parameters of data loader kwargs_train = { 'trs_file': X_train[0:train_num,:], 'label_file': Y_train[0:train_num], 'trace_num':train_num, 'trace_offset':trace_offset, 'trace_length':trace_length, } kwargs_valid = { 'trs_file': X_train[train_num:train_num+valid_num,:], 'label_file': Y_train[train_num:train_num+valid_num], 'trace_num':valid_num, 'trace_offset':trace_offset, 'trace_length':trace_length, } kwargs_test = { 'trs_file': X_attack[0:test_num,:], 'label_file': Y_attack[0:test_num], 'trace_num':test_num, 'trace_offset':trace_offset, 'trace_length':trace_length, } train_loader = load_training(batch_size, kwargs_train) valid_loader = load_training(batch_size, kwargs_valid) test_loader = load_testing(batch_size, kwargs_test) print('Load data complete!') ###Output Load data complete! ###Markdown Models ###Code ### the pre-trained model class Net(nn.Module): def __init__(self, num_classes=class_num): super(Net, self).__init__() # the encoder part self.features = nn.Sequential( nn.Conv1d(1, 2, kernel_size=1), nn.SELU(), nn.BatchNorm1d(2), nn.AvgPool1d(kernel_size=2, stride=2), nn.Flatten() ) # the fully-connected layer 1 self.classifier_1 = nn.Sequential( nn.Linear(1400, 20), nn.SELU(), ) # the fully-connected layer 2 self.classifier_2 = nn.Sequential( nn.Linear(400, 20), nn.SELU() ) # the output layer self.final_classifier = nn.Sequential( nn.Linear(20, num_classes) ) # how the network runs def forward(self, input): x1 = self.features(input) x1 = x1.view(x1.size(0), -1) x1 = self.classifier_1(x1) #x1 = x1-torch.mean(x1,0,True) x = torch.bmm(x1.unsqueeze(2), x1.unsqueeze(1)) x = x.view(-1, x1.size(1) **2) x = self.classifier_2(x) output = self.final_classifier(x) return output ###Output _____no_output_____ ###Markdown Train ###Code # create a network model = Net(num_classes=class_num) print('Construct model complete') if cuda: model.cuda() # initialize a big enough loss min_loss = 1000 optimizer = optim.Adam([ {'params': model.features.parameters()}, {'params': model.classifier_1.parameters()}, {'params': model.classifier_2.parameters()}, {'params': model.final_classifier.parameters()} ], lr=lr) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=lr, steps_per_epoch=len(train_loader), pct_start=0.2,anneal_strategy='linear', cycle_momentum=False,epochs=total_epoch, div_factor=10, verbose=False) # restore the optimizer state for epoch in range(1, total_epoch + 1): print(f'Train Epoch {epoch}:') train(epoch, model,scheduler) with torch.no_grad(): valid_loss, _ = validation(model) # save the model that achieves the lowest validation loss if valid_loss < min_loss: min_loss = valid_loss torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, './models/ASCAD_variable_key.pth') ###Output Construct model complete Train Epoch 1: Train Epoch 1: [60000/195000 (31%)] Loss: 5.560851 Acc: 0.166667% Train Epoch 1: [120000/195000 (62%)] Loss: 5.559626 Acc: 0.833333% Train Epoch 1: [180000/195000 (92%)] Loss: 5.552015 Acc: 0.666667% Validation: loss: 5.5423, accuracy: 29/5000 (0.580000%) Train Epoch 2: Train Epoch 2: [60000/195000 (31%)] Loss: 5.430151 Acc: 0.166667% Train Epoch 2: [120000/195000 (62%)] Loss: 5.435457 Acc: 0.166667% Train Epoch 2: [180000/195000 (92%)] Loss: 5.381231 Acc: 1.166667% Validation: loss: 5.3691, accuracy: 33/5000 (0.660000%) Train Epoch 3: Train Epoch 3: [60000/195000 (31%)] Loss: 5.330430 Acc: 1.000000% Train Epoch 3: [120000/195000 (62%)] Loss: 7.039520 Acc: 1.166667% Train Epoch 3: [180000/195000 (92%)] Loss: 5.289044 Acc: 0.833333% Validation: loss: 5.3189, accuracy: 54/5000 (1.080000%) Train Epoch 4: Train Epoch 4: [60000/195000 (31%)] Loss: 5.239972 Acc: 0.666667% Train Epoch 4: [120000/195000 (62%)] Loss: 5.295114 Acc: 1.166667% Train Epoch 4: [180000/195000 (92%)] Loss: 5.311929 Acc: 1.166667% Validation: loss: 5.2976, accuracy: 50/5000 (1.000000%) Train Epoch 5: Train Epoch 5: [60000/195000 (31%)] Loss: 5.264466 Acc: 1.000000% Train Epoch 5: [120000/195000 (62%)] Loss: 5.251741 Acc: 1.833333% Train Epoch 5: [180000/195000 (92%)] Loss: 5.263451 Acc: 1.333333% Validation: loss: 5.2529, accuracy: 52/5000 (1.040000%) Train Epoch 6: Train Epoch 6: [60000/195000 (31%)] Loss: 5.251872 Acc: 1.000000% Train Epoch 6: [120000/195000 (62%)] Loss: 5.231488 Acc: 1.166667% Train Epoch 6: [180000/195000 (92%)] Loss: 5.236364 Acc: 1.166667% Validation: loss: 5.2272, accuracy: 60/5000 (1.200000%) Train Epoch 7: Train Epoch 7: [60000/195000 (31%)] Loss: 5.169016 Acc: 0.666667% Train Epoch 7: [120000/195000 (62%)] Loss: 5.188619 Acc: 1.000000% Train Epoch 7: [180000/195000 (92%)] Loss: 5.182228 Acc: 1.666667% Validation: loss: 5.1942, accuracy: 62/5000 (1.240000%) Train Epoch 8: Train Epoch 8: [60000/195000 (31%)] Loss: 5.156321 Acc: 1.000000% Train Epoch 8: [120000/195000 (62%)] Loss: 5.156400 Acc: 1.000000% Train Epoch 8: [180000/195000 (92%)] Loss: 5.221623 Acc: 1.500000% Validation: loss: 5.1847, accuracy: 64/5000 (1.280000%) Train Epoch 9: Train Epoch 9: [60000/195000 (31%)] Loss: 5.166508 Acc: 0.500000% Train Epoch 9: [120000/195000 (62%)] Loss: 5.146281 Acc: 2.166667% Train Epoch 9: [180000/195000 (92%)] Loss: 5.101658 Acc: 1.833333% Validation: loss: 5.1647, accuracy: 57/5000 (1.140000%) Train Epoch 10: Train Epoch 10: [60000/195000 (31%)] Loss: 5.111825 Acc: 2.166667% Train Epoch 10: [120000/195000 (62%)] Loss: 5.120124 Acc: 1.333333% Train Epoch 10: [180000/195000 (92%)] Loss: 5.155893 Acc: 1.500000% Validation: loss: 5.2003, accuracy: 56/5000 (1.120000%) Train Epoch 11: Train Epoch 11: [60000/195000 (31%)] Loss: 5.129882 Acc: 1.500000% Train Epoch 11: [120000/195000 (62%)] Loss: 5.123697 Acc: 2.166667% Train Epoch 11: [180000/195000 (92%)] Loss: 5.129713 Acc: 1.166667% Validation: loss: 5.1506, accuracy: 66/5000 (1.320000%) Train Epoch 12: Train Epoch 12: [60000/195000 (31%)] Loss: 5.132351 Acc: 1.833333% Train Epoch 12: [120000/195000 (62%)] Loss: 5.072290 Acc: 2.500000% Train Epoch 12: [180000/195000 (92%)] Loss: 5.148057 Acc: 1.500000% Validation: loss: 5.1646, accuracy: 84/5000 (1.680000%) Train Epoch 13: Train Epoch 13: [60000/195000 (31%)] Loss: 5.055867 Acc: 1.833333% Train Epoch 13: [120000/195000 (62%)] Loss: 5.105156 Acc: 1.666667% Train Epoch 13: [180000/195000 (92%)] Loss: 5.051926 Acc: 2.500000% Validation: loss: 5.1318, accuracy: 75/5000 (1.500000%) Train Epoch 14: Train Epoch 14: [60000/195000 (31%)] Loss: 5.125892 Acc: 2.333333% Train Epoch 14: [120000/195000 (62%)] Loss: 5.127582 Acc: 2.000000% Train Epoch 14: [180000/195000 (92%)] Loss: 5.022996 Acc: 2.000000% Validation: loss: 5.1276, accuracy: 81/5000 (1.620000%) Train Epoch 15: Train Epoch 15: [60000/195000 (31%)] Loss: 5.103314 Acc: 1.666667% Train Epoch 15: [120000/195000 (62%)] Loss: 5.013259 Acc: 2.333333% Train Epoch 15: [180000/195000 (92%)] Loss: 5.053484 Acc: 2.500000% Validation: loss: 5.1178, accuracy: 89/5000 (1.780000%) Train Epoch 16: Train Epoch 16: [60000/195000 (31%)] Loss: 5.018335 Acc: 1.500000% Train Epoch 16: [120000/195000 (62%)] Loss: 5.067611 Acc: 1.166667% Train Epoch 16: [180000/195000 (92%)] Loss: 5.066584 Acc: 3.833333% Validation: loss: 5.0978, accuracy: 78/5000 (1.560000%) Train Epoch 17: Train Epoch 17: [60000/195000 (31%)] Loss: 5.034590 Acc: 2.500000% Train Epoch 17: [120000/195000 (62%)] Loss: 5.094223 Acc: 1.666667% Train Epoch 17: [180000/195000 (92%)] Loss: 5.037110 Acc: 3.333333% Validation: loss: 5.1191, accuracy: 73/5000 (1.460000%) Train Epoch 18: Train Epoch 18: [60000/195000 (31%)] Loss: 4.950844 Acc: 3.500000% Train Epoch 18: [120000/195000 (62%)] Loss: 5.054138 Acc: 2.166667% Train Epoch 18: [180000/195000 (92%)] Loss: 4.983550 Acc: 1.833333% Validation: loss: 5.0850, accuracy: 100/5000 (2.000000%) Train Epoch 19: Train Epoch 19: [60000/195000 (31%)] Loss: 5.010904 Acc: 1.166667% Train Epoch 19: [120000/195000 (62%)] Loss: 4.990295 Acc: 3.333333% Train Epoch 19: [180000/195000 (92%)] Loss: 5.060635 Acc: 2.666667% Validation: loss: 5.0801, accuracy: 93/5000 (1.860000%) Train Epoch 20: Train Epoch 20: [60000/195000 (31%)] Loss: 5.002995 Acc: 3.166667% Train Epoch 20: [120000/195000 (62%)] Loss: 5.050232 Acc: 2.500000% Train Epoch 20: [180000/195000 (92%)] Loss: 5.216767 Acc: 1.500000% Validation: loss: 5.0789, accuracy: 99/5000 (1.980000%) Train Epoch 21: Train Epoch 21: [60000/195000 (31%)] Loss: 5.037951 Acc: 2.333333% Train Epoch 21: [120000/195000 (62%)] Loss: 4.991344 Acc: 2.666667% Train Epoch 21: [180000/195000 (92%)] Loss: 5.009448 Acc: 1.166667% Validation: loss: 5.1027, accuracy: 96/5000 (1.920000%) Train Epoch 22: Train Epoch 22: [60000/195000 (31%)] Loss: 5.020790 Acc: 1.666667% Train Epoch 22: [120000/195000 (62%)] Loss: 5.078711 Acc: 3.500000% Train Epoch 22: [180000/195000 (92%)] Loss: 4.992603 Acc: 2.833333% Validation: loss: 5.1492, accuracy: 91/5000 (1.820000%) Train Epoch 23: Train Epoch 23: [60000/195000 (31%)] Loss: 4.963354 Acc: 3.333333% Train Epoch 23: [120000/195000 (62%)] Loss: 4.998185 Acc: 2.333333% Train Epoch 23: [180000/195000 (92%)] Loss: 4.994598 Acc: 2.333333% Validation: loss: 5.0829, accuracy: 100/5000 (2.000000%) Train Epoch 24: Train Epoch 24: [60000/195000 (31%)] Loss: 4.967025 Acc: 2.500000% Train Epoch 24: [120000/195000 (62%)] Loss: 4.977130 Acc: 2.833333% Train Epoch 24: [180000/195000 (92%)] Loss: 5.018489 Acc: 2.000000% Validation: loss: 5.0972, accuracy: 90/5000 (1.800000%) Train Epoch 25: Train Epoch 25: [60000/195000 (31%)] Loss: 4.968870 Acc: 2.333333% Train Epoch 25: [120000/195000 (62%)] Loss: 4.953188 Acc: 3.333333% Train Epoch 25: [180000/195000 (92%)] Loss: 5.030626 Acc: 1.666667% Validation: loss: 5.0669, accuracy: 109/5000 (2.180000%) Train Epoch 26: Train Epoch 26: [60000/195000 (31%)] Loss: 4.988792 Acc: 3.000000% Train Epoch 26: [120000/195000 (62%)] Loss: 4.946746 Acc: 1.166667% Train Epoch 26: [180000/195000 (92%)] Loss: 4.929563 Acc: 1.500000% Validation: loss: 5.0528, accuracy: 101/5000 (2.020000%) Train Epoch 27: Train Epoch 27: [60000/195000 (31%)] Loss: 5.011306 Acc: 3.166667% Train Epoch 27: [120000/195000 (62%)] Loss: 4.950402 Acc: 2.333333% Train Epoch 27: [180000/195000 (92%)] Loss: 4.954709 Acc: 4.166667% Validation: loss: 5.1368, accuracy: 90/5000 (1.800000%) Train Epoch 28: Train Epoch 28: [60000/195000 (31%)] Loss: 4.836417 Acc: 3.666667% Train Epoch 28: [120000/195000 (62%)] Loss: 4.971429 Acc: 2.333333% Train Epoch 28: [180000/195000 (92%)] Loss: 4.949065 Acc: 1.666667% Validation: loss: 5.0566, accuracy: 104/5000 (2.080000%) Train Epoch 29: Train Epoch 29: [60000/195000 (31%)] Loss: 4.945239 Acc: 2.333333% Train Epoch 29: [120000/195000 (62%)] Loss: 4.894031 Acc: 3.000000% Train Epoch 29: [180000/195000 (92%)] Loss: 4.957749 Acc: 3.000000% Validation: loss: 5.0450, accuracy: 98/5000 (1.960000%) Train Epoch 30: Train Epoch 30: [60000/195000 (31%)] Loss: 4.953151 Acc: 1.833333% Train Epoch 30: [120000/195000 (62%)] Loss: 4.883019 Acc: 3.666667% Train Epoch 30: [180000/195000 (92%)] Loss: 4.953509 Acc: 2.833333% Validation: loss: 5.0686, accuracy: 98/5000 (1.960000%) Train Epoch 31: Train Epoch 31: [60000/195000 (31%)] Loss: 4.950002 Acc: 2.833333% Train Epoch 31: [120000/195000 (62%)] Loss: 4.892151 Acc: 2.666667% Train Epoch 31: [180000/195000 (92%)] Loss: 4.968844 Acc: 3.333333% Validation: loss: 5.0467, accuracy: 108/5000 (2.160000%) Train Epoch 32: Train Epoch 32: [60000/195000 (31%)] Loss: 4.887580 Acc: 1.666667% Train Epoch 32: [120000/195000 (62%)] Loss: 4.925264 Acc: 3.666667% Train Epoch 32: [180000/195000 (92%)] Loss: 4.942373 Acc: 2.833333% Validation: loss: 5.1494, accuracy: 107/5000 (2.140000%) Train Epoch 33: Train Epoch 33: [60000/195000 (31%)] Loss: 4.924540 Acc: 2.333333% Train Epoch 33: [120000/195000 (62%)] Loss: 4.937187 Acc: 2.666667% Train Epoch 33: [180000/195000 (92%)] Loss: 4.939903 Acc: 3.166667% Validation: loss: 5.0482, accuracy: 108/5000 (2.160000%) Train Epoch 34: Train Epoch 34: [60000/195000 (31%)] Loss: 4.959404 Acc: 2.166667% Train Epoch 34: [120000/195000 (62%)] Loss: 4.969062 Acc: 3.000000% Train Epoch 34: [180000/195000 (92%)] Loss: 5.003931 Acc: 1.666667% Validation: loss: 5.1075, accuracy: 100/5000 (2.000000%) Train Epoch 35: Train Epoch 35: [60000/195000 (31%)] Loss: 4.930809 Acc: 2.500000% Train Epoch 35: [120000/195000 (62%)] Loss: 4.904979 Acc: 3.000000% Train Epoch 35: [180000/195000 (92%)] Loss: 4.870503 Acc: 3.166667% Validation: loss: 5.0689, accuracy: 105/5000 (2.100000%) Train Epoch 36: Train Epoch 36: [60000/195000 (31%)] Loss: 4.912104 Acc: 3.166667% Train Epoch 36: [120000/195000 (62%)] Loss: 4.878937 Acc: 3.666667% Train Epoch 36: [180000/195000 (92%)] Loss: 4.952935 Acc: 2.833333% Validation: loss: 5.0603, accuracy: 101/5000 (2.020000%) Train Epoch 37: Train Epoch 37: [60000/195000 (31%)] Loss: 4.899093 Acc: 3.000000% Train Epoch 37: [120000/195000 (62%)] Loss: 4.938381 Acc: 2.166667% Train Epoch 37: [180000/195000 (92%)] Loss: 4.900822 Acc: 2.000000% Validation: loss: 5.0450, accuracy: 112/5000 (2.240000%) Train Epoch 38: Train Epoch 38: [60000/195000 (31%)] Loss: 4.898347 Acc: 2.833333% Train Epoch 38: [120000/195000 (62%)] Loss: 4.978992 Acc: 3.166667% Train Epoch 38: [180000/195000 (92%)] Loss: 4.931381 Acc: 2.166667% Validation: loss: 5.0334, accuracy: 110/5000 (2.200000%) Train Epoch 39: Train Epoch 39: [60000/195000 (31%)] Loss: 4.896255 Acc: 2.166667% Train Epoch 39: [120000/195000 (62%)] Loss: 4.827150 Acc: 2.666667% Train Epoch 39: [180000/195000 (92%)] Loss: 4.938774 Acc: 2.166667% Validation: loss: 5.0380, accuracy: 104/5000 (2.080000%) Train Epoch 40: Train Epoch 40: [60000/195000 (31%)] Loss: 4.915246 Acc: 2.833333% Train Epoch 40: [120000/195000 (62%)] Loss: 4.893751 Acc: 3.833333% Train Epoch 40: [180000/195000 (92%)] Loss: 4.840287 Acc: 3.333333% Validation: loss: 5.0329, accuracy: 116/5000 (2.320000%) Train Epoch 41: Train Epoch 41: [60000/195000 (31%)] Loss: 4.894638 Acc: 2.500000% Train Epoch 41: [120000/195000 (62%)] Loss: 4.946701 Acc: 3.000000% Train Epoch 41: [180000/195000 (92%)] Loss: 4.883231 Acc: 2.833333% Validation: loss: 5.0334, accuracy: 107/5000 (2.140000%) Train Epoch 42: Train Epoch 42: [60000/195000 (31%)] Loss: 4.847127 Acc: 4.500000% Train Epoch 42: [120000/195000 (62%)] Loss: 4.870208 Acc: 3.166667% Train Epoch 42: [180000/195000 (92%)] Loss: 4.941588 Acc: 2.833333% Validation: loss: 5.0430, accuracy: 96/5000 (1.920000%) Train Epoch 43: Train Epoch 43: [60000/195000 (31%)] Loss: 4.801641 Acc: 2.666667% Train Epoch 43: [120000/195000 (62%)] Loss: 4.955671 Acc: 2.500000% Train Epoch 43: [180000/195000 (92%)] Loss: 4.832190 Acc: 2.666667% Validation: loss: 5.0345, accuracy: 110/5000 (2.200000%) Train Epoch 44: Train Epoch 44: [60000/195000 (31%)] Loss: 4.843873 Acc: 5.500000% Train Epoch 44: [120000/195000 (62%)] Loss: 4.849736 Acc: 4.166667% Train Epoch 44: [180000/195000 (92%)] Loss: 4.952663 Acc: 3.000000% Validation: loss: 5.0255, accuracy: 111/5000 (2.220000%) Train Epoch 45: Train Epoch 45: [60000/195000 (31%)] Loss: 4.896338 Acc: 3.000000% Train Epoch 45: [120000/195000 (62%)] Loss: 4.913451 Acc: 2.666667% Train Epoch 45: [180000/195000 (92%)] Loss: 4.892143 Acc: 2.333333% Validation: loss: 5.0679, accuracy: 109/5000 (2.180000%) Train Epoch 46: Train Epoch 46: [60000/195000 (31%)] Loss: 4.903991 Acc: 2.666667% Train Epoch 46: [120000/195000 (62%)] Loss: 4.849306 Acc: 3.666667% Train Epoch 46: [180000/195000 (92%)] Loss: 4.853780 Acc: 3.666667% Validation: loss: 5.0412, accuracy: 105/5000 (2.100000%) Train Epoch 47: Train Epoch 47: [60000/195000 (31%)] Loss: 4.835373 Acc: 4.000000% Train Epoch 47: [120000/195000 (62%)] Loss: 4.852568 Acc: 4.333333% Train Epoch 47: [180000/195000 (92%)] Loss: 4.829763 Acc: 4.500000% Validation: loss: 5.0320, accuracy: 116/5000 (2.320000%) Train Epoch 48: Train Epoch 48: [60000/195000 (31%)] Loss: 4.879048 Acc: 4.500000% Train Epoch 48: [120000/195000 (62%)] Loss: 4.831172 Acc: 4.166667% Train Epoch 48: [180000/195000 (92%)] Loss: 4.786196 Acc: 6.000000% Validation: loss: 5.0315, accuracy: 105/5000 (2.100000%) Train Epoch 49: Train Epoch 49: [60000/195000 (31%)] Loss: 4.866763 Acc: 4.666667% Train Epoch 49: [120000/195000 (62%)] Loss: 4.837421 Acc: 4.166667% Train Epoch 49: [180000/195000 (92%)] Loss: 4.855717 Acc: 3.333333% Validation: loss: 5.0291, accuracy: 109/5000 (2.180000%) Train Epoch 50: Train Epoch 50: [60000/195000 (31%)] Loss: 4.730161 Acc: 4.166667% Train Epoch 50: [120000/195000 (62%)] Loss: 4.907151 Acc: 2.833333% Train Epoch 50: [180000/195000 (92%)] Loss: 4.907317 Acc: 4.000000% Validation: loss: 5.0344, accuracy: 110/5000 (2.200000%) ###Markdown Results of trained model ###Code # create a network model = Net(num_classes=class_num) print('Construct model complete') if cuda: model.cuda() # load the pre-trained network checkpoint = torch.load('./models/ASCAD_variable_key.pth') pretrained_dict = checkpoint['model_state_dict'] model_dict = pretrained_dict model.load_state_dict(model_dict) # evaluate the trained model with torch.no_grad(): print('Epoch:{}'.format(checkpoint['epoch'])) test(model, model_flag='pretrained_source') ###Output Construct model complete Epoch:44 test loss: 4.9892, test accuracy: 2274/100000 (2.27%) ###Markdown Size of the network ###Code model = Net(num_classes=class_num) sum(p.numel() for p in model.parameters() if p.requires_grad) ###Output _____no_output_____ ###Markdown Layer-wise correlation (LWC) ###Code def get_layer_out(model): model.eval() iter_ = iter(train_loader_wo_shuffle) num_iter = len(train_loader_wo_shuffle) x0_output = np.zeros((train_num,1400),dtype=np.float64) x1_output = np.zeros((train_num,20),dtype=np.float64) bilinear_output = np.zeros((train_num,400),dtype=np.float64) x3_output = np.zeros((train_num,20),dtype=np.float64) final_output = np.zeros((train_num,class_num),dtype=np.float64) for i in range(1, num_iter+1): data, _ = iter_.next() if cuda: data= data.cuda() data = Variable(data) x0_o, x1_o, bilinear_x2_o, x3_o, final_o = model(data) x0_output[batch_size*(i-1):batch_size*i,:] = x0_o.cpu() x1_output[batch_size*(i-1):batch_size*i,:] = x1_o.cpu() bilinear_output[batch_size*(i-1):batch_size*i,:] = bilinear_x2_o.cpu() x3_output[batch_size*(i-1):batch_size*i,:] = x3_o.cpu() final_output[batch_size*(i-1):batch_size*i,:] = final_o.cpu() return x0_output, x1_output, bilinear_output,x3_output, final_output ### network for getting layer output class Net_Layer_out(nn.Module): def __init__(self, num_classes=class_num): super(Net_Layer_out, self).__init__() # the encoder part self.features = nn.Sequential( nn.Conv1d(1, 2, kernel_size=1), nn.SELU(), nn.BatchNorm1d(2), nn.AvgPool1d(kernel_size=2, stride=2), nn.Flatten() ) # the fully-connected layer 1 self.classifier_1 = nn.Sequential( nn.Linear(1400, 20), nn.SELU(), ) # the fully-connected layer 2 self.classifier_2 = nn.Sequential( nn.Linear(400, 20), nn.SELU() ) # the output layer self.final_classifier = nn.Sequential( nn.Linear(20, num_classes) ) # how the network runs def forward(self, input): x0 = self.features(input) x0 = x0.view(x0.size(0), -1) x1 = self.classifier_1(x0) bilinear_x2 = torch.bmm(x1.unsqueeze(2), x1.unsqueeze(1)) bilinear_x2 = bilinear_x2.view(-1, x1.size(1) **2) x3 = self.classifier_2(bilinear_x2) output = self.final_classifier(x3) return x0, x1, bilinear_x2, x3, output # create a network model = Net_Layer_out(num_classes=class_num) train_loader_wo_shuffle = load_testing(batch_size, kwargs_train) print('Construct model complete') if cuda: model.cuda() # load the pre-trained network checkpoint = torch.load('./models/ASCAD_variable_key.pth') pretrained_dict = checkpoint['model_state_dict'] model_dict = pretrained_dict model.load_state_dict(model_dict) # get the layer output with torch.no_grad(): x0_out,x1_out,bilinear_x2_out,x3_out, final_out = get_layer_out(model) corr_layer0_vs_trs = Matrix_Cor(x1_out, X_train[0:train_num,:]) fig = plt.figure(figsize=(20,10)) fig1 = fig.add_subplot(1,1,1) fig_labels = [] font1 = {'family' : 'Times New Roman', 'weight' : 'normal', 'size' : 18, } fig1.set_xlabel("Time samples",font1) fig1.set_ylabel(r"$LWC_{sel}$",font1) for i in range(x1_out.shape[1]): fig1.plot(abs(corr_layer0_vs_trs[:,i])) fig_labels.append(r'Neuron %d' % (i)) fig1.legend(fig_labels, ncol=5, loc='upper center', bbox_to_anchor=[0.5, 1.0], columnspacing=1.0, labelspacing=0.0, handletextpad=0.1, handlelength=1.5, fancybox=True, shadow=True, fontsize=14) fig1.set_ylim(0,1) fig1.margins(0,0) plt.yticks(size = 14) plt.xticks(size = 14) plt.show() def LWC_comb(sbox_out, layer_output): median_mat = np.zeros((sbox_out.shape[0],1), dtype=np.float64, order='C') for i in range(0,sbox_out.shape[0]): temp = HW_byte[sbox_out[i]] median_mat[i,0] = temp corr_mat = Matrix_Cor(median_mat, layer_output) return corr_mat layer_wise_corr = np.zeros((6), dtype = np.float64) layer_wise_corr[0] = np.max(LWC_comb(Y_train[0:train_num], X_train[0:train_num,:])) layer_wise_corr[1] = np.max(LWC_comb(Y_train[0:train_num], x0_out)) layer_wise_corr[2] = np.max(LWC_comb(Y_train[0:train_num], x1_out)) layer_wise_corr[3] = np.max(LWC_comb(Y_train[0:train_num], bilinear_x2_out)) layer_wise_corr[4] = np.max(LWC_comb(Y_train[0:train_num], x3_out)) layer_wise_corr[5] = np.max(LWC_comb(Y_train[0:train_num], final_out)) fig = plt.figure(figsize=(20,10)) fig3 = fig.add_subplot(1,1,1) font1 = {'family' : 'Times New Roman', 'weight' : 'normal', 'size' : 18, } ticks = [r'$input$',r'$flatten$',r'$fc_1$',r'$bilinear$',r'$fc_2$',r'$output$'] fig3.set_xlabel("Layers",font1) fig3.set_ylabel(r"$LWC_{comb}$",font1) labels = [] trace_num_max = 500 x = range(0, 6) fig3.plot(x,layer_wise_corr, 'blue',marker='x') plt.yticks(fontproperties = 'Times New Roman', size = 14) plt.xticks(x, ticks, rotation=0, fontproperties = 'Times New Roman', size = 14) fig3.set_ylim(0,0.28) fig3.grid() plt.show() ###Output findfont: Font family ['Times New Roman'] not found. Falling back to DejaVu Sans.
notebooks/check_GL_area.ipynb
###Markdown First, let's check the different dz mosaics for consistent cell area ###Code thedir='/Volumes/ice2/ben/ATL14_test/rel002_new/' dz_1km = pc.grid.data().from_h5(thedir+'/dz.h5', group='dz') dz_10km = pc.grid.data().from_h5(thedir+'/dz_10km.h5', group='avg_dz_10000m') dz_20km = pc.grid.data().from_h5(thedir+'/dz_20km.h5', group='avg_dz_20000m') dz_40km = pc.grid.data().from_h5(thedir+'/dz_40km.h5', group='avg_dz_40000m') (np.nansum(dz_40km.cell_area)-np.nansum(dz_1km.cell_area))/1.e6 ! h5ls {thedir+'/z0.h5/z0'} import h5py with h5py.File(thedir+'/z0.h5','r') as h5f: ca_100m = np.array(h5f['/z0/cell_area']) mask_100m = np.array(h5f['/z0/mask']) (np.nansum(dz_1km.cell_area)-np.nansum(ca_100m*mask_100m))/1.e6 fig=plt.figure(); hax=fig.subplots(1,2, sharex=True, sharey=True) hax[0].imshow(dz_1km.cell_area, extent=dz_1km.extent, origin='lower') hax[1].imshow(dz_10km.cell_area, extent=dz_10km.extent, origin='lower') dzi = dz_1km.interp(dz_10km.x, dz_10km.y, gridded=True, field='cell_area') K=np.ones([11, 11]) K[0,:]/=2 K[-1,:]/=2 K[:,0]/=2 K[:,-1]/=2 plt.figure() plt.imshow(K) from scipy.ndimage import convolve ca_fill=dz_1km.cell_area.copy() ca_fill[~np.isfinite(ca_fill)]=0 ca_sm_10km = convolve(ca_fill, K, mode='constant' ) [ca_sm_10km.shape, dz_1km.x.shape] ca_interp=pc.grid.data().from_dict({'x':dz_1km.x-1000, 'y':dz_1km.y-1000,'z':ca_sm_10km}).interp(dz_10km.x, dz_10km.y, gridded=True) plt.figure(); plt.imshow(dz_10km.cell_area - ca_interp, origin='lower'); plt.colorbar() [dz_10km.cell_area[150, 75], dzi[150, 75]*np.sum(K), dz_10km.cell_area[150, 75] - dzi[150, 75]*np.sum(K)] np.sum(np.isfinite(dz_10km.cell_area))*5000/1.e6 ! h5ls {thedir+'/dz_10km.h5'} thefile='/home/ben/git_repos/surfaceChange/ATL15.h5' thefile='/Volumes/ice2/ben/ATL14_test/001/ATL15.h5' V0={} dV0={} A0={} for group in ['', '_10km','_20km', '_40km']: D15=pc.grid.data().from_h5(thefile, group='height_change'+group) field='cell_area'+group A=getattr(D15, field) dh=getattr(D15, 'delta_h'+group) dhdt=getattr(D15, 'dhdt_lag1'+group) A[A>1.e16]=np.NaN A0[group]=np.nansum(A) V0[group] = np.array([np.nansum(A*dh[:,:,ii]) for ii in range(dh.shape[2])]) dV0[group] = np.array([np.nansum(A*dhdt[:,:,ii]) for ii in range(dhdt.shape[2])]) Acell = {'':1.e3**2, '_10km':1.e4**2, '_20km':2.e4**2, '_40km':4.e4**2} {key:(A0[key]-A0[''])/Acell[key] for key in A0} dhdt.shape {key:V0[key]-V0[''] for key in V0} {key:dV0[key]-dV0[''] for key in V0} plt.figure(); plt.plot(dV0['']/np.nansum(A0[''])) plt.plot(dV0['_10km']/np.nansum(A0['_10km'])) plt.plot(dV0['_20km']/np.nansum(A0['_20km'])) plt.plot(dV0['_40km']/np.nansum(A0['_40km'])) plt.legend(['1km', '10km', '20km', '40km']) hfig=plt.figure(); hax=hfig.subplots(1, 4, sharex=True, sharey=True) for ii, av in enumerate(A0.keys()): D15=pc.grid.data().from_h5(thefile, group='height_change'+av) temp=getattr(D15, 'cell_area'+av) temp[temp>1.e15]=np.NaN hax[ii].imshow(getattr(D15, 'cell_area'+av), extent=D15.extent, origin='lower') D15=pc.grid.data().from_h5(thefile, group='height_change'+group) D15 av ! h5ls /home/ben/git_repos/surfaceChange/ATL15.h5/height_change_10km ###Output _____no_output_____
PythonDataScienceHandbook/notebooks/01.06-Errors-and-Debugging.ipynb
###Markdown *This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).**The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!* Errors and Debugging Code development and data analysis always require a bit of trial and error, and IPython contains tools to streamline this process.This section will briefly cover some options for controlling Python's exception reporting, followed by exploring tools for debugging errors in code. Controlling Exceptions: ``%xmode``Most of the time when a Python script fails, it will raise an Exception.When the interpreter hits one of these exceptions, information about the cause of the error can be found in the *traceback*, which can be accessed from within Python.With the ``%xmode`` magic function, IPython allows you to control the amount of information printed when the exception is raised.Consider the following code: ###Code def func1(a, b): return a / b def func2(x): a = x b = x - 1 return func1(a, b) func2(1) ###Output _____no_output_____ ###Markdown Calling ``func2`` results in an error, and reading the printed trace lets us see exactly what happened.By default, this trace includes several lines showing the context of each step that led to the error.Using the ``%xmode`` magic function (short for *Exception mode*), we can change what information is printed.``%xmode`` takes a single argument, the mode, and there are three possibilities: ``Plain``, ``Context``, and ``Verbose``.The default is ``Context``, and gives output like that just shown before.``Plain`` is more compact and gives less information: ###Code %xmode Plain func2(1) ###Output _____no_output_____ ###Markdown The ``Verbose`` mode adds some extra information, including the arguments to any functions that are called: ###Code %xmode Verbose func2(1) ###Output _____no_output_____ ###Markdown This extra information can help narrow-in on why the exception is being raised.So why not use the ``Verbose`` mode all the time?As code gets complicated, this kind of traceback can get extremely long.Depending on the context, sometimes the brevity of ``Default`` mode is easier to work with. Debugging: When Reading Tracebacks Is Not EnoughThe standard Python tool for interactive debugging is ``pdb``, the Python debugger.This debugger lets the user step through the code line by line in order to see what might be causing a more difficult error.The IPython-enhanced version of this is ``ipdb``, the IPython debugger.There are many ways to launch and use both these debuggers; we won't cover them fully here.Refer to the online documentation of these two utilities to learn more.In IPython, perhaps the most convenient interface to debugging is the ``%debug`` magic command.If you call it after hitting an exception, it will automatically open an interactive debugging prompt at the point of the exception.The ``ipdb`` prompt lets you explore the current state of the stack, explore the available variables, and even run Python commands!Let's look at the most recent exception, then do some basic tasks–print the values of ``a`` and ``b``, and type ``quit`` to quit the debugging session: ###Code %debug ###Output > <ipython-input-1-d849e34d61fb>(2)func1()  1 def func1(a, b): ----> 2  return a / b  3   ipdb> print(a) 1 ipdb> print(b) 0 ipdb> quit ###Markdown The interactive debugger allows much more than this, though–we can even step up and down through the stack and explore the values of variables there: ###Code %debug ###Output > <ipython-input-1-d849e34d61fb>(2)func1()  1 def func1(a, b): ----> 2  return a / b  3   ipdb> up > <ipython-input-1-d849e34d61fb>(7)func2()  5  a = x  6  b = x - 1 ----> 7  return func1(a, b)  ipdb> print(x) 1 ipdb> up > <ipython-input-6-b2e110f6fc8f>(1)<module>() ----> 1 func2(1)  ipdb> down > <ipython-input-1-d849e34d61fb>(7)func2()  5  a = x  6  b = x - 1 ----> 7  return func1(a, b)  ipdb> quit ###Markdown This allows you to quickly find out not only what caused the error, but what function calls led up to the error.If you'd like the debugger to launch automatically whenever an exception is raised, you can use the ``%pdb`` magic function to turn on this automatic behavior: ###Code %xmode Plain %pdb on func2(1) ###Output Exception reporting mode: Plain Automatic pdb calling has been turned ON
module-4-select-important-features/.ipynb_checkpoints/LS_DS_244_Feature_Selection-checkpoint.ipynb
###Markdown _Lambda School Data Science - Model Validation_ Feature SelectionObjectives:* Feature importance* Feature selection Yesterday we saw that... Less isn't always more (but sometimes it is) More isn't always better (but sometimes it is)![Image of Terry Crews](https://media.giphy.com/media/b8kHKZq3YFfnq/giphy.gif) Saavas, Ando [Feature Selection (4 parts)](https://blog.datadive.net/selecting-good-features-part-i-univariate-selection/)>There are in general two reasons why feature selection is used:1. Reducing the number of features, to reduce overfitting and improve the generalization of models.2. To gain a better understanding of the features and their relationship to the response variables.>These two goals are often at odds with each other and thus require different approaches: depending on the data at hand a feature selection method that is good for goal (1) isn’t necessarily good for goal (2) and vice versa. What seems to happen often though is that people use their favourite method (or whatever is most conveniently accessible from their tool of choice) indiscriminately, especially methods more suitable for (1) for achieving (2). While they are not always mutually exclusive, here's a little bit about what's going on with these two goals Goal 1: Reducing Features, Reducing Overfitting, Improving Generalization of ModelsThis is when you're actually trying to engineer a packaged, machine learning pipeline that is streamlined and highly generalizable to novel data as more is collected, and you don't really care "how" it works as long as it does work. Approaches that are good at this tend to fail at Goal 2 because they handle multicollinearity by (sometime randomly) choosing/indicating just one of a group of strongly correlated features. This is good to reduce redundancy, but bad if you want to interpret the data. Goal 2: Gaining a Better Understanding of the Features and their RelationshipsThis is when you want a good, interpretable model or you're doing data science more for analysis than engineering. Company asks you "How do we increase X?" and you can tell them all the factors that correlate to it and their predictive power.Approaches that are good at this tend to fail at Goal 1 because, well, they *don't* handle the multicollinearity problem. If three features are all strongly correlated to each other as well as the output, they will all have high scores. But including all three features in a model is redundant. Each part in Saavas's Blog series describes an increasingly complex (and computationally costly) set of methods for feature selection and interpretation.The ultimate comparison is completed using an adaptation of a dataset called Friedman's 1 regression dataset from Friedman, Jerome H.'s '[Multivariate Adaptive Regression Splines](http://www.stat.ucla.edu/~cocteau/stat204/readings/mars.pdf).>The data is generated according to formula $y=10sin(πX_1X_2)+20(X_3–0.5)^2+10X_4+5X_5+ϵ$, where the $X_1$ to $X_5$ are drawn from uniform distribution and ϵ is the standard normal deviate N(0,1). Additionally, the original dataset had five noise variables $X_6,…,X_{10}$, independent of the response variable. We will increase the number of variables further and add four variables $X_{11},…,X_{14}$ each of which are very strongly correlated with $X_1,…,X_4$, respectively, generated by $f(x)=x+N(0,0.01)$. This yields a correlation coefficient of more than 0.999 between the variables. This will illustrate how different feature ranking methods deal with correlations in the data.**Okay, that's a lot--here's what you need to know:**1. $X_1$ and $X_2$ have the same non-linear relationship to $Y$ -- though together they do have a not-quite-linear relationship to $Y$ (with sinusoidal noise--but the range of the values doesn't let it get negative)2. $X_3$ has a quadratic relationship with $Y$3. $X_4$ and $X_5$ have linear relationships to $Y$, with $X_4$ being weighted twice as heavily as $X_5$4. $X_6$ through $X_{10}$ are random and have NO relationship to $Y$5. $X_{11}$ through $X_{14}$ correlate strongly to $X_1$ through $X_4$ respectively (and thus have the same respective relationships with $Y$)This will help us see the difference between the models in selecting features and interpreting features* how well they deal with multicollinearity (5)* how well they identify noise (4)* how well they identify different kinds of relationships* how well they identify/interpret predictive power of individual variables. ###Code # import import numpy as np # Create the dataset # from https://blog.datadive.net/selecting-good-features-part-iv-stability-selection-rfe-and-everything-side-by-side/ np.random.seed(42) size = 1500 # I increased the size from what's given in the link Xs = np.random.uniform(0, 1, (size, 14)) # Changed variable name to Xs to use X later #"Friedamn #1” regression problem Y = (10 * np.sin(np.pi*Xs[:,0]*Xs[:,1]) + 20*(Xs[:,2] - .5)**2 + 10*Xs[:,3] + 5*Xs[:,4] + np.random.normal(0,1)) #Add 4 additional correlated variables (correlated with X1-X4) Xs[:,10:] = Xs[:,:4] + np.random.normal(0, .025, (size,4)) names = ["X%s" % i for i in range(1,15)] # Putting it into pandas--because... I like pandas. And usually you'll be # working with dataframes not arrays (you'll care what the column titles are) import pandas as pd friedmanX = pd.DataFrame(data=Xs, columns=names) friedmanY = pd.Series(data=Y, name='Y') friedman = friedmanX.join(friedmanY) friedman.head() ###Output _____no_output_____ ###Markdown We want to be able to look at classification problems too, so let's bin the Y values to create a categorical feature from the Y values. It should have *roughly* similar relationships to the X features as Y does. ###Code # First, let's take a look at what Y looks like import matplotlib.pyplot as plt import seaborn as sns sns.distplot(friedmanY); ###Output /usr/local/lib/python3.6/dist-packages/matplotlib/axes/_axes.py:6521: MatplotlibDeprecationWarning: The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead. alternative="'density'", removal="3.1") ###Markdown That's pretty normal, let's make two binary categories--one balanced, one unbalanced, to see the difference.* balanced binary variable will be split evenly in half* unbalanced binary variable will indicate whether $Y <5$. ###Code friedman['Y_bal'] = friedman['Y'].apply(lambda y: 1 if (y < friedman.Y.median()) else 0) friedman['Y_un'] = friedman['Y'].apply(lambda y: 1 if (y < 5) else 0) print(friedman.Y_bal.value_counts(), '\n\n', friedman.Y_un.value_counts()) friedman.head() # Finally, let's put it all into our usual X and y's # (I already have the X dataframe as friedmanX, but I'm working backward to # follow a usual flow) X = friedman.drop(columns=['Y', 'Y_bal', 'Y_un']) y = friedman.Y y_bal = friedman.Y_bal y_un = friedman.Y_un ###Output _____no_output_____ ###Markdown Alright! Let's get to it! Remember, with each part, we are increasing complexity of the analysis and thereby increasing the computational costs and runtime. So even before univariate selection--which compares each feature to the output feature one by one--there is a [VarianceThreshold](https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.htmlsklearn.feature_selection.VarianceThreshold) object in sklearn.feature_selection. It defaults to getting rid of any features that are the same across all samples. Great for cleaning data in that respect. The `threshold` parameter defaults to `0` to show the above behavior. if you change it, make sure you have good reason. Use with caution. Part 1: univariate selection* Best for goal 2 - getting "a better understanding of the data, its structure and characteristics"* unable to remove redundancy (for example selecting only the best feature among a subset of strongly correlated features)* Super fast - can be used for baseline models or just after baseline[sci-kit's univariariate feature selection objects and techniques](https://scikit-learn.org/stable/modules/feature_selection.htmlunivariate-feature-selection) Y (continuous output)options (they do what they sound like they do)* SelectKBest* SelectPercentileboth take the same parameter options for `score_func`* `f_regression`: scores by correlation coefficient, f value, p value--basically automates what you can do by looking at a correlation matrix except without the ability to recognize collinearity* `mutual_info_regression`: can capture non-linear correlations, but doesn't handle noise wellLet's take a look at mutual information (MI) ###Code import sklearn.feature_selection as fe MIR = fe.SelectKBest(fe.mutual_info_regression, k='all').fit(X, y) MIR_scores = pd.Series(data=MIR.scores_, name='MI_Reg_Scores', index=names) MIR_scores ###Output _____no_output_____ ###Markdown Y_bal (balanced binary output)options* SelectKBest* SelectPercentilethese options will cut out features with error rates above a certain tolerance level, define in parameter -`alpha`* SelectFpr (false positive rate--false positives predicted/total negatives in dataset)* SelectFdr (false discovery rate--false positives predicted/total positives predicted)* ~~SelectFwe (family-wise error--for multinomial classification tasks)~~all have the same optons for parameter `score_func`* `chi2`* `f_classif`* `mutual_info_classif` ###Code MIC_b = fe.SelectFpr(fe.mutual_info_classif).fit(X, y_bal) MIC_b_scores = pd.Series(data=MIC_b.scores_, name='MIC_Bal_Scores', index=names) MIC_b_scores ###Output _____no_output_____ ###Markdown Y_un (unbalanced binary output) ###Code MIC_u = fe.SelectFpr(fe.mutual_info_classif).fit(X, y_un) MIC_u_scores = pd.Series(data=MIC_u.scores_, name='MIC_Unbal_Scores', index=names) MIC_u_scores ###Output _____no_output_____ ###Markdown Part 2: linear models and regularization* L1 Regularization (Lasso for regression) is best for goal 1: "produces sparse solutions and as such is very useful selecting a strong subset of features for improving model performance" (forces coefficients to zero, telling you which you could remove--but doesn't handle multicollinearity)* L2 Regularization (Ridge for regression) is best for goal 2: "can be used for data interpretation due to its stability and the fact that useful features tend to have non-zero coefficients* Also fast[sci-kit's L1 feature selection](https://scikit-learn.org/stable/modules/feature_selection.htmll1-based-feature-selection) (can easily be switched to L2 using the parameter `penalty='l2'` for categorical targets or using `Ridge` instead of Lasso for continuous targets)We won't do this here, because1. You know regression2. The same principles apply as shown in Part 3 below with `SelectFromModel`3. There's way cooler stuff coming up Part 3: random forests* Best for goal 1, not 2 because: * strong features can end up with low scores * biased towards variables with many categories* "require very little feature engineering and parameter tuning"* Takes a little more time depending on your dataset - but a popular technique[sci-kit's implementation of tree-based feature selection](https://scikit-learn.org/stable/modules/feature_selection.htmltree-based-feature-selection) Y ###Code from sklearn.ensemble import RandomForestRegressor as RFR # Fitting a random forest regression rfr = RFR().fit(X, y) # Creating scores from feature_importances_ ranking (some randomness here) rfr_scores = pd.Series(data=rfr.feature_importances_, name='RFR', index=names) rfr_scores ###Output /usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) ###Markdown Y_bal ###Code from sklearn.ensemble import RandomForestClassifier as RFC # Fitting a Random Forest Classifier rfc_b = RFC().fit(X, y_bal) # Creating scores from feature_importances_ ranking (some randomness here) rfc_b_scores = pd.Series(data=rfc_b.feature_importances_, name='RFC_bal', index=names) rfc_b_scores ###Output /usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) ###Markdown Y_un ###Code # Fitting a Random Forest Classifier rfc_u = RFC().fit(X, y_un) # Creating scores from feature_importances_ ranking (some randomness here) rfc_u_scores = pd.Series(data=rfc_u.feature_importances_, name='RFC_unbal', index=names) rfc_u_scores ###Output /usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) ###Markdown SelectFromModel is a meta-transformer that can be used along with any estimator that has a `coef_` or `feature_importances_` attribute after fitting. The features are considered unimportant and removed, if the corresponding `coef_` or `feature_importances_` values are below the provided `threshold` parameter. Apart from specifying the `threshold` numerically, there are built-in heuristics for finding a `threshold` using a string argument. Available heuristics are `'mean'`, `'median'` and float multiples of these like `'0.1*mean'`. ###Code # Random forest regression transformation of X (elimination of least important # features) rfr_transform = fe.SelectFromModel(rfr, prefit=True) X_rfr = rfr_transform.transform(X) # Random forest classifier transformation of X_bal (elimination of least important # features) rfc_b_transform = fe.SelectFromModel(rfc_b, prefit=True) X_rfc_b = rfc_b_transform.transform(X) # Random forest classifier transformation of X_un (elimination of least important # features) rfc_u_transform = fe.SelectFromModel(rfc_u, prefit=True) X_rfc_u = rfc_u_transform.transform(X) RF_comparisons = pd.DataFrame(data=np.array([rfr_transform.get_support(), rfc_b_transform.get_support(), rfc_u_transform.get_support()]).T, columns=['RF_Regressor', 'RF_balanced_classifier', 'RF_unbalanced_classifier'], index=names) RF_comparisons ###Output _____no_output_____ ###Markdown Part 4: stability selection, RFE, and everything side by side* These methods take longer since they are *wrapper methods* and build multiple ML models before giving results. "They both build on top of other (model based) selection methods such as regression or SVM, building models on different subsets of data and extracting the ranking from the aggregates."* Stability selection is good for both goal 1 and 2: "among the top performing methods for many different datasets and settings" * For categorical targets * ~~[RandomizedLogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLogisticRegression.html)~~ (Deprecated) use [RandomizedLogisticRegression](https://thuijskens.github.io/stability-selection/docs/randomized_lasso.htmlstability_selection.randomized_lasso.RandomizedLogisticRegression) * [ExtraTreesClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.htmlsklearn.ensemble.ExtraTreesClassifier) * For continuous targets * ~~[RandomizedLasso](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLasso.html)~~ (Deprecated) use [RandomizedLasso](https://thuijskens.github.io/stability-selection/docs/randomized_lasso.htmlstability_selection.randomized_lasso.RandomizedLogisticRegression) * [ExtraTreesRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.htmlsklearn.ensemble.ExtraTreesRegressor) Welcome to open-source, folks! [Here](https://github.com/scikit-learn/scikit-learn/issues/8995) is the original discussion to deprecate `RandomizedLogisticRegression` and `RandomizedLasso`. [Here](https://github.com/scikit-learn/scikit-learn/issues/9657) is a failed attempt to resurrect it. It looks like it'll be gone for good soon. So we shouldn't get dependent on it. The alternatives from the deprecated scikit objects come from an official scikit-learn-contrib module called [stability_selection](https://github.com/scikit-learn-contrib/stability-selection). They also have a `StabilitySelection` object that acts similarly scikit's `SelectFromModel`.* recursive feature elimination (RFE) is best for goal 1 * [sci-kit's RFE and RFECV (RFE with built-in cross-validation)](https://scikit-learn.org/stable/modules/feature_selection.htmlrecursive-feature-elimination) ###Code !pip install git+https://github.com/scikit-learn-contrib/stability-selection.git ###Output Collecting git+https://github.com/scikit-learn-contrib/stability-selection.git Cloning https://github.com/scikit-learn-contrib/stability-selection.git to /tmp/pip-req-build-r3yzun5t Requirement already satisfied: nose>=1.1.2 in /usr/local/lib/python3.6/dist-packages (from stability-selection==0.0.1) (1.3.7) Requirement already satisfied: scikit-learn>=0.19 in /usr/local/lib/python3.6/dist-packages (from stability-selection==0.0.1) (0.20.2) Requirement already satisfied: matplotlib>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from stability-selection==0.0.1) (3.0.2) Requirement already satisfied: numpy>=1.8.0 in /usr/local/lib/python3.6/dist-packages (from stability-selection==0.0.1) (1.14.6) Requirement already satisfied: scipy>=0.13.3 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.19->stability-selection==0.0.1) (1.1.0) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.0.0->stability-selection==0.0.1) (0.10.0) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.0.0->stability-selection==0.0.1) (2.5.3) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.0.0->stability-selection==0.0.1) (2.3.1) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.0.0->stability-selection==0.0.1) (1.0.1) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from cycler>=0.10->matplotlib>=2.0.0->stability-selection==0.0.1) (1.11.0) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from kiwisolver>=1.0.1->matplotlib>=2.0.0->stability-selection==0.0.1) (40.7.0) Building wheels for collected packages: stability-selection Building wheel for stability-selection (setup.py) ... [?25ldone [?25h Stored in directory: /tmp/pip-ephem-wheel-cache-h8uk030e/wheels/58/be/39/79880712b91ffa56e341ff10586a1956527813437ddd759473 Successfully built stability-selection Installing collected packages: stability-selection Successfully installed stability-selection-0.0.1 ###Markdown Okay, I tried this package... it seems to have some problems... hopefully a good implementation of stability selection for Lasso and Logistic Regression will be created soon! In the meantime, scikit's RandomLasso and RandomLogisticRegression have not been removed, so you can fiddle some! Just alter the commented out code!* import from scikit instead of stability-selection* use scikit's `SelectFromModel` as shown above!Ta Da! Y ###Code '''from stability_selection import (RandomizedLogisticRegression, RandomizedLasso, StabilitySelection, plot_stability_path) # Stability selection using randomized lasso method rl = RandomizedLasso(max_iter=2000) rl_selector = StabilitySelection(base_estimator=rl, lambda_name='alpha', n_jobs=2) rl_selector.fit(X, y); ''' from sklearn.ensemble import ExtraTreesRegressor as ETR # Stability selection using randomized decision trees etr = ETR(n_estimators=50).fit(X, y) # Creating scores from feature_importances_ ranking (some randomness here) etr_scores = pd.Series(data=etr.feature_importances_, name='ETR', index=names) etr_scores from sklearn.linear_model import LinearRegression # Recursive feature elimination with cross validaiton using linear regression # as the model lr = LinearRegression() # rank all features, i.e continue the elimination until the last one rfe = fe.RFECV(lr) rfe.fit(X, y) rfe_score = pd.Series(data=(-1*rfe.ranking_), name='RFE', index=names) rfe_score ###Output /usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_split.py:2053: FutureWarning: You should specify a value for 'cv' instead of relying on the default value. The default value will change from 3 to 5 in version 0.22. warnings.warn(CV_WARNING, FutureWarning) ###Markdown Y_bal ###Code # stability selection using randomized logistic regression '''rlr_b = RandomizedLogisticRegression() rlr_b_selector = StabilitySelection(base_estimator=rlr_b, lambda_name='C', n_jobs=2) rlr_b_selector.fit(X, y_bal);''' from sklearn.ensemble import ExtraTreesClassifier as ETC # Stability selection using randomized decision trees etc_b = ETC(n_estimators=50).fit(X, y_bal) # Creating scores from feature_importances_ ranking (some randomness here) etc_b_scores = pd.Series(data=etc_b.feature_importances_, name='ETC_bal', index=names) etc_b_scores from sklearn.linear_model import LogisticRegression # Recursive feature elimination with cross validaiton using logistic regression # as the model logr_b = LogisticRegression(solver='lbfgs') # rank all features, i.e continue the elimination until the last one rfe_b = fe.RFECV(logr_b) rfe_b.fit(X, y_bal) rfe_b_score = pd.Series(data=(-1*rfe_b.ranking_), name='RFE_bal', index=names) rfe_b_score ###Output /usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_split.py:2053: FutureWarning: You should specify a value for 'cv' instead of relying on the default value. The default value will change from 3 to 5 in version 0.22. warnings.warn(CV_WARNING, FutureWarning) ###Markdown Y_un ###Code # stability selection uisng randomized logistic regression '''rlr_u = RandomizedLogisticRegression(max_iter=2000) rlr_u_selector = StabilitySelection(base_estimator=rlr_u, lambda_name='C') rlr_u_selector.fit(X, y_un);''' # Stability selection using randomized decision trees etc_u = ETC(n_estimators=50).fit(X, y_un) # Creating scores from feature_importances_ ranking (some randomness here) etc_u_scores = pd.Series(data=etc_u.feature_importances_, name='ETC_unbal', index=names) etc_u_scores # Recursive feature elimination with cross validaiton using logistic regression # as the model logr_u = LogisticRegression(solver='lbfgs') # rank all features, i.e continue the elimination until the last one rfe_u = fe.RFECV(logr_u) rfe_u.fit(X, y_un) rfe_u_score = pd.Series(data=(-1*rfe_u.ranking_), name='RFE_unbal', index=names) rfe_u_score '''RL_comparisons = pd.DataFrame(data=np.array([rl_selector.get_support(), rlr_b_selector.get_support(), rlr_u_selector.get_support()]).T, columns=['RandomLasso', 'RandomLog_bal', 'RandomLog_unbal'], index=names) RL_comparisons''' comparisons = pd.concat([MIR_scores, MIC_b_scores, MIC_u_scores, rfr_scores, rfc_b_scores, rfc_u_scores, etr_scores, etc_b_scores, etc_u_scores, rfe_score, rfe_b_score, rfe_u_score], axis=1) comparisons from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() scaled_df = scaler.fit_transform(comparisons) scaled_comparisons = pd.DataFrame(scaled_df, columns=comparisons.columns, index=names) scaled_comparisons ###Output /usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:323: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by MinMaxScaler. return self.partial_fit(X, y) ###Markdown What do you notice from the diagram below? ###Code sns.heatmap(scaled_comparisons); ###Output _____no_output_____
word2vec_example.ipynb
###Markdown word2vec ###Code import pandas as pd data = pd.read_csv('../web_crawler_hyeom/KoreaNewsCrawler/OUTPUT/output/other_categories/Article_사회_202001_202003.csv', header=None, error_bad_lines=False) data.columns = ['date', 'category', 'source', 'title', 'content', 'url'] print(data.shape) sample = data.sample(n=10000) sample.head() !pip install konlpy from konlpy.tag import Okt from tqdm import tqdm okt = Okt() sample['content'][262504] okt.pos(sample['content'][262504]) all_tokens = [ okt.pos(text) for text in tqdm(sample['content'], desc='tokenize...') ] ['a','a'] new_all_tokens = [] for tokens in tqdm(all_tokens): tmp = [] for t in tokens: tmp.append('/'.join(t)) new_all_tokens.append(tmp) ###Output 0%| | 0/10000 [00:00<?, ?it/s] 6%|▋ | 645/10000 [00:00<00:01, 6447.90it/s] 13%|█▎ | 1292/10000 [00:00<00:01, 6090.95it/s] 20%|█▉ | 1985/10000 [00:00<00:01, 6102.03it/s] 27%|██▋ | 2678/10000 [00:00<00:01, 6166.81it/s] 34%|███▎ | 3371/10000 [00:01<00:01, 4984.32it/s] 38%|███▊ | 3800/10000 [00:01<00:02, 2388.25it/s] 41%|████▏ | 4133/10000 [00:02<00:04, 1392.32it/s] 44%|████▍ | 4387/10000 [00:02<00:06, 820.93it/s]  48%|████▊ | 4782/10000 [00:02<00:04, 1043.79it/s] 50%|█████ | 5001/10000 [00:02<00:05, 934.25it/s]  59%|█████▉ | 5889/10000 [00:02<00:03, 1277.05it/s] 66%|██████▋ | 6630/10000 [00:02<00:01, 1698.82it/s] 74%|███████▍ | 7388/10000 [00:02<00:01, 2214.15it/s] 80%|████████ | 8045/10000 [00:02<00:00, 2763.70it/s] 87%|████████▋ | 8669/10000 [00:03<00:00, 3318.12it/s] 100%|██████████| 10000/10000 [00:03<00:00, 3077.20it/s][A ###Markdown ```pythonimport torchtorch.save(new_all_tokens, 'save_dir/all_tokens.torch')``` ###Code %%time from gensim.models import Word2Vec model = Word2Vec( sentences = new_all_tokens, size = 300, workers = 10 ) ###Output CPU times: user 1min 21s, sys: 554 ms, total: 1min 22s Wall time: 20.3 s ###Markdown ```pythonmodel.save('save_dir/w2v.model')``` ###Code ## 학습이 끝나면, 필요없는 메모리 unload model.init_sims(replace=True) '코로나/Noun' in list(model.wv.vocab.keys()) for i in sample['content'][:5]: print(i, end='\n\n') model.wv.most_similar('코로나/Noun') model.wv.most_similar('마스크/Noun') model.wv.get_vector('코로나/Noun') class First(object): def __init__(self): super(First, self).__init__() print("first") class Second(object): def __init__(self): super(Second, self).__init__() print("second") class Third(First, Second): def __init__(self): super(Third, self).__init__() print("third") ###Output _____no_output_____ ###Markdown 다시시작 ###Code import torch new_all_tokens = torch.load('save_dir/all_tokens.torch') from gensim.models import Word2Vec model = Word2Vec.load('save_dir/w2v.model') len(vocabs) vocabs = list(model.wv.vocab.keys()) word_vectors = [model.wv[v] for v in vocabs] vocabs = [v for v in vocabs if v.split('/')[-1] == 'Noun'] from sklearn.decomposition import PCA pca = PCA(n_components=2) xys = pca.fit_transform(word_vectors) xs = xys[:,0] ys = xys[:,1] import matplotlib.pyplot as plt plt.rc('font', family='NanumGothic') def plot_2d_graph(vocabs, xs, ys): plt.figure(figsize=(8,6)) plt.scatter(xs, ys, marker='o') for i,v in enumerate(vocabs): plt.annotate(v, xy=(xs[i], ys[i])) from numpy.random import choice idxs = choice(range(len(vocabs)), size=50, replace=False) plot_2d_graph( [v for i,v in enumerate(vocabs) if i in idxs], [x for i,x in enumerate(xs) if i in idxs], [y for i,y in enumerate(ys) if i in idxs] ) ###Output /opt/conda/envs/finbert/lib/python3.7/site-packages/matplotlib/backends/backend_agg.py:214: RuntimeWarning: Glyph 8722 missing from current font. font.set_text(s, 0.0, flags=flags) /opt/conda/envs/finbert/lib/python3.7/site-packages/matplotlib/backends/backend_agg.py:183: RuntimeWarning: Glyph 8722 missing from current font. font.set_text(s, 0, flags=flags)
02.bike_count/04.bike-count-RNN.ipynb
###Markdown Bike count forecasting using RNN ###Code import pandas as pd import numpy as np import os import time import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # preprocessing methods from sklearn.preprocessing import StandardScaler # accuracy measures and data spliting from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split # deep learning libraries from keras.models import Input, Model from keras.models import Sequential from keras.layers import LSTM, Dense, GRU, SimpleRNN from keras.layers import Conv1D, MaxPooling1D from keras import layers from keras import losses from keras import optimizers from keras import metrics from keras import callbacks from keras import initializers plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = 15, 7 ###Output _____no_output_____ ###Markdown 1. Data import and basic analysis ###Code DATADIR = '../data/bike/' MODELDIR = '../checkpoints/bike-sharing/rnn/' data_path = os.path.join(DATADIR, 'bike-sharing-processed.csv') data = pd.read_csv(data_path) data.set_index('date', inplace=True) data.sort_index(inplace=True) data.head() plt.plot(data.cnt, '.') plt.title('Bike sharing count') plt.xlabel('sample id') plt.ylabel('count') plt.show() ###Output _____no_output_____ ###Markdown 2. Data preparation ###Code y = data[['cnt']].copy() X = data.drop(columns=['cnt'], axis=1) print(f'X and y shape:') print(X.shape, y.shape) # date selection datelist = data.index.unique() # two month data for testset print(f'Test start date: {datelist[-61]}') # Train test split : last 60 days for test set X_train = X[X.index < datelist[-61]] X_test = X[X.index >= datelist[-61]] y_train = y[y.index < datelist[-61]] y_test = y[y.index >= datelist[-61]] print(f'Size of train and test set respectively:') print(X_train.shape,X_test.shape, y_train.shape, y_test.shape) timesteps = 1 features = X_train.shape[1] xavier = initializers.glorot_normal() X_train = np.reshape(X_train.values, (X_train.shape[0], timesteps, features)) X_test = np.reshape(X_test.values, (X_test.shape[0], timesteps, features)) X_train.shape, X_test.shape, y_train.shape, y_test.shape ###Output _____no_output_____ ###Markdown 3. Model building ###Code def model_evaluation(y_train, y_test, y_train_pred, y_test_pred): # MAE and NRMSE calculation train_rmse = np.sqrt(mean_squared_error(y_train, y_train_pred)) train_mae = mean_absolute_error(y_train, y_train_pred) train_nrmse = train_rmse/np.std(y_train.values) test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred)) test_mae = mean_absolute_error(y_test, y_test_pred) test_nrmse = test_rmse/np.std(y_test.values) print(f'Training MAE: {np.round(train_mae, 3)}') print(f'Trainig NRMSE: {np.round(train_nrmse, 3)}') print() print(f'Test MAE: {np.round(test_mae)}') print(f'Test NRMSE: {np.round(test_nrmse)}') return def model_training(X_train, X_test, y_train, model, batch=8, name='m'): start = time.time() loss = losses.mean_squared_error opt = optimizers.Adam() metric = [metrics.mean_absolute_error] model.compile(loss=loss, optimizer=opt, metrics=metric) callbacks_list = [callbacks.ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.001)] history = model.fit(X_train, y_train, epochs=100, batch_size=batch, verbose=0, shuffle=False, callbacks=callbacks_list ) # save model weights and if os.path.exists(MODELDIR): pass else: os.makedirs(MODELDIR) m_name = name + str('.h5') w_name = name + str('_w.h5') model.save(os.path.join(MODELDIR, m_name)) model.save_weights(os.path.join(MODELDIR, w_name)) # prediction y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) end = time.time() time_taken = np.round((end-start), 3) print(f'Time taken to complete the process: {time_taken} seconds') return y_train_pred, y_test_pred, history ###Output _____no_output_____ ###Markdown RNN - v1 ###Code model = Sequential() model.add(SimpleRNN(3, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=8, name='rnn-v1') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_1 (SimpleRNN) (None, 3) 48 _________________________________________________________________ dense_1 (Dense) (None, 1) 4 ================================================================= Total params: 52 Trainable params: 52 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 9.143 seconds Training MAE: 3132.46 Trainig NRMSE: 1.835 Test MAE: 2698.0 Test NRMSE: 2.0 ###Markdown RNN - v2 ###Code model = Sequential() model.add(SimpleRNN(3, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(3, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(3, kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=8, name='rnn-v2') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_6 (SimpleRNN) (None, 1, 3) 48 _________________________________________________________________ simple_rnn_7 (SimpleRNN) (None, 1, 3) 21 _________________________________________________________________ simple_rnn_8 (SimpleRNN) (None, 3) 21 _________________________________________________________________ dense_2 (Dense) (None, 1) 4 ================================================================= Total params: 94 Trainable params: 94 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 15.411 seconds Training MAE: 4494.103 Trainig NRMSE: 2.496 Test MAE: 4523.0 Test NRMSE: 3.0 ###Markdown RNN - v3 ###Code model = Sequential() model.add(SimpleRNN(8, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(8, kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=8, name='rnn-v3') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_9 (SimpleRNN) (None, 1, 8) 168 _________________________________________________________________ simple_rnn_10 (SimpleRNN) (None, 1, 16) 400 _________________________________________________________________ simple_rnn_11 (SimpleRNN) (None, 8) 200 _________________________________________________________________ dense_3 (Dense) (None, 1) 9 ================================================================= Total params: 777 Trainable params: 777 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 15.659 seconds Training MAE: 844.919 Trainig NRMSE: 0.549 Test MAE: 1711.0 Test NRMSE: 1.0 ###Markdown RNN - v4 ###Code model = Sequential() model.add(SimpleRNN(8, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(8, kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=16, name='rnn-v4') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_12 (SimpleRNN) (None, 1, 8) 168 _________________________________________________________________ simple_rnn_13 (SimpleRNN) (None, 1, 16) 400 _________________________________________________________________ simple_rnn_14 (SimpleRNN) (None, 8) 200 _________________________________________________________________ dense_4 (Dense) (None, 1) 9 ================================================================= Total params: 777 Trainable params: 777 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 8.583 seconds Training MAE: 1255.245 Trainig NRMSE: 0.793 Test MAE: 1798.0 Test NRMSE: 1.0 ###Markdown RNN - v5 ###Code model = Sequential() model.add(SimpleRNN(8, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(8, kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=4, name='rnn-v5') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_15 (SimpleRNN) (None, 1, 8) 168 _________________________________________________________________ simple_rnn_16 (SimpleRNN) (None, 1, 16) 400 _________________________________________________________________ simple_rnn_17 (SimpleRNN) (None, 8) 200 _________________________________________________________________ dense_5 (Dense) (None, 1) 9 ================================================================= Total params: 777 Trainable params: 777 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 30.338 seconds Training MAE: 704.593 Trainig NRMSE: 0.471 Test MAE: 1275.0 Test NRMSE: 1.0 ###Markdown RNN - v6 (final model) ###Code model = Sequential() model.add(SimpleRNN(8, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(8, kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=2, name='rnn-v6') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_22 (SimpleRNN) (None, 1, 8) 168 _________________________________________________________________ simple_rnn_23 (SimpleRNN) (None, 1, 16) 400 _________________________________________________________________ simple_rnn_24 (SimpleRNN) (None, 1, 16) 528 _________________________________________________________________ simple_rnn_25 (SimpleRNN) (None, 8) 200 _________________________________________________________________ dense_7 (Dense) (None, 1) 9 ================================================================= Total params: 1,305 Trainable params: 1,305 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 72.353 seconds Training MAE: 651.45 Trainig NRMSE: 0.454 Test MAE: 1253.0 Test NRMSE: 1.0 ###Markdown RNN-v7 ###Code model = Sequential() model.add(SimpleRNN(8, input_shape = (timesteps, features), kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(16, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(8, kernel_initializer=xavier, activation='relu', return_sequences=True)) model.add(SimpleRNN(8, kernel_initializer=xavier, activation='relu')) model.add(Dense(1, kernel_initializer=xavier)) model.summary() y_train_pred, y_test_pred, history = model_training(X_train, X_test, y_train, model, batch=2, name='rnn-v7') model_evaluation(y_train, y_test, y_train_pred, y_test_pred) plt.plot(y_test.values, label='actual') plt.plot(y_test_pred, label='predicted') plt.ylabel('count') plt.xlabel('sample id') plt.title('Actual vs Predicted on test data using RNN') plt.legend() plt.tight_layout() plt.show() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_26 (SimpleRNN) (None, 1, 8) 168 _________________________________________________________________ simple_rnn_27 (SimpleRNN) (None, 1, 16) 400 _________________________________________________________________ simple_rnn_28 (SimpleRNN) (None, 1, 16) 528 _________________________________________________________________ simple_rnn_29 (SimpleRNN) (None, 1, 8) 200 _________________________________________________________________ simple_rnn_30 (SimpleRNN) (None, 8) 136 _________________________________________________________________ dense_8 (Dense) (None, 1) 9 ================================================================= Total params: 1,441 Trainable params: 1,441 Non-trainable params: 0 _________________________________________________________________ Time taken to complete the process: 88.76 seconds Training MAE: 763.082 Trainig NRMSE: 0.529 Test MAE: 1373.0 Test NRMSE: 1.0
Data Science/05. Plotting in detail/03. Grid, Axes, and Labels.ipynb
###Markdown Grid Axes Labels ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.grid(True) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.grid(True) print(plt.axis()) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.grid(True) plt.axis([0, 2, 0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.grid(True) plt.xlim([0, 2]) plt.ylim([0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.grid(True) plt.xlabel('x= np.aranage(3)') plt.ylabel('y= f(x)') plt.xlim([0, 2]) plt.ylim([0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.grid(True) plt.xlabel('x= np.aranage(3)') plt.ylabel('y= f(x)') plt.title('Plot Title') plt.xlim([0, 2]) plt.ylim([0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, label='x**2') plt.plot(x, x**3, label='x**3') plt.plot(x, 2*x, label='2*x') plt.plot(x, 2**x, label='2**x') plt.legend() plt.grid(True) plt.xlabel('x= np.aranage(3)') plt.ylabel('y= f(x)') plt.title('Plot Title') plt.xlim([0, 2]) plt.ylim([0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.legend(['x**2', 'x**3', '2*x', '2**x']) plt.grid(True) plt.xlabel('x= np.aranage(3)') plt.ylabel('y= f(x)') plt.title('Plot Title') plt.xlim([0, 2]) plt.ylim([0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.legend(['x**2', 'x**3', '2*x', '2**x'], loc='upper center') plt.grid(True) plt.xlabel('x= np.aranage(3)') plt.ylabel('y= f(x)') plt.title('Plot Title') plt.xlim([0, 2]) plt.ylim([0, 8]) plt.show() x = np.arange(3) plt.plot(x, x**2, x, x**3, x, 2*x, 2**x) plt.legend(['x**2', 'x**3', '2*x', '2**x'], loc='upper center') plt.grid(True) plt.xlabel('x= np.aranage(3)') plt.ylabel('y= f(x)') plt.title('Plot Title') plt.xlim([0, 2]) plt.ylim([0, 8]) plt.savefig('test.png') #save as png plt.show() ###Output _____no_output_____
demos/Record Disambiguation - People.ipynb
###Markdown Record DisambiguationIn this notebook we perform entity disambiguation on records, specifically person records. ###Code %load_ext autoreload %autoreload 2 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from IPython.display import display, Markdown from sklearn.model_selection import train_test_split from tqdm.auto import tqdm import sys sys.path.append("..") from heritageconnector.disambiguation.helpers import load_training_data, plot_performance_curves from heritageconnector.disambiguation.pipelines import Disambiguator from heritageconnector.disambiguation.postprocessing import filter_max_wikidata_links, enforce_correct_type from heritageconnector.utils.wikidata import get_sparql_results, url_to_qid from heritageconnector.utils.generic import paginate_list from heritageconnector.config import config pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', None) ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload ###Markdown 1. Load dataThis data has already been generated using `Disambiguator.save_training_data_to_folder` and `Disambiguator.save_test_data_to_folder`. ###Code train_dir = "/Volumes/Kalyan_SSD/SMG/disambiguation/people_281020/train/" test_dir = "/Volumes/Kalyan_SSD/SMG/disambiguation/people_281020/test/" X, y, pairs, pids = load_training_data(train_dir) X_new, pairs_new, pids_new = load_training_data(test_dir) pids, pids_new X.sum(axis=0), X_new.sum(axis=0) pairs.head() ###Output _____no_output_____ ###Markdown 2. Train classifierThe disambiguator wraps `sklearn.tree.DecisionTreeClassifier` and takes its parameters as inputs. 2a. Test classifier performanceWe'll perform a train/test split on the labelled data to quickly test the classifier's performance using its `score` method. The `score` method here returns [balanced accuracy](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html): accuracy weighted so that each class is considered evenly. ###Code X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.1) clf = Disambiguator('PERSON').fit(X_train, y_train) for threshold in [0.5, 0.6, 0.7, 0.8, 0.9]: print(str(threshold) + " --- \n" + clf.score(X_test, y_test, threshold)) ###Output 0.5 --- balanced accuracy score: 0.9794740146913499 precision score: 0.9054054054054054 recall score: 0.9640287769784173 0.6 --- balanced accuracy score: 0.9794740146913499 precision score: 0.9054054054054054 recall score: 0.9640287769784173 0.7 --- balanced accuracy score: 0.9794740146913499 precision score: 0.9054054054054054 recall score: 0.9640287769784173 0.8 --- balanced accuracy score: 0.9794740146913499 precision score: 0.9054054054054054 recall score: 0.9640287769784173 0.9 --- balanced accuracy score: 0.9796554699626254 precision score: 0.9115646258503401 recall score: 0.9640287769784173 ###Markdown 2b. Use classifier to predict new Wikidata links ###Code clf = Disambiguator('PERSON').fit(X, y) y_pred = clf.predict(X_new, threshold=0.9) y_pred_proba = clf.predict_proba(X_new) print(f"{np.unique(y_pred, return_counts=True)[1][1]} potential new links found") pairs_new = clf.get_predictions_table(X_new, pairs_new, threshold=0.9) display(Markdown("The graph below shows the distribution of the number of predicted matches per SMG ID. Around 75% have a unique match, and most of the remainder have two matches.")) sns.distplot(pairs_new.loc[pairs_new["y_pred"] == True, "internal_id"].value_counts(), kde=False, norm_hist=True).set_ylabel('proportion') plt.gca().set_title('Count of Number of SMG IDs per True Prediction'); ###Output _____no_output_____ ###Markdown 2c. Returning top-ranked links onlyWe can filter some of the duplicate Wikidata candidates for each SMG item found above by _only returning the top-ranked positive matches_. `clf.predict_top_ranked_pairs` does this. ###Code pairs_true = clf.get_top_ranked_pairs(pairs_new) print(f"No. new links: {len(pairs_true)}") print(f"No. SMG items with new links: {len(pairs_true['internal_id'].unique())}") pairs_true.head(20) ###Output No. new links: 2355 No. SMG items with new links: 2271 ###Markdown 2d. Filter matchesBy type, number of links ###Code max_links_per_record = 4 pairs_true_filtered = enforce_correct_type(pairs_true) pairs_true_filtered = filter_max_wikidata_links(pairs_true_filtered, 4) print("-- After Filtering --") print(f"No. new links: {len(pairs_true_filtered)}") print(f"No. SMG items with new links: {len(pairs_true_filtered['internal_id'].unique())}") ###Output -- After Filtering -- No. new links: 2345 No. SMG items with new links: 2267 ###Markdown 3. Explain classifierWe can see that the classifier prioritises P569/P570 (birth and death dates), P21 (gender), label similarity, and occupation.It's interesting to note that P31 (instance of), which tells the classifier whether the Wikidata record is a human, is not used. This is likely because P569/P570/P106/P21 are qualities which only humans can have.P31 is likely to be much more prevalent when classifying objects, and distinguishing between e.g. paintings and posters. ###Code clf.print_tree(feature_names=pids) ###Output |--- P569 <= 1.00 | |--- P106 <= 0.50 | | |--- P570 <= 1.00 | | | |--- label <= 0.99 | | | | |--- P735 <= 0.03 | | | | | |--- class: False | | | | |--- P735 > 0.03 | | | | | |--- class: False | | | |--- label > 0.99 | | | | |--- P21 <= 0.50 | | | | | |--- class: False | | | | |--- P21 > 0.50 | | | | | |--- class: False | | |--- P570 > 1.00 | | | |--- label <= 0.94 | | | | |--- class: False | | | |--- label > 0.94 | | | | |--- P734 <= 0.97 | | | | | |--- class: False | | | | |--- P734 > 0.97 | | | | | |--- class: True | |--- P106 > 0.50 | | |--- label <= 0.95 | | | |--- label <= 0.87 | | | | |--- P570 <= 0.28 | | | | | |--- class: False | | | | |--- P570 > 0.28 | | | | | |--- class: False | | | |--- label > 0.87 | | | | |--- P569 <= 0.90 | | | | | |--- class: True | | | | |--- P569 > 0.90 | | | | | |--- class: False | | |--- label > 0.95 | | | |--- P569 <= 0.42 | | | | |--- P734 <= 0.92 | | | | | |--- class: True | | | | |--- P734 > 0.92 | | | | | |--- class: True | | | |--- P569 > 0.42 | | | | |--- P569 <= 0.99 | | | | | |--- class: False | | | | |--- P569 > 0.99 | | | | | |--- class: True |--- P569 > 1.00 | |--- label <= 0.86 | | |--- class: False | |--- label > 0.86 | | |--- P569 <= 1.00 | | | |--- P570 <= 1.00 | | | | |--- P106 <= 0.50 | | | | | |--- class: False | | | | |--- P106 > 0.50 | | | | | |--- class: True | | | |--- P570 > 1.00 | | | | |--- P735 <= 0.60 | | | | | |--- class: True | | | | |--- P735 > 0.60 | | | | | |--- class: True | | |--- P569 > 1.00 | | | |--- P569 <= 1.00 | | | | |--- P570 <= 1.00 | | | | | |--- class: False | | | | |--- P570 > 1.00 | | | | | |--- class: True | | | |--- P569 > 1.00 | | | | |--- label <= 0.95 | | | | | |--- class: True | | | | |--- label > 0.95 | | | | | |--- class: True ###Markdown 4. Export model and final predictions ###Code clf.save_classifier_to_disk("/Volumes/Kalyan_SSD/SMG/disambiguation/people_281020/clf.pkl") pairs_true_filtered.to_csv("/Volumes/Kalyan_SSD/SMG/disambiguation/people_281020/people_preds_positive.csv", index=False) ###Output _____no_output_____ ###Markdown You can also use the below cell to export a sample of positive and negative samples to an Excel document for manual review ###Code pairs_pos_sample = pairs_new[pairs_new['y_pred'] == True].sample(30, random_state=42) pairs_neg_sample = pairs_new[pairs_new['y_pred'] == False].sample(30, random_state=42) pairs_sample = pd.concat([pairs_pos_sample, pairs_neg_sample], ignore_index=False) pairs_sample = pairs_sample.copy() pairs_sample['wikidata_id'] = "https://www.wikidata.org/entity/" + pairs_sample['wikidata_id'] pairs_sample.to_excel("people_classifier_sample_for_review.xlsx") ###Output _____no_output_____
problems/0041/solution.ipynb
###Markdown Problem 41 Pandigital primeWe shall say that an $n$-digit number is pandigital if it makes use of all the digits $1$ to $n$ exactly once. For example, $2143$ is a $4$-digit pandigital and is also prime.What is the largest $n$-digit pandigital prime that exists? Solution ###Code from euler.primes import prime_numbers def compute() -> int: for prime in reversed(list(prime_numbers(7_654_321))): str_prime = str(prime) if set(str_prime) == set(map(str, range(1, len(str_prime) + 1))): return prime compute() %timeit -n 100 -r 1 -p 6 compute() ###Output 969.678 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 100 loops each)
docs/source/Introduction/libraries/Numpy tutorial.ipynb
###Markdown The NumPy Library Try me [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ffraile/operations-research-notebooks/blob/main/docs/source/Introduction/libraries/Numpy%20tutorial.ipynb)[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/ffraile/operations-research-notebooks/main?labpath=docs%2Fsource%2FIntroduction%2Flibraries%2FNumpy%20tutorial.ipynb)The [Numpy](https://numpy.org/) (Numerical Python) is a package of numerical functions to effectively work with multidimensional data structures in Python. In Python, it is possible to work with anidated lists to work with multidimensional structures (arrays and matrix), but this is not efficient. The Numpy library defines the numpy array object to provide an efficient and convenient object to define multidimensional structures.To use Numpy in your Notebooks and programs, you first need to import the package (in this example we use the alias np): ###Code import numpy as np ###Output _____no_output_____ ###Markdown The Numpy ArrayThe numpy array uses a similar structure to a Python list, although as mentioned above, it provides additional functionalities to easily create and manipulate multidimensional data structures. The data in an array are called elements and they are accessed using brackets, just as with Python lists. The dimensions of a numpy array are called **axes**. The elements within an axe are separated using commas and surrounded by brackets. Axes are also separated by brackets, so that a numpy array is represented as an anidated python list. The **rank** is the number of axis of an array. The **shape** is a list representing the number of elements in each axis. The elements of a numpy array can be of any numerical type. ###Code b = np.array([[1,2,3,4],[5,6,7,8]]) #This creates a 2-dimensional (rank 2) 2x4 array print("My first Numpy array:") print(b) print("element in position (1,2) is:") print(b[1,2]) print("Number of dimensions:") print(b.ndim) #number of dimensions or rank print("Shape of array:") print(b.shape) #shape (eg n rows, m columns) print("Total number of elements:") print(b.size) #number of elements ###Output My first Numpy array: [[1 2 3 4] [5 6 7 8]] element in position (1,2) is: 7 Number of dimensions: 2 Shape of array: (2, 4) Total number of elements: 8 ###Markdown Create Numpy ArraysNumpy includes several functions for creating numpy arrays initialized with convenient ranks, shapes, or elements with constant or random values.**Some examples:** ###Code o = np.ones((3,2)) # array of 3x2 1s print(o) b=np.zeros((3,4)) # array of 3x4 zeroes print(b) c=np.random.random(3) #array of 3x1 random numbers print(c) d=np.full((2,2),12) # array of 2x2 12s print(d) id =np.eye(3,3) # identity array of size 3x3 print(id) ###Output [[1. 1.] [1. 1.] [1. 1.]] [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] [0.71574091 0.54968971 0.72723399] [[12 12] [12 12]] [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] ###Markdown Creating sequencesSome useful functions for creating lists are **arange** and **linspace**: - **arange(start, end, step)**: creates a numpy array with elements ranging from **start** to **end** incrementing by **step**. Only end is required, using only end will create an evenly spaced range from 0 to end. - **linspace(start,end,numvalues)**: creates a numpy array with **numvalues** elements with evenly distributed values ranging from **start** to **end**. The increment is calculated by the function so that the resulting number of elements matches the numvalues input parameter. ###Code a = np.arange(0, 10, 2) print(a) b=np.linspace(0,10,6) print(b) ###Output [0 2 4 6 8] [ 0. 2. 4. 6. 8. 10.] ###Markdown Arithmetic operationsYou can apply element-wise **arithmetic** and **logical** calculations to numpy arrays using arithmetic or logical operators. The functions np.**exp()**, np.**sqrt()**, or np.**log()** are other examples of functions that operate in the elements of a numpy array. You can check the entire list of available functions in the official [Numpy documentation]( https://numpy.org/doc/).**Some examples:** ###Code x =np.array([[1,2,3,4],[5,6,7,8]]) y =np.array([[9,10,11,12],[13,14,15,16]]) print(x+y) print(y-x) print(np.sqrt(y)) print(np.log(x)) print(x**2) print(x+5) ###Output [[10 12 14 16] [18 20 22 24]] [[8 8 8 8] [8 8 8 8]] [[3. 3.16227766 3.31662479 3.46410162] [3.60555128 3.74165739 3.87298335 4. ]] [[0. 0.69314718 1.09861229 1.38629436] [1.60943791 1.79175947 1.94591015 2.07944154]] [[ 1 4 9 16] [25 36 49 64]] [[ 6 7 8 9] [10 11 12 13]] ###Markdown Note that in the last examples, we are adding a scalar value to a numpy array. In general, we can apply arithmetic operations on array of different dimensions, given that the smallest dimension between the operands is one, or that the arrays have the same dimensions. When this condition is met, numpy will expand the smaller array to match the shape of the larger array with an operation called **broadcasting**. Array functionsNumpy also provides an extensive list of array functions: - **sum()**: Returns the sum of all elements. - **min()**: Returns the minimum value within the array - **max()**: Returns the maximum value within the array - **mean()**: Returns the mean of an array - **median()**: Returns the median value of the array - **cumsum()**: Returns the cumulative sum of the elements of the array. All of the functions above support the additional **axis** parameter to work on a specific dimension. ###Code x =np.array([[1,2,3,4],[5,6,7,8]]) y =np.array([[9,10,11,12],[13,14,15,16]]) print("sum of all elements in x:") print(np.sum(x)) print("mean value of y:") print(np.mean(y)) ###Output sum of all elements in x: 36 mean value of y: 12.5 ###Markdown Other functions take two arrays as arguments and perform element wise operations:- minimum(): Returns an array with the minimum value in each position of the array- maximum(): Returns an array with the maximum value in each position of the array ###Code b=np.linspace(0,1,10) r = c=np.random.random(10) print(np.minimum(b,r)) ###Output [0. 0.11111111 0.22222222 0.0069694 0.44444444 0.3403326 0.19167794 0.71257103 0.78045669 0.64287305]
jw300_bpe_en_xh_masakhane.ipynb
###Markdown Masakhane - Machine Translation for African Languages (Using JoeyNMT) Note before beginning: - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. - The tl;dr: Go to the **"TODO"** comments which will tell you what to update to get up and running - If you actually want to have a clue what you're doing, read the text and peek at the links - With 100 epochs, it should take around 7 hours to run in Google Colab - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected] - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685) Retrieve your data & make a parallel corpusIf you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. ###Code from google.colab import drive drive.mount('/content/drive') # TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here: # These will also become the suffix's of all vocab and corpus files used throughout import os source_language = "en" target_language = "xh" lc = False # If True, lowercase the data. seed = 42 # Random seed for shuffling. tag = "baseline" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted os.environ["src"] = source_language # Sets them in bash as well, since we often use bash scripts os.environ["tgt"] = target_language os.environ["tag"] = tag # This will save it to a folder in our gdrive instead! !mkdir -p "/content/drive/My Drive/masakhane/$src-$tgt-$tag" os.environ["gdrive_path"] = "/content/drive/My Drive/masakhane/%s-%s-%s" % (source_language, target_language, tag) !echo $gdrive_path # Install opus-tools ! pip install opustools-pkg # Downloading our corpus ! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q # extract the corpus file ! gunzip JW300_latest_xml_$src-$tgt.xml.gz # Download the global test set. ! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en # And the specific test set for this language pair. os.environ["trg"] = target_language os.environ["src"] = source_language ! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en ! mv test.en-$trg.en test.en ! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg ! mv test.en-$trg.$trg test.$trg # Read the test data to filter from train and dev splits. # Store english portion in set for quick filtering checks. en_test_sents = set() filter_test_sents = "test.en-any.en" j = 0 with open(filter_test_sents) as f: for line in f: en_test_sents.add(line.strip()) j += 1 print('Loaded {} global test sentences to filter from the training/dev data.'.format(j)) import pandas as pd # TMX file to dataframe source_file = 'jw300.' + source_language target_file = 'jw300.' + target_language source = [] target = [] skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion. with open(source_file) as f: for i, line in enumerate(f): # Skip sentences that are contained in the test set. if line.strip() not in en_test_sents: source.append(line.strip()) else: skip_lines.append(i) with open(target_file) as f: for j, line in enumerate(f): # Only add to corpus if corresponding source was not skipped. if j not in skip_lines: target.append(line.strip()) print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i)) df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence']) # if you get TypeError: data argument can't be an iterator is because of your zip version run this below #df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence']) df.head(3) df[df.duplicated()] ###Output _____no_output_____ ###Markdown Pre-processing and exportIt is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.In addition we will split our data into dev/test/train and export to the filesystem. ###Code print("Length of Data before Removing duplicate: ",len(df)) df = df.drop_duplicates() print("Length of Data after Removing duplicate: ",len(df)) # This section does the split between train/dev for the parallel corpora then saves them as separate files # We use 1000 dev test and the given test set. import csv # Do the split between dev/train and create parallel corpora num_dev_patterns = 1000 # Optional: lower case the corpora - this will make it easier to generalize, but without proper casing. if lc: # Julia: making lowercasing optional df["source_sentence"] = df["source_sentence"].str.lower() df["target_sentence"] = df["target_sentence"].str.lower() # Julia: test sets are already generated dev = df.tail(num_dev_patterns) # Herman: Error in original stripped = df.drop(df.tail(num_dev_patterns).index) with open("train."+source_language, "w") as src_file, open("train."+target_language, "w") as trg_file: for index, row in stripped.iterrows(): src_file.write(row["source_sentence"]+"\n") trg_file.write(row["target_sentence"]+"\n") with open("dev."+source_language, "w") as src_file, open("dev."+target_language, "w") as trg_file: for index, row in dev.iterrows(): src_file.write(row["source_sentence"]+"\n") trg_file.write(row["target_sentence"]+"\n") #stripped[["source_sentence"]].to_csv("train."+source_language, header=False, index=False) # Herman: Added `header=False` everywhere #stripped[["target_sentence"]].to_csv("train."+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks. #dev[["source_sentence"]].to_csv("dev."+source_language, header=False, index=False) #dev[["target_sentence"]].to_csv("dev."+target_language, header=False, index=False) # Doublecheck the format below. There should be no extra quotation marks or weird characters. ! head train.* ! head dev.* ! head test.* ! cat train.en | wc -l ! cat train.xh | wc -l ! cat dev.en | wc -l ! cat dev.xh | wc -l ! cat test.en | wc -l ! cat test.xh | wc -l ###Output 816515 816515 1000 1000 2717 2717 ###Markdown --- Installation of JoeyNMTJoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) ###Code # Install JoeyNMT ! git clone https://github.com/joeynmt/joeynmt.git ! cd joeynmt; pip3 install . ###Output Cloning into 'joeynmt'... remote: Enumerating objects: 15, done. remote: Counting objects: 6% (1/15) remote: Counting objects: 13% (2/15) remote: Counting objects: 20% (3/15) remote: Counting objects: 26% (4/15) remote: Counting objects: 33% (5/15) remote: Counting objects: 40% (6/15) remote: Counting objects: 46% (7/15) remote: Counting objects: 53% (8/15) remote: Counting objects: 60% (9/15) remote: Counting objects: 66% (10/15) remote: Counting objects: 73% (11/15) remote: Counting objects: 80% (12/15) remote: Counting objects: 86% (13/15) remote: Counting objects: 93% (14/15) remote: Counting objects: 100% (15/15) remote: Counting objects: 100% (15/15), done. remote: Compressing objects: 100% (12/12), done. remote: Total 2199 (delta 4), reused 5 (delta 3), pack-reused 2184 Receiving objects: 100% (2199/2199), 2.60 MiB | 2.80 MiB/s, done. Resolving deltas: 100% (1525/1525), done. Processing /content/joeynmt Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0) Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (4.3.0) Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.4) Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (41.6.0) Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1) Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0) Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1) Collecting sacrebleu>=1.3.6 Downloading https://files.pythonhosted.org/packages/0e/e5/93d252182f7cbd4b59bb3ec5797e2ce33cfd6f5aadaf327db170cf4b7887/sacrebleu-1.4.2-py3-none-any.whl Collecting subword-nmt Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.1) Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0) Collecting pyyaml>=5.1 [?25l Downloading https://files.pythonhosted.org/packages/e3/e8/b3212641ee2718d556df0f23f78de8303f068fe29cdaa7a91018849582fe/PyYAML-5.1.2.tar.gz (265kB)  |████████████████████████████████| 266kB 7.9MB/s [?25hCollecting pylint [?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)  |████████████████████████████████| 307kB 42.4MB/s [?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0) Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->joeynmt==0.0.1) (0.46) Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8) Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0) Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0) Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2) Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2) Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1) Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0) Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8) Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0) Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6) Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0) Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1) Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.0) Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0) Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0) Collecting portalocker Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.5) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1) Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3) Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.3.2) Collecting astroid<2.4,>=2.3.0 [?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)  |████████████████████████████████| 215kB 44.3MB/s [?25hCollecting mccabe<0.7,>=0.6 Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl Collecting isort<5,>=4.2.5 [?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)  |████████████████████████████████| 51kB 7.0MB/s [?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.9.11) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9) Collecting typed-ast<1.5,>=1.4.0; implementation_name == "cpython" and python_version < "3.8" [?25l Downloading https://files.pythonhosted.org/packages/31/d3/9d1802c161626d0278bafb1ffb32f76b9d01e123881bbf9d91e8ccf28e18/typed_ast-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (736kB)  |████████████████████████████████| 737kB 44.4MB/s [?25hCollecting lazy-object-proxy==1.4.* [?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)  |████████████████████████████████| 61kB 8.5MB/s [?25hBuilding wheels for collected packages: joeynmt, pyyaml Building wheel for joeynmt (setup.py) ... [?25l[?25hdone Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=f89096f6dc4b35697dc6609bc1739a621f9e13a0ecf58ad0e963439e575bc81b Stored in directory: /tmp/pip-ephem-wheel-cache-49iy698r/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a Building wheel for pyyaml (setup.py) ... [?25l[?25hdone Created wheel for pyyaml: filename=PyYAML-5.1.2-cp36-cp36m-linux_x86_64.whl size=44104 sha256=357da8d77f9d8c15bd8f7ea1d8cc2df424f11fb8eccf15864e225a0255897b69 Stored in directory: /root/.cache/pip/wheels/d9/45/dd/65f0b38450c47cf7e5312883deb97d065e030c5cca0a365030 Successfully built joeynmt pyyaml Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, typed-ast, lazy-object-proxy, astroid, mccabe, isort, pylint, joeynmt Found existing installation: PyYAML 3.13 Uninstalling PyYAML-3.13: Successfully uninstalled PyYAML-3.13 Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.1.2 sacrebleu-1.4.2 subword-nmt-0.3.7 typed-ast-1.4.0 ###Markdown Preprocessing the Data into Subword BPE Tokens- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. ###Code # One of the huge boosts in NMT performance was to use a different method of tokenizing. # Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance # Do subword NMT from os import path os.environ["src"] = source_language # Sets them in bash as well, since we often use bash scripts os.environ["tgt"] = target_language # Learn BPEs on the training data. os.environ["data_path"] = path.join("joeynmt", "data", source_language + target_language) # Herman! ! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt # Apply BPE splits to the development and test data. ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt # Create directory, move everyone we care about to the correct location ! mkdir -p $data_path ! cp train.* $data_path ! cp test.* $data_path ! cp dev.* $data_path ! cp bpe.codes.4000 $data_path ! ls $data_path # Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path ! cp train.* "$gdrive_path" ! cp test.* "$gdrive_path" ! cp dev.* "$gdrive_path" ! cp bpe.codes.4000 "$gdrive_path" ! ls "$gdrive_path" # Create that vocab using build_vocab ! sudo chmod 777 joeynmt/scripts/build_vocab.py ! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt # Some output ! echo "BPE Yoruba Sentences" ! tail -n 5 test.bpe.$tgt ! echo "Combined BPE Vocab" ! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman # Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path ! cp train.* "$gdrive_path" ! cp test.* "$gdrive_path" ! cp dev.* "$gdrive_path" ! cp bpe.codes.4000 "$gdrive_path" ! ls "$gdrive_path" ###Output bpe.codes.4000 dev.en test.bpe.xh test.xh train.en dev.bpe.en dev.xh test.en train.bpe.en train.xh dev.bpe.xh test.bpe.en test.en-any.en train.bpe.xh ###Markdown Creating the JoeyNMT ConfigJoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!- We used Transformer architecture - We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))Things worth playing with:- The batch size (also recommended to change for low-resourced languages)- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)- The decoder options (beam_size, alpha)- Evaluation metrics (BLEU versus Crhf4) ###Code # This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update # (You can of course play with all the parameters if you'd like!) name = '%s%s' % (source_language, target_language) gdrive_path = os.environ["gdrive_path"] # Create the config config = """ name: "{name}_transformer" data: src: "{source_language}" trg: "{target_language}" train: "data/{name}/train.bpe" dev: "data/{name}/dev.bpe" test: "data/{name}/test.bpe" level: "bpe" lowercase: False max_sent_length: 100 src_vocab: "data/{name}/vocab.txt" trg_vocab: "data/{name}/vocab.txt" testing: beam_size: 5 alpha: 1.0 training: #load_model: "{gdrive_path}/models/{name}_transformer/1.ckpt" # if uncommented, load a pre-trained model from this checkpoint random_seed: 42 optimizer: "adam" normalization: "tokens" adam_betas: [0.9, 0.999] scheduling: "plateau" # TODO: try switching from plateau to Noam scheduling patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds. learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer) learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer) decrease_factor: 0.7 loss: "crossentropy" learning_rate: 0.0003 learning_rate_min: 0.00000001 weight_decay: 0.0 label_smoothing: 0.1 batch_size: 4096 batch_type: "token" eval_batch_size: 3600 eval_batch_type: "token" batch_multiplier: 1 early_stopping_metric: "ppl" epochs: 50 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all validation_freq: 1000 # TODO: Set to at least once per epoch. logging_freq: 100 eval_metric: "bleu" model_dir: "models/{name}_transformer" overwrite: False # TODO: Set to True if you want to overwrite possibly existing models. shuffle: True use_cuda: True max_output_length: 100 print_valid_sents: [0, 1, 2, 3] keep_last_ckpts: 3 model: initializer: "xavier" bias_initializer: "zeros" init_gain: 1.0 embed_initializer: "xavier" embed_init_gain: 1.0 tied_embeddings: True tied_softmax: True encoder: type: "transformer" num_layers: 6 num_heads: 4 # TODO: Increase to 8 for larger data. embeddings: embedding_dim: 256 # TODO: Increase to 512 for larger data. scale: True dropout: 0.2 # typically ff_size = 4 x hidden_size hidden_size: 256 # TODO: Increase to 512 for larger data. ff_size: 1024 # TODO: Increase to 2048 for larger data. dropout: 0.3 decoder: type: "transformer" num_layers: 6 num_heads: 4 # TODO: Increase to 8 for larger data. embeddings: embedding_dim: 256 # TODO: Increase to 512 for larger data. scale: True dropout: 0.2 # typically ff_size = 4 x hidden_size hidden_size: 256 # TODO: Increase to 512 for larger data. ff_size: 1024 # TODO: Increase to 2048 for larger data. dropout: 0.3 """.format(name=name, gdrive_path=os.environ["gdrive_path"], source_language=source_language, target_language=target_language) with open("joeynmt/configs/transformer_{name}.yaml".format(name=name),'w') as f: f.write(config) ###Output _____no_output_____ ###Markdown *Tensorboard*JoeyNMT additionally uses TensorboardX to visualize training and validation curves and attention matrices during training. Launch Tensorboard (requires installation that is not included in JoeyNMTs requirements) like this: ###Code # Restart runtime using 'Runtime' -> 'Restart runtime...' %tensorflow_version 1.x import tensorflow as tf print(tf.__version__) %load_ext tensorboard %tensorboard --logdir "$gdrive_path/models/enxh_transformer/tensorboard" ###Output _____no_output_____ ###Markdown Train the ModelThis single line of joeynmt runs the training using the config we made above ###Code # # Train the model # # You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! # !cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml # Train the model # You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! !cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml # Copy the created models from the notebook storage to google drive for persistant storage !mkdir -p "$gdrive_path/models/${src}${tgt}_transformer/" # Herman !cp -r joeynmt/models/${src}${tgt}_transformer/* "$gdrive_path/models/${src}${tgt}_transformer/" # Output our validation accuracy ! cat "$gdrive_path/models/${src}${tgt}_transformer/validations.txt" # Test our model ! cd joeynmt; python3 -m joeynmt test "$gdrive_path/models/${src}${tgt}_transformer/config.yaml" ###Output _____no_output_____ ###Markdown Plot Perplexity and Bleu ###Code #Plot Perplexity ! python3 joeynmt/scripts/plot_validations.py "$gdrive_path/models/${src}${tgt}_transformer" \ --plot_values PPL \ --output_path "$gdrive_path/models/${src}${tgt}_transformer/ppl.png" # from IPython.display import Image from IPython.display import Image, display display(Image("$gdrive_path/models/${src}${tgt}_transformer/ppl.png")) #Plot Bleu Score ! python3 joeynmt/scripts/plot_validations.py "$gdrive_path/models/${src}${tgt}_transformer" \ --plot_values bleu \ --output_path "$gdrive_path/models/${src}${tgt}_transformer"/bleu.png # from IPython.display import Image from IPython.display import Image, display display(Image("$gdrive_path/models/${src}${tgt}_transformer/bleu.png")) ###Output _____no_output_____ ###Markdown Copy model from virtual drive ###Code #Remove Afterwards # !cp -r "/content/drive/My Drive/masakhane/en-yo-baseline/" /content/ ###Output _____no_output_____ ###Markdown NMT Attention Alignment Visualizations ###Code # # Install keras attention # ! cd content; # ! git clone https://github.com/thushv89/attention_keras.git # ! cd /content/attention_keras; # ! cd /content; # ! git clone https://github.com/M4t1ss/SoftAlignments.git https://github.com/zhaocq-nlp/Attention-Visualization https://github.com/shreydesai/attention-viz ###Output _____no_output_____ ###Markdown vizseq ###Code ! pip install vizseq ! pip install -U tqdm ! pip3 install -U nltk import vizseq from glob import glob root = '/content/drive/My Drive/Colab Notebooks/MyJoeyNMT' src, ref, hypo = glob(f'{root}/navy_xhen/word/test.xh'), glob(f'{root}/navy_xhen/word/test.en'), glob(f'{root}/models/transformer_xhen/predictions.test') #First, load the vizseq package: vizseq.view_stats(src, ref) vizseq.view_n_grams(src) # To view corpus-level scores (BLEU and METEOR): vizseq.view_scores(ref, hypo, ['bleu', 'meteor']) vizseq.available_scorers() # import vizseq.VizSeqSortingType vizseq.view_examples(src, ref, hypo, ['bleu', 'meteor'], page_sz=2, page_no=12) # Google Translate Integration vizseq.set_google_credential_path('path to google credential json file') vizseq.view_examples(src, ref, hypo, ['bleu'], need_g_translate=True) from vizseq.ipynb import fairseq_viz as vizseq_fs log_path = 'examples/data/wmt14_fr_en_test.fairseq_generate.log' vizseq_fs.view_stats(log_path) vizseq_fs.view_examples(log_path, ['bleu', 'meteor'], need_g_translate=True) vizseq_fs.view_scores(log_path, ['bleu', 'meteor']) vizseq_fs.view_n_grams(log_path) https://docs.dgl.ai/en/latest/tutorials/models/4_old_wines/7_transformer.html https://ronxin.github.io/wevi/ https://vcg.seas.harvard.edu/publications/seq2seq-vis-a-visual-debugging-tool-for-sequence-to-sequence-models ###Output _____no_output_____
LRModel.ipynb
###Markdown SMOTE ENN ###Code r1 = X_train.shape[0] ; r2 = X_test.shape[0] c1 = X_train.shape[1]; c2 = X_test.shape[1] print("Train Data has {0} number of rows and {1} of columns".format(r1,c1)) print("Test Data has {0} number of rows and {1} of columns".format(r2,c2)) smote = SMOTEENN(random_state=0) X_train_over, y_train_over = smote.fit_resample(X_train, y_train) print('SMOTE 적용 전 학습용 피처/레이블 데이터 세트: ', X_train.shape, y_train.shape) print('SMOTE 적용 전 레이블 값 분포: \n', pd.Series(y_train).value_counts()) print('SMOTE 적용 후 학습용 피처/레이블 데이터 세트: ', X_train_over.shape, y_train_over.shape) print('SMOTE 적용 후 레이블 값 분포: \n', pd.Series(y_train_over).value_counts()) df = pd.DataFrame(y_train_over) sns.countplot(x = 'DLQ_YN', data=df) plt.show() ###Output _____no_output_____ ###Markdown MODELING ###Code from sklearn.linear_model import LogisticRegression log_clf = LogisticRegression() parameters = { 'C':[0.3, 0.5, 0.8, 1.20], 'max_iter':[1000], 'penalty': ['l2'] } grid_log = GridSearchCV(log_clf, param_grid=parameters, cv=3, refit=True, return_train_score=True) #param_grid의 하이퍼 파라미터들을 순차적으로 학습/평가 . grid_log.fit(X_train_over, y_train_over) # GridSearchCV 결과는 cv_results_ 라는 딕셔너리로 저장됨. 이를 DataFrame으로 변환 scores_df = pd.DataFrame(grid_log.cv_results_) scores_df[['params', 'mean_test_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score']] print('GridSearchCV 최적 파라미터:', grid_log.best_params_) print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid_log.best_score_)) # refit=True로 설정된 GridSearchCV 객체가 fit()을 수행 시 학습이 완료된 Estimator를 내포하고 있으므로 predict()를 통해 예측도 가능. pred = grid_log.predict(X_test) pred_prob = grid_log.predict_proba(X_test)[:,1] print('테스트 데이터 세트 정확도: {0:.4f}'.format(accuracy_score(y_test,pred))) best_model = grid_log.best_estimator_ def get_clf_eval(y_test, pred=None, pred_proba=None): confusion = confusion_matrix( y_test, pred) accuracy = accuracy_score(y_test , pred) precision = precision_score(y_test , pred) recall = recall_score(y_test , pred) f1 = f1_score(y_test,pred) # ROC-AUC 추가 roc_auc = roc_auc_score(y_test, pred_proba) print('오차 행렬') print(confusion) # ROC-AUC print 추가 print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f}, F1: {3:.4f}, AUC:{4:.4f}'.format(accuracy, precision, recall, f1, roc_auc)) get_clf_eval(y_test, pred, pred_prob) from sklearn.metrics import roc_curve def roc_curve_plot(y_test , pred_proba_c1): # 임곗값에 따른 FPR, TPR 값을 반환 받음. fprs , tprs , thresholds = roc_curve(y_test ,pred_proba_c1) # ROC Curve를 plot 곡선으로 그림. plt.plot(fprs , tprs, label='ROC') # 가운데 대각선 직선을 그림. plt.plot([0, 1], [0, 1], 'k--', label='Random') # FPR X 축의 Scale을 0.1 단위로 변경, X,Y 축명 설정등 start, end = plt.xlim() plt.xticks(np.round(np.arange(start, end, 0.1),2)) plt.xlim(0,1); plt.ylim(0,1) plt.xlabel('FPR( 1 - Sensitivity )'); plt.ylabel('TPR( Recall )') plt.legend() plt.show() roc_curve_plot(y_test, best_model.predict_proba(X_test)[:, 1] ) importance = best_model.coef_[0] print(importance) coefs = best_model.coef_[0] indices = np.argsort(coefs)[::-1] plt.figure() plt.title("Feature importances (Logistic Regression)") plt.bar(range(10), coefs[indices[:10]], color="r", align="center") plt.xticks(range(10), X_train_over.columns[indices[:10]], rotation=45, ha='right') plt.subplots_adjust(bottom=0.3) ###Output _____no_output_____ ###Markdown MODEL SAVE ###Code best_catboost_model = grid_log.best_estimator_ import pickle filename = 'LOGISTIC_MODEL.pkl' joblib.dump(best_catboost_model, filename) ###Output _____no_output_____
finding-relationships-data-python/02/demos/demo-04-CalculatingAndVisualizingAutocorrelation.ipynb
###Markdown Loading Data ###Code bikesharing_data = pd.read_csv('datasets/bike_sharing_hourly.csv', index_col=0) bikesharing_data.head(10) bikesharing_data[['temp', 'hum']].describe() ###Output _____no_output_____ ###Markdown * The autocorrelation is used to find how similar a signal, or function, is to itself at a certain time difference ###Code bikesharing_data[['temp', 'hum']].corr() bikesharing_data['temp'].autocorr(lag=2) bikesharing_data['temp'].autocorr(lag=12) bikesharing_data['temp'].autocorr(lag=102) bikesharing_data['temp'].autocorr(lag=1002) bikesharing_data['hum'].autocorr(lag=12) ###Output _____no_output_____ ###Markdown Autocorrelation Plot ###Code fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 14)) ax1.acorr(bikesharing_data['temp'], maxlags=12, color='green') ax1.title.set_text('Temperature') ax1.set_xlabel('Lags', fontsize=15) ax2.acorr(bikesharing_data['hum'], maxlags=12, color='red') ax2.title.set_text('Humidity') ax2.set_xlabel('Lags', fontsize=15) plt.show() bikesharing_data['temp'].autocorr(lag=24) bikesharing_data['hum'].autocorr(lag=24) ###Output _____no_output_____ ###Markdown * Here we can checking the humidy for one day(24 hours) ###Code fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8)) ax1.acorr(bikesharing_data['temp'], maxlags=24, color='deeppink') ax1.title.set_text('Temperature') ax1.set_xlabel('Lags', fontsize=12) ax2.acorr(bikesharing_data['hum'], maxlags=24, color='blue') ax2.title.set_text('Humidity') ax2.set_xlabel('Lags', fontsize=12) plt.suptitle('Autocorrelation') plt.show() ###Output _____no_output_____ ###Markdown * Lets check the humidity for 48 hours* From here we can see the difference between day-night temperature and humidity ###Code bikesharing_data['temp'].autocorr(lag=48) bikesharing_data['hum'].autocorr(lag=48) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8)) ax1.acorr(bikesharing_data['temp'], maxlags=48, color='red') ax1.title.set_text('Temperature') ax1.set_xlabel('Lags', fontsize=12) ax2.acorr(bikesharing_data['hum'], maxlags=48, color='black') ax2.title.set_text('Humidity') ax2.set_xlabel('Lags', fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown * Let's check the the autocorrelation of windspeed also, for two days ###Code bikesharing_data['hum'].autocorr(lag=48) bikesharing_data['windspeed'].autocorr(lag=48) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8)) ax1.acorr(bikesharing_data['hum'], maxlags=48, color='red') ax1.title.set_text('Humidity') ax1.set_xlabel('Lags', fontsize=12) ax2.acorr(bikesharing_data['windspeed'], maxlags=48, color='black') ax2.title.set_text('Windspeed') ax2.set_xlabel('Lags', fontsize=12) plt.show() ###Output _____no_output_____
Amazon Fine Food Reviews Analysis_Logistic Regression.ipynb
###Markdown Amazon Fine Food Reviews AnalysisData Source: https://www.kaggle.com/snap/amazon-fine-food-reviews EDA: https://nycdatascience.com/blog/student-works/amazon-fine-foods-visualization/The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon.Number of reviews: 568,454Number of users: 256,059Number of products: 74,258Timespan: Oct 1999 - Oct 2012Number of Attributes/Columns in data: 10 Attribute Information:1. Id2. ProductId - unique identifier for the product3. UserId - unqiue identifier for the user4. ProfileName5. HelpfulnessNumerator - number of users who found the review helpful6. HelpfulnessDenominator - number of users who indicated whether they found the review helpful or not7. Score - rating between 1 and 58. Time - timestamp for the review9. Summary - brief summary of the review10. Text - text of the review Objective:Given a review, determine whether the review is positive (rating of 4 or 5) or negative (rating of 1 or 2).[Q] How to determine if a review is positive or negative? [Ans] We could use Score/Rating. A rating of 4 or 5 can be cosnidered as a positive review. A rating of 1 or 2 can be considered as negative one. A review of rating 3 is considered nuetral and such reviews are ignored from our analysis. This is an approximate and proxy way of determining the polarity (positivity/negativity) of a review. [1]. Reading Data [1.1] Loading the dataThe dataset is available in two forms1. .csv file2. SQLite DatabaseIn order to load the data, We have used the SQLITE dataset as it is easier to query the data and visualise the data efficiently. Here as we only want to get the global sentiment of the recommendations (positive or negative), we will purposefully ignore all Scores equal to 3. If the score is above 3, then the recommendation wil be set to "positive". Otherwise, it will be set to "negative". ###Code %matplotlib inline import warnings warnings.filterwarnings("ignore") import sqlite3 import pandas as pd import numpy as np import nltk import string import matplotlib.pyplot as plt import seaborn as sns from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import confusion_matrix from sklearn import metrics from sklearn.metrics import roc_curve, auc from nltk.stem.porter import PorterStemmer import re # Tutorial about Python regular expressions: https://pymotw.com/2/re/ import string from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem.wordnet import WordNetLemmatizer from gensim.models import Word2Vec from gensim.models import KeyedVectors import pickle from tqdm import tqdm import os # using SQLite Table to read data. con = sqlite3.connect('database.sqlite') # filtering only positive and negative reviews i.e. # not taking into consideration those reviews with Score=3 # SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000, will give top 500000 data points # you can change the number to any other number based on your computing power # filtered_data = pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000""", con) # for Logistic Regresion assignment I am taking 100k points filtered_data = pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 100000""", con) # Give reviews with Score>3 a positive rating(1), and reviews with a score<3 a negative rating(0). def partition(x): if x < 3: return 0 return 1 #changing reviews with score less than 3 to be positive and vice-versa actualScore = filtered_data['Score'] positiveNegative = actualScore.map(partition) filtered_data['Score'] = positiveNegative print("Number of data points in our data", filtered_data.shape) filtered_data.head(3) display = pd.read_sql_query(""" SELECT UserId, ProductId, ProfileName, Time, Score, Text, COUNT(*) FROM Reviews GROUP BY UserId HAVING COUNT(*)>1 """, con) print(display.shape) display.head() display[display['UserId']=='AZY10LLTJ71NX'] display['COUNT(*)'].sum() ###Output _____no_output_____ ###Markdown [2] Exploratory Data Analysis [2.1] Data Cleaning: DeduplicationIt is observed (as shown in the table below) that the reviews data had many duplicate entries. Hence it was necessary to remove duplicates in order to get unbiased results for the analysis of the data. Following is an example: ###Code display= pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 AND UserId="AR5J8UI46CURR" ORDER BY ProductID """, con) display.head() ###Output _____no_output_____ ###Markdown As it can be seen above that same user has multiple reviews with same values for HelpfulnessNumerator, HelpfulnessDenominator, Score, Time, Summary and Text and on doing analysis it was found that ProductId=B000HDOPZG was Loacker Quadratini Vanilla Wafer Cookies, 8.82-Ounce Packages (Pack of 8) ProductId=B000HDL1RQ was Loacker Quadratini Lemon Wafer Cookies, 8.82-Ounce Packages (Pack of 8) and so onIt was inferred after analysis that reviews with same parameters other than ProductId belonged to the same product just having different flavour or quantity. Hence in order to reduce redundancy it was decided to eliminate the rows having same parameters.The method used for the same was that we first sort the data according to ProductId and then just keep the first similar product review and delelte the others. for eg. in the above just the review for ProductId=B000HDL1RQ remains. This method ensures that there is only one representative for each product and deduplication without sorting would lead to possibility of different representatives still existing for the same product. ###Code #Sorting data according to ProductId in ascending order sorted_data=filtered_data.sort_values('ProductId', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') #Deduplication of entries final=sorted_data.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep='first', inplace=False) final.shape #Checking to see how much % of data still remains (final['Id'].size*1.0)/(filtered_data['Id'].size*1.0)*100 ###Output _____no_output_____ ###Markdown Observation:- It was also seen that in two rows given below the value of HelpfulnessNumerator is greater than HelpfulnessDenominator which is not practically possible hence these two rows too are removed from calcualtions ###Code display= pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 AND Id=44737 OR Id=64422 ORDER BY ProductID """, con) display.head() final=final[final.HelpfulnessNumerator<=final.HelpfulnessDenominator] #Before starting the next phase of preprocessing lets see the number of entries left print(final.shape) #How many positive and negative reviews are present in our dataset? final['Score'].value_counts() ###Output (87773, 10) ###Markdown [3] Preprocessing [3.1]. Preprocessing Review TextNow that we have finished deduplication our data requires some preprocessing before we go on further with analysis and making the prediction model.Hence in the Preprocessing phase we do the following in the order below:-1. Begin by removing the html tags2. Remove any punctuations or limited set of special characters like , or . or etc.3. Check if the word is made up of english letters and is not alpha-numeric4. Check to see if the length of the word is greater than 2 (as it was researched that there is no adjective in 2-letters)5. Convert the word to lowercase6. Remove Stopwords7. Finally Snowball Stemming the word (it was obsereved to be better than Porter Stemming)After which we collect the words used to describe positive and negative reviews ###Code # printing some random reviews sent_0 = final['Text'].values[0] print(sent_0) print("="*50) sent_1000 = final['Text'].values[1000] print(sent_1000) print("="*50) sent_1500 = final['Text'].values[1500] print(sent_1500) print("="*50) sent_4900 = final['Text'].values[4900] print(sent_4900) print("="*50) # remove urls from text python: https://stackoverflow.com/a/40823105/4084039 sent_0 = re.sub(r"http\S+", "", sent_0) sent_1000 = re.sub(r"http\S+", "", sent_1000) sent_150 = re.sub(r"http\S+", "", sent_1500) sent_4900 = re.sub(r"http\S+", "", sent_4900) print(sent_0) # https://stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-an-element from bs4 import BeautifulSoup soup = BeautifulSoup(sent_0, 'lxml') text = soup.get_text() print(text) print("="*50) soup = BeautifulSoup(sent_1000, 'lxml') text = soup.get_text() print(text) print("="*50) soup = BeautifulSoup(sent_1500, 'lxml') text = soup.get_text() print(text) print("="*50) soup = BeautifulSoup(sent_4900, 'lxml') text = soup.get_text() print(text) # https://stackoverflow.com/a/47091490/4084039 import re def decontracted(phrase): # specific phrase = re.sub(r"won't", "will not", phrase) phrase = re.sub(r"can\'t", "can not", phrase) # general phrase = re.sub(r"n\'t", " not", phrase) phrase = re.sub(r"\'re", " are", phrase) phrase = re.sub(r"\'s", " is", phrase) phrase = re.sub(r"\'d", " would", phrase) phrase = re.sub(r"\'ll", " will", phrase) phrase = re.sub(r"\'t", " not", phrase) phrase = re.sub(r"\'ve", " have", phrase) phrase = re.sub(r"\'m", " am", phrase) return phrase sent_1500 = decontracted(sent_1500) print(sent_1500) print("="*50) #remove words with numbers python: https://stackoverflow.com/a/18082370/4084039 sent_0 = re.sub("\S*\d\S*", "", sent_0).strip() print(sent_0) #remove spacial character: https://stackoverflow.com/a/5843547/4084039 sent_1500 = re.sub('[^A-Za-z0-9]+', ' ', sent_1500) print(sent_1500) # https://gist.github.com/sebleier/554280 # we are removing the words from the stop words list: 'no', 'nor', 'not' # <br /><br /> ==> after the above steps, we are getting "br br" # we are including them into stop words list # instead of <br /> if we have <br/> these tags would have revmoved in the 1st step stopwords= set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",\ "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', \ 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their',\ 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', \ 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', \ 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', \ 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after',\ 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further',\ 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',\ 'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', \ 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', \ 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn',\ "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn',\ "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", \ 'won', "won't", 'wouldn', "wouldn't"]) # Combining all the above stundents from tqdm import tqdm preprocessed_reviews = [] # tqdm is for printing the status bar for sentance in tqdm(final['Text'].values): sentance = re.sub(r"http\S+", "", sentance) sentance = BeautifulSoup(sentance, 'lxml').get_text() sentance = decontracted(sentance) sentance = re.sub("\S*\d\S*", "", sentance).strip() sentance = re.sub('[^A-Za-z]+', ' ', sentance) # https://gist.github.com/sebleier/554280 sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in stopwords) preprocessed_reviews.append(sentance.strip()) preprocessed_reviews[1500] ###Output _____no_output_____ ###Markdown [3.2] Preprocessing Review Summary ###Code ## Similartly you can do preprocessing for review summary also. ###Output _____no_output_____ ###Markdown [4] Featurization [4.1] BAG OF WORDS ###Code #BoW count_vect = CountVectorizer() #in scikit-learn count_vect.fit(preprocessed_reviews) print("some feature names ", count_vect.get_feature_names()[:10]) print('='*50) final_counts = count_vect.transform(preprocessed_reviews) print("the type of count vectorizer ",type(final_counts)) print("the shape of out text BOW vectorizer ",final_counts.get_shape()) print("the number of unique words ", final_counts.get_shape()[1]) ###Output some feature names ['aa', 'aahhhs', 'aback', 'abandon', 'abates', 'abbott', 'abby', 'abdominal', 'abiding', 'ability'] ================================================== the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'> the shape of out text BOW vectorizer (4986, 12997) the number of unique words 12997 ###Markdown [4.2] Bi-Grams and n-Grams. ###Code #bi-gram, tri-gram and n-gram #removing stop words like "not" should be avoided before building n-grams # count_vect = CountVectorizer(ngram_range=(1,2)) # please do read the CountVectorizer documentation http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html # you can choose these numebrs min_df=10, max_features=5000, of your choice count_vect = CountVectorizer(ngram_range=(1,2), min_df=10, max_features=5000) final_bigram_counts = count_vect.fit_transform(preprocessed_reviews) print("the type of count vectorizer ",type(final_bigram_counts)) print("the shape of out text BOW vectorizer ",final_bigram_counts.get_shape()) print("the number of unique words including both unigrams and bigrams ", final_bigram_counts.get_shape()[1]) ###Output the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'> the shape of out text BOW vectorizer (4986, 3144) the number of unique words including both unigrams and bigrams 3144 ###Markdown [4.3] TF-IDF ###Code tf_idf_vect = TfidfVectorizer(ngram_range=(1,2), min_df=10) tf_idf_vect.fit(preprocessed_reviews) print("some sample features(unique words in the corpus)",tf_idf_vect.get_feature_names()[0:10]) print('='*50) final_tf_idf = tf_idf_vect.transform(preprocessed_reviews) print("the type of count vectorizer ",type(final_tf_idf)) print("the shape of out text TFIDF vectorizer ",final_tf_idf.get_shape()) print("the number of unique words including both unigrams and bigrams ", final_tf_idf.get_shape()[1]) ###Output some sample features(unique words in the corpus) ['ability', 'able', 'able find', 'able get', 'absolute', 'absolutely', 'absolutely delicious', 'absolutely love', 'absolutely no', 'according'] ================================================== the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'> the shape of out text TFIDF vectorizer (4986, 3144) the number of unique words including both unigrams and bigrams 3144 ###Markdown [4.4] Word2Vec ###Code # Train your own Word2Vec model using your own text corpus i=0 list_of_sentance=[] for sentance in preprocessed_reviews: list_of_sentance.append(sentance.split()) # Using Google News Word2Vectors # in this project we are using a pretrained model by google # its 3.3G file, once you load this into your memory # it occupies ~9Gb, so please do this step only if you have >12G of ram # we will provide a pickle file wich contains a dict , # and it contains all our courpus words as keys and model[word] as values # To use this code-snippet, download "GoogleNews-vectors-negative300.bin" # from https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit # it's 1.9GB in size. # http://kavita-ganesan.com/gensim-word2vec-tutorial-starter-code/#.W17SRFAzZPY # you can comment this whole cell # or change these varible according to your need is_your_ram_gt_16g=False want_to_use_google_w2v = False want_to_train_w2v = True if want_to_train_w2v: # min_count = 5 considers only words that occured atleast 5 times w2v_model=Word2Vec(list_of_sentance,min_count=5,size=50, workers=4) print(w2v_model.wv.most_similar('great')) print('='*50) print(w2v_model.wv.most_similar('worst')) elif want_to_use_google_w2v and is_your_ram_gt_16g: if os.path.isfile('GoogleNews-vectors-negative300.bin'): w2v_model=KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True) print(w2v_model.wv.most_similar('great')) print(w2v_model.wv.most_similar('worst')) else: print("you don't have gogole's word2vec file, keep want_to_train_w2v = True, to train your own w2v ") w2v_words = list(w2v_model.wv.vocab) print("number of words that occured minimum 5 times ",len(w2v_words)) print("sample words ", w2v_words[0:50]) ###Output number of words that occured minimum 5 times 3817 sample words ['product', 'available', 'course', 'total', 'pretty', 'stinky', 'right', 'nearby', 'used', 'ca', 'not', 'beat', 'great', 'received', 'shipment', 'could', 'hardly', 'wait', 'try', 'love', 'call', 'instead', 'removed', 'easily', 'daughter', 'designed', 'printed', 'use', 'car', 'windows', 'beautifully', 'shop', 'program', 'going', 'lot', 'fun', 'everywhere', 'like', 'tv', 'computer', 'really', 'good', 'idea', 'final', 'outstanding', 'window', 'everybody', 'asks', 'bought', 'made'] ###Markdown [4.4.1] Converting text into vectors using Avg W2V, TFIDF-W2V [4.4.1.1] Avg W2v ###Code # average Word2Vec # compute average word2vec for each review. sent_vectors = []; # the avg-w2v for each sentence/review is stored in this list for sent in tqdm(list_of_sentance): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length 50, you might need to change this to 300 if you use google's w2v cnt_words =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words: vec = w2v_model.wv[word] sent_vec += vec cnt_words += 1 if cnt_words != 0: sent_vec /= cnt_words sent_vectors.append(sent_vec) print(len(sent_vectors)) print(len(sent_vectors[0])) ###Output 100%|████████████████████████████████████████████████████████████████████████████| 4986/4986 [00:03<00:00, 1330.47it/s] ###Markdown [4.4.1.2] TFIDF weighted W2v ###Code # S = ["abc def pqr", "def def def abc", "pqr pqr def"] model = TfidfVectorizer() tf_idf_matrix = model.fit_transform(preprocessed_reviews) # we are converting a dictionary with word as a key, and the idf as a value dictionary = dict(zip(model.get_feature_names(), list(model.idf_))) # TF-IDF weighted Word2Vec tfidf_feat = model.get_feature_names() # tfidf words/col-names # final_tf_idf is the sparse matrix with row= sentence, col=word and cell_val = tfidf tfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this list row=0; for sent in tqdm(list_of_sentance): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length weight_sum =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words and word in tfidf_feat: vec = w2v_model.wv[word] # tf_idf = tf_idf_matrix[row, tfidf_feat.index(word)] # to reduce the computation we are # dictionary[word] = idf value of word in whole courpus # sent.count(word) = tf valeus of word in this review tf_idf = dictionary[word]*(sent.count(word)/len(sent)) sent_vec += (vec * tf_idf) weight_sum += tf_idf if weight_sum != 0: sent_vec /= weight_sum tfidf_sent_vectors.append(sent_vec) row += 1 ###Output 100%|█████████████████████████████████████████████████████████████████████████████| 4986/4986 [00:20<00:00, 245.63it/s] ###Markdown [5] Assignment 5: Apply Logistic Regression Apply Logistic Regression on these feature sets SET 1:Review text, preprocessed one converted into vectors using (BOW) SET 2:Review text, preprocessed one converted into vectors using (TFIDF) SET 3:Review text, preprocessed one converted into vectors using (AVG W2v) SET 4:Review text, preprocessed one converted into vectors using (TFIDF W2v) Hyper paramter tuning (find best hyper parameters corresponding the algorithm that you choose) Find the best hyper parameter which will give the maximum AUC value Find the best hyper paramter using k-fold cross validation or simple cross validation data Use gridsearch cv or randomsearch cv or you can also write your own for loops to do this task of hyperparameter tuning Pertubation Test Get the weights W after fit your model with the data X. Add a noise to the X (X' = X + e) and get the new data set X' (if X is a sparsematrix, X.data+=e) Fit the model again on data X' and get the weights W' Add a small eps value(to eliminate the divisible by zero error) to W and W’ i.eW=W+10^-6 and W’ = W’+10^-6 Now find the % change between W and W' (| (W-W') / (W) |)*100) Calculate the 0th, 10th, 20th, 30th, ...100th percentiles, and observe any sudden rise in the values of percentage_change_vector Ex: consider your 99th percentile is 1.3 and your 100th percentiles are 34.6, there is sudden rise from 1.3 to 34.6, now calculate the 99.1, 99.2, 99.3,..., 100th percentile values and get the proper value after which there is sudden rise the values, assume it is 2.5 Print the feature names whose % change is more than a threshold x(in our example it's 2.5) Sparsity Calculate sparsity on weight vector obtained after using L1 regularization NOTE: Do sparsity and multicollinearity for any one of the vectorizers. Bow or tf-idf is recommended. Feature importance Get top 10 important features for both positive and negative classes separately. Feature engineering To increase the performance of your model, you can also experiment with with feature engineering like : Taking length of reviews as another feature. Considering some features from review summary as well. Representation of results You need to plot the performance of model both on train data and cross validation data for each hyper parameter, like shown in the figure. Once after you found the best hyper parameter, you need to train your model with it, and find the AUC on test data and plot the ROC curve on both train and test. Along with plotting ROC curve, you need to print the confusion matrix with predicted and original labels of test data points. Please visualize your confusion matrices using seaborn heatmaps. Conclusion You need to summarize the results at the end of the notebook, summarize it in the table format. To print out a table please refer to this prettytable library link Note: Data Leakage1. There will be an issue of data-leakage if you vectorize the entire data and then split it into train/cv/test.2. To avoid the issue of data-leakag, make sure to split your data first and then vectorize it. 3. While vectorizing your data, apply the method fit_transform() on you train data, and apply the method transform() on cv/test data.4. For more details please go through this link. Applying Logistic Regression ###Code #Import Required libraries from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score,auc from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV from seaborn import heatmap from sklearn import preprocessing # Splitting the data X_train,X_test,y_train,y_test=train_test_split(preprocessed_reviews,final['Score'].values,test_size=0.3,random_state=0) X_train, X_cv, y_train, y_cv = train_test_split(X_train, y_train, test_size=0.3) print(len(X_train),len(X_cv),len(X_test)) ###Output 43008 18433 26332 ###Markdown [5.1] Logistic Regression on BOW, SET 1 [5.1.1] Applying Logistic Regression with L1 regularization on BOW, SET 1 ###Code vectorizer = CountVectorizer() vectorizer.fit(X_train) # fit has to happen only on train data X_train_bow = vectorizer.transform(X_train) X_cv_bow=vectorizer.transform(X_cv) X_test_bow = vectorizer.transform(X_test) print("After vectorizations") print(X_train_bow.shape, y_train.shape) print(X_cv_bow.shape,y_cv.shape) print(X_test_bow.shape, y_test.shape) print("="*100) # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.0001,3,100)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l1') clf.fit(X_train_bow,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_bow)[:,1] y_cv_pred = clf.predict_proba(X_cv_bow)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L1-LR-BOW") plt.show() #Test Phase best_C=0.246 optimal_model=LogisticRegression(C=best_C,penalty='l1') optimal_model.fit(X_train_bow,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_bow)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_bow)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L1-BOW") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_bow)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_bow)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.1.1.1] Calculating sparsity on weight vector obtained using L1 regularization on BOW, SET 1 ###Code w=optimal_model.coef_.flatten() np.count_nonzero(w) # Calculating sparsity as #empty-cells/#total-celss print("Sparsity: ",(len(w)-np.count_nonzero(w))/len(w)) ###Output Sparsity: 0.9633748214650072 ###Markdown [5.1.2] Applying Logistic Regression with L2 regularization on BOW, SET 1 ###Code # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.0001,3,200)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l2')#Changing the penalty to l2 here clf.fit(X_train_bow,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_bow)[:,1] y_cv_pred = clf.predict_proba(X_cv_bow)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L2-LR-BOW") plt.show() #Test Phase best_C=0.15 optimal_model=LogisticRegression(C=best_C,penalty='l2') optimal_model.fit(X_train_bow,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_bow)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_bow)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L2-BOW") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_bow)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_bow)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.1.2.1] Performing pertubation test (multicollinearity check) on BOW, SET 1 ###Code W=optimal_model.coef_ print(W) # Adding a simple noise of 1 to X_train_bow X_train_bow.data+=1 #Fitting the optimal model according to new data optimal_model.fit(X_train_bow,y_train) #New Weights W_new=optimal_model.coef_ print(W_new) # This is to ensure that there is no zero elements in vector W print(np.nonzero(W==0)) # Caluclate percentage change in W percentage_change_error=np.abs((W-W_new)/W)*100 print(percentage_change_error) # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html percentiles=np.arange(0,110,10) np.percentile(percentage_change_error,percentiles) ###Output _____no_output_____ ###Markdown Pertubation Test conclusion In calculating percentage change error we saw that there are percentage changes as great as 3.46e+05, suggesting that the BOW vectorization here sufferes from acute multicollinearity. Using weight vectors for feature selection here may not be a good idea. We could do forward feature selection however [5.1.3] Feature Importance on BOW, SET 1 [5.1.3.1] Top 10 important features of positive class from SET 1 ###Code # Based on the multicolineaty check using W's for for defining important features may not a good idea. # For the purpose of assignment however we'll be using weight vectors only to define feature interepabilty # Getting the top 10 fetures # Ref: https://stackoverflow.com/questions/34226400/find-the-index-of-the-k-smallest-values-of-a-numpy-array a=optimal_model.coef_.flatten() # Removing multidimentionality #Getting the indices of top 10 highest coeffiencts ind = np.argpartition(a, -10)[-10:] #Most important feature first at index 0 list_of_feat=np.array(vectorizer.get_feature_names()) mos_pos_feat=np.sort(list_of_feat[ind])[::-1] print("Top 10 positive features:") print(mos_pos_feat) ###Output Top 10 positive features: ['yummy' 'pleasantly' 'perfect' 'hooked' 'excellent' 'delicious' 'complaint' 'beat' 'awesome' 'addicted'] ###Markdown [5.1.3.2] Top 10 important features of negative class from SET 1 ###Code # Ref : https://stackoverflow.com/questions/34226400/find-the-index-of-the-k-smallest-values-of-a-numpy-array a=optimal_model.coef_.flatten() # Removing multidimentionality #Getting the indices of top 10 lowest coeffiencts ind = np.argpartition(a, 10)[:10] #Most important feature first at index 0 list_of_feat=np.array(vectorizer.get_feature_names()) mos_neg_feat=np.sort(list_of_feat[ind]) print("Top 10 negative features:") print(mos_neg_feat) ###Output Top 10 negative features: ['awful' 'badly' 'died' 'disappointing' 'disappointment' 'poor' 'rip' 'tasteless' 'terrible' 'worst'] ###Markdown [5.2] Logistic Regression on TFIDF, SET 2 [5.2.1] Applying Logistic Regression with L1 regularization on TFIDF, SET 2 ###Code # Please write all the code with proper documentation vectorizer = TfidfVectorizer() vectorizer.fit(X_train) # fit has to happen only on train data X_train_tfidf = vectorizer.transform(X_train) X_cv_tfidf=vectorizer.transform(X_cv) X_test_tfidf = vectorizer.transform(X_test) print("After vectorizations") print(X_train_tfidf.shape, y_train.shape) print(X_cv_tfidf.shape,y_cv.shape) print(X_test_tfidf.shape, y_test.shape) print("="*100) # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.0001,3,150)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l1') clf.fit(X_train_tfidf,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_tfidf)[:,1] y_cv_pred = clf.predict_proba(X_cv_tfidf)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L1-LR-TFIDF") plt.show() #Test Phase best_C=0.463 optimal_model=LogisticRegression(C=best_C,penalty='l1') optimal_model.fit(X_train_tfidf,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_tfidf)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_tfidf)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L1-TFIDF") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_tfidf)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_tfidf)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.2.2] Applying Logistic Regression with L2 regularization on TFIDF, SET 2 ###Code # Following link explains why Standardization to apply in Scipy sparse matrix would be a bad idea # https://stackoverflow.com/questions/20240068/scaling-issues-with-scipy-sparse-matrix-while-using-scikit # https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html # Need to Normalize the X_train_tfidf, X_cv_tfidf and X_test_tfidf as L2 logistic regression is failing to converge # on the TFIDF data normalizer=preprocessing.Normalizer(norm='l2',copy=False) normalizer.fit_transform(X_train_tfidf) normalizer.fit_transform(X_cv_tfidf) normalizer.fit_transform(X_test_tfidf) # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.0001,5,150)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l2') clf.fit(X_train_tfidf,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_tfidf)[:,1] y_cv_pred = clf.predict_proba(X_cv_tfidf)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L2-LR-BOW") plt.show() #Test Phase best_C=0.48 optimal_model=LogisticRegression(C=best_C,penalty='l2') optimal_model.fit(X_train_tfidf,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_tfidf)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_tfidf)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L2-TFIDF") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_tfidf)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_tfidf)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.2.3] Feature Importance on TFIDF, SET 2 [5.2.3.1] Top 10 important features of positive class from SET 2 ###Code # Getting the top 10 fetures # Ref: https://stackoverflow.com/questions/34226400/find-the-index-of-the-k-smallest-values-of-a-numpy-array a=optimal_model.coef_.flatten() # Removing multidimentionality #Getting the indices of top 10 highest coeffiencts ind = np.argpartition(a, -10)[-10:] #Most important feature first at index 0 list_of_feat=np.array(vectorizer.get_feature_names()) mos_pos_feat=np.sort(list_of_feat[ind])[::-1] print("Top 10 positive features:") print(mos_pos_feat) ###Output Top 10 positive features: ['wonderful' 'perfect' 'nice' 'loves' 'love' 'great' 'good' 'excellent' 'delicious' 'best'] ###Markdown [5.2.3.2] Top 10 important features of negative class from SET 2 ###Code # Ref : https://stackoverflow.com/questions/34226400/find-the-index-of-the-k-smallest-values-of-a-numpy-array a=optimal_model.coef_.flatten() # Removing multidimentionality #Getting the indices of top 10 lowest coeffiencts ind = np.argpartition(a, 10)[:10] #Most important feature first at index 0 list_of_feat=np.array(vectorizer.get_feature_names()) mos_neg_feat=np.sort(list_of_feat[ind]) print("Top 10 negative features:") print(mos_neg_feat) ###Output Top 10 negative features: ['awful' 'disappointed' 'disappointing' 'horrible' 'money' 'not' 'stale' 'terrible' 'unfortunately' 'worst'] ###Markdown [5.3] Logistic Regression on AVG W2V, SET 3 ###Code # Defining a utitly function to split a list of sentences into list of list of words def sent_split(X): list_of_words=[] for sentance in X: list_of_words.append(sentance.split()) return list_of_words # Word2vec model should be only be built on train data, not on CV and test data list_of_words_train=sent_split(X_train) w2v_model=Word2Vec(list_of_words_train,min_count=5,size=50, workers=2) w2v_words = list(w2v_model.wv.vocab) print("number of words that occured minimum 5 times ",len(w2v_words)) print("sample words ", w2v_words[0:10]) # average Word2Vec # compute average word2vec for each review in X based on word2vec model trained on X_train def avg_word2vec(X): sent_vectors = [] # the avg-w2v for each sentence/review is stored in this list list_of_w=sent_split(X) for sent in tqdm(list_of_w): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length 50 cnt_words =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words: vec = w2v_model.wv[word] sent_vec += vec cnt_words += 1 if cnt_words != 0: sent_vec /= cnt_words sent_vectors.append(sent_vec) return sent_vectors # Convert reviews in avg-word2vec X_train_avg_w2v=avg_word2vec(X_train) X_cv_avg_w2v=avg_word2vec(X_cv) X_test_avg_w2v=avg_word2vec(X_test) ###Output 100%|███████████████████████████████████████████████████████████████████████████| 43008/43008 [01:13<00:00, 582.64it/s] 100%|███████████████████████████████████████████████████████████████████████████| 18433/18433 [00:32<00:00, 561.61it/s] 100%|███████████████████████████████████████████████████████████████████████████| 26332/26332 [00:47<00:00, 557.28it/s] ###Markdown [5.3.1] Applying Logistic Regression with L1 regularization on AVG W2V SET 3 ###Code # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, # In case of Avg-Word2Vec, the auc score did not improved even after 1 C=np.sort(np.random.uniform(0.00001,0.5,150)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l1') clf.fit(X_train_avg_w2v,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_avg_w2v)[:,1] y_cv_pred = clf.predict_proba(X_cv_avg_w2v)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L1-LR-AVGW2V") plt.show() #Test Phase best_C=0.052 optimal_model=LogisticRegression(C=best_C,penalty='l1') optimal_model.fit(X_train_avg_w2v,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_avg_w2v)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_avg_w2v)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L1-AVGW2V") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_avg_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_avg_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.3.2] Applying Logistic Regression with L2 regularization on AVG W2V, SET 3 ###Code # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.0001,0.5,150)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l2') clf.fit(X_train_avg_w2v,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_avg_w2v)[:,1] y_cv_pred = clf.predict_proba(X_cv_avg_w2v)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L2-LR-BOW") plt.show() #Test Phase best_C=0.018 optimal_model=LogisticRegression(C=best_C,penalty='l2') optimal_model.fit(X_train_avg_w2v,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_avg_w2v)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_avg_w2v)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L2-AVGW2V") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_avg_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_avg_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.4] Logistic Regression on TFIDF W2V, SET 4 ###Code # Again TFID-W2V again needs to be only on the train data. model = TfidfVectorizer() tf_idf_matrix = model.fit_transform(list(X_train)) # we are converting a dictionary with word as a key, and the idf as a value dictionary = dict(zip(model.get_feature_names(), list(model.idf_))) # TF-IDF weighted Word2Vec tfidf_feat = model.get_feature_names() # tfidf words/col-names # final_tf_idf is the sparse matrix with row= sentence, col=word and cell_val = tfidf def tfidf_word2vec(X): tfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this list list_of_w=sent_split(X) row=0; for sent in tqdm(list_of_w): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length weight_sum =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words and word in tfidf_feat: vec = w2v_model.wv[word] #tf_idf = tf_idf_matrix[row, tfidf_feat.index(word)] # to reduce the computation we are # dictionary[word] = idf value of word in whole courpus # sent.count(word) = tf valeus of word in this review tf_idf = dictionary[word]*(sent.count(word)/len(sent)) sent_vec += (vec * tf_idf) weight_sum += tf_idf if weight_sum != 0: sent_vec /= weight_sum tfidf_sent_vectors.append(sent_vec) row += 1 return tfidf_sent_vectors # Convert reviews in tfidf-word2vec X_train_tfidf_w2v=tfidf_word2vec(X_train) X_cv_tfidf_w2v=tfidf_word2vec(X_cv) X_test_tfidf_w2v=tfidf_word2vec(X_test) ###Output 100%|████████████████████████████████████████████████████████████████████████████| 43008/43008 [32:14<00:00, 22.24it/s] 100%|████████████████████████████████████████████████████████████████████████████| 18433/18433 [13:43<00:00, 22.37it/s] 100%|████████████████████████████████████████████████████████████████████████████| 26332/26332 [19:51<00:00, 22.09it/s] ###Markdown [5.4.1] Applying Logistic Regression with L1 regularization on TFIDF W2V, SET 4 ###Code # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.00001,1,100)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l1') clf.fit(X_train_tfidf_w2v,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_tfidf_w2v)[:,1] y_cv_pred = clf.predict_proba(X_cv_tfidf_w2v)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L1-LR-TFIDFW2V") plt.show() #Test Phase best_C=0.081 optimal_model=LogisticRegression(C=best_C,penalty='l1') optimal_model.fit(X_train_tfidf_w2v,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_tfidf_w2v)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_tfidf_w2v)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L1-TFIDFW2V") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_tfidf_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_tfidf_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [5.4.2] Applying Logistic Regression with L2 regularization on TFIDF W2V, SET 4 ###Code # Training stage # Using np.random.uniform to generate values for C hyperparameter # Ref: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html # On repeated fast training of Logistic Reg, it was found that from values even beyond 10 results in gradual underfitting, C=np.sort(np.random.uniform(0.00001,0.5,150)) print("Min value picked: ",np.min(C)," Max value picked: ",np.max(C)) # Rest is mostly a borrowed code from KNN assignment train_auc = [] cv_auc = [] for i in tqdm(C): clf=LogisticRegression(C=i,penalty='l2') clf.fit(X_train_tfidf_w2v,y_train) # roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class # not the predicted outputs y_train_pred = clf.predict_proba(X_train_tfidf_w2v)[:,1] y_cv_pred = clf.predict_proba(X_cv_tfidf_w2v)[:,1] train_auc.append(roc_auc_score(y_train,y_train_pred)) cv_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(C, train_auc, label='Train AUC') plt.plot(C, cv_auc, label='CV AUC') plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-L2-LR-TFIDFW2V") plt.show() #Test Phase best_C=0.025 optimal_model=LogisticRegression(C=best_C,penalty='l2') optimal_model.fit(X_train_tfidf_w2v,y_train) train_fpr, train_tpr, thresholds = roc_curve(y_train, optimal_model.predict_proba(X_train_tfidf_w2v)[:,1]) test_fpr, test_tpr, thresholds = roc_curve(y_test, optimal_model.predict_proba(X_test_tfidf_w2v)[:,1]) plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))) plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr))) plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("AUC") plt.title("ERROR PLOTS-LR-L2-TFIDFW2V") plt.show() print("="*100) # Ref : https://seaborn.pydata.org/generated/seaborn.heatmap.html print("Train confusion matrix") heatmap(confusion_matrix(y_train, optimal_model.predict(X_train_tfidf_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() print("Test confusion matrix") heatmap(confusion_matrix(y_test, optimal_model.predict(X_test_tfidf_w2v)),xticklabels=['Predicted: NO','Predicted: Yes'],yticklabels=['Actual: NO', 'Actual: Yes'],annot=True,fmt='d',cmap="YlGnBu") plt.show() ###Output _____no_output_____ ###Markdown [6] Conclusions ###Code # Source: http://zetcode.com/python/prettytable/ from prettytable import PrettyTable pt = PrettyTable() pt.field_names = ["Vectorizer", "Model", "Hyperparameter", "AUC"] C_list=[0.246,0.15,0.463,0.48,0.052,0.018,0.081,0.025] vect=['BOW']*2+['TFIDF']*2+['AVG-W2V']*2+['TFIDF-W2V']*2 AUC_LIST=[0.933,0.937,0.936,0.946,0.896,0.89,0.87,0.871,] mod=['L1-LR','L2-LR']*4 for a,b,c,d in zip(vect,mod,C_list,AUC_LIST): pt.add_row([a,b,c,d]) print(pt) ###Output +------------+-------+----------------+-------+ | Vectorizer | Model | Hyperparameter | AUC | +------------+-------+----------------+-------+ | BOW | L1-LR | 0.246 | 0.933 | | BOW | L2-LR | 0.15 | 0.937 | | TFIDF | L1-LR | 0.463 | 0.936 | | TFIDF | L2-LR | 0.48 | 0.946 | | AVG-W2V | L1-LR | 0.052 | 0.896 | | AVG-W2V | L2-LR | 0.018 | 0.89 | | TFIDF-W2V | L1-LR | 0.081 | 0.87 | | TFIDF-W2V | L2-LR | 0.025 | 0.871 | +------------+-------+----------------+-------+
examples/Visualization_Examples.ipynb
###Markdown Constants used to control the examples shown ###Code # Set to one of: "iris", "breast_cancer", or "wine" DATASET_TESTED = "iris" ###Output _____no_output_____ ###Markdown Method to load data ###Code def get_iris(): iris = load_iris() X, y = iris.data, iris.target X = pd.DataFrame(X, columns=iris['feature_names']) y = pd.Series(y) return X, y def get_breast_cancer(): X, y = load_breast_cancer(return_X_y=True, as_frame=True) return X,y def get_wine(): X, y = load_wine(return_X_y=True, as_frame=True) return X,y ###Output _____no_output_____ ###Markdown Example using RotationFeatures with a decision tree on the Iris dataset ###Code if DATASET_TESTED == "iris": X,y = get_iris() elif DATASET_TESTED == "breast_cancer": X,y = get_breast_cancer() elif DATASET_TESTED == "wine": X,y = get_wine() else: assert False, "Not a valid test dataset" X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) rota = RotationFeatures(degree_increment=30) rota.fit(X_train) X_train_extended = rota.transform(X_train) #!!!!!!!!!!!!!!!!!!!!!!!!!! # todo: seems to be bug with this line -- issue if pass pd df ? #X_train_extended = pd.DataFrame(X_train_extended, index=X_train.index) X_test_extended = rota.transform(X_test) dt = tree.DecisionTreeClassifier(max_depth=5, random_state=42) dt.fit(X_train_extended,y_train) y_pred = dt.predict(X_test_extended) ###Output _____no_output_____ ###Markdown Presenting the features generated ###Code display(X_train_extended) ###Output _____no_output_____ ###Markdown Example Visualizing a Single Node ###Code tree_viewer = GraphTwoDimTree(tree=dt, X_orig=X_train, X_extended=X_train_extended, y=y_train, rota=rota) tree_viewer.graph_node(node_idx=0, row=X_train_extended.iloc[10], show_log_scale=True) ###Output _____no_output_____ ###Markdown Example Visualizing the Decision Path for a Single Prediction ###Code tree_viewer.graph_decision_path(row=X_train_extended.iloc[2], show_log_scale=False) ###Output Decision Path: [0 2 4 5 6] ###Markdown Example Showing Incorrect Predictions ###Code tree_viewer.graph_incorrect_rows(X_test_extended, y_test, y_pred, max_rows_shown=5) ###Output Number of rows: 38. Number of incorrect: 1. Percent incorrect: 3 **************************************************************** Displaying decision path for row 83. Predicted: 2. Actual: 1 **************************************************************** Decision Path: [0 2 4 5 6] ###Markdown Visualize a full Decision Tree ###Code tree_viewer.graph_tree(show_log_scale=False, show_combined_2d_space=True) ###Output _____no_output_____
week11_1/myproject/02_Query.ipynb
###Markdown Query Pattern* What is total rental cost between 13/03/2014-24/03/2014?* How much money collected from the car id=2? Getting a record by id ###Code c=Customer.objects.get(id=2) print(c) ###Output Customer object (2) ###Markdown Getting all records from table Customer ###Code Customer.objects.all() # SQL command print Customer.objects.all().query ###Output SELECT "myapp_customer"."id", "myapp_customer"."first_name", "myapp_customer"."last_name", "myapp_customer"."Address", "myapp_customer"."postcode", "myapp_customer"."telephone", "myapp_customer"."email" FROM "myapp_customer" ###Markdown Filter records within range ###Code from datetime import datetime import pytz utc=pytz.timezone('UTC') start_date = utc.localize( datetime.strptime('2014-03-13','%Y-%m-%d') ) stop_date = utc.localize( datetime.strptime('2014-03-24','%Y-%m-%d') ) Rent.objects.filter(rent_date__range=[start_date, stop_date]) # SQL command print Rent.objects.filter(rent_date__range=[start_date, stop_date ]).query ###Output SELECT "myapp_rent"."id", "myapp_rent"."rent_date", "myapp_rent"."return_date", "myapp_rent"."cost", "myapp_rent"."car_id", "myapp_rent"."customer_id" FROM "myapp_rent" WHERE "myapp_rent"."rent_date" BETWEEN 2014-03-13 00:00:00 AND 2014-03-24 00:00:00 ###Markdown Filter less_than_or_equal (__lte) ###Code # rent that happended before or equal 13 March 2014 Rent.objects.filter(rent_date__lte=start_date) # SQL command print Rent.objects.filter(rent_date__lte=start_date).query ###Output SELECT "myapp_rent"."id", "myapp_rent"."rent_date", "myapp_rent"."return_date", "myapp_rent"."cost", "myapp_rent"."car_id", "myapp_rent"."customer_id" FROM "myapp_rent" WHERE "myapp_rent"."rent_date" <= 2014-03-13 00:00:00 ###Markdown Filter greater than (__gt) ###Code # rent that happended after 13 March 2014 Rent.objects.filter(rent_date__gt=start_date) # SQL command print Rent.objects.filter(rent_date__gt=start_date).query ###Output SELECT "myapp_rent"."id", "myapp_rent"."rent_date", "myapp_rent"."return_date", "myapp_rent"."cost", "myapp_rent"."car_id", "myapp_rent"."customer_id" FROM "myapp_rent" WHERE "myapp_rent"."rent_date" > 2014-03-13 00:00:00 ###Markdown What is total rental cost between 13/03/2014-24/03/2014? Naive solution ( but slow ) ###Code %%timeit -n10 total=0 q=Rent.objects.filter(rent_date__range=[start_date, stop_date]) for i in q: total=total + i.cost ###Output 10 loops, best of 3: 2.33 ms per loop ###Markdown Better by Using "aggregration()" ###Code %%timeit -n10 from django.db.models import Sum, Max, Min, Avg Rent.objects.filter(rent_date__range=[start_date, stop_date]).aggregate(Sum('cost')) q=Rent.objects.filter(rent_date__range=[start_date, stop_date]) r=q.aggregate(Sum('cost')) r Rent.objects.filter(rent_date__range=[start_date, stop_date]).aggregate(Max('cost')) ###Output _____no_output_____ ###Markdown Annotate Count ###Code from django.db.models import Count q=Car.objects.annotate(Count("rent")) q[0].rent__count for i in q: print "rent__count:%s car:%s"%(i.rent__count, i) print Car.objects.annotate(Count("rent")).query ###Output SELECT "myapp_car"."id", "myapp_car"."maker", "myapp_car"."price", "myapp_car"."model", "myapp_car"."year", COUNT("myapp_rent"."id") AS "rent__count" FROM "myapp_car" LEFT OUTER JOIN "myapp_rent" ON ("myapp_car"."id" = "myapp_rent"."car_id") GROUP BY "myapp_car"."id", "myapp_car"."maker", "myapp_car"."price", "myapp_car"."model", "myapp_car"."year" ###Markdown Reverse relation ###Code Car.objects.get(id=2) Car.objects.get(id=2).rent_set.all() # SQL command print Car.objects.get(id=2).rent_set.all().query ###Output SELECT "myapp_rent"."id", "myapp_rent"."rent_date", "myapp_rent"."return_date", "myapp_rent"."cost", "myapp_rent"."car_id", "myapp_rent"."customer_id" FROM "myapp_rent" WHERE "myapp_rent"."car_id" = 2 ###Markdown How much money collected from the car id=2? Reverse relation (slow) ###Code %%timeit -n1 sum_cost=Car.objects.get(id=2).rent_set.all().aggregate(Sum('cost')) print sum_cost print Car.objects.get(id=2).rent_set.all().query ###Output SELECT "myapp_rent"."id", "myapp_rent"."rent_date", "myapp_rent"."return_date", "myapp_rent"."cost", "myapp_rent"."car_id", "myapp_rent"."customer_id" FROM "myapp_rent" WHERE "myapp_rent"."car_id" = 2 ###Markdown Forward relation ###Code %%timeit -n1 sum_cost=Rent.objects.filter(car__id=2).aggregate(Sum('cost')) print sum_cost print Rent.objects.filter(car__id=2).query ###Output SELECT "myapp_rent"."id", "myapp_rent"."rent_date", "myapp_rent"."return_date", "myapp_rent"."cost", "myapp_rent"."car_id", "myapp_rent"."customer_id" FROM "myapp_rent" WHERE "myapp_rent"."car_id" = 2 ###Markdown Find total income for each car ###Code q=Car.objects.annotate(Sum("rent__cost")) for i in q: print "income:%s car:%s"%(i.rent__cost__sum,i) ###Output income:1529.50 car:id: 1, Mitsubishi L200 income:1525.00 car:id: 2, Mini Cooper income:2240.00 car:id: 3, TVR Tuscan income:1119.95 car:id: 4, BMW Z3 income:480.00 car:id: 5, Toyota Celica income:699.95 car:id: 6, Audi TT income:514.85 car:id: 7, Mercedes E320 ###Markdown Q: Why do we need to use revese relation? A: Sometimes we need to iterate over all cars to get total cost of each car. ###Code %%timeit -n1 for i in Car.objects.all(): print "%s\n %s"%( i, i.rent_set.all().aggregate(Sum('cost')) ) ###Output id: 1, Mitsubishi L200 {'cost__sum': Decimal('1529.50')} id: 2, Mini Cooper {'cost__sum': Decimal('1525.00')} id: 3, TVR Tuscan {'cost__sum': Decimal('2240.00')} id: 4, BMW Z3 {'cost__sum': Decimal('1119.95')} id: 5, Toyota Celica {'cost__sum': Decimal('480.00')} id: 6, Audi TT {'cost__sum': Decimal('699.95')} id: 7, Mercedes E320 {'cost__sum': Decimal('514.85')} id: 1, Mitsubishi L200 {'cost__sum': Decimal('1529.50')} id: 2, Mini Cooper {'cost__sum': Decimal('1525.00')} id: 3, TVR Tuscan {'cost__sum': Decimal('2240.00')} id: 4, BMW Z3 {'cost__sum': Decimal('1119.95')} id: 5, Toyota Celica {'cost__sum': Decimal('480.00')} id: 6, Audi TT {'cost__sum': Decimal('699.95')} id: 7, Mercedes E320 {'cost__sum': Decimal('514.85')} id: 1, Mitsubishi L200 {'cost__sum': Decimal('1529.50')} id: 2, Mini Cooper {'cost__sum': Decimal('1525.00')} id: 3, TVR Tuscan {'cost__sum': Decimal('2240.00')} id: 4, BMW Z3 {'cost__sum': Decimal('1119.95')} id: 5, Toyota Celica {'cost__sum': Decimal('480.00')} id: 6, Audi TT {'cost__sum': Decimal('699.95')} id: 7, Mercedes E320 {'cost__sum': Decimal('514.85')} 1 loop, best of 3: 8.94 ms per loop ###Markdown Better Solution by using "annotation()" ###Code %%timeit -n1 cars=Car.objects.all().annotate(Sum('rent__cost')) for i in cars: print "%s\n %s"%( i, i.rent__cost__sum ) print Car.objects.all().annotate(Sum('rent__cost')).query ###Output SELECT "myapp_car"."id", "myapp_car"."maker", "myapp_car"."price", "myapp_car"."model", "myapp_car"."year", CAST(SUM("myapp_rent"."cost") AS NUMERIC) AS "rent__cost__sum" FROM "myapp_car" LEFT OUTER JOIN "myapp_rent" ON ("myapp_car"."id" = "myapp_rent"."car_id") GROUP BY "myapp_car"."id", "myapp_car"."maker", "myapp_car"."price", "myapp_car"."model", "myapp_car"."year"
Course_Material/Day1_PartB.ipynb
###Markdown Day 1, Part B: More on Reward Design Learning goals- Further examine the effects of reward function changes Definitions- **Simulation environment**: Notice that this is not the same as the python/conda environment. The simulation environment is the simulated world where the reinforcement learning takes place. It provides opportunities for an agent to learn and explore, and ideally provides challenges that aid in efficient learning.- **Agent (aka actor or policy)**: An entity in the simulation environment that performs actions. The agent could be a person, a robot, a car, a thermostat, etc.- **State variable**: An observed variable in the simulation environment. They can be coordinates of objects or entities, an amount of fuel in a tank, air temperature, wind speed, etc.- **Action variable**: An action that the agent can perform. Examples: step forward, increase velocity to 552.5 knots, push object left with force of 212.3 N, etc.- **Reward**: A value given to the agent for doing something considered to be 'good'. Reward is commonly assigned at each time step and cumulated during a learning episode.- **Episode**: A learning event consisting of multiple steps in which the agent can explore. It starts with the unmodified environment and continues until the goal is achieved or something prevents further progress, such as a robot getting stuck in a hole. Multiple episodes are typically run in loops until the model is fully trained.- **Model (aka policy or agent)**: An RL model is composed of the modeling architecture (e.g., neural network) and parameters or weights that define the unique behavior of the model.- **Policy (aka model or agent)**: The parameters of a model that encode the best choices to make in an environment. The choices are not necessarily good ones until the model undergoes training. The policy (or model) is the "brain" of the agent.- **Replay Buffer**: A place in memory to store state, action, reward and other variables describing environmental state transitions. It is effectively the agent's memory of past experiences. ![Reinforcement Learning Cycle](./images/Reinforcement-learning-diagram-01.png) Modify the CartPole RewardWe will work on reward modifications later in this course. For now, you can try modifying the reward here/ We've included `MyCartPole.py` in the Course_Material folder - a subclassed step function from the main environment definition. Because of the register step below, you'll need to restart the kernel every time you modify the reward, so we've included the imports cell below for easy access.To try different reward functions with the code below, your workflow should look like the following:1. Modify the reward section (below line 40 in the .py), *remember to save.*2. Restart your kernel and clear all outputs (probably don't want to rerun all the training above).3. Run the following 5 cells below to retrain and look at reward.4. Feel free to play around with the total_timesteps=25000 if you want a shorter/longer test of your new reward ###Code import os import gym from stable_baselines3 import PPO from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.utils import set_random_seed from tqdm import trange import hvplot.pandas # This adds HoloViews plotting capability directly from a Pandas dataframe import pandas as pd from gym.envs.registration import registry, make, spec def register(id, *args, **kwargs): if id in registry.env_specs: return else: return gym.envs.registration.register(id, *args, **kwargs) register(id='MyCartPole-v1', entry_point='MyCartPole:MyCartPoleEnv', max_episode_steps=1000, reward_threshold=2500.0) log_dir = "tmp/" os.makedirs(log_dir, exist_ok=True) env = gym.make("MyCartPole-v1") env = Monitor(env, log_dir) model = PPO('MlpPolicy', env, verbose=0) model.learn(total_timesteps=25000) training_reward = pd.DataFrame(pd.to_numeric(pd.read_csv("tmp/monitor.csv")[1:].reset_index()['index'])).reset_index() training_reward.rename(columns={'level_0':"Episode",'index':"Reward"},inplace=True) training_reward.hvplot(x="Episode",y="Reward") reward_list = [] episode_reward = 0 obs = env.reset() for _ in trange(1000): action, _states = model.predict(obs) obs, reward, done, info = env.step(action) episode_reward += reward env.render() if done: reward_list.append(episode_reward) episode_reward = 0 env.reset() env.env.viewer.close() env.close() ###Output _____no_output_____
.ipynb_checkpoints/fizyr_keras_retinanet-checkpoint.ipynb
###Markdown Object Detection in Google Colab with Fizyr RetinanetJupyter notebook providing steps to train a Keras/Tensorflow model for object detection with custom dataset.It runs in Google Colab using [Fizyr implementation](https://github.com/fizyr/keras-retinanet) of RetinaNet in Keras.Requirements are only dataset images and annotations file made in [LabelImg](https://github.com/tzutalin/labelImg).Colab Runtime type: Python3, GPU enabled. Environment SetupDownload and install in Colab required packages and import libraries. ###Code !git clone https://github.com/fizyr/keras-retinanet.git %cd keras-retinanet/ !pip install . !python setup.py build_ext --inplace import os import shutil import zipfile import urllib import xml.etree.ElementTree as ET import numpy as np import csv import pandas from google.colab import drive from google.colab import files ###Output /media/vy/DATA/projects/retinanet/env/lib/python3.6/site-packages/IPython/utils/traitlets.py:5: UserWarning: IPython.utils.traitlets has moved to a top-level traitlets package. warn("IPython.utils.traitlets has moved to a top-level traitlets package.") ###Markdown Making DatasetDownload from Drive training dataset, and convert it to Fizyr annotations format.Before upload in Google Drive a zip file containing annotations and images for training dataset, with following format (check my zip sample):```objdet_reduced_dataset.zip|- img1.jpg|- img1.xml|- img2.jpg|- img2.xml...```Then change accordingly DATASET_DRIVEID. ###Code DATASET_DRIVEID = '1YgTANSod7X5Yf-3YvsrbJPSwvESxq2b2' DATASET_DIR = 'dataset' ANNOTATIONS_FILE = 'annotations.csv' CLASSES_FILE = 'classes.csv' drive_url = 'https://drive.google.com/uc?export=download&id=' + DATASET_DRIVEID file_name = DATASET_DRIVEID + '.zip' urllib.request.urlretrieve(drive_url, file_name) print('Download completed!') os.makedirs(DATASET_DIR, exist_ok=True) with zipfile.ZipFile(file_name, 'r') as zip_ref: zip_ref.extractall(DATASET_DIR) os.remove(file_name) print('Extract completed!') annotations = [] classes = set([]) for xml_file in [f for f in os.listdir(DATASET_DIR) if f.endswith(".xml")]: tree = ET.parse(os.path.join(DATASET_DIR, xml_file)) root = tree.getroot() file_name = None for elem in root: if elem.tag == 'filename': file_name = os.path.join(DATASET_DIR, elem.text) if elem.tag == 'object': obj_name = None coords = [] for subelem in elem: if subelem.tag == 'name': obj_name = subelem.text if subelem.tag == 'bndbox': for subsubelem in subelem: coords.append(subsubelem.text) item = [file_name] + coords + [obj_name] annotations.append(item) classes.add(obj_name) with open(ANNOTATIONS_FILE, 'w') as f: writer = csv.writer(f) writer.writerows(annotations) with open(CLASSES_FILE, 'w') as f: for i, line in enumerate(classes): f.write('{},{}\n'.format(line,i)) ###Output _____no_output_____ ###Markdown Training ModelDownload pretrained model and run training.In the next cell choose one option:1. download Fizyr Resnet50 pretrained model2. download your custom pretrained model, to continue previous training epochsIn the last cell optionally export trained model to Google Drive. ###Code PRETRAINED_MODEL = './snapshots/_pretrained_model.h5' #### OPTION 1: DOWNLOAD INITIAL PRETRAINED MODEL FROM FIZYR #### URL_MODEL = 'https://github.com/fizyr/keras-retinanet/releases/download/0.5.1/resnet50_coco_best_v2.1.0.h5' urllib.request.urlretrieve(URL_MODEL, PRETRAINED_MODEL) #### OPTION 2: DOWNLOAD CUSTOM PRETRAINED MODEL FROM GOOGLE DRIVE. CHANGE DRIVE_MODEL VALUE. USE THIS TO CONTINUE PREVIOUS TRAINING EPOCHS #### #drive.mount('/content/gdrive') #DRIVE_MODEL = '/content/gdrive/My Drive/Colab Notebooks/objdet_tensorflow_colab/resnet50_csv_10.h5' #shutil.copy(DRIVE_MODEL, PRETRAINED_MODEL) print('Downloaded pretrained model to ' + PRETRAINED_MODEL) !keras_retinanet/bin/train.py --freeze-backbone --random-transform --weights {PRETRAINED_MODEL} --batch-size 8 --steps 500 --epochs 10 csv annotations.csv classes.csv #### OPTIONAL: EXPORT TRAINED MODEL TO DRIVE #### #drive.mount('/content/gdrive') #COLAB_MODEL = './snapshots/resnet50_csv_10.h5' #DRIVE_DIR = '/content/gdrive/My Drive/Colab Notebooks/objdet_tensorflow_colab/' #shutil.copy(COLAB_MODEL, DRIVE_DIR) ###Output _____no_output_____ ###Markdown InferenceRun inference with uploaded image on trained model. ###Code THRES_SCORE = 0.8 # show images inline %matplotlib inline # automatically reload modules when they have changed %reload_ext autoreload %autoreload 2 # import keras import keras # import keras_retinanet from keras_retinanet import models from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image from keras_retinanet.utils.visualization import draw_box, draw_caption from keras_retinanet.utils.colors import label_color # import miscellaneous modules import matplotlib.pyplot as plt import cv2 import os import numpy as np import time # set tf backend to allow memory to grow, instead of claiming everything import tensorflow as tf def get_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) # use this environment flag to change which GPU to use #os.environ["CUDA_VISIBLE_DEVICES"] = "1" # set the modified tf session as backend in keras keras.backend.tensorflow_backend.set_session(get_session()) model_path = os.path.join('snapshots', sorted(os.listdir('snapshots'), reverse=True)[0]) print(model_path) # load retinanet model model = models.load_model(model_path, backbone_name='resnet50') model = models.convert_model(model) # load label to names mapping for visualization purposes labels_to_names = pandas.read_csv(CLASSES_FILE,header=None).T.loc[0].to_dict() def img_inference(img_path): image = read_image_bgr(img_infer) # copy to draw on draw = image.copy() draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB) # preprocess image for network image = preprocess_image(image) image, scale = resize_image(image) # process image start = time.time() boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0)) print("processing time: ", time.time() - start) # correct for image scale boxes /= scale # visualize detections for box, score, label in zip(boxes[0], scores[0], labels[0]): # scores are sorted so we can break if score < THRES_SCORE: break color = label_color(label) b = box.astype(int) draw_box(draw, b, color=color) caption = "{} {:.3f}".format(labels_to_names[label], score) draw_caption(draw, b, caption) plt.figure(figsize=(10, 10)) plt.axis('off') plt.imshow(draw) plt.show() uploaded = files.upload() img_infer = list(uploaded)[0] print('Running inference on: ' + img_infer) img_inference(img_infer) ###Output _____no_output_____
Problog/Monty Hall example analysis.ipynb
###Markdown Monty Hall problem Probabilistic programming model analysis for ascending door number ###Code import timeit import pandas as pd %matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') import numpy as np import networkx as nx from problog import get_evaluatable from problog.program import PrologString from problog.formula import LogicFormula, LogicDAG from problog.ddnnf_formula import DDNNF from problog.cnf_formula import CNF ###Output _____no_output_____ ###Markdown import model problog model with embedded BP ###Code with open('modelT.pl') as model: m = model.read() lfs = [] dags = [] cnfs = [] ###Output _____no_output_____ ###Markdown Evaluate model for door nubmer between $3$ to $11$ ###Code times = [] door_num = range(3, 12) for i in door_num: start = timeit.default_timer() model = m.format(door_num=i) p = PrologString(model) formula = get_evaluatable().create_from(p) print(formula.evaluate()) stop = timeit.default_timer() times.append(stop - start) for i in door_num: model = m.format(door_num=i) p = PrologString(model) lf = LogicFormula.create_from(p) lfs.append(lf) dag = LogicDAG.create_from(lf) dags.append(dag) cnf = CNF.create_from(dag) cnfs.append(cnf) pd.DataFrame(data={'Number Of Doors': door_num, 'Solving time': times, 'Lines in LF':[len(str(lf).split('\n')) for lf in lfs]}) print(lfs[0]) plt.figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') plt.plot(door_num, times) plt.title('Monty Hall ascending door number',fontsize=16) plt.ylabel('Time (sec)',fontsize=14) plt.xlabel('# of doors ',fontsize=14) plt.savefig('Monty Hall ascending door number.png') plt.show() G = nx.DiGraph() G.add_edges_from( [('A', 'B'), ('A', 'C'), ('D', 'B'), ('E', 'C'), ('E', 'F'), ('B', 'H'), ('B', 'G'), ('B', 'F'), ('C', 'G')]) val_map = {'A': 1.0, 'D': 0.5714285714285714, 'H': 0.0} values = [val_map.get(node, 0.25) for node in G.nodes()] # Specify the edges you want here red_edges = [('A', 'C'), ('E', 'C')] edge_colours = ['black' if not edge in red_edges else 'red' for edge in G.edges()] black_edges = [edge for edge in G.edges() if edge not in red_edges] # Need to create a layout when doing # separate calls to draw nodes and edges pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, cmap=plt.get_cmap('jet'), node_color = values, node_size = 500) nx.draw_networkx_labels(G, pos) nx.draw_networkx_edges(G, pos, edgelist=red_edges, edge_color='r', arrows=True) nx.draw_networkx_edges(G, pos, edgelist=black_edges, arrows=False) plt.show() ###Output _____no_output_____
code/Parameter Tuning.ipynb
###Markdown Histogram of message length by type ###Code sms.groupby("Label").Length.plot(kind = "hist", alpha = 0.5, bins = 100) to_process = sms["Text"].copy() to_process = to_process.str.lower() stop_words = set(stopwords.words("english")) def clean_message(text): # te text = text.translate(str.maketrans("", "", string.punctuation)) text = [word for word in text.split() if word not in stopwords.words("english")] return " ".join(text) text_cleaned = to_process.apply(clean_message) from collections import Counter freqSpam = Counter(" ".join(text_cleaned[sms["Label"] == "spam"]).split()).most_common(20) freqHam = Counter(" ".join(text_cleaned[sms["Label"] == "ham"]).split()).most_common(20) import matplotlib.pyplot as plt labels, ys = zip(*freqHam) xs = np.arange(len(labels)) width = 0.5 plt.bar(xs, ys, width, align='center') plt.xticks(xs, labels) plt.xticks(rotation=70) plt.title("Top 20 Most Frequent Words for Ham") plt.ylabel("Frequency") plt.show() labels, ys = zip(*freqSpam) xs = np.arange(len(labels)) width = 0.5 plt.bar(xs, ys, width, align='center') plt.xticks(xs, labels) plt.xticks(rotation=70) plt.title("Top 20 Most Frequent Words for Spam") plt.ylabel("Frequency") plt.show() vectorizer = TfidfVectorizer("english") features = vectorizer.fit_transform(text_cleaned) import matplotlib.pyplot as plt from scipy.sparse import coo_matrix import matplotlib def plot_coo_matrix(m): if not isinstance(m, coo_matrix): m = coo_matrix(m) fig = plt.figure() ax = fig.add_subplot(111, axisbg='black') ax.plot(m.col, m.row, 's', color='white', ms=1) ax.set_xlim(0, m.shape[1]) ax.set_ylim(0, m.shape[0]) ax.set_aspect('equal') for spine in ax.spines.values(): spine.set_visible(False) ax.invert_yaxis() ax.set_aspect('equal') ax.set_xticks([]) ax.set_yticks([]) return ax ax = plot_coo_matrix(features) ax.figure.show() ###Output /usr/local/lib/python3.6/site-packages/matplotlib/cbook.py:136: MatplotlibDeprecationWarning: The axisbg attribute was deprecated in version 2.0. Use facecolor instead. warnings.warn(message, mplDeprecation, stacklevel=1) /usr/local/lib/python3.6/site-packages/matplotlib/figure.py:402: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure "matplotlib is currently using a non-GUI backend, " ###Markdown Split Data ###Code featureTrain, featureTest, labelTrain, labelTest = train_test_split(features, sms["Label"], test_size = 0.2, random_state = 1234) from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.metrics import accuracy_score ###Output _____no_output_____ ###Markdown Choose different kernels and bandwidth for SVC ###Code kernels = {'rbf' : 'rbf','polynominal' : 'poly', 'sigmoid': 'sigmoid'} predScore = [] for k, v in kernels.items(): for i in np.linspace(0.05, 1, num = 20): svc = SVC(kernel = v, gamma = i) svc.fit(featureTrain, labelTrain) pred = svc.predict(featureTest) predScore.append((k, [i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore,orient='index', columns=['Gamma','Score']) df['Score'].plot(kind='line', figsize=(10,5), ylim=(0.8,1.0),y = "Score") ###Output _____no_output_____ ###Markdown the `sigmoid` kernel with `gamma = 1` produces an accuracy of 97.8475%. Elastic netexpected to perform better than using only $\ell_1$ or $\ell_2$ regularization ###Code labelTrain2 = labelTrain == "ham" labelTest2 = labelTest == "spam" predScore = [] for j in np.linspace(0.01, 1, num = 20): eln = SGDClassifier(loss = 'log', penalty = 'elasticnet', alpha = 0.0001, l1_ratio = j) eln.fit(featureTrain, labelTrain) pred = eln.predict(featureTest) predScore.append((i, [j, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ['l1_ratio', 'Score']) df.plot(x = 'l1_ratio', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown When `l1_ratio = 0.05`, the prediction has an accuracy of 96.9507%. Decision Tree ###Code predScore = [] for i in np.arange(5,31): dtc = DecisionTreeClassifier(min_samples_split = i, random_state = 2345) dtc.fit(featureTrain, labelTrain) pred = dtc.predict(featureTest) predScore.append((i,[i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["min_samples_split", "Score"]) df.plot(x = 'min_samples_split', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown Multinomial Naive Bayes ###Code predScore = [] for i in np.linspace(0.05, 1, num = 20): mnb = MultinomialNB(alpha = i) mnb.fit(featureTrain, labelTrain) pred = mnb.predict(featureTest) predScore.append((i,[i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["alpha", "Score"]) df.plot(x = 'alpha', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown K-Nearest Neighbor ###Code predScore = [] for i in np.arange(20, 51): knc = KNeighborsClassifier(n_neighbors = i) knc.fit(featureTrain, labelTrain) pred = knc.predict(featureTest) predScore.append((i,[i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["n_neighbors", "Score"]) df.plot(x = 'n_neighbors', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown Random Forest ###Code predScore = [] for i in np.arange(20, 71): rfc = RandomForestClassifier(n_estimators = i, random_state = 2345) rfc.fit(featureTrain, labelTrain) pred = rfc.predict(featureTest) predScore.append((i,[i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["n_estimators", "Score"]) df.plot(x = 'n_estimators', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown Adaboost ###Code predScore = [] for i in np.arange(20, 51): abc = AdaBoostClassifier(n_estimators = i, random_state = 2345) abc.fit(featureTrain, labelTrain) pred = abc.predict(featureTest) predScore.append((i, [i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["n_estimators", "Score"]) df.plot(x = 'n_estimators', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown Bagging ###Code predScore = [] for i in np.arange(20, 51): bgc = BaggingClassifier(n_estimators = i, random_state = 2345) bgc.fit(featureTrain, labelTrain) pred = bgc.predict(featureTest) predScore.append((i, [i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["n_estimators", "Score"]) df.plot(x = 'n_estimators', y = 'Score', kind = "line") ###Output _____no_output_____ ###Markdown ExtraTrees ###Code predScore = [] for i in np.arange(20, 51): etc = ExtraTreesClassifier(n_estimators = i, random_state = 2345) etc.fit(featureTrain, labelTrain) pred = etc.predict(featureTest) predScore.append((i, [i, accuracy_score(labelTest, pred)])) df = pd.DataFrame.from_items(predScore, orient = "index", columns = ["n_estimators", "Score"]) df.plot(x = 'n_estimators', y = 'Score', kind = "line") ###Output _____no_output_____
Dia_2/grupo1/Edwin.ipynb
###Markdown ###Code from IPython.display import YouTubeVideo, HTML YouTubeVideo('VIxciS1B9eo') mi_lista = [0,1,2,3,4,5,6,7,8,10] for i in mi_lista: print (i) dias_semana = ['lunes','martes','miercoles','jueves','viernes','sabado','domingo'] dia = 'martes' if dia == 'domingo' or dia == 'sabado': print ('me lebanto tarde a las 10am') else: print ('me levanto temprano a las 7am') dias_semana = ['lunes','martes','miercoles','jueves','viernes','sabado','domingo'] for dia in dias_semana: if dia == 'domingo' or dia == 'sabado': print (dia, 'me lebanto tarde a las 10am') else: print (dia, 'me levanto temprano a las 7am') ###Output lunes me levanto temprano a las 7am martes me levanto temprano a las 7am miercoles me levanto temprano a las 7am jueves me levanto temprano a las 7am viernes me levanto temprano a las 7am sabado me lebanto tarde a las 10am domingo me lebanto tarde a las 10am ###Markdown FuncionesLas funciones nos facilitan la programación porque no tenemos que escribir nuevamente todo el codigo de una rutina que vamos a reutilizarUna función se define en python como:```pythondef mi_funcion(var1,var2): el algoritmo return x``` ###Code # ejemplo def mi_funcion(x,y): return x+y print (mi_funcion(4,5)) #ejemplo def contar_letras(texto): n = len(texto) return n def contar_palabras(texto): lista = texto.split(' ') n = len(lista) return n def contar_palabras_letras(texto): palabras = contar_palabras(texto) letras = contar_letras(texto) return [palabras, letras] print (contar_palabras_letras('contar palabras y letras')) contar_palabras_letras('clubes de ciencia 2017 univecidad de los andes') def hora_me_levanto(dia): if dia =='domingo' or dia == 'sabado': resultado = 'me levanto a las 12 am' else: resultado = 'me levanto a la 5 am' return resultado hora_me_levanto('sabado') # ejemplo def potencia(x,n): a = 1 for i in range(n): # range(n) genera una lista de numeros de 0 a n-1 de 1 en 1 a = a*x return a def factorial(n): if n == 0: return 1 if n < 0: return 'valor negativo' factorial = 1 for i in range(1,n+1): factorial = factorial*i return factorial print (potencia(3,3)) print (factorial(4)) ###Output 27 24 ###Markdown Reto de Programación- Construya una función que retorne el nombre de una de sus compañeros de grupo cuando se ingresa el número de tarjeta de identidad```pythondef encontrar_nombre(numero_identidad): codigo return nombre_completo```- La serie de Fibonacci es muy importante en varias areas del conocimiento. Esta se define como:$$f_{0} = 0 ,$$ $$f_{1} = 1,$$ $$f_{n} = f_{n-1} + f_{n-2}$$Es decir, el siguiente valor es la suma de los dos anteriores.$$ f_{2} = 1 + 0,$$$$f_{3} = 1 + 1,$$$$f_{4} = 2 + 1$$Escriba una función que retorne la serie de Fibonacci de algun número $n$.Por ejemplo para $n=4$, la función debe devolver la lista [0,1,1,2,3] ###Code def encontrar_nombre(numero_identidad): nombre_completo = {'1003712136':'edwin balaguera','1009339849':'juan mape','1000065444':'maria galvis','100028707':'paula galvis'} return nombre_completo [numero_identidad] encontrar_nombre('1003712136') ###Output _____no_output_____ ###Markdown LibreriasLas librerias contienen funciones que nos ayudan resolver problemas complejos y nos facilitan la programación.```pythonimport pandas Pandas nos permite leer archivos de excel, filtrar, y hacer estadisticas sobre tabalasimport numpy Numpy contiene funciones de operaciones matematicas y algebra de matricesimport matplotlib Matplotlib es una libreria que nos ayuda a graficar datos y funciones matematicas``` ###Code # ejemplo, La hora actual del servidor import datetime print (datetime.datetime.now()) # ejemplo, Transpuesta de una matriz import numpy as np A = np.matrix([[1, 2, -3], [1, -2, 3], [1, -2, 3]]) print (A.shape) # las dimensiones de la matriz print (A.transpose()) # tarnspuesta de la matriz A import matplotlip.pylab as plt plt.figure() x = [1,2,3,4,5] y = [1,2,3,4,5] plt.scatter(x,y,c ='black',s=100) plt.show() %matplotlib notebook # ejemplo, Gráfica de y = x**2 import matplotlib.pylab as plt x = list(range(-50,50)) y = [i**2 for i in x] plt.figure() plt.scatter(x,y) plt.title('$y = x^{2}$') # titulo plt.xlabel('x') # titulo eje x plt.ylabel('y') # titulo eje y plt.show() x = np.linspace(0, 2 * np.pi, 500) y1 = np.sin(x) y2 = np.sin(3 * x) fig, ax = plt.subplots() ax.fill(x, y1, 'b', x, y2, 'r', alpha=0.3) plt.show() # ejemplo, Crear una tabal de datos de sus compañeros import pandas as pd nombres = ['Jocelyn', 'Laura','Luis Alejandro'] apellidos = ['Kshi', 'Diaz', 'Mahecha'] pais = ['Estados Unidos', 'Colombia', 'Colombia'] pd.DataFrame({'nombre': nombres, 'apellido': apellidos, 'pais': pais}) ###Output _____no_output_____ ###Markdown Reto de ProgramaciónCree un dataframe ó tabla que tenga las siguinetes columnas: t, a, v, y:- t es el tiempo y va de 0 a 100- a es la aceleración de la gravedad a = 10- v es la velocidad, y es función de t : $v = 20 - at$ - y es función de t: $y = -5t^{2}$Grafique y, v, a en función de t Pandas y Tablas de datos ###Code temperatura_global = pd.read_csv('GlobalTemperatures.csv') ###Output _____no_output_____ ###Markdown Analisis Temperaturashttps://www.dkrz.de/Nutzerportal-en/doku/vis/sw/python-matplotlib/matplotlib-sourcecode/python-matplotlib-example-contour-filled-plothttps://data.giss.nasa.gov/gistemp/maps/ ###Code from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa import matplotlib.cm as mpl_cm import matplotlib.pyplot as plt import iris import iris.quickplot as qplt fname = iris.sample_data_path('air_temp.pp') temperature_cube = iris.load_cube(fname) # Load a Cynthia Brewer palette. brewer_cmap = mpl_cm.get_cmap('brewer_OrRd_09') # Draw the contour with 25 levels. plt.figure() qplt.contourf(temperature_cube, 25) # Add coastlines to the map created by contourf. plt.gca().coastlines() plt.show() # Draw the contours, with n-levels set for the map colours (9). # NOTE: needed as the map is non-interpolated, but matplotlib does not provide # any special behaviour for these. plt.figure() qplt.contourf(temperature_cube, brewer_cmap.N, cmap=brewer_cmap) # Add coastlines to the map created by contourf. plt.gca().coastlines() plt.show() ###Output _____no_output_____
Data-Science-HYD-2k19/ASSIGNMENTS/.ipynb_checkpoints/Assignment - IV-checkpoint.ipynb
###Markdown Task - I 1.Given a sequence of n values x1, x2, ..., xn and a window size k>0, the k-th moving average ofthe given sequence is defined as follows:The moving average sequence has n-k+1 elements as shown below.The moving averages with k=4 of a ten-value sequence (n=10) is shown belowi 1 2 3 4 5 6 7 8 9 10===== == == == == == == == == == ==Input 10 20 30 40 50 60 70 80 90 100y1 25 = (10+20+30+40)/4y2 35 = (20+30+40+50)/4y3 45 = (30+40+50+60)/4y4 55 = (40+50+60+70)/4y5 65 = (50+60+70+80)/4y6 75 = (60+70+80+90)/4y7 85 = (70+80+90+100)/4Thus, the moving average sequence has n-k+1=10-4+1=7 values. Problem Statement:Write a function to find moving average in an array over a window:Test it over [3, 5, 7, 2, 8, 10, 11, 65, 72, 81, 99, 100, 150] and window of 3. ###Code import numpy as np n = int(input("Enter n:")) l = [] for i in range(n): temp = int(input()) l.append(temp) k = int(input("Enter k: ")) def summ(l): res = 0 for i in l: res+=i return res def movavg(l,k): cnt = 0 mv = [] while(cnt<=len(l)-k): temp = l[cnt:cnt+k] temp = summ(temp)/k mv.append(temp) cnt+=1 return mv res = [] res = movavg(l,k) res ###Output _____no_output_____ ###Markdown Task - II 1.How-to-count-distance-to-the-previous-zeroFor each value, count the difference back to the previous zero (or the start of the Series,whichever is closer)create a new column 'Y'Consider a DataFrame df where there is an integer column 'X'import pandas as pddf = pd.DataFrame({'X': [7, 2, 0, 3, 4, 2, 5, 0, 3, 4]}) ###Code import pandas as pd import numpy as np df = pd.DataFrame({'X':[7,2,0,3,4,2,5,0,3,4]}) df #Working of np.r_ #np.r_ is the row wise stacking of the arrays a = np.array([1,2,3,4,5]) b = np.array([6,7,8,9,10]) print(np.r_[a,b]) print(np.r_[a[0:3],b[0:3],a[3:],b[3:]]) [df["X"].loc[i] for i in range(10)] [0]*10 ###Output _____no_output_____
preprocess/run_blanks_from_training.ipynb
###Markdown Classify blanks (train + dev) and save to files ###Code # # TRAINING DATASET # # # # Pick out a subset of articles art = arts_train[:] # art = arts_train[14:15] from utils_SQuAD import classify_blanks_from_answers maxWords_per_FITB = 2 art3 = classify_blanks_from_answers(art,maxWords_per_FITB=2,return_full=False) # Do a test print print(art3[0]['title']) print(art3[0]['paragraphs'][0]['context_blanked']) # # Save the file from utils import get_foldername, save_data foldername = get_foldername('sq_pp_training') save_data(art3,'train.json',foldername); # # DEV DATASET # # # # Pick out a subset of articles art = arts_dev[:] from utils_SQuAD import classify_blanks_from_answers maxWords_per_FITB = 2 arts3dev = classify_blanks_from_answers(art,maxWords_per_FITB=2,return_full=False) # Do a test print print(arts3dev[0]['title']) print(arts3dev[0]['paragraphs'][0]['context_blanked']) # # Save the file from utils import get_foldername, save_data foldername = get_foldername('sq_pp_training') save_data(arts3dev,'dev.json',foldername); ###Output File /home/davestanley/src/animated-succotash/data/SQuAD_pp_trainingblanks/dev.json exists...skipping. ###Markdown Re-load the data, merge, and run quick test ###Code # Load in the data from utils import load_data foldername = get_foldername('sq_pp_training') artstrain_blanks = load_data('train.json',foldername) artsdev_blanks = load_data('dev.json',foldername) print("Narticles train=" + str(len(artstrain_blanks))) # Merge it with original data to get full dataset from utils_SQuAD import merge_arts_paragraph_fields # Training + test data list_of_fields = ['context_blanked','blank_classification'] arts_train = merge_arts_paragraph_fields(arts_train,artstrain_blanks,list_of_fields) arts_dev = merge_arts_paragraph_fields(arts_dev,artsdev_blanks,list_of_fields) # Do a test print print(arts_train[0]['paragraphs'][0]['context_blanked']) ###Output Beyoncé Giselle Knowles-Carter (/biːˈjɒnseɪ/ bee-YON-say) (born September 4, 1981) is an American singer, songwriter, record producer and actress. Born and raised in ______ Texas, she performed in various ______ and ______ competitions as a child, and rose to fame in the ______ ______ as ______ ______ of R&B girl-group ______ Child. Managed by her father, ______ Knowles, the group became one of the world's best-selling girl groups of all time. Their hiatus saw the release of Beyoncé's debut album, ______ in ______ (2003), which established her as a solo artist worldwide, earned ______ Grammy Awards and featured the Billboard Hot 100 number-one singles "Crazy in Love" and "Baby Boy". ###Markdown Display paragraph containing blanks ###Code print(arts_train[0]['title']) p = arts_train[0]['paragraphs'][3] c = p['context'] cs = c.split() bc = p['blank_classification'] for i in range(len(bc)): if bc[i]: print('Blank at word #' + str(i) + ' ' + cs[i]) print( p['context']) print( p['context_blanked']) ###Output Beyoncé Blank at word #18 salon Blank at word #24 Xerox Blank at word #40 Solange Blank at word #50 Destiny's Blank at word #84 Joseph Blank at word #85 Broussard. Blank at word #91 Methodist Beyoncé Giselle Knowles was born in Houston, Texas, to Celestine Ann "Tina" Knowles (née Beyincé), a hairdresser and salon owner, and Mathew Knowles, a Xerox sales manager. Beyoncé's name is a tribute to her mother's maiden name. Beyoncé's younger sister Solange is also a singer and a former member of Destiny's Child. Mathew is African-American, while Tina is of Louisiana Creole descent (with African, Native American, French, Cajun, and distant Irish and Spanish ancestry). Through her mother, Beyoncé is a descendant of Acadian leader Joseph Broussard. She was raised in a Methodist household. Beyoncé Giselle Knowles was born in Houston, Texas, to Celestine Ann "Tina" Knowles (née Beyincé), a hairdresser and ______ owner, and Mathew Knowles, a ______ sales manager. Beyoncé's name is a tribute to her mother's maiden name. Beyoncé's younger sister ______ is also a singer and a former member of ______ Child. Mathew is African-American, while Tina is of Louisiana Creole descent (with African, Native American, French, Cajun, and distant Irish and Spanish ancestry). Through her mother, Beyoncé is a descendant of Acadian leader ______ ______ She was raised in a ______ household.
S Analysis.ipynb
###Markdown Sales Analysis Import Necessary Libraries ###Code import pandas as pd import os ###Output _____no_output_____ ###Markdown Task 1 :Merging 12 months of sales into a single line ###Code files = [file for file in os.listdir('.\Pandas-Data-Science-Tasks-master\SalesAnalysis\Sales_Data')] all_months_data = pd.DataFrame() for file in files: df = pd.read_csv(".\Pandas-Data-Science-Tasks-master\SalesAnalysis\Sales_Data/"+file) all_months_data=pd.concat([all_months_data,df]) all_months_data.to_csv("all_data.csv", index=False) ###Output _____no_output_____ ###Markdown Read in updated dataframe ###Code all_data=pd.read_csv("all_data.csv") all_data.head() ###Output _____no_output_____ ###Markdown Clean Up the Data! Drop rows of NAN ###Code nan_df = all_data[all_data.isnull().any(axis=1)] nan_df.head() all_data = all_data.dropna(how = "all") all_data.head() ###Output _____no_output_____ ###Markdown Find 'or' and delete it ###Code all_data = all_data[all_data['Order Date'].str[0:2] != 'Or'] ###Output _____no_output_____ ###Markdown Convert columns to the correct type ###Code all_data['Quantity Ordered'] = pd.to_numeric(all_data['Quantity Ordered']) all_data['Price Each'] = pd.to_numeric(all_data['Price Each']) ###Output _____no_output_____ ###Markdown Augmented data with additional columns Task 2 : Add Month Column ###Code all_data['Months'] = all_data['Order Date'].str[0:2] all_data['Months'] = all_data['Months'].astype('int32') all_data.head() ###Output _____no_output_____ ###Markdown Task 3 : Add a sales column ###Code all_data['Sales'] = all_data['Quantity Ordered']*all_data['Price Each'] all_data.head() ###Output _____no_output_____ ###Markdown Task 4 : Add city column ###Code # let's use .apply() def get_city(address): return address.split(',')[1] def get_state(address): return address.split(',')[2].split(' ')[1] all_data['City'] = all_data['Purchase Address'].apply(lambda x : f"{get_city(x)} ({get_state(x)})") all_data.head() ###Output _____no_output_____ ###Markdown Question 1 : what was the best month for sales? How much was earned that month? ###Code results = all_data.groupby('Months').sum() import matplotlib.pyplot as plt months = range(1,13) plt.bar(months, results['Sales']) plt.xticks(months) plt.ylabel('Sales in USD ($)') plt.xlabel('Months number') plt.show() ###Output _____no_output_____ ###Markdown Question 2 :What city had the highest number of sales? ###Code results = all_data.groupby('City').sum() results import matplotlib.pyplot as plt cities = [city for city ,df in all_data.groupby('City')] plt.bar(cities, results['Sales']) plt.xticks(cities, rotation = 'vertical', size=8) plt.ylabel('Sales in USD ($)') plt.xlabel('City Name') plt.show() ###Output _____no_output_____ ###Markdown Question 3 : what time should we display advertisements to maximize likelihood of customer's buying product ? ###Code all_data['Order Date'] = pd.to_datetime(all_data['Order Date']) all_data['Hour'] = all_data['Order Date'].dt.hour all_data['Minute'] = all_data['Order Date'].dt.minute hours = [hours for hours, df in all_data.groupby('Hour')] plt.plot(hours, all_data.groupby(['Hour']).count()) plt.xticks(hours) plt.xlabel('Hours') plt.ylabel('Number of Orders') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Questio 4 :What products are most often sold together? ###Code df = all_data[all_data['Order ID'].duplicated(keep=False)] df['Grouped'] = df.groupby('Order ID')['Product'].transform(lambda x: ','.join(x)) df = df[['Order ID', 'Grouped']].drop_duplicates() df.head() from itertools import combinations from collections import Counter count = Counter() for row in df['Grouped']: row_list = row.split(',') count.update(Counter(combinations(row_list, 2))) for key, value in count.most_common(10): print(key,value) ###Output ('iPhone', 'Lightning Charging Cable') 1005 ('Google Phone', 'USB-C Charging Cable') 987 ('iPhone', 'Wired Headphones') 447 ('Google Phone', 'Wired Headphones') 414 ('Vareebadd Phone', 'USB-C Charging Cable') 361 ('iPhone', 'Apple Airpods Headphones') 360 ('Google Phone', 'Bose SoundSport Headphones') 220 ('USB-C Charging Cable', 'Wired Headphones') 160 ('Vareebadd Phone', 'Wired Headphones') 143 ('Lightning Charging Cable', 'Wired Headphones') 92 ###Markdown Question 5 : What Product sold the most ? Why do you think it sold the most ? ###Code product_group = all_data.groupby('Product') quantity_ordered = product_group.sum()['Quantity Ordered'] products = [product for product, df in product_group] plt.bar(products, quantity_ordered) plt.xticks(products, rotation='vertical', size=8) plt.xlabel('products') plt.ylabel('Quantity Ordered') plt.show() prices = all_data.groupby('Product').mean()['Price Each'] fig, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.bar(products, quantity_ordered, color='g') ax2.plot(products, prices, 'b-') ax1.set_xlabel('product name') ax1.set_ylabel('quantity ordered', color='g') ax2.set_ylabel('price ($)', color='b') ax1.set_xticklabels(products, rotation='vertical', size=8) plt.show() ###Output _____no_output_____
dynamicProgramming/decodeNums.ipynb
###Markdown Title : Decode WaysChapter : Dynamic ProgrammingLink : [YouTube](https://youtu.be/SGicalYx4wE)ChapterLink : [PlayList](https://www.youtube.com/playlist?list=PLDV-cCQnUlIa0owhTLK-VT994Qh6XTy4v)문제 : 숫자열을 디코딩 하는 방법의 갯수를 계산하여라 ###Code def decodingBtmUp(s: str) -> int: str_length = len(s) if str_length == 0 : return 0 dp = [None]*(str_length+1) dp[-1] = 1 last_char = s[-1] if int(last_char) == 0: dp[str_length-1] = 0 else: dp[str_length-1] = 1 for idx in range(str_length-2,-1,-1): single_num = int(s[idx]) single_count = 0 if 0<single_num: single_count = dp[idx+1] double_num = int(s[idx:idx+2]) double_count = 0 if 10<=double_num<=26: double_count = dp[idx+2] count = single_count + double_count dp[idx] = count return dp[0] decodingBtmUp("212325") ###Output _____no_output_____
notebooks/5_01--DFM_Modeling_example.ipynb
###Markdown 5. Optimizing, and sampling the kernel in OJ 287 I. Introduction to pymc3, xo, and gradientsAdapted from [a notebook provided by Dan Foreman-Mackey](https://gist.github.com/dfm/f84d0ee1af2425fc29efefe29a7e934d). ###Code %matplotlib inline %config InlineBackend.figure_format = "retina" import matplotlib.pyplot as plt plt.style.use("default") plt.rcParams["savefig.dpi"] = 100 plt.rcParams["figure.dpi"] = 100 plt.rcParams["font.size"] = 16 plt.rcParams["font.family"] = "sans-serif" plt.rcParams["font.sans-serif"] = ["Liberation Sans"] plt.rcParams["mathtext.fontset"] = "custom" import warnings warnings.filterwarnings("ignore", category=FutureWarning) import os import lightkurve as lk # MAST appears to have gone down, but I downloaded it once before it died # so I'll used the cached file epicid = 211991001 # lcf = lk.search_lightcurvefile("EPIC {0}".format(epicid), campaign=5)[0].download() lcf = lk.KeplerLightCurveFile(os.path.expanduser( "~/.lightkurve-cache/mastDownload/K2/ktwo211991001-c05_lc/ktwo211991001-c05_llc.fits")) lc = lcf.PDCSAP_FLUX.remove_nans().normalize().remove_outliers() lc.plot(); import astropy.units as u pg = lc.to_periodogram(normalization="psd", freq_unit=u.Hz) pg.plot() plt.yscale("log") plt.xscale("log"); import numpy as np import pymc3 as pm import theano.tensor as tt import exoplanet as xo # Make sure that all the data have the right type x = np.ascontiguousarray(lc.time, dtype=np.float64) y = np.ascontiguousarray(lc.flux - 1, dtype=np.float64) yerr = np.ascontiguousarray(lc.flux_err, dtype=np.float64) # Build the model in PyMC3 with pm.Model() as gp_model: # The mean stellar flux (relative to the normalized baseline) in ppm mean = pm.Normal("mean", mu=0, sd=np.std(y)) # A jitter term to capture underestimated error bars and model misspecification logs2 = pm.Normal("logs2", mu=np.log(np.mean(yerr**2)), sd=10.0) # Two SHO terms with two parameters each: # 1. The amplitude of the variability, and # 2. The turnover (angular) frequency in 1/d logw_init = np.log(2*np.pi) - np.log([5, 10]) loga = pm.Normal("loga", mu=np.log(np.var(y)), sd=10.0, shape=2) logw0 = pm.Normal("logw0", mu=logw_init, sd=10.0, shape=2) logS0 = pm.Deterministic("logS0", loga-logw0+0.5*np.log(2)) kernel = xo.gp.terms.SHOTerm(log_S0=logS0[0], log_w0=logw0[0], Q=1/np.sqrt(2)) kernel += xo.gp.terms.SHOTerm(log_S0=logS0[1], log_w0=logw0[1], Q=1/np.sqrt(2)) # We put this together and evaluate the GP likelihood gp = xo.gp.GP(kernel, x, yerr**2 + tt.exp(logs2)) pm.Potential("loglike", gp.log_likelihood(y - mean)) # Then we maximize the log posterior to find an estimate of the maximum # a posteriori (map) parameters. Note: The order of these optimizations # has been chosen to work for this problem using a combination of intution # and trial and error. gp_map_soln = gp_model.test_point gp_map_soln = xo.optimize(gp_map_soln, vars=[mean]) gp_map_soln = xo.optimize(gp_map_soln, vars=[logs2]) gp_map_soln = xo.optimize(gp_map_soln, vars=[loga, logw0]) gp_map_soln = xo.optimize(gp_map_soln) with gp_model: K = xo.eval_in_model(gp.kernel.value(x[None, :] - x[:, None]), gp_map_soln) sim = np.random.multivariate_normal( np.zeros_like(y)+gp_map_soln["mean"], K, size=50) plt.plot(x, y, "k", lw=0.5, label="data") plt.plot(x, sim[0], lw=0.5, label="simulation") plt.ylabel("relative flux") plt.xlabel("time [days]") plt.title("EPIC {0}".format(epicid), fontsize=14) plt.legend(fontsize=10); ###Output _____no_output_____
clothin.ipynb
###Markdown Clothing-Classifier Install tf.keras, a high-level API to build and train models in TensorFlow. ###Code from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output 2.0.0 ###Markdown Fashion MNIST is a data set of clothings. Below are 60,000 images to train the network, and 10,000 images to evaluate the accuracy to classify images. Import and load the Fashion MNIST directly from TensorFlow. ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz 32768/29515 [=================================] - 0s 1us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz 26427392/26421880 [==============================] - 1s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz 8192/5148 [===============================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz 4423680/4422102 [==============================] - 0s 0us/step ###Markdown We store the class names here since they are not included with the dataset. Each image is mapped to a single label. The labels are an array of integers, ranging from 0 to 9 shown below. ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown Exploring the data60,000 images in the training set, represented as 28 x 28x pixels per image ###Code train_images.shape ###Output _____no_output_____ ###Markdown Length of training set ###Code len(train_labels) ###Output _____no_output_____ ###Markdown Integer between 0 and 9: ###Code train_labels ###Output _____no_output_____ ###Markdown 10,000 images in the test set. ###Code test_images.shape ###Output _____no_output_____ ###Markdown Preprocess the dataUtilizing matploblib (plt) to visualize image; pixel values fall in the range of 0 to 255. ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown Display first 25 images with class names from the training set with for loop. ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown Build the modelNeed to set up the layers, which is the basic building block of a neural network. ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown Compile Model* Needs settings before model is ready for training, which are the loss function, optimizer, and metrics. * loss function - easures how accurate the model is during training * optimizer - how the model is updated based on the data * metrics - monitors the training and testing steps ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=10) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) predictions = model.predict(test_images) predictions[0] np.argmax(predictions[0]) test_labels[0] def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array, true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array, true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() # Plot the first X test images, their predicted labels, and the true labels. # Color correct predictions in blue and incorrect predictions in red. num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() # Grab an image from the test dataset. img = test_images[1] print(img.shape) # Add the image to a batch where it's the only member. img = (np.expand_dims(img,0)) print(img.shape) predictions_single = model.predict(img) print(predictions_single) plot_value_array(1, predictions_single[0], test_labels) _ = plt.xticks(range(10), class_names, rotation=45) np.argmax(predictions_single[0]) ###Output _____no_output_____
002-Image Classification with Pre-trained Squeezenet (Async).ipynb
###Markdown Read Images ###Code image_paths = glob.glob('data/images/cats_dogs/*') image_paths ###Output _____no_output_____ ###Markdown OpenVINO Inference ###Code # Get SqueezeNet Labels # https://github.com/runwayml/model-squeezenet/blob/master/labels.json with open('data/sqNet_labels.txt','r') as f: labels_map = f.read() labels = eval(labels_map) labels ###Output _____no_output_____ ###Markdown Prepare Model ###Code # Model Path model_xml = "intel_models/squeezenet1.1.xml" model_bin = "intel_models/squeezenet1.1.bin" """ After a few tests, setting device to GPU does not necessarily improve FPS """ # Device device = 'GPU' # Options include CPU, GPU, MYRIAD, [HDDL or HETERO] I am not familiar with the last two def PrepareAsyncNetWork(model_xml,model_bin,device,num_requests): ie = IECore() net = ie.read_network(model = model_xml,weights = model_bin) ####################### Very Important $$$$ # Check to make sure that the plugin has support for all layers in the model supported_layers = ie.query_network(net,device_name = device) unsupported_layers = [layer for layer in supported_layers.values() if layer!= device] if len(unsupported_layers)>0: raise Exception(f"Number of unsupported layers {len(unsupported_layers)}") #################################################################################### exec_net = ie.load_network(network=net,num_requests = num_requests, device_name = device) # Store name of input and output blobs input_blob = next(iter(net.input_info)) output_blob = next(iter(net.outputs)) # Extract Dimension (n:batch, c:color channel,h: height, w: width ) n, c ,h ,w = net.input_info[input_blob].input_data.shape print('Extract Model Input Dimension:',n,c,h,w) return input_blob, output_blob, exec_net, (n,c,h,w) def PrepareInputImages(input_paths): images = [] for path in input_paths: image = cv2.imread(path) input_height,input_width = image.shape[:2] # Resize in_frame = cv2.resize(image,(w,h)) in_frame = in_frame.transpose((2,0,1)) # Moving color channels to head in_frame = in_frame.reshape((n,c,h,w)) images.append(in_frame) return images num_requests = len(image_paths) input_blob, output_blob, execution_network,dimensions = PrepareAsyncNetWork(model_xml, model_bin, device, num_requests=num_requests) n,c,h,w = dimensions frames = PrepareInputImages(image_paths) def MakeAsyncPrediction(execution_network, input_blob,output_blob, inference_frames): results = [] st_time = time.time() for idx,frame in enumerate(inference_frames): infer_request_handle = execution_network.start_async(request_id=idx, inputs={input_blob: frame}) infer_status = infer_request_handle.wait() res = infer_request_handle.output_blobs[output_blob] res = res.buffer results.append(res) ed_time = time.time() time_sp = ed_time-st_time FPS = np.round((len(inference_frames)/time_sp),4) print(f"FPS: {FPS}") return FPS, results FPS_records = [] for _ in tqdm(range(100)): FPS,results = MakeAsyncPrediction(execution_network,input_blob,output_blob,frames) FPS_records.append(FPS) np.mean(FPS_records) ###Output _____no_output_____
advanced_model.ipynb
###Markdown Dataset ###Code TEXT = Field( sequential=True, use_vocab=True, tokenize=word_tokenize, lower=True, batch_first=True, ) LABEL = Field( sequential=False, use_vocab=False, batch_first=True, ) cola_train_data, cola_valid_data, cola_test_data = TabularDataset.splits( path=DATA_PATH, train="cola_train.tsv", validation="cola_valid.tsv", test="cola_test.tsv", format="tsv", fields=[("text", TEXT), ("label", LABEL)], skip_header=1 ) TEXT.build_vocab(cola_train_data, min_freq=2) cola_train_iterator, cola_valid_iterator, cola_test_iterator = BucketIterator.splits( (cola_train_data, cola_valid_data, cola_test_data), batch_size=32, device=None, sort=False, ) sat_train_data, sat_valid_data, sat_test_data = TabularDataset.splits( path=DATA_PATH, train="sat_train.tsv", validation="sat_valid.tsv", test="sat_test.tsv", format="tsv", fields=[("text", TEXT), ("label", LABEL)], skip_header=1 ) sat_train_iterator, sat_valid_iterator, sat_test_iterator = BucketIterator.splits( (sat_train_data, sat_valid_data, sat_test_data), batch_size=8, device=None, sort=False, ) ###Output _____no_output_____ ###Markdown LSTM Pooling Classifier ###Code class LSTMPoolingClassifier(nn.Module): def __init__(self, num_embeddings, embedding_dim, hidden_size, num_layers, pad_idx): super(LSTMPoolingClassifier, self).__init__() self.embed_layer = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim, padding_idx=pad_idx) self.hidden_size = hidden_size self.embedding_dim = embedding_dim self.num_layers = num_layers self.ih2h = nn.LSTM(embedding_dim, hidden_size, num_layers=num_layers, bidirectional=True, batch_first=True, dropout=0.5) self.pool2o = nn.Linear(2 * hidden_size, 1) self.sigmoid = nn.Sigmoid() self.softmax = nn.Softmax() self.dropout = nn.Dropout(p=0.5) def forward(self, x): x = self.embed_layer(x) o, _ = self.ih2h(x) pool = nn.functional.max_pool1d(o.transpose(1, 2), x.shape[1]) pool = pool.transpose(1, 2).squeeze() pool = self.dropout(pool) output = self.sigmoid(self.pool2o(pool)) return output.squeeze() def train(model: nn.Module, iterator: Iterator, optimizer: torch.optim.Optimizer, criterion: nn.Module, device: str): model.train() epoch_loss = 0 for _, batch in enumerate(iterator): optimizer.zero_grad() text = batch.text if text.shape[0] > 1: label = batch.label.type(torch.FloatTensor) text = text.to(device) label = label.to(device) output = model(text).flatten() loss = criterion(output, label) loss.backward() optimizer.step() epoch_loss += loss.item() return epoch_loss / len(iterator) def evaluate(model: nn.Module, iterator: Iterator, criterion: nn.Module, device: str): model.eval() epoch_loss = 0 with torch.no_grad(): for _, batch in enumerate(iterator): text = batch.text label = batch.label.type(torch.FloatTensor) text = text.to(device) label = label.to(device) output = model(text).flatten() loss = criterion(output, label) epoch_loss += loss.item() return epoch_loss / len(iterator) def test( model: nn.Module, iterator: Iterator, device: str): with torch.no_grad(): y_real = [] y_pred = [] model.eval() for batch in iterator: text = batch.text label = batch.label.type(torch.FloatTensor) text = text.to(device) output = model(text).flatten().cpu() y_real += [label] y_pred += [output] y_real = torch.cat(y_real) y_pred = torch.cat(y_pred) fpr, tpr, _ = roc_curve(y_real, y_pred) auroc = auc(fpr, tpr) return auroc def epoch_time(start_time: int, end_time: int): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs ###Output _____no_output_____ ###Markdown Pretrain with cola dataset ###Code PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] N_EPOCHS = 20 lstm_pool_classifier = LSTMPoolingClassifier( num_embeddings=len(TEXT.vocab), embedding_dim=100, hidden_size=200, num_layers=4, pad_idx=PAD_IDX, ) if torch.cuda.is_available(): device = "cuda:0" else: device = "cpu" _ = lstm_pool_classifier.to(device) optimizer = torch.optim.Adam(lstm_pool_classifier.parameters()) bce_loss_fn = nn.BCELoss() for epoch in range(N_EPOCHS): start_time = time.time() train_loss = train(lstm_pool_classifier, cola_train_iterator, optimizer, bce_loss_fn, device) valid_loss = evaluate(lstm_pool_classifier, cola_valid_iterator, bce_loss_fn, device) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.5f}') print(f'\t Val. Loss: {valid_loss:.5f}') test_auroc = test(lstm_pool_classifier, cola_test_iterator, device) print(f"| CoLA Dataset Test AUROC: {test_auroc:.5f}") before_tuning_lstm_pool_classifier = deepcopy(lstm_pool_classifier) pool_sat_test_auroc = test(lstm_pool_classifier, sat_test_iterator, device) print(f'| SAT Dataset Test AUROC: {pool_sat_test_auroc:.5f}') ###Output | SAT Dataset Test AUROC: 0.69231 ###Markdown Fine Tuning ###Code PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] N_EPOCHS = 20 for epoch in range(N_EPOCHS): start_time = time.time() train_loss = train(lstm_pool_classifier, sat_train_iterator, optimizer, bce_loss_fn, device) valid_loss = evaluate(lstm_pool_classifier, sat_valid_iterator, bce_loss_fn, device) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.5f}') print(f'\t Val. Loss: {valid_loss:.5f}') pool_tuned_test_auroc = test(lstm_pool_classifier, sat_test_iterator, device) print(f"| SAT Dataset Test AUROC: {pool_tuned_test_auroc:.5f}") _ = before_tuning_lstm_pool_classifier.cpu() _ = lstm_pool_classifier.cpu() pool_sat_test_auroc = test(before_tuning_lstm_pool_classifier, sat_test_iterator, "cpu") pool_tuned_test_auroc = test(lstm_pool_classifier, sat_test_iterator, "cpu") print(f"Before fine-tuning SAT Dataset Test AUROC: {pool_sat_test_auroc:.5f}") print(f"After fine-tuning SAT Dataset Test AUROC: {pool_tuned_test_auroc:.5f}") with open("advanced_before_tuning_model.dill", "wb") as f: model = { "TEXT": TEXT, "LABEL": LABEL, "classifier": before_tuning_lstm_pool_classifier } dill.dump(model, f) with open("advanced_after_tuning_model.dill", "wb") as f: model = { "TEXT": TEXT, "LABEL": LABEL, "classifier": lstm_pool_classifier } dill.dump(model, f) ###Output _____no_output_____
section_4/analyse_results.ipynb
###Markdown Fig. 8It loads and transform the result of correlation generated by the script `correlation.py`. Cavity and simulations are compared ###Code import numpy as np import itertools import matplotlib.pyplot as plt from collections import Counter import random import pickle import re import pandas as pd from os import listdir from collections import defaultdict import os import sys sys.path.insert(0, "../lib") # add the library folder to the path I look for modules import latexify %matplotlib inline ###Output _____no_output_____ ###Markdown $$C_{ij}= \left\langle\tanh\left(\frac{\beta}{2}h_i\right)\tanh\left(\frac{\beta}{2}h_j\right) \right\rangle_{\mathbf{n}\partial_i\mathbf{n}\partial_j}$$ ###Code dir_list = next(os.walk('.'))[1]# select only first subdirectories folder_pattern = re.compile("kin=[0-9]+") folder_names=[name for name in dir_list if folder_pattern.match(name)]# select only folder with specific names pattern2 = re.compile("\d+.\d+|\d+") matching_folders=[[n for n in pattern2.findall(folder)] for folder in folder_names] print("Select one of this folder\ngamma") for el in matching_folders: print(str(el[0])) kin = 2 def load_obj(folder,name ): with open(folder+'/data/dic-' + name + '.pkl', 'rb') as f: return pickle.load(f) def load_and_hist(T,kin,**kwargs): dic=load_obj('kin:'+str(kin),"T:"+str(T)) N=dic["N"] kin=dic["kin"] T=dic["T"] J=dic["J"] P_sim=dic["P_sim"] C_sim=dic["C_sim"] P_cav=dic["P_cav"] C_cav=dic["C_cav"] h_dyn,b_dyn=histogram(P_sim,**kwargs,density=True) h_cavity,b_cavity=histogram(P_cavity,bins=b_dyn,density=True) #plot(bins[:-1],h_cavity,"-",mfc="w",label="cavity"+str(T)) return b_dyn,h_dyn,h_cavity folder="kin="+str(kin) filenames=listdir(folder+"/data") pattern = re.compile("dic-T=\d*\.\d+|\d+.pkl") dictnames=[name for name in filenames if pattern.match(name)]# select only dictionary files pattern2 = re.compile("\d*\.\d+|\d+") sim_params=[[n for n in pattern2.findall(dic)] for dic in dictnames] print("Simulation available for") for el in sim_params: print(el[0]) def triu_todense(data,N): A= np.zeros((N,N)) i,j = np.triu_indices(N,k=1) A[i,j]=data np.fill_diagonal(A,1) return A ###Output Simulation available for 0.2 0.4 ###Markdown Load data ###Code T = 0.4 dic=load_obj(folder,"T="+str(T)) N=dic["N"] kin=dic["kin"] T=dic["T"] J=dic["J"] P_sim=dic["P_sim"] C_sim=dic["C_sim"] P_cav=dic["P_cav"] C_cav=dic["C_cav"] new_C_cav = dic['new_C_cav'] m = 2*P_cav-1 C_sim = triu_todense(C_sim,N) C_cav = triu_todense(C_cav,N) new_C_cav = triu_todense(new_C_cav,N) cov_cav = (C_cav-np.outer(m,m))/np.sqrt(np.outer(1-m**2,1-m**2)) cov_cav_new = (new_C_cav-np.outer(m,m))/np.sqrt(np.outer(1-m**2,1-m**2)) cov_sim = (C_sim-np.outer(2*P_sim-1,2*P_sim-1))/np.sqrt(np.outer(4*P_sim*(1-P_sim),4*P_sim*(1-P_sim))) cov_sim[np.isnan(cov_sim)]=0 cov_sim[np.isinf(cov_sim)]=0 np.fill_diagonal(cov_sim,1) print('N',N,'N. replics:',dic['N_replics'],'N iterations',dic['N_iterations']) latexify.latexify(columns = 2) h,b,_ = plt.hist(cov_sim[np.triu_indices(N)],400,density=True,label = 'sim') h,b = np.histogram(cov_cav[np.triu_indices(N)],b,density=True) plt.plot((b[1:]+b[:-1])/2,h,label = 'cav 1',alpha = 1,lw = 0.8) plt.semilogy() plt.legend() plt.xlabel('corr.coefficient,$\\rho$',fontsize= 12) plt.ylabel('$\Pi(\\rho)$',fontsize= 12) plt.tight_layout() #plt.savefig('corr_coeff.pdf') plt.figure() h,b,_ = plt.hist(cov_sim[np.triu_indices(N)],500,density=True,label = 'sim') h,b = np.histogram(cov_cav_new[np.triu_indices(N)],b,density=True) plt.plot((b[1:]+b[:-1])/2,h,label = 'cav 2',alpha = 1,lw = 0.8) plt.semilogy() plt.legend() plt.xlabel('corr.coefficient,$\\rho$',fontsize= 12) plt.ylabel('$\Pi(\\rho)$',fontsize= 12) plt.tight_layout() print('T=',T) #plt.savefig('corr_coeff_corrected.pdf') ###Output T= 0.4 ###Markdown Quantify accuracyLet me call $Y = |C_{cav}-C_{sim}|$. The matrix investigates the different values returned byCavity and simulation for the correlation ###Code Y = np.triu(np.abs(cov_cav_new-cov_sim)) i,j = np.where(np.abs(Y)>1e-2) i,j,_ = zip(*sorted(zip(i,j,np.abs(Y)[np.abs(Y)>1e-2]),key =lambda x:x[2],reverse=True) ) h,b = np.histogram(Y[np.triu_indices(N,k=1)],bins = 1000) plt.bar(b[:-1],np.cumsum(h)/(N*(N-1)/2),np.diff(b)) plt.xlabel('$\epsilon$,error between cavity and simulation') plt.ylabel('$\mathrm{Prob}$(err$<\epsilon$)') ###Output _____no_output_____
site/public/courses/DS-2.4/Notebooks/Network_Analysis/basic-network-analysis-tutorial.ipynb
###Markdown **Basic Network Analysis Tutorial***08.08.2017*Update: * added Community Detection!* fixed formatting issues......................................* added Elevation and Temporal Travel Dependencies* Fixed some minor errors* added formulars Table of Contents1. Introduction2. Fundamental Graph Theory3. Network Properties4. Network Robustness5. Community Detection6. Application: Competition 7. Summary and Outlook8. References 1. Introduction Welcome to this short introduction on how to use Network Analysis for this competition. Gain a deeper understanding of why certain taxis may have a longer trip duration than others and how to extract some useful features for your machine learning algorithm, e.g., calculate the shortest path between the pickup and dropoff point and given that, which Boroughs & Neighborhoods does the taxi traverse? Are there any 'sensitive' roads on the path of a given taxi which may cause a longer trip time? These and more questions can be addressed by a network analysis. This notebook uses graph data from this [dataset](https://www.kaggle.com/crailtap/street-network-of-new-york-in-graphml) , specific it makes use of the Manhattan subgraph, because computation times on the full graph would be to long for Kaggle Kernels. Also i would like to encourage you to check out the awesome [OSMNX package](https://github.com/gboeing/osmnx)from which i extracted the dataset and from which i make use of some functions. It is not available on Kaggle because it needs a Internet connection to download the graphs.The rest of the notebook is structured as follows: First we take a look at some basic properties of the network, like how big is the network and start digging deeper to explore the generative process of the network and which roads may be important in a sense of high traffic volume and under the aspect of road closures aka attacks. Finally we will calculate useful features for the competition, like shortest paths and which boroughs it passes.Here is a sneak peak of the raw New York City Street Network! ![](http://i.imgur.com/6YJ6gV3.jpg) 2. Fundamental Graph Theory In this and the following sections, we will introduce some basic terminology of graph theory and try to illustrate those on the New York City Street Network or the Manhattan subgraph. We will start by defining the fundamental definition, what is a graph?A graph **G = (V, E)** consists of a set of **nodes** V ( or vertices, points) and a set of **edges** E ( links, lines) which illustrate how the nodes in the network are interacting with each other. Edges can be **directed** or ** undirected**. The number of nodes **N** is often called the **size** of the network and states the number of objects in the model. In this example nodes are represented by way points in the OSM map from which the graph was generated, e.g., crossings and edges are roads or sub parts of roads between two nodes.Each node or edge can hold different attributes, e.g., nodes can be assigned to different types like crossings or dead-ends and edges might have a certain numerical attribute like a speed limit. Edges attributes, in the case of numerical attributes, are called weights. An graph with weighted edges is called an **weighted graph**.A first measurement for a node in the graph is the so called **degree**, which stands for the number of edges it has to other nodes, denoted by *k*. One can also might ask what is the average degree in the network? But wait a second... if the degree is the number of edges it has to other nodes, don't we have to distinguish between directed and undirected edges to calculate the degree? Indeed, we need to distiguish between the **In-degree** and the **Out-degree** of a node, simply measuring how many edges are leaving a node and how many edges are coming in. This of cource depends on if the graph is direted or not. In the case of an undirected graph we can calculate the **average degree** by the following formular: $$ (k) = \frac{1}{N} \sum_{i = 1}^N k_i = \frac{2E}{N}$$ Similar this can be done seperatly for the in- and out-degree: $$ (k^{in}) = \frac{1}{N} \sum_{i = 1}^N k^{in}_i =(k^{out}) = \frac{1}{N} \sum_{i = 1}^N k^{out}_i = \frac{E}{V}$$ because $$k_i = k^{out}_i + k^{in}_i $$ Let's have a first look at the network (or you can call it graph) and the basic properties of it. But first we need to load the graph and import a library which is capable of doing so. In this Notebook we use networkx as the graph computing library but there are many more: [igraph](http://igraph.org/redirect.html), [osmnx](https://github.com/gboeing/osmnx) or [SNAP](http://snap.stanford.edu/). ###Code #For later use import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings import networkx as nx warnings.filterwarnings('ignore') #load the graph with nx.read_graphml G = nx.read_graphml('../input/street-network-of-new-york-in-graphml/newyork.graphml') nx.info(G) ###Output _____no_output_____ ###Markdown The graph has *4426* nodes and *9626* edges so the size of the network is *4426* and it states that it is an MultiDIGraph, which means the edges of the graph are **directed**, so they point to a specific node in the network. Why is this so? Because our Network is the Manhattan Street Network and one property of it is that it contains one-way streets which can only be modeled as directed edges. Because we represent the edges as directed each 'normal' street is now also modeled as a directed edge which means we need to introduce two edges for each normal street, one for each direction of the street. On average the In-degree is *2.17* and the out-degree is also *2.17*, both are the same just as discussed. Average In-degree and Out-degree are always the same, but the distribution of the individual degrees can vary. To mention here is that just like for the degree, some graph porperties are defined on either directed or undirected some can be translated to both, so in order to calculate some measurements we provide also an undirected graph for the Manhattan network simply by calling the build in graph function from networkx. A graph is often called **simple graph**, if it contains no self-loops and directed edges. ###Code G_simple = nx.Graph(G) nx.info(G_simple) ###Output _____no_output_____ ###Markdown Interesting! The number of nodes is still *4426* but the number of edges is decreased to only *788* edges. Also the degree went up to *3.56*. One should not be surprised why the new degree is not just in + out-degree, the simplified network merged multiple edges between two nodes to reduce itself into a undirected network, but for a directed network one can always state degree, in-degree and out-degree! Indeed his degree seems more convenient, because of the grid like structure in Manhattan. So let's have a close look on the distribution of the node degress of our graph for simplified network as for the directed case. ###Code from collections import Counter degree_dic = Counter(G.degree().values()) degree_hist = pd.DataFrame({"degree": list(degree_dic.values()), "Number of Nodes": list(degree_dic.keys())}) plt.figure(figsize=(20,10)) sns.barplot(y = 'degree', x = 'Number of Nodes', data = degree_hist, color = 'darkblue') plt.xlabel('Node Degree', fontsize=30) plt.ylabel('Number of Nodes', fontsize=30) plt.tick_params(axis='both', which='major', labelsize=20) plt.show() ###Output _____no_output_____ ###Markdown Ok, so most of the nodes tend to have a degree of *3* or *4* which comes from the grid like structure of Manhattan. And this is confirmed by plotting the distributions for the directed case, most nodes with 2 outgoing edges have also two incoming edges! ###Code ins = list((G.in_degree()).values()) outs = list((G.out_degree()).values()) degrees = pd.DataFrame({"in-degree": ins, "out-degree": outs}) fig = sns.jointplot(x="in-degree",y="out-degree",data=degrees,kind="kde", color = 'darkblue',size=8) ###Output _____no_output_____ ###Markdown Given the number of nodes and edges one can ask, what is the structure of the network and how does it look like?A first measure of the structure of a network is the so called **density** which measure how many links from all possible links within the network are realized. The density is *0* if there are no edges, called **empty graph** and *1* if we have a **complete Graph**, all possible links between nodes are established. $$dens_{undirected} = \frac{2E}{N(N-1)}$$$$dens_{directed} = \frac{E}{N(N-1)}$$ ###Code nx.density(G) ###Output _____no_output_____ ###Markdown Having a density of *0.00049* makes sense because in a street network not all nodes can be connected to all other nodes. Enough text for now, let's plot the graph! ###Code #import osmnx #ox.plot_graph(G,fig_height= 12, node_size=10, node_zorder=2, node_color = '#808080') ###Output _____no_output_____ ###Markdown ![](http://i.imgur.com/N9RIXA2.png) Nice! This gives us a nice overview of how Manhattan looks like. But such awesome figures like this made with osmnx are not always the case. If we plot the graph with the build in draw function from networkx, our nodes are just plotting according to some layout we choose: ###Code nx.draw(G, pos=nx.spring_layout(G), node_size=0.01, width=0.1) ###Output _____no_output_____ ###Markdown Wow, doesn't look much like the Manhattan street network right? One should keep in mind to never trust a graph Visualization as it can lead to false impressions on the properties of the graph. Talking about properties, what attributes do our nodes have? ###Code # we cant not just access the nodes with G(0) orso, we must call them by their id # G.nodes() returns a list of all node ids, e.g., '42459137' G[G.nodes()[1]] ###Output _____no_output_____ ###Markdown Each node is a dictionary containing nodes to which it is connected with properties as how many lanes the street has, if it is a oneway street or not, the name of the street and in some cases even the maximum allowed speed. 3. Network Properties In this section we will talk about some basic measurements which will give us some feedback about the structure of the graph. This will include what is the average shortest path distance between nodes, in which way are the nodes in the network connected to each other and how strong is the connection between a node and his neighbours. We will start by defining what the **shortest path** between two nodes *i* and *j* in the network is. The shortest path *d(i,j)*, as the name suggests, is just the path in the network between nodes *i* and *j* which has the fewest edges. In the case of an undirected network, the shortest path between *i* and *j* is always the same regardless from which node we start, however in an directed network this does not hold true and the shortest path between the nodes can vary depending from which node we start. On the bases of the shortest path we can define many more measurements, e.g., the longest shortest path in the network is called the **diameter** of the graph and gives us a feeling of how far things are seperated in the graph. We will compute the diameter on the simple graph for computation time. ###Code nx.diameter(G_simple) ###Output _____no_output_____ ###Markdown The function returns a number of *88* edges which lie on the longest shortest path.Besides the longest shortest path we can also ask what is the average shortest path length denoted by: $$ a = \sum_{i ,j \in E} \frac{d(i,j)}{N(N-1)}$$, where *d(i,j)* is the shortest path. ###Code nx.average_shortest_path_length(G_simple) ###Output _____no_output_____ ###Markdown Coming back to the question of what is the structure of our network, one can ask what is the generative process behind the network? Is the network random? or does it follow some underlying laws on how it is created.Here we introduce the **Scale-Free Property**, which states that 'real' networks do have a certain underlying creation process, like the WWW there some nodes do get more attention than others and therefore manage to build much more edges than other nodes., resulting in some nodes which have a much higher degree compared to other nodes. These nodes with a very high degree in the network are called **hubs**. One can think of Twitter as a Social Network there prominent people represent hubs, having much more edges to other nodes than the average user.But does our network follow the Scale-Free Property because it is a 'real' network? Let's plot the degree distributions to find out! ###Code from collections import Counter import collections import scipy as sp from scipy import stats import matplotlib.pyplot as plt in_degrees = G.in_degree() in_h = Counter(in_degrees.values()) in_dic = collections.OrderedDict(sorted(in_h.items())) in_hist = list(in_dic.values()) in_values =list(in_dic.keys()) out_degrees = G.out_degree() out_h = Counter(out_degrees.values()) out_dic = collections.OrderedDict(sorted(out_h.items())) out_hist = list(out_dic.values()) out_values =list(out_dic.keys()) mu = 2.17 sigma = sp.sqrt(mu) mu_plus_sigma = mu + sigma x = range(0,10) prob = stats.poisson.pmf(x, mu)*4426 plt.figure(figsize=(12, 8)) plt.grid(True) plt.loglog(out_values,out_hist,'ro-') # in-degree plt.loglog(in_values,in_hist,'bv-') # in-degree plt.plot(x, prob, "o-", color="black") plt.legend(['In-degree','Out-degree','Poission']) plt.xlabel('Degree') plt.ylabel('Number of nodes') plt.title('Manhatten Street Network') plt.xlim([0,2*10**2]) plt.show() ###Output _____no_output_____ ###Markdown If a graphs degree distribution follows the scale free property on a log-log scale plot like above, the data points should form approximately a straight line indicating the presents of hubs. In our figure in the cell above this is clearly not the case. As already plotted, the degree distributions follow a Poisson Distribution which is typical for a random network. So what can we say about the Manhattan Street Network? It has more edges than nodes, and the fact that it is not scale-free means the absents of hub nodes and it follows a Poisson Distribution like random networks do.Now we can ask the question, is it good for a road network that its degree distribution does not have the scale free property and is even random? How does this influences the **robustness** of the network in a sense that what happens if specific roads are closed, how does this influnces the traffic flow? 4. Network Robustness What does it take to break down all the movement in Manhattan? What roads are sensible in a sense that if these roads are closed the impact on the whole network traffic flow is drastic. Network Robustness tries to define measurements which try to capture how robust a network is to attacks, failures or something like a traffic jam. In this section some basic measurements will be introduced and tested on the Manhattan subgraph. Node Connectivity The **Node Connectivity** describes the number of nodes we must delete from the Graph G until it is **disconnected**. **Connected** means that if every node in our graph G can reach any other node in the network via edges. If this is not the case the graph is disconnected. An important property of any graph should to be that it is not easily to disconnect. This is some kind of vague definition, especially for a road network as there might be dead-end roads, removing the connecting node of the dead-end would immediately make our graph G disconnected. Here it is time in introduce also the notation of a **simple graph** which is a graph without directed edges or self-loops. Many measurements in libraries are only calculated on simple graphs because it simplifies calculations or the measurements are just not defined on directed graphs.For the next few sections we treat our graph as undirected to illustrate these measurements: ###Code #create two simple graphs from our original directed graph G_simple = nx.Graph(G) G_simple2 = nx.Graph(G) nx.node_connectivity(G_simple) ###Output _____no_output_____ ###Markdown As aspected the output of the node connectivity function is 1, meaning our graph is disconnected after removing just 1 node. But does this matter? No, because the size of the removed subgraph is just a single node and the rest of the network is still connected. If however the size of the resulting disconnected part is relatively big, this indicates a problem in the structure of the network. Algebraic Connectivity Basically our network is nothing else as a matrix containing 1's if two nodes are connected to each other.Graphs can be differently defined as matrices and one of these matrices is the so called Laplacian matrix, which has special properties in the eigenspace. Its eigenvalues are non negative and if ordered the smallest one eigenvalue is zero. The second smallest eigenvalue of the Laplacian matrix is called the **algebraic connectivity** or the **Fiedler value**. It is directly indicater for the robustness of the network have the properties that: 1. The algebraic connectivity is equal to zero if and only if the graph is disconnected. 2. The algebraic connectivity of an graph is not greater than the node connectivity. ###Code nx.algebraic_connectivity(G_simple) ###Output _____no_output_____ ###Markdown According to its properties we can say, that the graph is connected because the algebraic connectivity is *0.00034* and < node connectivity. Betweenness Centrality Betweenness Centrality can be measure for nodes or edges and it defines the fraction of all shortest paths in the network passing through the edge/ node for which it is calculated. Roads with a very high betweenness centrality lie on many shortest paths in the network and should be considered to be important roads in the network which may have increased traffic volume. ###Code #compute the betweeness centrality on one of the simple graphs, this can take a while between = nx.betweenness_centrality(G_simple) ###Output _____no_output_____ ###Markdown In the cell above we created two simple graphs and calculated the betweeness-centrality for each node in the network. We can now tell which nodes in the network play an important role as they are traversed more often. Let's find out which is on the most shortest path in the network: ###Code #G_projected = ox.project_graph(G) #max_node, max_bc = max(between.items(), key=lambda x: x[1]) #max_node, max_bc ###Output _____no_output_____ ###Markdown (42431099, 0.2170387058765219) In Manhatten the node with ID 42431099 has the highest betweenness centrality and 21.7% of all shortest paths running through it. This needs to be plotted! ![](http://i.imgur.com/fnNk9Zf.png) ###Code G['42431099'] ###Output _____no_output_____ ###Markdown So the node with the highest betweenness centrality is located in West End! Now it may be interesting so see how all nodes betweenness centrality looks an one map and maybe there are some patterns to detect! We plot the centrality for each node from low (dark violet) to high (light yellow). ![](http://i.imgur.com/BfvPPMS.png) ![](http://i.imgur.com/aSCjx77.jpg) Network Attacks Now we know some basic robustness measurements, so it is time to see how robust is our network really?For this we will attack the networks nodes with two approaches: 1. Delete nodes according to the calculated betweenness centrality, going from high scoring nodes to low scoring ones 2. Random node failures, deleting nodes by randomDeleting nodes will have the effect that the **giant component**, the largest connected component in the graph, will shrink and some nodes might have a specific role in this process which cause a drastic shrinkage of the giant component. ###Code ''' import operator from random import shuffle from random import randrange from random import randint import random import matplotlib.ticker as mtick sorted_x = sorted(between.items(), key=operator.itemgetter(1), reverse=True) rand_x = list(range(0,4426 )) random.shuffle(rand_x) between_giant = [] between_rand = [] avg_degs = [] for x in range(3000): remove = sorted_x[x] remove2 = sorted_x[rand_x[x]] G_simple.remove_nodes_from(remove) G_simple2.remove_nodes_from(remove2) giant = len(max(nx.connected_component_subgraphs(G_simple), key=len)) giant2 = len(max(nx.connected_component_subgraphs(G_simple2), key=len)) between_giant.append(giant) between_rand.append(giant2) y1 = between_giant y2 = between_giant y1= y1[ :-1] y2= y2[1: ] perc = np.linspace(0,100,len(between_giant)) fig = plt.figure(1, (12,8)) ax = fig.add_subplot(1,1,1) ax.plot(perc, between_giant) ax.plot(perc, between_rand) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) ax.xaxis.set_major_formatter(xticks) ax.set_xlabel('Fraction of Nodes Removed') ax.set_ylabel('Giant Component Size') ax.legend(['betweenness','random']) plt.show() ''' ###Output _____no_output_____ ###Markdown ![](http://i.imgur.com/78lVvsQ.png) Ok, what does the figure above tells us? First of all, deleting nodes which play an important role in the network leads to a faster shrinkage of the giant component than just deleting nodes by random! But only at a given percentage level! At the beginning it doesn't matter if the nodes are picked at random or by their importance, this indicates the robustness of the network. However, at a point there about 10 percent of the nodes are removed deleting specific important nodes lead to a much faster reduction in the giants component size. So these nodes must play an important role in combining the nodes of the network!Interestingly after only deleting about 50% of the nodes the size of the giant component rapidly reaches a size of almost zero nodes. Would the network be more robust if the network would contain hubs? Or Would this make the network even more prone to attacks? Leave a comment below what you think! 5. Community Detection This section introduces Community Detection, one of my favorite topics in network analysis.The goal of Community Detection is to find subgraphs aka communities in a given graph which we want to analyse.We start by defining what exactly is a community? Well, there is no 'one' or 'right' defintion of community, because it really depends on the kind of graph you want to analyse and what question you want to answer. A common definition based on the graphs structure is, that a community is a group of nodes which are higly connected within this group, but are less connected to other nodes which are not in this group. But as said this is not the only definition you can use, sometimes you can define communities based on a given node attribute or a combination of both, graph based and attributes. For this section we will use the infamous [Zachary's karate club](https://en.wikipedia.org/wiki/Zachary%27s_karate_club) network, because it is less computional expensive and also very easy to draw. The short story behind the network is, that a conflict between an instructor and an admin led to the split of the club into two seperate ones. Because the networkx library is not so convenient for community detection, we will switch to igraph for this section, which has more algorithms for this topic, but first we have a look at the network! ###Code import networkx as nx import matplotlib.pyplot as plt import igraph as ig import random np.random.seed(3) G1=nx.karate_club_graph() nx.draw_spring(G1) ###Output _____no_output_____ ###Markdown Most of the existing community detection algorithms work only on undirected graphs, so we will convert the networkx graph to igraph and also make it undirected. ###Code #convert from networkx to igraph G2 = ig.Graph.Adjacency((nx.to_numpy_matrix(G1) > 0).tolist()) #make the igraph graph undirected :D G2.to_undirected() ###Output _____no_output_____ ###Markdown In the following we will discuss a bunch of algorithms which are more or less used in practice. Girvan–Newman algorithm ###Code np.random.seed(3) dendrogram = G2.community_edge_betweenness() # convert it into a flat clustering clusters = dendrogram.as_clustering(2) # get the membership vector membership = clusters.membership nx.draw_spring(G1, cmap = plt.get_cmap('jet'), node_color = membership, node_size=120, with_labels=False) ###Output _____no_output_____ ###Markdown Modularity Maximization ###Code np.random.seed(3) dendrogram = G2.community_fastgreedy() # convert it into a flat clustering clusters = dendrogram.as_clustering(2) # get the membership vector membership = clusters.membership nx.draw_spring(G1, cmap = plt.get_cmap('jet'), node_color = membership, node_size=120, with_labels=False) ###Output _____no_output_____ ###Markdown Leading Eigenvector ###Code np.random.seed(3) dendrogram = G2.community_leading_eigenvector(2) #get membership membership = dendrogram.membership nx.draw_spring(G1, cmap = plt.get_cmap('jet'), node_color = membership, node_size=120, with_labels=False) ###Output _____no_output_____ ###Markdown 6. Application: Competition In this last Section we will see how to compute the shortest path for our taxi trip data and how to add one could possible make use of all kind of centrality measures as features. Shortest PathsFirst of all we need two functions which will compute the nearest node in the network for a given taxi pick-up and or drop-off point ###Code #taken from. https://github.com/gboeing/osmnx def great_circle_vec(lat1, lng1, lat2, lng2, earth_radius=6371009): phi1 = np.deg2rad(90 - lat1) phi2 = np.deg2rad(90 - lat2) theta1 = np.deg2rad(lng1) theta2 = np.deg2rad(lng2) cos = (np.sin(phi1) * np.sin(phi2) * np.cos(theta1 - theta2) + np.cos(phi1) * np.cos(phi2)) arc = np.arccos(cos) distance = arc * earth_radius return distance def get_nearest_node(G, point, return_dist=False): coords = np.array([[node, data['x'], data['y']] for node, data in G.nodes(data=True)]) df = pd.DataFrame(coords, columns=['node', 'x', 'y']).set_index('node') df['reference_y'] = point[0] df['reference_x'] = point[1] distances = great_circle_vec(lat1=df['reference_y'], lng1=df['reference_x'], lat2=df['x'].astype('float'), lng2=df['y'].astype('float')) nearest_node = int(distances.idxmin()) if return_dist: return nearest_node, distances.loc[nearest_node] else: return nearest_node #load the training data train = pd.read_csv('../input/nyc-taxi-trip-duration/train.csv') #go through the dataset and calculate the shortest path for index, row in train[24:25].iterrows(): pick_point = ( row['pickup_longitude'],row['pickup_latitude']) drop_point = ( row['dropoff_longitude'],row['dropoff_latitude']) pick_node = get_nearest_node(G, pick_point) drop_node = get_nearest_node(G, drop_point) try: route = nx.shortest_path(G, str(pick_node), str(drop_node)) #plot the shortest path on the graph #fig, ax = ox.plot_graph_route(G, route,fig_height=15, node_size=1) print("Shortest Path:") print(route) gsub = G.subgraph(route) s_len = sum([float(d['length']) for u, v, d in gsub.edges(data=True)]) print("Length in Km:") print(s_len/1000) except: print("Some Error") #handle error pass #the corresponding node betweenness scores for each edge in the shortest path print("Betweenness Centrality for each node on the path") node_bet = [] for node in route: node_bet.append(between[node]) print(node_bet) print(np.asarray(node_bet).sum()) print("betweeness sum") print(sum(node_bet)) print("have to check why this is not < 1 ") ###Output _____no_output_____
pputidame/solve_demo.ipynb
###Markdown Postprocessing ###Code with open('./me_models/solution.pickle', 'rb') as solution: me = pickle.load(solution) with open('./me_models/ecoli_solution.pickle', 'rb') as solution: ecome = pickle.load(solution) b me.solution # Exchange df_m = exchange_single_model(bsub) df = exchange_single_model(me) df.join(df_m['flux'],lsuffix='_me',rsuffix='_m') # Solution summary summary_df = solution_summary(me) summary_m_df = solution_summary(bsub) summary_df.to_csv('./solution_summary.csv') summary_df = solution_summary(me) ###Output _____no_output_____ ###Markdown Compare M/ME with ecoli ###Code _,rxn_id_dict = homogenize_reactions(model=bsub,ref_model=eco) # M - ME comparison of metabolic fluxes in Bacillus flux_dict = me.get_metabolic_flux() me_flux_df = pd.DataFrame.from_dict({'flux':flux_dict}).rename(index=rxn_id_dict) comparison_df = summary_m_df.join(me_flux_df,lsuffix='_m',rsuffix='_me') comparison_df[abs(comparison_df.flux_m)>0] # M - ME comparison of metabolic fluxes in E. coli summary_df_ecoli = solution_summary(ecome) summary_m_df_ecoli = solution_summary(eco) flux_dict_ecoli = ecome.get_metabolic_flux() comparison_df_ecoli = summary_m_df_ecoli.join(\ pd.DataFrame.from_dict({'flux':flux_dict_ecoli}),lsuffix='_m',rsuffix='_me') summary_m_df[summary_m_df.flux > 0] import matplotlib.pyplot as plt threshold = 100 temp_df = comparison_df[abs(comparison_df.flux_m)<threshold] temp_df_ecoli = comparison_df_ecoli[abs(comparison_df_ecoli.flux_m)<threshold] plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.scatter(temp_df['flux_m'],temp_df['flux_me']) plt.xlabel('M simulation') plt.ylabel('ME simulation') plt.title('Bacillus') plt.subplot(1,2,2) plt.scatter(temp_df_ecoli['flux_m'],temp_df_ecoli['flux_me']) plt.xlabel('M simulation') plt.ylabel('ME simulation') plt.title('E. coli') # Store results to visualize in Escher comparison_df['flux_m'].to_csv('fluxdist_m_bsub.csv',header=False) comparison_df['flux_me'].to_csv('fluxdist_me_bsub.csv',header=False) comparison_df_ecoli['flux_m'].to_csv('fluxdist_m_ecoli.csv',header=False) comparison_df_ecoli['flux_me'].to_csv('fluxdist_me_ecoli.csv',header=False) with open('./me_models/ecoli_solution.pickle', 'rb') as f: ecome = pickle.load(f) aminoacids = [m.id for m in bsub.metabolites if '__L_c' in m.id and len(m.id) == 8] all_mets = [m.id for m in bsub.metabolites] sp_dict = {} for aa in aminoacids: idx = all_mets.index(aa) sp = bsub.solution.y[idx] sp_dict[aa] = sp pd.DataFrame.from_dict({'sp':sp_dict}).sort_values(by='sp') ###Output _____no_output_____
ipynb/deprecated/energy/EnergyModel_ClusterEnergy.ipynb
###Markdown Energy Model Building Flow - Example 1for platforms supporting per-cluster energy meters This notebook shows how to build an energy model of a JUNO platform running a Linux kernel.It can be used as a reference implementation of an energy model building flow for platformswhere it's possible to measure the energy consumption of each frequency domain.For JUNO, Linux kernel Hardware monitors will be used to measure energy.Hardware monitors measure energy in microJoule [$\mu$J]. Note: this requires `scipy`You can install it with `sudo -H pip install scipy` or similar. ###Code import logging from conf import LisaLogging LisaLogging.setup() %matplotlib inline import devlib import json import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re import trappy from collections import namedtuple, OrderedDict from csv import DictWriter from devlib.utils.misc import ranges_to_list from env import TestEnv from matplotlib.ticker import FormatStrFormatter, MaxNLocator from scipy.stats import linregress from time import sleep from trappy.plotter.ColorMap import ColorMap ###Output _____no_output_____ ###Markdown Configuration ###Code # Setup a target configuration my_conf = { # Target platform and board "platform" : 'linux', "board" : 'juno', # Target board IP/MAC address "host" : '10.1.211.18', # Login credentials "username" : 'root', "password" : '', # Tools required by the experiments "tools" : ['trace-cmd'], "modules" : ['hwmon', 'bl', 'cpufreq', 'cpuidle', 'hotplug', 'cgroups'], # Energy meters description "emeter" : { 'instrument' : 'hwmon', 'conf' : { 'sites' : [ 'BOARDLITTLE', 'BOARDBIG' ], 'kinds' : [ 'energy' ], }, 'channel_map' : { 'little' : 'BOARDLITTLE', 'big' : 'BOARDBIG', } }, # FTrace events to collect for all the tests configuration which have # the "ftrace" flag enabled "ftrace" : { "events" : [ "cpu_frequency", "cpu_idle", "sched_switch" ], "buffsize" : 10 * 1024, }, } # Initialize a test environment using: # the provided target configuration (my_conf) te = TestEnv(target_conf=my_conf, force_new=True) target = te.target ###Output 2016-09-08 19:27:12,272 INFO : Target - Using base path: /data/lisa 2016-09-08 19:27:12,273 INFO : Target - Loading custom (inline) target configuration 2016-09-08 19:27:12,274 INFO : Target - Devlib modules to load: ['cgroups', 'hwmon', 'cpufreq', 'bl', 'hotplug', 'cpuidle'] 2016-09-08 19:27:12,275 INFO : Target - Connecting linux target: 2016-09-08 19:27:12,276 INFO : Target - username : root 2016-09-08 19:27:12,276 INFO : Target - host : 10.1.211.18 2016-09-08 19:27:12,277 INFO : Target - password : 2016-09-08 19:27:12,278 INFO : Target - Connection settings: 2016-09-08 19:27:12,279 INFO : Target - {'username': 'root', 'host': '10.1.211.18', 'password': ''} 2016-09-08 19:27:54,035 INFO : Target - Initializing target workdir: 2016-09-08 19:27:54,037 INFO : Target - /root/devlib-target 2016-09-08 19:28:10,999 INFO : Target - Topology: 2016-09-08 19:28:11,001 INFO : Target - [[0, 3, 4, 5], [1, 2]] 2016-09-08 19:28:12,634 INFO : Platform - Loading default EM: 2016-09-08 19:28:12,636 INFO : Platform - /data/lisa/libs/utils/platforms/juno.json 2016-09-08 19:28:13,839 INFO : FTrace - Enabled tracepoints: 2016-09-08 19:28:13,841 INFO : FTrace - cpu_frequency 2016-09-08 19:28:13,842 INFO : FTrace - cpu_idle 2016-09-08 19:28:13,843 INFO : FTrace - sched_switch 2016-09-08 19:28:13,844 INFO : HWMon - Scanning for HWMON channels, may take some time... 2016-09-08 19:28:13,850 INFO : HWMon - Channels selected for energy sampling: 2016-09-08 19:28:13,851 INFO : HWMon - a57_energy 2016-09-08 19:28:13,852 INFO : HWMon - a53_energy 2016-09-08 19:28:13,853 INFO : TestEnv - Set results folder to: 2016-09-08 19:28:13,854 INFO : TestEnv - /data/lisa/results/20160908_192813 2016-09-08 19:28:13,855 INFO : TestEnv - Experiment results available also in: 2016-09-08 19:28:13,856 INFO : TestEnv - /data/lisa/results_latest ###Markdown Energy Model Parameters (CPUs, OPPs and Idle States) ###Code # The EM reports capacity and energy consumption for each frequency domain. # The frequency domains to be considered by the following EM building flow # are described by the parameters of this named tuple ClusterDescription = namedtuple('ClusterDescription', ['name', 'emeter_ch', 'core_name', 'cpus', 'freqs', 'idle_states']) # List of frequency domains (i.e. clusters) to be considered for the EM clusters = [ ClusterDescription( # Name of the cluster name = "big", # Name of the energy meter channel as specified in the target configuration emeter_ch = "big", # Name of the cores in the cluster core_name = target.big_core, # List of cores in the cluster cpus = target.bl.bigs, # List of frequencies available in the cluster freqs = target.bl.list_bigs_frequencies(), # List of idle states available in the cluster idle_states = range(len(target.cpuidle.get_states())) ), ClusterDescription("little", "little", target.little_core, target.bl.littles, target.bl.list_littles_frequencies(), range(len(target.cpuidle.get_states())) ) ] clusters # Mapping between cluster names and cluster IDs cluster_ids = OrderedDict([(0, 'little'), (1, 'big')]) ###Output _____no_output_____ ###Markdown Benchmark example ###Code class Sysbench(object): """ Sysbench benchmark class. :param duration: maximum workload duration in seconds :type duration: int """ sysbench_path = "/data/local/tmp/bin/sysbench" def __init__(self, target, duration): self.target = target self.duration = duration def run(self, cgroup, threads): """ Run benchmark using the specified number of 'threads' to be executed under the specified 'cgroup'. :param cgroup: cgroup where to run the benchmark on :type cgroup: str :param threads: number of threads to spawn :type threads: int :returns: float - performance score """ bench_out = self.target.cgroups.run_into( cgroup, "{} --test=cpu --num-threads={} --max-time={} run" .format(self.sysbench_path, threads, self.duration) ) match = re.search(r'(total number of events:\s*)([\d.]*)', bench_out) return float(match.group(2)) ###Output _____no_output_____ ###Markdown Utility Functions ###Code def linfit(x, y): slope, intercept, r, p, stderr = linregress(x, y) return slope, intercept ###Output _____no_output_____ ###Markdown Energy Model Building Active States Profiling ###Code def compute_power_perf(clusters, loop_cnt, benchmark, bkp_file='pstates.csv'): """ Perform P-States profiling on each input cluster. This method requires a `benchmark` object with the following characteristics: - duration, attribute that tells the workload duration in seconds - run(cgroup, threads), run the benchmark into the specified 'cgroup', spawning the specified number of 'threads', and return a performance score of their execution. Data will be saved into a CSV file at each iteration such that, if something goes wrong, the user can restart the experiment considering only idle_states that had not yet been profiled. :param clusters: list of clusters to profile :type clusters: list(namedtuple(ClusterDescription)) :param loop_cnt: number of iterations for each experiment :type loop_cnt: int :param benchmark: benchmark object :type benchmark: int :param bkp_file: CSV file name :type bkp_file: str """ # Make sure all CPUs are online target.hotplug.online_all() # Set cpufreq governor to userpace to allow manual frequency scaling target.cpufreq.set_all_governors('userspace') bkp_file = os.path.join(te.res_dir, bkp_file) with open(bkp_file, 'w') as csvfile: writer = DictWriter(csvfile, fieldnames=['cluster', 'cpus', 'freq', 'perf', 'energy', 'power']) # A) For each cluster (i.e. frequency domain) to profile... power_perf = [] for cl in clusters: target_cg, _ = target.cgroups.isolate(cl.cpus) # P-States profiling requires to plug in CPUs one at the time for cpu in cl.cpus: target.hotplug.offline(cpu) # B) For each additional cluster's plugged in CPU... on_cpus = [] for cnt, cpu in enumerate(cl.cpus): # Hotplug ON one more CPU target.hotplug.online(cpu) on_cpus.append(cpu) # Ensure online CPUs are part of the target cgroup # (in case hotplug OFF removes it) target_cg.set(cpus=on_cpus) cl_cpus = set(target.list_online_cpus()).intersection(set(cl.cpus)) logging.info('Cluster {:8} (Online CPUs : {})'\ .format(cl.name, list(cl_cpus))) # C) For each OPP supported by the current cluster for freq in cl.freqs: # Set frequency to freq for current CPUs target.cpufreq.set_frequency(cpu, freq) # Run the benchmark for the specified number of iterations each time # collecting a sample of energy consumption and reported performance energy = 0 perf = 0 for i in xrange(loop_cnt): te.emeter.reset() # Run benchmark into the target cgroup perf += benchmark.run(target_cg.name, cnt + 1) nrg = te.emeter.report(te.res_dir).channels energy += nrg[cl.emeter_ch] sleep(10) # Compute average energy and performance for the current number of # active CPUs all running at the current OPP perf = perf / loop_cnt energy = energy / loop_cnt power = energy / benchmark.duration logging.info(' avg_prf: {:7.3}, avg_pwr: {:7.3}' .format(perf, power)) # Keep track of this new P-State profiling point new_row = {'cluster': cl.name, 'cpus': cnt + 1, 'freq': freq, 'perf': perf, 'energy' : energy, 'power': power} power_perf.append(new_row) # Save data in a CSV file writer.writerow(new_row) # C) profile next P-State # B) add one more CPU (for the current frequency domain) # A) Profile next cluster (i.e. frequency domain) target.hotplug.online_all() power_perf_df = pd.DataFrame(power_perf) return power_perf_df.set_index(['cluster', 'freq', 'cpus'])\ .sort_index(level='cluster') sysbench = Sysbench(target, 10) loop_cnt = 5 power_perf_df = compute_power_perf(clusters, loop_cnt, sysbench) def plot_pstates(power_perf_df, cluster): """ Plot P-States profiling for the specified cluster. :param power_perf_df: DataFrame reporting power and performance values :type power_perf_df: :mod:`pandas.DataFrame` :param cluster: cluster description :type cluster: namedtuple(ClusterDescription) """ cmap = ColorMap(len(cluster.freqs)) color_map = map(cmap.cmap, range(len(cluster.freqs))) color_map = dict(zip(cluster.freqs, color_map)) fig, ax = plt.subplots(1, 1, figsize=(16, 10)) grouped = power_perf_df.loc[cluster.name].groupby(level='freq') for freq, df in grouped: x = df.index.get_level_values('cpus').tolist() y = df.power.tolist() slope, intercept = linfit(x, y) x.insert(0, 0) y.insert(0, intercept) # Plot linear fit of the points ax.plot(x, [slope*i + intercept for i in x], color=color_map[freq]) # Plot measured points ax.scatter(x, y, color=color_map[freq], label='{} kHz'.format(freq)) ax.set_title('JUNO {} cluster P-States profiling'.format(cluster.name), fontsize=16) ax.legend() ax.set_xlabel('Active cores') ax.set_ylabel('Power [$\mu$W]') ax.set_xlim(-0.5, len(cluster.cpus)+1) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax.grid(True) big_cl = clusters[0] plot_pstates(power_perf_df, big_cl) little_cl = clusters[1] plot_pstates(power_perf_df, little_cl) ###Output _____no_output_____ ###Markdown Statistics ###Code def power_perf_stats(power_perf_df): """ For each cluster compute per-OPP power and performance statistics. :param power_perf_df: dataframe containing power and performance numbers :type power_perf_df: :mod:`pandas.DataFrame` """ clusters = power_perf_df.index.get_level_values('cluster')\ .unique().tolist() stats = [] for cl in clusters: cl_power_df = power_perf_df.loc[cl].reset_index() grouped = cl_power_df.groupby('freq') for freq, df in grouped: perf = df['perf'] / df['cpus'] power = df['power'] / df['cpus'] energy = df['energy'] / df['cpus'] avg_row = {'cluster': cl, 'freq': freq, 'stats': 'avg', 'perf': perf.mean(), 'power': power.mean(), 'energy': energy.mean() } std_row = {'cluster': cl, 'freq': freq, 'stats': 'std', 'perf': perf.std(), 'power': power.std(), 'energy': energy.std() } min_row = {'cluster': cl, 'freq': freq, 'stats': 'min', 'perf': perf.min(), 'power': power.min(), 'energy': energy.min() } max_row = {'cluster' : cl, 'freq' : freq, 'stats' : 'max', 'perf' : perf.max(), 'power' : power.max(), 'energy': energy.max() } c99_row = {'cluster' : cl, 'freq' : freq, 'stats' : 'c99', 'perf' : perf.quantile(q=0.99), 'power' : power.quantile(q=0.99), 'energy': energy.quantile(q=0.99) } stats.append(avg_row) stats.append(std_row) stats.append(min_row) stats.append(max_row) stats.append(c99_row) stats_df = pd.DataFrame(stats).set_index(['cluster', 'freq', 'stats'])\ .sort_index(level='cluster') return stats_df.unstack() pp_stats = power_perf_stats(power_perf_df) ###Output _____no_output_____ ###Markdown Plots ###Code def plot_power_perf(pp_stats, clusters): cmap = ColorMap(len(clusters) + 1) color_map = map(cmap.cmap, range(len(clusters) + 1)) fig, ax = plt.subplots(1, 1, figsize=(16, 10)) max_perf = pp_stats.perf['avg'].max() max_power = pp_stats.power['avg'].max() for i, cl in enumerate(clusters): cl_df = pp_stats.loc[cl.name] norm_perf_df = cl_df.perf['avg'] * 100.0 / max_perf norm_power_df = cl_df.power['avg'] * 100.0 / max_power x = norm_perf_df.values.tolist() y = norm_power_df.values.tolist() ax.plot(x, y, color=color_map[i], marker='o', label=cl.name) norm_perf_df = cl_df.perf['max'] * 100.0 / max_perf norm_power_df = cl_df.power['max'] * 100.0 / max_power x = norm_perf_df.values.tolist() y = norm_power_df.values.tolist() ax.plot(x, y, '--', color=color_map[-1]) norm_perf_df = cl_df.perf['min'] * 100.0 / max_perf norm_power_df = cl_df.power['min'] * 100.0 / max_power x = norm_perf_df.values.tolist() y = norm_power_df.values.tolist() ax.plot(x, y, '--', color=color_map[-1]) ax.set_title('JUNO Power VS Performance curves', fontsize=16) ax.legend() ax.set_xlabel('Performance [%]') ax.set_ylabel('Power [%]') ax.set_xlim(0, 120) ax.set_ylim(0, 120) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.grid(True) plot_power_perf(pp_stats, clusters) ###Output _____no_output_____ ###Markdown Idle States Profiling ###Code def compute_idle_power(clusters, loop_cnt, sleep_duration, bkp_file='cstates.csv'): """ Perform C-States profiling on each input cluster. Data will be saved into a CSV file at each iteration such that if something goes wrong the user can restart the experiment considering only idle_states that had not been processed. :param clusters: list of clusters to profile :type clusters: list(namedtuple(ClusterDescription)) :param loop_cnt: number of loops for each experiment :type loop_cnt: int :param sleep_duration: sleep time in seconds :type sleep_duration: int :param bkp_file: CSV file name :type bkp_file: str """ # Make sure all CPUs are online target.hotplug.online_all() with open(bkp_file, 'w') as csvfile: writer = DictWriter(csvfile, fieldnames=['cluster', 'cpus', 'idle_state', 'energy', 'power']) # Disable frequency scaling by setting cpufreq governor to userspace target.cpufreq.set_all_governors('userspace') # A) For each cluster (i.e. frequency domain) to profile... idle_power = [] for cl in clusters: target.cgroups.isolate(cl.cpus) # C-States profiling requires to plug in CPUs one at the time for cpu in cl.cpus: target.hotplug.offline(cpu) # B) For each additional cluster's plugged in CPU... for cnt, cpu in enumerate(cl.cpus): # Hotplug ON one more CPU target.hotplug.online(cpu) cl_cpus = set(target.list_online_cpus()).intersection(set(cl.cpus)) logging.info('Cluster {:8} (Online CPUs : {})'\ .format(cl.name, list(cl_cpus))) # C) For each OPP supported by the current cluster for idle in cl.idle_states: # Disable all idle states but the current one for c in cl.cpus: target.cpuidle.disable_all(cpu=c) target.cpuidle.enable(idle, cpu=c) # Sleep for the specified duration each time collecting a sample # of energy consumption and reported performance energy = 0 for i in xrange(loop_cnt): te.emeter.reset() sleep(sleep_duration) nrg = te.emeter.report(te.res_dir).channels energy += nrg[cl.emeter_ch] # Compute average energy and performance for the current number of # active CPUs all idle at the current OPP energy = energy / loop_cnt power = energy / SLEEP_DURATION logging.info(' avg_pwr: {:7.3}' .format(power)) # Keep track of this new C-State profiling point new_row = {'cluster': cl.name, 'cpus': cnt + 1, 'idle_state': idle, 'energy': energy, 'power': power} idle_power.append(new_row) # Save data in a CSV file writer.writerow(new_row) # C) profile next C-State # B) add one more CPU (for the current frequency domain) # A) profile next cluster (i.e. frequency domain) target.hotplug.online_all() idle_df = pd.DataFrame(idle_power) return idle_df.set_index(['cluster', 'idle_state', 'cpus']).sort_index(level='cluster') SLEEP_DURATION = 10 loop_cnt = 5 idle_df = compute_idle_power(clusters, loop_cnt, SLEEP_DURATION) ###Output 2016-09-08 20:02:42,283 INFO : Cluster big - Online CPUs : set([1]) 2016-09-08 20:06:04,376 INFO : Cluster big - Online CPUs : set([1, 2]) 2016-09-08 20:09:23,459 INFO : Cluster little - Online CPUs : set([0]) 2016-09-08 20:13:10,543 INFO : Cluster little - Online CPUs : set([0, 3]) 2016-09-08 20:16:36,396 INFO : Cluster little - Online CPUs : set([0, 3, 4]) 2016-09-08 20:20:02,271 INFO : Cluster little - Online CPUs : set([0, 3, 4, 5]) ###Markdown Statistics ###Code WFI = 0 CORE_OFF = 1 def idle_power_stats(idle_df): """ For each cluster compute per idle state power statistics. :param idle_df: dataframe containing power numbers :type idle_df: :mod:`pandas.DataFrame` """ stats = [] for cl in clusters: cl_df = idle_df.loc[cl.name].reset_index() # Start from deepest idle state cl_df = cl_df.sort_values('idle_state', ascending=False) grouped = cl_df.groupby('idle_state', sort=False) for state, df in grouped: energy = df.energy power = df.power state_name = "C{}_CLUSTER".format(state) if state == CORE_OFF: core_off_nrg_avg = energy.mean() core_off_pwr_avg = power.mean() if state == WFI: energy = df.energy.diff() energy[0] = df.energy[0] - core_off_nrg_avg power = df.power.diff() power[0] = df.power[0] - core_off_pwr_avg state_name = "C0_CORE" avg_row = {'cluster': cl.name, 'idle_state': state_name, 'stats': 'avg', 'energy': energy.mean(), 'power': power.mean() } std_row = {'cluster': cl.name, 'idle_state': state_name, 'stats': 'std', 'energy': energy.std(), 'power': power.std() } min_row = {'cluster' : cl.name, 'idle_state' : state_name, 'stats' : 'min', 'energy' : energy.min(), 'power' : power.min() } max_row = {'cluster' : cl.name, 'idle_state' : state_name, 'stats' : 'max', 'energy' : energy.max(), 'power' : power.max() } c99_row = {'cluster' : cl.name, 'idle_state' : state_name, 'stats' : 'c99', 'energy' : energy.quantile(q=0.99), 'power' : power.quantile(q=0.99) } stats.append(avg_row) stats.append(std_row) stats.append(min_row) stats.append(max_row) stats.append(c99_row) stats_df = pd.DataFrame(stats).set_index( ['cluster', 'idle_state', 'stats']).sort_index(level='cluster') return stats_df.unstack() idle_stats = idle_power_stats(idle_df) ###Output _____no_output_____ ###Markdown Plots ###Code def plot_cstates(idle_power_df, cluster): """ Plot C-States profiling for the specified cluster. :param idle_power_df: dataframe reporting power values in each idle state :type idle_power_df: :mod:`pandas.DataFrame` :param cluster: cluster description :type cluster: namedtuple(ClusterDescription) """ n_cpus = len(cluster.cpus) cmap = ColorMap(len(cluster.idle_states)) color_map = map(cmap.cmap, cluster.idle_states) color_map = [c for c in color_map for i in xrange(n_cpus)] cl_df = idle_power_df.loc[cluster.name] ax = cl_df.power.plot.bar(figsize=(16,8), color=color_map, alpha=0.5, legend=False, table=True) idx = 0 grouped = cl_df.groupby(level=0) for state, df in grouped: x = df.index.get_level_values('cpus').tolist() y = df.power.tolist() slope, intercept = linfit(x, y) y = [slope * v + intercept for v in x] x = range(n_cpus * idx, n_cpus * (idx + 1)) ax.plot(x, y, color=color_map[idx*n_cpus], linewidth=4) idx += 1 ax.grid(True) ax.get_xaxis().set_visible(False) ax.set_ylabel("Idle Power [$\mu$W]") ax.set_title("JUNO {} cluster C-states profiling"\ .format(cluster.name), fontsize=16) little = clusters[1] plot_cstates(idle_df, little) big = clusters[0] plot_cstates(idle_df, big) ###Output _____no_output_____ ###Markdown Energy Model Generation ###Code def pstates_model_df(clusters, pp_stats, power_perf_df, metric='avg'): """ Build two data frames containing data to create the energy model for each cluster given as input. :param clusters: list of clusters to profile :type clusters: list(namedtuple(ClusterDescription)) :param pp_stats: power and performance statistics :type pp_stats: :mod:`pandas.DataFrame` :param power_perf_df: power and performance data :type power_perf_df: :mod:`pandas.DataFrame` """ max_score = pp_stats.perf[metric].max() core_cap_energy = [] cluster_cap_energy = [] for cl in clusters: # ACTIVE Energy grouped = power_perf_df.loc[cl.name].groupby(level='freq') for freq, df in grouped: # Get average energy at OPP freq for 1 CPU energy_freq_1 = pp_stats.loc[cl.name].loc[freq]['energy'][metric] # Get cluster energy at OPP freq x = df.index.get_level_values('cpus').tolist() y = df.energy.tolist() slope, intercept = linfit(x, y) # Energy can't be negative but the regression line may intercept the # y-axis at a negative value. Im this case cluster energy can be # assumed to be 0. cluster_energy = intercept if intercept >= 0.0 else 0.0 core_energy = energy_freq_1 - cluster_energy # Get score at OPP freq score_freq = pp_stats.loc[cl.name].loc[freq]['perf'][metric] capacity = int(score_freq * 1024 / max_score) core_cap_energy.append({'cluster' : cl.name, 'core': cl.core_name, 'freq': freq, 'cap': capacity, 'energy': core_energy}) cluster_cap_energy.append({'cluster': cl.name, 'freq': freq, 'cap': capacity, 'energy': cluster_energy}) core_cap_nrg_df = pd.DataFrame(core_cap_energy) cluster_cap_nrg_df = pd.DataFrame(cluster_cap_energy) return core_cap_nrg_df, cluster_cap_nrg_df core_cap_nrg_df, cluster_cap_nrg_df = pstates_model_df(clusters, pp_stats, power_perf_df) core_cap_nrg_df cluster_cap_nrg_df def energy_model_dict(clusters, core_cap_nrg_df, cluster_cap_nrg_df, metric='avg'): n_states = len(clusters[0].idle_states) nrg_dict = {} grouped = core_cap_nrg_df.groupby('cluster') for cl, df in grouped: nrg_dict[cl] = { "opps" : {}, "core": { "name": df.core.iloc[0], "busy-cost": OrderedDict(), "idle-cost": OrderedDict() }, "cluster": { "busy-cost": OrderedDict(), "idle-cost": OrderedDict() } } # Core COSTS # ACTIVE costs for row in df.iterrows(): nrg_dict[cl]["opps"][row[1].cap] = row[1].freq nrg_dict[cl]["core"]["busy-cost"][row[1].cap] = int(row[1].energy) # IDLE costs wfi_nrg = idle_stats.loc[cl].energy[metric][0] # WFI nrg_dict[cl]["core"]["idle-cost"][0] = int(wfi_nrg) # All remaining states are zeroes for i in xrange(1, n_states): nrg_dict[cl]["core"]["idle-cost"][i] = 0 # Cluster COSTS cl_data = cluster_cap_nrg_df[cluster_cap_nrg_df.cluster == cl] # ACTIVE costs for row in cl_data.iterrows(): nrg_dict[cl]["cluster"]["busy-cost"][row[1].cap] = int(row[1].energy) # IDLE costs # Core OFF is the first valid idle cost for cluster idle_data = idle_stats.loc[cl].energy[metric] # WFI (same as Core OFF) nrg_dict[cl]["cluster"]["idle-cost"][0] = int(idle_data[1]) # All other idle states (from CORE OFF down) for i in xrange(1, n_states): nrg_dict[cl]["cluster"]["idle-cost"][i] = int(idle_data[i]) return nrg_dict nrg_dict = energy_model_dict(clusters, core_cap_nrg_df, cluster_cap_nrg_df) ###Output _____no_output_____ ###Markdown Device Tree EM Format ###Code def dump_device_tree(nrg_dict, outfile='sched-energy.dtsi'): """ Generate device tree energy model file. :param nrg_dict: dictionary describing the energy model :type nrg_dict: dict :param outfile: output file name :type outfile: str """ with open(os.path.join(te.res_dir, outfile), 'w') as out: out.write("energy-costs {\n") idx = 0 for cl_name in nrg_dict.keys(): core = nrg_dict[cl_name]["core"] # Dump Core costs out.write("\tCPU_COST_{}: core_cost{} {}\n"\ .format(core["name"], idx, '{')) # ACTIVE costs out.write("\t\tbusy-cost-data = <\n") for cap, nrg in core["busy-cost"].iteritems(): out.write("\t\t\t{} {}\n".format(cap, nrg)) out.write("\t\t>;\n") # IDLE costs out.write("\t\tidle-cost-data = <\n") # arch idle out.write("\t\t\t{}\n".format(core["idle-cost"][0])) for nrg in core["idle-cost"].values(): out.write("\t\t\t{}\n".format(nrg)) out.write("\t\t>;\n") out.write("\t};\n") # Dump Cluster costs cl = nrg_dict[cl_name]["cluster"] out.write("\tCLUSTER_COST_{}: cluster_cost{} {}\n"\ .format(cl_name, idx, '{')) # ACTIVE costs out.write("\t\tbusy-cost-data = <\n") for cap, nrg in cl["busy-cost"].iteritems(): out.write("\t\t\t{} {}\n".format(cap, nrg)) out.write("\t\t>;\n") # IDLE costs out.write("\t\tidle-cost-data = <\n") # arch idle out.write("\t\t\t{}\n".format(cl["idle-cost"][0])) for nrg in cl["idle-cost"].values(): out.write("\t\t\t{}\n".format(nrg)) out.write("\t\t>;\n") out.write("\t};\n") idx += 1 out.write("};") ###Output _____no_output_____ ###Markdown C Code EM Format ###Code def dump_c_code(nrg_dict, cluster_ids, outfile='energy_model.c'): """ Generate C code energy model file. :param nrg_dict: dictionary describing the energy model :type nrg_dict: dict :param cluster_ids: mapping between cluster names and cluster IDs :type cluster_ids: dict :param outfile: output file name :type outfile: str """ with open(os.path.join(te.res_dir, outfile), 'w') as o: core_names = [] for cl_name in nrg_dict.keys(): # Dump Core data core = nrg_dict[cl_name]["core"] core_names.append(core["name"]) o.write("static struct capacity_state cap_states_core_{}[] = {}\n"\ .format(core["name"], '{')) o.write("\t/* Power per CPU */\n") for cap, nrg in core["busy-cost"].iteritems(): o.write("\t {{ .cap = {:5d}, .power = {:5d}, }},\n"\ .format(cap, nrg)) o.write("\t};\n") o.write("\n") o.write("static struct idle_state idle_states_core_{}[] = {}\n"\ .format(core["name"], '{')) # arch idle (same as WFI) o.write("\t {{ .power = {:5d}, }},\n".format(core["idle-cost"][0])) for nrg in core["idle-cost"].values(): o.write("\t {{ .power = {:5d}, }},\n".format(nrg)) o.write("\t};\n") o.write("\n") # Dump Cluster data cl = nrg_dict[cl_name]["cluster"] o.write("static struct capacity_state cap_states_cluster_{}[] = {}\n"\ .format(cl_name, '{')) o.write("\t/* Power per cluster */\n") for cap, nrg in cl["busy-cost"].iteritems(): o.write("\t {{ .cap = {:5d}, .power = {:5d}, }},\n"\ .format(cap, nrg)) o.write("\t};\n") o.write("\n") o.write("static struct idle_state idle_states_cluster_{}[] = {}\n"\ .format(cl_name, '{')) # arch idle (same as Core OFF) o.write("\t {{ .power = {:5d}, }},\n".format(cl["idle-cost"][0])) for nrg in cl["idle-cost"].values(): o.write("\t {{ .power = {:5d}, }},\n".format(nrg)) o.write("\t};\n") o.write("\n") o.write("static struct sched_group_energy energy_cluster_{} = {}\n"\ .format(core["name"], '{')) o.write("\t.nr_idle_states = ARRAY_SIZE(idle_states_cluster_{}),\n"\ .format(core["name"])) o.write("\t.idle_states = idle_states_cluster_{},\n"\ .format(core["name"])) o.write("\t.nr_cap_states = ARRAY_SIZE(cap_states_cluster_{}),\n"\ .format(core["name"])) o.write("\t.cap_states = cap_states_cluster_{},\n"\ .format(core["name"])) o.write("};\n") o.write("\n") # Array of pointers to CORE sched_group_energy structs o.write("static struct sched_group_energy *energy_cores[] = {\n") for cl_name in cluster_ids.values(): o.write("\t&energy_core_{},\n"\ .format(nrg_dict[cl_name]["core"]["name"])) o.write("};\n") o.write("\n") # Array of pointers to CLUSTER sched_group_energy structs o.write("static struct sched_group_energy *energy_clusters[] = {\n") for name in cluster_ids.values(): o.write("\t&energy_cluster_{},\n".format(name)) o.write("};\n") o.write("\n") o.write("static inline\n") o.write("const struct sched_group_energy * const cpu_core_energy(int cpu)\n") o.write("{\n") o.write("\treturn energy_cores[cpu_topology[cpu].cluster_id];\n") o.write("}\n") o.write("\n") o.write("static inline\n") o.write("const struct sched_group_energy * const cpu_cluster_energy(int cpu)\n") o.write("{\n") o.write("\treturn energy_clusters[cpu_topology[cpu].cluster_id];\n") o.write("}\n") ###Output _____no_output_____ ###Markdown JSON EM Format ###Code def dump_json(nrg_dict, outfile='energy_model.json'): """ Generate JSON energy model file. :param nrg_dict: dictionary describing the energy model :type nrg_dict: dict :param outfile: output file name :type outfile: str """ with open(os.path.join(te.res_dir, outfile), 'w') as ofile: json.dump(nrg_dict, ofile, sort_keys=True, indent=4) ###Output _____no_output_____
003-学习 Pandas/Q&A 问答合集/005-rename-columns.ipynb
###Markdown 005-pandas 中如何重命名列? > How do I rename columns in a pandas DataFrame? ###Code import pandas as pd ufo = pd.read_csv('https://bit.ly/ufo4cda') ufo.head() ufo.columns ufo.rename(columns={'Colors Reported':'Colors_Reported', 'Shape Reported':'Shape_Reported'}, inplace=True) ufo.columns ufo_cols = ['city', 'colors reported', 'shape reported', 'state', 'time'] ufo.columns = ufo_cols ufo.head() ufo = pd.read_csv('https://bit.ly/ufo4cda', names = ufo_cols, header=0) ufo.head() ufo.columns ufo.columns = ufo.columns.str.replace(' ','_') ufo.columns ###Output _____no_output_____
Notebooks/1-MLPs/3-Exercise_1.ipynb
###Markdown Multilayer Perceptrons for Multiclass Classification (Exercise) The DataWe will be using the Glass Identification dataset from [UCI Machine Learning Repository](https://archive.ics.uci.edu/):https://archive.ics.uci.edu/ml/datasets/Glass+Identification**Information**From USA Forensic Science Service, 5 types of glass defined in terms of their oxide content (i.e. Na, Fe, K, etc).The study of classification of types of glass was motivated by criminological investigation. At the scene of the crime, the glass left can be used as evidence... if it is correctly identified!**Attributes**1. RI: refractive index2. Na: Sodium (unit measurement: weight percent in corresponding oxide, as are attributes 4-10)3. Mg: Magnesium4. Al: Aluminum5. Si: Silicon6. K: Potassium7. Ca: Calcium8. Ba: Barium9. Fe: Iron10. Type of glass: (class attribute) - 1. building windows - 2. vehicle windows - 3. containers - 4. tableware - 5. headlamps Table of Contents- [Python libraries](libraries)- [Data Exploration and Feature Engineering](exploration) - [Read the data](read) - [Descriptive statistics](statistics) - [Class balance](balance) - [Correlations](correlation) - [Remove outliers](outliers)- [Label and One-Hot encoding](one-hot) - [Create the `X` and `y` variables](variables) - [Encode target labels](encoders)- [Split the Data](split)- [Normalize the Data](normalize)- [Create the Model](model)- [Train the Model](training) - [Choosing too many epochs and overfit](overfit) - [Early Stopping](early_stop)- [Evaluate the Model](evaluation)- [Predictions](predictions) Python libraries ###Code import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Data Exploration and Feature Engineering Read the data ###Code df = pd.read_csv('../../Data/glass.csv').drop(columns='Unnamed: 0') df.head() glass_types = {"building_windows": 1, "vehicle_windows": 2, "containers": 3, "tableware": 4, "headlamps": 5} df['glass_type_id'] = df['glass_type'].apply(lambda x: glass_types[x]) df.head() ###Output _____no_output_____ ###Markdown Descriptive statistics**TASK: Show the descriptive statistics of each column.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Class balance**TASK: Check if the classes are balanced. Create a countplot as shown below.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Correlations**TASK: Show the correlation between different attributes. Create a heatmap of the pairwise correlation of columns.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Create a bar plot showing the correlation of the numeric attributes to the new `glass_type_id` column.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Remove outliersSeaborn uses [inter-quartile range](https://en.wikipedia.org/wiki/Interquartile_range) to detect the outliers. What we need to do is to reproduce the same function in the column you want to drop the outliers. We can do that by using the next function. ###Code def remove_outliers(df, column): Q1 = df[column].quantile(0.25) Q3 = df[column].quantile(0.75) IQR = Q3 - Q1 #IQR is interquartile range. filter = (df[column] >= Q1 - 1.5 * IQR) & (df[column] <= Q3 + 1.5 *IQR) return df.loc[filter] ###Output _____no_output_____ ###Markdown Refractive index**TASK: Create a boxplot showing the relationship between the `glass_type_id` and the `RI` columns.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Remove the outliers using the `remove_outliers` function and create again the boxplot.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Potassium**TASK: Create a boxplot showing the relationship between the `glass_type_id` and the `K` columns.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Remove the outliers using the `remove_outliers` function and create again the boxplot.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Label and One-Hot encodingFor multiclass classification we have to represent categorical data in the form of binary vectors. Create the `X` and `y` variables**TASK: Create the `X` and `y` variables by taking the `.values` of the numerical features and labels, respectively. Take as labels the `glass_type` column.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Display the shapes of the `X` and `y` variables and the first 5 labels.** ###Code # CODE HERE # CODE HERE # CODE HERE ###Output _____no_output_____ ###Markdown Encode target labels **TASK: Import [`LabelEncoder`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html) and [`OneHotEncoder`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.htmlsklearn.preprocessing.OneHotEncoder) form `sklearn`.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Label Encoder**TASK: Use a `LabelEncoder` to encode target labels in `y` with value between `0` and `n_classes-1`. Display the shape of the new `y` variable and the first 5 values.** ###Code # CODE HERE # CODE HERE # CODE HERE ###Output _____no_output_____ ###Markdown One-Hot Encoder**TASK: Use a `OneHotEncoder` to encode the new categorical features of `y` as a one-hot numeric array. Display the shape of the new `y` variable and the first 5 values.** ###Code # CODE HERE # CODE HERE # CODE HERE ###Output _____no_output_____ ###Markdown Split the Data**TASK: Import [`train_test_split`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) form `sklearn`.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Perform a train/test split with `test_size=0.25` and a `random_state=42`. Display the shapes of the `X_train` and `y_train` variables.** ###Code # CODE HERE # CODE HERE # CODE HERE ###Output _____no_output_____ ###Markdown Normalize the Data**TASK: Import [`MinMaxScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html) form `sklearn`.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Use a `MinMaxScaler` to normalize the `X_train` and `X_test` values.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Create the Model**TASK: Import [`Sequential`](https://www.tensorflow.org/guide/keras/sequential_model) model and [`Dense`](https://keras.io/api/layers/core_layers/dense/) layer form `tensorflow.keras`.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Build a sequential model with a dense hidden layer of 10 neurons and a dense output layer of 5 neurons. As we are dealing with a multiclass classification task use the [`softmax`](https://en.wikipedia.org/wiki/Softmax_function) activation function in the output layer and the `categorical_crossentropy` loss. Add also the `accuracy` as an [additional metric](https://keras.io/api/metrics/).** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Train the Model Choosing too many epochs and overfit **TASK: Train the model for 2000 epochs. Don't forget to include the validation data.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Check if the model overfits:**TASK: Plot the training and validation loss.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Plot the training and validation accuracy.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Early StoppingLet's use early stopping to track the val_loss and stop training once it begins increasing too much!**TASK: Import [`EarlyStopping`](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping) callback form `tensorflow.keras`.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Create the `EarlyStopping` callback.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Train the model for 2000 epochs with the `EarlyStopping` callback.** ###Code model = Sequential() model.add(Dense(10,activation='relu')) model.add(Dense(5,activation='softmax')) # For a binary classification problem model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Plot the training and validation loss.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: Plot the training and validation accuracy.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown **TASK: OPTIONAL: Save your model.** ###Code # CODE HERE ###Output _____no_output_____ ###Markdown Evaluate the ModelCheck common classification metrics [here](https://scikit-learn.org/stable/modules/model_evaluation.htmlclassification-metrics).**TASK: Create predictions from the `X_test` dataset and display a `classification_report` and `confusion_matrix` for the `X_test` dataset. Notice that the predictions are not one-hot encoded** ###Code # CODE HERE # CODE HERE # CODE HERE # CODE HERE ###Output _____no_output_____ ###Markdown **[Precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall)** **[Confusion matrix](https://en.wikipedia.org/wiki/Confusion_matrix)** Predictions **TASK: Predict the glass type of the last value in the `DataFrame`. Did the prediction match the actual result?** ###Code # CODE HERE # CODE HERE # CODE HERE # CODE HERE ###Output _____no_output_____
src/transformers/models/bart/BART-Extended_Draft.ipynb
###Markdown BART-Extended architecture The goal of this Notebook is to evaluate how to load BART extended model ###Code import transformers.models.bart.modeling_bart_edited as BartExtended from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig pretrained_bart = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs. I hope one day they start eating healthier. Maybe a plant-based diet would be enough." inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') bart_extended = BartExtended.BartExtendedForConditionalGeneration(pretrained_bart.config) # Generate Summary summary_ids = pretrained_bart.generate(inputs['input_ids'], num_beams=4, max_length=20, early_stopping=True) print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]) # Generate Summary summary_ids = bart_extended.generate(inputs['input_ids'], num_beams=4, max_length=20, early_stopping=True) print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]) def init_bart_extended_layer(bart_extended_layer, bart_layer): # copy weights bart_extended_layer.self_attn.load_state_dict(bart_layer.self_attn.state_dict()) bart_extended_layer.self_attn_layer_norm.load_state_dict(bart_layer.self_attn_layer_norm.state_dict()) bart_extended_layer.encoder_source_attn.load_state_dict(bart_layer.encoder_attn.state_dict()) bart_extended_layer.encoder_source_attn_layer_norm.load_state_dict(bart_layer.encoder_attn_layer_norm.state_dict()) bart_extended_layer.encoder_knowledge_attn.load_state_dict(bart_layer.encoder_attn.state_dict()) bart_extended_layer.encoder_knowledge_attn_layer_norm.load_state_dict(bart_layer.encoder_attn_layer_norm.state_dict()) bart_extended_layer.fc1.load_state_dict(bart_layer.fc1.state_dict()) bart_extended_layer.fc2.load_state_dict(bart_layer.fc2.state_dict()) bart_extended_layer.final_layer_norm.load_state_dict(bart_layer.final_layer_norm.state_dict()) def init_bart_extended_decoder(extended_decoder, pretrained_decoder): # Initializing Embedding layers extended_decoder.embed_tokens.load_state_dict(pretrained_decoder.embed_tokens.state_dict()) extended_decoder.embed_positions.load_state_dict(pretrained_decoder.embed_positions.state_dict()) # Initializing layers for extended_layer, pretrained_layer in zip(extended_decoder.layers, pretrained_decoder.layers): init_bart_extended_layer(extended_layer, pretrained_layer) # Initializing Layer normalization layer extended_decoder.layernorm_embedding.load_state_dict(pretrained_decoder.layernorm_embedding.state_dict()) extended_decoder = BartExtended.BartExtendedDecoder(pretrained_bart.config) init_bart_extended_decoder(extended_decoder, pretrained_bart.model.decoder) self.encoder_source = BartExtended.BartEncoder(pretrained_bart.config) self.encoder_source.load_state_dict(pretrained_bart.encoder.state_dict()) self.encoder_knowledge = BartExtended.BartEncoder(pretrained_bart.config) self.encoder_knowledge.load_state_dict(pretrained_bart.encoder.state_dict()) class Bart_Extended_Model(nn.Module): def __init__(self, config: BartConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) extended_decoder = BartExtended.BartExtendedDecoder(pretrained_bart.config) init_bart_extended_decoder(extended_decoder, pretrained_bart.model.decoder) self.encoder_source = BartExtended.BartEncoder(pretrained_bart.config) self.encoder_source.load_state_dict(pretrained_bart.encoder.state_dict()) self.encoder_knowledge = BartExtended.BartEncoder(pretrained_bart.config) self.encoder_knowledge.load_state_dict(pretrained_bart.encoder.state_dict()) self.decoder = BartExtended.BartExtendedDecoder(pretrained_bart.config) init_bart_extended_decoder(self.decoder, pretrained_bart.model.decoder) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x from transformers import BartTokenizer, BartExtendedForConditionalGeneration, BartConfig BART_Extended_model = BartExtendedForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs. I hope one day they start eating healthier. Maybe a plant-based diet would be enough." inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') # Generate Summary summary_ids = BART_model.generate(inputs['input_ids'], num_beams=4, max_length=20, early_stopping=True) print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]) model = pretrained_bart.model fc_kk = model.encoder_source.layers[0].fc1 fc_kk.weight pretrained_bart.model.encoder_knowledge.layers[0].fc1.weight ###Output _____no_output_____ ###Markdown - Initialize the BART model with cnn_dm pretrained model- Define a function to copy layers from the pretrained BART model to the BART_Extended model- Make sure that the architecture is properly created https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/modeling_bart.py ###Code for pretrained_bart.model.decoder.layers class BART_Extended(nn.Module): def __init__(self): super(BART_Extended, self).__init__() self.encoder_source = pretrained_bart.model.encoder.copy() self.encoder_knowledge = pretrained_bart.model.encoder.copy() self.decoder = BART_model.model def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x pretrained_bart.model.encoder.copy() # from transformers import BartForConditionalGeneration, BartTokenizer # # model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")#, force_bos_token_to_be_generated=True) # tok = BartTokenizer.from_pretrained("facebook/bart-large") # example_english_phrase = "UN Chief Says There Is No <mask> in Syria" # batch = tok(example_english_phrase, return_tensors='pt') # generated_ids = model.generate(batch['input_ids']) #assert tok.batch_decode(generated_ids, skip_special_tokens=True) == ['UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria'] # tok.batch_decode(generated_ids, skip_special_tokens=True) ###Output _____no_output_____
PyTorch_examples/pytorch-Deep-Learning-master/12-regularization.ipynb
###Markdown Regularisation in NNs¶ Before we start doing anything, I think it's important to understand for NLP, this is the intuitive process on what we are trying to do when we are processing our data in the IMDB dataset:1. Tokenization: break sentence into individual words - Before: `"PyTorch seems really easy to use!"` - After: `["PyTorch", "seems", "really", "easy", "to", "use", "!"]`2. Building vocabulary: build an index of words associated with unique numbers - Before: `["PyTorch", "seems", "really", "easy", "to", "use", "!"]` - After: `{"Pytorch: 0, "seems": 1, "really": 2, ...}`3. Convert to numerals: map words to unique numbers (indices) - Before: `{"Pytorch: 0, "seems": 1, "really": 2, ...}` - After: `[0, 1, 2, ...]`4. Embedding look-up: map sentences (indices now) to fixed matrices - ```[[0.1, 0.4, 0.3], [0.8, 0.1, 0.5], ...]``` ###Code # Critical plotting imports import matplotlib.pyplot as plt %matplotlib inline # PyTorch imports from torchtext import data, datasets import torch import torch.nn as nn import torch.nn.functional as F # Checking for iterable objects import collections import random # Set seed torch.manual_seed(1337) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1337) # Set plotting style plt.style.use(('dark_background', 'bmh')) plt.rc('axes', facecolor='none') plt.rc('figure', figsize=(16, 4)) # Create instances of fields # The important field here is fix_length: all examples using this field will be padded to, or None for flexible sequence lengths # We are fixing this because we will be using a FNN not an LSTM/RNN/GRU where we can go through uneven sequence lengths max_len = 80 text = data.Field(sequential=True, fix_length=max_len, batch_first=True, lower=True, dtype=torch.long) label = data.LabelField(sequential=False, dtype=torch.float) # Calling splits() class method of datasets.IMDB to return a torchtext.data.Dataset object datasets.IMDB.download('./') ds_train, ds_test = datasets.IMDB.splits(text, label, path='./imdb/aclImdb/') # Training and test set each 25k samples # 2 fields due to the way we split above print('train : ', len(ds_train)) print('test : ', len(ds_test)) print('train.fields :', ds_train.fields) # Get validation set seed_num = 1337 ds_train, ds_valid = ds_train.split(random_state=random.seed(seed_num)) # Now we've training, validation and test set print('train : ', len(ds_train)) print('valid : ', len(ds_valid)) print('valid : ', len(ds_test)) # Build vocabulary # num_words = 25000 num_words = 1000 text.build_vocab(ds_train, max_size=num_words) label.build_vocab(ds_train) # Print vocab size print('Vocabulary size: {}'.format(len(text.vocab))) print('Label size: {}'.format(len(label.vocab))) # Print most common vocabulary text most_common_samples = 10 print(text.vocab.freqs.most_common(most_common_samples)) # Print most common labels print(label.vocab.freqs.most_common()) # Sample 0 label ds_train[0].label # Sample 0 text: broken down into individual portions ds_train[0].text # Sample 0 text: human readeable sample def show_text(sample): print(' '.join(word for word in sample)) show_text(ds_train[0].text) # Create and iterable object for our training, validation and testing datasets # Batches examples of similar lengths together that minimizes amount of padding needed batch_size = 64 # Change batch size from 1 to bigger number once explanation is done train_loader, valid_loader, test_loader = data.BucketIterator.splits( (ds_train, ds_valid, ds_test), batch_size=batch_size, sort_key=lambda x: len(x.text), repeat=False ) # Check if iterator above is an iterable which should show True isinstance(train_loader, collections.Iterable) # What's inside this iteratable object? Our text and label although now everything is in machine format (not "words") but in numbers! # The text we saw above becomes a matrix of size 1 x 80 represented by the fixed length we defined before that list(train_loader)[0] # Alternative to above, this is much faster but the above code is easy to understand and implement next(train_loader.__iter__()) test_batch = next(train_loader.__iter__()) # What methods can we call on this batch object? Text and label test_batch.fields # Let's break this down to check what's in a batch test_batch.text # 1 comment per batch, each comment is limited to a size of 80 as we've defined test_batch.text.size() test_batch.label # Extremely weird problem in torchtext where BucketIterator returns a Batch object versus just a simple tuple of tensors containing our text index and labels # So let's fix this with a new class FixBatchGenerator class FixBatchGenerator: def __init__(self, dl, x_field, y_field): self.dl, self.x_field, self.y_field = dl, x_field, y_field def __len__(self): return len(self.dl) def __iter__(self): for batch in self.dl: X = getattr(batch, self.x_field) y = getattr(batch, self.y_field) yield (X,y) train_loader, valid_loader, test_loader = FixBatchGenerator(train_loader, 'text', 'label'), FixBatchGenerator(valid_loader, 'text', 'label'), FixBatchGenerator(test_loader, 'text', 'label') # Text index print(next(train_loader.__iter__())[0]) # Text label print(next(train_loader.__iter__())[1]) class FeedforwardNeuralNetModel(nn.Module): def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim): super(FeedforwardNeuralNetModel, self).__init__() # Embedding layer self.embedding = nn.Embedding(input_dim, embedding_dim) # Linear function self.fc1 = nn.Linear(embedding_dim*embedding_dim, hidden_dim) # Linear function (readout) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): # Embedding embedded = self.embedding(x) embedded = embedded.view(-1, embedding_dim*embedding_dim) # Linear function out = self.fc1(embedded) # Non-linearity out = torch.relu(out) # Toggle 3: Dropout # out = torch.dropout(out, 0.8) # Linear function (readout) # Take note here use a final sigmoid function so your loss should not go through sigmoid again. # BCELoss is the right class to use as it doesn't pass your output through a sigmoid function again. # In multi-class problems you're used to softmax which can be simplified to a logistic, # function when you have a two-class problem. out = self.fc2(out) out = torch.sigmoid(out) return out input_dim = num_words + 2 embedding_dim = max_len hidden_dim = 32 output_dim = 1 # Instantiate model class and assign to object model = FeedforwardNeuralNetModel(input_dim, embedding_dim, hidden_dim, output_dim) # Push model to CUDA device if available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) # Loss function criterion = nn.BCELoss() # Optimizer # Toggle 2: L2 Norm option - this is called weight decay # optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=0.005) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # Number of groups of parameters print('Number of groups of parameters {}'.format(len(list(model.parameters())))) print('-'*50) # Print parameters for i in range(len(list(model.parameters()))): print(list(model.parameters())[i].size()) print('-'*50) iter = 0 num_epochs = 10 history_train_acc, history_val_acc, history_train_loss, history_val_loss = [], [], [], [] best_accuracy = 0 for epoch in range(num_epochs): # print('-'*50) for i, (samples, labels) in enumerate(train_loader): # Training mode model.train() # Load samples samples = samples.view(-1, max_len).to(device) labels = labels.view(-1, 1).to(device) # Clear gradients w.r.t. parameters optimizer.zero_grad() # Forward pass to get output/logits outputs = model(samples) # Calculate Loss: softmax --> cross entropy loss loss = criterion(outputs, labels) # Toggle 1: L1 norm, add to original loss # fc1_params = torch.cat([x.view(-1) for x in model.fc1.parameters()]) # loss += 0.001 * torch.norm(fc1_params, 1) # Getting gradients w.r.t. parameters loss.backward() # Updating parameters optimizer.step() iter += 1 if iter % 100 == 0: # Get training statistics train_loss = loss.data.item() # Testing mode model.eval() # Calculate Accuracy correct = 0 total = 0 # Iterate through test dataset for samples, labels in valid_loader: # Load samples samples = samples.view(-1, max_len).to(device) labels = labels.view(-1).to(device) # Forward pass only to get logits/output outputs = model(samples) # Val loss val_loss = criterion(outputs.view(-1, 1), labels.view(-1, 1)) # We use a threshold to define. # There is another way to do this with one-hot label. Feel free to explore and understand what are the pros/cons of each. # This opens up a whole topic on why it becomes problematic when we expand beyond 2 class to 10 classes. # Why do we encode? Why can't we do 0, 1, 2, 3, 4 etc. without one-hot encoding? predicted = outputs.ge(0.5).view(-1) # Total number of labels total += labels.size(0) # Total correct predictions correct += (predicted.type(torch.FloatTensor).cpu() == labels.type(torch.FloatTensor)).sum().item() # correct = (predicted == labels.byte()).int().sum().item() accuracy = 100. * correct / total # Print Loss print('Iter: {} | Train Loss: {} | Val Loss: {} | Val Accuracy: {}'.format(iter, train_loss, val_loss.item(), round(accuracy, 2))) # Append to history history_val_loss.append(val_loss.data.item()) history_val_acc.append(round(accuracy, 2)) history_train_loss.append(train_loss) # Save model when accuracy beats best accuracy if accuracy > best_accuracy: best_accuracy = accuracy # We can load this best model on the validation set later torch.save(model.state_dict(), 'best_model.pth') # Plotting loss graph plt.plot(history_train_loss, label='Train') plt.plot(history_val_loss, label='Validation') plt.title('Loss Graph') plt.legend() plt.show() # Plotting validation accuracy graph plt.plot(history_val_acc) plt.title('Validation Accuracy') weights = torch.Tensor().to(device) for param_group in list(model.parameters()): weights = torch.cat((param_group.view(-1), weights)) print(param_group.size()) # Toggle 0: No regularization weights_nothing = weights.cpu().detach().numpy() # Toggle 1: L1 norm on FC1 # weights_L1 = weights.detach().numpy() # Toggle 2: L2 norm # weights_L2 = weights.detach().numpy() # Toggle 3: dropout # weights_dropout = weights.detach().numpy() # plt.hist(weights_L1.reshape(-1), range=(-.5, .5), bins=20) # plt.hist(weights_nothing.reshape(-1), range=(-.5, .5), bins=20) # Show weight distribution plt.hist(( weights_nothing.reshape(-1), weights_L1.reshape(-1), weights_L2.reshape(-1), ), 49, range=(-.5, .5), label=( 'No-reg', 'L1', 'L2', )) plt.legend(); ###Output _____no_output_____
.ipynb_checkpoints/M3_Reco_Exploration-checkpoint.ipynb
###Markdown M3 Reconstruction Training a Neural Network to identify the best M3 ComboBy Zach Shelton4/21/2021 ###Code #NanoAOD HackSchema #Solution from Danny Noonan from __future__ import print_function, division import uproot import numpy as np #Make sure to install both old awkward0 and new awkward1(referred to now as awkward) import awkward1 as ak import awkward0 as ak0 from coffea.nanoevents import NanoAODSchema,NanoEventsFactory from uproot3_methods import TLorentzVectorArray import uproot3_methods import numpy as np import coffea.hist as hist import matplotlib.pyplot as plt import awkward class HackSchema(NanoAODSchema): def __init__(self, base_form): base_form["contents"].pop("Muon_fsrPhotonIdx", None) base_form["contents"].pop("Electron_photonIdx", None) super().__init__(base_form) def m3_recon(tree): comb= ak.combinations(tree,n=3,axis=1,fields=['j1','j2','j3']) trijets= comb.j1+comb.j2+comb.j3 recon =ak.max(trijets,axis=1) reconfinal=np.sqrt(recon.t*recon.t-recon.x*recon.x-recon.y*recon.y-recon.z*recon.z) list1= ak.to_numpy(reconfinal) return list1 files ="TTbarPowheg_Semilept_Skim_NanoAOD_1of21.root" import coffea.processor as processor from pprint import pprint file=uproot.open(files) nEvents=file['hEvents'].values[0]+file['hEvents'].values[2] from pprint import pprint ###Output C:\Users\zshel\anaconda3\envs\top_tag1\lib\site-packages\awkward0\__init__.py:23: FutureWarning: Consider switching from 'awkward0' to 'awkward', since the new interface became the default in 2020. pip install -U awkward In Python: >>> import awkward as ak >>> new_style_array = ak.from_awkward0(old_style_array) >>> old_style_array = ak.to_awkward0(new_style_array) FutureWarning ###Markdown Note: It seems the Jet columns are sorted from greatest p_t to smallest p_tFeel free to test, but it seems to be my observation, choosing the 1st, 2nd or 3rd jet via index should remove the issue of it being a coffea sorting artifact or procedure ###Code #Now lets redo with the cuts detailed by CMS Draft Analysis #https://drive.google.com/file/d/1XEOLyZ-Q1HdEQY379RpyyQkOF1Q8KlsL/view events =NanoEventsFactory.from_root(files,schemaclass=HackSchema).events() events.GenPart.pdgId #Condensing All Cuts to a single Cell tight_jets=events.Jet print(tight_jets) jetSel = ak.num(tight_jets[((tight_jets.pt>30)&(tight_jets.eta<2.4)&(tight_jets.eta>-2.4))],axis=1)>=3 jetSelection=(jetSel&(ak.num(tight_jets.btagCSVV2>.4184)>=1)) #Condensing_all Lepton_cuts tight_muons = events.Muon muonsel=ak.num(tight_muons[((tight_muons.pt>30)&(abs(tight_muons.eta)<2.4))],axis=1)==1 tight_electrons= events.Electron electronsel=ak.num(tight_electrons[((tight_electrons.pt>35)&(abs(tight_electrons.eta)<2.4))],axis=1)==1 leptonsel=(muonsel|electronsel) print(leptonsel) jetlepselmask = (jetSelection&leptonsel) print((jetlepselmask)) print(events[jetlepselmask]) final=events[jetlepselmask] #postcuts_m3=m3_recon(events[jetlepselmask].Jet) events =NanoEventsFactory.from_root(files,schemaclass=HackSchema).events() events.Jet.fields #events.Jet. jets = ak.zip({"pt":final.Jet.pt[:,0:8],"eta":final.Jet.eta[:,0:8],"phi":final.Jet.phi[:,0:8],"mass":final.Jet.mass[:,0:8],"btag":final.Jet.btagCSVV2[:,0:8]}) jets.fields #First cut Combos without b-tagged #This will become my data tensor I pass to a Neural Net, pending additions of more(the combinations): comb= ak.combinations(jets,n=3,axis=1,highlevel=1) truthcomb=ak.combinations(final.GenJet.partonFlavour[:,0:8],n=3,axis=1) truth={'b~':-5,'b':5,'s':3,'s~':-3,'c':4,'c~':-4,'non-jet':0,'d':1,'d~':-1,'t':6,'t~':-6,'g':21,'g~':-21,'u':2,'u~':-2} test =truthcomb[1] #Absolute Value of Truth Terms should add up to 11,13,15 corresponding to d,s,b sumray=(abs(truthcomb['0'])+abs(truthcomb['1'])+abs(truthcomb['2'])) m1=sumray==11 m2=sumray==13 m3=sumray==15 mask=m1|m2|m3 #mask is a 35xN Awkward array. TruthValues=mask pprint(mask[1]) ###Output <Array [True, False, False, ... False, False] type='35 * bool'> ###Markdown Notes for work- Jet TightID- More - Particle Values- Delta RWrap into Coffea ExecutorSeperate values, weights and triggersread these into tensors for KerasBest ML Algorithm?- Deep Neural Net- Iterative Boosted Tree - They are fast - External ML algorithm modifies BDT parameters- Combine old processes togetherShould I use Keras or PyTorch?_______________________________________________________________________________Running Notes and questions- Standardizing the "size", tensorflow has a ragged tensor, which is tf's variable size data arrays. I keep getting the following output - Awkward doesn't have native access to ndim? That seems not correct, not sure if its my implementation. ###Code #Create truth groups 2 bjets and 1 light(gluon?) ###Output _____no_output_____
matplotlib/gallery_jupyter/axisartist/demo_ticklabel_alignment.ipynb
###Markdown Demo Ticklabel Alignment ###Code import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist def setup_axes(fig, rect): ax = axisartist.Subplot(fig, rect) fig.add_subplot(ax) ax.set_yticks([0.2, 0.8]) ax.set_yticklabels(["short", "loooong"]) ax.set_xticks([0.2, 0.8]) ax.set_xticklabels([r"$\frac{1}{2}\pi$", r"$\pi$"]) return ax fig = plt.figure(figsize=(3, 5)) fig.subplots_adjust(left=0.5, hspace=0.7) ax = setup_axes(fig, 311) ax.set_ylabel("ha=right") ax.set_xlabel("va=baseline") ax = setup_axes(fig, 312) ax.axis["left"].major_ticklabels.set_ha("center") ax.axis["bottom"].major_ticklabels.set_va("top") ax.set_ylabel("ha=center") ax.set_xlabel("va=top") ax = setup_axes(fig, 313) ax.axis["left"].major_ticklabels.set_ha("left") ax.axis["bottom"].major_ticklabels.set_va("bottom") ax.set_ylabel("ha=left") ax.set_xlabel("va=bottom") plt.show() ###Output _____no_output_____
tf/Cond_prob.ipynb
###Markdown Conditional Probablity of touch type|trial type and choice | touch type, trial type ###Code # Import libraries import matplotlib.pyplot as plt %matplotlib inline import pandas as pd import seaborn as sns import numpy as np from sklearn.metrics import confusion_matrix # load pro/ret, trial type and choice data tt = pd.read_csv('~/work/whiskfree/data/tt_36_subset_sorted.csv',header=None) ch = pd.read_csv('~/work/whiskfree/data/ch_36_subset_sorted.csv',header=None) proret = pd.read_csv('~/work/whiskfree/data/proret_36_subset_sorted.csv',header=None) tt = tt.values.reshape(-1,1) ch = ch.values.reshape(-1,1) proret = proret.values.reshape(-1,1) cm_tt = confusion_matrix(tt,proret) def labelled_image(cm): with sns.axes_style("white"): plt.imshow(cm,interpolation='none') for i in range(0,3): for j in range(0,3): plt.text(j, i, "{0:.2f}".format(cm[i,j]), va='center', ha='center',bbox=dict(facecolor='white',edgecolor='white', alpha=0.5)) xlabels = ['Retraction','Protraction','No Touch'] ylabels = ['Posterior','Anterior','No Go'] plt.title('Touch type | Trial type') plt.xlabel('Touch type') plt.ylabel('Trial type') plt.xticks([0,1,2],xlabels) plt.yticks([0,1,2],ylabels) labelled_image(cm_tt) cm_tt/np.sum(cm_tt) print(cm_tt) print(sum(cm_tt.T)) norm_cm_tt = cm_tt.T/sum(cm_tt.T) norm_cm_tt = norm_cm_tt.T 198/(198+28+83) 81/(81+110+66) labelled_image(norm_cm_tt) plt.title('P(Touch type|Trial type)') norm_cm_tch = cm_tt/sum(cm_tt) labelled_image(norm_cm_tch) plt.title('P(Trial type | Touch type)') ###Output _____no_output_____ ###Markdown Now compute P (choice | trial type, touch type) ###Code ch_given_ttpr = np.zeros([3,3,3]) for i in range(len(tt)): tt_i = tt[i] ch_i = ch[i] pr_i = proret[i] ch_given_ttpr[tt_i-1,pr_i-1,ch_i-1] += 1 x = plt.hist(ch) labelled_image(ch_given_ttpr[:,:,0]) plt.title('Trial type | Touch type, Choice = 0') print(np.sum(ch_given_ttpr[:,:,0])) labelled_image(ch_given_ttpr[:,:,1]) plt.title('Trial type | Touch type, Choice = 1') print(np.sum(ch_given_ttpr[:,:,1])) labelled_image(ch_given_ttpr[:,:,2]) plt.title('Trial type | Touch type, Choice = 2') print(np.sum(ch_given_ttpr[:,:,2])) for i in range(3): print(i) plt.plot(ch[:100]) labelled_image(confusion_matrix(tt,ch)) plt.xticks([0,1,2],ylabels) ###Output _____no_output_____
notebooks/autoencoders/CIFAR10/one_anomaly_detector.ipynb
###Markdown Fashion MNIST ###Code from keras.datasets import fashion_mnist from sklearn.metrics import roc_auc_score from sklearn.metrics import mean_squared_error _, (fashion_x_test, _) = fashion_mnist.load_data() fashion_x_test = fashion_x_test.astype('float32') / 255. fashion_x_test = np.reshape(fashion_x_test, (len(x_test), 28, 28, 1)) show_10_images(fashion_x_test) show_10_images(autoencoder.predict(fashion_x_test)) labels = len(x_test) * [0] + len(fashion_x_test) * [1] test_samples = np.concatenate((x_test, fashion_x_test)) losses = anomaly_detector.predict(test_samples) print("AUROC:", roc_auc_score(labels, losses)) ###Output AUROC: 0.99937089 ###Markdown EMNIST Letters ###Code from torchvision.datasets import EMNIST emnist_letters = EMNIST('./', "letters", train=False, download=True) emnist_letters = emnist_letters.test_data.numpy() emnist_letters = emnist_letters.astype('float32') / 255. emnist_letters = np.swapaxes(emnist_letters, 1, 2) emnist_letters = np.reshape(emnist_letters, (len(emnist_letters), 28, 28, 1)) show_10_images(emnist_letters) show_10_images(autoencoder.predict(emnist_letters)) labels = len(x_test) * [0] + len(emnist_letters) * [1] test_samples = np.concatenate((x_test, emnist_letters)) losses = anomaly_detector.predict(test_samples) print("AUROC:", roc_auc_score(labels, losses)) ###Output AUROC: 0.9604927475961538 ###Markdown Gaussian Noise ###Code mnist_mean = np.mean(x_train) mnist_std = np.std(x_train) gaussian_data = np.random.normal(mnist_mean, mnist_std, size=(10000, 28, 28, 1)) show_10_images(gaussian_data) show_10_images(autoencoder.predict(gaussian_data)) labels = len(x_test) * [0] + len(gaussian_data) * [1] test_samples = np.concatenate((x_test, gaussian_data)) losses = anomaly_detector.predict(test_samples) print("AUROC:", roc_auc_score(labels, losses)) ###Output AUROC: 1.0 ###Markdown Uniform Noise ###Code import math b = math.sqrt(3.) * mnist_std a = -b + mnist_mean b += mnist_mean uniform_data = np.random.uniform(low=a, high=b, size=(10000, 28, 28, 1)) show_10_images(uniform_data) show_10_images(autoencoder.predict(uniform_data)) labels = len(x_test) * [0] + len(uniform_data) * [1] test_samples = np.concatenate((x_test, uniform_data)) losses = anomaly_detector.predict(test_samples) print("AUROC:", roc_auc_score(labels, losses)) ###Output AUROC: 1.0
ctypes Tips.ipynb
###Markdown `ctypes` Tips [`ctypes`](https://docs.python.org/3/library/ctypes.html) is a very handy tool for building Python wrappers for shared libraries written for C or C++. In most cases, it is probably preferable to use this, rather than write an *extension module* in C or C++ to provide the Python API: it can take a lot of code to implement the necessary C/C++ wrappers to represent Python objects and methods, while this can usually be done directly in Python with a fraction of the effort.While the documentation for `ctypes` is quite comprehensive, there are a few subtle points that might not be clear.A Python wrapper will typically need a lot of things from the `ctypes` module. Its own documentation page uses wildcard imports in the examples, which I prefer to avoid. Instead, I reference its exports by importing the module under a shorter name: ###Code import ctypes as ct ###Output _____no_output_____ ###Markdown Load The Runtime Library, Not The Development Library Consider the following directory entries currently on my Debian system for the [Cairo](https://cairographics.org/) graphics library: /usr/lib/x86_64-linux-gnu/libcairo.so -> libcairo.so.2.11600.0 /usr/lib/x86_64-linux-gnu/libcairo.so.2 -> libcairo.so.2.11600.0 /usr/lib/x86_64-linux-gnu/libcairo.so.2.11600.0As you can see, there are 3 separate names for the same file. Which one should you use?The answer is, use the name `libcairo.so.2`. The unversioned name comes from the *development* package: > dpkg-query -S /usr/lib/x86_64-linux-gnu/libcairo.so libcairo2-dev:amd64: /usr/lib/x86_64-linux-gnu/libcairo.sowhile the versioned names come from the *runtime* package: > dpkg-query -S /usr/lib/x86_64-linux-gnu/libcairo.so.2 libcairo2:amd64: /usr/lib/x86_64-linux-gnu/libcairo.so.2So, in a wrapper for Cairo, you would load the library using something like cairo = ct.cdll.LoadLibrary("libcairo.so.2")You only need to care about the first numeric component of the version, since that is the one incremented for any ABI changes (which might necessitate changes to your wrapper).While having the development package installed is useful while you are developing your wrapper (being able to refer to the include files for information, etc), you should only require your users to have the runtime package in order to be able to run scripts that use your wrapper. Of course, they, too might find the development package useful when writing such scripts. But let that be their choice.This only applies to distros like Debian which publish their packages in precompiled binary form. In ones like Gentoo, where users install everything from source, there is no distinction between “development” and “runtime” packages. `c_void_p` The `ctypes` explanation of `c_void_p` (the untyped pointer) is that the Python type is `int` or `None`. When creating a `c_void_p`, you can pass an integer for the address (including 0 for `NULL`), or you can pass `None` as an alternative for `NULL`. But when getting back one of these, the 0 or `NULL` address is always converted to `None`: ###Code p1 = ct.c_void_p(3) p2 = ct.c_void_p(0) print(p1.value, p2.value) ###Output _____no_output_____ ###Markdown Note that, while other pointer types have a `contents` attribute you can use to dereference the pointer, `c_void_p` does not. Getting Addresses Of Python Objects Sometimes you want to pass the address of the data inside a Python object directly to a library routine, to save copying data back and forth. This is particularly useful for Python objects of type `bytes` and `bytearray`, as well as arrays created with the [`array`](https://docs.python.org/3/library/array.html) module. This has to be done in slightly different ways for these different objects.To demonstrate this, I will make calls to the low-level `libc` [`memcpy`(3)](https://linux.die.net/man/3/memcpy) routine to copy data between Python objects: ###Code libc = ct.cdll.LoadLibrary("libc.so.6") libc.memcpy.restype = ct.c_void_p libc.memcpy.argtypes = (ct.c_void_p, ct.c_void_p, ct.c_size_t) # dst, src, count ###Output _____no_output_____ ###Markdown For a `bytes` object, a simple `cast` is sufficient to obtain the address of the data: ###Code b1 = b"some:text" b2 = b"other text" print(b1, b2) b1adr = ct.cast(b1, ct.c_void_p).value b2adr = ct.cast(b2, ct.c_void_p).value libc.memcpy(b2adr, b1adr, 5) print(b1, b2) ###Output _____no_output_____ ###Markdown For a `bytearray`, things are slightly more involved. ###Code b1 = bytearray(b"different text") b1adr = ct.addressof((ct.c_ubyte * len(b1)).from_buffer(b1)) libc.memcpy(b2adr, b1adr, 6) print(b1, b2) ###Output _____no_output_____ ###Markdown By the way, you can’t use this technique on `bytes`; it appears this only works on *mutable* objects.[`array`](https://docs.python.org/3/library/array.html) arrays have a `buffer_info()` method which returns the address and length of the underlying memory buffer. While this still works, it is apparently deprecated. So the same trick works as for `bytearray`s: ###Code import array b1 = array.array("B", b"yet other text") b1adr = ct.addressof((ct.c_ubyte * len(b1)).from_buffer(b1)) libc.memcpy(b2adr, b1adr, 7) print(b1.tobytes(), b2) ###Output _____no_output_____ ###Markdown Casting can be used to create a pointer to a `ctypes` array type. ###Code b = bytearray(b"some text") b1 = (ct.c_ubyte * 0).from_buffer(b) ###Output _____no_output_____ ###Markdown In this case, I have set the array length to 0, which prevents me from using `b1` directly to access any of the bytes in `b`, but a pointer constructed from `b1` is not so constrained: ###Code p = ct.cast(b1, ct.POINTER(ct.c_ubyte)) [chr(c) for c in p[0:3]] ###Output _____no_output_____ ###Markdown Because the original Python object is mutable, `ctypes` allows me to use the pointer to assign to its components from within Python (this would not be allowed for a pointer into a `bytes` object, for example): ###Code p[5] = ord("z") b ###Output _____no_output_____ ###Markdown Of course, external libraries are not going to respect Python’s access-control mechanisms. `c_char` And `c_char_p` A `c_char_p` is not quite equivalent to `ct.POINTER(c_char)`; it is assumed to point to a *null-terminated* array of `c_char`. Accessing the `value` attribute returns the data up to, but not including, the terminating null: ###Code b = b"hello\0 there" ct.cast(b, ct.c_char_p).value ###Output _____no_output_____ ###Markdown Note you cannot assign to the `value` or `contents` of a `c_char_p` (this silently reallocates the buffer to hold the new value): ###Code ct.cast(b, ct.c_char_p).contents = b"text" b ###Output _____no_output_____ ###Markdown But you can to the `value` of an _array_ of `c_char` (note the extra null inserted after the value): ###Code ct.cast(b, ct.POINTER(len(b) * ct.c_char))[0][0:4] = (4 * ct.c_char)(*list(b"text")) b ###Output _____no_output_____ ###Markdown Here’s a similar thing done to a `bytearray` instead of a `bytes` object: ###Code b = bytearray(b"hello\0 there") (len(b) * ct.c_char).from_buffer(b).value = b"tex" b ###Output _____no_output_____ ###Markdown Array Conversions Conversion of a ctypes array (at least of simple element types) to a Python sequence is quite straightforward: ###Code c_arr = (3 * ct.c_int)(5, 4, 3) list(c_arr) ###Output _____no_output_____ ###Markdown Conversion the other way is slightly more involved: ###Code arr = [8, 7, 6] c_arr = (len(arr) * ct.c_int)(*arr) c_arr, list(c_arr) ###Output _____no_output_____ ###Markdown Pointers To Simple Types Dereferencing a pointer to a simple type can be done either via the `contents` attribute or by array indexing. But note that `contents` returns a reference to the `ctypes` object holding the value; this in turn has a `value` attribute that you can use to change the value. ###Code i1 = ct.c_int(3) i2 = ct.c_int(3) p1 = ct.pointer(i1) p2 = ct.pointer(i2) print(p1.contents, p2[0]) p1.contents.value = 2 # “p1.contents = 2” won’t work p2[0] = 5 print(p1.contents, p2.contents) ###Output _____no_output_____
jupyter_notebooks/15_JSON_YAML.ipynb
###Markdown Python Cheat SheetBasic cheatsheet for Python mostly based on the book written by Al Sweigart, [Automate the Boring Stuff with Python](https://automatetheboringstuff.com/) under the [Creative Commons license](https://creativecommons.org/licenses/by-nc-sa/3.0/) and many other sources. Read It- [Website](https://www.pythoncheatsheet.org)- [Github](https://github.com/wilfredinni/python-cheatsheet)- [PDF](https://github.com/wilfredinni/Python-cheatsheet/raw/master/python_cheat_sheet.pdf)- [Jupyter Notebook](https://mybinder.org/v2/gh/wilfredinni/python-cheatsheet/master?filepath=jupyter_notebooks) JSON, YAML and configuration files JSONOpen a JSON file with: ###Code import json with open("filename.json", "r") as f: content = json.loads(f.read()) ###Output _____no_output_____ ###Markdown Write a JSON file with: ###Code import json content = {"name": "Joe", "age": 20} with open("filename.json", "w") as f: f.write(json.dumps(content, indent=2)) ###Output _____no_output_____ ###Markdown YAMLCompared to JSON, YAML allows a much better humain maintainance and gives ability to add comments.It is a convinient choice for configuration files where human will have to edit.There are two main librairies allowing to access to YAML files:- [PyYaml](https://pypi.python.org/pypi/PyYAML)- [Ruamel.yaml](https://pypi.python.org/pypi/ruamel.yaml)Install them using `pip install` in your virtual environment.The first one it easier to use but the second one, Ruamel, implements much better the YAMLspecification, and allow for example to modify a YAML content without altering comments.Open a YAML file with: ###Code from ruamel.yaml import YAML with open("filename.yaml") as f: yaml=YAML() yaml.load(f) ###Output _____no_output_____ ###Markdown Anyconfig[Anyconfig](https://pypi.python.org/pypi/anyconfig) is a very handy package allowing to abstract completly the underlying configuration file format. It allows to load a Python dictionary from JSON, YAML, TOML, and so on.Install it with: ###Code %%bash pip install anyconfig ###Output _____no_output_____ ###Markdown Usage: ###Code import anyconfig conf1 = anyconfig.load("/path/to/foo/conf.d/a.yml") ###Output _____no_output_____
Guest Lectures/Image Processing/Pres_4_DL_Workflow.ipynb
###Markdown Deep Learning refers to the artificial neural network ###Code from keras.datasets import mnist (train_images, train_labels),(test_images,test_labels) = mnist.load_data() # Get the statistics of the taining and testing data print(train_images.shape) print(train_labels.shape) print(test_images.shape) print(test_labels.shape) from keras import layers from keras import models network = models.Sequential() network.add(layers.Dense(512, activation='relu',input_shape=(28*28,))) network.add(layers.Dense(10,activation='softmax')) print(network.summary()) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # Reshaping the values train_images = train_images.reshape((60000,28*28)) test_images = test_images.reshape((10000,28*28)) # Convert the type of float train_images = train_images.astype('float32')/255 test_images = test_images.astype('float32')/255 from keras.utils import to_categorical print(train_labels) train_labels = to_categorical(train_labels) print(train_labels) network.fit(train_images, train_labels,epochs=5, batch_size=128) ###Output _____no_output_____
notebooks/twitter_data_exploration_400k_tweets.ipynb
###Markdown Exploring the Complete Twitter Dataset* The purpose of this notebook is to explore the full dataset of 400k tweets relating to bcpoli* Tweet created dates range from August 14, 2020 to November 19, 2020* Columns not required for analysis will be dropped here. * The remaining data will be exported for preprocessing in "classify_unlabelled_tweets.ipynb" ###Code import sys sys.path.insert(0, '~/data_bootcamp/data-science-final-project/scripts/') import pandas as pd import numpy as np import pdpipe as pdp import re import string import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) from IPython.display import JSON import matplotlib.pyplot as plt import pickle # Pandas Display Settings, if you wish #pd.set_option('display.max_colwidth', None) #pd.set_option("display.max_columns", 30) # Import custom functions from functions import * ###Output [nltk_data] Downloading package vader_lexicon to [nltk_data] /Users/lclark/nltk_data... [nltk_data] Package vader_lexicon is already up-to-date! ###Markdown ~398K Tweets from August 14th, 2020 - November 19th, 2020 ###Code %%time df = pd.read_json('/Volumes/My Passport/Tweets/bcpoli_400k_extended.jsonl', lines=True) df.info(memory_usage='deep') # It appears that over ten thousand. tweets have been deleted since August %%time # Make copy of imported data and set index to unique tweet ID raw = df.copy() raw = raw[~raw.index.duplicated(keep='first')] # Filter out columns raw = col_filter(raw) # Extract features from user column dict with .get raw = extract_username(raw) # Create is_retweet column raw['is_retweet'] = raw['full_text'].apply(is_retweet) # This was originally for pdpipe and could be rewrittten # Create new col "rt_full_text" from dict column "retweet_status" raw = extract_full_text(raw) # Repalce truncated retweet full_text raw = replace_retweet_text(raw) ###Output _____no_output_____ ###Markdown Creating a Data Processing Pipeline ###Code %%time # Pandas Processing Pipeline pipeline = pdp.ColDrop('user') pipeline+= pdp.ApplyByCols('full_text', lower_case, 'full_lower', drop=False) pipeline+= pdp.ApplyByCols('full_lower', covid_mention, 'covid_mention', drop=True) pipeline+= pdp.ApplyByCols('full_text', preprocess, 'full_clean', drop=False) pipeline+= pdp.ApplyByCols('full_text', (lambda x: preprocess(x, hashtags=True)), 'no_hashtags', drop=False) pipeline+= pdp.ApplyByCols('full_text', vader_preprocess, 'vader_text', drop=False) pipeline+= pdp.ColDrop('retweeted_status') pipeline+= pdp.ColDrop('rt_full_text') raw = pipeline(raw) raw.sample(n=5) raw.user_name.nunique() ###Output _____no_output_____ ###Markdown Create new DataFrames separate analysis ###Code # Using the updated DataFrame of tweet. # df_filtered_tweets_master has been processed identically as above # df_filtered_tweets_master will always be the most current DataFrame # Reproduciibility still possible with /data/tweet_ids.txt. It is updated with the tweet_ids from df_filtered_tweets_master raw = pd.read_pickle('~/data_bootcamp/data-science-final-project/data/df_filtered_tweets_master.pkl') # Create a new column with word lemma # This will drastically improve the qauilty and variance of ngrams raw['lemma'] = raw.no_hashtags.apply(lambda x: lemmatize_text(x)) raw.head() # Create new DataFrame of only original tweets df_no_rt = raw[raw['is_retweet'] == 0] df_no_rt.info() # Create a new DatFrame with only original non-covid tweets # This will be used to guage the covids impact on sentiment df_no_rt_no_covid = df_no_rt[df_no_rt['covid_mention'] == 0] df_no_rt_no_covid.info() # Create a new DataFrame with only original covid, mentioning tweets # This will be used to guage the covids impact on sentiment df_no_rt_covid_mention = df_no_rt[df_no_rt['covid_mention'] == 1] df_no_rt_covid_mention.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 33423 entries, 1294232573636304896 to 1333146115932209152 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 created_at 33423 non-null datetime64[ns, UTC] 1 full_text 33423 non-null object 2 vader_text 33423 non-null object 3 no_hashtags 33423 non-null object 4 full_clean 33423 non-null object 5 covid_mention 33423 non-null int64 6 retweet_count 33423 non-null int64 7 user_name 33423 non-null object 8 is_retweet 33423 non-null int64 9 lemma 33423 non-null object dtypes: datetime64[ns, UTC](1), int64(3), object(6) memory usage: 2.8+ MB ###Markdown Examining some metrics ###Code # Total retweet count of all 384221 tweets raw.is_retweet.sum() # Estimated total covid/pandemic mentions raw.covid_mention.sum() raw.info() # Estimated total covid/pandemic mentions in 112131 original tweets no_rt_count = df_no_rt.shape[0] no_rt_covid_count = df_no_rt.covid_mention.sum() mention_ratio_no_rt = (no_rt_covid_count/no_rt_count) * 100 print('Estimated percentage of tweets related to #bcpoli that mention covid or the pandemic in some way:', '%0.2f'% mention_ratio_no_rt,'%') print(f'Total of {no_rt_count} original tweets related to #bcpoli that mention covid or the pandemic in some way:', no_rt_covid_count) ###Output Estimated percentage of tweets related to #bcpoli that mention covid or the pandemic in some way: 29.65 % Total of 112734 original tweets related to #bcpoli that mention covid or the pandemic in some way: 33423 ###Markdown Bigrams, Trigrams and TopicsA new column for lemmatized words should be created when extracting ngrams, as the ngrams will be diluted with plural and non-plural forms of words ###Code # Most frequent bigrams, hastags removed, stop words removed - Includes original tweets and retweets # This will be more interesting with data grouped by week top_ngrams(raw, n=2, ngrams=20) # Top bigrams from original tweets only top_ngrams(df_no_rt, n=2, ngrams=20) # Top bigrams from original tweets only, without covid mentioned # This is a good example of when stemming is benficial - See pluralized words below top_ngrams(df_no_rt_no_covid, n=2, ngrams=20) # Most frequent trigrams, hastags removed, stop words removed - Includes original tweets and retweets # This will be more interesting with data grouped by week top_ngrams(raw, n=3, ngrams=20) # Top trigrams from original tweets only top_ngrams(df_no_rt, n=3, ngrams=20) # Top trigrams from original tweets only, without covid mentioned # This is a good example of when stemming is benficial - See pluralized words below # Also a great example of why trigrams are useful - (old, growth) (growth, forests) top_ngrams(df_no_rt_no_covid, n=3, ngrams=20) # Pickle DataFrames for later use #df_no_rt.to_pickle('~/data_bootcamp/data-science-final-project/data/df_original_tweets.pkl') #df_no_rt_covid_mention.to_pickle('~/data_bootcamp/data-science-final-project/data/df_original_tweets_covid_mention.pkl') #df_no_rt_no_covid.to_pickle('~/data_bootcamp/data-science-final-project/data/df_original_tweets_no_covid.pkl') ###Output _____no_output_____
v1.52.2/Functions/4. User comparison.ipynb
###Markdown 4. User comparison Table of Contents1. [Preparation](preparation)2. [Functions](functions)3. [Tests](tests) Preparation ###Code %run "../Functions/3. Per session and per user analysis.ipynb" print("4. User comparison") ###Output _____no_output_____ ###Markdown Functions ###Code def getAllUsers( dataframe ): allUserIds = np.array(dataframe['userId'].unique()) allUserIds = [i for i in allUserIds if not i in ['nan', np.nan, 'null']] return allUserIds # _source is used as correction source, if we want to include answers to these questions def getAllUserVectorData( userIds, _rmDF, _gfDF, _source = correctAnswers, _printDebug = True, _binary=True): # result isInitialized = False allData = [] f = FloatProgress(min=0, max=len(userIds)) display(f) for userId in userIds: #print(str(userId)) f.value += 1 dataVector = getUserDataVector(userId, _rmDF = _rmDF, _gfDF = _gfDF, _source = _source, _printDebug = _printDebug, _binary=_binary) if not isInitialized: isInitialized = True allData = dataVector else: allData = pd.concat([allData, dataVector], axis=1) f.close() del f #print('done') return allData def getAllUserVectorDataCustom(_rmDF, _gfDF, before, after, gfMode = False, rmMode = True, sessionCount = 1): userIds = [] if (before and after): userIds = getSurveysOfUsersWhoAnsweredBoth(_gfDF, gfMode = gfMode, rmMode = rmMode) elif before: if rmMode: userIds = getRMBefores(_gfDF) else: userIds = getGFBefores(_gfDF) elif after: if rmMode: userIds = getRMAfters(_gfDF) else: userIds = getGFormAfters(_gfDF) if(len(userIds) > 0): userIds = userIds[localplayerguidkey] allUserVectorData = getAllUserVectorData(userIds, _rmDF = _rmDF, _gfDF = _gfDF) allUserVectorData = allUserVectorData.T result = allUserVectorData[allUserVectorData['sessionsCount'] == sessionCount].T return result else: print("no matching user") return [] methods = ['pearson', 'kendall', 'spearman'] def plotAllUserVectorDataCorrelationMatrix( _allUserVectorData, _method = methods[0], _title='RedMetrics Correlations', _abs=False, _clustered=False, _figsize = (20,20), columnSubset=[] ): _progress = FloatProgress(min=0, max=4) display(_progress) # computation of subset if len(columnSubset) > 0 and pd.Series(columnSubset).isin(_allUserVectorData.columns).all(): _allUserVectorData = _allUserVectorData.loc[:,columnSubset] # computation of correlation matrix _m = _method if(not (_method in methods)): _m = methods[0] _correlation = _allUserVectorData.astype(float).corr(_m) _progress.value += 1 if(_abs): _correlation = _correlation.abs() _progress.value += 1 vmin=-1 if _abs: vmin=0 vmax=1 # plot if(_clustered): # removing NaNs # can't cluster NaN lines in _correlation # copied/pasted from '2. Google form analysis.ipynb' plotCorrelationMatrix _notNaNsIndices = [] _notNaNsColumns = [] for index in _correlation.index: if(~pd.isnull(_correlation.loc[index,:]).all()): _notNaNsIndices.append(index) _correlation = _correlation.loc[_notNaNsIndices,_notNaNsIndices] _progress.value += 1 sns.clustermap( _correlation, cmap=plt.cm.jet, square=True, figsize=_figsize, vmin=vmin, vmax=vmax, ) else: _fig = plt.figure(figsize=_figsize) _ax = plt.subplot(111) _ax.set_title(_title) _progress.value += 1 sns.heatmap( _correlation, ax=_ax, cmap=plt.cm.jet, square=True, vmin=vmin, vmax=vmax, ) _progress.value += 1 def getPercentageCrossCorrect(binarized, figsize=(40,100)): cbar_kws = dict(orientation= "horizontal") #cbar_kws = dict(orientation= "horizontal",location="top") #cbar_kws = dict(orientation= "horizontal", position="top") intermediaryNumerator = getCrossCorrectAnswers(binarized).round().astype(int)*100 percentagesCrossCorrect = (intermediaryNumerator / binarized.shape[0]).round().astype(int) _fig = plt.figure(figsize=figsize) _ax = plt.subplot(121) _ax.set_title('percentage correct') sns.heatmap( percentagesCrossCorrect, ax=_ax, cmap=plt.cm.jet, square=True, annot=True, fmt='d', cbar_kws=cbar_kws, vmin=0, vmax=100, ) totalPerQuestion = np.dot(np.ones(binarized.shape[0]), binarized) totalPerQuestion[totalPerQuestion == 0] = 1 percentagesConditionalCrossCorrect = (intermediaryNumerator / totalPerQuestion).round().astype(int).fillna(0) _ax = plt.subplot(122) _ax.set_title('percentage correct, conditionnally: p(y | x)') sns.heatmap( percentagesConditionalCrossCorrect, ax=_ax, cmap=plt.cm.jet, square=True, annot=True, fmt='d', cbar_kws=cbar_kws, vmin=0, vmax=100, ) plt.tight_layout() def getCompletedRate(_rmdf): players = _rmdf[QUserId].nunique() completers = _rmdf[_rmdf['type'] == 'complete'][QUserId].nunique() return float(completers)/float(players) allBinaryUserVectorDataPath = dataFolderPath + "allBinaryUserVectorData/" allNumericUserVectorDataPath = dataFolderPath + "allNumericUserVectorData/" def getAllDataCSVPath(filePathStem, binary=True): if binary: return allBinaryUserVectorDataPath + filePathStem + csvSuffix return allNumericUserVectorDataPath + filePathStem + csvSuffix def loadAllDataCSV(filePathStem, binary=True): currentDF = pd.read_csv(getAllDataCSVPath(filePathStem, binary=binary), dtype=str) if currentDF.columns[0] == 'Unnamed: 0': currentDF.index = currentDF.loc[:,'Unnamed: 0'] del currentDF.index.name currentDF = currentDF.drop('Unnamed: 0', axis='columns') currentDF = currentDF.apply(np.float64) return currentDF def saveAllDataCSV(allData, filePathStem, binary=True): allData.to_csv(getAllDataCSVPath(filePathStem, binary=binary), encoding=csvEncoding) regenerateData = False if regenerateData: allBinaryDataPlaytestPhase1PretestPosttestUniqueProfiles = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase1PretestPosttestUniqueProfiles), _rmDF = rmdfPlaytestPhase1PretestPosttestUniqueProfiles, _gfDF = gfdfPlaytestPhase1PretestPosttestUniqueProfiles, _source = correctAnswers + demographicAnswers, _binary=True ) allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers), _rmDF = rmdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers, _gfDF = gfdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers, _source = correctAnswers + demographicAnswers, _binary=True ) allBinaryDataPlaytestPhase2PretestPosttestUniqueProfiles = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase2PretestPosttestUniqueProfiles), _rmDF = rmdfPlaytestPhase2PretestPosttestUniqueProfiles, _gfDF = gfdfPlaytestPhase2PretestPosttestUniqueProfiles, _source = correctAnswers + demographicAnswers, _binary=True ) allBinaryDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers), _rmDF = rmdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers, _gfDF = gfdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers, _source = correctAnswers + demographicAnswers, _binary=True ) saveAllDataCSV(allBinaryDataPlaytestPhase1PretestPosttestUniqueProfiles, "PlaytestPhase1PretestPosttestUniqueProfiles", binary=True) saveAllDataCSV(allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers, "PlaytestPhase1PretestPosttestUniqueProfilesVolunteers", binary=True) saveAllDataCSV(allBinaryDataPlaytestPhase2PretestPosttestUniqueProfiles, "PlaytestPhase2PretestPosttestUniqueProfiles", binary=True) saveAllDataCSV(allBinaryDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers, "PlaytestPhase2PretestPosttestUniqueProfilesVolunteers", binary=True) else: allBinaryDataPlaytestPhase1PretestPosttestUniqueProfiles = loadAllDataCSV("PlaytestPhase1PretestPosttestUniqueProfiles", binary=True) allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers = loadAllDataCSV("PlaytestPhase1PretestPosttestUniqueProfilesVolunteers", binary=True) allBinaryDataPlaytestPhase2PretestPosttestUniqueProfiles = loadAllDataCSV("PlaytestPhase2PretestPosttestUniqueProfiles", binary=True) allBinaryDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers = loadAllDataCSV("PlaytestPhase2PretestPosttestUniqueProfilesVolunteers", binary=True) if regenerateData: allNumericDataPlaytestPhase1PretestPosttestUniqueProfiles = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase1PretestPosttestUniqueProfiles), _rmDF = rmdfPlaytestPhase1PretestPosttestUniqueProfiles, _gfDF = gfdfPlaytestPhase1PretestPosttestUniqueProfiles, _source = correctAnswers + demographicAnswers, _binary=False ) allNumericDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers), _rmDF = rmdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers, _gfDF = gfdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers, _source = correctAnswers + demographicAnswers, _binary=False ) allNumericDataPlaytestPhase2PretestPosttestUniqueProfiles = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase2PretestPosttestUniqueProfiles), _rmDF = rmdfPlaytestPhase2PretestPosttestUniqueProfiles, _gfDF = gfdfPlaytestPhase2PretestPosttestUniqueProfiles, _source = correctAnswers + demographicAnswers, _binary=False ) allNumericDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers = getAllUserVectorData( getAllResponders(gfdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers), _rmDF = rmdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers, _gfDF = gfdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers, _source = correctAnswers + demographicAnswers, _binary=False ) saveAllDataCSV(allNumericDataPlaytestPhase1PretestPosttestUniqueProfiles, "PlaytestPhase1PretestPosttestUniqueProfiles", binary=False) saveAllDataCSV(allNumericDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers, "PlaytestPhase1PretestPosttestUniqueProfilesVolunteers", binary=False) saveAllDataCSV(allNumericDataPlaytestPhase2PretestPosttestUniqueProfiles, "PlaytestPhase2PretestPosttestUniqueProfiles", binary=False) saveAllDataCSV(allNumericDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers, "PlaytestPhase2PretestPosttestUniqueProfilesVolunteers", binary=False) else: allNumericDataPlaytestPhase1PretestPosttestUniqueProfiles = loadAllDataCSV("PlaytestPhase1PretestPosttestUniqueProfiles", binary=False) allNumericDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers = loadAllDataCSV("PlaytestPhase1PretestPosttestUniqueProfilesVolunteers", binary=False) allNumericDataPlaytestPhase2PretestPosttestUniqueProfiles = loadAllDataCSV("PlaytestPhase2PretestPosttestUniqueProfiles", binary=False) allNumericDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers = loadAllDataCSV("PlaytestPhase2PretestPosttestUniqueProfilesVolunteers", binary=False) allDataPlaytestPhase1PretestPosttestUniqueProfiles = allBinaryDataPlaytestPhase1PretestPosttestUniqueProfiles allDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers = allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers allDataPlaytestPhase2PretestPosttestUniqueProfiles = allBinaryDataPlaytestPhase2PretestPosttestUniqueProfiles allDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers = allBinaryDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers ###Output _____no_output_____
notebooks/EX-2-ClickHouse-SQL-Alchemy.ipynb
###Markdown ClickHouse SQLAlchemyThis notebook provides simple examples from the clickhouse-sqlalchemy driver including a demonstration of integration with pandas and matplotlib. Import SQLAlchemy + clickhouse-sqlalchemy entities. ###Code from sqlalchemy import create_engine, Column, MetaData, literal from clickhouse_sqlalchemy import Table, make_session, get_declarative_base, types, engines ###Output _____no_output_____ ###Markdown Initialize SQLAlchemy to use local server with native connectivity. If you leave off '+native' the driver will use http[s]. ###Code uri = 'clickhouse+native://default:@localhost/default' engine = create_engine(uri) session = make_session(engine) metadata = MetaData(bind=engine) Base = get_declarative_base(metadata=metadata) ###Output _____no_output_____ ###Markdown Define a class to represent sensor data from devices. ###Code class SensorData(Base): dev_id = Column(types.Int32, primary_key=True) type = Column(types.String) mdate = Column(types.Date) mdatetime = Column(types.DateTime, primary_key=True) value = Column(types.Float64) __table_args__ = ( engines.MergeTree('mdate', ('dev_id', 'mdate')), ) ###Output _____no_output_____ ###Markdown Drop and then recreate the SQL table. Ignore errors if the table does not exist previously. ###Code table = SensorData.__table__ try: table.drop() except: # Exceptions are ignored pass table.create() ###Output _____no_output_____ ###Markdown Create sensor data for 5 mythical devices. Readings increase linearly from a base that is randomly selected for each device. ###Code from datetime import date, datetime, timedelta from random import random today = date.today() this_instant = datetime.today() data = [] for i in range(5): base = random() for j in range(10): data.append({'dev_id': i, 'type': 'widget-a', 'mdate': today, 'mdatetime': this_instant + timedelta(minutes=j), 'value': base + j * 0.1}) session.execute(table.insert(), data) ###Output _____no_output_____ ###Markdown Enable %sql magic function. ###Code %load_ext sql %sql clickhouse://default:@localhost/default ###Output _____no_output_____ ###Markdown Prove that the magic function works by showing tables. %sql can handle any query. ###Code %sql show tables ###Output * clickhouse://default:***@localhost/default Done. ###Markdown Select all rows back and convert to a data frame. ###Code result = %sql select * from sensor_data df = result.DataFrame() df df.describe() ###Output _____no_output_____ ###Markdown Data frames integrate nicely with graphics. Use selection on the data frame to pull out rows for each device in sucession and plot them as separate lines. ###Code import matplotlib.pyplot as plt %matplotlib inline # Break up the data frame and graph each device separately. markers = ['o', 'x', '^', '+', '*'] for i in range(5): df_segment = df[df['dev_id'] == i] plt.plot('mdatetime', 'value', data=df_segment, linestyle='--', marker=markers[i]) plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown It's more common to use ClickHouse to compute aggregates. Find the min, average, and max values for each device and likewise convert them to a data frame. ###Code result = %sql select dev_id, min(value), avg(value), max(value) from sensor_data group by dev_id order by dev_id df2 = result.DataFrame() df2 ###Output * clickhouse://default:***@localhost/default Done. ###Markdown Let's put the average values per device into a nice bar chart. It's easy to add additional sets of bars or create subplots but this will do for today. ###Code plt.bar('dev_id', 'avg(value)', data=df2, align='center', alpha=0.5) plt.title('Average device measurements') plt.xlabel('Device ID') plt.ylabel('Value') plt.show() ###Output _____no_output_____
4-assets/BOOKS/Jupyter-Notebooks/03-Function_Practice_Exercises.ipynb
###Markdown ______Content Copyright by Pierian Data Function Practice ExercisesProblems are arranged in increasing difficulty:* Warmup - these can be solved using basic comparisons and methods* Level 1 - these may involve if/then conditional statements and simple methods* Level 2 - these may require iterating over sequences, usually with some kind of loop* Challenging - these will take some creativity to solve WARMUP SECTION: LESSER OF TWO EVENS: Write a function that returns the lesser of two given numbers *if* both numbers are even, but returns the greater if one or both numbers are odd lesser_of_two_evens(2,4) --> 2 lesser_of_two_evens(2,5) --> 5 ###Code def lesser_of_two_evens(a,b): pass # Check lesser_of_two_evens(2,4) # Check lesser_of_two_evens(2,5) ###Output _____no_output_____ ###Markdown ANIMAL CRACKERS: Write a function takes a two-word string and returns True if both words begin with same letter animal_crackers('Levelheaded Llama') --> True animal_crackers('Crazy Kangaroo') --> False ###Code def animal_crackers(text): pass # Check animal_crackers('Levelheaded Llama') # Check animal_crackers('Crazy Kangaroo') ###Output _____no_output_____ ###Markdown MAKES TWENTY: Given two integers, return True if the sum of the integers is 20 *or* if one of the integers is 20. If not, return False makes_twenty(20,10) --> True makes_twenty(12,8) --> True makes_twenty(2,3) --> False ###Code def makes_twenty(n1,n2): pass # Check makes_twenty(20,10) # Check makes_twenty(2,3) ###Output _____no_output_____ ###Markdown LEVEL 1 PROBLEMS OLD MACDONALD: Write a function that capitalizes the first and fourth letters of a name old_macdonald('macdonald') --> MacDonald Note: `'macdonald'.capitalize()` returns `'Macdonald'` ###Code def old_macdonald(name): pass # Check old_macdonald('macdonald') ###Output _____no_output_____ ###Markdown MASTER YODA: Given a sentence, return a sentence with the words reversed master_yoda('I am home') --> 'home am I' master_yoda('We are ready') --> 'ready are We' Note: The .join() method may be useful here. The .join() method allows you to join together strings in a list with some connector string. For example, some uses of the .join() method: >>> "--".join(['a','b','c']) >>> 'a--b--c'This means if you had a list of words you wanted to turn back into a sentence, you could just join them with a single space string: >>> " ".join(['Hello','world']) >>> "Hello world" ###Code def master_yoda(text): pass # Check master_yoda('I am home') # Check master_yoda('We are ready') ###Output _____no_output_____ ###Markdown ALMOST THERE: Given an integer n, return True if n is within 10 of either 100 or 200 almost_there(90) --> True almost_there(104) --> True almost_there(150) --> False almost_there(209) --> True NOTE: `abs(num)` returns the absolute value of a number ###Code def almost_there(n): pass # Check almost_there(104) # Check almost_there(150) # Check almost_there(209) ###Output _____no_output_____ ###Markdown LEVEL 2 PROBLEMS FIND 33: Given a list of ints, return True if the array contains a 3 next to a 3 somewhere. has_33([1, 3, 3]) → True has_33([1, 3, 1, 3]) → False has_33([3, 1, 3]) → False ###Code def has_33(nums): pass # Check has_33([1, 3, 3]) # Check has_33([1, 3, 1, 3]) # Check has_33([3, 1, 3]) ###Output _____no_output_____ ###Markdown PAPER DOLL: Given a string, return a string where for every character in the original there are three characters paper_doll('Hello') --> 'HHHeeellllllooo' paper_doll('Mississippi') --> 'MMMiiissssssiiippppppiii' ###Code def paper_doll(text): pass # Check paper_doll('Hello') # Check paper_doll('Mississippi') ###Output _____no_output_____ ###Markdown BLACKJACK: Given three integers between 1 and 11, if their sum is less than or equal to 21, return their sum. If their sum exceeds 21 *and* there's an eleven, reduce the total sum by 10. Finally, if the sum (even after adjustment) exceeds 21, return 'BUST' blackjack(5,6,7) --> 18 blackjack(9,9,9) --> 'BUST' blackjack(9,9,11) --> 19 ###Code def blackjack(a,b,c): pass # Check blackjack(5,6,7) # Check blackjack(9,9,9) # Check blackjack(9,9,11) ###Output _____no_output_____ ###Markdown SUMMER OF '69: Return the sum of the numbers in the array, except ignore sections of numbers starting with a 6 and extending to the next 9 (every 6 will be followed by at least one 9). Return 0 for no numbers. summer_69([1, 3, 5]) --> 9 summer_69([4, 5, 6, 7, 8, 9]) --> 9 summer_69([2, 1, 6, 9, 11]) --> 14 ###Code def summer_69(arr): pass # Check summer_69([1, 3, 5]) # Check summer_69([4, 5, 6, 7, 8, 9]) # Check summer_69([2, 1, 6, 9, 11]) ###Output _____no_output_____ ###Markdown CHALLENGING PROBLEMS SPY GAME: Write a function that takes in a list of integers and returns True if it contains 007 in order spy_game([1,2,4,0,0,7,5]) --> True spy_game([1,0,2,4,0,5,7]) --> True spy_game([1,7,2,0,4,5,0]) --> False ###Code def spy_game(nums): pass # Check spy_game([1,2,4,0,0,7,5]) # Check spy_game([1,0,2,4,0,5,7]) # Check spy_game([1,7,2,0,4,5,0]) ###Output _____no_output_____ ###Markdown COUNT PRIMES: Write a function that returns the *number* of prime numbers that exist up to and including a given number count_primes(100) --> 25By convention, 0 and 1 are not prime. ###Code def count_primes(num): pass # Check count_primes(100) ###Output _____no_output_____ ###Markdown Just for fun: PRINT BIG: Write a function that takes in a single letter, and returns a 5x5 representation of that letter print_big('a') out: * * * ***** * * * *HINT: Consider making a dictionary of possible patterns, and mapping the alphabet to specific 5-line combinations of patterns. For purposes of this exercise, it's ok if your dictionary stops at "E". ###Code def print_big(letter): pass print_big('a') ###Output _____no_output_____
01_Plain_Text_Extractor.ipynb
###Markdown Connect to GDrive and set working directory1. Add a shortcut for working directory('IDPCode') to your drive as depicted below:![GDriveConnect.png]()2. Run the command below to connect the GDrive: ###Code from google.colab import drive drive.mount('/content/drive') %cd /content/drive/My Drive/IDPCode/ # Library install examples: https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb !pip install pdfplumber !pip install PyPDF2 !pip install tika !pip install xlsxwriter !pip install pikepdf !pip install pdfminer.six !pip install folderstats from os import path from glob import glob import pandas as pd import os import re import time import sys import string # Show all of columns in dataframe: https://stackoverflow.com/questions/49188960/how-to-show-all-of-columns-name-on-pandas-dataframe pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) DATA_DIRECTORY='data' # Utility functions import folderstats def find_data_files(directory): df = folderstats.folderstats(DATA_DIRECTORY, ignore_hidden=True) df_files = df[df['folder']==False] df_pdf_files = df_files[df_files['extension']=='pdf'] df_pdf_files_in_depth_1 = df_pdf_files[df_pdf_files['depth']==1] return df_pdf_files_in_depth_1['path'] millis = lambda: int(round(time.time() * 1000)) def word_count(text): return sum([i.strip(string.punctuation).isalpha() for i in text.split()]) def reorder_columns(dataframe): cols = list(dataframe.columns.values) page_cols = [k for k in cols if k.startswith('page_')] cols.remove('file_path') cols.remove('total_page_count') meta_cols = list(set(cols)-set(page_cols)) dataframe[['file_path', 'total_page_count'] + cols + meta_cols].head() return dataframe papers = find_data_files(DATA_DIRECTORY) ###Output _____no_output_____ ###Markdown Plain Text Extraction from PDFThere are 4 available good pyton package candidates to extract plain text from PDF files.- Tika: https://tika.apache.org/- PyPDF2: https://pypi.org/project/PyPDF2/ beside converting PDF to plain text, it is able to extract meta data.- Pdfplumber: https://github.com/jsvine/pdfplumber- PDFminer3: https://pypi.org/project/pdfminer3/ Tika Example usage:```pythondata = parser.from_file(file_path)``` Methods:* `data.keys()` : ['content', 'metadata', 'status']* `data.items()` : ['content':"...", 'metadata':{'author':"...", ...} 'status': 200]* `data['content']` : "..."* `data['metadata']` : ['Author', 'Content-Type', 'Creation-Date', 'Keywords', 'Last-Modified', 'Last-Save-Date', 'X-Parsed-By', 'X-TIKA:content_handler', 'X-TIKA:embedded_depth', 'X-TIKA:parse_time_millis', 'access_permission:assemble_document', 'access_permission:can_modify', 'access_permission:can_print', 'access_permission:can_print_degraded', 'access_permission:extract_content', 'access_permission:extract_for_accessibility', 'access_permission:fill_in_form', 'access_permission:modify_annotations', 'cp:subject', 'created', 'creator', 'date', 'dc:creator', 'dc:description', 'dc:format', 'dc:subject', 'dc:title', 'dcterms:created', 'dcterms:modified', 'description', 'meta:author', 'meta:creation-date', 'meta:keyword', 'meta:save-date', 'modified', 'pdf:PDFVersion', 'pdf:charsPerPage', 'pdf:docinfo:created', 'pdf:docinfo:creator', 'pdf:docinfo:creator_tool', 'pdf:docinfo:keywords', 'pdf:docinfo:modified', 'pdf:docinfo:producer', 'pdf:docinfo:subject', 'pdf:docinfo:title', 'pdf:encrypted', 'pdf:hasMarkedContent', 'pdf:hasXFA', 'pdf:hasXMP', 'pdf:unmappedUnicodeCharsPerPage', 'producer', 'resourceName', 'subject', 'title', 'xmp:CreatorTool', 'xmpMM:DocumentID', 'xmpTPg:NPages', 'Content-Encoding', 'Content-Length', 'X-TIKA:embedded_resource_path', 'X-TIKA:origResourceName', 'embeddedResourceType'] ###Code from tika import parser from io import StringIO from bs4 import BeautifulSoup # Extracting plain text page by page: https://github.com/chrismattmann/tika-python/issues/191 # Tika example usage and Metadata extraction: https://cbrownley.wordpress.com/2016/06/26/parsing-pdfs-in-python-with-tika/ def tika_extract_pages(pages_txt, data, max_page_count): xhtml_data = BeautifulSoup(data['content']) all_data = xhtml_data.find_all('div', attrs={'class': 'page'}) pages_txt['total_page_count'] = len(all_data) for i, content in enumerate(all_data): page = i+1 # Parse PDF data using TIKA (xml/html) # It's faster and safer to create a new buffer than truncating it # https://stackoverflow.com/questions/4330812/how-do-i-clear-a-stringio-object _buffer = StringIO() _buffer.write(str(content)) parsed_content = parser.from_buffer(_buffer.getvalue()) # Add pages text = parsed_content['content'].strip() if parsed_content['content'] else '' pages_txt['page_'+str(page)] = text pages_txt['page_'+str(page)+'_wc'] = word_count(text) # Stop if a limit is defined! if max_page_count is not None and page is max_page_count: break def tika_parser(file_path, max_page_count=None): current_time = millis() print("Start to process {} at {}...".format(file_path, current_time), end = '') pages_txt = {} pages_txt['file_path'] = file_path # Read PDF file data = parser.from_file(file_path, xmlContent=True) # Extract pages tika_extract_pages(pages_txt, data, max_page_count) # Extract Metadata pages_txt.update(data['metadata']) print("then it is processed in {} milliseconds".format(millis()-current_time)) return pages_txt # Convert all PDFs to plain text current_time = millis() data = [] for paper in papers: data.append(tika_parser(paper, 3)) #take first 3 pages of each paper df_all_papers = pd.DataFrame.from_dict(data) df_all_papers_ordered_tika = reorder_columns(df_all_papers) # Write result to an excel file df_all_papers_ordered_tika.to_excel("All_Papers_In_Plain_Text_TIKA.xlsx", engine="xlsxwriter", encoding='utf-8') print('Total duration with Tika: {} millis'.format(millis()-current_time)) df_all_papers_ordered_tika ###Output _____no_output_____ ###Markdown  PyPDF2 Example usage:`pdf = PdfFileReader(file_path)` Methods:- `pdf.getNumPages()` : 30- `pdf.documentInfo()` : ['/Author', '/CreationDate', '/Creator', '/Keywords', '/ModDate', '/Producer', '/Subject', '/Title']- `pdf.getPage(i).extractText()`: "" ###Code from PyPDF2 import PdfFileReader # Example: https://www.blog.pythonlibrary.org/2018/06/07/an-intro-to-pypdf2/ def pypdf2_parser(file_path, max_page_count=None): current_time = millis() print("Start to process {} at {}...".format(file_path, current_time), end = '') pages_txt = {} pages_txt['file_path'] = file_path with open(file_path, 'rb') as file: pdf = PdfFileReader(file) #metadata = pdf.getDocumentInfo() pages_txt['total_page_count'] = pdf.getNumPages() for i in range(0, pages_txt['total_page_count']): page = i + 1 # Add pages text = pdf.getPage(i).extractText() pages_txt['page_'+str(page)] = text pages_txt['page_'+str(page)+'_wc'] = word_count(text) # Stop if a limit is defined! if max_page_count is not None and page is max_page_count: break print("then it is processed in {} milliseconds".format(millis()-current_time)) return pages_txt # PyPDF2 - Convert all PDFs to plain text current_time = millis() data = [] for paper in papers: data.append(pypdf2_parser(paper, 3)) df_all_papers = pd.DataFrame.from_dict(data) df_all_papers_ordered_pypdf2 = reorder_columns(df_all_papers) # Write result to an excel file df_all_papers_ordered_pypdf2.to_excel("All_Papers_In_Plain_Text_pypdf2.xlsx", engine="xlsxwriter", encoding='utf-8') print('Total duration with pdfplumber: {} millis'.format(millis()-current_time)) df_all_papers_ordered_pypdf2 ###Output _____no_output_____ ###Markdown Pdfplumber ###Code import pdfplumber def pdfplumber_parser(file_path, max_page_count=None): current_time = millis() print("Start to process {} at {}...".format(file_path, current_time), end = '') pages_txt = {} pages_txt['file_path'] = file_path data = pdfplumber.open(file_path) pages_txt['total_page_count'] = len(data.pages) for i in range(0, pages_txt['total_page_count']): page = i + 1 # Add pages text = data.pages[i].extract_text() pages_txt['page_'+str(page)] = text pages_txt['page_'+str(page)+'_wc'] = word_count(text) # Stop if a limit is defined! if max_page_count is not None and page is max_page_count: break print("then it is processed in {} milliseconds".format(millis()-current_time)) return pages_txt # pdfplumber - Convert all PDFs to plain text current_time = millis() data = [] for paper in papers: data.append(pdfplumber_parser(paper, 3)) df_all_papers = pd.DataFrame.from_dict(data) df_all_papers_ordered_pdfplumber = reorder_columns(df_all_papers) # Write result to an excel file df_all_papers_ordered_pdfplumber.to_excel("All_Papers_In_Plain_Text_pdfplumber.xlsx", engine="xlsxwriter", encoding='utf-8') print('Total duration with pdfplumber: {} millis'.format(millis()-current_time)) df_all_papers_ordered_pdfplumber ###Output _____no_output_____ ###Markdown  PDFminer ###Code from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser from pdfminer.pdfinterp import resolve1 import more_itertools def pdfminer_parser(file_path, max_page_count=None): current_time = millis() print("Start to process {} at {}...".format(file_path, current_time), end = '') pages_txt = {} pages_txt['file_path'] = file_path #pages_txt['total_page_count'] = len(data.pages) output_string = StringIO() with open(file_path, 'rb') as in_file: parser = PDFParser(in_file) doc = PDFDocument(parser) rsrcmgr = PDFResourceManager() device = TextConverter(rsrcmgr, output_string, laparams=LAParams()) interpreter = PDFPageInterpreter(rsrcmgr, device) pdf_pages = PDFPage.create_pages(doc) pages_txt['total_page_count'] = resolve1(doc.catalog['Pages'])['Count'] for i, data in enumerate(pdf_pages): page = i + 1 interpreter.process_page(data) text = output_string.getvalue() # Add pages pages_txt['page_'+str(page)] = text pages_txt['page_'+str(page)+'_wc'] = word_count(text) text = '' output_string.truncate(0) output_string.seek(0) # Stop if a limit is defined! if max_page_count is not None and page is max_page_count: break print("then it is processed in {} milliseconds".format(millis()-current_time)) return pages_txt # PDFMiner - Convert all PDFs to plain text current_time = millis() data = [] for paper in papers: data.append(pdfminer_parser(paper, 3)) df_all_papers = pd.DataFrame.from_dict(data) df_all_papers_ordered_pdfminer = reorder_columns(df_all_papers) # Write result to an excel file df_all_papers_ordered_pdfminer.to_excel("All_Papers_In_Plain_Text_pdfminer.xlsx", engine="xlsxwriter", encoding='utf-8') print('Total duration with pdfplumber: {} millis'.format(millis()-current_time)) df_all_papers_ordered_pdfminer ###Output _____no_output_____ ###Markdown Troubleshooting- Unparsable chractersSome PDF file may contain unparsable characters. For example, a word `effect` passed in the title `The design and eff􏰡ects of control systems: tests of direct- and indirect-eff􏰡ects models` cannot be parsed properly in the file 11_AOS.pdf. Even in the normal copy/paste behavior of the computer(osx/ubuntu), this word cannot be copied properly from the PDF. In the clipboard of the operating system(osx/ubuntu), `ff` in `effects` is disappeared. - In TIKA, the title is parsed as `The design and e�ects of control systems: tests of direct- and indirect-e�ects models`. - In pdfplumber, the title is parsed as `The design and e(cid:128)ects of control systems: tests of direct- and indirect-e(cid:128)ects models` - In PyPDF2, the title is parsed as `Thedesignande•ectsofcontrolsystems:testsofdirect-andindirect-e•ectsmodels`- . ###Code import pikepdf unparseble_character_file = 'data/11_AOS.pdf' paper = DATA_DIRECTORYPyPDF2+'/11_AOS_parsed.pdf' pdf = pikepdf.open(unparseble_character_file) pdf.save(paper) data = [] data.append(tika_parser(paper, 3)) df_all_papers = pd.DataFrame.from_dict(data) df_all_papers_ordered_test = reorder_columns(df_all_papers) df_all_papers_ordered_test ###Output Start to process data/11_AOS_parsed.pdf at 1603403458981...then it is processed in 199 milliseconds
AI for Medical Diagnosis/Week 1/AI4M_C1_W1_lecture_ex_02.ipynb
###Markdown AI for Medicine Course 1 Week 1 lecture exercises Counting labelsAs you saw in the lecture videos, one way to avoid having class imbalance impact the loss function is to weight the losses differently. To choose the weights, you first need to calculate the class frequencies.For this exercise, you'll just get the count of each label. Later on, you'll use the concepts practiced here to calculate frequencies in the assignment! ###Code # Import the necessary packages import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # Read csv file containing training datadata train_df = pd.read_csv("nih/train-small.csv") # Count up the number of instances of each class (drop non-class columns from the counts) class_counts = train_df.sum().drop(['Image','PatientId']) for column in class_counts.keys(): print(f"The class {column} has {train_df[column].sum()} samples") # Plot up the distribution of counts sns.barplot(class_counts.values, class_counts.index, color='b') plt.title('Distribution of Classes for Training Dataset', fontsize=15) plt.xlabel('Number of Patients', fontsize=15) plt.ylabel('Diseases', fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Weighted Loss function Below is an example of calculating weighted loss. In the assignment, you will calculate a weighted loss function. This sample code will give you some intuition for what the weighted loss function is doing, and also help you practice some syntax you will use in the graded assignment.For this example, you'll first define a hypothetical set of true labels and then a set of predictions.Run the next cell to create the 'ground truth' labels. ###Code # Generate an array of 4 binary label values, 3 positive and 1 negative y_true = np.array( [[1], [1], [1], [0]]) print(f"y_true: \n{y_true}") ###Output y_true: [[1] [1] [1] [0]] ###Markdown Two modelsTo better understand the loss function, you will pretend that you have two models.- Model 1 always outputs a 0.9 for any example that it's given. - Model 2 always outputs a 0.1 for any example that it's given. ###Code # Make model predictions that are always 0.9 for all examples y_pred_1 = 0.9 * np.ones(y_true.shape) print(f"y_pred_1: \n{y_pred_1}") print() y_pred_2 = 0.1 * np.ones(y_true.shape) print(f"y_pred_2: \n{y_pred_2}") ###Output y_pred_1: [[0.9] [0.9] [0.9] [0.9]] y_pred_2: [[0.1] [0.1] [0.1] [0.1]] ###Markdown Problems with the regular loss functionThe learning goal here is to notice that with a regular loss function (not a weighted loss), the model that always outputs 0.9 has a smaller loss (performs better) than model 2.- This is because there is a class imbalance, where 3 out of the 4 labels are 1.- If the data were perfectly balanced, (two labels were 1, and two labels were 0), model 1 and model 2 would have the same loss. Each would get two examples correct and two examples incorrect.- However, since the data is not balanced, the regular loss function implies that model 1 is better than model 2. Notice the shortcomings of a regular non-weighted lossSee what loss you get from these two models (model 1 always predicts 0.9, and model 2 always predicts 0.1), see what the regular (unweighted) loss function is for each model. ###Code loss_reg_1 = -1 * np.sum(y_true * np.log(y_pred_1)) + \ -1 * np.sum((1 - y_true) * np.log(1 - y_pred_1)) print(f"loss_reg_1: {loss_reg_1:.4f}") loss_reg_2 = -1 * np.sum(y_true * np.log(y_pred_2)) + \ -1 * np.sum((1 - y_true) * np.log(1 - y_pred_2)) print(f"loss_reg_2: {loss_reg_2:.4f}") print(f"When the model 1 always predicts 0.9, the regular loss is {loss_reg_1:.4f}") print(f"When the model 2 always predicts 0.1, the regular loss is {loss_reg_2:.4f}") ###Output When the model 1 always predicts 0.9, the regular loss is 2.6187 When the model 2 always predicts 0.1, the regular loss is 7.0131 ###Markdown Notice that the loss function gives a greater loss when the predictions are always 0.1, because the data is imbalanced, and has three labels of `1` but only one label for `0`.Given a class imbalance with more positive labels, the regular loss function implies that the model with the higher prediction of 0.9 performs better than the model with the lower prediction of 0.1 How a weighted loss treats both models the sameWith a weighted loss function, you will get the same weighted loss when the predictions are all 0.9 versus when the predictions are all 0.1. - Notice how a prediction of 0.9 is 0.1 away from the positive label of 1.- Also notice how a prediction of 0.1 is 0.1 away from the negative label of 0- So model 1 and 2 are "symmetric" along the midpoint of 0.5, if you plot them on a number line between 0 and 1. Weighted Loss EquationCalculate the loss for the zero-th label (column at index 0)- The loss is made up of two terms. To make it easier to read the code, you will calculate each of these terms separately. We are giving each of these two terms a name for explanatory purposes, but these are not officially called $loss_{pos}$ or $loss_{neg}$ - $loss_{pos}$: we'll use this to refer to the loss where the actual label is positive (the positive examples). - $loss_{neg}$: we'll use this to refer to the loss where the actual label is negative (the negative examples). $$ loss^{(i)} = loss_{pos}^{(i)} + los_{neg}^{(i)} $$$$loss_{pos}^{(i)} = -1 \times weight_{pos}^{(i)} \times y^{(i)} \times log(\hat{y}^{(i)})$$$$loss_{neg}^{(i)} = -1 \times weight_{neg}^{(i)} \times (1- y^{(i)}) \times log(1 - \hat{y}^{(i)})$$ Since this sample dataset is small enough, you can calculate the positive weight to be used in the weighted loss function. To get the positive weight, count how many NEGATIVE labels are present, divided by the total number of examples.In this case, there is one negative label, and four total examples.Similarly, the negative weight is the fraction of positive labels.Run the next cell to define positive and negative weights. ###Code # calculate the positive weight as the fraction of negative labels w_p = 1/4 # calculate the negative weight as the fraction of positive labels w_n = 3/4 print(f"positive weight w_p: {w_p}") print(f"negative weight w_n {w_n}") ###Output positive weight w_p: 0.25 negative weight w_n 0.75 ###Markdown Model 1 weighted lossRun the next two cells to calculate the two loss terms separately.Here, `loss_1_pos` and `loss_1_neg` are calculated using the `y_pred_1` predictions. ###Code # Calculate and print out the first term in the loss function, which we are calling 'loss_pos' loss_1_pos = -1 * np.sum(w_p * y_true * np.log(y_pred_1 )) print(f"loss_1_pos: {loss_1_pos:.4f}") # Calculate and print out the second term in the loss function, which we're calling 'loss_neg' loss_1_neg = -1 * np.sum(w_n * (1 - y_true) * np.log(1 - y_pred_1 )) print(f"loss_1_neg: {loss_1_neg:.4f}") # Sum positive and negative losses to calculate total loss loss_1 = loss_1_pos + loss_1_neg print(f"loss_1: {loss_1:.4f}") ###Output loss_1: 1.8060 ###Markdown Model 2 weighted lossNow do the same calculations for when the predictions are from `y_pred_2'. Calculate the two terms of the weighted loss function and add them together. ###Code # Calculate and print out the first term in the loss function, which we are calling 'loss_pos' loss_2_pos = -1 * np.sum(w_p * y_true * np.log(y_pred_2)) print(f"loss_2_pos: {loss_2_pos:.4f}") # Calculate and print out the second term in the loss function, which we're calling 'loss_neg' loss_2_neg = -1 * np.sum(w_n * (1 - y_true) * np.log(1 - y_pred_2)) print(f"loss_2_neg: {loss_2_neg:.4f}") # Sum positive and negative losses to calculate total loss when the prediction is y_pred_2 loss_2 = loss_2_pos + loss_2_neg print(f"loss_2: {loss_2:.4f}") ###Output loss_2: 1.8060 ###Markdown Compare model 1 and model 2 weighted loss ###Code print(f"When the model always predicts 0.9, the total loss is {loss_1:.4f}") print(f"When the model always predicts 0.1, the total loss is {loss_2:.4f}") ###Output When the model always predicts 0.9, the total loss is 1.8060 When the model always predicts 0.1, the total loss is 1.8060 ###Markdown What do you notice?Since you used a weighted loss, the calculated loss is the same whether the model always predicts 0.9 or always predicts 0.1. You may have also noticed that when you calculate each term of the weighted loss separately, there is a bit of symmetry when comparing between the two sets of predictions. ###Code print(f"loss_1_pos: {loss_1_pos:.4f} \t loss_1_neg: {loss_1_neg:.4f}") print() print(f"loss_2_pos: {loss_2_pos:.4f} \t loss_2_neg: {loss_2_neg:.4f}") ###Output loss_1_pos: 0.0790 loss_1_neg: 1.7269 loss_2_pos: 1.7269 loss_2_neg: 0.0790 ###Markdown Even though there is a class imbalance, where there are 3 positive labels but only one negative label, the weighted loss accounts for this by giving more weight to the negative label than to the positive label. Weighted Loss for more than one classIn this week's assignment, you will calculate the multi-class weighted loss (when there is more than one disease class that your model is learning to predict). Here, you can practice working with 2D numpy arrays, which will help you implement the multi-class weighted loss in the graded assignment.You will work with a dataset that has two disease classes (two columns) ###Code # View the labels (true values) that you will practice with y_true = np.array( [[1,0], [1,0], [1,0], [1,0], [0,1] ]) y_true ###Output _____no_output_____ ###Markdown Choosing axis=0 or axis=1You will use `numpy.sum` to count the number of times column `0` has the value 0. First, notice the difference when you set axis=0 versus axis=1 ###Code # See what happens when you set axis=0 print(f"using axis = 0 {np.sum(y_true,axis=0)}") # Compare this to what happens when you set axis=1 print(f"using axis = 1 {np.sum(y_true,axis=1)}") ###Output using axis = 0 [4 1] using axis = 1 [1 1 1 1 1] ###Markdown Notice that if you choose `axis=0`, the sum is taken for each of the two columns. This is what you want to do in this case. If you set `axis=1`, the sum is taken for each row. Calculate the weightsPreviously, you visually inspected the data to calculate the fraction of negative and positive labels. Here, you can do this programmatically. ###Code # set the positive weights as the fraction of negative labels (0) for each class (each column) w_p = np.sum(y_true == 0,axis=0) / y_true.shape[0] w_p # set the negative weights as the fraction of positive labels (1) for each class w_n = np.sum(y_true == 1, axis=0) / y_true.shape[0] w_n ###Output _____no_output_____ ###Markdown In the assignment, you will train a model to try and make useful predictions. In order to make this example easier to follow, you will pretend that your model always predicts the same value for every example. ###Code # Set model predictions where all predictions are the same y_pred = np.ones(y_true.shape) y_pred[:,0] = 0.3 * y_pred[:,0] y_pred[:,1] = 0.7 * y_pred[:,1] y_pred ###Output _____no_output_____ ###Markdown As before, calculate the two terms that make up the loss function. Notice that you are working with more than one class (represented by columns). In this case, there are two classes.Start by calculating the loss for class `0`.$$ loss^{(i)} = loss_{pos}^{(i)} + los_{neg}^{(i)} $$$$loss_{pos}^{(i)} = -1 \times weight_{pos}^{(i)} \times y^{(i)} \times log(\hat{y}^{(i)})$$$$loss_{neg}^{(i)} = -1 \times weight_{neg}^{(i)} \times (1- y^{(i)}) \times log(1 - \hat{y}^{(i)})$$ View the zero column for the weights, true values, and predictions that you will use to calculate the loss from the positive predictions. ###Code # Print and view column zero of the weight print(f"w_p[0]: {w_p[0]}") print(f"y_true[:,0]: {y_true[:,0]}") print(f"y_pred[:,0]: {y_pred[:,0]}") # calculate the loss from the positive predictions, for class 0 loss_0_pos = -1 * np.sum(w_p[0] * y_true[:, 0] * np.log(y_pred[:, 0]) ) print(f"loss_0_pos: {loss_0_pos:.4f}") ###Output loss_0_pos: 0.9632 ###Markdown View the zero column for the weights, true values, and predictions that you will use to calculate the loss from the negative predictions. ###Code # Print and view column zero of the weight print(f"w_n[0]: {w_n[0]}") print(f"y_true[:,0]: {y_true[:,0]}") print(f"y_pred[:,0]: {y_pred[:,0]}") # Calculate the loss from the negative predictions, for class 0 loss_0_neg = -1 * np.sum( w_n[0] * (1 - y_true[:, 0]) * np.log(1 - y_pred[:, 0]) ) print(f"loss_0_neg: {loss_0_neg:.4f}") # add the two loss terms to get the total loss for class 0 loss_0 = loss_0_neg + loss_0_pos print(f"loss_0: {loss_0:.4f}") ###Output loss_0: 1.2485 ###Markdown Now you are familiar with the array slicing that you would use when there are multiple disease classes stored in a two-dimensional array. Now it's your turn!* Can you calculate the loss for class (column) `1`? ###Code # calculate the loss from the positive predictions, for class 1 loss_1_pos = -1 * np.sum(w_p[1] * y_true[:, 1] * np.log(y_pred[:, 1]) ) print('The output of loss for positive prediction, class(column) 1 :{:.4f}'.format(loss_1_pos)) ###Output The output of loss for positive prediction, class(column) 1 :0.2853 ###Markdown Expected output```CPPloss_1_pos: 0.2853``` ###Code # Calculate the loss from the negative predictions, for class 1 loss_1_neg = -1 * np.sum( w_n[1] * (1 - y_true[:, 1]) * np.log(1 - y_pred[:, 1]) ) print('The output of loss for negative predictions, class(column) 1 :{:.4f}'.format(loss_1_neg)) ###Output The output of loss for negative predictions, class(column) 1 :0.9632 ###Markdown Expected output```CPPloss_1_neg: 0.9632``` ###Code # add the two loss terms to get the total loss for class 0 loss_1 = loss_1_pos + loss_1_neg print('The total loss for class 0: {:.4f}'.format(loss_1)) ###Output The total loss for class 0: 1.2485
Course_4-Big_Data_Processing_using_Apache_Spark/Module_2-Spark_Structured_APIs/1-Introduction_to_Structured_APIs/Graded_Question/graded_question.ipynb
###Markdown Using the data frame abstraction, calculate the number of ‘Iris_setosa’ species. ###Code df.filter(df["species"] == 'Iris-setosa').count() ###Output _____no_output_____ ###Markdown Is there any ‘Iris-setosa' species with sepal_width greater than 4.0 and sepal_width less than 5.0? If yes, find out how many. ###Code df.filter((df['species']=="Iris-setosa") & (df['sepal_width']>4) & (df['sepal_width']<5)).count() ###Output _____no_output_____ ###Markdown Analyse the 'Iris-versicolor' species of the flower and calculate the sum of all ‘sepal_width’ and ‘petal_length’ for this species. ###Code df.filter(df['species'] == 'Iris-versicolor').groupBy('species').sum('sepal_width','petal_length').show() ###Output ###Markdown Calculate the minimum petal_width for ‘Iris-virginica’ species. ###Code df.filter(df['species'] == 'Iris-virginica' ).groupBy('species').min('petal_width').show() ###Output
Lesson04/Binary_representation_answers.ipynb
###Markdown Binary Representation_answers Question 1:What is the binary representation of 12? ###Code bin(12) ###Output _____no_output_____ ###Markdown Question 2:What is the binary representation of 4? ###Code bin(4) ###Output _____no_output_____ ###Markdown Question 3:Using bitwise OR, find the number which combines the bits of 12 and 4 and its binary representation. ###Code 12 | 4 bin(12 | 4) ###Output _____no_output_____
lession3_homework_question.ipynb
###Markdown 1. What's the model? why all the models are wrong, but some are useful? ###Code # model是经过训练以识别特定类型的模式的文件 # 所有的模型的是错误的,但是有些事有用地,科学并不一定是正确的,只是在一定时间内和一定条件下的相对正确, # 而在将来的某天,可能被完善,甚至被彻底颠覆,科学的进步就是不断地用新方法去验证前人的思想,否定前人的 # 观念同时提出符合当前时代背景的新观念,因此科学具备可证伪性 ###Output _____no_output_____ ###Markdown 2. What's the underfitting and overfitting? List the reasons that could make model overfitting or underfitting. ###Code # underfitting : 欠拟合, 通俗讲就是模型不能很好的拟合数据,即表现出比较高的偏差 # underfitting的原因 : 选择的模型不合理;数据的特征较少 # overfitting : 过拟合, 模型具有比较高的方差,在训练集上能够做到很好甚至完美的拟合数据,但是不具有泛化性,当引入新数据时,拟合情况不是很好 # overfitting的原因 : 数据量太少;样本数据中存在着噪音;参数太多,模型复杂度太高; ###Output _____no_output_____ ###Markdown 3. What's the precision, recall, AUC, F1, F2score. What are they mainly target on? ###Code # precision : 精确率 表示预测出为正的样本中有多少是正确地 precision = (TP) / (TP + FP) # recall : 召回率 表示实际为正的样本中预测出了多少正确地正样本 recall = (TP) / (TP + FN) # AUC : ROC曲线下的面积 自己设定一个阈值,一般为0.5,当ROC大于阈值时,则可以判定为正,小于阈值判定为负 # ROC 曲线 : 横坐标是 FPR , 纵坐标是 TPR # F1 : F值是精确率和召回率的调和值, 2/F1 = 1/precision + 1/recall # F2 : F2 = (1+β**2)/(β**2)(precission*recall / (precision + recall)) 当β==1时为F1score,当β>1时为F2score # precison,recall,AUC,F1,F2score 这些评估方法主要用于评估分类问题 ###Output _____no_output_____ ###Markdown 4. Based on our course and yourself mind, what's the machine learning? ###Code # 机器学习与传统的分析式编程最主要的区别在于分析的角色不同,传统编程通常是程序员设定好算法,然后通过编写if-else等代码语句来分析已达到期望 # 输出的结果,而机器学习则是让机器自己学习分析,而不是按照这程序员设定的代码一步一步执行操作,可以根据本身学习出来的模型对于未知的情况进行 # 预测,而传统编程则是人为的分析好,然后转换成代码逻辑,进行预测时需要修改参数,本质上还是一个人为的过程。随着科技的进步,人类生活产生越来 # 越多的数据,海量的数据单靠人为来分析已经很难满足当前的需求了,而且未来数据量只会越来越大,这样就需要充分利用高速计算机的性能,让计算机自 # 己掌握学习的能力,处理越来越多的分析需求 ###Output _____no_output_____ ###Markdown 5. "正确定义了机器学习模型的评价标准(evaluation), 问题基本上就已经解决一半". 这句话是否正确?你是怎么看待的? ###Code # 我觉得这句话有一定道理,机器学习模型的评价标准应该是符合业务需求地,根据不同的业务需求评价标准也会不同,不单单只是机器学习问题任何工作中的 # 问题都应该先从明确业务需求开始,只有明确了需求才能设计出有价值的机器学习模型,所以在设计模型之前,应该先选好要用什么指标来评价模型,比如分 # 类问题那么我们就要选用 AUC 或者 F-score,回归问题则选用MAE,MSE,聚类问题选用rand index,Mutual Information,如果不能使用正确的模型 # 评估指标那么就很难得到好的模型,机器学习模型是服务于业务地,在不同的业务场景下要求不同,例如:在做良次品分类时,可以设定不同的阈值,根据业 # 务需求设定合适的阈值才能产生最好的结果。社会不断进步地,一个模型建立好了以后也不可能一成不变,为了适应时代的发展,就需要不断地对模型进行 # 调优,那么在调优过程中模型的评价标准就是一个很重要的选择,能够帮助我们不断地完善我们的模型 ###Output _____no_output_____
Notebooks/03_siamese/03_siamese_triplet_mnist.ipynb
###Markdown Siamese networks Colab preparation ###Code %load_ext autoreload %autoreload 2 from os import path import numpy as np import random %matplotlib inline import matplotlib import matplotlib.pyplot as plt import torch from torch.optim import lr_scheduler import torch.optim as optim from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision.datasets import MNIST from torchvision import transforms ###Output _____no_output_____ ###Markdown 1. Setup and initializationsWe'll go through learning feature embeddings using different loss functions on MNIST dataset. This is just for visualization purposes, thus we'll be using 2-dimensional embeddings which isn't the best choice in practice.For every experiment the same embedding network is used (`32 conv 5x5 -> ReLU -> MaxPool 2x2 -> 64 conv 5x5 -> ReLU -> MaxPool 2x2 -> Fully Connected 256 -> ReLU -> Fully Connected 256 -> ReLU -> Fully Connected 2`) with the same hyperparameters. ###Code class ExperimentParams(): def __init__(self): self.num_classes = 10 self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.batch_size = 256 self.lr = 1e-2 self.num_epochs = 10 self.num_workers = 4 self.data_dir = '/home/docker_user/' args = ExperimentParams() ###Output _____no_output_____ ###Markdown 1.1 Prepare datasetWe'll be working on MNIST dataset ###Code mean, std = 0.1307, 0.3081 train_dataset = MNIST(f'{args.data_dir}/data/MNIST', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean,), (std,)) ])) test_dataset = MNIST(f'{args.data_dir}/data/MNIST', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean,), (std,)) ])) ###Output _____no_output_____ ###Markdown 1.2 Common setup ###Code mnist_classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] def plot_embeddings(embeddings, targets, title='',xlim=None, ylim=None): plt.figure(figsize=(10,10)) for i in range(10): inds = np.where(targets==i)[0] plt.scatter(embeddings[inds,0], embeddings[inds,1], alpha=0.5, color=colors[i]) if xlim: plt.xlim(xlim[0], xlim[1]) if ylim: plt.ylim(ylim[0], ylim[1]) plt.legend(mnist_classes) plt.title(title) def extract_embeddings(dataloader, model, args): with torch.no_grad(): model.eval() embeddings = np.zeros((len(dataloader.dataset), 2)) labels = np.zeros(len(dataloader.dataset)) k = 0 for images, target in dataloader: images = images.to(args.device) embeddings[k:k+len(images)] = model.get_embedding(images).data.cpu().numpy() labels[k:k+len(images)] = target.numpy() k += len(images) return embeddings, labels def get_raw_images(dataloader,mean=0.1307, std=0.3081): raw_images = np.zeros((len(dataloader.dataset), 1, 28, 28)) k = 0 for input, target in dataloader: raw_images[k:k+len(input)] = (input*std + mean).data.cpu().numpy() k += len(input) return raw_images def show(img, title=None): # img is a torch.Tensor npimg = img.numpy() plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest') plt.axis('off') if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated ###Output _____no_output_____ ###Markdown 2. Baseline: Classification with softmaxWe'll train the model for classification and use outputs of penultimate layer as embeddings. We will define our base embedding architecture which will serve as common backbone for our experiments 2.1 Architecture ExerciseComplete the missing blocks in the definition of the following `EmbeddingNet` architecture: (`32 conv 5x5 -> ReLU -> MaxPool 2x2 -> 64 conv 5x5 -> ReLU -> MaxPool 2x2 -> Fully Connected 256 -> ReLU -> Fully Connected 256 -> ReLU -> Fully Connected 2`) ###Code class EmbeddingNet(nn.Module): def __init__(self): super(EmbeddingNet, self).__init__() # self.conv1 = nn.Conv2d(1, ...) # self.conv2 = ... # self.fc1 = ... # self.fc2 = ... # self.fc3 = ... def forward(self, x, debug=False): x1 = F.max_pool2d(F.relu(self.conv1(x)), kernel_size=2, stride=2) # output = ... if debug == True: print(f'input: {x.size()}') print(f'x1: {x1.size()}') return output def get_embedding(self, x): return self.forward(x) ###Output _____no_output_____ ###Markdown If you want to better check the sizes of the hidden states and do debugging, you can add a `debug` variable in the `forward` function just like above ###Code input = torch.zeros(1, 1, 28, 28) net = EmbeddingNet() net(input,debug=True) ###Output _____no_output_____ ###Markdown Now let's define a classification net that will add fully connected layer on top of `EmbeddingNet` ExerciceFill in the missing spots in the `forward` pass: ###Code class ClassificationNet(nn.Module): def __init__(self, embedding_net, num_classes): super(ClassificationNet, self).__init__() self.embedding_net = embedding_net self.prelu = nn.PReLU() self.fc = nn.Linear(2, num_classes) def forward(self, x, debug=False): embedding = None output = self.fc(self.prelu(embedding)) # if debug == True: # print(f'input: {x.size()}') # print(f'embedding: {embedding.size()}') # print(f'output: {output.size()}') return output def get_embedding(self, x): return self.prelu(None) ###Output _____no_output_____ ###Markdown 2.2 Training ###Code # Set up data loaders kwargs = {'num_workers': args.num_workers, 'pin_memory': True} train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, **kwargs) embedding_net = EmbeddingNet() model = ClassificationNet(embedding_net, num_classes=args.num_classes) loss_fn = torch.nn.CrossEntropyLoss() model.to(args.device) loss_fn.to(args.device) optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) train_embeddings_baseline, train_labels_baseline = extract_embeddings(train_loader, model, args) plot_embeddings(train_embeddings_baseline, train_labels_baseline, 'Train embeddings before training') def train_classif_epoch(train_loader, model, loss_fn, optimizer, args, log_interval=50): model.train() losses = [] total_loss, total_corrects, num_samples = 0, 0, 0 corrects = 0 for batch_idx, (data, target) in enumerate(train_loader): num_samples += data.size(0) data, target = data.to(args.device), target.to(args.device) optimizer.zero_grad() outputs = model(data) loss = loss_fn(outputs, target) losses.append(loss.data.item()) _,preds = torch.max(outputs.data,1) corrects += torch.sum(preds == target.data).cpu() loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f} \tAccuracy: {}'.format( batch_idx * len(data[0]), len(train_loader.dataset), 100. * batch_idx / len(train_loader), np.mean(losses), float(total_corrects)/num_samples)) total_loss += np.sum(losses) total_corrects += corrects losses, corrects = [], 0 return total_loss/(batch_idx + 1), total_corrects/num_samples def test_classif_epoch(test_loader, model, loss_fn, args, log_interval=50): with torch.no_grad(): model.eval() losses, corrects = [], 0 num_samples = 0 for batch_idx, (data, target) in enumerate(test_loader): num_samples += data.size(0) data, target = data.to(args.device), target.to(args.device) outputs = model(data) loss = loss_fn(outputs, target) losses.append(loss.data.item()) _,preds = torch.max(outputs.data,1) corrects += torch.sum(preds == target.data).cpu() return np.sum(losses)/(batch_idx + 1), corrects/num_samples start_epoch = 0 for epoch in range(0, start_epoch): scheduler.step() for epoch in range(start_epoch, args.num_epochs): scheduler.step() train_loss, train_accuracy = train_classif_epoch(train_loader, model, loss_fn, optimizer, args) message = 'Epoch: {}/{}. Train set: Average loss: {:.4f} Average accuracy: {:.4f}'.format( epoch + 1, args.num_epochs, train_loss, train_accuracy) val_loss, val_accuracy = test_classif_epoch(test_loader, model, loss_fn, args) message += '\nEpoch: {}/{}. Validation set: Average loss: {:.4f} Average accuracy: {:.4f}'.format(epoch + 1, args.num_epochs, val_loss, val_accuracy) print(message) ###Output _____no_output_____ ###Markdown 2.3 Visualizations ###Code train_embeddings_baseline, train_labels_baseline = extract_embeddings(train_loader, model, args) plot_embeddings(train_embeddings_baseline, train_labels_baseline, 'Train embeddings classification') test_embeddings_baseline, test_labels_baseline = extract_embeddings(test_loader, model, args) plot_embeddings(test_embeddings_baseline, test_labels_baseline, 'Test embeddings classification') ###Output _____no_output_____ ###Markdown While the embeddings look separable (which is what we trained them for), they don't have good metric properties. They might not be the best choice as a descriptor for new classes. 3. Siamese networkNow we'll train a siamese network that takes a pair of images and trains the embeddings so that the distance between them is minimized if their from the same class or greater than some margin value if they represent different classes.We'll minimize a contrastive loss function*:$$L_{contrastive}(x_0, x_1, y) = \frac{1}{2} y \lVert f(x_0)-f(x_1)\rVert_2^2 + \frac{1}{2}(1-y)\{max(0, m-\lVert f(x_0)-f(x_1)\rVert_2)\}^2$$*Raia Hadsell, Sumit Chopra, Yann LeCun, [Dimensionality reduction by learning an invariant mapping](http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf), CVPR 2006* 3.1 ArchitectureWe will first define the siamese architecture on top of our `EmbeddingNet` ExerciseFill in the forward part of `SiameseNet` ###Code class SiameseNet(nn.Module): def __init__(self, embedding_net): super(SiameseNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2): # fill in the missing 2 lines :) return output1, output2 def get_embedding(self, x): return self.embedding_net(x) ###Output _____no_output_____ ###Markdown 3.2 Data loaderWe will also need to adapt our data loader to fetch pairs of images ###Code from torch.utils.data import Dataset from torch.utils.data.sampler import BatchSampler from PIL import Image class SiameseMNIST(Dataset): """ train mode: For each sample creates randomly a positive or a negative pair test mode: Creates fixed pairs for testing """ def __init__(self, mnist_dataset): self.mnist_dataset = mnist_dataset self.train = self.mnist_dataset.train self.transform = self.mnist_dataset.transform if self.train: self.train_labels = self.mnist_dataset.train_labels self.train_data = self.mnist_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: # generate fixed pairs for testing self.test_labels = self.mnist_dataset.test_labels self.test_data = self.mnist_dataset.test_data self.labels_set = set(self.test_labels.numpy()) ''' create a dictionary with an entry key for each label and the value an array storing the indices of the images having the respective label ''' self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(42) # itereate through test_data and randomly select samples with the same label positive_pairs = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), 1] for i in range(0, len(self.test_data), 2)] # itereate through test_data, create a list of all labels different from current one and then # randomly select samples with having one of these labels negative_pairs = [[i, random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]), 0] for i in range(1, len(self.test_data), 2)] # format: [index1, index2, label(0/1)] self.test_pairs = positive_pairs + negative_pairs def __getitem__(self, index): # at train time pairs of samples are fetched randomly on the fly if self.train: # select random label,i.e. similar (1) or non-similar (0) images target = np.random.randint(0, 2) img1, label1 = self.train_data[index], self.train_labels[index].item() if target == 1: # select an image with the same label as img1 siamese_index = index while siamese_index == index: siamese_index = np.random.choice(self.label_to_indices[label1]) else: # eliminate label1 from the set of possible labels to select siamese_label = np.random.choice(list(self.labels_set - set([label1]))) # randomly select an image having a label from this subset siamese_index = np.random.choice(self.label_to_indices[siamese_label]) img2 = self.train_data[siamese_index] else: img1 = self.test_data[self.test_pairs[index][0]] img2 = self.test_data[self.test_pairs[index][1]] target = self.test_pairs[index][2] img1 = Image.fromarray(img1.numpy(), mode='L') img2 = Image.fromarray(img2.numpy(), mode='L') if self.transform is not None: img1 = self.transform(img1) img2 = self.transform(img2) return (img1, img2), target def __len__(self): return len(self.mnist_dataset) ###Output _____no_output_____ ###Markdown 3.3 Loss function $$L_{contrastive}(x_0, x_1, y) = \frac{1}{2} y \lVert f(x_0)-f(x_1)\rVert_2^2 + \frac{1}{2}(1-y)\{max(0, m-\lVert f(x_0)-f(x_1)\rVert_2)\}^2$$ ExerciseFill in the missing parts of the `contrastive loss` ###Code class ContrastiveLoss(nn.Module): """ Contrastive loss Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise """ def __init__(self, margin): super(ContrastiveLoss, self).__init__() self.margin = margin self.eps = 1e-9 def forward(self, output1, output2, target, size_average=True): # compute squared distances between output2 and output1 squared_distances = None # add the second term from them loss. You can use ReLU for compressing the max formula losses = 0.5 * (target.float() * squared_distances + None ) return losses.mean() if size_average else losses.sum() ###Output _____no_output_____ ###Markdown 3.4 Training ###Code # Set up data loaders siamese_train_dataset = SiameseMNIST(train_dataset) # Returns pairs of images and target same/different siamese_test_dataset = SiameseMNIST(test_dataset) args.batch_size = 128 kwargs = {'num_workers': args.num_workers, 'pin_memory': True} siamese_train_loader = torch.utils.data.DataLoader(siamese_train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) siamese_test_loader = torch.utils.data.DataLoader(siamese_test_dataset, batch_size=args.batch_size, shuffle=False, **kwargs) margin = 1. embedding_net = EmbeddingNet() model = SiameseNet(embedding_net) loss_fn = ContrastiveLoss(margin) model.to(args.device) loss_fn.to(args.device) args.lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) def train_siamese_epoch(train_loader, model, loss_fn, optimizer, args, log_interval=100): model.train() losses = [] total_loss, num_samples = 0, 0 for batch_idx, (data, target) in enumerate(train_loader): num_samples += data[0].size(0) data = tuple(d.to(args.device) for d in data) target = target.to(args.device) optimizer.zero_grad() outputs = model(data[0], data[1]) # alternatively: outputs = model(*data) loss = loss_fn(outputs[0], outputs[1], target) # alternatively: loss = loss_fn(*outputs, target) losses.append(loss.data.item()) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f} '.format( batch_idx * len(data[0]), len(train_loader.dataset), 100. * batch_idx / len(train_loader), np.mean(losses))) total_loss += np.sum(losses) losses = [] return total_loss/(batch_idx + 1) def test_siamese_epoch(test_loader, model, loss_fn, args, log_interval=50): with torch.no_grad(): model.eval() losses = [] num_samples = 0 for batch_idx, (data, target) in enumerate(test_loader): num_samples += data[0].size(0) data = tuple(d.to(args.device) for d in data) target = target.to(args.device) outputs = model(data[0], data[1]) loss = loss_fn(outputs[0], outputs[1], target) losses.append(loss.data.item()) return np.sum(losses)/(batch_idx + 1) start_epoch = 0 # needed for annealing learning rate in case of resuming of training for epoch in range(0, start_epoch): scheduler.step() # main training loop for epoch in range(start_epoch, args.num_epochs): scheduler.step() # train stage train_loss = train_siamese_epoch(siamese_train_loader, model, loss_fn, optimizer, args) message = 'Epoch: {}/{}. Train set: Average loss: {:.4f}'.format( epoch + 1, args.num_epochs, train_loss) # testing/validation stage test_loss = test_siamese_epoch(siamese_test_loader, model, loss_fn, args) message += '\nEpoch: {}/{}. Validation set: Average loss: {:.4f}'.format(epoch + 1, args.num_epochs, test_loss) print(message) ###Output _____no_output_____ ###Markdown 3.5 Visualizations ###Code train_embeddings_cl, train_labels_cl = extract_embeddings(train_loader, model, args) plot_embeddings(train_embeddings_cl, train_labels_cl, title='Train embeddings (constrastive loss)') test_embeddings_cl, test_labels_cl = extract_embeddings(test_loader, model, args) plot_embeddings(test_embeddings_cl, test_labels_cl, title='Test embeddings (contrastive loss)') ###Output _____no_output_____ ###Markdown In order to two compare vectors $x_1$ and $x_2$ we can use the `cosine similarity` $$\text{similarity}=\frac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert_2, \epsilon)}$$An alternative is the Euclidean distance. In order to save computation at query time we can pre-process our vectors and L2-normalize them. Now we can simply perform comparison by dot product ExercisePerform L2-normalization on the embeddings using `numpy` ###Code # L2-normalize embeddings test_embeddings_norm = .... ###Output _____no_output_____ ###Markdown ExerciseWrite now a function `most_sim` that computes all dot products between a query vector and the dataset, extracts the indices of the `topk` most similar vectors and put thme in a list of tuples ( ###Code def most_sim(x, emb, topk=6): return None test_images_raw = get_raw_images(test_loader) def launch_query(test_embeddings_norm, test_images_raw, query_id=None): query_id = random.randint(0, test_embeddings_norm.shape[0]) if query_id is None else query_id query_vector = test_embeddings_norm[query_id,:] print(f'query_id: {query_id} | query_embedding: {query_vector}') knns = most_sim(query_vector, test_embeddings_norm) knn_images = np.array([test_images_raw[x[0]] for x in knns ]) title=['q: 1.0', f'1nn: {knns[1][1]:.3}', f'2nn: {knns[2][1]:.3}', f'3nn: {knns[3][1]:.3}', f'4nn: {knns[4][1]:.3}', f'5nn: {knns[5][1]:.3}'] show(torchvision.utils.make_grid(torch.from_numpy(knn_images)), title=title) # print(knns) for i in range(5): launch_query(test_embeddings_norm, test_images_raw) ###Output _____no_output_____ ###Markdown Triplet networkWe'll train a triplet network, that takes an anchor, positive (same class as anchor) and negative (different class than anchor) examples. The objective is to learn embeddings such that the anchor is closer to the positive example than it is to the negative example by some margin value.![alt text](images/anchor_negative_positive.png "Source: FaceNet")Source: [2] *Schroff, Florian, Dmitry Kalenichenko, and James Philbin. [Facenet: A unified embedding for face recognition and clustering.](https://arxiv.org/abs/1503.03832) CVPR 2015.***Triplet loss**: $L_{triplet}(x_a, x_p, x_n) = max(0, m + \lVert f(x_a)-f(x_p)\rVert_2^2 - \lVert f(x_a)-f(x_n)\rVert_2^2$\) 4.1 ArchitectureWe will first define the triplet architecture on top of our `EmbeddingNet` ExerciseFill in the forward part of `TripleNet` ###Code class TripletNet(nn.Module): def __init__(self, embedding_net): super(TripletNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2, x3): # missing 3 lines here return output1, output2, output3 def get_embedding(self, x): return self.embedding_net(x) ###Output _____no_output_____ ###Markdown 4.2 Data loaderWe will also need to adapt our data loader to fetch triplets of images ###Code from torch.utils.data import Dataset from torch.utils.data.sampler import BatchSampler from PIL import Image class TripletMNIST(Dataset): """ Train: For each sample (anchor) randomly chooses a positive and negative samples Test: Creates fixed triplets for testing """ def __init__(self, mnist_dataset): self.mnist_dataset = mnist_dataset self.train = self.mnist_dataset.train self.transform = self.mnist_dataset.transform if self.train: self.train_labels = self.mnist_dataset.train_labels self.train_data = self.mnist_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: self.test_labels = self.mnist_dataset.test_labels self.test_data = self.mnist_dataset.test_data # generate fixed triplets for testing self.labels_set = set(self.test_labels.numpy()) self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(29) triplets = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]) ] for i in range(len(self.test_data))] self.test_triplets = triplets def __getitem__(self, index): if self.train: img1, label1 = self.train_data[index], self.train_labels[index].item() positive_index = index while positive_index == index: positive_index = np.random.choice(self.label_to_indices[label1]) negative_label = np.random.choice(list(self.labels_set - set([label1]))) negative_index = np.random.choice(self.label_to_indices[negative_label]) img2 = self.train_data[positive_index] img3 = self.train_data[negative_index] else: img1 = self.test_data[self.test_triplets[index][0]] img2 = self.test_data[self.test_triplets[index][1]] img3 = self.test_data[self.test_triplets[index][2]] img1 = Image.fromarray(img1.numpy(), mode='L') img2 = Image.fromarray(img2.numpy(), mode='L') img3 = Image.fromarray(img3.numpy(), mode='L') if self.transform is not None: img1 = self.transform(img1) img2 = self.transform(img2) img3 = self.transform(img3) return (img1, img2, img3), [] def __len__(self): return len(self.mnist_dataset) ###Output _____no_output_____ ###Markdown 4.3 Loss function ExerciseFill in the missing parts of the `triplet loss`: $L_{triplet}(x_a, x_p, x_n) = max(0, m + \lVert f(x_a)-f(x_p)\rVert_2^2 - \lVert f(x_a)-f(x_n)\rVert_2^2$\) ###Code class TripletLoss(nn.Module): """ Triplet loss Takes embeddings of an anchor sample, a positive sample and a negative sample """ def __init__(self, margin): super(TripletLoss, self).__init__() self.margin = margin def forward(self, anchor, positive, negative, size_average=True): distance_positive = None # fill in code distance_negative = None # fill in code # you can again use ReLU instead of max losses = None # fill in code return losses.mean() if size_average else losses.sum() ###Output _____no_output_____ ###Markdown 4.4 Training ###Code triplet_train_dataset = TripletMNIST(train_dataset) # Returns triplets of images triplet_test_dataset = TripletMNIST(test_dataset) args.batch_size = 128 kwargs = {'num_workers': args.num_workers, 'pin_memory': True} triplet_train_loader = torch.utils.data.DataLoader(triplet_train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) triplet_test_loader = torch.utils.data.DataLoader(triplet_test_dataset, batch_size=args.batch_size, shuffle=False, **kwargs) margin = 1. embedding_net = EmbeddingNet() model = TripletNet(embedding_net) loss_fn = TripletLoss(margin) model.to(args.device) loss_fn.to(args.device) args.lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 5 log_interval = 100 ###Output _____no_output_____ ###Markdown ExerciceCode your own train/test sequences similarly to the previous examples.Watch out for some differences though. ###Code def train_triplet_epoch(train_loader, model, loss_fn, optimizer, args, log_interval=100): model.train() losses = [] total_loss, num_samples = 0, 0 # fill in code here return total_loss/(batch_idx + 1) def test_triplet_epoch(test_loader, model, loss_fn, args, log_interval=50): losses = [] num_samples = 0 # fill in code here return np.sum(losses)/(batch_idx + 1) start_epoch = 0 # needed for annealing learning rate in case of resuming of training for epoch in range(0, start_epoch): scheduler.step() # main training loop for epoch in range(start_epoch, args.num_epochs): scheduler.step() # train stage train_loss = train_triplet_epoch(triplet_train_loader, model, loss_fn, optimizer, args) message = 'Epoch: {}/{}. Train set: Average loss: {:.4f}'.format( epoch + 1, args.num_epochs, train_loss) # testing/validation stage test_loss = test_triplet_epoch(triplet_test_loader, model, loss_fn, args) message += '\nEpoch: {}/{}. Validation set: Average loss: {:.4f}'.format(epoch + 1, args.num_epochs, test_loss) print(message) ###Output _____no_output_____ ###Markdown 4.5 Visualizations ###Code train_embeddings_tl, train_labels_tl = extract_embeddings(train_loader, model, args) plot_embeddings(train_embeddings_tl, train_labels_tl, title='Train triplet embeddings') test_embeddings_tl, test_labels_tl = extract_embeddings(test_loader, model, args) plot_embeddings(test_embeddings_tl, test_labels_tl, title='Val triplet embeddings') # L2-normalize embeddings test_embeddings_tl_norm = test_embeddings_tl / np.linalg.norm(test_embeddings_tl, axis=-1, keepdims=True) test_images_raw = get_raw_images(test_loader) for i in range(5): launch_query(test_embeddings_tl_norm, test_images_raw) ###Output _____no_output_____
PythonJupyterNotebooks/Week12-Day2-Activity4-voice_blockchain-solved.ipynb
###Markdown The Voice of the BlockchainCanada lies at the frontier of the blockchain sector with increasing adoption rates and favorable regulations. In this activity you will retrieve news articles regarding blockchain in Canada for both English and French languages to capture the voice of the blockchain. ###Code # Initial imports import os import pandas as pd from path import Path from dotenv import load_dotenv from newsapi import NewsApiClient # Load environment variables and retrieve the News API key load_dotenv() api_key = os.getenv("NEWSAPI") # Create the newsapi client newsapi = NewsApiClient(api_key=api_key) ###Output _____no_output_____ ###Markdown Getting News Articles in EnglishIn this section you have to fetch all the news articles using the News API with the keywords `blockchain`, `canada`, and `2020` in English. ###Code # Fetch news about Canada and Blockchain in 2020 in the English language blockchain_news_en = newsapi.get_everything( q="blockchain AND canada AND 2020", language="en" ) # Show the total number of news blockchain_news_en["totalResults"] ###Output _____no_output_____ ###Markdown Getting News Articles in FrenchFetching news in French will require keywords on this language, so retrieve all the news articles using the News API using the keywords `blockchain`, `canada`, and `2020`. ###Code # Fetch news about Canada and Blockchain in 2020 in the French language blockchain_news_fr = newsapi.get_everything( q="blockchain AND canada AND 2020", language="fr" ) # Show the total number of news blockchain_news_fr["totalResults"] ###Output _____no_output_____ ###Markdown Create a DataFrame with All the ResultsThe first task on this section is to create a function called `create_df(news, language)` that will transform the `articles` list in a DataFrame. This function will receive two parameters: `news` is the articles' list and `language` is a string to specify the language of the news articles.The resulting DataFrame should have the following columns:* Title: The article's title* Description: The article's description* Text: The article's content* Date: The date when the article was published, using the format `YYY-MM-DD` (eg. 2019-07-11)* Language: A string specifying the news language (`en` for English, `fr` for French) ###Code # Function to create a dataframe for english news and french news def create_df(news, language): articles = [] for article in news: try: title = article["title"] description = article["description"] text = article["content"] date = article["publishedAt"][:10] articles.append({ "title": title, "description": description, "text": text, "date": date, "language": language }) except AttributeError: pass return pd.DataFrame(articles) ###Output _____no_output_____ ###Markdown Use the create_df() function to create a DataFrame for the English news and another for the French news. ###Code # Create a DataFrame with the news in English blockchain_en_df = create_df(blockchain_news_en["articles"], "en") # Create a DataFrame with the news in French blockchain_fr_df = create_df(blockchain_news_fr["articles"], "fr") ###Output _____no_output_____ ###Markdown Concatenate both DataFrames having the English news at the top and the French news at the bottom. ###Code # Concatenate dataframes blockchain_df = pd.concat([blockchain_en_df, blockchain_fr_df]) # Show the head articles (they are in English) blockchain_df.head() # Show the tail articles (they are in French) blockchain_df.tail() ###Output _____no_output_____ ###Markdown Save tha final DataFrame as a CSV file for further analysis in the forthcoming activities. ###Code # Save to CSV file_path = Path("../Resources/blockchain_news_en_fr.csv") blockchain_df.to_csv(file_path, index=False, encoding='utf-8-sig') ###Output _____no_output_____
Pymaceuticals/pymaceuticals_starter_.ipynb
###Markdown Analysis Section: The three observations made in this exhibit/challenge are: 1. This will actually be your last step once you run code below 2. You will insert this cell above the one below 3. How to do markdown in Jupyter Notebook? https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata_path = "data/Mouse_metadata.csv" study_results_path = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata_path) study_results = pd.read_csv(study_results_path) # Combine the data into a single dataset # Display the data table for preview # Checking the number of mice. # Getting the duplicate mice by ID number that shows up for Mouse ID and Timepoint. # Optional: Get all the data for the duplicate mouse ID. # Create a clean DataFrame by dropping the duplicate mouse by its ID. # Checking the number of mice in the clean DataFrame. ###Output _____no_output_____ ###Markdown Summary Statistics ###Code # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Use groupby and summary statistical methods to calculate the following properties of each drug regimen: # mean, median, variance, standard deviation, and SEM of the tumor volume. # Assemble the resulting series into a single summary dataframe. # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Using the aggregation method, produce the same summary statistics in a single line ###Output _____no_output_____ ###Markdown Bar and Pie Charts ###Code # Generate a bar plot showing the total number of timepoints for all mice tested for each drug regimen using Pandas. # Generate a bar plot showing the total number of timepoints for all mice tested for each drug regimen using pyplot. # Generate a pie plot showing the distribution of female versus male mice using Pandas # Generate a pie plot showing the distribution of female versus male mice using pyplot ###Output _____no_output_____ ###Markdown Quartiles, Outliers and Boxplots ###Code # Calculate the final tumor volume of each mouse across four of the treatment regimens: # Capomulin, Ramicane, Infubinol, and Ceftamin # Start by getting the last (greatest) timepoint for each mouse # Merge this group df with the original dataframe to get the tumor volume at the last timepoint # Put treatments into a list for for loop (and later for plot labels) # Create empty list to fill with tumor vol data (for plotting) # Calculate the IQR and quantitatively determine if there are any potential outliers. # Locate the rows which contain mice on each drug and get the tumor volumes # add subset # Determine outliers using upper and lower bounds # Generate a box plot of the final tumor volume of each mouse across four regimens of interest ###Output _____no_output_____ ###Markdown Line and Scatter Plots ###Code # Generate a line plot of tumor volume vs. time point for a mouse treated with Capomulin # Generate a scatter plot of average tumor volume vs. mouse weight for the Capomulin regimen ###Output _____no_output_____ ###Markdown Correlation and Regression ###Code # Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen ###Output The correlation between mouse weight and the average tumor volume is 0.84
Session_1/3_Exploring_PYNQ-Z1.ipynb
###Markdown Exploring PYNQ-Z1 ---- Contents * [ARM A9 Processor Subsystem](ARM-A9-Processor-Subsystem)* [Network Status](Network-Status)* [Operating System](Operating-System)* [Python Details](Python-Details) ---- GoalThe aim of this notebook is to help you famaliarize yourself with the Zynq Processing System, and the underlying OS. You will see how to run shell commands and Python commands to query the underlying hardware and software and find out the packages that are included in the PYNQ image. ARM A9 Processor Subsystem Note:Starting a code cell with a bang character, eg `!`, instructs the IPython REPL to treat the code on that line as an OS shell command ###Code !cat /proc/cpuinfo ###Output _____no_output_____ ###Markdown Available DRAM ... ###Code !cat /proc/meminfo | grep 'Mem*' ###Output _____no_output_____ ###Markdown ----[Contents](Contents)---- Network Status Wired Ethernet connection ###Code !ifconfig eth0 ###Output _____no_output_____ ###Markdown Confirm local hostname ###Code !hostname ###Output _____no_output_____ ###Markdown ----[Contents](Contents)---- Operating System Verify Linux version ... ###Code !cat /etc/os-release | grep VERSION ###Output _____no_output_____ ###Markdown ----[Contents](Contents)---- Python Details NoteHere we are executing a Python script rather than shell commands ###Code import sys print('\nPython Version:\n {} \n\nPython Platform:\n{}\n'.format(sys.version, sys.platform)) print ('Python path settings:') for path_entry in sys.path: print(path_entry) # List of all Python packages currently installed !pip3.6 list --format=columns # On being 'Pythonic' import this ###Output _____no_output_____
model-layer/knowledge-distillation-module/DE-RRD/logs & learning_curve.ipynb
###Markdown In this notebook, we provide the learning curves of DE and RRD. Please note that *Topology Distillation (KDD'21)*, which is a follow-up study of DE, is available in https://github.com/SeongKu-Kang/Topology_Distillation_KDD21. Also, *IR-RRD (Information Sciences'21)*, which is a follow-up study of RRD, is available in https://github.com/SeongKu-Kang/IR-RRD_INS21. ###Code import matplotlib.pyplot as plt def read_log(filename, measure='H@5'): with open(filename, 'r', encoding='utf8') as f: lines = f.readlines() result = [] for line in lines: if ('valid' in line) and (measure in line): start_idx = line.find(measure) result.append(float(line[start_idx+len(measure)+2: start_idx+len(measure)+2 + 6])) return result # bpr path = './logs/' student_log = read_log(path + 'student.log') DE_log = read_log(path + 'DE.log') RRD_log = read_log(path + 'URRD.log') epoch = 100 plt.plot([i for i in range(epoch)], student_log[:epoch], label='Student') plt.plot([i for i in range(epoch)], DE_log[:epoch], label='DE') plt.plot([i for i in range(epoch)], RRD_log[:epoch], label='RRD') plt.legend(loc=4, fontsize=17) plt.tick_params(axis="x", labelsize=15.9) plt.tick_params(axis="y", labelsize=18) plt.xlabel('Epoch', fontsize=20) plt.ylabel('H@5', fontsize=20) plt.show() ###Output _____no_output_____
reading_assignments/4_Note-Unsupervised.ipynb
###Markdown $\newcommand{\xv}{\mathbf{x}} \newcommand{\wv}{\mathbf{w}} \newcommand{\yv}{\mathbf{y}} \newcommand{\zv}{\mathbf{z}} \newcommand{\uv}{\mathbf{u}} \newcommand{\vv}{\mathbf{v}} \newcommand{\Chi}{\mathcal{X}} \newcommand{\R}{\rm I\!R} \newcommand{\sign}{\text{sign}} \newcommand{\Tm}{\mathbf{T}} \newcommand{\Xm}{\mathbf{X}} \newcommand{\Zm}{\mathbf{Z}} \newcommand{\I}{\mathbf{I}} \newcommand{\Um}{\mathbf{U}} \newcommand{\Vm}{\mathbf{V}} \newcommand{\muv}{\boldsymbol\mu} \newcommand{\Sigmav}{\boldsymbol\Sigma} \newcommand{\Lambdav}{\boldsymbol\Lambda}$In this note, we discuss the two subtopics of unsupervised learing, clustering and dimensionality reduction. ClusteringWhen there is no information available for classification target, often we still want to find different groups of data. We call these as *clusters*, and we call this approach as *clustering*. Let us talk about two clustering techniques, k-means and Gaussian mixture models. ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown K-meansFirst and easy clustering approach is K-means algorithm, which is non-probabilistic. Without knowing about actual groups, we want to find K partitions of N observations in D dimensions. That is, the observation data $\Xm = {\xv_1, \cdots, \xv_N}$ and $\xv_i \in \R^D$.When we devide data into K clusters, an intuitive way is to find groups whose inter-point distances inside a cluster are smaller than the out-side-cluter-point distances. We can formulate this by selecting a center of each cluster, named $\muv_k$:$$E = \sum_{i=1}^{N} \sum_{k=1}^{K} \delta_{ik} \Vert \xv_i - \muv_k \Vert^2.$$where $\delta_{ik} \in {0, 1}$ is a binary indicator variable that has 1 if $\xv_i$ is assigned to cluster $k$, otherwise 0. Thus, our goal is finding the $\delta_{ik}$ and $\muv_k$ that minimizes the $E$. For this goal, 1. we first choose an initial $\muv_k$ randomly,2. minimize $E$ w.r.t. the $\delta_{ik}$.3. Now, fixing the $\delta_{ik}$, update $\muv_k$ that minimizes $E$. 4. Repeating 2 and 3, we obtain the $K$ clusters after convergence. ###Code from sklearn.metrics import pairwise_distances_argmin # K-means: Sketch. def kmeans(X, K=2, maxiter=100): N = X.shape[0] # select initial centers cidx = np.random.choice(N, K, replace=False) centers = X[cidx, :] E = [] classes = [] # repeat until convergence or up to maxiter for step in range(maxiter): #### TODO: finish this for-loop for k-means! # Assignment: find clusters that minimizes E with current centers classes = pairwise_distances_argmin(X, centers) new_centers = np.array([X[classes == i].mean(0) for i in range(K)]) # print(new_centers) # compute E and check convergence E.append(np.linalg.norm(new_centers - centers)) if np.all(centers == new_centers): break # Update: update cluster centers centers = new_centers return centers, classes, E ###Output _____no_output_____ ###Markdown Hint and Sample Data PracticeHere follows some hints to fill in the blanks. ###Code X = np.random.rand(100,2) X c = X[[1,4], :] c C = c[:, np.newaxis, :] C C.shape X - C (X - C)**2 np.sum((X - C)**2, axis=2) np.argmin(np.sum((X - C)**2, axis=2), axis=0) kmeans(X) mus, classes, errs = kmeans(X) plt.plot(errs) plt.plot(X[classes==0, 0], X[classes==0, 1], 'or') plt.plot(X[classes==1, 0], X[classes==1, 1], 'ob') plt.plot(mus[:, 0], mus[:, 1], 'x') xs, ys = np.meshgrid(np.linspace(0, 1, 500), np.linspace(0, 1, 500)) Xb = np.vstack((xs.flat, ys.flat)).T # find classes from the mus edists = np.sum((Xb - mus[:,np.newaxis,:])**2, axis=2) cs = np.argmin(edists, axis=0) # plot the boundary plt.clf() plt.contour(xs, ys, cs.reshape(xs.shape), cmap=plt.cm.bone) plt.plot(X[classes==0, 0], X[classes==0, 1], 'or') plt.plot(X[classes==1, 0], X[classes==1, 1], 'ob') plt.plot(mus[:, 0], mus[:, 1], 'x') ###Output _____no_output_____ ###Markdown Gaussian MixturePreviously we learned K-means clustering algorithm with linear border for each classes. We observed that near the border, there are vague assignment. How confident are you on the assignments, especially near the border in K-means? With probabilistic model, we can softly assign clusters with a certain probability. For this, we can assume each cluster is Gaussian distribution:$$p(\xv_k) \sim N(\xv_k \mid \muv_k, \Sigmav_k).$$For the entire data $\xv \in \{\xv_1, \cdots, \xv_K \}$, the Gaussian mixture distribution can be written as $$p(\xv) = \sum_{k=1}^K \pi_k N(\xv \mid \muv_k, \Sigmav_k).$$Here, we assume the latent indicator variable $\zv$, which satisfys $z_k \in \{0, 1\}$ and $\sum_k z_k = 1$. In the above Gaussian mixture model, $\pi_k$ is called as a *mixing coefficient*, which is the marginal distribution over $\zv$, $$p(z_k = 1) = \pi_k,$$such that $$0 \le \pi_k \le 1, $$and $$\sum_{k=1}^{K} \pi_k = 1.$$Since $\zv$ is a indicator variable, we can write$$p(\zv) = \prod_{k=1}^K \pi_k^{z_k}.$$From our first assumption of Gaussian for each class, $$p(\xv_k) = p(\xv \mid z_k = 1) = N(\xv \mid \muv_k, \Sigmav_k).$$Rewriting this with a vector notation,$$p(\xv \mid \zv) = \prod_{k=1}^K N(\xv \mid \muv_k, \Sigmav_k)^{z_k}.$$Marginalizing the joint distribution $p(\xv, \zv)$ over $\zv$, $$p(\xv) = \sum_{\zv} p(\zv) p(\xv \mid \zv) = \sum_{k=1}^K \pi_k N(\xv \mid \muv_k, \Sigmav_k). $$Remember that in logistic regression and discriminant analysis models, we are interested in the posterior probability$p(T=k \mid \xv)$. Similarly, we are interested in the probability of the classification from the observation $\xv$, thus,$$\begin{align*}p(z_k = 1 \mid \xv) &= \frac{p(\xv \mid z_k = 1) p(z_k= 1)}{p(\xv)} \\ \\ &= \frac{ \pi_kN(\xv \mid \muv_k, \Sigmav_k)}{\sum_{l=1}^K \pi_l N(\xv \mid \muv_l, \Sigmav_l)}.\end{align*}$$For concise notation, let us define $\kappa(z_k) \equiv p(z_k = 1 \mid \xv)$. LikelihoodNow, consider the batch data input $\Xm$ with $N$ data samples and $D$ dimensional input for each. Here, the latent variables are now in matrix $\Zm$ for $N$ samples and $K$ classes. From the assumption of i.i.d, we can write the joint distribution:$$\begin{align*}p(\Xm, \zv \mid \pi, \muv, \Sigmav) &= \prod_{n=1}^N p(\xv_n, \zv_n) \\ &= \prod_{n=1}^N p(\xv_n \mid \zv_n) p(\zv_n) \\ &= \prod_{n=1}^N \prod_{k=1}^{K} \Big[ \pi_k N(\xv_n \mid \muv_k, \Sigmav_k)\Big]^{z_k} .\end{align*}$$From the marginal distribution and the assumption of i.i.d, we can write the likelihood function:$$\begin{align*}p(\Xm \mid \pi, \muv, \Sigmav) &= \sum_\zv p(\Xm, \zv \mid \pi, \muv, \Sigmav)\\ &= \prod_{n=1}^N \sum_\zv p(\xv_n \mid \zv_n) p(\zv_n) \\ &= \prod_{n=1}^N \sum_\zv \prod_{k=1}^{K} \Big[ \pi_k N(\xv_n \mid \muv_k, \Sigmav_k)\Big]^{z_k} .\end{align*}$$Applying the logarihtm, the log-likelihood is $$LL = \ln p(\Xm \mid \pi, \muv, \Sigmav) = \sum_{n=1}^N \ln \Big[ \sum_{k=1}^K\pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \Big]. $$ The parameters: $\muv, \Sigma, \pi$Now, let us find the maximum of the log-likelihood w.r.t $\muv_k$, $\Sigmav_k$, and $\pi_k$. Before this, let's review the derivation of multivariate Gaussian distribution. Derivation of Gaussian - w.r.t. $\muv$,$$\begin{align*}\frac{d}{d\muv} N(\xv; \muv, \Sigmav) &= \frac{d}{d\muv} \Bigg[ \frac{1}{ (2\pi)^{\frac{d}{2}} \vert \Sigmav \vert^{\frac{1}{2}}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Bigg] \\\\ &= \Bigg[ \frac{1}{ (2\pi)^{\frac{d}{2}} \vert \Sigmav \vert^{\frac{1}{2}}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Bigg] \frac{d}{d\muv}\Bigg( - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) \Bigg) \\ \\ &= \Bigg[ \frac{1}{ (2\pi)^{\frac{d}{2}} \vert \Sigmav \vert^{\frac{1}{2}}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Bigg] \frac{d}{d\muv}\Bigg( - \frac{1}{2} [ \xv^\top \Sigmav^{-1} \xv - 2 \muv^\top \Sigmav^{-1} \xv + \muv^\top \Sigmav^{-1} \muv ] \Bigg) \\ \\ &= \Bigg[ \frac{1}{ (2\pi)^{\frac{d}{2}} \vert \Sigmav \vert^{\frac{1}{2}}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Bigg] \Bigg( \Sigmav^{-1} \xv - \Sigmav^{-1} \muv \Bigg) \\ \\ &= N(\xv; \muv, \Sigmav) \Sigmav^{-1} (\xv - \muv) \end{align*}$$ - w.r.t. $\Sigmav$, $$\begin{align*}\frac{d}{d\Sigmav} N(\xv; \muv, \Sigmav) &= \frac{d}{d\Sigmav} \Bigg[ (2\pi)^{-\frac{d}{2}} \vert \Sigmav \vert^{-\frac{1}{2}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Bigg] \\\\&= (2\pi)^{-\frac{d}{2}} \frac{d}{d\Sigmav} \Bigg[ \vert \Sigmav \vert^{-\frac{1}{2}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Bigg] \\\\&= (2\pi)^{-\frac{d}{2}} \Bigg[ \frac{d \vert \Sigmav \vert^{-\frac{1}{2}}}{d\Sigmav} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } + \vert \Sigmav \vert^{-\frac{1}{2}} \frac{d e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } }{d\Sigmav}\Bigg] \\\\&= (2\pi)^{-\frac{d}{2}} \Bigg[ -\frac{1}{2} \vert \Sigmav \vert^{-\frac{3}{2}} \frac{d \vert \Sigmav \vert }{d\Sigmav} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } + \vert \Sigmav \vert^{-\frac{1}{2}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \frac{d \big( - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) \big)}{d\Sigmav} \Bigg] \\\\&= (2\pi)^{-\frac{d}{2}} \Bigg[ -\frac{1}{2} \vert \Sigmav \vert^{-\frac{3}{2}} \vert \Sigmav \vert \Sigmav^{-1} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } -\frac{1}{2} \vert \Sigmav \vert^{-\frac{1}{2}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } (- \Sigmav^{-1} (\xv - \muv) (\xv - \muv)^\top \Sigmav^{-1} ) \Bigg] \\\\&= -\frac{1}{2} (2\pi)^{-\frac{d}{2}} \Bigg[ \vert \Sigmav \vert^{-\frac{1}{2}} \Sigmav^{-1} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } - \vert \Sigmav \vert^{-\frac{1}{2}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Sigmav^{-1} (\xv - \muv) (\xv - \muv)^\top \Sigmav^{-1} \Bigg] \\\\&= -\frac{1}{2} (2\pi)^{-\frac{d}{2}} \vert \Sigmav \vert^{-\frac{1}{2}} e^{ - \frac{1}{2} (\xv - \muv)^\top \Sigmav^{-1} (\xv - \muv) } \Sigmav^{-1} \Bigg[ \I - (\xv - \muv) (\xv - \muv)^\top \Sigmav^{-1} \Bigg] \\\\&= -\frac{1}{2} N(\xv; \muv, \Sigmav) \Sigmav^{-1} \Bigg[ \I - (\xv - \muv) (\xv - \muv)^\top \Sigmav^{-1} \Bigg]\end{align*}$$ Now, back to the derivation of the log-likelihood: $$\begin{align*}\frac{\partial LL}{\partial \muv_k} &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \nabla_{\muv_k} \Big[ \sum_{k=1}^K\pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \Big] \\\\ &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \nabla_{\muv_k} \pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \\ \\ &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \pi_kN(\xv_n; \muv_k, \Sigmav_k) \Sigmav_k^{-1} (\xv_n - \muv_k) \\ &= \sum_{n=1}^N \frac{\pi_k N(\xv_n; \muv_k, \Sigmav_k)}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \Sigmav_k^{-1} (\xv_n - \muv_k) \\ \\ &= \sum_{n=1}^N \kappa(z_k) \Sigmav_k^{-1} (\xv_n - \muv_k)\end{align*} $$Setting this to zero, $$\sum_{n=1}^N \kappa(z_k) \Sigmav_k^{-1} (\xv_n - \muv_k) = 0 \\ \sum_{n=1}^N \kappa(z_k) (\xv_n - \muv_k) = 0 \\\sum_{n=1}^N \kappa(z_k) \xv_n = \sum_{n=1}^N \kappa(z_k) \muv_k \\\sum_{n=1}^N \kappa(z_k) \xv_n = N_k \muv_k \\\\\muv_k = \frac{1}{N_k} \sum_{n=1}^N \kappa(z_k) \xv_n,$$where the number of samples for class $k$, $N_k = \sum_{n=1}^{N} \kappa(z_k)$.Now, w.r.t $\Sigmav_k$, $$\begin{align*}\frac{\partial LL}{\partial \Sigmav_k} &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \nabla_{\Sigmav_k} \Big[ \sum_{k=1}^K\pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \Big] \\\\ &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \nabla_{\Sigmav_k} \pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \\ \\ &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \pi_kN(\xv_n; \muv_k, \Sigmav_k) \Sigmav_k^{-1} (\I - (\xv_n - \muv_k)(\xv_n - \muv_k)^\top \Sigmav_k^{-1} ) \\ \\ &= \sum_{n=1}^N \frac{\pi_k N(\xv_n; \muv_k, \Sigmav_k)}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \Sigmav_k^{-1} (\I - (\xv_n - \muv_k)(\xv_n - \muv_k)^\top \Sigmav_k^{-1} ) \\ \\ &= \sum_{n=1}^N \kappa(z_k) \Sigmav_k^{-1} (\I - (\xv_n - \muv_k)(\xv_n - \muv_k)^\top \Sigmav_k^{-1} )\end{align*} $$Setting the last one to zero, and multiplying $\Sigma$ on both side of equal, $$\sum_{n=1}^N \kappa(z_k) (\I - (\xv_n - \muv_k)(\xv_n - \muv_k)^\top \Sigmav_k^{-1} ) = 0 \\\sum_{n=1}^N \kappa(z_k) \I = \sum_{n=1}^N \kappa(z_k) (\xv_n - \muv_k)(\xv_n - \muv_k)^\top \Sigmav_k^{-1} \\N_k \Sigmav_k = \sum_{n=1}^N \kappa(z_k) (\xv_n - \muv_k)(\xv_n - \muv_k)^\top \\\Sigmav_k = \frac{1}{N_k} \sum_{n=1}^N \kappa(z_k) (\xv_n - \muv_k)(\xv_n - \muv_k)^\top$$w.r.t $\pi_k$, $$\begin{align*}\frac{\partial LL}{\partial \pi_k} &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \nabla_{\pi_k} \Big[ \sum_{k=1}^K\pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \Big] \\\\ &= \sum_{n=1}^N \frac{1}{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \nabla_{\pi_k} \pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \\ \\ &= \frac{1}{\pi_k} \sum_{n=1}^N \frac{\pi_k N(\xv_n; \muv_k, \Sigmav_k) }{\sum_{l=1}^K\pi_l N(\xv_n \mid \muv_l, \Sigmav_l)} \\ \\ &= \frac{1}{\pi_k} \sum_{n=1}^N \kappa(z_k) \end{align*} $$Setting this to zero does not give any info but zero. What did we do wrong? Here, let us consider the constraint $\sum_k \pi_k = 1$. Adding this constraint with a Lagrange multiplier, $$LL + \lambda (\sum_k \pi_k - 1) = \sum_{n=1}^N \ln \Big[ \sum_{k=1}^K\pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \Big] + \lambda (\sum_k \pi_k - 1)$$Computing the derivative and setting it to zero, $$\frac{1}{\pi_k} \sum_{n=1}^N \kappa(z_k) + \lambda = 0 \\\pi_k = -\frac{N_k}{\lambda} $$From the constraint, $\sum_k \pi_k = 1$, we can see that $$\sum_k \pi_k = - \sum_k \frac{N_k}{\lambda} = -\frac{1}{\lambda} \sum_k N_k = -\frac{N}{\lambda} = 1 \\\\\Rightarrow \lambda = -N$$Thus, $$\pi_k = \frac{N_k}{N} $$Collecting all the updates, - $\muv_k = \frac{1}{N_k} \sum_{n=1}^N \kappa(z_k) \xv_n$- $\Sigmav_k = \frac{1}{N_k} \sum_{n=1}^N \kappa(z_k) (\xv_n - \muv_k)(\xv_n - \muv_k)^\top$- $\pi_k = \frac{N_k}{N} $ Algorithm- Initialize $\muv_k$, $\Sigmav_k$, and $\pi_k$. - **Expection Step**: evaluate the responsibilities $\kappa(z_{nk})$, $$\kappa(z_{nk}) = \frac{ \pi_kN(\xv \mid \muv_k, \Sigmav_k)}{\sum_{l=1}^K \pi_l N(\xv \mid \muv_l, \Sigmav_l)}. $$- **Maximization Step**: re-estimate $\muv_k$, $\Sigmav_k$, and $\pi_k$, - $\muv_k = \frac{1}{N_k} \sum_{n=1}^N \kappa(z_k) \xv_n$, - $\Sigmav_k = \frac{1}{N_k} \sum_{n=1}^N \kappa(z_k) (\xv_n - \muv_k)(\xv_n - \muv_k)^\top$, - $\pi_k = \frac{N_k}{N} $, with - $N_k = \sum_{n=1}^{N} \kappa(z_k)$. - Compute the log-likelihood and check convergence: $$LL = \ln p(\Xm \mid \pi, \muv, \Sigmav) = \sum_{n=1}^N \ln \Big[ \sum_{k=1}^K\pi_k N(\xv_n \mid \muv_k, \Sigmav_k) \Big]. $$- If not converged, repeat EM steps. Normal PDFBefore starting to write the EM algorithm for GMM, let us review our multivariate normal pdf! ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline # multinomial pdf def normal_dist(X, mu, Sigma): """ multinomial distribution probability density function parameters ----------- X ndarray (N x D) input data mu ndarray (D x 1) mean vector Sigma ndarray (D x D) covariance matrix return ------ @pdf_evals ndarray (N x 1) """ N, D = X.shape SigmaDet = Sigma if D == 1 else np.linalg.det(Sigma) try: SigmaInv = 1. / Sigma if D == 1 else np.linalg.inv(Sigma) except LinAlgError: raise np.linalg.LinAlgError('normalD: failed to compute inverse of Sigma') scale = 1. / np.sqrt((2 * np.pi)**D * SigmaDet) shiftedX = X - mu return scale * np.exp(-0.5 * np.sum(shiftedX @ SigmaInv * shiftedX, axis=1, keepdims=True)) mu = np.array([1, 1]) cov = np.eye(2) X = np.random.multivariate_normal(mu, cov, 10) normal_dist(X, mu, cov) ###Output _____no_output_____ ###Markdown PDF for Mixture ModelNow, let's consider multiple means for mixture model. For this, we review the Python *map* function. ###Code a = np.arange(5) b = np.arange(5) + 10 list(map(list, zip(a,b))) #list(map(lambda a,b: a+b, zip(a,b))) for i,j in zip(a,b): print(i, j) list(map(lambda t: t[0]+t[1], zip(a,b))) """ Revised multinomial PDF function for mixture models """ from numpy.linalg import LinAlgError # multinomial pdf def mixnorm_dist(X, mus, Sigmas): """ multinomial distribution probability density function parameters ----------- X ndarray (N x D) input data mu list of ndarray (D x 1) mean vectors Sigma list of ndarray (D x D) covariance matrices return ------ @pdf_evals ndarray (N x K) for K = len(mus) """ N, D = X.shape SigmaDets = np.fromiter(map(lambda S: S if D == 1 else np.linalg.det(S), Sigmas), dtype=np.float) try: SigmaInvs = np.array(list(map(lambda S: 1. / S if D == 1 else np.linalg.inv(S), Sigmas))) except LinAlgError: raise LinAlgError('normalD: failed to compute inverse of Sigma') scale = 1. / np.sqrt((2 * np.pi)**D * SigmaDets) shiftedX = X - np.asarray(mus)[:, np.newaxis, :] #quad = np.array(list(map(lambda V: np.sum(V[0] @ V[1] * V[1], axis=1, keepdims=True), zip(shiftedX, SigmaInvs)))) quad = np.array(list(map(lambda V: np.sum(V[0] @ V[1] * V[0], axis=1, keepdims=True), zip(shiftedX, SigmaInvs)))) quad = np.hstack(quad) return scale * np.exp(-0.5 * quad) mu1 = np.array([1, 1]) mu2 = np.array([3, 2]) cov = np.eye(2) X = np.vstack((np.random.multivariate_normal(mu1, cov, 10), np.random.multivariate_normal(mu2, cov, 10))) mixnorm_dist(X, [mu1, mu2], [cov, cov]) #X[:, :] - np.asarray([mu1, mu2])[:, np.newaxis, :] # compare with the normalD print(normal_dist(X, mu1, cov)) print(normal_dist(X, mu2, cov)) probs = mixnorm_dist(X, [mu1, mu2], [cov, cov]) kappa = probs / np.sum(probs, axis=1, keepdims=True) kappa classes = np.argmax(kappa, axis=1) classes mean1 = X[classes==0].mean(axis=0) mean1 cov1 = np.cov(X[classes==0].T) cov1 np.bincount(classes) np.bincount([0,1,1,2,4,4,4]) def GMM(X, K=2, maxiter=100): N, D = X.shape # select initial centers - randomly for now, but YOU CAN USE K-MEANS for initial assignment cidx = np.random.choice(N, K, replace=False) mus = X[cidx, :] Sigmas = [np.eye(D) for k in range(K)] # uni-variance pi = np.array([1/K] * K) LL = [] # LogLikelihood log - expected to monotonically increasing b = [] # repeat until convergence or up to maxiter for step in range(maxiter): # Expectation probs = mixnorm_dist(X, [mu1, mu2], [cov, cov]) # TODO- finish this kappa = probs / np.sum(probs, axis=1, keepdims=True) # TODO- finish this classes = np.argmax(kappa, axis=1) # Maximization Nk = np.bincount(classes) for i in range(K): m_i = np.sum(self.X[:,c], axis=0) mus[i, :] = (1/m_i)*np.sum(self.X*r_ic[:,c].reshape(len(self.X),1),axis=0) # TODO- finish this Sigmas[i][...] = np.dot((b[j].reshape(len(X),1) * (X - means[j])).T, (X - means[j])) / (np.sum(b[j])+eps) # TODO- finish this pi = # TODO- finish this ll = np.sum(np.log(np.sum(probs * pi, axis=1))) # convergence check: let us run w/o this for now. #if len(LL) > 0 and np.abs(ll - LL[-1]) < np.finfo(float).eps: # break LL.append(ll) # sum all the errors return kappa, mus, Sigmas, pi, LL ###Output _____no_output_____ ###Markdown Let us bring back our old example. ###Code # simulated samples mu1 = [-1, -1] cov1 = np.eye(2) mu2 = [2,3] cov2 = np.eye(2) * 3 C1 = np.random.multivariate_normal(mu1, cov1, 50) C2 = np.random.multivariate_normal(mu2, cov2, 50) plt.plot(C1[:, 0], C1[:, 1], 'or') plt.plot(C2[:, 0], C2[:, 1], 'xb') plt.xlim([-3, 6]) plt.ylim([-3, 7]) from matplotlib.colors import BASE_COLORS COLORS = list(BASE_COLORS.keys())[:-1] # scatter plots for K classes def kscatter_plot(X, classes): K = len(np.unique(classes)) Cs = [X[classes == k] for k in range(K)] csm = [''.join([c,'.']) for c in COLORS] mum = [''.join([c,'x']) for c in COLORS[::-1]] for k in range(K): plt.plot(Cs[k][:,0], Cs[k][:, 1], csm[k]) plt.plot(mus[k][0], mus[k][1], mum[k], markersize=10) # applying gmm on this data X = np.vstack((C1, C2)) K = 2 ks, mus, sigmas, pi, ll = GMM(X, 2, 1000) classes = np.argmax(ks, axis=1) print(classes) print("----means-------------") print(mus) for k in range(K): print("----Class k: Cov-Mat----") print(sigmas[k]) plt.plot(classes) plt.ylabel('classes') plt.xlabel('samples') plt.figure() kscatter_plot(X, classes) # Cs = [X[classes == k] for k in range(K)] # csm = ['m.', 'c.'] # mum = ['rx', 'bx'] # for k in range(K): # plt.plot(Cs[k][:,0], Cs[k][:, 1], csm[k]) # plt.plot(mus[k][0], mus[k][1], mum[k]) plt.figure() plt.plot(ll) plt.ylabel("log-likilihood") ###Output [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1] ----means------------- [[ 2.06069238 4.17384165] [-0.28087196 -0.40858763]] ----Class k: Cov-Mat---- [[ 2.58347819 0.09917755] [ 0.09917755 1.18408964]] ----Class k: Cov-Mat---- [[ 2.25513196 1.1274902 ] [ 1.1274902 2.16567898]] ###Markdown K-means vs GMM with data with different variances ###Code mu1 = [-2, 2] cov1 = np.eye(2) mu2 = [2,2] cov2 = np.eye(2) mu3 = [0,-8] cov3 = np.eye(2) * 5 C1 = np.random.multivariate_normal(mu1, cov1, 50) C2 = np.random.multivariate_normal(mu2, cov2, 50) C3 = np.random.multivariate_normal(mu3, cov3, 50) plt.plot(C1[:, 0], C1[:, 1], 'or') plt.plot(C2[:, 0], C2[:, 1], 'xy') plt.plot(C3[:, 0], C3[:, 1], '^b') Xvs = np.vstack((C1, C2, C3)) mus, classes, errs = kmeans(Xvs, K=3) kscatter_plot(Xvs, classes) ks, mus, sigmas, pi, ll = GMM(Xvs, 3, 1000) classes = np.argmax(ks, axis=1) kscatter_plot(Xvs, classes) ###Output _____no_output_____ ###Markdown How to choose the initial centers for GMM? ###Code def GMM(X, K=2, maxiter=100, init=None): """ Gaussian Mixture Model Parameters ---------- X ndarray (N x D) input data to cluster K int the number of clusters maxiter int the maximum number of iteration init string kmeans init or random Returns ------- @kappa ndarray (N x K) responsibilities for each class @mus ndarray (K x D) centers for clusters @Sigmas list of ndarray (D x D) list of covariance matrices @pi vector (K,) mixing coefficient @LL list log-likelihood log """ N, D = X.shape if init is None: # select initial centers - randomly for now, but YOU CAN USE K-MEANS for initial assignment cidx = np.random.choice(N, K, replace=False) mus = X[cidx, :] Sigmas = [np.eye(D) for k in range(K)] # uni-variance pi = np.array([1/K] * K) else: # init with kmeans mus, classes, errs = kmeans(Xvs, K=3) Nk = np.bincount(classes) pi = Nk / N mus = np.asarray(mus) Sigmas = [np.cov(X[classes==k].T) for k in range(K)] LL = [] # LogLikelihood log - expected to monotonically increasing # TODO: Finish GMM with your previous codes return kappa, mus, Sigmas, pi, LL ks, mus, sigmas, pi, ll = GMM(Xvs, 3, 1000, init='kmeans') classes = np.argmax(ks, axis=1) kscatter_plot(Xvs, classes) ###Output _____no_output_____ ###Markdown Dimensionality Reduction Principal Component Analysis (PCA)Principal Component Analysis (PCA) is one of the dimensionality reduction tools. PCA is also used for feature extraction, data compression, and data visualization. It is also known as Karhunen-Loeve (KL) transform.PCA reduces the dimension of the data by finding the data samples that vary the most. For this reason, we first look at the variance of the data. $$var(\zv) = \frac{1}{N} \sum_{n=1}^{N} \zv_n^2 $$From the variance, PCA finds the orthogonal projection of the data onto the *principal subspace*, which is a lower dimensional linear space. Now, let us look for a direction $\vv$ that maximazes the variances.Here, $\vv$ is a unit vector, so the dot product represents a projection onto it. The projection of data $\xv_n$ onto $\vv$ is $$\zv = \xv_n^\top \vv.$$The variance of this projected data $\zv$ is $$\begin{align*}var(\zv) &= \frac{1}{N} \sum_{n=1}^{N} \vv^\top \xv_n \xv_n^\top \vv \\ &= \vv^\top \Big( \frac{1}{N} \sum_{n=1}^{N} \xv_n \xv_n^\top \Big) \vv \\ &= \vv^\top \Sigmav \vv\end{align*}$$where $\Sigmav$ is a covariance matrix of $\xv_n$. Optimization Problem$$\begin{equation*}\begin{aligned}& \underset{\vv}{\text{maximize}}& & \vv^\top \Sigmav \vv \\& \text{subject to}& & \vv^\top \vv = 1.\end{aligned}\end{equation*}$$Using a Lagrange multiplier that is denoted by $\lambda$, we can make an unconstrained maximization of$$q(\vv) = \vv^\top \Sigmav \vv + \lambda ( 1 - \vv^\top \vv). $$As usual, setting the derivative w.r.t. $\vv$, we can get$$0 = 2 \Sigmav \vv - 2 \lambda \vv, $$$$\lambda \vv = \Sigmav \vv.$$We can see that the direction vector $\vv$ is an eigenvector!Also, since $\vv$ is a unit vector, we can apply $\vv^\top \vv = 1$ by left-multiplying $\vv^\top$,$$\lambda = \vv^\top \Sigmav \vv.$$So, we can obtain the maximum variance when $\vv$ is the eigenvector having the largest eigenvalue $\lambda$. This eigenvector is called as the *first principal component*. Other principal components, or other directions that are orthogonal to the first principal component, are found by the eigendecomposition of $\Sigmav$, or the singular value decomposition of data sample matrix $\Xm$ **with zero means**. $$\Xm = \Um \Lambdav^{\frac{1}{2}} \Vm^\top,$$where the $\Lambdav$ is a diagonal matrix with eigenvalue elements. For implementation, we need to keep track of shapes of each matrix. - $\Xm$: N x D- $\Um$: N x D- $\Lambdav$: D x D- $\Vm$: D x D ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline # PCA def pca(X): """ principal component analysis parameter --------- X ndarray (N x D) input data return ------ @U ndarray (N x D) left singular vectors @S ndarray (D x D) diagonal matrix with square root of eigenvalues @V ndarray (D x D) right singular vectors @mu ndarray (D,) 1d vector of column means """ ### TODO: implement PCA using np.linalg.svd return U, S, V.T, means mu1 = np.array([0, 0]) S1 = np.eye(2) X1 = np.random.multivariate_normal(mu1, S1, 300) plt.figure(figsize=(6,6)) plt.plot(X1[:, 0], X1[:, 1], 'ob') plt.xlim([-8, 8]) plt.ylim([-8, 8]) mu2 = np.array([2, 1]) S2 = np.array([[1,2],[0.5,3]]) X2 = np.random.multivariate_normal(mu2, S2, 300) plt.figure(figsize=(6,6)) plt.plot(X2[:, 0], X2[:, 1], 'ob') plt.xlim([-8, 8]) plt.ylim([-8, 8]) U, L, V, m1 = pca(X1) L U V U.shape COLORS = ['r', 'c', 'y'] def plot_pca(X, V, mu, L): plt.plot(X[:, 0], X[:, 1], 'ob') for d in range(V.shape[1]): l = np.sqrt(L[d]) print(l) p1 = mu - l * V[:, d] p2 = mu + l * V[:, d] plt.plot([p1[0], p2[0]], [p1[1], p2[1]], color=COLORS[d], linewidth=5) plt.figure(figsize=(6,6)) plot_pca(X1, V, m1, L) plt.xlim([-8, 8]) plt.ylim([-8, 8]) L U, L, V, m2 = pca(X2) plt.figure(figsize=(6,6)) plot_pca(X2, V, m2, L) plt.xlim([-8, 8]) plt.ylim([-8, 8]) L V newX2 = (X2) @ V plt.plot(newX2[:, 0], newX2[:, 1], 'ob') plt.xlim([-10, 10]) plt.ylim([-10, 10]) ###Output _____no_output_____ ###Markdown Review Standardization (Input Transformation) ###Code newX2 = (X2 - m2) plt.plot(newX2[:, 0], newX2[:, 1], 'ob') plt.xlim([-10, 10]) plt.ylim([-10, 10]) newX2 = (X2 - m2) @ V plt.plot(newX2[:, 0], newX2[:, 1], 'ob') plt.xlim([-10, 10]) plt.ylim([-10, 10]) newX2 = (X2 - m2) @ V newX2 /= np.std(newX2, 0) plt.plot(newX2[:, 0], newX2[:, 1], 'ob') plt.xlim([-10, 10]) plt.ylim([-10, 10]) ###Output _____no_output_____
Roberto_Zerbini's_Blog_Dimensionality_Reduction.ipynb
###Markdown ###Code import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.utils import check_random_state from sklearn.model_selection import train_test_split ###Output _____no_output_____ ###Markdown Curse of Dimensionality ###Code distances = [] dimensions = range(1,10000,250) for i in dimensions: n_dimensions = i point1 = np.random.rand(n_dimensions) point2 = np.random.rand(n_dimensions) distances.append(np.linalg.norm(point1-point2)) fig, ax = plt.subplots() ax.plot(dimensions, distances, "b-", label = 'Euclidean Distance') ax.set_xlabel("Dimensions") ax.set_ylabel("Distance") plt.legend(loc="upper left", fontsize=8) plt.title('Curse of Dimensionality') plt.show() ###Output _____no_output_____ ###Markdown PCA ###Code z = np.linspace(0, 3*np.pi) x = np.cos(z - np.pi/2) y = np.sin(z - np.pi/2) X = np.array(list(zip(x,y,z))) fig, ax = plt.subplots(subplot_kw=dict(projection='3d')) ax.scatter3D(x, y, z) plt.show() X_centered = X - X.mean(axis=0) U, s, Vt = np.linalg.svd(X_centered) c1 = Vt.T[:, 0] c2 = Vt.T[:, 1] # Draw plane xx, yy = np.meshgrid(np.arange(np.min(X_centered[:,0]), np.max(X_centered[:,0]), .01), np.arange(np.min(X_centered[:,1]), np.max(X_centered[:,1]), .01)) z1 = (-c1[0] * xx - c2[1] * yy ) * 1. / c1[2] z2 = (-c2[0] * xx - c2[1] * yy ) * 1. / c2[2] # plot the surface plt3d = plt.figure().gca(projection='3d') plt3d.plot_surface(xx, yy, z1, alpha=0.09) plt3d.plot_surface(xx, yy, z2, alpha=0.09) plt3d.scatter(*(X_centered.T), c = X_centered[:,0], cmap='inferno', label = 'Projection') plt.show() W2 = Vt.T[:, :2] X2D = X_centered.dot(W2) fig, ax = plt.subplots() plt.title('2D projection') ax.scatter(X2D[:,0],X2D[:,1], c = X2D[:,1], cmap='inferno', label = 'Projection') ax.set_xlabel("X") ax.set_ylabel("Y") plt.show() ###Output _____no_output_____ ###Markdown Compression ###Code # Load data from https://www.openml.org/d/554 X, y = fetch_openml('mnist_784', version=1, return_X_y=True) X = X / 255. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=10000, random_state = 123) n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) random_state = check_random_state(0) permutation = random_state.permutation(X_train.shape[0]) X_train = X_train[permutation] y_train = y_train[permutation] for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1) plt.imshow(X_train[index].reshape(28,28), cmap="binary", interpolation="nearest") plt.axis('off') plt.title(y_train[index], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) plt.show() import timeit from sklearn.linear_model import Perceptron clf = Perceptron(tol=1e-3, verbose = 0, random_state=123) clf.fit(X, y) %%timeit clf.fit(X, y) clf.score(X, y) from sklearn.decomposition import PCA pca = PCA(n_components=784) pca.fit(X) print(pca.explained_variance_ratio_) from sklearn.decomposition import PCA pca = PCA(n_components=.95) pca.fit(X) X_compressed = pca.transform(X) X_compressed.shape clf = Perceptron(tol=1e-3, verbose = 0, random_state=123) clf.fit(X_compressed, y) %%timeit clf.fit(X_compressed, y) clf.score(X_compressed, y) ###Output _____no_output_____ ###Markdown Visualization ###Code from sklearn.manifold import TSNE X_compressed = PCA(n_components=30).fit_transform(X[:10000]) X2D = TSNE(n_components=2, perplexity=40, n_iter=1000).fit_transform(X_compressed) fig, ax = plt.subplots(figsize=(15,10)) scatter = ax.scatter(X2D[:,0],X2D[:,1], c = np.array(y[:10000], dtype = 'int'), marker='o', cmap = 'tab10', label=np.unique(y[:10000]), s=30) legend1 = ax.legend(*scatter.legend_elements(), loc="upper left", title="Classes") ax.add_artist(legend1) plt.show() ###Output _____no_output_____
Prace_domowe/Praca_domowa7/Grupa1/PrzybylekPaulina/PracaDomowa7.ipynb
###Markdown Praca Domowa 7Autor: Paulina Przybyłek Wczytanie danych i odpowiednich pakietów ###Code from skimage import io import matplotlib.pyplot as plt import numpy as np from sklearn.decomposition import PCA import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Wczytajmy obrazek z kotkiem. Jest to kolorowy obrazek zapisany jako plik `.jpg`. Poniżej możemy zobaczyć jak wygląda rzeczywiście. ###Code image = io.imread('kotek.jpg') # url nie chciał się wczytać - występował problem print(image[0:2]) def plot_image(image): """ Zwraca obrazek podany jako argument w postaci macierzy. """ plt.figure(figsize=(12, 6)) plt.imshow(image) plt.axis('off') plt.show() plot_image(image) ###Output _____no_output_____ ###Markdown Ciekawy może nie jest, ale walorem jest uroczy i ładny kotek (szczególnie jak ktoś lubi koty ^^). Redukcja wymiarów - PCAPrzyjrzyjmy się wymiarom wczytanego obrazka zanim przejdziemy do redukcji wymiarów. ###Code image.shape # musimy zrobić obrazek 2D image_2D = np.reshape(image, (575, 864*3)) print("Wymiary naszego obrazka: ", image_2D.shape) ###Output Wymiary naszego obrazka: (575, 2592) ###Markdown Spróbujmy na takim obrazku wykonać PCA - korzystając z implementacji sklearn. Tylko jak ustawić parametry? Spróbujemy `svd_solver = "randomized"` przy ustawionym ziarnie na $0$ a następnie znajdziemy odpowiednią liczbę komponentów do PCA. ###Code pca = PCA(svd_solver="randomized", random_state=0).fit(image_2D) plt.figure(figsize=(16,10)) plt.plot(np.cumsum(pca.explained_variance_ratio_)) # skumulowany procent wyjaśnionej wariancji plt.xlim(-2,80) # dalej nie wzrasta zbytnio plt.grid(alpha=0.2) plt.yticks([0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0]) plt.xlabel('Liczba komponentów użytych do PCA') plt.ylabel('Skumulowany % wyjaśnionej wariancji') plt.show() ###Output _____no_output_____ ###Markdown Dla $80$ komponentów uzyskujemy niemal $99\%$ wariancji. I tak znacznie zmniejszymy wymiary, więc zobaczmy jak to wygląda. ###Code def image_pca(components): """ Funkcja wykonuje PCA na obrazku dla podanej liczby komponentów. """ image_pca = PCA(n_components = components, svd_solver="randomized", random_state=0).fit(image_2D) image_reduced = image_pca.transform(image_2D) print("Wymiary po redukcji: ", image_reduced.shape) print("Procent wyjaśnionej wariancji: ", np.sum(image_pca.explained_variance_ratio_)) image_reduced = image_pca.inverse_transform(image_reduced) return image_reduced image_reduced = image_pca(80) # wróćmy do obrazka z 3 kanałami image_converted = np.reshape(image_reduced, (575,864,3)) plot_image((image_converted).astype(np.uint8)) ###Output _____no_output_____ ###Markdown Mimo dużego procentu wariancji kotek stracił na jakości. Jednak pamiętajmy, że wzięliśmy $80$ kompentów z $2592$, więc zmniejszyliśmy objętość $32,4$. Spróbujmy zrobić to dla większej liczby i zobaczmy jak będzie to wyglądać. Co ważne już teraz poza czterema miejscami obraz odtworzył się idealnie, więc wiele nie brakuje. ###Code image_reduced = image_pca(360) image_converted = np.reshape(image_reduced, (575,864,3)) plot_image((image_converted).astype(np.uint8)) ###Output Wymiary po redukcji: (575, 360) Procent wyjaśnionej wariancji: 0.9999130496142241
01_Softmax_with_temperature.ipynb
###Markdown Softmax with temperatureThis notebook presents how change in temperature in [softmax](https://en.wikipedia.org/wiki/Softmax_function) function are related to changes in distribution [entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory)).Softmax with temperature is defined as:$$\Large softmax(x_i) = \frac{e^{\frac{x_i}{t}}}{\sum_{j=0}^{K}e^{\frac{x_j}{t}}}$$where $t$ is temperature. Define functions ###Code def softmax_t(x, t=1): return np.exp(x / t) / np.sum(np.exp(x / t)) def shannon_entropy(x): return -np.sum(x * np.log2(x)) ###Output _____no_output_____ ###Markdown Create dataLet's assume a 10-class classification problem. We'll randomly pick 10 values and interpret them as pre-softmax logits. ###Code logits = np.random.randn(10) # Sanity check probas = softmax_t(logits) logits, probas, probas.sum() ###Output _____no_output_____ ###Markdown Let's plot our probabilities with low (==.01), default (==1), high (==3) and very high (==100) temperatures. ###Code plt.figure(figsize = (20, 4)) plt.subplot(1, 4, 1) plt.bar(np.arange(len(probas)), softmax_t(logits, .01), alpha = .8) plt.title('Distribution of probabilities\n$temp = .01$') plt.xlabel('Class') plt.ylabel('$P(class)$') plt.subplot(1, 4, 2) plt.bar(np.arange(len(probas)), probas, alpha = .8) plt.title('Distribution of probabilities\n$temp = 1$') plt.xlabel('Class') plt.ylabel('$P(class)$') plt.subplot(1, 4, 3) plt.bar(np.arange(len(probas)), softmax_t(logits, 3), alpha = .8) plt.title('Distribution of probabilities\n$temp = 3$') plt.xlabel('Class') plt.ylabel('$P(class)$') plt.subplot(1, 4, 4) plt.bar(np.arange(len(probas)), softmax_t(logits, 100), alpha = .8) plt.title('Distribution of probabilities\n$temp = 100$') plt.xlabel('Class') plt.ylabel('$P(class)$') plt.show() ###Output _____no_output_____ ###Markdown We can see that relative differences between probabilities decrease when temperature $t$ increases. For extremely low values of $t$ we get very close to "hard" max function. For very high values of $t$ we're approaching uniform distribution. Looking at the plots above, we expect that entropy of the distribution should increase with temperature $t$ (which probably sounds very intuitive to those of you wiyh background in physics).Let's check it! Compute entropy for different values of $t$ ###Code temps = [] probas = [] entropies = [] for t in np.arange(.01, 100.01, .1): probas_ = softmax_t(logits, t) probas.append(probas_) temps.append(t) entropies.append(shannon_entropy(probas)) plt.figure(figsize = (5, 4)) plt.scatter(temps, entropies, alpha = .1) plt.xlabel('Temperature $t$') plt.ylabel('Entropy (bits)') plt.title('How entropy changes with $t$') plt.show() ###Output _____no_output_____
x-archive-temp/ca08-SKL_Regression/LinearRegression.ipynb
###Markdown ![data-x](https://raw.githubusercontent.com/afo/data-x-plaksha/master/imgsource/dx_logo.png)--- Cookbook 3: Linear Regression**Author list:** Alexander Fred Ojala**References / Sources:** * http://nbviewer.jupyter.org/github/jdwittenauer/ipython-notebooks/blob/master/notebooks/ml/ML-Exercise1.ipynb * http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/slr05.html (data)**License Agreement:** Feel free to do whatever you want with this code___ *This notebook highlights the basic ML concepts: Simple linear regression, multiple linear regression, and linear predicition.* Linear Regression & Prediction___Most basic predictive method in Machine Learning. The goal is to minimize the sum of the squared errros to fit a straight line to a set of data points.The linear regression model fits a linear function to a set of data points. For simple linear regression that is: $Y = \beta_0 + \beta_1 X$where,* $\beta_0$ is the intercept* $\beta_1$ the slope parameter* $Y$ is the dependent variable (sometimes called "target variable")* $X$ is the independent variable (sometimes called "predictor", "regressor", or "feature") ###Code #import packages import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline #import data Fires per 10000 housing units and Thefts per 10000 population in Chicago import os path = os.getcwd() + '/data2.csv' df = pd.read_csv(path, header=None, names=['Fires', 'Thefts']) #read in to table and add header df.head() data=df/10 #normalize data df=df/10 df.insert(0, 'Ones', 1) # Insert ones for intercept df.head() ###Output _____no_output_____ ###Markdown Simple and Multiple Linear Regression___ Matrix multiplication Linear Regression to obtain the weights$ W = (X^T X)^{-1} X^T Y $$ W_1 = (X^T X)^{-1} $$ W_2 = X^T Y $ ###Code #def lm_weights(df): n=len(df) #number of rows m=len(df.iloc[0,:]) df_matrix = df.as_matrix() nx = df_matrix[:,0:(m-1)] ny = df_matrix[:,m-1] ny = ny[:,np.newaxis] # add new axis for matrix multiplication W1 = np.linalg.inv(np.dot(nx.T,nx)) #Calculate first part of weight W2 = np.dot(nx.T,ny) W = np.dot(W1,W2) weights_df = pd.DataFrame(W,index=['beta0','beta1']) #print weights_df #return W #W = lm_weights(df) # Plot Results x = np.linspace(data.Fires.min(), data.Fires.max(), 100) f = W[0, 0] + (W[1, 0] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Fires, data.Thefts, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('Fires') ax.set_ylabel('Thefts') ax.set_title('Predicted Fires vs. Thefts') ###Output _____no_output_____ ###Markdown Linear Regression with Gradient Descent and Cost function___ Now let's implement linear regression using gradient descent to minimize the cost function. The equations implemented in the following code samples are detailed in "ex1.pdf" in the "exercises" folder.First we'll create a function to compute the cost of a given solution (characterized by the parameters beta). ###Code def computeCost(X, y, beta): inner = np.power(((X * beta.T) - y), 2) return np.sum(inner) / (2 * len(X)) ###Output _____no_output_____ ###Markdown Now let's do some variable initialization. ###Code # set X (training data) and y (target variable) cols = df.shape[1] X = df.iloc[:,0:cols-1] y = df.iloc[:,cols-1:cols] ###Output _____no_output_____ ###Markdown Let's take a look to make sure X (training set) and y (target variable) look correct. ###Code X.head() y.head() ###Output _____no_output_____ ###Markdown The cost function is expecting numpy matrices so we need to convert X and y before we can use them. We also need to initialize beta. ###Code X = np.matrix(X.values) y = np.matrix(y.values) beta = np.matrix(np.array([0,0])) ###Output _____no_output_____ ###Markdown Here's what beta looks like. ###Code beta ###Output _____no_output_____ ###Markdown Let's take a quick look at the shape of our matrices. ###Code X.shape, beta.shape, y.shape ###Output _____no_output_____ ###Markdown Now let's compute the cost for our initial solution (0 values for theta). ###Code computeCost(X, y, beta) ###Output _____no_output_____ ###Markdown So far so good. Now we need to define a function to perform gradient descent on the parameters beta. ###Code def gradientDescent(X, y, beta, alpha, iters): temp = np.matrix(np.zeros(beta.shape)) parameters = int(beta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * beta.T) - y for j in range(parameters): term = np.multiply(error, X[:,j]) temp[0,j] = beta[0,j] - ((alpha / len(X)) * np.sum(term)) beta = temp cost[i] = computeCost(X, y, beta) return beta, cost ###Output _____no_output_____ ###Markdown Initialize some additional variables - the learning rate alpha, and the number of iterations to perform. ###Code alpha = 0.01 iters = 1000 ###Output _____no_output_____ ###Markdown Now let's run the gradient descent algorithm to fit our parameters theta to the training set. ###Code g, cost = gradientDescent(X, y, beta, alpha, iters) g ###Output _____no_output_____ ###Markdown Finally we can compute the cost (error) of the trained model using our fitted parameters. ###Code computeCost(X, y, g) ###Output _____no_output_____ ###Markdown Now let's plot the linear model along with the data to visually see how well it fits. ###Code x = np.linspace(data.Fires.min(), data.Fires.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Fires, data.Thefts, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('Fires') ax.set_ylabel('Thefts') ax.set_title('Predicted Fires vs. Thefts') ###Output _____no_output_____ ###Markdown Looks pretty good! Since the gradient decent function also outputs a vector with the cost at each training iteration, we can plot that as well. Notice that the cost always decreases - this is an example of a convex optimization problem. ###Code fig, ax = plt.subplots(figsize=(12,8)) ax.plot(np.arange(iters), cost, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title('Error vs. Training Epoch') ###Output _____no_output_____ ###Markdown Multiple Linear Regression Exercise 1 also included a housing price data set with 2 variables (size of the house in square feet and number of bedrooms) and a target (price of the house). Let's use the techniques we already applied to analyze that data set as well. ###Code path = os.getcwd() + '/ex1data2.txt' data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price']) data2.head() ###Output _____no_output_____ ###Markdown For this task we add another pre-processing step - normalizing the features. This is very easy with pandas. ###Code data2 = (data2 - data2.mean()) / data2.std() data2.head() ###Output _____no_output_____ ###Markdown Now let's repeat our pre-processing steps from part 1 and run the linear regression procedure on the new data set. ###Code # add ones column data2.insert(0, 'Ones', 1) # set X (training data) and y (target variable) cols = data2.shape[1] X2 = data2.iloc[:,0:cols-1] y2 = data2.iloc[:,cols-1:cols] # convert to matrices and initialize theta X2 = np.matrix(X2.values) y2 = np.matrix(y2.values) theta2 = np.matrix(np.array([0,0,0])) # perform linear regression on the data set g2, cost2 = gradientDescent(X2, y2, theta2, alpha, iters) # get the cost (error) of the model computeCost(X2, y2, g2) ###Output _____no_output_____ ###Markdown We can take a quick look at the training progess for this one as well. ###Code fig, ax = plt.subplots(figsize=(12,8)) ax.plot(np.arange(iters), cost2, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title('Error vs. Training Epoch') ###Output _____no_output_____ ###Markdown Instead of implementing these algorithms from scratch, we could also use scikit-learn's linear regression function. Let's apply scikit-learn's linear regressio algorithm to the data from part 1 and see what it comes up with. ###Code from sklearn import linear_model model = linear_model.LinearRegression() model.fit(X, y) ###Output _____no_output_____ ###Markdown Here's what the scikit-learn model's predictions look like. ###Code x = np.array(X[:, 1].A1) f = model.predict(X).flatten() fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Fires, data.Thefts, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('Fires') ax.set_ylabel('Thefts') ax.set_title('Predicted Thefts vs. Numbers of Fires') ###Output _____no_output_____
Notebooks/submission.ipynb
###Markdown Submission NotebookWe have worked on optimising the charging and discharging of the battery. Exploratory Data AnalysisLet's look at the 'apx_da_hourly' data. ###Code import sys sys.path.append("../") from Hack import load import matplotlib.pyplot as plt import pandas as pd import statsmodels.api as sm epex = load.epex().load() # Show seasonal trends epex['doy'] = epex.index.day_of_year epex['year'] = epex.index.year fig, axs = plt.subplots(1,1, figsize=(15,10), sharex='col') for i in [2019, 2020, 2021]: epex_temp = epex.loc[epex.year==i] epex_group = epex_temp.groupby(['doy']).mean() axs.plot(epex_group.index, epex_group['apx_da_hourly'], label=str(i)) axs.set_ylabel('apx_da_hourly') axs.set_xlabel('day of year') axs.legend() fig.subplots_adjust(hspace=0.1) # Show daily variations (e.g. 2019) doy1 = 300 doy2 = 310 fig, axs = plt.subplots(1,1, figsize=(15,10), sharex='col') epex_temp = epex.loc[(epex.doy>doy1)&(epex.doy<doy2)&(epex.year==2019)] axs.plot(epex_temp.index, epex_temp['apx_da_hourly'], label=str(i)) axs.set_ylabel('apx_da_hourly') axs.set_xlabel('2019 (yyyy-mm-dd)') axs.legend() fig.subplots_adjust(hspace=0.1) ###Output _____no_output_____ ###Markdown Challenge We decided to focus on the optimisation side of the project, feeling more confident with this than the forecasting Model* The problem is how to train a program to allow a battery to decide at each point in time whether to charge or discharge, so that overall it tends to maximise the cumulatibe profit* We settled on solving this using a reinforcement learning approach because the problem wasn't obviously a regression or classification issue, more learning a strategy for when to buy or sell* Reinforcement learning is good for this because it allows an informed improvement to the policy as well as optimising the profit Implementation* We used the stable_baselines3 package, due to its good documentation* We defined a custom Gym Environment class to define our game, which effectively sets out the rules for our algorithm* We need to define an action_space and an observation_space for this environment. The action_space consisted of all the actions our agent (battery could do). This was buy energy (& charge the battery), sell energy (& discharge the battery) or hold. The observation_space is the all of the properties of the environment that can influence the actions the agent might take. * Our observation_space consisted of the current price of electricity, the current energy of the battery and some metric for whether it would be good or bad to sell energy* This last feature was the most difficult feature to decide. This is probably the most crucial feature however because it is basically what determines our reward or punishment scheme for our battery. We wanted to punish our battery if it tries to buy energy when the price is high, or sell when the price is low. And vice versa. We did this by calculating at every 30 minute interval the revenue if the battery tried to buy or sell for the next 30 minutes, and compared this to the theoretical amount that could be made if the price was equal to the average price (our metric for what is high and what is low). Originally, we used the mean for the average but we found that this meant that spikes in the data were really problematic as they strongly offset the mean. Instead, we found the median a much more sensible measure. The figures expected_price_2019.png, expected_price_2020.png, expected_price_2021.png show this* We trained the data on the first two years of data (2019 and 2020), and then tried to make predictions in 2021 based on this trained model Results (See the figure directory for our results)1) We originally trained our data on a week's worth of data at the start of 2019. We then got predictions for the next week of data. Here the model is clearly working as expected. We evaluate the mean reward of our model and find that it's positive (our model is making a profit). And better than the random model.2) We then train our dataset on a month's worth of data at the start of 2019 and then get predictions for the next month. The model still performs well and better than the random model. The model has good behaviours3) Ultimately, we want to model data in 2021. So we treat 2019-2020 as a training dataset and then predict values for 2021. This is where our model fails to work effectively. We think this is because we don't have a good way to handle spikes in the data. Our model can't predict future spikes at all, so sometimes it sells when the price is yet to climb (which we don't penalise). ###Code from Hack import load, rl from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv epex = load.epex().load() price_array = epex['apx_da_hourly'].values start_of_2020 = None start_of_2021 = None for idx, (i, row) in enumerate(epex.iterrows()): if i.year > 2019 and start_of_2020 is None: start_of_2020 = idx if i.year > 2020 and start_of_2021 is None: start_of_2021 = idx break print(start_of_2020, start_of_2021) loaded_model = PPO.load("Models/train_first_month.zip") %matplotlib qt5 period = 'all' # period = 'sept' if period == 'sept': # test on september test_start_idx = 42434 # end_idx # start_of_2020 # end_idx # start_of_2020 # 2*24*7 test_end_idx = test_start_idx + 4*7*24*2 # -1 # start_of_2021 # 2*end_idx # start_of_2021 # 30770 + 2*24*7 elif period == 'all': test_start_idx = 4*7*24*2 test_end_idx = -1 elif period == '2020': test_start_idx = start_of_2020 test_end_idx = start_of_2021 elif period == '2021': test_start_idx = start_of_2021 test_end_idx = -1 test_price_array = price_array[test_start_idx:test_end_idx] new_env = DummyVecEnv([lambda: rl.energy_price_env(test_price_array)]) mean_reward_after_train = rl.evaluate(loaded_model, new_env=new_env, num_episodes=1, index=epex.index[test_start_idx:test_end_idx]) ###Output C:\Users\Ronan\Anaconda3\envs\ml\lib\site-packages\gym\logger.py:34: UserWarning: WARN: Box bound precision lowered by casting to float32 warnings.warn(colorize("%s: %s" % ("WARN", msg % args), "yellow"))
notebooks/07a-lightdlf.ipynb
###Markdown Prueba de Lightdlf> Desde Tensores hasta transformaciones no lineales, descenso de gradiente y funcion de perdida ###Code import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) from lightdlf_old.cpu.core import Tensor from lightdlf_old.cpu.layers import Linear, Tanh, Sigmoid, Relu, Sequential, MSELoss from lightdlf_old.cpu.optimizers import SGD import numpy as np np.random.seed(0) data = Tensor(np.array([[0,0],[0,1],[1,0],[1,1]]), autograd=True) # (4,2) target = Tensor(np.array([[0],[1],[0],[1]]), autograd=True) # (4,1) model = Sequential([Linear(2,3), Tanh(), Linear(3,1), Sigmoid()]) criterion = MSELoss() # optim = SGD(model.get_parameters(), alpha=0.05) # Lineal optim = SGD(model.get_parameters(), alpha=1) # Tanh, Sigmoid for i in range(10): # Predecir pred = model.forward(data) # Comparar loss = criterion.forward(pred, target) # Aprender loss.backward(Tensor(np.ones_like(loss.data))) optim.step() print(loss) ###Output [1.06372865] [0.75148144] [0.57384259] [0.39574294] [0.2482279] [0.15515294] [0.10423398] [0.07571169] [0.05837623] [0.04700013]
Week 4 project CA/Export_LAtimes_duplicates_shp.ipynb
###Markdown In this notebook, we export to .shp files the duplicated precincts in the LA times precincts data to view them in QGIS. 2 "versions" are exported: - the simple "subshapefile" of the duplicates - a shapefile with only one entry per precinct, with area computed as the sum of all areas (note that this might be an approximation rather than the exact area as we did not handle overlaps), and geometry as the multipolygon composed of all polygons associated to a precinct. ###Code import os import numpy as np import pandas as pd import geopandas as gpd precincts = gpd.read_file('./Data/LAtimes2016_merged/merged_CA2016.shp') dups = precincts[precincts.duplicated('pct16', keep =False)== True] #save duplicates shapefile - for QGIS use dups.to_file("LA_times_duplicates.shp") ###Output _____no_output_____ ###Markdown Now we will group all the duplicates in one line for each precinct. Changes to make to obtain this file:- turn the polygon pieces into a single multipolygon object for each county ID. - compute the area, being careful about overlaps of precinct pieces (for now, we only care about geometry, and can actually obtain area from the geometry, so the simple approximation of summing all areas of the pieces corresponding to one precinct will be used in the first place) ###Code dups.crs areas = dups.groupby('pct16').agg({'area':'sum'}) duplicates = dups[['pct16']].drop_duplicates('pct16', keep = 'first') len(duplicates), len(areas) #difference is due to 'None' precinct... duplicates = duplicates.join(areas, on = 'pct16') from shapely.ops import cascaded_union duplicates['geometry'] = np.nan df = dups[dups['pct16'] == '071-RAN1050'] geoms = df['geometry'].to_list() geom = gpd.GeoSeries(cascaded_union(geoms)) geom[0] for index, row in duplicates.iterrows(): precinct = row['pct16'] if not precinct is None : try : df = dups[dups['pct16'] == precinct] geoms = df['geometry'].to_list() geom = gpd.GeoSeries(cascaded_union(geoms)) duplicates['geometry'][index] = geom[0] except: print('you should check precinct') print(precinct) dups[dups.pct16 == '085-0'] duplicates.loc[duplicates.pct16 == '085-0','geometry'] = np.nan duplicates = duplicates[~pd.isnull(duplicates['geometry'])] duplicates = gpd.GeoDataFrame(duplicates, geometry='geometry') duplicates.crs = dups.crs duplicates.to_file("LA_times_duplicates_agg.shp") ###Output _____no_output_____
measuredivergence/modelsofdivergence.ipynb
###Markdown Measuring the divergence between models.We have lots of ways of comparing different models of the same data. One model may be more "accurate" than the other--or have better "precision" or "recall."But what if you want to compare models of _different_ data? For instance, say we we have one model that separates science fiction from mainstream fiction, and another that separates fantasy from the mainstream. We'd like to be able to ask _how similar_ the two models are. Are SF and fantasy different from mainstream fiction in similar ways?One intuitive way to pose this question might be to ask, "Can a model that separates SF from the mainstream also spearate fantasy?" In practice, it can, but it does so somewhat worse than a model originally trained on fantasy.That leads us to the question explored in this notebook: can we explain what we mean when we say "model A performs somewhat worse on dataset B"? What counts as significantly worse? And also, can we compare the divergences between models (A -> B and C -> D) by reference to any shared yardstick? For instance, suppose I also train multiple models of science fiction in different periods. Just as a model of SF loses accuracy on fantasy, a model of 1970s SF will lose some accuracy if asked to make predictions about the 19th century. We might understand that loss of accuracy as a measure of generic change. Can we meaningfully compare this measure of change to the distance between genres? Could we say, for instance, "In the 1970s, SF was about as different from fantasy as it was from its own past in the era of Jules Verne?" The general approachWe don't start out knowing, in principle, which genres are more or less similar to each other, so it's hard to calibrate the space of similarity between models.We do know, however, that a model asked to discriminate between two random samples of the same set will produce very little useful information. So we might reasonably use that to mark "zero" on our thermometer. Whatever boundary (A vs. B) we want to model, a model of an entirely random boundary should count as "not at all meaningfully similar to it."Then we could calibrate the space between A vs. B and sheer randomness by gradually mixing B into A. For instance, we could start diluting A by replacing 5% of the A examples with examples of B. This will weaken our model; the A/B boundary will be less accurately traced. Then we replace 10% of the examples of A. Then 15%, and so on. By the time we're done, we have twenty models defining the space between A/B and a random boundary. Choosing a metricI ran that test, using science fiction (labeled by librarians or OCLC) as A and a collection of fiction selected randomly from HathiTrust for B. (See labnotebook.md for details of the code used.)I'm going to read in the results of the dilution below as **sfvsrand**. Each row in this dataset actually defines a _comparison_ between two models rather than a single model. There are 86 comparisons and only 41 models. But the rows do also reference the accuracy of the original models, so we can use them to plot the original models' accuracy if we don't mind plotting the same dot several times. ###Code import pandas as pd import numpy as np from scipy.stats import pearsonr from matplotlib import pyplot as plt %matplotlib inline sfvsrand = pd.read_csv('sf_divergences.tsv', sep = '\t') sfvsrand.head() ###Output _____no_output_____ ###Markdown the accuracies of the models, considered separatelyAs you can see below, there's a gratifyingly linear relationship between the amount of dilution we apply and the accuracy of the resulting model.The accuracies don't get *quite* down to a flat .50; that's because our model-tuning method overfits a little through parameter selection, in an attempt to give every dataset the benefit of a doubt. If you were testing algorithms, you might not want to do this, but we're interested in the data, and applied consistently it does no harm.In any case, the difference between .90 and .52 or whatever is sufficiently clear. ###Code ax = sfvsrand.plot.scatter('ratiodiff', 'acc2') ax.set_xlabel('amount of dilution') ax.set_ylabel('accuracy') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, sfvsrand.acc2)[0]) ) ###Output _____no_output_____ ###Markdown loss of accuracyBut the accuracies of the models, considered separately, don't do much for us. We definitely cannot conclude that every 70% accurate model has some relation to science fiction. It may have no relation at all! We're interested in the accuracies we get when we apply one model to another model's data.For instance what if we apply the diluted models back to the clean data, and ask how much accuracy they lose, compared to the models that were trained on those original data samples ###Code ax = sfvsrand.plot.scatter('ratiodiff', 'loss2on1') ax.set_xlabel('amount of dilution') ax.set_ylabel('accuracy lost by diluted model on clean data') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, sfvsrand.loss2on1)[0]) ) ###Output _____no_output_____ ###Markdown It's not exactly a linear relationship, but it's clear that diluted models lose more accuracy. What if we try vice-versa? Do models trained on clean data also lose accuracy relative to models trained on the diluted data? ###Code ax = sfvsrand.plot.scatter('ratiodiff', 'loss1on2') ax.set_xlabel('amount of dilution') ax.set_ylabel('accuracy lost by clean model on diluted data') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, sfvsrand.loss1on2)[0]) ) ###Output _____no_output_____ ###Markdown Not so much. "Loss of accuracy" can be an asymmetric relationship. If category B is not very coherent to start with, a model of category A can sometimes make predictions that are almost as good as a model trained on B's data--even when a model trained on B is uninformative about A! This is admittedly most likely to happen in the artificial situation we have constructed (where B is just a diluted version of A). But it's not impossible to imagine an analogous asymmetry occurring in the real world. E.g, one could imagine that hardboiled detective novels, or hard SF, are "extreme" or "stylized" versions of a genre. More generally, whenever we were comparing models with different base accuracies, we would have to worry that "loss of accuracy" was an asymmetric measure.So let's look for other metrics. "Accuracy" was to begin with a bit crude, since it depends on a binary division into two classes. What if we ask a more detailed question, about the model's ability to sort instances according to their probability of belonging to the specified genre: P(genre|text)? We could measure this, for instance, through correlation. correlation coefficientsLet's look at the Spearman correlation coefficient, which compares the way two models rank the texts in a dataset. First let's ask the model trained on diluted data to make predictions on clean data, and then calculate the correlation between those predictions and the predictions made by a model actually trained on clean data. ###Code plt.scatter(sfvsrand.ratiodiff, sfvsrand.spear2on1) plt.xlabel('ratio of dilution') plt.ylabel('spearman correlation') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, sfvsrand.spear2on1)[0]) ) ###Output _____no_output_____ ###Markdown It's not very linear, but that's because correlation is capped at 1. We can fix that with a Fisher's z-transform, rendering the underlying metric linear. It's equivalent to arctanh. ###Code plt.scatter(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spear2on1)) plt.xlabel('ratio of dilution') plt.ylabel('spearman correlation') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spear2on1))[0]) ) ###Output _____no_output_____ ###Markdown Hey, that's about as strong a linear relationship as our original metric, "loss of accuracy." Does it also tend in practice to be symmetric?Let's now ask a model trained on clean data (A) to make predictions about a diluted dataset (B). We saw that these can be almost as "accurate" as a (not very accurate) model trained on diluted data. But we might hope that ability-to-rank is a sterner test, which will prove that A has no real congruence with B. ###Code plt.scatter(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spear1on2)) plt.xlabel('spearman correlation') plt.ylabel('accuracy lost by diluted model on clean data') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spear1on2))[0]) ) ###Output _____no_output_____ ###Markdown Yes, loss of correlation is symmetric! It's not a mathematical guarantee, but the correlation of A on B's data tracks the correlation of B on A's data pretty closely. In fact, it looks the original model's inability to sort a transformed dataset is an even stronger predictor of the dataset's alienation from our original genre. This difference is slight, however, and it might be due to the artificial nature of our test. (There are instances in the diluted dataset that will literally be impossible to predict, so A is sort of guaranteed to fail.)Since these two measures tend to correlate, we could also average them, to produce a robust measure of divergence between two models. By calling this "robust," I mean that in the real world, we'll never know in practice which model is "A" and which one is "B." We might as well consider both models' perspectives on the other. ###Code plt.scatter(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spearman)) plt.xlabel('dilution of data') plt.ylabel('spearman correlation') plt.show() print("r = " + str(pearsonr(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spearman))[0]) ) ###Output _____no_output_____ ###Markdown our final metricSo we're measuring the divergence of models by averaging: spearman(modelA's prediction on Adata, modelB's prediction on Adata) and spearman(modelA's prediction on Bdata, modelB's prediction on Bdata)It doesn't matter greatly whether we use Spearman or Pearson correlation. The results are very close. It *does* matter that we transform the two correlation coefficients with np.arctanh() before averaging them.I tried a few other things, including KL divergence. They didn't in practice seem to work as well. Calibration problemsHowever, if we want to render different sets of models comparable, we need some way to translate a correlation coefficient into a specific "distance." Although real-world models aren't really diluted versions of each other, we might use "percentage of dilution" as a rough and ready yardstick for this. "Pre-World-War-II SF is about as informative about the postwar genre ... as a model of the postwar genre would be if it were diluted by 25%." That's somewhat intelligible, and in any case it permits us to make comparisons between different pairs.However, to use that yardstick, we'll need to translate our y axis in the graph above into a specific x value. And this is complicated by a messy reality: the different categories we will be modeling max out at different degrees of correlation.For instance, distinguishing science fiction from *fantasy* is significantly harder than distinguishing it from random (mainstream) fiction. Models attempting to trace this blurrier boundary top out at roughly 77% accuracy, and their predictions about specific books don't correlate with each other as strongly as models of sf-vs-random. See the red line below: ###Code fanvsf = pd.read_csv('fsf_divergences.tsv', sep = '\t') fig, ax = plt.subplots(figsize = (8, 6)) plt.scatter(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spearman), c ='b', alpha = 0.6) plt.scatter(fanvsf.ratiodiff, np.arctanh(fanvsf.spearman), c = 'r', alpha = 0.6) plt.xlabel('dilution of data', fontsize = 14) plt.ylabel('spearman correlation', fontsize = 14) z = np.polyfit(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spearman), 1) p = np.poly1d(z) ax.plot(sfvsrand.ratiodiff, p(sfvsrand.ratiodiff), linestyle = (0, (5, 5)), c = 'b') z = np.polyfit(fanvsf.ratiodiff, np.arctanh(fanvsf.spearman), 1) p = np.poly1d(z) ax.plot(fanvsf.ratiodiff, p(fanvsf.ratiodiff), linestyle = (0, (5, 5)), c = 'r') plt.ylim((-0.6, 1.8)) plt.show() fant = pd.read_csv('fantasy_divergences.tsv', sep = '\t') fig, ax = plt.subplots(figsize = (8, 6)) plt.scatter(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spearman), c ='b', alpha = 0.6) plt.scatter(fant.ratiodiff, np.arctanh(fant.spearman), c = 'r', alpha = 0.6) plt.xlabel('dilution of data', fontsize = 14) plt.ylabel('spearman correlation', fontsize = 14) z = np.polyfit(sfvsrand.ratiodiff, np.arctanh(sfvsrand.spearman), 1) p = np.poly1d(z) ax.plot(sfvsrand.ratiodiff, p(sfvsrand.ratiodiff), linestyle = (0, (5, 5)), c = 'b') z = np.polyfit(fant.ratiodiff, np.arctanh(fant.spearman), 1) p = np.poly1d(z) ax.plot(fant.ratiodiff, p(fant.ratiodiff), linestyle = (0, (5, 5)), c = 'r') plt.ylim((-0.6, 1.8)) plt.show() fant = pd.read_csv('fantasy_divergences.tsv', sep = '\t') fig, ax = plt.subplots(figsize = (8, 6)) plt.scatter(sfvsrand.ratiodiff, np.arctanh((sfvsrand.loss+0.1)/sfvsrand.acc1), c ='b', alpha = 0.6) plt.scatter(fant.ratiodiff, np.arctanh((fanvsf.loss+0.1)/fant.acc1), c = 'r', alpha = 0.6) plt.xlabel('dilution of data', fontsize = 14) plt.ylabel('aacuracy loss', fontsize = 14) z = np.polyfit(sfvsrand.ratiodiff, (sfvsrand.loss + 0.1)/sfvsrand.acc1, 1) p = np.poly1d(z) ax.plot(sfvsrand.ratiodiff, p(sfvsrand.ratiodiff), linestyle = (0, (5, 5)), c = 'b') z = np.polyfit(fant.ratiodiff, (fanvsf.loss + 0.1)/fant.acc1, 1) p = np.poly1d(z) ax.plot(fant.ratiodiff, p(fanvsf.ratiodiff), linestyle = (0, (5, 5)), c = 'r') plt.show() pearsonr(fant.ratiodiff, np.arctanh(fant.spearman)) allframes = pd.concat([fant, fanvsf, sfvsrand]) allframes = allframes[allframes.ratiodiff < .1] pearsonr(allframes.acc2 + allframes.acc1, np.arctanh(allframes.spearman)) import statsmodels.formula.api as smf lm = smf.ols(formula='ratiodiff ~ spearman + spearman:acc1 + loss', data=allframes).fit() lm.summary() import math math.sqrt(.737) ###Output _____no_output_____
notes/.ipynb_checkpoints/Kahraman_1994-checkpoint.ipynb
###Markdown Some manipulations on (Kahraman, 1994) [1] A. Kahraman, "Natural Modes of Planetary Gear Trains", Journal of Sound and Vibration, vol. 173, no. 1, pp. 125-130, 1994. https://doi.org/10.1006/jsvi.1994.1222. ###Code from sympy import * init_printing() def symb(x,y): return symbols('{0}_{1}'.format(x,y), type = float) ###Output _____no_output_____ ###Markdown Displacement vector: ###Code n = 3 # number of planets N = n + 3 # number of degrees of freedom crs = ['c', 'r', 's'] # carrier, ring, sun pla = ['p{}'.format(idx + 1) for idx in range(n)] # planet crs = crs + pla # put them together coeff_list = symbols(crs) c = coeff_list[0] r = coeff_list[1] s = coeff_list[2] X = Matrix([symb('u', v) for v in coeff_list]) coeff_list[3:] = symbols(['p']*n) p = coeff_list[3] X.transpose() # Eq. (1a) ###Output _____no_output_____ ###Markdown Stiffness matrix:![alt text](stiffness_matrix.png)where:* $k_1$: mesh stiffness for the ring-planet gear pair* $k_2$: mesh stiffness for the sun-planet gear pair* $k_c$: carrier housing stiffness* $k_r$: ring housing stiffness* $k_s$: sun housing stiffness* Diagonal 1, in red* Diagonal 2, in grey* Off-diagonal, in blue ###Code k_1, k_2, k_c, k_r, k_s = symbols('k_1 k_2 k_c k_r k_s', type = float) # Diagonal 1: K_d1 = zeros(3, 3) K_d1[0, 0] = n*(k_1 + k_2) + k_c K_d1[1, 1] = n* k_1 + k_r K_d1[2, 2] = n* k_2 + k_s K_d1[0, 1] = K_d1[1, 0] = -n*k_1 K_d1[0, 2] = K_d1[2, 0] = -n*k_2 # Diagonal 2: K_d2 = eye(n)*(k_1 + k_2) # Off diagonal: K_od = zeros(n, n) K_od[:, 0] = (k_1 - k_2)*ones(n, 1) K_od[:, 1] = -k_1 *ones(n, 1) K_od[:, 2] = k_2 *ones(n, 1) K = BlockMatrix([[K_d1, K_od.transpose()], [K_od, K_d2]]) K = Matrix(K) if(not K.is_symmetric()): print('error.') K ###Output _____no_output_____ ###Markdown Inertia matrix: ###Code M = diag(*[symb('m', v) for v in coeff_list]) M ###Output _____no_output_____ ###Markdown Remove ring degree of freedom ###Code X.row_del(1) K.row_del(1) K.col_del(1) M.row_del(1) M.col_del(1) coeff_list.remove(r) N = N - 1 ###Output _____no_output_____ ###Markdown Coordinate transformation:First from translational to torsional coordinates, them making the sun DOF to be the last one, making it easier to assemble a multi-stage gearbox. ###Code R_1 = diag(*[symb('r', v) for v in coeff_list]) R_1 ###Output _____no_output_____ ###Markdown making the sun DOF to be the last one: ###Code N1 = N - 1 R_2 = zeros(N, N) R_2[0, 0] = 1 R_2[1, N1] = 1 R_2[2:N, 1:N1] = eye(n) R_2 R = R_1*R_2 RMR = lambda m: transpose(R)*m*R ###Output _____no_output_____ ###Markdown Inertia matrix ###Code M = RMR(M) if(not M.is_symmetric()): print('error in M matrix') M ###Output _____no_output_____ ###Markdown Stiffness matrix ###Code K = RMR(K) if(not K.is_symmetric()): print('error in K matrix') ###Output _____no_output_____ ###Markdown The housing stiffness for both carrier and sunare null: ###Code K = K.subs([(k_c, 0), (k_s, 0)]) K ###Output _____no_output_____ ###Markdown From that, one can write the matrices for a planetary system with $n$-planets using the following code: ###Code m_c, m_s, m_p, r_c, r_s, r_p = symbols('m_c m_s m_p r_c r_s r_p', type = float) M_p = zeros(N, N) M_p[0, 0] = m_c*r_c**2 M_p[N1, N1] = m_s*r_s**2 M_p[1:N1, 1:N1] = m_p*r_p**2 * eye(n) K_p = zeros(N, N) K_p[0, 0] = n*(k_1 + k_2)*r_c**2 K_p[N1, 0] = -n*k_2*r_s*r_c K_p[0, N1] = -n*k_2*r_s*r_c K_p[N1, N1] = n*k_2*r_s**2 K_p[0, 1:N1] = (k_1 - k_2)*r_c*r_p*ones(1, n) K_p[1:N1, 0] = (k_1 - k_2)*r_c*r_p*ones(n, 1) K_p[N1, 1:N1] = k_2*r_p*r_s*ones(1, n) K_p[1:N1, N1] = k_2*r_p*r_s*ones(n, 1) K_p[1:N1, 1:N1] = (k_1 + k_2)*r_p**2 * eye(n) m_diff = abs(matrix2numpy(simplify(M_p - M))).sum() k_diff = abs(matrix2numpy(simplify(K_p - K))).sum() if(m_diff != 0.0): print('Error in M matrix.') if(k_diff != 0.0): print('Error in K matrix.') ###Output _____no_output_____ ###Markdown Combining planet DOFs: ###Code C = zeros(N, 3) C[ 0, 0] = 1 C[ N1, 2] = 1 C[1:N1, 1] = ones(n, 1) CMC = lambda m: transpose(C)*m*C ###Output _____no_output_____ ###Markdown Inertia matrix ###Code M_C = CMC(M) if(not M_C.is_symmetric()): print('error in M_C matrix') M_C ###Output _____no_output_____ ###Markdown Stiffness matrix ###Code K_C = CMC(K) if(not K_C.is_symmetric()): print('error in M_C matrix') K_C ###Output _____no_output_____ ###Markdown Adapting it to a parallel gear setConsidering only one of the sun-planets pairs, one should change the sub-indexes in the following way:* [p]lanet => [w]heel* [s]un => [p]inion;It also necessary to remove the mesh stiffness of the ring-planet pair Inertia matrix ###Code k, w, p = symbols('k w p', type = float) m_w, m_p, r_w, r_p = symbols('m_w m_p r_w r_p', type = float) N2 = N - 2 M_par = M[N2:, N2:] M_par = M_par.subs([(m_p, m_w), (m_s, m_p), (r_p, r_w), (r_s, r_p)]) # M_par ###Output _____no_output_____ ###Markdown Stiffness matrix ###Code K_par = K[N2:, N2:] K_par = K_par.subs(k_1, 0) # ring-planet mesh stiffness K_par = K_par.subs(k_s, 0) # sun's bearing stiffness K_par = K_par.subs(n*k_2, k_2) # only one pair, not n K_par = K_par.subs(k_2, k) # mesh-stiffness of the pair K_par = K_par.subs([(r_p, r_w), (r_s, r_p)]) K_par ###Output _____no_output_____ ###Markdown From that, one can write the matrices for a parallel system using the following code: ###Code M_p = diag(m_w*r_w**2, m_p*r_p**2) mat_diff = abs(matrix2numpy(simplify(M_p - M_par))).sum() if(mat_diff != 0.0): print('Error in M_p matrix.') K_p = diag(r_w**2, r_p**2) K_p[0, 1] = r_p*r_w K_p[1, 0] = r_p*r_w K_p = k*K_p mat_diff = abs(matrix2numpy(simplify(K_p - K_par))).sum() if(mat_diff != 0.0): print('Error in K_p matrix.') ###Output _____no_output_____
Statistics/Lesson_2/Project_lesson_2.ipynb
###Markdown Загрузите данные, проверьте число наблюдений и столбцов, типы данных, наличие пропущенных значений, какие уникальные значения встречаются.Сколько уникальных рекламных кампаний было проведено? ###Code tyk.shape tyk.dtypes tyk.xyz_campaign_id.value_counts() ###Output _____no_output_____ ###Markdown Постройте график распределения числа показов (Impressions – сколько раз пользователи увидели данное объявление) для каждой рекламной кампании в Facebook, прологарифмировав значения. Выберите верные утверждения: ###Code tyk_impres = tyk.groupby('fb_campaign_id') \ .agg({'Impressions': 'sum'}) np.log(tyk_impres) sns.distplot(np.log(tyk_impres), kde=True) ###Output /opt/tljh/user/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown Теперь посчитаем ещё несколько полезных метрик. Первая – CTR (click-through rate), которая показывает кликабельность, т.е. отношение числа кликов к количеству показов.Создайте новую колонку, затем посмотрите на описательные статистики. В качестве ответа укажите ad_id объявления с наибольшим CTR. ###Code tyk['CTR'] = tyk.Clicks / tyk.Impressions tyk tyk.CTR.idxmax() tyk.iloc[150] ###Output _____no_output_____ ###Markdown Визуализируйте CTR с разбивкой по номеру рекламной кампании (xyz_campaign_id). Какому графику соответствует распределение CTR кампании 916? ###Code tyk_916 = tyk.query('xyz_campaign_id == "916"') sns.distplot(tyk_916.CTR, kde = False, bins=20) ###Output /opt/tljh/user/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown CPC (cost-per-click) – стоимость за клик пользователя по объявлению. Рассчитывается путём деления суммы потраченных денег на общее число кликов:Выведите описательные статистики для новой переменной, посмотрите на форму распределения. В ответе укажите межквартильный размах, округленный до двух знаков после точки. ###Code tyk['CPC'] = tyk.Spent / tyk.Clicks tyk sns.distplot(tyk.CPC, kde=True) round(ss.iqr(tyk.CPC, nan_policy='omit'), 2) ###Output _____no_output_____ ###Markdown Визируйте CPC с разбивкой по полу пользователей, которым были показаны объявления. Какой график получился? ###Code tyk tyk_m = tyk.query('gender == "M"').CPC.dropna() tyk_f = tyk.query('gender == "F"').CPC.dropna() sns.distplot(tyk_m, kde=True) sns.distplot(tyk_f, kde=True) ###Output /opt/tljh/user/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown Конверсия (conversion rate) – отношение числа пользователей, совершивших целевое действие на определенном этапе, к общему числу тех, кто дошел до данного этапа.Посчитайте конверсию из клика в покупку. В качестве ответа укажите конверсию для объявления 1121814 в процентах, округлив значение до 2 знаков после точки. Например, если значение кликов равно 10, а покупок – 2, то CRCR на данном этапе составляет \frac{2}{10} = 0.2 = 20\% ###Code tyk['CR'] = tyk.Approved_Conversion / tyk.Clicks tyk.query('ad_id == "1121814"') ###Output _____no_output_____
week_3/qlearning.ipynb
###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code import sys, os if 'google.colab' in sys.modules and not os.path.exists('.setup_complete'): !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/master/setup_colab.sh -O- | bash !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/coursera/grading.py -O ../grading.py !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/coursera/week3_model_free/submit.py !touch .setup_complete # This code creates a virtual display to draw game images on. # It will have no effect if your machine has a monitor. if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start os.environ['DISPLAY'] = ':1' import numpy as np import matplotlib.pyplot as plt %matplotlib inline from collections import defaultdict import random import math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on https://inst.eecs.berkeley.edu/~cs188/sp19/projects.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self, state, action, value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 # <YOUR CODE> value = max([self.get_qvalue(state,a) for a in possible_actions]) return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ # agent parameters gamma = self.discount learning_rate = self.alpha #<YOUR CODE> qvalue = (1-learning_rate)*self.get_qvalue(state,action) + learning_rate*(reward+gamma*self.get_value(next_state)) #self.set_qvalue(state, action, <YOUR CODE: Q-value> ) self.set_qvalue(state, action, qvalue) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return None if len(possible_actions) == 0: return None # <YOUR CODE> q_dict = {a: self.get_qvalue(state,a) for a in possible_actions} max_q = max(q_dict.values()) best_actions = [action for action, q in q_dict.items() if q == max_q] best_action = random.choice(best_actions) return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.get_best_action). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None # If there are no legal actions, return None if len(possible_actions) == 0: return None # agent parameters: epsilon = self.epsilon # <YOUR CODE> if random.random() < self.epsilon: chosen_action = random.choice(possible_actions) else: chosen_action = self.get_best_action(state) return chosen_action ###Output _____no_output_____ ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v3") n_actions = env.action_space.n agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) def play_and_train(env, agent, t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s) # <YOUR CODE> next_s, r, done, _ = env.step(a) # train (update) agent for state s agent.update(s,a,r,next_s) # <YOUR CODE> s = next_s total_reward += r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i % 100 == 0: clear_output(True) plt.title('eps = {:e}, mean reward = {:.1f}'.format(agent.epsilon, np.mean(rewards[-10:]))) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera I: Preparation ###Code submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on `CartPole-v0`. This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x, n_digits)` (or `np.round`) to round a real number to a given amount of digits. The tricky part is to get the `n_digits` right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code def make_env(): return gym.make('CartPole-v0').env # .env unwraps the TimeLimit wrapper env = make_env() n_actions = env.action_space.n print("first state: %s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output first state: [ 0.0265191 0.03594735 -0.04879002 -0.02842462] ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code def visualize_cartpole_observation_distribution(seen_observations): seen_observations = np.array(seen_observations) # The meaning of the observations is documented in # https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py f, axarr = plt.subplots(2, 2, figsize=(16, 9), sharey=True) for i, title in enumerate(['Cart Position', 'Cart Velocity', 'Pole Angle', 'Pole Velocity At Tip']): ax = axarr[i // 2, i % 2] ax.hist(seen_observations[:, i], bins=20) ax.set_title(title) xmin, xmax = ax.get_xlim() ax.set_xlim(min(xmin, -xmax), max(-xmin, xmax)) ax.grid() f.tight_layout() seen_observations = [] for _ in range(1000): seen_observations.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) seen_observations.append(s) visualize_cartpole_observation_distribution(seen_observations) ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def observation(self, state): # Hint: you can do that with round(x, n_digits). # You may pick a different n_digits for each dimension. # state = <YOUR CODE: round state to some amount digits> state[0] = np.round(state[0],0) state[1] = np.round(state[1],1) state[2] = np.round(state[2],2) state[3] = np.round(state[3],1) return tuple(state) env = Binarizer(make_env()) seen_observations = [] for _ in range(1000): seen_observations.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) seen_observations.append(s) if done: break visualize_cartpole_observation_distribution(seen_observations) ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__* Note that increasing the number of digits for one dimension of the observations increases your state space by a factor of $10$.* If your binarization is too fine-grained, your agent will take much longer than 10000 steps to converge. You can either increase the number of iterations and reduce epsilon decay or change binarization. In practice we found that this kind of mistake is rather frequent.* If your binarization is too coarse, your agent may fail to find the optimal policy. In practice we found that on this particular environment this kind of mistake is rare.* **Start with a coarse binarization** and make it more fine-grained if that seems necessary.* Having $10^3$–$10^4$ distinct states is recommended (`len(agent._qvalues)`), but not required.* If things don't work without annealing $\varepsilon$, consider adding that, but make sure that it doesn't go to zero too quickly.A reasonable agent should attain an average reward of at least 50. ###Code import pandas as pd def moving_average(x, span=100): return pd.DataFrame({'x': np.asarray(x)}).x.ewm(span=span).mean().values agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) rewards = [] epsilons = [] for i in range(10000): reward = play_and_train(env, agent) rewards.append(reward) epsilons.append(agent.epsilon) # OPTIONAL: <YOUR CODE: adjust epsilon> if i > 10000/2: agent.epsilon *= 0.99 if i % 100 == 0: rewards_ewma = moving_average(rewards) clear_output(True) plt.plot(rewards, label='rewards') plt.plot(rewards_ewma, label='rewards ewma@100') plt.legend() plt.grid() plt.title('eps = {:e}, rewards ewma@100 = {:.1f}'.format(agent.epsilon, rewards_ewma[-1])) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera II: Submission ###Code submit_rewards2 = rewards.copy() from submit import submit_qlearning submit_qlearning(submit_rewards1, submit_rewards2, '[email protected]', '8o2bR1ONQP8ltdu5') ###Output Submitted to Coursera platform. See results on assignment page!
.ipynb_checkpoints/Article scraping and topic classification-checkpoint.ipynb
###Markdown Article extraction, topic classification and database ###Code # How to run virtualenv with jupyter notebook for the purposes of gcloud api # first install virtualenv, create and switch to env # pip install ipykernel # python -m ipykernel install --user --name=my-virtualenv-name # when inside ipynb, change kernel to desired env # classification on test paragraph #text = "Late last month, a new bistro bar and restaurant concept by the name of Escobar opened its doors at China Square Central. In case you don’t know by its name already, it’s a bar with a theme that revolves around everything Pablo Escobar, the real-life Colombian drug lord who enjoyed a recent resurgence in popularity thanks to beloved Netflix series Narcos. But with murals dedicated to The King of Cocaine and a themed menu with offerings such as “Stab in Your Heart burger” and “Don Corleone” pizza, one would wonder if it’s problematic to celebrate a narcoterrorist who was responsible for thousands of deaths and turned Colombia into the murder capital of the world during the height of his power." #classify(text) # newspaper api for article scraping from newspaper import Article #url = input() #article = Article(url) #article.download() #article.parse() #article.authors #article.publish_date #article.text #article.text import snippets #catlist = snippets.classify_text(article.text) #entlist = snippets.entities_text(article.text) # SQL Initialisation import sqlite3 connection = sqlite3.connect('data.db') cursor = connection.cursor() cursor.execute('DROP TABLE data;') # DELETES TABLE cursor.execute('CREATE TABLE data (url VARCHAR PRIMARY KEY, category VARCHAR, author VARCHAR);') def write(url, category,author): cursor.execute('''INSERT INTO data (url,category,author) VALUES ('{}','{}','{}')'''.format(url,category,author)) connection.commit() def fetch(): cursor.execute('SELECT * FROM DATA;') result = cursor.fetchall() for r in result: print(r) url_list = ['https://mothership.sg/2018/02/changi-airport-crash-flight-delay/', 'https://mothership.sg/2018/02/16-years-on-super-brainy-ex-beauty-queen-nuraliza-osman-strives-to-harness-her-enduring-star-power-for-good/', 'https://mothership.sg/2018/02/lee-kuan-yew-told-judges-to-ignore-mp-letters/', 'https://mothership.sg/2018/02/public-apology-scandalise-court-chc-meme/', 'https://mothership.sg/2018/02/singapore-china-chang-wanquan-bromance-ng-eng-hen/', 'https://mothership.sg/2018/02/wrestle-shirtless-mma/', 'https://mothership.sg/2018/02/sias-first-boeing-787-10-will-be-flying-to-osaka-japan-in-may-2018/' ] def main(): for url in url_list: article = Article(url) article.download() article.parse() catlist = snippets.classify_text(article.text) author = article.authors[0] write(url, catlist[1:], author) fetch() main() ###Output ('https://mothership.sg/2018/02/changi-airport-crash-flight-delay/', 'Travel/Air Travel', 'Belmont Lay') ('https://mothership.sg/2018/02/16-years-on-super-brainy-ex-beauty-queen-nuraliza-osman-strives-to-harness-her-enduring-star-power-for-good/', 'Beauty & Fitness/Beauty Pageants', 'Tanya Ong') ('https://mothership.sg/2018/02/lee-kuan-yew-told-judges-to-ignore-mp-letters/', 'News/Politics', 'Jeanette Tan') ('https://mothership.sg/2018/02/public-apology-scandalise-court-chc-meme/', 'News/Politics', 'Belmont Lay') ('https://mothership.sg/2018/02/singapore-china-chang-wanquan-bromance-ng-eng-hen/', 'Law & Government/Government', 'Chan Cheow Pong') ('https://mothership.sg/2018/02/wrestle-shirtless-mma/', 'Arts & Entertainment/Humor', 'Mandy How') ('https://mothership.sg/2018/02/sias-first-boeing-787-10-will-be-flying-to-osaka-japan-in-may-2018/', 'Travel/Air Travel', 'Kayla Wong')
Example_Mouse_Allen_to_Fluoro.ipynb
###Markdown Mouse Allen to fluoro exampleThis example maps betwen the allen CCF mouse atlas and fluorescence mouse image.Here we will use affine alignment in adition to deformable registration. Affine will be performed first, then both will be performed simultaneously.Also we will estimate artifact locations using the EM algorithm and compensate for them in our matching. Library importsWe start by importing necessary libraries. That includes numpy, matplotlib, and tensorflow for numerical work, nibabel for loading neuroimages, and lddmm and vis which are part of this library. ###Code import numpy as np # for arrays %matplotlib notebook import matplotlib as mpl # for graphics import matplotlib.pyplot as plt import nibabel as nib # for loading neuroimages import lddmm # algorithm import vis # visualization import tensorflow as tf import imp # use imp.reload to update modules during development import os os.environ['CUDA_VISIBLE_DEVICES'] = '' #Make sure GPU is not recognised tf.test.gpu_device_name() ###Output _____no_output_____ ###Markdown The TensorFlow backend uses all available GPU memory by default, hence it can be useful to limit it: ###Code # get filenames atlas_image_fname = 'average_template_50.img' target_image_fname = '180517_Downsample.img' # load them with nibabel fnames = [atlas_image_fname,target_image_fname] img = [nib.load(fname) for fname in fnames] # get info about image space if '.img' == atlas_image_fname[-4:]: nxI = img[0].header['dim'][1:4] dxI = img[0].header['pixdim'][1:4] nxJ = img[1].header['dim'][1:4] dxJ = img[1].header['pixdim'][1:4] else: # I'm only working with analyze for now raise ValueError('Only Analyze images supported for now') xI = [np.arange(nxi)*dxi - np.mean(np.arange(nxi)*dxi) for nxi,dxi in zip(nxI,dxI)] xJ = [np.arange(nxi)*dxi - np.mean(np.arange(nxi)*dxi) for nxi,dxi in zip(nxJ,dxJ)] # get the images, note they also include a fourth axis for time that I don't want I = img[0].get_data()[:,:,:,0] J = img[1].get_data()[:,:,:,0] # I would like to pad one slice of the allen atlas so that it has zero boundary conditions zeroslice = np.zeros((nxI[0],1,nxI[2])) I = np.concatenate((I,zeroslice),axis=1) nxI = img[0].header['dim'][1:4] nxI[1] += 1 xI = [np.arange(nxi)*dxi - np.mean(np.arange(nxi)*dxi) for nxi,dxi in zip(nxI,dxI)] # display the data f = plt.figure() vis.imshow_slices(I, x=xI, fig=f) f.suptitle('Atlas I') f.canvas.draw() f = plt.figure() vis.imshow_slices(J,x=xJ,fig=f) f.suptitle('Target J') f.canvas.draw() ###Output _____no_output_____ ###Markdown Notice that this image has a giant bright spot. This is an artifact we will need to compensate for in order to do accurate registration. ReorientationThe allen atlas is not stored in the same orientation as our data, we will specify an initial affine transformation to put it in the correct transformation. ###Code # the line below is a good initial orientation A = np.array([[0,0,1,0], [-1,0,0,0], [0,1,0,0], [0,0,0,1]]) # Taken and adapted from https://github.com/CSBDeep/CSBDeep/blob/master/csbdeep/utils/tf.py and utils.py import keras from keras import backend as K from keras.callbacks import Callback from keras.layers import Lambda def is_tf_backend(): import keras.backend as K return K.backend() == 'tensorflow' def limit_gpu_memory(fraction, allow_growth=False): """Limit GPU memory allocation for TensorFlow (TF) backend. Parameters ---------- fraction : float Limit TF to use only a fraction (value between 0 and 1) of the available GPU memory. Reduced memory allocation can be disabled if fraction is set to ``None``. allow_growth : bool, optional If ``False`` (default), TF will allocate all designated (see `fraction`) memory all at once. If ``True``, TF will allocate memory as needed up to the limit imposed by `fraction`; this may incur a performance penalty due to memory fragmentation. Raises ------ ValueError If `fraction` is not ``None`` or a float value between 0 and 1. NotImplementedError If TensorFlow is not used as the backend. """ is_tf_backend() or _raise(NotImplementedError('Not using tensorflow backend.')) fraction is None or (np.isscalar(fraction) and 0<=fraction<=1) or _raise(ValueError('fraction must be between 0 and 1.')) if K.tensorflow_backend._SESSION is None: config = tf.ConfigProto() if fraction is not None: config.gpu_options.per_process_gpu_memory_fraction = fraction config.gpu_options.allow_growth = bool(allow_growth) session = tf.Session(config=config) K.tensorflow_backend.set_session(session) # print("[tf_limit]\t setting config.gpu_options.per_process_gpu_memory_fraction to ",config.gpu_options.per_process_gpu_memory_fraction) else: warnings.warn('Too late too limit GPU memory, can only be done once and before any computation.') limit_gpu_memory(fraction=0.5,allow_growth=True) # test the initial affine X0,X1,X2 = np.meshgrid(xJ[0],xJ[1],xJ[2],indexing='ij') X0tf = tf.constant(X0,dtype=lddmm.dtype) X1tf = tf.constant(X1,dtype=lddmm.dtype) X2tf = tf.constant(X2,dtype=lddmm.dtype) Itf = tf.constant(I,dtype=lddmm.dtype) B = np.linalg.inv(A) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) Xs = B[0,0]*X0tf + B[0,1]*X1tf + B[0,2]*X2tf + B[0,3] Ys = B[1,0]*X0tf + B[1,1]*X1tf + B[1,2]*X2tf + B[1,3] Zs = B[2,0]*X0tf + B[2,1]*X1tf + B[2,2]*X2tf + B[2,3] Id = lddmm.interp3(xI[0], xI[1], xI[2], Itf, Xs, Ys, Zs) Idnp = Id.eval() f = plt.figure() vis.imshow_slices(Idnp,x=xJ,fig=f) f.suptitle('Initial affine transformation') f.canvas.draw() ###Output _____no_output_____ ###Markdown Run DR IT MD matchingBecause of the artifact we will run the missing data version of the algorithm. This can be specified by setting the `nMstep` argument to an integer grater than 0. This parameters says how many iterations of gradient descent are used in the maximization step of the EM algorithm. ###Code # parameters # cost function weights 1 / sigma^2 sigmaM = np.std(J) # matching sigmaA = sigmaM*10.0 # artifact sigmaR = 1e0 # regularization # enery operator, power of laplacian p, characteristic length a p = 2 a = (xI[0][1]-xI[0][0])*5 # other optimization parameters niter = 200 # how many iteraitons of gradient descent naffine = 50 # first naffine iterations are affine only (no deformation) nt = 5 # this many timesteps to numerically integrate flow # the linear part is a bit too big still (since I fixed voxel size issue) # initial guess for affine (check picture above) A0 = A # When working with weights in EM algorithm, how many M steps per E step # first test with 0 (it is working) nMstep = 5 nMstep_affine = 1 # gradient descent step size eL = 2e-4 eT = 1e-3 eV = 5e-3 # I think maybe eV has to be bigger eV = 1e-2 # there is some oscilation in the translation and the linear part out = lddmm.lddmm(I, J, xI=xI, # location of pixels in domain xJ=xJ, niter=niter, # iterations of gradient descent naffine=naffine, # iterations of affine only eV = eV, # step size for deformation parameters eT = eT, # step size for translation parameters eL = eL, # step size for linear parameters nt=nt, # timesteps for integtating flow sigmaM=sigmaM, # matching cost weight 1/2sigmaM^2 sigmaR=sigmaR, # reg cost weight 1/2sigmaM^2 sigmaA=sigmaA, # artifact cost weight 1/2sigmaA^2 a=a, # kernel width p=p, # power of laplacian in kernel (should be at least 2 for 3D) A0=A0, # initial guess for affine matrix (should get orientation right) nMstep=nMstep, # number of m steps for each e step nMstep_affine=nMstep_affine # number of m steps during affine only phase ) ###Output _____no_output_____
paper/Advection_diffusion/AD_artificial/sampling/sampling_test.ipynb
###Markdown 2D Advection-Diffusion equation in this notebook we provide a simple example of the DeepMoD algorithm and apply it on the 2D advection-diffusion equation. ###Code # General imports import numpy as np import torch # DeepMoD functions import matplotlib.pylab as plt from deepymod import DeepMoD from deepymod.model.func_approx import NN from deepymod.model.library import Library2D_third from deepymod.model.constraint import LeastSquares from deepymod.model.sparse_estimators import Threshold,PDEFIND from deepymod.training import train from deepymod.training.sparsity_scheduler import TrainTestPeriodic from scipy.io import loadmat # Settings for reproducibility np.random.seed(1) torch.manual_seed(1) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' ###Output _____no_output_____ ###Markdown Prepare the data Next, we prepare the dataset. ###Code data = loadmat('../Diffusion_2D_space81.mat') data = np.real(data['Expression1']).reshape((81,81,81,4))[:,:,:,3] width, width_2, steps = data.shape x_arr = np.linspace(0,1,width) y_arr = np.linspace(0,1,width_2) t_arr = np.linspace(0,1,steps) x_grid, y_grid, t_grid = np.meshgrid(x_arr, y_arr, t_arr, indexing='ij') x_grid.shape number_of_samples = 6 tot_samples = number_of_samples*number_of_samples Utrain = np.empty([tot_samples,data.shape[2]]) Xtrain = np.empty([tot_samples,data.shape[2],3]) plt.imshow(data[:,:,40]) for i in np.arange(x_grid.shape[2]): idx = np.random.permutation(number_of_samples) idy = np.random.permutation(number_of_samples) #idx = np.arange(0,number_of_samples) #idy = np.arange(0,number_of_samples) Utrain[:,i] = np.array([data[idx,k,i] for k in idy]).flatten() Xtrain[:,i,1] = np.array([x_grid[idx,k,i] for k in idy]).flatten() Xtrain[:,i,2] = np.array([y_grid[idx,k,i] for k in idy]).flatten() Xtrain[:,i,0] = np.array([t_grid[idx,k,i] for k in idy]).flatten() Xtrain.shape y = Utrain.flatten() X = np.vstack((Xtrain[:,:,0].flatten(), Xtrain[:,:,1].flatten(), Xtrain[:,:,2].flatten())).T # Add noise noise_level = 0.0 y_noisy = y + noise_level * np.std(y) * np.random.randn(y.size) # Randomize data idx = np.random.permutation(y.shape[0]) X_train = torch.tensor(X[idx, :], dtype=torch.float32, requires_grad=True).to(device) y_train = torch.tensor(y_noisy[idx], dtype=torch.float32).to(device) y_train.shape # Configure DeepMoD network = NN(3, [40, 40, 40, 40], 1) library = Library2D_third(poly_order=0) estimator = Threshold(0.05) sparsity_scheduler = TrainTestPeriodic(periodicity=50, patience=200, delta=1e-5) constraint = LeastSquares() model = DeepMoD(network, library, estimator, constraint).to(device) optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.99), amsgrad=True, lr=2e-3) logdir='runs/testje_2/' train(model, X_train, y_train, optimizer,sparsity_scheduler, log_dir=logdir, split=0.8, max_iterations=50000, delta=1e-6, patience=200) for i in time_range: # Downsample data and prepare data without noise: down_data= np.take(np.take(np.take(data,np.arange(0,x_dim,5),axis=0),np.arange(0,y_dim,5),axis=1),np.arange(0,t_dim,i),axis=2) print("Dowmsampled shape:",down_data.shape, "Total number of data points:", np.product(down_data.shape)) index = len(np.arange(0,t_dim,i)) width, width_2, steps = down_data.shape x_arr, y_arr, t_arr = np.linspace(0,1,width), np.linspace(0,1,width_2), np.linspace(0,1,steps) x_grid, y_grid, t_grid = np.meshgrid(x_arr, y_arr, t_arr, indexing='ij') X, y = np.transpose((t_grid.flatten(), x_grid.flatten(), y_grid.flatten())), np.float32(down_data.reshape((down_data.size, 1))) # Add noise noise_level = 0.0 y_noisy = y + noise_level * np.std(y) * np.random.randn(y.size, 1) # Randomize data idx = np.random.permutation(y.shape[0]) X_train = torch.tensor(X[idx, :], dtype=torch.float32, requires_grad=True).to(device) y_train = torch.tensor(y_noisy[idx, :], dtype=torch.float32).to(device) # Configure DeepMoD network = NN(3, [40, 40, 40, 40], 1) library = Library2D_third(poly_order=0) estimator = Threshold(0.05) sparsity_scheduler = TrainTestPeriodic(periodicity=50, patience=200, delta=1e-5) constraint = LeastSquares() model = DeepMoD(network, library, estimator, constraint).to(device) optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.99), amsgrad=True, lr=2e-3) logdir='final_runs/no_noise_x17/'+str(index)+'/' train(model, X_train, y_train, optimizer,sparsity_scheduler, log_dir=logdir, split=0.8, max_iterations=50000, delta=1e-6, patience=200) ###Output Dowmsampled shape: (17, 17, 41) Total number of data points: 11849 49975 MSE: 8.70e-06 Reg: 8.07e-06 L1: 1.64e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 21) Total number of data points: 6069 49975 MSE: 4.26e-06 Reg: 5.59e-06 L1: 1.43e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 11) Total number of data points: 3179 49975 MSE: 2.80e-06 Reg: 3.69e-06 L1: 1.47e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 7) Total number of data points: 2023 49975 MSE: 3.36e-06 Reg: 2.87e-06 L1: 1.41e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 6) Total number of data points: 1734 4700 MSE: 2.09e-04 Reg: 7.78e-06 L1: 1.00e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 5) Total number of data points: 1445 49975 MSE: 4.50e-05 Reg: 1.17e-05 L1: 1.71e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 4) Total number of data points: 1156 49975 MSE: 2.98e-05 Reg: 8.04e-06 L1: 1.42e+00 Algorithm converged. Writing model to disk. Dowmsampled shape: (17, 17, 3) Total number of data points: 867 49975 MSE: 5.90e-06 Reg: 2.42e-06 L1: 1.26e+00 Algorithm converged. Writing model to disk.
notebooks/explore/variation_of_information.ipynb
###Markdown Exploring: Variation of Information Background My projects involve trying to compare the outputs of different climate models. There are currently more than 20+ climate models from different companies and each of them try to produce the most accurate prediction of some physical phenomena, e.g. Sea Surface Temperature, Mean Sea Level Pressure, etc. However, it's a difficult task to provide accurate comparison techniques for each of the models. There exist some methods such as the mean and standard deviation. There is also a very common framework of visually summarizing this information in the form of Taylor Diagrams. However, the drawback of using these methods is that they are typically non-linear methods and they cannot handle multidimensional, multivariate data. Another way to measure similarity would be in the family of Information Theory Measures (ITMs). Instead of directly measuring first-order output statistics, these methods summarize the information via a probability distribution function (PDF) of the dataset. These can measure non-linear relationships and are naturally multivariate that offers solutions to the shortcomings of the standard methods. I would like to explore this and see if this is a useful way of summarizing information. This is removing the Code ###Code import numpy as np import seaborn as sns import pandas as pd import statsmodels.api as smi import sys sys.path.insert(0, '/home/emmanuel/code/kernel_model_zoo/') import matplotlib.pyplot as plt plt.style.use('seaborn-talk') %matplotlib inline %load_ext autoreload %autoreload 2 from kernellib.dependence import HSIC SAVE_PATH = "/home/emmanuel/projects/2020_rbig_rs/reports/figures/explore/vi/" ###Output _____no_output_____ ###Markdown Data We will use the classic dataset for Anscombe's quartet. This is a staple dataset which shows how we need to take care when comparing two datasets. In the example, we will show how visually, two datasets will look similar, but using a correlation measure like the Pearson's coefficient will fail because it is not able to capture the non-linear relationship between the two distributions. ###Code # load dataset df_anscombe = sns.load_dataset('anscombe') df_anscombe.dataset.unique() def get_case(df: pd.DataFrame, case: str='I'): return df[df['dataset'] == case] def plot_cases(df: pd.DataFrame, case: str='I', save=True, plot_type='reg'): df = get_case(df, case) plt.figure(figsize=(4,4)) if plot_type == 'reg': pts = sns.regplot( x="x", y="y", data=df, ) elif plot_type == 'joint': pts = sns.jointplot( x="x", y="y", data=df, kind="regplot", ) elif plot_type == 'density': pts = sns.jointplot( x="x", y="y", data=df, kind="kde", ) else: raise ValueError('') plt.xlabel("") plt.ylabel("") plt.xticks([]) plt.yticks([]) # plt.axis('off') plt.tight_layout() if save is not None: plt.savefig(SAVE_PATH + f'demo_case{case}_{plot_type}.png', dpi=200, transparent=True) return None plot_cases(df_anscombe, 'III', plot_type='reg') ###Output _____no_output_____ ###Markdown This is a very simple case where we have a linear relationship between the datasets. The regression plot above shows a linear line that is fit between the two distributions. We can also see the marginal distributions (the histograms) for X and Y. As you can see, they are definitely similar. But now, we are going to look at a way to summarize this information. MathematicsThere are a few important quantities to consider when we need to represent the statistics and compare two datasets. * Variance* Covariance* Correlation* Root Mean Squared CovarianceThe covariance is a measure to determine how much two variances change. The covariance between X and Y is given by:$$C(X,Y)=\frac{1}{N}\sum_{i=1}^N (x_i - \mu_x)(y_i - \mu_i)$$where $N$ is the number of elements in both datasets. Notice how this formula assumes that the number of samples for X and Y are equivalent. This measure is unbounded as it can have a value between $-\infty$ and $\infty$. Let's look at an example of how to calculate this below. ###Code # covariance formula def cov(X, Y): n_samples = X.shape[0] # get mean X_mu = X.mean() Y_mu = Y.mean() cov_xy = 0 # loop through the data points for ix in range(n_samples): cov_xy += (X.values[ix] - X_mu) * (Y.values[ix] - Y_mu) return cov_xy / n_samples # extract the data X = get_case(df_anscombe, 'I')['x'] Y = get_case(df_anscombe, 'I')['y'] # get covariance cov_xy = cov(X,Y) print(cov_xy) X.values[:, None].reshape(-1, 1).shape ###Output _____no_output_____ ###Markdown That number is fairly meaningless now. But we can compare the covariance number of this versus the other cases. RefactorWe can remove the loop by doing a matrix multiplication.$$C(X,Y)=\frac{1}{N} (X-X_\mu)^\top (Y-Y_\mu)$$where $X,Y \in \mathbb{R}^{N\times 1}$ ###Code np.dot(X[:, None].T-X.mean(), Y[:, None]-Y.mean())/X.shape[0] # covariance formula def cov(X, Y): n_samples = X.shape[0] # get mean X_mu = X.mean() Y_mu = Y.mean() # remove mean from data X -= X_mu Y -= Y_mu # Ensure 2d X = np.atleast_2d(X).reshape(-1, 1) Y = np.atleast_2d(Y).reshape(-1, 1) # calculate the covariance cov_xy = X.T @ Y return (cov_xy / n_samples).item() def test_anscombe(func, save_name=None): fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(7,5)) for iax, icase in zip(axs.ravel(), ['I', 'II', 'III', 'IV']): # data X = get_case(df_anscombe, icase)['x'] Y = get_case(df_anscombe, icase)['y'] output = func(X.values,Y.values) iax.scatter(X.values, Y.values, label=f"Case {icase}: $C$={output:.2f}") iax.legend() # iax.legend(f"Case: {icase}") # get covariance # print(f"Case {icase}: {cov_xy.item()}") plt.tight_layout() if save_name is not None: plt.savefig(SAVE_PATH + f"demo_{save_name}.png") plt.show() test_anscombe(cov, 'cov') ###Output _____no_output_____ ###Markdown Multi-Variate (Multi-Dimensional) ###Code np.random.seed(123) X = np.random.randn(20, 2) Y = 0.5 * X # calculate covariance matrix cov = np.cov(X.squeeze(), Y.squeeze()) print(X.shape, Y.shape, cov.shape) cov.shape def cov_hs_features(X, Y): # calculate covariance matrix cov_xy = np.cov(X, Y) # summarize information cov_sum = np.linalg.norm(cov, ord='fro') return cov_sum # ||X.T @ Y||_F - feature space lhs = np.linalg.norm(X.T @ Y, ord='fro')**2 print(lhs) # ||XX.T @ YY.T||_F - sample space mhs = np.trace(X @ X.T @ Y @ Y.T) print(mhs) # ||X.T @ Y||_F - feature space lhs = np.linalg.norm(np.cov(X,Y), ord='fro')**2 print(lhs) # ||XX.T @ YY.T||_F - sample space mhs = np.trace(X @ X.T @ Y @ Y.T) print(mhs) # RHS raw = np.trace(X @ Y.T) / np.sqrt(np.trace(X @ X.T) * np.trace(Y @ Y.T)) print(raw) # MHS ###Output 1.0 ###Markdown Formula 1$$\frac{tr(XY^\top}{\sqrt{tr(XX^\top)tr(YY^T)}}$$ ###Code # raw formula raw = np.trace(X @ Y.T) / np.sqrt(np.trace(X @ X.T) * np.trace(Y @ Y.T)) print(raw) # numerator numer1 = np.trace(X @ Y.T)**2 numer2 = np.linalg.norm(X @ Y.T) print(numer1, numer2) ###Output 1.0 229.5889532845504 15.152193018984098 ###Markdown Formula II$$\frac{tr(XX\top YY^\top)}{\sqrt{tr(XX^\top XX^\top)tr(YY^\top YY^\top)}}$$ ###Code # formula 2 S = X @ X.T T = Y @ Y.T raw = np.trace(S.T @ T) / np.sqrt(np.trace(S.T @ S) * np.trace(T.T @ T)) print(raw) # numerator numer1 = np.trace(S.T @ T) numer2 = np.linalg.norm(S.T @ T) print(numer1, numer2) # denominator denom1 = np.sqrt(np.trace(S.T @ S) * np.trace(T.T @ T)) denom2 = np.sqrt(np.linalg.norm(S.T @ S) * np.linalg.norm(T.T @ T)) print(denom1, denom2) ###Output 0.9999999999999999 229.5889532845504 229.58895328455043 229.58895328455043 229.58895328455043 ###Markdown Proposed$$\frac{tr(X^\top Y)}{\sqrt{tr(X^\top X)tr(Y^\top Y)}}$$ ###Code # proposed raw = np.trace(X.T @ Y) / np.sqrt(np.trace(X.T @ X) * np.trace(Y.T @ Y)) print(raw) # numerator numer1 = np.trace(X.T @ Y) numer2 = np.linalg.norm(X.T @ Y) print(numer1, numer2) cov_feat_norm = cov_hs_features(X, Y) print(cov_feat_norm) X_ft_norm = cov_hs_features(X,X) Y_ft_norm = cov_hs_features(Y,Y) corr_feat_norm = cov_feat_norm / (X_ft_norm * Y_ft_norm) print(corr_feat_norm) np.inner(np.cov(X,X.T), np.cov(Y,Y.T)) def cov_hs_samples(X, Y): # calculate samples covariance matrix K_x = np.cov(X.T) K_y = np.cov(Y.T) # summarize return np.sum(K_x * K_y) cov_samp_norm = cov_hs_samples(X, Y) print(cov_samp_norm) X_samp_norm = cov_hs_samples(X,X) Y_samp_norm = cov_hs_samples(Y,Y) corr_samp_norm = cov_samp_norm / np.sqrt(X_samp_norm * Y_samp_norm) print(corr_samp_norm) cov_norm = cov_hs_features(X, Y) print(cov_norm) def get_linear_hsic(X, Y): hsic_model = HSIC(kernel='linear', scorer='hsic', bias=True) hsic_model.fit(X,Y); hsic_score = hsic_model.score(X) return hsic_score def get_linear_cka(X, Y): hsic_model = HSIC(kernel='linear', scorer='tka') hsic_model.fit(X,Y); hsic_score = hsic_model.score(X) return hsic_score cka_score = get_linear_cka(X, Y) print(cka_score) hsic_score = get_linear_hsic(X, Y) print(hsic_score) # Samples Covariance Trace np.trace(np.cov(X.T) @ np.cov(Y.T)) # Feature Covariance Trace np.linalg.norm(np.cov(X,Y), ord='fro') np.linalg.norm(X.T @ Y, ord='fro') def corr_hs(X, Y): # calculate summarize covariance matrix cov_sum = cov_hs(X, Y) # summarize X_sum = cov_hs(X, X) Y_sum = cov_hs(Y, Y) # calculate correlation return cov_sum / np.sqrt(X_sum * Y_sum) corr_sum = corr_hs(X,Y) print(corr_sum) # calculate empirical covariance cov = X.T @ Y assert cov.shape == (X.shape[1], Y.shape[1]) cov ###Output _____no_output_____ ###Markdown So, we see that the covariance doesn't seem to change very much between datasets. CorrelationThis is the normalized version of the covariance measured mentioned above. This is done by dividing the covariance by the product of the standard deviation of the two samples X and Y. So the forumaltion is:$$\rho(X, Y) = \frac{C(X,Y)}{\sigma_x \sigma_y}$$With this normalization, we now have a measure that is bounded between -1 and 1. This makes it much more interpretable and also invariant to isotropic scaling, $\rho(X,Y)=\rho(\alpha X, \beta Y)$ where $\alpha, \beta \in \mathbb{R}^{+}$ ###Code def corr(X, Y): # get standard deviation X_std, Y_std = X.std(), Y.std() # calculate the correlation cov_xy = cov(X, Y) # calculate the correlation return (cov_xy / (X_std * Y_std)).item() corr_xy = corr(X, Y) print(corr_xy) ###Output 0.7422004694043999 ###Markdown Now that it is bounded between -1 and 1, this value let's us know that this value is equivalent to being close to 1. So fairly similar. ###Code test_anscombe(corr, 'corr') ###Output _____no_output_____ ###Markdown So at this point, this is a bit of a red flag. All of the $\rho$ values are the same but we can see very clearly that there are some key differences between the distributions. The covariance nor the correlation measure gave us useful information. Root Mean SquaredThis is a popular measure for measuring the errors between two datasets. More or less, it is a covariance measure that penalizes higher deviations between the datasets. ###Code # covariance formula def rmse(X, Y): n_samples = X.shape[0] # get mean X_mu = X.mean() Y_mu = Y.mean() # remove mean from data X -= X_mu Y -= Y_mu # calculate the squared covariance cov_xy = np.average((X - Y) ** 2, axis=0) return np.sqrt((cov_xy)) rmse_xy = rmse(X, Y) print(rmse_xy) ###Output 1.936554834777258 ###Markdown RefactorThe scikit-learn library has a built-in `mean_sqared_error` function which you can call and then use the `np.sqrt` on the output. ###Code from sklearn.metrics import mean_squared_error def rmse(X, Y): # calculate the squared covariance rmse_xy = mean_squared_error(X, Y) return np.sqrt(rmse_xy) rmse_xy = rmse(X,Y) print(rmse_xy) test_anscombe(rmse, 'rmse') ###Output _____no_output_____ ###Markdown HSIC ###Code def get_linear_hsic(X, Y): hsic_model = HSIC(kernel='linear', scorer='hsic', bias=True) hsic_model.fit(X[:, None],Y[:, None]); hsic_score = hsic_model.score(X[:, None]) return hsic_score hsic_score = get_linear_hsic(X,Y) print(hsic_score) test_anscombe(get_linear_hsic, 'hsic_lin') ###Output _____no_output_____ ###Markdown RBF Kernel ###Code def get_rbf_hsic(X, Y): hsic_model = HSIC(kernel='rbf', scorer='hsic') hsic_model.fit(X[:, None],Y[:, None]); hsic_score = hsic_model.score(X[:, None]) return hsic_score test_anscombe(get_rbf_hsic, 'hsic_rbf') ###Output _____no_output_____ ###Markdown Kernel Alignment Linear ###Code def get_linear_ka(X, Y): hsic_model = HSIC(kernel='linear', scorer='tka') hsic_model.fit(X[:, None],Y[:, None]); hsic_score = hsic_model.score(X[:, None]) return hsic_score test_anscombe(get_linear_ka, 'cka_lin') ###Output _____no_output_____ ###Markdown RBF Kernel ###Code def get_rbf_ka(X, Y): hsic_model = HSIC(kernel='rbf', scorer='tka') hsic_model.fit(X[:, None],Y[:, None]); hsic_score = hsic_model.score(X[:, None]) return hsic_score test_anscombe(get_rbf_ka, 'ka_rbf') ###Output _____no_output_____ ###Markdown Mutual InformationIn this section, I will be doing the same thing as before except this time I will use the equivalent Information Theory Measures. In principle, they should be better at capturing non-linear relationships and I will be able to add different representations using spatial-temporal information. EntropyThis is the simplest and it is analogous to the standard deviation $\sigma$. Entropy is defined by$$H(X) = - \int_{X} f(x) \log f(x) dx$$This is the expected amount of uncertainty present in a given distributin function $f(X)$. It captures the amount of surprise within a distribution. So if there are a large number of low probability events, then the expected uncertainty will be higher. Whereas distributions with fairly equally likely events will have low entropy values as there are not many surprise events, e.g. Uniform. ###Code kde = smi.nonparametric.KDEUnivariate(Y) kde.fit() print(kde.entropy) plt.plot(kde.support, kde.density) import scipy.stats def entropy(data, method='counts'): if method == 'counts': _, pdata = np.unique(data, return_counts=True) entropy = scipy.stats.entropy(pdata) elif method == 'kde': kde = smi.nonparametric.KDEUnivariate(data) kde.fit() entropy = kde.entropy else: raise ValueError('Unrecognized method.') return entropy Hx = entropy(X, 'counts') Hy = entropy(Y, 'counts') print(Hx, Hy) ###Output 2.3978952727983707 2.3978952727983707 ###Markdown Mutual Information Given two distributions X and Y, we can calculate the mutual information as$$I(X,Y) = \int_X\int_Y p(x,y) \log \frac{p(x,y)}{p_x(x)p_y(y)}dxdy$$where $p(x,y)$ is the joint probability and $p_x(x), p_y(y)$ are the marginal probabilities of $X$ and $Y$ respectively. We can also express the mutual information as a function of the Entropy $H(X)$$$I(X,Y)=H(X) + H(Y) - H(X,Y)$$ ###Code def mutual_info(X,Y, method='kde'): Hx = entropy(X, method) Hy = entropy(Y, method) Hxy = entropy(np.concatenate((X,Y)), method) return Hx + Hy - Hxy Hxy = entropy(pd.concat((X,Y))) mi_xy = mutual_info(X.values, Y.values) print(mi_xy) test_anscombe(mutual_info, 'kde') def norm_mutual_info(X,Y, method='kde'): Hx = entropy(X, method) Hy = entropy(Y, method) Hxy = entropy(np.concatenate((X,Y)), method) # mutual information mi_xy = Hx + Hy - Hxy return (mi_xy / (np.sqrt(Hx * Hy))) test_anscombe(norm_mutual_info, 'nkde') def red_mutual_info(X,Y, method='kde'): Hx = entropy(X, method) Hy = entropy(Y, method) Hxy = entropy(np.concatenate((X,Y)), method) # mutual information mi_xy = Hx + Hy - Hxy return (2 * mi_xy / (Hx + Hy)) test_anscombe(red_mutual_info, 'rkde') ###Output _____no_output_____ ###Markdown Variation of Information$$\begin{aligned}VI(X,Y) &= H(X) + H(Y) - 2I(X,Y) \\&= I(X,X) + I(Y,Y) - 2I(X,Y)\end{aligned}$$ ###Code def variation_info(X,Y, method='kde'): Hx = entropy(X, method) Hy = entropy(Y, method) Hxy = entropy(np.concatenate((X,Y)), method) # mutual information mi_xy = Hx + Hy - Hxy # variation of information vi_xy = Hx + Hy - 2 * mi_xy return vi_xy test_anscombe(variation_info, 'vikde') ###Output _____no_output_____ ###Markdown RVI-Based Diagram Analagous to the Taylor Diagram, we can summarize the ITMs in a way that was easy to interpret. It used the relationship between the entropy, the mutual information and the normalized mutual information via the triangle inequality. Assuming we can draw a diagram using the law of cosines;$$c^2 = a^2 + b^2 - 2ab \cos \phi$$ we can write this in terms of $\sigma$, $\rho$ and $RMSE$ as we have expressed above.$$\begin{aligned}\text{RVI}^2 &= H(X) + H(Y) - 2 \sqrt{H(X)H(Y)} \frac{I(X,Y)}{\sqrt{H(X)H(Y)}} \\&= H(X) + H(Y) - 2 \sqrt{H(X)H(Y)} \rho\end{aligned}$$where The sides are as follows:* $a = \sigma_{\text{obs}}$ - the entropy of the observed data* $b = \sigma_{\text{sim}}$ - the entropy of the simulated data* $\rho = \frac{I(X,Y)}{\sqrt{H(X)H(Y)}}$ - the normalized mutual information* $RMSE$ - the variation of information between the two datasets ###Code h_a = entropy(X, 'counts') h_b = entropy(Y, 'kde') print('H(X),H(Y):',h_a, h_b) # joint entropy h_ab = entropy(pd.concat((X,Y)), 'kde') print('H(X,Y):',h_ab) # mutual information mi_ab = h_a + h_b - h_ab print('MI(X,Y):', mi_ab) # normalized mutual information nmi_ab = mi_ab / np.sqrt(h_a * h_b) print('NMI(X,Y):', nmi_ab) # scaled mutual info smi_ab = mi_ab * (h_ab / (h_a * h_b)) print('SMI(X,Y):', smi_ab) # cos rho term c_ab = 2 * smi_ab - 1 print('C_XY:', c_ab) # vi vi = h_a + h_b - 2 * np.sqrt(h_a * h_b) * nmi_ab print('VI(X,Y):',vi) def vi_coeffs(X, Y, method='counts'): # entropy observations h_a = entropy(X, method) # entropy simulated h_b = entropy(Y, method) # joint entropy h_ab = entropy(pd.concat((X,Y)), method) # mutual information mi_ab = h_a + h_b - h_ab # normalized mutual information nmi_ab = mi_ab / np.sqrt(h_a * h_b) # scaled mutual information smi_ab = 2 * mi_ab * (h_ab / (h_a * h_b)) - 1 # vi vi_ab = h_a + h_b - 2 * np.sqrt((h_a * h_b)) * nmi_ab # save coefficients data = { 'h_a': h_a, 'h_b': h_b, 'nmi': nmi_ab, 'smi': smi_ab, 'theta': np.arccos(nmi_ab), 'vi': vi_ab } return data # Model I X = get_case(df_anscombe, 'I')['x'] Y = get_case(df_anscombe, 'I')['y'] data1 = vi_coeffs(X, Y, 'kde') print(data1) # Model II X = get_case(df_anscombe, 'II')['x'] Y = get_case(df_anscombe, 'II')['y'] data2 = vi_coeffs(X, Y, 'kde') print(data2) # Model III X = get_case(df_anscombe, 'III')['x'] Y = get_case(df_anscombe, 'III')['y'] data3 = vi_coeffs(X, Y, 'kde') print(data3) # # Model IV # X = get_case(df_anscombe, 'IV')['x'] # Y = get_case(df_anscombe, 'IV')['y'] # data4 = vi_coeffs(X, Y) # print(data4) import matplotlib.pyplot as plt import numpy as np theta = np.linspace(0,np.pi) r = np.sin(theta) fig = plt.figure(figsize=(7,5)) ax = fig.add_subplot(111, polar=True) m = ax.scatter(0, data1['h_a'], s=200, alpha=0.75, label='Data', zorder=0) m1 = ax.scatter(data1['theta'], data1['h_b'], s=150, alpha=0.75, marker='x', label='Model I') m1 = ax.scatter(data2['theta'], data2['h_b'], s=150, alpha=0.75, marker='o', label='Model II') m1 = ax.scatter(data3['theta'], data3['h_b'], s=150, alpha=0.75, marker='.', label='Model III') # m1 = ax.scatter(theta4, b4, s=100, alpha=0.75, marker='o', label='Model II') # ax.plot(0) ax.set_ylim([0, 3]) # ax.set_xticks([0.1, 0.2, 0.3, 0.9]) # ax.set_xticklabels([1.0, 0.9, 0.8, 0.6, 0.3, 0.2, 0.1]) # m1 = ax.scatter(theta1, a, s=50, alpha=0.75) # m1 = ax.scatter(theta1, a, s=50, alpha=0.75) c = ax.plot(theta, data1['h_a'] * np.ones(theta.shape), color='black', linestyle='dashed', alpha=0.75) ax.set_xlabel('Entropy', labelpad=20) ax.set_ylabel('Entropy', labelpad=20) plt.legend() ax.set_thetamin(0) ax.set_thetamax(90) plt.tight_layout() plt.savefig(SAVE_PATH + 'demo_vi.png') plt.show() ###Output _____no_output_____
Chapter18/detecting_lanes_in_the_image_of_a_road.ipynb
###Markdown ###Code !wget https://www.dropbox.com/s/vgd22go8a6k721t/road_image.png !pip install torch_snippets from torch_snippets import show, read, subplots, cv2, np IMG = read('road_image.png') img = np.uint8(IMG.copy()) edges = cv2.Canny(img,50,150) show(edges) lines = cv2.HoughLines(edges,1,np.pi/180,150) lines = lines[:,0,:] for rho,theta in lines: a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 10000*(-b)) y1 = int(y0 + 10000*(a)) x2 = int(x0 - 10000*(-b)) y2 = int(y0 - 10000*(a)) cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2) show(img) ###Output _____no_output_____
4. Deep Neural Networks with PyTorch/5. Deep Networks/4. initializationsame.ipynb
###Markdown Initialization with Same Weights Objective for this Notebook 1. Learn hw to Define the Neural Network with Same Weights Initialization define Criterion Function, Optimizer, and Train the Model 2.Define the Neural Network with defult Weights Initialization define Criterion Function, Optimizer 3. Train the Model Table of ContentsIn this lab, we will see the problem of initializing the weights with the same value. We will see that even for a simple network, our model will not train properly. . Neural Network Module and Training Function Make Some Data Define the Neural Network with Same Weights Initialization define Criterion Function, Optimizer, and Train the Model Define the Neural Network with defult Weights Initialization define Criterion Function, Optimizer, and Train the ModelEstimated Time Needed: 25 min Preparation We'll need the following libraries ###Code # Import the libraries we need for this lab import torch import torch.nn as nn from torch import sigmoid import matplotlib.pylab as plt import numpy as np torch.manual_seed(0) ###Output _____no_output_____ ###Markdown Used for plotting the model ###Code # The function for plotting the model def PlotStuff(X, Y, model, epoch, leg=True): plt.plot(X.numpy(), model(X).detach().numpy(), label=('epoch ' + str(epoch))) plt.plot(X.numpy(), Y.numpy(), 'r') plt.xlabel('x') if leg == True: plt.legend() else: pass ###Output _____no_output_____ ###Markdown Neural Network Module and Training Function Define the activations and the output of the first linear layer as an attribute. Note that this is not good practice. ###Code # Define the class Net class Net(nn.Module): # Constructor def __init__(self, D_in, H, D_out): super(Net, self).__init__() # hidden layer self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) # Define the first linear layer as an attribute, this is not good practice self.a1 = None self.l1 = None self.l2=None # Prediction def forward(self, x): self.l1 = self.linear1(x) self.a1 = sigmoid(self.l1) self.l2=self.linear2(self.a1) yhat = sigmoid(self.linear2(self.a1)) return yhat ###Output _____no_output_____ ###Markdown Define the training function: ###Code # Define the training function def train(Y, X, model, optimizer, criterion, epochs=1000): cost = [] total=0 for epoch in range(epochs): total=0 for y, x in zip(Y, X): yhat = model(x) loss = criterion(yhat, y) loss.backward() optimizer.step() optimizer.zero_grad() #cumulative loss total+=loss.item() cost.append(total) if epoch % 300 == 0: PlotStuff(X, Y, model, epoch, leg=True) plt.show() model(X) plt.scatter(model.a1.detach().numpy()[:, 0], model.a1.detach().numpy()[:, 1], c=Y.numpy().reshape(-1)) plt.title('activations') plt.show() return cost ###Output _____no_output_____ ###Markdown Make Some Data ###Code # Make some data X = torch.arange(-20, 20, 1).view(-1, 1).type(torch.FloatTensor) Y = torch.zeros(X.shape[0]) Y[(X[:, 0] > -4) & (X[:, 0] < 4)] = 1.0 ###Output _____no_output_____ ###Markdown Define the Neural Network with Same Weights Initialization define, Criterion Function, Optimizer and Train the Model Create the Cross-Entropy loss function: ###Code # The loss function def criterion_cross(outputs, labels): out = -1 * torch.mean(labels * torch.log(outputs) + (1 - labels) * torch.log(1 - outputs)) return out ###Output _____no_output_____ ###Markdown Define the Neural Network ###Code # Train the model # size of input D_in = 1 # size of hidden layer H = 2 # number of outputs D_out = 1 # learning rate learning_rate = 0.1 # create the model model = Net(D_in, H, D_out) ###Output _____no_output_____ ###Markdown This is the PyTorch default installation ###Code model.state_dict() ###Output _____no_output_____ ###Markdown Same Weights Initialization with all ones for weights and zeros for the bias. ###Code model.state_dict()['linear1.weight'][0]=1.0 model.state_dict()['linear1.weight'][1]=1.0 model.state_dict()['linear1.bias'][0]=0.0 model.state_dict()['linear1.bias'][1]=0.0 model.state_dict()['linear2.weight'][0]=1.0 model.state_dict()['linear2.bias'][0]=0.0 model.state_dict() ###Output _____no_output_____ ###Markdown Optimizer, and Train the Model: ###Code #optimizer optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) #train the model usein cost_cross = train(Y, X, model, optimizer, criterion_cross, epochs=1000) #plot the loss plt.plot(cost_cross) plt.xlabel('epoch') plt.title('cross entropy loss') ###Output _____no_output_____ ###Markdown By examining the output of the paramters all thought they have changed they are identical. ###Code model.state_dict() yhat=model(torch.tensor([[-2.0],[0.0],[2.0]])) yhat ###Output _____no_output_____ ###Markdown Define the Neural Network, Criterion Function, Optimizer and Train the Model ###Code # Train the model # size of input D_in = 1 # size of hidden layer H = 2 # number of outputs D_out = 1 # learning rate learning_rate = 0.1 # create the model model = Net(D_in, H, D_out) ###Output _____no_output_____ ###Markdown Repeat the previous steps above by using the MSE cost or total loss: ###Code #optimizer optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) #train the model usein cost_cross = train(Y, X, model, optimizer, criterion_cross, epochs=1000) #plot the loss plt.plot(cost_cross) plt.xlabel('epoch') plt.title('cross entropy loss') ###Output _____no_output_____
Labs/06-Mask-R-CNN/Mask R-CNN.ipynb
###Markdown Mask R-CNN with torchvisionIn Lab 06, you can use the Mask R-CNN implementation from [the multimodallearning Github repository](https://github.com/multimodallearning/pytorch-mask-rcnn)or [the Pytorch torchvision R-CNN implementation](https://pytorch.org/vision/stable/models.htmlmask-r-cnn).This is a quickstart on the torchvision version of Mask R-CNN.For help with fine tuning, see [the PyTorch instance segmentation fine tuning tutorial](https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html). Running a pre-trained Mask R-CNN model on test imagesFirst, let's copy some utility code from the torchvision library, load a pre-trained Mask R-CNN model,and create a dataloader for the COCO validation images. ###Code !cp /opt/pytorch/vision/references/detection/utils.py /home/jovyan/work/RTML/Mask\ R-CNN/ !cp /opt/pytorch/vision/references/detection/coco_utils.py /home/jovyan/work/RTML/Mask\ R-CNN/ !cp /opt/pytorch/vision/references/detection/transforms.py /home/jovyan/work/RTML/Mask\ R-CNN/ !cp /opt/pytorch/vision/references/detection/engine.py /home/jovyan/work/RTML/Mask\ R-CNN/ !cp /opt/pytorch/vision/references/detection/coco_eval.py /home/jovyan/work/RTML/Mask\ R-CNN/ import torch import torchvision from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor from torchvision.datasets import CocoDetection import utils from coco_utils import get_coco import transforms # Load a model pre-trained on COCO and put it in inference mode print('Loading pretrained model...') model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True).cuda() model.eval() # Load the COCO 2017 train and val sets. We use the CocoDetection class definition # from ./coco_utils.py, not the original torchvision.CocoDetection class. Also, we # use transforms from ./transforms, not torchvision.transforms, because they need # to transform the bboxes and masks along with the image. coco_path = "/home/jovyan/work/COCO" transform = transforms.Compose([ transforms.ToTensor() ]) print('Loading COCO train, val datasets...') coco_train_dataset = get_coco(coco_path, 'train', transform) coco_val_dataset = get_coco(coco_path, 'val', transform) def collate_fn(batch): return tuple(zip(*batch)) val_dataloader = torch.utils.data.DataLoader(coco_val_dataset, batch_size=8, shuffle=False, num_workers=4, collate_fn=collate_fn) ###Output Loading pretrained model... Loading COCO train, val datasets... loading annotations into memory... Done (t=10.38s) creating index... index created! loading annotations into memory... Done (t=0.33s) creating index... index created! ###Markdown Next, we run the model on a batch from the validation set: ###Code images, targets = next(iter(val_dataloader)) images = [ img.cuda() for img in images ] predictions = model(images) print('Prediction keys:', list(dict(predictions[0]))) print('Boxes shape:', predictions[0]['boxes'].shape) print('Labels shape:', predictions[0]['labels'].shape) print('Scores shape:', predictions[0]['scores'].shape) print('Masks shape:', predictions[0]['masks'].shape) ###Output Prediction keys: ['boxes', 'labels', 'scores', 'masks'] Boxes shape: torch.Size([100, 4]) Labels shape: torch.Size([100]) Scores shape: torch.Size([100]) Masks shape: torch.Size([100, 1, 426, 640]) ###Markdown The `predictions` list has one entry for each element of the batch. Each entry has the following keys:1. `boxes`: A tensor containing $[x1,y1,x2,y2]$ coordinates for the 100 top-scoring bounding boxes.2. `labels`: A tensor containing integer IDs of the labels corresponding to the 100 top bounding boxes.3. `scores`: A tensor containing the scores of the top 100 bounding boxes, sorted from highest score to lowest.4. `masks`: The mask corresponding to the most likely class for each of the top 100 bounding boxes. Each mask is the same size as the input image.With that information, let's write some code to visualize a result. The `draw_segmentation_map()` function isadapted from [Debugger Cafe's tutorial on Mask R-CNN](https://debuggercafe.com/instance-segmentation-with-pytorch-and-mask-r-cnn). ###Code import numpy as np import cv2 import random # Array of labels for COCO dataset (91 elements) coco_names = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Random colors to use for labeling objects COLORS = np.random.uniform(0, 255, size=(len(coco_names), 3)).astype(np.uint8) # Overlay masks, bounding boxes, and labels on input numpy image def draw_segmentation_map(image, masks, boxes, labels): alpha = 1 beta = 0.5 # transparency for the segmentation map gamma = 0 # scalar added to each sum # convert from RGB to OpenCV BGR format image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) for i in range(len(masks)): mask = masks[i,:,:] red_map = np.zeros_like(mask).astype(np.uint8) green_map = np.zeros_like(mask).astype(np.uint8) blue_map = np.zeros_like(mask).astype(np.uint8) # apply a randon color mask to each object color = COLORS[random.randrange(0, len(COLORS))] red_map[mask > 0.5] = color[0] green_map[mask > 0.5] = color[1] blue_map[mask > 0.5] = color[2] # combine all the masks into a single image segmentation_map = np.stack([red_map, green_map, blue_map], axis=2) # apply colored mask to the image image = cv2.addWeighted(image, alpha, segmentation_map, beta, gamma) # draw the bounding box around each object p1 = (int(boxes[i][0]), int(boxes[i][1])) p2 = (int(boxes[i][2]), int(boxes[i][3])) color = (int(color[0]), int(color[1]), int(color[2])) cv2.rectangle(image, p1, p2, color, 2) # put the label text above the objects p = (int(boxes[i][0]), int(boxes[i][1]-10)) cv2.putText(image, labels[i], p, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2, cv2.LINE_AA) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Overlay masks, bounding boxes, and labels of objects with scores greater than # threshold on one of the images in the input tensor using the predictions output by Mask R-CNN. def prediction_to_mask_image(images, predictions, img_index, threshold): scores = predictions[img_index]['scores'] boxes_to_use = scores >= threshold img = (images[img_index].cpu().permute(1, 2, 0).numpy() * 255).astype(np.uint8) masks = predictions[img_index]['masks'][boxes_to_use, :, :].cpu().detach().squeeze(1).numpy() boxes = predictions[img_index]['boxes'][boxes_to_use, :].cpu().detach().numpy() labels = predictions[img_index]['labels'][boxes_to_use].cpu().numpy() labels = [ coco_names[l] for l in labels ] return draw_segmentation_map(img, masks, boxes, labels) ###Output _____no_output_____ ###Markdown Let's use the code above to visualize the predictions for the first imagein the validation set (index 0), using a threshold of 0.5: ###Code from matplotlib import pyplot as plt masked_img = prediction_to_mask_image(images, predictions, 0, 0.5) plt.figure(1, figsize=(12, 9), dpi=100) plt.imshow(masked_img) plt.title('Validation image result') plt.show() ###Output _____no_output_____ ###Markdown Evaluate on the COCO validation setLet's get predictions in a loop for the full COCO 2017 validation set: ###Code from engine import evaluate results = evaluate(model, val_dataloader, 'cuda:0') ###Output Test: [ 0/625] eta: 0:11:49 model_time: 0.4978 (0.4978) evaluator_time: 0.2335 (0.2335) time: 1.1358 data: 0.4002 max mem: 12871 Test: [100/625] eta: 0:06:12 model_time: 0.4845 (0.4848) evaluator_time: 0.1976 (0.1987) time: 0.7205 data: 0.0134 max mem: 13892 Test: [200/625] eta: 0:05:07 model_time: 0.5174 (0.4874) evaluator_time: 0.2214 (0.2095) time: 0.7613 data: 0.0138 max mem: 13892 Test: [300/625] eta: 0:03:52 model_time: 0.4706 (0.4826) evaluator_time: 0.1945 (0.2080) time: 0.7470 data: 0.0138 max mem: 13892 Test: [400/625] eta: 0:02:40 model_time: 0.4712 (0.4833) evaluator_time: 0.1781 (0.2052) time: 0.7040 data: 0.0138 max mem: 13892 Test: [500/625] eta: 0:01:29 model_time: 0.4539 (0.4823) evaluator_time: 0.1674 (0.2075) time: 0.6716 data: 0.0139 max mem: 13892 Test: [600/625] eta: 0:00:17 model_time: 0.4502 (0.4820) evaluator_time: 0.1961 (0.2059) time: 0.6920 data: 0.0141 max mem: 13893 Test: [624/625] eta: 0:00:00 model_time: 0.4857 (0.4818) evaluator_time: 0.1823 (0.2053) time: 0.7112 data: 0.0142 max mem: 13893 Test: Total time: 0:07:24 (0.7115 s / it) Averaged stats: model_time: 0.4857 (0.4818) evaluator_time: 0.1823 (0.2053) Accumulating evaluation results... DONE (t=4.17s). Accumulating evaluation results... DONE (t=4.08s). IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.37881 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.59169 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.41207 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.21443 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.41474 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.49329 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.31226 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.49422 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51876 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.32195 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55889 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66009 IoU metric: segm Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.34600 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.56047 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.36803 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.15587 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.37372 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.50636 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.29432 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.45392 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.47373 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.26890 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.51531 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.62955
Statistics/Descriptive Statistics.ipynb
###Markdown Table of ContentsDescriptive StatisticsRequirementsUseful Python functionsRandomlen() &amp; sum()max() &amp; min()sorted()The Mean1. Arithmetic mean2. Geometric mean3. Harmonic meanThe MedianThe ModePercentilesThe BoxplotHistogramVariability1. Range2. Inter-Quartile Range3. VarianceNext timeUseful Resources Descriptive StatisticsWelcome to the notebook on descriptive statistics. Statistics is a very large field. People even go to grad school for it. For our site here, we will focus on some of the big hitters in statistics that make you a good data scientist. This is a cursory, whirlwind overview by somebody who has no letters after his name. So any mistakes or corrections, blame someone who does. And then send me an email or submit a pull request on Github and we'll square it away in no time.Descriptive statistics are measurements that describe a population (or sample of that population) of values. They tell you where the center tends to be, how spread out the values are, the shape of the distribution, and a bunch of other things that gradute students have put in their theses. But here we focus on some of the simpler values that you have to know to consider yourself a functional human, let alone data scientist. So follow along as we take a \\$5 hop-on hop-off tour of some of our basic statistics. RequirementsWe'll use two 3rd party Python libraries for displaying graphs. Run from terminal or shell:```shell> pip3 install seaborn> pip3 install pandas``` ###Code import seaborn as sns import random as random %matplotlib inline ###Output _____no_output_____ ###Markdown Useful Python functionsMany statistics require knowing the length or sum of your data. Let's chug through some useful [built-in functions](https://docs.python.org/3/library/functions.html). RandomWe'll use the [`random` module](https://docs.python.org/3/library/random.html) a lot to generate random numbers to make fake datasets. The plain vanilla random generator will pull from a uniform distribution. There are also options to pull from other datasets. As we add more tools to our data science toolbox, we'll find that [NumPy's](https://docs.scipy.org/doc/numpy-1.13.0/index.html) random number generators to be more full-featured and play really nicely with [Pandas](https://pandas.pydata.org/), another key data science library. For now, we're going to avoid the overhead of learning another library and just use Python's standard library. ###Code random.seed(42) values = [random.randrange(1,1001,1) for _ in range(10000)] values[0:10] ###Output _____no_output_____ ###Markdown `len()` & `sum()`The building blocks of average. Self explanatory here. ###Code len(values) sum(values) ###Output _____no_output_____ ###Markdown Below we'll use Seaborn to plot and visualize some of our data. Don't worry about this too much. Visualization, while important, is not the focus of this notebook. ###Code sns.stripplot(x=values, jitter=True, alpha=0.2) ###Output _____no_output_____ ###Markdown This graph is pretty cluttered. That makes sense because it's 10,000 values between 1 and 1,000. That tells us there should be an average of 10 entries for each value. I'll leave counting this average as an exercise for the reader.Let's make a sparse number line with just 200 values between 1 and 1000. There should be a lot more white space. ###Code sparse_values = [random.randrange(1,1001) for _ in range (200)] sns.stripplot(x=sparse_values, jitter=True) ###Output _____no_output_____ ###Markdown `max()` & `min()`These built-in functions are useful for getting the range of our data, and just general inspection: ###Code print("Max value: {}\nMin value: {}".format( max(values), min(values))) ###Output Max value: 1000 Min value: 1 ###Markdown `sorted()`Another very important technique in wrangling data is sorting it. If we have a dataset of salaries, for example, and we want to see the 10 top earners, this is how we'd do it. Let's look now at the first 20 items in our sorted data set. Probably won't be too exciting though: ###Code sorted_vals = sorted(values) sorted_vals[0:20] ###Output _____no_output_____ ###Markdown If we wanted to sort values in-place (as in, perform an action like `values = sorted(values)`), we would use the `list` class' own `sort()` method: ```pythonvalues.sort()``` The MeanThe mean is a fancy statistical way to say "average." You're all familiar with what average means. But mathemeticians like to be special and specific. There's not just one type of mean. In fact, we'll talk about 3 kinds of "means" that are all useful for different types of numbers.1. **Arithmetic mean** for common numbers2. **Geometric mean** for returns or growth3. **Harmonic mean** for ratios and ratesBuckle up... 1. Arithmetic meanThis is your typical average. You've used it all your life. It's simply the sum of the elements divided by the length. Intuitively, think of it as if you made every element the exact same value so that the sum of all values remains the same as before. What would that value be?Mathematically the mean, denoted $\mu$, looks like: $$\mu = \frac{x_1 + x_2 + \cdots + x_n}{n}$$where $\bar{x}$ is our mean, $x_i$ is a value at the $i$th index of our list, and $n$ is the length of that list.In Python, it's a simple operation combining two builtins we saw above: `sum()` and `len()` ###Code def arithmetic_mean(vals): return sum(vals) / len(vals) arithmetic_mean(values) ###Output _____no_output_____ ###Markdown From this we see our average value is 502.1696. Let's double check that with our intuitive definition using the sum: ###Code avg_sum = len(values) * arithmetic_mean(values) #10,000 * 502.1696 print("{} =? {}".format(sum(values), avg_sum)) ###Output 5021696 =? 5021696.0 ###Markdown 2. Geometric meanThe geometric mean is a similar idea but instead uses the product. It says if I multiply each value in our list together, what one value could I use instead to get the same result? The geometric mean is very useful in things like growth or returns (e.g. stocks) because adding returns doesn't give us the ability to get returns over a longer length of time. In other words, if I have a stock growing at 5% per year, what will be the total returns after 5 years?If you said 25%, you are wrong. It would be $1.05^5 - 1 \approx 27.63\%$Mathematically, our geometric is:$$ GM(x) = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n }$$ ###Code returns = [1.05, 1.06, .98, 1.08] def product(vals): ''' This is a function that will multiply every item in the list together reducing it to a single number. The Pythonic way to do this would be to use the 'reduce' function like so: > reduce(lambda x, y: x * y, vals) We are explicit here for clairty. ''' prod = 1 for x in vals: prod = prod * x return prod def geometric_mean(vals): geo_mean = product(vals) ** (1/len(vals)) # raising to 1/n is the same as nth root return geo_mean geom = geometric_mean(returns) geom ###Output _____no_output_____ ###Markdown Using our `product` function above, we can easily multiply all the values together to get what your return after 4 years is: ###Code product(returns) ###Output _____no_output_____ ###Markdown or roughly $17.8\%$. Using our geometric mean should give us the same result: ###Code geom**4 ###Output _____no_output_____ ###Markdown Now look at what happens with the arithmetic mean: ###Code arm = arithmetic_mean(returns) arm arm**4 ###Output _____no_output_____ ###Markdown The arithmetic mean would tell us that after 4 years, we should have an $18.1\%$ return. But we know it should actually be a $17.8\%$ return. It can be tricky to know when to use the arithmetic and geometric means. You also must remember to add the $1$ to your returns or it will not mathematically play nice. 3. Harmonic meanThis one is also a bit tricky to get intuitively. Here we want an average of _rates_. Not to be confused with an average of _returns_. Recall a rate is simply a ratio between two quantities, like the price-to-earnings ratio of a stock or miles-per-hour of a car.Let's take a look at the mph example. If I have a car who goes 60mph for 50 miles, 50mph for another 50, and 40mph for yet another 50, then the car has traveled 150 miles in $\frac{50mi}{60\frac{mi}{h}} + \frac{50mi}{50\frac{mi}{h}} + \frac{50mi}{40\frac{mi}{h}} = 3.08\bar{3}h$. This corresponds to a geometric mean of $150mi \div 3.08\bar{3}h \approx 48.648mph$. Much different from our arithmetic mean of 50mph. (_Note: if in our example the car did not travel a clean 50 miles for every segment, we have to use a_ [weighted harmonic mean](https://en.wikipedia.org/wiki/Harmonic_meanWeighted_harmonic_mean).)Mathematically, the harmonic mean looks like this:$$ \frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}} $$So let's code that up: ###Code speeds = [60, 50, 40] def harmonic_mean(vals): sum_recip = sum(1/x for x in vals) return len(vals) / sum_recip harmonic_mean(speeds) ###Output _____no_output_____ ###Markdown Now you know about the three [Pythagorean means](https://en.wikipedia.org/wiki/Pythagorean_means). Thank me after you brag at your next party. Let's now move on to something very important in descriptive statistics: The MedianThe median should be another familiar statistic, but often misquoted. When somebody is describing a set of numbers with just a mean, they might not be telling the whole story. For example, many sets of values are _skewed_ (a concept we will cover in the histogram section) in that most values are clustered around a certain area but have a long tail. Prices are usually good examples of this. Most wine is around \\$15-20, but we've all seen those super expensive bottles from a hermit's chateau in France. Salaries are also skewed (and politicians like to remind us how far skewed just 1\% of these people are).A useful statistic in these cases is the "median." The median gives us the middle value, as opposed to the average value. Here's a simple, but illustrative example:Suppose we take the salaries of 5 people at a bar[12000, 48000, 72000, 160000, 3360000]If I told you the average salary in this bar right now is \\$730,400, I'd be telling you the truth. But you can tell that our rich friend pulling in over 3 million is throwing off the curve. When he goes home early to do a business, the average drops to just \\$73,000. _A full 10 times less_.The median instead in this case is much more consistent, or in other words, not as prone to _outliers._ To find the median, we simply take the middle value. Or if there are an even number of entries, we take the average of the two middle values. Here it is in Python: ###Code salaries = [12000, 48000, 72000, 160000, 3360000] def median(vals): n = len(vals) sorted_vals = sorted(vals) midpoint = n // 2 if n % 2 == 1: return sorted_vals[midpoint] else: return arithmetic_mean([sorted_vals[midpoint-1], sorted_vals[midpoint]]) median(salaries) ###Output _____no_output_____ ###Markdown A much more reasonable \$7200! Now let's see what happens when Moneybags goes home: ###Code median(salaries[:-1]) ###Output _____no_output_____ ###Markdown The median drops down to \\$60,000 (which is the average of \\$48,000 and \\$72,000).Let's take a look at our original `values` list of 10,000 numbers. ###Code median(values) # Recall our values list is even, meaning 506.0 was both item 5000 and 5001 len(values) # Lopping off the end returns the same value median(values[:-1]) # Why? There are 9 506s in the list from collections import Counter c = Counter(values) c[506] ###Output _____no_output_____ ###Markdown Above we used the [`Counter`](https://docs.python.org/3.6/library/collections.htmlcollections.Counter) class in the standard library. This class is a subclass of the `dict` that holds a dictionary of keys to their counts. We can build our own version of it like so: ###Code # Here we use the defaultdict that will initialize our first value if it doesn't yet exist from collections import defaultdict def make_counter(values): counts = defaultdict(int) for v in values: counts[v] += 1 return counts counts = make_counter([1, 2, 2, 3, 5, 6, 6, 6]) counts ###Output _____no_output_____ ###Markdown Remember this part because it will show up very soon when we talk about histograms, the chef's knife of a data scientist's data exploration kitchen.But first, there's one more descriptive statistic that we should cover. And that is The ModeThe mode is simply the most common element. If there are multiple elements with the same count, then there are two modes. If all elements have the same count, there are no modes. If the distribution is _continuous_ (meaning it can take uncountably infinite values, which we will discuss in the Distributions chapter), then we use ranges of values to determine the mode. Honestly, I don't really find the mode too useful. A good time to use it is if there's a lot of _categorical data_ (meaning values like "blue", "red", "green" instead of _numerical data_ like 1,2,3). You might want to know what color car your dealership has the most of.Let's take a look at that example now. I've built a set of cars with up to 20 cars of any of four colors. ###Code car_colors = ["red"] * random.randint(1,20) + \ ["green"] * random.randint(1,20) + \ ["blue"] * random.randint(1,20) + \ ["black"] * random.randint(1,20) car_colors #Using our familiar counter color_count = Counter(car_colors) color_count # We can see the mode above is 'blue' because we have 18. Let's verify: def mode(counter): # store a list of name:count tuples in case multiple modes modes = [('',0)] for k,v in counter.items(): highest_count = modes[0][1] if v > highest_count: modes = [(k,v)] elif v == highest_count: modes.append((k,v)) return modes mode(color_count) # If we have multiple modes? mode(Counter(['blue']*3 + ['green']*3 + ['black']*2)) ###Output _____no_output_____ ###Markdown But that's enough about modes. Check out wikipedia if you want more because there's no point spending more time on them then they're worth.Hang in there, because we're getting close. Still to come is Percentiles, Boxplots, and Histograms. Three very import things.Let's get to it. PercentilesA percentile is familiar to anyone who has taken the SAT. It answers the question: what percentage of students are dumber than I am? Well the College Board would love to tell you: congratulations, you're in the 92nd percentile!Let's take a look at our old friend Mr. `values` with 10,000 numbers from 1-1000. Since this list is _uniformly distributed_, meaning every value is as likely to occur as any other, we expect that 25% of the numbers to be below 250, 50% to be below 500, and 75% to be below 750. Let's verify: ###Code def percentile(vals, elem): '''Returns the percent of numbers below the index. ''' count = 0 sorted_val = sorted(values) for val in sorted_val: if val > elem: return count/len(values) count += 1 for num in [250, 500, 750]: print("Percentile for {}: {}%".format(num, percentile(values, num)*100)) ###Output Percentile for 250: 24.37% Percentile for 500: 49.45% Percentile for 750: 75.48% ###Markdown Just like we'd expect. Now if the data set is not so nice and uniform, we expect these values to be quite different. Let's write a function to give us an element at a particular percentile: ###Code from math import ceil def pct_value(vals, pct): sorted_vals = sorted(vals) n = len(vals) return sorted_vals[ceil(n*pct)] for pct in [.25, .5, .75]: print("Element at percentile {}%: {}".format(pct*100, pct_value(values, pct))) ###Output Element at percentile 25.0%: 256 Element at percentile 50.0%: 506 Element at percentile 75.0%: 745 ###Markdown Notice how the element at the 50th percentile is also our median! Now we have a second definition of the median.Let's take a look now at a highly skewed set. It will range from 0-100 but we'll cluster it around 10 ###Code skewed = [] for i in range(1,100): skewed += [i]*random.randint(0,int(4+i//abs(10.1-i))) def print_statistics(vals, calc_mode=True): print("Count: {}".format(len(vals))) print("Mean: {:.2f}".format(arithmetic_mean(vals))) print("Median: {}".format(median(vals))) if calc_mode: print("Mode: {}".format(mode(Counter(vals)))) print("Max: {}".format(max(vals))) print("Min: {}".format(min(vals))) print("Range: {}".format(max(vals)-min(vals))) for pct in [.25, .5, .75]: print("{:.0f}th Percentile: {}".format(pct*100, pct_value(vals, pct))) print("IQR: {}".format(pct_value(vals, 0.75) - pct_value(vals, 0.25))) print_statistics(skewed) ###Output Count: 353 Mean: 39.37 Median: 30 Mode: [(10, 73)] Max: 99 Min: 1 Range: 98 25th Percentile: 10 50th Percentile: 32 75th Percentile: 66 IQR: 56 ###Markdown A few clues that this distribution is skewed:* The mean is significantly different from the median* The percentiles cluster around 25. A uniform distribution we'd expect 25, 50, and 75 for our percentiles.* The max i smuch higher than the mean, median, or even 75th percentile.Let's take a look at a simple plot to describe all of these statistics to us: The BoxplotAlso sometimes the Box-and-Whisker plot, this is a great way to visualize a lot of the information our `print_statistics` function displayed. In particular, we can see in one graph* Median* 75th percentile (called the third quartile)* 25th percentile (called the first quartile)* The reach ($\pm1.5*IQR$), which shows outliersIt does not show the mean, but it can be intuited by looking at the plot. Let's take a look at plots for values and skewed: ###Code sns.boxplot(values) ###Output _____no_output_____ ###Markdown A classic uniform distribution: centered about 500, the median goes right down the middle, and the whiskers are evenly spaced. Now let's take a look at the `skewed` list: ###Code sns.boxplot(skewed) ###Output _____no_output_____ ###Markdown Looks pretty different? Instead of being centered around 50, it looks like the box is centered around 40. The median is at 27 and much of the box is to the right of it. This shows us that the distribution is skewed to the right. There's another important way to visualize a distribution and that is HistogramAh, the moment we've all been waiting for. I keep teaching you ways to describe a dataset, but sometimes a picture is worth a thousand words. That picture is the Histogram.A histogram is a bar chart in which the values of the dataset are plotted horizontally on the X axis and the _frequencies_ (i.e. how many times that value was seen) are plotted on the Y axis. If you remember our functions to make a counter, a histogram is essentially a chart of those counts.Think for a minute on what the histogram for our uniform dataset of 10,000 randomly generated numbers would look like? Pretty boring right? ###Code # Seaborn gives an easy way to plot histograms. Plotting from scratch is beyond the # scope of the programming we will do sns.distplot(values, kde=False, bins=100) ###Output _____no_output_____ ###Markdown Seaborn's helpful `sns.distplot()` method simply turns a dataset into a histogram for us. The `bins` parameter allows us to make bins where instead of the frequency count of each variable, we plot the frequency count of a range of variables. This is very useful when we have continuous distribution (i.e. one that can take an infinite number of values of the range), as plotting every individual value is unfeasible and would make for an ugly graph.Let's take a look at our skewed data: ###Code sns.distplot(skewed, kde=False, bins=100) ###Output _____no_output_____ ###Markdown The data has tons of values around 10, and everything else hovers around 4. This type of distribution is called "unimodal" in that it has one peak, or one "contender" for the mode. Practically, unimodal and bimodal are incredibly common.I'm going to jump ahead to the next notebooks where we generate and describe different types of these distributions, how they're used, and how to describe them. One of the most basic and fundamental distribution in statistics is the unimodal Normal (or Gaussian) distribution. It's the familiar bell-curve. Let's use a simple, albeit slow, function to generate numbers according to the normal distribution (taken from https://www.taygeta.com/random/gaussian.html) ###Code from math import sqrt, log, cos, sin, pi def generateGauss(): x1 = random.random() # generate a random float in [0,1.0) x2 = random.random() y1 = sqrt(-2 *log(x1)) * cos(2*pi*x2) y2 = sqrt(-2*log(x1)) * sin(2*pi*x2) return y1, y2 gaussValues = [] for _ in range(10000): gaussValues += list(generateGauss()) #Let's take a peek: gaussValues # and print our statistics print_statistics(gaussValues, calc_mode=False) ###Output Count: 20000 Mean: -0.01 Median: 0.0035974390206229565 Max: 4.291088338639748 Min: -4.52593184929381 Range: 8.817020187933558 25th Percentile: -0.6838808785947806 50th Percentile: 0.003600379797408655 75th Percentile: 0.665650740246061 IQR: 1.3495316188408415 ###Markdown The nature of the function is such that the mean should fall around 0. It looks like we accompished that. Also note how the 25th and 50th percentile are roughly the same number. This is an indication that the distribution is not significantly skewed. Let's take a look at it's histogram: ###Code sns.distplot(gaussValues, kde=False) ###Output _____no_output_____ ###Markdown Get used to this image because you will see it _everywhere_ in statistics, data science, and life. Even though there are many many distributions out there (and even more variations on each of those), most people will be happy to apply the "bell curve" to almost anything. Chance are, though, they're right. VariabilityLet's talk about one more descriptive statistic that describes to us how much the values vary. In other words, if we're looking at test scores, did everyone do about the same? Or were there some big winners and losers?Mathemeticians call this the _variability_. There are three major measures of variability: range, inter-quartile range (IQR), and variation/standard devaition. 1. RangeRange is a very simple measure: how far apart could my values possibly be? In our generated datasets above, the answer was pretty obvious. We generated a random number from 0 to 1000, so the range was $1000-0 = 1000$. The values of x could never go outside of this range.But what about our gaussian values? The tandard normal distribution has asymptotic end points instead of absolute end points, so it's not so clean. We can see from the graph above that it doesn't look like there are any values above and below 4, so we'd expect a range of something around 8: ###Code print("Max: {}\nMin: {}\nRange: {}".format( max(gaussValues), min(gaussValues), max(gaussValues) - min(gaussValues))) ###Output Max: 4.291088338639748 Min: -4.52593184929381 Range: 8.817020187933558 ###Markdown Exactly what we expected. In practice, the range is a good descriptive statistic, but you can't do many other interesting things with it. It basically let's you say "our results were between X and Y", but nothing too much more profound. Another good way to describe the range is called 2. Inter-Quartile Rangeor IQR for short. This is a similar technique where instead of taking the difference between the max and min values, we take the difference between the 75th and 25th percentile. It gives a good sense of the range because it excludes outliers and tells you where the middle 50% of the values are grouped. Of course, this is most useful when we're looking at a unimodal distribution like our normal distribution, because for a distribution that's bimodal (i.e. has many values at either end of the range), it will be misleading.Here's how we caluclated it: ###Code print("75th: {}\n25th: {}\nIQR: {}".format( pct_value(gaussValues, .75), pct_value(gaussValues, .25), pct_value(gaussValues, .75) - pct_value(gaussValues, .25) )) ###Output 75th: 0.665650740246061 25th: -0.6838808785947806 IQR: 1.3495316188408415 ###Markdown So again, this tells us that 50% of our values are between -0.68 and 0.68 and all within the same 1.35 values. Comparing this to the range (which is not at all influenced by percentages of values), this gives you the sense that the're bunched around the mean.If we want a little more predictive power, though, it's time to talk about 3. VarianceVariance is a measure of how much values typically deviate (i.e. how far away they are) from the mean.If we want to calculate the variance, then we first see how far a value is from the mean ($\mu$), square it (which gets rid of the negative), sum them up, and divide by $n$. Essentially, it's an average where the value is the deviation squared instead of the value itself. Here's the formula for variance, denoted by $\sigma^2$:$$ \sigma^2 = \frac{(x_1 - \mu)^2+(x_2 - \mu)^2+ \cdots + (x_n - \mu)^2}{n} $$Let's code that up: ###Code def variance(vals): n = len(vals) m = arithmetic_mean(vals) variance = 0 for x in vals: variance += (x - m)**2 return variance/n variance(gaussValues) ###Output _____no_output_____ ###Markdown The variance four our generated Gaussian numbers is roughly 1, which is another condition of a standard normal distribution (mean is 0, variance is 1). So no surprise. But the variance is a bit of a tricky number to intuit because it is the average of the _squared_ differences between the mean. Take our skewed for example: ###Code variance(skewed) ###Output _____no_output_____ ###Markdown How do you interpret this? The max value is 100, so is a variance of 934.8 a lot or a little? Also, let's say the skewed distribution was a measure of price in dollars. Therefore, the units of variance would be 934.8 dollars squared. Doesn't make a whole lot of sense.For this reason, most people will take the square root of the variance to give them a value called the **standard deviation**: $\sigma = \sqrt{\sigma^2}$. ###Code def stddev(vals): return sqrt(variance(vals)) stddev(skewed) ###Output _____no_output_____
PA_Summary.ipynb
###Markdown SummaryI choose the *Thousand German News Articles Dataset* for my project assignment. There was not much cleaning needed as this was already done by the creator of the dataset and the steps shown in the 'class notebook' were sufficient.The dataset poses a multiclass (9) classification problem. ###Code data_all['label'].value_counts().plot.barh(figsize=(5,5)) ###Output _____no_output_____
notebooks/Methods/.ipynb_checkpoints/Welch hyperparemeters-checkpoint.ipynb
###Markdown Determining Welch hyperparametersThe goal is to write a wrapper for the Welch function as implemented in scipy (https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.htmlr34b375daf612-1) for PyleoclimLet's generate a periodic signal (evenly-spaced) with periodicities of 20 and 80. Default behavior and testing ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt freqs=[1/20,1/80] time=np.arange(2001) signals=[] for freq in freqs: signals.append(np.cos(2*np.pi*freq*time)) s=sum(signals) #plot plt.plot(time,s) plt.xlabel('Time') plt.ylabel('Value') ###Output _____no_output_____ ###Markdown Use the original scipy function (default parameters) to calculate the spectrum ###Code #params fs=1.0 window='hann' nperseg=None noverlap=None nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,200) ###Output <ipython-input-22-3f216d932a6a>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx) ###Markdown Setting the number of segments to the length of the timeseries -> Current default in pyleoclim ###Code #params fs=1.0 window='hann' nperseg=len(s) noverlap=None nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,200) ###Output <ipython-input-18-3f216d932a6a>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx) ###Markdown Timeseries with only 3 cycles represented ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt time=np.arange(2001) high_per=len(time)/3 freqs=[1/20,1/80,1/high_per] signals=[] for freq in freqs: signals.append(np.cos(2*np.pi*freq*time)) s=sum(signals) #plot plt.plot(time,s) plt.xlabel('Time') plt.ylabel('Value') ###Output _____no_output_____ ###Markdown Using the pyleoclim defaults ###Code #params fs=1.0 window='hann' nperseg=len(s) noverlap=None nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,1500) ###Output <ipython-input-38-ce12ed394372>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx) ###Markdown Using the scipy defaults ###Code #params fs=1.0 window='hann' nperseg=None noverlap=None nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,1500) ###Output <ipython-input-30-ce12ed394372>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx) ###Markdown 3 segments with 50% overlap (REDFIT defaults) ###Code #params fs=1.0 window='hann' nperseg=len(s)/2 noverlap=None nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,1500) ###Output <ipython-input-32-ce12ed394372>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx) ###Markdown Adding more overlap (75%) ###Code #params fs=1.0 window='hann' nperseg=len(s) noverlap=0.75*len(s) nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,1500) ###Output <ipython-input-34-ce12ed394372>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx) ###Markdown Considering less overlap ###Code #params fs=1.0 window='hann' nperseg=len(s) noverlap=0.3*len(s) nfft=None detrend='constant' return_onesided=True scaling='density' axis=-1 average='mean' #function from scipy import signal f,Pxx=signal.welch(s,fs=fs,window=window,nperseg=nperseg,noverlap=noverlap,nfft=nfft,detrend=detrend,return_onesided=return_onesided,scaling=scaling,axis=axis,average=average) #and plot the resulting spectrum plt.plot(1/f,Pxx) plt.xlabel('Period') plt.ylabel('Amplitude') plt.xlim(0,1500) ###Output <ipython-input-36-ce12ed394372>:6: RuntimeWarning: divide by zero encountered in true_divide plt.plot(1/f,Pxx)
FractalDim/Ndim_Correlation_dimension.ipynb
###Markdown Correlation dimension's codeHere i'll develope a code to calculate the N dimensional atractor's correlation dimension. Some usefull notes:$$ C(r) = \frac{2}{N(N-1)} \sum_{j=1}^N \sum_{i=j+1}^N \Theta (r - r_{ij} ) $$where $\Theta (r - r_{ij})$ is the *Heaviside function* defined as:$$ \Theta (x) = \left\{\begin{array}{l}0 \ \ \ para \ x < 0\\1 \ \ \ para \ x \ge 0 \end{array}\right. $$and $r_{ij}$ is the distance between two points. Our correlation dimension will be the plot's slope of $ log \ C_r $ vs $ log \ r $$$ D_2 = \lim_{r\to 0} \lim_{N \to \infty} \frac{d log(C(r))}{d log(r)} $$ ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.integrate import odeint %matplotlib notebook ###Output _____no_output_____ ###Markdown First i define the basic functions i will use ###Code #--- Heaviside Function def Heaviside(x): if x<0: return 0 elif x>=0: return 1 #--- N dimensional distance def distn(x1, x2, dim): dist = 0 for i in range(0, dim): diff = (x1[i] - x2[i])**2 dist += diff return np.sqrt(dist) #--- Ode solutions after trascient def sol_tras(f, y0, params, t, dt): tras_state = odeint(f, y0, t, args=params) state0 = tras_state[-1,:] tt = np.arange( t[-1], 2*t[-1], dt) state = odeint(f, state0, tt, args=params) return state ###Output _____no_output_____ ###Markdown The correlation function.- N is the number of points you want to use in the calculation- n the atractor's topological dimension- r is the distances choosen according to the system- Data is the solution itself ###Code #--- each C_r def C_r(r, Data, n, N): tot_sum = 0 for i in range(0, N): for j in range(i+1, N): r_ij = distn(Data[:,i], Data[:,j], n) xev = r - r_ij tot_sum += Heaviside(xev) #print(tot_sum, i) Cr = 2*tot_sum / (N*(N-1)) return Cr #---- all C_r depending on r def Total_C_r(dat, R, N, dim): tot_C_r = [] for r in R: curr = C_r(r, dat, dim, N) tot_C_r.append(curr) return tot_C_r ###Output _____no_output_____ ###Markdown Aplying this method to some known dynamical systems ###Code #---- Henon's Map def Henon_map(n, a, b): x=[0.5*(1-b)]; y=[0.5*(1-b)] for i in range(1, n): xi = 1 - a*x[-1]**2 + y[-1] yi = b*x[-1] x.append(xi) y.append(yi) return x, y #---- Lorentz' system def Lorentz_eq2(r, t, rho, sigma, beta): #Atractor de Lorentz x, y, z = r dx = sigma*(y-x) dy = x*(rho-z) -y dz = x*y - beta*z return np.array([dx, dy, dz]) ###Output _____no_output_____ ###Markdown Henon's Map correlation dimension using the new algorithm. Note that this is a discrete map, so the numerical solver will not be used ###Code #---- 1 million points Henon's Map x_H, y_H = Henon_map(int(1e6), 1.4, 0.3) plt.plot(x_H, y_H, '.') Henon = np.array((x_H, y_H)) dim_H = 2 #--- first set r manually r_H = np.arange(0.01, 1.0, 0.01) #--- set number of points N N_H = 100 #--- Calculate C_r Henon_Cr = Total_C_r(Henon, r_H, N_H, dim_H) #--- Plot the resulting curve and fit coef_H = np.polyfit(np.log(r_H), np.log(Henon_Cr), 1) print("la dimensión de correlación será: ", coef_H[0]) plt.loglog(r_H, Henon_Cr) plt.ylabel(r'log $C_r$') plt.xlabel("log r") plt.title("Henon's correlation dimension") plt.grid() plt.show() ###Output la dimensión de correlación será: 1.2350871395373977 ###Markdown To verify the nth dimensional code, i am going to calculate the lorentz' system correlation dimension ###Code #--- Solving the differential equations in the transcient dt_L = 0.01 p_L = (28, 10, 8./3.) t_L = np.arange(0, 100, dt_L) y0_L = np.array([1, 0, 0]) sol_L = sol_tras(Lorentz_eq2, y0_L, p_L, t_L, dt_L) #---- Plotting Lorentz atractor fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111, projection='3d') ax.plot(sol_L[:,0], sol_L[:,1], sol_L[:,2]) Lorentz = np.array((sol_L[:,0], sol_L[:,1], sol_L[:,2])) dim_L = 3 #--- first set r manually r_L = np.arange(25, 30, 0.1) #--- set number of points N N_L = 100 #--- Calculate C_r Lorentz_Cr = Total_C_r(Lorentz, r_L, N_L, dim_L) #--- Plot the resulting curve and fit coef_L = np.polyfit(np.log(r_L), np.log(Lorentz_Cr), 1) print("la dimensión de correlación será: ", coef_L[0]) plt.loglog(r_L, Lorentz_Cr) plt.ylabel(r'log $C_r$') plt.xlabel("log r") plt.title("Lorentz' correlation dimension") plt.grid() plt.show() ###Output la dimensión de correlación será: 0.8426833441354541
seq2seq/exploration.ipynb
###Markdown **Overview** The Enron email dataset contains approximately 500,000 emails generated by employees of the Enron Corporation. It was obtained by the Federal Energy Regulatory Commission during its investigation of Enron's collapse. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter import plotly.graph_objects as go from wordcloud import WordCloud emails = pd.read_csv('./enron.csv', skiprows=lambda x:x%2) cols = emails.columns emails.head(3) import email message = emails.loc[0]["message"] e = email.message_from_string(message) e.items() e.get_payload() def get_field(field, messages): column = [] for message in messages: e = email.message_from_string(message) column.append(e.get(field)) return column emails["date"] = get_field("Date", emails["message"]) emails["subject"] = get_field("Subject", emails["message"]) emails["X-Folder"] = get_field("X-Folder", emails["message"]) emails["X-From"] = get_field("X-From", emails["message"]) emails["X-To"] = get_field("X-To", emails["message"]) emails.head(3) def body(messages): column = [] for message in messages: e = email.message_from_string(message) column.append(e.get_payload()) return column emails["body"] = body(emails["message"]) emails.head(3) ###Output _____no_output_____ ###Markdown EDA Distribution of message length ###Code emails['Message Length'] = emails['body'].apply(lambda x: len(x)) sns.distplot(emails['Message Length'],bins=None,hist=False) ###Output _____no_output_____ ###Markdown **Observations*** The message length distribution is right skewed **Observation*** The maximum message length is more than 2 million CDF of message length ###Code fig, ax = plt.subplots(figsize=(10, 10)) counts, bin_edges = np.histogram(emails['Message Length'], bins=500, density = True) pdf = counts/(sum(counts)) cdf = np.cumsum(pdf) plt.plot(bin_edges[1:], cdf) plt.title('CDF of message length') ###Output _____no_output_____ ###Markdown **Observations*** 99% messages have length below 500000 Top 10 Employee with most mails sent ###Code def employee(file): column = [] for string in file: column.append(string.split("/")[0]) return column emails["employee"] = employee(emails["file"]) emails.head(3) top_10 = pd.DataFrame(emails["employee"].value_counts()[:10]) top_10.reset_index(inplace=True) top_10.columns = ["employee_name", "count"] top_10 sns.barplot(y="employee_name", x="count", data=top_10) plt.xlabel("Number of emails send") plt.ylabel("Employee Name") plt.title('TOP 10 Employee to send mails') plt.show(); ###Output _____no_output_____ ###Markdown **Observation*** The Top 10 emails senders sent 6000 to 14000 mails WordCloud for Message body ###Code txt=emails['body'][:5000].values.astype(str) txt_string='' for i in txt: txt_string+= str(i) wordcloud = WordCloud(width=800, height=500, random_state=21, max_font_size=110).generate(txt_string) plt.figure(figsize=(20, 20)) plt.imshow(wordcloud, interpolation="bilinear") plt.axis('off') plt.title('WordCloud for MEssage Body') plt.show() ###Output _____no_output_____
Project#5/project_2_hiv.ipynb
###Markdown **Project2. Molecular property prediction using GCN**Dataset: HIV **Library + hyperparameter setup** ###Code # install rdkit and deepchem on colab environment !wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh !chmod +x Miniconda3-latest-Linux-x86_64.sh !time bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local !conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem=2.1.0 python=3.6 import sys sys.path.append('/usr/local/lib/python3.6/site-packages/') # import libraries import deepchem as dc import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset import time import math import numpy as np import scipy.sparse as sp import networkx as nx from rdkit import Chem import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, roc_curve, auc #for ECFP from sklearn.ensemble import RandomForestClassifier #for ECFP from sklearn.metrics import roc_auc_score from sklearn.metrics import average_precision_score import matplotlib.pyplot as plt # set hyperparameters # HIV setting hp = {} hp['learning_rate'] = 1e-5 hp['epochs'] = 5 hp['batch_size'] = 128 hp['hidden1'] = 64 hp['hidden2'] = 128 hp['hidden3'] = 256 hp['hidden4'] = 512 hp['dropout'] = 0.2 print(hp) ###Output /usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+. warnings.warn(msg, category=DeprecationWarning) ###Markdown **Helper functions for GCN data handling** ###Code def load_lists(dataset): # load data adj_list = [] feat_list = [] label_list = [] for x, y, w, smiles in dataset.itersamples(): smiles = Chem.MolFromSmiles(smiles) featurizer = dc.feat.ConvMolFeaturizer() features = featurizer.featurize([smiles])[0] edge_list = features.get_adjacency_list() atom_feature = features.get_atom_features() # convert adjacency list into adjacency matrix "A" adj = np.zeros((len(edge_list), len(edge_list))) for i in range(len(edge_list)): for j in edge_list[i]: adj[i][j]=1 adj_list.append(adj) # (num_atoms, num_atoms) feat_list.append(atom_feature) # (num_atoms, num_features=75) label_list.append(y) # 0/1 return adj_list, feat_list, label_list # f(H(l), A) = nonlinear(Dhat^-1/2 * Ahat * Dhat^-1/2 * H_l * W_l) # preprocessing for recurrent interaction during convolution def normalize_adj(adj): # add identity matrix adj_hat = adj + np.eye(adj.shape[0]) # compute diagonal node degree matrix of Ahat deg = np.sum(adj_hat,axis=0) # sqrt inv deg_inv = np.divide(1, deg) deg_inv_sqrt = np.sqrt(deg_inv) deg_inv_diag = np.diag(np.squeeze(np.asarray(deg_inv_sqrt))) # normalize adj_norm = np.matmul(np.matmul(deg_inv_diag, adj_hat), deg_inv_diag) return adj_norm # custom dataset class class BaseDataset(Dataset): def __init__(self, adj_list, feat_list, label_list, train_mode=False): self.adj_list = adj_list self.feat_list = feat_list self.label_list = label_list self.train_mode = train_mode def __len__(self): return len(self.adj_list) def __getitem__(self, idx): # return graph, feature and label return adj_list[idx], feat_list[idx], label_list[idx] def get_tensors(self): # return batch tensors of normalized adjacency matrix, input and target # return tensor shape (batch_size, *) adj_list = self.adj_list feat_list = self.feat_list label_list = self.label_list # get maximum size for padding max_num_atom = -1 for adj in adj_list: if adj.shape[0] > max_num_atom: max_num_atom = adj.shape[0] # make padded batch matrix of normalized adjacency matrix padded_adj_list = [] for i, adj in enumerate(adj_list): # (num_atoms, num_atoms) adj_norm = normalize_adj(adj) # normalize # padding pad_num = max_num_atom - adj.shape[0] npad = ((0, pad_num), (0, pad_num)) padded_adj = np.pad(adj_norm, npad, mode='constant', constant_values=0) # append padded_adj_list.append(padded_adj) # construct numpy array adj_np = np.stack(padded_adj_list, axis=0) # (batch_size, num_atoms, num_atoms) # make padded batch matrix of feature matrix padded_feat_list = [] for i, feat in enumerate(feat_list): # (num_atoms, num_features=75) # padding pad_num = max_num_atom - feat.shape[0] npad = ((0, pad_num), (0, 0)) padded_feat = np.pad(feat, npad, mode='constant', constant_values=0) # append padded_feat_list.append(padded_feat) # construct numpy array feat_np = np.stack(padded_feat_list, axis=0) # (batch_size, num_atoms, num_features=75) feat_np = np.transpose(feat_np, [0, 2, 1]) # (batch_size, num_features=75, num_atoms) # convert label list to numpy array label_np = np.asarray(label_list) adjs = torch.from_numpy(adj_np) inputs = torch.from_numpy(feat_np) targets = torch.from_numpy(label_np) del adj_list, feat_list, label_list, padded_adj_list, padded_feat_list return adjs, inputs, targets # dataset constructor def make_dataset(batch_size, adj_list, feat_list, label_list): # construct BaseDataset objects for each batch data_len = len(adj_list) begin = 0 finished = 0 dataset_list = [] while(1): if begin + batch_size < data_len: end = begin + batch_size dataset_list.append(BaseDataset(adj_list[begin:end], feat_list[begin:end], label_list[begin:end], train_mode=True)) begin += batch_size else: end = data_len dataset_list.append(BaseDataset(adj_list[begin:end], feat_list[begin:end], label_list[begin:end], train_mode=True)) break return math.ceil(data_len/batch_size), dataset_list ###Output _____no_output_____ ###Markdown **GCN model code** ###Code # graph convolution layer class GraphConvolution(nn.Module): def __init__(self, input_dim, output_dim, dropout=0): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.p = dropout # feature weight matrix self.w = nn.Parameter(torch.empty(output_dim, input_dim)) nn.init.xavier_uniform_(self.w) self.relu = nn.ReLU() # non-linearity self.dropout = nn.Dropout(p=self.p) # dropout def forward(self, x, adjs): # input, output tensor shapes: (batch_size, num_features, num_nodes) # adjs tensor shape: (batch_size, num_nodes, num_nodes) num_nodes = x.shape[2] if x.shape[1] != self.input_dim: print((x.shape[1], self.input_dim)) raise RuntimeError("input feature dimension not matched to input_dim argument") x = x.type(torch.FloatTensor) adjs = adjs.type(torch.FloatTensor) # forward x = self.dropout(x) x = torch.transpose(x, 1, 2) # (batch_size, num_nodes, input_dim) w = torch.transpose(self.w, 0, 1) # (input_dim, output_dim) x = torch.einsum("abc,cd->abd", (x, w)) # (batch_size, num_nodes, output_dim) x = torch.transpose(x, 1, 2) # (batch_size, output_dim, num_nodes) o = torch.bmm(x, adjs) # (batch_size, output_dim, num_nodes) return o class GCNModel(nn.Module): def __init__(self, input_dim): super().__init__() self.input_dim = input_dim self.hp = hp # hyperparameters hidden1 = self.hp['hidden1'] hidden2 = self.hp['hidden2'] hidden3 = self.hp['hidden3'] hidden4 = self.hp['hidden4'] p = self.hp['dropout'] self.gc1 = GraphConvolution(input_dim=self.input_dim, output_dim=hidden1, dropout=p) self.gc2 = GraphConvolution(input_dim=hidden1, output_dim=hidden2, dropout=p) self.gc3 = GraphConvolution(input_dim=hidden2, output_dim=hidden3, dropout=p) self.gc4 = GraphConvolution(input_dim=hidden3, output_dim=hidden4, dropout=p) self.bn1 = nn.BatchNorm1d(num_features=hidden1) self.bn2 = nn.BatchNorm1d(num_features=hidden2) self.bn3 = nn.BatchNorm1d(num_features=hidden3) self.bn4 = nn.BatchNorm1d(num_features=hidden4) self.bn_fc = nn.BatchNorm1d(num_features=1) self.fc = nn.Linear(in_features=hidden4, out_features=1) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=p) self.dropout_fc = nn.Dropout(p=0.5) def forward(self, x, adjs): # input tensor shape: (batch_size, input_dim, num_nodes) x = self.relu(self.dropout(self.bn1(self.gc1(x, adjs)))) x = self.relu(self.dropout(self.bn2(self.gc2(x, adjs)))) x = self.relu(self.dropout(self.bn3(self.gc3(x, adjs)))) x = self.relu(self.dropout(self.bn4(self.gc4(x, adjs)))) x = self.fc(self.dropout_fc(torch.mean(x, dim=2))) o = self.bn_fc(x) # output tensor shape: (batch_size, output_dim=1) return o def train(model, train_batch_num, train_dataset_list, criterion): train_roc_score = 0. train_ap_score = 0. cnt = 0 epoch_loss = 0. for idx in range(train_batch_num): train_dataset = train_dataset_list[idx] adjs, inputs, targets = train_dataset.get_tensors() output = model(inputs, adjs) loss = criterion(output, targets) epoch_loss += loss.item() loss.backward() optimizer.step() targets = targets.clone().detach().numpy() output = output.clone().detach().numpy() output = 1 / (1 + np.exp(-output)) # sigmoid output = output > 0.5 try: train_roc_score += roc_auc_score(targets, output) train_ap_score += average_precision_score(targets, output) cnt += 1 except ValueError: pass train_roc_score /= cnt train_ap_score /= cnt epoch_loss /= train_batch_num return train_roc_score, train_ap_score, epoch_loss def evaluate(valid_batch_num, model, valid_dataset_list): roc_score = 0. ap_score = 0. cnt = 0 for idx in range(valid_batch_num): valid_dataset = valid_dataset_list[idx] adjs, inputs, targets = valid_dataset.get_tensors() output = model(inputs, adjs) targets = targets.clone().detach().numpy() output = output.clone().detach().numpy() output = 1 / (1 + np.exp(-output)) # sigmoid output = output > 0.5 try: roc_score += roc_auc_score(targets, output) ap_score += average_precision_score(targets, output) cnt += 1 except ValueError: pass roc_score /= cnt ap_score /= cnt return roc_score, ap_score ###Output _____no_output_____ ###Markdown **ECFP - random forest model** ###Code ### make helper functions for ECFP featurization ### # function for getting ECFP feature # input: train, validation, or test dataset def loadECFP(dataset): # load data ECFP_feat = [] ECFP_label = [] for x, y, w, smiles in dataset.itersamples(): ECFP_feat.append(x) ECFP_label.append(y) # return ECFP feature and its label (X___, Y___) return np.array(ECFP_feat), np.array(ECFP_label) # ECFP model building funcion # Randomly splitted data are used def getAUCfromRF_model(X_train, Y_train, X_test, Y_test): # make randomforest classifier clf=RandomForestClassifier(n_estimators=100, criterion='entropy') # train with train set clf.fit(X_train, Y_train) fpr, tpr, thresholds = roc_curve(Y_test, clf.predict_proba(X_test)[:, 1]) # get auc score with test sets AUC = auc(fpr, tpr) return(AUC) ###Output _____no_output_____ ###Markdown **Main routine**ours / HIV benchmark result<img src=https://drive.google.com/uc?export=download&id=18lhC9JhPrxVkbsFx6xAk1sydA6mjN4AW height="200"/> ###Code # loop routine seed_list = [33,84,35,31,48,42,59,53,54,51] GCN_AUC_list = [] ECFP_AUC_list = [] for i in range(10): # set random seed seed = seed_list[i] np.random.seed(seed) torch.manual_seed(seed) # load dataset tasks, datasets, transformers = dc.molnet.load_bace_classification(featurizer='ECFP', split='scaffold') train_dataset, valid_dataset, test_dataset = datasets ########################################################### # GCN section ########################################################### # load lists train_adj_list, train_feat_list, train_label_list = load_lists(train_dataset) valid_adj_list, valid_feat_list, valid_label_list = load_lists(valid_dataset) test_adj_list, test_feat_list, test_label_list = load_lists(test_dataset) # construct datasets train_batch_num, train_dataset_list = make_dataset(batch_size = hp['batch_size'], adj_list=train_adj_list, feat_list=train_feat_list, label_list=train_label_list) valid_batch_num, valid_dataset_list = make_dataset(batch_size = hp['batch_size'], adj_list=valid_adj_list, feat_list=valid_feat_list, label_list=valid_label_list) test_batch_num, test_dataset_list = make_dataset(batch_size = hp['batch_size'], adj_list=test_adj_list, feat_list=test_feat_list, label_list=test_label_list) # main training routine # define model num_features = train_feat_list[0].shape[1] model = GCNModel(input_dim = num_features) # set optimizer and loss optimizer = optim.Adam(model.parameters(), lr=hp['learning_rate']) criterion = nn.BCEWithLogitsLoss(reduction='mean') # optimization print("\ntrain start: %d" %(i+1)) for epoch in range(hp['epochs']): t = time.time() model.train() train_roc_score, train_ap_score, epoch_loss = train(model, train_batch_num, train_dataset_list, criterion) model.eval() roc_score, ap_score = evaluate(valid_batch_num, model, valid_dataset_list) print("epoch:", '%02d' % (epoch + 1), "train: [loss=", "{:.4f}".format(epoch_loss), "roc=", "{:.4f}".format(train_roc_score), "ap=", "{:.4f}".format(train_ap_score), "] val: [roc=", "{:.4f}".format(roc_score), "ap=", "{:.4f}".format(ap_score), "] t=", "{:.4f}".format(time.time() - t)) print('optimization finished!') model.eval() roc_score, ap_score = evaluate(test_batch_num, model, test_dataset_list) print('Test ROC score: {:.5f}'.format(roc_score)) print('Test AP score: {:.5f}'.format(ap_score)) GCN_AUC_list.append(roc_score) del model, train_dataset_list, valid_dataset_list, test_dataset_list del tasks, datasets, transformers del train_adj_list, train_feat_list, train_label_list del valid_adj_list, valid_feat_list, valid_label_list del test_adj_list, test_feat_list, test_label_list ########################################################### # ECFP - random forest section ########################################################### # train, test data for ECFP X_train_E, Y_train_E = loadECFP(train_dataset) X_test_E, Y_test_E = loadECFP(test_dataset) # AUC list for ECFP ECFP_AUC = getAUCfromRF_model(X_train_E, Y_train_E, X_test_E, Y_test_E) ECFP_AUC_list.append(ECFP_AUC) del train_dataset, valid_dataset, test_dataset del X_train_E, Y_train_E, X_test_E, Y_test_E GCN_mean = np.mean(np.array(GCN_AUC_list)) GCN_std = np.std(np.array(GCN_AUC_list)) ECFP_mean = np.mean(np.array(ECFP_AUC_list)) ECFP_std = np.std(np.array(ECFP_AUC_list)) fig = plt.figure(figsize=(2, 4)) plt.title("test AUC score") y = [GCN_mean, ECFP_mean] x = ['GCN', 'ECFP - RF'] plt.bar(x, y, width=0.3, yerr = [GCN_std, ECFP_std]) plt.ylim((0, 1)) plt.ylabel("ROC-AUC") plt.show() ###Output _____no_output_____
Currency Converter/.ipynb_checkpoints/main-checkpoint.ipynb
###Markdown Python Project on Currency Converter ###Code import requests from tkinter import * class CurrencyConverter(): def __init__(self,url): self.data= requests.get(url).json() self.currencies = self.data['rates'] def convert(self, from_currency, to_currency, amount): initial_amount = amount if from_currency != 'USD' : amount = amount / self.currencies[from_currency] # limiting the precision to 2 decimal places amount = round(amount * self.currencies[to_currency], 2) return amount class CurrencyConverterApp(): def __init__(self,root,converter): self.root =root root.title = 'Currency Converter' self.converter = converter def create_converter(self): self.variable1 = StringVar(root) self.variable2 = StringVar(root) # initialise the variables self.variable1.set("INR") self.variable2.set("USD") # Set the background colour of GUI window root.configure(background = 'purple') # Set the configuration of GUI window (WidthxHeight) root.geometry("400x320") # Create welcome to Real Time Currency Convertor label headlabel = Label(root, text = 'Welcome to Real Time Currency Convertor', fg = 'white', bg = "black") headlabel.config(font = ('Courier',10,'bold')) # Create a 'DESC' label label_desc = Label(root, text = f"1 Indian Rupee equals = {self.converter.convert('INR','USD',1)} USD \n Date : {self.converter.data['date']}") # Create Entry box self.Amount = Entry(root,bd = 3) self.converted_amount_field = Entry(root,bd=3) self.Amount.insert(0, 1) self.converted_amount_field.insert(0,0.013) # Create a dropdown from_curr_options = OptionMenu(root, self.variable1, *converter.currencies.keys()) from_curr_options.config(width=10, font=('Courier', 10,'bold'), bg = 'yellow', fg = 'black') from_curr_options.pack() to_curr_options = OptionMenu(root, self.variable2, *converter.currencies.keys()) to_curr_options.config(width=10, font=('Courier', 10,'bold'), bg = 'red', fg = 'black') to_curr_options.pack() # Placing on screen headlabel.place(x=50, y=10) label_desc.place(x = 110, y= 50) self.Amount.place(x = 60, y= 120) self.converted_amount_field.place(x = 60,y = 160) from_curr_options.place(x = 220 , y = 115) to_curr_options.place(x = 220 , y = 155) self.button1 = Button(root, text = "Convert", fg = "black", command = self.perform) self.button1.config(font=('Courier', 15, 'bold')) self.button1.place(x = 150, y = 200) def perform(self,): amount = float(self.Amount.get()) from_curr = self.variable1.get() to_curr = self.variable2.get() converted_amount = self.converter.convert(from_curr,to_curr,amount) converted_amount = round(converted_amount, 2) self.converted_amount_field.delete(0,END) self.converted_amount_field.insert(0,converted_amount) if __name__ == '__main__': url = 'https://api.exchangerate-api.com/v4/latest/USD' converter = CurrencyConverter(url) root = Tk() Converter = CurrencyConverterApp(root,converter) Converter.create_converter() root.mainloop() ###Output _____no_output_____
c4_convolutional_neural_networks/week_13/neural_style_transfer/Art_Generation_with_Neural_Style_Transfer_v3a.ipynb
###Markdown Deep Learning & Art: Neural Style TransferIn this assignment, you will learn about Neural Style Transfer. This algorithm was created by [Gatys et al. (2015).](https://arxiv.org/abs/1508.06576)**In this assignment, you will:**- Implement the neural style transfer algorithm - Generate novel artistic images using your algorithm Most of the algorithms you've studied optimize a cost function to get a set of parameter values. In Neural Style Transfer, you'll optimize a cost function to get pixel values! Updates If you were working on the notebook before this update...* The current notebook is version "3a".* You can find your original work saved in the notebook with the previous version name ("v2") * To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* Use `pprint.PrettyPrinter` to format printing of the vgg model.* computing content cost: clarified and reformatted instructions, fixed broken links, added additional hints for unrolling.* style matrix: clarify two uses of variable "G" by using different notation for gram matrix.* style cost: use distinct notation for gram matrix, added additional hints.* Grammar and wording updates for clarity.* `model_nn`: added hints. ###Code import os import sys import scipy.io import scipy.misc import matplotlib.pyplot as plt from matplotlib.pyplot import imshow from PIL import Image from nst_utils import * import numpy as np import tensorflow as tf import pprint import imageio %matplotlib inline ###Output _____no_output_____ ###Markdown 1 - Problem StatementNeural Style Transfer (NST) is one of the most fun techniques in deep learning. As seen below, it merges two images, namely: a **"content" image (C) and a "style" image (S), to create a "generated" image (G**). The generated image G combines the "content" of the image C with the "style" of image S. In this example, you are going to generate an image of the Louvre museum in Paris (content image C), mixed with a painting by Claude Monet, a leader of the impressionist movement (style image S).Let's see how you can do this. 2 - Transfer LearningNeural Style Transfer (NST) uses a previously trained convolutional network, and builds on top of that. The idea of using a network trained on a different task and applying it to a new task is called transfer learning. Following the [original NST paper](https://arxiv.org/abs/1508.06576), we will use the VGG network. Specifically, we'll use VGG-19, a 19-layer version of the VGG network. This model has already been trained on the very large ImageNet database, and thus has learned to recognize a variety of low level features (at the shallower layers) and high level features (at the deeper layers). Run the following code to load parameters from the VGG model. This may take a few seconds. ###Code pp = pprint.PrettyPrinter(indent=4) model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat") pp.pprint(model) ###Output WARNING:tensorflow:From /Users/jmadrid/Documents/machine_learning/deep_learning_specialization/c4_convolutional_neural_networks/week_13/neural_style_transfer/nst_utils.py:124: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead. { 'avgpool1': <tf.Tensor 'AvgPool:0' shape=(1, 150, 200, 64) dtype=float32>, 'avgpool2': <tf.Tensor 'AvgPool_1:0' shape=(1, 75, 100, 128) dtype=float32>, 'avgpool3': <tf.Tensor 'AvgPool_2:0' shape=(1, 38, 50, 256) dtype=float32>, 'avgpool4': <tf.Tensor 'AvgPool_3:0' shape=(1, 19, 25, 512) dtype=float32>, 'avgpool5': <tf.Tensor 'AvgPool_4:0' shape=(1, 10, 13, 512) dtype=float32>, 'conv1_1': <tf.Tensor 'Relu:0' shape=(1, 300, 400, 64) dtype=float32>, 'conv1_2': <tf.Tensor 'Relu_1:0' shape=(1, 300, 400, 64) dtype=float32>, 'conv2_1': <tf.Tensor 'Relu_2:0' shape=(1, 150, 200, 128) dtype=float32>, 'conv2_2': <tf.Tensor 'Relu_3:0' shape=(1, 150, 200, 128) dtype=float32>, 'conv3_1': <tf.Tensor 'Relu_4:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv3_2': <tf.Tensor 'Relu_5:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv3_3': <tf.Tensor 'Relu_6:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv3_4': <tf.Tensor 'Relu_7:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv4_1': <tf.Tensor 'Relu_8:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv4_2': <tf.Tensor 'Relu_9:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv4_3': <tf.Tensor 'Relu_10:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv4_4': <tf.Tensor 'Relu_11:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv5_1': <tf.Tensor 'Relu_12:0' shape=(1, 19, 25, 512) dtype=float32>, 'conv5_2': <tf.Tensor 'Relu_13:0' shape=(1, 19, 25, 512) dtype=float32>, 'conv5_3': <tf.Tensor 'Relu_14:0' shape=(1, 19, 25, 512) dtype=float32>, 'conv5_4': <tf.Tensor 'Relu_15:0' shape=(1, 19, 25, 512) dtype=float32>, 'input': <tf.Variable 'Variable:0' shape=(1, 300, 400, 3) dtype=float32_ref>} ###Markdown * The model is stored in a python dictionary. * The python dictionary contains key-value pairs for each layer. * The 'key' is the variable name and the 'value' is a tensor for that layer. Assign input image to the model's input layerTo run an image through this network, you just have to feed the image to the model. In TensorFlow, you can do so using the [tf.assign](https://www.tensorflow.org/api_docs/python/tf/assign) function. In particular, you will use the assign function like this: ```pythonmodel["input"].assign(image)```This assigns the image as an input to the model. Activate a layerAfter this, if you want to access the activations of a particular layer, say layer `4_2` when the network is run on this image, you would run a TensorFlow session on the correct tensor `conv4_2`, as follows: ```pythonsess.run(model["conv4_2"])``` 3 - Neural Style Transfer (NST)We will build the Neural Style Transfer (NST) algorithm in three steps:- Build the content cost function $J_{content}(C,G)$- Build the style cost function $J_{style}(S,G)$- Put it together to get $J(G) = \alpha J_{content}(C,G) + \beta J_{style}(S,G)$. 3.1 - Computing the content costIn our running example, the content image C will be the picture of the Louvre Museum in Paris. Run the code below to see a picture of the Louvre. ###Code content_image = imageio.imread("images/louvre.jpg") imshow(content_image); ###Output _____no_output_____ ###Markdown The content image (C) shows the Louvre museum's pyramid surrounded by old Paris buildings, against a sunny sky with a few clouds.** 3.1.1 - Make generated image G match the content of image C** Shallower versus deeper layers* The shallower layers of a ConvNet tend to detect lower-level features such as edges and simple textures.* The deeper layers tend to detect higher-level features such as more complex textures as well as object classes. Choose a "middle" activation layer $a^{[l]}$We would like the "generated" image G to have similar content as the input image C. Suppose you have chosen some layer's activations to represent the content of an image. * In practice, you'll get the most visually pleasing results if you choose a layer in the **middle** of the network--neither too shallow nor too deep. * (After you have finished this exercise, feel free to come back and experiment with using different layers, to see how the results vary.) Forward propagate image "C"* Set the image C as the input to the pretrained VGG network, and run forward propagation. * Let $a^{(C)}$ be the hidden layer activations in the layer you had chosen. (In lecture, we had written this as $a^{[l](C)}$, but here we'll drop the superscript $[l]$ to simplify the notation.) This will be an $n_H \times n_W \times n_C$ tensor. Forward propagate image "G"* Repeat this process with the image G: Set G as the input, and run forward progation. * Let $a^{(G)}$ be the corresponding hidden layer activation. Content Cost Function $J_{content}(C,G)$We will define the content cost function as:$$J_{content}(C,G) = \frac{1}{4 \times n_H \times n_W \times n_C}\sum _{ \text{all entries}} (a^{(C)} - a^{(G)})^2\tag{1} $$* Here, $n_H, n_W$ and $n_C$ are the height, width and number of channels of the hidden layer you have chosen, and appear in a normalization term in the cost. * For clarity, note that $a^{(C)}$ and $a^{(G)}$ are the 3D volumes corresponding to a hidden layer's activations. * In order to compute the cost $J_{content}(C,G)$, it might also be convenient to unroll these 3D volumes into a 2D matrix, as shown below.* Technically this unrolling step isn't needed to compute $J_{content}$, but it will be good practice for when you do need to carry out a similar operation later for computing the style cost $J_{style}$. **Exercise:** Compute the "content cost" using TensorFlow. **Instructions**: The 3 steps to implement this function are:1. Retrieve dimensions from `a_G`: - To retrieve dimensions from a tensor `X`, use: `X.get_shape().as_list()`2. Unroll `a_C` and `a_G` as explained in the picture above - You'll likey want to use these functions: [tf.transpose](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/transpose) and [tf.reshape](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/reshape).3. Compute the content cost: - You'll likely want to use these functions: [tf.reduce_sum](https://www.tensorflow.org/api_docs/python/tf/reduce_sum), [tf.square](https://www.tensorflow.org/api_docs/python/tf/square) and [tf.subtract](https://www.tensorflow.org/api_docs/python/tf/subtract). Additional Hints for "Unrolling"* To unroll the tensor, we want the shape to change from $(m,n_H,n_W,n_C)$ to $(m, n_H \times n_W, n_C)$.* `tf.reshape(tensor, shape)` takes a list of integers that represent the desired output shape.* For the `shape` parameter, a `-1` tells the function to choose the correct dimension size so that the output tensor still contains all the values of the original tensor.* So tf.reshape(a_C, shape=[m, n_H * n_W, n_C]) gives the same result as tf.reshape(a_C, shape=[m, -1, n_C]).* If you prefer to re-order the dimensions, you can use `tf.transpose(tensor, perm)`, where `perm` is a list of integers containing the original index of the dimensions. * For example, `tf.transpose(a_C, perm=[0,3,1,2])` changes the dimensions from $(m, n_H, n_W, n_C)$ to $(m, n_C, n_H, n_W)$.* There is more than one way to unroll the tensors.* Notice that it's not necessary to use tf.transpose to 'unroll' the tensors in this case but this is a useful function to practice and understand for other situations that you'll encounter. ###Code # GRADED FUNCTION: compute_content_cost def compute_content_cost(a_C, a_G): """ Computes the content cost Arguments: a_C -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image C a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image G Returns: J_content -- scalar that you compute using equation 1 above. """ ### START CODE HERE ### # Retrieve dimensions from a_G (≈1 line) m, n_H, n_W, n_C = a_G.get_shape().as_list() # Reshape a_C and a_G (≈2 lines) a_C_unrolled = tf.reshape(a_C, shape=[m, -1, n_C]) a_G_unrolled = tf.reshape(a_G, shape=[m, -1, n_C]) # compute the cost with tensorflow (≈1 line) J_content = 1 / (4 * n_H * n_W * n_C) * tf.reduce_sum(tf.square(tf.subtract(a_C_unrolled, a_G_unrolled))) ### END CODE HERE ### return J_content tf.reset_default_graph() with tf.Session() as test: tf.set_random_seed(1) a_C = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) J_content = compute_content_cost(a_C, a_G) print("J_content = " + str(J_content.eval())) ###Output J_content = 6.7655926 ###Markdown **Expected Output**: **J_content** 6.76559 What you should remember- The content cost takes a hidden layer activation of the neural network, and measures how different $a^{(C)}$ and $a^{(G)}$ are. - When we minimize the content cost later, this will help make sure $G$ has similar content as $C$. 3.2 - Computing the style costFor our running example, we will use the following style image: ###Code style_image = imageio.imread("images/monet_800600.jpg") imshow(style_image); ###Output _____no_output_____ ###Markdown This was painted in the style of *[impressionism](https://en.wikipedia.org/wiki/Impressionism)*.Lets see how you can now define a "style" cost function $J_{style}(S,G)$. 3.2.1 - Style matrix Gram matrix* The style matrix is also called a "Gram matrix." * In linear algebra, the Gram matrix G of a set of vectors $(v_{1},\dots ,v_{n})$ is the matrix of dot products, whose entries are ${\displaystyle G_{ij} = v_{i}^T v_{j} = np.dot(v_{i}, v_{j}) }$. * In other words, $G_{ij}$ compares how similar $v_i$ is to $v_j$: If they are highly similar, you would expect them to have a large dot product, and thus for $G_{ij}$ to be large. Two meanings of the variable $G$* Note that there is an unfortunate collision in the variable names used here. We are following common terminology used in the literature. * $G$ is used to denote the Style matrix (or Gram matrix) * $G$ also denotes the generated image. * For this assignment, we will use $G_{gram}$ to refer to the Gram matrix, and $G$ to denote the generated image. Compute $G_{gram}$In Neural Style Transfer (NST), you can compute the Style matrix by multiplying the "unrolled" filter matrix with its transpose:$$\mathbf{G}_{gram} = \mathbf{A}_{unrolled} \mathbf{A}_{unrolled}^T$$ $G_{(gram)i,j}$: correlationThe result is a matrix of dimension $(n_C,n_C)$ where $n_C$ is the number of filters (channels). The value $G_{(gram)i,j}$ measures how similar the activations of filter $i$ are to the activations of filter $j$. $G_{(gram),i,i}$: prevalence of patterns or textures* The diagonal elements $G_{(gram)ii}$ measure how "active" a filter $i$ is. * For example, suppose filter $i$ is detecting vertical textures in the image. Then $G_{(gram)ii}$ measures how common vertical textures are in the image as a whole.* If $G_{(gram)ii}$ is large, this means that the image has a lot of vertical texture. By capturing the prevalence of different types of features ($G_{(gram)ii}$), as well as how much different features occur together ($G_{(gram)ij}$), the Style matrix $G_{gram}$ measures the style of an image. **Exercise**:* Using TensorFlow, implement a function that computes the Gram matrix of a matrix A. * The formula is: The gram matrix of A is $G_A = AA^T$. * You may use these functions: [matmul](https://www.tensorflow.org/api_docs/python/tf/matmul) and [transpose](https://www.tensorflow.org/api_docs/python/tf/transpose). ###Code # GRADED FUNCTION: gram_matrix def gram_matrix(A): """ Argument: A -- matrix of shape (n_C, n_H*n_W) Returns: GA -- Gram matrix of A, of shape (n_C, n_C) """ ### START CODE HERE ### (≈1 line) GA = tf.matmul(A, A, transpose_b=True) ### END CODE HERE ### return GA tf.reset_default_graph() with tf.Session() as test: tf.set_random_seed(1) A = tf.random_normal([3, 2*1], mean=1, stddev=4) GA = gram_matrix(A) print("GA = \n" + str(GA.eval())) ###Output GA = [[ 6.422305 -4.429122 -2.096682] [-4.429122 19.465837 19.563871] [-2.096682 19.563871 20.686462]] ###Markdown **Expected Output**: **GA** [[ 6.42230511 -4.42912197 -2.09668207] [ -4.42912197 19.46583748 19.56387138] [ -2.09668207 19.56387138 20.6864624 ]] 3.2.2 - Style cost Your goal will be to minimize the distance between the Gram matrix of the "style" image S and the gram matrix of the "generated" image G. * For now, we are using only a single hidden layer $a^{[l]}$. * The corresponding style cost for this layer is defined as: $$J_{style}^{[l]}(S,G) = \frac{1}{4 \times {n_C}^2 \times (n_H \times n_W)^2} \sum _{i=1}^{n_C}\sum_{j=1}^{n_C}(G^{(S)}_{(gram)i,j} - G^{(G)}_{(gram)i,j})^2\tag{2} $$* $G_{gram}^{(S)}$ Gram matrix of the "style" image.* $G_{gram}^{(G)}$ Gram matrix of the "generated" image.* Remember, this cost is computed using the hidden layer activations for a particular hidden layer in the network $a^{[l]}$ **Exercise**: Compute the style cost for a single layer. **Instructions**: The 3 steps to implement this function are:1. Retrieve dimensions from the hidden layer activations a_G: - To retrieve dimensions from a tensor X, use: `X.get_shape().as_list()`2. Unroll the hidden layer activations a_S and a_G into 2D matrices, as explained in the picture above (see the images in the sections "computing the content cost" and "style matrix"). - You may use [tf.transpose](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/transpose) and [tf.reshape](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/reshape).3. Compute the Style matrix of the images S and G. (Use the function you had previously written.) 4. Compute the Style cost: - You may find [tf.reduce_sum](https://www.tensorflow.org/api_docs/python/tf/reduce_sum), [tf.square](https://www.tensorflow.org/api_docs/python/tf/square) and [tf.subtract](https://www.tensorflow.org/api_docs/python/tf/subtract) useful. Additional Hints* Since the activation dimensions are $(m, n_H, n_W, n_C)$ whereas the desired unrolled matrix shape is $(n_C, n_H*n_W)$, the order of the filter dimension $n_C$ is changed. So `tf.transpose` can be used to change the order of the filter dimension.* for the product $\mathbf{G}_{gram} = \mathbf{A}_{} \mathbf{A}_{}^T$, you will also need to specify the `perm` parameter for the `tf.transpose` function. ###Code # GRADED FUNCTION: compute_layer_style_cost def compute_layer_style_cost(a_S, a_G): """ Arguments: a_S -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image S a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image G Returns: J_style_layer -- tensor representing a scalar value, style cost defined above by equation (2) """ ### START CODE HERE ### # Retrieve dimensions from a_G (≈1 line) m, n_H, n_W, n_C = a_G.get_shape().as_list() # Reshape the images to have them of shape (n_C, n_H*n_W) (≈2 lines) a_S = tf.transpose(tf.reshape(a_S, shape=[-1, n_C])) a_G = tf.transpose(tf.reshape(a_G, shape=[-1, n_C])) # Computing gram_matrices for both images S and G (≈2 lines) GS = gram_matrix(a_S) GG = gram_matrix(a_G) # Computing the loss (≈1 line) J_style_layer = 1 / (4 * np.square(n_C) * np.square(n_H * n_W)) * tf.reduce_sum(tf.square(tf.subtract(GS, GG))) ### END CODE HERE ### return J_style_layer tf.reset_default_graph() with tf.Session() as test: tf.set_random_seed(1) a_S = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) J_style_layer = compute_layer_style_cost(a_S, a_G) print("J_style_layer = " + str(J_style_layer.eval())) ###Output J_style_layer = 9.190278 ###Markdown **Expected Output**: **J_style_layer** 9.19028 3.2.3 Style Weights* So far you have captured the style from only one layer. * We'll get better results if we "merge" style costs from several different layers. * Each layer will be given weights ($\lambda^{[l]}$) that reflect how much each layer will contribute to the style.* After completing this exercise, feel free to come back and experiment with different weights to see how it changes the generated image $G$.* By default, we'll give each layer equal weight, and the weights add up to 1. ($\sum_{l}^L\lambda^{[l]} = 1$) ###Code STYLE_LAYERS = [ ('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)] ###Output _____no_output_____ ###Markdown You can combine the style costs for different layers as follows:$$J_{style}(S,G) = \sum_{l} \lambda^{[l]} J^{[l]}_{style}(S,G)$$where the values for $\lambda^{[l]}$ are given in `STYLE_LAYERS`. Exercise: compute style cost* We've implemented a compute_style_cost(...) function. * It calls your `compute_layer_style_cost(...)` several times, and weights their results using the values in `STYLE_LAYERS`. * Please read over it to make sure you understand what it's doing. Description of `compute_style_cost`For each layer:* Select the activation (the output tensor) of the current layer.* Get the style of the style image "S" from the current layer.* Get the style of the generated image "G" from the current layer.* Compute the "style cost" for the current layer* Add the weighted style cost to the overall style cost (J_style)Once you're done with the loop: * Return the overall style cost. ###Code def compute_style_cost(model, STYLE_LAYERS): """ Computes the overall style cost from several chosen layers Arguments: model -- our tensorflow model STYLE_LAYERS -- A python list containing: - the names of the layers we would like to extract style from - a coefficient for each of them Returns: J_style -- tensor representing a scalar value, style cost defined above by equation (2) """ # initialize the overall style cost J_style = 0 for layer_name, coeff in STYLE_LAYERS: # Select the output tensor of the currently selected layer out = model[layer_name] # Set a_S to be the hidden layer activation from the layer we have selected, by running the session on out a_S = sess.run(out) # Set a_G to be the hidden layer activation from same layer. Here, a_G references model[layer_name] # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that # when we run the session, this will be the activations drawn from the appropriate layer, with G as input. a_G = out # Compute style_cost for the current layer J_style_layer = compute_layer_style_cost(a_S, a_G) # Add coeff * J_style_layer of this layer to overall style cost J_style += coeff * J_style_layer return J_style ###Output _____no_output_____ ###Markdown **Note**: In the inner-loop of the for-loop above, `a_G` is a tensor and hasn't been evaluated yet. It will be evaluated and updated at each iteration when we run the TensorFlow graph in model_nn() below.<!-- How do you choose the coefficients for each layer? The deeper layers capture higher-level concepts, and the features in the deeper layers are less localized in the image relative to each other. So if you want the generated image to softly follow the style image, try choosing larger weights for deeper layers and smaller weights for the first layers. In contrast, if you want the generated image to strongly follow the style image, try choosing smaller weights for deeper layers and larger weights for the first layers!--> What you should remember- The style of an image can be represented using the Gram matrix of a hidden layer's activations. - We get even better results by combining this representation from multiple different layers. - This is in contrast to the content representation, where usually using just a single hidden layer is sufficient.- Minimizing the style cost will cause the image $G$ to follow the style of the image $S$. 3.3 - Defining the total cost to optimize Finally, let's create a cost function that minimizes both the style and the content cost. The formula is: $$J(G) = \alpha J_{content}(C,G) + \beta J_{style}(S,G)$$**Exercise**: Implement the total cost function which includes both the content cost and the style cost. ###Code # GRADED FUNCTION: total_cost def total_cost(J_content, J_style, alpha = 10, beta = 40): """ Computes the total cost function Arguments: J_content -- content cost coded above J_style -- style cost coded above alpha -- hyperparameter weighting the importance of the content cost beta -- hyperparameter weighting the importance of the style cost Returns: J -- total cost as defined by the formula above. """ ### START CODE HERE ### (≈1 line) J = alpha * J_content + beta * J_style ### END CODE HERE ### return J tf.reset_default_graph() with tf.Session() as test: np.random.seed(3) J_content = np.random.randn() J_style = np.random.randn() J = total_cost(J_content, J_style) print("J = " + str(J)) ###Output J = 35.34667875478276 ###Markdown **Expected Output**: **J** 35.34667875478276 What you should remember- The total cost is a linear combination of the content cost $J_{content}(C,G)$ and the style cost $J_{style}(S,G)$.- $\alpha$ and $\beta$ are hyperparameters that control the relative weighting between content and style. 4 - Solving the optimization problem Finally, let's put everything together to implement Neural Style Transfer!Here's what the program will have to do:1. Create an Interactive Session2. Load the content image 3. Load the style image4. Randomly initialize the image to be generated 5. Load the VGG19 model7. Build the TensorFlow graph: - Run the content image through the VGG19 model and compute the content cost - Run the style image through the VGG19 model and compute the style cost - Compute the total cost - Define the optimizer and the learning rate8. Initialize the TensorFlow graph and run it for a large number of iterations, updating the generated image at every step.Lets go through the individual steps in detail. Interactive SessionsYou've previously implemented the overall cost $J(G)$. We'll now set up TensorFlow to optimize this with respect to $G$. * To do so, your program has to reset the graph and use an "[Interactive Session](https://www.tensorflow.org/api_docs/python/tf/InteractiveSession)". * Unlike a regular session, the "Interactive Session" installs itself as the default session to build a graph. * This allows you to run variables without constantly needing to refer to the session object (calling "sess.run()"), which simplifies the code. Start the interactive session. ###Code # Reset the graph tf.reset_default_graph() # Start interactive session sess = tf.InteractiveSession() ###Output _____no_output_____ ###Markdown Content imageLet's load, reshape, and normalize our "content" image (the Louvre museum picture): ###Code content_image = imageio.imread("images/louvre_small.jpg") content_image = reshape_and_normalize_image(content_image) ###Output _____no_output_____ ###Markdown Style imageLet's load, reshape and normalize our "style" image (Claude Monet's painting): ###Code style_image = imageio.imread("images/monet.jpg") style_image = reshape_and_normalize_image(style_image) ###Output _____no_output_____ ###Markdown Generated image correlated with content imageNow, we initialize the "generated" image as a noisy image created from the content_image.* The generated image is slightly correlated with the content image.* By initializing the pixels of the generated image to be mostly noise but slightly correlated with the content image, this will help the content of the "generated" image more rapidly match the content of the "content" image. * Feel free to look in `nst_utils.py` to see the details of `generate_noise_image(...)`; to do so, click "File-->Open..." at the upper-left corner of this Jupyter notebook. ###Code generated_image = generate_noise_image(content_image) imshow(generated_image[0]); ###Output Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). ###Markdown Load pre-trained VGG19 modelNext, as explained in part (2), let's load the VGG19 model. ###Code model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat") ###Output _____no_output_____ ###Markdown Content CostTo get the program to compute the content cost, we will now assign `a_C` and `a_G` to be the appropriate hidden layer activations. We will use layer `conv4_2` to compute the content cost. The code below does the following:1. Assign the content image to be the input to the VGG model.2. Set a_C to be the tensor giving the hidden layer activation for layer "conv4_2".3. Set a_G to be the tensor giving the hidden layer activation for the same layer. 4. Compute the content cost using a_C and a_G.**Note**: At this point, a_G is a tensor and hasn't been evaluated. It will be evaluated and updated at each iteration when we run the Tensorflow graph in model_nn() below. ###Code # Assign the content image to be the input of the VGG model. sess.run(model['input'].assign(content_image)) # Select the output tensor of layer conv4_2 out = model['conv4_2'] # Set a_C to be the hidden layer activation from the layer we have selected a_C = sess.run(out) # Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2'] # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that # when we run the session, this will be the activations drawn from the appropriate layer, with G as input. a_G = out # Compute the content cost J_content = compute_content_cost(a_C, a_G) ###Output _____no_output_____ ###Markdown Style cost ###Code # Assign the input of the model to be the "style" image sess.run(model['input'].assign(style_image)) # Compute the style cost J_style = compute_style_cost(model, STYLE_LAYERS) ###Output _____no_output_____ ###Markdown Exercise: total cost* Now that you have J_content and J_style, compute the total cost J by calling `total_cost()`. * Use `alpha = 10` and `beta = 40`. ###Code ### START CODE HERE ### (1 line) J = total_cost(J_content, J_style, alpha = 10, beta = 40) ### END CODE HERE ### ###Output _____no_output_____ ###Markdown Optimizer* Use the Adam optimizer to minimize the total cost `J`.* Use a learning rate of 2.0. * [Adam Optimizer documentation](https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer) ###Code # define optimizer (1 line) optimizer = tf.train.AdamOptimizer(2.0) # define train_step (1 line) train_step = optimizer.minimize(J) ###Output _____no_output_____ ###Markdown Exercise: implement the model* Implement the model_nn() function. * The function **initializes** the variables of the tensorflow graph, * **assigns** the input image (initial generated image) as the input of the VGG19 model * and **runs** the `train_step` tensor (it was created in the code above this function) for a large number of steps. Hints* To initialize global variables, use this: ```Pythonsess.run(tf.global_variables_initializer())```* Run `sess.run()` to evaluate a variable.* [assign](https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/assign) can be used like this:```pythonmodel["input"].assign(image)``` ###Code def model_nn(sess, input_image, num_iterations = 200): # Initialize global variables (you need to run the session on the initializer) ### START CODE HERE ### (1 line) sess.run(tf.global_variables_initializer()) ### END CODE HERE ### # Run the noisy input image (initial generated image) through the model. Use assign(). ### START CODE HERE ### (1 line) sess.run(model["input"].assign(input_image)) ### END CODE HERE ### for i in range(num_iterations): # Run the session on the train_step to minimize the total cost ### START CODE HERE ### (1 line) sess.run(train_step) ### END CODE HERE ### # Compute the generated image by running the session on the current model['input'] ### START CODE HERE ### (1 line) generated_image = sess.run(model["input"]) ### END CODE HERE ### # Print every 20 iteration. if i%20 == 0: Jt, Jc, Js = sess.run([J, J_content, J_style]) print("Iteration " + str(i) + " :") print("total cost = " + str(Jt)) print("content cost = " + str(Jc)) print("style cost = " + str(Js)) # save current generated image in the "/output" directory save_image("output/" + str(i) + ".png", generated_image) # save last generated image save_image('output/generated_image.jpg', generated_image) return generated_image ###Output _____no_output_____ ###Markdown Run the following cell to generate an artistic image. It should take about 3min on CPU for every 20 iterations but you start observing attractive results after ≈140 iterations. Neural Style Transfer is generally trained using GPUs. ###Code model_nn(sess, generated_image) ###Output Iteration 0 : total cost = 5050359300.0 content cost = 7877.628 style cost = 126257010.0 Iteration 20 : total cost = 943289200.0 content cost = 15187.985 style cost = 23578434.0 Iteration 40 : total cost = 484994880.0 content cost = 16783.08 style cost = 12120676.0 Iteration 60 : total cost = 312619300.0 content cost = 17464.705 style cost = 7811116.0 Iteration 80 : total cost = 228180690.0 content cost = 17715.86 style cost = 5700088.5 Iteration 100 : total cost = 180770450.0 content cost = 17898.697 style cost = 4514786.5 Iteration 120 : total cost = 150001810.0 content cost = 18034.877 style cost = 3745536.2 Iteration 140 : total cost = 127735680.0 content cost = 18191.066 style cost = 3188844.2 Iteration 160 : total cost = 110733200.0 content cost = 18345.844 style cost = 2763743.5 Iteration 180 : total cost = 97375270.0 content cost = 18495.053 style cost = 2429758.0
examples/How-To.ipynb
###Markdown df-and-order how-to! What is df-and-order anyway? Using `df-and-order` your interactions with dataframes become very clean and predictable.Say you've been working on some project for one month already and you had a bunch of experiments. Your working directory ended up like this: data/ ├── raw_df_proj1.csv ├── raw_df_new_prj1.csv ├── cleaned_df_v1.csv ├── cleaned_df_the_best.csv ├── cleaned_df.csv └── cleaned_df_improved.csvLooks familiar? :) Except the namings it would be challenging to find how exactly those files were generated. How to reproduce the result? It'd be feasible to find the roots ( at least if you use some VCS ) yet very time-consuming.`df-and-order` was made to tackle these problems. In every task it always starts with some intial, commonly raw dataframe. It could be some logs, backend table etc. Then we come to play with it, transform it somehow to finally get a nice&clean dataframe. `df-and-order` assigns a config file to every raw dataframe. The config will contain all the useful metadata and more importantly: declaration of every transformation performed on the dataframe. Just by looking at the config file we would be able to say how some transformation was done. `df-and-order` assumes that you already have a dataframe to work with. ( unfortunately it can't provide it for you... )The only thing the lib wants you to do is to organize your dataframes in separate folders. The lib is config-based so it's nice to have a folder that contains all at once:- the initial dataframe - a config for it - all transformed variations of the initial dataframe.You should pick a unique identifier for each dataframe, it will serve as the folder name and the filename for the initial dataframe.Example of such structure: data/ ├── unique_df_id_1/ - folder with all artifacts for a df with id unique_df_id_1 │ ├── unique_df_id_1.csv - initial dataframe │ ├── df_config.yaml - contains metadata and declared transformations │ ├── transform_1_unique_df_id_1.csv - first transformed df │ └── transform_2_unique_df_id_1.csv - second transformed df ├── unique_df_id_2/ - same goes with other dataframes │ ├── ... │ └── ... └── unique_df_id_3/ ├── ... ├── ... ├── ... └── ... --- 0. We need a dataframe! We are going to create it by hand! ###Code import pandas as pd example_df = pd.DataFrame({ 'num_col': [1,2,3,4,5], 'str_col': ['one', 'two', 'three', 'four', 'five'], 'date_col': ['2020-05-17', '2020-05-18', '2020-05-19', '2020-05-20', '2020-05-21'], 'redundant_col': [0, 0, 0, 0, 0] }) example_df ###Output _____no_output_____ ###Markdown What an amazing dataframe we have! Let's choose an id for our dataframe. It can be anything, but unique in your data folder. ###Code example_df_id = 'super_demo_df_2020' ###Output _____no_output_____ ###Markdown Now let's create a folder for it. ###Code import os df_folder_path = os.path.join('data', example_df_id) if not os.path.exists(df_folder_path): os.makedirs(df_folder_path) ###Output _____no_output_____ ###Markdown The only thing left is to save our dataframe there. ###Code filename = example_df_id + '.csv' example_df.to_csv(os.path.join(df_folder_path, filename), index=False) !ls -l data/$example_df_id ###Output total 8 -rw-r--r-- 1 ilya.tyutin staff 138 Jul 9 20:40 super_demo_df_2020.csv ###Markdown Hooray! Next step is to create a config file. 1. Config file Config file contains all metadata we find useful and all transformations needed as well.`DfReader` operates in your data folder and knows where to locate all dataframes and configs for them. We will create new config using `DfReader` instance. ###Code import pandas as pd # in case you've cloned the repo without installing the lib via pip import sys sys.path.append('../') from df_and_order.df_reader import DfReader from df_and_order.df_cache import DfCache ###Output _____no_output_____ ###Markdown DfReader is able to work with any format you want by using `DfCache` subclasses. Each subclass provides logic how to save/load a dataframe. See the example below, where we create simple pandas wrapper for saving/loading csv files: ###Code class CsvDfCache(DfCache): # just a basic wrapper around pandas csv built-in methods. def _save(self, df: pd.DataFrame, path: str, *args, **kwargs): df.to_csv(path, index=False, *args, **kwargs) def _load(self, path: str, *args, **kwargs) -> pd.DataFrame: return pd.read_csv(path, *args, **kwargs) ###Output _____no_output_____ ###Markdown Just as I mentioned earlier, we first need an instance of `DfReader`. ###Code # we must declare which format our dataframes saved in df_format = 'csv' # can be any path you want, in our case it's 'data' folder dir_path = 'data/' reader = DfReader(dir_path=dir_path, format_to_cache_map={ # DfReader now knows how to work with csv files. df_format: CsvDfCache() }) ###Output _____no_output_____ ###Markdown We are all set for now and ready to create a config! ###Code # you may want to provide any additional information for describing a dataset # here, as an example, we save the info about the dataset's author metadata = {'author': 'Data Man'} # the unique id we came up with above. df_id = example_df_id # other information is already available for us reader.create_df_config(df_id=df_id, # config will store dataframe id as well initial_df_format=df_format, # in which format initial dataframe is saved metadata=metadata) ###Output _____no_output_____ ###Markdown Done! let's take a look at the config file. ###Code !cat data/$example_df_id/df_config.yaml ###Output df_id: super_demo_df_2020 initial_df_format: csv metadata: author: Data Man ###Markdown Simple as that. 2. Reading a dataframe ###Code reader.read(df_id=df_id) ###Output _____no_output_____ ###Markdown I started the section with the code right away because it's so simple and intuitive, no need for comments! :)You just tell `DfReader` a dataframe id and you get the dataframe right back. No more hardcoded paths and mixed up formats. Once you set up `DfReader` - everything just works. Close your eyes and imagine how beneficial it is when working in the same repository with many fellow colleagues. No more shared notebooks with hardcoded paths leading to who-knows-how generated dataframes. Still not convinced df-and-order is useful? Just watch! It's a good idea to hide all the logic behind your own subclass: ###Code class AmazingDfReader(DfReader): def __init__(self): # while working in some repo, our data is usually stored in some specific # place we can provide a path for. Ideally you should write some path generator # to be able to run the code from any place in your repository. dir_path = 'data' reader = super().__init__(dir_path=dir_path, format_to_cache_map={ # here we list all the formats we want to work with 'csv': CsvDfCache() }) ###Output _____no_output_____ ###Markdown Enjoy the next cell: ###Code amazing_reader = AmazingDfReader() amazing_reader.read(df_id=df_id) ###Output _____no_output_____ ###Markdown Now you see how cool it is? Anybody can use AmazingDfReader across the codebase in a super clean way without bothering how it's configured! 3. Transforms Very often our initial dataframe is the raw one and needs to be transformed in some way. e.g. we want still need the initial dataframe since it contains some important information, nonetheless we can't use it to fit our model. No doubt, it requires some changes.`df-and-order` supports `in-memory` transformations as well as `permanent` ones. The only difference is that in the permanent case we store the resulting dataframe on disk next to the initial df. You can see a transformation as a combination of one or many steps.e.g. we may want to: - first drop column 'redundant_col' - then convert column 'date_col' from str to date Do it all in memory onlyBehind the scenes each step represents a class with the only one method called `transform`. It takes a df and returns a df. Here's the intuitive example: class DropColsTransformStep(DfTransformStep): """ Simply drops some undesired columns from a dataframe. """ def __init__(self, cols: List[str]): self._cols_to_drop = cols def transform(self, df: pd.DataFrame) -> pd.DataFrame: return df.drop(self._cols_to_drop, axis=1)Then we wrap it in the `DfTransformStepConfig` class that doesn't perform the transformation but rather just describes the step:The easiest way to initialize `DfTransformStepConfig` is by passing `DfTransformStep` subclass type along with the init parameters: DfTransformStepConfig.from_step_type(step_type=DropColsTransformStep, params={'cols': ['redundant_col']}), Important note here:`DfTransformStep` suclass should be stored in the separate python file, not in some notebook etc. Otherwise, `df-and-order` will not be able to locate it. Another way is to provide the full module path for your `DfTransformStep` suclass, including the class name. Choose whatever suits you. DfTransformStepConfig(module_path='df_and_order.steps.DropColsTransformStep', params={'cols': ['redundant_col']}),In both cases `params` will be passed to init method of the specified `DfTransformStep` suclass.All the transforms declarations will be translated to the config file. If it feels overwhelming, just follow the following example and everything will become clear: We want to remove `redundant_col` since it doesn't provide any useful information and we also need to convert `date_col` to datetime. Since our dataframe is quite small, we will do all the transformations in memory, without any intermediates. ###Code from df_and_order.df_transform import DfTransformConfig from df_and_order.df_transform_step import DfTransformStepConfig from df_and_order.steps.pd import DropColsTransformStep, DatesTransformStep # we describe all the steps required in_memory_steps = [ DfTransformStepConfig.from_step_type(step_type=DropColsTransformStep, params={'cols': ['redundant_col']}), DfTransformStepConfig.from_step_type(step_type=DatesTransformStep, params={'cols': ['date_col']}) ] # arbitrary unique id for our transformation example_transform_id = 'model_input' # here's the instance of our entire transform example_transform = DfTransformConfig(transform_id=example_transform_id, df_format=df_format, in_memory_steps=in_memory_steps) transformed_df = amazing_reader.read(df_id=df_id, transform=example_transform) transformed_df transformed_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 num_col 5 non-null int64 1 str_col 5 non-null object 2 date_col 5 non-null datetime64[ns] dtypes: datetime64[ns](1), int64(1), object(1) memory usage: 248.0+ bytes ###Markdown **Pretty rad, isn't it?** Our transform is now visible in the config: ###Code !cat data/$example_df_id/df_config.yaml ###Output df_id: super_demo_df_2020 initial_df_format: csv metadata: author: Data Man transforms: model_input: df_format: csv in_memory: - module_path: df_and_order.steps.pd.DropColsTransformStep params: cols: - redundant_col - module_path: df_and_order.steps.pd.DatesTransformStep params: cols: - date_col ###Markdown Note: you are free to edit the config file manually as well! Once a transform is declared in the config file you can just pass `transform_id` to the `DfReader.read` method. See: ###Code amazing_reader.read(df_id=df_id, transform_id=example_transform_id) ###Output _____no_output_____ ###Markdown Maybe you want to switch to your initial dataframe? No problem! Just don't pass `transform_id`. ###Code initial_df = amazing_reader.read(df_id=df_id) initial_df initial_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 num_col 5 non-null int64 1 str_col 5 non-null object 2 date_col 5 non-null object 3 redundant_col 5 non-null int64 dtypes: int64(2), object(2) memory usage: 288.0+ bytes ###Markdown Finally, let's cover the case when we want to persist a transform's result. It's a good idea to remove `redundant_col` once and for all. ###Code # we describe all the steps required in_memory_steps = [ DfTransformStepConfig.from_step_type(step_type=DatesTransformStep, params={'cols': ['date_col']}) ] # let's just move DropColsTransformStep from in_memory to permanent steps permanent_steps = [ DfTransformStepConfig.from_step_type(step_type=DropColsTransformStep, params={'cols': ['redundant_col']}), ] # arbitrary unique id for our transformation permanent_transform_id = 'model_input_permanent' # here's the instance of our entire transform permanent_transform = DfTransformConfig(transform_id=permanent_transform_id, df_format=df_format, in_memory_steps=in_memory_steps, permanent_steps=permanent_steps) final_df = amazing_reader.read(df_id=df_id, transform=permanent_transform) final_df !cat data/$example_df_id/df_config.yaml !ls -l data/$example_df_id/ ###Output total 24 -rw-r--r-- 1 ilya.tyutin staff 657 Jul 9 20:41 df_config.yaml -rw-r--r-- 1 ilya.tyutin staff 114 Jul 9 20:41 model_input_permanent_super_demo_df_2020.csv -rw-r--r-- 1 ilya.tyutin staff 138 Jul 9 20:40 super_demo_df_2020.csv ###Markdown Notice that we now have `model_input_permanent_super_demo_df_2020.csv` file stored to the disk.Every time after calling `read` with the transform_id - it recovers from the file. ###Code amazing_reader.read(df_id=df_id, transform=permanent_transform) ###Output _____no_output_____ ###Markdown Important note: `in-memory` transforms run everytime when your read a dataframe, no matter it was stored on the disk or not. That's it, now you are ready to try df-and-order power in your own projects. Some advanced stuff Reacting to changes in transformations codebase Obviously, even after having all the transformation steps declared in the config file, it doesn't prevent us from code changes in those steps subclasses. Once a step is changed, we have an outdated transformed dataframe on the disk. `df-and-order` has a built-in safety mechanism for avoiding such cases.It compares the creation date of the persisted dataframe with the last modification date of any of the permanent steps. Meaning if a permanent step we used to transform the dataframe was changed afterwards - we can no longer use it. It's crucial while working in the same repo with others. All your team members must read the same dataframe using the same config. Example: ###Code from example_steps.steps import DummyTransformStep !cat example_steps/steps.py ###Output from df_and_order.df_transform_step import DfTransformStep class DummyTransformStep(DfTransformStep): def transform(self, df): return df ###Markdown The transform above does literally nothing, but bear with me. ###Code permanent_steps = [ DfTransformStepConfig.from_step_type(step_type=DummyTransformStep, params={}) ] dummy_transform_id = 'dummy' dummy_transform = DfTransformConfig(transform_id=dummy_transform_id, df_format=df_format, permanent_steps=permanent_steps) amazing_reader.read(df_id=df_id, transform=dummy_transform) !cat data/super_demo_df_2020/df_config.yaml !ls -l data/super_demo_df_2020/ ###Output total 32 -rw-r--r-- 1 ilya.tyutin staff 758 Jul 9 20:41 df_config.yaml -rw-r--r-- 1 ilya.tyutin staff 138 Jul 9 20:41 dummy_super_demo_df_2020.csv -rw-r--r-- 1 ilya.tyutin staff 114 Jul 9 20:41 model_input_permanent_super_demo_df_2020.csv -rw-r--r-- 1 ilya.tyutin staff 138 Jul 9 20:40 super_demo_df_2020.csv ###Markdown Nothing new so far. But now let's change the transform step file. ###Code with open('example_steps/steps.py', "a") as file: file.write('\n') ###Output _____no_output_____ ###Markdown If we then try to read the transformed dataframe - it crashes since the code of our dummy step was modified after the dataframe was persisted. ###Code amazing_reader.read(df_id=df_id, transform_id=dummy_transform_id) ###Output _____no_output_____ ###Markdown There are two ways to deal with it. First one is to force the read operation by passing `forced=True`: ###Code amazing_reader.read(df_id=df_id, transform_id=dummy_transform_id, forced=True) ###Output Warning: ['example_steps.steps.DummyTransformStep'] steps of dummy transform were changed since the df was generated, reading it anyway because the operation was forced Warning: ['example_steps.steps.DummyTransformStep'] steps of dummy transform were changed since the df was generated, reading it anyway because the operation was forced ###Markdown It can save you time when you are sure that your data will be consistent with your expectations yet this way is certainly not recommended.Yeah, it can be annoying to get such an error after some minor changes, e.g. something was renamed or blank lines were removed.But it's better to get an error rather than outdated wrong dataframe.If we remove the file and try again - everything works just fine. ###Code !rm data/$example_df_id/dummy_super_demo_df_2020.csv amazing_reader.read(df_id=df_id, transform_id=dummy_transform_id) ###Output _____no_output_____ ###Markdown Note on in-memory transforms If your transform consists of both in-memory and permanent steps, your in-memory steps are not allowed to change the shape of df. Remember, in-memory steps are applied every time your read a dataframe. ###Code # made up example when we remove some cols in memory and then perform # some permanent transform step that will cause our dataframe to be persisted in_memory_steps = [ DfTransformStepConfig.from_step_type(step_type=DropColsTransformStep, params={'cols': ['redundant_col']}), ] permanent_steps = [ DfTransformStepConfig.from_step_type(step_type=DatesTransformStep, params={'cols': ['date_col']}) ] # arbitrary unique id for our transformation bad_in_memory_transform_id = 'bad_in_memory' # here's the instance of our entire transform bad_in_memory_transform = DfTransformConfig(transform_id=bad_in_memory_transform_id, df_format='csv', in_memory_steps=in_memory_steps, permanent_steps=permanent_steps) amazing_reader.read(df_id=df_id, transform=bad_in_memory_transform) ###Output _____no_output_____
Hive/12-1 Helpdesk - Easy.ipynb
###Markdown Help Desk - Easy ScenarioA software company has been successful in selling its products to a number of customer organisations, and there is now a high demand for technical support. There is already a system in place for logging support calls taken over the telephone and assigning them to engineers, but it is based on a series of spreadsheets. With the growing volume of data, using the spreadsheet system is becoming slow, and there is a significant risk that errors will be made.![rel](https://sqlzoo.net/w/images/3/38/Helpdesk.png) ###Code # Prerequesites from pyhive import hive %load_ext sql %sql hive://[email protected]:10000/sqlzoo %config SqlMagic.displaylimit = 20 ###Output _____no_output_____ ###Markdown 1.There are three issues that include the words "index" and "Oracle". Find the call_date for each of them```+---------------------+----------+| call_date | call_ref |+---------------------+----------+| 2017-08-12 16:00:00 | 1308 || 2017-08-16 14:54:00 | 1697 || 2017-08-16 19:12:00 | 1731 |+---------------------+----------+``` ###Code %%sql SELECT Call_date, Call_ref FROM Issue WHERE Detail LIKE '%index%' AND Detail LIKE '%Oracle%' ###Output * hive://[email protected]:10000/sqlzoo Done. ###Markdown 2.Samantha Hall made three calls on 2017-08-14. Show the date and time for each```+---------------------+------------+-----------+| call_date | first_name | last_name |+---------------------+------------+-----------+| 2017-08-14 10:10:00 | Samantha | Hall || 2017-08-14 10:49:00 | Samantha | Hall || 2017-08-14 18:18:00 | Samantha | Hall |+---------------------+------------+-----------+``` ###Code %%sql SELECT Call_date, First_name, Last_name FROM Issue JOIN Caller ON (Issue.Caller_id=Caller.Caller_id) WHERE First_name='Samantha' AND Last_name='Hall' AND DATE_FORMAT(Call_date, 'yyyy-MM-dd')='2017-08-14' ###Output * hive://[email protected]:10000/sqlzoo Done. ###Markdown 3.There are 500 calls in the system (roughly). Write a query that shows the number that have each status.```+--------+--------+| status | Volume |+--------+--------+| Closed | 486 || Open | 10 |+--------+--------+``` ###Code %%sql SELECT Status, COUNT(1) Volume FROM Issue GROUP BY Status ###Output * hive://[email protected]:10000/sqlzoo Done. ###Markdown 4.Calls are not normally assigned to a manager but it does happen. How many calls have been assigned to staff who are at Manager Level?```+------+| mlcc |+------+| 51 |+------+``` ###Code %%sql SELECT COUNT(1) mlcc FROM Issue JOIN Staff ON (Issue.Assigned_to=Staff.Staff_code) JOIN Level ON (Staff.Level_code=Level.Level_code) WHERE Manager='Y' ###Output * hive://[email protected]:10000/sqlzoo Done. ###Markdown 5.Show the manager for each shift. Your output should include the shift date and type; also the first and last name of the manager.```+------------+------------+------------+-----------+| Shift_date | Shift_type | first_name | last_name |+------------+------------+------------+-----------+| 2017-08-12 | Early | Logan | Butler || 2017-08-12 | Late | Ava | Ellis || 2017-08-13 | Early | Ava | Ellis || 2017-08-13 | Late | Ava | Ellis || 2017-08-14 | Early | Logan | Butler || 2017-08-14 | Late | Logan | Butler || 2017-08-15 | Early | Logan | Butler || 2017-08-15 | Late | Logan | Butler || 2017-08-16 | Early | Logan | Butler || 2017-08-16 | Late | Logan | Butler |+------------+------------+------------+-----------+``` ###Code %%sql SELECT DISTINCT DATE_FORMAT(Shift_date, 'yyyy-MM-dd') Shift_date, Shift_type, First_name, Last_name FROM Shift JOIN Staff ON (Shift.Manager=Staff.Staff_code) ORDER BY Shift_date, Shift_type ###Output * hive://[email protected]:10000/sqlzoo Done.
examples/PAINS_filter-Copy1.ipynb
###Markdown PAINS pan-assay interference substancesduring actual activity screening, there are some structural patterns that hit frequently and might seem promising at the first glance. They do, however, have other issues that render them useless for pharma application. Sadly, this is ofthen found after some time & money investment. PAINS is a list of common time-waster patterns, and it is advisable to remove them from your virtual library. Better formulations at:https://www.nature.com/news/chemistry-chemical-con-artists-foil-drug-discovery-1.15991![](img/pains.jpg)![](img/pains2.jpg)Let's see how many drugbank compounds would have gone down the drain if the PAINS filters were applied: ###Code from rdkit import Chem from rdkit.Chem import Draw drugbank_input = Chem.SDMolSupplier('../data/drugbank.sdf') drugbank = [m for m in drugbank_input if m] with open('../data/PAINS/p_l15.txt') as p: pains_l15 = [(Chem.MolFromSmarts(smarts), comment.lstrip('<regId="').split('(')[0]) for smarts, comment in (line.split() for line in p)] with open('../data/PAINS/p_l150.txt') as p: pains_l150 = [(Chem.MolFromSmarts(smarts), comment.lstrip('<regId="').split('(')[0]) for smarts, comment in (line.split() for line in p)] with open('../data/PAINS/p_l150.txt') as p: pains_m150 = [(Chem.MolFromSmarts(smarts), comment.lstrip('<regId="').split('(')[0]) for smarts, comment in (line.split() for line in p)] len(pains_l15), len(pains_l150), len(pains_m150) pains_all = pains_l15 + pains_l150 + pains_m150 drugbank_pains_all = [tuple((m.HasSubstructMatch(pain) for pain, comment in pains_all)) for m in drugbank] len(drugbank_pains_l15), drugbank_pains_l15[0] drugbank_pains_l150 = [tuple((m.HasSubstructMatch(pain) for pain, comment in pains_l150)) for m in drugbank] drugbank_pains_m150 = [tuple((m.HasSubstructMatch(pain) for pain, comment in pains_m150)) for m in drugbank] ###Output _____no_output_____ ###Markdown What DrugBank entries match some PAINS? ###Code painsfails_all = [i for i, patterns in enumerate(drugbank_pains_all) if any(patterns)] len(drugbank_pains_all), len(painsfails_all) ###Output _____no_output_____ ###Markdown So, 16 compounds from DrugBank match at least one PAINS pattern from the largest l15 PAINS set. Which ones? ###Code painsfails_mols = [drugbank[i] for i in painsfails_l15] painsfails_hits = [[pains_l15[j][1] for j, match in enumerate(drugbank_pains_l15[i]) if match] for i in painsfails_l15] painsfails_hits Draw.MolsToGridImage(painsfails_mols, legends=[", ".join(fails) for fails in painsfails_hits]) ###Output _____no_output_____
Model backlog/Train/89-melanoma-5fold-EfficientNetB6 step decay basic aug.ipynb
###Markdown Dependencies ###Code #@title !pip install --quiet efficientnet # !pip install --quiet image-classifiers #@title import warnings, json, re, glob, math from scripts_step_lr_schedulers import * from melanoma_utility_scripts import * # from kaggle_datasets import KaggleDatasets from sklearn.model_selection import KFold import tensorflow.keras.layers as L import tensorflow.keras.backend as K from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler from tensorflow.keras import optimizers, layers, metrics, losses, Model import tensorflow_addons as tfa import efficientnet.tfkeras as efn # from classification_models.tfkeras import Classifiers SEED = 42 seed_everything(SEED) warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown TPU configuration ###Code #@title strategy, tpu = set_up_strategy() REPLICAS = strategy.num_replicas_in_sync print("REPLICAS: ", REPLICAS) AUTO = tf.data.experimental.AUTOTUNE ###Output _____no_output_____ ###Markdown Model parameters ###Code #@title config = { "HEIGHT": 384, "WIDTH": 384, "CHANNELS": 3, "BATCH_SIZE": 32, "EPOCHS": 12, "LEARNING_RATE": 3e-4, "ES_PATIENCE": 5, "N_FOLDS": 5, "N_USED_FOLDS": 5, "TTA_STEPS": 11, "BASE_MODEL": 'EfficientNetB6', "BASE_MODEL_WEIGHTS": 'imagenet', "DATASET_PATH": 'melanoma-384x384' } with open(MODEL_BASE_PATH + 'config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config ###Output _____no_output_____ ###Markdown Load data ###Code #@title database_base_path = COLAB_BASE_PATH + 'Data/' train = pd.read_csv(database_base_path + 'train.csv') test = pd.read_csv(database_base_path + 'test.csv') print('Train samples: %d' % len(train)) display(train.head()) print(f'Test samples: {len(test)}') display(test.head()) GCS_PATH = 'gs://kds-e73569ee9d44308363027e79908294593e80b1e12e18e57ef065397c' TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test*.tfrec') ###Output Train samples: 33126 ###Markdown Augmentations ###Code #@title def data_augment(image): p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_crop > .5: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.9), int(config['WIDTH']*.9), config['CHANNELS']]) else: image = tf.image.central_crop(image, central_fraction=.9) image = tf.image.resize(image, size=[config['HEIGHT'], config['WIDTH']]) image = transform_rotation(image, config['HEIGHT'], rotation=180.) image = transform_shift(image, config['HEIGHT'], h_shift=8., w_shift=8.) image = transform_shear(image, config['HEIGHT'], shear=2.) image = tf.image.random_flip_left_right(image) image = tf.image.random_saturation(image, 0.7, 1.3) image = tf.image.random_contrast(image, 0.8, 1.2) image = tf.image.random_brightness(image, 0.1) return image def data_augment_tta(image): p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_crop > .5: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.9), int(config['WIDTH']*.9), config['CHANNELS']]) else: image = tf.image.central_crop(image, central_fraction=.9) image = tf.image.resize(image, size=[config['HEIGHT'], config['WIDTH']]) image = tf.image.random_flip_left_right(image) image = tf.image.random_saturation(image, 0.7, 1.3) image = tf.image.random_contrast(image, 0.8, 1.2) image = tf.image.random_brightness(image, 0.1) return image def data_augment_spatial(image): p_spatial = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) if p_spatial > .75: image = tf.image.transpose(image) return image def data_augment_rotate(image): p_rotate = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_rotate > .66: image = tf.image.rot90(image, k=3) # rotate 270º elif p_rotate > .33: image = tf.image.rot90(image, k=2) # rotate 180º else: image = tf.image.rot90(image, k=1) # rotate 90º return image def data_augment_crop(image): p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_crop > .5: if p_crop > .9: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.7), int(config['WIDTH']*.7), config['CHANNELS']]) elif p_crop > .7: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.8), int(config['WIDTH']*.8), config['CHANNELS']]) else: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.9), int(config['WIDTH']*.9), config['CHANNELS']]) else: if p_crop > .4: image = tf.image.central_crop(image, central_fraction=.5) elif p_crop > .2: image = tf.image.central_crop(image, central_fraction=.7) else: image = tf.image.central_crop(image, central_fraction=.8) image = tf.image.resize(image, size=[config['HEIGHT'], config['WIDTH']]) return image def data_augment_cutout(image, min_mask_size=(int(config['HEIGHT'] * .05), int(config['HEIGHT'] * .05)), max_mask_size=(int(config['HEIGHT'] * .25), int(config['HEIGHT'] * .25))): p_cutout = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_cutout > .9: # 3 cut outs image = random_cutout(image, config['HEIGHT'], config['WIDTH'], min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=3) elif p_cutout > .75: # 2 cut outs image = random_cutout(image, config['HEIGHT'], config['WIDTH'], min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=2) else: # 1 cut out image = random_cutout(image, config['HEIGHT'], config['WIDTH'], min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=1) return image ###Output _____no_output_____ ###Markdown Auxiliary functions ###Code #@title def read_labeled_tfrecord(example): tfrec_format = { 'image' : tf.io.FixedLenFeature([], tf.string), 'image_name' : tf.io.FixedLenFeature([], tf.string), 'patient_id' : tf.io.FixedLenFeature([], tf.int64), 'sex' : tf.io.FixedLenFeature([], tf.int64), 'age_approx' : tf.io.FixedLenFeature([], tf.int64), 'anatom_site_general_challenge': tf.io.FixedLenFeature([], tf.int64), 'diagnosis' : tf.io.FixedLenFeature([], tf.int64), 'target' : tf.io.FixedLenFeature([], tf.int64) } example = tf.io.parse_single_example(example, tfrec_format) return example['image'], example['target'] def read_unlabeled_tfrecord(example, return_image_name): tfrec_format = { 'image' : tf.io.FixedLenFeature([], tf.string), 'image_name' : tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, tfrec_format) return example['image'], example['image_name'] if return_image_name else 0 def prepare_image(img, augment=None, dim=256): img = tf.image.decode_jpeg(img, channels=3) img = tf.cast(img, tf.float32) / 255.0 if augment: img = augment(img) img = tf.reshape(img, [dim,dim, 3]) return img def get_dataset(files, augment=None, shuffle=False, repeat=False, labeled=True, return_image_names=True, batch_size=16, dim=256): ds = tf.data.TFRecordDataset(files, num_parallel_reads=AUTO) ds = ds.cache() if repeat: ds = ds.repeat() if shuffle: ds = ds.shuffle(1024*8) opt = tf.data.Options() opt.experimental_deterministic = False ds = ds.with_options(opt) if labeled: ds = ds.map(read_labeled_tfrecord, num_parallel_calls=AUTO) else: ds = ds.map(lambda example: read_unlabeled_tfrecord(example, return_image_names), num_parallel_calls=AUTO) ds = ds.map(lambda img, imgname_or_label: (prepare_image(img, augment=augment, dim=dim), imgname_or_label), num_parallel_calls=AUTO) ds = ds.batch(batch_size * REPLICAS) ds = ds.prefetch(AUTO) return ds def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\.").search(filename).group(1)) for filename in filenames] return np.sum(n) ###Output _____no_output_____ ###Markdown Learning rate scheduler ###Code #@title lr_min = 1e-6 lr_start = 5e-6 lr_max = config['LEARNING_RATE'] steps_per_epoch = 24519 // config['BATCH_SIZE'] total_steps = config['EPOCHS'] * steps_per_epoch warmup_steps = steps_per_epoch * 5 hold_max_steps = 0 step_decay = .8 step_size = steps_per_epoch * 1 rng = [i for i in range(0, total_steps, config['BATCH_SIZE'])] y = [step_schedule_with_warmup(tf.cast(x, tf.float32), step_size=step_size, warmup_steps=warmup_steps, hold_max_steps=hold_max_steps, lr_start=lr_start, lr_max=lr_max, step_decay=step_decay) for x in rng] sns.set(style="whitegrid") fig, ax = plt.subplots(figsize=(20, 6)) plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1])) ###Output Learning rate schedule: 5e-06 to 0.0003 to 7.86e-05 ###Markdown Model ###Code #@title # Initial bias pos = len(train[train['target'] == 1]) neg = len(train[train['target'] == 0]) initial_bias = np.log([pos/neg]) print('Bias') print(pos) print(neg) print(initial_bias) # class weights total = len(train) weight_for_0 = (1 / neg)*(total)/2.0 weight_for_1 = (1 / pos)*(total)/2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print('Class weight') print(class_weight) def model_fn(input_shape): input_image = L.Input(shape=input_shape, name='input_image') base_model = efn.EfficientNetB6(weights=config['BASE_MODEL_WEIGHTS'], include_top=False) x = base_model(input_image) x = L.GlobalAveragePooling2D()(x) output = L.Dense(1, activation='sigmoid', name='output', bias_initializer=tf.keras.initializers.Constant(initial_bias))(x) model = Model(inputs=input_image, outputs=output) return model ###Output _____no_output_____ ###Markdown Training ###Code skf = KFold(n_splits=config['N_FOLDS'], shuffle=True, random_state=SEED) oof_pred = []; oof_tar = []; oof_val = []; oof_names = []; oof_folds = []; history_list = []; oof_pred_light = [] preds = np.zeros((count_data_items(TEST_FILENAMES), 1)) preds_light = np.zeros((count_data_items(TEST_FILENAMES), 1)) for fold,(idxT,idxV) in enumerate(skf.split(np.arange(15))): print('\nFOLD: %d' % (fold+1)) if tpu: tf.tpu.experimental.initialize_tpu_system(tpu) # CREATE TRAIN AND VALIDATION SUBSETS TRAINING_FILENAMES = tf.io.gfile.glob([GCS_PATH + '/train%.2i*.tfrec'%x for x in idxT]) np.random.shuffle(TRAINING_FILENAMES) files_valid = tf.io.gfile.glob([GCS_PATH + '/train%.2i*.tfrec'%x for x in idxV]) TEST_FILENAMES = np.sort(np.array(tf.io.gfile.glob(GCS_PATH + '/test*.tfrec'))) ct_train = count_data_items(TRAINING_FILENAMES) ct_valid = count_data_items(files_valid) ct_test = count_data_items(TEST_FILENAMES) STEPS_VALID = config['TTA_STEPS'] * ct_valid/config['BATCH_SIZE']/4/REPLICAS STEPS_TEST = config['TTA_STEPS'] * ct_test/config['BATCH_SIZE']/4/REPLICAS steps_per_epoch = ct_train // config['BATCH_SIZE'] total_steps = config['EPOCHS'] * steps_per_epoch warmup_steps = steps_per_epoch * 5 # BUILD MODEL K.clear_session() model_path = f'model_fold_{fold}.h5' with strategy.scope(): model = model_fn((config['HEIGHT'], config['WIDTH'], config['CHANNELS'])) lr = lambda: step_schedule_with_warmup(tf.cast(optimizer.iterations, tf.float32), step_size=step_size, warmup_steps=warmup_steps, hold_max_steps=hold_max_steps, lr_start=lr_start, lr_max=lr_max, step_decay=step_decay) optimizer = optimizers.Adam(learning_rate=lr) model.compile(optimizer=optimizer, metrics=['AUC'], loss=losses.BinaryCrossentropy(label_smoothing=0.05)) checkpoint = ModelCheckpoint((MODEL_BASE_PATH + model_path), monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True) # TRAIN print('Training...') history = model.fit(get_dataset(TRAINING_FILENAMES, augment=data_augment, shuffle=True, repeat=True, dim=config['HEIGHT'], batch_size=config['BATCH_SIZE']), validation_data=get_dataset(files_valid, augment=None, shuffle=False, repeat=False, dim=config['HEIGHT']), steps_per_epoch=steps_per_epoch//REPLICAS, epochs=config['EPOCHS'], callbacks=[checkpoint], verbose=2).history history_list.append(history) # save last epoch weights model.save_weights(MODEL_BASE_PATH + 'last_' + model_path) print('Loading best model...') model.load_weights(MODEL_BASE_PATH + model_path) # PREDICT OOF USING TTA print('Predicting OOF with TTA...') ds_valid = get_dataset(files_valid, labeled=False, return_image_names=False, augment=data_augment, repeat=True, shuffle=False, dim=config['HEIGHT'], batch_size=config['BATCH_SIZE']*4) pred = model.predict(ds_valid, steps=STEPS_VALID, verbose=2)[:config['TTA_STEPS']*ct_valid,] oof_pred.append(np.mean(pred.reshape((ct_valid, config['TTA_STEPS']), order='F'),axis=1) ) # PREDICT OOF USING TTA (light) print('Predicting OOF with TTA (light)...') ds_valid = get_dataset(files_valid, labeled=False, return_image_names=False, augment=data_augment_tta, repeat=True, shuffle=False, dim=config['HEIGHT'], batch_size=config['BATCH_SIZE']*4) pred = model.predict(ds_valid, steps=STEPS_VALID, verbose=2)[:config['TTA_STEPS']*ct_valid,] oof_pred_light.append(np.mean(pred.reshape((ct_valid, config['TTA_STEPS']), order='F'),axis=1) ) # GET OOF TARGETS AND NAMES ds_valid = get_dataset(files_valid, augment=None, repeat=False, dim=config['HEIGHT'], labeled=True, return_image_names=True) oof_tar.append(np.array([target.numpy() for img, target in iter(ds_valid.unbatch())]) ) oof_folds.append( np.ones_like(oof_tar[-1],dtype='int8')*fold ) ds = get_dataset(files_valid, augment=None, repeat=False, dim=config['HEIGHT'], labeled=False, return_image_names=True) oof_names.append(np.array([img_name.numpy().decode("utf-8") for img, img_name in iter(ds.unbatch())])) # PREDICT TEST USING TTA print('Predicting Test with TTA...') ds_test = get_dataset(TEST_FILENAMES,labeled=False,return_image_names=False,augment=data_augment, repeat=True,shuffle=False,dim=config['HEIGHT'],batch_size=config['BATCH_SIZE']*4) pred = model.predict(ds_test,steps=STEPS_TEST,verbose=2)[:config['TTA_STEPS']*ct_test,] preds[:,0] += np.mean(pred.reshape((ct_test, config['TTA_STEPS']), order='F'),axis=1) * (1/config['N_USED_FOLDS']) # PREDICT TEST USING TTA (light) print('Predicting Test with TTA...') ds_test = get_dataset(TEST_FILENAMES,labeled=False,return_image_names=False,augment=data_augment_tta, repeat=True,shuffle=False,dim=config['HEIGHT'],batch_size=config['BATCH_SIZE']*4) pred = model.predict(ds_test,steps=STEPS_TEST,verbose=2)[:config['TTA_STEPS']*ct_test,] preds_light[:,0] += np.mean(pred.reshape((ct_test, config['TTA_STEPS']), order='F'),axis=1) * (1/config['N_USED_FOLDS']) # REPORT RESULTS auc = roc_auc_score(oof_tar[-1], oof_pred[-1]) auc_light = roc_auc_score(oof_tar[-1], oof_pred_light[-1]) oof_val.append(np.max(history['val_auc'] )) print('#### FOLD %i OOF AUC without TTA = %.3f, with TTA = %.3f with TTA (light) = %.3f' % (fold+1, oof_val[-1], auc, auc_light)) ###Output FOLD: 1 WARNING:tensorflow:TPU system grpc://10.97.97.234:8470 has already been initialized. Reinitializing the TPU can cause previously created variables on TPU to be lost. ###Markdown Model loss graph ###Code #@title for n_fold, history in enumerate(history_list): print(f'Fold: {n_fold + 1}') ##### Plot metrics ##### plt.figure(figsize=(15,5)) plt.plot(np.arange(config['EPOCHS']), history['auc'],'-o',label='Train AUC',color='#ff7f0e') plt.plot(np.arange(config['EPOCHS']), history['val_auc'],'-o',label='Val AUC',color='#1f77b4') x = np.argmax(history['val_auc']) y = np.max(history['val_auc']) xdist = plt.xlim()[1] - plt.xlim()[0] ydist = plt.ylim()[1] - plt.ylim()[0] plt.scatter(x,y,s=200,color='#1f77b4') plt.text(x-0.03*xdist,y-0.13*ydist,'max auc\n%.2f'%y,size=14) plt.ylabel('AUC',size=14) plt.xlabel('Epoch',size=14) plt.legend(loc=2) plt2 = plt.gca().twinx() plt2.plot(np.arange(config['EPOCHS']), history['loss'],'-o',label='Train Loss',color='#2ca02c') plt2.plot(np.arange(config['EPOCHS']), history['val_loss'],'-o',label='Val Loss',color='#d62728') x = np.argmin(history['val_loss']) y = np.min(history['val_loss']) ydist = plt.ylim()[1] - plt.ylim()[0] plt.scatter(x,y,s=200,color='#d62728') plt.text(x-0.03*xdist,y+0.05*ydist,'min loss',size=14) plt.ylabel('Loss',size=14) plt.title('FOLD %i - Image Size %i' % (n_fold+1, config['HEIGHT']), size=18) plt.legend(loc=3) plt.show() ###Output Fold: 1 ###Markdown Model loss graph aggregated ###Code #@title plot_metrics_agg(history_list, config['N_USED_FOLDS']) ###Output _____no_output_____ ###Markdown Model evaluation ###Code #@title # COMPUTE OVERALL OOF AUC (light) oof = np.concatenate(oof_pred_light) true = np.concatenate(oof_tar) names = np.concatenate(oof_names) folds = np.concatenate(oof_folds) auc = roc_auc_score(true, oof) print('Overall OOF AUC with TTA (light) = %.3f' % auc) # COMPUTE OVERALL OOF AUC oof = np.concatenate(oof_pred) true = np.concatenate(oof_tar) names = np.concatenate(oof_names) folds = np.concatenate(oof_folds) auc = roc_auc_score(true, oof) print('Overall OOF AUC with TTA = %.3f' % auc) # SAVE OOF TO DISK df_oof = pd.DataFrame(dict(image_name=names, target=true, pred=oof, fold=folds)) df_oof.to_csv('oof.csv', index=False) df_oof.head() ###Output Overall OOF AUC with TTA (light) = 0.899 Overall OOF AUC with TTA = 0.908 ###Markdown Visualize test predictions ###Code #@title ds = get_dataset(TEST_FILENAMES, augment=False, repeat=False, dim=config['HEIGHT'], labeled=False, return_image_names=True) image_names = np.array([img_name.numpy().decode("utf-8") for img, img_name in iter(ds.unbatch())]) submission = pd.DataFrame(dict(image_name=image_names, target=preds[:,0], target_light=preds_light[:,0])) submission = submission.sort_values('image_name') print(f"Test predictions {len(submission[submission['target'] > .5])}|{len(submission[submission['target'] <= .5])}") print('Top 10 samples') display(submission.head(10)) print('Top 10 positive samples') display(submission.query('target > .5').head(10)) fig = plt.subplots(figsize=(20, 5)) plt.hist(submission['target'], bins=100) plt.show() ###Output Test predictions 26|10956 Top 10 samples ###Markdown Test set predictions ###Code #@title submission['target_blend'] = (submission['target'] * .5) + (submission['target_light'] * .5) display(submission.head(10)) display(submission.describe().T) submission[['image_name', 'target']].to_csv(SUBMISSION_PATH, index=False) ### LAST ### submission_light = submission[['image_name', 'target_light']] submission_light.columns = ['image_name', 'target'] submission_light.to_csv(SUBMISSION_LIGHT_PATH, index=False) ### BLEND ### submission_blend = submission[['image_name', 'target_blend']] submission_blend.columns = ['image_name', 'target'] submission_blend.to_csv(SUBMISSION_BLEND_PATH, index=False) ###Output _____no_output_____
notebooks/numpy_basics.ipynb
###Markdown Numpy - multidimensional data arrays Original by J.R. Johansson (jrjohansson at gmail.com), modified for this courseThe latest version of this [IPython notebook](http://ipython.org/notebook.html) lecture is available at [http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures).The other notebooks in this lecture series are indexed at [http://jrjohansson.github.io](http://jrjohansson.github.io). ###Code # what is this line all about?!? Answer when we talk about plotting %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Introduction The `numpy` package (module) is used in almost all numerical computation using Python. It is a package that provide high-performance vector, matrix and higher-dimensional data structures for Python. It is implemented in C and Fortran so when calculations are vectorized (formulated with vectors and matrices), performance is very good. To use `numpy` you need to import the module, using for example: ###Code import numpy as np # save 3 characters!! ###Output _____no_output_____ ###Markdown In the `numpy` package the terminology used for vectors, matrices and higher-dimensional data sets is *array*. Creating `numpy` arrays There are a number of ways to initialize new numpy arrays, for example from* a Python list or tuples* using functions that are dedicated to generating numpy arrays, such as `arange`, `linspace`, etc.* reading data from files From lists For example, to create new vector and matrix arrays from Python lists we can use the `numpy.array` function. ###Code # a vector: the argument to the array function is a Python list v = np.array([1,2,3,4]) v # a matrix: the argument to the array function is a nested Python list M = np.array([[1, 2], [3, 4]]) M ###Output _____no_output_____ ###Markdown The `v` and `M` objects are both of the type `ndarray` that the `numpy` module provides. ###Code type(v), type(M) ###Output _____no_output_____ ###Markdown The difference between the `v` and `M` arrays is only their shapes. We can get information about the shape of an array by using the `ndarray.shape` property. ###Code v.shape M.shape ###Output _____no_output_____ ###Markdown The number of elements in the array is available through the `ndarray.size` property: ###Code M.size ###Output _____no_output_____ ###Markdown Equivalently, we could use the function `numpy.shape` and `numpy.size` ###Code np.shape(M) np.size(M) ###Output _____no_output_____ ###Markdown So far the `numpy.ndarray` looks awefully much like a Python list (or nested list). Why not simply use Python lists for computations instead of creating a new array type? There are several reasons:* Python lists are very general. They can contain any kind of object. They are dynamically typed. They do not support mathematical functions such as matrix and dot multiplications, etc. Implementing such functions for Python lists would not be very efficient because of the dynamic typing.* Numpy arrays are **statically typed** and **homogeneous**. The type of the elements is determined when the array is created.* Numpy arrays are memory efficient.* Because of the static typing, fast implementation of mathematical functions such as multiplication and addition of `numpy` arrays can be implemented in a compiled language (C and Fortran is used).Using the `dtype` (data type) property of an `ndarray`, we can see what type the data of an array has: ###Code M.dtype ###Output _____no_output_____ ###Markdown We get an error if we try to assign a value of the wrong type to an element in a numpy array: ###Code M[0,0] = "hello" ###Output _____no_output_____ ###Markdown If we want, we can explicitly define the type of the array data when we create it, using the `dtype` keyword argument: ###Code M = np.array([[1, 2], [3, 4]], dtype=complex) M ###Output _____no_output_____ ###Markdown Common data types that can be used with `dtype` are: `int`, `float`, `complex`, `bool`, `object`, etc.We can also explicitly define the bit size of the data types, for example: `np.int64'`, `np.int16`, `np.float128`, `complex128`. Using array-generating functions For larger arrays it is inpractical to initialize the data manually, using explicit python lists. Instead we can use one of the many functions in `numpy` that generate arrays of different forms. Some of the more common are: arange ###Code # create a range x = np.arange(0, 10, 1) # arguments: start, stop, step x x = np.arange(-1, 1, 0.1) x ###Output _____no_output_____ ###Markdown linspace and logspace ###Code # using linspace, both end points ARE included np.linspace(0, 10, 25) np.logspace(0, 10, 10, base=np.e) ###Output _____no_output_____ ###Markdown mgrid ###Code x, y = np.mgrid[0:5, 0:5] # similar to meshgrid in MATLAB x y ###Output _____no_output_____ ###Markdown random data ###Code from numpy import random # uniform random numbers in [0,1] random.rand(5,5) # standard normal distributed random numbers random.randn(5,5) ###Output _____no_output_____ ###Markdown diag ###Code # a diagonal matrix np.diag([1,2,3]) # diagonal with offset from the main diagonal np.diag([1,2,3], k=1) ###Output _____no_output_____ ###Markdown zeros and ones ###Code np.zeros((3,3)) np.ones((3,3)) ###Output _____no_output_____ ###Markdown File I/O Comma-separated values (CSV) A very common file format for data files is comma-separated values (CSV), or related formats such as TSV (tab-separated values). To read data from such files into Numpy arrays we can use the `numpy.genfromtxt` function. For example, ###Code with open('stockholm_td_adj.dat', 'r') as fid: for i, line in enumerate(fid): print(line.strip()) if i > 5: break data = np.genfromtxt('stockholm_td_adj.dat') data.shape fig, ax = plt.subplots(figsize=(14,4)) ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5]) ax.axis('tight') ax.set_title('tempeatures in Stockholm') ax.set_xlabel('year') ax.set_ylabel('temperature (C)'); ###Output _____no_output_____ ###Markdown Using `numpy.savetxt` we can store a Numpy array to a file in CSV format: ###Code M = random.rand(3,3) M np.savetxt("random-matrix.csv", M) with open('random-matrix.csv', 'r') as fid: for i, line in enumerate(fid): print(line.strip()) if i > 5: break np.savetxt("random-matrix.csv", M, fmt='%.5f') # fmt specifies the format !cat random-matrix.csv ###Output 0.31348 0.16179 0.72986 0.51429 0.92244 0.08114 0.69069 0.07507 0.93375 ###Markdown Numpy's native file format Useful when storing and reading back numpy array data. Use the functions `numpy.save` and `numpy.load`: ###Code np.save("random-matrix.npy", M) !dir random-matrix.npy np.load("random-matrix.npy") ###Output _____no_output_____ ###Markdown More properties of the numpy arrays ###Code M.itemsize # bytes per element M.nbytes # number of bytes M.ndim # number of dimensions ###Output _____no_output_____ ###Markdown Manipulating arrays Indexing We can index elements in an array using square brackets and indices: ###Code # v is a vector, and has only one dimension, taking one index v[0] # M is a matrix, or a 2 dimensional array, taking two indices M[1,1] ###Output _____no_output_____ ###Markdown If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional array) ###Code M M[1] ###Output _____no_output_____ ###Markdown The same thing can be achieved with using `:` instead of an index: ###Code M[1,:] # row 1 M[:,1] # column 1 ###Output _____no_output_____ ###Markdown We can assign new values to elements in an array using indexing: ###Code M[0,0] = 1 M # also works for rows and columns M[1,:] = 0 M[:,2] = -1 M ###Output _____no_output_____ ###Markdown Index slicing Index slicing is the technical name for the syntax `M[lower:upper:step]` to extract part of an array: ###Code A = np.array([1,2,3,4,5]) A A[1:3] ###Output _____no_output_____ ###Markdown Array slices are *mutable*: if they are assigned a new value the original array from which the slice was extracted is modified: ###Code A[1:3] = [-2,-3] A ###Output _____no_output_____ ###Markdown We can omit any of the three parameters in `M[lower:upper:step]`: ###Code A[::] # lower, upper, step all take the default values A[::2] # step is 2, lower and upper defaults to the beginning and end of the array A[:3] # first three elements A[3:] # elements from index 3 ###Output _____no_output_____ ###Markdown Negative indices counts from the end of the array (positive index from the begining): ###Code A =np. array([1,2,3,4,5]) A[-1] A[-3:] # the last three elements ###Output _____no_output_____ ###Markdown Index slicing works exactly the same way for multidimensional arrays: ###Code A = np.array([[n+m*10 for n in range(5)] for m in range(5)]) A # a block from the original array A[1:4, 1:4] A[4:6, 4:6] # strides A[::2, ::2] ###Output _____no_output_____ ###Markdown Fancy indexing Fancy indexing is the name for when an array or list is used in-place of an index: ###Code row_indices = [1, 2, 3] A[row_indices] col_indices = [1, 2, -1] # remember, index -1 means the last element A[row_indices, col_indices] ###Output _____no_output_____ ###Markdown We can also use index masks: If the index mask is an Numpy array of data type `bool`, then an element is selected (True) or not (False) depending on the value of the index mask at the position of each element: ###Code B = np.array([n for n in range(5)]) B row_mask = np.array([True, False, True, False, False]) B[row_mask] # same thing row_mask = np.array([1,0,1,0,0], dtype=bool) B[row_mask] ###Output _____no_output_____ ###Markdown This feature is very useful to conditionally select elements from an array, using for example comparison operators: ###Code x = np.arange(0, 10, 0.5) x mask = (5 < x) * (x < 7.5) print((5<x)) print((x<7.5)) mask x[mask] ###Output _____no_output_____ ###Markdown Functions for extracting data from arrays and creating arrays nonzero The index mask can be converted to position index using the `nonzero` function. Note that the output is a tuple ###Code indices = np.nonzero(mask) indices x[indices] # this indexing is equivalent to the fancy indexing x[mask] ###Output _____no_output_____ ###Markdown diag With the diag function we can also extract the diagonal and subdiagonals of an array: ###Code print(A) np.diag(A) np.diag(A, -1) ###Output _____no_output_____ ###Markdown take The `take` function is similar to fancy indexing described above: ###Code v2 = np.arange(-3,3) v2 row_indices = [1, 3, 5] v2[row_indices] # fancy indexing v2[[True, False]] v2.take(row_indices) ###Output _____no_output_____ ###Markdown But `take` also works on lists and other objects: ###Code np.take([-3, -2, -1, 0, 1, 2], row_indices) ###Output _____no_output_____ ###Markdown choose Constructs an array by picking elements from several arrays: ###Code which = [1, 0, 1, 0] choices = [[-2,-2,-2,-2], [5,5,5,5]] np.choose(which, choices) ###Output _____no_output_____ ###Markdown Linear algebra Vectorizing code is the key to writing efficient numerical calculation with Python/Numpy. That means that as much as possible of a program should be formulated in terms of matrix and vector operations, like matrix-matrix multiplication. Scalar-array operations We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers. ###Code v1 = np.arange(0, 5) v1 * 2 v1 + 2 A * 2, A + 2 ###Output _____no_output_____ ###Markdown Element-wise array-array operations When we add, subtract, multiply and divide arrays with each other, the default behaviour is **element-wise** operations: ###Code A * A # element-wise multiplication v1 * v1 ###Output _____no_output_____ ###Markdown If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row, this is called broadcasting: ###Code print('shapes', A.shape, v1.shape) print('A', A) print ('v1',v1) A * v1 ###Output _____no_output_____ ###Markdown Matrix algebra What about matrix mutiplication? There are two ways. We can either use the `dot` function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments: ###Code np.dot(A, A) np.dot(A, v1) np.dot(v1, v1) ###Output _____no_output_____ ###Markdown Alternatively, we can use the '@' operator ###Code A @ A A @ v1 # inner product v2 = v1.reshape(1,5) print('shape', v2.shape, v2.T.shape) v3 = v2.T @ v2 print(v3, v3.shape) #Matrix multiplication has highest precedence print(v1 + A @ v1) print(v1 + (A @ v1)) print ((v1 + A) @ v1) ###Output [ 30 131 232 333 434] [ 30 131 232 333 434] [ 60 160 260 360 460] ###Markdown If we try to add, subtract or multiply objects with incomplatible shapes we get an error: ###Code v = np.array([[1,2,3,4,5,6]]).T np.shape(A), np.shape(v) M * v ###Output _____no_output_____ ###Markdown See also the related functions: `np.inner`, `np.outer`, `np.cross`, `np.kron`, `np.tensordot`. Try for example `help(np.kron)`. Array/Matrix transformations Above we have used the `.T` to transpose the matrix object `v`. We could also have used the `transpose` function to accomplish the same thing. Other mathematical functions that transform matrix objects are: ###Code C = np.array([[1j, 2j], [3j, 4j]]) C np.conjugate(C) ###Output _____no_output_____ ###Markdown Hermitian conjugate: transpose + conjugate ###Code np.conjugate(np.transpose(C)) ###Output _____no_output_____ ###Markdown We can extract the real and imaginary parts of complex-valued arrays using `real` and `imag`: ###Code np.real(C) # same as: C.real np.imag(C) # same as: C.imag ###Output _____no_output_____ ###Markdown Or the complex argument and absolute value ###Code np.angle(C+1) # heads up MATLAB Users, angle is used instead of arg np.abs(C) ###Output _____no_output_____ ###Markdown Matrix computations Inverse ###Code np.linalg.inv(C) # equivalent to C.I np.linalg.inv(C) @ C ###Output _____no_output_____ ###Markdown Determinant ###Code np.linalg.det(C) np.linalg.det(np.linalg.inv(C)) ###Output _____no_output_____ ###Markdown Data processing Often it is useful to store datasets in Numpy arrays. Numpy provides a number of functions to calculate statistics of datasets in arrays. For example, let's calculate some properties from the Stockholm temperature dataset used above. ###Code # reminder, the tempeature dataset is stored in the data variable: np.shape(data) ###Output _____no_output_____ ###Markdown mean ###Code # the temperature data is in column 3 np.mean(data[:,3]) ###Output _____no_output_____ ###Markdown The daily mean temperature in Stockholm over the last 200 years has been about 6.2 C. standard deviations and variance ###Code np.std(data[:,3]), np.var(data[:,3]) ###Output _____no_output_____ ###Markdown min and max ###Code # lowest daily average temperature data[:,3].min() # highest daily average temperature data[:,3].max() ###Output _____no_output_____ ###Markdown sum, prod, and trace ###Code d = np.arange(0, 10) d # sum up all elements np.sum(d) # product of all elements np.prod(d+1) # cummulative sum np.cumsum(d) # cummulative product np.cumprod(d+1) # same as: diag(A).sum() np.trace(A) ###Output _____no_output_____ ###Markdown Computations on subsets of arrays We can compute with subsets of the data in an array using indexing, fancy indexing, and the other methods of extracting data from an array (described above).For example, let's go back to the temperature dataset: ###Code options = np.get_printoptions() np.set_printoptions(precision=1,suppress=True) print(data[:3, :]) np.set_printoptions(options) ###Output [[1800. 1. 1. -6.1 -6.1 -6.1 1. ] [1800. 1. 2. -15.4 -15.4 -15.4 1. ] [1800. 1. 3. -15. -15. -15. 1. ]] ###Markdown The dataformat is: year, month, day, daily average temperature, low, high, location.If we are interested in the average temperature only in a particular month, say February, then we can create a index mask and use it to select only the data for that month using: ###Code np.unique(data[:,1]) # the month column takes values from 1 to 12 mask_feb = data[:,1] == 2 # the temperature data is in column 3 np.mean(data[mask_feb,3]) ###Output _____no_output_____ ###Markdown With these tools we have very powerful data processing capabilities at our disposal. For example, to extract the average monthly average temperatures for each month of the year only takes a few lines of code: ###Code months = np.arange(1,13) monthly_mean = [np.mean(data[data[:,1] == month, 3]) for month in months] fig, ax = plt.subplots() ax.bar(months, monthly_mean) ax.set_xlabel("Month") ax.set_ylabel("Monthly avg. temp."); ###Output _____no_output_____ ###Markdown Calculations with higher-dimensional data When functions such as `np.min`, `np.max`, etc. are applied to a multidimensional arrays, it is sometimes useful to apply the calculation to the entire array, and sometimes only on a row or column basis. Using the `axis` argument we can specify how these functions should behave: ###Code import numpy as np m = np.random.random((3,3)) # global max m.max() # max in each column m.max(axis=0) # max in each row m.max(axis=1) ###Output _____no_output_____ ###Markdown Many other functions and methods accept the same (optional) `axis` keyword argument. Reshaping, resizing and stacking arrays The shape of an Numpy array can be modified without copying the underlaying data, which makes it a fast operation even for large arrays. ###Code A = np.arange(24).reshape(6,4) n, m = A.shape B = A.reshape((1,n*m)) print(B) print(B.base is A) B[0,0:5] = 5 # modify the array B A # and the original variable is also changed. B is only a different view of the same data ###Output _____no_output_____ ###Markdown We can also use the function `flatten` to make a higher-dimensional array into a vector. But this function create a copy of the data. ###Code B = A.flatten() B B[0:5] = 10 print(B) print('B.base', B.base) A # now A has not changed, because B's data is a copy of A's, not refering to the same data ###Output _____no_output_____ ###Markdown Adding a new dimension: newaxis With `newaxis`, we can insert new dimensions in an array, for example converting a vector to a column or row matrix: ###Code v = np.array([1,2,3]) np.shape(v) # make a column matrix of the vector v new_v = v[:, np.newaxis] print(new_v.base is v) # column matrix v[:,np.newaxis].shape # row matrix v[np.newaxis,:].shape ###Output _____no_output_____ ###Markdown Stacking and repeating arrays Using function `np.repeat`, `np.tile`, `np.vstack`, `np.hstack`, and `np.concatenate` we can create larger vectors and matrices from smaller ones: tile and repeat ###Code a = np.array([[1, 2], [3, 4]]) # repeat each element 3 times np.repeat(a, 3) # tile the matrix 3 times np.tile(a, 3) ###Output _____no_output_____ ###Markdown concatenate ###Code b = np.array([[5, 6]]) np.concatenate((a, b), axis=0) np.concatenate((a, b.T), axis=1) ###Output _____no_output_____ ###Markdown hstack and vstack ###Code np.vstack((a,b)) np.hstack((a,b.T)) ###Output _____no_output_____ ###Markdown Copy and "deep copy" To achieve high performance, assignments in Python usually do not copy the underlaying objects. This is important for example when objects are passed between functions, to avoid an excessive amount of memory copying when it is not necessary (technical term: pass by reference). ###Code A = np.array([[1, 2], [3, 4]]) A # now B is referring to the same array data as A B = A # changing B affects A B[0,0] = 10 B A ###Output _____no_output_____ ###Markdown If we want to avoid this behavior, so that when we get a new completely independent object `B` copied from `A`, then we need to do a so-called "deep copy" using the function `np.copy`: ###Code B = np.copy(A) # now, if we modify B, A is not affected B[0,0] = -5 B A ###Output _____no_output_____ ###Markdown Iterating over array elements Generally, we want to avoid iterating over the elements of arrays whenever we can (at all costs). The reason is that in a interpreted language like Python (or MATLAB), iterations are really slow compared to vectorized operations. However, sometimes iterations are unavoidable. For such cases, the Python `for` loop is the most convenient way to iterate over an array: ###Code v = np.array([1,2,3,4]) for element in v: print(element) M = np.array([[1,2], [3,4]]) for row in M: print("row", row) for element in row: print(element) ###Output row [1 2] 1 2 row [3 4] 3 4 ###Markdown When we need to iterate over each element of an array and modify its elements, it is convenient to use the `enumerate` function to obtain both the element and its index in the `for` loop: ###Code for row_idx, row in enumerate(M): print("row_idx", row_idx, "row", row) for col_idx, element in enumerate(row): print("col_idx", col_idx, "element", element) # update the matrix M: square each element M[row_idx, col_idx] = element ** 2 # each element in M is now squared M ###Output _____no_output_____ ###Markdown Vectorizing functions As mentioned several times by now, to get good performance we should try to avoid looping over elements in our vectors and matrices, and instead use vectorized algorithms. The first step in converting a scalar algorithm to a vectorized algorithm is to make sure that the functions we write work with vector inputs. ###Code def Theta(x): """ Scalar implemenation of the Heaviside step function. """ if x >= 0: return 1 else: return 0 Theta(np.array([-3,-2,-1,0,1,2,3])) ###Output _____no_output_____ ###Markdown OK, that didn't work because we didn't write the `Theta` function so that it can handle a vector input... To get a vectorized version of Theta we can use the Numpy function `vectorize`. In many cases it can automatically vectorize a function: ###Code Theta_vec = np.vectorize(Theta) Theta_vec(np.array([-3,-2,-1,0,1,2,3])) ###Output _____no_output_____ ###Markdown We can also implement the function to accept a vector input from the beginning (requires more effort but might give better performance): ###Code def Theta(x): """ Vector-aware implemenation of the Heaviside step function. """ return 1 * (x >= 0) Theta(np.array([-3,-2,-1,0,1,2,3])) # still works for scalars as well Theta(-1.2), Theta(2.6) ###Output _____no_output_____ ###Markdown Using arrays in conditions When using arrays in conditions,for example `if` statements and other boolean expressions, one needs to use `any` or `all`, which requires that any or all elements in the array evalutes to `True`: ###Code M if (M > 5).any(): print("at least one element in M is larger than 5") else: print("no element in M is larger than 5") if (M > 5).all(): print("all elements in M are larger than 5") else: print("all elements in M are not larger than 5") ###Output all elements in M are not larger than 5 ###Markdown Type casting Since Numpy arrays are *statically typed*, the type of an array does not change once created. But we can explicitly cast an array of some type to another using the `astype` method (see also the similar `np.asarray` function). This always create a new array of new type: ###Code M.dtype M2 = M.astype(float) M2 M2.dtype M3 = M.astype(bool) M3 ###Output _____no_output_____ ###Markdown Further reading * http://numpy.scipy.org* http://www.scipy-lectures.org/* https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html - A Numpy guide for MATLAB users* [MATLAB to Python migration white paper](https://www.enthought.com/white-paper-matlab-to-python/) ExerciseWrite a function ``f(a, b, c)`` that returns $a^b - c$. Forma `24x12x6` array containing values in parameter ranges ``[0,1] x[0,1] x [0,1]`` (i.e., 24 equispaced values for a, 12 for b, and 6 for c).Hints:You can make ``np.ogrid`` give a number of points in given rangewith ``np.ogrid[0:1:1/20]`` or ``np.ogrid[0:1:1/20, 0:1:1/30]``. Alternative: `np.linspace`)**Reminder** Python functions:```pythondef f(a, b, c): return some_result``` Approximate the 3-d integral$\int_0^1\int_0^1\int_0^1(a^b-c)da\,db\,dc$over this volume with the mean. The exact result is: $\ln 2 -\frac{1}{2}\approx0.1931\ldots$ --- what is your relative error?(Hints: use elementwise operations and broadcasting) ###Code def f(a, b, c): return a**b - c a, b, c = np.ogrid[0:1:24j, 0:1:12j, 0:1:6j] a = np.linspace(0, 1, 24) b = np.linspace(0, 1, 12) c = np.linspace(0, 1, 6) samples = f(a[:,np.newaxis,np.newaxis], b[np.newaxis,:,np.newaxis], c[np.newaxis,np.newaxis,:]) print(a[:,np.newaxis,np.newaxis].shape) integral = samples.mean() print(integral) print("Approximation:", integral) print("Exact:", np.log(2) - 0.5) ###Output Approximation: 0.1888423460296792 Exact: 0.1931471805599453
LDA topic modeling-BIGDATA (aggragated).ipynb
###Markdown Now we are doing all of these steps for the whole available text (data_list2 here): ###Code texts = [] # loop through document list for i in data_list2: # clean and tokenize document string raw = i.lower() tokens = tokenizer.tokenize(raw) # remove stop words from tokens stopped_tokens = [i for i in tokens if not i in en_stop] # stem tokens stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens] # add tokens to list texts.append(stemmed_tokens) # turn our tokenized documents into a id <-> term dictionary dictionary = corpora.Dictionary(texts) # convert tokenized documents into a document-term matrix corpus = [dictionary.doc2bow(text) for text in texts] # generate LDA model ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=10, id2word = dictionary, passes=20) print(ldamodel.print_topics(num_topics=10, num_words=10)) print(ldamodel.print_topics(num_topics=5, num_words=10)) print(ldamodel) type(ldamodel) print(dictionary) type(dictionary) type(corpus) len (corpus) print(corpus) ###Output [[(0, 1), (1, 1), (2, 1), (3, 1), (4, 3), (5, 1), (6, 1), (7, 2), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1), (27, 1), (28, 1), (29, 1)], [(1, 1), (4, 7), (5, 2), (7, 5), (12, 1), (17, 2), (30, 3), (31, 1), (32, 2), (33, 1), (34, 2), (35, 1), (36, 3), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1), (42, 1), (43, 1), (44, 1), (45, 1), (46, 1), (47, 1), (48, 1), (49, 1), (50, 1), (51, 1), (52, 1), (53, 1), (54, 1), (55, 1), (56, 2), (57, 1), (58, 1), (59, 1), (60, 1), (61, 1), (62, 1), (63, 2), (64, 1), (65, 1), (66, 1), (67, 1), (68, 1), (69, 1), (70, 1), (71, 2), (72, 1), (73, 1), (74, 1), (75, 1), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 1), (82, 1), (83, 1), (84, 1), (85, 1), (86, 1), (87, 1), (88, 1), (89, 1)], [(4, 1), (5, 1), (6, 2), (12, 1), (18, 1), (56, 1), (67, 1), (69, 1), (83, 1), (90, 2), (91, 2), (92, 1), (93, 1), (94, 1), (95, 1), (96, 1), (97, 1), (98, 1), (99, 1), (100, 1), (101, 1), (102, 1), (103, 1), (104, 2), (105, 1), (106, 2), (107, 1), (108, 1), (109, 1), (110, 1), (111, 1), (112, 1), (113, 1), (114, 1), (115, 1), (116, 1), (117, 1), (118, 1), (119, 1), (120, 1), (121, 1), (122, 1), (123, 1), (124, 1), (125, 1), (126, 1), (127, 1), (128, 1), (129, 1), (130, 1), (131, 1)], [(71, 1), (91, 1), (92, 1), (124, 1), (132, 1), (133, 1), (134, 1), (135, 1), (136, 1), (137, 1)], [(1, 1), (3, 1), (4, 1), (13, 1), (57, 1), (91, 2), (92, 1), (108, 1), (138, 1), (139, 1), (140, 1), (141, 1), (142, 1), (143, 1), (144, 1), (145, 1)], [(4, 2), (5, 1), (17, 2), (45, 1), (62, 1), (66, 1), (100, 1), (110, 1), (129, 1), (146, 1), (147, 1), (148, 1), (149, 1), (150, 1), (151, 1), (152, 1), (153, 1), (154, 1), (155, 1), (156, 1)], [(38, 1), (91, 2), (92, 2), (104, 1), (110, 2), (131, 1), (138, 1), (157, 1), (158, 1), (159, 1), (160, 1), (161, 1), (162, 1), (163, 1), (164, 1), (165, 1)], [(4, 4), (5, 7), (7, 3), (9, 2), (17, 1), (34, 1), (35, 1), (43, 1), (50, 1), (56, 1), (63, 1), (71, 1), (72, 1), (82, 1), (91, 2), (92, 1), (97, 1), (100, 3), (104, 2), (108, 1), (110, 1), (112, 1), (114, 1), (130, 1), (131, 1), (147, 1), (148, 1), (153, 1), (154, 1), (158, 1), (159, 1), (166, 1), (167, 2), (168, 2), (169, 1), (170, 1), (171, 1), (172, 1), (173, 1), (174, 1), (175, 1), (176, 1), (177, 1), (178, 2), (179, 1), (180, 1), (181, 1), (182, 2), (183, 1), (184, 1), (185, 1), (186, 1), (187, 2), (188, 1), (189, 1), (190, 1), (191, 1), (192, 1), (193, 1), (194, 1), (195, 1), (196, 1), (197, 1), (198, 1), (199, 1), (200, 1)], [(4, 1), (19, 1), (201, 1), (202, 1), (203, 1), (204, 1), (205, 1), (206, 1), (207, 1), (208, 1), (209, 1)], [(1, 1), (4, 1), (5, 2), (66, 1), (90, 1), (91, 3), (92, 2), (100, 3), (104, 2), (108, 1), (112, 1), (138, 1), (141, 1), (170, 1), (208, 1), (210, 1), (211, 1), (212, 1), (213, 1), (214, 1), (215, 1), (216, 1), (217, 1), (218, 1)], [(4, 1), (5, 1), (80, 1), (91, 2), (100, 1), (108, 2), (121, 1), (145, 1), (169, 1), (219, 1), (220, 1), (221, 1), (222, 1), (223, 1), (224, 1), (225, 1), (226, 1), (227, 1), (228, 1), (229, 1), (230, 1)], [(1, 1), (16, 1), (130, 1), (141, 1), (169, 1), (197, 1), (214, 1), (231, 1), (232, 1), (233, 1), (234, 1), (235, 1), (236, 1), (237, 1)], [(4, 1), (63, 1), (73, 1), (106, 1), (108, 1), (238, 1), (239, 1), (240, 1), (241, 1)], [(1, 1), (4, 2), (7, 2), (17, 1), (30, 1), (32, 1), (35, 1), (40, 1), (47, 1), (50, 1), (51, 1), (90, 1), (91, 1), (92, 1), (100, 2), (104, 1), (110, 1), (123, 2), (129, 1), (141, 2), (154, 1), (159, 1), (177, 1), (200, 1), (201, 1), (212, 1), (214, 1), (231, 4), (232, 2), (233, 1), (242, 1), (243, 2), (244, 1), (245, 1), (246, 1), (247, 1), (248, 1), (249, 1), (250, 1), (251, 1), (252, 2), (253, 1), (254, 4), (255, 1), (256, 1), (257, 1), (258, 1), (259, 2), (260, 1), (261, 2), (262, 1), (263, 1), (264, 1), (265, 1), (266, 1), (267, 1), (268, 1), (269, 1), (270, 1), (271, 2), (272, 2), (273, 1), (274, 1), (275, 2), (276, 1), (277, 1), (278, 1), (279, 1), (280, 1), (281, 1), (282, 1), (283, 1), (284, 1), (285, 1), (286, 1), (287, 1), (288, 1), (289, 1), (290, 1), (291, 1), (292, 1), (293, 1), (294, 1), (295, 1), (296, 1), (297, 1), (298, 1), (299, 1), (300, 1), (301, 1), (302, 1), (303, 1), (304, 1), (305, 1), (306, 1), (307, 1), (308, 1), (309, 1)], [(2, 1), (5, 1), (43, 1), (52, 1), (102, 1), (124, 1), (149, 1), (157, 1), (159, 1), (167, 1), (200, 2), (225, 1), (277, 1), (310, 1), (311, 1), (312, 1), (313, 1), (314, 1), (315, 1), (316, 1), (317, 1), (318, 1), (319, 1), (320, 1)], [(90, 1), (131, 1), (155, 1), (158, 1), (167, 1), (182, 1), (224, 1), (261, 1), (321, 1), (322, 1), (323, 1), (324, 1), (325, 1), (326, 1), (327, 1), (328, 1)], [(1, 1), (4, 1), (34, 1), (62, 1), (72, 1), (84, 1), (91, 1), (92, 1), (97, 1), (100, 2), (104, 1), (121, 1), (130, 1), (139, 1), (154, 1), (157, 1), (214, 1), (225, 1), (254, 1), (300, 1), (310, 1), (329, 1), (330, 1), (331, 1), (332, 1), (333, 1), (334, 1)], [(4, 1), (69, 1), (90, 2), (121, 1), (156, 1), (216, 1), (238, 2), (254, 1), (280, 1), (325, 1), (326, 1), (335, 1), (336, 1), (337, 1), (338, 1), (339, 1), (340, 1), (341, 1), (342, 1), (343, 2), (344, 1), (345, 1), (346, 1), (347, 1), (348, 1)], [(4, 1), (17, 2), (26, 1), (35, 1), (37, 1), (40, 1), (75, 1), (84, 2), (86, 1), (101, 1), (102, 2), (106, 1), (111, 1), (117, 1), (139, 1), (141, 1), (164, 1), (167, 1), (169, 1), (171, 2), (200, 1), (225, 1), (231, 1), (239, 1), (254, 1), (257, 1), (278, 1), (279, 2), (292, 1), (321, 1), (335, 1), (341, 1), (349, 1), (350, 1), (351, 1), (352, 1), (353, 1), (354, 1), (355, 1), (356, 2), (357, 1), (358, 2), (359, 1), (360, 1), (361, 1), (362, 1), (363, 1), (364, 1), (365, 1), (366, 1), (367, 1), (368, 1), (369, 1), (370, 1), (371, 1), (372, 1), (373, 1), (374, 1), (375, 1), (376, 1), (377, 1)], [(1, 4), (2, 2), (4, 6), (5, 2), (7, 2), (17, 4), (18, 1), (25, 1), (26, 1), (35, 3), (36, 1), (49, 1), (50, 2), (51, 1), (52, 1), (63, 1), (74, 1), (82, 1), (84, 1), (91, 4), (92, 2), (100, 1), (101, 2), (102, 2), (104, 2), (108, 1), (109, 1), (111, 1), (123, 1), (124, 1), (129, 1), (133, 1), (146, 2), (147, 3), (149, 1), (159, 2), (162, 1), (169, 1), (171, 1), (178, 1), (181, 1), (185, 1), (187, 1), (193, 1), (196, 1), (200, 1), (207, 1), (214, 2), (223, 1), (230, 1), (231, 1), (232, 1), (235, 1), (252, 2), (254, 3), (261, 1), (271, 1), (272, 1), (295, 1), (312, 1), (322, 1), (346, 3), (353, 1), (356, 1), (370, 1), (374, 2), (378, 2), (379, 1), (380, 1), (381, 1), (382, 1), (383, 1), (384, 5), (385, 3), (386, 1), (387, 1), (388, 1), (389, 1), (390, 2), (391, 1), (392, 1), (393, 2), (394, 1), (395, 1), (396, 1), (397, 2), (398, 1), (399, 1), (400, 1), (401, 1), (402, 1), (403, 2), (404, 1), (405, 2), (406, 1), (407, 1), (408, 1), (409, 1), (410, 2), (411, 1), (412, 1), (413, 1), (414, 1), (415, 1), (416, 2), (417, 1), (418, 1), (419, 1), (420, 1), (421, 1), (422, 1), (423, 1), (424, 1), (425, 1), (426, 1), (427, 1), (428, 1), (429, 1), (430, 1), (431, 1), (432, 1), (433, 1), (434, 1), (435, 1), (436, 2), (437, 1), (438, 1), (439, 1), (440, 2), (441, 1), (442, 2), (443, 1), (444, 1), (445, 1), (446, 1), (447, 1), (448, 4), (449, 1), (450, 1), (451, 1), (452, 1), (453, 1), (454, 1), (455, 1), (456, 2), (457, 1), (458, 1), (459, 1), (460, 2), (461, 1), (462, 1), (463, 1), (464, 1), (465, 1), (466, 1)], [(1, 2), (2, 1), (3, 1), (4, 4), (5, 1), (35, 2), (53, 1), (83, 1), (91, 1), (104, 1), (108, 1), (130, 1), (142, 1), (147, 1), (153, 1), (211, 1), (214, 1), (216, 1), (226, 1), (235, 1), (243, 1), (272, 1), (325, 1), (387, 1), (453, 1), (467, 1), (468, 1), (469, 1), (470, 1), (471, 1), (472, 1), (473, 1), (474, 1), (475, 1), (476, 1), (477, 1)], [(2, 1), (3, 2), (4, 2), (17, 1), (57, 1), (159, 1), (225, 1), (235, 1), (386, 1), (478, 1), (479, 1), (480, 1)], [(2, 1), (4, 2), (16, 2), (17, 2), (52, 1), (57, 1), (72, 1), (91, 3), (92, 1), (100, 2), (146, 1), (149, 1), (164, 1), (185, 1), (206, 1), (213, 1), (235, 1), (262, 1), (264, 1), (273, 1), (334, 2), (387, 2), (409, 1), (416, 2), (434, 1), (469, 1), (481, 1), (482, 1), (483, 1), (484, 1), (485, 1), (486, 1), (487, 1), (488, 1), (489, 1), (490, 1), (491, 1), (492, 1)], [(4, 2), (5, 1), (12, 1), (16, 1), (35, 1), (49, 2), (50, 1), (51, 1), (63, 1), (65, 1), (66, 1), (81, 1), (90, 1), (104, 5), (106, 1), (111, 1), (130, 1), (131, 2), (139, 1), (169, 1), (170, 1), (182, 1), (185, 2), (217, 3), (219, 1), (254, 5), (270, 1), (312, 2), (321, 1), (349, 1), (356, 1), (434, 1), (489, 1), (493, 1), (494, 1), (495, 1), (496, 1), (497, 1), (498, 1), (499, 1), (500, 1), (501, 1), (502, 1), (503, 1), (504, 1), (505, 1), (506, 1), (507, 1), (508, 1), (509, 1), (510, 1), (511, 1), (512, 1), (513, 1), (514, 1), (515, 1)], [(5, 2), (9, 1), (14, 2), (17, 3), (19, 1), (34, 1), (51, 1), (57, 2), (59, 1), (69, 1), (77, 1), (90, 1), (91, 5), (92, 5), (104, 1), (110, 1), (111, 1), (121, 2), (139, 1), (146, 2), (169, 2), (170, 1), (178, 1), (213, 1), (217, 1), (220, 1), (231, 3), (238, 3), (254, 1), (269, 1), (273, 1), (275, 1), (283, 1), (334, 1), (335, 1), (356, 1), (388, 1), (405, 1), (474, 1), (498, 1), (502, 3), (503, 5), (516, 1), (517, 1), (518, 3), (519, 3), (520, 1), (521, 1), (522, 2), (523, 1), (524, 1), (525, 1), (526, 1), (527, 1), (528, 1), (529, 1), (530, 1), (531, 1), (532, 1), (533, 1), (534, 1), (535, 1), (536, 1), (537, 1), (538, 1), (539, 1), (540, 1), (541, 1), (542, 1), (543, 1), (544, 1), (545, 1), (546, 1), (547, 2), (548, 1), (549, 1), (550, 1), (551, 1), (552, 1), (553, 1), (554, 1), (555, 1), (556, 1), (557, 1), (558, 1)], [(2, 2), (5, 1), (16, 1), (90, 1), (91, 2), (100, 1), (107, 1), (108, 1), (139, 1), (147, 1), (158, 1), (171, 1), (182, 1), (213, 1), (300, 1), (335, 1), (356, 1), (386, 1), (559, 1), (560, 2), (561, 1), (562, 1), (563, 1), (564, 1), (565, 1), (566, 1), (567, 1), (568, 1), (569, 1), (570, 1), (571, 1), (572, 1), (573, 1), (574, 1), (575, 1), (576, 1)], [(4, 1), (14, 1), (35, 1), (36, 1), (75, 1), (90, 1), (100, 1), (170, 1), (210, 1), (282, 1), (356, 1), (548, 1), (577, 1), (578, 1), (579, 1), (580, 1), (581, 1), (582, 1)], [(4, 3), (92, 1), (104, 1), (108, 1), (117, 1), (217, 1), (225, 2), (238, 1), (285, 1), (556, 1), (583, 1), (584, 1), (585, 1), (586, 1)], [(1, 1), (2, 1), (4, 5), (5, 3), (7, 1), (17, 2), (31, 1), (35, 1), (50, 1), (52, 1), (56, 1), (74, 1), (91, 1), (92, 1), (110, 1), (124, 1), (139, 1), (141, 1), (154, 1), (157, 1), (168, 1), (196, 1), (229, 1), (272, 1), (279, 1), (300, 1), (338, 1), (416, 1), (472, 1), (473, 1), (587, 2), (588, 1), (589, 1), (590, 2), (591, 1), (592, 1), (593, 1), (594, 1), (595, 1), (596, 1), (597, 1), (598, 1), (599, 1), (600, 1), (601, 1), (602, 1), (603, 1), (604, 1), (605, 1), (606, 1), (607, 1)], [(4, 2), (7, 2), (11, 1), (25, 1), (26, 1), (34, 1), (35, 1), (36, 1), (52, 2), (91, 1), (104, 1), (108, 1), (112, 1), (147, 2), (154, 1), (187, 1), (199, 1), (228, 1), (231, 1), (238, 1), (252, 1), (264, 1), (292, 1), (335, 1), (405, 1), (560, 1), (571, 2), (572, 2), (608, 1), (609, 1), (610, 1), (611, 1), (612, 1), (613, 1), (614, 1), (615, 1), (616, 1), (617, 1), (618, 1), (619, 1), (620, 1), (621, 1), (622, 1), (623, 1), (624, 1), (625, 1), (626, 1), (627, 1), (628, 1)]]
examples/examples-gpu/nyc-taxi-snowflake/rf-scikit.ipynb
###Markdown Random forest classification Single-node scikit-learn ###Code import os MODEL_PATH = 'models' if not os.path.exists(MODEL_PATH): os.makedirs(MODEL_PATH) numeric_feat = [ 'pickup_weekday', 'pickup_hour', 'pickup_week_hour', 'pickup_minute', 'passenger_count', ] categorical_feat = [ 'pickup_taxizone_id', 'dropoff_taxizone_id', ] features = numeric_feat + categorical_feat y_col = 'high_tip' ###Output _____no_output_____ ###Markdown Load data and feature engineeringLoad a full month for this exercise ###Code import os import pandas as pd import snowflake.connector SNOWFLAKE_ACCOUNT = os.environ['SNOWFLAKE_ACCOUNT'] SNOWFLAKE_USER = os.environ['SNOWFLAKE_USER'] SNOWFLAKE_PASSWORD = os.environ['SNOWFLAKE_PASSWORD'] SNOWFLAKE_WAREHOUSE = os.environ['SNOWFLAKE_WAREHOUSE'] TAXI_DATABASE = os.environ['TAXI_DATABASE'] TAXI_SCHEMA = os.environ['TAXI_SCHEMA'] conn_info = { 'account': SNOWFLAKE_ACCOUNT, 'user': SNOWFLAKE_USER, 'password': SNOWFLAKE_PASSWORD, 'warehouse': SNOWFLAKE_WAREHOUSE, 'database': TAXI_DATABASE, 'schema': TAXI_SCHEMA, } conn = snowflake.connector.connect(**conn_info) query = """ SELECT pickup_taxizone_id, dropoff_taxizone_id, passenger_count, DIV0(tip_amount, fare_amount) > 0.2 AS high_tip, DAYOFWEEKISO(pickup_datetime) - 1 AS pickup_weekday, WEEKOFYEAR(pickup_datetime) AS pickup_weekofyear, HOUR(pickup_datetime) AS pickup_hour, (pickup_weekday * 24) + pickup_hour AS pickup_week_hour, MINUTE(pickup_datetime) AS pickup_minute FROM taxi_yellow WHERE DATE_TRUNC('MONTH', pickup_datetime) = %s """ taxi = conn.cursor().execute(query, '2019-01-01') columns = [x[0] for x in taxi.description] taxi = pd.DataFrame(taxi.fetchall(), columns=columns) taxi.columns = taxi.columns.str.lower() print(f'Num rows: {len(taxi)}, Size: {taxi.memory_usage(deep=True).sum() / 1e6} MB') taxi_train = taxi[features + [y_col]] taxi_train.high_tip.value_counts() taxi_train.head() ###Output _____no_output_____ ###Markdown Train modelSetting `n_jobs=-1` tells scikit-learn to use all available cores on this machine to train models. Note that scikit-learn does NOT use the GPU, its using CPU cores here. ###Code from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42, n_jobs=-1) %%time _ = rfc.fit(taxi_train[features], taxi_train[y_col]) ###Output _____no_output_____ ###Markdown Save model ###Code import cloudpickle with open(f'{MODEL_PATH}/random_forest_scikit.pkl', 'wb') as f: cloudpickle.dump(rfc, f) ###Output _____no_output_____ ###Markdown Calculate metrics on test setUse a different month for test set ###Code taxi = conn.cursor().execute(query, '2019-02-01') columns = [x[0] for x in taxi.description] taxi = pd.DataFrame(taxi.fetchall(), columns=columns) taxi.columns = taxi.columns.str.lower() taxi_test = taxi from sklearn.metrics import roc_auc_score preds = rfc.predict_proba(taxi_test[features])[:, 1] roc_auc_score(taxi_test[y_col], preds) ###Output _____no_output_____
InceptionResnet_V2_no_real_time_augmentation.ipynb
###Markdown *Data Science Unit 4 Sprint 3 Assignment 2* Convolutional Neural Networks (CNNs) Pre - Trained ModelLoad a pretrained network from Keras, [ResNet50](https://tfhub.dev/google/imagenet/resnet_v1_50/classification/1) - a 50 layer deep network trained to recognize [1000 objects](https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt). Starting usage:```pythonimport numpy as npfrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictionsfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2D()from tensorflow.keras.models import Model This is the functional APIresnet = ResNet50(weights='imagenet', include_top=False)```The `include_top` parameter in `ResNet50` will remove the full connected layers from the ResNet model. The next step is to turn off the training of the ResNet layers. We want to use the learned parameters without updating them in future training passes. ```pythonfor layer in resnet.layers: layer.trainable = False```Using the Keras functional API, we will need to additional additional full connected layers to our model. We we removed the top layers, we removed all preivous fully connected layers. In other words, we kept only the feature processing portions of our network. You can expert with additional layers beyond what's listed here. The `GlobalAveragePooling2D` layer functions as a really fancy flatten function by taking the average of each of the last convolutional layer outputs (which is two dimensional still). ```pythonx = res.outputx = GlobalAveragePooling2D()(x) This layer is a really fancy flattenx = Dense(1024, activation='relu')(x)predictions = Dense(1, activation='sigmoid')(x)model = Model(res.input, predictions)```Your assignment is to apply the transfer learning above to classify images of Mountains (`./data/mountain/*`) and images of forests (`./data/forest/*`). Treat mountains as the postive class (1) and the forest images as the negative (zero). Steps to complete assignment: 1. Load in Image Data into numpy arrays (`X`) 2. Create a `y` for the labels3. Train your model with pretrained layers from resnet4. Report your model's accuracy Load in Data![skimage-logo](https://scikit-image.org/_static/img/logo.png)Check out out [`skimage`](https://scikit-image.org/) for useful functions related to processing the images. In particular checkout the documentation for `skimage.io.imread_collection` and `skimage.transform.resize`. IMPORT LIBRARIES ###Code import os import matplotlib.pyplot as plt from google.colab import drive drive.mount('/content/drive') import tensorflow from tensorflow import keras from tensorflow.keras import backend as K from tensorflow.keras.models import Model from tensorflow.keras.layers import Flatten, Dense, Dropout from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2, preprocess_input from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau import numpy as np import tensorflow import pandas as pd import itertools from tensorflow import keras from tensorflow.keras.preprocessing import image from tensorflow.keras.layers import Dense, Input, GlobalAveragePooling2D, Flatten, Conv2D, MaxPooling2D from tensorflow.keras.models import Model, Sequential # This is the functional API from tensorflow.keras.optimizers import RMSprop, Adam, Nadam from tensorflow.keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.preprocessing import image from tensorflow.keras import applications from keras.utils.np_utils import to_categorical from sklearn import metrics from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import matplotlib.image as mpimg %matplotlib inline import math import sys import cv2 ###Output Using TensorFlow backend. ###Markdown Loading data and creating x and y vectors ###Code from skimage.io import imread_collection from skimage.transform import resize import numpy as np from sklearn.model_selection import train_test_split #Data path forests = '/content/drive/My Drive/Lambda DS_Unit 4 Deep Learning/CNNs/data_mixed/forest/*.jpg' mountains = '/content/drive/My Drive/Lambda DS_Unit 4 Deep Learning/CNNs/data_mixed/mountain/*.jpg' #creating a collection with the available images forests = imread_collection(forests).concatenate() mountains = imread_collection(mountains).concatenate() y_0 = np.zeros(forests.shape[0]) y_1 = np.ones(mountains.shape[0]) X = np.concatenate([forests, mountains]) X = resize(X, (702,255,255,3)) y = np.concatenate([y_0, y_1]) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=.25) #y_train = np_utils.to_categorical(y_train, num_classes) #y_test = np_utils.to_categorical(y_test, num_classes) #datagen = ImageDataGenerator(preprocessing_function=preprocess_input) #shuffle=True ###Output _____no_output_____ ###Markdown CREATING THE MODEL ###Code FREEZE_LAYERS=2 net = InceptionResNetV2(include_top=False, weights='imagenet', input_tensor=None, input_shape=(255, 255, 3)) x = net.output x = Flatten()(x) x = Dropout(0.5)(x) output_layer = Dense(1, activation='sigmoid')(x) net_final = Model(inputs=net.input, outputs=output_layer) for layer in net_final.layers[:FREEZE_LAYERS]: layer.trainable = False for layer in net_final.layers[FREEZE_LAYERS:]: layer.trainable = True net_final.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy', metrics=['accuracy']) print(net_final.summary()) ###Output _____no_output_____ ###Markdown TRAIN AND VALIDATE ON DATA ###Code rlrop = ReduceLROnPlateau(monitor='val_accuracy', mode='max', min_delta=0.01, factor=0.2, patience=1) epochs = 10 batch_size=8 stop = EarlyStopping(monitor='val_accuracy', mode='max', min_delta=0.01, patience=3, verbose=1) filepath="/content/drive/My Drive/Lambda DS_Unit 4 Deep Learning/CNNs/data/inception_class_code.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='auto', save_freq='epoch') NUM_EPOCHS = 20 BATCH_SIZE = 8 stop = EarlyStopping(monitor='val_accuracy', mode='max', min_delta=0.01, patience=3, verbose=1) filepath="/content/drive/My Drive/Lambda DS_Unit 4 Deep Learning/CNNs/data/best_inceptionresnetV2_model_scenes_assignment_imagegenerator_sigmoid_binary3.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max', save_freq='epoch') net_final.fit(x_train, y_train, batch_size=8, steps_per_epoch=len(x_train)/BATCH_SIZE, epochs=epochs, validation_data=(x_test, y_test), callbacks=[stop, checkpoint, rlrop], validation_steps=len(x_test)/BATCH_SIZE) #TEST # predicting images import numpy as np from PIL import Image img = image.load_img('/content/drive/My Drive/Lambda DS_Unit 4 Deep Learning/CNNs/data/validation/mountain/n199031.jpg', target_size=(255, 255)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = net_final.predict(images, batch_size=1) if classes ==1: print('Image is a mountain') else: print('Image is a forest') print(classes) ###Output Image is a mountain [[1.]]
toy_models/chi2_and_t_student.ipynb
###Markdown - chi2: sum of X^2 with known variance & mean --> CI for estimated variance of knwon distribution- Student: mean estimator distribution with unknown variance (i.e. estimated too) --> confidence interval for the true mean ###Code def sample_student(N): # mu = 0 X = np.random.randn(N) x_mean = np.mean(X) S = np.sqrt( np.sum( (X - x_mean)**2 )/( N-1 ) ) t = x_mean / (S / np.sqrt(N)) return t N = 100 samples = [sample_student(N) for _ in range(2000)] x = np.linspace(-np.max(samples), np.max(samples), 123) pdf = stats.t.pdf(x, N-1, loc=0, scale=1) plt.hist(samples, density=True, bins=20) plt.plot(x, pdf, linewidth=4) plt.xlabel('t'); plt.ylabel('PDF t (student)'); ###Output _____no_output_____ ###Markdown  Distribution of the maxhttps://math.stackexchange.com/a/89037 ###Code gamma = 0.5772156649015328 def sample_max(N): # mu = 0 X = np.random.randn(N) return np.max(X) N = 400 samples = [sample_max(N) for _ in range(2000)] plt.hist(samples, density=True, bins=20) plt.xlabel('max'); plt.ylabel('PDF (max))'); x = np.linspace(-np.max(samples), np.max(samples), 123) pdf = stats.t.pdf(x, N-1, loc=0, scale=1) plt.plot(x, pdf, linewidth=4) ###Output _____no_output_____