path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
06 Guess My Number.ipynb
###Markdown Guess My Number** How would you go about guessing a whole number that you know is between 1 and 100 inclusive? ** \ is used to write comments for humans to read in code cells. Everything after a \ in a line is ignored by the program. ###Code import random #This imports a library that can generate random numbers number = random.randint(1,100) # this selects a random integer from 1 to 100 inclusive guess = 0 number_of_guesses=1 while number != guess: try: guess = int(input("What number am I thinking of?")) except: print("That's not an integer. Keeping last guess or zero for this try.") if guess < number: print("Too low") elif guess > number: print("Too high") else: print("You got it in " +str(number_of_guesses) + " guesses!") if number_of_guesses > 7: print("Can you think of a way to get to the number in fewer guesses?") number_of_guesses += 1 print("Thanks for playing!") ###Output _____no_output_____ ###Markdown Could you consistently get the number in 7 or fewer guess? If so, you probably found an efficient *algorithm* for guessing the number. An *algorithm* is set of instructions for solving a problem. One way you could have tried is starting your guesses at 1 and continuing until you got to the number. How many guesses could this take? This time you think of a number and tell the computer if its guess is too high or too low. ###Code name = input("What is your name?") print("Hello %s, please think of a whole number between 1 and 100 inclusive." % name ) print("I will try to guess your number by starting at 1 and guessing up until I get it.") feedback = "l" guess = 1 while feedback is not "c": feedback = input("Is your number %d? Type l for too low, h for too high, or c for correct:" % guess) guess += 1 print("I got it in %s tries, %s!" % (str(guess-1), name)) ###Output _____no_output_____ ###Markdown If you picked a really large number you may have gotten frustrated with the simple search algorthm there! Can we give the computer a better way to guess? Perhaps when you were guessing, you noticed that starting in the middle cut the possibilities in half. And then you could repeat that by starting in the middle again until you hit the number or reduce the possibities to one. Let's think about how we can code that. ###Code name = input("What is your name?") print("Hello %s, please think of a whole number between 1 and 100 inclusive." % name ) print("I will try to guess your number by cutting the possibilities in half each time.") number_of_guesses = 1 feedback = "l" low = 0 high = 100 while feedback[0] is not "c": guess = (low + high) // 2 feedback = input("Is your number %s? Type l for too low, h for too high, or c for correct:" % str(guess)) feedback = str.lower(feedback[0]) if feedback == "l": low = guess + 1 elif feedback =="h": high = guess - 1 elif feedback == "c": print("I guessed it in %s tries, %s!" % (str(number_of_guesses), name)) else: print("Please use L for low, H for high, or C for correct in response to my guesses.") number_of_guesses += 1 print("Thanks for playing!") ###Output _____no_output_____
paper_notebooks/four_well_potential.ipynb
###Markdown potential ###Code # define potential def autocorr(x, t): return np.corrcoef(np.array([x[0:len(x)-t], x[t:len(x)]]))[0, 1] def potential(x): return 2 * (x ** 8 + 0.8 * np.exp(-80 * x ** 2) + 0.2 * np.exp(-80*(x-0.5)**2) + 0.5 * np.exp(-40 * (x+0.5)**2)) x_list = np.linspace(-1, 1, 100) V_list = potential(x_list) fig, ax = plt.subplots() ax.plot(x_list, V_list) ax.set_xlabel('x', fontsize = temp_font_size) ax.set_ylabel('V(x)', fontsize = temp_font_size) fig.tight_layout() def get_transition_matrix(V_list, kT=1.0): num_points = len(V_list) transition = np.zeros((num_points, num_points)) for item in range(num_points): p_left = np.exp(-(V_list[item - 1] - V_list[item]) / kT) if item != 0 else 0 p_right = np.exp(-(V_list[item + 1] - V_list[item]) / kT) if item != num_points -1 else 0 p_sum = p_left + 1 + p_right transition[item - 1][item] = p_left / p_sum transition[item][item] = 1 / p_sum transition[(item + 1) % num_points][item] = p_right / p_sum assert_almost_equal(transition.sum(axis=0), np.ones(num_points)) return transition # get transition matrices for lag time = 1 and 100 transition_1 = get_transition_matrix(V_list, kT=1) # transition matrix with lag = 1 lag_time = 100 transition = np.linalg.matrix_power(transition_1, lag_time) # transition matrix with lag = 100 def get_sorted_eigen_values_vecs(matrix): eigenValues, eigenVectors = np.linalg.eig(matrix) idx = eigenValues.argsort()[::-1] eigenValues = eigenValues[idx] eigenVectors = eigenVectors.T[idx] return eigenValues, eigenVectors def inner_prod(xx, yy, equi_dist): return np.sum(xx * yy * equi_dist) def normalize_state(state, equi_dist): return state / np.sqrt(inner_prod(state, state, equi_dist)) # get eigenvalues, eigenvectors of the transition matrix eigenValues, eigenVectors = get_sorted_eigen_values_vecs(transition) equi_dist = np.real_if_close(eigenVectors[0] / np.sum(eigenVectors[0])) # get first four eigenstates of transfer matrix, which are first four slowest modes eigenstates = [item / equi_dist for item in eigenVectors] eigenstates = [np.real_if_close(normalize_state(item, equi_dist)) for item in eigenstates] # normalization th_timescales = [-lag_time / np.log(eigenValues[item]) for item in range(1, 4)] fig, axes = plt.subplots(2,2) for item in range(4): ax = axes[item // 2][item % 2] if item == 0: timescale_label = "$t_%d = \infty$" % item else: timescale_label = '$t_%d = %d$' % (item, th_timescales[item - 1]) ax.plot(x_list, eigenstates[item], label=timescale_label) if item > 1: ax.set_xlabel('x', fontsize=temp_font_size) ax.set_ylabel('$\psi_%d$' % item, fontsize=temp_font_size) ax.axes.get_xaxis().set_ticks([]) ax.axes.get_yaxis().set_ticks([]) legend = ax.legend(loc='best', shadow=True, fontsize='x-large') fig.tight_layout() plt.subplots_adjust(hspace = 0.1) fig.set_size_inches(8, 6) # check these states are orthogonal corr_matrix = [[inner_prod(eigenstates[xx], eigenstates[yy], equi_dist) for xx in range(4)] for yy in range(4)] sns.heatmap(corr_matrix, annot=True) def run_markov_simulation(transition, x_list, start_point = None, steps = 1e6): num_states = len(transition) if start_point is None: point = np.random.randint(num_states) else: point = start_point traj = [point] for _ in range(int(steps - 1)): rand_num = np.random.rand() if rand_num < transition[point - 1][point]: point -= 1 elif rand_num > transition[point][point] + transition[point - 1][point]: point = (point + 1) % num_states traj.append(point) traj = np.array(traj) return traj, x_list[traj] def traj_to_bin(traj, x_list): return np.where(x_list == traj)[1] # generate simulation data traj_bins, traj = run_markov_simulation(transition_1, x_list, steps=5e6) traj = traj.reshape(-1, 1) # compare theoretical and actual probability distributions equi_dist_actual = [] for xx in np.unique(traj): equi_dist_actual.append(np.sum(traj == xx)) equi_dist_actual = np.array(equi_dist_actual).astype(float) equi_dist_actual /= np.sum(equi_dist_actual) plt.plot(x_list, equi_dist, '--', label='theoretical') # theoretical value plt.plot(x_list, equi_dist_actual, label='actual') plt.xlabel('x'); plt.ylabel('probability') plt.legend() def remove_component_from_state(state, equi_dist, components): result = state for item in components: result = result - item * np.sum(result * equi_dist * item) / np.sum(item * equi_dist * item) assert (np.abs(np.sum(result * item * equi_dist)) < 1e-5), np.abs(np.sum(result * item * equi_dist)) return result def get_decompose_coeff(state, eigenstates, equi_dist): return ['%.03f' % inner_prod(state, item, equi_dist) for item in eigenstates] def plot_learned_eigenstates(model, previous_CV_state_to_remove = [], lag_time=lag_time): fig, axes = plt.subplots(1, 2) traj_PCs = model.get_PCs().T PCs = model.get_PCs(x_list.reshape(len(x_list), 1)) # should use theoretical or experimental distribution data? PC_states = [normalize_state(remove_component_from_state( item, equi_dist_actual, [np.ones(100)] + previous_CV_state_to_remove), equi_dist_actual) for item in PCs.T] coeffs = [get_decompose_coeff(item, eigenstates, equi_dist)[:4] for item in PC_states] if len(PC_states) > 1: CV_corr = np.corrcoef(PC_states[0], PC_states[1])[0, 1] else: CV_corr = 0 for item in range(len(PC_states)): axes[item].plot(x_list, PC_states[item]) axes[item].set_xlabel('x'); axes[item].set_ylabel('CV%d' % (item+1)) axes[item].set_title('coeff = %s\nautocorr = %f, timescale = %f' % ( str(coeffs[item]), autocorr(traj_PCs[item], lag_time), -lag_time / np.log(autocorr(traj_PCs[item], lag_time)))) fig.suptitle(item_a.split('/')[-1] + '\ncoor = %.03f' % CV_corr) fig.tight_layout() fig.set_size_inches(12, 5) return PC_states ###Output _____no_output_____ ###Markdown kTICA ###Code from temp_ktica import * from sklearn.model_selection import train_test_split, KFold from sklearn.cluster import KMeans # KMeans clustering to generate landmarks for kernel TICA n_landmarks = 100 kmeans = KMeans(init='k-means++', n_clusters=n_landmarks, n_init=10) kmeans.fit(traj[::10]) sigma = 0.05 ktica = Kernel_tica(3, lag_time=100, gamma=1. / (2 * sigma * sigma), shrinkage=None, n_components_nystroem=100, landmarks = kmeans.cluster_centers_ ) ktica.fit([traj]) # get kernel TICA projections and timescales ktica_proj = ktica.transform([x_list.reshape(100, 1)])[0] ktica_proj *= (-np.sign(ktica_proj[0])) ktica_timescales = ktica._tica.timescales ###Output _____no_output_____ ###Markdown HDE ###Code sys.path.append('../') from hde import HDE from keras.callbacks import EarlyStopping earlyStopping = EarlyStopping(monitor='val_loss', patience=50, verbose=1, mode='min', restore_best_weights=True) hde = HDE(1, n_components=3, lag_time=lag_time, dropout_rate=0, batch_size=50000, n_epochs=100, hidden_size=100, validation_split=0.2, batch_normalization=True, learning_rate = 0.01, callbacks=[earlyStopping]) # hde.r_degree = 10 # use VAMP-10 score for pre-training # hde.n_epochs = 20 # hde.fit(traj) # hde._recompile = True hde.r_degree = 2 # switch back to VAMP-2 score for training hde.n_epochs = 50 hde.fit(traj) hde_proj = hde.transform(x_list.reshape(-1, 1)) hde_proj *= (-np.sign(hde_proj[0])) hde_timescales = hde.timescales_ # plot learned eigenfunctions for KTICA and HDE def plot_CV_state_with_coeff(CVs_state_list_list, row_label_list, timescale_list=None): num_list = len(CVs_state_list_list) num_states = len(CVs_state_list_list[0]) fig, axes = plt.subplots(num_states, num_list) for index_list in range(num_list): CVs_state_list = CVs_state_list_list[index_list] for item in range(num_states): CVs_state_list[item] = normalize_state(CVs_state_list[item], equi_dist) for _1, item in enumerate(CVs_state_list): ax = axes[_1, index_list] ax.plot(x_list, item, label='$\\tilde{\psi}_%d\ (t_%d = %d)$' % ( _1 + 1, _1 + 1, timescale_list[index_list][_1]), color='blue') ax.plot(x_list, eigenstates[_1 + 1], label='$\psi_%d\ (t_%d = %d)$' % ( _1 + 1, _1 + 1, th_timescales[_1]), linestyle='dashed', color='red') legend = ax.legend(loc='best', shadow=True, fontsize='x-large') coeff_list = get_decompose_coeff(item, eigenstates[:4], equi_dist) title_text = '$\\tilde{\psi}_%d = %s \psi_0 + %s \psi_1 + %s \psi_2 + %s \psi_3$' % ( _1+1, coeff_list[0], coeff_list[1], coeff_list[2], coeff_list[3]) if _1 == 0: ax.set_title(row_label_list[index_list], fontsize=30) if _1 > 1: ax.set_xlabel('x', fontsize = temp_font_size) ax.axes.get_xaxis().set_ticks([]) ax.axes.get_yaxis().set_ticks([]) plt.subplots_adjust(hspace=0.1) fig.set_size_inches(5 * num_list, num_states * 5 + 0.5) return fig fig = plot_CV_state_with_coeff([ktica_proj.T, hde_proj.T], ['kTICA', 'HDE'], [ktica_timescales, hde_timescales]) ###Output /home/kengyangyao/.anaconda2/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:14: ComplexWarning: Casting complex values to real discards the imaginary part
02_machine_learning_regression/week_4/quiz_2.ipynb
###Markdown Regression Week 4: Ridge Regression (gradient descent) In this notebook, you will implement ridge regression via gradient descent. You will:* Convert an SFrame into a Numpy array* Write a Numpy function to compute the derivative of the regression weights with respect to a single feature* Write gradient descent function to compute the regression weights given an initial weight vector, step size, tolerance, and L2 penalty Fire up Turi Create Make sure you have the latest version of Turi Create ###Code import turicreate as tc ###Output _____no_output_____ ###Markdown Load in house sales dataDataset is from house sales in King County, the region where the city of Seattle, WA is located. ###Code sales = tc.SFrame('home_data.sframe/') ###Output _____no_output_____ ###Markdown If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the first notebook of Week 2. For this notebook, however, we will work with the existing features. Import useful functions from previous notebook As in Week 2, we convert the SFrame into a 2D Numpy array. Copy and paste `get_numpy_data()` from the second notebook of Week 2. ###Code import numpy as np # note this allows us to refer to numpy as np instead def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) ###Output _____no_output_____ ###Markdown Also, copy and paste the `predict_output()` function to compute the predictions for an entire matrix of features given the matrix and the weights: ###Code def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a # corresponding numpy array create the predictions vector by using np.dot() predictions = np.dot(feature_matrix, weights) return(predictions) ###Output _____no_output_____ ###Markdown Computing the Derivative We are now going to move to computing the derivative of the regression cost function. Recall that the cost function is the sum over the data points of the squared difference between an observed output and a predicted output, plus the L2 penalty term.```Cost(w)= SUM[ (prediction - output)^2 ]+ l2_penalty*(w[0]^2 + w[1]^2 + ... + w[k]^2).```Since the derivative of a sum is the sum of the derivatives, we can take the derivative of the first part (the RSS) as we did in the notebook for the unregularized case in Week 2 and add the derivative of the regularization part. As we saw, the derivative of the RSS with respect to `w[i]` can be written as: ```2*SUM[ error*[feature_i] ].```The derivative of the regularization term with respect to `w[i]` is:```2*l2_penalty*w[i].```Summing both, we get```2*SUM[ error*[feature_i] ] + 2*l2_penalty*w[i].```That is, the derivative for the weight for feature i is the sum (over data points) of 2 times the product of the error and the feature itself, plus `2*l2_penalty*w[i]`. **We will not regularize the constant.** Thus, in the case of the constant, the derivative is just twice the sum of the errors (without the `2*l2_penalty*w[0]` term).Recall that twice the sum of the product of two vectors is just twice the dot product of the two vectors. Therefore the derivative for the weight for feature_i is just two times the dot product between the values of feature_i and the current errors, plus `2*l2_penalty*w[i]`.With this in mind complete the following derivative function which computes the derivative of the weight given the value of the feature (over all data points) and the errors (over all data points). To decide when to we are dealing with the constant (so we don't regularize it) we added the extra parameter to the call `feature_is_constant` which you should set to `True` when computing the derivative of the constant and `False` otherwise. ###Code def feature_derivative_ridge(errors, feature, weight, l2_penalty, feature_is_constant): # If feature_is_constant is True, derivative is twice the dot product of errors and feature if feature_is_constant: derivative = 2 * np.dot(errors, feature) # Otherwise, derivative is twice the dot product plus 2*l2_penalty*weight else: derivative = 2 * np.dot(errors, feature) + 2 * l2_penalty * weight return derivative ###Output _____no_output_____ ###Markdown To test your feature derivartive run the following: ###Code (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') my_weights = np.array([1., 10.]) test_predictions = predict_output(example_features, my_weights) errors = test_predictions - example_output # prediction errors # next two lines should print the same values print(feature_derivative_ridge(errors, example_features[:,1], my_weights[1], 1, False)) print(np.sum(errors * example_features[:,1]) * 2 + 20.) print() # next two lines should print the same values print(feature_derivative_ridge(errors, example_features[:,0], my_weights[0], 1, True)) print(np.sum(errors) * 2.) ###Output -56554166782350.0 -56554166782350.0 -22446749336.0 -22446749336.0 ###Markdown Gradient Descent Now we will write a function that performs a gradient descent. The basic premise is simple. Given a starting point we update the current weights by moving in the negative gradient direction. Recall that the gradient is the direction of *increase* and therefore the negative gradient is the direction of *decrease* and we're trying to *minimize* a cost function. The amount by which we move in the negative gradient *direction* is called the 'step size'. We stop when we are 'sufficiently close' to the optimum. Unlike in Week 2, this time we will set a **maximum number of iterations** and take gradient steps until we reach this maximum number. If no maximum number is supplied, the maximum should be set 100 by default. (Use default parameter values in Python.)With this in mind, complete the following gradient descent function below using your derivative function above. For each step in the gradient descent, we update the weight for each feature before computing our stopping criteria. ###Code def ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, l2_penalty, max_iterations=100): print(f'Starting gradient descent with l2_penalty = {l2_penalty}') weights = np.array(initial_weights) # make sure it's a numpy array iteration = 0 # iteration counter print_frequency = 1 # for adjusting frequency of debugging output #while not reached maximum number of iterations: while iteration != max_iterations: iteration += 1 # increment iteration counter ### === code section for adjusting frequency of debugging output. === if iteration == 10: print_frequency = 10 if iteration == 100: print_frequency = 100 if iteration % print_frequency == 0: print(f'Iteration = {iteration}') ### === end code section === # compute the predictions based on feature_matrix and weights using your predict_output() function predictions = predict_output(feature_matrix, weights) # compute the errors as predictions - output errors = predictions - output # from time to time, print the value of the cost function if iteration % print_frequency == 0: print(f'Cost function = {np.dot(errors, errors) + l2_penalty * (np.dot(weights, weights) - weights[0]**2)}') for i in range(len(weights)): # loop over each weight # Recall that feature_matrix[:,i] is the feature column associated with weights[i] # compute the derivative for weight[i]. #(Remember: when i=0, you are computing the derivative of the constant!) if i: derivative = feature_derivative_ridge(errors, feature_matrix[:, i], weights[i], l2_penalty, False) else: derivative = feature_derivative_ridge(errors, feature_matrix[:, i], weights[i], l2_penalty, True) # subtract the step size times the derivative from the current weight weights[i] = weights[i] - step_size * derivative print(f'Done with gradient descent at iteration {iteration}') print(f'Learned weights = {weights}') return weights ###Output _____no_output_____ ###Markdown Visualizing effect of L2 penalty The L2 penalty gets its name because it causes weights to have small L2 norms than otherwise. Let's see how large weights get penalized. Let us consider a simple model with 1 feature: ###Code simple_features = ['sqft_living'] my_output = 'price' ###Output _____no_output_____ ###Markdown Let us split the dataset into training set and test set. Make sure to use `seed=0`: ###Code train_data, test_data = sales.random_split(0.8,seed=0) ###Output _____no_output_____ ###Markdown In this part, we will only use `'sqft_living'` to predict `'price'`. Use the `get_numpy_data` function to get a Numpy versions of your data with only this feature, for both the `train_data` and the `test_data`. ###Code (simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output) (simple_test_feature_matrix, test_output) = get_numpy_data(test_data, simple_features, my_output) ###Output _____no_output_____ ###Markdown Let's set the parameters for our optimization: ###Code initial_weights = np.array([0., 0.]) step_size = 1e-12 max_iterations=1000 ###Output _____no_output_____ ###Markdown First, let's consider no regularization. Set the `l2_penalty` to `0.0` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`simple_weights_0_penalty`we'll use them later. ###Code simple_weights_0_penalty = ridge_regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, 0.0, max_iterations) ###Output Starting gradient descent with l2_penalty = 0.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 5394267213135526.0 Iteration = 3 Cost function = 4023237736501158.0 Iteration = 4 Cost function = 3101256183922414.0 Iteration = 5 Cost function = 2481247644505114.0 Iteration = 6 Cost function = 2064308077891941.2 Iteration = 7 Cost function = 1783927097372279.8 Iteration = 8 Cost function = 1595378203154872.0 Iteration = 9 Cost function = 1468583991054997.0 Iteration = 10 Cost function = 1383318191484981.8 Iteration = 20 Cost function = 1211562140496238.8 Iteration = 30 Cost function = 1208313762678823.5 Iteration = 40 Cost function = 1208252326252870.0 Iteration = 50 Cost function = 1208251163612919.8 Iteration = 60 Cost function = 1208251140915263.0 Iteration = 70 Cost function = 1208251139777036.0 Iteration = 80 Cost function = 1208251139046557.0 Iteration = 90 Cost function = 1208251138323789.2 Iteration = 100 Cost function = 1208251137601167.8 Iteration = 200 Cost function = 1208251130374984.5 Iteration = 300 Cost function = 1208251123148810.0 Iteration = 400 Cost function = 1208251115922643.2 Iteration = 500 Cost function = 1208251108696485.0 Iteration = 600 Cost function = 1208251101470335.0 Iteration = 700 Cost function = 1208251094244193.2 Iteration = 800 Cost function = 1208251087018059.8 Iteration = 900 Cost function = 1208251079791934.5 Iteration = 1000 Cost function = 1208251072565817.5 Done with gradient descent at iteration 1000 Learned weights = [-1.63113501e-01 2.63024369e+02] ###Markdown Next, let's consider high regularization. Set the `l2_penalty` to `1e11` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`simple_weights_high_penalty`we'll use them later. ###Code simple_weights_high_penalty = ridge_regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, 1e11, max_iterations) ###Output Starting gradient descent with l2_penalty = 100000000000.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 5618303898412631.0 Iteration = 3 Cost function = 4920613278115385.0 Iteration = 4 Cost function = 4652381942612294.0 Iteration = 5 Cost function = 4549258764014157.0 Iteration = 6 Cost function = 4509612390882265.0 Iteration = 7 Cost function = 4494370050281118.5 Iteration = 8 Cost function = 4488509984030221.5 Iteration = 9 Cost function = 4486256988531770.0 Iteration = 10 Cost function = 4485390752674687.5 Iteration = 20 Cost function = 4484848868034300.0 Iteration = 30 Cost function = 4484847880479026.0 Iteration = 40 Cost function = 4484846931081658.0 Iteration = 50 Cost function = 4484845981687379.0 Iteration = 60 Cost function = 4484845032293500.0 Iteration = 70 Cost function = 4484844082900019.0 Iteration = 80 Cost function = 4484843133506938.0 Iteration = 90 Cost function = 4484842184114254.5 Iteration = 100 Cost function = 4484841234721970.5 Iteration = 200 Cost function = 4484831740821062.0 Iteration = 300 Cost function = 4484822246960036.0 Iteration = 400 Cost function = 4484812753138891.0 Iteration = 500 Cost function = 4484803259357624.0 Iteration = 600 Cost function = 4484793765616238.0 Iteration = 700 Cost function = 4484784271914732.0 Iteration = 800 Cost function = 4484774778253106.0 Iteration = 900 Cost function = 4484765284631358.5 Iteration = 1000 Cost function = 4484755791049491.5 Done with gradient descent at iteration 1000 Learned weights = [ 9.76730383 124.57217565] ###Markdown This code will plot the two learned models. (The blue line is for the model with no regularization and the red line is for the one with high regularization.) ###Code import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,9)) plt.plot(simple_feature_matrix, output, 'k.') plt.plot(simple_feature_matrix,predict_output(simple_feature_matrix, simple_weights_0_penalty),'b-') plt.plot(simple_feature_matrix,predict_output(simple_feature_matrix, simple_weights_high_penalty),'r-') ###Output _____no_output_____ ###Markdown Compute the RSS on the TEST data for the following three sets of weights:1. The initial weights (all zeros)2. The weights learned with no regularization3. The weights learned with high regularizationWhich weights perform best? ###Code prediction_simple_zero = predict_output(simple_test_feature_matrix, initial_weights) errors_simple_zero = prediction_simple_zero - test_output rss_simple_zero = sum(errors_simple_zero * errors_simple_zero) prediction_simple_no_reg = predict_output(simple_test_feature_matrix, simple_weights_0_penalty) errors_simple_no_reg = prediction_simple_no_reg - test_output rss_simple_no_reg = sum(errors_simple_no_reg * errors_simple_no_reg) prediction_simple_reg = predict_output(simple_test_feature_matrix, simple_weights_high_penalty) errors_simple_reg = prediction_simple_reg - test_output rss_simple_reg = sum(errors_simple_reg * errors_simple_reg) ###Output _____no_output_____ ###Markdown ***QUIZ QUESTIONS***1. What is the value of the coefficient for `sqft_living` that you learned with no regularization, rounded to 1 decimal place? What about the one with high regularization?2. Comparing the lines you fit with the with no regularization versus high regularization, which one is steeper?3. What are the RSS on the test data for each of the set of weights above (initial, no regularization, high regularization)? ###Code print(f'Weight no regularization = {simple_weights_0_penalty[1]:.1f}') print(f'Weight regularization = {simple_weights_high_penalty[1]:.1f}') print(f'RSS initial = {rss_simple_zero:.2e}') print(f'RSS no regularization = {rss_simple_no_reg:.2e}') print(f'RSS regularization = {rss_simple_reg:.2e}') ###Output RSS initial = 1.78e+15 RSS no regularization = 2.76e+14 RSS regularization = 6.95e+14 ###Markdown Running a multiple regression with L2 penalty Let us now consider a model with 2 features: `['sqft_living', 'sqft_living15']`. First, create Numpy versions of your training and test data with these two features. ###Code model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors. my_output = 'price' (feature_matrix, output) = get_numpy_data(train_data, model_features, my_output) (test_feature_matrix, test_output) = get_numpy_data(test_data, model_features, my_output) ###Output _____no_output_____ ###Markdown We need to re-inialize the weights, since we have one extra parameter. Let us also set the step size and maximum number of iterations. ###Code initial_weights = np.array([0.0, 0.0, 0.0]) step_size = 1e-12 max_iterations = 1000 ###Output _____no_output_____ ###Markdown First, let's consider no regularization. Set the `l2_penalty` to `0.0` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`multiple_weights_0_penalty` ###Code multiple_weights_0_penalty = ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, 0.0, max_iterations) ###Output Starting gradient descent with l2_penalty = 0.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 4056752331500972.0 Iteration = 3 Cost function = 2529565114333592.5 Iteration = 4 Cost function = 1838556694275926.8 Iteration = 5 Cost function = 1525675575208603.5 Iteration = 6 Cost function = 1383789498674794.0 Iteration = 7 Cost function = 1319232606276634.5 Iteration = 8 Cost function = 1289648872028921.0 Iteration = 9 Cost function = 1275884724079266.8 Iteration = 10 Cost function = 1269278807577156.2 Iteration = 20 Cost function = 1257812386316614.5 Iteration = 30 Cost function = 1251954571266786.0 Iteration = 40 Cost function = 1246755423155437.5 Iteration = 50 Cost function = 1242139508748821.0 Iteration = 60 Cost function = 1238041401137187.8 Iteration = 70 Cost function = 1234403013463993.2 Iteration = 80 Cost function = 1231172774976820.2 Iteration = 90 Cost function = 1228304900059555.0 Iteration = 100 Cost function = 1225758739263726.0 Iteration = 200 Cost function = 1211738881421532.8 Iteration = 300 Cost function = 1207473080962631.8 Iteration = 400 Cost function = 1206175125770959.8 Iteration = 500 Cost function = 1205780190233995.8 Iteration = 600 Cost function = 1205660014471675.5 Iteration = 700 Cost function = 1205623439252682.0 Iteration = 800 Cost function = 1205612300984401.0 Iteration = 900 Cost function = 1205608902360341.5 Iteration = 1000 Cost function = 1205607858660559.5 Done with gradient descent at iteration 1000 Learned weights = [ -0.35743482 243.0541689 22.41481594] ###Markdown Next, let's consider high regularization. Set the `l2_penalty` to `1e11` and run your ridge regression algorithm to learn the weights of your model. Call your weights:`multiple_weights_high_penalty` ###Code multiple_weights_high_penalty = ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, 1e11, max_iterations) ###Output Starting gradient descent with l2_penalty = 100000000000.0 Iteration = 1 Cost function = 7433051851026171.0 Iteration = 2 Cost function = 4460489790285891.0 Iteration = 3 Cost function = 3796674468844608.0 Iteration = 4 Cost function = 3648319530437361.0 Iteration = 5 Cost function = 3615091103216102.0 Iteration = 6 Cost function = 3607602742514732.0 Iteration = 7 Cost function = 3605886322161656.0 Iteration = 8 Cost function = 3605474874533295.0 Iteration = 9 Cost function = 3605365167765576.0 Iteration = 10 Cost function = 3605329402184649.0 Iteration = 20 Cost function = 3605294281022695.0 Iteration = 30 Cost function = 3605293537267099.0 Iteration = 40 Cost function = 3605293082749905.5 Iteration = 50 Cost function = 3605292631106357.0 Iteration = 60 Cost function = 3605292179491501.0 Iteration = 70 Cost function = 3605291727877070.0 Iteration = 80 Cost function = 3605291276262784.5 Iteration = 90 Cost function = 3605290824648642.0 Iteration = 100 Cost function = 3605290373034643.0 Iteration = 200 Cost function = 3605285856902500.0 Iteration = 300 Cost function = 3605281340784635.0 Iteration = 400 Cost function = 3605276824681046.0 Iteration = 500 Cost function = 3605272308591735.0 Iteration = 600 Cost function = 3605267792516700.0 Iteration = 700 Cost function = 3605263276455942.0 Iteration = 800 Cost function = 3605258760409461.0 Iteration = 900 Cost function = 3605254244377257.0 Iteration = 1000 Cost function = 3605249728359329.0 Done with gradient descent at iteration 1000 Learned weights = [ 6.7429658 91.48927361 78.43658768] ###Markdown Compute the RSS on the TEST data for the following three sets of weights:1. The initial weights (all zeros)2. The weights learned with no regularization3. The weights learned with high regularizationWhich weights perform best? ###Code prediction_multiple_zero = predict_output(test_feature_matrix, initial_weights) errors_multiple_zero = prediction_multiple_zero - test_output rss_multiple_zero = sum(errors_multiple_zero * errors_multiple_zero) prediction_multiple_no_reg = predict_output(test_feature_matrix, multiple_weights_0_penalty) errors_multiple_no_reg = prediction_multiple_no_reg - test_output rss_multiple_no_reg = sum(errors_multiple_no_reg * errors_multiple_no_reg) prediction_multiple_reg = predict_output(test_feature_matrix, multiple_weights_high_penalty) errors_multiple_reg = prediction_multiple_reg - test_output rss_multiple_reg = sum(errors_multiple_reg * errors_multiple_reg) print(f'RSS initial = {rss_multiple_zero:.2e}') print(f'RSS no regularization = {rss_multiple_no_reg:.2e}') print(f'RSS regularization = {rss_multiple_reg:.2e}') ###Output RSS initial = 1.78e+15 RSS no regularization = 2.74e+14 RSS regularization = 5.00e+14 ###Markdown Predict the house price for the 1st house in the test set using the no regularization and high regularization models. (Remember that python starts indexing from 0.) How far is the prediction from the actual price? Which weights perform best for the 1st house? ###Code prediction_multiple_no_reg[0] prediction_multiple_reg[0] test_output[0] ###Output _____no_output_____
code/00-Configuration.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License. ###Code # Import Workspace import os # import dotenv from azureml.core import Workspace, Datastore from azureml.exceptions import ProjectSystemException # _ = dotenv.load_dotenv('.env') ###Output _____no_output_____ ###Markdown Create or Import Azure Machine Learning Workspace ###Code # Fetch Workspace Name, Resource Group and Subscription ID from environment variables # If these aren't defined as Env Vars, then replace the "None" entries below WORKSPACE_NAME = os.environ.get('AML_WORKSPACE', None) RESOURCE_GROUP = os.environ.get('AML_RG', None) SUBSCRIPTION_ID = os.environ.get('AML_SUB_ID', None) REGION_NAME = os.environ.get('AML_REGION', None) try: ws = Workspace(subscription_id=SUBSCRIPTION_ID, resource_group=RESOURCE_GROUP, workspace_name=WORKSPACE_NAME) ws.write_config() except ProjectSystemException: print("Workspace Not Found - please create workspace using code below") print() print('Workspace Name: \t', WORKSPACE_NAME) print('Resource Group: \t', RESOURCE_GROUP) print('Subscription ID: \t', SUBSCRIPTION_ID) # # If the above code fails, uncomment this code block to create a new Workspace # ws = Workspace.create(subscription_id=SUBSCRIPTION_ID, # resource_group=RESOURCE_GROUP, # name=WORKSPACE_NAME, # location=REGION_NAME) # ws.write_config() ws = Workspace.from_config() ###Output _____no_output_____ ###Markdown Create CPU ClusterWe can create a CPU-based AML Managed Compute Cluster ###Code from azureml.core.compute import AmlCompute cpu_cluster_name = 'cpu-cluster-west' if ws.compute_targets.get(cpu_cluster_name): print(f"'{cpu_cluster_name}' found. Skipping cluster creation") ct = ws.compute_targets[cpu_cluster_name] else: print(f"'{cpu_cluster_name}' not found. Creating a new AML Manged Compute cluster.") cpu_config = AmlCompute.provisioning_configuration(vm_size='Standard_DS13_v2', vm_priority='dedicated', min_nodes=0, max_nodes=5, idle_seconds_before_scaledown=360, tags={'project_name': "lab-demo"}, description="An AML Managed compute cluster leveraging DS Series VMs" ) ct = AmlCompute.create(workspace=ws, name=cpu_cluster_name, provisioning_configuration=cpu_config) ct.wait_for_completion(show_output=True) # # If you would like to see the supported VM sizes, you can get a list with the supported_vmsizes method # AmlCompute.supported_vmsizes(ws) ###Output _____no_output_____ ###Markdown Create GPU Cluster ###Code gpu_cluster_name = 'gpu-cluster' if ws.compute_targets.get(gpu_cluster_name): print(f"'{gpu_cluster_name}' found. Skipping cluster creation") ct = ws.compute_targets[gpu_cluster_name] else: print(f"'{gpu_cluster_name}' not found. Creating a new AML Manged Compute cluster.") gpu_config = AmlCompute.provisioning_configuration(vm_size='Standard_NC6', vm_priority='dedicated', min_nodes=0, max_nodes=5, idle_seconds_before_scaledown=360, tags={'project_name': "lab-demo"}, description="An AML Managed compute cluster leveraging NC Series VMs" ) gpu_ct = AmlCompute.create(workspace=ws, name=gpu_cluster_name, provisioning_configuration=gpu_config) gpu_ct.wait_for_completion(show_output=True) # Verify clusters are created ct = ws.compute_targets['cpu-cluster'] cs = ct.get_status() cs.serialize() ###Output _____no_output_____ ###Markdown Attach Data Store ###Code BLOB_CONTAINER = os.environ.get("BLOB_CONTAINER_NAME", "diabetes") BLOB_ACCOUNT = os.environ.get("BLOB_ACCT_NAME", "publicmldataeastus") BLOB_ACCT_KEY = os.environ.get("BLOB_ACCT_KEY", "JzbwX/fvm/bjlQCkSfKGaxhVDuDAsQ22wZNwf6ngE3l/F/ArzfwJQDuJToT899dwwtVSpgrAClFR5aZ3JSvqwQ==") datastore_name = 'diabetes' if ws.datastores.get(datastore_name): print(f"'{datastore_name}' datastore found. Skipping registration") else: print(f"'{datastore_name}' datastore not found. Registering with Workspace") _ = Datastore.register_azure_blob_container(workspace=ws, datastore_name='diabetes', container_name=BLOB_CONTAINER, account_name=BLOB_ACCOUNT, account_key=BLOB_ACCT_KEY) datastore_name = 'hymenoptera' if ws.datastores.get(datastore_name): print(f"'{datastore_name}' datastore found. Skipping registration") else: print(f"'{datastore_name}' datastore not found. Registering with Workspace") _ = Datastore.register_azure_blob_container(workspace=ws, datastore_name='hymenoptera', container_name='hymenoptera', account_name=BLOB_ACCOUNT, account_key=BLOB_ACCT_KEY) ws.datastores ###Output _____no_output_____
_build/jupyter_execute/contents/plot/effective porosity.ipynb
###Markdown Effective porosity plot after David and DeWiest (1966) ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as mtick df = pd.read_csv("dataset.csv") df.head(5) fig = plt.figure(figsize=(10,6)) ax = plt.subplot() ax.plot(df["A"], df["B"], "-", label="effective porosity") ax.plot(df["C"], df["D"], "--", label="(Well sorted)") ax.plot(df["E"], df["F"],"-.", label="Total porosity") ax.plot(df["G"], df["H"],"+-", label="(well sorted)") ax.plot(df["I"], df["J"],'*-', label="specific retention") plt.legend() ax.set_xscale("log") ax.set_xlim(0.0001, 200) ax.set_ylim(0,65) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' yticks = mtick.FormatStrFormatter(fmt) ax.yaxis.set_major_formatter(yticks) #x_fmt = mtick.FormatStrFormatter('%e') #ax.xaxis.set_major_formatter(x_fmt) ax.set_ylabel("Porosity") ax.set_xlabel("Particle size (mm) ") ax2 = ax.twiny() # add second x-axis ax2.xaxis.set_ticks_position("bottom") ax2.xaxis.set_label_position("bottom") ax2.spines["bottom"].set_position(("axes", -0.15)) ax2.set_frame_on(True) #ax2.patch.set_visible(False) ax2.set_frame_on(True) ax2.tick_params(direction='out', length= 15, width=2, colors='r', grid_color='r', grid_alpha=0.5, axis='x', rotation=90, which="minor") ax2.set_xscale("log") vals = [0.0001, 0.002, 0.06, 2.0, 63, 1000] ax2.set_xticks(vals, minor=True) ax2.set_xticklabels(vals, minor=True) ; ax2.set_xlim(0.0001, 200) plt.setp(ax2.get_xmajorticklabels(), visible=False); # remove the major xaxis label fig.text(0.15,-0.02 , 'Clay', ha='left', va='top', size=12, fontweight='bold') fig.text(0.35,-0.02 , 'Silt', ha='left', va='top', size=12, fontweight='bold') fig.text(0.52,-0.02 , 'Sand', ha='left', va='top', size=12, fontweight='bold') fig.text(0.7,-0.02 , 'Gravel', ha='left', va='top', size=12, fontweight='bold') df = pd.read_csv("finaldf.csv") df.head(5) ###Output _____no_output_____
Desarrollo_Jupyter/ecuacion_difusion_and_burguers.ipynb
###Markdown Ecuación de difusión en 1-D La ecuación de difusión unidimensional está dada por: $$\frac{\partial u}{\partial t}= \nu \frac{\partial^2 u}{\partial x^2}$$La derivada de segundo orden se puede representar geométricamente como la línea tangente a la curva dada por la primera derivada. Discretizaremos la derivada de segundo orden con un esquema de Diferencia Central: una combinación de Diferencia hacia adelante y Diferencia hacia atrás de la primera derivada. Considere la expansión de Taylor de $ u_{i + 1} $ y $ u_{i-1} $ alrededor de $ u_i $:$u_{i+1} = u_i + \Delta x \frac{\partial u}{\partial x}\bigg|_i + \frac{\Delta x^2}{2} \frac{\partial ^2 u}{\partial x^2}\bigg|_i + \frac{\Delta x^3}{3!} \frac{\partial ^3 u}{\partial x^3}\bigg|_i + O(\Delta x^4)$$u_{i-1} = u_i - \Delta x \frac{\partial u}{\partial x}\bigg|_i + \frac{\Delta x^2}{2} \frac{\partial ^2 u}{\partial x^2}\bigg|_i - \frac{\Delta x^3}{3!} \frac{\partial ^3 u}{\partial x^3}\bigg|_i + O(\Delta x^4)$ Si sumamos estas dos expansiones, puede ver que los términos de las derivadas impares se cancelarán entre sí. Si descuidamos cualquier término de $ O (\Delta x ^ 4) $ o superior (y en realidad, esos son muy pequeños), entonces podemos reorganizar la suma de estas dos expansiones para resolver nuestra segunda derivada.$$u_{i+1} + u_{i-1} = 2u_i+\Delta x^2 \frac{\partial ^2 u}{\partial x^2}\bigg|_i + O(\Delta x^4)$$Así,$$\frac{\partial ^2 u}{\partial x^2}=\frac{u_{i+1}-2u_{i}+u_{i-1}}{\Delta x^2} + O(\Delta x^4)$$ Así, reemplazando en la ecuación de Difusión$$\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\nu\frac{u_{i+1}^{n}-2u_{i}^{n}+u_{i-1}^{n}}{\Delta x^2}$$Como antes, notamos que una vez que tenemos una condición inicial, la única incógnita es $ u_ {i} ^ {n + 1} $, por lo que reorganizamos la ecuación resolviendo nuestra incógnita:$$u_{i}^{n+1}=u_{i}^{n}+\frac{\nu\Delta t}{\Delta x^2}(u_{i+1}^{n}-2u_{i}^{n}+u_{i-1}^{n})$$ ###Code import numpy as np import matplotlib.pyplot as plt import time, sys %matplotlib inline ###Output _____no_output_____ ###Markdown Retomemos las funciones para el dato inicial. ###Code nx = 41 dx = 2 / (nx - 1) nt = 20 #el número de pasos de tiempo que queremos calcular nu = 0.3 #el valor de viscocidad sigma = .2 dt = sigma * dx**2 / nu #note la diferencia... x=np.arange(0.0,2+dx,dx) dt*nt #es el tiempo final, al terminar la iteración def f1(nx): #dx = 2 / (nx-1) u = np.ones(nx) #numpy función ones() u[int(.5 / dx):int(1 / dx + 1)] = 2 #configurar u = 2 entre 0.5 y 1 y u = 1 para todo lo demás según nuestra CI #print(u) return u def f1_var(x): u=np.piecewise(x,[x<0.5,np.abs(x-0.75)<=0.25,x>1],[lambda x:1,lambda x: 2,lambda x:1]) return u def f2(nx): #dx = 2 / (nx-1) L=2 n=4 Fi=0.2#ángulo de fase temporal c=10 #velocidad de la onda A=0.5#amplitud máxima, relacionada con la intensidad del sonido t=0.18 #instantánea en el tiempo t segundos x=np.arange(0.0,L+dx,dx) u=A*np.sin(n*np.pi*c*0.005*t/L+Fi)*np.sin(n*np.pi*x/L)#aquí definimos la función return u def mostrar_imagen(u): plt.plot(np.linspace(0, 2, nx), u); ###Output _____no_output_____ ###Markdown Discretizamos la ecuación de Difusión ED ###Code def ED(u): for n in range(nt): #iterando en el tiempo un = u.copy() for i in range(1, nx - 1): #iterando en el espacio u[i] = un[i] + nu * dt / dx**2 * (un[i+1] - 2 * un[i] + un[i-1]) return u u=ED(f1_var(x)) mostrar_imagen(u) u=ED(f2(nx)) mostrar_imagen(u) nx = 41 dx = 2 / (nx - 1) nt = 20 #el número de pasos de tiempo que queremos calcular nu = 0.3 #el valor de viscocidad sigma = .2 dt = sigma * dx**2 / nu #note la diferencia... x=np.arange(0.0,2+dx,dx) plt.figure(figsize=(18,12)) #como colocar un título general a un paquete plt.subplot(2, 2, 1) plt.plot(x,f1(nx),label=f' Velocidad inicial para f1') plt.legend(frameon=False) plt.subplot(2, 2, 2) plt.plot(x,ED(f1(nx)),label=f'Vel en t=0.5 para f1') plt.legend(frameon=False) plt.subplot(2, 2, 3) plt.plot(x,f2(nx),label=f' Velocidad inicial para f2') plt.legend(frameon=False) plt.subplot(2, 2, 4) plt.plot(x,ED(f2(nx)),label=f'Vel en t=0.5 para f2') plt.legend(frameon=False) plt.show() ###Output _____no_output_____ ###Markdown Ecuación de BurgersLa ecuación de Burgues (EB) en una dimensión espacial, es una combinación de la ecuación de convección no lineal y la ecuación de difusión. Vamos a detenernos y estudiar un poco esta ecuación por lo sorprendente que es y lo mucho que podemos aprender de esta pequeña ecaución.$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial ^2u}{\partial x^2}$$ Usando los pasos realizados en la discretización de la ECnL y la ED obtenemos: $$\frac{u_i^{n+1}-u_i^n}{\Delta t} + u_i^n \frac{u_i^n - u_{i-1}^n}{\Delta x} = \nu \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}$$De donde,$$u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$ Para examinar algunas propiedades interesantes de la ecuación de Burgers, es útil usar diferentes condiciones iniciales y de contorno de las que hemos estado usando para los pasos anteriores.Nuestra condición inicial para este problema será:\begin{eqnarray}u &=& -\frac{2 \nu}{\phi} \frac{\partial \phi}{\partial x} + 4 \\\\phi &=& \exp \bigg(\frac{-x^2}{4 \nu} \bigg) + \exp \bigg(\frac{-(x-2 \pi)^2}{4 \nu} \bigg)\end{eqnarray}Cuya solución analítica es dada por( Usando el método de separación de variables)\begin{eqnarray}u &=& -\frac{2 \nu}{\phi} \frac{\partial \phi}{\partial x} + 4 \\\\phi &=& \exp \bigg(\frac{-(x-4t)^2}{4 \nu (t+1)} \bigg) + \exp \bigg(\frac{-(x-4t -2 \pi)^2}{4 \nu(t+1)} \bigg)\end{eqnarray}Además, usaremos una condición de frontera (problema tipo Neumann)$$u(0) = u(2\pi).$$ La condición inicial que estamos usando para la ecuación de Burgers puede ser un poco difícil de evaluar a mano. La derivada $\frac{\partial \phi}{\partial x}$ no es demasiado difícil, pero sería fácil dejar caer un signo u olvidar un factor de $ x $ en alguna parte, así que vamos a usar SymPy para ayudarnos. [SymPy](http://sympy.org/en/) SymPy es la biblioteca matemática simbólica de Python. Tiene muchas de las mismas funciones matemáticas simbólicas que Mathematica con el beneficio adicional de que podemos traducir fácilmente sus resultados a nuestros cálculos de Python (también es gratuito y de código abierto). ###Code import sympy from sympy import init_printing init_printing(use_latex=True) #salidas renderizadas usando Latex ###Output _____no_output_____ ###Markdown Comience configurando variables simbólicas para las tres variables en nuestra condición inicial y luego escriba la ecuación completa para $ \phi $. Deberíamos obtener una versión bien renderizada de nuestra ecuación $ \phi $. ###Code x, nu, t = sympy.symbols('x nu t') phi = (sympy.exp(-(x - 4 * t)**2 / (4 * nu * (t + 1))) + sympy.exp(-(x - 4 * t - 2 * sympy.pi)**2 / (4 * nu * (t + 1)))) phi phiprimex = phi.diff(x) phiprimex phiprimexx = phiprimex.diff(x) phiprimexx phiprimet = phi.diff(t) phiprimet ###Output _____no_output_____ ###Markdown Ahora que tenemos la versión Pythonic de nuestra derivada, podemos terminar de escribir la ecuación de la condición inicial completa y luego traducirla a una expresión Python utilizable. Para esto, usaremos la función *lambdify*, que toma una ecuación simbólica SymPy y la convierte en una función invocable. ###Code from sympy.utilities.lambdify import lambdify u = -2 * nu * (phiprimex / phi) + 4 print(u) v = u.diff(t) + u * u.diff(x) - nu * u.diff(x,x) vfunc = lambdify((t, x, nu), v) print(vfunc(1, 4, 3)) ###Output 0.0 ###Markdown LambdifyPara lambdify esta expresión en una función utilizable, le decimos a lambdify qué variables solicitar y la función a la que queremos conectarlas. ###Code ufunc = lambdify((t, x, nu), u) print(ufunc(1, 4, 3)) ###Output 3.49170664206445 ###Markdown Ahora que tenemos configuradas las condiciones iniciales, podemos continuar y terminar de configurar el problema. Podemos generar la gráfica de la condición inicial usando nuestra función lambdify ###Code nx = 101 nt = 100 dx = 2 * np.pi / (nx - 1) nu = .07 dt = dx * nu x = np.linspace(0, 2 * np.pi, nx) def f3(t): x = np.linspace(0, 2 * np.pi, nx) un = np.empty(nx) u = np.asarray([ufunc(t, x0, nu) for x0 in x]) return u np.shape(f3(0)) np.shape(x) u = f3(0) plt.figure(figsize=(11, 7), dpi=100) plt.plot(x, u, marker='o', lw=2) plt.xlim([0, 2 * np.pi]) plt.ylim([0, 10]); ###Output _____no_output_____ ###Markdown Definitivamente, esta no es la función de sombrero con la que hemos estado tratando hasta ahora. Lo llamamos "función de diente de sierra". Sigamos adelante y veamos qué sucede. Condiciones de frontera periódicasUna de las grandes diferencias entre lo que habíamos hecho y este problema es el uso de condiciones de contorno *periódicas*. Si experimenta un poco con los lo hecho antes y hace que la simulación se ejecute más tiempo (aumentando `nt`), notará que la onda seguirá moviéndose hacia la derecha hasta que ya ni siquiera aparezca en la gráfica.Con condiciones de contorno periódicas, cuando un punto llega al lado derecho del marco, **se envuelve** de nuevo al frente del marco.Recuerde la discretización que resolvimos$$u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$¿Qué *significa* $ u_{i + 1} ^ n $ cuando $ i $ ya está al final del marco?Piense en esto por un minuto antes de continuar. ###Code u = f3(0) #Volvemos a crear la condición inicial def EB(u): for n in range(nt): un = u.copy() for i in range(nx-1): u[i] = un[i] - un[i] * dt / dx *(un[i] - un[i-1]) + nu * dt / dx**2 *\ (un[i+1] - 2 * un[i] + un[i-1]) u[-1] = u[0] return u u_analitica = np.asarray([ufunc(nt * dt, xi, nu) for xi in x]) u = f3(0) #Volvemos a crear la condición inicial def EB_profe(u): for n in range(nt): # el equivalente de np.roll es pandas es pd.DataFrame.shift (me parece) # En ese caso no asume periodicidad ! u_der = np.roll(u,-1) u_izq = np.roll(u,1) u = u - u *dt / dx * (u -u_izq) + nu * dt / dx**2 * (u_izq - 2*u +u_der) return u plt.figure(figsize=(11, 7), dpi=100) plt.plot(x,u, marker='o', lw=2, label='Inicial') plt.plot(x,EB(u), marker='o', lw=2, label='Computacional') plt.plot(x, u_analitica, label='Analítica') plt.xlim([0, 2 * np.pi]) plt.ylim([0, 10]) plt.legend(frameon = False); ###Output _____no_output_____ ###Markdown Jugando un poco con los parametros ###Code nx = 301 # tome diferentes valores y si vale 501? nt = 1000 # tome diferentes valores y si vale 500? dx = 2 * np.pi / (nx - 1) nu = .07 dt = dx * nu x = np.linspace(0, 2 * np.pi, nx) u = f3(0) #Volvemos a crear la condición inicial u_analytical = np.asarray([ufunc(nt * dt, xi, nu) for xi in x]) plt.figure(figsize=(11, 7), dpi=100) plt.plot(x,u, marker='o', lw=2, label='Inicial') plt.plot(x,EB(u), marker='o', lw=2, label='Computacional') plt.plot(x, u_analytical, label='Analítica') plt.xlim([0, 2 * np.pi]) plt.ylim([0, 10]) plt.legend(frameon = False); ###Output _____no_output_____
Chapter07/Exercise 7.02/Exercise 7.02.ipynb
###Markdown Text Summarization of After Twenty Years by O' Henry and Text Summarization of the first section of the Wikipedia article on Oscar Wilde using TextRank (gensim) http://www.gutenberg.org/cache/epub/2776/pg2776.txt After Twenty Years by O'Henry ###Code from gensim.summarization import summarize import wikipedia import re file_url_after_twenty=r'../data/ohenry/pg2776.txt' with open(file_url_after_twenty, 'r') as f: contents = f.read() start_string='AFTER TWENTY YEARS\n\n\n' end_string='\n\n\n\n\n\nLOST ON DRESS PARADE' text_after_twenty=contents[contents.find(start_string):contents.find(end_string)] text_after_twenty=text_after_twenty.replace('\n',' ') text_after_twenty=re.sub(r"\s+"," ",text_after_twenty) text_after_twenty summary_text_after_twenty=summarize(text_after_twenty, ratio=0.2) print(summary_text_after_twenty) summary_text_after_twenty=summarize(text_after_twenty, ratio=0.25) print(summary_text_after_twenty) ###Output Now and then you might see the lights of a cigar store or of an all-night lunch counter; but the majority of the doors belonged to business places that had long since been closed. About that long ago there used to be a restaurant where this store stands--'Big Joe' Brady's restaurant." "Until five years ago," said the policeman. "Twenty years ago to-night," said the man, "I dined here at 'Big Joe' Brady's with Jimmy Wells, my best chum, and the finest chap in the world. You couldn't have dragged Jimmy out of New York; he thought it was the only place on earth. Well, we agreed that night that we would meet here again exactly twenty years from that date and time, no matter what our conditions might be or from what distance we might have to come. We figured that in twenty years each of us ought to have our destiny worked out and our fortunes made, whatever they were going to be." "It sounds pretty interesting," said the policeman. I came a thousand miles to stand in this door to-night, and it's worth it if my old partner turns up." The waiting man pulled out a handsome watch, the lids of it set with small diamonds. "It was exactly ten o'clock when we parted here at the restaurant door." "Did pretty well out West, didn't you?" asked the policeman. If Jimmy is alive on earth he'll be here by that time. So long, officer." "Good-night, sir," said the policeman, passing on along his beat, trying doors as he went. And in the door of the hardware store the man who had come a thousand miles to fill an appointment, uncertain almost to absurdity, with the friend of his youth, smoked his cigar and waited. About twenty minutes he waited, and then a tall man in a long overcoat, with collar turned up to his ears, hurried across from the opposite side of the street. "Is that you, Jimmy Wells?" cried the man in the door. Well, well, well!--twenty years is a long time. How has the West treated you, old man?" "Bully; it has given me everything I asked it for. Come on, Bob; we'll go around to a place I know of, and have a good long talk about old times." The two men started up the street, arm in arm. It's from Patrolman Wells." The man from the West unfolded the little piece of paper handed him. His hand was steady when he began to read, but it trembled a little by the time he had finished. "_Bob: I was at the appointed place on time. When you struck the match to light your cigar I saw it was the face of the man wanted in Chicago. ###Markdown Wikipedia article on Oscar Wilde (summary section) ###Code #text_wiki_oscarwilde=wikipedia.summary("Oscar Wilde") file_url_wiki_oscarwilde=r'../data/oscarwilde/ow_wikipedia_sum.txt' with open(file_url_wiki_oscarwilde, 'r', encoding='latin-1') as f: text_wiki_oscarwilde = f.read() text_wiki_oscarwilde=text_wiki_oscarwilde.replace('\n',' ') text_wiki_oscarwilde=re.sub(r"\s+"," ",text_wiki_oscarwilde) text_wiki_oscarwilde summary_wiki_oscarwilde=summarize(text_wiki_oscarwilde, ratio=0.2) print(summary_wiki_oscarwilde) summary_wiki_oscarwilde=summarize(text_wiki_oscarwilde, ratio=0.25) print(summary_wiki_oscarwilde) ###Output He is best remembered for his epigrams and plays, his novel The Picture of Dorian Gray, and the circumstances of his criminal conviction for "gross indecency", imprisonment, and early death at age 46. As a spokesman for aestheticism, he tried his hand at various literary activities: he published a book of poems, lectured in the United States and Canada on the new "English Renaissance in Art" and interior decoration, and then returned to London where he worked prolifically as a journalist. Unperturbed, Wilde produced four society comedies in the early 1890s, which made him one of the most successful playwrights of late-Victorian London. At the height of his fame and success, while The Importance of Being Earnest (1895) was still being performed in London, Wilde had the Marquess of Queensberry prosecuted for criminal libel. During his last year in prison, he wrote De Profundis (published posthumously in 1905), a long letter which discusses his spiritual journey through his trials, forming a dark counterpoint to his earlier philosophy of pleasure.
Classification reports/.ipynb_checkpoints/Comparison_All_models-checkpoint.ipynb
###Markdown Comparisions for all work done till now ###Code import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt import seaborn as sb ###Output _____no_output_____ ###Markdown Now let's check for the Tags analysis we did Task: Tag AnalysisHere we have trained 2 model* One with top 5500 important tags and only with 100K datapoints.* Second one with 500 tags and with 3 times more weight to title. Because title contains more information about question. ###Code # We get the report of our analysis tags_5500 = pd.read_csv("report_5500tags_100k.csv") tags_500_title = pd.read_csv("report_3title_100k.csv") # Selecting average micro f1 score from report tags_5500_avg_values = tags_5500["f1-score"].iloc[5500] tags_500_title_avg_values = tags_500_title["f1-score"].iloc[500] # Now plot then to get better understanding y=[tags_5500_avg_values,tags_500_title_avg_values] sb.barplot(["5500 tags","500 tags with 3 time title"],y) plt.xlabel("Micro F1 score") plt.ylabel("values between 0 to 1 (Higher is better)") plt.title("Micro F1 Scores between both models") ###Output _____no_output_____ ###Markdown Now let's look at precision and recall value how they are changing ###Code tags_5500.head() tags_500_title.head() ###Output _____no_output_____
notebooks/2StateFolding.ipynb
###Markdown 2 State Folding Fitting Notebook---[Author] ERGM--- Fitting equilibrium & kinetic folding data to simple modelsIn this notebook we will show how equilbrium and kinetic folding data can be imported into a notebook and fitted to folding models--- Data FormatDatasets should be in .csv files where:1. The 1st row should contain the data titles2. the 1st column should contain the x-values 3. The subsequent columns should contain the y-values. 4. You can have different data sets in different .csv files or all in one (as long as there is only one x-value column).5. If you wish to perform global analyses on folding or equilibrium data, the datasets concerned must be in the same .csv6. Except for global analyses using the Ising model, here each dataset must have its own .csv ---Example .csv structure:[Urea] (M) | Fraction Unfolded FKBP12------------ | ------------------------0 | -0.002070.267 | 0.003070.533 | -0.006880.8 | 0.006051.07 | 0.00232... | ...--- First off lets load pyfolding & pyplot into this ipython notebook (pyplot allows us to plot more complex figures of our results): ###Code # use this command to tell Jupyter to plot figures inline with the text %matplotlib inline # import pyfolding, the pyfolding models and ising models import pyfolding from pyfolding import * # import the package for plotting, call it plt import matplotlib.pyplot as plt # import numpy as well import numpy as np ###Output _____no_output_____ ###Markdown --- Now, we need to load some data to analyse.I will import the equilibrium denaturation & unfolding/folding kinetics of wild-type FKBP12 from:`2. Main E.R.G., Fulton K.F. & Jackson S.E. (1999) “The folding pathway of FKBP12 and characterisation of the transition state.” Journal of Molecular Biology, 291, 429-444.` Considerations1. Kinetics data should be entered as rate constants ( *k* ) and NOT as the `log` of the rate constant.2. There can be no "empty" cells between data points in the .csv file for kinetics data. ###Code # start by loading a data set # arguments are "path", "filename" pth = "/Users/ergm/Dropbox/AlanLoweCollaboration/Datasets/FKBP12_Datasets/" Equilm_FKBP12 = pyfolding.read_equilibrium_data(pth,"Equilm_FKBP12.csv") Kinetics_FKBP12 = pyfolding.read_kinetic_data(pth,"Kinetics_FKBP12.csv") ###Output _____no_output_____ ###Markdown --- Lets plot the data. ###Code # now plot the equilm data Equilm_FKBP12.plot() # now the kinetics Kinetics_FKBP12.plot() ###Output _____no_output_____ ###Markdown --- OK, now we can try fitting the data to protein folding models. We will start by fitting the equilibrium data to a two state folding model, without sloping baslines (as the data has been processed as Fraction Unfolded). We can list the models in pyfolding: ###Code # Command imports pyfolding models from pyfolding.models import * # command lists models list_models() ###Output _____no_output_____ ###Markdown --- We can print out the model for viewing and then print out the variables of the model. ###Code # printing the equation for viewing models.TwoStateEquilibrium().print_equation() # as can be seen this model fits data that has been normalised to "faction folded" or "fraction unfolded". # Printing the model variables # The function has two parts: # part1 states the model you want to find about: "******()" # part2 prints the variables: ".fit_func_args" TwoStateEquilibrium().fit_func_args ###Output _____no_output_____ ###Markdown --- Or we can skip straight to fitting the data. ###Code # Set temperature to 25.00°C # (NOTE: Careful, this sets the temperature for all subsequent calculations) pyfolding.set_temperature(25.) #1st select the fit function and associates it with the data Equilm_FKBP12.fit_func = models.TwoStateEquilibrium #then fit it. #in the brackets you can define starting values for the variables - #input in the order printed above with the".fit_func_args' Equilm_FKBP12.fit(p0=[2,4]) ###Output Set temperature to 25.00°C (NOTE: Careful, this sets the temperature for all subsequent calculations) ================================================== Fitting results ================================================== ID: Equilm_FKBP12 Model: TwoStateEquilibrium Method: scipy.optimize.curve_fit m: 1.43404 ± 0.00003 d50: 3.86730 ± 0.00001 -------------------------------------------------- R^2: 0.99933 ================================================== ###Markdown --- We can print the resultant graph:We will need a slightly different command as we need to plot the data and the curve on the same graph ###Code Equilm_FKBP12.plot() # Set temperature to 25.00°C # (NOTE: Careful, this sets the temperature for all subsequent calculations) pyfolding.set_temperature(25.) # We can also fit the data to the Two State Equilm model that has denaturant linear dependent Native & Denatured Baselines: Equilm_FKBP12.fit_func = models.TwoStateEquilibrium # printing the equation for viewing models.TwoStateEquilibrium().print_equation() #then fit it. #in the brackets you can define starting values for the variables - #in this case I have just left them as the default. Equilm_FKBP12.fit() ###Output Set temperature to 25.00°C (NOTE: Careful, this sets the temperature for all subsequent calculations) ###Markdown --- We can fit the kinetic data separately too: ###Code # select the fit function Kinetics_FKBP12.fit_func = models.TwoStateChevron TwoStateChevron().fit_func_args # printing the equation for viewing models.TwoStateChevron().print_equation() # 1st select the fit function and associates it with the data Kinetics_FKBP12.fit_func = models.TwoStateChevron # 2nd fit the data with initial values Kinetics_FKBP12.fit(p0=[4,2,0.0001,1]) ###Output ================================================== Fitting results ================================================== ID: Kinetics_FKBP12 Model: TwoStateChevron Method: scipy.optimize.curve_fit kf: 4.21728 ± 0.00625 mf: 1.86223 ± 0.00082 ku: 0.00019 ± 0.00000 mu: 0.90557 ± 0.00094 -------------------------------------------------- R^2: 0.99199 ================================================== ###Markdown --- We can print the resultant graph:This is similar to the equilm but we need to remember to use a natural log plot with kinetics dataset and fit. ###Code pyfolding.plot_chevron(Kinetics_FKBP12) ###Output _____no_output_____ ###Markdown --- We can also plot a fancier graph that shows both Equilm and Kinetics together ###Code pyfolding.plot_figure(Equilm_FKBP12, Kinetics_FKBP12, display=True) ###Output _____no_output_____ ###Markdown Saving out the fit results as a .CSV ###Code # save out the data Equilm_FKBP12.save_fit('/Users/ergm/Desktop/test.csv') ###Output Writing .csv file (/Users/ergm/Desktop/test.csv)... ###Markdown Fit to multiple models ###Code # make a list of models to be used to fit models_to_fit = [models.TwoStateEquilibrium, models.TwoStateEquilibriumSloping] # and now lets fit them for model in models_to_fit: Equilm_FKBP12.fit_func = model Equilm_FKBP12.fit() Equilm_FKBP12.plot() ###Output ================================================== Fitting results ================================================== ID: Equilm_FKBP12 Model: TwoStateEquilibrium Method: scipy.optimize.curve_fit m: 1.43404 ± 0.00003 d50: 3.86730 ± 0.00001 -------------------------------------------------- R^2: 0.99933 ==================================================
dmdw_lab_Assignment_4.ipynb
###Markdown Disimilarity matrix ###Code path="https://raw.githubusercontent.com/chirudukuru/DMDW/main/student-mat.csv" import pandas as pd import numpy as np df=pd.read_csv(path) df ###Output _____no_output_____ ###Markdown proxmity measures of binary attributes ###Code df1=df[['schoolsup','famsup','paid','activities','nursery','higher','internet','romantic']] df1.head() df1=df1.replace('no',0) df1=df1.replace('yes',1) df1.head() n=np.array(df1[['schoolsup','famsup']]) n=n.reshape(-1,2) n.shape m=np.array(df1[['internet','romantic']]) m=m.reshape(-1,2) m.shape from scipy.spatial import distance dist_matrix=distance.cdist(n,m) print(dist_matrix) import seaborn as sns import matplotlib.pyplot as plt sns.heatmap(dist_matrix) plt.show() ###Output _____no_output_____ ###Markdown nominal attribute ###Code nominal=df[['Mjob','Fjob','reason','guardian']] nominal=nominal.replace('at_home','home') nominal=(nominal.astype('category')) from sklearn.preprocessing import LabelEncoder lb=LabelEncoder() nominal['Mjob']=lb.fit_transform(nominal['Mjob']) nominal['Fjob']=lb.fit_transform(nominal['Fjob']) nominal['reason']=lb.fit_transform(nominal['reason']) nominal['guardian']=lb.fit_transform(nominal['guardian']) nominal.head() nominal1=np.array(nominal) nominal1.reshape(-1,2) nominal2=np.array(nominal) nominal2.reshape(-1,2) from scipy.spatial import distance dist_matrix=distance.cdist(nominal1,nominal2) print(dist_matrix) sns.heatmap(dist_matrix) plt.show() ###Output _____no_output_____ ###Markdown Numeric Attributes ###Code numeric=df[['age','Medu','Fedu','traveltime','studytime','failures']] numeric.head() num1=np.array(numeric[['age','failures']]) num1.reshape(-1,2) num1.shape num2=np.array(numeric[['Fedu','Medu']]) num2.reshape(-1,2) num2.shape from scipy.spatial import distance dist_matrix=distance.cdist(num1,num2) print(dist_matrix) dist_matrix.shape sns.heatmap(dist_matrix) ###Output _____no_output_____
Colab-bezier-shapes.ipynb
###Markdown Generating random shapesThis coalab uses [jviquerat/bezier_shapes](https://github.com/jviquerat/bezier_shapes) and applies some modifications, so it actually works. The original code does not seem to do bezier lines without problems, so at least random shapes are generated.My fork is located in [styler00dollar/Colab-bezier-shapes](https://github.com/styler00dollar/Colab-bezier-shapes).Example output with removed dots:![picture](https://i.imgur.com/CY1mrRm.png)Currently only random shapes without curvy lines. ###Code #@title connect google drive from google.colab import drive drive.mount('/content/drive') print('Google Drive connected.') #@title install everything %cd /content/ !git clone https://github.com/styler00dollar/Colab-bezier-shapes !sudo apt-get install -y gmsh !pip install gmsh !pip install pygmsh !pip install meshio !pip install progress !pip install pythontools !pip install gmsh-sdk %cd /content/ !git clone https://gitlab.onelab.info/gmsh/gmsh.git %cd /content/gmsh !mkdir build #!cd build %cd /content/gmsh !cmake -DENABLE_BUILD_DYNAMIC=1 #!cmake .. !make !make install #@title modify python file (contains configuraiton) %%writefile /content/Colab-bezier-shapes/generate_dataset.py # fixed file # Generic imports import warnings import os import os.path import PIL import math import scipy.special import matplotlib import numpy as np import matplotlib.pyplot as plt import numpy warnings.simplefilter(action='ignore', category=FutureWarning) # Imports with probable installation required try: import pygmsh, meshio except ImportError: print('*** Missing required packages, I will install them for you ***') os.system('pip3 install pygmsh meshio') import pygmsh, meshio # Custom imports from meshes_utils import * ### ************************************************ ### Class defining shape object class Shape: ### ************************************************ ### Constructor def __init__(self, name ='shape', control_pts =None, n_control_pts =None, n_sampling_pts=None, radius =None, edgy =None): if (name is None): name = 'shape' if (control_pts is None): control_pts = np.array([]) if (n_control_pts is None): n_control_pts = 0 if (n_sampling_pts is None): n_sampling_pts = 0 if (radius is None): radius = np.array([]) if (edgy is None): edgy = np.array([]) self.name = name self.control_pts = control_pts self.n_control_pts = n_control_pts self.n_sampling_pts = n_sampling_pts self.curve_pts = np.array([]) self.area = 0.0 self.size_x = 0.0 self.size_y = 0.0 self.index = 0 if (len(radius) == n_control_pts): self.radius = radius if (len(radius) == 1): self.radius = radius*np.ones([n_control_pts]) if (len(edgy) == n_control_pts): self.edgy = edgy if (len(edgy) == 1): self.edgy = edgy*np.ones([n_control_pts]) subname = name.split('_') if (len(subname) == 2): # name is of the form shape_?.xxx self.name = subname[0] index = subname[1].split('.')[0] self.index = int(index) if (len(subname) > 2): # name contains several '_' print('Please do not use several "_" char in shape name') quit() if (len(control_pts) > 0): self.control_pts = control_pts self.n_control_pts = len(control_pts) ### ************************************************ ### Reset object def reset(self): self.name = 'shape' self.control_pts = np.array([]) self.n_control_pts = 0 self.n_sampling_pts = 0 self.radius = np.array([]) self.edgy = np.array([]) self.curve_pts = np.array([]) self.area = 0.0 ### ************************************************ ### Generate shape def generate(self, *args, **kwargs): # Handle optional argument centering = kwargs.get('centering', True) cylinder = kwargs.get('cylinder', False) magnify = kwargs.get('magnify', 1.0) ccws = kwargs.get('ccws', True) # Generate random control points if empty if (len(self.control_pts) == 0): if (cylinder): self.control_pts = generate_cylinder_pts(self.n_control_pts) else: self.control_pts = generate_random_pts(self.n_control_pts) # Magnify self.control_pts *= magnify # Center set of points center = np.mean(self.control_pts, axis=0) if (centering): self.control_pts -= center # Sort points counter-clockwise if (ccws): control_pts, radius, edgy = ccw_sort(self.control_pts, self.radius, self.edgy) else: control_pts = np.array(self.control_pts) radius = np.array(self.radius) edgy = np.array(self.edgy) local_curves = [] delta = np.zeros([self.n_control_pts,2]) radii = np.zeros([self.n_control_pts,2]) delta_b = np.zeros([self.n_control_pts,2]) # Compute all informations to generate curves for i in range(self.n_control_pts): # Collect points prv = (i-1) crt = i nxt = (i+1)%self.n_control_pts pt_m = control_pts[prv,:] pt_c = control_pts[crt,:] pt_p = control_pts[nxt,:] # Compute delta vector diff = pt_p - pt_m diff = diff/np.linalg.norm(diff) delta[crt,:] = diff # Compute edgy vector delta_b[crt,:] = 0.5*(pt_m + pt_p) - pt_c # Compute radii dist = compute_distance(pt_m, pt_c) radii[crt,0] = 0.5*dist*radius[crt] dist = compute_distance(pt_c, pt_p) radii[crt,1] = 0.5*dist*radius[crt] # Generate curves for i in range(self.n_control_pts): crt = i nxt = (i+1)%self.n_control_pts pt_c = control_pts[crt,:] pt_p = control_pts[nxt,:] dist = compute_distance(pt_c, pt_p) smpl = math.ceil(self.n_sampling_pts*math.sqrt(dist)) local_curve = generate_bezier_curve(pt_c, pt_p, delta[crt,:], delta[nxt,:], delta_b[crt,:], delta_b[nxt,:], radii[crt,1], radii[nxt,0], edgy[crt], edgy[nxt], smpl) local_curves.append(local_curve) curve = np.concatenate([c for c in local_curves]) x, y = curve.T z = np.zeros(x.size) self.curve_pts = np.column_stack((x,y,z)) self.curve_pts = remove_duplicate_pts(self.curve_pts) # Center set of points if (centering): center = np.mean(self.curve_pts, axis=0) self.curve_pts -= center self.control_pts[:,0:2] -= center[0:2] # Compute area self.compute_area() # Compute dimensions self.compute_dimensions() ### ************************************************ ### Write image def generate_image(self, *args, **kwargs): # Handle optional argument plot_pts = kwargs.get('plot_pts', False) override_name = kwargs.get('override_name', '') show_quadrants = kwargs.get('show_quadrants', False) max_radius = kwargs.get('max_radius', 1.0) min_radius = kwargs.get('min_radius', 0.2) xmin = kwargs.get('xmin', -1.0) xmax = kwargs.get('xmax', 1.0) ymin = kwargs.get('ymin', -1.0) ymax = kwargs.get('ymax', 1.0) # Plot shape plt.xlim([xmin,xmax]) plt.ylim([ymin,ymax]) plt.axis('off') plt.gca().set_aspect('equal', adjustable='box') plt.fill([xmin,xmax,xmax,xmin], [ymin,ymin,ymax,ymax], color=(0.784,0.773,0.741), linewidth=2.5, zorder=0) plt.fill(self.curve_pts[:,0], self.curve_pts[:,1], 'black', linewidth=0, zorder=1) # Plot points # Each point gets a different color if (plot_pts): colors = matplotlib.cm.ocean(np.linspace(0, 1, self.n_control_pts)) plt.scatter(self.control_pts[:,0], self.control_pts[:,1], color=colors, s=16, zorder=2, alpha=0.5) # Plot quadrants if (show_quadrants): for pt in range(self.n_control_pts): dangle = (360.0/float(self.n_control_pts)) angle = dangle*float(pt)+dangle/2.0 x_max = max_radius*math.cos(math.radians(angle)) y_max = max_radius*math.sin(math.radians(angle)) x_min = min_radius*math.cos(math.radians(angle)) y_min = min_radius*math.sin(math.radians(angle)) plt.plot([x_min, x_max], [y_min, y_max], color='w', linewidth=1) circle = plt.Circle((0,0),max_radius,fill=False,color='w') plt.gcf().gca().add_artist(circle) circle = plt.Circle((0,0),min_radius,fill=False,color='w') plt.gcf().gca().add_artist(circle) # Save image filename = self.name+'_'+str(self.index)+'.png' if (override_name != ''): filename = override_name plt.savefig(filename, dpi=400) plt.close(plt.gcf()) plt.cla() trim_white(filename) ### ************************************************ ### Write csv def write_csv(self): with open(self.name+'_'+str(self.index)+'.csv','w') as file: # Write header file.write('{} {}\n'.format(self.n_control_pts, self.n_sampling_pts)) # Write control points coordinates for i in range(0,self.n_control_pts): file.write('{} {} {} {}\n'.format(self.control_pts[i,0], self.control_pts[i,1], self.radius[i], self.edgy[i])) ### ************************************************ ### Read csv and initialize shape with it def read_csv(self, filename, *args, **kwargs): # Handle optional argument keep_numbering = kwargs.get('keep_numbering', False) if (not os.path.isfile(filename)): print('I could not find csv file: '+filename) print('Exiting now') exit() self.reset() sfile = filename.split('.') sfile = sfile[-2] sfile = sfile.split('/') name = sfile[-1] if (keep_numbering): sname = name.split('_') name = sname[0] name = name+'_'+str(self.index) x = [] y = [] radius = [] edgy = [] with open(filename) as file: header = file.readline().split() n_control_pts = int(header[0]) n_sampling_pts = int(header[1]) for i in range(0,n_control_pts): coords = file.readline().split() x.append(float(coords[0])) y.append(float(coords[1])) radius.append(float(coords[2])) edgy.append(float(coords[3])) control_pts = np.column_stack((x,y)) self.__init__(name, control_pts, n_control_pts, n_sampling_pts, radius, edgy) ### ************************************************ ### Mesh shape def mesh(self, *args, **kwargs): # Handle optional argument mesh_domain = kwargs.get('mesh_domain', False) xmin = kwargs.get('xmin', -1.0) xmax = kwargs.get('xmax', 1.0) ymin = kwargs.get('ymin', -1.0) ymax = kwargs.get('ymax', 1.0) domain_h = kwargs.get('domain_h', 1.0) mesh_format = kwargs.get('mesh_format', 'mesh') # Convert curve to polygon geom = pygmsh.built_in.Geometry() poly = geom.add_polygon(self.curve_pts, make_surface=not mesh_domain) # Mesh domain if necessary if (mesh_domain): # Compute an intermediate mesh size border = geom.add_rectangle(xmin, xmax, ymin, ymax, 0.0, domain_h, holes=[poly.line_loop]) # Generate mesh and write in medit format try: mesh = pygmsh.generate_mesh(geom, extra_gmsh_arguments=["-v", "0"]) except AssertionError: print('\n'+'!!!!! Meshing failed !!!!!') return False, 0 ### ************************************************ # fixing output without_vertex = [x for x in mesh.cells if "vertex" not in x] triangle_array = [x for x in mesh.cells if "triangle" in x] triangle_array = numpy.array(list(triangle_array)) n_tri = len(triangle_array[0][1]) mesh.cells = without_vertex # Remove lines if output format is xml if (mesh_format == 'xml'): del mesh.cells['line'] # Write mesh filename = self.name+'_'+str(self.index)+'.'+mesh_format meshio.write_points_cells(filename, mesh.points, mesh.cells) return True, n_tri ### ************************************************ ### Get shape bounding box def compute_bounding_box(self): x_max, y_max = np.amax(self.control_pts,axis=0) x_min, y_min = np.amin(self.control_pts,axis=0) dx = x_max - x_min dy = y_max - y_min return dx, dy ### ************************************************ ### Modify shape given a deformation field def modify_shape_from_field(self, deformation, *args, **kwargs): # Handle optional argument replace = kwargs.get('replace', False) pts_list = kwargs.get('pts_list', []) # Check inputs if (pts_list == []): if (len(deformation[:,0]) != self.n_control_pts): print('Input deformation field does not have right length') quit() if (len(deformation[0,:]) not in [2, 3]): print('Input deformation field does not have right width') quit() if (pts_list != []): if (len(pts_list) != len(deformation)): print('Lengths of pts_list and deformation are different') quit() # If shape is to be replaced entirely if ( replace): # If a list of points is provided if (pts_list != []): for i in range(len(pts_list)): self.control_pts[pts_list[i],0] = deformation[i,0] self.control_pts[pts_list[i],1] = deformation[i,1] self.edgy[pts_list[i]] = deformation[i,2] # Otherwise if (pts_list == []): self.control_pts[:,0] = deformation[:,0] self.control_pts[:,1] = deformation[:,1] self.edgy[:] = deformation[:,2] # Otherwise if (not replace): # If a list of points to deform is provided if (pts_list != []): for i in range(len(pts_list)): self.control_pts[pts_list[i],0] += deformation[i,0] self.control_pts[pts_list[i],1] += deformation[i,1] self.edgy[pts_list[i]] += deformation[i,2] # Otherwise if (pts_list == []): self.control_pts[:,0] += deformation[:,0] self.control_pts[:,1] += deformation[:,1] self.edgy[:] += deformation[:,2] # Increment shape index self.index += 1 ### ************************************************ ### Compute shape area def compute_area(self): self.area = 0.0 # Use Green theorem to compute area for i in range(0,len(self.curve_pts)-1): x1 = self.curve_pts[i-1,0] x2 = self.curve_pts[i, 0] y1 = self.curve_pts[i-1,1] y2 = self.curve_pts[i, 1] self.area += 2.0*(y1+y2)*(x2-x1) ### ************************************************ ### Compute shape dimensions def compute_dimensions(self): self.size_y = 0.0 self.size_x = 0.0 xmin = 1.0e20 xmax =-1.0e20 ymin = 1.0e20 ymax =-1.0e20 for i in range(len(self.curve_pts)): xmin = min(xmin, self.curve_pts[i,0]) xmax = max(xmax, self.curve_pts[i,0]) ymin = min(ymin, self.curve_pts[i,1]) ymax = max(ymax, self.curve_pts[i,1]) self.size_x = xmax - xmin self.size_y = ymax - ymin ### End of class Shape ### ************************************************ ### ************************************************ ### Compute distance between two points def compute_distance(p1, p2): return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2) ### ************************************************ ### Generate n_pts random points in the unit square def generate_random_pts(n_pts): return np.random.rand(n_pts,2) ### ************************************************ ### Generate cylinder points def generate_cylinder_pts(n_pts): if (n_pts < 4): print('Not enough points to generate cylinder') exit() pts = np.zeros([n_pts, 2]) ang = 2.0*math.pi/n_pts for i in range(0,n_pts): pts[i,:] = [math.cos(float(i)*ang),math.sin(float(i)*ang)] return pts ### ************************************************ ### Compute minimal distance between successive pts in array def compute_min_distance(pts): dist_min = 1.0e20 for i in range(len(pts)-1): p1 = pts[i ,:] p2 = pts[i+1,:] dist = compute_distance(p1,p2) dist_min = min(dist_min,dist) return dist_min ### ************************************************ ### Remove duplicate points in input coordinates array ### WARNING : this routine is highly sub-optimal def remove_duplicate_pts(pts): to_remove = [] for i in range(len(pts)): for j in range(len(pts)): # Check that i and j are not identical if (i == j): continue # Check that i and j are not removed points if (i in to_remove) or (j in to_remove): continue # Compute distance between points pi = pts[i,:] pj = pts[j,:] dist = compute_distance(pi,pj) # Tag the point to be removed if (dist < 1.0e-8): to_remove.append(j) # Sort elements to remove in reverse order to_remove.sort(reverse=True) # Remove elements from pts for pt in to_remove: pts = np.delete(pts, pt, 0) return pts ### ************************************************ ### Counter Clock-Wise sort ### - Take a cloud of points and compute its geometric center ### - Translate points to have their geometric center at origin ### - Compute the angle from origin for each point ### - Sort angles by ascending order def ccw_sort(pts, rad, edg): geometric_center = np.mean(pts,axis=0) translated_pts = pts - geometric_center angles = np.arctan2(translated_pts[:,1], translated_pts[:,0]) x = angles.argsort() pts2 = np.array(pts) rad2 = np.array(rad) edg2 = np.array(edg) return pts2[x,:], rad2[x], edg2[x] ### ************************************************ ### Compute Bernstein polynomial value def compute_bernstein(n,k,t): k_choose_n = scipy.special.binom(n,k) return k_choose_n * (t**k) * ((1.0-t)**(n-k)) ### ************************************************ ### Sample Bezier curves given set of control points ### and the number of sampling points ### Bezier curves are parameterized with t in [0,1] ### and are defined with n control points P_i : ### B(t) = sum_{i=0,n} B_i^n(t) * P_i def sample_bezier_curve(control_pts, n_sampling_pts): n_control_pts = len(control_pts) t = np.linspace(0, 1, n_sampling_pts) curve = np.zeros((n_sampling_pts, 2)) for i in range(n_control_pts): curve += np.outer(compute_bernstein(n_control_pts-1, i, t), control_pts[i]) return curve ### ************************************************ ### Generate Bezier curve between two pts def generate_bezier_curve(p1, p2, delta1, delta2, delta_b1, delta_b2, radius1, radius2, edgy1, edgy2, n_sampling_pts): # Lambda function to wrap angles #wrap = lambda angle: (angle >= 0.0)*angle + (angle < 0.0)*(angle+2*np.pi) # Sample the curve if necessary if (n_sampling_pts != 0): # Create array of control pts for cubic Bezier curve # First and last points are given, while the two intermediate # points are computed from edge points, angles and radius control_pts = np.zeros((4,2)) control_pts[0,:] = p1[:] control_pts[3,:] = p2[:] # Compute baseline intermediate control pts ctrl_p1 and ctrl_p2 ctrl_p1_base = radius1*delta1 ctrl_p2_base =-radius2*delta2 ctrl_p1_edgy = radius1*delta_b1 ctrl_p2_edgy = radius2*delta_b2 control_pts[1,:] = p1 + edgy1*ctrl_p1_base + (1.0-edgy1)*ctrl_p1_edgy control_pts[2,:] = p2 + edgy2*ctrl_p2_base + (1.0-edgy2)*ctrl_p2_edgy # Compute points on the Bezier curve curve = sample_bezier_curve(control_pts, n_sampling_pts) # Else return just a straight line else: curve = p1 curve = np.vstack([curve,p2]) return curve ### Crop white background from image def trim_white(filename): im = PIL.Image.open(filename) bg = PIL.Image.new(im.mode, im.size, (255,255,255)) diff = PIL.ImageChops.difference(im, bg) bbox = diff.getbbox() cp = im.crop(bbox) cp.save(filename) # Generic imports import os import random import shutil from datetime import datetime # Imports with probable installation required try: import progress.bar except ImportError: print('*** Missing required packages, I will install them for you ***') os.system('pip3 install progress') import progress.bar ### ************************************************ ### Generate full dataset # Parameters n_sampling_pts = 5 mesh_domain = False plot_pts = True n_shapes = 200 time = datetime.now().strftime('%Y-%m-%d_%H_%M_%S') dataset_dir = 'dataset_'+time+'/' mesh_dir = dataset_dir+'meshes/' img_dir = dataset_dir+'images/' filename = 'shape' magnify = 1.0 xmin =-3.0 xmax = 3.0 ymin =-3.0 ymax = 3.0 n_tri_max = 5000 # Create directories if necessary if not os.path.exists(mesh_dir): os.makedirs(mesh_dir) if not os.path.exists(img_dir): os.makedirs(img_dir) # Generate dataset bar = progress.bar.Bar('Generating shapes', max=n_shapes) for i in range(0,n_shapes): generated = False while (not generated): n_pts = random.randint(3, 12) radius = np.random.uniform(0.0, 1.0, size=n_pts) edgy = np.random.uniform(0.0, 1.0, size=n_pts) shape = Shape(filename+'_'+str(i), None,n_pts,n_sampling_pts,radius,edgy) shape.generate(magnify=2.0, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) meshed, n_tri = shape.mesh() if (meshed and (n_tri < n_tri_max)): shape.generate_image(plot_pts=0, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) img = filename+'_'+str(i)+'.png' mesh = filename+'_'+str(i)+'.mesh' shutil.move(img, img_dir) shutil.move(mesh, mesh_dir) generated = True bar.next() # End bar bar.finish() #@title run shape generator %cd /content/Colab-bezier-shapes !python /content/Colab-bezier-shapes/generate_dataset.py #@title create an archive of repository and copy it to google drive (it contains mesh and png data) !7z a /content/shape_data.7z /content/Colab-bezier-shapes !cp /content/shape_data.7z "/content/drive/My Drive/shape_data.7z" ###Output _____no_output_____
notebooks/.ipynb_checkpoints/1.0-xs-analysis-checkpoint.ipynb
###Markdown Formatting and Analysis ===================== ###Code import pandas as pd import matplotlib.pyplot as plt import numpy as np import sktime data = pd.read_csv('/home/zone/Documents/advantage-investing/data/raw/Goog.csv') data data.dtypes data.columns data[:][:1] for col in data.drop(columns=['Unnamed: 0']): if str(col) !=['Unnamed: 0']: print(str(col)) data[col] = data[col].str.split('.').str[0] for col in data.drop(columns=['Unnamed: 0']): print(str(col)) data[col] = data[col].str.strip(',') df.Close df = data.replace(',','', regex=True) df.Date = pd.to_datetime(df.Date) df.Close = pd.to_numeric(df.Close) df = df.set_index(df.Date,drop = True) df = pd.DataFrame(df.Close) df plt.figure(figsize=(9,5)) plt.grid(True) plt.xlabel('') plt.ylabel('') plt.yticks(np.arange(0, 3000, 100)) plt.plot(df['Close']) plt.title('goog closing price') plt.show() plt.figure(figsize=(10,6)) df_close = df.Close df_close.plot(style='k.') plt.title('Scatter plot of closing price') plt.show() ###Output _____no_output_____ ###Markdown Is the data stationary? Data points are often non-stationary or have means, variances, and covariances that change over time. Non-stationary behaviors like trends are unpredictable and produce unreliable forecasts ###Code from statsmodels.tsa.stattools import adfuller def test_stationarity(timeseries): #Determing rolling statistics rolmean = timeseries.rolling(12).mean() rolstd = timeseries.rolling(12).std() #Plot rolling statistics: plt.plot(timeseries, color='yellow',label='Original') plt.plot(rolmean, color='red', label='Rolling Mean') plt.plot(rolstd, color='black', label = 'Rolling Std') plt.legend(loc='best') plt.title('Rolling Mean and Standard Deviation') plt.show(block=False) print("Results of dickey fuller test") adft = adfuller(timeseries,autolag='AIC') # output for dft will give us without defining what the values are. #hence we manually write what values does it explains using a for loop output = pd.Series(adft[0:4],index=['Test Statistics','p-value','No. of lags used','Number of observations used']) for key,values in adft[4].items(): output['critical value (%s)'%key] = values print(output) test_stationarity(df.Close) ###Output _____no_output_____ ###Markdown The mean and std changes over time so our data is non stationary and looking at the graph the data is showing a trend. First we'll create train and test sets then we'll fit an ARIMA model to this data. ( ARIMA models use differencing to extract stationary data from our originally non stationary data) ###Code df_log = df_log[::-1] train_data, test_data = df_log[3:int(len(df_log)*0.9)], df_log[int(len(df_log)*0.9):] plt.figure(figsize=(10,6)) plt.grid(True) plt.xlabel('Dates') plt.ylabel('Closing Prices') plt.plot(df_log, 'green', label='Train data') plt.plot(test_data, 'blue', label='Test data') plt.legend() len(test_data) from sktime.forecasting.all import * fh = FocastingHorizon(test_data.index, is_relative=False) forecaster = ThetaForecaster(sp=12) forecaster.fit(train_data) y_pred = forecaster.predict(fh) smape_loss(test_data, y_pred) ###Output _____no_output_____
botChallenge/davidepruscini/report.ipynb
###Markdown Soluzione 'The Bot Challenge' - Davide Pruscini (prushh) EngineAl fine di risolvere i vari tasks, è stato necessario studiare il comportamento dell'engine e trovare: * i comandi a disposizione * come visualizzare/completare le quests * come chiudere la challengePer avviare il bot, messo a disposizione grazie ai tre file eseguibili (rispettivamente per Linux, MacOS o Windows), bisogna memorizzare il **TOKEN** all'interno di un file denominato `token.txt` e per interagire con esso basterà digitare, nella barra di ricerca di Telegram, il `` scelto in fase di registrazione. Per maggiori informazioni: [Come creare un bot](https://core.telegram.org/bots)In fase di presentazione della challenge sono stati fatti alcuni spoiler per quanto riguarda i comandi disponibili: * **/status** - Mostra il numero di quests completate * **/quest0** - Permette di rispondere alla prima quest * **/quest1** - Permette di rispondere alla seconda quest * **/quest2** - Permette di rispondere alla terza quest Oltre a questi non sono stati trovati altri comandi utilizzabili, si è passati quindi alla ricerca della parola chiave legata ad *Harry Potter*. Dopo innumerevoli tentativi collegati più che mai a *Piton*, ho deciso di cedere e guardare all'interno dell'eseguibile sperando di trovare qualcosa.Fortunatamente è stato così, digitando la frase `giuro solennemente di non avere buone intenzioni` sono comparsi i tre bottoni che permettono la lettura delle quests, una dopo l'altra, soltanto se la precedente è stata completata. Si parlerà in seguito della loro risoluzione.Non rimaneva che chiudere la challenge, per farlo è stato semplice, avendo visto recentemente la famosa saga è bastata una ricerca online: per mascherare la *Mappa del Malandrino* è sufficiente dire `fatto il misfatto`. Ovviamente ciò è possibile soltanto se tutte le quests sono state completate con successo. Sviluppo BotCome da direttive è stato usato il pacchetto [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot), all'interno del repository di GitHub è presente una cartella contenente degli [esempi](https://github.com/python-telegram-bot/python-telegram-bot/tree/master/examples) ed è proprio da lì che sono partito. Main ###Code def main(): # Create the EventHandler and pass it your bot's token updater = Updater(TOKEN, use_context=True) dp = updater.dispatcher # Display authorization message bot_username = updater.bot.get_me()['username'] print(f"{get_now()} Authorized on account {bot_username}") # Adding all the handler for the commands dp.add_handler(CommandHandler('status', status)) dp.add_handler(CommandHandler('quest0', quest0)) dp.add_handler(CommandHandler('quest1', quest1)) dp.add_handler(CommandHandler('quest2', quest2)) dp.add_handler(CommandHandler('quest3', quest3)) dp.add_handler(CommandHandler('quest4', quest4)) dp.add_handler(CommandHandler('quest5', quest5)) dp.add_handler(MessageHandler(Filters.command, unknown)) cmd_unlocks = ConversationHandler( entry_points=[MessageHandler(Filters.text, unlocks)], states={ 1: [MessageHandler( Filters.regex('^(Quest 0|Quest 1|Quest 2|Quest 3|Quest 4|Quest 5)$'), quest_choice), MessageHandler(Filters.text, quest_choice)], }, fallbacks=[CommandHandler('cancel', cancel)] ) dp.add_handler(cmd_unlocks) # Log all errors dp.add_error_handler(error) # Start the Bot updater.start_polling() # Run the bot until you press Ctrl-C or the process # receives SIGINT, SIGTERM or SIGABRT. updater.idle() return 0 ###Output _____no_output_____ ###Markdown All'interno della funzione `main()` si va ad effettuare la creazione vera e propria del bot, si aggiungono gli handler per i comandi conosciuti e sconosciuti, viene inoltre utilizzato un `ConversationHandler` per interagire con ogni singolo utente.Si procede all'avvio con l'istruzione seguente:```pythonupdater.start_polling()``` Unlocks ###Code def unlocks(update, context): ''' Unlock missions with the correct passphrase ''' msg = update.message.text.lower() reply = "Non ho niente da dire..." if msg == passphrase: if 'quests' not in context.user_data.keys(): context.user_data['quests'] = create_qts() reply_keyboard = [ ['Quest 0', 'Quest 1', 'Quest 2'], ['Quest 3', 'Quest 4', 'Quest 5']] markup = ReplyKeyboardMarkup(reply_keyboard, resize_keyboard=True) update.message.reply_text(reply, reply_markup=markup) return 1 elif msg == endphrase: if 'quests' in context.user_data.keys(): quests = context.user_data['quests'] if get_solved(quests) == NUM_QTS: reply = "Congratulazioni! Hai finito tutte le missioni..." else: reply = "Non hai completato tutte le missioni. Che peccato..." update.message.reply_text(reply) ###Output _____no_output_____ ###Markdown Questo funzione rappresenta l'*entry_points* del `ConversationHandler`, viene richiamata ogni volta che s'invia un messaggio di testo grazie alla specifica `Filters.text`. Si confronta il messaggio inviato con la passphrase, se coincidono ed è la prima volta che è stata inserita si provvede alla creazione di un dizionario di dizionari all'interno dell'apposito spazio per l'utente:```pythoncontext.user_data['quests'] = create_qts()```Quest'ultimo conterrà tutte le quests, ogni *key* rappresenta una missione e sarà così composta:```pythonnum_quest: { 'text': quesito, 'solution': soluzione, 'solved': bool, 'attemp': int}```Viene inoltre creata e resa visibile la `ReplyKeyboardMarkup` contenente i bottoni, si ritorna 1 così da cambiare lo stato del `ConversationHandler`. Se invece è stata inserita l'endphrase si controlla che tutte le quests siano state completate.In ogni caso viene inviato un messaggio di risposta. Quest choice ###Code def quest_choice(update, context): ''' Bot core to interact with quests. ''' msg = update.message.text.lower() quests = context.user_data['quests'] if msg == endphrase: if get_solved(quests) == NUM_QTS: reply = "Congratulazioni! Hai finito tutte le missioni..." reply_markup = ReplyKeyboardRemove() update.message.reply_text(reply, reply_markup=reply_markup) return ConversationHandler.END reply = "Non hai completato tutte le missioni. Che peccato..." elif msg == 'quest 0': reply = check_choice(quests, 0) elif msg == 'quest 1': reply = check_choice(quests, 1) elif msg == 'quest 2': reply = check_choice(quests, 2) elif msg == 'quest 3': reply = check_choice(quests, 3) elif msg == 'quest 4': reply = check_choice(quests, 4) elif msg == 'quest 5': reply = check_choice(quests, 5) else: reply = "Non ho niente da dire..." update.message.reply_text(reply) ###Output _____no_output_____ ###Markdown Ora siamo passati allo stato 1 del `ConversationHandler`, rappresentato da questa funzione. Si controlla il messaggio che l'utente ha inviato cercando di trovare un riscontro o con l'endphrase (dove in questo caso viene rimossa la `ReplyKeyboardMarkup` e conclusa la conversazione) o con una delle quests presenti.Se la scelta corrisponde ad una quest si procede con la seguente funzione che restituisce un messaggio a seconda dei casi.Verifica inoltre se tutte le quests precedenti sono state completate o meno. ###Code def check_choice(qts: dict, n: int) -> str: ''' Check if the question can be answered. ''' if qts[n]['solved']: return "Hai già completato questa quest..." for idx in range(0, n): if not qts[idx]['solved']: return "Devi completare la quest precedente..." return qts[n]['text'] ###Output _____no_output_____ ###Markdown Quest-i ###Code def quest0(update, context): '''Command for quest0.''' reply = check_qts(context, 0) update.message.reply_text(reply) ###Output _____no_output_____ ###Markdown Per ogni quest viene richiamata la stessa funzione, si controlla la correttezza della risposta inviando all'utente un apposito messaggio.Si aggiorna inoltre il numero di tentativi effettuati per una determinata quest. ###Code def check_qts(context, n: int) -> str: ''' Check if the answer is correct. ''' reply = "Risposta non corretta..." if 'quests' not in context.user_data.keys(): return reply qts = context.user_data['quests'][n] if qts['solved']: return reply args = " ".join(context.args) if _cast_arg(args) == qts['solution']: context.user_data['quests'][n]['solved'] = True return "Risposta corretta! Quest completata!" context.user_data['quests'][n]['attemp'] += 1 reply += f" Tentativi effettuati: {qts['attemp']}" return reply ###Output _____no_output_____ ###Markdown Status ###Code def status(update, context): '''Show number of completed quests.''' if 'quests' in context.user_data.keys(): quests = context.user_data['quests'] solved_qts = get_solved(quests) reply = f"Hai completato {solved_qts} quest su {NUM_QTS}" else: reply = f"Hai completato 0 quest su {NUM_QTS}" update.message.reply_text(reply) ###Output _____no_output_____ ###Markdown Mette a conoscenza l'utente su quante quests ha completato e quante ce ne sono complessivamente. Unknown ###Code def unknown(update, context): '''Reply to all unrecognized commands.''' update.message.reply_text("Comando non valido...") ###Output _____no_output_____ ###Markdown Ogni qual volta l'utente invii un comando sconosciuto si risponde semplicemente come sopra. Risoluzione QuestsDi seguito le funzioni create per risolvere le quest, *N* rappresenta un numero intero random preso in un determinato range, *DATE* rappresenta una data nel formato `%Y/%m/%d`. 0. Calcola la somma dei multipli di 3 e 5 fino a *N* ###Code def _quest0(last: int) -> int: sum_ = 0 for elm in range(last): if elm % 3 == 0 or elm % 5 == 0: sum_ += elm return sum_ ###Output _____no_output_____ ###Markdown 1. Calcola la somma dei numeri dispari della serie di fibonacci fino all'*N*-esimo ###Code def _quest1(n: int) -> int: n += 2 sum_ = -1 a, b = 0, 1 while n > 0: if a % 2 != 0: sum_ += a a, b = b, a + b n -= 1 return sum_ ###Output _____no_output_____ ###Markdown 2. Decodifica la stringa: *SGVsbG8sIFB56K6t57uD6JClIQ==%!(EXTRA int=21)* ###Code def _quest2(b64: str) -> str: return b64decode(b64).decode('utf-8') ###Output _____no_output_____ ###Markdown 3. Trova la cifra decimale numero *N* del π ###Code def _quest3(nth: int) -> int: idx = nth + 1 tmp = "%.48f" % pi return int(tmp[idx]) ###Output _____no_output_____ ###Markdown 4. Trova una differente rappresentazione: *DATE* ###Code def _quest4(date: str) -> int: return int(datetime.strptime(date, "%Y/%m/%d").timestamp()) ###Output _____no_output_____ ###Markdown 5. Conosci qualche alfabeto? Prova a fare lo spelling: *PyBootCamp* ###Code def _quest5(text: str) -> str: return nato(text) ###Output _____no_output_____
pytorch/0225_SigmoidNeuron.ipynb
###Markdown Plotting Sigmoid Function ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import matplotlib.colors import pandas as pd ###Output _____no_output_____ ###Markdown $S_{w, b}(x) = \frac{1}{1 + e^{-(wx + b)}}$ ###Code def sigmoid(x, w, b): return 1/(1 + np.exp(-(w*x + b))) sigmoid(1, 0.5, 0) w = -1.8 #@param {type: "slider", min: -2, max: 2, step: 0.1} b = -0.5 #@param {type: "slider", min: -2, max: 2, step: 0.1} X = np.linspace(-10,10,100) Y = sigmoid(X, w, b) plt.plot(X, Y) plt.show() ###Output _____no_output_____ ###Markdown $S_{w_1, w_2, b}(x_1, x_2) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$ ###Code def sigmoid_2d(x1, x2, w1, w2, b): return 1/(1 + np.exp(-(w1*x1 + w2*x2 + b))) sigmoid_2d(1, 0, 0.5, 0, 0) X1 = np.linspace(-10, 10, 100) X2 = np.linspace(-10, 10, 100) XX1, XX2 = np.meshgrid(X1, X2) print(X1.shape, X2.shape, XX1.shape, XX2.shape) w1 = 2 w2 = -0.5 b = 0 Y = sigmoid_2d(XX1, XX2, w1, w2, b) my_cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["red","yellow","green"]) plt.contourf(XX1, XX2, Y, cmap = my_cmap, alpha = 0.6) plt.show() fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_surface(XX1, XX2, Y, cmap='viridis') ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('y') ax.view_init(30, 270) ###Output _____no_output_____ ###Markdown Compute Loss for a Given Dataset ###Code w_unknown = 0.5 b_unknown = 0.25 X = np.random.random(25) * 20 - 10 Y = sigmoid(X, w_unknown, b_unknown) plt.plot(X, Y, '*') plt.show() def calculate_loss(X, Y, w_est, b_est): loss = 0 for x, y in zip(X, Y): loss += (y - sigmoid(x, w_est, b_est))**2 return loss W = np.linspace(0, 2, 101) B = np.linspace(-1, 1, 101) WW, BB = np.meshgrid(W, B) Loss = np.zeros(WW.shape) WW.shape for i in range(WW.shape[0]): for j in range(WW.shape[1]): Loss[i, j] = calculate_loss(X, Y, WW[i, j], BB[i, j]) fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_surface(WW, BB, Loss, cmap='viridis') ax.set_xlabel('w') ax.set_ylabel('b') ax.set_zlabel('Loss') ax.view_init(30, 270) ij = np.argmin(Loss) i = int(np.floor(ij/Loss.shape[1])) j = int(ij - i * Loss.shape[1]) print(i, j) print(WW[i, j], BB[i, j]) ###Output 0.5 0.26 ###Markdown Class for Sigmoid Neuron ###Code class SigmoidNeuron: def __init__(self): self.w = None self.b = None def perceptron(self, x): return np.dot(x, self.w.T) + self.b def sigmoid(self, x): return 1.0/(1.0 + np.exp(-x)) def grad_w(self, x, y): y_pred = self.sigmoid(self.perceptron(x)) return (y_pred - y) * y_pred * (1 - y_pred) * x def grad_b(self, x, y): y_pred = self.sigmoid(self.perceptron(x)) return (y_pred - y) * y_pred * (1 - y_pred) def fit(self, X, Y, epochs=1, learning_rate=1, initialise=True): # initialise w, b if initialise: self.w = np.random.randn(1, X.shape[1]) self.b = 0 for i in range(epochs): dw = 0 db = 0 for x, y in zip(X, Y): dw += self.grad_w(x, y) db += self.grad_b(x, y) self.w -= learning_rate * dw self.b -= learning_rate * db ###Output _____no_output_____ ###Markdown Fit for toy data ###Code X = np.asarray([[2.5, 2.5], [4, -1], [1, -4], [-3, 1.25], [-2, -4], [1, 5]]) Y = [1, 1, 1, 0, 0, 0] sn = SigmoidNeuron() sn.fit(X, Y, 1, 0.25, True) def plot_sn(X, Y, sn, ax): X1 = np.linspace(-10, 10, 100) X2 = np.linspace(-10, 10, 100) XX1, XX2 = np.meshgrid(X1, X2) YY = np.zeros(XX1.shape) for i in range(X2.size): for j in range(X1.size): val = np.asarray([X1[j], X2[i]]) YY[i, j] = sn.sigmoid(sn.perceptron(val)) ax.contourf(XX1, XX2, YY, cmap=my_cmap, alpha=0.6) ax.scatter(X[:,0], X[:,1],c=Y, cmap=my_cmap) ax.plot() sn.fit(X, Y, 1, 0.05, True) N = 30 plt.figure(figsize=(10, N*5)) for i in range(N): print(sn.w, sn.b) ax = plt.subplot(N, 1, i + 1) plot_sn(X, Y, sn, ax) sn.fit(X, Y, 1, 0.5, False) ###Output [[1.1475869 0.14338099]] [0.00025004] [[ 1.14552087 -0.26776881]] [-0.00977853] [[ 1.14629352 -0.4731143 ]] [-0.07636588] [[ 1.24938546 -0.3584108 ]] [-0.12709462] [[ 1.26904094 -0.46124892]] [-0.1781642] [[ 1.33184019 -0.42412577]] [-0.21976639] [[ 1.36363794 -0.46294058]] [-0.2596155] [[ 1.4052129 -0.46376531]] [-0.29481983] [[ 1.43880387 -0.47889947]] [-0.32764669] [[ 1.47188452 -0.48817067]] [-0.35779204] [[ 1.50242874 -0.49820885]] [-0.38579537] [[ 1.53127057 -0.50736475]] [-0.41185252] [[ 1.55847742 -0.51605487]] [-0.43619511] [[ 1.58423325 -0.52427671]] [-0.45900731] [[ 1.60867751 -0.53208114]] [-0.48044905] [[ 1.63193273 -0.53950679]] [-0.50065799] [[ 1.65410544 -0.54658763]] [-0.51975337] [[ 1.67528882 -0.55335339]] [-0.53783904] [[ 1.69556483 -0.55983018]] [-0.55500584] [[ 1.71500587 -0.5660411 ]] [-0.57133357] [[ 1.73367619 -0.57200665]] [-0.58689267] [[ 1.75163305 -0.57774507]] [-0.60174554] [[ 1.76892769 -0.58327272]] [-0.61594767] [[ 1.7856061 -0.58860425]] [-0.62954862] [[ 1.80170972 -0.59375287]] [-0.64259274] [[ 1.81727602 -0.59873052]] [-0.65511991] [[ 1.83233898 -0.60354804]] [-0.66716608] [[ 1.8469295 -0.60821526]] [-0.67876374] [[ 1.86107574 -0.61274116]] [-0.68994235] [[ 1.87480348 -0.61713394]] [-0.70072869]
NYT/GPT/gpt2-150K-cutoff-experiment.ipynb
###Markdown Definitions (run first!) ###Code import gzip import pickle import requests import csv from torch.utils.data import Dataset, DataLoader, random_split from transformers import GPT2Tokenizer, GPT2Model import torch from sklearn.preprocessing import MultiLabelBinarizer import numpy as np import wandb import gc device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device class GPTEmbeddedDataset(Dataset): def __init__(self, X, y): self.X = X self.y = y def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.y[idx], idx import csv def loadcsv(filename): with open(filename, newline='', encoding='utf-8') as f: return list(csv.reader(f)) def load_label_map(out2id_path, id2label_path): out2id = loadcsv(out2id_path) out2id = {int(row[0]): row[1] for row in out2id} id2label_raw = loadcsv(id2label_path) id2label = {} for row in id2label_raw: if row == []: continue id2label[row[1]] = row[2] out2label = [id2label[out2id[out]] for out in sorted(out2id.keys())] return out2label out2label = load_label_map('../data/labels_dict_gpt.csv', '../data/nyt-theme-tags.csv') mlb = MultiLabelBinarizer(classes=out2label) mlb.fit(out2label) import time import math def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs def validation_split(dataset, validation_subset, seed=42): if validation_subset > 0: n_total_samples = len(dataset) n_train_samples = math.floor(n_total_samples * (1-validation_subset)) n_valid_samples = n_total_samples - n_train_samples train_subset, valid_subset = random_split( dataset, [n_train_samples, n_valid_samples], generator=torch.Generator().manual_seed(seed) ) # reproducible results else: train_subset = dataset valid_subset = None return train_subset, valid_subset def train(model, iterator, optimizer, criterion): epoch_loss = 0 epoch_acc = 0 epoch_precision = 0 epoch_recall = 0 epoch_f_score = 0 model.train() for i, batch in enumerate(iterator): article_embeddings, labels, idx = batch article_embeddings = article_embeddings.to(device) labels = labels.type(torch.float).to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = model(article_embeddings) loss = criterion(outputs, labels) loss.backward() optimizer.step() # calculate metrics preds = model.act(outputs) > 0.5 acc, precision, recall, f1 = multi_label_scores(labels.detach().cpu(), preds.detach().cpu()) epoch_loss += loss.item() epoch_acc += acc.item() epoch_precision += precision.item() epoch_recall += recall.item() epoch_f_score += f1.item() return epoch_loss / len(iterator), epoch_acc / len(iterator), \ epoch_precision / len(iterator), epoch_recall / len(iterator), \ epoch_f_score / len(iterator) def evaluate(model, iterator, criterion): epoch_loss = 0 epoch_acc = 0 epoch_precision = 0 epoch_recall = 0 epoch_f_score = 0 model.eval() with torch.no_grad(): for i, batch in enumerate(iterator): article_embeddings, labels, idx = batch article_embeddings = article_embeddings.to(device) labels = labels.type(torch.float).to(device) outputs = model(article_embeddings) loss = criterion(outputs, labels) # calculate metrics preds = model.act(outputs) > 0.5 acc, precision, recall, f1 = multi_label_scores(labels.detach().cpu(), preds.detach().cpu()) epoch_loss += loss.item() epoch_acc += acc.item() epoch_precision += precision.item() epoch_recall += recall.item() epoch_f_score += f1.item() return epoch_loss / len(iterator), epoch_acc / len(iterator), \ epoch_precision / len(iterator), epoch_recall / len(iterator), \ epoch_f_score / len(iterator) ###Output _____no_output_____ ###Markdown Training ###Code import io import os import torch import torch.optim as optim import torch.nn as nn from torch.utils.data import Dataset, DataLoader from tqdm.notebook import tqdm from mitnewsclassify2.gpt_model import GPTModel as GPTHead2 %load_ext autoreload %autoreload 2 from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score def multi_label_scores(correct_labels, predicted_labels): accuracy = accuracy_score(correct_labels, predicted_labels) precision = precision_score(correct_labels, predicted_labels, average='weighted', zero_division=0) recall = recall_score(correct_labels, predicted_labels, average='weighted', zero_division=0) f_1_score = f1_score(correct_labels, predicted_labels, average='weighted', zero_division=0) return accuracy, precision, recall, f_1_score def gettags(head_model, features, eval=False): head_model.eval() features = features.unsqueeze(0).to(device) with torch.no_grad(): logits = head_model(features) multi_label_sigmoids = head_model.act(logits) preds = multi_label_sigmoids > 0.5 preds = preds.detach().cpu() return mlb.inverse_transform(preds) %%time # for ARTICLE_TYPE in ['cutoff', 'complete']: for ARTICLE_TYPE in ['complete']: train_dataset = torch.load(f'vectorized/train_150k_{ARTICLE_TYPE}.pt') print(f'X_train_{ARTICLE_TYPE}', train_dataset.X.shape) print(f'y_train_{ARTICLE_TYPE}', train_dataset.y.shape) # splitting train/validation batch_size = 256 seed = 42 train_subset, valid_subset = validation_split(train_dataset, 0.1, seed) train_loader = DataLoader(train_subset, batch_size=batch_size) valid_loader = DataLoader(valid_subset, batch_size=batch_size) n_training_samples = train_dataset.X.shape[0] # hyperparams max_epochs = 1000 patience = 10 # model model_path = f'models/{ARTICLE_TYPE}.pt' model = GPTHead2(768, 538).to(device) criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr = 1e-3, # default is 5e-5, our notebook had 2e-5 ) wandb.init( entity='ut-mit-news-classify', project="NYT Multilabeling", tags=[ARTICLE_TYPE, 'cutoff-experiment'], ) # training epochs_of_no_improvement = 0 best_valid_loss = float('inf') wandb.config.early_stopping_patience = patience wandb.config.training_samples=n_training_samples wandb.config.model_path = model_path wandb.save(model_path) # this will make wandb upload the model after call to `wandb.finish()` print('Starting training...') for epoch in range(max_epochs): start_time = time.time() train_loss, train_acc, train_precision, train_recall, train_f_score \ = train(model, train_loader, optimizer, criterion) valid_loss, valid_acc, valid_precision, valid_recall, valid_f_score \ = evaluate(model, valid_loader, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: print(f'New validation loss {valid_loss} is better than the best validation loss {best_valid_loss} so far.') best_valid_loss = valid_loss torch.save(model, model_path) epochs_of_no_improvement = 0 else: epochs_of_no_improvement += 1 print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}% | ' + f'Train Precision: {train_precision*100:.2f}% | Train Recall: {train_recall*100:.2f}% | ' + f'Train F1-score: {train_f_score*100:.2f}%') print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}% | ' + f'Val. Precision: {valid_precision*100:.2f}% | Val. Recall: {valid_recall*100:.2f}% | ' + f'Val. F1-score: {valid_f_score*100:.2f}%') wandb.log({"train_loss": train_loss, "train_precision": train_precision, "train_f_score": train_f_score, "train_acc": train_acc, "train_recall": train_recall, "valid_loss": valid_loss, "valid_acc": valid_acc, "valid_precision": valid_precision, "valid_recall": valid_recall, "valid_f_score": valid_f_score, "epoch": epoch+1, }) # check if the training should be stopped and then stop the training if epochs_of_no_improvement == patience : print(f'Early stopping, on epoch: {epoch+1}.') break del train_dataset del train_subset del valid_subset del train_loader del valid_loader del model gc.collect() ####### TESTING ####### print('Testing...') model = torch.load(model_path) test_dataset_names = [('cutoff', 'vectorized/test_150k_cutoff.pt'), ('complete', 'vectorized/test_150k_complete.pt')] for article_type, dataset_path in test_dataset_names: test_dataset = torch.load(dataset_path) test_loader = DataLoader(test_dataset, batch_size=128) start_time = time.time() test_loss, test_acc, test_precision, test_recall, test_f_score \ = evaluate(model, test_loader, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) wandb.run.summary[f'test_{article_type}_acc'] = test_acc wandb.run.summary[f'test_{article_type}_precision'] = test_precision wandb.run.summary[f'test_{article_type}_recall'] = test_recall wandb.run.summary[f'test_{article_type}_f_score'] = test_f_score print(f'Epoch: test | Epoch Time: {epoch_mins}m {epoch_secs}s | Dataset: {article_type}') print(f'\tTest Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}% | ' + f'Test Precision: {test_precision*100:.2f}% | Test Recall: {test_recall*100:.2f}% | ' + f'Test F1-score: {test_f_score*100:.2f}%') wandb.finish() model = torch.load(model_path) test_dataset_names = [('cutoff', 'vectorized/test_150k_cutoff.pt'), ('complete', 'vectorized/test_150k_complete.pt')] for article_type, dataset_path in test_dataset_names: test_dataset = torch.load(dataset_path) test_loader = DataLoader(test_dataset, batch_size=128) start_time = time.time() test_loss, test_acc, test_precision, test_recall, test_f_score \ = evaluate(model, test_loader, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) wandb.run.summary[f'test_{article_type}_acc'] = test_acc wandb.run.summary[f'test_{article_type}_precision'] = test_precision wandb.run.summary[f'test_{article_type}_recall'] = test_recall wandb.run.summary[f'test_{article_type}_f_score'] = test_f_score print(f'Epoch: test | Epoch Time: {epoch_mins}m {epoch_secs}s | Dataset: {article_type}') print(f'\tTest Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}% | ' + f'Test Precision: {test_precision*100:.2f}% | Test Recall: {test_recall*100:.2f}% | ' + f'Test F1-score: {test_f_score*100:.2f}%') wandb.finish() idx = 15 print('predicted', gettags(model, train_dataset.X[idx])) print('gold:', mlb.inverse_transform(train_dataset.y[idx].unsqueeze(0))) ###Output predicted [('politics and government',)] gold: [('armament, defense and military forces',)]
backend/questionAnalysis.ipynb
###Markdown import librarys ###Code import nltk nltk.download('nps_chat') nltk.download('punkt') import pandas as pd import matplotlib.pyplot as plt import boto3 from sagemaker import get_execution_role role = get_execution_role() bucket_name = 'deploy-sagemaker-conversation' s3_url = 's3://deploy-sagemaker-conversation/floop_data_15k.json' conn = boto3.client('s3') contents = conn.list_objects(Bucket = bucket_name)['Contents'] s3 = boto3.resource('s3') import json s3_client = boto3.client('s3') s3 = boto3.resource('s3') obj = s3.Object('deploy-sagemaker-conversation', 'auto-floop-s3-export3.json') data = json.load(obj.get()['Body']) #print(data) print(len(data)) dataList=[] for x in range(50): dataList.append(data[x]) for x in dataList: for y in range(len(x)): sentence = x[y].get('Text') sentences = [] for x in dataList: for y in range(len(x)): sentence = x[y].get('Text') sentences.append(sentence) print(sentences) dataset = conn.get_object(Bucket = bucket_name, Key = 'floop_data_15k.json') s3_client.get_object(Bucket = bucket_name, Key = 'floop_data_15k.json') ###Output _____no_output_____ ###Markdown Data ###Code posts = nltk.corpus.nps_chat.xml_posts()[:10000] Question_Words = [ 'where','how','why','did','do','does',"isn't",'has','am i', 'are','can','could','is','may',"can't", "didn't",'will','when',"doesn't","haven't",'have','what',"aren't",'would',"couldn't","wouldn't","won't","shouldn't",'should'] ###Output _____no_output_____ ###Markdown * input: chat posts* Tokenize sentences using NLTK's word_tokenize* return dict of tokenized words ###Code def post_features(post): features = {} for word in nltk.word_tokenize(post): features['contains({})'.format(word.lower())] = True return features ###Output _____no_output_____ ###Markdown 0. Input: none 1. Divide data into 80% training and 10% testing sets 2. Use NLTK's Multinomial Naive Bayes to perform classifcation 3. Return: Classifier object ###Code def perform_classification(): featuresets = [(post_features(post.text), post.get('class')) for post in posts] training_size = int(len(featuresets) * 0.1) train_set, test_set = featuresets[training_size:], featuresets[:training_size] classifier = nltk.NaiveBayesClassifier.train(train_set) return classifier myclassifier= perform_classification() ###Output _____no_output_____ ###Markdown 1. Input a sentence2. returns the type sentence ###Code types = ["whQuestion","ynQuestion","Statement"] def is_ques(ques): question_type = myclassifier.classify(post_features(ques)) return question_type ###Output _____no_output_____ ###Markdown 0. Method : IsQuestion1. Input: Sentence to be predicted2. Return: type of sentence it is using nltk ###Code def predict(data): type=is_ques(data) #print("type is"+type) first_word = data.split()[0].lower() types=[] if ((type=="whQuestion" or type== "ynQuestion") or (first_word in Question_Words )) : types.append("Question") elif type=="Statement" or data.endswith(".")or data.endswith("!"): types.append("Statement") else: types.append("garbled text") return types[0] sent="More details. A lot happened." diss=predict(sent) pred=[ ] pred.append(diss) mydat={"sentence":diss} print(mydat) data = json.load(obj.get()['Body']) analysis=[] for i in sentences: analysis.append(predict(i)) print(len(analysis)) result = pd.DataFrame({'Original Data':dataList, 'Sentence Analysis':analysis}) result.to_csv('results.csv') print(result['Sentence Analysis'].value_counts()) plt.pie(result['Sentence Analysis'].value_counts(), labels = result['Sentence Analysis'].value_counts().keys(), autopct='%.1f%%') plt.show() ###Output Statement 34 garbled text 15 Question 1 Name: Sentence Analysis, dtype: int64
imaterialist-challenge-furniture-2018/3. TrainPredict_Mix3model0.ipynb
###Markdown 3. TrainPredict_Mix3model0 Result:- Kaggle score: Tensorboard:- Input at command: tensorboard --logdir=./log- Input at browser: http://127.0.0.1:6006 Reference:- https://www.kaggle.com/codename007/a-very-extensive-landmark-exploratory-analysis Run name ###Code import time project_name = 'ic_furniture2018' step_name = 'TrainPredict_Mix3model' time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime()) run_name = project_name + '_' + step_name + '_' + time_str print('run_name: ' + run_name) t0 = time.time() ###Output run_name: ic_furniture2018_TrainPredict_Mix3model_20180429_112205 ###Markdown Import params ###Code epochs = 15 print('epochs: ', epochs) ###Output epochs: 15 ###Markdown Import PKGs ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg %matplotlib inline from IPython.display import display import os import gc import zipfile import pickle import math from PIL import Image import shutil from tqdm import tqdm from multiprocessing import cpu_count from sklearn.metrics import confusion_matrix, accuracy_score ###Output _____no_output_____ ###Markdown Important Params ###Code batch_size = 1024 ###Output _____no_output_____ ###Markdown Project folders ###Code cwd = os.getcwd() input_folder = os.path.join(cwd, 'input') output_folder = os.path.join(cwd, 'output') model_folder = os.path.join(cwd, 'model') feature_folder = os.path.join(cwd, 'feature') post_pca_feature_folder = os.path.join(cwd, 'post_pca_feature') log_folder = os.path.join(cwd, 'log') print('input_folder: \t\t\t%s' % input_folder) print('output_folder: \t\t\t%s' % output_folder) print('model_folder: \t\t\t%s' % model_folder) print('feature_folder: \t\t%s' % feature_folder) print('post_pca_feature_folder: \t%s' % post_pca_feature_folder) print('log_folder: \t\t\t%s' % log_folder) org_train_folder = os.path.join(input_folder, 'org_train') org_val_folder = os.path.join(input_folder, 'org_val') org_test_folder = os.path.join(input_folder, 'org_test') train_folder = os.path.join(input_folder, 'data_train') val_folder = os.path.join(input_folder, 'data_val') test_folder = os.path.join(input_folder, 'data_test') test_sub_folder = os.path.join(test_folder, 'test') if not os.path.exists(post_pca_feature_folder): os.mkdir(post_pca_feature_folder) print('Create folder: %s' % post_pca_feature_folder) train_json_file = os.path.join(input_folder, 'train.json') val_json_file = os.path.join(input_folder, 'validation.json') test_json_file = os.path.join(input_folder, 'test.json') print('\ntrain_json_file: \t\t%s' % train_json_file) print('val_json_file: \t\t\t%s' % val_json_file) print('test_json_file: \t\t%s' % test_json_file) train_csv_file = os.path.join(input_folder, 'train.csv') val_csv_file = os.path.join(input_folder, 'validation.csv') test_csv_file = os.path.join(input_folder, 'test.csv') print('\ntrain_csv_file: \t\t%s' % train_csv_file) print('val_csv_file: \t\t\t%s' % val_csv_file) print('test_csv_file: \t\t\t%s' % test_csv_file) sample_submission_csv_file = os.path.join(input_folder, 'sample_submission_randomlabel.csv') print('\nsample_submission_csv_file: \t%s' % sample_submission_csv_file) ###Output input_folder: /data1/kaggle/imaterialist-challenge-furniture-2018/input output_folder: /data1/kaggle/imaterialist-challenge-furniture-2018/output model_folder: /data1/kaggle/imaterialist-challenge-furniture-2018/model feature_folder: /data1/kaggle/imaterialist-challenge-furniture-2018/feature post_pca_feature_folder: /data1/kaggle/imaterialist-challenge-furniture-2018/post_pca_feature log_folder: /data1/kaggle/imaterialist-challenge-furniture-2018/log train_json_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/train.json val_json_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/validation.json test_json_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/test.json train_csv_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/train.csv val_csv_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/validation.csv test_csv_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/test.csv sample_submission_csv_file: /data1/kaggle/imaterialist-challenge-furniture-2018/input/sample_submission_randomlabel.csv ###Markdown Preview data ###Code train_csv = pd.read_csv(train_csv_file) print('train_csv.shape is {0}.'.format(train_csv.shape)) display(train_csv.head(2)) val_csv = pd.read_csv(val_csv_file) print('val_csv.shape is {0}.'.format(val_csv.shape)) display(val_csv.head(2)) test_csv = pd.read_csv(test_csv_file) print('test_csv.shape is {0}.'.format(test_csv.shape)) display(test_csv.head(2)) test_csv = pd.read_csv(test_csv_file) print('test_csv.shape is {0}.'.format(test_csv.shape)) display(test_csv.head(2)) sample_submission_csv = pd.read_csv(sample_submission_csv_file) print('sample_submission_csv.shape is {0}.'.format(sample_submission_csv.shape)) display(sample_submission_csv.head(2)) train_id = train_csv['image_id'] train_label_id = train_csv['label_id'] id_2_train_label_id_dict = dict(zip(train_id, train_label_id)) print('len(id_2_train_label_id_dict)=%d' % len(id_2_train_label_id_dict)) index = 0 print('id: %s, \tlandmark_id:%s' % (train_id[index], id_2_train_label_id_dict[train_id[index]])) index = 1 print('id: %s, \tlandmark_id:%s' % (train_id[index], id_2_train_label_id_dict[train_id[index]])) image_file = '%s_%s.jpg' % (train_id[index], id_2_train_label_id_dict[train_id[index]]) print(image_file) val_id = val_csv['image_id'] val_label_id = val_csv['label_id'] id_2_val_label_id_dict = dict(zip(val_id, val_label_id)) print('len(id_2_val_label_id_dict)=%d' % len(id_2_val_label_id_dict)) index = 0 print('id: %s, \tlandmark_id:%s' % (val_id[index], id_2_val_label_id_dict[val_id[index]])) index = 1 print('id: %s, \tlandmark_id:%s' % (val_id[index], id_2_val_label_id_dict[val_id[index]])) image_file = '%s_%s.jpg' % (val_id[index], id_2_val_label_id_dict[val_id[index]]) print(image_file) test_id = test_csv['image_id'] index = 0 print('id: %s' % (test_id[index])) index = 1 print('id: %s' % (test_id[index])) image_file = '%s.jpg' % (test_id[index]) print(image_file) ###Output id: 1 id: 2 2.jpg ###Markdown Load feature ###Code %%time import h5py import numpy as np np.random.seed(2018) def load_h5_data(data_str, feature_folder, file_reg, model_name, time_str): x_data = {} y_data = {} feature_model = os.path.join(feature_folder, file_reg % (model_name, time_str)) for filename in [feature_model]: with h5py.File(filename, 'r') as h: x_data = np.array(h[data_str]) y_data = np.array(h['%s_labels' % data_str]) return x_data, y_data def load_h5_test(feature_folder, file_reg, model_name, time_str): x_test = {} feature_model = os.path.join(feature_folder, file_reg % (model_name, time_str)) for filename in [feature_model]: with h5py.File(filename, 'r') as h: x_test = np.array(h['test']) return x_test def is_files_existed(feature_folder, file_reg, model_names, time_strs): for model_name in model_names: for time_str in time_strs: file_name = file_reg % (model_name, time_str) file_path = os.path.join(feature_folder, file_name) if not os.path.exists(file_path): print('File not existed: %s' % file_path) return False else: print('File existed: %s' % file_path) return True # Test file_reg = 'feature_%s_%s.h5' model_names = [ # 'MobileNet', # 'VGG16', # 'VGG19', # 'ResNet50', # 'DenseNet121', # 'DenseNet169', # 'DenseNet201', 'Xception', 'InceptionV3', 'InceptionResNetV2' ] time_strs = [ '300_20180415-150022', '200_20180415-140848', '150_20180415-131901', '300_20180415-111333', '450_20180409-115039', '450_20180409-191753', '450_20180410-032144', '450_20180410-112448', '450_20180410-193018', '20180331-163122', '20180401-185347', '20180401-224426', '20180402-023138', '20180402-062014', '20180402-101021', '20180402-140156', '20180402-175506', '20180402-214919', '20180403-014551', '20180406-070324', '20180406-102130', '20180406-123522', '20180406-144857', '150_20180406-230352', '150_20180407-010446', '150_20180407-031951', '150_20180407-053509', '150_20180407-075132', '150_20180407-100849', '150_20180407-122723', '150_20180407-144712', '150_20180407-170832', '150_20180407-193230' ] print('*'*100) print(is_files_existed(feature_folder, file_reg, model_names, time_strs)) def time_str_generator(time_strs): while(1): for time_str in time_strs: print(' ' + time_str) yield time_str # Test time_str_gen = time_str_generator(time_strs) for i in range(len(time_strs)): next(time_str_gen) %%time from keras.utils.np_utils import to_categorical from sklearn.utils import shuffle def load_time_str_feature_data(data_str, feature_folder, file_reg, model_names, time_str): x_data_time_strs = [] y_data_time_strs = None for model_name in model_names: x_data_time_str, y_data_time_str = load_h5_data(data_str, feature_folder, file_reg, model_name, time_str) # Around data to 3 decimals to calculate computation x_data_time_str = np.round(x_data_time_str, decimals=3) x_data_time_strs.append(x_data_time_str) y_data_time_strs = y_data_time_str x_data_time_strs = np.concatenate(x_data_time_strs, axis=-1) # print(x_data_time_strs.shape) # print(y_data_time_strs.shape) return x_data_time_strs, y_data_time_strs def data_generator_folder(data_str, feature_folder, file_reg, model_names, time_strs, batch_size, num_classes): assert is_files_existed(feature_folder, file_reg, model_names, time_strs) time_str_gen = time_str_generator(time_strs) x_data, y_data = load_time_str_feature_data(data_str, feature_folder, file_reg, model_names, next(time_str_gen)) # x_data, y_data = shuffle(x_data, y_data, random_state=2018) x_data, y_data = shuffle(x_data, y_data, random_state=None) len_x_data = len(x_data) start_index = 0 end_index = 0 while(1): end_index = start_index + batch_size if end_index < len_x_data: # print(start_index, end_index, end=' ') x_batch = x_data[start_index: end_index, :] y_batch = y_data[start_index: end_index] y_batch_cat = to_categorical(y_batch, num_classes) start_index = start_index + batch_size # print(x_batch.shape, y_batch_cat.shape) yield x_batch, y_batch_cat else: end_index = end_index-len_x_data # print(start_index, end_index, end=' ') x_data_old = np.array(x_data[start_index:, :], copy=True) y_data_old = np.array(y_data[start_index:], copy=True) # Load new datas x_data, y_data = load_time_str_feature_data(data_str, feature_folder, file_reg, model_names, next(time_str_gen)) # x_data, y_data = shuffle(x_data, y_data, random_state=2018) x_data, y_data = shuffle(x_data, y_data, random_state=None) len_x_data = len(x_data) gc.collect() x_batch = np.vstack((x_data_old, x_data[:end_index, :])) y_batch = np.concatenate([y_data_old, y_data[:end_index]]) y_batch_cat = to_categorical(y_batch, num_classes) start_index = end_index # print(x_batch.shape, y_batch_cat.shape) yield x_batch, y_batch_cat # x_train = np.concatenate([x_train_Xception, x_train_InceptionV3, x_train_InceptionResNetV2], axis=-1) num_classes = len(list(set(train_label_id))) print('num_classes: %s' % num_classes) # Test file_reg = 'feature_%s_%s.h5' model_names = [ # 'MobileNet', # 'VGG16', # 'VGG19', # 'ResNet50', # 'DenseNet121', # 'DenseNet169', # 'DenseNet201', 'Xception', 'InceptionV3', 'InceptionResNetV2' ] time_strs = [ # '300_20180415-150022', # '200_20180415-140848', # '150_20180415-131901', # '300_20180415-111333', '450_20180409-115039', '450_20180409-191753', '450_20180410-032144', '450_20180410-112448', '450_20180410-193018', # '20180331-163122', # '20180401-185347', # '20180401-224426', # '20180402-023138', # '20180402-062014', # '20180402-101021', # '20180402-140156', # '20180402-175506', # '20180402-214919', # '20180403-014551', # '20180406-070324', # '20180406-102130', # '20180406-123522', # '20180406-144857', # '150_20180406-230352', # '150_20180407-010446', # '150_20180407-031951', # '150_20180407-053509', # '150_20180407-075132', # '150_20180407-100849', # '150_20180407-122723', # '150_20180407-144712', # '150_20180407-170832', # '150_20180407-193230' ] print('*' * 80) len_train_csv = train_csv.shape[0] steps_per_epoch_train = int(len_train_csv/batch_size) * len(time_strs) print('len(train_data): %s' % len_train_csv) print('batch_size: %s' % batch_size) print('steps_per_epoch_train: %s' % steps_per_epoch_train) train_gen = data_generator_folder('train', feature_folder, file_reg, model_names, time_strs, batch_size, num_classes) batch_data = next(train_gen) print(batch_data[0].shape, batch_data[1].shape) batch_data = next(train_gen) print(batch_data[0].shape, batch_data[1].shape) # for i in range(steps_per_epoch_train*5): # next(train_gen) print('*' * 80) len_val_csv = val_csv.shape[0] steps_per_epoch_val = int(len_val_csv/batch_size) print('len(val_data): %s' % len_val_csv) print('batch_size: %s' % batch_size) print('steps_per_epoch_val: %s' % steps_per_epoch_val) val_gen = data_generator_folder('val', feature_folder, file_reg, model_names, time_strs, batch_size, num_classes) batch_data = next(val_gen) print(batch_data[0].shape, batch_data[1].shape) batch_data = next(val_gen) print(batch_data[0].shape, batch_data[1].shape) data_dim = batch_data[0].shape[1] print('data_dim: %s' % data_dim) print('*' * 80) x_train, y_train = load_time_str_feature_data('train', feature_folder, file_reg, model_names, time_strs[0]) x_val, y_val = load_time_str_feature_data('val', feature_folder, file_reg, model_names, time_strs[0]) print(x_train.shape) print(len(y_train)) print(x_val.shape) print(len(y_val)) def load_time_str_feature_test(feature_folder, file_reg, model_names, time_str): x_test_time_strs = [] for model_name in model_names: file_name = file_reg % (model_name, time_str) file_path = os.path.join(feature_folder, file_name) x_test_time_str = load_h5_test(feature_folder, file_reg, model_name, time_str) x_test_time_str = np.round(x_test_time_str, decimals=3) x_test_time_strs.append(x_test_time_str) x_test_time_strs = np.concatenate(x_test_time_strs, axis=-1) # print(x_test_time_strs.shape) return x_test_time_strs x_test = load_time_str_feature_test(feature_folder, file_reg, model_names, time_strs[0]) print(x_test.shape) ###Output (12652, 5632) ###Markdown Build NN ###Code from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential from keras.layers import Dense, Dropout, Input, Flatten, Conv2D, MaxPooling2D, BatchNormalization, LSTM from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler, TensorBoard, EarlyStopping def get_lr(x): # lr = round(3e-4 * 0.96 ** x, 6) if x <= 10: lr = 3e-4 if x <= 15: lr = 1e-4 else: lr = 5e-5 # lr = 3e-4 print(lr, end=' ') return lr for i in range(epochs): print(get_lr(i), end=' ') # annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) annealer = LearningRateScheduler(get_lr) # early_stop = EarlyStopping(monitor='acc', min_delta=0.001, patience=0.0005, verbose=0, mode='auto') log_dir = os.path.join(log_folder, run_name) print('\nlog_dir:' + log_dir) tensorBoard = TensorBoard(log_dir=log_dir) callbacks = [] # callbacks = [early_stop] # expected input data shape: (batch_size, timesteps, data_dim) model = Sequential() model.add(Dense(1024, input_shape=(data_dim,))) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(1024, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(num_classes, activation='softmax')) # model.compile(loss='categorical_crossentropy', # optimizer='rmsprop', # metrics=['accuracy']) model.compile(optimizer=Adam(lr=1e-4), loss='categorical_crossentropy', metrics=['accuracy']) model.summary() cpu_amount = cpu_count() print(cpu_amount) %%time hist = model.fit_generator(train_gen, steps_per_epoch=steps_per_epoch_train, epochs=epochs, #Increase this when not on Kaggle kernel verbose=1, #1 for ETA, 0 for silent callbacks=callbacks, max_queue_size=batch_size, workers=cpu_amount, use_multiprocessing=False, validation_data=val_gen, validation_steps=steps_per_epoch_val) final_loss, final_acc = model.evaluate_generator(val_gen, steps=steps_per_epoch_val * len(time_strs)) print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc)) run_name_acc = run_name + '_' + str(int(final_acc*10000)).zfill(4) print(run_name_acc) histories = pd.DataFrame(hist.history) histories['epoch'] = hist.epoch print(histories.columns) histories_file = os.path.join(model_folder, 'hist_%s.csv' % run_name_acc) histories.to_csv(histories_file, index=False) import matplotlib.pyplot as plt %matplotlib inline plt.plot(hist.history['loss'], color='b') plt.plot(hist.history['val_loss'], color='r') plt.show() plt.plot(hist.history['acc'], color='b') plt.plot(hist.history['val_acc'], color='r') plt.show() def save_network(model, run_name): cwd = os.getcwd() modelPath = os.path.join(cwd, 'model') if not os.path.isdir(modelPath): os.mkdir(modelPath) weigthsFile = os.path.join(modelPath, run_name + '.h5') model.save(weigthsFile) save_network(model, run_name_acc) ###Output _____no_output_____ ###Markdown Predict ###Code %%time y_train_proba = model.predict(x_train) print(y_train_proba.shape) y_train_pred = np.argmax(y_train_proba, -1) print(y_train_pred.shape) print(accuracy_score(y_train, y_train_pred)) %%time y_val_proba = model.predict(x_val) print(y_val_proba.shape) y_val_pred = np.argmax(y_val_proba, -1) print(y_val_pred.shape) print(accuracy_score(y_val, y_val_pred)) %%time y_test_proba = model.predict(x_test) print(y_test_proba.shape) y_test_pred = np.argmax(y_test_proba, -1) print(y_test_pred.shape) # 这里证明os.listdir()得到的图片名称list不正确 files = os.listdir(os.path.join(test_folder, 'test')) print(files[:10]) # 这里证明ImageDataGenerator()得到的图片名称list才是正确 gen = ImageDataGenerator() image_size = (299, 299) test_generator = gen.flow_from_directory(test_folder, image_size, shuffle=False, batch_size=batch_size) print('test_generator') print(len(test_generator.filenames)) def save_proba(y_train_proba, y_train, y_val_proba, y_val, y_test_proba, test_filenames, file_name): test_filenames = [n.encode('utf8') for n in test_filenames] print(test_filenames[:10]) if os.path.exists(file_name): os.remove(file_name) print('File removed: \t%s' % file_name) with h5py.File(file_name) as h: h.create_dataset('y_train_proba', data=y_train_proba) h.create_dataset('y_train', data=y_train) h.create_dataset('y_val_proba', data=y_val_proba) h.create_dataset('y_val', data=y_val) h.create_dataset('y_test_proba', data=y_test_proba) h.create_dataset('test_filenames', data=test_filenames) print('File saved: \t%s' % file_name) def load_proba(file_name): with h5py.File(file_name, 'r') as h: y_train_proba = np.array(h['y_train_proba']) y_train = np.array(h['y_train']) y_val_proba = np.array(h['y_val_proba']) y_val = np.array(h['y_val']) y_test_proba = np.array(h['y_test_proba']) test_filenames = np.array(h['test_filenames']) print('File loaded: \t%s' % file_name) test_filenames = [n.decode('utf8') for n in test_filenames] print(test_filenames[:10]) return y_train_proba, y_train, y_val_proba, y_val, y_test_proba, test_filenames y_proba_file = os.path.join(model_folder, 'proba_%s.p' % run_name_acc) save_proba(y_train_proba, y_train, y_val_proba, y_val, y_test_proba, test_generator.filenames, y_proba_file) y_train_proba, y_train, y_val_proba, y_val, y_test_proba, test_filenames = load_proba(y_proba_file) print(y_train_proba.shape) print(y_train.shape) print(y_val_proba.shape) print(y_val.shape) print(y_test_proba.shape) print(len(test_filenames)) %%time max_indexes = np.argmax(y_test_proba, -1) print(max_indexes.shape) test_dict = {} for pair in zip(test_filenames, max_indexes): image_name, indx = pair[0], int(pair[1]) image_name = image_name.split('/')[-1] image_id = int(image_name.split('.')[0]) # print(pair[0], image_name, image_id, indx, indx+1, type(image_id), type(indx)) test_dict[image_id] = indx + 1 #确认图片的id是否能与ImageDataGenerator()对应上 for name in test_generator.filenames[:10]: image_name = name.split('/')[-1] image_id = int(image_name.split('.')[0]) # print('%s\t%s\t%s' % (name, image_id, test_dict[image_id])) display(sample_submission_csv.head(2)) %%time len_sample_submission_csv = len(sample_submission_csv) print('len(len_sample_submission_csv)=%d' % len_sample_submission_csv) count = 0 for i in range(len_sample_submission_csv): image_id = int(sample_submission_csv.iloc[i, 0]) if image_id in test_dict: pred_label = test_dict[image_id] # print('%s\t%s' % (image_id, pred_label)) sample_submission_csv.iloc[i, 1] = pred_label else: # print('%s\t%s' % (image_id, 20)) sample_submission_csv.iloc[i, 1] = 20 # 属于20的类最多,所以全都设置成这个类,可能会比设置成其他得到的结果好 count += 1 if count % 1000 == 0: print(int(count/1000), end=' ') display(sample_submission_csv.head(2)) print(list(set(sample_submission_csv['predicted']))) pred_file = os.path.join(output_folder, 'pred_%s.csv' % run_name_acc) sample_submission_csv.to_csv(pred_file, index=None) print(run_name_acc) t1 = time.time() print('time cost: %.2f s' % (t1-t0)) print('Done!') ###Output ic_furniture2018_TrainPredict_Mix3model_20180429_112205_7594 time cost: 9061.06 s Done!
Machine Learning/Jupyter Notebooks/Lab4 Logistic Regression.ipynb
###Markdown Logistic Regression on MNIST Assignment 3 (Deadline : 29/10/2020 11:59PM)Total Points : 100 ###Code import numpy as np np.random.seed(42) # setting random seed for reproducibility ###Output _____no_output_____ ###Markdown 1. Digit Classification : 8 vs others (40 points) ###Code # Import the required libraries import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.model_selection import train_test_split, cross_val_score # The digits data can be loaded as follows : from sklearn import datasets D = datasets.load_digits() X, y = D["data"], D["target"] # check the shape of the data print(f"Shape of X: {X.shape}\nShape of y: {y.shape}") # Plot a few digits to get a sense of how the data looks like fig, axes = plt.subplots(4, 5, figsize = (10, 10)) for ax in axes.flatten(): index = np.random.randint(0, X.shape[0]) ax.imshow(X[index].reshape(8, 8), cmap = 'gray') ax.set_title(y[index]) ax.set_xticks([]) ax.set_yticks([]) ###Output _____no_output_____ ###Markdown Let's plot the number of examples in each class ###Code pd.Series(y).value_counts().plot(kind = 'bar', title = 'Number of examples in each class', xlabel = 'Class', ylabel = 'Count', figsize = (12, 6)); pd.Series(y).value_counts() ###Output _____no_output_____ ###Markdown - The classes are well balanced as can be seen from the above graph ###Code # Redefine the labels y[y != 8] = 0 y[y == 8] = 1 pd.Series(y).value_counts().plot(kind = 'bar', title = 'Distribution of examples in each class', xlabel = 'Class', ylabel = 'Count', figsize = (12, 6)); pd.Series(y).value_counts() ###Output _____no_output_____ ###Markdown - As can be seen from the above graph, the distribution is highly imbalanced Plot the number of examples in both classes ###Code # Create a 2-class classification problem (digit 8 versus other digits) # 20% for testing and rest for training X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, stratify = y, random_state = 42) print(f"Shape of X_train: {X_train.shape}\nShape of y_train: {y_train.shape}") print(f"Shape of X_test: {X_test.shape}\nShape of y_test: {y_test.shape}") ###Output Shape of X_train: (1437, 64) Shape of y_train: (1437,) Shape of X_test: (360, 64) Shape of y_test: (360,) ###Markdown Logistic Regression Model with no penalty ###Code # Train a logistic regression model with no regularisation for the problem and obtain the cross validation accuracies solvers = ['sag', 'saga', 'lbfgs', 'newton-cg'] for solver in solvers: LR = LogisticRegression(penalty = 'none', solver = solver, max_iter = 10000, random_state = 0) score = cross_val_score(LR, X_train, y_train, cv = 5, scoring = 'accuracy') print(f"Mean accuracy: {round(score.mean(), 4)} with {solver} solver") ###Output Mean accuracy: 0.9548 with sag solver Mean accuracy: 0.9548 with saga solver Mean accuracy: 0.9569 with lbfgs solver Mean accuracy: 0.9569 with newton-cg solver ###Markdown - **LBFGS and newton-cg** solver gave the best performance ###Code # Predict values for the test set using the model obtained above LR = LogisticRegression(penalty = 'none', solver = 'lbfgs', max_iter = 10000, random_state = 0) LR.fit(X_train, y_train) y_pred = LR.predict_proba(X_test) # Obtain all the different performance metrics for the model on the test set confusion_matrix(y_test, np.argmax(y_pred, axis = -1)) # print the accuracy score round(accuracy_score(y_test, np.argmax(y_pred, axis = -1)), 4) ###Output _____no_output_____ ###Markdown Logistic Regression with L2 regularization ###Code # Change the hyperparameters of the model and see what effect it has on the model # Find the hyperparameters which maximises the model performance. Choose the right performance metric to evaluate the model lambda_param = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300] for C in lambda_param: LR = LogisticRegression(penalty = 'l2', C = C, solver = 'lbfgs', max_iter = 10000, random_state = 0) score = cross_val_score(LR, X_train, y_train, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with l2 penalty: {round(score.mean(), 4)} when C = {C}") ###Output Mean accuracy using cross validation with l2 penalty: 0.961 when C = 0.001 Mean accuracy using cross validation with l2 penalty: 0.9659 when C = 0.003 Mean accuracy using cross validation with l2 penalty: 0.9631 when C = 0.01 Mean accuracy using cross validation with l2 penalty: 0.9645 when C = 0.03 Mean accuracy using cross validation with l2 penalty: 0.9617 when C = 0.1 Mean accuracy using cross validation with l2 penalty: 0.9624 when C = 0.3 Mean accuracy using cross validation with l2 penalty: 0.9603 when C = 1 Mean accuracy using cross validation with l2 penalty: 0.9603 when C = 3 Mean accuracy using cross validation with l2 penalty: 0.9582 when C = 10 Mean accuracy using cross validation with l2 penalty: 0.9575 when C = 30 Mean accuracy using cross validation with l2 penalty: 0.9582 when C = 100 Mean accuracy using cross validation with l2 penalty: 0.9575 when C = 300 ###Markdown Logistic Regression with L1 regularization using saga solver - **LBFGS solver** doesn't support l1 regularization ###Code for C in lambda_param: LR = LogisticRegression(penalty = 'l1', C = C, solver = 'saga', max_iter = 10000, random_state = 0) score = cross_val_score(LR, X_train, y_train, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with l1 penalty: {round(score.mean(), 4)} when C = {C}") ###Output Mean accuracy using cross validation with l1 penalty: 0.9033 when C = 0.001 Mean accuracy using cross validation with l1 penalty: 0.9033 when C = 0.003 Mean accuracy using cross validation with l1 penalty: 0.9471 when C = 0.01 Mean accuracy using cross validation with l1 penalty: 0.9596 when C = 0.03 Mean accuracy using cross validation with l1 penalty: 0.9589 when C = 0.1 Mean accuracy using cross validation with l1 penalty: 0.9548 when C = 0.3 Mean accuracy using cross validation with l1 penalty: 0.9534 when C = 1 Mean accuracy using cross validation with l1 penalty: 0.9548 when C = 3 Mean accuracy using cross validation with l1 penalty: 0.9548 when C = 10 Mean accuracy using cross validation with l1 penalty: 0.9555 when C = 30 Mean accuracy using cross validation with l1 penalty: 0.9555 when C = 100 Mean accuracy using cross validation with l1 penalty: 0.9548 when C = 300 ###Markdown Logistic Regression with elasticnet regularization and saga solver - LBFGS solver doesn't support l1 regularization ###Code for C in lambda_param: LR = LogisticRegression(penalty = 'elasticnet', C = C, solver = 'saga', max_iter = 10000, random_state = 0, l1_ratio = 0.5) score = cross_val_score(LR, X_train, y_train, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with elasticnet penalty: {round(score.mean(), 4)} when C = {C}") ###Output Mean accuracy using cross validation with elasticnet penalty: 0.9033 when C = 0.001 Mean accuracy using cross validation with elasticnet penalty: 0.9165 when C = 0.003 Mean accuracy using cross validation with elasticnet penalty: 0.9589 when C = 0.01 Mean accuracy using cross validation with elasticnet penalty: 0.9589 when C = 0.03 Mean accuracy using cross validation with elasticnet penalty: 0.9582 when C = 0.1 Mean accuracy using cross validation with elasticnet penalty: 0.9534 when C = 0.3 Mean accuracy using cross validation with elasticnet penalty: 0.9548 when C = 1 Mean accuracy using cross validation with elasticnet penalty: 0.9541 when C = 3 Mean accuracy using cross validation with elasticnet penalty: 0.9548 when C = 10 Mean accuracy using cross validation with elasticnet penalty: 0.9555 when C = 30 Mean accuracy using cross validation with elasticnet penalty: 0.9548 when C = 100 Mean accuracy using cross validation with elasticnet penalty: 0.9548 when C = 300 ###Markdown Best model parameters:- Solver: LBFGS- C = 0.003- Penalty = l2 ###Code # model with best parameters LR = LogisticRegression(penalty = 'l2', C = 0.003, solver = 'lbfgs', max_iter = 10000, random_state = 0) LR.fit(X_train, y_train) y_pred = LR.predict(X_test) # plot the confusion matrix confusion_matrix(y_test, y_pred) # print the accuracy score round(accuracy_score(y_test, y_pred), 4) ###Output _____no_output_____ ###Markdown Preprocess the input data ###Code from sklearn.preprocessing import StandardScaler scalar = StandardScaler() X_train = scalar.fit_transform(X_train) X_test = scalar.transform(X_test) for C in lambda_param: LR = LogisticRegression(penalty = 'l2', C = C, solver = 'lbfgs', max_iter = 10000, random_state = 0) score = cross_val_score(LR, X_train, y_train, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with l2 penalty: {round(score.mean(), 4)} when C = {C}") # model with best parameters LR = LogisticRegression(penalty = 'l2', C = 0.3, solver = 'lbfgs', max_iter = 10000, random_state = 0) LR.fit(X_train, y_train) y_pred = LR.predict(X_test) # plot the confusion matrix confusion_matrix(y_test, y_pred) # print the accuracy score round(accuracy_score(y_test, y_pred), 4) ###Output _____no_output_____ ###Markdown 2. California Housing Prices (60 points)In this problem, we will take the same California Housing prices dataset that was shown in the last lab class to do a binary classification of whether the median house value for a given locality is high or low . ###Code # Get the data from the website to the local directory import os import tarfile from six.moves import urllib source_path = "https://raw.githubusercontent.com/ageron/handson-ml/master/datasets/housing/housing.tgz" local_path = os.path.join("datasets", "housing") os.makedirs(local_path, exist_ok = True) tgz_path = os.path.join(local_path, "housing.tgz") urllib.request.urlretrieve(source_path, tgz_path) housing_tgz = tarfile.open(tgz_path) housing_tgz.extractall(path=local_path) housing_tgz.close() # Read the data into a dataframe housing_df = pd.read_csv('datasets/housing/housing.csv') housing_df.head() # Shape of the dataframe housing_df.shape # Basic info about the dataset housing_df.info() # Description of the dataset housing_df.describe().T ###Output _____no_output_____ ###Markdown Explore the data to understand it better ###Code # Check the null values in the dataset housing_df.isnull().sum() ###Output _____no_output_____ ###Markdown - **Total bedrooms column has 207 null values**. ###Code # plot the counts of housing median age housing_df.housing_median_age.value_counts().plot(kind = 'bar', title = 'Count of housing median age', ylabel = 'Counts', xlabel = 'Housing Median Age', figsize = (14, 8)); ###Output _____no_output_____ ###Markdown - **Housing median age = 52** occurs maximum number of times. It may be a typo because all other values are much less in frequency. ###Code # Plot the distribution of total_rooms area housing_df.total_rooms.plot(kind = 'hist', bins = 100, title = 'Distribution of Total Rooms Area in the dataset', figsize = (12, 6)); # largest 15 values in the total rooms column in the dataset housing_df.total_rooms.sort_values(ascending = True).iloc[-15:] ###Output _____no_output_____ ###Markdown - There are few houses with **very large values of total rooms area**. These are probably outliers in this column. - Most values in the above distribution lies in the **range from 0 - 10000**. ###Code # Plot the distribution of total_bedrooms area housing_df.total_bedrooms.plot(kind = 'hist', bins = 100, title = 'Distribution of Total Bedrooms Area in the dataset', figsize = (12, 6)); # largest 15 values in the total bedrooms column in the dataset housing_df.total_bedrooms.dropna().sort_values(ascending = True).iloc[-15:] ###Output _____no_output_____ ###Markdown - There are few **very large values in the total bedrooms column**. These are probably outliers in this column.- The distribution lies mostly in the **range 0 - 2000**. ###Code # Plot the distribution of population column housing_df.population.plot(kind = 'hist', bins = 100, title = 'Distribution of Population in the dataset', figsize = (12, 6)); # largest 15 values in the population column in the dataset housing_df.population.sort_values(ascending = True).iloc[-15:] ###Output _____no_output_____ ###Markdown - Few values in the population column are very large as can be seen from the above plot and value counts.- The distribution lies mostly in the **range 0 - 5000**. ###Code # Plot the distribution of households column in the dataset housing_df.households.plot(kind = 'hist', bins = 100, title = 'Distribution of households in the dataset', figsize = (12, 6)); # largest 15 values in the households column in the dataset housing_df.households.sort_values(ascending = True).iloc[-15:] ###Output _____no_output_____ ###Markdown - Few values in the household column are very large as can be seen from the above plot and value counts.- The distribution lies mostly in the **range 0 - 2000**. ###Code # Plot the distribution of median income column in the dataset housing_df.median_income.plot(kind = 'hist', bins = 100, title = 'Distribution of median income in the dataset', figsize = (12, 6)); # largest 15 values in the median income column in the dataset housing_df.median_income.sort_values(ascending = True).iloc[-15:] # Count of median income with value equal to 15.001 (housing_df.median_income == 15.0001).sum() ###Output _____no_output_____ ###Markdown - There are **49 entries with median income value = 15.0001**. This can be a typo or outlier in this column.- This is also the largest value in this column. ###Code # Plot the distribution of median house values column in the dataset housing_df.median_house_value.plot(kind = 'hist', bins = 60, title = 'Distribution of median house values in the dataset', figsize = (12, 6)); # maximum value in the median house values column housing_df.median_house_value.max() # Count of median house entry with value equal to 500001.0 (housing_df.median_house_value == 500001.0).sum() ###Output _____no_output_____ ###Markdown - There are **965 entries with median house value = 500001.0**. This can be a typo or outlier in this column.- This is also the largest value in this column. ###Code # explore the ocean proximity column housing_df.ocean_proximity.value_counts().plot(kind = 'bar', title = 'Counts of each category in the ocean proximity column', ylabel = 'Counts', figsize = (12, 6)); # Counts of each category in the ocean proximity column in the dataset housing_df.ocean_proximity.value_counts() ###Output _____no_output_____ ###Markdown - **1H OCEAN** has the largest frequency in this ocean proximity column. - **ISLAND** has the lowest frequency. ###Code # Convert the data to suit a binary classification of High Price vs Low Price for the median_house_value column # Assume that anything >= $200,000 is high price with output value 1 and anything less than that is low price with output value 0. housing_df['target'] = housing_df.median_house_value.apply(lambda x: 1 if x >= 200000 else 0) housing_df.head() ###Output _____no_output_____ ###Markdown Pipeline ###Code y = housing_df.target X = housing_df.drop(['median_house_value', 'target'], axis = 1) X.head() train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.2, stratify = y, random_state = 42) print(f"Shape of train_X: {train_X.shape}\nShape of train_y: {train_y.shape}") print(f"Shape of test_X: {test_X.shape}\nShape of test_y: {test_y.shape}") from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn import set_config from sklearn.model_selection import GridSearchCV from sklearn.decomposition import PCA from sklearn.utils import estimator_html_repr from sklearn.preprocessing import StandardScaler, OneHotEncoder, RobustScaler, MinMaxScaler # set up the numeric and categorical transformer numeric_transformer = Pipeline(steps = [('imputer', SimpleImputer(strategy = 'median')), ('scaler', 'passthrough')]) categorical_transformer = Pipeline(steps = [('imputer', SimpleImputer(strategy = 'constant', fill_value = 'missing')), ('onehot', OneHotEncoder(handle_unknown = 'ignore'))]) numeric_features = X.select_dtypes(include = ['int64', 'float64']).columns categorical_features = X.select_dtypes(include = ['object']).columns data_transformer = ColumnTransformer(transformers = [('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) preprocessor = Pipeline(steps = [('data_transformer', data_transformer), ('reduce_dim', PCA())]) clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', LogisticRegression(random_state = 0, max_iter = 10000))]) param_grid = { 'preprocessor__data_transformer__num__imputer__strategy': ['mean', 'median'], 'preprocessor__data_transformer__cat__imputer__strategy': ['constant','most_frequent'], 'preprocessor__data_transformer__num__scaler': [StandardScaler(), RobustScaler(), MinMaxScaler()], 'classifier__C': [0.1, 1.0, 10, 100], 'preprocessor__reduce_dim__n_components': [2, 5, 7, 9], 'classifier__solver': ['liblinear','newton-cg', 'lbfgs','sag','saga']} CV = GridSearchCV(clf, param_grid, n_jobs = 1) CV.fit(train_X, train_y) # print(CV.best_params_) # print(CV.best_score_) # set config to diagram for visualizing the pipelines / composite estimators set_config(display = 'diagram') # Lets visualize the best estimator from grid search. CV.best_estimator_ # saving pipeline as html format # with open('titanic_data_pipeline_estimator.html', 'w') as f: # f.write(estimator_html_repr(grid_search.best_estimator_)) ###Output _____no_output_____ ###Markdown One hot encode the ocean proximity column ###Code housing_df = pd.get_dummies(housing_df, columns = ['ocean_proximity']) housing_df.head() # Rename the columns of the dataframe columns = ['longitude', 'latitude', 'housing_median_age', 'total_rooms','total_bedrooms', 'population', 'households', 'median_income', 'median_house_value', 'target', '1h_ocean', 'inland', 'island','near_bay', 'near_ocean'] housing_df.columns = columns housing_df.head() ###Output _____no_output_____ ###Markdown Fill the missing values in the total_bedrooms column by the mean of the column ###Code housing_df.total_bedrooms.fillna(housing_df.total_bedrooms.mean(), inplace = True) # check the null values after imputing with mean housing_df.total_bedrooms.isnull().sum() ###Output _____no_output_____ ###Markdown Check the correlation in the dataset ###Code housing_df.corr() # inputs and outputs for the model columns = ['longitude', 'latitude', 'housing_median_age', 'total_rooms','total_bedrooms', 'population', 'households', 'median_income', '1h_ocean', 'inland', 'island','near_bay', 'near_ocean'] y = housing_df.target X = housing_df[columns] print(f"Shape of inputs: {X.shape}\nShape of outputs: {y.shape}") # check the distribution of targets y.value_counts() # Use stratified sampling to create an 80-20 train-test split train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.2, stratify = y, random_state = 42) print(f"Shape of train_X: {train_X.shape}\nShape of train_y: {train_y.shape}") print(f"Shape of test_X: {test_X.shape}\nShape of test_y: {test_y.shape}") ###Output Shape of train_X: (16512, 13) Shape of train_y: (16512,) Shape of test_X: (4128, 13) Shape of test_y: (4128,) ###Markdown Base Line Model ###Code # Define the base line model lr_model = LogisticRegression(max_iter = 5000) score = cross_val_score(lr_model, train_X, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy with cross validation: {round(score.mean(), 4)}") ###Output Mean accuracy with cross validation: 0.8272 ###Markdown Separate features into categorical and numeric ###Code # separate numeric features numeric_features = train_X.iloc[:, :-5] # separate categorical features categorical_features = train_X.iloc[:, -5:] ###Output _____no_output_____ ###Markdown Scale numeric features for modelling ###Code scalar = StandardScaler() train_X_scaled = scalar.fit_transform(numeric_features) test_X_scaled = scalar.transform(test_X.iloc[:, :-5]) # Shape of numeric features train_X_scaled.shape, test_X_scaled.shape ###Output _____no_output_____ ###Markdown Fitting model only on scaled numeric features ###Code # fit the logistic model lr_model = LogisticRegression(max_iter = 5000) score = cross_val_score(lr_model, train_X_scaled, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy with cross validation only using scaled numeric features: {round(score.mean(), 4)}") ###Output Mean accuracy with cross validation only using scaled numeric features: 0.843 ###Markdown Using both categorical and numerical features to fit model ###Code # concatenate numerical and categorical features train_data = np.concatenate((train_X_scaled, categorical_features), 1) test_data = np.concatenate((test_X_scaled, test_X.iloc[:, -5:]), 1) train_data.shape, test_data.shape lr_model = LogisticRegression(max_iter = 5000) score = cross_val_score(lr_model, train_data, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy with cross validation using all features: {round(score.mean(), 4)}") ###Output Mean accuracy with cross validation using all features: 0.8431 ###Markdown Find the best solver for the model ###Code for solver in solvers: LR = LogisticRegression(penalty = 'none', solver = solver, max_iter = 10000, random_state = 0) score = cross_val_score(LR, train_data, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy: {round(score.mean(), 4)} with {solver} solver") # performance of model using saga solver and l2 regularization for C in lambda_param: LR = LogisticRegression(penalty = 'l2', solver = 'lbfgs', max_iter = 10000, random_state = 0) score = cross_val_score(LR, train_data, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with saga solver: {round(score.mean(), 4)} when C = {C}") # performance of model using saga solver and l1 regularization for C in lambda_param: LR = LogisticRegression(penalty = 'l1', solver = 'saga', max_iter = 10000, random_state = 0) score = cross_val_score(LR, train_data, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with saga solver: {round(score.mean(), 4)} when C = {C}") # performance of model using saga solver and elasticnet regularization for C in lambda_param: LR = LogisticRegression(penalty = 'elasticnet', solver = 'saga', max_iter = 10000, random_state = 0, l1_ratio = 0.5) score = cross_val_score(LR, train_data, train_y, cv = 5, scoring = 'accuracy') print(f"Mean accuracy using cross validation with saga solver: {round(score.mean(), 4)} when C = {C}") ###Output Mean accuracy using cross validation with saga solver: 0.8434 when C = 0.001 Mean accuracy using cross validation with saga solver: 0.8434 when C = 0.003 Mean accuracy using cross validation with saga solver: 0.8434 when C = 0.01 Mean accuracy using cross validation with saga solver: 0.8434 when C = 0.03 Mean accuracy using cross validation with saga solver: 0.8434 when C = 0.1 Mean accuracy using cross validation with saga solver: 0.8434 when C = 0.3 Mean accuracy using cross validation with saga solver: 0.8434 when C = 1 Mean accuracy using cross validation with saga solver: 0.8434 when C = 3 Mean accuracy using cross validation with saga solver: 0.8434 when C = 10 Mean accuracy using cross validation with saga solver: 0.8434 when C = 30 Mean accuracy using cross validation with saga solver: 0.8434 when C = 100 Mean accuracy using cross validation with saga solver: 0.8434 when C = 300 ###Markdown Best model parameters- Solver: LBFGS- penalty: None ###Code # Find the best Logistic Regression model that can solve this problem lr_model = LogisticRegression(penalty = 'none', max_iter = 10000, solver = 'lbfgs') lr_model.fit(train_data, train_y) pred_y = lr_model.predict(test_data) # confusion matrix confusion_matrix(test_y, pred_y) # Accuracy accuracy_score(test_y, pred_y) ###Output _____no_output_____
Notebooks/Age_and_Gender_detection.ipynb
###Markdown Deep-Learning projectAge and gender detectionWe will work with the dataset **```age_gender.csv```**. This dataset contains images of faces, as well as the gender and age of the person in question.> The structure of the exercise is as follows: >> I - [Preparation of the dataset](preparation)>>>>>> II - [Gender classification and age prediction](model) ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras import callbacks from tensorflow.keras import Input, Model from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D ###Output _____no_output_____ ###Markdown I - Preparation of the dataset ###Code df = pd.read_csv("../Data/age_gender.csv", sep=",") df["pixels"] = df["pixels"].apply(lambda x : np.array(x.split()).astype(np.int16).reshape(48, 48, 1)) print("Number of rows in the dataset : {}".format(df.shape[0])) print("Number of columns in the dataset : {}".format(df.shape[1])) df.head() plt.figure(figsize=(10, 6)) df["age"].hist(bins=20, grid=False, color="#2e9a74") plt.title("Age repartition", fontsize=20) plt.xlabel("Age") plt.ylabel("Number of faces") plt.xticks([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115]); plt.figure(figsize=(6, 6)) plt.pie(x=df["gender"].value_counts().values, autopct="%.1f%%", labels=["Male", "Female"], pctdistance=0.5, colors=["#a37bc4", "#79519c"], explode=[0, 0.03]) plt.title("Gender repartition", fontsize=20); df = df[df["age"]>=15].reset_index(drop=True) gender_dict = {0 : "Man", 1 : "Woman"} age_max = df["age"].max() fig, axs = plt.subplots(2, 2, figsize=(6, 6)) for row in range(2): for col in range(2): i = np.random.randint(len(df)) axs[row, col].imshow(df["pixels"].iloc[i].reshape((48, 48)), cmap="gray") axs[row, col].axis("off") axs[row, col].set_title("{} year old {}".format(df["age"].iloc[i], gender_dict[df["gender"].iloc[i]])) ###Output _____no_output_____ ###Markdown II - Gender classification and age prediction ###Code class DataGenerator(): def __init__(self, df): self.df = df def generate_splits(self): """reproduction of the train_test_split function""" permut = np.random.permutation(len(self.df)) # shuffle of indices # equivalent of data_without_test, data_test = train_test_split(data, test_size=0.2) train_up_to = int(len(self.df)*0.8) indices_without_test = permut[:train_up_to] test_indices = permut[train_up_to:] # equivalent of data_train, data_validation = train_test_split(data_without_test, test_size=0.2) train_up_to = int(train_up_to*0.8) train_indices = indices_without_test[:train_up_to] valid_indices = indices_without_test[train_up_to:] return train_indices, valid_indices, test_indices # return the indices def generate_images(self, indices, is_training, batch_size=32): """used to generate batches with images during training/testing/validation of our Keras model for example, we will have "indices=train_indices, is_training=True" for a training generator "indices=test_indices, is_training=False" for a test generator""" max_age = self.df['age'].max() # max_age is used to scale the ages between 0 and 1 files, genders, ages = [], [], [] # we initialize empty lists to contain what the generator will return while True: for i in indices: # we browse the indices of the list taken in argument person = self.df.iloc[i] # we locate the person of index i files.append((person['pixels']/255)) # we add the image of the person of index i (pixels scaled between 0 and 1) genders.append(person['gender']) # we add the gender of the person of index i ages.append(person['age']/max_age) # we add the scaled age of the person of index i if len(files) >= batch_size: # as soon as the desired batch size is reached yield np.array(files), [np.array(genders), np.array(ages)] # we return the data # make sure you remember the order of the outputs as we will have to define our model accordingly files, genders, ages = [], [], [] # we reset the lists # for predictions, you have to stop after going through all the data once if not is_training: break data_generator = DataGenerator(df) train_indices, valid_indices, test_indices = data_generator.generate_splits() batch_size = 64 training_data = data_generator.generate_images(train_indices, is_training=True, batch_size=batch_size) valid_data = data_generator.generate_images(valid_indices, is_training=True, batch_size=batch_size) test_data = data_generator.generate_images(test_indices, is_training=False, batch_size=batch_size) class MultiOutputModel(): def hidden_layers(self, inputs): x = Conv2D(filters=30, kernel_size=(5, 5), padding="valid", activation="relu")(inputs) x = MaxPooling2D(pool_size=(3, 3))(x) x = Conv2D(filters=32, kernel_size=(3, 3), padding="valid", activation="relu")(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Dropout(rate=0.25)(x) return x def gender_branch(self, inputs): x = self.hidden_layers(inputs) x = Flatten()(x) x = Dense(units=64, activation="relu")(x) x = Dropout(rate=0.2)(x) x = Dense(units=1, activation="sigmoid", name="gender_output")(x) return x def age_branch(self, inputs): x = self.hidden_layers(inputs) x = Flatten()(x) x = Dense(units=64, activation="relu")(x) x = Dropout(rate=0.2)(x) x = Dense(units=1, activation="linear", name="age_output")(x) return x def create_model(self, input_shape): inputs = Input(shape=input_shape) gender_branch = self.gender_branch(inputs) age_branch = self.age_branch(inputs) model = Model(inputs=inputs, outputs=[gender_branch, age_branch]) return model input_shape = (48,48,1) model = MultiOutputModel().create_model(input_shape) early_stopping = callbacks.EarlyStopping(monitor="val_loss", patience=8, mode="min", restore_best_weights=True) lr_plateau = callbacks.ReduceLROnPlateau(monitor="val_loss", patience=5, factor=0.5, verbose=2, mode="min") loss = {"gender_output": "binary_crossentropy", "age_output": "mse"} metrics = {"gender_output": "accuracy", "age_output": "mse"} model.compile(optimizer="adam", loss=loss, metrics=metrics) history = model.fit(training_data, steps_per_epoch=len(train_indices)//batch_size, epochs=100, validation_data=valid_data, validation_steps=len(valid_indices)//batch_size, callbacks=[early_stopping, lr_plateau]) plt.figure(figsize=(11, 7)) plt.plot(history.history["loss"], "k--") plt.plot(history.history["val_loss"], color="#2e9a74") plt.title("Model loss by epoch", fontsize=20) plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="right"); plt.figure(figsize=(23, 7)) plt.subplot(121) plt.plot(history.history["gender_output_accuracy"], "k--") plt.plot(history.history["val_gender_output_accuracy"], color="#2e9a74") plt.title("Model gender accuracy by epoch", fontsize=20) plt.ylabel("gender accuracy") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="right") plt.subplot(122) plt.plot(history.history["age_output_mse"], "k--") plt.plot(history.history["val_age_output_mse"], color="#2e9a74") plt.title("Model age MSE by epoch", fontsize=20) plt.ylabel("age MSE") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="right"); model.evaluate(test_data) gender_dict = {0 : "Man", 1 : "Woman"} age_max = df["age"].max() fig, axs = plt.subplots(2, 2, figsize=(7, 7)) for row in range(2): for col in range(2): i = np.random.randint(len(test_indices)) pred = model.predict((df["pixels"][test_indices[i]]/255).reshape(1, 48, 48, 1)) axs[row, col].imshow(df["pixels"][test_indices[i]].reshape((48, 48)), cmap="gray") axs[row, col].axis("off") axs[row, col].set_title("{} year old {} \n predicted {} year old {}"\ .format(df["age"][test_indices[i]], gender_dict[df["gender"][test_indices[i]]],\ max(int(round(pred[1][0][0]*age_max)), 0), gender_dict[pred[0][0][0].round()])) model.save("age_gender_detector.h5") ###Output _____no_output_____
loc & iloc method in pandas.ipynb
###Markdown pandas loc methodaccess a group of rows and columns by label(s) or a boolean array ###Code import pandas as pd data =pd.read_csv('C:\\Users\\admin\\Desktop\\book1.csv') data data.loc[0] data.loc[3] data.loc[[1,3]] data.loc[[4,3]] data.loc[1,"Date"] data.loc[1:5,"marks"] ###Output _____no_output_____ ###Markdown pandas iloc method select data by indexing ###Code data.iloc[[0]] data.iloc[0] data.iloc[[0,1]] ###Output _____no_output_____
exploring_the_bitcoin_cryptocurrency_market/exploring_the_bitcoin_cryptocurrency_market.ipynb
###Markdown 1. Bitcoin and Cryptocurrencies: Full dataset, filtering, and reproducibilitySince the launch of Bitcoin in 2008, hundreds of similar projects based on the blockchain technology have emerged. We call these cryptocurrencies (also coins or cryptos in the Internet slang). Some are extremely valuable nowadays, and others may have the potential to become extremely valuable in the future1. In fact, on the 6th of December of 2017, Bitcoin has a market capitalization above $200 billion. The astonishing increase of Bitcoin market capitalization in 2017.*1 WARNING: The cryptocurrency market is exceptionally volatile2 and any money you put in might disappear into thin air. Cryptocurrencies mentioned here might be scams similar to Ponzi Schemes or have many other issues (overvaluation, technical, etc.). Please do not mistake this for investment advice. *2 Update on March 2020: Well, it turned out to be volatile indeed :DThat said, let's get to business. We will start with a CSV we conveniently downloaded on the 6th of December of 2017 using the coinmarketcap API (NOTE: The public API went private in 2020 and is no longer available) named datasets/coinmarketcap_06122017.csv. ###Code # Importing pandas import pandas as pd # Importing matplotlib and setting aesthetics for plotting later. import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'svg' plt.style.use('fivethirtyeight') # Reading datasets/coinmarketcap_06122017.csv into pandas dec6 = pd.read_csv('coinmarketcap_06122017.csv') # Selecting the 'id' and the 'market_cap_usd' columns market_cap_raw = dec6[['id', 'market_cap_usd']] # Counting the number of values market_cap_raw.count() ###Output _____no_output_____ ###Markdown 2. Discard the cryptocurrencies without a market capitalizationWhy do the count() for id and market_cap_usd differ above? It is because some cryptocurrencies listed in coinmarketcap.com have no known market capitalization, this is represented by NaN in the data, and NaNs are not counted by count(). These cryptocurrencies are of little interest to us in this analysis, so they are safe to remove. ###Code # Filtering out rows without a market capitalization cap = market_cap_raw.query('market_cap_usd > 0') # Counting the number of values again cap.count() ###Output _____no_output_____ ###Markdown 3. How big is Bitcoin compared with the rest of the cryptocurrencies?At the time of writing, Bitcoin is under serious competition from other projects, but it is still dominant in market capitalization. Let's plot the market capitalization for the top 10 coins as a barplot to better visualize this. ###Code # Declaring these now for later use in the plots TOP_CAP_TITLE = 'Top 10 market capitalization' TOP_CAP_YLABEL = '% of total cap' # Selecting the first 10 rows and setting the index cap10 = cap[:10].set_index('id') # Calculating market_cap_perc cap10 = cap10.assign(market_cap_perc = lambda x: (x.market_cap_usd / cap.market_cap_usd.sum())*100) # Plotting the barplot with the title defined above ax = cap10['market_cap_perc'].plot.bar(title=TOP_CAP_TITLE) # Annotating the y axis with the label defined above ax.set_ylabel(TOP_CAP_YLABEL); ###Output _____no_output_____ ###Markdown 4. Making the plot easier to read and more informativeWhile the plot above is informative enough, it can be improved. Bitcoin is too big, and the other coins are hard to distinguish because of this. Instead of the percentage, let's use a log10 scale of the "raw" capitalization. Plus, let's use color to group similar coins and make the plot more informative1. For the colors rationale: bitcoin-cash and bitcoin-gold are forks of the bitcoin blockchain2. Ethereum and Cardano both offer Turing Complete smart contracts. Iota and Ripple are not minable. Dash, Litecoin, and Monero get their own color.1 This coloring is a simplification. There are more differences and similarities that are not being represented here.2 The bitcoin forks are actually very different, but it is out of scope to talk about them here. Please see the warning above and do your own research. ###Code # Colors for the bar plot COLORS = ['orange', 'green', 'orange', 'cyan', 'cyan', 'blue', 'silver', 'orange', 'red', 'green'] # Plotting market_cap_usd as before but adding the colors and scaling the y-axis ax = cap10['market_cap_usd'].plot.bar(title=TOP_CAP_TITLE, logy=True, color=COLORS) # Annotating the y axis with 'USD' ax.set_ylabel('USD') # Final touch! Removing the xlabel as it is not very informative ax.set_xlabel(''); ###Output _____no_output_____ ###Markdown 5. What is going on?! Volatility in cryptocurrenciesThe cryptocurrencies market has been spectacularly volatile since the first exchange opened. This notebook didn't start with a big, bold warning for nothing. Let's explore this volatility a bit more! We will begin by selecting and plotting the 24 hours and 7 days percentage change, which we already have available. ###Code # Selecting the id, percent_change_24h and percent_change_7d columns volatility = dec6[['id', 'percent_change_24h', 'percent_change_7d']] # Setting the index to 'id' and dropping all NaN rows volatility = volatility.set_index('id').dropna() # Sorting the DataFrame by percent_change_24h in ascending order volatility = volatility.sort_values(by='percent_change_24h') # Checking the first few rows volatility.head() ###Output _____no_output_____ ###Markdown 6. Well, we can already see that things are *a bit* crazyIt seems you can lose a lot of money quickly on cryptocurrencies. Let's plot the top 10 biggest gainers and top 10 losers in market capitalization. ###Code # Defining a function with 2 parameters, the series to plot and the title def top10_subplot(volatility_series, title): # Making the subplot and the figure for two side by side plots fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) # Plotting with pandas the barchart for the top 10 losers ax = volatility_series[:10].plot.bar(color='darkred', ax=axes[0]) # Setting the figure's main title to the text passed as parameter fig.suptitle(title) # Setting the ylabel to '% change' ax.set_ylabel('% change') # Same as above, but for the top 10 winners ax = volatility_series[-10:].plot.bar(color='darkblue', ax=axes[1]) # Returning this for good practice, might use later return fig, ax DTITLE = "24 hours top losers and winners" # Calling the function above with the 24 hours period series and title DTITLE fig, ax = top10_subplot(volatility['percent_change_24h'], DTITLE) ###Output /home/victor/.local/lib/python3.8/site-packages/pandas/plotting/_matplotlib/tools.py:400: MatplotlibDeprecationWarning: The is_first_col function was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use ax.get_subplotspec().is_first_col() instead. if ax.is_first_col(): ###Markdown 7. Ok, those are... interesting. Let's check the weekly Series too.800% daily increase?! Why are we doing this tutorial and not buying random coins?1After calming down, let's reuse the function defined above to see what is going weekly instead of daily.1 Please take a moment to understand the implications of the red plots on how much value some cryptocurrencies lose in such short periods of time ###Code # Sorting in ascending order volatility7d = volatility.sort_values(by='percent_change_7d') WTITLE = "Weekly top losers and winners" # Calling the top10_subplot function fig, ax = top10_subplot(volatility7d['percent_change_7d'], WTITLE) ###Output _____no_output_____ ###Markdown 8. How small is small?The names of the cryptocurrencies above are quite unknown, and there is a considerable fluctuation between the 1 and 7 days percentage changes. As with stocks, and many other financial products, the smaller the capitalization, the bigger the risk and reward. Smaller cryptocurrencies are less stable projects in general, and therefore even riskier investments than the bigger ones1. Let's classify our dataset based on Investopedia's capitalization definitions for company stocks. 1 Cryptocurrencies are a new asset class, so they are not directly comparable to stocks. Furthermore, there are no limits set in stone for what a "small" or "large" stock is. Finally, some investors argue that bitcoin is similar to gold, this would make them more comparable to a commodity instead. ###Code # Selecting everything bigger than 10 billion largecaps = cap.query('market_cap_usd >= 10000000000') # Printing out largecaps largecaps ###Output _____no_output_____ ###Markdown 9. Most coins are tinyNote that many coins are not comparable to large companies in market cap, so let's divert from the original Investopedia definition by merging categories.This is all for now. Thanks for completing this project! ###Code # Making a nice function for counting different marketcaps from the "cap" DataFrame. Returns an int. # INSTRUCTORS NOTE: Since you made it to the end, consider it a gift :D def capcount(query_string): return cap.query(query_string).count().id # Labels for the plot LABELS = ["biggish", "micro", "nano"] # Using capcount count the biggish cryptos biggish = capcount('market_cap_usd > 300000000') # Same as above for micro ... micro = capcount('300000000 > market_cap_usd > 50000000') # ... and for nano nano = capcount('market_cap_usd < 50000000') # Making a list with the 3 counts values = [biggish, micro, nano] # Plotting them with matplotlib plt.bar(range(len(values)), values, tick_label=LABELS); ###Output _____no_output_____
tensorflow_1_x/7_kaggle/notebooks/python/raw/ex_7.ipynb
###Markdown $EXERCISE_PREAMBLE$There are only four problems in this last set of exercises, but they're all pretty tricky, so be on guard! If you get stuck, don't hesitate to head to the [Learn Forum](https://kaggle.com/learn-forum) to discuss.Run the setup code below before working on the questions (and run it again if you leave this notebook and come back later). ###Code #_RM_ %matplotlib inline # SETUP. You don't need to worry for now about what this code does or how it works. If you're ever curious about the # code behind these exercises, it's available under an open source license here: https://github.com/Kaggle/learntools/ from learntools.core import binder; binder.bind(globals()) from learntools.python.ex7 import * print('Setup complete.') ###Output _____no_output_____ ###Markdown Exercises 1.After completing [the exercises on lists and tuples]($EXERCISE_URL(5)$), Jimmy noticed that, according to his `estimate_average_slot_payout` function, the slot machines at the Learn Python Casino are actually rigged *against* the house, and are profitable to play in the long run.Starting with $200 in his pocket, Jimmy has played the slots 500 times, recording his new balance in a list after each spin. He used Python's `matplotlib` library to make a graph of his balance over time: ###Code # Import the jimmy_slots submodule from learntools.python import jimmy_slots # Call the get_graph() function to get Jimmy's graph graph = jimmy_slots.get_graph() graph ###Output _____no_output_____ ###Markdown As you can see, he's hit a bit of bad luck recently. He wants to tweet this along with some choice emojis, but, as it looks right now, his followers will probably find it confusing. He's asked if you can help him make the following changes:1. Add the title "Results of 500 slot machine pulls"2. Make the y-axis start at 0. 3. Add the label "Balance" to the y-axisAfter calling `type(graph)` you see that Jimmy's graph is of type `matplotlib.axes._subplots.AxesSubplot`. Hm, that's a new one. By calling `dir(graph)`, you find three methods that seem like they'll be useful: `.set_title()`, `.set_ylim()`, and `.set_ylabel()`. Use these methods to complete the function `prettify_graph` according to Jimmy's requests. We've already checked off the first request for you (setting a title).(Remember: if you don't know what these methods do, use the `help()` function!) ###Code def prettify_graph(graph): """Modify the given graph according to Jimmy's requests: add a title, make the y-axis start at 0, label the y-axis. (And, if you're feeling ambitious, format the tick marks as dollar amounts using the "$" symbol.) """ graph.set_title("Results of 500 slot machine pulls") # Complete steps 2 and 3 here graph = jimmy_slots.get_graph() prettify_graph(graph) graph ###Output _____no_output_____ ###Markdown **Bonus:** Can you format the numbers on the y-axis so they look like dollar amounts? e.g. $200 instead of just 200.(We're not going to tell you what method(s) to use here. You'll need to go digging yourself with `dir(graph)` and/or `help(graph)`.) ###Code #_COMMENT_IF(PROD)_ q1.solution() ###Output _____no_output_____ ###Markdown 2. 🌶️🌶️Luigi is trying to perform an analysis to determine the best items for winning races on the Mario Kart circuit. He has some data in the form of lists of dictionaries that look like... [ {'name': 'Peach', 'items': ['green shell', 'banana', 'green shell',], 'finish': 3}, {'name': 'Bowser', 'items': ['green shell',], 'finish': 1}, Sometimes the racer's name wasn't recorded {'name': None, 'items': ['mushroom',], 'finish': 2}, {'name': 'Toad', 'items': ['green shell', 'mushroom'], 'finish': 1}, ]`'items'` is a list of all the power-up items the racer picked up in that race, and `'finish'` was their placement in the race (1 for first place, 3 for third, etc.).He wrote the function below to take a list like this and return a dictionary mapping each item to how many times it was picked up by first-place finishers. ###Code def best_items(racers): """Given a list of racer dictionaries, return a dictionary mapping items to the number of times those items were picked up by racers who finished in first place. """ winner_item_counts = {} for i in range(len(racers)): # The i'th racer dictionary racer = racers[i] # We're only interested in racers who finished in first if racer['finish'] == 1: for i in racer['items']: # Add one to the count for this item (adding it to the dict if necessary) if i not in winner_item_counts: winner_item_counts[i] = 0 winner_item_counts[i] += 1 # Data quality issues :/ Print a warning about racers with no name set. We'll take care of it later. if racer['name'] is None: print("WARNING: Encountered racer with unknown name on iteration {}/{} (racer = {})".format( i+1, len(racers), racer['name']) ) return winner_item_counts ###Output _____no_output_____ ###Markdown He tried it on a small example list above and it seemed to work correctly: ###Code sample = [ {'name': 'Peach', 'items': ['green shell', 'banana', 'green shell',], 'finish': 3}, {'name': 'Bowser', 'items': ['green shell',], 'finish': 1}, {'name': None, 'items': ['mushroom',], 'finish': 2}, {'name': 'Toad', 'items': ['green shell', 'mushroom'], 'finish': 1}, ] best_items(sample) ###Output _____no_output_____ ###Markdown However, when he tried running it on his full dataset, the program crashed with a `TypeError`.Can you guess why? Try running the code cell below to see the error message Luigi is getting. Once you've identified the bug, fix it in the cell below (so that it runs without any errors).Hint: Luigi's bug is similar to one we encountered in the [tutorial]($TUTORIAL_URL$) when we talked about star imports. ###Code # Import luigi's full dataset of race data from learntools.python.luigi_analysis import full_dataset # Fix me! def best_items(racers): winner_item_counts = {} for i in range(len(racers)): # The i'th racer dictionary racer = racers[i] # We're only interested in racers who finished in first if racer['finish'] == 1: for i in racer['items']: # Add one to the count for this item (adding it to the dict if necessary) if i not in winner_item_counts: winner_item_counts[i] = 0 winner_item_counts[i] += 1 # Data quality issues :/ Print a warning about racers with no name set. We'll take care of it later. if racer['name'] is None: print("WARNING: Encountered racer with unknown name on iteration {}/{} (racer = {})".format( i+1, len(racers), racer['name']) ) return winner_item_counts # Try analyzing the imported full dataset best_items(full_dataset) #_COMMENT_IF(PROD)_ q2.hint() #_COMMENT_IF(PROD)_ q2.solution() ###Output _____no_output_____ ###Markdown 3. 🌶️Suppose we wanted to create a new type to represent hands in blackjack. One thing we might want to do with this type is overload the comparison operators like `>` and `<=` so that we could use them to check whether one hand beats another. e.g. it'd be cool if we could do this:```python>>> hand1 = BlackjackHand(['K', 'A'])>>> hand2 = BlackjackHand(['7', '10', 'A'])>>> hand1 > hand2True```Well, we're not going to do all that in this question (defining custom classes is a bit beyond the scope of these lessons), but the code we're asking you to write in the function below is very similar to what we'd have to write if we were defining our own `BlackjackHand` class. (We'd put it in the `__gt__` magic method to define our custom behaviour for `>`.)Fill in the body of the `blackjack_hand_greater_than` function according to the docstring. ###Code def blackjack_hand_greater_than(hand_1, hand_2): """ Return True if hand_1 beats hand_2, and False otherwise. In order for hand_1 to beat hand_2 the following must be true: - The total of hand_1 must not exceed 21 - The total of hand_1 must exceed the total of hand_2 OR hand_2's total must exceed 21 Hands are represented as a list of cards. Each card is represented by a string. When adding up a hand's total, cards with numbers count for that many points. Face cards ('J', 'Q', and 'K') are worth 10 points. 'A' can count for 1 or 11. When determining a hand's total, you should try to count aces in the way that maximizes the hand's total without going over 21. e.g. the total of ['A', 'A', '9'] is 21, the total of ['A', 'A', '9', '3'] is 14. Examples: >>> blackjack_hand_greater_than(['K'], ['3', '4']) True >>> blackjack_hand_greater_than(['K'], ['10']) False >>> blackjack_hand_greater_than(['K', 'K', '2'], ['3']) False """ pass q3.check() #_COMMENT_IF(PROD)_ q3.hint() #_COMMENT_IF(PROD)_ q3.solution() ###Output _____no_output_____ ###Markdown 4. 🌶️🌶️In [the previous set of exercises]($EXERCISE_URL(6)$), you heard a tip-off that the roulette tables at the Learn Python Casino had some quirk where the probability of landing on a particular number was partly dependent on the number the wheel most recently landed on. You wrote a function `conditional_roulette_probs` which returned a dictionary with counts of how often the wheel landed on `x` then `y` for each value of `x` and `y`.After analyzing the output of your function, you've come to the following conclusion: for each wheel in the casino, there is exactly one pair of numbers `a` and `b`, such that, after the wheel lands on `a`, it's significantly more likely to land on `b` than any other number. If the last spin landed on anything other than `a`, then it acts like a normal roulette wheel, with equal probability of landing on any of the 11 numbers (* the casino's wheels are unusually small - they only have the numbers from 0 to 10 inclusive).It's time to exploit this quirk for fun and profit. You'll be writing a roulette-playing agent to beat the house. When called, your agent will have an opportunity to sit down at one of the casino's wheels for 100 spins. You don't need to bet on every spin. For example, the agent below bets on a random number unless the last spin landed on 4 (in which case it just watches). ###Code from learntools.python import roulette import random def random_and_superstitious(wheel): """Interact with the given wheel over 100 spins with the following strategy: - if the wheel lands on 4, don't bet on the next spin - otherwise, bet on a random number on the wheel (from 0 to 10) """ last_number = 0 while wheel.num_remaining_spins() > 0: if last_number == 4: # Unlucky! Don't bet anything. guess = None else: guess = random.randint(0, 10) last_number = wheel.spin(number_to_bet_on=guess) roulette.evaluate_roulette_strategy(random_and_superstitious) ###Output _____no_output_____ ###Markdown As you might have guessed, our random/superstitious agent bleeds money. Can you write an agent that beats the house? (i.e. can you make "Average gain per simulation" positive?)For more information on the type of object your agent will be passed, try calling `help(roulette.RouletteSession)`. You can also call `help(roulette.evaluate_roulette_strategy)` to see some optional parameters you can change regarding the conditions under which we test your agent.HINT: it might help to go back to your [strings and dictionaries exercise notebook]($EXERCISE_URL(6)$) and review your code for `conditional_roulette_probs` for inspiration. ###Code def my_agent(wheel): pass roulette.evaluate_roulette_strategy(my_agent) ###Output _____no_output_____
3-ConvNets/CNN-Handwritting digits-TensorFlow 1.X.ipynb
###Markdown Handwritting digits with TensorFlow 1.X ###Code %tensorflow_version 1.x import tensorflow as tf print(tf.__version__) !python --version import numpy as np import math from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt %matplotlib inline from google.colab import drive drive.mount('/content/gdrive') from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('content/gdrive/MyDrive/Colab/CV-TF1.X-2.X/data/MNIST/', one_hot=True) print("- Size:Training-set:\t\t{}".format(len(data.train.labels))) print("- Size:Test-set:\t\t{}".format(len(data.test.labels))) print("- Size:Validation-set:\t{}".format(len(data.validation.labels))) #class labels for the test set data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown Data Dimensions ###Code # MNIST images are 28 pixels in each dimension. img_size = 28 # Flattened format in 1-D array img_size_flat = img_size * img_size # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, img_size) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes num_classes = 10 ###Output _____no_output_____ ###Markdown Function for plotting images ###Code def plot_img(images, cls_label, cls_pred=None): fig, axes = plt.subplots(1, 10, figsize=(15,15)) fig.subplots_adjust(hspace=0.3, wspace=0.3) for idx, ax in enumerate(axes.flat): ax.imshow(images[idx].reshape(img_shape), cmap='binary') if cls_pred is None: label = "True: {0}".format(cls_label[idx]) # shows only the class label else: label = "True: {0}, Pred: {1}".format(cls_label[idx], cls_pred[idx]) ax.set_xlabel(label) ax.set_xticks([]) ax.set_yticks([]) plt.show() # Get the first images from the test-set. images = data.test.images[0:10] # Get the true classes for those images. cls_true = data.test.cls[0:10] # Plot the images and labels using the function plot_img. plot_img(images=images, cls_label=cls_true) ###Output _____no_output_____ ###Markdown Placeholder variables ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') #The convolutional layers expect x to be encoded as a 4-dim tensor [num_images, img_height, img_width, num_channels] #img_height == img_width == img_size #num_images can be inferred automatically by using -1 for the size of the first dimension x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) # variable for the true labels associated with the images that were input in the placeholder variable x y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') #we also have a placeholder variable for the class-number, we will calculate it using argmax function. y_true_cls = tf.argmax(y_true, axis=1) ###Output _____no_output_____ ###Markdown CNN configuration ###Code # Convolutional Layer 1. filter_size1 = 5 # Convolution filters are 5 x 5 pixels. num_filters1 = 16 # Convolutional Layer 2. filter_size2 = 5 # Convolution filters are 5 x 5 pixels. num_filters2 = 36 # Fully-connected layer. fc_size = 128 # Number of neurons in fully-connected layer. # function to generate weights with random values with a given shape def new_weights(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.05)) def new_biases(length): return tf.Variable(tf.constant(0.05, shape=[length])) ###Output _____no_output_____ ###Markdown Creating a new Convolutional Layer ###Code def conv_layer(input, # The previous layer. num_input_channels, # Num. channels in prev. layer. filter_size, # Width and height of each filter. num_filters, # Number of filters. ): # Shape of the filter-weights for the convolution. shape = [filter_size, filter_size, num_input_channels, num_filters] # Create new weights filters with the given shape. weights = new_weights(shape=shape) # Create new biases, one for each filter. biases = new_biases(length=num_filters) # The strides are set to 1 in all dimensions. # The first and last stride must always be 1, # because the first is for the image-number and # the last is for the input-channel. # strides=[1, 2, 2, 1] would mean that the filter # is moved 2 pixels across the x- and y-axis of the image. # The padding is set to 'SAME' which means the input image # is padded with zeroes so the size of the output is the same. layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME', use_cudnn_on_gpu=True) # Add the biases to the results of the convolution. # A bias-value is added to each filter-channel. layer += biases # Use pooling to down-sample the image resolution # This is 2x2 max-pooling. layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # Rectified Linear Unit (ReLU) layer = tf.nn.relu(layer) # Note that ReLU is normally executed before the pooling, # but since relu(max_pool(x)) == max_pool(relu(x)) # we can save 75% of the relu-operations by max-pooling first. return layer, weights ###Output _____no_output_____ ###Markdown Flattening a layer ###Code def flatten_layer(layer): layer_shape = layer.get_shape() # layer_shape == [num_images, img_height, img_width, num_channels] # The number of features is: img_height * img_width * num_channels num_features = layer_shape[1:4].num_elements() # Reshape the layer to [num_images, num_features]. # Note that we just set the size of the second dimension # to num_features and the size of the first dimension to -1 # which means the size in that dimension is calculated # so the total size of the tensor is unchanged from the reshaping. layer_flat = tf.reshape(layer, [-1, num_features]) # The shape of the flattened layer is now: # [num_images, img_height * img_width * num_channels] return layer_flat, num_features ###Output _____no_output_____ ###Markdown Creating a new Fully-Connected Layer ###Code def new_fc_layer(input, # The previous layer. num_inputs, # Num. inputs from prev. layer. num_outputs, # Num. outputs. use_relu=True): # Use Rectified Linear Unit (ReLU)? weights = new_weights(shape=[num_inputs, num_outputs]) biases = new_biases(length=num_outputs) # Calculate the layer as the dot product of # the input and weights, and then add the bias-values. layer = tf.matmul(input, weights) + biases if use_relu: layer = tf.nn.relu(layer) return layer ###Output _____no_output_____ ###Markdown Filling the layers ###Code ## convolutional Layer1 layer_conv1, weights_conv1 = conv_layer(input=x_image, num_input_channels=num_channels, filter_size=filter_size1, num_filters=num_filters1, ) layer_conv1 #(?, 14, 14, 16) which means that there is an arbitrary number of images (this is the ?) layer_conv2, weights_conv2 = conv_layer(input=layer_conv1, num_input_channels=num_filters1, filter_size=filter_size2, num_filters=num_filters2, ) layer_conv2 #The shape is (?, 7, 7, 36) where the ? again means that there is an arbitrary number of images. #Flatten layer: layer_flat, num_features = flatten_layer(layer_conv2) layer_flat num_features #Fully-Connected Layer 1 layer_fc1 = new_fc_layer(input=layer_flat, num_inputs=num_features, num_outputs=fc_size, use_relu=True) #shape (?, 128) where the ? means there is an arbitrary number of images and fc_size == 128 layer_fc1 #Fully-Connected Layer 2 layer_fc2 = new_fc_layer(input=layer_fc1, num_inputs=fc_size, num_outputs=num_classes, use_relu=False) layer_fc2 #Predicted Class y_pred = tf.nn.softmax(layer_fc2) #The class-number is the index of the largest element y_pred_cls = tf.argmax(y_pred, axis=1) ###Output _____no_output_____ ###Markdown Cost-function to be optimized ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=layer_fc2, labels=y_true) #Note that the function calculates the softmax internally so we must use the output of layer_fc2 directly #rather than y_pred which has already had the softmax applied. #we take the average of the cross-entropy for all the image classifications. cost = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown Optimization Method ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost) ###Output _____no_output_____ ###Markdown Performance Metrics ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) #a vector of booleans whether the predicted class equals the true class of each image accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #This calculates the classification accuracy by first type-casting the vector of booleans to floats, #so that False becomes 0 and True becomes 1, and then calculating the average of these numbers. ###Output _____no_output_____ ###Markdown TensorFlow Run ###Code #For CPU: #session = tf.Session() #init = session.run(tf.global_variables_initializer()) #For GPU: init = tf.global_variables_initializer() sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) sess.run(init) train_batch_size = 64 total_iterations = 0 def optimize(num_iterations): global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. sess.run(optimizer, feed_dict=feed_dict_train) if i % 100 == 0: acc = sess.run(accuracy, feed_dict=feed_dict_train) msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" print(msg.format(i + 1, acc)) total_iterations += num_iterations def plot_example_errors(cls_pred, correct): # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] plot_img(images=images[0:10], cls_label=cls_true[0:10], cls_pred=cls_pred[0:10]) def plot_confusion_matrix(cls_pred): cls_true = data.test.cls cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') plt.show() test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = sess.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # We define accuracy as the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown Performance before any optimization ###Code print_test_accuracy() ###Output Accuracy on Test-Set: 7.1% (706 / 10000) ###Markdown Performance after 10 optimization iterations ###Code optimize(num_iterations=10) print_test_accuracy() ###Output Accuracy on Test-Set: 15.4% (1537 / 10000) ###Markdown Performance after 1000 optimization iterations ###Code optimize(num_iterations=990) print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 93.6% (9356 / 10000) Example errors: ###Markdown Performance after 10,000 optimization iterations ###Code optimize(num_iterations=9000) print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output Accuracy on Test-Set: 98.7% (9874 / 10000) Example errors: ###Markdown Visualization of Weights and Layers ###Code def plot_conv_weights(weights, input_channel=0): # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = sess.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) num_filters = w.shape[3]# Number of filters in the conv. layer. # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i < num_filters: # Get the weights for the i'th filter of the input channel. img = w[:, :, input_channel, i] ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') ax.set_xticks([]) ax.set_yticks([]) plt.show() def plot_conv_layer(layer, image): # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when entering that image. values = sess.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) fig, axes = plt.subplots(num_grids, num_grids) for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i < num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] ax.imshow(img, interpolation='nearest', cmap='binary') ax.set_xticks([]) ax.set_yticks([]) plt.show() ###Output _____no_output_____ ###Markdown Plotting weights, Convolutional Layers ###Code #Convolution Layer 1 plot_conv_weights(weights=weights_conv1) def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() image1 = data.test.images[15] plot_image(image1) plot_conv_layer(layer=layer_conv1, image=image1) #There are 16 input channels to the second convolutional layer plot_conv_weights(weights=weights_conv2, input_channel=0) plot_conv_layer(layer=layer_conv2, image=image1) sess.close() ###Output _____no_output_____
test/combine/splitMissieven.ipynb
###Markdown SplitWe split a big dataset into volumes. ###Code import os from tf.fabric import Fabric from tf.compose import split from tf.core.helpers import unexpanduser GH = os.path.expanduser("~/github") GM = f"{GH}/Dans-labs/clariah-gm" VERSION = "0.9.1" SOURCE = f"{GM}/tf/{VERSION}" TARGET = f"{GM}/_local/tf/{VERSION}" ###Output _____no_output_____ ###Markdown LoadingWe load the dataset, and pass its api to the `split()` function.If something goes wrong during the split, we can inspect the dataset without reloading it.In a normal scenario, we can just leave out this step. The `split()` function willautomatically load the dataset if no `api` argument is passed. ###Code TF = Fabric(locations=SOURCE) api = TF.loadAll() api.makeAvailableIn(globals()) ###Output This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 40 features found and 0 ignored 0.00s loading features ... 9.51s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... 0.65s All additional features loaded - for details use TF.loadLog() ###Markdown Selective splittingSplitting happens at top level sections.We can restrict the processing to just one volume, for debugging purposes.The volume you are interested in, can be passed in the `volume=` optional parameter.Set is to `None` or leave it out to process all volumes. ###Code V = None volumes = split(SOURCE, TARGET, api=api, overwrite=True, volume=V) ###Output Splitting dataset in 13 volumes: | Volume 1 : with slots 1 - 358356 | Volume 2 : with slots 358357 - 765208 | Volume 3 : with slots 765209 - 1213807 | Volume 4 : with slots 1213808 - 1589004 | Volume 5 : with slots 1589005 - 2008807 | Volume 6 : with slots 2008808 - 2450424 | Volume 7 : with slots 2450425 - 2850492 | Volume 8 : with slots 2850493 - 2977520 | Volume 9 : with slots 2977521 - 3447394 | Volume 10 : with slots 3447395 - 4089689 | Volume 11 : with slots 4089690 - 4594831 | Volume 12 : with slots 4594832 - 4941618 | Volume 13 : with slots 4941619 - 5316429 1.91s volume splits determined 1.91s Distribute nodes over volumes ... | 0.30s volume 1 with 398465 nodes ... | 0.64s volume 2 with 451426 nodes ... | 1.03s volume 3 with 500564 nodes ... | 1.36s volume 4 with 421357 nodes ... | 1.73s volume 5 with 467818 nodes ... | 2.10s volume 6 with 490255 nodes ... | 2.44s volume 7 with 440890 nodes ... | 2.58s volume 8 with 140198 nodes ... | 2.93s volume 9 with 519879 nodes ... | 3.47s volume 10 with 704722 nodes ... | 3.92s volume 11 with 555400 nodes ... | 4.22s volume 12 with 382980 nodes ... | 4.53s volume 13 with 417077 nodes ... 6.48s distribution done 6.48s Remap features ... | 0.00s volume 1 with 398465 nodes ... | 2.55s volume 2 with 451426 nodes ... | 5.31s volume 3 with 500564 nodes ... | 8.60s volume 4 with 421357 nodes ... | 11s volume 5 with 467818 nodes ... | 15s volume 6 with 490255 nodes ... | 18s volume 7 with 440890 nodes ... | 21s volume 8 with 140198 nodes ... | 22s volume 9 with 519879 nodes ... | 26s volume 10 with 704722 nodes ... | 30s volume 11 with 555400 nodes ... | 34s volume 12 with 382980 nodes ... | 37s volume 13 with 417077 nodes ... 46s remapping done 46s Write TF datasets per volume | 0.00s Writing volume 1 ... | 2.78s Writing volume 2 ... | 5.80s Writing volume 3 ... | 9.26s Writing volume 4 ... | 12s Writing volume 5 ... | 15s Writing volume 6 ... | 19s Writing volume 7 ... | 22s Writing volume 8 ... | 23s Writing volume 9 ... | 27s Writing volume 10 ... | 32s Writing volume 11 ... | 36s Writing volume 12 ... | 38s Writing volume 13 ... 1m 27s writing done 1m 27s All done ###Markdown Checkout the volumesThe `split()` function returns basic information about the volumes:* title* top node in the original dataset* top node in the volume dataset* location of the volume dataset on the filesystem ###Code for v in volumes: print(f"{v[0]:<20} original volume node={v[1]:>8} top node={v[2]:>7} at {unexpanduser(v[3])}") ###Output _____no_output_____ ###Markdown Load all volumesWe use the result of the `split()` function to find and load all volumes.We now get one TF-api handle per volume. volumeMapNote that each volume has an extra feature: `volumeMap`. The value for each node in the volume datasetis the corresponding node in the complete dataset from which the volume is taken.If you use the volume dataset to compute annotations, and you want to publish these annotations against the complete dataset, the feature `volumeMap` provides the necessary information to do so.Suppose `annotvx` is a dict mapping the some nodes in the dataset of volume `x` to interesting values, then you apply them to the big dataset as follows``` python{F.volumeMap.v(n): value for (n, value) in annotvx.items}``` ###Code TFs = {} apis = {} for (vt, vn, vl, vloc) in volumes: TFs[vt] = Fabric(locations=vloc) apis[vt] = TFs[vt].loadAll() ###Output This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.13s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.87s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.02s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.09s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.05s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.08s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.73s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.61s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.62s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.51s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.02s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | | 0.03s C __levels__ from otype, oslots, otext | | 2.46s C __order__ from otype, oslots, __levels__ | | 0.15s C __rank__ from otype, __order__ | | 2.62s C __levUp__ from otype, oslots, __rank__ | | 0.14s C __levDown__ from otype, __levUp__, __rank__ | | 1.40s C __boundary__ from otype, oslots, __rank__ | | 0.10s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 11s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.06s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.35s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.02s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.01s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.54s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/1 1.02s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.11s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 1.02s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.09s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.06s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.05s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.06s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.84s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.68s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.72s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.56s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.10s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | | 0.03s C __levels__ from otype, oslots, otext | | 2.83s C __order__ from otype, oslots, __levels__ | | 0.16s C __rank__ from otype, __order__ | | 2.99s C __levUp__ from otype, oslots, __rank__ | | 0.15s C __levDown__ from otype, __levUp__, __rank__ | | 1.54s C __boundary__ from otype, oslots, __rank__ | | 0.12s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 12s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.04s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.39s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.01s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.06s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.01s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.62s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/2 1.17s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.12s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 1.09s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.19s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.07s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.06s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.06s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.95s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.68s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.81s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.55s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.22s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | | 0.03s C __levels__ from otype, oslots, otext | | 3.18s C __order__ from otype, oslots, __levels__ | | 0.18s C __rank__ from otype, __order__ | | 3.15s C __levUp__ from otype, oslots, __rank__ | | 0.18s C __levDown__ from otype, __levUp__, __rank__ | | 1.78s C __boundary__ from otype, oslots, __rank__ | | 0.13s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.03s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 14s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.04s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.36s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.01s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.13s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.01s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.70s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/3 1.29s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.11s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.95s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.22s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.07s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.05s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.06s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.79s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.51s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.67s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.39s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.25s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | | 0.03s C __levels__ from otype, oslots, otext | | 2.74s C __order__ from otype, oslots, __levels__ | | 0.15s C __rank__ from otype, __order__ | | 2.55s C __levUp__ from otype, oslots, __rank__ | | 0.16s C __levDown__ from otype, __levUp__, __rank__ | | 1.51s C __boundary__ from otype, oslots, __rank__ | | 0.11s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.03s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 11s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.04s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.27s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.14s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.01s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.59s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/4 1.11s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.11s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 1.03s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.29s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.05s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.06s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.04s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.90s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.51s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.75s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.42s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.34s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | | 0.03s C __levels__ from otype, oslots, otext | | 3.11s C __order__ from otype, oslots, __levels__ | | 0.16s C __rank__ from otype, __order__ | | 2.99s C __levUp__ from otype, oslots, __rank__ | | 0.18s C __levDown__ from otype, __levUp__, __rank__ | | 1.68s C __boundary__ from otype, oslots, __rank__ | | 0.12s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 13s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.03s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.30s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.20s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.66s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/5 1.25s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.12s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 1.07s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.35s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.06s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.06s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.05s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.94s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.47s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.79s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.39s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.41s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | | 0.03s C __levels__ from otype, oslots, otext | | 3.14s C __order__ from otype, oslots, __levels__ | | 0.17s C __rank__ from otype, __order__ | | 3.08s C __levUp__ from otype, oslots, __rank__ | | 0.17s C __levDown__ from otype, __levUp__, __rank__ | | 1.74s C __boundary__ from otype, oslots, __rank__ | | 0.12s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 13s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.03s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.27s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.24s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.01s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T status from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.69s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/6 1.29s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.11s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.95s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.37s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.05s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.05s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.04s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.84s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.38s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.71s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.31s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.43s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | | 0.03s C __levels__ from otype, oslots, otext | | 2.83s C __order__ from otype, oslots, __levels__ | | 0.15s C __rank__ from otype, __order__ | | 2.75s C __levUp__ from otype, oslots, __rank__ | | 0.14s C __levDown__ from otype, __levUp__, __rank__ | | 1.58s C __boundary__ from otype, oslots, __rank__ | | 0.10s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.04s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 12s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.03s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.22s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.25s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.62s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/7 1.16s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.03s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.28s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.13s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.01s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.02s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.01s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.27s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.11s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.24s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.10s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.15s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | | 0.01s C __levels__ from otype, oslots, otext | | 0.90s C __order__ from otype, oslots, __levels__ | | 0.05s C __rank__ from otype, __order__ | | 0.88s C __levUp__ from otype, oslots, __rank__ | | 0.04s C __levDown__ from otype, __levUp__, __rank__ | | 0.44s C __boundary__ from otype, oslots, __rank__ | | 0.04s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.01s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 3.74s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.01s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.07s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.09s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T status from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.21s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/8 0.41s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.12s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 1.13s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.38s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.01s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.06s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.01s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.99s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.55s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.87s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.47s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.45s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | | 0.03s C __levels__ from otype, oslots, otext | | 3.50s C __order__ from otype, oslots, __levels__ | | 0.17s C __rank__ from otype, __order__ | | 3.27s C __levUp__ from otype, oslots, __rank__ | | 0.18s C __levDown__ from otype, __levUp__, __rank__ | | 1.79s C __boundary__ from otype, oslots, __rank__ | | 0.12s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 14s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.01s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.31s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.26s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.01s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T status from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.72s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/9 1.35s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.19s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 1.53s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.25s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.08s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.01s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 1.33s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 1.06s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 1.12s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.86s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.30s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | | 0.04s C __levels__ from otype, oslots, otext | | 4.94s C __order__ from otype, oslots, __levels__ | | 0.25s C __rank__ from otype, __order__ | | 4.48s C __levUp__ from otype, oslots, __rank__ | | 0.21s C __levDown__ from otype, __levUp__, __rank__ | | 2.48s C __boundary__ from otype, oslots, __rank__ | | 0.17s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 19s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.60s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.17s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T status from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 1.05s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/10 1.88s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.13s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 1.21s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.38s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.06s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 1.07s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.60s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.87s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.49s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.46s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | | 0.03s C __levels__ from otype, oslots, otext | | 3.81s C __order__ from otype, oslots, __levels__ | | 0.19s C __rank__ from otype, __order__ | | 3.46s C __levUp__ from otype, oslots, __rank__ | | 0.17s C __levDown__ from otype, __levUp__, __rank__ | | 2.00s C __boundary__ from otype, oslots, __rank__ | | 0.13s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 15s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.35s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.27s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T status from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.79s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/11 1.46s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.10s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.84s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.10s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.05s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.73s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.62s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.61s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.51s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.11s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | | 0.02s C __levels__ from otype, oslots, otext | | 2.62s C __order__ from otype, oslots, __levels__ | | 0.13s C __rank__ from otype, __order__ | | 2.32s C __levUp__ from otype, oslots, __rank__ | | 0.12s C __levDown__ from otype, __levUp__, __rank__ | | 1.34s C __boundary__ from otype, oslots, __rank__ | | 0.09s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.02s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 10s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.38s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.07s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T issub from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T status from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.55s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/12 1.04s All additional features loaded - for details use TF.loadLog() This is Text-Fabric 8.5.14 Api reference : https://annotation.github.io/text-fabric/tf/cheatsheet.html 41 features found and 0 ignored 0.00s loading features ... | 0.11s T otype from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.90s T oslots from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.42s T puncr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T transn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.05s T n from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T puncn from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T title from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.79s T trans from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.29s T transo from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.67s T punc from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.24s T punco from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.49s T transr from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | | 0.03s C __levels__ from otype, oslots, otext | | 2.93s C __order__ from otype, oslots, __levels__ | | 0.15s C __rank__ from otype, __order__ | | 2.54s C __levUp__ from otype, oslots, __rank__ | | 0.16s C __levDown__ from otype, __levUp__, __rank__ | | 1.47s C __boundary__ from otype, oslots, __rank__ | | 0.10s C __sections__ from otype, oslots, otext, __levUp__, __levels__, n, n, n | | 0.01s C __structure__ from otype, oslots, otext, __rank__, __levUp__, n, title, n 11s All features loaded/computed - for details use TF.loadLog() 0.00s loading features ... | 0.00s T author from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T authorFull from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.01s T col from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T day from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T facs from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T isemph from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T isfolio from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T isnote from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.17s T isorig from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T isref from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.29s T isremark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T isspecial from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T issuper from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T isund from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T mark from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T month from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T note from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T page from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T place from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T rawdate from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.01s T row from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T seq from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T tpl from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T vol from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.60s T volumeMap from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 | 0.00s T year from ~/github/Dans-labs/clariah-gm/_local/tf/0.9.1/13 1.12s All additional features loaded - for details use TF.loadLog()
code_examples/spring17_survey/session_titles.ipynb
###Markdown Wordcloud for previous topics presented at The Hacker WithinBy R. Stuart Geiger, licensed CC-BY 4.0 and the MIT licenseData scraped from [THW's website](http://www.thehackerwithin.org/berkeley/previous.html) in an embarassingly manual way. I cleaned up some terms and replaced "R" with "RR" because the wordcloud package has trouble with single-letter words. ###Code !pip install wordcloud %matplotlib inline from os import path from wordcloud import WordCloud # Read the whole text. text = open('session_titles.tsv').read().lower() # Generate a word cloud image wordcloud = WordCloud(width=3000, height=2000, prefer_horizontal=1, stopwords=None).generate(text) # Display the generated image: # the matplotlib way: import matplotlib.pyplot as plt plt.figure(figsize=(30,15)) plt.imshow(wordcloud) plt.axis("off") plt.savefig("cloud2.png") ###Output _____no_output_____
_notebooks/2022-05-06-fanng-day2.ipynb
###Markdown Faang Day 2> Great Developer with great practice- toc: true - badges: true- comments: true- categories: [practice,dream]- hide: false 3 question of array ###Code # K-concatination # kaden algorithm using dp def maxsubarray(arr): dp = [0] * len(arr) ans = dp[0] = arr[0] for i in range(1,len(arr)): dp[i]=max(arr[i],arr[i]+dp[i-1]) ans = max(ans,dp[i-1]) return ans def kcon(arr,k): if k == 1: return maxsubarray(arr) else: sum_arr = sum(arr) new_arr = arr + arr return max(maxsubarray(new_arr),maxsubarray(new_arr)+sum_arr*(k-2)) kcon([-1,2,4,-5,0,3],4) # maximum circular subarray sum def maxcir_subsum(arr): sum_pos = maxsubarray(arr) neg_arr = [-1*i for i in arr] sum_neg = maxsubarray(neg_arr) wrap_sum = -(sum(neg_arr) - sum_neg) res = max(sum_pos,wrap_sum) print(sum_pos,',',neg_arr,',',sum(neg_arr),',',sum_neg,',',wrap_sum) return res a = [11, 10, -20, 5, -3, -5, 8, -13, 10] maxcir_subsum(a) # finding subarray with given sum def find_sum(arr,goal): n = len(arr) curr_sum = arr[0] start = 0 i = 1 while i <= n: while curr_sum > goal and start < i-1: curr_sum -= arr[start] start += 1 if curr_sum == goal: print(start,i-1) if i < n: curr_sum += arr[i] i += 1 arr = [15, 2, 4, 8, 9, 5, 10, 23] goal = 23 find_sum(arr,goal) ###Output 1 4 7 7
notebooks/Fair Parameter Selection.ipynb
###Markdown Fair Parameter SelectionThis nootbook gives an overview of selecting parameters for the different models, such that they can be compared in a fair manner. In order to make a fair comparison of the three models, we must evaluate the models using the same number of free parameters. By setting a baseline for the $TensorTrain$ K-value, we can compute what the K's for the CP and GMM models should be. ###Code import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../') import models as m %load_ext autoreload %autoreload 2 K_baseline = 10 M_DIM = 2 K_MAX = 100 Ks = np.arange(2, K_MAX, 1) Ms = np.arange(2, 3, 1) params = np.zeros((3, len(Ms), len(Ks))) legends = [] # compute number of parameters for each model for i, M in enumerate(Ms): for j, K in enumerate(Ks): model_Train = m.TensorTrainGaussian(K, M) model_CP = m.CPGaussian(K, M) params[0, i, j] = model_Train.n_parameters() params[1, i, j] = model_CP.n_parameters() params[2, i, j] = K + M*K + K*M*M legends.append('TT, M='+str(M)) legends.append('CP, M='+str(M)) legends.append('GMM, M='+str(M)) # Make a vertical line val = params[0, Ms==M_DIM, Ks==K_baseline][0] line = val*np.ones(Ks.shape) legends.append('Equality line') f,ax = plt.subplots(figsize=(10, 5)) for i in range(len(Ms)): ax.plot(Ks, params[:,i].T, linewidth=3) ax.plot(Ks, line, '--k', linewidth=3) ax.legend(legends) ax.set_xlabel('K of model') ax.set_ylabel('Free parameters') ax.grid('on') ax.set_title('Number of free parameters vs. K for each model') ax.set_ylim([0, 500]) ax.set_xlim([0, K_MAX]) plt.show() # Find indicies that achieve the same number of trainable parameters idx_TT = np.argmax(params[0, Ms==M_DIM] >= val) idx_CP = np.argmax(params[1, Ms==M_DIM] >= val) idx_GMM = np.argmax(params[2, Ms==M_DIM] >= val) # Number of components K_TT = Ks[idx_TT] K_CP = Ks[idx_CP] K_GMM = Ks[idx_GMM] print('Selected number of components (K-values)') print(f'TensorTrain : {K_TT}') print(f'CP : {K_CP}') print(f'GMM(sklean) : {K_GMM}') ###Output Selected number of components (K-values) TensorTrain : 10 CP : 82 GMM(sklean) : 59 ###Markdown Method for getting fair K's ###Code from utils import get_fair_Ks Ks_tt = [5] #10, 15, 20, 25, 30, 35, 40, 50, 75, 100 M = 3 K_gmm, K_cp = get_fair_Ks(Ks_tt, M) print(K_gmm) print(K_cp) ###Output [33] [18]
_notebooks/2019-09-13-youtube-dl_commented.ipynb
###Markdown "Engine knock detection AI part 1/5" > "This is the first notebook in a series where I'm following along with the fast.ai course Practical Deep Learning for Coders by training an AI to identify knocking in 4-stroke car petrol engines" - image: images/motor-768750_1920.jpg > Important: This notebook is not guaranteed to work without modification. It's a while since I wrote this and haven't tested it since. For a summary of this project see [Engine knock detection AI part 5/5](http://niklasekman.com/2021/02/10/Train-model-updated.html) Background The inspiration for this project comes from the presentation of [fast.ai](https://www.fast.ai/) course alumni projects by Jeremy Howard in some of the first lessons of the third installment of [Practical Deep Learning for Coders](https://course.fast.ai/) where training an image classifier using spectrograms to identify sounds is mentioned. What this means in simpler terms is that an image classifying algorithm is presented with a series of pictures labeled with which class or case they represent. Each picture represents what that sound looks like if one were to plot the sound intensities at different frequencies as a function of time. Method A set of recordings of both knocking and healthy sounding engines has first to be aquired in order to create a training set of spectrograms. I've chosen to create two playlists on youtube of videos specifically depicting car engines, one for each case. I made sure to just include petrol engines since my suspicion was that the sound of a diesel engine might throw things off. As a non car mechanic I made that assumption based on the idea that if I could distinguish a well running engine from a knocking one then the resulting model could do it too. I found that I had some trouble making the distinction with some of the cold started diesels I listened to. Downloading audio files After creating the playlists Google Drive is mounted to store the intermediary sound files. ###Code #collapse-output from google.colab import drive drive.mount('/content/drive') ###Output Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code Enter your authorization code: ·········· Mounted at /content/drive ###Markdown The youtube-dl python package is installed and the soundtrack from each of the videos is downloaded. ###Code #collapse-output !pip install --upgrade youtube-dl import youtube_dl #collapse-output ydl = youtube_dl.YoutubeDL({'outtmpl': '%(id)s%(ext)s'}) ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download(['https://www.youtube.com/playlist?list=PL9R1Zswn-XPCh3A3bV9Vnf7ui9YCZWo9w']) !rm -rf ./sample_data ###Output _____no_output_____ ###Markdown Checking to see that all the expected files are present. ###Code !ls *.mp3 ###Output '1996 Subaru Outback, Normal Engine Sound-8BOtWY3RobA.mp3' '2003 toyota corolla engine sound-ho38ZYkQJxs.mp3' '2016-2018 Toyota Tacoma Loud Engine sound is Normal-nSB65kClSXM.mp3' '2016 Kia Rio 1.6L V4 Engine - Normal Running Noises _ Sounds-nGQcC7giMkU.mp3' '2017 Hyundai Elantra SE 2.0L 4 Cylinder - Normal Engine Running Noises-Eky3PMh76gY.mp3' '2017 Kia Rio 1.6L 4 Cylinder GDI Engine - Normal Engine Sounds-2EQcfJAU7IM.mp3' '2017 Nissan Versa Note - Normal Engine Running Noises - 1.6L Engine-PRO0HgD9qx4.mp3' '2018 Hyundai Tucson 2.0 GDI Nu Engine Sound Normal-pLmX2ws7znE.mp3' '3.2 fsi engine sound cold (normal or not)-mOFcfwLTNkY.mp3' 'Bmw f30 Noisy Engine Sound-bkPtY1pW82Y.mp3' 'Listen Toyota 2.4 VVT-i engine sound, when engine is very OK. Years 2002 to 2015-6GPgodkLSkQ.mp3' 'Mini R56S normal engine sound-8cXmy_U0_28.mp3' 'Nissan Frontier 4L v6 engine sound idle-YiwsC_UlDFY.mp3' 'Normal Engine Idle Sound Cold & Warm - 2006 Nissan Sentra-5q1uATQu8zg.mp3' 'Volvo S60 2.0T - Normal engine sound-uumxLAHbDsE.mp3' ###Markdown Moving the sound files from the Colab instance to a folder on Google Drive. ###Code !mv *.mp3 /content/drive/My\ Drive/Colab\ Notebooks/fast.ai/KnockKnock/data/normal/ ###Output _____no_output_____ ###Markdown Rinse and repeat for the other playlist. ###Code #collapse-output ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download(['https://www.youtube.com/playlist?list=PL9R1Zswn-XPCnpyXQLRPYVJr4BXJUYie8']) !mv *.mp3 /content/drive/My\ Drive/Colab\ Notebooks/fast.ai/KnockKnock/data/knocking/ ###Output _____no_output_____
component-library/filter/filter.ipynb
###Markdown Filters rows based on predicate on pandas data frameExample "predicate=~metadata.filename.str.contains('.gz') " => filters all rows where column "filename" contains '.gz" ###Code # @param predicate (as described in documentation of the component) # @param file_name csv file name import os predicate = os.environ.get('predicate') file_name = os.environ.get('file_name', 'metadata.csv') !pip3 install pandas==1.2.1 import pandas as pd metadata = pd.read_csv(file_name) exec('metadata = metadata[' + predicate + ']') metadata.to_csv(file_name, index=False) ###Output _____no_output_____
wspinbot.ipynb
###Markdown WSPIN Bot - Brought to you by WSPIN Social Experiment. Here to change the internet for the best. opensource humanism For this notebook to function, we must first install the required packages. Notably we need the chatterbot package, as well as the chatterbot corpus to allow for initialisation and training of our chat bot. ###Code pip install chatterbot pip install chatterbot_corpus from chatterbot import ChatBot bot = ChatBot( 'Norman', storage_adapter='chatterbot.storage.SQLStorageAdapter', logic_adapters=[ 'chatterbot.logic.MathematicalEvaluation', 'chatterbot.logic.TimeLogicAdapter' ], database_uri='sqlite:///database.sqlite3' ) ###Output _____no_output_____ ###Markdown Here we create a basic bot that can only tell the time and perform mathematical operations and give the result to the user. ###Code need_response = True while need_response: try: bot_input = bot.get_response(input()) print(bot_input) need_response = False except(KeyboardInterrupt, EOFError, SystemExit): break ###Output _____no_output_____ ###Markdown And here we train it on a list representing a conversation. ###Code chat_bot = ChatBot('greeter', storage_adapter='chatterbot.storage.SQLStorageAdapter', database_uri='sqlite:///database.sqlite3' ) from chatterbot.trainers import ListTrainer trainer = ListTrainer(bot) trainer.train([ 'How are you?', 'I am good.', 'That is good to hear.', 'Thank you', 'You are welcome.' ]) # Get user input user_input = input() print(user_input) # Get bot response response = chat_bot.get_response(user_input) print(response) ###Output _____no_output_____ ###Markdown Next, we follow the terminal example provided by the docs. ###Code from chatterbot import ChatBot # Uncomment the following lines to enable verbose logging import logging logging.basicConfig(level=logging.INFO) # Create a new instance of a ChatBot bot = ChatBot( 'Terminal', storage_adapter='chatterbot.storage.SQLStorageAdapter', logic_adapters=[ 'chatterbot.logic.MathematicalEvaluation', 'chatterbot.logic.TimeLogicAdapter', 'chatterbot.logic.BestMatch' ], database_uri='sqlite:///database.db' ) print("Type something to begin...") # The following loop will execute each time the user enters input while True: try: user_input=input() bot_response=bot.get_response(user_input) print(bot_response) except(KeyboardInterrupt, EOFError, SystemExit): break ###Output _____no_output_____ ###Markdown In order to use a non-relational database, MongoDB for example, run the following commands ! Reference : https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/Open a new terminal and launch these bash commands !1. Import the public key used by the package management system.From a terminal, issue the following command to import the MongoDB public GPG Key from https://www.mongodb.org/static/pgp/server-4.4.asc:`wget -qO - https://www.mongodb.org/static/pgp/server-4.4.asc | sudo apt-key add -``sudo apt-get install gnupg``wget -qO - https://www.mongodb.org/static/pgp/server-4.4.asc | sudo apt-key add -`Once that is done and you see an OK message printed to the standard output, keep going with this :2. Create a list file for MongoDB"The following instruction is for Ubuntu 20.04 (Focal).Create the /etc/apt/sources.list.d/mongodb-org-4.4.list file for Ubuntu 20.04 (Focal): "`echo "deb [ arch=amd64,arm64 ] https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/4.4 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-4.4.list`3. Reload local package database.`sudo apt-get update`4. Install the MongoDB packages`sudo apt-get install -y mongodb-org`And then, start the MongoDB service (systemctl)1. Start MongoDB.`sudo systemctl start mongod`2. Verify that MongoDB has started successfully.`sudo systemctl status mongod`You can optionally ensure that MongoDB will start following a system reboot by issuing the following command:`sudo systemctl enable mongod` ###Code from chatterbot import ChatBot # Uncomment the following lines to enable verbose logging # import logging # logging.basicConfig(level=logging.INFO) # Create a new ChatBot instance bot = ChatBot( 'Terminal', storage_adapter='chatterbot.storage.MongoDatabaseAdapter', logic_adapters=[ 'chatterbot.logic.BestMatch' ], database_uri='mongodb://localhost:27017/chatterbot-database' ) print('Type something to begin...') while True: try: user_input = input() bot_response = bot.get_response(user_input) print(bot_response) # Press ctrl-c or ctrl-d on the keyboard to exit except (KeyboardInterrupt, EOFError, SystemExit): break ###Output _____no_output_____ ###Markdown Preprocessors can be used to transform the input text and ensure that it will be comprehensible to our chatbot. ###Code from chatterbot import ChatBot from chatterbot.trainers import ChatterBotCorpusTrainer # Uncomment the following lines to enable verbose logging # import logging # logging.basicConfig(level=logging.INFO) # Create a new ChatBot instance chatbot = ChatBot( 'Preprocessor Bot', storage_adapter='chatterbot.storage.MongoDatabaseAdapter', preprocessors=[ 'chatterbot.preprocessors.clean_whitespace', 'chatterbot.preprocessors.unescape_html', 'chatterbot.preprocessors.convert_to_ascii' ], logic_adapters=[ 'chatterbot.logic.BestMatch', ], database_uri='mongodb://localhost:27017/chatterbot-database' ) ''' trainer = ChatterBotCorpusTrainer(chatbot) trainer.train( "chatterbot.corpus.english" ) ''' print('Type something to begin...') while True: try: user_input = input() bot_response = chatbot.get_response(user_input) print(bot_response) # Press ctrl-c or ctrl-d on the keyboard to exit except (KeyboardInterrupt, EOFError, SystemExit): break ###Output _____no_output_____ ###Markdown Specific Response AdapterIf the input that the chat bot receives, matches the input text specified for this adapter, the specified response will be returned. ###Code from chatterbot import ChatBot # Create a new instance of a ChatBot bot = ChatBot( 'Exact Response Example Bot', storage_adapter='chatterbot.storage.SQLStorageAdapter', # Specific response logic adapter responds to 'Help me!' specifically with a link logic_adapters=[ { 'import_path': 'chatterbot.logic.BestMatch' }, { 'import_path': 'chatterbot.logic.SpecificResponseAdapter', 'input_text': 'Help me!', 'output_text': 'Ok, here is a link: http://chatterbot.rtfd.org' } ] ) # Get a response given the specific input response = bot.get_response('Help me!') print(response) ###Output _____no_output_____ ###Markdown Low confidence response example ###Code from chatterbot import ChatBot from chatterbot.trainers import ListTrainer # Create a new instance of a ChatBot bot = ChatBot( 'Example Bot', storage_adapter='chatterbot.storage.SQLStorageAdapter', logic_adapters=[ { 'import_path': 'chatterbot.logic.BestMatch', 'default_response': 'I am sorry, but I do not understand.', 'maximum_similarity_threshold': 0.90 } ] ) trainer = ListTrainer(bot) # Train the chat bot with a few responses trainer.train([ 'How can I help you?', 'I want to create a chat bot', 'Have you read the documentation?', 'No, I have not', 'This should help get you started: http://chatterbot.rtfd.org/en/latest/quickstart.html' ]) # Get a response for some unexpected input response = bot.get_response('How do I make an omelette?') print(response) ###Output _____no_output_____ ###Markdown Django Integrationhttps://chatterbot.readthedocs.io/en/stable/django/index.htmlDjango installation : https://docs.djangoproject.com/en/dev/intro/install/`pip install django chatterbot``cd ~/wspinbot/wspinbot` open a terminal and cd into the directory, then run `django-admin startproject wspinsite``django-admin startproject wspinsite``cd ./wspinbot/wspinbot/wspinsite``python manage.py migrate``python manage.py runserver` Now let's see what a working example looks like ! Forked from https://github.com/gunthercox/ChatterBotWe will create a new directory for this. Enter the following bash commands in a new terminal. `cd ~ && mkdir djbot && cd djbot``git clone https://github.com/wspinsocial/ChatterBot.git``cd ChatterBot && python -m venv .``source bin/activate``pip install -r requirements.txt``pip install django chatterbot``pip install chatterbot_corpus``cd examples/django_app/``python manage.py runserver`Very import modification required to make the server run on Django 3.2 ! https://www.programmersought.com/article/80546800879/Another important modification to resolve the following error: "TemplateSyntaxError at /'staticfiles' is not a registered tag library."https://stackoverflow.com/questions/55929472/django-templatesyntaxerror-staticfiles-is-not-a-registered-tag-libraryFinally it is crucial to actually go ahead and migrate the database to be able to use the tables in the sqllite database.`python manage.py migrate` In order to train our dj_bot, we must add some lines to the settings.py and we must add a python script that will train our bot and store the training into the database used for generating responses. So we create a file named train.py where we train the bot on the existing corpus provided by the chatterbot package.We must also specify the training class in our settings.py file in order for it to be taken into account by our django_app Then we can run the following command at the root of our django application to train our bot :`python train.py`followed by `python manage.py runserver` Pour enseigner notre agent conversationnel à parler en bon francais, il suffit d'ajouter une ligne à notre code.`'chatterbot.corpus.french'`Pour lui enseigner d'autres langues, on peut choisir parmi les options retrouvées ici: https://github.com/gunthercox/chatterbot-corpus/tree/master/chatterbot_corpus/data Now, in order to make our chatbot perform like a modern artifical intelligence, we should feed it a larger dataset. For this, we will make use of the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words.`chatterbot.trainers.UbuntuCorpusTrainer`Will allow chatbots to be trained with the data from the Ubuntu Dialog Corpus.Source : https://chatterbot.readthedocs.io/en/stable/training.htmltraining-with-the-ubuntu-dialog-corpus ###Code """ This example shows how to train a chat bot using the Ubuntu Corpus of conversation dialog. """ import logging from chatterbot import ChatBot from chatterbot.trainers import UbuntuCorpusTrainer # Enable info level logging logging.basicConfig(level=logging.INFO) chatbot = ChatBot('Example Bot') trainer = UbuntuCorpusTrainer(chatbot) # Start by training our bot with the Ubuntu corpus data trainer.train() # Now let's get a response to a greeting response = chatbot.get_response('How are you doing today?') print(response) ###Output [nltk_data] Downloading package stopwords to /home/wspin/nltk_data... [nltk_data] Package stopwords is already up-to-date! [nltk_data] Downloading package averaged_perceptron_tagger to [nltk_data] /home/wspin/nltk_data... [nltk_data] Package averaged_perceptron_tagger is already up-to- [nltk_data] date! Downloading http://cs.mcgill.ca/~jpineau/datasets/ubuntu-corpus-1.0/ubuntu_dialogs.tgz [= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [==== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [====== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [======== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [========== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [============ ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [============== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [================ ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [=================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [===================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [======================= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [========================= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [========================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [============================ ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [============================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [================================ ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [================================= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [=================================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [===================================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [======================================= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [======================================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [=========================================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [============================================= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [=============================================== ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) [================================================= ]IOPub message rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_msg_rate_limit`. Current values: NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec) NotebookApp.rate_limit_window=3.0 (secs) INFO:chatterbot.chatterbot:File extracted to /home/wspin/ubuntu_data/ubuntu_dialogs Process ForkPoolWorker-10: Process ForkPoolWorker-5: Process ForkPoolWorker-7: Process ForkPoolWorker-11: Process ForkPoolWorker-13: Process ForkPoolWorker-12: Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): Process ForkPoolWorker-2: Process ForkPoolWorker-6: File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() Process ForkPoolWorker-8: Process ForkPoolWorker-9: File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) Traceback (most recent call last): File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() Traceback (most recent call last): File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) Process ForkPoolWorker-3: File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) Process ForkPoolWorker-4: File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() Traceback (most recent call last): File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/pool.py", line 51, in starmapstar return list(itertools.starmap(args[0], args[1])) File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/home/wspin/.local/lib/python3.8/site-packages/chatterbot/trainers.py", line 203, in read_file statement.search_text = tagger.get_bigram_pair_string(statement.text) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: Traceback (most recent call last): File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/wspin/.local/lib/python3.8/site-packages/chatterbot/tagging.py", line 170, in get_bigram_pair_string pos_tags.extend(self.get_pos_tags(words)) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() KeyboardInterrupt File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/home/wspin/.local/lib/python3.8/site-packages/chatterbot/tagging.py", line 109, in get_pos_tags tags = pos_tag(words, lang=self.language.ISO_639) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: KeyboardInterrupt KeyboardInterrupt KeyboardInterrupt KeyboardInterrupt File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) KeyboardInterrupt File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) KeyboardInterrupt File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/queues.py", line 356, in get res = self._reader.recv_bytes() File "/usr/lib/python3.8/multiprocessing/connection.py", line 216, in recv_bytes buf = self._recv_bytes(maxlength) File "/home/wspin/.local/lib/python3.8/site-packages/nltk/tag/__init__.py", line 165, in pos_tag return _pos_tag(tokens, tagset, tagger, lang) KeyboardInterrupt File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.8/multiprocessing/connection.py", line 414, in _recv_bytes buf = self._recv(4) File "/home/wspin/.local/lib/python3.8/site-packages/nltk/tag/__init__.py", line 122, in _pos_tag tagged_tokens = tagger.tag(tokens) File "/usr/lib/python3.8/multiprocessing/connection.py", line 379, in _recv chunk = read(handle, remaining) File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/home/wspin/.local/lib/python3.8/site-packages/nltk/tag/perceptron.py", line 188, in tag tag, conf = self.model.predict(features, return_conf) KeyboardInterrupt File "/usr/lib/python3.8/multiprocessing/queues.py", line 355, in get with self._rlock: File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.8/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/home/wspin/.local/lib/python3.8/site-packages/nltk/tag/perceptron.py", line 67, in predict scores[label] += value * weight KeyboardInterrupt KeyboardInterrupt KeyboardInterrupt
3. Practical Cases of Linear Regression .ipynb
###Markdown Functional Forms Linear regression requires parameters to be linear rather than variables, for instance an exponential form is nonlinear$$Y_{i}=\beta_{1} X_{i}^{\beta_{2}} e^{u_{i}}$$ Many of you might wonder what if variables are nonlinear, such as$$Y=\beta_{1}+\beta_{2} X_{2}^{3}+\beta_{3} \sqrt{X_{3}}+\beta_{4} \log X_{4} + u_i$$Actually, it doesn't matter, they are essentially linear after nonlinear operation performed. $$Y=\beta_{1}+\beta_{2} Z_2+\beta_{3}Z_3+\beta_{4}Z_4+u_i$$where $Z_2 = X_{2}^{3}$, $Z_3 = \sqrt{X_{3}}$ and $Z_4 =\log X_{4}$.But interpretation of parameters not the same anymore. Log Form Transformation We will explain how log form transformation is used through an economics example.If you have studied microeconomics, you probably remember the concept of elasticity, it is a unitless measurement of relative changes of two variables. For example, the price elasticity of demand is defined as$$\frac{\Delta C/C}{\Delta P/P} = \frac{d C/d P}{C/P}$$If price elasticity of demand is $.3$, it means one percent of price change would cause $.3%$ percent change of demand. If $C$ and $P$ takes the form of $C = \beta_1 P^{\beta_2}$, then$$\frac{d C}{d P}=\beta_1 \beta_2 P^{\beta_2-1}= \beta_2\frac{C}{P}$$Substitute the result back in elasticity of consumption to price$$\frac{\Delta C/C}{\Delta P/P} = \beta_2$$ $\beta_2$ is the elasticity, and this is also why we prefer using exponential form in estimating elasticities. Taking natural log on $C = \beta_1 P^{\beta_2}u$$$\ln{C} = \ln{\beta_1}+\beta_2\ln{P}+\ln{u}$$This, again, back to linear regression form. With cosmetic substitution, the model becomes$$C' = \beta_1'+\beta_2 P'+u'$$ Here is the estimation procedure:1. Take natural log of $C$ and $P$.2. Estimate the regression by OLS.3. $\beta_2$ has the direct interpretation of elasticity.4. To obtain $\beta_1$, take $\exp{\beta_1'}$. We will retrieve _Consumer Price Index_ and _Expenditure of Durable Good_ from FRED. ###Code start = dt.datetime(1950, 1, 1) end = dt.datetime(2021, 1, 1) df_exp = pdr.data.DataReader(['PCEDG','PCE'], 'fred' , start, end) df_exp.columns = ['Exp_Dur', 'Tot_Exp'] df_exp = df_exp.dropna() (df_exp/df_exp.iloc[0]).plot(grid=True, figsize=(12, 7), title = 'Total Exp. and Exp. on Durables (Normalised at 1.2010)') plt.show() X = np.log(df_exp['Tot_Exp']) Y = np.log(df_exp['Exp_Dur']) X = sm.add_constant(X) # adding a constant model = sm.OLS(Y, X).fit() print_model = model.summary() print(print_model) md('That means every $1\%$ increase of total expenditure will bring up {:.4f}\% of durable good consumption.'.format(model.params[1])) ###Output _____no_output_____
resume_matches.ipynb
###Markdown ###Code !pip install docx2txt import docx2txt job_description =docx2txt.process('/content/Alice Clark CV.docx') resume=docx2txt.process('/content/Smith Resume.docx') print(resume) content=[job_description,resume] from sklearn.feature_extraction.text import CountVectorizer cv=CountVectorizer() matrix=cv.fit_transform(content) from sklearn.metrics.pairwise import cosine_similarity similarity_matrix=cosine_similarity(matrix) print(similarity_matrix) print('Resume Matches By :' +str(similarity_matrix[1][0])) ###Output _____no_output_____
Hemanshu_SD565_Assignment1.ipynb
###Markdown Introductory Machine Learning: Assignment 1**Deadline:**Assignment 1 is due Thursday, September 23 at 11:59pm. Late work will not be accepted as per the course policies (see the Syllabus and Course policies on [Canvas](https://canvas.yale.edu)).Directly sharing answers is not okay, but discussing problems with the course staff or with other students is encouraged.You should start early so that you have time to get help if you're stuck. The drop-in office hours schedule can be found on [Canvas](https://canvas.yale.edu). You can also post questions or start discussions on [Ed Discussion](https://edstem.org/us/courses/9209/discussion/). The assignment may look long at first glance, but the problems are broken up into steps that should help you to make steady progress.**Submission:**Submit your assignment as a .pdf on Gradescope. You can access Gradescope through Canvas on the left-side of the class home page. The problems in each homework assignment are numbered. Note: When submitting on Gradescope, please select the correct pages of your pdf that correspond to each problem. This will allow graders to more easily find your complete solution to each problem.To produce the .pdf, please do the following in order to preserve the cell structure of the notebook: 1. Go to "File" at the top-left of your Jupyter Notebook2. Under "Download as", select "HTML (.html)"3. After the .html has downloaded, open it and then select "File" and "Print" (note you will not actually be printing)4. From the print window, select the option to save as a .pdf**Topics**1. Linear regression2. k-nearest-neighbor classificationThis assignment will also help you to learn the essentials of Python, Pandas, and Jupyter notebooks. Problem 1: Linear Regression with Covid Data The New York Times Covid-19 Database is a county-level database of confirmed cases and deaths, compiled from state and local governments and health departments across the United States.The initial release of the database was on Thursday, March 26, 2020, and it is updated daily. The data are publically available via GitHub: [https://github.com/nytimes/covid-19-data](https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html). In this problem we will only use the data aggregated across states. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objects as go import statsmodels.api as sm ###Output _____no_output_____ ###Markdown Load the dataFirst, read the whole dataset including the accumulated cases and deaths for each state for each day. ###Code covid_table = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv") covid_table = covid_table.drop('fips', axis=1) covid_table.tail(10) ###Output _____no_output_____ ###Markdown Aggregate data across statesWe can merge data from different states to get the total number of cases and deaths for the country. Here we also show an example of visualizing the data. ###Code merged_data = covid_table.drop('state', axis=1) merged_data = merged_data.groupby('date').sum() merged_data.tail(10) new_cases = np.diff(merged_data['cases']) dates = np.array(merged_data['cases'].index) plt.figure(figsize=(8,5)) plt.plot(dates, merged_data['cases']) plt.xticks(dates[[0, 100, 200, 300, 400, 500, len(dates)-1]], rotation=90) _ = plt.title('Cumulative cases in the US') ###Output _____no_output_____ ###Markdown Problem 1.1Let's call April 1, 2021 to May 1, 2021 Period 1. The following code extracts the cumulative cases, deaths, and days during this period ###Code first_date = '2021-04-01' last_date = '2021-05-01' merged_data_period1 = merged_data[(merged_data['cases'].index >= first_date) & (merged_data['cases'].index <= last_date)] merged_data_period1.insert(2,"days",np.arange(len(merged_data_period1))+1) merged_data_period1.head(10) ###Output _____no_output_____ ###Markdown Problem 1.1.aVisualize the accumulated cases in period 1. You can use any graph you like, such as line plot, scatter plot, and bar plot. The x-axis should be `days`. ###Code ## -- please write code for visualization here. -- ## fig = go.Figure() fig.add_trace(go.Scatter(x=merged_data_period1.index, y=merged_data_period1['cases'],mode='lines')) fig.update_layout(title='Cumulative Cases in April 2021',xaxis_title='Date',yaxis_title='Cumulative Cases') fig.show() ###Output _____no_output_____ ###Markdown Problem 1.1.bNow, calculate the least-squares estimates of the coefficients for the linear model that includes a slope and an intercept: $$\text{cases}_i = \beta_0 + \beta_1 \text{days}_i + \epsilon_i$$You may either compute these values with explicit expressions, or use a package such as statsmodels.api.OLS. Use our demo from class as an example, if you wish. ###Code ## -- please compute linear regression here. -- ## X = sm.add_constant(merged_data_period1['days']) model = sm.OLS(merged_data_period1['cases'], X) result = model.fit() beta = [result.params[0], result.params[1]] ###Output _____no_output_____ ###Markdown Problem 1.1.c Now, plot the data together with the linear fit, shown as a straight line. ###Code ## -- please write code for your visualization go here -- ## fig = go.Figure() fig.add_trace(go.Scatter(x=merged_data_period1['days'], y=merged_data_period1['cases'],mode='markers', name = 'Actual Data')) fig.add_trace(go.Scatter(x=merged_data_period1['days'], y=beta[0] + beta[1]*merged_data_period1['days'],mode='lines', name = 'Fitted Line')) fig.update_layout(title='Cumulative Cases in April 2021',xaxis_title='Days',yaxis_title='Cumulative Cases') fig.show() ###Output _____no_output_____ ###Markdown Problem 1.2Modify the code in 1.1 to fit and visualize a linear regression model for Period 2, July 1, 2021 to August 1, 2021. ###Code ## -- please put your code to process the data here -- ## first_date = '2021-07-01' last_date = '2021-08-01' merged_data_period2 = merged_data[(merged_data['cases'].index >= first_date) & (merged_data['cases'].index <= last_date)] merged_data_period2.insert(2,"days",np.arange(len(merged_data_period2))+1) #merged_data_period2.head(10) ###Output _____no_output_____ ###Markdown Problem 1.2.aVisualize the data ###Code ## -- please write code for plotting the data here. --# fig = go.Figure() fig.add_trace(go.Scatter(x=merged_data_period2.index, y=merged_data_period2['cases'],mode='lines')) fig.update_layout(title='Cumulative Cases in July 2021',xaxis_title='Date',yaxis_title='Cumulative Cases') fig.show() ###Output _____no_output_____ ###Markdown Problem 1.2.bCompute a linear regression ###Code ## -- please write code for the linear regression and visualization here. -- ## X2 = sm.add_constant(merged_data_period2['days']) model2 = sm.OLS(merged_data_period2['cases'], X2) result2 = model2.fit() beta2 = [result2.params[0], result2.params[1]] ###Output _____no_output_____ ###Markdown Problem 1.2.cPlot the data together with the linear regression here ###Code ## -- please write the code for your plot here -- ## fig = go.Figure() fig.add_trace(go.Scatter(x=merged_data_period2['days'], y=merged_data_period2['cases'],mode='markers', name = 'Actual Data')) fig.add_trace(go.Scatter(x=merged_data_period2['days'], y=beta2[0] + beta2[1]*merged_data_period2['days'],mode='lines', name = 'Fitted Line')) fig.update_layout(title='Cumulative Cases in July 2021', xaxis_title='Days',yaxis_title='Cumulative Cases') fig.show() ###Output _____no_output_____ ###Markdown Problem 1.3Compare the linear regression results for 1.1 and 1.2. In which case does the model better fit the data? Please verify your answer *quantitatively*. ###Code ## -- please write your answer here. -- ## str_april = 'R-squared for the regression model using April 2021 data:' + str(np.round(result.rsquared_adj, 4)) str_july = 'R-squared for the regression model using July 2021 data:' + str(np.round(result2.rsquared_adj, 4)) print(str_april + ' and ' + str_july) if result.rsquared_adj > result2.rsquared_adj: print('The model fit using data from April 2021 fits better') else: print('The model fit using data from July 2021 fits better') ###Output R-squared for the regression model using April 2021 data:0.9961 and R-squared for the regression model using July 2021 data:0.9374 The model fit using data from April 2021 fits better ###Markdown Problem 1.4 (Extra credit: 5 points)Repeat problems 1.1, 1.2, and 1.3 but this time using *multiple regression*, regressing the cumulative cases onto the number of days and the cumulative deaths on that day. Thus, each of your regressions should have three parameters: an intercept, a coefficient for days, and a coefficient for deaths. When you visualize the results, plot the predicted number of cases versus days, but use the number of deaths to compute your predicted values. ###Code ## -- please write your answer here. -- ## '''Creating a model using April 2021 data''' x_data = np.column_stack((merged_data_period1['days'], merged_data_period1['deaths'])) X = sm.add_constant(x_data) model = sm.OLS(merged_data_period1['cases'], X) result = model.fit() beta = [result.params[0], result.params[1], result.params[2]] fig = go.Figure() fig.add_trace(go.Scatter(x=merged_data_period1['days'], y=merged_data_period1['cases'],mode='markers', name = 'Actual Data')) fig.add_trace(go.Scatter(x=merged_data_period1['days'], y=beta[0] + beta[1]*merged_data_period1['days'] + beta[2]*merged_data_period1['deaths'],mode='lines', name = 'Fitted Line')) fig.update_layout(title='Cumulative Cases in April 2021',xaxis_title='Days',yaxis_title='Cumulative Cases') fig.show() '''Creating a model using July 2021 data''' x_data = np.column_stack((merged_data_period2['days'], merged_data_period2['deaths'])) X = sm.add_constant(x_data) model2 = sm.OLS(merged_data_period2['cases'], X) result2 = model.fit() beta2 = [result2.params[0], result2.params[1], result2.params[2]] fig = go.Figure() fig.add_trace(go.Scatter(x=merged_data_period2['days'], y=merged_data_period2['cases'],mode='markers', name = 'Actual Data')) fig.add_trace(go.Scatter(x=merged_data_period2['days'], y=beta2[0] + beta2[1]*merged_data_period2['days'] + beta2[2]*merged_data_period2['deaths'],mode='lines', name = 'Fitted Line')) fig.update_layout(title='Cumulative Cases in July 2021', xaxis_title='Days',yaxis_title='Cumulative Cases') fig.show() '''Comparing regression results''' str_april = 'R-squared for the regression model using April 2021 data:' + str(np.round(result.rsquared_adj, 4)) str_july = 'R-squared for the regression model using July 2021 data:' + str(np.round(result2.rsquared_adj, 4)) print(str_april + ' and ' + str_july) if result.rsquared_adj > result2.rsquared_adj: print('The model fit using data from April 2021 fits better') else: print('The model fit using data from July 2021 fits better') %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import dateutil import random import math ###Output _____no_output_____ ###Markdown Problem 2: Romance vs. Action (30 points)Credit: Data 8 Part 1. Exploring the datasetIn this problem, we will try to predicta movie's genre from the text of its screenplay. We have compiled a list of 5,000 words that occur in conversations between movie characters. For each movie, our dataset tells us the frequency with which each of these words occurs in certain conversations in its screenplay. All words have been converted to lowercase.Run the cell below to read the `movies` table. It may take up a minute or so to load. ###Code movies = pd.read_csv('https://raw.githubusercontent.com/YData123/sds265-fa21/main/assignments/assn1/movies.csv') movies.head(10) movies.iloc[125,[0, 1, 2, 3, 4, 5, 10, 30, 5005]] ###Output _____no_output_____ ###Markdown The above cell prints a few columns of the row for the action movie *The Matrix*. The movie contains 3792 words. The word "it" appears 115 times, as it makes up a fraction $\frac{115}{3792} \approx 0.030327$ of the words in the movie. The word "not" appears 33 times, as it makes up a fraction $\frac{33}{3792} \approx 0.00870253$ of the words. The word "fling" doesn't appear at all.This numerical representation of a body of text, one that describes only the frequencies of individual words, is called a bag-of-words representation. A lot of information is discarded in this representation: the order of the words, the context of each word, who said what, the cast of characters and actors, etc. However, a bag-of-words representation is often used for machine learning applications as a reasonable starting point, because a great deal of information is also retained and expressed in a convenient and compact format. We will investigate whether this representation is sufficient to build an accurate genre classifier. All movie titles are unique. The `row_for_title` function provides fast access to the one row for each title. ###Code def row_for_title(title): """Return the row for a title """ return movies[movies["Title"]==title] ###Output _____no_output_____ ###Markdown For example, the fastest way to find the frequency of "hey" in the movie *The Terminator* is to access the `'hey'` item from its row. Check the original table to see if this worked for you! ###Code row_for_title('the terminator')["hey"].item() ###Output _____no_output_____ ###Markdown This dataset was extracted from [a dataset from Cornell University](http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html). After transforming the dataset (e.g., converting the words to lowercase, removing profanity, and converting the counts to frequencies), this new dataset was created containing the frequency of 5000 common words in each movie. ###Code print('Words with frequencies:', len(movies.drop(movies.columns[np.arange(6)],axis=1).columns)) print('Movies with genres:', len(movies)) ###Output Words with frequencies: 5000 Movies with genres: 242 ###Markdown **Word Stemming**The columns other than "Title", "Genre", "Year", "Rating", " Votes" and " Words" in the `movies` table are all words that appear in some of the movies in our dataset. These words have been *stemmed*, or abbreviated heuristically, in an attempt to make different [inflected](https://en.wikipedia.org/wiki/Inflection) forms of the same base word into the same string. For example, the column "manag" is the sum of proportions of the words "manage", "manager", "managed", and "managerial" (and perhaps others) in each movie. This is a common technique used in machine learning and natural language processing.Stemming makes it a little tricky to search for the words you want to use, so we have provided another table that will let you see examples of unstemmed versions of each stemmed word. Run the code below to load it. ###Code # Just run this cell. vocab_mapping = pd.read_csv('https://raw.githubusercontent.com/YData123/sds265-fa21/main/assignments/assn1/stem.csv') stemmed = list(movies.drop(movies.columns[np.arange(6)],axis=1).columns) vocab_table = vocab_mapping[vocab_mapping["Stem"].isin(stemmed)] vocab_table = vocab_table.sort_values('Stem') vocab_table.iloc[np.arange(2000, 2010)] ###Output _____no_output_____ ###Markdown Problem 2.1.a:Assign `stemmed_alternating` to the stemmed version of the word "alternating". ###Code # Set stemmed_alternating to the stemmed version of "alternating" (which # should be a string). Use vocab_table. stemmed_alternating = ... stemmed_alternating ###Output _____no_output_____ ###Markdown Problem 2.1.b:Assign `unstemmed_run` to an array of words in `vocab_table` that have "run" as its stemmed form. ###Code # Set unstemmed_run to the unstemmed versions of "run" (which # should be an array of string). unstemmed_run = ... unstemmed_run ###Output _____no_output_____ ###Markdown **Splitting the dataset**We're going to use our `movies` dataset for two purposes.1. First, we want to *train* a movie genre classifier.2. Second, we want to *test* the performance of the classifier.So, we need two different datasets: *training* and *test*.The purpose of a classifier is to classify unseen data that is similar to the training data. Therefore, we must ensure that there are no movies that appear in both sets. We do so by splitting the dataset randomly. The dataset has already been permuted randomly, so it's easy to split. We just take the top for training and the rest for test. Run the code below (without changing it) to separate the datasets into two tables. ###Code # Here we have defined the proportion of our data # that we want to designate for training as 17/20ths # of our total dataset. 3/20ths of the data is # reserved for testing. training_proportion = 17/20 num_movies = len(movies) num_train = int(num_movies * training_proportion) num_test = num_movies - num_train train_movies = movies.iloc[np.arange(num_train)] test_movies = movies.iloc[np.arange(num_train, num_movies)] print("Training: ", len(train_movies), ";", "Test: ", len(test_movies)) ###Output Training: 205 ; Test: 37 ###Markdown Problem 2.1.c:Draw a horizontal bar chart with two bars that show the proportion of Action movies in each dataset. Complete the function `action_proportion` first; it should help you create the bar chart. ###Code def action_proportion(dataframe): """Return the proportion of movies in a table that have the Action genre.""" return ... ###Output _____no_output_____ ###Markdown Part 2. K-Nearest Neighbors: A guided examplek-Nearest Neighbors (k-NN) is a classification algorithm. Given some *attributes* (also called *features*) of an unseen example, it decides whether that example belongs to one or the other of two categories based on its similarity to previously seen examples. Predicting the category of an example is called *labeling*, and the predicted category is also called a *label*.An attribute (feature) we have about each movie is *the proportion of times a particular word appears in the movies*, and the labels are two movie genres: romance and action. The algorithm requires many previously seen examples for which both the attributes and labels are known: that's the `train_movies` dataframe.To build understanding, we're going to visualize the algorithm instead of just describing it. **Classifying a movie**In k-NN, we classify a movie by finding the `k` movies in the *training set* that are most similar according to the features we choose. We call those movies with similar features the *nearest neighbors*. The k-NN algorithm assigns the movie to the most common category among its `k` nearest neighbors.Let's limit ourselves to just 2 features for now, so we can plot each movie. The features we will use are the proportions of the words "money" and "feel" in the movie. Taking the movie "Batman Returns" (in the test set), 0.000502 of its words are "money" and 0.004016 are "feel". This movie appears in the test set, so let's imagine that we don't yet know its genre.First, we need to make our notion of similarity more precise. We will say that the *distance* between two movies is the straight-line distance between them when we plot their features in a scatter diagram. This distance is called the Euclidean ("yoo-KLID-ee-un") distance, whose formula is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.For example, in the movie *Titanic* (in the training set), 0.0009768 of all the words in the movie are "money" and 0.0017094 are "feel". Its distance from *Batman Returns* on this 2-word feature set is $$\sqrt{(0.000502 - 0.0009768)^2 + (0.004016 - 0.0017094)^2} \approx 0.00235496.$$ (If we included more or different features, the distance could be different.)A third movie, *The Avengers* (in the training set), is 0 "money" and 0.001115 "feel".The function below creates a plot to display the "money" and "feel" features of a test movie and some training movies. As you can see in the result, *Batman Returns* is more similar to *Titanic* than to *The Avengers* based on these features. However, we know that *Batman Returns* and *The Avengers* are both action movies, so intuitively we'd expect them to be more similar. Unfortunately, that isn't always the case. We'll discuss this more later. ###Code # Just run this cell. def plot_embeddings(M_reduced, word2Ind, words): """ Plot in a scatterplot the embeddings of the words specified in the list "words". Include a label next to each point. """ for word in words: x, y = M_reduced[word2Ind[word]] plt.scatter(x, y, marker='x', color='red') plt.text(x+.03, y+.03, word, fontsize=9) plt.show() M_reduced_plot_test = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0, 0]]) word2Ind_plot_test = {'test1': 0, 'test2': 1, 'test3': 2, 'test4': 3, 'test5': 4} words = ['test1', 'test2', 'test3', 'test4', 'test5'] plot_embeddings(M_reduced_plot_test, word2Ind_plot_test, words) # Just run this cell. def plot_with_two_features(test_movie, training_movies, x_feature, y_feature): """Plot a test movie and training movies using two features.""" test_row = row_for_title(test_movie) test_x = test_row[x_feature].item() test_y = test_row[y_feature].item() plt.scatter(test_x, test_y, s=100) plt.text(test_x, test_y+.0005, test_movie, fontsize=20) for movie in training_movies: row = row_for_title(movie) train_x = row[x_feature].item() train_y = row[y_feature].item() plt.scatter(train_x, train_y, s=100) plt.text(train_x, train_y+.0005, movie, fontsize=20) plt.show() plt.figure(figsize=(12, 8)) plt.xlim(-0.0005, 0.002) plt.ylim(-0.001, 0.006) plt.xlabel('money', fontsize=25) plt.ylabel('feel', fontsize=25) training = ["titanic", "the avengers"] plot_with_two_features("batman returns", training, "money", "feel") ###Output _____no_output_____ ###Markdown Problem 2.2.a:Compute the distance between the two action movies, *Batman Returns* and *The Avengers*, using the `money` and `feel` features only. Assign it the name `action_distance`.**Note:** If you have a row, you can use `item` to get a value from a column by its name. For example, if `r` is a row, then `r["Genre"].item()` is the value in column `"Genre"` in row `r`.*Hint*: Remember the function `row_for_title`, redefined for you below. ###Code def row_for_title(title): """Return the row for a title """ return movies[movies["Title"]==title] batman = row_for_title("batman returns") avengers = row_for_title("the avengers") action_distance = ... action_distance ###Output _____no_output_____ ###Markdown Below, we've added a third training movie, *The Terminator*. Before, the point closest to *Batman Returns* was *Titanic*, a romance movie. However, now the closest point is *The Terminator*, an action movie. ###Code plt.figure(figsize=(12, 8)) plt.xlim(-0.0005, 0.002) plt.ylim(-0.001, 0.006) plt.xlabel('money', fontsize=25) plt.ylabel('feel', fontsize=25) training = ["the avengers", "titanic", "the terminator"] plot_with_two_features("batman returns", training, "money", "feel") ###Output _____no_output_____ ###Markdown Problem 2.2.b:Complete the function `distance_two_features` that computes the Euclidean distance between any two movies, using two features. The last two lines call your function to show that *Batman Returns* is closer to *The Terminator* than *The Avengers*. ###Code def distance_two_features(title0, title1, x_feature, y_feature): """Compute the distance between two movies with titles title0 and title1 Only the features named x_feature and y_feature are used when computing the distance. """ row0 = ... row1 = ... ... for movie in ["the terminator", "the avengers"]: movie_distance = distance_two_features(movie, "batman returns", "money", "feel") print(movie, 'distance:\t', movie_distance) ###Output the terminator distance: None the avengers distance: None ###Markdown Problem 2.2.c:Define the function `distance_from_batman_returns` so that it works as described in its documentation.**Note:** Your solution should not use arithmetic operations directly. Instead, it should make use of existing functionality above! ###Code def distance_from_batman_returns(title): """The distance between the given movie and "batman returns", based on the features "money" and "feel". This function takes a single argument: title: A string, the name of a movie. """ ... ###Output _____no_output_____ ###Markdown Problem 2.2.d:Using the features `"money"` and `"feel"`, what are the names and genres of the 7 movies in the **training set** closest to "batman returns"? To answer this question, make a table named `close_movies` containing those 7 movies with columns `"Title"`, `"Genre"`, `"money"`, and `"feel"`, as well as a column called `"distance from batman"` that contains the distance from "batman returns". The dataframe should be **sorted in ascending order by `distance from batman`**.*Hint*: You may find the function [`insert`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.insert.html) useful. ###Code # The sample solution took multiple lines. ... close_movies = ... close_movies ###Output _____no_output_____ ###Markdown Problem 2.2.e:Next, we'll classify "batman returns" based on the genres of the closest movies. To do so, define the function `most_common` so that it works as described in its documentation below. ###Code def most_common(label, dataframe): """The most common element in a column of a table. This function takes two arguments: label: The label of a column, a string. dataframe: A dataframe. It returns the most common value in that column of that table. In case of a tie, it returns any one of the most common values """ ... # Calling most_common on your table of 7 nearest neighbors classifies # "batman returns" as a romance movie, 5 votes to 2. most_common('Genre', close_movies) ###Output _____no_output_____ ###Markdown Congratulations, you've classified your first movie! However, we can see that the classifier doesn't work too well since it categorized *Batman Returns* as a romance movie. Let's see if we can do better! Part 3. FeaturesNow, we're going to extend our classifier to consider more than two features at a time.Euclidean distance still makes sense with more than two features. For `n` different features, we compute the difference between corresponding feature values for two movies, square each of the `n` differences, sum up the resulting numbers, and take the square root of the sum. Problem 2.3.a:Write a function to compute the Euclidean distance between two **arrays** of features of *arbitrary* (but equal) length. Use it to compute the distance between the first movie in the training set and the first movie in the test set, *using all of the features*. (Remember that the first six columns of your tables are not features.)**Note:** To convert rows to arrays, use `np.array`. For example, if `df` was a dataframe, `np.array(df.iloc[i])` converts row i of `df` into an array. ###Code def distance(features1, features2): """The Euclidean distance between two arrays of feature values.""" ... distance_first_to_first = ... distance_first_to_first ###Output _____no_output_____ ###Markdown **Creating your own feature set**Unfortunately, using all of the features has some downsides. One clear downside is *computational* -- computing Euclidean distances just takes a long time when we have lots of features. You might have noticed that in the last question!So we're going to select just 20. We'd like to choose features that are very *discriminative*. That is, features which lead us to correctly classify as much of the test set as possible. This process of choosing features that will make a classifier work well is sometimes called *feature selection*, or more broadly *feature engineering*. Problem 2.3.b:In this question, we will help you get started on selecting more effective features for distinguishing romance from action movies. The plot below (generated for you) shows the average number of times each word occurs in a romance movie on the horizontal axis and the average number of times it occurs in an action movie on the vertical axis. ![alt text](https://raw.githubusercontent.com/YData123/sds265-fa21/main/assignments/assn1/word_plot.png "Title") Problem 2.3.c:Using the plot above, choose 20 common words that you think might let you distinguish between romance and action movies. Make sure to choose words that are frequent enough that every movie contains at least one of them. Don't just choose the 20 most frequent, though... you can do much better.You might want to come back to this question later to improve your list, once you've seen how to evaluate your classifier. ###Code # Set my_20_features to a list of 20 features (strings that are column labels) my_20_features = [] train_20 = train_movies[my_20_features] test_20 = test_movies[my_20_features] ###Output _____no_output_____ ###Markdown In two sentences or less, describe how you selected your features. *Write your answer here, replacing this text.* Next, let's classify the first movie from our test set using these features. You can examine the movie by running the cells below. Do you think it will be classified correctly? ###Code print("Movie:") print(test_movies.iloc[0,[0,1]]) print("Features:") print(test_20.iloc[0]) ###Output Movie: Title the mummy Genre action Name: 205, dtype: object Features: Series([], Name: 205, dtype: float64) ###Markdown As before, we want to look for the movies in the training set that are most like our test movie. We will calculate the Euclidean distances from the test movie (using the 20 selected features) to all movies in the training set. You could do this with a `for` loop, but to make it computationally faster, we have provided a function, `fast_distances`, to do this for you. Read its documentation to make sure you understand what it does. (You don't need to understand the code in its body unless you want to.) ###Code # Just run this cell to define fast_distances. def fast_distances(test_row, train_dataframe): """An array of the distances between test_row and each row in train_rows. Takes 2 arguments: test_row: A row of a table containing features of one test movie (e.g., test_20.iloc[0]). train_table: A table of features (for example, the whole table train_20).""" assert len(train_dataframe.columns) < 50, "Make sure you're not using all the features of the movies table." counts_matrix = np.asmatrix(train_20.values) diff = np.tile(test_row.values, [counts_matrix.shape[0], 1]) - counts_matrix np.random.seed(0) # For tie breaking purposes distances = np.squeeze(np.asarray(np.sqrt(np.square(diff).sum(1)))) eps = np.random.uniform(size=distances.shape)*1e-10 #Noise for tie break distances = distances + eps return distances ###Output _____no_output_____ ###Markdown Problem 2.3.d:Use the `fast_distances` function provided above to compute the distance from the first movie in the test set to all the movies in the training set, **using your set of 20 features**. Make a new dataframe called `genre_and_distances` with one row for each movie in the training set and three columns:* The `"Title"` of the training movie* The `"Genre"` of the training movie* The `"Distance"` from the first movie in the test set Ensure that `genre_and_distances` is **sorted in increasing order by distance to the first test movie**.*Hint*: You may find the function [`sort_values`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html) useful. ###Code genre_and_distances = ... genre_and_distances ###Output _____no_output_____ ###Markdown Problem 2.3.e:Now compute the 5-nearest neighbors classification of the first movie in the test set. That is, decide on its genre by finding the most common genre among its 5 nearest neighbors in the training set, according to the distances you've calculated. Then check whether your classifier chose the right genre. (Depending on the features you chose, your classifier might not get this movie right, and that's okay.) ###Code # Set my_assigned_genre to the most common genre among these. my_assigned_genre = ... # Set my_assigned_genre_was_correct to True if my_assigned_genre # matches the actual genre of the first movie in the test set. my_assigned_genre_was_correct = ... print("The assigned genre, {}, was{}correct.".format(my_assigned_genre, " " if my_assigned_genre_was_correct else " not ")) ###Output The assigned genre, Ellipsis, was correct. ###Markdown **A classifier function**Now we can write a single function that encapsulates the whole process of classification. Problem 2.3.f:Write a function called `classify`. It should take the following four arguments:* A row of features for a movie to classify (e.g., `test_20.iloc[0]`).* A table with a column for each feature (e.g., `train_20`).* An array of classes that has as many items as the previous table has rows, and in the same order.* `k`, the number of neighbors to use in classification.It should return the class a `k`-nearest neighbor classifier picks for the given row of features (the string `'Romance'` or the string `'Action'`).*Hint:* You may find [`Counter().most_common()`](https://docs.python.org/3/library/collections.htmlcollections.Counter) helpful for finding the classification result. ###Code def classify(test_row, train_rows, train_labels, k): """Return the most common class among k nearest neigbors to test_row.""" distances = fast_distances(test_row, train_rows) genre_and_distances = ... ... ###Output _____no_output_____ ###Markdown Problem 2.3.g:Assign `king_kong_genre` to the genre predicted by your classifier for the movie "king kong" in the test set, using **11 neighbors** and using your 20 features. ###Code # The sample solution first defined a row called king_kong_features. king_kong_features = ... king_kong_genre = ... king_kong_genre ###Output _____no_output_____ ###Markdown Finally, when we evaluate our classifier, it will be useful to have a classification function that is specialized to use a fixed training set and a fixed value of `k`. Problem 2.3.h:Create a classification function that takes as its argument a row containing your 20 features and classifies that row using the 11-nearest neighbors algorithm with `train_20` as its training set. ###Code def classify_feature_row(row): ... # When you're done, this should produce 'Romance' or 'Action'. classify_feature_row(test_20.iloc[0]) ###Output _____no_output_____ ###Markdown Part 4: Evaluating your classifierNow that it's easy to use the classifier, let's see how accurate it is on the whole test set. Problem 2.4.a:Use `classify_feature_row` and [`pandas.DataFrame.apply`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html) (or a loop) to classify every movie in the test set. Assign these guesses as an array to `test_guesses`. **Then**, compute the proportion of correct classifications. ###Code test_guesses = ... proportion_correct = ... proportion_correct ###Output _____no_output_____ ###Markdown Problem 2.4.b:An important part of evaluating your classifiers is figuring out where they make mistakes. Assign the name `test_movie_correctness` to a dataframe with three columns, `'Title'`, `'Genre'`, and `'Was correct'`. The last column should contain `True` or `False` depending on whether or not the movie was classified correctly. ###Code test_movie_correctness = ... test_movie_correctness.sort_values('Was correct') ###Output _____no_output_____
Data_Viz_Titanic/titanic_data_analysis_walkthrough.ipynb
###Markdown Titanic Ship Manifest Data Analysis Run this cell below if you'd like to, but it's not required at all. ###Code # Changing logging_enable = True gives consent to anonymously log. No personal data is collected, # just what code is run while working. We like to see how far people get in this lesson to help us design better ones. from Logger import OnlineLogger logging_enable = False notebook = "titanic_data_analysis_walkthrough.ipynb" course = "2021-10-21-Titanic-PythonDataAnalysis-In-Person" if logging_enable == True: OnlineLogger.start(notebook,course) ###Output _____no_output_____ ###Markdown ----------- We've Got to Do Some Install(s)Because it's good to know how to do that sort of thing ###Code #This is a bash command to update/use plotnine for later. Let's practice! #conda install -c conda-forge plotnine import math #import matplotlib as mpl ### May need to uncomment these two lines for mac osx users #mpl.use('TkAgg') ### from matplotlib import pyplot as plt plt.style.use('ggplot') import plotnine as p9 import pandas as pd import numpy as np %matplotlib inline # Here is where I define all the variables that I may want to change later on ###Output _____no_output_____ ###Markdown Lets load in the dataset ###Code #You'll have to find your own path! You're looking for /data/train.csv df = pd.read_csv("data/train.csv") df.head(12) df.tail() ###Output _____no_output_____ ###Markdown Lets see the types that were imported on our behalf ###Code df.dtypes df.info() df.describe() ###Output _____no_output_____ ###Markdown See the shape of the dataset ###Code df.shape ###Output _____no_output_____ ###Markdown Here we can see the that it has 891 rows of data and 12 attributes worth of imformation. ###Code len(df) len(df.columns) # Try to bring in the full data set using the read csv function! You can find data in the /data/ folder # where df.columns is df.columns df["Name"] my_famous_passenger = df[df["Name"] == "Guggenheim, Mr. Benjamin"] print(my_famous_passenger) ###Lets get some information about a column ### Like mean age on the boat print(df["Age"].mean()) ### Fare #df["Fare"].mean() print(df["Fare"].describe()) ### Fare df["Fare"].mean() df.describe() my_rich_passenger = df[df["Fare"] == 0.000] print(my_rich_passenger) ####Lets rearrange some columns. This would be very hard to do using a csv library and doing this by hand. ####Panda allows us to do this very intuitively titanic_cols = list(df.columns.values) #cols = list(df.columns.values) #print(cols) print(titanic_cols) #Using that list above, we can create a new list, with the values rearranged. cols = ['Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Ticket', 'Fare', 'Cabin', 'Embarked', 'PassengerId'] new_df = df[cols] new_df.head() #### We can create new dataframes from a few attributes new_df = df[["Sex","Age"]] new_df.head(10) df_of_women = df[df["Sex"] == "female"] df_of_men = df[df["Sex"] == "male"] df_of_women_noNA = df_of_women.dropna() df_of_women_noNA.describe() df_of_men.describe() # Excercise # Create three data frames. Capture them by passenger class 'PClass'. # There are three of them. Then figure out the size of each one. df_pclass1 = df[(df['Pclass']==1) np.logical_or (df['Pclass']==2)] df_pclass1.head() df_pclass_1 = df[df["Pclass"] == 1] df_pclass_1.head() df_pclass_1.shape df_pclass_2 = df[df["Pclass"] == 2] df_pclass_2.head() df_pclass_2.shape df_pclass_3 = df[df["Pclass"] == 3] df_pclass_3.head() df_pclass_3.shape ###Output _____no_output_____ ###Markdown Observations: There were many people in third class. More so than the other two class of passengers combined. We can create new attributes from other attributes! ###Code df['FamilySize'] = df['SibSp'] + df['Parch'] df.head() ###Output _____no_output_____ ###Markdown Since we know that Parch is the number of parents or children onboard, and SibSp is the number of siblings or spouses, we could collect those together as a FamilySize ###Code df["Age"].hist() df["Age"].dropna().hist(bins=16, range=(0,80)) df["Fare"].hist() plt.scatter(df['Fare'], df['Survived']) plt.show() ##### Back to the titanic. So we have our original dataset df.head() #### Lets group them by gender grouped_by_sex = df.groupby(["Sex"]) grouped_by_sex.describe() #### Lets group them by gender df_grouped_by_sex_and_pclass = df.groupby(["Sex", "Pclass"]) df_grouped_by_sex_and_pclass.describe() #### Lets group them by gender df_grouped_by_sex_and_pclass_survived = df.groupby(["Sex", "Pclass", "Survived"]) df_grouped_by_sex_and_pclass_survived.describe() #df_grouped_by_sex_and_pclass_survived.head() df_sex_passclass_survival = df.groupby(['Sex', 'Pclass',"Survived"]).count() df ### Count of records in each group throughout a dataset ###Output _____no_output_____ ###Markdown --------------------------------- A Quick Tangent, Or, "Why I'm not a big fan of matplotlib" ###Code # Lets create a scatter plot d = {'one' : np.random.rand(10), 'two' : np.random.rand(10)} print(d) # And call it something so we can plot it df_crap = pd.DataFrame(d) df_crap.plot(style=['ro','bx']) ###Output _____no_output_____ ###Markdown Needless to say, this isn't publication quality. And honestly, it'll most likely never be. Actual code for a multisubplot figure in matplotlib that I wrote as my first program:%matplotlib inline define figure size, column layout, grid layoutfigsize = (15, (len(query_api_chrs_final))+30)cols = 2gs = gridspec.GridSpec(len(output_dict) // cols + 1, cols) These are the "Tableau 20" colors as RGB tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts Yeah I'm actually iterating over the colors to color things in the plot here because as a beginner I couldn't figure out a better way first :|```for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.)``` Then I figured out if I added a dependency that can't really be moved around anywhere I could make the code slightly easier`current_palette = sns.color_palette("husl", 40)`("Set2", 30)tableau20 Now the actual figurefig = plt.figure(figsize=figsize, frameon=False)subplt_count = -1ax = [] Yup, looping again to get the number of subplots, their size, and where to put them in the final figure```for tchr in listofchrgraph: subplt_count += 1 print "Plotting subplot: "+str(subplt_count) count = 0 row = (subplt_count // cols) col = subplt_count % cols ax.append(fig.add_subplot(gs[row, col])) for qchr in output_dict[tchr]: count += 1 try: if (max(output_dict[tchr][qchr].itervalues()))>5: x = output_dict[tchr][qchr].keys() y = output_dict[tchr][qchr].values() Sets up plotting conditions ax[-1].spines["top"].set_visible(False) ax[-1].spines["right"].set_visible(False) ax[-1].spines["left"].set_visible(True) ax[-1].spines["bottom"].set_visible(True) ax[-1].patch.set_visible(False) ax[-1].get_xaxis().tick_bottom() ax[-1].get_yaxis().tick_left() ax[-1].plot(x, y, color=current_palette[count], lw=2, label=str(qchr)) ax[-1].set_title(label='Target Chromosome: '+species_name_filter+" "+ tchr, fontweight='bold', fontsize=14, y=1.1, loc='left') ax[-1].set_xlabel('Window Iteration\n(Gene number)', fontsize=12, fontweight='bold') ax[-1].set_ylabel('% Retention\n(Syntenic genes/window size)', fontsize=12, fontweight='bold') ax[-1].legend(bbox_to_anchor=(1.25, 1.13), loc=1, frameon=False, title=" Query\nChromosome", fontsize=10) else: continue except ValueError: continue``` This is code I tried because Stack Overflow said it'd help; it didn't, but I didn't have the heart to actually delete it because I wasn't sure if it'd be useful again some day. It wasn't. fig.tight_layout(pad=2, w_pad = 6) Taking all that above and actually calling the plot```fig.subplots_adjust(wspace=0.45, hspace=0.6)plt.savefig("~/Desktop/SynMapFractBiasAnalysis/fractbias_figure"+str(species_name_filter)+".png", transparent=False)``` But I got something like this![image.png](attachment:image.png) This code was changed to six lines of Plotly code. Thank you D3 and Plotly. ------------------------------------------------- Plotting considerations1. List out the head or columns of dataframes of interest.1. Be sure you're getting correct dataframe while graphing. ###Code # Example 1 df_sex_passclass_survival.head() ###Output _____no_output_____ ###Markdown Plotting with plotnineWhich is totally ** cough ** ggplot from R ** cough ** but in Python. And that's great. It even uses the same grammar as ggplot. So we can leverage all the knowledge from ggplot examples for everything we're going to do. ###Code # Create the parts of the plot titanic_plot = p9.ggplot(data=df_sex_passclass_survival, mapping=p9.aes(x='Fare', y='Age')) # Draw the plot titanic_plot + p9.geom_point() ###Output _____no_output_____ ###Markdown **Hypothesis 1:** There was a vampire on board the Titanic. Not only did this vampire report their actual age, but they also paid the standard "Passenger Endangerment and Loss of Blood" Ticket Surcharge. This is why that ticket was $300.**Hypothesis 0 =** Something is wrong. ###Code # Let's try the same thing, but with the original dataframe titanic_plot = p9.ggplot(data=df, mapping=p9.aes(x='Fare', y='Age')) # Draw the plot titanic_plot + p9.geom_point() ###Output /opt/anaconda3/lib/python3.8/site-packages/plotnine/layer.py:401: PlotnineWarning: geom_point : Removed 177 rows containing missing values. ###Markdown Distributions are fun to plot ###Code (p9.ggplot(data=df, mapping=p9.aes(x='Pclass', y='Fare')) + p9.geom_boxplot() ) ###Output _____no_output_____ ###Markdown That's nice, but it's not super useful to put all the classes together Let's split them out into the factors of Pclass...using the aptly named factor function ###Code (p9.ggplot(data=df, mapping=p9.aes(x='factor(Pclass)', y='Fare')) + p9.geom_boxplot() + p9.theme_bw() ) ###Output _____no_output_____ ###Markdown Let's Get Fancy: we're all fancy people ###Code (p9.ggplot(data=df, mapping=p9.aes(x='factor(Pclass)',y='Fare')) + p9.geom_boxplot() + p9.theme_bw() + p9.labs(x = 'Passenger Class', y ='Fare in US Dollars') ) ###Output _____no_output_____ ###Markdown It's time to break out! Let's create some interesting visualizations and report backMost interesting visualization wins! ###Code # Logistic Regression Time! import statsmodels.api as sm import pylab as pl print(df.columns) # Create a new temp data frame new_df = df def gender_to_numeric(x): if x == "male": return 0 else: return 1 new_df['Sex'] = new_df['Sex'].apply(gender_to_numeric) new_df = new_df[["Survived", "Age","Sex", "Pclass"]] new_df = new_df.dropna() train_cols = new_df.columns[1:] train_cols logit = sm.Logit(new_df['Survived'], new_df[train_cols]) #Fit the model result = logit.fit() print(result.summary()) print(result.conf_int()) ###Output 0 1 Age -0.012195 0.005269 Sex 2.265226 3.020908 Pclass -0.794116 -0.512863
hippocampus/scripts/results_supp_fig_04.ipynb
###Markdown Heritability of T1wT2w maps after controlling for the mean T1wT2w scores SUB (Left) ###Code # we will read heritability values from 1024 sub vertices tot_node_num_lsub = 1024 node_str = [] for i in range(1, tot_node_num_lsub+1): node_str.append(i) # empty data frame to be filled out df_herit_t1t2_LSUB = pd.DataFrame(index = node_str, columns = ['H2r', 'rp']) # read-in heritability scores fLSUB = '../solar/solar_mean_msm50_t1t2_lsub/t1t2_lsub_mean_results_herit.txt' herit_t1t2_LSUB = pd.read_csv(fLSUB, index_col = 0, header = 0) herit_t1t2_LSUB.index.name = 'node' for nodeID in range(1, tot_node_num_lsub+1): iA = herit_t1t2_LSUB.index.get_loc(nodeID) iB = df_herit_t1t2_LSUB.index.get_loc(nodeID) df_herit_t1t2_LSUB.iloc[iB]['H2r'] = herit_t1t2_LSUB.iloc[iA]['H2r'] df_herit_t1t2_LSUB.iloc[iB]['rp'] = herit_t1t2_LSUB.iloc[iA]['rp'] dataLSUB = np.array(df_herit_t1t2_LSUB['H2r'], dtype = 'float') pLSUB = np.array(df_herit_t1t2_LSUB['rp'], dtype = 'float') q = 0.05 pID, pN = FDR_sofie(pLSUB, q) pID, len(np.where(dataLSUB <= pID)[0]), dataLSUB.max() fig1 = plot_funcs.plot_surf_upper2(plot_funcs.xLSUB, plot_funcs.yLSUB, plot_funcs.zLSUB, plot_funcs.triLSUB, dataLSUB, 'viridis', 0, 0.77) fig2 = plot_funcs.plot_surf_upper2(plot_funcs.xLSUB, plot_funcs.yLSUB, plot_funcs.zLSUB, plot_funcs.triLSUB, pLSUB, 'copper_r', 0, pID) ###Output _____no_output_____ ###Markdown CA ###Code # we will read heritability values from 2048 ca vertices tot_node_num_lca = 2048 node_str = [] for i in range(1, tot_node_num_lca+1): node_str.append(i) # empty data frame to be filled out df_herit_t1t2_LCA = pd.DataFrame(index = node_str, columns = ['H2r', 'rp']) # read-in heritability scores fLCA = '../solar/solar_mean_msm50_t1t2_lca/t1t2_lca_mean_results_herit.txt' herit_t1t2_LCA = pd.read_csv(fLCA, index_col = 0, header = 0) herit_t1t2_LCA.index.name = 'node' for nodeID in range(1, tot_node_num_lca+1): iA = herit_t1t2_LCA.index.get_loc(nodeID) iB = df_herit_t1t2_LCA.index.get_loc(nodeID) df_herit_t1t2_LCA.iloc[iB]['H2r'] = herit_t1t2_LCA.iloc[iA]['H2r'] df_herit_t1t2_LCA.iloc[iB]['rp'] = herit_t1t2_LCA.iloc[iA]['rp'] dataLCA = np.array(df_herit_t1t2_LCA['H2r'], dtype = 'float') pLCA = np.array(df_herit_t1t2_LCA['rp'], dtype = 'float') q = 0.05 pID, pN = FDR_sofie(pLCA, q) pID, len(np.where(dataLCA <= pID)[0]), dataLCA.max() fig1 = plot_funcs.plot_surf_upper2(plot_funcs.xLCA, plot_funcs.yLCA, plot_funcs.zLCA, plot_funcs.triLCA, dataLCA, 'viridis', 0, 0.77) fig2 = plot_funcs.plot_surf_upper3(plot_funcs.xLCA, plot_funcs.yLCA, plot_funcs.zLCA, plot_funcs.triLCA, pLCA, 'copper_r', 0, pID) ###Output _____no_output_____ ###Markdown DG ###Code # we will read heritability values from 1024 sub vertices tot_node_num_ldg = 1024 node_str = [] for i in range(1, tot_node_num_ldg+1): node_str.append(i) # empty data frame to be filled out df_herit_t1t2_LDG = pd.DataFrame(index = node_str, columns = ['H2r', 'rp']) # read-in heritability scores fLDG = '../solar/solar_mean_msm50_t1t2_ldg/t1t2_ldg_mean_results_herit.txt' herit_t1t2_LDG = pd.read_csv(fLDG, index_col = 0, header = 0) herit_t1t2_LDG.index.name = 'node' for nodeID in range(1, tot_node_num_ldg+1): iA = herit_t1t2_LDG.index.get_loc(nodeID) iB = df_herit_t1t2_LDG.index.get_loc(nodeID) df_herit_t1t2_LDG.iloc[iB]['H2r'] = herit_t1t2_LDG.iloc[iA]['H2r'] df_herit_t1t2_LDG.iloc[iB]['rp'] = herit_t1t2_LDG.iloc[iA]['rp'] dataLDG = np.array(df_herit_t1t2_LDG['H2r'], dtype = 'float') pLDG = np.array(df_herit_t1t2_LDG['rp'], dtype = 'float') q = 0.05 pID, pN = FDR_sofie(pLDG, q) pID, len(np.where(dataLDG <= pID)[0]), dataLDG.max() fig1 = plot_funcs.plot_surf_upper2(plot_funcs.xLDG, plot_funcs.yLDG, plot_funcs.zLDG, plot_funcs.triLDG, dataLDG, 'viridis', 0, 0.77) fig2 = plot_funcs.plot_surf_upper3(plot_funcs.xLDG, plot_funcs.yLDG, plot_funcs.zLDG, plot_funcs.triLDG, pLDG, 'copper_r', 0, pID) ###Output _____no_output_____ ###Markdown RIGHT hemisphere ###Code # we will read heritability values from 1024 sub vertices tot_node_num_rsub = 1024 node_str = [] for i in range(1, tot_node_num_rsub+1): node_str.append(i) # empty data frame to be filled out df_herit_t1t2_RSUB = pd.DataFrame(index = node_str, columns = ['H2r', 'rp']) ###Output _____no_output_____ ###Markdown SUB ###Code # read-in heritability scores fRSUB = '../solar/solar_mean_msm50_t1t2_rsub/t1t2_rsub_mean_results_herit.txt' herit_t1t2_RSUB = pd.read_csv(fRSUB, index_col = 0, header = 0) herit_t1t2_RSUB.index.name = 'node' for nodeID in range(1, tot_node_num_rsub+1): iA = herit_t1t2_RSUB.index.get_loc(nodeID) iB = df_herit_t1t2_RSUB.index.get_loc(nodeID) df_herit_t1t2_RSUB.iloc[iB]['H2r'] = herit_t1t2_RSUB.iloc[iA]['H2r'] df_herit_t1t2_RSUB.iloc[iB]['rp'] = herit_t1t2_RSUB.iloc[iA]['rp'] dataRSUB = np.array(df_herit_t1t2_RSUB['H2r'], dtype = 'float') pRSUB = np.array(df_herit_t1t2_RSUB['rp'], dtype = 'float') q = 0.05 pID, pN = FDR_sofie(pRSUB, q) pID, len(np.where(dataRSUB <= pID)[0]), dataRSUB.max() fig1 = plot_funcs.plot_surf_upper2(plot_funcs.xRSUB, plot_funcs.yRSUB, plot_funcs.zRSUB, plot_funcs.triRSUB, dataRSUB, 'viridis', 0, 0.77) fig2 = plot_funcs.plot_surf_upper3(plot_funcs.xRSUB, plot_funcs.yRSUB, plot_funcs.zRSUB, plot_funcs.triRSUB, pRSUB, 'copper_r', 0, pID) ###Output _____no_output_____ ###Markdown CA ###Code # we will read heritability values from 2048 ca vertices tot_node_num_rca = 2048 node_str = [] for i in range(1, tot_node_num_rca+1): node_str.append(i) # empty data frame to be filled out df_herit_t1t2_RCA = pd.DataFrame(index = node_str, columns = ['H2r', 'rp']) # read-in heritability scores fRCA = '../solar/solar_mean_msm50_t1t2_rca/t1t2_rca_mean_results_herit.txt' herit_t1t2_RCA = pd.read_csv(fRCA, index_col = 0, header = 0) herit_t1t2_RCA.index.name = 'node' for nodeID in range(1, tot_node_num_rca+1): iA = herit_t1t2_RCA.index.get_loc(nodeID) iB = df_herit_t1t2_RCA.index.get_loc(nodeID) df_herit_t1t2_RCA.iloc[iB]['H2r'] = herit_t1t2_RCA.iloc[iA]['H2r'] df_herit_t1t2_RCA.iloc[iB]['rp'] = herit_t1t2_RCA.iloc[iA]['rp'] dataRCA = np.array(df_herit_t1t2_RCA['H2r'], dtype = 'float') pRCA = np.array(df_herit_t1t2_RCA['rp'], dtype = 'float') q = 0.05 pID, pN = FDR_sofie(pRCA, q) pID, len(np.where(dataRCA <= pID)[0]), dataRCA.max() fig1 = plot_funcs.plot_surf_upper2(plot_funcs.xRCA, plot_funcs.yRCA, plot_funcs.zRCA, plot_funcs.triRCA, dataRCA, 'viridis', 0, 0.77) fig2 = plot_funcs.plot_surf_upper3(plot_funcs.xRCA, plot_funcs.yRCA, plot_funcs.zRCA, plot_funcs.triRCA, pRCA, 'copper_r', 0, pID) ###Output _____no_output_____ ###Markdown DG ###Code # we will read heritability values from 1024 sub vertices tot_node_num_rdg = 1024 node_str = [] for i in range(1, tot_node_num_rdg+1): node_str.append(i) # empty data frame to be filled out df_herit_t1t2_RDG = pd.DataFrame(index = node_str, columns = ['H2r', 'rp']) # read-in heritability scores fRDG = '../solar/solar_mean_msm50_t1t2_rdg/t1t2_rdg_mean_results_herit.txt' herit_t1t2_RDG = pd.read_csv(fRDG, index_col = 0, header = 0) herit_t1t2_RDG.index.name = 'node' for nodeID in range(1, tot_node_num_rdg+1): iA = herit_t1t2_RDG.index.get_loc(nodeID) iB = df_herit_t1t2_RDG.index.get_loc(nodeID) df_herit_t1t2_RDG.iloc[iB]['H2r'] = herit_t1t2_RDG.iloc[iA]['H2r'] df_herit_t1t2_RDG.iloc[iB]['rp'] = herit_t1t2_RDG.iloc[iA]['rp'] dataRDG = np.array(df_herit_t1t2_RDG['H2r'], dtype = 'float') pRDG = np.array(df_herit_t1t2_RDG['rp'], dtype = 'float') q = 0.05 pID, pN = FDR_sofie(pRDG, q) pID, len(np.where(dataRDG <= pID)[0]), dataRDG.max() fig1 = plot_funcs.plot_surf_upper2(plot_funcs.xRDG, plot_funcs.yRDG, plot_funcs.zRDG, plot_funcs.triRDG, dataRDG, 'viridis', 0, 0.77) fig2 = plot_funcs.plot_surf_upper3(plot_funcs.xRDG, plot_funcs.yRDG, plot_funcs.zRDG, plot_funcs.triRDG, pRDG, 'copper_r', 0, pID) ###Output _____no_output_____
figure2array.ipynb
###Markdown ###Code import numpy as np import matplotlib.pyplot as plt def figure2array(fig): """ plt.figure를 RGBA로 변환(layer가 4개) shape: height, width, layer """ fig.canvas.draw() return np.array(fig.canvas.renderer._renderer) im = np.random.randint(0,255,(512,512)) f = plt.figure() plt.imshow(im,cmap='gray') array = figure2array(f) print(array.shape) plt.imshow(array) ###Output _____no_output_____
06 APIs, Scraping I/podestanalyse/podesta emails.ipynb
###Markdown 1. Alle Mails öffnen und als Liste abspeichern2. Dollarzeichen in Kombination mit "million" suchen3. Alle Mails markieren, wo Dollar Zeichen gefunden werden4. Reinigung mit Pandas ###Code mails = os.listdir('podesta5000') list_mailcontent = [] for mail in mails: f = open("podesta5000/"+mail, "r", encoding='utf-8').read() list_mailcontent.append(f) dollar_list = [] dollar = re.compile(r'\$\d+ [mM]illion') for mail in list_mailcontent: try: treffer = re.search(dollar, mail).group() dic = {"Dollarnennung": treffer, "Mailcontent": mail} except: dic = {"Dollarnennung": "N/A", "Mailcontent": mail} dollar_list.append(dic) df = pd.DataFrame(dollar_list) df['Dollarnennung'].value_counts().head(20) ###Output _____no_output_____ ###Markdown Dollar-Liste ###Code dollar_list = [] dollar = re.compile(r'\$\d+ [mM]illion') for mail in list_mailcontent: try: treffer = re.findall(dollar, mail) dic = {"Dollernennung": treffer, "Mailcontent": mail} except: dic = {"Dollernennung": "N/A", "Mailcontent": mail} dollar_list.append(dic) df2 = pd.DataFrame(dollar_list) df2['Dollernennung'].value_counts() ###Output _____no_output_____
results/Architecture.ipynb
###Markdown Architecture results plots ###Code %matplotlib inline import pandas as pd import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') # Load the results e_1_cpu = pd.read_csv("./architecture/1_cpu.csv", sep=";") e_1_1gpu = pd.read_csv("./architecture/1_1gpu.csv", sep=";") e_1_2gpu = pd.read_csv("./architecture/1_2gpu.csv", sep=";") e_2_cpu = pd.read_csv("./architecture/2_cpu.csv", sep=";") e_2_1gpu = pd.read_csv("./architecture/2_1gpu.csv", sep=";") e_2_2gpu = pd.read_csv("./architecture/2_2gpu.csv", sep=";") e_2_3gpu = pd.read_csv("./architecture/2_3gpu.csv", sep=";") ###Output _____no_output_____ ###Markdown Experiment 1 CPU ###Code e_1_cpu.describe() ## Lines plt.plot(e_1_cpu.time, label="CPU", color="blue") ## Configuration plt.title("Experiment 1 - CPU") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown GPU - 1 ###Code e_1_1gpu.describe() ## Lines plt.plot(e_1_1gpu.time, label="1 GPU", color="green") ## Configuration plt.title("Experiment 1 - 1 GPU") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown GPU - 2 ###Code e_1_2gpu.describe() ## Lines plt.plot(e_1_2gpu.time, label="2 GPUs", color="green") ## Configuration plt.title("Experiment 1 - 2 GPUs") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown Comparison ###Code e_1_comparison = pd.DataFrame({'cpu': e_1_cpu.time, 'gpu1': e_1_1gpu.time, 'gpu2': e_1_2gpu.time}) e_1_comparison.describe() ## Lines plt.plot(e_1_cpu.time, label="CPU", color="blue") plt.plot(e_1_1gpu.time, label="1 GPU", color="green") plt.plot(e_1_2gpu.time, label="2 GPU", color="red") plt.axhline(y=e_1_cpu.time.mean(), label="CPU Average", linestyle='--', color="blue") plt.axhline(y=e_1_1gpu.time.mean(), label="1 GPU Average", linestyle='--', color="green") plt.axhline(y=e_1_2gpu.time.mean(), label="2 GPU Average", linestyle='--', color="red") ## Configuration plt.title("Experiment 1 - Comparison") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=2); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown Experiment 2 CPU ###Code e_2_cpu.time.describe() ## Lines plt.plot(e_2_cpu.time, label="CPU", color="blue") ## Configuration plt.title("Experiment 2 - CPU") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown GPU 1 ###Code e_2_1gpu.describe() ## Lines plt.plot(e_2_1gpu.time, label="1 GPU", color="green") ## Configuration plt.title("Experiment 2 - 1 GPU") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown GPU 2 ###Code e_2_2gpu.describe() ## Lines plt.plot(e_2_2gpu.time, label="2 GPU", color="green") ## Configuration plt.title("Experiment 2 - 2 GPU") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown GPU 3 ###Code e_2_3gpu.describe() ## Lines plt.plot(e_2_3gpu.time, label="3 GPU", color="green") ## Configuration plt.title("Experiment 2 - 3 GPU") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(); ## Run the plot plt.show() ###Output _____no_output_____ ###Markdown Comparison ###Code e_2_comparison = pd.DataFrame({'cpu': e_2_cpu.time, 'gpu1': e_2_1gpu.time, 'gpu2': e_2_2gpu.time, 'gpu3': e_2_3gpu.time}) e_2_comparison.describe() ## Lines plt.plot(e_2_cpu.time, label="CPU", color="blue") plt.plot(e_2_1gpu.time, label="1 GPU", color="green") plt.plot(e_2_2gpu.time, label="2 GPU", color="red") plt.plot(e_2_3gpu.time, label="3 GPU", color="orange") plt.axhline(y=e_2_cpu.time.mean(), label="CPU Average", linestyle='--', color="blue") plt.axhline(y=e_2_1gpu.time.mean(), label="1 GPU Average", linestyle='--', color="green") plt.axhline(y=e_2_2gpu.time.mean(), label="2 GPU Average", linestyle='--', color="red") plt.axhline(y=e_2_3gpu.time.mean(), label="3 GPU Average", linestyle='--', color="orange") ## Configuration plt.title("Experiment 2 - Comparison") plt.xlabel("Epoch") plt.ylabel("Execution time (seconds)"); plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=2); ## Run the plot plt.show() ###Output _____no_output_____
kfp-pipeline/archive/compile_deploy-Copy1.ipynb
###Markdown Upload the dataset ###Code %%sh PROJECT_ID=mlops-demo DATASET_LOCATION=US DATASET_ID=lab_11 TABLE_ID=covertype DATA_SOURCE=gs://workshop-datasets/covertype/full/covertype.csv SCHEMA=Elevation:INTEGER,\ Aspect:INTEGER,\ Slope:INTEGER,\ Horizontal_Distance_To_Hydrology:INTEGER,\ Vertical_Distance_To_Hydrology:INTEGER,\ Horizontal_Distance_To_Roadways:INTEGER,\ Hillshade_9am:INTEGER,\ Hillshade_Noon:INTEGER,\ Hillshade_3pm:INTEGER,\ Horizontal_Distance_To_Fire_Points:INTEGER,\ Wilderness_Area:STRING,\ Soil_Type:INTEGER,\ Cover_Type:INTEGER bq --location=$DATASET_LOCATION --project_id=$PROJECT_ID mk --dataset $DATASET_ID bq --project_id=$PROJECT_ID --dataset_id=$DATASET_ID load \ --source_format=CSV \ --skip_leading_rows=1 \ --replace \ $TABLE_ID \ $DATA_SOURCE \ $SCHEMA ###Output Dataset 'mlops-demo:lab_11' successfully created. ###Markdown Create the staging GCS bucket ###Code %%sh PROJECT_ID=mlops-demo BUCKET_NAME=gs://${PROJECT_ID}-lab-11 gsutil mb -p $PROJECT_ID $BUCKET_NAME ###Output _____no_output_____ ###Markdown Build a trainer image ###Code TRAINING_APP_FOLDER = 'training_app' os.makedirs(TRAINING_APP_FOLDER, exist_ok=True) %%writefile {TRAINING_APP_FOLDER}/train.py import os import subprocess import sys import fire import pickle import numpy as np import pandas as pd import hypertune from sklearn.compose import ColumnTransformer from sklearn.linear_model import SGDClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder def train_evaluate(job_dir, training_dataset_path, validation_dataset_path, alpha, max_iter, hptune): df_train = pd.read_csv(training_dataset_path) df_validation = pd.read_csv(validation_dataset_path) if not hptune: df_train = pd.concat([df_train, df_validation]) numeric_features = ['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology', 'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways', 'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm', 'Horizontal_Distance_To_Fire_Points'] categorical_features = ['Wilderness_Area', 'Soil_Type'] preprocessor = ColumnTransformer( transformers=[ ('num', StandardScaler(), numeric_features), ('cat', OneHotEncoder(), categorical_features) ]) pipeline = Pipeline([ ('preprocessor', preprocessor), ('classifier', SGDClassifier(loss='log')) ]) print('Starting training: alpha={}, max_iter={}'.format(alpha, max_iter)) X_train = df_train.drop('Cover_Type', axis=1) y_train = df_train['Cover_Type'] pipeline.set_params(classifier__alpha=alpha, classifier__max_iter=max_iter) pipeline.fit(X_train, y_train) if hptune: X_validation = df_validation.drop('Cover_Type', axis=1) y_validation = df_validation['Cover_Type'] accuracy = pipeline.score(X_validation, y_validation) print('Model accuracy: {}'.format(accuracy)) # Log it with hypertune hpt = hypertune.HyperTune() hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag='accuracy', metric_value=accuracy ) # Save the model if not hptune: model_filename = 'model.pkl' with open(model_filename, 'wb') as model_file: pickle.dump(pipeline, model_file) gcs_model_path = "{}/{}".format(job_dir, model_filename) subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path], stderr=sys.stdout) print("Saved model in: {}".format(gcs_model_path)) if __name__ == "__main__": fire.Fire(train_evaluate) %%writefile {TRAINING_APP_FOLDER}/Dockerfile FROM gcr.io/deeplearning-platform-release/base-cpu RUN pip install -U fire cloudml-hypertune WORKDIR /app COPY train.py . ENTRYPOINT ["python", "train.py"] PROJECT_ID='mlops-demo' IMAGE_NAME='trainer_image' IMAGE_TAG='latest' IMAGE_URI='gcr.io/{}/{}:{}'.format(PROJECT_ID, IMAGE_NAME, IMAGE_TAG) !gcloud builds submit --tag $IMAGE_URI $TRAINING_APP_FOLDER ###Output Creating temporary tarball archive of 2 file(s) totalling 2.4 KiB before compression. Uploading tarball of [training_app] to [gs://mlops-demo_cloudbuild/source/1578605826.62-1a80ecd6629a41ffb767abb9901eeb69.tgz] Created [https://cloudbuild.googleapis.com/v1/projects/mlops-demo/builds/5be349a9-5e33-4700-974d-1a3c2e54845c]. Logs are available at [https://console.cloud.google.com/gcr/builds/5be349a9-5e33-4700-974d-1a3c2e54845c?project=609934025272]. ----------------------------- REMOTE BUILD OUTPUT ------------------------------ starting build "5be349a9-5e33-4700-974d-1a3c2e54845c" FETCHSOURCE Fetching storage object: gs://mlops-demo_cloudbuild/source/1578605826.62-1a80ecd6629a41ffb767abb9901eeb69.tgz#1578605827100723 Copying gs://mlops-demo_cloudbuild/source/1578605826.62-1a80ecd6629a41ffb767abb9901eeb69.tgz#1578605827100723... / [1 files][ 1.2 KiB/ 1.2 KiB] Operation completed over 1 objects/1.2 KiB. BUILD Already have image (with digest): gcr.io/cloud-builders/docker Sending build context to Docker daemon 5.12kB Step 1/5 : FROM gcr.io/deeplearning-platform-release/base-cpu latest: Pulling from deeplearning-platform-release/base-cpu 35c102085707: Pulling fs layer 251f5509d51d: Pulling fs layer 8e829fe70a46: Pulling fs layer 6001e1789921: Pulling fs layer 1259902c87a2: Pulling fs layer 83ca0edf82af: Pulling fs layer a459cc7a0819: Pulling fs layer 221c4376244e: Pulling fs layer 6be10f944cd9: Pulling fs layer 34c517f627e3: Pulling fs layer 8bc377099823: Pulling fs layer f28fcd8ca9f0: Pulling fs layer a5d245cced6f: Pulling fs layer 8c6be6aa5553: Pulling fs layer 1d7154118978: Pulling fs layer 1df8626a77b0: Pulling fs layer 6001e1789921: Waiting 1259902c87a2: Waiting 83ca0edf82af: Waiting a459cc7a0819: Waiting 221c4376244e: Waiting 6be10f944cd9: Waiting 34c517f627e3: Waiting 8bc377099823: Waiting f28fcd8ca9f0: Waiting a5d245cced6f: Waiting 8c6be6aa5553: Waiting 1d7154118978: Waiting 1df8626a77b0: Waiting 251f5509d51d: Verifying Checksum 251f5509d51d: Download complete 8e829fe70a46: Verifying Checksum 8e829fe70a46: Download complete 35c102085707: Verifying Checksum 35c102085707: Download complete 6001e1789921: Verifying Checksum 6001e1789921: Download complete a459cc7a0819: Verifying Checksum a459cc7a0819: Download complete 83ca0edf82af: Verifying Checksum 83ca0edf82af: Download complete 6be10f944cd9: Verifying Checksum 6be10f944cd9: Download complete 34c517f627e3: Verifying Checksum 34c517f627e3: Download complete 8bc377099823: Verifying Checksum 8bc377099823: Download complete f28fcd8ca9f0: Verifying Checksum f28fcd8ca9f0: Download complete a5d245cced6f: Verifying Checksum a5d245cced6f: Download complete 8c6be6aa5553: Verifying Checksum 8c6be6aa5553: Download complete 1d7154118978: Verifying Checksum 1d7154118978: Download complete 1259902c87a2: Verifying Checksum 1259902c87a2: Download complete 1df8626a77b0: Verifying Checksum 1df8626a77b0: Download complete 35c102085707: Pull complete 221c4376244e: Verifying Checksum 221c4376244e: Download complete 251f5509d51d: Pull complete 8e829fe70a46: Pull complete 6001e1789921: Pull complete 1259902c87a2: Pull complete 83ca0edf82af: Pull complete a459cc7a0819: Pull complete 221c4376244e: Pull complete 6be10f944cd9: Pull complete 34c517f627e3: Pull complete 8bc377099823: Pull complete f28fcd8ca9f0: Pull complete a5d245cced6f: Pull complete 8c6be6aa5553: Pull complete 1d7154118978: Pull complete 1df8626a77b0: Pull complete Digest: sha256:848d51a70c3608c4acd37c3dd5a5bacef9c6a51aab5b0064daf5d4258237ef62 Status: Downloaded newer image for gcr.io/deeplearning-platform-release/base-cpu:latest ---> 8f1066e7fc0b Step 2/5 : RUN pip install -U fire cloudml-hypertune ---> Running in 9c6acd6581cc Collecting fire Downloading https://files.pythonhosted.org/packages/d9/69/faeaae8687f4de0f5973694d02e9d6c3eb827636a009157352d98de1129e/fire-0.2.1.tar.gz (76kB) Collecting cloudml-hypertune Downloading https://files.pythonhosted.org/packages/84/54/142a00a29d1c51dcf8c93b305f35554c947be2faa0d55de1eabcc0a9023c/cloudml-hypertune-0.1.0.dev6.tar.gz Requirement already satisfied, skipping upgrade: six in /root/miniconda3/lib/python3.7/site-packages (from fire) (1.12.0) Collecting termcolor Downloading https://files.pythonhosted.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz Building wheels for collected packages: fire, cloudml-hypertune, termcolor Building wheel for fire (setup.py): started Building wheel for fire (setup.py): finished with status 'done' Created wheel for fire: filename=fire-0.2.1-py2.py3-none-any.whl size=103527 sha256=9b30c9d9e3fba2dac074f3273e0308ce7b796699c737d4623dd94f262970e1bd Stored in directory: /root/.cache/pip/wheels/31/9c/c0/07b6dc7faf1844bb4688f46b569efe6cafaa2179c95db821da Building wheel for cloudml-hypertune (setup.py): started Building wheel for cloudml-hypertune (setup.py): finished with status 'done' Created wheel for cloudml-hypertune: filename=cloudml_hypertune-0.1.0.dev6-py2.py3-none-any.whl size=3987 sha256=7284e1fc09cd65ab84f9d19d32bf98f30ba21e9c0e0f6d6a8e3e01a6a825f3ca Stored in directory: /root/.cache/pip/wheels/71/ac/62/80b621f3fe2994f3f367a36123d8351d75e3ea5591b4a62c85 Building wheel for termcolor (setup.py): started Building wheel for termcolor (setup.py): finished with status 'done' Created wheel for termcolor: filename=termcolor-1.1.0-cp37-none-any.whl size=4832 sha256=52d40dbf3368cdd91ab4bb436f773c163014d524a01c9f76dee2a2f0bd0f41e3 Stored in directory: /root/.cache/pip/wheels/7c/06/54/bc84598ba1daf8f970247f550b175aaaee85f68b4b0c5ab2c6 Successfully built fire cloudml-hypertune termcolor Installing collected packages: termcolor, fire, cloudml-hypertune Successfully installed cloudml-hypertune-0.1.0.dev6 fire-0.2.1 termcolor-1.1.0 Removing intermediate container 9c6acd6581cc ---> 3c794f526bc1 Step 3/5 : WORKDIR /app ---> Running in 2cc5a226af8d Removing intermediate container 2cc5a226af8d ---> 1e1341428c31 Step 4/5 : COPY train.py . ---> 9fa719ff717a Step 5/5 : ENTRYPOINT ["python", "train.py"] ---> Running in 79178e7c4993 Removing intermediate container 79178e7c4993 ---> 2583e976a69c Successfully built 2583e976a69c Successfully tagged gcr.io/mlops-demo/trainer_image:latest PUSH Pushing gcr.io/mlops-demo/trainer_image:latest The push refers to repository [gcr.io/mlops-demo/trainer_image] 63b391dcfb56: Preparing da588dd6cc64: Preparing 7414787a79a2: Preparing 07a867e0ba2d: Preparing 092c50747c65: Preparing d6fb36f9bda1: Preparing f36c7efe6784: Preparing 97d733be068e: Preparing d0ce9f8647d3: Preparing fa4332f1c95c: Preparing cd80b8f8deac: Preparing 104fbab0f8e2: Preparing 4019db0181d2: Preparing 5a78197acff6: Preparing 804e87810c15: Preparing 122be11ab4a2: Preparing 7beb13bce073: Preparing f7eae43028b3: Preparing 6cebf3abed5f: Preparing d6fb36f9bda1: Waiting f36c7efe6784: Waiting 97d733be068e: Waiting d0ce9f8647d3: Waiting fa4332f1c95c: Waiting cd80b8f8deac: Waiting 104fbab0f8e2: Waiting 4019db0181d2: Waiting 5a78197acff6: Waiting 804e87810c15: Waiting 122be11ab4a2: Waiting 7beb13bce073: Waiting f7eae43028b3: Waiting 6cebf3abed5f: Waiting 092c50747c65: Layer already exists 07a867e0ba2d: Layer already exists f36c7efe6784: Layer already exists d6fb36f9bda1: Layer already exists d0ce9f8647d3: Layer already exists 97d733be068e: Layer already exists fa4332f1c95c: Layer already exists cd80b8f8deac: Layer already exists 104fbab0f8e2: Layer already exists 4019db0181d2: Layer already exists 5a78197acff6: Layer already exists 122be11ab4a2: Layer already exists 804e87810c15: Layer already exists 7beb13bce073: Layer already exists f7eae43028b3: Layer already exists 6cebf3abed5f: Layer already exists da588dd6cc64: Pushed 7414787a79a2: Pushed 63b391dcfb56: Pushed latest: digest: sha256:3784c2beddc0c490db91e9228bbe77a833d68caa09882c33635bb48ffcfead41 size: 4283 DONE -------------------------------------------------------------------------------- ID CREATE_TIME DURATION SOURCE IMAGES STATUS 5be349a9-5e33-4700-974d-1a3c2e54845c 2020-01-09T21:37:07+00:00 2M33S gs://mlops-demo_cloudbuild/source/1578605826.62-1a80ecd6629a41ffb767abb9901eeb69.tgz gcr.io/mlops-demo/trainer_image (+1 more) SUCCESS ###Markdown Compile the pipeline ###Code %%sh export PROJECT_ID=mlops-demo export COMPONENT_URL_SEARCH_PREFIX=https://raw.githubusercontent.com/kubeflow/pipelines/0.1.36/components/gcp/ export BASE_IMAGE=gcr.io/deeplearning-platform-release/base-cpu export TRAINER_IMAGE=gcr.io/$PROJECT_ID/trainer_image:latest export RUNTIME_VERSION=1.15 export PYTHON_VERSION=3.7 dsl-compile --py covertype_training_pipeline.py --output covertype_training_pipeline.yaml ###Output _____no_output_____ ###Markdown Run the pipeline ###Code PROJECT_ID='mlops-demo' INVERSE_PROXY_HOST='1ff32660e53f5d89-dot-us-central1.notebooks.googleusercontent.com' STAGING_GCS_BUCKET='gs://mlops-demo-lab-11' RUN_NAME='Training_Run_001' EXPERIMENT_NAME='Default' !kfp --endpoint $INVERSE_PROXY_HOST run submit \ -e $EXPERIMENT_NAME \ -r $RUN_NAME \ -f covertype_training_pipeline.yaml \ project_id=$PROJECT_ID \ gcs_root=$STAGING_GCS_BUCKET \ region=us-central1 \ source_table_name=lab_11.covertype \ dataset_id=splits \ evaluation_metric_name=accuracy \ evaluation_metric_threshold=0.69 \ model_id=covertype_classifier \ version_id=v0.1 \ replace_existing_version=True INVERSE_PROXY_HOST ###Output _____no_output_____ ###Markdown Upload the pipeline to KFP environment ###Code PIPELINE_NAME='covertype_classifier_training' PIPELINE_PACKAGE='covertype_training_pipeline.yaml' !kfp --endpoint $INVERSE_PROXY_HOST pipeline upload -p $PIPELINE_NAME $PIPELINE_PACKAGE ###Output Pipeline 4437d79d-9168-457c-8517-e14131fa1cac has been submitted Pipeline Details ------------------ ID 4437d79d-9168-457c-8517-e14131fa1cac Name covertype_classifier_training Description Uploaded at 2020-01-09T22:03:35+00:00 +-----------------------------+--------------------------------------------------+ | Parameter Name | Default Value | +=============================+==================================================+ | project_id | | +-----------------------------+--------------------------------------------------+ | region | | +-----------------------------+--------------------------------------------------+ | source_table_name | | +-----------------------------+--------------------------------------------------+ | gcs_root | | +-----------------------------+--------------------------------------------------+ | dataset_id | | +-----------------------------+--------------------------------------------------+ | evaluation_metric_name | | +-----------------------------+--------------------------------------------------+ | evaluation_metric_threshold | | +-----------------------------+--------------------------------------------------+ | model_id | | +-----------------------------+--------------------------------------------------+ | version_id | | +-----------------------------+--------------------------------------------------+ | replace_existing_version | | +-----------------------------+--------------------------------------------------+ | hypertune_settings | { | | | "hyperparameters": { | | | "goal": "MAXIMIZE", | | | "maxTrials": 6, | | | "maxParallelTrials": 3, | | | "hyperparameterMetricTag": "accuracy", | | | "enableTrialEarlyStopping": True, | | | "params": [ | | | { | | | "parameterName": "max_iter", | | | "type": "DISCRETE", | | | "discreteValues": [500, 1000] | | | }, | | | { | | | "parameterName": "alpha", | | | "type": "DOUBLE", | | | "minValue": 0.0001, | | | "maxValue": 0.001, | | | "scaleType": "UNIT_LINEAR_SCALE" | | | } | | | ] | | | } | | | } | +-----------------------------+--------------------------------------------------+ | dataset_location | US | +-----------------------------+--------------------------------------------------+ ###Markdown List pipelines ###Code INVERSE_PROXY_HOST='1ff32660e53f5d89-dot-us-central1.notebooks.googleusercontent.com' !kfp --endpoint $INVERSE_PROXY_HOST pipeline list INVERSE_PROXY_HOST='1ff32660e53f5d89-dot-us-central1.notebooks.googleusercontent.com' STAGING_GCS_BUCKET='gs://mlops-demo-lab-11' RUN_NAME="Training_Run_003" EXPERIMENT_NAME='Covertype_Classifier_Training' PIPELINE_ID='4437d79d-9168-457c-8517-e14131fa1cac' !kfp --endpoint $INVERSE_PROXY_HOST run submit \ -e $EXPERIMENT_NAME \ -r $RUN_NAME \ -p $PIPELINE_ID \ project_id=$PROJECT_ID \ gcs_root=$STAGING_GCS_BUCKET \ region=us-central1 \ source_table_name=lab_11.covertype \ dataset_id=splits \ evaluation_metric_name=accuracy \ evaluation_metric_threshold=0.69 \ model_id=covertype_classifier \ version_id=v0.1 \ replace_existing_version=True ###Output Run c42f5d53-5157-4223-b02a-436d1cba807f is submitted +--------------------------------------+------------------+----------+---------------------------+ | run id | name | status | created at | +======================================+==================+==========+===========================+ | c42f5d53-5157-4223-b02a-436d1cba807f | Training_Run_003 | | 2020-01-09T22:43:25+00:00 | +--------------------------------------+------------------+----------+---------------------------+
project2-mem-master/miscellaneous/Untitled1.ipynb
###Markdown Automated Feature Engineering ###Code import pandas as pd import matplotlib.pyplot as plt %matplotlib inline # setting to display max columns pd.set_option('display.max_columns', 500) data = pd.read_csv('minimaly_encoded.csv', index_col=0) data.head(3) ###Output _____no_output_____ ###Markdown Feature engeneering ###Code # visits of one users divided by sum visits to that page data['frac_Admin'] = data['Administrative']/sum(data['Administrative']) data['frac_Info'] = data['Informational']/sum(data['Informational']) data['fract_Prod'] = data['Informational_Duration']/sum(data['Informational_Duration']) # divide this by total users in a specific month def visits_month(df, page): # go thorugh the list for unique months for month in df['Month'].unique(): # select the month subset month_df = df[df['Month']==month] # create a new column in original df and divide the count of user page visits my total monthly visits # return same value if in the row if the condition fails data['monthPageFrac'] = np.where((df['Month'] == month), df[page]/sum(month_df['Month'], df['Month']) # visits of one user divided by sum visits to all pages data['fractAdminTotal'] = data['Administrative']/(data['Administrative']+data['Informational']+data['Informational']) data['fractInfoTotal'] = data['Informational']/(data['Administrative']+data['Informational']+data['Informational']) data['fractProdTotal'] = data['ProductRelated']/(data['Administrative']+data['Informational']+data['Informational']) # different clustering thersholds but not on the revenue becasue that will overfit data.info() data.dtypes.value_counts().plot.bar(edgecolor = 'k'); plt.title('Variable Type Distribution'); ###Output _____no_output_____ ###Markdown Steps before- cleaning (e.g. missing values, create new features Feature tools can build on top of, remove high correlation, ) EntitySet and EntitiesAn EntitySet in Featuretools holds all of the tables and the relationships between them. At the moment we only have a single table, but we can create multiple tables through normalization. We'll call the first table data since it contains all the information both at the individual level and at the household level. ###Code hh_bool = data.select_dtypes('int64').drop('Y',axis=1) hh_cont = data.select_dtypes('float64') import featuretools as ft es = ft.EntitySet(id = 'households') es.entity_from_dataframe(entity_id = 'data', dataframe = data, index = 'id') es.normalize_entity(base_entity_id='data', new_entity_id='household', index = 'idhogar', additional_variables = hh_bool + hh_cont + ['Y']) es ###Output _____no_output_____
06-conditional-prob/review.ipynb
###Markdown Review Terminology ReviewUse the flashcards below to help you review the terminology introduced in this chapter. ###Code from jupytercards import display_flashcards github='https://raw.githubusercontent.com/jmshea/Foundations-of-Data-Science-with-Python/main/06-conditional-prob/flashcards/' display_flashcards(github+'review.json') #display_flashcards("flashcards/"+'review.json') ###Output _____no_output_____ ###Markdown Self Assessment ExercisesAnswer the questions below to assess your understanding of the material in this chapter. $\mbox{ }$ ###Code from jupyterquiz import display_quiz github='https://raw.githubusercontent.com/jmshea/Foundations-of-Data-Science-with-Python/main/06-conditional-prob/quiz/' display_quiz(github+'review.json') # For local testing # display_quiz('../questions/ch4.json') ###Output _____no_output_____
Final-Binary Digit Classifier Using QNN with GUI input.ipynb
###Markdown Binary Digit Classifier Using QNN with GUI input Project DesciptionThe Project first aims to briefly introduce Quantum Neural Networks and then build a Quantum Neural Network (QNN) to classify handwritten 0 and 1 (using MNIST handwritten data). And then, we'll make a Graphical User Interface (GUI) using which the user can draw a digit. And afterward, we'll integrate the GUI with the QNN above. And then, we'll classify whether the user has made 0 or 1. References - https://arxiv.org/pdf/1802.06002.pdf- https://www.tensorflow.org/quantum/tutorials/mnist- https://docs.python.org/3/library/tk.html- https://tkdocs.com/tutorial/index.html- https://pennylane.ai/qml/glossary/quantum_neural_network.html- https://en.wikipedia.org/wiki/Quantum_neural_network What is Quantum Neural Networks ? A quantum neural network (QNN) is a machine learning model or algorithm that combines concepts from quantum computing and artifical neural networks.Quantum Neural Network extends the key features and structures of Neural Networks to quantum systems.Most Quantum neural networks are developed as feed-forward networks. Similar to their classical counterparts, this structure intakes input from one layer of qubits, and passes that input onto another layer of qubits. This layer of qubits evaluates this information and passes on the output to the next layer. Eventually the path leads to the final layer of qubits. Fig1: Illustration of QNN with the input |ψ>, the parameter θ and linear entanglement structure.[image_source](https://arxiv.org/pdf/2108.01468.pdf) Now let's start building the QNN Model Libraries Used - **cirq**- **tensorflow** - **tensorflow_quantum**- **numpy**- **sympy**- **seaborn**- **matplotlib**- **tkinter**- **opencv** Importing Libraries ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np import seaborn as sns import collections %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown Flowchart Index 1. Data Loading, Filtering and Encoding &emsp;1.1 Data Loading &emsp;1.2 Data Filtering &emsp;1.3 Downscaling Images to 4x4 &emsp;1.4 Removing Contradictory Examples &emsp;1.5 Encoding the data as quantum Circuits 2. Building QNN (Quantum Neural Network) &emsp;2.1 Building the model Circuit &emsp;2.2 Wrapping the model_circuit in a tfq.keras model &emsp;2.3 Training and Evaluating QNN 3. Saving QNN Model 4. Making GUI using tkinter 5. Integrating GUI with QNN Model 1. Data Loading, Filtering and Encoding 1.1 Data Loading ###Code #Loading MNIST Dataset (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Rescaling the images to [0.0,1.0] Range. x_train, x_test = x_train[..., np.newaxis]/255.0, x_test[..., np.newaxis]/255.0 print("Number of training examples before filtering:", len(x_train)) print("Number of testing examples before filtering:", len(x_test)) ###Output Number of training examples before filtering: 60000 Number of testing examples before filtering: 10000 ###Markdown 1.2 Data Filtering ###Code # Defining Function to filter dataset to keep just 0's and 1's. def filter_01(x, y): keep = (y == 0) | (y == 1) x, y = x[keep], y[keep] y = y == 0 return x,y # Filtering using Above Function to keep 0's and 1's x_train, y_train = filter_01(x_train, y_train) x_test, y_test = filter_01(x_test, y_test) print("Number of training examples after filtering:", len(x_train)) print("Number of testing examples after filtering:", len(x_test)) ###Output Number of training examples after filtering: 12665 Number of testing examples after filtering: 2115 ###Markdown 1.3 Downscaling Images to 4x4 ###Code downscaled_x_train = tf.image.resize(x_train, (4,4)).numpy() downscaled_x_test = tf.image.resize(x_test, (4,4)).numpy() # Displaying the first training image before and after downscaling print("Before Downscaling:") plt.imshow(x_train[0,:,:,0], vmin=0, vmax=1) plt.colorbar() print("After Downscaling:") plt.imshow(downscaled_x_train[0,:,:,0], vmin=0, vmax=1) plt.colorbar() ###Output After Downscaling: ###Markdown 1.4 Removing Contradictory Examples ###Code # Defining Function to remove conradictory Examples. def remove_contradicting(xs, ys): mapping = collections.defaultdict(set) orig_x = {} # Determine the set of labels for each unique image: for x,y in zip(xs,ys): orig_x[tuple(x.flatten())] = x mapping[tuple(x.flatten())].add(y) new_x = [] new_y = [] for flatten_x in mapping: x = orig_x[flatten_x] labels = mapping[flatten_x] if len(labels) == 1: new_x.append(x) new_y.append(next(iter(labels))) else: # Throw out images that match more than one label. pass num_uniq_0 = sum(1 for value in mapping.values() if len(value) == 1 and True in value) num_uniq_1 = sum(1 for value in mapping.values() if len(value) == 1 and False in value) num_uniq_both = sum(1 for value in mapping.values() if len(value) == 2) print("Number of unique images:", len(mapping.values())) print("Number of unique 0s: ", num_uniq_0) print("Number of unique 1s: ", num_uniq_1) print("Number of unique contradicting labels (both 0 and 1): ", num_uniq_both) print() print("Initial number of images: ", len(xs)) print("Remaining non-contradicting unique images: ", len(new_x)) return np.array(new_x), np.array(new_y) x_train_nocon, y_train_nocon = remove_contradicting(downscaled_x_train, y_train) ###Output Number of unique images: 7100 Number of unique 0s: 4924 Number of unique 1s: 2068 Number of unique contradicting labels (both 0 and 1): 108 Initial number of images: 12665 Remaining non-contradicting unique images: 6992 ###Markdown 1.5 Encoding the data as quantum Circuits ###Code THRESHOLD = 0.5 x_train_bin = np.array(x_train_nocon > THRESHOLD, dtype=np.float32) x_test_bin = np.array(downscaled_x_test > THRESHOLD, dtype=np.float32) _ = remove_contradicting(x_train_bin, y_train_nocon) # Defining Function to convert images to circuit def convert_to_circuit(image): """Encode truncated classical image into quantum datapoint.""" values = np.ndarray.flatten(image) qubits = cirq.GridQubit.rect(4, 4) circuit = cirq.Circuit() for i, value in enumerate(values): if value: circuit.append(cirq.X(qubits[i])) return circuit x_train_circ = [convert_to_circuit(x) for x in x_train_bin] x_test_circ = [convert_to_circuit(x) for x in x_test_bin] print("Circuit for the first train example") SVGCircuit(x_train_circ[0]) # Converting Cirq circuits to tensors for TensorflowQuantum x_train_tfcirc = tfq.convert_to_tensor(x_train_circ) x_test_tfcirc = tfq.convert_to_tensor(x_test_circ) ###Output _____no_output_____ ###Markdown 2. Building QNN (Quantum Neural Network) 2.1 Building the model Circuit ###Code class CircuitLayerBuilder(): def __init__(self, data_qubits, readout): self.data_qubits = data_qubits self.readout = readout def add_layer(self, circuit, gate, prefix): for i, qubit in enumerate(self.data_qubits): symbol = sympy.Symbol(prefix + '-' + str(i)) circuit.append(gate(qubit, self.readout)**symbol) def create_quantum_model(): """Create a QNN model circuit and readout operation to go along with it.""" data_qubits = cirq.GridQubit.rect(4, 4) # a 4x4 grid. readout = cirq.GridQubit(-1, -1) # a single qubit at [-1,-1] circuit = cirq.Circuit() # Prepare the readout qubit. circuit.append(cirq.X(readout)) circuit.append(cirq.H(readout)) builder = CircuitLayerBuilder( data_qubits = data_qubits, readout=readout) # Then add layers (experiment by adding more). builder.add_layer(circuit, cirq.XX, "xx1") builder.add_layer(circuit, cirq.ZZ, "zz1") # Finally, prepare the readout qubit. circuit.append(cirq.H(readout)) return circuit, cirq.Z(readout) model_circuit, model_readout = create_quantum_model() ###Output _____no_output_____ ###Markdown 2.2 Wrapping the model_circuit in a tfq.keras model ###Code # Build the Keras model. model = tf.keras.Sequential([ # The input is the data-circuit, encoded as a tf.string tf.keras.layers.Input(shape=(), dtype=tf.string), # The PQC layer returns the expected value of the readout gate, range [-1,1]. tfq.layers.PQC(model_circuit, model_readout), ]) y_train_hinge = 2.0*y_train_nocon-1.0 y_test_hinge = 2.0*y_test-1.0 def hinge_accuracy(y_true, y_pred): y_true = tf.squeeze(y_true) > 0.0 y_pred = tf.squeeze(y_pred) > 0.0 result = tf.cast(y_true == y_pred, tf.float32) return tf.reduce_mean(result) model.compile( loss=tf.keras.losses.Hinge(), optimizer=tf.keras.optimizers.Adam(), metrics=[hinge_accuracy]) print(model.summary()) ###Output Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= pqc_1 (PQC) (None, 1) 32 ================================================================= Total params: 32 Trainable params: 32 Non-trainable params: 0 _________________________________________________________________ None ###Markdown 2.3 Training and Evaluating QNN ###Code EPOCHS = 3 BATCH_SIZE = 32 NUM_EXAMPLES = len(x_train_tfcirc) x_train_tfcirc_sub = x_train_tfcirc[:NUM_EXAMPLES] y_train_hinge_sub = y_train_hinge[:NUM_EXAMPLES] qnn_history = model.fit( x_train_tfcirc_sub, y_train_hinge_sub, batch_size=32, epochs=EPOCHS, verbose=1, validation_data=(x_test_tfcirc, y_test_hinge)) qnn_results = model.evaluate(x_test_tfcirc, y_test) ###Output Train on 6992 samples, validate on 2115 samples Epoch 1/3 6992/6992 [==============================] - 1503s 215ms/sample - loss: 0.8408 - hinge_accuracy: 0.7129 - val_loss: 0.8269 - val_hinge_accuracy: 0.6006 Epoch 2/3 6992/6992 [==============================] - 1467s 210ms/sample - loss: 0.4951 - hinge_accuracy: 0.8146 - val_loss: 0.5883 - val_hinge_accuracy: 0.6248 Epoch 3/3 6992/6992 [==============================] - 2043s 292ms/sample - loss: 0.4454 - hinge_accuracy: 0.8473 - val_loss: 0.5374 - val_hinge_accuracy: 0.9067 2115/2115 [==============================] - 19s 9ms/sample - loss: 0.5374 - hinge_accuracy: 0.9067 ###Markdown 3. Saving QNN Model ###Code model.save_weights("weights_MNIST.tf",save_format='tf') ###Output _____no_output_____ ###Markdown 4. Making GUI using tkinter 4.1 Importing more required libraries ###Code import tkinter as tk import cv2 from PIL import ImageTk,Image,ImageDraw ###Output _____no_output_____ ###Markdown 4.2 Defining GUI and functions required for it ###Code def save(): global count img_array=np.array(img) img_array=cv2.resize(img_array,(100,100)) cv2.imwrite(str(count)+'.jpg',img_array) count=count+1 def clear(): global img,img_draw canvas.delete('all') img=Image.new('RGB',(400,400),(0,0,0)) img_draw=ImageDraw.Draw(img) label_status.config(text='Prediction: None') def predict(): img_array=np.array(img) img_array=cv2.cvtColor(img_array,cv2.COLOR_BGR2GRAY) img_array=cv2.resize(img_array,(4,4)) img_array=img_array/255.0 img_array=img_array.reshape(1,4,4) img_circ=convert_to_circuit(img_array) img_tfcirc=tfq.convert_to_tensor([img_circ]) result=model.predict(img_tfcirc) label=np.argmax(result,axis=1) label_status.config(text='Prediction:'+str(label)) def canvas_function(event): x=event.x y=event.y x1=x-10 y1=y-10 x2=x+10 y2=y+10 canvas.create_oval((x1,y1,x2,y2),fill='black') img_draw.ellipse((x1,y1,x2,y2),fill='white') ###Output _____no_output_____ ###Markdown 5. Integrating GUI with QNN Model 5.1 Rebuilding Architecture and loading the model weights ###Code model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(), dtype=tf.string), tfq.layers.PQC(model_circuit, model_readout), ]) model.add(tf.keras.layers.Flatten(input_shape=(4,4))) model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) model.load_weights('weights_MNIST.tf') ###Output _____no_output_____ ###Markdown 5.2 Final Integration ###Code count=0 win=tk.Tk() win.title('Binary Classifier') canvas=tk.Canvas(win,width=400,height=400,bg='white') canvas.grid(row=0,column=0,columnspan=4) button_save=tk.Button(win,text='Save Image',bg='green',fg='white',font='Cambria 22 bold',command=save) button_save.grid(row=1,column=0) button_predict=tk.Button(win,text='Predict',bg='magenta',fg='white',font='Cambria 22 bold',command=predict) button_predict.grid(row=1,column=1) button_clear=tk.Button(win,text='Clear',bg='gold',fg='white',font='Cambria 22 bold',command=clear) button_clear.grid(row=1,column=2) button_exit=tk.Button(win,text='EXIT',bg='red',fg='white',font='Cambria 22 bold',command=win.destroy) button_exit.grid(row=1,column=3) label_status=tk.Label(win,text='Prediction: None',bg='white',font='Verdana 24 bold') label_status.grid(row=2,column=0,columnspan=4) canvas.bind('<B1-Motion>',canvas_function) img=Image.new('RGB',(400,400),(0,0,0)) img_draw=ImageDraw.Draw(img) win.mainloop() ###Output _____no_output_____
.ipynb_checkpoints/G2_data_visualization-checkpoint.ipynb
###Markdown G2 - Grado di soddisfazione della vita ###Code # Librerie import os import pandas as pd import numpy as np import folium import matplotlib.pyplot as plt plt.style.use('ggplot') get_ipython().magic('pylab inline') # Cartelle Input/Output dir_df = os.path.join(os.path.abspath(''),'stg') dir_out = os.path.join(os.path.abspath(''),'output') df_g2_filename = r'df_g2.pkl' df_g2_fullpath = os.path.join(dir_df, df_g2_filename) df_g2 = pd.read_pickle(df_g2_fullpath) df_g2 = df_g2[df_g2['Territorio']!='Italia'] df_g2['Popolazione'] = df_g2['Popolazione']/100000 # Report G2 tp = df_g2.plot( x='Reddito pro capite', y='Gradio di soddisfazione per la vita', s=df_g2['Popolazione'], kind='scatter', xlim=(0,75000), ylim=(0,10), legend = False) for i, txt in enumerate(df_g2.Territorio): tp.annotate(txt, (df_g2['Reddito pro capite'].iat[i]*1.070,df_g2['Gradio di soddisfazione per la vita'].iat[i])) tp.plot() fig_prj = tp.get_figure() fig_prj.tight_layout() fig_prj.savefig(os.path.join(dir_out,'g2.png'), format='png', dpi=300) ###Output _____no_output_____
Autism Screening with Machine Learning.ipynb
###Markdown Childhood Autistic Spectrum Disorder Screening using Machine LearningThe early diagnosis of neurodevelopment disorders can improve treatment and significantly decrease the associated healthcare costs. In this project, we will use supervised learning to diagnose Autistic Spectrum Disorder (ASD) based on behavioural features and individual characteristics. More specifically, we will build and deploy a neural network using the Keras API. This project will use a dataset provided by the UCI Machine Learning Repository that contains screening data for 292 patients. The dataset can be found at the following URL: https://archive.ics.uci.edu/ml/datasets/Autistic+Spectrum+Disorder+Screening+Data+for+Children++Let's dive right in! First, we will import a few of libraries we will use in this project. ###Code import sys import pandas as pd import sklearn import keras print 'Python: {}'.format(sys.version) print 'Pandas: {}'.format(pd.__version__) print 'Sklearn: {}'.format(sklearn.__version__) print 'Keras: {}'.format(keras.__version__) ###Output Using Theano backend. WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions. ###Markdown 1. Importing the DatasetWe will obtain the data from the UCI Machine Learning Repository; however, since the data isn't contained in a csv or txt file, we will have to download the compressed zip file and then extract the data manually. Once that is accomplished, we will read the information in from a text file using Pandas. ###Code # import the dataset file = 'C:/users/brend/tutorial/autism-data.txt' # read the csv data = pd.read_table(file, sep = ',', index_col = None) # print the shape of the DataFrame, so we can see how many examples we have print 'Shape of DataFrame: {}'.format(data.shape) print data.loc[0] # print out multiple patients at the same time data.loc[:10] # print out a description of the dataframe data.describe() ###Output _____no_output_____ ###Markdown 2. Data PreprocessingThis dataset is going to require multiple preprocessing steps. First, we have columns in our DataFrame (attributes) that we don't want to use when training our neural network. We will drop these columns first. Secondly, much of our data is reported using strings; as a result, we will convert our data to categorical labels. During our preprocessing, we will also split the dataset into X and Y datasets, where X has all of the attributes we want to use for prediction and Y has the class labels. ###Code # drop unwanted columns data = data.drop(['result', 'age_desc'], axis=1) data.loc[:10] # create X and Y datasets for training x = data.drop(['class'], 1) y = data['class'] x.loc[:10] # convert the data to categorical values - one-hot-encoded vectors X = pd.get_dummies(x) # print the new categorical column labels X.columns.values # print an example patient from the categorical data X.loc[1] # convert the class data to categorical values - one-hot-encoded vectors Y = pd.get_dummies(y) Y.iloc[:10] ###Output _____no_output_____ ###Markdown 3. Split the Dataset into Training and Testing DatasetsBefore we can begin training our neural network, we need to split the dataset into training and testing datasets. This will allow us to test our network after we are done training to determine how well it will generalize to new data. This step is incredibly easy when using the train_test_split() function provided by scikit-learn! ###Code from sklearn import model_selection # split the X and Y data into training and testing datasets X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size = 0.2) print X_train.shape print X_test.shape print Y_train.shape print Y_test.shape ###Output (233, 96) (59, 96) (233, 2) (59, 2) ###Markdown 4. Building the Network - KerasIn this project, we are going to use Keras to build and train our network. This model will be relatively simple and will only use dense (also known as fully connected) layers. This is the most common neural network layer. The network will have one hidden layer, use an Adam optimizer, and a categorical crossentropy loss. We won't worry about optimizing parameters such as learning rate, number of neurons in each layer, or activation functions in this project; however, if you have the time, manually adjusting these parameters and observing the results is a great way to learn about their function! ###Code # build a neural network using Keras from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam # define a function to build the keras model def create_model(): # create model model = Sequential() model.add(Dense(8, input_dim=96, kernel_initializer='normal', activation='relu')) model.add(Dense(4, kernel_initializer='normal', activation='relu')) model.add(Dense(2, activation='sigmoid')) # compile model adam = Adam(lr=0.001) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) return model model = create_model() print(model.summary()) ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 8) 776 _________________________________________________________________ dense_2 (Dense) (None, 4) 36 _________________________________________________________________ dense_3 (Dense) (None, 2) 10 ================================================================= Total params: 822 Trainable params: 822 Non-trainable params: 0 _________________________________________________________________ None ###Markdown 5. Training the NetworkNow it's time for the fun! Training a Keras model is as simple as calling model.fit(). ###Code # fit the model to the training data model.fit(X_train, Y_train, epochs=50, batch_size=10, verbose = 1) ###Output Epoch 1/50 233/233 [==============================] - 0s 288us/step - loss: 0.6927 - acc: 0.5794 Epoch 2/50 233/233 [==============================] - 0s 245us/step - loss: 0.6910 - acc: 0.7210 Epoch 3/50 233/233 [==============================] - 0s 258us/step - loss: 0.6868 - acc: 0.7639 Epoch 4/50 233/233 [==============================] - 0s 236us/step - loss: 0.6779 - acc: 0.7082 Epoch 5/50 233/233 [==============================] - 0s 236us/step - loss: 0.6619 - acc: 0.8541 Epoch 6/50 233/233 [==============================] - 0s 305us/step - loss: 0.6340 - acc: 0.8283 Epoch 7/50 233/233 [==============================] - 0s 227us/step - loss: 0.5963 - acc: 0.8541 Epoch 8/50 233/233 [==============================] - 0s 305us/step - loss: 0.5446 - acc: 0.9399 Epoch 9/50 233/233 [==============================] - 0s 240us/step - loss: 0.4884 - acc: 0.8884 Epoch 10/50 233/233 [==============================] - 0s 227us/step - loss: 0.4220 - acc: 0.9227 Epoch 11/50 233/233 [==============================] - 0s 322us/step - loss: 0.3603 - acc: 0.9313 Epoch 12/50 233/233 [==============================] - 0s 245us/step - loss: 0.2935 - acc: 0.9614 Epoch 13/50 233/233 [==============================] - 0s 296us/step - loss: 0.2528 - acc: 0.9657 Epoch 14/50 233/233 [==============================] - 0s 330us/step - loss: 0.2087 - acc: 0.9657 Epoch 15/50 233/233 [==============================] - 0s 305us/step - loss: 0.1788 - acc: 0.9871 Epoch 16/50 233/233 [==============================] - 0s 313us/step - loss: 0.1605 - acc: 0.9700 Epoch 17/50 233/233 [==============================] - 0s 309us/step - loss: 0.1389 - acc: 0.9828 Epoch 18/50 233/233 [==============================] - 0s 335us/step - loss: 0.1258 - acc: 0.9785 Epoch 19/50 233/233 [==============================] - 0s 343us/step - loss: 0.1108 - acc: 0.9871 Epoch 20/50 233/233 [==============================] - 0s 399us/step - loss: 0.1004 - acc: 0.9871 Epoch 21/50 233/233 [==============================] - 0s 416us/step - loss: 0.0910 - acc: 0.9871 Epoch 22/50 233/233 [==============================] - 0s 343us/step - loss: 0.0820 - acc: 0.9871 Epoch 23/50 233/233 [==============================] - 0s 361us/step - loss: 0.0752 - acc: 0.9914 Epoch 24/50 233/233 [==============================] - 0s 356us/step - loss: 0.0714 - acc: 0.9957 Epoch 25/50 233/233 [==============================] - 0s 309us/step - loss: 0.0634 - acc: 0.9957 Epoch 26/50 233/233 [==============================] - 0s 339us/step - loss: 0.0585 - acc: 0.9957 Epoch 27/50 233/233 [==============================] - 0s 335us/step - loss: 0.0571 - acc: 1.0000 Epoch 28/50 233/233 [==============================] - 0s 429us/step - loss: 0.0526 - acc: 0.9957 Epoch 29/50 233/233 [==============================] - 0s 335us/step - loss: 0.0474 - acc: 1.0000 Epoch 30/50 233/233 [==============================] - 0s 322us/step - loss: 0.0463 - acc: 0.9957 Epoch 31/50 233/233 [==============================] - 0s 296us/step - loss: 0.0431 - acc: 1.0000 Epoch 32/50 233/233 [==============================] - 0s 348us/step - loss: 0.0381 - acc: 1.0000 Epoch 33/50 233/233 [==============================] - 0s 322us/step - loss: 0.0357 - acc: 1.0000 Epoch 34/50 233/233 [==============================] - 0s 292us/step - loss: 0.0331 - acc: 1.0000 Epoch 35/50 233/233 [==============================] - 0s 305us/step - loss: 0.0316 - acc: 1.0000 Epoch 36/50 233/233 [==============================] - 0s 335us/step - loss: 0.0294 - acc: 1.0000 Epoch 37/50 233/233 [==============================] - 0s 322us/step - loss: 0.0282 - acc: 1.0000 Epoch 38/50 233/233 [==============================] - 0s 236us/step - loss: 0.0281 - acc: 1.0000 Epoch 39/50 233/233 [==============================] - 0s 339us/step - loss: 0.0253 - acc: 1.0000 Epoch 40/50 233/233 [==============================] - 0s 223us/step - loss: 0.0252 - acc: 1.0000 Epoch 41/50 233/233 [==============================] - 0s 326us/step - loss: 0.0226 - acc: 1.0000 Epoch 42/50 233/233 [==============================] - 0s 326us/step - loss: 0.0213 - acc: 1.0000 Epoch 43/50 233/233 [==============================] - 0s 219us/step - loss: 0.0203 - acc: 1.0000 Epoch 44/50 233/233 [==============================] - 0s 215us/step - loss: 0.0193 - acc: 1.0000 Epoch 45/50 233/233 [==============================] - 0s 318us/step - loss: 0.0190 - acc: 1.0000 Epoch 46/50 233/233 [==============================] - 0s 232us/step - loss: 0.0176 - acc: 1.0000 Epoch 47/50 233/233 [==============================] - 0s 215us/step - loss: 0.0163 - acc: 1.0000 Epoch 48/50 233/233 [==============================] - 0s 202us/step - loss: 0.0161 - acc: 1.0000 Epoch 49/50 233/233 [==============================] - 0s 240us/step - loss: 0.0154 - acc: 1.0000 Epoch 50/50 233/233 [==============================] - 0s 223us/step - loss: 0.0150 - acc: 1.0000 ###Markdown 6. Testing and Performance MetricsNow that our model has been trained, we need to test its performance on the testing dataset. The model has never seen this information before; as a result, the testing dataset allows us to determine whether or not the model will be able to generalize to information that wasn't used during its training phase. We will use some of the metrics provided by scikit-learn for this purpose! ###Code # generate classification report using predictions for categorical model from sklearn.metrics import classification_report, accuracy_score predictions = model.predict_classes(X_test) predictions print('Results for Categorical Model') print(accuracy_score(Y_test[['YES']], predictions)) print(classification_report(Y_test[['YES']], predictions)) ###Output Results for Categorical Model 0.9661016949152542 precision recall f1-score support 0 0.97 0.97 0.97 36 1 0.96 0.96 0.96 23 avg / total 0.97 0.97 0.97 59
d2l/chapter_recurrent-neural-networks/rnn.ipynb
###Markdown 循环神经网络:label:`sec_rnn`在 :numref:`sec_language_model` 中,我们介绍了 $n$ 元语法模型,其中单词 $x_t$ 在时间步 $t$ 的条件概率仅取决于前面 $n-1$ 个单词。如果我们想将时间步 $t-(n-1)$ 之前的单词的可能产生的影响合并到 $x_t$ 上就需要增加 $n$,然而模型参数的数量也会随之呈指数增长,因为词表 $\mathcal{V}$ 需要存储 $|\mathcal{V}|^n$ 个数字,因此与其将 $P(x_t \mid x_{t-1}, \ldots, x_{t-n+1})$ 模型化,不如使用隐变量模型:$$P(x_t \mid x_{t-1}, \ldots, x_1) \approx P(x_t \mid h_{t-1}),$$其中 $h_{t-1}$ 是 *隐藏状态*(也称为隐藏变量),其存储了到时间步 $t-1$ 的序列信息。通常,可以基于当前输入 $x_{t}$ 和先前隐藏状态 $h_{t-1}$ 来计算时间步 $t$ 处的任何时间的隐藏状态:$$h_t = f(x_{t}, h_{t-1}).$$:eqlabel:`eq_ht_xt`对于一个足够强大的函数 $f$( :eqref:`eq_ht_xt` ),隐变量模型不是近似值。毕竟 $h_t$ 是可以仅仅存储到目前为止观察到的所有数据,然而这样的操作可能会使计算和存储的代价都变得昂贵。回想一下,我们在 :numref:`chap_perceptrons` 中讨论过的具有隐藏单元的隐藏层。值得注意的是,隐藏层和隐藏状态指的是两个截然不同的概念。如上所述,隐藏层是在输入到输出的路径上以观测角度来理解的隐藏的层,而隐藏状态则是在给定步骤所做的任何事情以技术角度来定义的 *输入*,并且这些状态只能通过先前时间步的数据来计算。*循环神经网络*(Recurrent neural networks, RNNs)是具有隐藏状态的神经网络。在介绍循环神经网络模型之前,我们首先回顾 :numref:`sec_mlp` 中介绍的多层感知机模型。 无隐藏状态的神经网络让我们来看一看只有单隐藏层的多层感知机。设隐藏层的激活函数为 $\phi$。给定一个小批量样本 $\mathbf{X} \in \mathbb{R}^{n \times d}$,其中批量大小为 $n$,输入维度为 $d$,则隐藏层的输出 $\mathbf{H} \in \mathbb{R}^{n \times h}$ 通过下式计算:$$\mathbf{H} = \phi(\mathbf{X} \mathbf{W}_{xh} + \mathbf{b}_h).$$:eqlabel:`rnn_h_without_state`在 :eqref:`rnn_h_without_state` 中,我们拥有的隐藏层权重参数为 $\mathbf{W}_{xh} \in \mathbb{R}^{d \times h}$、偏置参数为 $\mathbf{b}_h \in \mathbb{R}^{1 \times h}$,以及隐藏单元的数目为 $h$。因此求和时将应用广播机制(见 :numref:`subsec_broadcasting`)。接下来,将隐藏变量 $\mathbf{H}$ 用作输出层的输入。输出层由下式给出:$$\mathbf{O} = \mathbf{H} \mathbf{W}_{hq} + \mathbf{b}_q,$$其中,$\mathbf{O} \in \mathbb{R}^{n \times q}$ 是输出变量,$\mathbf{W}_{hq} \in \mathbb{R}^{h \times q}$ 是权重参数,$\mathbf{b}_q \in \mathbb{R}^{1 \times q}$ 是输出层的偏置参数。如果是分类问题,我们可以用 $\text{softmax}(\mathbf{O})$ 来计算输出类别的概率分布。这完全类似于之前在 :numref:`sec_sequence` 中解决的回归问题,因此我们省略了细节。无须多言,只要可以随机选择“特征-标签”对,并且通过自动微分和随机梯度下降能够学习网络参数就可以了。 有隐藏状态的循环神经网络:label:`subsec_rnn_w_hidden_states`当我们有隐藏状态后,情况就完全不同了。让我们更详细地看看这个结构。假设我们在时间步$t$有小批量输入$\mathbf{X}_t \in \mathbb{R}^{n \times d}$。换言之,对于$n$个序列样本的小批量,$\mathbf{X}_t$的每一行对应于来自该序列的时间步$t$处的一个样本。接下来,用$\mathbf{H}_t \in \mathbb{R}^{n \times h}$表示时间步$t$的隐藏变量。与多层感知机不同的是,我们在这里保存了前一个时间步的隐藏变量$\mathbf{H}_{t-1}$,并引入了一个新的权重参数$\mathbf{W}_{hh} \in \mathbb{R}^{h \times h}$来描述如何在当前时间步中使用前一个时间步的隐藏变量。具体地说,当前时间步隐藏变量的计算由当前时间步的输入与前一个时间步的隐藏变量一起确定:$$\mathbf{H}_t = \phi(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$:eqlabel:`rnn_h_with_state`与 :eqref:`rnn_h_without_state` 相比, :eqref:`rnn_h_with_state` 多添加了一项$\mathbf{H}_{t-1} \mathbf{W}_{hh}$,从而实例化了 :eqref:`eq_ht_xt`。从相邻时间步的隐藏变量$\mathbf{H}_t$和$\mathbf{H}_{t-1}$之间的关系可知,这些变量捕获并保留了序列直到其当前时间步的历史信息,就如当前时间步下神经网络的状态或记忆,因此这样的隐藏变量被称为 *隐藏状态*(hidden state)。由于在当前时间步中隐藏状态使用的定义与前一个时间步中使用的定义相同,因此 :eqref:`rnn_h_with_state` 的计算是 *循环的*(recurrent)。于是基于循环计算的隐状态神经网络被命名为 *循环神经网络*(recurrent neural networks)。在循环神经网络中执行 :eqref:`rnn_h_with_state` 计算的层称为 *循环层*(recurrent layers)。有许多不同的方法可以构建循环神经网络,由 :eqref:`rnn_h_with_state` 定义的隐藏状态的循环神经网络是非常常见的一种。对于时间步$t$,输出层的输出类似于多层感知机中的计算:$$\mathbf{O}_t = \mathbf{H}_t \mathbf{W}_{hq} + \mathbf{b}_q.$$循环神经网络的参数包括隐藏层的权重$\mathbf{W}_{xh} \in \mathbb{R}^{d \times h}, \mathbf{W}_{hh} \in \mathbb{R}^{h \times h}$和偏置$\mathbf{b}_h \in \mathbb{R}^{1 \times h}$,以及输出层的权重$\mathbf{W}_{hq} \in \mathbb{R}^{h \times q}$和偏置$\mathbf{b}_q \in \mathbb{R}^{1 \times q}$。值得一提的是,即使在不同的时间步,循环神经网络也总是使用这些模型参数。因此,循环神经网络的参数开销不会随着时间步的增加而增加。:numref:`fig_rnn` 展示了循环神经网络在三个相邻时间步的计算逻辑。在任意时间步$t$,隐藏状态的计算可以被视为:1、拼接当前时间步$t$的输入$\mathbf{X}_t$和前一时间步$t-1$的隐藏状态$\mathbf{H}_{t-1}$;2、将拼接的结果送入带有激活函数$\phi$的全连接层。全连接层的输出是当前时间步$t$的隐藏状态$\mathbf{H}_t$。在本例中,模型参数是$\mathbf{W}_{xh}$和$\mathbf{W}_{hh}$的拼接,以及$\mathbf{b}_h$的偏置,所有这些参数都来自 :eqref:`rnn_h_with_state`。当前时间步$t$的隐藏状态$\mathbf{H}_t$将参与计算下一时间步$t+1$的隐藏状态$\mathbf{H}_{t+1}$。而且$\mathbf{H}_t$还将送入全连接输出层用于计算当前时间步$t$的输出$\mathbf{O}_t$。![具有隐藏状态的循环神经网络。](../img/rnn.svg):label:`fig_rnn`我们刚才提到,隐藏状态中$\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh}$的计算,相当于$\mathbf{X}_t$和$\mathbf{H}_{t-1}$的拼接与$\mathbf{W}_{xh}$和$\mathbf{W}_{hh}$的拼接的矩阵乘法。虽然这个性质可以通过数学证明,但在下面我们只使用一个简单的代码片段来说明。首先,我们定义矩阵`X`、`W_xh`、`H`和`W_hh`,它们的形状分别为$(3,1)$、$(1,4)$、$(3,4)$和$(4,4)$。分别将`X`乘以`W_xh`,将`H`乘以`W_hh`,然后将这两个乘法相加,我们得到一个形状为$(3,4)$的矩阵。 ###Code import torch from d2l import torch as d2l X, W_xh = torch.normal(0, 1, (3, 1)), torch.normal(0, 1, (1, 4)) H, W_hh = torch.normal(0, 1, (3, 4)), torch.normal(0, 1, (4, 4)) torch.matmul(X, W_xh) + torch.matmul(H, W_hh) ###Output _____no_output_____ ###Markdown 现在,我们沿列(轴1)拼接矩阵`X`和`H`,沿行(轴0)拼接矩阵`W_xh`和`W_hh`。这两个拼接分别产生形状$(3, 5)$和形状$(5, 4)$的矩阵。再将这两个拼接的矩阵相乘,我们得到与上面相同形状$(3, 4)$的输出矩阵。 ###Code torch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0)) ###Output _____no_output_____
ColAppTextProcDemo.ipynb
###Markdown Webscrape college applicationsThis notebook demonstrates:1. Pre-processing2. Counting word occurances3. Making individual dataframes4. Merging those dataframesInspired by: https://www.kdnuggets.com/2018/03/text-data-preprocessing-walkthrough-python.html ###Code import re, string, unicodedata import nltk import contractions import inflect import pandas as pd from pandas import Series, DataFrame from operator import itemgetter from bs4 import BeautifulSoup from nltk import word_tokenize, sent_tokenize from nltk.corpus import stopwords from nltk.stem import LancasterStemmer, WordNetLemmatizer ###Output _____no_output_____ ###Markdown Define Helper Functions ###Code def strip_html(text): soup = BeautifulSoup(text, "html.parser") return soup.get_text() def stem_words(words): # Stem words in list of tokenized words stemmer = LancasterStemmer() stems = [] for word in words: stem = stemmer.stem(word) stems.append(stem) return stems def lemmatize_verbs(words): # Lemmatize verbs in list of tokenized words lemmatizer = WordNetLemmatizer() lemmas = [] for word in words: lemma = lemmatizer.lemmatize(word, pos='v') lemmas.append(lemma) return lemmas def remove_pmarks(text): text = re.sub(r'~|`|:|;|"|,', '', text) text = str.replace(text, '"', '') text = str.replace(text, "'", '') text = str.replace(text, '.', '') text = str.replace(text, '?', '') return text def remove_common_words(text): words_to_drop = ['a','is','it','of','in','at','to','the'] for word in words_to_drop: text = re.sub(''.join((r'\b', word, r'\b')), '', text) return text def combine_cword(text): compound_words = { 'social security number': 'socialsecuritynumber', 'ssn': 'socialsecuritynumber', 'high school': 'highschool' } for cword in compound_words: text = re.sub(''.join((r'\b', cword, r'\b')), compound_words[cword], text) return text def get_words(text): return nltk.word_tokenize(text) def remove_non_ascii(words): # Remove non-ASCII characters from list of tokenized words new_words = [] for word in words: new_word = unicodedata.normalize('NFKD', word).encode('ascii', 'ignore').decode('utf-8', 'ignore') new_words.append(new_word) return new_words def replace_numbers(words): # Replace all interger occurrences in list of tokenized words with textual representation p = inflect.engine() new_words = [] for word in words: if word.isdigit(): new_word = p.number_to_words(word) new_words.append(new_word) else: new_words.append(word) return new_words def normalize(text): # Remove punctuation from entire string. print('Remove punctuation.', end='') text = remove_pmarks(text) print(' DONE') # Put to lowercase first print('Converting case....', end='') text = text.lower() print(' DONE') # Remove unwanted common words. print('Remove freq words..', end='') text = remove_common_words(text) print(' DONE') # Handle common application compound words print('Handle compounds...', end='') text = combine_cword(text) print(' DONE') # Tokenize the string. print('Tokenize string....', end='') words = get_words(text) print(' DONE') # Remove ascii characters. print('Remove non ascii...', end='') words = remove_non_ascii(words) print(' DONE') # Convert numebrs to words. print('Replace numbers....', end='') words = replace_numbers(words) print(' DONE') return words def get_sorted_count(words): index_list = sorted(set(words)) count_list = list(range(len(index_list))) for i in range(len(index_list)): count_list[i] = 0 for word in words: if word == index_list[i]: count_list[i] = count_list[i] + 1 grand_list = [] for i in range(len(index_list)): item_list = [] item_list.append(index_list[i]) item_list.append(count_list[i]) grand_list.append(item_list) return sorted(grand_list, key=itemgetter(0), reverse=True) some_test_text = '''Here are a few words that I will use to test. high Don't think this is the end of it. high school Social Security Number ssn 'Here are a few words that I will use to test. high Don't think this is the end of it. high school SSN high school social security number 1. Hi hi hi 2. Three four five 6. What?''' more_test_text = '''Cookie information can be found through the use of a high school SSN high school plug-in for your web browser. (I use 'Cookie Manager' on FireFox, although there are many other options for FireFox and other browsers). The two cookies you are looking for are called Y and T, and they are linked to the domain yahoo.com. Extract the data from these cookies, and paste it into the appropriate variables... a cookie will expire after a certain amount of time, which varies between computers. This means that you may have to re-fetch the Y and T cookie data every few days, or you will not be able to archive private groups. 'Here are a few words that I will use to test. high Don't think this is the end of it. high school''' print(sorted(set(normalize(some_test_text)))) print(sorted(set(normalize(more_test_text)))) for vname in ['some_test_text', 'more_test_text']: vars()[vname + '_df'] = DataFrame(get_sorted_count(normalize(vars()[vname])), columns=['word','freq']) some_test_text_df['freq1'] = some_test_text_df['freq'] some_test_text_df = some_test_text_df.drop(columns=['freq']) print(some_test_text_df.head()) more_test_text_df['freq2'] = more_test_text_df['freq'] more_test_text_df = more_test_text_df.drop(columns=['freq']) print(more_test_text_df.head()) pd.merge(some_test_text_df,more_test_text_df,on='word',how='outer').head() ###Output _____no_output_____
11-dqn/cartpole_dqn.ipynb
###Markdown Deep Q networksWe have already seen [Q learning](../../1-grid-world/7-q-learning/q_learning_agent.ipynb) in the previous examples.Q learning is a special algorithm that provides an off policy method for Temporal Difference style control.Deep Q network is just an extension of Q learning that uses neural networks, i.e. a *non-linear* function as state-action value function approximator.This is done to scale up to decision making in really large domains of huge state spaces.Deep Q network in particular has proven to achieve great results in games, as we will see in this example too. Characteristics of deep Q networksDeep Q network inherits all the characteristics of [Q learning](../7-q-learning/q_learning_agent.ipynb), except that it allows us to solve problems with continuous or very large state and action spaces. Neural Network as value function approximatorThis can be any neural network architecture that we see fit.In this example, we are using a very simple Dense Neural Network architecture.Dense Neural Networks are simply a *stack of matrices with activation functions in between*. Replay memoryEach tuple of $(s_t, a_t, r, s_{t+1})$ is recorded in a replay memory.As a replay memory we use a FIFO dequeue of constant size. Batch trainingEach step taken by the agent, we feed a *random* sample of tuples from the replay memory to the neural network in order to do *batch training*. Main model and Target modelWe keep two neural network models in our implementation.The reason we keep a second one, called the target model, is to provide some **stability** while training. - with each step taken we update only the first main model. - after some time interval (in this case, every episode), we update the second target model to be the same with the main model. Continuous or very large state and action spacesUsing a neural network as a value function approximator has its benefits.It allows us to solve problems with continuous state and action spaces.Such problems would be almost impossible to solve with normal Q learning, as they are very resource hungry. InitializationFor the Q learning aspect we keep track of the following: - In order to showcase how robust off policy algorithms like Q learning are, we are going to keep the epsilon and learning rate constant - `self.learning_rate` is set to $0.001$ - `self.epsilon` is initially set to $1.0$ and decays each step taken via the variable `self.epsilon_decay = 0.999` until a minimum of `self.epsilon_min = 0.01` is reached - `self.discount_factor` is set to $0.99$ - We keep track of a **replay memory** of size $2000$ via the following `self.memory = deque(maxlen=2000)`For the neural network aspect we keep track of the following: - we keep track of a model (neural network) in `self.model = self.build_model()` - we also keep track of a target model `self.target_model = self.build_model()`. After some time interval we update the target model to be the same with the main model to provide some stability. - we only train after there are at least $1000$ entries in the replay memory. We specify this at `self.train_start = 1000`. ###Code import sys import gym import pylab import random import numpy as np from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential EPISODES = 300 # DQN Agent for the Cartpole # it uses Neural Network to approximate q function # and replay memory & target q network class DQNAgent: def __init__(self, state_size, action_size): # if you want to see Cartpole learning, then change to True self.render = False self.load_model = False # get size of state and action self.state_size = state_size self.action_size = action_size # These are hyper parameters for the DQN self.discount_factor = 0.99 self.learning_rate = 0.001 self.epsilon = 1.0 self.epsilon_decay = 0.999 self.epsilon_min = 0.01 self.batch_size = 64 self.train_start = 1000 # create replay memory using deque # contains <s,a,r,s'> tuples self.memory = deque(maxlen=2000) # create main model and target model self.model = self.build_model() self.target_model = self.build_model() # initialize target model self.next_states_model() if self.load_model: self.model.load_weights("./save_model/cartpole_dqn.h5") ###Output _____no_output_____ ###Markdown Deep Q networkThe update rule for Q values in deep Q network is the following:$\hat{Q}^\pi(s_t, a_t) \gets^{train} R_t+ \gamma max_{a’} \hat{Q}^\pi(s_t ,a’)$ - $\hat{Q}^\pi(s_t, a_t)$ - *predicted* Q value of current state-action pair following the policy $\pi$ - $\gets^{train}$ - this means train the neural network accordingly, instead of *assign* the value - $\gamma$ - the **discount factor**. - $max_{a’} \hat{Q}^\pi(s_t ,a’)$ - maximization operator over the **predicted** Q values of all possible actions in the current stateFirst things first, the update formula is very similar to the update rule we saw in Q learning, although with the following differences: - instead of $Q^\pi$ we now deal with $\hat{Q}^\pi$, which is an approximation, the output of a neural network. - after calculating the result, we do not *assign* the value to $\hat{Q}^\pi$, but rather *train* the neural network with *gradient descent* in order to update the weights with the latest state-action value.Moreover, this seems like a simplified version of the update rule we saw for Q learning.Notice that the right hand side of the formula is simply a **bootstrapped return**.We use this value to update the network and we do not take into account the temporal difference between Q values.The reason behind this is that in Deep Q network, the presence of a neural network will mimic the temporal difference formula we saw on Q learning with a *learning rate*.In a neural network we update the weights via *backpropagation* in *gradient descent*.We also specify a **learning rate** in the process.That is why we do not need the explicit temporal difference aspect of Q learning anymore, since a similar implicit process is provided by backpropagation when we train the neural network with new data.Moreover, keep in mind these two characteristics of training that we also mentioned above: - replay memory - batch training - stability with target networks ###Code class DQNAgent(DQNAgent): # pick samples randomly from replay memory (with batch_size) def train_model(self): if len(self.memory) < self.train_start: return batch_size = min(self.batch_size, len(self.memory)) mini_batch = random.sample(self.memory, batch_size) # get s (state) as input from mini_batch # initialize with shape batch_size x state_size curr_states = np.zeros((batch_size, self.state_size)) # get s' (next state) as input from mini_batch # initialize with shape batch_size x state_size next_states = np.zeros((batch_size, self.state_size)) action, reward, done = [], [], [] for i in range(self.batch_size): # get s (state) as input from mini_batch curr_states[i] = mini_batch[i][0] action.append(mini_batch[i][1]) reward.append(mini_batch[i][2]) # get s' (next state) as input from mini_batch next_states[i] = mini_batch[i][3] done.append(mini_batch[i][4]) target = self.model.predict(curr_states) target_val = self.target_model.predict(next_states) for i in range(self.batch_size): # Q Learning: get maximum Q value at s' from target model if done[i]: target[i][action[i]] = reward[i] else: # selection of best action is from *target* model # evaluation is also from target model target[i][action[i]] = reward[i] + self.discount_factor * ( np.amax(target_val[i])) # make minibatch which includes target q value and predicted q value # and do the model fit! self.model.fit(curr_states, target, batch_size=self.batch_size, epochs=1, verbose=0) ###Output _____no_output_____ ###Markdown The model: neural networkNeural networks are built one layer after the other.Our model is a dense neural network, i.e. a neural network comprised of only dense layers.Dense layers are simply a *set of matrices* with an *activation function* in the end. ###Code class DQNAgent(DQNAgent): # approximate Q function using Neural Network # state is input and Q Value of each action is output of network def build_model(self): model = Sequential() model.add(Dense(32, input_dim=self.state_size, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(16, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(self.action_size, activation='linear', kernel_initializer='he_uniform')) model.summary() model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model ###Output _____no_output_____ ###Markdown Setting target network for stability ###Code class DQNAgent(DQNAgent): # after some time interval update the target model to be same with model def next_states_model(self): self.target_model.set_weights(self.model.get_weights()) ###Output _____no_output_____ ###Markdown Helper methods ###Code class DQNAgent(DQNAgent): # get action from model using epsilon-greedy policy def get_action(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) else: q_value = self.model.predict(state) return np.argmax(q_value[0]) class DQNAgent(DQNAgent): # save sample <s,a,r,s'> to the replay memory def append_sample(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay ###Output _____no_output_____ ###Markdown Main loop ###Code if __name__ == "__main__": # In case of CartPole-v1, maximum length of episode is 500 env = gym.make('CartPole-v1') # get size of state and action from environment state_size = env.observation_space.shape[0] action_size = env.action_space.n agent = DQNAgent(state_size, action_size) scores, episodes = [], [] for e in range(EPISODES): done = False score = 0 state = env.reset() state = np.reshape(state, [1, state_size]) while not done: if agent.render: env.render() # get action for the current state and go one step in environment action = agent.get_action(state) next_state, reward, done, info = env.step(action) next_state = np.reshape(next_state, [1, state_size]) # if an action make the episode end, then gives penalty of -100 reward = reward if not done or score == 499 else -100 # save the sample <s, a, r, s'> to the replay memory agent.append_sample(state, action, reward, next_state, done) # every time step do the training agent.train_model() score += reward state = next_state if done: # every episode update the target model to be same with model agent.next_states_model() # every episode, plot the play time score = score if score == 500 else score + 100 scores.append(score) episodes.append(e) pylab.plot(episodes, scores, 'b') pylab.savefig("./save_graph/cartpole_dqn2.png") print("episode:", e, " score:", score, " memory length:", len(agent.memory), " epsilon:", agent.epsilon) # if the mean of scores of last 10 episode is bigger than 490 # stop training if np.mean(scores[-min(10, len(scores)):]) > 490: sys.exit() # save the model if e % 50 == 0: agent.model.save_weights("./save_model/cartpole_dqn2.h5") ###Output _____no_output_____
trained_models/evalcassiepolicy.ipynb
###Markdown Time varying trajectory for one full phase. ###Code from matplotlib import pyplot as plt def plot_policy(data, title=None): cassie_action = ["hip roll", "hip yaw", "hip pitch", "knee", "foot"] # one row for each leg plot_rows = 2 plot_cols = 10 // 2 fig, axes = plt.subplots(plot_rows, plot_cols, figsize=(20, 10)) if title is not None: fig.suptitle(title, fontsize=16) trj_len = len(data["s"]) for r in range(plot_rows): # 2 legs for c in range(plot_cols): # 5 actions a = r * plot_cols + c axes[r][c].plot(np.arange(trj_len), data["u_delta"][:, a], "C0", label="delta") axes[r][c].plot(np.arange(trj_len), data["u_ref"][:, a], "C1", label="reference") axes[r][c].plot(np.arange(trj_len), data["u_delta"][:, a] + data["u_ref"][:, a], "C2--", label="summed") axes[r][c].plot(np.arange(trj_len), data["qpos"][:, env.pos_idx][:, a], "C3--", label="result") axes[0][c].set_xlabel(cassie_action[c]) axes[0][c].xaxis.set_label_position('top') axes[r][0].set_ylabel(["left leg", "right leg"][r]) plt.tight_layout() if title is not None: plt.subplots_adjust(top=0.93) axes[0][0].legend(loc='upper left') data = get_trajectory_data(2*env.phaselen) plot_policy(data) ###Output _____no_output_____ ###Markdown Phase portraits for left and right knee angles. ###Code @torch.no_grad() def plot_phase_portrait(): qpos = np.copy(traj.qpos) qvel = np.copy(traj.qvel) fig, axes = plt.subplots(1, 2, figsize=(10, 5)) # down sample trajectory to simrate traj_len = qpos.shape[0] sub = [t for t in range(traj_len) if t % env.simrate == 0] # left leg axes[0].plot(qpos[:, 14], qvel[:, 12], label="left knee") axes[1].plot(qpos[sub, 14], qvel[sub, 12], label="left knee") #right leg axes[0].plot(qpos[:, 28], qvel[:, 25], label="right knee") axes[1].plot(qpos[sub, 28], qvel[sub, 25], label="right knee") axes[0].set_ylabel(r"$\dot{\theta}$ (rad/s)") axes[0].set_xlabel(r"$\theta$ (rad)") axes[0].set_title(r"2Khz") axes[1].set_title(r"30Khz") axes[0].legend(loc='upper left') left_x, left_x_dot = [], [] right_x, right_x_dot = [], [] # get the full resolution phase portrait env.reset() for t in range(traj_len): if t % env.simrate == 0: state = torch.Tensor(env.get_full_state()) v, action = policy.act(state, True) v, action = v.numpy(), action.numpy() env.time += 1 env.phase += 1 if env.phase > env.phaselen: env.phase = 0 env.counter += 1 env.step_simulation(action) left_x.append(env.sim.qpos()[14]) left_x_dot.append(env.sim.qvel()[12]) right_x.append(env.sim.qpos()[28]) right_x_dot.append(env.sim.qvel()[25]) left_x, left_x_dot = np.array(left_x), np.array(left_x_dot) right_x, right_x_dot = np.array(right_x), np.array(right_x_dot) fig, axes = plt.subplots(1, 2, figsize=(10, 5)) axes[0].plot(left_x, left_x_dot, label="left knee") axes[0].plot(right_x, right_x_dot, label="right knee") axes[1].plot(left_x[sub], left_x_dot[sub], label="left knee") axes[1].plot(right_x[sub], right_x_dot[sub], label="right knee") axes[0].set_ylabel(r"$\dot{\theta}$ (rad/s)") axes[0].set_xlabel(r"$\theta$ (rad)") axes[0].set_title(r"2Khz") axes[1].set_title(r"30Khz") axes[0].legend(loc='upper left') plot_phase_portrait() @torch.no_grad() def plot_phase_states(): qpos = np.copy(traj.qpos) qvel = np.copy(traj.qvel) fig, axes = plt.subplots(1, 2, figsize=(10, 5)) # down sample trajectory to simrate traj_len = qpos.shape[0] sub = [t for t in range(traj_len) if t % env.simrate == 0] # full resolution axes[0].plot(np.arange(traj_len), qpos[:, 14], label="left knee") axes[0].plot(np.arange(traj_len), qpos[:, 28], label="right knee") axes[1].plot(np.arange(traj_len), qvel[:, 12], label="left knee") axes[1].plot(np.arange(traj_len), qvel[:, 25], label="right knee") axes[0].set_ylabel(r"$\dot{\theta}$ (rad/s)") axes[0].set_xlabel(r"$\theta$ (rad)") axes[0].set_title(r"2Khz") axes[1].set_title(r"30Khz") axes[0].legend(loc='upper left') fig, axes = plt.subplots(1, 2, figsize=(10, 5)) # downsampled axes[0].plot(np.arange(len(sub)), qpos[sub, 14], label="left knee") axes[0].plot(np.arange(len(sub)), qpos[sub, 28], label="right knee") axes[1].plot(np.arange(len(sub)), qvel[sub, 12], label="left knee") axes[1].plot(np.arange(len(sub)), qvel[sub, 25], label="right knee") left_x, left_x_dot = [], [] right_x, right_x_dot = [], [] # get the full resolution phase portrait env.reset() for t in range(traj_len): if t % env.simrate == 0: state = torch.Tensor(env.get_full_state()) v, action = policy.act(state, True) v, action = v.numpy(), action.numpy() env.time += 1 env.phase += 1 if env.phase > env.phaselen: env.phase = 0 env.counter += 1 env.step_simulation(action) left_x.append(env.sim.qpos()[14]) left_x_dot.append(env.sim.qvel()[12]) right_x.append(env.sim.qpos()[28]) right_x_dot.append(env.sim.qvel()[25]) left_x, left_x_dot = np.array(left_x), np.array(left_x_dot) right_x, right_x_dot = np.array(right_x), np.array(right_x_dot) fig, axes = plt.subplots(1, 2, figsize=(10, 5)) # full resolution positions axes[0].plot(np.arange(traj_len), left_x, label="left knee") axes[0].plot(np.arange(traj_len), right_x, label="right knee") # full resolution velocities axes[1].plot(np.arange(traj_len), left_x_dot, label="left knee") axes[1].plot(np.arange(traj_len), right_x_dot, label="left knee") axes[0].set_ylabel(r"$\dot{\theta}$ (rad/s)") axes[0].set_xlabel(r"Time") axes[0].set_title(r"$\theta$ over time (2Khz)") axes[1].set_title(r"$\frac{d\theta}{dt}$ over time (2Khz)") axes[0].legend(loc='upper left') fig, axes = plt.subplots(1, 2, figsize=(10, 5)) # downsampled positions axes[0].plot(np.arange(len(sub)), left_x[sub], label="left knee") axes[0].plot(np.arange(len(sub)), right_x[sub], label="right knee") # downsampled velocities axes[1].plot(np.arange(len(sub)), left_x_dot[sub], label="left knee") axes[1].plot(np.arange(len(sub)), right_x_dot[sub], label="left knee") axes[0].set_ylabel(r"$\theta$ (rad)") axes[0].set_xlabel(r"Time") axes[1].set_ylabel(r"$\dot{\theta}$ (rad/s)") axes[1].set_xlabel(r"Time") axes[0].set_title(r"$\theta$ over time (30hz)") axes[1].set_title(r"$\frac{d\theta}{dt}$ over time (30hz)") axes[0].legend(loc='upper left') plot_phase_states() def plot_reward(data): fig = plt.figure(figsize=(10, 5)) ax = fig.gca() ax.plot(np.arange(len(data["reward"])), data["reward"]) ax.set_ylabel(r"Reward") ax.set_xlabel(r"Timestep") ax.set_title("Reward over time") data = get_trajectory_data(10000) plot_reward(data) def plot_foot_forces(data): fig = plt.figure(figsize=(10, 5)) ax = fig.gca() ax.plot(np.arange(len(data["ff_left"])), data["ff_left"], label="left foot") ax.plot(np.arange(len(data["ff_right"])), data["ff_right"], label="right foot") ax.set_ylabel(r"Foot force (Newtons)") ax.set_xlabel(r"Timestep") ax.set_title("Foot force in z direction over time") ax.legend(loc='upper left') data = get_trajectory_data(110) plot_foot_forces(data) ###Output _____no_output_____
notebooks/old_altimetry_code.ipynb
###Markdown This is the old notebookThe material here is gradually being transferred to new notebooks, e.g. "Altimetry analysis.ipynb"A. Arendt 20200102 Altimetry Module IntroductionHere we will show you the four most important functions in the Altimetry module. We will start with simple low level functions and move to higher and more helpful ones. We will end with some examples of how to use these functions. Altimetry.Altimetry.ConnectDb(**kwargs) Purpose: Connect to a postgres database. If the default is set appropriately just execute with no arguments. eg connection,cursor = ConnectDb() Keyword Arguments:serverThe name of the server must match a dictionary name in __init__.pyget_hostGet the default host nameget_userGet the default user nameget_dbnameGet the default database name Returns: A list including psycopg2 connection and cursor to the database. Example: ###Code #First just checking the default host information stored in the __init__.py connection,cursor = alt.ConnectDb(connectionString) print "Host is %s " % alt.ConnectDb(connectionString,get_host=True) print "User is %s " % alt.ConnectDb(connectionString,get_user=True) print "DBname is %s \n" % alt.ConnectDb(connectionString,get_dbname=True) #Now, lets list all of the glaciers bigger than 1000 sq. km. cursor.execute("SELECT name,area from ergi_mat_view WHERE area>1000 ORDER BY area DESC;") #Once the select statement is run the cursor one can fetch data line by line or all of the data together. #Here we are fetching all of the data and looping through to print the area. for name, area in cursor.fetchall(): print "{glacier} has an area of {area:.0f} sq. km.".format(glacier = name,area=area) #Close the cursor once you are done. cursor.close() ###Output _____no_output_____ ###Markdown The LiDAR Altimetry data and glacier geometry data used in [Larsen et al.(2015)]() are stored in the following table structure. The key point to understand is that here we do not start from the raw LiDAR point clouds. Instead, the table lamb contains the surface elevation change rate profiles for each glacier over each possible interval. Each row was in this table was generated using a semi-manual step (discussed in Arendt et al., [2002] and Johnson et all. [2013]), where a user defines a bin size, a glacier polygon etc. and then runs a matlab script called 'lamb' to generate a top-bottom profile of surfaceelevation change rates. This script also outputs the along profile IQR of the measured surface elevation change and the mass balance integrated across the user defined glacier polygon. All of this data is included in the lamb table. The only part of the lamb table used by Larsen et al., is the elevation change rate profile and the IQR for each glacier and the glacier geometry is extracted from the ergi table and ergi_mat_view materialized view.The glacier geometry is provided by a modified version of the RGI 4.0 called the ergi. The ergi has some differences that accomodate the UAF Altimetry flightlines. Important glacier attributes including Glacier name, terminus type,surge-type,and region are all stored as points. We then run a spatial join with the ergi to create a materialzed view of the ergi table with the appropriate attributes. The ergi has also been split into 30 m elevation bins using the DEM described in Kienholz et al. [2015] to capture every glacier hypsometry in ergibins. Altimetry.Altimetry.GetSqlData2(select, bycolumn = False) Purpose:Extract data from the default database using sql query and return data organized by either row or column. This just condenses the above code into one line and insures all of your code is working off the same database. Arguments: selectAny postgresql select statement as string including ';' Keyword Arguments:bycolumnSet to True to request that data be returned by column instead of row. Returns: If data is returned by row (default) the requested data will be stored as a list of dictionaries where eachrow in the output table is stored as a dictionary where the keys are the column names. If you request bycolumn, each column in the output table is accessed though a dictionary where the key is the column name. Each column of data is stored in that dictionary as a list or as a numpy array. If you request a MULTIPOLYGON geometry, the geometry will be extracted into a list of coordinates for theouter ring and another list of inner rings (which is another list of coordinates). Data is stored in the dictionary as keys 'inner' and 'outer'. If there are no inner rings, None is returned. Example: ###Code # Lets find the which glaciers have areas greater than 1000 sq. km. data = alt.GetSqlData(credentials['ice2oceansdb-Altimetry-user'],"SELECT name,area FROM ergi_mat_view WHERE area>1000 ORDER BY area DESC;",bycolumn=False) for glacier in data: print ("{name} has an area of {area:.0f} sq. km.".format(**glacier)) ###Output Seward Glacier has an area of 3363 sq. km. Bering Glacier has an area of 3025 sq. km. Hubbard Glacier has an area of 2834 sq. km. Logan Glacier has an area of 1177 sq. km. Kaskawulsh Glacier has an area of 1054 sq. km. Nabesna Glacier has an area of 1029 sq. km. Yahtse Glacier has an area of 1019 sq. km. Tana Glacier has an area of 1003 sq. km. ###Markdown Altimetry.Altimetry.GetLambData(\*args,\**kwargs) Purpose:This is the primary function to extract Laser Altimetry Mass Balance (LAMB) data from the database. The key point to understand is that this code does not calculate mass balance from the raw LiDAR point clouds that are also stored in ice2oceans database. Instead, GetLambData queries a table called lamb that contains the surface elevation change profiles for each glacier over each possible interval. Each profile in this table was generated using a semi-manual step (discussed in Arendt et al., (2002) and Johnson et all. (2013)), where a user defines a bin size, a glacier polygon etc and then runs a matlab script called 'lamb' to generate a top-bottom profile of surface elevation change rates. This script also outputs the along profile IQR of the measured surface elevation change and the mass balance integrated across the user defined glacier polygon. All of this data is included in the lamb table and output by GetLambData. The only part of 'lamb' used by Larsen et al., is the elevation change rate profile and the IQR for each glacier. This script will retrieve Lambdata for any group of glaciers and survey intervals. It contains keywords for you to filter what intervals you would like. It will also return the glacier polygon from the RGI (the one used in Larsen et al., [2015] not Johnson et al. [2013]), the glacier hypsometry, and the Larsen et al., 2015 mass balance estimate for that glacier. Keyword Arguments: removerepeatsSet to True to select only the shortest/non-overlapping intervals for each glacier. Set to false to include all data. Default Value=Truelongest_intervalSet to True to retreive only the single longest interval available for each glacier.days_from_yearSet the number of days away from 365 to be considered. For example if you want annual intervals to be within month of each other leave default of 30. If you want sub-annual (seasonal data) set to 365. Default Value = 30interval_minMinimum length of interval in years. This is a rounded value so inputing 1 will include an interval of 0.8 years if it passes the days_from_year threshold above. Default = 0 interval_maxMaximum length of interval in years. This is a rounded value so inputing 3 will include an interval of 3.1 years if it passes the days_from_year threshold above. Default = Noneearliest_dateEarliest date of first acquistion. Enter as string 'YYYY-MM-DD'. Default = Nonelatest_dateLatest date of second acquistion. Enter as string 'YYYY-MM-DD'. Default = NoneuserwhereEnter as string. User can input additional queries as a string to a where statement. Any fields in ergi_mat_view or lamb are valid. Example input:"name NOT LIKE '%Columbia%' AND area > 10". Default="" verboseVerbose output. Default = Trueget_geomSet to True to retrieve the geometry of the glacier polygongeneralizeSet to a value to simplify geometriesby_columnGet data organized by column instead of by lamb file (Default=True)as_objectGet data output as a LambObject. Only works if by_column = True (Default=True)get_glimsidSet to true to retrieve each glaciers glimsid as well.resultsSet to true to retrieve the mass balance of the glacier as is estimated by Larsen et. al. (2015). Note the larsen et al mass balance is returned regardless of the interval you chose for that glacier. Returns: A dictionary or a lamb object with all attributes available in lamb as well as glacier parametersavailable in ergi_mat_view for the selection of surveyed glacier intervals chosen. Example: class Altimetry.Altimetry.LambObject()GetLambData can output data as a dictionary, as shown above, but it can also output the same data as an instance of a lamb object or a list of lamb objects. This not only makes life easier syntactically, it also provides access to an assortment of important methods available to this object class. Each lamb oject will contain attributes whose name and value correspond to matching fields in the database: Attribute | Data Type | Description ------------- |:-------------:|:-----lambid | integer | Primary Keyergiid | integer | foreign key to ergidate1 | date | First Acquisition Datedate2 | date | Second Acquisition Dateinterval | smallint | Interval Length (days)volmodel | real | Gacier-wide mass balance in Gt/yr: not used for Larsen et al., [2015]vol25diff | real | Gacier-wide mass balance 25th percentile error estimate in Gt/yr: not used for Larsen et al., [2015]vol75diff | real | Gacier-wide mass balance 75th percentile error estimate in Gt/yr: not used for Larsen et al., [2015]balmodel | real | Gacier-wide mass balance in m w. e./yr: not used for Larsen et al., [2015]bal25diff | real | Gacier-wide mass balance 25th percentile error estimate in m w. e./yr: not used for Larsen et al., [2015]bal75diff | real | Gacier-wide mass balance 75th percentile error estimate in m w. e./yr: not used for Larsen et al., [2015]e | integer[] | Elevation of bottom of bin (m)dz | real[] | Surface elevation change rate along elevation profile specified by e (m/yr)dz25 | real[] | Surface elevation change rate variability: 25th percentile along elevation profile specified by e (m/yr)dz75 | real[] | Surface elevation change rate variability: 75th percentile along elevation profile specified by e (m/yr)aad | real[] | Area Altitude Distribution for the surveyed glacier determined using a polygon drawn by an UAF LiDAR altimetry tech and may/may not be the RGI polygon. Note this AAD was not used for Larsen et al. [2015].masschange | real[] | Lamb output: not used for Larsen et al., 2015 (units?)massbal | real[] | Lamb output: not used for Larsen et al., 2015 (units?)numdata | integer[] | Number of crossing points in Binergiid | integer | Primary key to ergi tablearea | numeric | Glacier Areamin | numeric | Min elevation of the glacier defined by the RGI 4.0max | numeric | Max elevation of the glacier defined by the RGI 4.0continentality | real | Distance from coast (polygon centerpoint) units(?)albersgeom | geometry(MultiPolygon,3338) | Alaska Albers Polygon Geometry of the glacier boundaryname | character varying(45) | Glacier Namegltype | integer | Terminus Type 0=land,1=tide,2=lakesurge | boolean | Surge-Type Glacier?region | character varying(50) | Region defined by Larsen et al., 2015 that this glacier is inarendtregion | integer | Region defined by Arendt et al., 2002 that this glacier is in Using a LambObject, we can do the same thing as before but using a object output you will see the syntax is cleaner: ###Code import Altimetry as alt %matplotlib inline from matplotlib.pyplot import * #Lets look at the Taku timeseries #Note the only thing different from above is as_object is set to 'True' taku = alt.GetLambData(removerepeats=True,by_column=False,as_object=True, userwhere="ergi_mat_view.name='Taku Glacier'") #Plotting for t in taku: plot(t.e,t.dz,label="%s - %s" % (t.date1.year,t.date2.year)) legend(loc=4) xlabel('Elevation (m)') ylabel('Elevation Change Rate (m/yr)') ###Output list ###Markdown ***Lamb objects also have several important methods designed to work with the lambObject in column form (i.e. set by_column = True). That will help you perform standard operations to the sample you have selected. Try to use them in this order.* convert085( )* fix_terminus(slope=-0.05,error=1)* remove_upper_extrap(remove_bottom=True,erase_mean=True,add_mask=True)* normalize_elevation( )* calc_dz_stats(too_few=4)* extend_upper_extrap( )* calc_mb(units='area normalized')* convert085* get_approx_location Altimetry.Altimetry.LambObject.convert085( ) Purpose:Convert attributes dz,dz25 and dz75 to units of water equivalent instead of surface elevation change. Returns: None Example: ###Code %matplotlib inline from matplotlib.pyplot import * #Lets look at the Taku timeseries taku = alt.GetLambData(longest_interval=True,by_column=True,as_object=True, userwhere="ergi_mat_view.name='Taku Glacier'") plot(taku.e[0],taku.dz[0],label='Units m/yr') taku.convert085() plot(taku.e[0],taku.dz[0],label='Units m e. eq./yr') legend() xlabel('Elevation (m)') ylabel('Elevation Change Rate') ###Output object ###Markdown Altimetry.Altimetry.LambObject.fixterminus( ) Purpose:Correct profile's for a retreating terminus as exemplified in figure S11, [Larsen et al., 2015]. Specifically it changes dz,dz25 and dz75. Keyword Arguments:slopeThe threshold used to determine how steep the reduction in thinning rate needs to be to qualify as a section that needs to be corrected. I played with this a lot and thedefault value of -0.05 worked best.errorThe 1 quartile width to set as the error for the corrected portion of the profile Returns: None Example: ###Code %matplotlib inline #Lets look at the Gillam timeseries gillam = alt.GetLambData(longest_interval=True,by_column=True,as_object=True, userwhere="ergi_mat_view.name='Gillam Glacier'") plot(gillam.e[0],gillam.dz[0],label='Original Profile') gillam.fix_terminus() plot(gillam.e[0],gillam.dz[0],label='Corrected Profile') legend(loc=4) xlabel("Elevation (m)") ylabel("Elevation Change Rate (m/yr)") ###Output object ###Markdown Altimetry.Altimetry.LambObject.remove_upper_extrap(remove_bottom=True,erase_mean=True) Purpose:The LAMB matlab code extrapolates to the glacier head and glacier terminus when data does not make it all of the way to the top or bottom of the glacier hypsometry. While this is needed when estimating individual glacier mass balance, it isn't really appropriate when using the profile to extrapolate to other glaciers. This method removes those extrapolations by masking the top and bottom. Removing the bottom is optional with the keyword remove_bottom. Keyword Arguments* remove_bottom * set to false to only remove top. Default = True* erase_mean * Set to False to keep the mean and only delete the dz25 and dz75 fields. Default = True Returns: None Example: ###Code %matplotlib inline #Lets look at the Gillam timeseries gil = alt.GetLambData(longest_interval=True,by_column=True,as_object=True, userwhere="ergi_mat_view.name='Gillam Glacier'") plot(gil.e[0],gil.dz[0],'r',lw=2,label='Full lamb profile') gil.fix_terminus() plot(gil.e[0],gil.dz[0],'g',lw=2,label='terminus fixed') gil.remove_upper_extrap() plot(gil.e[0],gil.dz[0],'b',lw=2,label='terminus fixed and \nextrapolation removed') #best to go in this order! legend(loc=4) xlabel("Elevation (m)") ylabel("Elevation Change Rate (m/yr)") ###Output object ###Markdown Altimetry.Altimetry.LambObject.normalize_elevation( ) Purpose:Normalize the elevation range in the elevation bins listed in lamb. This normalization assumes the max and min elevation is that available in the ergi table fields max and min. This function creates and updates the class attributes: self.norme,self.normdz,self.norm25,self.norm75,self.survIQRs. This works for an individual glacier or a group within the object. Keyword Arguments:* gaussian * Set to True to place a gaussian smooth over the normalized data Returns:NoneBut adds the following attributes to the object: self.norme, self.normdz, self.norm25, self.norm75, self.survIQRs* norme * The normalized elevation of each bin where 0.00 is the glacier bottom 1 is the glacier top.* normdz * The mean elevation change rate profile on the normalized elevation scale.* norm25,norm75, survIQRs * The 1st and 3rd quartiles and the IQR on the normalized scale Example: ###Code %matplotlib inline import matplotlib.pyplot as plt #Lets look at the Gillam timeseries akrng = alt.GetLambData(longest_interval=True,by_column=True,as_object=True, userwhere="region = 'Alaska Range'") fig = plt.figure(figsize=[15,5]) ax1=fig.add_subplot(121) #PLOTTING ELEVATION PROFILES AND MAX AND MIN ELEVATION OF EACH GLACIER IN THE ALASKA RANGE labels = ['dhdt profiles','max glacier elevation', 'min glacier elevation'] for e,dz,x,n in zip(akrng.e,akrng.dz,akrng.max,akrng.min): ax1.plot(e,dz,'k',label=labels[0],zorder=1,alpha=0.5) ax1.plot(x,0,'ro',label=labels[1]) ax1.plot(n,0,'bo',label=labels[2]) #only labeling each type once labels=[None,None,None] ax1.legend() ax1.set_xlabel('Elevation') ax1.set_ylabel("Elevation Change Rate (m/yr)") #PLOTTING THE SAME PROFILES BUT NORMALIZED akrng.normalize_elevation() ax2=fig.add_subplot(122) ax2.set_xlabel('Normalized Elevation') ax2.set_ylabel("Elevation Change Rate (m/yr)") for n in akrng.normdz:ax2.plot(akrng.norme,n,'k',alpha=0.5) ###Output object ###Markdown Altimetry.Altimetry.calc_mb.LambObject.calc_mb() Purpose:Adds a new attribute to the Lamb object self.mb which is a glacier mass balance estimate given the lamb data, a normalized surface elevation change profile (from normalize_elevation) and a glacier hypsometry(run GetLambData with 'get_hypsometry=True'). This works for an individual glacier or a group within the object. calc_mb(self,units='area normalized') Keyword Arguments:* units * Set to either 'gt' or 'area normalized' Returns:* None * However, self.mb is set to the mb in the units specified Example: ###Code #Let's look at the altimetry mass balance timeseries for Bering Glacier. import Altimetry as alt bering = alt.GetLambData(removerepeats=True,by_column=True,as_object=True, userwhere="ergi_mat_view.name='Gillam Glacier'",get_hypsometry=True) bering.normalize_elevation() bering.calc_mb() for d1,d2,mb in zip (bering.date1,bering.date2,bering.mb): plot_date([d1,d2],[mb,mb],'-b',lw=2,label="{d1} - {d2}".format(d1=d1.year,d2=d2.year)) xlabel('Year') ylabel("Mass Balance (m w. eq./yr)") ###Output glimsid = G212893E63657N {'normbins': array([ 0. , 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1 , 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32, 0.33, 0.34, 0.35, 0.37, 0.38, 0.39, 0.4 , 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 , 0.61, 0.62, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 , 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.78, 0.79, 0.8 , 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 , 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.99]), 'binned_area': array([ 2.22823000e+05, 7.39385000e+05, 9.92011000e+05, 9.90115000e+05, 1.15405000e+06, 1.29920000e+06, 1.30126000e+06, 1.18990000e+06, 1.27579000e+06, 1.37134000e+06, 1.56436000e+06, 1.14943000e+06, 1.44132000e+06, 2.28815000e+06, 2.63588000e+06, 2.58708000e+06, 2.80310000e+06, 2.62507000e+06, 3.10637000e+06, 2.05606000e+06, 1.59287000e+06, 2.05669000e+06, 2.06209000e+06, 2.54242000e+06, 2.35516000e+06, 2.40597000e+06, 1.88172000e+06, 1.79273000e+06, 1.54625000e+06, 1.37281000e+06, 1.20527000e+06, 1.61539000e+06, 1.28631000e+06, 1.32520000e+06, 1.37250000e+06, 1.29303000e+06, 1.67722000e+06, 1.58500000e+06, 1.42959000e+06, 1.62597000e+06, 1.53407000e+06, 1.92728000e+06, 1.75527000e+06, 1.59493000e+06, 1.47208000e+06, 1.50101000e+06, 1.29182000e+06, 1.10406000e+06, 8.69573000e+05, 7.45280000e+05, 7.70389000e+05, 8.56141000e+05, 7.14943000e+05, 6.42839000e+05, 5.37667000e+05, 5.03609000e+05, 4.82125000e+05, 3.87107000e+05, 3.71617000e+05, 3.70635000e+05, 3.31899000e+05, 2.74142000e+05, 2.58129000e+05, 2.65194000e+05, 2.88409000e+05, 2.63761000e+05, 2.29142000e+05, 1.90461000e+05, 1.97628000e+05, 2.05820000e+05, 1.98495000e+05, 1.87795000e+05, 1.68318000e+05, 1.76737000e+05, 1.62792000e+05, 1.50348000e+05, 1.44480000e+05, 1.35247000e+05, 1.44433000e+05, 1.15838000e+05, 1.04177000e+05, 9.58676000e+04, 8.65014000e+04, 7.69227000e+04, 5.58694000e+04, 4.85291000e+04, 3.90169000e+04, 2.38083000e+04, 1.53629000e+04, 9.72044000e+03, 6.00056000e+03, 1.95690000e+03, 5.38790000e+02, 2.34841000e+03]), 'bins': array([ 945., 975., 1005., 1035., 1065., 1095., 1125., 1155., 1185., 1215., 1245., 1275., 1305., 1335., 1365., 1395., 1425., 1455., 1485., 1515., 1545., 1575., 1605., 1635., 1665., 1695., 1725., 1755., 1785., 1815., 1845., 1875., 1905., 1935., 1965., 1995., 2025., 2055., 2085., 2115., 2145., 2175., 2205., 2235., 2265., 2295., 2325., 2355., 2385., 2415., 2445., 2475., 2505., 2535., 2565., 2595., 2625., 2655., 2685., 2715., 2745., 2775., 2805., 2835., 2865., 2895., 2925., 2955., 2985., 3015., 3045., 3075., 3105., 3135., 3165., 3195., 3225., 3255., 3285., 3315., 3345., 3375., 3405., 3435., 3465., 3495., 3525., 3555., 3585., 3615., 3645., 3675., 3735., 3705.])} glimsid = G212893E63657N {'normbins': array([ 0. , 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1 , 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32, 0.33, 0.34, 0.35, 0.37, 0.38, 0.39, 0.4 , 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 , 0.61, 0.62, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 , 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.78, 0.79, 0.8 , 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 , 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.99]), 'binned_area': array([ 2.22823000e+05, 7.39385000e+05, 9.92011000e+05, 9.90115000e+05, 1.15405000e+06, 1.29920000e+06, 1.30126000e+06, 1.18990000e+06, 1.27579000e+06, 1.37134000e+06, 1.56436000e+06, 1.14943000e+06, 1.44132000e+06, 2.28815000e+06, 2.63588000e+06, 2.58708000e+06, 2.80310000e+06, 2.62507000e+06, 3.10637000e+06, 2.05606000e+06, 1.59287000e+06, 2.05669000e+06, 2.06209000e+06, 2.54242000e+06, 2.35516000e+06, 2.40597000e+06, 1.88172000e+06, 1.79273000e+06, 1.54625000e+06, 1.37281000e+06, 1.20527000e+06, 1.61539000e+06, 1.28631000e+06, 1.32520000e+06, 1.37250000e+06, 1.29303000e+06, 1.67722000e+06, 1.58500000e+06, 1.42959000e+06, 1.62597000e+06, 1.53407000e+06, 1.92728000e+06, 1.75527000e+06, 1.59493000e+06, 1.47208000e+06, 1.50101000e+06, 1.29182000e+06, 1.10406000e+06, 8.69573000e+05, 7.45280000e+05, 7.70389000e+05, 8.56141000e+05, 7.14943000e+05, 6.42839000e+05, 5.37667000e+05, 5.03609000e+05, 4.82125000e+05, 3.87107000e+05, 3.71617000e+05, 3.70635000e+05, 3.31899000e+05, 2.74142000e+05, 2.58129000e+05, 2.65194000e+05, 2.88409000e+05, 2.63761000e+05, 2.29142000e+05, 1.90461000e+05, 1.97628000e+05, 2.05820000e+05, 1.98495000e+05, 1.87795000e+05, 1.68318000e+05, 1.76737000e+05, 1.62792000e+05, 1.50348000e+05, 1.44480000e+05, 1.35247000e+05, 1.44433000e+05, 1.15838000e+05, 1.04177000e+05, 9.58676000e+04, 8.65014000e+04, 7.69227000e+04, 5.58694000e+04, 4.85291000e+04, 3.90169000e+04, 2.38083000e+04, 1.53629000e+04, 9.72044000e+03, 6.00056000e+03, 1.95690000e+03, 5.38790000e+02, 2.34841000e+03]), 'bins': array([ 945., 975., 1005., 1035., 1065., 1095., 1125., 1155., 1185., 1215., 1245., 1275., 1305., 1335., 1365., 1395., 1425., 1455., 1485., 1515., 1545., 1575., 1605., 1635., 1665., 1695., 1725., 1755., 1785., 1815., 1845., 1875., 1905., 1935., 1965., 1995., 2025., 2055., 2085., 2115., 2145., 2175., 2205., 2235., 2265., 2295., 2325., 2355., 2385., 2415., 2445., 2475., 2505., 2535., 2565., 2595., 2625., 2655., 2685., 2715., 2745., 2775., 2805., 2835., 2865., 2895., 2925., 2955., 2985., 3015., 3045., 3075., 3105., 3135., 3165., 3195., 3225., 3255., 3285., 3315., 3345., 3375., 3405., 3435., 3465., 3495., 3525., 3555., 3585., 3615., 3645., 3675., 3735., 3705.])} glimsid = G212893E63657N {'normbins': array([ 0. , 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1 , 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32, 0.33, 0.34, 0.35, 0.37, 0.38, 0.39, 0.4 , 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 , 0.61, 0.62, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 , 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.78, 0.79, 0.8 , 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 , 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.99]), 'binned_area': array([ 2.22823000e+05, 7.39385000e+05, 9.92011000e+05, 9.90115000e+05, 1.15405000e+06, 1.29920000e+06, 1.30126000e+06, 1.18990000e+06, 1.27579000e+06, 1.37134000e+06, 1.56436000e+06, 1.14943000e+06, 1.44132000e+06, 2.28815000e+06, 2.63588000e+06, 2.58708000e+06, 2.80310000e+06, 2.62507000e+06, 3.10637000e+06, 2.05606000e+06, 1.59287000e+06, 2.05669000e+06, 2.06209000e+06, 2.54242000e+06, 2.35516000e+06, 2.40597000e+06, 1.88172000e+06, 1.79273000e+06, 1.54625000e+06, 1.37281000e+06, 1.20527000e+06, 1.61539000e+06, 1.28631000e+06, 1.32520000e+06, 1.37250000e+06, 1.29303000e+06, 1.67722000e+06, 1.58500000e+06, 1.42959000e+06, 1.62597000e+06, 1.53407000e+06, 1.92728000e+06, 1.75527000e+06, 1.59493000e+06, 1.47208000e+06, 1.50101000e+06, 1.29182000e+06, 1.10406000e+06, 8.69573000e+05, 7.45280000e+05, 7.70389000e+05, 8.56141000e+05, 7.14943000e+05, 6.42839000e+05, 5.37667000e+05, 5.03609000e+05, 4.82125000e+05, 3.87107000e+05, 3.71617000e+05, 3.70635000e+05, 3.31899000e+05, 2.74142000e+05, 2.58129000e+05, 2.65194000e+05, 2.88409000e+05, 2.63761000e+05, 2.29142000e+05, 1.90461000e+05, 1.97628000e+05, 2.05820000e+05, 1.98495000e+05, 1.87795000e+05, 1.68318000e+05, 1.76737000e+05, 1.62792000e+05, 1.50348000e+05, 1.44480000e+05, 1.35247000e+05, 1.44433000e+05, 1.15838000e+05, 1.04177000e+05, 9.58676000e+04, 8.65014000e+04, 7.69227000e+04, 5.58694000e+04, 4.85291000e+04, 3.90169000e+04, 2.38083000e+04, 1.53629000e+04, 9.72044000e+03, 6.00056000e+03, 1.95690000e+03, 5.38790000e+02, 2.34841000e+03]), 'bins': array([ 945., 975., 1005., 1035., 1065., 1095., 1125., 1155., 1185., 1215., 1245., 1275., 1305., 1335., 1365., 1395., 1425., 1455., 1485., 1515., 1545., 1575., 1605., 1635., 1665., 1695., 1725., 1755., 1785., 1815., 1845., 1875., 1905., 1935., 1965., 1995., 2025., 2055., 2085., 2115., 2145., 2175., 2205., 2235., 2265., 2295., 2325., 2355., 2385., 2415., 2445., 2475., 2505., 2535., 2565., 2595., 2625., 2655., 2685., 2715., 2745., 2775., 2805., 2835., 2865., 2895., 2925., 2955., 2985., 3015., 3045., 3075., 3105., 3135., 3165., 3195., 3225., 3255., 3285., 3315., 3345., 3375., 3405., 3435., 3465., 3495., 3525., 3555., 3585., 3615., 3645., 3675., 3735., 3705.])} object ###Markdown [Go to Table of Contents](toc) Altimetry.Altimetry.LambObject.calc_dz_stats() Purpose:Calculates various statistics for the sample within the object. Requires that one run normalize_elevation first. calc_dz_stats(masked_array=False,too_few=None) Keyword Arguments:too_fewWhen calculating kurtosis we normaly require samples to be larger than 4. If you happen to be choosing groups with a sample size smaller than 4, set this to None and ignore the Kurtosis, and for that matter skew etc. as that is a really small sample. (Default = 4) Result:Adds the following attributes to the lamb object:quadsumQuadrature sum of the sample along profile (m/yr) along the normalized profile. Used as an estimate of surveyed glacier uncertainty for the region when integrated over all surveyed glaciers in this sample. dzs_stdStandard Deviation along the normalized profile. dzs_meanMean surface elevation change rate (m/yr) along the normalized profile. dzs_medianMedian surface elevation change rate (m/yr) along the normalized profile. dzs_madnNormalizedMAD of surface elevation change rate (m/yr) along the normalized profile. dzs_semStandar error of the mean (m/yr) along the normalized profile. Used as an estimate of surveyed glacier uncertainty for the region when integrated over all unsurveyed glaciers normalpP-value probablitiy of normality along profile skewz/pZ-score and p-value for test of whether the sample elevation change rates have a skew that is non-normal along profile. kurtz/pZ-score and p-value for test of whether the sample elevation change rates have a skew that is non-normal along profile. skewThe skew of the distribution along profile. kurtosisThe kurtosis of the distribution along profile. percentile_5The 5th percentile of the distribution along profile (m/yr). quartile_1The first quartile of the distribution along profile (m/yr). percentile_33The 33rd percentile of the distribution along profile (m/yr). percentile_66The 66th percentile of the distribution along profile (m/yr). quartile_3The 3rd quartile of the distribution along profile (m/yr). percentile_95The 95th percentile of the distribution along profile (m/yr). Example: ###Code %matplotlib inline from matplotlib.pyplot import * #Lets look at the distribution of elevation changes in the Wrangells wra = alt.GetLambData(longest_interval=True,interval_max=30,interval_min=5,by_column=True,as_object=True, \ userwhere="ergi_mat_view.region='Alaska Range'") wra.normalize_elevation() wra.calc_dz_stats() #Plotting the mean surface elevation profile plot(wra.norme,wra.dzs_mean) #Plotting the standard deviation of surface elevation changes fill_between(wra.norme,wra.dzs_mean+wra.dzs_std,wra.dzs_mean-wra.dzs_std,alpha=0.3) xlabel("Normalized Elevation (m)") ylabel("Elevation Change Rate (m/yr)") ###Output object (35, 100) ###Markdown Altimetry.Altimetry.LambObject.extend_upper_extrap() Purpose:Depending on the sample of glaciers you choose, you may run into samples where none of the surveys cover dhdt values at the top or bottom of the normalized elevation curve. Thus you may not have any stats at the top or bottom of the elevation curve. In these cases we this function will extend all of the stats from the last known data point at the top or bottom. This is generally only needed and best to run prior to using 'extrapolation'. If no extension is needed the data will not be changed. Alitmetry.Altimetry.partition_dataset() Purpose:This function simplifies partitioning the altimetry dataset in (almost) anyway the user would like for purposes of running the extrapolate function to estimate the regional mass balance. Here the user specifies a list of "WHERE" clauses that select samples that can then be used to represent some segment of glaciers from the ergi. This function simply loops through GetLambData and returns a list of Lamb objects and assumes you are desiring the longest interval available for each glacier. The example should be very helpful in how to use this function. Argument:partitioningA list of strings that would go into where statements that describe each partition individually. In larsen et al. we divide our extrapolation by terminus type. So wehave three groups, each with a where statement that says either "gltype=0","gltype=1",or "gltype=2". Thus this input is a list as ["gltype=0","gltype=1","gltype=2"]. Do not include the "WHERE or ANDs."This list must be as long as the number of groups you are partitioning. Keyword Arguments:apply_to_allThere may also be requirments that apply to all of the groups. In our example above, we don't want surge glaciers or a few specific outliers. Requirements for all groups are listed here, as in the example above. You can list as many or as few (None) as you want.interval_mininterval_maxThis has a similar effect to apply to all, it is just a easier way to specify requirements on the interval length. Numbers can be entered as an int. (Default = 5,30 for min and max respectively) too_fewWhen calculating kurtosis we normaly require samples to be larger than 4. If you happen to be choosing groups with a sample size smaller than 4 set this to None and ignore the Kurtosis, and for that matter skew etc. as that is a really small sample. (Default = 4) Returns: A 5 element list of the following: lamb,userwheres,notused,whereswo,notswolambA list of LambObjects for each of the partitioned groups specfied in the paritioning argument.These are in the same order as in partitioning argument. If any of the groups requested haveno glaciers in them, that LambObject is excluded from this list. userwheresA list of where statements that were used to filter altimetry intervals for each group. This combines the where statments in partitioning, apply_to_all and interval_min/max . Note if noglaciers exist in that group, the where is not output here, and instead will come out innotused.notusedA list of the groups specified by partitioning that have no glaciers in them. The where statements in a list are returned here.whereswoSame as userwheres but does not include the where statements associated with the apply_to_allargument. This is useful when used with extrapolate.notswoSame as notused but does not include the where statements associated with the apply_to_allargument. Example:See example with extrapolate below. Altimetry.Altimetry.extrapolate(\*args,\**kwargs) Purpose:This function extrapolates to unsurveyed glaciers and returns estimates of mass balance for all glaciers,including surveyed glaciers in the ERGI. This function is intended to work with partition dataset wherepartition dataset splits the altimetry dataset up into samples and then this function applies thosesample mean curves to glaciers of choice. There are key subltetys to how this works so pay attention here.In effort to give the user the maximum flexibility this function will allow you to give yourself resultsthat make no sense. So you must be careful and also examine your outputs. There is an example below. Arguments:* user * Input a string that states the user name. This funtion will output a table with the name alt_result_[user]X where X is 1 or if the user has a table already this script will not over-write so the number will be increased incrementally. This will prevent different users fromconfusing their results. * groups * A list lamb objects output by partition dataset, each element in the list is a single curve that the user intends to apply to some group of glaciers. It is critical here to note that the glaciers that receive a specifc elevation profile do NOT need to be at all related to theglaciers that made the profile. This will be clarified further on. * selections * A list of strings that specify where statements that describe where each group from the group argument should be applied. This should be of the same length and same intended order of the lamb list presented for the groups argument. The KEY here is that the user must insure that the selections together, include EVERY SINGLE glacier in the ergi AND don't ever have overlapping selections either. Said another way the selections list must be comprehsive of the glacier inventory and each selection is mututally exclusive of the others. See the example below for further clarification. Keyword Arguments:* insert\_surveyed\_data * Set to a lamb object that includes glaciers, for which, you would like to insert the actual surveyed glacier profile into the regional estimate. If this keyword is left blank, we use the extrapolation curves are applied to all glaciers in the selections argument even if they were surveyed glaciers (Default = one)* keep\_postgres\_tbls * Set to True if the user wishes to retain the output dataset (Default=False). If so, this table will be called alt_result_[user]X * export_shp * Set to a pathname if the user would like to output the table as a shpfile for viewing in a GIS. * density * Set to the assumed density (Default=0.85) * density_err * Set to the assumed density uncertainty (Default=0.06) * acrossgl_err * Set to the assumed across glacier uncertainty (Default=0.0) Returns: A dictionary of dictionaries containing partitioned mass balance results. Where glaciers are divided in the following ways. The following dictionary keys are returned regardless of your partitioning choices: * bysurveyed * Mass balance of glaciers divided by whether they were 'surveyed' or 'unsurveyed' for the data input.* bytype * same but divided by terminus type.* all * Same but the region as a whole.* bytype_survey * Same but divided by terminus type and whether they were 'surveyed' or 'unsurveyed' for the data input.Within each of these groups the summed mass balance is presented in another dictionary with keys:* area * Total area of group* totalkgm2 * Mean mass balance in m w eq/yr (yes it says kgm2)* errkgm2 * Mean mass balance error in m w eq/yr (yes it says kgm2)* totalgt * Total mass balance Gt/yr* errgt * Total mass balance error Gt/yr. Note this does not include the 50% increase in error for tidewater glaciers nor the area dependency correction that is discused in larsen et al. Those should to be added manually if the user wishes. If the keyword keep_postgres_tbls=True, the result table will be retained in the database and will allow the user to query and view this table (in a GIS) to evaluate the extrapolation further. Example use with GetLambData AND partition_dataset: ###Code %matplotlib inline import Altimetry as alt #Retreiving all of the surveyed glacier data in one lambobject #to be applied those glaciers individually as surveyeddata. surveyeddata = alt.GetLambData(verbose=False,longest_interval=True,interval_max=30,interval_min=5,by_column=True, as_object=True) surveyeddata.fix_terminus() surveyeddata.normalize_elevation() surveyeddata.calc_dz_stats() types = ["gltype=0","gltype=1","gltype=2"] lamb,userwheres,notused,whereswo,notswo = alt.partition_dataset(types,applytoall=["surge='f'","name NOT IN ('Columbia Glacier','West Yakutat Glacier','East Yakutat Glacier')"]) #Lastly, runing extrapolate on those groups. #this applies the group extrapolation to each group but we use the where statements include exceptions # like surgers. To reiterate, we ran partition_dataset on land/lake/tide w/o surgers. # But we apply those same curves to land/lake/tides but to all glaciers # including surgers. Here, ther user has then inserted the surveyed data so surveyed glacier mass balance #is included on an individual # glacier basis. Lastly here we drop the output_table, please do this as the output table is several Gb. results = alt.extrapolate('guest',lamb,whereswo,insert_surveyed_data=surveyeddata,keep_postgres_tbls=True) results %matplotlib inline from matplotlib.pyplot import * import numpy as N #Plotting a pie chart of the total amount of mass lost from each glacier type. typenames = {'0':'Land','1':'Tidewater','2':'Lake'} labels = [typenames[i] for i in results['bytype']['gltype'].astype(str)] figure(figsize=(3,3)) pi = pie(N.abs(results['bytype']['totalgt']),labels=labels) ###Output _____no_output_____
exercises/solutions/ex01/01_introduction.ipynb
###Markdown IntroductionThis first exercise is based on the python crashcourse offered by the department "Nachrichtentechnik" and "Elektrische Messtechnik".[Python Crash-Course](https://fgnt.github.io/python_crashkurs//) MATLAB vs. Python| MATLAB | Python ||:--------------------------------------------------------------:|:----------------------------------------------------------------------------------:|| Commercial | Open Source || New functions via MATLAB Toolkits(no package manager) | Installation of new modules withpackage manager (conda or pip) || Mainly procedual programming(Objects exists but are a hassle) | Object oriented || Mathematical Programming Language | General Purpose Language withmany mathematical modules || No Namespaces for Core-Functions | Proper Namespaces (e.g. `plt.plot` instead of `plot`) || GUI included | Various GUIs available.We recommend [Pycharm](https://www.jetbrains.com/pycharm/) || Download: [Mathworks](https://de.mathworks.com/downloads/) | Download: [Anaconda](https://www.anaconda.com/download/) | Numpy for MATLAB users[https://docs.scipy.org/doc/numpy-1.15.0/user/numpy-for-matlab-users.html](https://docs.scipy.org/doc/numpy-1.15.0/user/numpy-for-matlab-users.html) Common Libraries* Numpy (Vector and Matrix operations, Numeric computing)* Matplotlib (Plotting)* Pandas (Table operations)* Scikit-Learn (Machine Learning)* Tensorflow / PyTorch (Neural Networks)* SymPy (Symbolic computations)* Seaborn (Advanced Plotting)* ... Quickstart ###Code import numpy as np import matplotlib.pyplot as plt #plt.style.use('dark_background') U_0 = 3 # V u_peak = 2 # V f_0 = 50 # 1/s # Timevector in s (Sequence of numbers) t = np.arange(start=0, stop=0.04, step=0.001) u = U_0 + u_peak * np.sin(2 * np.pi * f_0 * t) plt.plot(t, u, 'o--') plt.xlabel('Time $t$ / s') plt.ylabel('Voltage $u(t)$ / V') plt.grid(True) ###Output _____no_output_____
Course_4_Residual_Networks_v2a.ipynb
###Markdown Residual NetworksWelcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, they are hard to train. Residual Networks, introduced by [He et al.](https://arxiv.org/pdf/1512.03385.pdf), allow you to train much deeper networks than were previously practically feasible.**In this assignment, you will:**- Implement the basic building blocks of ResNets. - Put together these building blocks to implement and train a state-of-the-art neural network for image classification. Updates If you were working on the notebook before this update...* The current notebook is version "2a".* You can find your original work saved in the notebook with the previous version name ("v2") * To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* For testing on an image, replaced `preprocess_input(x)` with `x=x/255.0` to normalize the input image in the same way that the model's training data was normalized.* Refers to "shallower" layers as those layers closer to the input, and "deeper" layers as those closer to the output (Using "shallower" layers instead of "lower" or "earlier").* Added/updated instructions. This assignment will be done in Keras. Before jumping into the problem, let's run the cell below to load the required packages. ###Code import numpy as np from keras import layers from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D from keras.models import Model, load_model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input import pydot from IPython.display import SVG from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from resnets_utils import * from keras.initializers import glorot_uniform import scipy.misc from matplotlib.pyplot import imshow %matplotlib inline import keras.backend as K K.set_image_data_format('channels_last') K.set_learning_phase(1) ###Output Using TensorFlow backend. ###Markdown 1 - The problem of very deep neural networksLast week, you built your first convolutional neural network. In recent years, neural networks have become deeper, with state-of-the-art networks going from just a few layers (e.g., AlexNet) to over a hundred layers.* The main benefit of a very deep network is that it can represent very complex functions. It can also learn features at many different levels of abstraction, from edges (at the shallower layers, closer to the input) to very complex features (at the deeper layers, closer to the output). * However, using a deeper network doesn't always help. A huge barrier to training them is vanishing gradients: very deep networks often have a gradient signal that goes to zero quickly, thus making gradient descent prohibitively slow. * More specifically, during gradient descent, as you backprop from the final layer back to the first layer, you are multiplying by the weight matrix on each step, and thus the gradient can decrease exponentially quickly to zero (or, in rare cases, grow exponentially quickly and "explode" to take very large values). * During training, you might therefore see the magnitude (or norm) of the gradient for the shallower layers decrease to zero very rapidly as training proceeds: **Figure 1** : **Vanishing gradient** The speed of learning decreases very rapidly for the shallower layers as the network trains You are now going to solve this problem by building a Residual Network! 2 - Building a Residual NetworkIn ResNets, a "shortcut" or a "skip connection" allows the model to skip layers: **Figure 2** : A ResNet block showing a **skip-connection** The image on the left shows the "main path" through the network. The image on the right adds a shortcut to the main path. By stacking these ResNet blocks on top of each other, you can form a very deep network. We also saw in lecture that having ResNet blocks with the shortcut also makes it very easy for one of the blocks to learn an identity function. This means that you can stack on additional ResNet blocks with little risk of harming training set performance. (There is also some evidence that the ease of learning an identity function accounts for ResNets' remarkable performance even more so than skip connections helping with vanishing gradients).Two main types of blocks are used in a ResNet, depending mainly on whether the input/output dimensions are same or different. You are going to implement both of them: the "identity block" and the "convolutional block." 2.1 - The identity blockThe identity block is the standard block used in ResNets, and corresponds to the case where the input activation (say $a^{[l]}$) has the same dimension as the output activation (say $a^{[l+2]}$). To flesh out the different steps of what happens in a ResNet's identity block, here is an alternative diagram showing the individual steps: **Figure 3** : **Identity block.** Skip connection "skips over" 2 layers. The upper path is the "shortcut path." The lower path is the "main path." In this diagram, we have also made explicit the CONV2D and ReLU steps in each layer. To speed up training we have also added a BatchNorm step. Don't worry about this being complicated to implement--you'll see that BatchNorm is just one line of code in Keras! In this exercise, you'll actually implement a slightly more powerful version of this identity block, in which the skip connection "skips over" 3 hidden layers rather than 2 layers. It looks like this: **Figure 4** : **Identity block.** Skip connection "skips over" 3 layers. Here are the individual steps.First component of main path: - The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be `conv_name_base + '2a'`. Use 0 as the seed for the random initialization. - The first BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2a'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Second component of main path:- The second CONV2D has $F_2$ filters of shape $(f,f)$ and a stride of (1,1). Its padding is "same" and its name should be `conv_name_base + '2b'`. Use 0 as the seed for the random initialization. - The second BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2b'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Third component of main path:- The third CONV2D has $F_3$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be `conv_name_base + '2c'`. Use 0 as the seed for the random initialization. - The third BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2c'`. - Note that there is **no** ReLU activation function in this component. Final step: - The `X_shortcut` and the output from the 3rd layer `X` are added together.- **Hint**: The syntax will look something like `Add()([var1,var2])`- Then apply the ReLU activation function. This has no name and no hyperparameters. **Exercise**: Implement the ResNet identity block. We have implemented the first component of the main path. Please read this carefully to make sure you understand what it is doing. You should implement the rest. - To implement the Conv2D step: [Conv2D](https://keras.io/layers/convolutional/conv2d)- To implement BatchNorm: [BatchNormalization](https://faroit.github.io/keras-docs/1.2.2/layers/normalization/) (axis: Integer, the axis that should be normalized (typically the 'channels' axis))- For the activation, use: `Activation('relu')(X)`- To add the value passed forward by the shortcut: [Add](https://keras.io/layers/merge/add) ###Code # GRADED FUNCTION: identity_block def identity_block(X, f, filters, stage, block): """ Implementation of the identity block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network Returns: X -- output of the identity block, tensor of shape (n_H, n_W, n_C) """ # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value. You'll need this later to add back to the main path. X_shortcut = X # First component of main path X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path (≈2 lines) X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X) # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = layers.Add()([X, X_shortcut]) X = Activation('relu')(X) ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0])) ###Output out = [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] ###Markdown **Expected Output**: **out** [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] 2.2 - The convolutional blockThe ResNet "convolutional block" is the second block type. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path: **Figure 4** : **Convolutional block** * The CONV2D layer in the shortcut path is used to resize the input $x$ to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. (This plays a similar role as the matrix $W_s$ discussed in lecture.) * For example, to reduce the activation dimensions's height and width by a factor of 2, you can use a 1x1 convolution with a stride of 2. * The CONV2D layer on the shortcut path does not use any non-linear activation function. Its main role is to just apply a (learned) linear function that reduces the dimension of the input, so that the dimensions match up for the later addition step. The details of the convolutional block are as follows. First component of main path:- The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be `conv_name_base + '2a'`. Use 0 as the `glorot_uniform` seed.- The first BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2a'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Second component of main path:- The second CONV2D has $F_2$ filters of shape (f,f) and a stride of (1,1). Its padding is "same" and it's name should be `conv_name_base + '2b'`. Use 0 as the `glorot_uniform` seed.- The second BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2b'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Third component of main path:- The third CONV2D has $F_3$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and it's name should be `conv_name_base + '2c'`. Use 0 as the `glorot_uniform` seed.- The third BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2c'`. Note that there is no ReLU activation function in this component. Shortcut path:- The CONV2D has $F_3$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be `conv_name_base + '1'`. Use 0 as the `glorot_uniform` seed.- The BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '1'`. Final step: - The shortcut and the main path values are added together.- Then apply the ReLU activation function. This has no name and no hyperparameters. **Exercise**: Implement the convolutional block. We have implemented the first component of the main path; you should implement the rest. As before, always use 0 as the seed for the random initialization, to ensure consistency with our grader.- [Conv2D](https://keras.io/layers/convolutional/conv2d)- [BatchNormalization](https://keras.io/layers/normalization/batchnormalization) (axis: Integer, the axis that should be normalized (typically the features axis))- For the activation, use: `Activation('relu')(X)`- [Add](https://keras.io/layers/merge/add) ###Code # GRADED FUNCTION: convolutional_block def convolutional_block(X, f, filters, stage, block, s = 2): """ Implementation of the convolutional block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network s -- Integer, specifying the stride to be used Returns: X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C) """ # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path X = Conv2D(F1, (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = Conv2D(F2, (f, f), strides = (1,1),padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path (≈2 lines) X = Conv2D(F3, (1, 1), strides = (1,1),padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X) ##### SHORTCUT PATH #### (≈2 lines) X_shortcut = Conv2D(F3, (1, 1), strides = (s,s),padding = 'valid', name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut) X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut) # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = layers.Add()([X_shortcut, X]) X = Activation('relu')(X) ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0])) ###Output out = [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] ###Markdown **Expected Output**: **out** [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] 3 - Building your first ResNet model (50 layers)You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together. **Figure 5** : **ResNet-50 model** The details of this ResNet-50 model are:- Zero-padding pads the input with a pad of (3,3)- Stage 1: - The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1". - BatchNorm is applied to the 'channels' axis of the input. - MaxPooling uses a (3,3) window and a (2,2) stride.- Stage 2: - The convolutional block uses three sets of filters of size [64,64,256], "f" is 3, "s" is 1 and the block is "a". - The 2 identity blocks use three sets of filters of size [64,64,256], "f" is 3 and the blocks are "b" and "c".- Stage 3: - The convolutional block uses three sets of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a". - The 3 identity blocks use three sets of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".- Stage 4: - The convolutional block uses three sets of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a". - The 5 identity blocks use three sets of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".- Stage 5: - The convolutional block uses three sets of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a". - The 2 identity blocks use three sets of filters of size [512, 512, 2048], "f" is 3 and the blocks are "b" and "c".- The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".- The 'flatten' layer doesn't have any hyperparameters or name.- The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation. Its name should be `'fc' + str(classes)`.**Exercise**: Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2.) Make sure you follow the naming convention in the text above. You'll need to use this function: - Average pooling [see reference](https://keras.io/layers/pooling/averagepooling2d)Here are some other functions we used in the code below:- Conv2D: [See reference](https://keras.io/layers/convolutional/conv2d)- BatchNorm: [See reference](https://keras.io/layers/normalization/batchnormalization) (axis: Integer, the axis that should be normalized (typically the features axis))- Zero padding: [See reference](https://keras.io/layers/convolutional/zeropadding2d)- Max pooling: [See reference](https://keras.io/layers/pooling/maxpooling2d)- Fully connected layer: [See reference](https://keras.io/layers/core/dense)- Addition: [See reference](https://keras.io/layers/merge/add) ###Code # GRADED FUNCTION: ResNet50 def ResNet50(input_shape = (64, 64, 3), classes = 6): """ Implementation of the popular ResNet50 the following architecture: CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3 -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER Arguments: input_shape -- shape of the images of the dataset classes -- integer, number of classes Returns: model -- a Model() instance in Keras """ # Define the input as a tensor with shape input_shape X_input = Input(input_shape) # Zero-Padding X = ZeroPadding2D((3, 3))(X_input) # Stage 1 X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = 'bn_conv1')(X) X = Activation('relu')(X) X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2 X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1) X = identity_block(X, 3, [64, 64, 256], stage=2, block='b') X = identity_block(X, 3, [64, 64, 256], stage=2, block='c') ### START CODE HERE ### # Stage 3 (≈4 lines) X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block='a', s = 2) X = identity_block(X, 3, [128, 128, 512], stage=3, block='b') X = identity_block(X, 3, [128, 128, 512], stage=3, block='c') X = identity_block(X, 3, [128, 128, 512], stage=3, block='d') # Stage 4 (≈6 lines) X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2) X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f') # Stage 5 (≈3 lines) X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2) X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b') X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c') # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)" X = AveragePooling2D(pool_size=(2, 2), name = 'avg_pool')(X) ### END CODE HERE ### # output layer X = Flatten()(X) X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X) # Create model model = Model(inputs = X_input, outputs = X, name='ResNet50') return model ###Output _____no_output_____ ###Markdown Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running `model.fit(...)` below. ###Code model = ResNet50(input_shape = (64, 64, 3), classes = 6) ###Output _____no_output_____ ###Markdown As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model. ###Code model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown The model is now ready to be trained. The only thing you need is a dataset. Let's load the SIGNS Dataset. **Figure 6** : **SIGNS dataset** ###Code X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig/255. X_test = X_test_orig/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) ###Output number of training examples = 1080 number of test examples = 120 X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape: (120, 64, 64, 3) Y_test shape: (120, 6) ###Markdown Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch. ###Code model.fit(X_train, Y_train, epochs = 2, batch_size = 32) ###Output Epoch 1/2 1080/1080 [==============================] - 266s - loss: 0.7792 - acc: 0.7778 Epoch 2/2 1080/1080 [==============================] - 263s - loss: 1.0705 - acc: 0.7278 ###Markdown **Expected Output**: ** Epoch 1/2** loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours. ** Epoch 2/2** loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing. Let's see how this model (trained on only two epochs) performs on the test set. ###Code preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) ###Output 120/120 [==============================] - 9s Loss = 13.1812077204 Test Accuracy = 0.166666667163 ###Markdown **Expected Output**: **Test Accuracy** between 0.16 and 0.25 For the purpose of this assignment, we've asked you to train the model for just two epochs. You can see that it achieves poor performances. Please go ahead and submit your assignment; to check correctness, the online grader will run your code only for a small number of epochs as well. After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. We get a lot better performance when we train for ~20 epochs, but this will take more than an hour when training on a CPU. Using a GPU, we've trained our own ResNet50 model's weights on the SIGNS dataset. You can load and run our trained model on the test set in the cells below. It may take ≈1min to load the model. ###Code model = load_model('ResNet50.h5') preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) ###Output 120/120 [==============================] - 10s Loss = 0.530178320408 Test Accuracy = 0.866666662693 ###Markdown ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy.Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system! 4 - Test on your own image (Optional/Ungraded) If you wish, you can also take a picture of your own hand and see the output of the model. To do this: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Write your image's name in the following code 4. Run the code and check if the algorithm is right! ###Code img_path = 'images/my_image.jpg' img = image.load_img(img_path, target_size=(64, 64)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = x/255.0 print('Input image shape:', x.shape) my_image = scipy.misc.imread(img_path) imshow(my_image) print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ") print(model.predict(x)) ###Output Input image shape: (1, 64, 64, 3) class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = [[ 3.41876671e-06 2.77412561e-04 9.99522924e-01 1.98842812e-07 1.95619068e-04 4.11686671e-07]] ###Markdown You can also print a summary of your model by running the following code. ###Code model.summary() ###Output ____________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 64, 64, 3) 0 ____________________________________________________________________________________________________ zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3) 0 input_1[0][0] ____________________________________________________________________________________________________ conv1 (Conv2D) (None, 32, 32, 64) 9472 zero_padding2d_1[0][0] ____________________________________________________________________________________________________ bn_conv1 (BatchNormalization) (None, 32, 32, 64) 256 conv1[0][0] ____________________________________________________________________________________________________ activation_4 (Activation) (None, 32, 32, 64) 0 bn_conv1[0][0] ____________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 64) 0 activation_4[0][0] ____________________________________________________________________________________________________ res2a_branch2a (Conv2D) (None, 15, 15, 64) 4160 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2a[0][0] ____________________________________________________________________________________________________ activation_5 (Activation) (None, 15, 15, 64) 0 bn2a_branch2a[0][0] ____________________________________________________________________________________________________ res2a_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_5[0][0] ____________________________________________________________________________________________________ bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2b[0][0] ____________________________________________________________________________________________________ activation_6 (Activation) (None, 15, 15, 64) 0 bn2a_branch2b[0][0] ____________________________________________________________________________________________________ res2a_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_6[0][0] ____________________________________________________________________________________________________ res2a_branch1 (Conv2D) (None, 15, 15, 256) 16640 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2a_branch2c[0][0] ____________________________________________________________________________________________________ bn2a_branch1 (BatchNormalization (None, 15, 15, 256) 1024 res2a_branch1[0][0] ____________________________________________________________________________________________________ add_2 (Add) (None, 15, 15, 256) 0 bn2a_branch2c[0][0] bn2a_branch1[0][0] ____________________________________________________________________________________________________ activation_7 (Activation) (None, 15, 15, 256) 0 add_2[0][0] ____________________________________________________________________________________________________ res2b_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_7[0][0] ____________________________________________________________________________________________________ bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2a[0][0] ____________________________________________________________________________________________________ activation_8 (Activation) (None, 15, 15, 64) 0 bn2b_branch2a[0][0] ____________________________________________________________________________________________________ res2b_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_8[0][0] ____________________________________________________________________________________________________ bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2b[0][0] ____________________________________________________________________________________________________ activation_9 (Activation) (None, 15, 15, 64) 0 bn2b_branch2b[0][0] ____________________________________________________________________________________________________ res2b_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_9[0][0] ____________________________________________________________________________________________________ bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2b_branch2c[0][0] ____________________________________________________________________________________________________ add_3 (Add) (None, 15, 15, 256) 0 bn2b_branch2c[0][0] activation_7[0][0] ____________________________________________________________________________________________________ activation_10 (Activation) (None, 15, 15, 256) 0 add_3[0][0] ____________________________________________________________________________________________________ res2c_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_10[0][0] ____________________________________________________________________________________________________ bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2a[0][0] ____________________________________________________________________________________________________ activation_11 (Activation) (None, 15, 15, 64) 0 bn2c_branch2a[0][0] ____________________________________________________________________________________________________ res2c_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_11[0][0] ____________________________________________________________________________________________________ bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2b[0][0] ____________________________________________________________________________________________________ activation_12 (Activation) (None, 15, 15, 64) 0 bn2c_branch2b[0][0] ____________________________________________________________________________________________________ res2c_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_12[0][0] ____________________________________________________________________________________________________ bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2c_branch2c[0][0] ____________________________________________________________________________________________________ add_4 (Add) (None, 15, 15, 256) 0 bn2c_branch2c[0][0] activation_10[0][0] ____________________________________________________________________________________________________ activation_13 (Activation) (None, 15, 15, 256) 0 add_4[0][0] ____________________________________________________________________________________________________ res3a_branch2a (Conv2D) (None, 8, 8, 128) 32896 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2a[0][0] ____________________________________________________________________________________________________ activation_14 (Activation) (None, 8, 8, 128) 0 bn3a_branch2a[0][0] ____________________________________________________________________________________________________ res3a_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_14[0][0] ____________________________________________________________________________________________________ bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2b[0][0] ____________________________________________________________________________________________________ activation_15 (Activation) (None, 8, 8, 128) 0 bn3a_branch2b[0][0] ____________________________________________________________________________________________________ res3a_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_15[0][0] ____________________________________________________________________________________________________ res3a_branch1 (Conv2D) (None, 8, 8, 512) 131584 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3a_branch2c[0][0] ____________________________________________________________________________________________________ bn3a_branch1 (BatchNormalization (None, 8, 8, 512) 2048 res3a_branch1[0][0] ____________________________________________________________________________________________________ add_5 (Add) (None, 8, 8, 512) 0 bn3a_branch2c[0][0] bn3a_branch1[0][0] ____________________________________________________________________________________________________ activation_16 (Activation) (None, 8, 8, 512) 0 add_5[0][0] ____________________________________________________________________________________________________ res3b_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_16[0][0] ____________________________________________________________________________________________________ bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2a[0][0] ____________________________________________________________________________________________________ activation_17 (Activation) (None, 8, 8, 128) 0 bn3b_branch2a[0][0] ____________________________________________________________________________________________________ res3b_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_17[0][0] ____________________________________________________________________________________________________ bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2b[0][0] ____________________________________________________________________________________________________ activation_18 (Activation) (None, 8, 8, 128) 0 bn3b_branch2b[0][0] ____________________________________________________________________________________________________ res3b_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_18[0][0] ____________________________________________________________________________________________________ bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3b_branch2c[0][0] ____________________________________________________________________________________________________ add_6 (Add) (None, 8, 8, 512) 0 bn3b_branch2c[0][0] activation_16[0][0] ____________________________________________________________________________________________________ activation_19 (Activation) (None, 8, 8, 512) 0 add_6[0][0] ____________________________________________________________________________________________________ res3c_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_19[0][0] ____________________________________________________________________________________________________ bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2a[0][0] ____________________________________________________________________________________________________ activation_20 (Activation) (None, 8, 8, 128) 0 bn3c_branch2a[0][0] ____________________________________________________________________________________________________ res3c_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_20[0][0] ____________________________________________________________________________________________________ bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2b[0][0] ____________________________________________________________________________________________________ activation_21 (Activation) (None, 8, 8, 128) 0 bn3c_branch2b[0][0] ____________________________________________________________________________________________________ res3c_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_21[0][0] ____________________________________________________________________________________________________ bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3c_branch2c[0][0] ____________________________________________________________________________________________________ add_7 (Add) (None, 8, 8, 512) 0 bn3c_branch2c[0][0] activation_19[0][0] ____________________________________________________________________________________________________ activation_22 (Activation) (None, 8, 8, 512) 0 add_7[0][0] ____________________________________________________________________________________________________ res3d_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_22[0][0] ____________________________________________________________________________________________________ bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2a[0][0] ____________________________________________________________________________________________________ activation_23 (Activation) (None, 8, 8, 128) 0 bn3d_branch2a[0][0] ____________________________________________________________________________________________________ res3d_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_23[0][0] ____________________________________________________________________________________________________ bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2b[0][0] ____________________________________________________________________________________________________ activation_24 (Activation) (None, 8, 8, 128) 0 bn3d_branch2b[0][0] ____________________________________________________________________________________________________ res3d_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_24[0][0] ____________________________________________________________________________________________________ bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3d_branch2c[0][0] ____________________________________________________________________________________________________ add_8 (Add) (None, 8, 8, 512) 0 bn3d_branch2c[0][0] activation_22[0][0] ____________________________________________________________________________________________________ activation_25 (Activation) (None, 8, 8, 512) 0 add_8[0][0] ____________________________________________________________________________________________________ res4a_branch2a (Conv2D) (None, 4, 4, 256) 131328 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2a[0][0] ____________________________________________________________________________________________________ activation_26 (Activation) (None, 4, 4, 256) 0 bn4a_branch2a[0][0] ____________________________________________________________________________________________________ res4a_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_26[0][0] ____________________________________________________________________________________________________ bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2b[0][0] ____________________________________________________________________________________________________ activation_27 (Activation) (None, 4, 4, 256) 0 bn4a_branch2b[0][0] ____________________________________________________________________________________________________ res4a_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_27[0][0] ____________________________________________________________________________________________________ res4a_branch1 (Conv2D) (None, 4, 4, 1024) 525312 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4a_branch2c[0][0] ____________________________________________________________________________________________________ bn4a_branch1 (BatchNormalization (None, 4, 4, 1024) 4096 res4a_branch1[0][0] ____________________________________________________________________________________________________ add_9 (Add) (None, 4, 4, 1024) 0 bn4a_branch2c[0][0] bn4a_branch1[0][0] ____________________________________________________________________________________________________ activation_28 (Activation) (None, 4, 4, 1024) 0 add_9[0][0] ____________________________________________________________________________________________________ res4b_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_28[0][0] ____________________________________________________________________________________________________ bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2a[0][0] ____________________________________________________________________________________________________ activation_29 (Activation) (None, 4, 4, 256) 0 bn4b_branch2a[0][0] ____________________________________________________________________________________________________ res4b_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_29[0][0] ____________________________________________________________________________________________________ bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2b[0][0] ____________________________________________________________________________________________________ activation_30 (Activation) (None, 4, 4, 256) 0 bn4b_branch2b[0][0] ____________________________________________________________________________________________________ res4b_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_30[0][0] ____________________________________________________________________________________________________ bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4b_branch2c[0][0] ____________________________________________________________________________________________________ add_10 (Add) (None, 4, 4, 1024) 0 bn4b_branch2c[0][0] activation_28[0][0] ____________________________________________________________________________________________________ activation_31 (Activation) (None, 4, 4, 1024) 0 add_10[0][0] ____________________________________________________________________________________________________ res4c_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_31[0][0] ____________________________________________________________________________________________________ bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2a[0][0] ____________________________________________________________________________________________________ activation_32 (Activation) (None, 4, 4, 256) 0 bn4c_branch2a[0][0] ____________________________________________________________________________________________________ res4c_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_32[0][0] ____________________________________________________________________________________________________ bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2b[0][0] ____________________________________________________________________________________________________ activation_33 (Activation) (None, 4, 4, 256) 0 bn4c_branch2b[0][0] ____________________________________________________________________________________________________ res4c_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_33[0][0] ____________________________________________________________________________________________________ bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4c_branch2c[0][0] ____________________________________________________________________________________________________ add_11 (Add) (None, 4, 4, 1024) 0 bn4c_branch2c[0][0] activation_31[0][0] ____________________________________________________________________________________________________ activation_34 (Activation) (None, 4, 4, 1024) 0 add_11[0][0] ____________________________________________________________________________________________________ res4d_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_34[0][0] ____________________________________________________________________________________________________ bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2a[0][0] ____________________________________________________________________________________________________ activation_35 (Activation) (None, 4, 4, 256) 0 bn4d_branch2a[0][0] ____________________________________________________________________________________________________ res4d_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_35[0][0] ____________________________________________________________________________________________________ bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2b[0][0] ____________________________________________________________________________________________________ activation_36 (Activation) (None, 4, 4, 256) 0 bn4d_branch2b[0][0] ____________________________________________________________________________________________________ res4d_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_36[0][0] ____________________________________________________________________________________________________ bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4d_branch2c[0][0] ____________________________________________________________________________________________________ add_12 (Add) (None, 4, 4, 1024) 0 bn4d_branch2c[0][0] activation_34[0][0] ____________________________________________________________________________________________________ activation_37 (Activation) (None, 4, 4, 1024) 0 add_12[0][0] ____________________________________________________________________________________________________ res4e_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_37[0][0] ____________________________________________________________________________________________________ bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2a[0][0] ____________________________________________________________________________________________________ activation_38 (Activation) (None, 4, 4, 256) 0 bn4e_branch2a[0][0] ____________________________________________________________________________________________________ res4e_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_38[0][0] ____________________________________________________________________________________________________ bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2b[0][0] ____________________________________________________________________________________________________ activation_39 (Activation) (None, 4, 4, 256) 0 bn4e_branch2b[0][0] ____________________________________________________________________________________________________ res4e_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_39[0][0] ____________________________________________________________________________________________________ bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4e_branch2c[0][0] ____________________________________________________________________________________________________ add_13 (Add) (None, 4, 4, 1024) 0 bn4e_branch2c[0][0] activation_37[0][0] ____________________________________________________________________________________________________ activation_40 (Activation) (None, 4, 4, 1024) 0 add_13[0][0] ____________________________________________________________________________________________________ res4f_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_40[0][0] ____________________________________________________________________________________________________ bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2a[0][0] ____________________________________________________________________________________________________ activation_41 (Activation) (None, 4, 4, 256) 0 bn4f_branch2a[0][0] ____________________________________________________________________________________________________ res4f_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_41[0][0] ____________________________________________________________________________________________________ bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2b[0][0] ____________________________________________________________________________________________________ activation_42 (Activation) (None, 4, 4, 256) 0 bn4f_branch2b[0][0] ____________________________________________________________________________________________________ res4f_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_42[0][0] ____________________________________________________________________________________________________ bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4f_branch2c[0][0] ____________________________________________________________________________________________________ add_14 (Add) (None, 4, 4, 1024) 0 bn4f_branch2c[0][0] activation_40[0][0] ____________________________________________________________________________________________________ activation_43 (Activation) (None, 4, 4, 1024) 0 add_14[0][0] ____________________________________________________________________________________________________ res5a_branch2a (Conv2D) (None, 2, 2, 512) 524800 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2a[0][0] ____________________________________________________________________________________________________ activation_44 (Activation) (None, 2, 2, 512) 0 bn5a_branch2a[0][0] ____________________________________________________________________________________________________ res5a_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_44[0][0] ____________________________________________________________________________________________________ bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2b[0][0] ____________________________________________________________________________________________________ activation_45 (Activation) (None, 2, 2, 512) 0 bn5a_branch2b[0][0] ____________________________________________________________________________________________________ res5a_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_45[0][0] ____________________________________________________________________________________________________ res5a_branch1 (Conv2D) (None, 2, 2, 2048) 2099200 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5a_branch2c[0][0] ____________________________________________________________________________________________________ bn5a_branch1 (BatchNormalization (None, 2, 2, 2048) 8192 res5a_branch1[0][0] ____________________________________________________________________________________________________ add_15 (Add) (None, 2, 2, 2048) 0 bn5a_branch2c[0][0] bn5a_branch1[0][0] ____________________________________________________________________________________________________ activation_46 (Activation) (None, 2, 2, 2048) 0 add_15[0][0] ____________________________________________________________________________________________________ res5b_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_46[0][0] ____________________________________________________________________________________________________ bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2a[0][0] ____________________________________________________________________________________________________ activation_47 (Activation) (None, 2, 2, 512) 0 bn5b_branch2a[0][0] ____________________________________________________________________________________________________ res5b_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_47[0][0] ____________________________________________________________________________________________________ bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2b[0][0] ____________________________________________________________________________________________________ activation_48 (Activation) (None, 2, 2, 512) 0 bn5b_branch2b[0][0] ____________________________________________________________________________________________________ res5b_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_48[0][0] ____________________________________________________________________________________________________ bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5b_branch2c[0][0] ____________________________________________________________________________________________________ add_16 (Add) (None, 2, 2, 2048) 0 bn5b_branch2c[0][0] activation_46[0][0] ____________________________________________________________________________________________________ activation_49 (Activation) (None, 2, 2, 2048) 0 add_16[0][0] ____________________________________________________________________________________________________ res5c_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_49[0][0] ____________________________________________________________________________________________________ bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2a[0][0] ____________________________________________________________________________________________________ activation_50 (Activation) (None, 2, 2, 512) 0 bn5c_branch2a[0][0] ____________________________________________________________________________________________________ res5c_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_50[0][0] ____________________________________________________________________________________________________ bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2b[0][0] ____________________________________________________________________________________________________ activation_51 (Activation) (None, 2, 2, 512) 0 bn5c_branch2b[0][0] ____________________________________________________________________________________________________ res5c_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_51[0][0] ____________________________________________________________________________________________________ bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5c_branch2c[0][0] ____________________________________________________________________________________________________ add_17 (Add) (None, 2, 2, 2048) 0 bn5c_branch2c[0][0] activation_49[0][0] ____________________________________________________________________________________________________ activation_52 (Activation) (None, 2, 2, 2048) 0 add_17[0][0] ____________________________________________________________________________________________________ avg_pool (AveragePooling2D) (None, 1, 1, 2048) 0 activation_52[0][0] ____________________________________________________________________________________________________ flatten_1 (Flatten) (None, 2048) 0 avg_pool[0][0] ____________________________________________________________________________________________________ fc6 (Dense) (None, 6) 12294 flatten_1[0][0] ==================================================================================================== Total params: 23,600,006 Trainable params: 23,546,886 Non-trainable params: 53,120 ____________________________________________________________________________________________________ ###Markdown Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png". ###Code plot_model(model, to_file='model.png') SVG(model_to_dot(model).create(prog='dot', format='svg')) ###Output _____no_output_____
hands-on/070_imdb_data_exploration_lazy.ipynb
###Markdown IMDB data set: opinions and recurrent neural networks Required imports ###Code from collections import Counter from keras.datasets import imdb import matplotlib.pyplot as plt %matplotlib inline import numpy as np from pathlib import Path import pickle ###Output _____no_output_____ ###Markdown Loading the data set Load the data set, it will be downloaded and cached. ###Code (x_train, y_train), (x_test, y_test) = imdb.load_data() ###Output _____no_output_____ ###Markdown Exploring the data set Data shape and types Shape and type of the input and output. ###Code x_train.shape, x_train.dtype, y_train.shape, y_train.dtype x_test.shape, x_test.dtype, y_test.shape, y_test.dtype ###Output _____no_output_____ ###Markdown Both training and test sets have 25,000 examples each. The input is a list of integers, the output either 0 or 1. ###Code type(x_train[0]), len(x_train[0]), type(x_train[0][0]) set(y_train) ###Output _____no_output_____ ###Markdown Each training input consists of a list of integers. Each integer uniquely represents a word, the list represents a text as an ordered sequence of words. The corresponding output is an integer, either 0 or 1, representing the opinion expressed in the review text. Review lengths We can visualize the distribution of the review lengths in a histogram, one for the training, the other for the test input. ###Code figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) for i, reviews in enumerate((x_train, x_test)): review_lengths = map(len, reviews) axes[i].hist(list(review_lengths), bins=50); figure.tight_layout() ###Output _____no_output_____ ###Markdown Word distribution The distribution of the words, or features, can also be visualized. The following computation is rather time consuming, so its results are pickled, so that they can be reused for demonstartion purposes without redoing the computation. ###Code pickle_path = Path('feature_count.pkl') if not pickle_path.exists(): feature_counter = Counter() for review in x_train: for feature in review: feature_counter[feature] += 1 with open('feature_count.pkl', 'wb') as pickle_file: pickle.dump(feature_counter, pickle_file) else: with open('feature_count.pkl', 'rb') as pickle_file: feature_counter = pickle.load(pickle_file) feature_counter.most_common(10) ###Output _____no_output_____ ###Markdown Note that the most common word starts at index 4, which may be unexpected. ###Code feature_counter[0], feature_counter[1], feature_counter[2], feature_counter[3] ###Output _____no_output_____ ###Markdown Index 0 serves as padding, 1 as start of a review (note that it occurs as many times as there are reviews in the training set). For more details, see the section on texts below. ###Code len(feature_counter) plt.semilogy(list(feature_counter.keys()), list(feature_counter.values()), '.', alpha=0.3, markersize=1) plt.xlabel('feature') plt.ylabel('frequency'); ###Output _____no_output_____ ###Markdown The features, i.e., the words, follow a Zipf-like distribution, which doesn't come as a surprise. Since this computation is time consuming, we assume similar results for the test set. Note that the minimum index is 1, the maximum 88586. ###Code min(feature_counter.keys()), max(feature_counter.keys()) ###Output _____no_output_____ ###Markdown Sentiment distribution The distirbution of the opinions, 0 or 1, can be visualized in a bar plot, again one for the training, the other for the test output. ###Code figure, axes = plt.subplots(1, 2) for i, opinions in enumerate((y_train, y_test)): counter = [0, 0] for opinion in opinions: counter[opinion] += 1 axes[i].bar(['0', '1'], counter, 0.5); figure.tight_layout() ###Output _____no_output_____ ###Markdown Positive and negetive opinions are uniformly distributed in the training set and the test set. Texts The texts represented as a list of integers, each integer representing a specific word. The word index, i.e, a dictionary that has the words as keys, and the integers as values is also available in the IMDB dataset. ###Code word_index = imdb.get_word_index() word_index['the'] ###Output _____no_output_____ ###Markdown However, in order to translate the lists of integers into the original reviews, the data has to be loaded appropriately. The `load_data` method has some optional arguments that should be specified. Index 0 is usually reserved for padding, i.e., to ensure that short sequences can be extended to the required length. Index 1 indicates the start of a review (`start_char`), while index 2 is used to represent words that have not been indexed, either because they were not part of the data set, they were too infrequently used, or, if the top words are left out, too common to be considered informative (`oov_char`). Hence, the actual word index starts at 4. The word index has to be shifted by `index_from`, and the strings representing padding, start and unknown added. The following function will do this, compute the reverse dictionary, and return both. ###Code def compute_indices(word_index=None, index_from=3, padding_idx=0, start_idx=1, unknown_idx=2): if word_index is None: word_index = imdb.get_word_index() word_to_idx = {k: v + index_from for k, v in word_index.items()} word_to_idx['<pad>'] = padding_idx word_to_idx['<start>'] = start_idx word_to_idx['<unknown>'] = unknown_idx return word_to_idx, {v: k for k, v in word_to_idx.items()} word_to_idx, idx_to_word = compute_indices(word_index) ###Output _____no_output_____ ###Markdown The first review in the training set can now be "translated" back to English. Note that there is no punctuation, and, since only the 1,000 most common words were loaded, quite a number of `` crop up in the text. ###Code print(' '.join(idx_to_word[idx] for idx in x_train[0])) ###Output _____no_output_____ ###Markdown The sentiment expressed in this review is positive, so the output should be 1. ###Code y_train[0] ###Output _____no_output_____ ###Markdown Find the first review expressing a negative sentiment. ###Code neg_idx = list(y_train).index(0) print(' '.join(idx_to_word[idx] for idx in x_train[neg_idx])) ###Output _____no_output_____ ###Markdown Clearly, the reviewer was not taken by the movie. Stop words When you display the top-25 words, it is quite clear that most will not be very informative, except "but" at index 20 and "not" at index 23. ###Code for i in range(4, 4 + 26): print(i, idx_to_word[i]) ###Output _____no_output_____
initial_model.ipynb
###Markdown Data exploration1. Clean the data and fix any issues you see (missing values?). I think we should start working only with `application_train|test.csv`. If by the time we have a functional model there is enough time left, we can take a look at the rest of the data, i.e. `bureau.csv`, `previous_application.csv`, etc.2. Look at the relationship between variables Load the data ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os from sklearn.preprocessing import LabelEncoder if 'google.colab' in str(get_ipython()): from google.colab import drive drive.mount('/content/drive') path = 'drive/MyDrive/CS 249 Project/Data/' else: path = 'Data/' # Load training data and test data train_df = pd.read_csv(path+'application_train.csv') test_df = pd.read_csv(path+'application_test.csv') print('Training data shape: ', train_df.shape) print('Training data shape: ', test_df.shape) train_df.head() ###Output Training data shape: (307511, 122) Training data shape: (48744, 121) ###Markdown EDAExplore the data and address any issues Is the data balanced?Look at the target column and plot its distribution ###Code train_df.TARGET.plot.hist() ###Output _____no_output_____ ###Markdown Clearly the data isn't balanced. The number of loans that were repaid is far greater than the number of loans that were not repaid. We don't need to address this issue right now though. Are there missing values? ###Code missing_values = train_df.isna().sum() missing_values_percent = missing_values*100/len(train_df) miss_df = pd.concat( [missing_values.rename('missing_val'), missing_values_percent.rename('missing_val_percent')], axis=1 ) miss_df.sort_values(by='missing_val_percent', ascending=False).head(10) ###Output _____no_output_____ ###Markdown Which features are categorical? ###Code train_df.dtypes.value_counts() categorical_features = train_df.select_dtypes('object') categorical_features.nunique() ###Output _____no_output_____ ###Markdown Encode these categorical features. We can either use one-hot encoding (which we've used in the class) or label encoding. One-hot encoding seems to be the preferred method, with the only caveat that if there's a large number of categories for a feature, the number of one-hot encoded features can explode. A workaround is to use PCA or another dimensionality reduction method.Let's label encode the features with 2 categories and one-hot encode the ones with more than 2. ###Code # Label encode the features with 2 categories label_encoder = LabelEncoder() for feat in categorical_features: if len(train_df[feat].unique()) <= 2: train_df[feat] = label_encoder.fit_transform(train_df[feat]) test_df[feat] = label_encoder.fit_transform(test_df[feat]) train_df.columns # One-hot encode features with more than 2 categories train_df = pd.get_dummies(train_df, drop_first=True) test_df = pd.get_dummies(test_df, drop_first=True) train_df.columns ###Output _____no_output_____ ###Markdown Aligning training and test data ###Code # Check the shapes of the training and test data print(f"Training data: {train_df.shape}") print(f"Test data: {test_df.shape}") # Save target labels train_target = train_df.TARGET # Align train and test dfs train_df, test_df = train_df.align(test_df, join='inner', axis=1) # Add target labels back in train_df['TARGET'] = train_target # Check shapes after aligning print(f"Training data: {train_df.shape}") print(f"Test data: {test_df.shape}") ###Output Training data: (307511, 227) Test data: (48744, 226) ###Markdown AnomaliesAccording to the reference notebook, the feature `DAYS_BIRTH` has negative numbers because they are recorded relative to the current loan application. The feature is described as client's age in days at the time of the application.It's easier to find anomalies if we transform to years. ###Code # Convert BIRTH_DAYS to years (train_df['DAYS_BIRTH'] / -365).describe() ###Output _____no_output_____ ###Markdown Given the min and the max, there doesn't seem to be any outliers.Now let's look at DAYS_EMPLOYED. This feature is described as:>How many days before the application the person started current employment. ###Code train_df['DAYS_EMPLOYED'].describe() train_df['DAYS_EMPLOYED'].plot.hist(alpha=0.5) ###Output _____no_output_____ ###Markdown There's clearly a chunk of samples for this feature that aren't right. It makes no sense for this to be negative and have such a large absolute value. A safe way to deal with this is to set those values to NaN and impute them later. Before setting all anomalous values to NaN, check to see if the anomalous clients have any patterns of behavior in terms of credit default (higher or lower rates). ###Code max_days_employed = train_df['DAYS_EMPLOYED'].max() anom = train_df[train_df['DAYS_EMPLOYED'] == max_days_employed] non_anom = train_df[train_df['DAYS_EMPLOYED'] != max_days_employed] print(f'Value of days employed anomaly (aka max of days employed column):', max_days_employed) print(f'The non-anomalies default on %0.2f%% of loans' % (100 * non_anom['TARGET'].mean())) print(f'The anomalies default on %0.2f%% of loans' % (100 * anom['TARGET'].mean())) print(f'There are %d anomalous days of employment' % len(anom)) ###Output Value of days employed anomaly (aka max of days employed column): 365243 The non-anomalies default on 8.66% of loans The anomalies default on 5.40% of loans There are 55374 anomalous days of employment ###Markdown Since the anomalous clients have a lower rate of default, we would like to capture this information in a separate column before clearing the anomalous values. We will fill in the anomalous values with NaN and create a boolean column to indicate whether the value was anomalous or not. ###Code # Create an anomalous flag column train_df['DAYS_EMPLOYED_ANOM'] = train_df["DAYS_EMPLOYED"] == max_days_employed test_df['DAYS_EMPLOYED_ANOM'] = test_df['DAYS_EMPLOYED'] == max_days_employed # How many samples have the max value as DAYS_EMPLOYED? max_value_count = (train_df['DAYS_EMPLOYED'] == train_df['DAYS_EMPLOYED'].max()).sum() print(f"Count of samples with max DAYS_EMPLOYED: {max_value_count}") # Replace all these occurrences with NaN train_df.DAYS_EMPLOYED.replace( to_replace=train_df.DAYS_EMPLOYED.max(), value=np.nan, inplace=True) train_df.DAYS_EMPLOYED.plot.hist(alpha=0.5) plt.xlabel('Days employed prior to application') print('There are %d anomalies in the train data out of %d entries' % (train_df["DAYS_EMPLOYED_ANOM"].sum(), len(train_df))) print('There are %d anomalies in the test data out of %d entries' % (test_df["DAYS_EMPLOYED_ANOM"].sum(), len(test_df))) ###Output There are 55374 anomalies in the train data out of 307511 entries There are 9274 anomalies in the test data out of 48744 entries ###Markdown Relationships between variablesWith `.corr` method we can use the Pearson correlation coefficient to find relationships between the features in the training set. ###Code corr_matrix = train_df.corr().TARGET.sort_values() print(f'Highest positive correlations:\n {corr_matrix.tail(10)}\n') print(f'Highest negative correlations:\n {corr_matrix.head(10)}') ###Output Highest positive correlations: REG_CITY_NOT_WORK_CITY 0.050994 DAYS_ID_PUBLISH 0.051457 CODE_GENDER_M 0.054713 DAYS_LAST_PHONE_CHANGE 0.055218 NAME_INCOME_TYPE_Working 0.057481 REGION_RATING_CLIENT 0.058899 REGION_RATING_CLIENT_W_CITY 0.060893 DAYS_EMPLOYED 0.074958 DAYS_BIRTH 0.078239 TARGET 1.000000 Name: TARGET, dtype: float64 Highest negative correlations: EXT_SOURCE_3 -0.178919 EXT_SOURCE_2 -0.160472 EXT_SOURCE_1 -0.155317 NAME_EDUCATION_TYPE_Higher education -0.056593 NAME_INCOME_TYPE_Pensioner -0.046209 DAYS_EMPLOYED_ANOM -0.045987 ORGANIZATION_TYPE_XNA -0.045987 FLOORSMAX_AVG -0.044003 FLOORSMAX_MEDI -0.043768 FLOORSMAX_MODE -0.043226 Name: TARGET, dtype: float64 ###Markdown Features with highest positive correlation: Effect of age on repaymentThe feature with highest positive correlation is `DAYS_BIRTH`. Let's look at it in more datail.Positive correlation means that as `DAYS_BIRTH` increases the customer is less likely to repay the loan. However, this `DAYS_BIRTH` is given as negative numbers, it's easier to understand its relationship to `TARGET` if we multiply by -1. ###Code plt.style.use('seaborn-muted') # Make DAYS_BIRTH positive train_df.DAYS_BIRTH = train_df.DAYS_BIRTH * -1 # Plot the distribution of ages in years sns.kdeplot(train_df.loc[train_df.TARGET == 0, 'DAYS_BIRTH'] / 365) sns.kdeplot(train_df.loc[train_df.TARGET == 1, 'DAYS_BIRTH'] / 365) plt.xlabel('Age in years') plt.title('KDE Plot for Applicant Age') plt.legend(['Repaid', 'Not Paid']) ###Output _____no_output_____ ###Markdown From the plot it looks like among the pool of applicants who were not able to repay their loan, the majority of them were younger than 30 years old. Features with highest negative correlationThe three features with highest negative correlation are `EXT_SOURCE_3`, `EXT_SOURCE_2`, `EXT_SOURCE_1`. These are described as *Normalized score from external data source*. Let's look at a heat map of their correlation with `TARGET`. ###Code features = ['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DAYS_BIRTH', 'TARGET'] ext_corr = train_df[features].corr() ext_corr sns.heatmap(ext_corr, annot=True) ###Output _____no_output_____ ###Markdown The correlation matrix tells us that as the value of the external source features increases, the customer is more likely to repay the loan. Similarly, as the age of the customer increases, the higher the chance of the loan to be repaid. Feature Engineering Polynomial featuresCreate polynomial features for the selected features ###Code from sklearn.impute import SimpleImputer from sklearn.preprocessing import PolynomialFeatures # Make new df with polynomial features poly_features = train_df[features] poly_features_test = test_df[features[:-1]] # there's no TARGET in test_df # Assign variables y_train = poly_features.TARGET X_train = poly_features.drop(columns='TARGET') # Handle missing values imputer = SimpleImputer(strategy='median') X_train = imputer.fit_transform(X_train) X_test = imputer.transform(poly_features_test) # Create polynomial features poly = PolynomialFeatures(degree=3) X_train = poly.fit_transform(X_train) X_test = poly.transform(X_test) feat_names = poly.get_feature_names(features[:-1]) print(X_train.shape) print(X_test.shape) print(feat_names) ###Output (307511, 35) (48744, 35) ['1', 'EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DAYS_BIRTH', 'EXT_SOURCE_1^2', 'EXT_SOURCE_1 EXT_SOURCE_2', 'EXT_SOURCE_1 EXT_SOURCE_3', 'EXT_SOURCE_1 DAYS_BIRTH', 'EXT_SOURCE_2^2', 'EXT_SOURCE_2 EXT_SOURCE_3', 'EXT_SOURCE_2 DAYS_BIRTH', 'EXT_SOURCE_3^2', 'EXT_SOURCE_3 DAYS_BIRTH', 'DAYS_BIRTH^2', 'EXT_SOURCE_1^3', 'EXT_SOURCE_1^2 EXT_SOURCE_2', 'EXT_SOURCE_1^2 EXT_SOURCE_3', 'EXT_SOURCE_1^2 DAYS_BIRTH', 'EXT_SOURCE_1 EXT_SOURCE_2^2', 'EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3', 'EXT_SOURCE_1 EXT_SOURCE_2 DAYS_BIRTH', 'EXT_SOURCE_1 EXT_SOURCE_3^2', 'EXT_SOURCE_1 EXT_SOURCE_3 DAYS_BIRTH', 'EXT_SOURCE_1 DAYS_BIRTH^2', 'EXT_SOURCE_2^3', 'EXT_SOURCE_2^2 EXT_SOURCE_3', 'EXT_SOURCE_2^2 DAYS_BIRTH', 'EXT_SOURCE_2 EXT_SOURCE_3^2', 'EXT_SOURCE_2 EXT_SOURCE_3 DAYS_BIRTH', 'EXT_SOURCE_2 DAYS_BIRTH^2', 'EXT_SOURCE_3^3', 'EXT_SOURCE_3^2 DAYS_BIRTH', 'EXT_SOURCE_3 DAYS_BIRTH^2', 'DAYS_BIRTH^3'] ###Markdown Verify whether any of these poly features has stronger correlation with `TARGET`. ###Code # Create a df with the polynomial features poly_train_df = pd.DataFrame(X_train, columns=feat_names) poly_test_df = pd.DataFrame(X_test, columns=feat_names) # Add target poly_train_df['TARGET'] = y_train # Find correlations poly_corr = poly_train_df.corr()['TARGET'].sort_values() # Display the features with highest correlation print(poly_corr.head(10)) print(poly_corr.tail(5)) ###Output EXT_SOURCE_2 EXT_SOURCE_3 -0.193939 EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3 -0.189605 EXT_SOURCE_2 EXT_SOURCE_3 DAYS_BIRTH -0.181283 EXT_SOURCE_2^2 EXT_SOURCE_3 -0.176428 EXT_SOURCE_2 EXT_SOURCE_3^2 -0.172282 EXT_SOURCE_1 EXT_SOURCE_2 -0.166625 EXT_SOURCE_1 EXT_SOURCE_3 -0.164065 EXT_SOURCE_2 -0.160295 EXT_SOURCE_2 DAYS_BIRTH -0.156873 EXT_SOURCE_1 EXT_SOURCE_2^2 -0.156867 Name: TARGET, dtype: float64 DAYS_BIRTH -0.078239 DAYS_BIRTH^2 -0.076672 DAYS_BIRTH^3 -0.074273 TARGET 1.000000 1 NaN Name: TARGET, dtype: float64 ###Markdown Several of these features have better correlation with the target than the original features. We will add these features to a copy of the training and test data and then evaluate the model with and without the features. ###Code # Merge polynomial features into the train and test dataframes poly_train_df['SK_ID_CURR'] = train_df['SK_ID_CURR'] poly_test_df['SK_ID_CURR'] = test_df['SK_ID_CURR'] poly_train_df = train_df.merge(poly_train_df, on='SK_ID_CURR', how='left') poly_test_df = test_df.merge(poly_test_df, on='SK_ID_CURR', how='left') # Align the dataframes poly_train_df, poly_test_df = poly_train_df.align(poly_test_df, join='inner', axis=1) print(f'Training data shape: {poly_train_df.shape}') print(f'Training data shape: {poly_test_df.shape}') ###Output Training data shape: (307511, 262) Training data shape: (48744, 262) ###Markdown Other features New featuresCreate the following new features from existing features:* `CREDIT_INCOME_PERCENT`* `ANNUITY_INCOME_PERCENT`* `CREDIT_TERM`* `DAYS_EMPLOYED_PERCENT` ###Code domain_train_df = train_df.copy() domain_test_df = test_df.copy() domain_train_df['CREDIT_INCOME_PERCENT'] = domain_train_df['AMT_CREDIT'] / domain_train_df['AMT_INCOME_TOTAL'] domain_train_df['ANNUITY_INCOME_PERCENT'] = domain_train_df['AMT_ANNUITY'] / domain_train_df['AMT_INCOME_TOTAL'] domain_train_df['CREDIT_TERM'] = domain_train_df['AMT_ANNUITY'] / domain_train_df['AMT_CREDIT'] domain_train_df['DAYS_EMPLOYED_PERCENT'] = domain_train_df['DAYS_EMPLOYED'] / domain_train_df['DAYS_BIRTH'] domain_test_df['CREDIT_INCOME_PERCENT'] = domain_test_df['AMT_CREDIT'] / domain_test_df['AMT_INCOME_TOTAL'] domain_test_df['ANNUITY_INCOME_PERCENT'] = domain_test_df['AMT_ANNUITY'] / domain_test_df['AMT_INCOME_TOTAL'] domain_test_df['CREDIT_TERM'] = domain_test_df['AMT_ANNUITY'] / domain_test_df['AMT_CREDIT'] domain_test_df['DAYS_EMPLOYED_PERCENT'] = domain_test_df['DAYS_EMPLOYED'] / domain_test_df['DAYS_BIRTH'] ###Output _____no_output_____ ###Markdown Visualize new features ###Code plt.figure(figsize=(8,12)) for i, feature in enumerate(['CREDIT_INCOME_PERCENT', 'ANNUITY_INCOME_PERCENT', 'CREDIT_TERM', 'DAYS_EMPLOYED_PERCENT']): plt.subplot(4, 1 ,i+1) for target in [0,1]: sns.kdeplot(domain_train_df.loc[domain_train_df['TARGET'] == target, feature]) plt.legend(['Repaid', 'Not paid']) plt.tight_layout() ###Output _____no_output_____ ###Markdown It doesn't look like these features help elucidate any significant differences between customers who repaid their loans and those who didn't. We'll still try them out and see whether they give any reasonable results or not. Baseline using Logistic RegressionUse logistic regression with L-2 penalty ###Code from sklearn.preprocessing import MinMaxScaler print(f'Train set shape: {train_df.shape}') print(f'Test set shape: {test_df.shape}') # Drop TARGET from train set y_train = train_df.TARGET X_train = train_df.drop(columns=['TARGET']) # Save feature names features = list(X_train.columns) # Copy test data to new df X_test = test_df.copy() # Impute missing values and scale 0-1 imputer = SimpleImputer(strategy='median') scaler = MinMaxScaler(feature_range=(0,1)) X_train = imputer.fit_transform(X_train) X_test = imputer.transform(X_test) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # Do a 70-30 split on the training data from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.3, shuffle=True, random_state=0 ) # Run logistic regression with L-2 regularization from sklearn.linear_model import LogisticRegression model_lg = LogisticRegression(penalty='l2', C=0.0001) model_lg.fit(X_train, y_train) from sklearn.metrics import roc_curve, auc # Predict train labels y_pred_proba_train = model_lg.predict_proba(X_train)[:,1] fpr, tpr, thresholds = roc_curve(y_train, y_pred_proba_train) # Compute performance metrics on the training data auc_train = auc(fpr, tpr) print(f'AUC of the model in the validation set is: {auc_train}') fig, ax = plt.subplots(figsize=(9,6)) ax.plot(fpr, tpr, label=f'AUC = {auc_train:.3f}') ax.plot([0,1], [0,1], linestyle='--') ax.set_title('ROC Curve (Training data)') ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.legend(loc='best') # Predict validation set labels y_pred_proba_val = model_lg.predict_proba(X_val)[:,1] fpr, tpr, thresholds = roc_curve(y_val, y_pred_proba_val) # Compute performance metrics on the training data auc_train = auc(fpr, tpr) print(f'AUC of the model in the validation set is: {auc_train}') fig, ax = plt.subplots(figsize=(9,6)) ax.plot(fpr, tpr, label=f'AUC = {auc_train:.3f}') ax.plot([0,1], [0,1], linestyle='--') ax.set_title('ROC Curve (Training data)') ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.legend(loc='best') ###Output AUC of the model in the validation set is: 0.6877487105241726 ###Markdown Kaggle submission fileMake predictions on the test data now so we can submit to Kaggle and get the legit AUC score. ###Code y_pred_proba_test = model_lg.predict_proba(X_test)[:,1] submit = test_df[['SK_ID_CURR']].copy() submit['TARGET'] = y_pred_proba_test submit.head() submit.to_csv('log_reg_baseline.csv', index=False) ###Output _____no_output_____
notebooks/Evaluation Experiments.ipynb
###Markdown Evaluation Entry**Note**: This notebook generate results for evaluations. Evaluation results please go to folder 'eval_train_size' default nerual network parameters~~~~self.nn_params = { 'hidden_size': 100, 'depth': 3, network depth = 'depth' + 1 'activation': torch.nn.Tanh, 'device': device}~~~~ default training parameters~~~~self.train_params = { 'epochs': 500, 'train_loss': [ 'mse_loss', 'phy_loss', 'energy_loss' ], 'test_loss': [ 'phy_loss', 'energy_loss' ], 'num_batch': 1, 'optimizer': torch.optim.Adamax, 'cyclical': { 'base_lr': 0.001, 'max_lr': 0.1, 'step_size_up': 20, 'step_size_down': 20, 'mode': 'triangular' }, set to False or {} to disable 'L2_reg': 0.0, 'verbose': False, 'print_interval': 10, 'early_stopping': False}~~~~ default input/output parameters~~~~self.io_params = { 'path_out': '../results/', 'path_fig': '../figures/', 'path_log': '../logs/', 'env_path': [], path that will be registered through sys.path 'use_timestamp': True}~~~~ default dataset parameters~~~~self.data_params = { 'data_path': '../datasets/', 'phase': 'single-phase', use 'single-phase', 'dual-phase' or 'multi-phase' 'n_sites': 4, 'train_size': 20000, 'val_size': 2000, 'test_size': 0, set to 0 to use all the test data 'normalize_input': True, 'normalize_output': False, 'device': device, 'dataset': 'new'}~~~~ default loss function parameters~~~~self.loss_params = { 'lambda_s': 1.0, 'lambda_e0': 0.2, 'anneal_factor': 0.9, 'anneal_interval': 50, this is a parameter also for noise and cyclical update 'norm_wf': False, set to False or None or {} to disable the noise 'noise': {'mode': 'uniform', 'mean': 0.0, 'var': 0.5, 'decay': 0.9}, 'cyclical': {'mode': 'sin', 'decay': 0.9, 'mean': 1.0, 'amp': 1.0, 'period': 20, 'cycle_momentum': False}}~~~~ The Models| Models | Abbr. || --------------------------- | ---------------- || Deep Neural Networks | DNN || Shrodinger Loss DNN | S-DNN || Energy Loss S-DNN | SE-DNN || Normalized SE-DNN | NSE-DNN || Extended Training S-DNN | S-DNN$_{ex}$ || Extended Training SE-DNN | SE-DNN$_{ex}$ || Normalized S-DNN$_{ex}$ | NS-DNN$_{ex}$ || Normalized SE-DNN$_{ex}$ | NSE-DNN$_{ex}$ || Label-Free S-DNN$_{ex}$ | S-DNN$_{ex}$-LB || Label-Free SE-DNN$_{ex}$ | SE-DNN$_{ex}$-LB || Normalized S-DNN$_{ex}$-LB | NS-DNN$_{ex}$-LB || Normalized SE-DNN$_{ex}$-LB | NSE-DNN$_{ex}$-LB| ###Code %matplotlib inline import seaborn as sns import numpy as np import pandas as pd import torch import matplotlib.pyplot as plt import random import sys sys.path.append('../scripts/') from training import Trainer from presets import LambdaSearch from config_plots import global_settings from utils import * global_settings() from fastprogress.fastprogress import master_bar, progress_bar device = torch.device('cuda:0') ###Output _____no_output_____ ###Markdown Free Log Files ###Code num_logs = len( [ name for name in os.listdir( '../logs/' ) if os.path.isfile(name) ] ) if num_logs > 2000: free_logs('../logs/') ###Output _____no_output_____ ###Markdown Set Up Parameters and Start TasksThis part includes customized training parameters. Change these to whatever you need. ###Code param_presets = LambdaSearch(data_path='../datasets/') train_sizes = [100, 200, 500, 1000, 2000, 5000, 10000, 15000, 20000] break_loop = False loss_plot = False mb = master_bar(range(10)) for i in mb: for train_size in progress_bar(train_sizes): # the black-box neural networks param = param_presets.DNN() param.name = 'DNN' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.loss_params['lambda_s'] = 0.0 param.loss_params['lambda_e0'] = 0.0 param.loss_params['anneal_factor'] = 0.0 trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # PINN-analogue param = param_presets.NSE_DNNex_LB() param.name = 'NSE-DNNex-LF' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.loss_params['lambda_s'] = 0.566698 param.loss_params['lambda_e0'] = 3.680050 param.loss_params['anneal_factor'] = 0.786220 trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # PGNN-analogue param = param_presets.NSE_DNNex() param.name = 'NSE-DNNex' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.loss_params['lambda_s'] = 0.433467 param.loss_params['lambda_e0'] = 2.297982 param.loss_params['anneal_factor'] = 0.861043 trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # MTL-PGNN param = param_presets.vNSE_DNNex() param.name = 'vNSE-NNex' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.train_params['vanilla'] = True param.loss_params['lambda_s'] = 0.433467 param.loss_params['lambda_e0'] = 2.297982 param.loss_params['anneal_factor'] = 0.861043 param.data_params['device'] = device param.nn_params['device'] = device trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # CoPhy-PGNN param = param_presets.NSE_DNNex() param.name = 'cNSE-NNex' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.loss_params['lambda_s'] = 0.0 param.loss_params['lambda_e0'] = 2.061856 param.loss_params['anneal_factor'] = 0.816932 param.data_params['device'] = device param.nn_params['device'] = device param.loss_params['cold_start'] = { 'mode': 'sigmoid', 'lambda_s': 0.846349, 'threshold': 51.0, 'smooth': 0.171778 } trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # CoPhy-PGNN (w/o E-Loss) param = param_presets.NS_DNNex() param.name = 'cNS-NNex' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.data_params['device'] = device param.nn_params['device'] = device param.loss_params['cold_start'] = { 'mode': 'sigmoid', 'lambda_s': 0.846349, 'threshold': 51.0, 'smooth': 0.171778 } param.loss_params['lambda_s'] = 0.0 param.loss_params['lambda_e0'] = 0.0 param.loss_params['anneal_factor'] = 0.0 trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # CoPhy-PGNN (only-D_Tr) param = param_presets.NSE_DNN() param.name = 'cNSE-NN' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.data_params['device'] = device param.nn_params['device'] = device param.loss_params['lambda_s'] = 0.274606 param.loss_params['lambda_e0'] = 3.046513 param.loss_params['anneal_factor'] = 0.672920 param.loss_params['cold_start'] = { 'mode': 'sigmoid', 'lambda_s': 0.846349, 'threshold': 51.0, 'smooth': 0.171778 } trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) # CoPhy-PGNN (Label-free) param = param_presets.NSE_DNNex_LB() param.name = 'cNSE-NNex-LF' param.data_params['train_size'] = train_size param.train_params['break_loop_early'] = break_loop param.loss_params['lambda_s'] = 0.0 param.loss_params['lambda_e0'] = 3.680050 param.loss_params['anneal_factor'] = 0.786220 param.data_params['device'] = device param.nn_params['device'] = device param.loss_params['cold_start'] = { 'mode': 'sigmoid', 'lambda_s': 0.846349, 'threshold': 51.0, 'smooth': 0.171778 } trainer = Trainer(master_bar=mb, plot=loss_plot) trainer.start(param) ###Output _____no_output_____
colors_overview-Copy1.ipynb
###Markdown Pragmatic color describers ###Code __author__ = "Christopher Potts" __version__ = "CS224u, Stanford, Spring 2020" ###Output _____no_output_____ ###Markdown Contents1. [Overview](Overview)1. [Set-up](Set-up)1. [The corpus](The-corpus) 1. [Corpus reader](Corpus-reader) 1. [ColorsCorpusExample instances](ColorsCorpusExample-instances) 1. [Displaying examples](Displaying-examples) 1. [Color representations](Color-representations) 1. [Utterance texts](Utterance-texts) 1. [Far, Split, and Close conditions](Far,-Split,-and-Close-conditions)1. [Toy problems for development work](Toy-problems-for-development-work)1. [Core model](Core-model) 1. [Toy dataset illustration](Toy-dataset-illustration) 1. [Predicting sequences](Predicting-sequences) 1. [Listener-based evaluation](Listener-based-evaluation) 1. [Other prediction and evaluation methods](Other-prediction-and-evaluation-methods) 1. [Cross-validation](Cross-validation)1. [Baseline SCC model](Baseline-SCC-model)1. [Modifying the core model](Modifying-the-core-model) 1. [Illustration: LSTM Cells](Illustration:-LSTM-Cells) 1. [Illustration: Deeper models](Illustration:-Deeper-models) OverviewThis notebook is part of our unit on grounding. It illustrates core concepts from the unit, and it provides useful background material for the associated homework and bake-off. Set-up ###Code from colors import ColorsCorpusReader import os import pandas as pd from sklearn.model_selection import train_test_split import torch from torch_color_describer import ( ContextualColorDescriber, create_example_dataset) import utils from utils import START_SYMBOL, END_SYMBOL, UNK_SYMBOL utils.fix_random_seeds() ###Output _____no_output_____ ###Markdown The [Stanford English Colors in Context corpus](https://cocolab.stanford.edu/datasets/colors.html) (SCC) is included in the data distribution for this course. If you store the data in a non-standard place, you'll need to update the following: ###Code COLORS_SRC_FILENAME = os.path.join( "data", "colors", "filteredCorpus.csv") COLORS_SRC_FILENAME ###Output _____no_output_____ ###Markdown The corpus The SCC corpus is based in a two-player interactive game. The two players share a context consisting of three color patches, with the display order randomized between them so that they can't use positional information when communicating.The __speaker__ is privately assigned a target color and asked to produce a description of it that will enable the __listener__ to identify the speaker's target. The listener makes a choice based on the speaker's message, and the two succeed if and only if the listener identifies the target correctly.In the game, the two players played repeated reference games and could communicate with each other in a free-form way. This opens up the possibility of modeling these repeated interactions as task-oriented dialogues. However, for this unit, we'll ignore most of this structure. We'll treat the corpus as a bunch of independent reference games played by anonymous players, and we will ignore the listener and their choices entirely.For the bake-off, we will be distributing a separate test set. Thus, all of the data in the SCC can be used for exploration and development. Corpus reader The corpus reader class is `ColorsCorpusReader` in `colors.py`. The reader's primary function is to let you iterate over corpus examples: ###Code corpus = ColorsCorpusReader( COLORS_SRC_FILENAME, word_count=None, normalize_colors=True) ###Output _____no_output_____ ###Markdown The two keyword arguments have their default values here. * If you supply `word_count` with an interger value, it will restrict to just examples where the utterance has that number of words (using a whitespace heuristic). This creates smaller corpora that are useful for development.* The colors in the corpus are in [HLS format](https://en.wikipedia.org/wiki/HSL_and_HSV). With `normalize_colors=False`, the first (hue) value is an integer between 1 and 360 inclusive, and the L (lightness) and S (saturation) values are between 1 and 100 inclusive. With `normalize_colors=True`, these values are all scaled to between 0 and 1 inclusive. The default is `normalize_colors=True` because this is a better choice for all the machine learning models we'll consider. ###Code examples = list(corpus.read()) ###Output _____no_output_____ ###Markdown We can verify that we read in the same number of examples as reported in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142): ###Code # Should be 46994: len(examples) ###Output _____no_output_____ ###Markdown ColorsCorpusExample instances The examples are `ColorsCorpusExample` instances: ###Code ex1 = next(corpus.read()) ###Output _____no_output_____ ###Markdown These objects have a lot of attributes and methods designed to help you study the corpus and use it for our machine learning tasks. Let's review some highlights. Displaying examples You can see what the speaker saw, with the utterance they chose wote above the patches: ###Code ex1.display(typ='speaker') ###Output The darker blue one ###Markdown This is the original order of patches for the speaker. The target happens to the be the leftmost patch, as indicated by the black box around it.Here's what the listener saw, with the speaker's message printed above the patches: ###Code ex1.display(typ='listener') ###Output The darker blue one ###Markdown The listener isn't shown the target, of course, so no patches are highlighted. If `display` is called with no arguments, then the target is placed in the final position and the other two are given in an order determined by the corpus metadata: ###Code ex1.display() ###Output The darker blue one ###Markdown This is the representation order we use for our machine learning models. Color representations For machine learning, we'll often need to access the color representations directly. The primary attribute for this is `colors`: ###Code ex1.colors ###Output _____no_output_____ ###Markdown In this display order, the third element is the target color and the first two are the distractors. The attributes `speaker_context` and `listener_context` return the same colors but in the order that those players saw them. For example: ###Code ex1.speaker_context ###Output _____no_output_____ ###Markdown Utterance texts Utterances are just strings: ###Code ex1.contents ###Output _____no_output_____ ###Markdown There are cases where the speaker made a sequences of utterances for the same trial. We follow [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142) in concatenating these into a single utterances. To preserve the original information, the individual turns are separated by `" "`. Example 3 is the first with this property – let's check it out: ###Code ex3 = examples[2] ex3.contents ###Output _____no_output_____ ###Markdown The method `parse_turns` will parse this into individual turns: ###Code ex3.parse_turns() ###Output _____no_output_____ ###Markdown For examples consisting of a single turn, `parse_turns` returns a list of length 1: ###Code ex1.parse_turns() ###Output _____no_output_____ ###Markdown Far, Split, and Close conditions The SCC contains three conditions: __Far condition__: All three colors are far apart in color space. Example: ###Code print("Condition type:", examples[1].condition) examples[1].display() ###Output Condition type: far purple ###Markdown __Split condition__: The target is close to one of the distractors, and the other is far away from both of them. Example: ###Code print("Condition type:", examples[3].condition) examples[3].display() ###Output Condition type: split lime ###Markdown __Close condition__: The target is similar to both distractors. Example: ###Code print("Condition type:", examples[2].condition) examples[2].display() ###Output Condition type: close Medium pink ### the medium dark one ###Markdown These conditions go from easiest to hardest when it comes to reliable communication. In the __Far__ condition, the context is hardly relevant, whereas the nature of the distractors reliably shapes the speaker's choices in the other two conditions. You can begin to see how this affects speaker choices in the above examples: "purple" suffices for the __Far__ condition, a more marked single word ("lime") suffices in the __Split__ condition, and the __Close__ condition triggers a pretty long, complex description. The `condition` attribute provides access to this value: ###Code ex1.condition ###Output _____no_output_____ ###Markdown The following verifies that we have the same number of examples per condition as reported in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142): ###Code pd.Series([ex.condition for ex in examples]).value_counts() ###Output _____no_output_____ ###Markdown Toy problems for development work The SCC corpus is fairly large and quite challenging as an NLU task. This means it isn't ideal when it comes to testing hypotheses and debugging code. Poor performance could trace to a mistake, but it could just as easily trace to the fact that the problem is very challenging from the point of view of optimization.To address this, the module `torch_color_describer.py` includes a function `create_example_dataset` for creating small, easy datasets with the same basic properties as the SCC corpus.Here's a toy problem containing just six examples: ###Code tiny_contexts, tiny_words, tiny_vocab = create_example_dataset( group_size=2, vec_dim=2) tiny_vocab tiny_words tiny_contexts ###Output _____no_output_____ ###Markdown Each member of `tiny_contexts` contains three vectors. The final (target) vector always has values in a range that determines the corresponding word sequence, which is drawn from a set of three fixed sequences. Thus, the model basically just needs to learn to ignore the distractors and find the association between the target vector and the corresponding sequence. All the models we study have a capacity to solve this task with very little data, so you should see perfect or near perfect performance on reasonably-sized versions of this task. Core model Our core model for this problem is implemented in `torch_color_describer.py` as `ContextualColorDescriber`. At its heart, this is a pretty standard encoder–decoder model:* `Encoder`: Processes the color contexts as a sequence. We always place the target in final position so that it is closest to the supervision signals that we get when decoding.* `Decoder`: A neural language model whose initial hidden representation is the final hidden representation of the `Encoder`.* `EncoderDecoder`: Coordinates the operations of the `Encoder` and `Decoder`.Finally, `ContextualColorDescriber` is a wrapper around these model components. It handle the details of training and implements the prediction and evaluation functions that we will use.Many additional details about this model are included in the slides for this unit. Toy dataset illustration To highlight the core functionality of `ContextualColorDescriber`, let's create a small toy dataset and use it to train and evaluate a model: ###Code toy_color_seqs, toy_word_seqs, toy_vocab = create_example_dataset( group_size=50, vec_dim=2) toy_color_seqs_train, toy_color_seqs_test, toy_word_seqs_train, toy_word_seqs_test = \ train_test_split(toy_color_seqs, toy_word_seqs) ###Output _____no_output_____ ###Markdown Here we expose all of the available parameters with their default values: ###Code toy_mod = ContextualColorDescriber( toy_vocab, embedding=None, # Option to supply a pretrained matrix as an `np.array`. embed_dim=10, hidden_dim=10, max_iter=100, eta=0.01, optimizer=torch.optim.Adam, batch_size=128, l2_strength=0.0, warm_start=False, device=None) _ = toy_mod.fit(toy_color_seqs_train, toy_word_seqs_train) ###Output Epoch 100; err = 0.1345149129629135 ###Markdown Predicting sequences The `predict` method takes a list of color contexts as input and returns model descriptions: ###Code toy_preds = toy_mod.predict(toy_color_seqs_test) toy_preds[0] ###Output _____no_output_____ ###Markdown We can then check that we predicted all correct sequences: ###Code toy_word_seqs_test toy_preds[0] = 'AG' print(toy_preds) toy_correct = sum(1 for x, p in zip(toy_word_seqs_test, toy_preds) if x == p) print(toy_correct) toy_correct / len(toy_word_seqs_test) ###Output 37 ###Markdown For real problems, this is too stringent a requirement, since there are generally many equally good descriptions. This insight gives rise to metrics like [BLEU](https://en.wikipedia.org/wiki/BLEU), [METEOR](https://en.wikipedia.org/wiki/METEOR), [ROUGE](https://en.wikipedia.org/wiki/ROUGE_(metric)), [CIDEr](https://arxiv.org/pdf/1411.5726.pdf), and others, which seek to relax the requirement of an exact match with the test sequence. These are reasonable options to explore, but we will instead adopt a communcation-based evaluation, as discussed in the next section. Listener-based evaluation `ContextualColorDescriber` implements a method `listener_accuracy` that we will use for our primary evaluations in the assignment and bake-off. The essence of the method is that we can calculate$$c^{*} = \text{argmax}_{c \in C} P_S(\text{utterance} \mid c)$$where $P_S$ is our describer model and $C$ is the set of all permutations of all three colors in the color context. We take $c^{*}$ to be a correct prediction if it is one where the target is in the privileged final position. (There are two such contexts; we try both in case the order of the distractors influences the predictions, and the model is correct if one of them has the highest probability.)Here's the listener accuracy of our toy model: ###Code toy_mod toy_color_seqs_test toy_word_seqs_test toy_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test) ###Output _____no_output_____ ###Markdown Other prediction and evaluation methods You can get the perplexities for test examles with `perpelexities`: ###Code toy_perp = toy_mod.perplexities(toy_color_seqs_test, toy_word_seqs_test) toy_perp[0] ###Output _____no_output_____ ###Markdown You can use `predict_proba` to see the full probability distributions assigned to test examples: ###Code toy_proba = toy_mod.predict_proba(toy_color_seqs_test, toy_word_seqs_test) toy_proba[0].shape for timestep in toy_proba[0]: print(dict(zip(toy_vocab, timestep))) ###Output {'<s>': 1.0, '</s>': 0.0, 'A': 0.0, 'B': 0.0, '$UNK': 0.0} {'<s>': 0.0036858993, '</s>': 0.00026680966, 'A': 0.98546416, 'B': 0.009143492, '$UNK': 0.0014396018} {'<s>': 0.004782121, '</s>': 0.024507336, 'A': 0.0019362189, 'B': 0.96381485, '$UNK': 0.004959458} {'<s>': 0.0050889943, '</s>': 0.9780351, 'A': 0.014443769, 'B': 0.0008280441, '$UNK': 0.00160416} ###Markdown Cross-validation You can use `utils.fit_classifier_with_crossvalidation` to cross-validate these models. Just be sure to set `scoring=None` so that the sklearn model selection methods use the `score` method of `ContextualColorDescriber`, which is an alias for `listener_accuracy`: ###Code best_mod = utils.fit_classifier_with_crossvalidation( toy_color_seqs_train, toy_word_seqs_train, toy_mod, cv=2, scoring=None, param_grid={'hidden_dim': [10, 20]}) ###Output Epoch 100; err = 0.12754578888416298 ###Markdown Baseline SCC model Just to show how all the pieces come together, here's a very basic SCC experiment using the core code and very simplistic assumptions (which you will revisit in the assignment) about how to represent the examples: To facilitate quick development, we'll restrict attention to the two-word examples: ###Code dev_corpus = ColorsCorpusReader(COLORS_SRC_FILENAME, word_count=2) dev_examples = list(dev_corpus.read()) len(dev_examples) ###Output _____no_output_____ ###Markdown Here we extract the raw colors and texts (as strings): ###Code x = [[ex.colors, ex.contents] for ex in dev_examples] dev_cols, dev_texts = zip(*[[ex.colors, ex.contents] for ex in dev_examples]) len(dev_texts) len(dev_cols) ###Output _____no_output_____ ###Markdown To tokenize the examples, we'll just split on whitespace, taking care to add the required boundary symbols: ###Code dev_word_seqs = [[START_SYMBOL] + text.split() + [END_SYMBOL] for text in dev_texts] len(dev_word_seqs) ###Output _____no_output_____ ###Markdown We'll use a random train–test split: ###Code dev_cols_train, dev_cols_test, dev_word_seqs_train, dev_word_seqs_test = \ train_test_split(dev_cols, dev_word_seqs) ###Output _____no_output_____ ###Markdown Our vocab is determined by the train set, and we take care to include the `$UNK` token: ###Code dev_vocab = sorted({w for toks in dev_word_seqs_train for w in toks}) + [UNK_SYMBOL] len(dev_vocab) ###Output _____no_output_____ ###Markdown And now we're ready to train a model: ###Code dev_mod = ContextualColorDescriber( dev_vocab, embed_dim=10, hidden_dim=10, max_iter=10, batch_size=128) print(len(dev_cols_train)) print(len(dev_word_seqs_train)) dev_cols_train[0] dev_cols_train[100] _ = dev_mod.fit(dev_cols_train, dev_word_seqs_train) ###Output Epoch 10; err = 101.75892037153244 ###Markdown And finally an evaluation in terms of listener accuracy: ###Code dev_mod print(len(dev_cols_train)) print(len(dev_cols_test)) dev_mod.listener_accuracy(dev_cols_test, dev_word_seqs_test) ###Output _____no_output_____ ###Markdown Modifying the core model The first few assignment problems concern how you preprocess the data for your model. After that, the goal is to subclass model components in `torch_color_describer.py`. For the bake-off submission, you can do whatever you like in terms of modeling, but my hope is that you'll be able to continue subclassing based on `torch_color_describer.py`.This section provides some illustrative examples designed to give you a feel for how the code is structured and what your options are in terms of creating subclasses. Illustration: LSTM Cells Both the `Encoder` and the `Decoder` of `torch_color_describer` are currently GRU cells. Switching to another cell type is easy: __Step 1__: Subclass the `Encoder`; all we have to do here is change `GRU` from the original to `LSTM`: ###Code import torch.nn as nn from torch_color_describer import Encoder class LSTMEncoder(Encoder): def __init__(self, color_dim, hidden_dim): super().__init__(color_dim, hidden_dim) self.rnn = nn.LSTM( input_size=self.color_dim, hidden_size=self.hidden_dim, batch_first=True) ###Output _____no_output_____ ###Markdown __Step 2__: Subclass the `Decoder`, making the same simple change as above: ###Code import torch.nn as nn from torch_color_describer import Encoder, Decoder class LSTMDecoder(Decoder): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.rnn = nn.LSTM( input_size=self.embed_dim, hidden_size=self.hidden_dim, batch_first=True) ###Output _____no_output_____ ###Markdown __Step 3__:`ContextualColorDescriber` has a method called `build_graph` that sets up the `Encoder` and `Decoder`. The needed revision just uses `LSTMEncoder`: ###Code from torch_color_describer import EncoderDecoder class LSTMContextualColorDescriber(ContextualColorDescriber): def build_graph(self): # Use the new Encoder: encoder = LSTMEncoder( color_dim=self.color_dim, hidden_dim=self.hidden_dim) # Use the new Decoder: decoder = LSTMDecoder( vocab_size=self.vocab_size, embed_dim=self.embed_dim, embedding=self.embedding, hidden_dim=self.hidden_dim) return EncoderDecoder(encoder, decoder) ###Output _____no_output_____ ###Markdown Here's an example run: ###Code lstm_mod = LSTMContextualColorDescriber( toy_vocab, embed_dim=10, hidden_dim=10, max_iter=100, batch_size=128) _ = lstm_mod.fit(toy_color_seqs_train, toy_word_seqs_train) lstm_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test) ###Output _____no_output_____ ###Markdown Illustration: Deeper models The `Encoder` and `Decoder` are both currently hard-coded to have just one hidden layer. It is straightforward to make them deeper as long as we ensure that both the `Encoder` and `Decoder` have the same depth; since the `Encoder` final states are the initial hidden states for the `Decoder`, we need this alignment. (Strictly speaking, we could have different numbers of `Encoder` and `Decoder` layers, as long as we did some kind of averaging or copying to achieve the hand-off from `Encoder` to `Decocer`. I'll set this possibility aside.) __Step 1__: We need to subclass the `Encoder` and `Decoder` so that they have `num_layers` argument that is fed into the RNN cell: ###Code import torch.nn as nn from torch_color_describer import Encoder, Decoder class DeepEncoder(Encoder): def __init__(self, *args, num_layers=2, **kwargs): super().__init__(*args, **kwargs) self.num_layers = num_layers self.rnn = nn.GRU( input_size=self.color_dim, hidden_size=self.hidden_dim, num_layers=self.num_layers, batch_first=True) class DeepDecoder(Decoder): def __init__(self, *args, num_layers=2, **kwargs): super().__init__(*args, **kwargs) self.num_layers = num_layers self.rnn = nn.GRU( input_size=self.embed_dim, hidden_size=self.hidden_dim, num_layers=self.num_layers, batch_first=True) ###Output _____no_output_____ ###Markdown __Step 2__: As before, we need to update the `build_graph` method of `ContextualColorDescriber`. The needed revision just uses `DeepEncoder` and `DeepDecoder`. To expose this new argument to the user, we also add a new keyword argument to `ContextualColorDescriber`: ###Code from torch_color_describer import EncoderDecoder class DeepContextualColorDescriber(ContextualColorDescriber): def __init__(self, *args, num_layers=2, **kwargs): self.num_layers = num_layers super().__init__(*args, **kwargs) def build_graph(self): encoder = DeepEncoder( color_dim=self.color_dim, hidden_dim=self.hidden_dim, num_layers=self.num_layers) # The new piece is this argument. decoder = DeepDecoder( vocab_size=self.vocab_size, embed_dim=self.embed_dim, embedding=self.embedding, hidden_dim=self.hidden_dim, num_layers=self.num_layers) # The new piece is this argument. return EncoderDecoder(encoder, decoder) ###Output _____no_output_____ ###Markdown An example/test run: ###Code mod_deep = DeepContextualColorDescriber( toy_vocab, embed_dim=10, hidden_dim=10, max_iter=100, batch_size=128) _ = mod_deep.fit(toy_color_seqs_train, toy_word_seqs_train) mod_deep.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test) ###Output _____no_output_____
scripts/tutorial-pyswaggerclient.ipynb
###Markdown Using FAIRshake APIThis notebook walks through using FAIRshake API with coreapi's python implementation, it works just as easily in javascript or any language with a coreapi implementation. Given that swagger is also exposed at , a swagger-based client can *also* be used.For more information, refer to the documentation at https://fairshake.cloud/swagger/Dependencies:`pip install 'git+https://github.com/u8sand/[email protected]'` ###Code import pyswaggerclient url = 'https://fairshake.cloud/' schema_url = 'https://fairshake.cloud/swagger?format=openapi' fairshake_client = pyswaggerclient.SwaggerClient(schema_url) ###Output _____no_output_____ ###Markdown Step 1. Authentication If you don't already have a user registered with FAIRshake, you need to create one.This can be done manually at .Your API Key is available at **Note**: Authentication is only required if you plan on *creating*/*changing* things. Read-access is available without authentication. ###Code # Put your API Key in this string api_key = '' ###Output _____no_output_____ ###Markdown Now that we have our API key, we can reinstantiate our Client with an authenticated transport layer. ###Code fairshake_client.update( headers={ 'Authorization': 'Token ' + api_key, } ) ###Output _____no_output_____ ###Markdown We can test that it worked by reading information about the logged in user. ###Code fairshake_client.actions.auth_user_read.call() ###Output _____no_output_____ ###Markdown Step 2. Project, Digital Object, Rubric, Metric Management All elements expose themselves in the same way with a common set of attributes for search and identification with a few extra attributes distinguishing each element.Here, quite simply, is the gist of these data models:```pythonclass Identifiable: id: int url: str title: str description: str image: str tags: str type: ['', 'any', 'data', 'repo', 'test', 'tool'] authors: Author[]class Project(Identifiable): passclass DigitalObject(Identifiable): projects: Project[] rubrics: Rubric[]class Rubric(Identifiable): license: str metrics: Metric[]class Metric(Identifiable): license: str rationale: str principle: str fairmetrics: str fairsharing: str```Queries can be made by providing any of the parameters and we'll return the subset of the database which satisfies those parameter constraints. Though you use `title=something` we do a fuzzy search if it makes sense to do so. More find-tuned queries are actually supported by the API but not yet documented which would allow for django-style filters e.g. `title__contains=something`.**Note**: Results are paginated; use `params={'page': n}` to go through pages ###Code # List all projects fairshake_client.actions.project_list.call() # List all Digital objects of type Tool fairshake_client.actions.digital_object_list.call(type='tool') # Create a metric metric = fairshake_client.actions.metric_create.call(data=dict( title='My Metric', description='It has a url', type='url', tags='my project test', license='MIT', rationale='https://fairrationals.com/test', principle='F', )) metric_id = metric['id'] metric # Create a rubric rubric = fairshake_client.actions.rubric_create.call(data=dict( title='My Rubric', description='Rubric is great', tags='my project test', type='tool', license='MIT', metrics=[ metric_id, ], )) rubric_id = rubric['id'] rubric # Create a project proj = fairshake_client.actions.project_create.call(data=dict( url='http://my-objects.com', title='My Project', description='Project is great', tags='my project test', )) proj_id = proj['id'] proj # Create a digital object obj = fairshake_client.actions.digital_object_create.call(data=dict( url='http://my-objects.com/00001', title='My Object', description='Object is great', tags='my object test', type='tool', rubrics=[rubric_id], projects=[proj_id], )) obj_id = obj['id'] obj ###Output _____no_output_____ ###Markdown Performing Assessments```pythonclass Assessment: project: Project target: DigitalObject rubric: Rubric methodology: ['self', 'user', 'auto', 'test'] answers: Answer[]class Answer: metric: Metric answer: float 0~1 quantified metric satisfaction comment: str url_comment: str``` ###Code # Create an assessment fairshake_client.actions.assessment_create.call(data=dict( project=proj_id, target=obj_id, rubric=rubric_id, methodology='test', answers=[ { 'metric': metric_id, 'answer': 1.0, 'url_comment': 'http://my_url.com', }, ], )) ###Output _____no_output_____ ###Markdown Obtaining the score of a Digital Object ###Code score = fairshake_client.actions.score_list.call(data=dict(target=obj_id)) score ###Output _____no_output_____ ###Markdown Displaying FAIR insignia The insignia client library exposes a function, `build_svg_from_score` which accepts a container and the query dict. ###Code import json from IPython.display import display, HTML HTML(""" <div id="insignia" data-target="%s" style="width: 40px; height: 40px; border: 0px solid black" /> """ % (obj_id)) %%javascript require(['https://fairshake.cloud/static/scripts/insignia.js'], function(insignia) { var element = document.getElementById('insignia') insignia.build_svg_from_score( element, { target: element.getAttribute('data-target') } ) }) ###Output _____no_output_____ ###Markdown Delete test objects ###Code # Delete your account and associated objects result = fairshake_client.actions.digital_object_delete(data=dict(id=obj_id)) display(result) result = fairshake_client.actions.project_delete(data=dict(id=proj_id)) display(result) result = fairshake_client.actions.rubric_delete(data=dict(id=rubric_id)) display(result) result = fairshake_client.actions.metric_delete(data=dict(id=metric_id)) display(result) ###Output _____no_output_____
Machine Learning Projects/Kelas Pengembangan ML/PengembanganML_1_citrus.ipynb
###Markdown ###Code import pandas as pd citrus = pd.read_csv('citrus.csv') #Upload citrus.csv first citrus.info() citrus.head() citrus.name[citrus.name == 'orange'] = 0 citrus.name[citrus.name == 'grapefruit'] = 1 citrus.head(10000) dataset = citrus.values dataset x = dataset[:,1:6] y = dataset[:,0] from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() x_scale = min_max_scaler.fit_transform(x) x_scale from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scale, y, test_size=0.3) import numpy as np y_train = y_train.astype(np.float32) y_test = y_test.astype(np.float32) from keras.models import Sequential from keras.layers import Dense model = Sequential([ Dense(32, activation='relu', input_shape=(5,)), Dense(32, activation='relu'), Dense(1, activation='sigmoid'), ]) model.compile( optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'] ) model.fit(x_train, y_train, epochs=101) model.evaluate(x_test, y_test) ###Output _____no_output_____
pyML-ex7/.ipynb_checkpoints/c3py-sample-checkpoint.ipynb
###Markdown This is sample of using c3py library (https://[email protected]/yurz/c3py.git) Only Line, Area and Bar (Unstacked and Stacked) charts are supported at the momen. c3py can be used for displaying charts inside Jupyter Notebooks or rendering self-contained HTML files. ###Code from c3py import C3Chart as c3 import sys import IPython print(sys.version) print(IPython.__version__) ###Output 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06) [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] 4.2.0 ###Markdown For displaying inside Jupyter - Load required Javascript libraries: ###Code c3.ipy_load() ###Output _____no_output_____ ###Markdown Download some GDP data from World Bank and prepare Pandas DataFrame object: ###Code from pandas_datareader import data, wb df = wb.download(indicator='NY.GDP.PCAP.PP.KD', country="all", start=2010, end=2015).unstack() ###Output _____no_output_____ ###Markdown This is how raw df looks: ###Code df.head() ###Output _____no_output_____ ###Markdown Cleanup and create df_selected with top 5 and bottom 5 countries based on GDP Per Capita Growth between 2010 and 2015: ###Code df.columns = df.columns.levels[1] df = df.dropna(how="any") df = df.astype(int) df["5yr_change"] = (df["2014"]-df["2010"])/df["2010"] df = df.sort_values("5yr_change") df_selected = df.head().append(df.tail()) df_selected ch1 = c3(data=df_selected[['2010', '2011', '2012', '2013', '2014', '2015']].T, width=1020, height=380, kind="line", title="GDP Per Capita 2010-2015 Growth - Top 5 and Bottom 5 Countries", id="ch1") ch1() ###Output _____no_output_____ ###Markdown Now lat's create a copy of the above chart presented as an area chart ###Code ch2 = ch1.copy() ch2.id = "ch2" ch2.kind = "area" ch2() ###Output _____no_output_____ ###Markdown Render a HTML file with both files: ###Code with open("sample.html", "w") as f: f.write("<html><body>" + c3.head + ch1.to_html() + "<br/><br/>" + ch2.to_html() + "</html></body>") ###Output _____no_output_____
2.2.c.Temperature_climatology_Spain_results.ipynb
###Markdown 2.2.c Temperature climatology in Spain (results)=================================================In this notebook we will finally generate the climatology results of daily temperature observations.Our final goal is still to know whether the temperature anomaly has influence on the power demand or not. Now, let's import the _classic stack_ ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown We do now need to load the compressed filed into memory. ###Code DATA = pd.read_csv("aemet_daily_observations_2009-2018.csv.bz2",compression='bz2') ###Output _____no_output_____ ###Markdown Let's have a quick look at the first and last lines of the file ###Code DATA.head(2) DATA.tail(2) ###Output _____no_output_____ ###Markdown The observations cover the period end of 2009 end of 2018, 10 years of data. It seems enough to have a representative climatology.And data are already been thorugh some preparation. Group by The **_groupby_** method is a very powerful tool for apply functions based on categories.We will use it to apply it to our _category_ ~ _day-of-the-year_.But, first of all, we add datetime properties to the date column and set it as index ###Code DATA.loc[:,'date'] = pd.DatetimeIndex(pd.to_datetime(DATA['date'])) DATA.set_index(['date'],inplace=True) DATA.loc[:,'doy'] = DATA.index.strftime('Y%m%d') DATA.head(2) station_group = DATA.groupby(by='station') ###Output _____no_output_____ ###Markdown Let's loop throug the station_group object to have a first insight on what the groupby method has produce. ###Code for name,group_st in station_group: print ('%s (%s) %s' % (name,group_st.iloc[0].region ,len(group_st))) ###Output A CORUÑA (A CORUÑA) 3318 A CORUÑA AEROPUERTO (A CORUÑA) 3314 A POBRA DE TRIVES (OURENSE) 3194 ABLA (ALMERIA) 3257 ADRA (ALMERIA) 1672 ALAJAR (HUELVA) 3220 ALBACETE (ALBACETE) 3317 ALBACETE BASE AÉREA (ALBACETE) 3318 ALBORÁN (ALMERIA) 1711 ALCANTARILLA, BASE AÉREA (MURCIA) 3318 ALCAÑIZ (TERUEL) 3082 ALICANTE-ELCHE AEROPUERTO (ALICANTE) 3318 ALICANTE/ALACANT (ALICANTE) 3318 ALMERÍA AEROPUERTO (ALMERIA) 3318 ANDÚJAR (JAEN) 3087 ANTEQUERA (MALAGA) 2933 ARAGÜÉS DEL PUERTO (HUESCA) 2915 ARANDA DE DUERO (BURGOS) 3301 ARANGUREN, ILUNDAIN (NAVARRA) 2946 ARANJUEZ (MADRID) 3093 ARENYS DE MAR (BARCELONA) 2975 ARROYO DEL OJANCO (JAEN) 3137 ASTURIAS AEROPUERTO (ASTURIAS) 3318 AUTILLA DEL PINO (PALENCIA) 3257 AYAMONTE (HUELVA) 3281 BADAJOZ AEROPUERTO (BADAJOZ) 3318 BARCELONA (BARCELONA) 3237 BARCELONA AEROPUERTO (BARCELONA) 3318 BARCELONA, FABRA (BARCELONA) 3318 BARDENAS REALES, BASE AÉREA (NAVARRA) 3145 BAZA (GRANADA) 2890 BAZTAN, IRURITA (NAVARRA) 2819 BELORADO (BURGOS) 2932 BENAVENTE (ZAMORA) 3315 BIELSA (HUESCA) 3023 BILBAO AEROPUERTO (BIZKAIA) 3318 BUITRAGO DEL LOZOYA (MADRID) 3032 BUJARALOZ (ZARAGOZA) 2346 BURGOS AEROPUERTO (BURGOS) 3318 CABO BUSTO (ASTURIAS) 2729 CABO PEÑAS (ASTURIAS) 2992 CABO VILAN (A CORUÑA) 2962 CADREITA (NAVARRA) 2265 CALAMOCHA (TERUEL) 3307 CALANDA (TERUEL) 2433 CALATAYUD (ZARAGOZA) 2732 CAPDEPERA (ILLES BALEARS) 3024 CARAVACA DE LA CRUZ (MURCIA) 3309 CARBALLIÑO, O (OURENSE) 3253 CARBONERAS (ALMERIA) 1962 CARRIÓN DE LOS CONDES (PALENCIA) 3281 CARTAGENA (MURCIA) 3318 CASTELLFORT (CASTELLON) 3087 CASTELLÓN - ALMASSORA (CASTELLON) 3318 CASTRO URDIALES (CANTABRIA) 1628 CASTROPOL (ASTURIAS) 1469 CAZALLA DE LA SIERRA (SEVILLA) 3213 CAZORLA (JAEN) 2839 CAÑIZARES (CUENCA) 2603 CERVERA DE PISUERGA (PALENCIA) 3211 CEUTA (CEUTA) 3305 CHINCHILLA (ALBACETE) 2163 CIEZA (MURCIA) 3310 CIUDAD REAL (CIUDAD REAL) 3318 COLMENAR VIEJO (MADRID) 3318 CORIA (CACERES) 3273 CUENCA (CUENCA) 3318 CÁCERES (CACERES) 3318 CÁDIZ (CADIZ) 2893 CÓRDOBA AEROPUERTO (CORDOBA) 3318 DAROCA (ZARAGOZA) 3318 DON BENITO (BADAJOZ) 3297 DONOSTIA/SAN SEBASTIÁN, IGUELDO (GIPUZKOA) 3318 DOÑA MENCÍA (CORDOBA) 3235 ELGOIBAR (GIPUZKOA) 3227 ESCORCA, LLUC (ILLES BALEARS) 3210 ESTACA DE BARES (A CORUÑA) 3189 ESTEPONA (MALAGA) 3264 FISTERRA (A CORUÑA) 3087 FORONDA-TXOKIZA (ARABA/ALAVA) 3318 FUENGIROLA (MALAGA) 3293 FUERTEVENTURA AEROPUERTO (LAS PALMAS) 3303 GETAFE (MADRID) 3318 GIJÓN, CAMPUS (ASTURIAS) 1908 GIJÓN, PUERTO (ASTURIAS) 3318 GIRONA AEROPUERTO (GIRONA) 3316 GRAN CANARIA AEROPUERTO (LAS PALMAS) 3318 GRANADA AEROPUERTO (GRANADA) 3318 GRANADA BASE AÉREA (GRANADA) 3318 GRAZALEMA (CADIZ) 3237 GUADALAJARA (GUADALAJARA) 2710 GUADALAJARA, EL SERRANILLO (GUADALAJARA) 1727 GÜEÑES (BIZKAIA) 3145 GÜÍMAR (STA. CRUZ DE TENERIFE) 1826 HELLÍN (ALBACETE) 3079 HERRERA DEL DUQUE (BADAJOZ) 3261 HIERRO AEROPUERTO (STA. CRUZ DE TENERIFE) 3318 HINOJOSA DEL DUQUE (CORDOBA) 2845 HONDARRIBIA, MALKARROA (GIPUZKOA) 3318 HUELVA, RONDA ESTE (HUELVA) 3309 HUESCA AEROPUERTO (HUESCA) 3318 HUÉRCAL-OVERA (ALMERIA) 3263 HUÉSCAR (GRANADA) 2321 IBIZA, AEROPUERTO (ILLES BALEARS) 3318 IZAÑA (STA. CRUZ DE TENERIFE) 3318 JACA (HUESCA) 2693 JAÉN (JAEN) 3318 JAÉN, INSTITUTO (JAEN) 1278 JEREZ DE LA FRONTERA AEROPUERTO (CADIZ) 3318 JEREZ DE LOS CABALLEROS (BADAJOZ) 3110 JÁVEA/ XÀBIA (ALICANTE) 3174 LA ALDEA DE SAN NICOLÁS (LAS PALMAS) 1484 LA COVATILLA, ESTACIÓN DE ESQUÍ (SALAMANCA) 2952 LA MOLINA (GIRONA) 3060 LA PALMA AEROPUERTO (STA. CRUZ DE TENERIFE) 3303 LA PINILLA, ESTACIÓN DE ESQUÍ (SEGOVIA) 3266 LA RODA DE ANDALUCÍA (SEVILLA) 3182 LA SEU D'URGELL (LLEIDA) 3180 LAGUNAS DE SOMOZA (LEON) 3083 LANZAROTE AEROPUERTO (LAS PALMAS) 3318 LAS PALMAS DE GRAN CANARIA, PL. DE LA FERIA (LAS PALMAS) 1861 LAS PALMAS DE GRAN CANARIA, SAN CRISTOBAL (LAS PALMAS) 2705 LEKEITIO (BIZKAIA) 3125 LEÓN AEROPUERTO (LEON) 1218 LEÓN, VIRGEN DEL CAMINO (LEON) 3318 LLANES (ASTURIAS) 3149 LLEIDA (LLEIDA) 3318 LLERENA (BADAJOZ) 3237 LOGROÑO AEROPUERTO (LA RIOJA) 3318 LOJA (GRANADA) 3147 LORCA (MURCIA) 3282 LUGO AEROPUERTO (LUGO) 3318 MACHICHACO (BIZKAIA) 3069 MADRID AEROPUERTO (MADRID) 3318 MADRID, CIUDAD UNIVERSITARIA (MADRID) 3151 MADRID, CUATRO VIENTOS (MADRID) 3318 MADRID, RETIRO (MADRID) 3318 MADRIDEJOS (TOLEDO) 2934 MANRESA (BARCELONA) 3199 MASPALOMAS (LAS PALMAS) 2867 MEDINA DE POMAR (BURGOS) 3145 MELILLA (MELILLA) 3318 MENORCA, AEROPUERTO (ILLES BALEARS) 3318 MOGUER, EL ARENOSILLO (HUELVA) 3239 MOGÁN, PUERTO (LAS PALMAS) 3219 MOLINA DE ARAGÓN (GUADALAJARA) 3288 MONTE IROITE (A CORUÑA) 2513 MORÓN DE LA FRONTERA (SEVILLA) 3318 MOTRIL (GRANADA) 553 MURCIA (MURCIA) 3318 MÁLAGA AEROPUERTO (MALAGA) 3318 MÁLAGA, CENTRO METEOROLÓGICO (MALAGA) 3310 MÁLAGA, PUERTO (MALAGA) 59 MÉRIDA (BADAJOZ) 3298 NAUT ARAN, ARTIES (LLEIDA) 2941 NAVALMORAL DE LA MATA (CACERES) 3312 NAVARREDONDA DE GREDOS (AVILA) 3130 OLIVA (VALENCIA) 3203 OLMEDO (VALLADOLID) 2886 OURENSE (OURENSE) 3318 OVIEDO (ASTURIAS) 5814 PADRÓN (A CORUÑA) 3131 PALACIOS DE LA SIERRA (BURGOS) 3181 PALMA, AEROPUERTO (ILLES BALEARS) 3318 PALMA, PUERTO (ILLES BALEARS) 3318 PAMPLONA (NAVARRA) 3318 PAMPLONA AEROPUERTO (NAVARRA) 3318 PINOSO (ALICANTE) 3060 PLASENCIA (CACERES) 3238 POLINYÀ DE XÚQUER (VALENCIA) 3188 PONFERRADA (LEON) 3318 PONTEVEDRA (PONTEVEDRA) 3318 PORQUERES (GIRONA) 2060 PORRERES (ILLES BALEARS) 3203 PORTOCOLOM (ILLES BALEARS) 3106 PUEBLA DE DON RODRIGO (CIUDAD REAL) 2660 PUERTO ALTO DEL LEÓN (MADRID) 2691 PUERTO DE LA CRUZ (STA. CRUZ DE TENERIFE) 3220 PUERTO DE LEITARIEGOS (ASTURIAS) 2762 PUERTO DE NAVACERRADA (MADRID) 3318 PUERTO DE PAJARES (ASTURIAS) 3037 PUERTO DE SAN ISIDRO (LEON) 2796 PUNTA GALEA (BIZKAIA) 3257 PÁJARA (LAS PALMAS) 1443 QUINTANAR DE LA ORDEN (TOLEDO) 2859 REINOSA (CANTABRIA) 3176 REUS AEROPUERTO (TARRAGONA) 3318 RIPOLL (GIRONA) 3206 ROBLEDO DE CHAVELA (MADRID) 2749 RONDA (MALAGA) 558 ROQUETAS DE MAR (ALMERIA) 2954 ROTA, BASE NAVAL (CADIZ) 3318 SA POBLA (ILLES BALEARS) 2744 SABADELL AEROPUERTO (BARCELONA) 2241 SAELICES EL CHICO (SALAMANCA) 3297 SALAMANCA (SALAMANCA) 3308 SALAMANCA AEROPUERTO (SALAMANCA) 3318 SAN CLEMENTE (CUENCA) 2112 SAN FERNANDO (CADIZ) 3284 SAN JAVIER AEROPUERTO (MURCIA) 6240 SAN PABLO DE LOS MONTES (TOLEDO) 3175 SAN SEBASTIÁN AEROPUERTO (GIPUZKOA) 2618 SAN SEBASTIÁN DE LA GOMERA (STA. CRUZ DE TENERIFE) 3251 SAN VICENTE DE LA BARQUERA (CANTABRIA) 3299 SANT JAUME D'ENVEJA (TARRAGONA) 2967 SANTA ELENA (JAEN) 3050 SANTA SUSANNA (BARCELONA) 2565 SANTANDER (CANTABRIA) 5815 SANTANDER AEROPUERTO (CANTABRIA) 3318 SANTIAGO DE COMPOSTELA (A CORUÑA) 3214 SANTIAGO DE COMPOSTELA AEROPUERTO (A CORUÑA) 3318 SEGOVIA (SEGOVIA) 3318 SEVILLA AEROPUERTO (SEVILLA) 3318 SIERRA DE ALFABIA, BUNYOLA (ILLES BALEARS) 3090 SIGÜENZA (GUADALAJARA) 3019 SOMOSIERRA (MADRID) 2736 SORIA (SORIA) 3267 SOS DEL REY CATÓLICO (ZARAGOZA) 2810 SOTILLO DE LA ADRADA (AVILA) 2991 STA.CRUZ DE TENERIFE (STA. CRUZ DE TENERIFE) 3318 TALARN (LLEIDA) 2824 TALAVERA DE LA REINA (TOLEDO) 3063 TARANCÓN (CUENCA) 3259 TARIFA (CADIZ) 3102 TAZACORTE (STA. CRUZ DE TENERIFE) 3104 TEGUISE (LAS PALMAS) 2015 TENERIFE NORTE AEROPUERTO (STA. CRUZ DE TENERIFE) 3318 TENERIFE SUR AEROPUERTO (STA. CRUZ DE TENERIFE) 3318 TERUEL (TERUEL) 3318 TOLEDO (TOLEDO) 3315 TOMELLOSO (CIUDAD REAL) 2915 TORLA (HUESCA) 1729 TORREJÓN DE ARDOZ (MADRID) 3318 TORROX (MALAGA) 2807 TORTOSA (TARRAGONA) 3318 TRUJILLO (CACERES) 3211 TÀRREGA (LLEIDA) 2715 UTIEL (VALENCIA) 3267 VALDEPEÑAS (CIUDAD REAL) 3077 VALDERREDIBLE, POLIENTES (CANTABRIA) 3268 VALENCIA AEROPUERTO (VALENCIA) 3318 VALENCIA DE ALCÁNTARA (CACERES) 3200 VALLADOLID (VALLADOLID) 3318 VALLADOLID AEROPUERTO (VALLADOLID) 3318 VALÈNCIA (VALENCIA) 3318 VALÈNCIA, VIVEROS (VALENCIA) 3297 VANDELLÒS (TARRAGONA) 2735 VEJER DE LA FRONTERA (CADIZ) 3308 VIGO AEROPUERTO (PONTEVEDRA) 3318 VILLAFRANCA DEL CID/VILLAFRANCA (CASTELLON) 2096 VILLANUEVA DE CÓRDOBA (CORDOBA) 3191 VILLARDECIERVOS (ZAMORA) 3258 VILLARRODRIGO (JAEN) 2309 VINARÒS (CASTELLON) 3206 VISO DEL MARQUÉS (CIUDAD REAL) 2895 VITIGUDINO (SALAMANCA) 3262 VITORIA GASTEIZ AEROPUERTO (ARABA/ALAVA) 2650 XINZO DE LIMIA (OURENSE) 2912 XÀTIVA (VALENCIA) 3003 YECLA (MURCIA) 3303 ZAMORA (ZAMORA) 3318 ZARAGOZA AEROPUERTO (ZARAGOZA) 3318 ZARAGOZA, VALDESPARTERA (ZARAGOZA) 2245 ZUMAIA (GIPUZKOA) 3310 ZUMARRAGA (GIPUZKOA) 3261 ÁGUILAS (MURCIA) 3316 ÁVILA (AVILA) 3318 ÉCIJA (SEVILLA) 3219 ###Markdown The next step is to groupby date of the year. ###Code for name,group_doy in group_st.groupby(by='doy'): print ('%s (%s) %4.2f %4.2f %4.2f' % (name,len(group_doy),np.mean(group_doy['tmin']), np.mean(group_doy['tavg']),np.mean(group_doy['tmax']))) ###Output Y0101 (9) 4.66 10.06 15.43 Y0102 (9) 4.17 10.10 16.04 Y0103 (9) 4.53 10.09 15.63 Y0104 (7) 4.84 10.77 16.69 Y0105 (7) 2.37 9.23 16.08 Y0106 (7) 3.20 9.37 15.56 Y0107 (7) 4.46 9.77 15.07 Y0108 (7) 3.57 9.54 15.50 Y0109 (7) 2.69 9.06 15.37 Y0110 (7) 4.27 10.19 16.07 Y0111 (7) 4.67 10.40 16.10 Y0112 (8) 4.00 9.74 15.50 Y0113 (8) 4.23 9.87 15.53 Y0114 (8) 3.39 9.01 14.67 Y0115 (8) 1.99 8.04 14.09 Y0116 (8) 3.34 8.50 13.67 Y0117 (9) 2.43 8.87 15.31 Y0118 (9) 3.53 8.91 14.31 Y0119 (7) 3.87 8.97 14.05 Y0120 (6) 1.62 7.48 13.33 Y0121 (9) 1.65 8.02 14.35 Y0122 (8) 3.07 9.01 14.97 Y0123 (9) 2.33 8.66 14.93 Y0124 (9) 2.85 9.46 16.05 Y0125 (9) 3.66 9.60 15.52 Y0126 (9) 3.77 9.91 16.11 Y0127 (9) 4.81 9.62 14.44 Y0128 (8) 3.46 8.94 14.40 Y0129 (8) 3.15 8.84 14.50 Y0130 (8) 3.24 9.41 15.60 Y0131 (9) 3.47 9.66 15.84 Y0201 (9) 2.79 9.52 16.23 Y0202 (9) 2.51 8.24 13.98 Y0203 (8) 2.45 8.55 14.62 Y0204 (8) 3.59 9.12 14.66 Y0205 (9) 3.54 9.52 15.50 Y0206 (9) 2.88 9.49 16.13 Y0207 (9) 3.10 9.14 15.20 Y0208 (9) 3.02 8.68 14.33 Y0209 (9) 0.79 7.96 15.11 Y0210 (9) 2.33 8.16 13.97 Y0211 (9) 2.67 8.74 14.78 Y0212 (9) 4.97 9.54 14.08 Y0213 (9) 4.56 9.51 14.42 Y0214 (9) 3.67 9.77 15.83 Y0215 (8) 5.09 10.39 15.68 Y0216 (9) 3.66 9.72 15.78 Y0217 (9) 4.84 10.09 15.32 Y0218 (9) 5.28 10.58 15.93 Y0219 (9) 4.58 10.39 16.17 Y0220 (9) 3.97 10.48 16.98 Y0221 (9) 5.99 11.56 17.14 Y0222 (9) 4.43 10.97 17.51 Y0223 (9) 4.78 11.11 17.46 Y0224 (9) 4.89 11.10 17.31 Y0225 (9) 5.21 11.23 17.27 Y0226 (9) 3.85 11.00 18.12 Y0227 (9) 5.89 11.77 17.63 Y0228 (8) 5.50 10.94 16.40 Y0229 (2) 3.65 11.90 20.20 Y0301 (9) 4.14 10.92 17.69 Y0302 (8) 5.89 11.91 17.93 Y0303 (9) 6.19 11.81 17.40 Y0304 (9) 6.60 11.84 17.10 Y0305 (9) 7.50 12.41 17.33 Y0306 (9) 6.43 12.07 17.68 Y0307 (9) 5.27 11.91 18.56 Y0308 (9) 5.67 12.87 20.08 Y0309 (9) 6.26 12.71 19.17 Y0310 (9) 6.26 12.96 19.68 Y0311 (9) 5.47 12.32 19.18 Y0312 (9) 6.30 12.64 18.96 Y0313 (9) 5.77 11.97 18.21 Y0314 (9) 5.48 11.57 17.68 Y0315 (9) 5.09 12.07 19.08 Y0316 (9) 5.77 12.39 19.01 Y0317 (9) 6.81 13.28 19.70 Y0318 (9) 6.82 13.47 20.09 Y0319 (9) 6.36 13.53 20.71 Y0320 (9) 7.69 13.12 18.51 Y0321 (9) 7.01 12.69 18.38 Y0322 (8) 5.35 11.86 18.36 Y0323 (8) 6.70 12.11 17.52 Y0324 (8) 7.18 13.03 18.86 Y0325 (9) 7.02 12.67 18.33 Y0326 (9) 7.86 13.72 19.60 Y0327 (8) 6.91 13.47 19.97 Y0328 (9) 6.74 14.35 21.99 Y0329 (9) 8.30 14.38 20.44 Y0330 (9) 7.87 14.86 21.84 Y0331 (9) 8.71 15.17 21.62 Y0401 (9) 7.76 15.01 22.32 Y0402 (9) 8.33 15.04 21.80 Y0403 (9) 8.53 14.36 20.18 Y0404 (8) 8.43 14.19 19.90 Y0405 (9) 8.90 15.32 21.73 Y0406 (9) 8.19 15.50 22.86 Y0407 (9) 8.66 15.93 23.23 Y0408 (8) 8.56 16.18 23.84 Y0409 (9) 8.21 15.50 22.84 Y0410 (9) 9.83 16.16 22.50 Y0411 (8) 11.02 17.23 23.48 Y0412 (9) 9.79 15.79 21.80 Y0413 (8) 9.30 16.69 24.04 Y0414 (9) 10.00 17.26 24.51 Y0415 (9) 10.59 17.09 23.58 Y0416 (9) 11.50 17.95 24.39 Y0417 (9) 9.86 17.79 25.72 Y0418 (9) 11.18 18.08 25.01 Y0419 (9) 11.72 17.56 23.37 Y0420 (9) 11.83 17.26 22.64 Y0421 (9) 10.74 16.83 22.91 Y0422 (9) 11.22 17.20 23.21 Y0423 (9) 11.52 17.78 24.03 Y0424 (9) 10.76 17.54 24.29 Y0425 (9) 10.64 17.50 24.36 Y0426 (9) 11.84 18.53 25.24 Y0427 (9) 12.21 18.50 24.80 Y0428 (9) 10.50 16.50 22.50 Y0429 (9) 10.71 16.10 21.51 Y0430 (9) 10.32 16.34 22.33 Y0501 (9) 9.22 16.53 23.82 Y0502 (9) 9.47 17.34 25.21 Y0503 (9) 10.49 18.33 26.16 Y0504 (9) 11.34 18.57 25.82 Y0505 (8) 11.25 18.34 25.39 Y0506 (8) 10.96 18.34 25.69 Y0507 (8) 11.30 18.39 25.47 Y0508 (9) 12.66 19.88 27.09 Y0509 (9) 12.80 20.17 27.56 Y0510 (9) 13.43 20.12 26.82 Y0511 (9) 13.17 20.16 27.16 Y0512 (9) 12.71 20.27 27.83 Y0513 (9) 13.37 20.74 28.12 Y0514 (9) 12.70 20.76 28.79 Y0515 (9) 13.30 20.50 27.71 Y0516 (9) 12.84 20.67 28.52 Y0517 (9) 12.37 20.82 29.29 Y0518 (9) 12.69 19.94 27.17 Y0519 (9) 11.87 19.42 26.96 Y0520 (9) 11.67 18.97 26.27 Y0521 (9) 12.86 19.64 26.43 Y0522 (9) 12.16 20.10 28.06 Y0523 (9) 12.09 20.90 29.71 Y0524 (9) 12.74 20.48 28.23 Y0525 (9) 13.37 20.91 28.42 Y0526 (9) 13.37 20.44 27.53 Y0527 (9) 13.96 21.26 28.53 Y0528 (9) 14.54 20.91 27.32 Y0529 (9) 13.26 20.56 27.87 Y0530 (9) 14.27 21.67 29.04 Y0531 (8) 13.59 22.31 31.06 Y0601 (9) 14.77 23.42 32.09 Y0602 (9) 15.09 23.28 31.49 Y0603 (9) 15.15 22.80 30.41 Y0604 (9) 14.03 22.34 30.66 Y0605 (9) 15.04 23.23 31.42 Y0606 (9) 15.48 22.76 30.06 Y0607 (8) 14.81 22.02 29.25 Y0608 (9) 14.53 21.84 29.13 Y0609 (9) 14.02 21.46 28.91 Y0610 (9) 14.86 22.28 29.72 Y0611 (8) 15.58 22.49 29.43 Y0612 (9) 15.37 23.52 31.70 Y0613 (9) 15.64 24.26 32.88 Y0614 (9) 16.01 24.61 33.20 Y0615 (9) 16.80 25.11 33.41 Y0616 (9) 16.57 24.91 33.23 Y0617 (8) 16.75 25.45 34.16 Y0618 (9) 16.61 24.56 32.51 Y0619 (9) 16.41 24.43 32.49 Y0620 (9) 16.01 25.02 34.04 Y0621 (9) 17.14 25.29 33.47 Y0622 (9) 16.74 25.71 34.69 Y0623 (9) 16.89 26.16 35.39 Y0624 (9) 17.79 26.54 35.33 Y0625 (9) 18.21 26.17 34.14 Y0626 (9) 17.47 26.22 34.94 Y0627 (9) 17.76 26.68 35.61 Y0628 (9) 18.29 26.83 35.39 Y0629 (9) 18.51 26.76 34.96 Y0630 (9) 17.27 25.34 33.41 Y0701 (9) 16.87 25.38 33.86 Y0702 (9) 17.16 25.81 34.44 Y0703 (9) 18.08 26.57 35.08 Y0704 (9) 17.54 26.57 35.56 Y0705 (9) 18.83 27.36 35.90 Y0706 (9) 18.66 26.78 34.93 Y0707 (9) 18.84 27.22 35.54 Y0708 (9) 18.18 27.22 36.28 Y0709 (9) 18.27 28.01 37.76 Y0710 (8) 19.21 28.23 37.26 Y0711 (8) 18.41 27.84 37.29 Y0712 (9) 18.40 27.70 36.98 Y0713 (9) 18.56 27.60 36.63 Y0714 (9) 19.17 27.67 36.16 Y0715 (9) 18.11 27.32 36.54 Y0716 (9) 20.01 28.66 37.35 Y0717 (9) 20.03 28.57 37.14 Y0718 (9) 19.23 28.03 36.81 Y0719 (9) 19.49 28.50 37.49 Y0720 (9) 19.65 27.88 36.08 Y0721 (9) 18.63 27.36 36.08 Y0722 (9) 18.61 27.51 36.42 Y0723 (9) 18.96 27.69 36.42 Y0724 (9) 19.38 27.76 36.13 Y0725 (9) 18.80 27.78 36.76 Y0726 (9) 18.52 27.57 36.63 Y0727 (9) 19.36 27.66 35.90 Y0728 (9) 19.33 27.92 36.50 Y0729 (9) 18.56 27.64 36.73 Y0730 (9) 18.93 27.84 36.77 Y0731 (9) 18.63 27.67 36.71 Y0801 (9) 19.09 28.56 38.02 Y0802 (8) 18.72 27.70 36.69 Y0803 (9) 19.53 28.83 38.17 Y0804 (8) 19.49 29.46 39.40 Y0805 (9) 20.58 29.46 38.33 Y0806 (9) 20.28 28.98 37.68 Y0807 (9) 21.36 29.39 37.46 Y0808 (9) 20.96 28.74 36.53 Y0809 (9) 20.67 28.79 36.90 Y0810 (9) 20.28 29.00 37.69 Y0811 (9) 21.10 29.44 37.79 Y0812 (9) 20.50 28.80 37.10 Y0813 (9) 19.61 27.46 35.29 Y0814 (9) 18.43 26.73 35.02 Y0815 (9) 19.57 27.64 35.72 Y0816 (9) 19.20 27.61 36.02 Y0817 (9) 19.83 27.98 36.09 Y0818 (9) 20.59 28.58 36.60 Y0819 (9) 20.91 29.16 37.41 Y0820 (8) 21.00 28.90 36.83 Y0821 (8) 20.59 28.85 37.13 Y0822 (9) 20.51 28.31 36.09 Y0823 (9) 19.30 27.78 36.23 Y0824 (9) 18.86 27.18 35.53 Y0825 (8) 18.99 27.55 36.15 Y0826 (8) 19.80 27.78 35.76 Y0827 (9) 19.21 27.96 36.67 Y0828 (9) 19.76 27.90 36.02 Y0829 (9) 19.26 26.85 34.41 Y0830 (9) 18.82 26.48 34.12 Y0831 (9) 18.62 26.19 33.74 Y0901 (9) 19.77 26.84 33.91 Y0902 (9) 19.32 26.32 33.30 Y0903 (9) 18.33 25.53 32.76 Y0904 (9) 17.94 25.59 33.24 Y0905 (9) 17.60 25.58 33.57 Y0906 (9) 18.04 26.17 34.33 Y0907 (9) 19.38 26.22 33.02 Y0908 (9) 17.74 24.80 31.86 Y0909 (9) 16.54 24.35 32.11 Y0910 (9) 16.19 24.26 32.31 Y0911 (9) 16.88 25.08 33.30 Y0912 (9) 17.67 26.01 34.36 Y0913 (9) 18.07 25.37 32.66 Y0914 (8) 17.43 24.48 31.56 Y0915 (8) 16.81 23.84 30.84 Y0916 (7) 15.94 22.91 29.93 Y0917 (7) 15.99 22.30 28.63 Y0918 (9) 15.10 22.68 30.19 Y0919 (8) 15.81 23.35 30.90 Y0920 (8) 17.20 24.49 31.80 Y0921 (8) 16.86 24.41 31.95 Y0922 (9) 16.86 24.28 31.72 Y0923 (9) 15.78 22.98 30.21 Y0924 (9) 15.47 22.81 30.13 Y0925 (9) 15.18 22.93 30.70 Y0926 (9) 15.79 22.79 29.80 Y0927 (9) 16.31 22.63 28.96 Y0928 (9) 16.78 22.30 27.84 Y0929 (9) 16.18 22.33 28.50 Y0930 (9) 15.30 22.29 29.26 Y1001 (8) 15.97 23.16 30.35 Y1002 (9) 15.00 22.86 30.71 Y1003 (9) 16.21 22.96 29.74 Y1004 (9) 16.34 23.25 30.17 Y1005 (9) 14.94 22.04 29.21 Y1006 (9) 14.62 21.95 29.29 Y1007 (9) 14.70 21.91 29.11 Y1008 (9) 14.53 22.14 29.70 Y1009 (9) 14.10 21.20 28.30 Y1010 (9) 14.27 20.77 27.24 Y1011 (9) 14.86 21.21 27.60 Y1012 (9) 15.02 20.56 26.09 Y1013 (9) 13.46 20.20 26.94 Y1014 (9) 13.01 19.40 25.78 Y1015 (9) 12.48 19.01 25.54 Y1016 (9) 13.23 19.92 26.60 Y1017 (9) 12.94 19.93 26.93 Y1018 (9) 12.91 18.88 24.84 Y1019 (9) 12.84 18.74 24.59 Y1020 (9) 12.57 18.99 25.41 Y1021 (9) 12.14 18.70 25.29 Y1022 (9) 13.22 18.80 24.40 Y1023 (9) 13.42 19.09 24.79 Y1024 (9) 13.49 18.66 23.82 Y1025 (9) 13.08 18.86 24.62 Y1026 (8) 13.64 18.43 23.24 Y1027 (9) 11.94 18.20 24.46 Y1028 (8) 10.72 17.19 23.65 Y1029 (9) 9.90 16.57 23.21 Y1030 (9) 10.23 16.14 22.04 Y1031 (9) 9.72 15.83 21.94 Y1101 (9) 10.41 16.49 22.51 Y1102 (9) 10.59 16.32 22.04 Y1103 (8) 11.01 16.44 21.87 Y1104 (9) 11.77 16.06 20.36 Y1105 (9) 10.56 15.14 19.71 Y1106 (9) 8.53 13.91 19.30 Y1107 (9) 9.17 14.27 19.37 Y1108 (9) 8.61 13.78 18.96 Y1109 (9) 8.21 13.33 18.44 Y1110 (9) 6.79 13.09 19.40 Y1111 (9) 7.71 14.29 20.88 Y1112 (9) 8.44 14.74 21.09 Y1113 (9) 8.29 14.94 21.59 Y1114 (9) 9.18 14.63 20.06 Y1115 (9) 7.76 13.60 19.41 Y1116 (8) 6.58 13.06 19.56 Y1117 (8) 6.41 12.86 19.30 Y1118 (8) 7.31 13.16 18.96 Y1119 (9) 7.30 13.27 19.28 Y1120 (9) 7.85 13.31 18.77 Y1121 (9) 8.53 13.43 18.31 Y1122 (8) 7.51 12.46 17.46 Y1123 (8) 6.83 12.35 17.91 Y1124 (8) 7.02 12.71 18.40 Y1125 (8) 8.01 13.30 18.57 Y1126 (8) 7.89 12.77 17.63 Y1127 (7) 6.21 11.33 16.40 Y1128 (7) 5.06 10.86 16.66 Y1129 (8) 4.07 10.14 16.17 Y1130 (9) 4.67 10.35 16.02 Y1201 (10) 4.67 10.64 16.60 Y1202 (10) 5.60 10.89 16.19 Y1203 (9) 4.51 10.50 16.49 Y1204 (10) 4.72 10.95 17.14 Y1205 (10) 4.70 10.86 17.02 Y1206 (9) 4.87 11.10 17.31 Y1207 (10) 5.62 11.27 16.96 Y1208 (10) 5.86 11.81 17.77 Y1209 (10) 5.52 11.54 17.57 Y1210 (10) 6.58 12.36 18.10 Y1211 (9) 5.20 11.32 17.44 Y1212 (10) 4.70 10.26 15.82 Y1213 (9) 6.62 11.42 16.21 Y1214 (9) 7.34 11.64 15.93 Y1215 (10) 6.19 10.74 15.31 Y1216 (9) 5.12 9.53 13.99 Y1217 (10) 5.47 10.14 14.83 Y1218 (9) 4.54 10.02 15.51 Y1219 (10) 4.71 10.29 15.86 Y1220 (10) 3.71 9.46 15.20 Y1221 (9) 4.24 10.82 17.40 Y1222 (9) 4.44 11.11 17.81 Y1223 (9) 3.60 10.70 17.77 Y1224 (9) 3.28 10.08 16.85 Y1225 (9) 4.01 9.99 15.96 Y1226 (9) 3.56 9.72 15.88 Y1227 (9) 3.45 9.71 15.99 Y1228 (9) 4.60 10.64 16.69 Y1229 (10) 4.15 10.20 16.28 Y1230 (10) 3.31 9.69 16.05 Y1231 (10) 4.04 10.10 16.15 ###Markdown Finally, all together ###Code line_of_result = [] for station,group_st in station_group: region = group_st.iloc[0].region for doy,group_doy in group_st.groupby(by='doy'): ndata = len(group_doy) line_of_result.append([station,region,ndata,doy,np.mean(group_doy['tmin']), np.mean(group_doy['tavg']),np.mean(group_doy['tmax'])]) CLIMATOLOGY = pd.DataFrame.from_records(line_of_result) CLIMATOLOGY.head() ###Output _____no_output_____ ###Markdown Let's add the correct columns ###Code CLIMATOLOGY.columns = ['station','region','ndata','doy','tmin','tavg','tmax'] CLIMATOLOGY.head() ###Output _____no_output_____ ###Markdown Interactive mode Let's have a quick interactive look ###Code import ipywidgets as widgets from ipywidgets import interact, interact_manual,interactive, interactive_output from ipywidgets import fixed, FloatSlider, Dropdown, HBox, Label, VBox, Layout # Function to select region and station (based on the selected region...) # Define the region widget (initialised at region = A CORUÑA) region_list = sorted(list(set(CLIMATOLOGY['region']))) region_widget = Dropdown(options=region_list, value='A CORUÑA', description='Region:' ) # Define the station widget (initialised at region = 'A CORUÑA' & statio = 'A CORUÑA') station_widget = Dropdown(options=sorted(list(set(CLIMATOLOGY[CLIMATOLOGY['region']=='A CORUÑA']['station']))), value='A CORUÑA', description='Station:' ) # The upodate station list def on_update_brand_widget(*args): station_widget.options = sorted(list(set(CLIMATOLOGY[CLIMATOLOGY['region']==region_widget.value]['station']))) # The observe method to link station to region region_widget.observe(on_update_brand_widget, 'value') # Function def plot_region_station(df,region,station,column): fig = plt.figure(figsize=(20,5)) plt.grid() df_region = df.loc[df['region'] == region] DataFrame = df_region.loc[df_region['station'] == station] ndata = DataFrame['ndata'].values[0] plt.title('%s at %s (%s) ndata=%s' % (column,station,region,ndata),fontsize=10) display(plt.plot(DataFrame[column])) Y = interactive(plot_region_station,df=fixed(CLIMATOLOGY),region=region_widget, station=station_widget, column=['tmin','tavg','tmax']); controls_Left = VBox([Y.children[0],Y.children[1]]) controls_Right = VBox([Y.children[2]]) controls = HBox([controls_Left,controls_Right], layout = Layout(flex_flow='row wrap')) output = Y.children[-1] display(VBox([controls, output])) ###Output _____no_output_____ ###Markdown This climatology doesn't look like a soft climatology... 10 years may not be enough.In order to generate a typical climatology, we need to compute the mean over a window. ###Code window_widgets = widgets.IntSlider(value=5,min=1,max=24,step=2,description='Window:',disabled=False, continuous_update=False,orientation='horizontal',readout=True,readout_format='d') doy_list = sorted(list(set(CLIMATOLOGY['doy']))) # Function def plot_window(df,region,station,column,longwindow): window = (longwindow-1)//2 df_region = df.loc[df['region'] == region] df_station = df_region.loc[df_region['station'] == station] df_station.reset_index(inplace=True) line_of_result = [] for doy in doy_list: doyindex = df_station[df_station['doy'] == doy].index[0] if (doyindex-window) < 0: df_concat = pd.concat([df_station.iloc[doyindex-window:],df_station.iloc[0:doyindex], df_station.iloc[doyindex:1+doyindex+window]]) elif (doyindex+window) > 365: df_concat = pd.concat([df_station.iloc[doyindex-window:], df_station.iloc[:window-(365-doyindex)]]) else: df_concat = pd.concat([df_station.iloc[doyindex-window:doyindex], df_station.iloc[doyindex:1+doyindex+window]]) line_of_result.append([doy,np.mean(df_concat[column])]) DataFrame = pd.DataFrame.from_records(line_of_result) fig = plt.figure(figsize=(20,5)) plt.grid() plt.title('%s at %s (%s) - window : %s days' % (column,station,region,longwindow),fontsize=10) display(plt.plot(DataFrame[1])) Z = interactive(plot_window,df=fixed(CLIMATOLOGY),region=region_widget, station=station_widget, column=['tmin','tavg','tmax'], longwindow=window_widgets); controls_Left = VBox([Z.children[0],Z.children[1]]) controls_Right = VBox([Z.children[2],Z.children[3]]) controls = HBox([controls_Left,controls_Right], layout = Layout(flex_flow='row wrap')) output = Z.children[-1] display(VBox([controls, output])) ###Output _____no_output_____ ###Markdown Climatology results Taking the mean value over a window produces a more representative climatology.Given a selected window days, let's recaculate the climatology for all stations. ###Code # I've choosed a window covering 21 days longwindow = 21 station_group = CLIMATOLOGY.groupby(by='station') window = (longwindow-1)//2 line_of_result = [] for station,df_station in station_group: df_station.reset_index(inplace=True) region = df_station.iloc[0].region for doy in doy_list: try: doyindex = df_station[df_station['doy'] == doy].index[0] if (doyindex-window) < 0: df_concat = pd.concat([df_station.iloc[doyindex-window:],df_station.iloc[0:doyindex], df_station.iloc[doyindex:1+doyindex+window]]) elif (doyindex+window) > 365: df_concat = pd.concat([df_station.iloc[doyindex-window:], df_station.iloc[:window-(365-doyindex)]]) else: df_concat = pd.concat([df_station.iloc[doyindex-window:doyindex], df_station.iloc[doyindex:1+doyindex+window]]) line_of_result.append([station,region,doy,np.mean(df_concat['tmin']), np.mean(df_concat['tavg']),np.mean(df_concat['tmax'])]) except: break CLIMATOLOGY_WINDOW = pd.DataFrame.from_records(line_of_result) CLIMATOLOGY_WINDOW.columns = ['station','region','doy','tmin','tavg','tmax'] CLIMATOLOGY_WINDOW = pd.DataFrame.from_records(line_of_result) ###Output _____no_output_____ ###Markdown The daily temperature climatology is now ready!Let's export the result to a CSV file. ###Code CLIMATOLOGY_WINDOW.to_csv('aemet_daily_temperature_climatology_2009-2018_window-21.csv.bz2', compression='bz2',float_format='%1.1f',index=False) ###Output _____no_output_____
module-3/Evaluation-Recall-and-Precision/your-code/.ipynb_checkpoints/main-checkpoint.ipynb
###Markdown Evaluation: Precision & Recall Using the evaluation metrics we have learned, we are going to compare how well some different types of classifiers perform on different evaluation metrics We are going to use a dataset of written numbers which we can import from sklearn. Run the code below to do so. ###Code $ pip install upgrade tensorflow import numpy as np from sklearn.datasets import fetch_mldata from tensorflow.keras.datasets import mnist (X_train, y_train), (X_test, y_test) = mnist.load_data() mnist = fetch_mldata('MNIST original') X, y = mnist['data'], mnist['target'] ###Output _____no_output_____ ###Markdown Now take a look at the shapes of the X and y matricies ###Code import tensorflow as tf pip install keras ###Output Collecting keras Downloading https://files.pythonhosted.org/packages/ad/fd/6bfe87920d7f4fd475acd28500a42482b6b84479832bdc0fe9e589a60ceb/Keras-2.3.1-py2.py3-none-any.whl (377kB) Requirement already satisfied: pyyaml in c:\users\denis\anaconda3\lib\site-packages (from keras) (5.1.2) Requirement already satisfied: numpy>=1.9.1 in c:\users\denis\anaconda3\lib\site-packages (from keras) (1.16.5) Requirement already satisfied: h5py in c:\users\denis\anaconda3\lib\site-packages (from keras) (2.9.0) Requirement already satisfied: six>=1.9.0 in c:\users\denis\anaconda3\lib\site-packages (from keras) (1.12.0) Requirement already satisfied: scipy>=0.14 in c:\users\denis\anaconda3\lib\site-packages (from keras) (1.4.1) Requirement already satisfied: keras-preprocessing>=1.0.5 in c:\users\denis\anaconda3\lib\site-packages (from keras) (1.1.0) Requirement already satisfied: keras-applications>=1.0.6 in c:\users\denis\anaconda3\lib\site-packages (from keras) (1.0.8) Installing collected packages: keras Successfully installed keras-2.3.1 Note: you may need to restart the kernel to use updated packages. ###Markdown Now, let's pick one entry and see what number is written. Use indexing to pick the 36000th digit You can use the .reshape(28,28) function and plt.imshow() function with the parameters cmap = matplotlib.cm.binary, interpolation="nearest" to make a plot of the number. Be sure to import matplotlib! Use indexing to see if what the plot shows matches with the outcome of the 36000th index Now lets break into a test train split to run a classification. Instead of using sklearn, use indexing to select the first 60000 entries for the training, and the rest for training. We are going to make a two-class classifier, so lets restrict to just one number, for example 5s. Do this by defining a new y training and y testing sets for just the number 5 Lets train a logistic regression to predict if a number is a 5 or not (remember to use the 'just 5s' y training set!) Does the classifier predict correctly the 36000th digit we picked before? To make some comparisons, we are going to make a very dumb classifier, that never predicts 5s. Build the classifier with the code below, and call it using: never_5_clf = Never5Classifier() ###Code from sklearn.base import BaseEstimator class Never5Classifier(BaseEstimator): def fit(self, X, y=None): pass def predict(self, X): return np.zeros((len(X), 1), dtype=bool) never_5_clf = Never5Classifier() ###Output _____no_output_____
notebooks/examples/scatter_matrix.ipynb
###Markdown Scatter Matrix--------------An example of using a RepeatChart to construct a multi-panel scatter plotwith linked panning and zooming. ###Code # category: interactive import altair as alt alt.data_transformers.enable('json') from vega_datasets import data alt.Chart(data.cars.url).mark_circle().encode( alt.X(alt.repeat("column"), type='quantitative'), alt.Y(alt.repeat("row"), type='quantitative'), color='Origin:N' ).properties( width=250, height=250 ).repeat( row=['Horsepower', 'Acceleration', 'Miles_per_Gallon'], column=['Miles_per_Gallon', 'Acceleration', 'Horsepower'] ).interactive() ###Output _____no_output_____
rl_my_way.ipynb
###Markdown ###Code # http://pytorch.org/ from os.path import exists from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()) cuda_output = !ldconfig -p|grep cudart.so|sed -e 's/.*\.\([0-9]*\)\.\([0-9]*\)$/cu\1\2/' accelerator = cuda_output[0] if exists('/dev/nvidia0') else 'cpu' !pip install -q http://download.pytorch.org/whl/{accelerator}/torch-0.4.1-{platform}-linux_x86_64.whl torchvision # Library imports import torch import torch.nn as nn import torch.optim as optim import string torch.set_default_tensor_type('torch.cuda.FloatTensor') class Net(nn.Module): def __init__(self, input_size, hidden_size, number_of_classes): super(Net, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.number_of_classes = number_of_classes self.fc1 = nn.Linear(N_STATES, 50) self.fc1.weight.data.normal_(0, 0.1) # initialization self.out = nn.Linear(50, N_ACTIONS) self.out.weight.data.normal_(0, 0.1) # initialization def forward(self, x, y): loss = 10 while loss > .1: out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) loss = self.criterion(out, y) self.optimizer.zero_grad() loss.backward(retain_graph=True) self.optimizer.step() return (out, loss) def check(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) return(out) def save(self, f): f = open('f', 'wb') torch.save(self, f) def load(f): return torch.load(f) class Environments: # This is a wrapper class to hold all the envirvonments that have been created # as well as different time steps of those past, present, future def __init__(self): self.holder = { "past": [], "present": [], "future": [] } def add_environment(self, time_of_env, env): self.holder[time_of_env].append(env) def remove_environment(self, time_of_env, selected_env): selected_index = None for index, env in enumerate(self.holder[time_of_env]): if env == select_env: selected_index = index break if selected_index: del self.holder[time_of_env][selected_index] return def list_environments(self, time_of_env=None): if time_of_env: return self.holder[time_of_env] else: return self.holder def search_for(self, item): for env in self.holder['present']: entries = env.describe() for entry in entries: if entry[0] == item: return entry for env in self.holder['past']: entries = env.describe() for entry in entries: if entry[0] == item: return entry for env in self.holder['future']: entries = env.describe() for entry in entries: if entry[0] == item: return entry self.holder['present'].add(item) class Environment: # The environment is consists of nouns def __init__(self): # an entry is knowledge, feeling, impression, link self.entries = {} def add(self, entry, known=1, feeling=0, impression=0, link=None): self.entries[entry] = [known, feeling, impression, link] def update(self, entry, known=1, feeling=0, impression=0, link=None): if self.entries[entry]: self.entries[entry][0] = known self.entries[entry][1] = feeling self.entries[entry][2] = impression self.entries[entry][3].append(link) else: if link: link = [link] else: link = [] self.add(entry, known, feeling, impression, link) def describe(self): master_array = [] for k,v in self.entries.items(): temp_array = [] temp_array.append(k) temp_array.append(v) master_array.append(temp_array) return master_array class Agent: # An agent makes decisions based on it's environments def __init__(self): # List of actions the agent can take self.actions = [] # Wait for instruction self.learn() def learn(self, trainer, enviroment): pass def evaluate_environment(self, environment): # look at the environment # return what you see return current_observed_environment def demonstrate(self, enviroment): # Do learned procedures action = None response = evalutae(action) def try_again(self, environment, response_from_evaluation): # Fix what you did wrong # evaluate again action = None response = evaluate(action) while response is bad: try_again(response) else: # Remember what you did correct return class Trainer: def __init__(self): pass def teach(self, environment, agent): environment = None agent_needs_to_do = None # When the environment is in this state -> Do this action action = environment + agent_evaluation return action def evaluate(self, environment, agent): correct_action = None agent_action = None score = correct_action - agent_action return score class Language: def __init__(self): self.word_to_numbers = {"SOS": 0, "EOS": 1, "SPACE": 2, "UNK": 3} self.numbers_to_word = {0: "SOS", 1: "EOS", 2: "SPACE", 3: "UNK"} self.maximum_sentence_length = 15 def pad_sentence_length(self, sentence_in_numbers_array): # Add a space symbol between words we need to track the index too temp_array = [] for index, word in enumerate(sentence_in_numbers_array): # Make sure it is not the first word if (index == 0): # Insert the SOS token in the start of the array temp_array.append(0) temp_array.append(word) elif (index == len(sentence_in_numbers_array) - 1): # Add the EOS token to the end of the sentence temp_array.append(word) temp_array.append(1) else: temp_array.append(2) temp_array.append(word) # Continue to add EOS tokens until the sentence is the minimum length while len(temp_array) < self.maximum_sentence_length: temp_array.append(1) return temp_array def add_word(self, word): if word not in self.word_to_numbers.keys(): self.word_to_numbers[word] = len(self.word_to_numbers) self.numbers_to_word[len(self.numbers_to_word)] = word def clean_sentence(self, sentence_in_english): cleaned_sentence_array = [] for word in sentence_in_english.split(" "): word = word.translate(str.maketrans('', '', string.punctuation)) word = word.lower() word = word.strip() cleaned_sentence_array.append(word) return cleaned_sentence_array def add_sentence(self, sentence_in_english): sentence_in_english = self.clean_sentence(sentence_in_english) for word in sentence_in_english: self.add_word(word) def get_numbers_from_sentence(self, sentence_in_english, padded=False): sentence_in_english = self.clean_sentence(sentence_in_english) temp_array = [] for word in sentence_in_english: if word in self.word_to_numbers.keys(): temp_array.append(self.word_to_numbers[word]) else: temp_array.append(3) if padded: return self.pad_sentence_length(temp_array) else: return temp_array def get_sentence_from_numbers(self, sentence_in_unrounded_nums): temp_array = [] for number in sentence_in_unrounded_nums: # Lets round the number number = round(number.item()) # Lets check if the number is in our dictionary if number in self.numbers_to_word.keys(): temp_array.append(self.numbers_to_word[number]) else: # Handle an unknown temp_array.append("UNK") return " ".join(temp_array) def get_word_from_number(self, number): if number in self.numbers_to_word.keys(): return self.numbers_to_word[number] else: return ("Unknown word") # english = Language() # english.add_sentence("Hello my name is sam.") # print(english.numbers_to_word) # english.get_numbers_from_sentence("hello sam") # network = Net(1,1,1) # network.save('./f.pkl') # network = Net.load('./f.pkl') ###Output /usr/local/lib/python3.6/dist-packages/torch/serialization.py:241: UserWarning: Couldn't retrieve source code for container of type Net. It won't be checked for correctness upon loading. "type " + obj.__name__ + ". It won't be checked "
Invert_Stokeslet_FFT.ipynb
###Markdown example: comparison with standard Stokeslet ###Code eps = 0.00001 #add epsilon^2 to denominator of integrand to regularize at q = 0 dq = 0.07 #spacing in Fourier space Q = 10 #max value of q F = np.array([0, 0, 1]) #external force #values of viscosity coefficients etaR1, etaR2, etaRo = 0, 0, 0 eta_eQ1, eta_oQ1 = 0, 0 eta_eQ2, eta_oQ2 = 0, 0 eta_eQ3, eta_oQ3 = 0, 0 eta_eA, eta_oA = 0, 0 eta_eS, eta_oS = 0, 0 xi = 0 eta_o1, eta_o2 = 0, 0 mu = 1 visc_coeff_list = [etaR1, etaR2, etaRo, eta_eQ1, eta_oQ1, eta_eQ2, eta_oQ2, eta_eQ3, eta_oQ3, eta_eA, eta_oA, eta_eS, eta_oS, xi, eta_o1, eta_o2, mu] #call inverse FFT function fft_xs, v = v_fourier_ifft(Q, dq, eps, visc_coeff_list, F) #compute velocities in cylindrical coordinates from v (Cartesian coordinates) x, y, z = np.meshgrid(fft_xs, fft_xs, fft_xs) vr = (v[0]*x + v[1]*y) / np.sqrt(x**2+ y**2) vphi = (-v[0]*y + v[1]*x) / np.sqrt(x**2 + y**2) #analytical expression for Stokeslet with shear viscosity mu and force in -z Fz = -F[2] x, y, z = np.meshgrid(fft_xs, fft_xs, fft_xs) vx_theory = Fz/(8*np.pi*mu) * z*x / (x**2 + y**2 + z**2)**(3/2) vy_theory = Fz/(8*np.pi*mu) * z*y / (x**2 + y**2 + z**2)**(3/2) vz_theory = Fz/(8*np.pi*mu) * (x**2 + y**2 + 2*z**2) / (x**2 + y**2 + z**2)**(3/2) vr_theory = (vx_theory*x + vy_theory*y) / np.sqrt(x**2+ y**2) vphi_theory = (-vx_theory*y + vy_theory*x) / np.sqrt(x**2 + y**2) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ind1 = 145 ind2 = 145 plt.subplot(121) plt.plot(vr_theory[ind1, ind2, :] - np.nanmean(vr_theory), fft_xs, color='crimson', label=r'\textbf{theory}') plt.plot(vr[ind1, ind2, :] - np.nanmean(vr), fft_xs, marker='.', linestyle='None', color='royalblue', label=r'\textbf{numerics}') plt.ylim(-10, 10) plt.ylabel(r'\textbf{$z$}',fontsize=16) plt.xlabel(r'\textbf{$v_r$}',fontsize=16) plt.xticks([-0.01, 0, 0.01]) plt.legend() plt.subplot(122) plt.plot(vz_theory[ind1, ind2, :] - np.nanmean(vz_theory), fft_xs, color='crimson', label=r'\textbf{theory}') plt.plot(v[2][ind1, ind2, :] - np.nanmean(v[2]), fft_xs, marker='.', linestyle='None', color='royalblue', label=r'\textbf{numerics}') plt.ylim(-10, 10) #plt.ylabel(r'\textbf{$z$}',fontsize=16) plt.yticks([]) plt.xlabel(r'\textbf{$v_z$}',fontsize=16) plt.legend() plt.tight_layout() plt.savefig('/Users/talikhain/Documents/UChicago/Soft Matter/Vitelli/Odd viscosity in three dimensional flows/Figures2/num_validation.png', dpi=300) plt.show() ###Output _____no_output_____ ###Markdown example: Stokeslet with perturbative odd shear viscosities, $\eta_1^o = -2\eta_2^o$ ###Code eps = 0.00001 #add epsilon^2 to denominator of integrand to regularize at q = 0 dq = 0.07 #spacing in Fourier space Q = 10 #max value of q F = np.array([0, 0, 1]) #external force #values of viscosity coefficients etaR1, etaR2, etaRo = 0, 0, 0 eta_eQ1, eta_oQ1 = 0, 0 eta_eQ2, eta_oQ2 = 0, 0 eta_eQ3, eta_oQ3 = 0, 0 eta_eA, eta_oA = 0, 0 eta_eS, eta_oS = 0, 0 xi = 0 eta_o1, eta_o2 = -0.2, 0.1 mu = 1 visc_coeff_list = [etaR1, etaR2, etaRo, eta_eQ1, eta_oQ1, eta_eQ2, eta_oQ2, eta_eQ3, eta_oQ3, eta_eA, eta_oA, eta_eS, eta_oS, xi, eta_o1, eta_o2, mu] fft_xs, v = v_fourier_ifft(Q, dq, eps, visc_coeff_list, F) x, y, z = np.meshgrid(fft_xs, fft_xs, fft_xs) vr = (v[0]*x + v[1]*y) / np.sqrt(x**2+ y**2) vphi = (-v[0]*y + v[1]*x) / np.sqrt(x**2 + y**2) fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(5, 7)) plt.subplot(111) ind = 145 cont = plt.contourf(fft_xs, fft_xs, np.transpose(vphi[ind,:,:]), 50, cmap=newcmp)#, vmin = -1, vmax = 1) circle = mpatches.Circle([0, 0], radius = 1, color = 'white') axes.add_patch(circle) plt.xlim(0, 10) plt.ylim(-10, 10) plt.xticks([0, 3, 6, 9], size=12) plt.yticks([-9, -6, -3, 0, 3, 6, 9], size=12) #plt.text(0.5, 8.5, coeff_label_list[count], fontsize=16) cb = plt.colorbar(cont)#, ticks = np.arange(-2, 2.5, 0.5)) cb.set_label(label=r'\textbf{$v_{\phi}$}', size=16) cb.ax.tick_params(labelsize=12) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown example: theory and numerics comparison for Stokeslet with odd viscosity ###Code eps = 0.00001 #add epsilon^2 to denominator of integrand to regularize at q = 0 dq = 0.07 #spacing in Fourier space Q = 10 #max value of q F = np.array([0, 0, 1]) #external force #values of viscosity coefficients etaR1, etaR2, etaRo = 0, 0, 0 eta_eQ1, eta_oQ1 = 0, 0 eta_eQ2, eta_oQ2 = 0, 0 eta_eQ3, eta_oQ3 = 0, 0 eta_eA, eta_oA = 0, 0 eta_eS, eta_oS = 0, 0 xi = 0 eta_o1, eta_o2 = 0, 0 mu = 1 vphi_list = [] for i in range(3): eta_o_list = [0, 0, 0] eta_o_list[i] = 0.01 eta_o1, eta_o2, etaRo = eta_o_list[0], eta_o_list[1], eta_o_list[2] visc_coeff_list = [etaR1, etaR2, etaRo, eta_eQ1, eta_oQ1, eta_eQ2, eta_oQ2, eta_eQ3, eta_oQ3, eta_eA, eta_oA, eta_eS, eta_oS, xi, eta_o1, eta_o2, mu] fft_xs, v = v_fourier_ifft(Q, dq, eps, visc_coeff_list, F) x, y, z = np.meshgrid(fft_xs, fft_xs, fft_xs) vphi = (-v[0]*y + v[1]*x) / np.sqrt(x**2 + y**2) vphi_list.append(vphi) #analytical expression for Stokeslet with shear viscosity mu, force in -z, #and perturbative odd viscosity for eta_1^o, eta_2^o, eta_R^o Fz = -F[2] eps = 0.01 x, y, z = np.meshgrid(fft_xs, fft_xs, fft_xs) vphi_theory_eta1 = eps*Fz/(32*mu*np.pi) * np.sqrt(x**2 + y**2)*z * (x**2 + y**2 + 4*z**2) / (x**2 + y**2 + z**2)**(5/2) vphi_theory_eta2 = -eps*Fz/(16*mu*np.pi) * np.sqrt(x**2 + y**2)*z * (x**2 + y**2 - 2*z**2) / (x**2 + y**2 + z**2)**(5/2) vphi_theory_etaR = -eps*Fz/(8*mu*np.pi) * np.sqrt(x**2 + y**2)*z / (x**2 + y**2 + z**2)**(3/2) vphi_theory_list = [vphi_theory_eta1, vphi_theory_eta2, vphi_theory_etaR] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5)) ind1 = 145 ind2 = 145 title_list = [r'\textbf{$\eta_1^o/\mu = 0.01$}', r'\textbf{$\eta_2^o/\mu = 0.01$}', r'\textbf{$\eta_R^o/\mu = 0.01$}'] for i in range(3): plt.subplot(1, 3, i+1) plt.plot((vphi_theory_list[i][ind1, ind2, :] - np.nanmean(vphi_theory_list[i]))*1e3, fft_xs, color='crimson', label=r'\textbf{theory}') plt.plot((vphi_list[i][ind1, ind2, :] - np.nanmean(vphi_list[i]))*1e3, fft_xs, marker='.', linestyle='None', color='royalblue', label=r'\textbf{numerics}') plt.ylim(-10, 10) if i == 0: plt.ylabel(r'\textbf{$z$}',fontsize=22) plt.xlabel(r'\textbf{$v_{\phi} \cdot 10^3$}',fontsize=22) plt.title(title_list[i], fontsize=22) plt.xticks(size=15) plt.yticks(size=15) if i > 0: plt.yticks([]) plt.legend(fontsize=15) plt.tight_layout() plt.savefig('/Users/talikhain/Documents/UChicago/Soft Matter/Vitelli/Odd viscosity in three dimensional flows/Figures2/num_validation_odd.png', dpi=300) plt.show() ###Output findfont: Font family ['serif'] not found. Falling back to DejaVu Sans.
notebooks/1_sokoly35_creating_dataset.ipynb
###Markdown Setup ###Code from dotenv import load_dotenv import os import spotipy from lyricsgenius import Genius from spotipy.oauth2 import SpotifyClientCredentials import sys # Setting the working directory sys.path.insert(0,'..') from src.data.make_dataset import create_dataset # Loading credentials to Spotify and Genius API from .env file dotenv_path = os.path.join('..', '.env') load_dotenv(dotenv_path) SPOTIFY_API_CLIENT_ID = os.getenv('SPOTIFY_API_CLIENT_ID') SPOTIFY_API_CLIENT_SECRET = os.getenv('SPOTIFY_API_CLIENT_SECRET') GENIUS_ACCESS_TOKEN = os.getenv('GENIUS_ACCESS_TOKEN') # Path to save results path_to_save_df = os.path.join('..', 'data', 'raw', 'data.csv') # Connecting to spotify API client_credentials_manager = SpotifyClientCredentials(client_id=SPOTIFY_API_CLIENT_ID, client_secret=SPOTIFY_API_CLIENT_SECRET) sp = spotipy.Spotify(auth_manager=client_credentials_manager) # Connecting to Genius API genius = Genius(GENIUS_ACCESS_TOKEN, timeout=10, retries=5) genius.verbose = False genius.remove_section_headers = True # Selecting 10 subjectively most popular music genre # From lsit generated with function below # sp.recommendation_genre_seeds() chosen_genres_10 = ['blues', 'country', 'disco', 'hip-hop', 'pop', 'punk', 'reggae', 'rock', 'r-n-b', 'jazz'] ###Output _____no_output_____ ###Markdown Scraping data Example ###Code df = create_dataset(chosen_genres_10, sp, genius, limit=3, how_many_in_genre=6, sleep_time=0) df.head() df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 60 entries, 0 to 59 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 artist_name 60 non-null object 1 track_name 60 non-null object 2 popularity 60 non-null int64 3 genre 60 non-null object 4 lyrics 60 non-null object dtypes: int64(1), object(4) memory usage: 2.8+ KB ###Markdown Final data frame We will scrape data from 10 popular music genres. For each genre there will be maximum 1 000 unique observations. Carefully it can took some time until function ends. ###Code df = create_dataset(chosen_genres_10, sp, genius, limit=50, how_many_in_genre=1_000, sleep_time=10, path_to_save=path_to_save_df, verbose=False) ###Output _____no_output_____
notebooks/spaqrl_queries.ipynb
###Markdown Legislation ###Code # Legislation titles queryString = """ prefix dcterm: <http://purl.org/dc/terms/> prefix overheidrl: <http://linkeddata.overheid.nl/terms/> prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?article ?title { ?article rdf:type <http://linkeddata.overheid.nl/terms/Wet>. ?article dcterm:title ?title } limit 100 """ sparql.setQuery(queryString) sparql.setReturnFormat(JSON) ret = sparql.query() result = ret.convert() law_titles = sparql_result_to_df(result) law_titles #.sort_values('cnt', ascending=False) ###Output _____no_output_____ ###Markdown Links ###Code # Link types queryString = """ prefix dcterm: <http://purl.org/dc/terms/> prefix overheidrl: <http://linkeddata.overheid.nl/terms/> prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?link_type (count(*) as ?cnt) { ?link_id overheidrl:heeftLinktype ?link_type. } group by ?link_type order by desc(?cnt) """ sparql.setQuery(queryString) sparql.setReturnFormat(JSON) ret = sparql.query() result = ret.convert() link_titles = sparql_result_to_df(result) link_titles.head(30) for l in link_titles.head(20)['link_type']: print(l) # Link types queryString = """ prefix dcterm: <http://purl.org/dc/terms/> prefix overheidrl: <http://linkeddata.overheid.nl/terms/> prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?sourceType ?targetType (count(*) as ?cnt) { ?target rdf:type ?targetType. ?source rdf:type ?sourceType. ?link_id overheidrl:heeftLinktype <http://linkeddata.overheid.nl/terms/linktype/id/lx-referentie>. ?link_id overheidrl:linktNaar ?target. ?link_id overheidrl:linktVan ?source } group by ?sourceType ?targetType order by desc(?cnt) """ sparql.setQuery(queryString) sparql.setReturnFormat(JSON) ret = sparql.query() result = ret.convert() link_types = sparql_result_to_df(result) link_types link_types.to_csv('link_types.csv') # Links from cases to cases queryString = """ prefix dcterm: <http://purl.org/dc/terms/> prefix overheidrl: <http://linkeddata.overheid.nl/terms/> prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?link_id ?source ?target ?linktype { ?target rdf:type overheidrl:Jurisprudentie. ?source rdf:type overheidrl:Jurisprudentie. ?link_id overheidrl:heeftLinktype ?linktype. ?link_id overheidrl:linktNaar ?target. ?link_id overheidrl:linktVan ?source } """ sparql.setQuery(queryString) sparql.setReturnFormat(JSON) ret = sparql.query() result = ret.convert() case_to_case_links = sparql_result_to_df(result) print(case_to_case_links.shape) case_to_case_links.head() case_to_case_links.to_csv('case_to_case_links.csv', index=False) case_to_case_links_lx = case_to_case_links[ case_to_case_links['linktype']=='http://linkeddata.overheid.nl/terms/linktype/id/lx-referentie'] case_to_case_links_lx = case_to_case_links_lx[['link_id', 'source', 'target']] print(case_to_case_links_lx.shape, case_to_case_links_lx.drop_duplicates().shape) case_to_case_links_lx.to_csv('case_to_case_lx_links.csv', index=False) case_to_case_links.groupby('linktype').count()['link_id'].sort_values(ascending=False) # Case - Legislation network queryString = """ prefix dcterm: <http://purl.org/dc/terms/> prefix overheidrl: <http://linkeddata.overheid.nl/terms/> prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?link_id ?source ?target ?linktype { ?target rdf:type overheidrl:Artikel. ?source rdf:type overheidrl:Jurisprudentie. ?link_id overheidrl:heeftLinktype ?linktype. ?link_id overheidrl:linktNaar ?target. ?link_id overheidrl:linktVan ?source } """ sparql.setQuery(queryString) sparql.setReturnFormat(JSON) ret = sparql.query() result = ret.convert() case_article_network = sparql_result_to_df(result) case_article_network.shape case_article_network.to_csv('/media/sf_VBox_Shared/CaseLaw/2018-01-29-lido/derived/case-to-article-links.csv', index=False) case_article_network.groupby('linktype').count()['link_id'] ###Output _____no_output_____ ###Markdown Nodes ###Code # Get all articles queryString = """ prefix dcterm: <http://purl.org/dc/terms/> prefix overheidrl: <http://linkeddata.overheid.nl/terms/> prefix owms: <http://standaarden.overheid.nl/owms/terms/> prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> prefix skos: <http://www.w3.org/2004/02/skos/core#> select ?id ?title ?label ?authority { ?id rdf:type overheidrl:Artikel. optional {?id dcterm:title ?title.} optional {?id owms:authority ?authority.} optional {?id skos:prefLabel ?label} } """ sparql.setQuery(queryString) sparql.setReturnFormat(JSON) ret = sparql.query() result = ret.convert() article_nodes = sparql_result_to_df(result) article_nodes.shape article_nodes.to_csv('/media/sf_VBox_Shared/CaseLaw/2018-01-29-lido/derived/article_nodes.csv', index=False) article_nodes.head() ###Output _____no_output_____ ###Markdown Sometimes a law or article changes names, so there are multiple titles/labels. Unfortunately, we don't know what the latest version is.Therefore, we just take the alphabetically first option. ###Code article_nodes_dedup = article_nodes.sort_values(['title', 'label', 'authority']).groupby('id').first() article_nodes_dedup.shape article_nodes_dedup.to_csv('/media/sf_VBox_Shared/CaseLaw/2018-01-29-lido/derived/article_nodes_nodup.csv', encoding='utf-8') article_nodes_dedup.isnull().sum() ###Output _____no_output_____
applications/solvers/cokeCombustionFoam/SegregatedSteps/runs/complicatedPorousMedia/combustions/optimize/tiny2_6/analysis/analyzeCombustion.ipynb
###Markdown Temporal Evolution of Combustion Temperature,residual coke and reaction rate ###Code fieldminMaxFile="../postProcessing/minMaxComponents/0/fieldMinMax.dat" with open(fieldminMaxFile,"r") as fp: comment=fp.readline() header=fp.readline() header=header[1:-1].split() indexs_processor=[] for i,name in enumerate(header): if header[i]=="processor": indexs_processor.append(i) indexs_processor.reverse() data=pd.read_csv(fieldminMaxFile,comment='#', sep='\t',header=None) data=data.drop(indexs_processor,axis=1) data.rename(columns=lambda x:header[x],inplace=True) data.head() sampling_rate=10 data_sampling=data[data.index%sampling_rate==0] data_sampling.shape def readOpenFoamUField(file,nx,ny,normizedValue=1,component=0): with open(file,"r") as fp: lines=fp.readlines() for i,line in enumerate(lines): if line.startswith("internalField"): start=i+3 elif line.startswith("boundaryField"): end=i-4 break field=[] for i in np.arange(start,end+1): values=lines[i].replace('\n', '').split() values=[float(value.replace('(', '').replace(')', '')) for value in values] value=values[component] field.append(value/normizedValue) field=np.array(field).reshape(ny,nx) return field def readOpenFoamField(file,nx,ny,normizedValue=1): with open(file,"r") as fp: lines=fp.readlines() for i,line in enumerate(lines): if line.startswith("internalField"): start=i+3 elif line.startswith("boundaryField"): end=i-4 break field=[] for i in np.arange(start,end+1): value=float(lines[i].replace('\n', '')) field.append(value/normizedValue) field=np.array(field).reshape(ny,nx) return field times=np.arange(timeStep,endTime+timeStep,timeStep) stimes=pd.Series([f"{t:.2f}".rstrip('.0') for t in times]) sampling_rate=1 stimes=stimes[stimes.index%sampling_rate==0] stimes.shape volumeAveragedCoke=[] volumeAveragedReactionRate=[] sumReactionRate=[] inletfluxs=[] for t in stimes: cokeField=readOpenFoamField(f"../{str(t)}/coke",lx,ly) volumeAveragedCoke.append(np.mean(cokeField)) cokeReactionRateField=readOpenFoamField(f"../{str(t)}/cokeRectionRate",lx,ly) volumeAveragedReactionRate.append(np.mean(cokeReactionRateField)) sumReactionRate.append(np.sum(cokeReactionRateField)) densityField=readOpenFoamField(f"../{str(t)}/rho",lx,ly) UxField=readOpenFoamUField(f"../{str(t)}/U",lx,ly) inletFluxProfile=densityField[:,0]*UxField[:,0] inletfluxs.append(np.sum(inletFluxProfile)) fig, ax = plt.subplots() ax.set_xlabel(f"Time (s)") ax.set_title(f"Temporal Evolution",color="k") ax.plot(data["Time"],data["max"]/Tref,linestyle="-",label="Maximum Temperature",color="b") ax.set_ylabel(f"Dimensionless T",color="b") ax.tick_params(axis='y', labelcolor="b") ax2 = ax.twinx() ax2.plot(stimes.index*timeStep,volumeAveragedCoke,linestyle="-",color="r") ax2.set_xlabel('Time (s)',color="r") ax2.set_ylabel("Residual coke fraction",color="r") ax2.tick_params(axis='y', labelcolor="r") fig,ax=plt.subplots() ax.plot(stimes.index*timeStep,np.array(sumReactionRate)*(pixelResolution*pixelResolution)*-1/MCoke*MO2,linestyle="-",color="b") plt.rcParams.update({'mathtext.default': 'regular' }) ax.set_xlabel('Time (s)') ax.set_ylabel("Total $O_2$ Reaction Rate (kg/s)",color="b") ax.set_ylim([1e-7,2e-5]) ax.set_yscale('log') ax.tick_params(axis='y', labelcolor="b") ax2 = ax.twinx() ax2.plot(stimes.index*timeStep,np.array(inletfluxs)*pixelResolution*YO2,linestyle="--",color="r") ax2.set_ylabel("Total $O_{2}$ Flux by convection",color="r") ax2.set_ylim([1e-7,2e-5]) ax2.set_yscale('log') ax2.tick_params(axis='y', labelcolor="r") fig.tight_layout() ###Output _____no_output_____ ###Markdown Transversely averaged O2 fraction and temperature distributions at three typical time instants ###Code def show(timeInstant): cokeField=readOpenFoamField(f"../{str(timeInstant)}/coke",lx,ly) O2Field=readOpenFoamField(f"../{str(timeInstant)}/O2",lx,ly) TField=readOpenFoamField(f"../{str(timeInstant)}/T",lx,ly,Tref) fig,axs=plt.subplots(nrows=3, sharex=True, figsize=(13, 6)) fig.tight_layout() plt.rcParams.update({'mathtext.default': 'regular' }) # fig.suptitle(f"Field contours at time instant of {str(timeInstant)} s", fontsize=20) fig.text(0.55, 1.02, f'Field contours at time instant of {str(timeInstant)} s', transform=fig.transFigure, horizontalalignment='center', fontsize=18) im0=axs[0].imshow(cokeField,cmap="coolwarm") axs[0].set_title("coke fraction") bbox_ax0 = axs[0].get_position() loc_cbar0 = fig.add_axes([bbox_ax0.x1*1.01, bbox_ax0.y0, 0.02, bbox_ax0.y1-bbox_ax0.y0]) cbar0 = fig.colorbar(im0, cax=loc_cbar0) im1=axs[1].imshow(O2Field,cmap="coolwarm") plt.rcParams.update({'mathtext.default': 'regular' }) axs[1].set_title("${O_2}$ fraction") bbox_ax1 = axs[1].get_position() loc_cbar1 = fig.add_axes([bbox_ax1.x1*1.01, bbox_ax1.y0, 0.02, bbox_ax1.y1-bbox_ax1.y0]) cbar1 = fig.colorbar(im1, cax=loc_cbar1) im2=axs[2].imshow(TField,cmap="coolwarm") axs[2].set_title("Temperature") bbox_ax2 = axs[2].get_position() loc_cbar2 = fig.add_axes([bbox_ax2.x1*1.01, bbox_ax2.y0, 0.02, bbox_ax2.y1-bbox_ax2.y0]) cbar2 = fig.colorbar(im2, cax=loc_cbar2) # show(t1) t1=0.01 t2=0.05 t3=0.1 show(t1) show(t2) show(t3) cokeField0=readOpenFoamField(f"../{str(t1)}/coke",lx,ly) O2Field0=readOpenFoamField(f"../{str(t1)}/O2",lx,ly) TField0=readOpenFoamField(f"../{str(t1)}/T",lx,ly,Tref) cokeField1=readOpenFoamField(f"../{str(t2)}/coke",lx,ly) O2Field1=readOpenFoamField(f"../{str(t2)}/O2",lx,ly) TField1=readOpenFoamField(f"../{str(t2)}/T",lx,ly,Tref) cokeField2=readOpenFoamField(f"../{str(t3)}/coke",lx,ly) O2Field2=readOpenFoamField(f"../{str(t3)}/O2",lx,ly) TField2=readOpenFoamField(f"../{str(t3)}/T",lx,ly,Tref) fig,axs=plt.subplots(nrows=3, sharex=True, figsize=(10, 6)) fig.tight_layout() axs[0].plot(np.mean(cokeField0,axis=0),linestyle="-.",color="k",label=fr"$\mathit{{t}}\ $ = {str(t1)} s") axs[0].plot(np.mean(cokeField1,axis=0),linestyle="--",color="b",label=fr"$\mathit{{t}}\ $ = {str(t2)} s") axs[0].plot(np.mean(cokeField2,axis=0),linestyle="-",color="r",label=fr"$\mathit{{t}}\ $ = {str(t3)} s") axs[0].set_ylabel(f"Coke Fraction") axs[0].legend() axs[1].plot(np.mean(O2Field0,axis=0),linestyle="-.",color="k",label=fr"$\mathit{{t}}\ $ = {str(t1)} s") axs[1].plot(np.mean(O2Field1,axis=0),linestyle="--",color="b",label=fr"$\mathit{{t}}\ $ = {str(t2)} s") axs[1].plot(np.mean(O2Field2,axis=0),linestyle="-",color="r",label=fr"$\mathit{{t}}\ $ = {str(t3)} s") axs[1].set_ylabel(f"$O_{2}$ Fraction") axs[1].legend() axs[2].plot(np.mean(TField0,axis=0),linestyle="-.",color="k",label=fr"$\mathit{{t}}\ $ = {str(t1)} s") axs[2].plot(np.mean(TField1,axis=0),linestyle="--",color="b",label=fr"$\mathit{{t}}\ $ = {str(t2)} s") axs[2].plot(np.mean(TField2,axis=0),linestyle="-",color="r",label=fr"$\mathit{{t}}\ $ = {str(t3)} s") axs[2].set_ylabel(f"Temperature") axs[2].legend() axs[2].set_xlim([0,lx*1.2]) ###Output _____no_output_____
Exam project/Marcus3.ipynb
###Markdown Gradient descent Let $\boldsymbol{x} = \left[\begin{array}{c}x_1 \\x_2\\\end{array}\right]$ be a two-dimensional vector. Consider the following algorithm: **Algorithm:** `gradient_descent()`**Goal:** Minimize the function $f(\boldsymbol{x})$.1. Choose a tolerance $\epsilon>0$, a scale factor $ \Theta > 0$, and a small number $\Delta > 0$2. Guess on $\boldsymbol{x}_0$ and set $n=1$3. Compute a numerical approximation of the jacobian for $f$ by $$ \nabla f(\boldsymbol{x}_{n-1}) \approx \frac{1}{\Delta}\left[\begin{array}{c} f\left(\boldsymbol{x}_{n-1}+\left[\begin{array}{c} \Delta\\ 0 \end{array}\right]\right)-f(\boldsymbol{x}_{n-1})\\ f\left(\boldsymbol{x}_{n-1}+\left[\begin{array}{c} 0\\ \Delta \end{array}\right]\right)-f(\boldsymbol{x}_{n-1}) \end{array}\right] $$4. Stop if the maximum element in $|\nabla f(\boldsymbol{x}_{n-1})|$ is less than $\epsilon$5. Set $\theta = \Theta$ 6. Compute $f^{\theta}_{n} = f(\boldsymbol{x}_{n-1} - \theta \nabla f(\boldsymbol{x}_{n-1}))$7. If $f^{\theta}_{n} < f(\boldsymbol{x}_{n-1})$ continue to step 98. Set $\theta = \frac{\theta}{2}$ and return to step 6 9. Set $x_{n} = x_{n-1} - \theta \nabla f(\boldsymbol{x}_{n-1})$10. Set $n = n + 1$ and return to step 3 **Question:** Implement the algorithm above such that the code below can run. Jacobian function ###Code def _rosen(x1,x2): f = (1.0-x1)**2 + 2*(x2-x1**2)**2 x1 = sm.symbols('x_1') x2 = sm.symbols('x_2') f = (1.0-x1)**2 + 2*(x2-x1**2)**2 Df = sm.Matrix([sm.diff(f,i) for i in [x1,x2]]) Df def rosen(x): return _rosen(x[0],x[1]) def rosen_jac(x): return np.array([-(2.0-2*x[0])-8*x[0]*(x[1]-x[0]**2),4*(x[1]-x[0]**2)]) def gradient_descent(f,x0,epsilon=1e-6,Theta=0.1,Delta=1e-8,max_iter=10_000): """ minimize function with gradient descent Args: f (callable): function x0 (np.ndarray): initial values jac (callable): jacobian - MADE MYSELF IN FUNCTION alpha (list): potential step sizes - CHANGED TO Theta max_iter (int): maximum number of iterations tol (float): tolerance Returns: x (np.ndarray): minimum n (int): number of iterations used """ # step 1: initialize x = x0 fx = f(x0) n = 1 # step 2-6: iteration while n < max_iter: x_prev = x fx_prev = fx # step 2: evaluate gradient jacx = rosen_jac(x) # step 3: find good step size (line search) fx_ast = np.inf theta_ast = Theta theta = Theta / 2 x = x_prev - theta*jacx fx = f(x) if fx < fx_ast: fx_ast = fx theta_ast = theta # step 4: update guess x = x_prev - theta_ast*jacx # step 5: check convergence fx = f(x) if abs(fx-fx_prev) < epsilon: break # d. update i n += 1 return x,n pass ###Output _____no_output_____ ###Markdown **Test case:** ###Code def rosen(x): return (1.0-x[0])**2+2*(x[1]-x[0]**2)**2 x0 = np.array([1.1,1.1]) try: x,it = gradient_descent(rosen,x0) print(f'minimum found at ({x[0]:.4f},{x[1]:.4f}) after {it} iterations') assert np.allclose(x,[1,1]) except: print('not implemented yet') gradient_descent(rosen,x0) def minimize_gradient_descent(f,x0,jac,alphas=[0.01,0.05,0.1,0.25,0.5,1],max_iter=500,tol=1e-8): """ minimize function with gradient descent Args: f (callable): function x0 (np.ndarray): initial values jac (callable): jacobian alpha (list): potential step sizes max_iter (int): maximum number of iterations tol (float): tolerance Returns: x (np.ndarray): minimum n (int): number of iterations used """ # step 1: initialize x = x0 fx = f(x0) n = 1 # step 2-6: iteration while n < max_iter: x_prev = x fx_prev = fx # step 2: evaluate gradient jacx = jac(x) # step 3: find good step size (line search) fx_ast = np.inf alpha_ast = np.nan for alpha in alphas: x = x_prev - alpha*jacx fx = f(x) if fx < fx_ast: fx_ast = fx alpha_ast = alpha # step 4: update guess x = x_prev - alpha_ast*jacx # step 5: check convergence fx = f(x) if abs(fx-fx_prev) < tol: break # d. update i n += 1 return x,n minimize_gradient_descent(rosen,x0,rosen_jac) ###Output _____no_output_____
data/dataLoader.ipynb
###Markdown 经度划分为1800个密位,维度划分为900个密位,转换公式:经度 lon = int(5*lon) + 900纬度 lat = int(5*lat) + 450 ###Code # # 存取图,避免重复读取大数据 np.save("nancatch400fig.np",fig) # b = np.load("fig.np") # 作图,先作一个维度看看 # plt.imshow(fig[0], cmap ='gray') # plt.imsave('nancatch20.png', fig[0]) # plt.imsave('nancatch20gray.png', fig[0], cmap='gray') for i in range(8): plt.imsave('nancatch400gray'+str(i)+'.png', fig[i], cmap='gray') ###Output _____no_output_____
PyTorch Tutorial.ipynb
###Markdown PyTorch Tutorial for DSC Tetris RL Project Group ###Code %matplotlib notebook import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical ###Output _____no_output_____ ###Markdown Linear Regression with Gradient DescentWe make a linear regression model of the form $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2$. First let's define the model. ###Code class OLS(nn.Module): def __init__(self): super(OLS, self).__init__() self.weights = nn.Linear(2, 1) # slope1, slope2, intercept def forward(self, x): return self.weights(x) ###Output _____no_output_____ ###Markdown Now we make some fake data to test it out. ###Code X = torch.Tensor([ [1, 2], [3, 4], [5, 6], [4, 2], [10,9] ]) # y = 1.62 + 3.14x_1 + 1.41x_2 y = torch.sum(X*torch.Tensor([3.14, 1.41]), axis=1, keepdims=True) + 1.62 # 5x1 X, y ###Output _____no_output_____ ###Markdown Now initialize the model, optimizer, loss function, and train the model. ###Code model = OLS() optimizer = optim.SGD(model.parameters(), lr=0.01) criterion = nn.MSELoss() num_steps = 1000 for step in range(num_steps): optimizer.zero_grad() y_ = model(X) # predicted loss = criterion(y_, y) loss.backward() optimizer.step() if step % 100 == 0: print(f"Step: {step}, Loss: {loss.item()}") ###Output Step: 0, Loss: 874.3859252929688 Step: 100, Loss: 0.3385462164878845 Step: 200, Loss: 0.11772467195987701 Step: 300, Loss: 0.04475127160549164 Step: 400, Loss: 0.017174752429127693 Step: 500, Loss: 0.006597722880542278 Step: 600, Loss: 0.00253481836989522 Step: 700, Loss: 0.0009739218512549996 Step: 800, Loss: 0.0003741784894373268 Step: 900, Loss: 0.00014376426406670362 ###Markdown Look at the predictions and the expected output. ###Code model(X), y ###Output _____no_output_____ ###Markdown Look at the predicted weights (they should be close to what we used to make the $y$ data): ###Code model.weights.weight, model.weights.bias ###Output _____no_output_____ ###Markdown Finding the Highest Reward Path on a Lattice Using REINFORCE ###Code board = np.array([ [0, -1000000, -200000, -300000], [100000, 10000, -1000000, -400000], [-10000, 10000, 10000, 10000], [-10000, -10000, -10000, 0] ]) # typical x: [r, c] --> max{0, b_0 + b_1r + b_2c} =: y, class Model(nn.Module): # expects 2D input # outputs logits of right and down def __init__(self): super(Model, self).__init__() self.fc1 = nn.Linear(2, 3) self.fc2 = nn.Linear(3, 3) self.fc3 = nn.Linear(3,optimizer.step() 2) # logit right, logit down def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x #logits # just some constant vars RIGHT, DOWN = 1, 0 # plotting stuff plot_episode = [] plot_rewards = [] fig = plt.figure() ax = fig.add_subplot(111) plt.ion() fig.show() fig.canvas.draw() gamma = 0.999 num_episodes = 40000 pool_size = 1000 model = Model() optimizer = optim.Adagrad(model.parameters(), lr=0.01) state_pool = [] action_pool = [] reward_pool = [] for e in range(num_episodes): position = torch.zeros(1, 2) model.eval() # takes 6 steps to go from top left to bottom right for i in range(6): if position[0, RIGHT] == 3: # we are all the way right position = position.clone().detach() position[0, DOWN] += 1 elif position[0, DOWN] == 3: # we are all the way down position = position.clone().detach() position[0, RIGHT] += 1 else: prob_action = model(position) action = Categorical(logits = prob_action).sample() # [-1000, 199] --> softmax([-1000, 199]) if action.item() == RIGHT: # move right position = position.clone().detach() position[0, RIGHT] += 1 elif action.item() == DOWN: # move down position = position.clone().detach() position[0, DOWN] += 1 reward = board[int(position[0, DOWN]), int(position[0, RIGHT])] state_pool.append(position) action_pool.append(action) reward_pool.append(reward) model.train() if e % pool_size == pool_size - 1: ax.clear() plot_episode.append(e) for i in reversed(range(len(reward_pool))): if reward_pool[i] == 0: prev_reward = 0 else: prev_reward = prev_reward * gamma + reward_pool[i] reward_pool[i] = prev_reward reward_mean = np.mean(reward_pool) reward_std = np.std(reward_pool) # plot mean reward plot_rewards.append(reward_mean) ax.plot(plot_episode, plot_rewards) fig.canvas.draw() for i in range(len(reward_pool)): reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std optimizer.zero_grad() for i in range(0, len(reward_pool), 6): state = torch.cat(state_pool[i:i+6]) action = torch.tensor(action_pool[i:i+6]).long() reward = torch.tensor(reward_pool[i:i+6]).float() loss = torch.sum(-Categorical(logits = model(state)).log_prob(action) * reward) loss.backward() optimizer.step() state_pool = [] action_pool = [] reward_pool = [] model.eval() position = torch.zeros(1, 2) reward = 0 # takes 6 steps to go from top left to bottom right for i in range(6): if position[0, RIGHT] == 3: # we are all the way right position[0, DOWN] += 1 elif position[0, DOWN] == 3: # we are all the way down position[0, RIGHT] += 1 else: prob_action = model(position) action = torch.argmax(prob_action) if action.item() == RIGHT: # move right position[0, RIGHT] += 1 elif action.item() == DOWN: # move down position[0, DOWN] += 1 reward += board[int(position[0, DOWN]), int(position[0, RIGHT])] print(position, reward) ###Output tensor([[1., 0.]]) 100000 tensor([[2., 0.]]) 90000 tensor([[3., 0.]]) 80000 tensor([[3., 1.]]) 70000 tensor([[3., 2.]]) 60000 tensor([[3., 3.]]) 60000
01-Feature-Extraction-from-Text.ipynb
###Markdown ___ ___ This unit is divided into two sections:* First, we'll find out what what is necessary to build an NLP system that can turn a body of text into a numerical array of *features*.* Next we'll show how to perform these steps using real tools. Building a Natural Language Processor From ScratchIn this section we'll use basic Python to build a rudimentary NLP system. We'll build a *corpus of documents* (two small text files), create a *vocabulary* from all the words in both documents, and then demonstrate a *Bag of Words* technique to extract features from each document.**This first section is for illustration only!**Don't bother memorizing the code - we'd never do this in real life. Start with some documents:For simplicity we won't use any punctuation. ###Code %%writefile 1.txt This is a story about cats our feline pets Cats are furry animals %%writefile 2.txt This story is about surfing Catching waves is fun Surfing is a popular water sport ###Output Overwriting 2.txt ###Markdown Build a vocabularyThe goal here is to build a numerical array from all the words that appear in every document. Later we'll create instances (vectors) for each individual document. ###Code vocab = {} i = 1 with open('1.txt') as f: x = f.read().lower().split() for word in x: if word in vocab: continue else: vocab[word]=i i+=1 print(vocab) with open('2.txt') as f: x = f.read().lower().split() for word in x: if word in vocab: continue else: vocab[word]=i i+=1 print(vocab) ###Output {'this': 1, 'is': 2, 'a': 3, 'story': 4, 'about': 5, 'cats': 6, 'our': 7, 'feline': 8, 'pets': 9, 'are': 10, 'furry': 11, 'animals': 12, 'surfing': 13, 'catching': 14, 'waves': 15, 'fun': 16, 'popular': 17, 'water': 18, 'sport': 19} ###Markdown Even though `2.txt` has 15 words, only 7 new words were added to the dictionary. Feature ExtractionNow that we've encapsulated our "entire language" in a dictionary, let's perform *feature extraction* on each of our original documents: ###Code # Create an empty vector with space for each word in the vocabulary: one = ['1.txt']+[0]*len(vocab) one # map the frequencies of each word in 1.txt to our vector: with open('1.txt') as f: x = f.read().lower().split() for word in x: one[vocab[word]]+=1 one ###Output _____no_output_____ ###Markdown We can see that most of the words in 1.txt appear only once, although "cats" appears twice. ###Code # Do the same for the second document: two = ['2.txt']+[0]*len(vocab) with open('2.txt') as f: x = f.read().lower().split() for word in x: two[vocab[word]]+=1 # Compare the two vectors: print(f'{one}\n{two}') ###Output ['1.txt', 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] ['2.txt', 1, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1] ###Markdown By comparing the vectors we see that some words are common to both, some appear only in `1.txt`, others only in `2.txt`. Extending this logic to tens of thousands of documents, we would see the vocabulary dictionary grow to hundreds of thousands of words. Vectors would contain mostly zero values, making them *sparse matrices*. Bag of Words and Tf-idfIn the above examples, each vector can be considered a *bag of words*. By itself these may not be helpful until we consider *term frequencies*, or how often individual words appear in documents. A simple way to calculate term frequencies is to divide the number of occurrences of a word by the total number of words in the document. In this way, the number of times a word appears in large documents can be compared to that of smaller documents.However, it may be hard to differentiate documents based on term frequency if a word shows up in a majority of documents. To handle this we also consider *inverse document frequency*, which is the total number of documents divided by the number of documents that contain the word. In practice we convert this value to a logarithmic scale, as described [here](https://en.wikipedia.org/wiki/Tf%E2%80%93idfInverse_document_frequency).Together these terms become [**tf-idf**](https://en.wikipedia.org/wiki/Tf%E2%80%93idf). Stop Words and Word StemsSome words like "the" and "and" appear so frequently, and in so many documents, that we needn't bother counting them. Also, it may make sense to only record the root of a word, say `cat` in place of both `cat` and `cats`. This will shrink our vocab array and improve performance. Tokenization and TaggingWhen we created our vectors the first thing we did was split the incoming text on whitespace with `.split()`. This was a crude form of *tokenization* - that is, dividing a document into individual words. In this simple example we didn't worry about punctuation or different parts of speech. In the real world we rely on some fairly sophisticated *morphology* to parse text appropriately.Once the text is divided, we can go back and *tag* our tokens with information about parts of speech, grammatical dependencies, etc. This adds more dimensions to our data and enables a deeper understanding of the context of specific documents. For this reason, vectors become ***high dimensional sparse matrices***. **That's the end of the first section.**In the next section we'll use scikit-learn to perform a real-life analysis. ___ Feature Extraction from TextIn the **Scikit-learn Primer** lecture we applied a simple SVC classification model to the SMSSpamCollection dataset. We tried to predict the ham/spam label based on message length and punctuation counts. In this section we'll actually look at the text of each message and try to perform a classification based on content. We'll take advantage of some of scikit-learn's [feature extraction](https://scikit-learn.org/stable/modules/feature_extraction.htmltext-feature-extraction) tools. Load a dataset ###Code # Perform imports and load the dataset: import numpy as np import pandas as pd df = pd.read_csv('../TextFiles/smsspamcollection.tsv', sep='\t') df.head() ###Output _____no_output_____ ###Markdown Check for missing values:Always a good practice. ###Code df.isnull().sum() ###Output _____no_output_____ ###Markdown Take a quick look at the *ham* and *spam* `label` column: ###Code df['label'].value_counts() ###Output _____no_output_____ ###Markdown 4825 out of 5572 messages, or 86.6%, are ham. This means that any text classification model we create has to perform **better than 86.6%** to beat random chance. Split the data into train & test sets: ###Code from sklearn.model_selection import train_test_split X = df['message'] # this time we want to look at the text y = df['label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) ###Output _____no_output_____ ###Markdown Scikit-learn's CountVectorizerText preprocessing, tokenizing and the ability to filter out stopwords are all included in [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html), which builds a dictionary of features and transforms documents to feature vectors. ###Code from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(X_train) X_train_counts.shape ###Output _____no_output_____ ###Markdown This shows that our training set is comprised of 3733 documents, and 7082 features. Transform Counts to Frequencies with Tf-idfWhile counting words is helpful, longer documents will have higher average count values than shorter documents, even though they might talk about the same topics.To avoid this we can simply divide the number of occurrences of each word in a document by the total number of words in the document: these new features are called **tf** for Term Frequencies.Another refinement on top of **tf** is to downscale weights for words that occur in many documents in the corpus and are therefore less informative than those that occur only in a smaller portion of the corpus.This downscaling is called **tf–idf** for “Term Frequency times Inverse Document Frequency”.Both tf and tf–idf can be computed as follows using [TfidfTransformer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html): ###Code from sklearn.feature_extraction.text import TfidfTransformer tfidf_transformer = TfidfTransformer() X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) X_train_tfidf.shape ###Output _____no_output_____ ###Markdown Note: the `fit_transform()` method actually performs two operations: it fits an estimator to the data and then transforms our count-matrix to a tf-idf representation. Combine Steps with TfidVectorizerIn the future, we can combine the CountVectorizer and TfidTransformer steps into one using [TfidVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html): ###Code from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer() X_train_tfidf = vectorizer.fit_transform(X_train) # remember to use the original X_train set X_train_tfidf.shape ###Output _____no_output_____ ###Markdown Train a ClassifierHere we'll introduce an SVM classifier that's similar to SVC, called [LinearSVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html). LinearSVC handles sparse input better, and scales well to large numbers of samples. ###Code from sklearn.svm import LinearSVC clf = LinearSVC() clf.fit(X_train_tfidf,y_train) ###Output _____no_output_____ ###Markdown Earlier we named our SVC classifier **svc_model**. Here we're using the more generic name **clf** (for classifier). Build a PipelineRemember that only our training set has been vectorized into a full vocabulary. In order to perform an analysis on our test set we'll have to submit it to the same procedures. Fortunately scikit-learn offers a [**Pipeline**](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) class that behaves like a compound classifier. ###Code from sklearn.pipeline import Pipeline # from sklearn.feature_extraction.text import TfidfVectorizer # from sklearn.svm import LinearSVC text_clf = Pipeline([('tfidf', TfidfVectorizer()), ('clf', LinearSVC()), ]) # Feed the training data through the pipeline text_clf.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Test the classifier and display results ###Code # Form a prediction set predictions = text_clf.predict(X_test) # Report the confusion matrix from sklearn import metrics print(metrics.confusion_matrix(y_test,predictions)) # Print a classification report print(metrics.classification_report(y_test,predictions)) # Print the overall accuracy print(metrics.accuracy_score(y_test,predictions)) ###Output 0.989668297988
2019-spring/seminars/seminar4/DL19_seminar4.ipynb
###Markdown Обучение нейросетей — оптимизация и регуляризация**Разработчик: Артем Бабенко** На это семинаре будет необходимо (1) реализовать Dropout-слой и проследить его влияние на обобщающую способность сети (2) реализовать BatchNormalization-слой и пронаблюдать его влияние на скорость сходимости обучения. Dropout (0.6 балла)Как всегда будем экспериментировать на датасете MNIST. MNIST является стандартным бенчмарк-датасетом, и его можно подгрузить средствами pytorch. ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output import torch import torch.nn as nn import torch.nn.functional as F import torchvision.datasets as dsets import torchvision.transforms as transforms import torch.optim as optim from torch.utils.data.sampler import SubsetRandomSampler input_size = 784 num_classes = 10 batch_size = 128 train_dataset = dsets.MNIST(root='./MNIST/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='./MNIST/', train=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) ###Output _____no_output_____ ###Markdown Определим ряд стандартных функций с прошлых семинаров ###Code def train_epoch(model, optimizer, batchsize=32): loss_log, acc_log = [], [] model.train() for batch_num, (x_batch, y_batch) in enumerate(train_loader): data = x_batch target = y_batch optimizer.zero_grad() output = model(data) pred = torch.max(output, 1)[1] acc = torch.eq(pred, y_batch).float().mean() acc_log.append(acc) loss = F.nll_loss(output, target).cpu() loss.backward() optimizer.step() loss = loss.item() loss_log.append(loss) return loss_log, acc_log def test(model): loss_log, acc_log = [], [] model.eval() for batch_num, (x_batch, y_batch) in enumerate(test_loader): data = x_batch target = y_batch output = model(data) loss = F.nll_loss(output, target).cpu() pred = torch.max(output, 1)[1] acc = torch.eq(pred, y_batch).float().mean() acc_log.append(acc) loss = loss.item() loss_log.append(loss) return loss_log, acc_log def plot_history(train_history, val_history, title='loss'): plt.figure() plt.title('{}'.format(title)) plt.plot(train_history, label='train', zorder=1) points = np.array(val_history) plt.scatter(points[:, 0], points[:, 1], marker='+', s=180, c='orange', label='val', zorder=2) plt.xlabel('train steps') plt.legend(loc='best') plt.grid() plt.show() def train(model, opt, n_epochs): train_log, train_acc_log = [], [] val_log, val_acc_log = [], [] for epoch in range(n_epochs): print("Epoch {0} of {1}".format(epoch, n_epochs)) train_loss, train_acc = train_epoch(model, opt, batchsize=batch_size) val_loss, val_acc = test(model) train_log.extend(train_loss) train_acc_log.extend(train_acc) steps = train_dataset.train_labels.shape[0] / batch_size val_log.append((steps * (epoch + 1), np.mean(val_loss))) val_acc_log.append((steps * (epoch + 1), np.mean(val_acc))) clear_output() plot_history(train_log, val_log) plot_history(train_acc_log, val_acc_log, title='accuracy') print("Epoch: {2}, val loss: {0}, val accuracy: {1}".format(np.mean(val_loss), np.mean(val_acc), epoch)) ###Output _____no_output_____ ###Markdown Создайте простейшую однослойную модель - однослойную полносвязную сеть и обучите ее с параметрами оптимизации, заданными ниже. ###Code class Flatten(nn.Module): def forward(self, x): return x.view(x.size()[0], -1) model = nn.Sequential( #<your code> ) opt = torch.optim.Adam(model.parameters(), lr=0.0005) train(model, opt, 10) ###Output _____no_output_____ ###Markdown Параметром обученной нейросети является матрица весов, в которой каждому классу соответствует один из 784-мерных столбцов. Визуализируйте обученные векторы для каждого из классов, сделав их двумерными изображениями 28-28. Для визуализации можно воспользоваться кодом для визуализации MNIST-картинок с предыдущих семинаров. ###Code weights = #<your code> plt.figure(figsize=[10, 10]) for i in range(10): plt.subplot(5, 5, i + 1) plt.title("Label: %i" % i) plt.imshow(weights[i].reshape([28, 28]), cmap='gray'); ###Output _____no_output_____ ###Markdown Реализуйте Dropout-слой для полносвязной сети. Помните, что этот слой ведет себя по-разному во время обучения и во время применения. ###Code class DropoutLayer(nn.Module): def __init__(self, p): super().__init__() #<your code> def forward(self, input): if self.training: #<your code> else: #<your code> ###Output _____no_output_____ ###Markdown Добавьте Dropout-слой в архитектуру сети, проведите оптимизацию с параметрами, заданными ранее, визуализируйте обученные веса. Есть ли разница между весами обученными с Dropout и без него? Параметр Dropout возьмите равным 0.7 ###Code modelDp = nn.Sequential( #<your code> ) opt = torch.optim.Adam(modelDp.parameters(), lr=0.0005) train(modelDp, opt, 10) weights = #<your code> plt.figure(figsize=[10, 10]) for i in range(10): plt.subplot(5, 5, i + 1) plt.title("Label: %i" % i) plt.imshow(weights[i].reshape([28, 28]), cmap='gray'); ###Output _____no_output_____ ###Markdown Обучите еще одну модель, в которой вместо Dropout-регуляризации используется L2-регуляризация с коэффициентом 0.05. (Параметр weight_decay в оптимизаторе). Визуализируйте веса и сравните с двумя предыдущими подходами. ###Code model = nn.Sequential( Flatten(), nn.Linear(input_size,num_classes), nn.LogSoftmax(dim=-1) ) opt = torch.optim.Adam(model.parameters(), lr=0.0005, weight_decay=0.05) train(model, opt, 10) weights = #<your code> plt.figure(figsize=[10, 10]) for i in range(10): plt.subplot(5, 5, i + 1) plt.title("Label: %i" % i) plt.imshow(weights[i].reshape([28, 28]), cmap='gray'); ###Output _____no_output_____ ###Markdown Batch normalization (0.4 балла)Реализуйте BatchNormalization слой для полносвязной сети. В реализации достаточно только центрировать и разделить на корень из дисперсии, аффинную поправку (гамма и бета) в этом задании можно не реализовывать. ###Code class BnLayer(nn.Module): def __init__(self, num_features): super().__init__() #<your code> def forward(self, input): if self.training: #<your code> else: #<your code> return #<your code> ###Output _____no_output_____ ###Markdown Обучите трехслойную полносвязную сеть (размер скрытого слоя возьмите 100) с сигмоидами в качестве функций активации. ###Code model = nn.Sequential( #<your code> ) opt = torch.optim.RMSprop(model.parameters(), lr=0.01) train(model, opt, 3) ###Output _____no_output_____ ###Markdown Повторите обучение с теми же параметрами для сети с той же архитектурой, но с добавлением BatchNorm слоя (для всех трех скрытых слоев). ###Code modelBN = nn.Sequential( #<your code> ) opt = torch.optim.RMSprop(modelBN.parameters(), lr=0.01) train(modelBN, opt, 3) ###Output _____no_output_____
sentiment/sentiment-rnn/Sentiment RNN.ipynb
###Markdown Sentiment Analysis with an RNNIn this notebook, you'll implement a recurrent neural network that performs sentiment analysis. Using an RNN rather than a feedfoward network is more accurate since we can include information about the *sequence* of words. Here we'll use a dataset of movie reviews, accompanied by labels.The architecture for this network is shown below.Here, we'll pass in words to an embedding layer. We need an embedding layer because we have tens of thousands of words, so we'll need a more efficient representation for our input data than one-hot encoded vectors. You should have seen this before from the word2vec lesson. You can actually train up an embedding with word2vec and use it here. But it's good enough to just have an embedding layer and let the network learn the embedding table on it's own.From the embedding layer, the new representations will be passed to LSTM cells. These will add recurrent connections to the network so we can include information about the sequence of words in the data. Finally, the LSTM cells will go to a sigmoid output layer here. We're using the sigmoid because we're trying to predict if this text has positive or negative sentiment. The output layer will just be a single unit then, with a sigmoid activation function.We don't care about the sigmoid outputs except for the very last one, we can ignore the rest. We'll calculate the cost from the output of the last step and the training label. ###Code import numpy as np import tensorflow as tf with open('reviews.txt', 'r') as f: reviews = f.read() with open('labels.txt', 'r') as f: labels = f.read() reviews[:2000] ###Output _____no_output_____ ###Markdown Data preprocessingThe first step when building a neural network model is getting your data into the proper form to feed into the network. Since we're using embedding layers, we'll need to encode each word with an integer. We'll also want to clean it up a bit.You can see an example of the reviews data above. We'll want to get rid of those periods. Also, you might notice that the reviews are delimited with newlines `\n`. To deal with those, I'm going to split the text into each review using `\n` as the delimiter. Then I can combined all the reviews back together into one big string.First, let's remove all punctuation. Then get all the text without the newlines and split it into individual words. ###Code from string import punctuation all_text = ''.join([c for c in reviews if c not in punctuation]) reviews = all_text.split('\n') all_text = ' '.join(reviews) words = all_text.split() all_text[:2000] words[:100] ###Output _____no_output_____ ###Markdown Encoding the wordsThe embedding lookup requires that we pass in integers to our network. The easiest way to do this is to create dictionaries that map the words in the vocabulary to integers. Then we can convert each of our reviews into integers so they can be passed into the network.> **Exercise:** Now you're going to encode the words with integers. Build a dictionary that maps words to integers. Later we're going to pad our input vectors with zeros, so make sure the integers **start at 1, not 0**.> Also, convert the reviews to integers and store the reviews in a new list called `reviews_ints`. ###Code # Create your dictionary that maps vocab words to integers here vocab_to_int = # Convert the reviews to integers, same shape as reviews list, but with integers reviews_ints = ###Output _____no_output_____ ###Markdown Encoding the labelsOur labels are "positive" or "negative". To use these labels in our network, we need to convert them to 0 and 1.> **Exercise:** Convert labels from `positive` and `negative` to 1 and 0, respectively. ###Code # Convert labels to 1s and 0s for 'positive' and 'negative' labels = ###Output _____no_output_____ ###Markdown If you built `labels` correctly, you should see the next output. ###Code review_lens = Counter([len(x) for x in reviews_ints]) print("Zero-length reviews: {}".format(review_lens[0])) print("Maximum review length: {}".format(max(review_lens))) ###Output Zero-length reviews: 1 Maximum review length: 2514 ###Markdown Okay, a couple issues here. We seem to have one review with zero length. And, the maximum review length is way too many steps for our RNN. Let's truncate to 200 steps. For reviews shorter than 200, we'll pad with 0s. For reviews longer than 200, we can truncate them to the first 200 characters.> **Exercise:** First, remove the review with zero length from the `reviews_ints` list. ###Code # Filter out that review with 0 length reviews_ints = ###Output _____no_output_____ ###Markdown > **Exercise:** Now, create an array `features` that contains the data we'll pass to the network. The data should come from `review_ints`, since we want to feed integers to the network. Each row should be 200 elements long. For reviews shorter than 200 words, left pad with 0s. That is, if the review is `['best', 'movie', 'ever']`, `[117, 18, 128]` as integers, the row will look like `[0, 0, 0, ..., 0, 117, 18, 128]`. For reviews longer than 200, use on the first 200 words as the feature vector.This isn't trivial and there are a bunch of ways to do this. But, if you're going to be building your own deep learning networks, you're going to have to get used to preparing your data. ###Code seq_len = 200 features = ###Output _____no_output_____ ###Markdown If you build features correctly, it should look like that cell output below. ###Code features[:10,:100] ###Output _____no_output_____ ###Markdown Training, Validation, Test With our data in nice shape, we'll split it into training, validation, and test sets.> **Exercise:** Create the training, validation, and test sets here. You'll need to create sets for the features and the labels, `train_x` and `train_y` for example. Define a split fraction, `split_frac` as the fraction of data to keep in the training set. Usually this is set to 0.8 or 0.9. The rest of the data will be split in half to create the validation and testing data. ###Code split_frac = 0.8 train_x, val_x = train_y, val_y = val_x, test_x = val_y, test_y = print("\t\t\tFeature Shapes:") print("Train set: \t\t{}".format(train_x.shape), "\nValidation set: \t{}".format(val_x.shape), "\nTest set: \t\t{}".format(test_x.shape)) ###Output _____no_output_____ ###Markdown With train, validation, and text fractions of 0.8, 0.1, 0.1, the final shapes should look like:``` Feature Shapes:Train set: (20000, 200) Validation set: (2500, 200) Test set: (2501, 200)``` Build the graphHere, we'll build the graph. First up, defining the hyperparameters.* `lstm_size`: Number of units in the hidden layers in the LSTM cells. Usually larger is better performance wise. Common values are 128, 256, 512, etc.* `lstm_layers`: Number of LSTM layers in the network. I'd start with 1, then add more if I'm underfitting.* `batch_size`: The number of reviews to feed the network in one training pass. Typically this should be set as high as you can go without running out of memory.* `learning_rate`: Learning rate ###Code lstm_size = 256 lstm_layers = 1 batch_size = 500 learning_rate = 0.001 ###Output _____no_output_____ ###Markdown For the network itself, we'll be passing in our 200 element long review vectors. Each batch will be `batch_size` vectors. We'll also be using dropout on the LSTM layer, so we'll make a placeholder for the keep probability. > **Exercise:** Create the `inputs_`, `labels_`, and drop out `keep_prob` placeholders using `tf.placeholder`. `labels_` needs to be two-dimensional to work with some functions later. Since `keep_prob` is a scalar (a 0-dimensional tensor), you shouldn't provide a size to `tf.placeholder`. ###Code n_words = len(vocab) # Create the graph object graph = tf.Graph() # Add nodes to the graph with graph.as_default(): inputs_ = labels_ = keep_prob = ###Output _____no_output_____ ###Markdown EmbeddingNow we'll add an embedding layer. We need to do this because there are 74000 words in our vocabulary. It is massively inefficient to one-hot encode our classes here. You should remember dealing with this problem from the word2vec lesson. Instead of one-hot encoding, we can have an embedding layer and use that layer as a lookup table. You could train an embedding layer using word2vec, then load it here. But, it's fine to just make a new layer and let the network learn the weights.> **Exercise:** Create the embedding lookup matrix as a `tf.Variable`. Use that embedding matrix to get the embedded vectors to pass to the LSTM cell with [`tf.nn.embedding_lookup`](https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup). This function takes the embedding matrix and an input tensor, such as the review vectors. Then, it'll return another tensor with the embedded vectors. So, if the embedding layer has 200 units, the function will return a tensor with size [batch_size, 200]. ###Code # Size of the embedding vectors (number of units in the embedding layer) embed_size = 300 with graph.as_default(): embedding = embed = ###Output _____no_output_____ ###Markdown LSTM cellNext, we'll create our LSTM cells to use in the recurrent network ([TensorFlow documentation](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn)). Here we are just defining what the cells look like. This isn't actually building the graph, just defining the type of cells we want in our graph.To create a basic LSTM cell for the graph, you'll want to use `tf.contrib.rnn.BasicLSTMCell`. Looking at the function documentation:```tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=)```you can see it takes a parameter called `num_units`, the number of units in the cell, called `lstm_size` in this code. So then, you can write something like ```lstm = tf.contrib.rnn.BasicLSTMCell(num_units)```to create an LSTM cell with `num_units`. Next, you can add dropout to the cell with `tf.contrib.rnn.DropoutWrapper`. This just wraps the cell in another cell, but with dropout added to the inputs and/or outputs. It's a really convenient way to make your network better with almost no effort! So you'd do something like```drop = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob)```Most of the time, you're network will have better performance with more layers. That's sort of the magic of deep learning, adding more layers allows the network to learn really complex relationships. Again, there is a simple way to create multiple layers of LSTM cells with `tf.contrib.rnn.MultiRNNCell`:```cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)```Here, `[drop] * lstm_layers` creates a list of cells (`drop`) that is `lstm_layers` long. The `MultiRNNCell` wrapper builds this into multiple layers of RNN cells, one for each cell in the list.So the final cell you're using in the network is actually multiple (or just one) LSTM cells with dropout. But it all works the same from an achitectural viewpoint, just a more complicated graph in the cell.> **Exercise:** Below, use `tf.contrib.rnn.BasicLSTMCell` to create an LSTM cell. Then, add drop out to it with `tf.contrib.rnn.DropoutWrapper`. Finally, create multiple LSTM layers with `tf.contrib.rnn.MultiRNNCell`.Here is [a tutorial on building RNNs](https://www.tensorflow.org/tutorials/recurrent) that will help you out. ###Code with graph.as_default(): # Your basic LSTM cell lstm = # Add dropout to the cell drop = # Stack up multiple LSTM layers, for deep learning cell = # Getting an initial state of all zeros initial_state = cell.zero_state(batch_size, tf.float32) ###Output _____no_output_____ ###Markdown RNN forward passNow we need to actually run the data through the RNN nodes. You can use [`tf.nn.dynamic_rnn`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) to do this. You'd pass in the RNN cell you created (our multiple layered LSTM `cell` for instance), and the inputs to the network.```outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state)```Above I created an initial state, `initial_state`, to pass to the RNN. This is the cell state that is passed between the hidden layers in successive time steps. `tf.nn.dynamic_rnn` takes care of most of the work for us. We pass in our cell and the input to the cell, then it does the unrolling and everything else for us. It returns outputs for each time step and the final_state of the hidden layer.> **Exercise:** Use `tf.nn.dynamic_rnn` to add the forward pass through the RNN. Remember that we're actually passing in vectors from the embedding layer, `embed`. ###Code with graph.as_default(): outputs, final_state = ###Output _____no_output_____ ###Markdown OutputWe only care about the final output, we'll be using that as our sentiment prediction. So we need to grab the last output with `outputs[:, -1]`, the calculate the cost from that and `labels_`. ###Code with graph.as_default(): predictions = tf.contrib.layers.fully_connected(outputs[:, -1], 1, activation_fn=tf.sigmoid) cost = tf.losses.mean_squared_error(labels_, predictions) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) ###Output _____no_output_____ ###Markdown Validation accuracyHere we can add a few nodes to calculate the accuracy which we'll use in the validation pass. ###Code with graph.as_default(): correct_pred = tf.equal(tf.cast(tf.round(predictions), tf.int32), labels_) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) ###Output _____no_output_____ ###Markdown BatchingThis is a simple function for returning batches from our data. First it removes data such that we only have full batches. Then it iterates through the `x` and `y` arrays and returns slices out of those arrays with size `[batch_size]`. ###Code def get_batches(x, y, batch_size=100): n_batches = len(x)//batch_size x, y = x[:n_batches*batch_size], y[:n_batches*batch_size] for ii in range(0, len(x), batch_size): yield x[ii:ii+batch_size], y[ii:ii+batch_size] ###Output _____no_output_____ ###Markdown TrainingBelow is the typical training code. If you want to do this yourself, feel free to delete all this code and implement it yourself. Before you run this, make sure the `checkpoints` directory exists. ###Code epochs = 10 with graph.as_default(): saver = tf.train.Saver() with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) iteration = 1 for e in range(epochs): state = sess.run(initial_state) for ii, (x, y) in enumerate(get_batches(train_x, train_y, batch_size), 1): feed = {inputs_: x, labels_: y[:, None], keep_prob: 0.5, initial_state: state} loss, state, _ = sess.run([cost, final_state, optimizer], feed_dict=feed) if iteration%5==0: print("Epoch: {}/{}".format(e, epochs), "Iteration: {}".format(iteration), "Train loss: {:.3f}".format(loss)) if iteration%25==0: val_acc = [] val_state = sess.run(cell.zero_state(batch_size, tf.float32)) for x, y in get_batches(val_x, val_y, batch_size): feed = {inputs_: x, labels_: y[:, None], keep_prob: 1, initial_state: val_state} batch_acc, val_state = sess.run([accuracy, final_state], feed_dict=feed) val_acc.append(batch_acc) print("Val acc: {:.3f}".format(np.mean(val_acc))) iteration +=1 saver.save(sess, "checkpoints/sentiment.ckpt") ###Output _____no_output_____ ###Markdown Testing ###Code test_acc = [] with tf.Session(graph=graph) as sess: saver.restore(sess, tf.train.latest_checkpoint('/output/checkpoints')) test_state = sess.run(cell.zero_state(batch_size, tf.float32)) for ii, (x, y) in enumerate(get_batches(test_x, test_y, batch_size), 1): feed = {inputs_: x, labels_: y[:, None], keep_prob: 1, initial_state: test_state} batch_acc, test_state = sess.run([accuracy, final_state], feed_dict=feed) test_acc.append(batch_acc) print("Test accuracy: {:.3f}".format(np.mean(test_acc))) ###Output _____no_output_____
wp/notebooks/experiments/.ipynb_checkpoints/mnist_ios-checkpoint.ipynb
###Markdown Mc Dropout ###Code base_experiment_path = os.path.join(METRICS_PATH, "mnist_ios") metrics_handler = ExperimentSuitMetrics(base_experiment_path) df_mc = MetricsTransformer.load_from_dir(metrics_handler, "mc_dropout", dtype=dtypes) scores = FrameScores(accuracy_column="eval_sparse_categorical_accuracy") mc_frame = ExperimentFrame(df_mc, scores=scores) df_mc = mc_frame.get_frame() fig, ax = plt.subplots(1, 2, figsize=(25, 10)) sns.lineplot(ax=ax[0], data=df_mc, x="labeled_pool_size", y="eval_sparse_categorical_accuracy", hue="method") ax[0].legend(title="Method") ax[0].set_xlabel("Labeled pool size") ax[0].set_ylabel("Test Accuracy") sns.lineplot(ax=ax[1], data=df_mc, x="labeled_pool_size", y="eval_sparse_categorical_crossentropy", hue="method") ax[1].legend(title="Method") ax[1].set_xlabel("Labeled pool size") ax[1].set_ylabel("Test Loss") plt.savefig(os.path.join(STAT_PATH, "mc_dropout_loss_acc.png")) fig, ax = plt.subplots(figsize=(15, 10)) sns.lineplot(ax=ax, data=df_mc, x="iteration", y="mean_leff", hue="method") ax.legend(title="Method") ax.set_xlabel("Iteration") ax.set_ylabel("Labeling Efficiency") #ax.set(xlabel="Iteration", ylabel="Query time in seconds per datapoint.") plt.savefig(os.path.join(STAT_PATH, "mc_dropout_leff.png")) selector = df_mc["method"] != "Random" tmp = df_mc.copy() tmp["query_time"] = tmp["query_time"] * 1000 ax = sns.barplot(data=tmp[selector], x="method", y="query_time", ci="sd") ax.set(xlabel="Method", ylabel="Query time in [ms]") ax.set_ylim(0.27, 0.3) ###Output _____no_output_____ ###Markdown Moment Propagation ###Code df_mp = MetricsTransformer.load_from_dir(metrics_handler, "moment_propagation", dtype=dtypes) scores = FrameScores(accuracy_column="eval_sparse_categorical_accuracy") mp_frame = ExperimentFrame(df_mp, scores=scores) df_mp = mp_frame.get_frame() fig, ax = plt.subplots(1, 2, figsize=(25, 10)) selector = df_mp["eval_sparse_categorical_accuracy"] > .7 sns.lineplot(ax=ax[0], data=df_mp[selector], x="labeled_pool_size", y="eval_sparse_categorical_accuracy", hue="method") ax[0].set_xlabel("Labeled Pool Size") ax[0].set_ylabel("Test Accuracy") ax[0].legend(title="Method") sns.lineplot(ax=ax[1], data=df_mp, x="labeled_pool_size", y="eval_sparse_categorical_crossentropy", hue="method") ax[1].set_xlabel("Labeled Pool Size") ax[1].set_ylabel("Test Accuracy") ax[1].legend(title="Method") fig, ax = plt.subplots(1, 2, figsize=(25, 10)) sns.lineplot(ax=ax[0], data=df_mp, x="labeled_pool_size", y="mean_leff", hue="method") ax[0].set_xlabel("Labeled Pool Size") ax[0].set_ylabel("Labeling Efficiency") ax[0].legend(title="Method") sns.lineplot(ax=ax[1], data=df_mp, x="labeled_pool_size", y="query_time", hue="method") ax[1].set_xlabel("Labeled Pool Size") ax[1].set_ylabel("Query time in seconds per datapoints") ax[1].legend(title="Method") num_of_datapoints = np.array([10_000, 20_000, 40_000, 80_000, 160_000]) qt_dp_mp = Stats.query_time_per_datapoints(df_mp, num_of_datapoints) qt_dp_mc = Stats.query_time_per_datapoints(df_mc, num_of_datapoints) qt_dp_mc.insert(0, "model", "Mc Dropout") qt_dp_mp.insert(0, "model", "Moment Propagation") merged_times = pd.concat([qt_dp_mc, qt_dp_mp]) merged_times = merged_times.rename(columns={"model": "Model", "method": "Method"}) fig = sns.lineplot(data=merged_times, x="size", y="times", hue="Method", style="Model") fig.set(xlabel="Num of datapoints to query", ylabel="Query time in seconds") composite_df = pd.concat([df_mp, df_mc]) composite_df["query_time"] = composite_df["query_time"]*1000 selector = composite_df["method"] != "Random" fig = sns.barplot(data=composite_df[selector], x="method", y="query_time", hue="model", ci="sd") fig.set(xlabel="Method", ylabel="Query time in [ms]") fig.legend(title="Model") fig.set_title("Runtime of query functions per datapoint") df_mp_mean = mp_frame.get_mean_frame() df_mc_mean = mc_frame.get_mean_frame() df_mc_mean["query_time"] = df_mc_mean["query_time"]-df_mp_mean["query_time"] df_mc_mean["query_time"] = df_mc_mean["query_time"]*1000 selector = df_mc_mean["method"] != "Random" fig = sns.barplot(data=df_mc_mean[selector], x="method", y="query_time", ci=None) fig.set(xlabel="Method", ylabel="Performance increase in [ms]") fig.set_title("Performance increase Moment Propagation compared to Mc Dropout") df_merged = pd.concat([df_mc, df_mp]) fig, ax = plt.subplots(2, 2, figsize=(25, 20)) selector = df_merged["method"] == "BALD" sns.lineplot(ax=ax[0][0], data=df_merged[selector], x="labeled_pool_size", y="eval_sparse_categorical_accuracy", hue="model") ax[0][0].set_xlabel("Labeled pool size") ax[0][0].set_ylabel("Test Accuracy") ax[0][0].legend(title="Model") ax[0][0].set_title("Acquisition function: BALD") selector = df_merged["method"] == "Max. Entropy" fig = sns.lineplot(ax=ax[0][1], data=df_merged[selector], x="labeled_pool_size", y="eval_sparse_categorical_accuracy", hue="model") ax[0][1].set_xlabel("Labeled pool size") ax[0][1].set_ylabel("Test Accuracy") ax[0][1].legend(title="Model") ax[0][1].set_title("Acquisition function: Max. Entropy") selector = df_merged["method"] == "Mean Std." fig = sns.lineplot(ax=ax[1][0], data=df_merged[selector], x="labeled_pool_size", y="eval_sparse_categorical_accuracy", hue="model") ax[1][0].set_xlabel("Labeled pool size") ax[1][0].set_ylabel("Test Accuracy") ax[1][0].legend(title="Model") ax[1][0].set_title("Acquisition function: Mean Std.") selector = df_merged["method"] == "Max. Var. Ratio" fig = sns.lineplot(ax=ax[1][1], data=df_merged[selector], x="labeled_pool_size", y="eval_sparse_categorical_accuracy", hue="model") ax[1][1].set_xlabel("Labeled pool size") ax[1][1].set_ylabel("Test Accuracy") ax[1][1].legend(title="Model") ax[1][1].set_title("Acquisition function: Max. Var. Ratio") ###Output _____no_output_____ ###Markdown Variance in initial training ###Code selector = df_mc["iteration"] == 1 fig = sns.barplot(data=df_mc[selector], x="method", y="eval_sparse_categorical_accuracy") fig.set_ylim(0.45, 0.65) fig.set(xlabel="Method", ylabel="Test Accuracy") selector = df_mp["iteration"] == 1 fig = sns.barplot(data=df_mp[selector], x="method", y="eval_sparse_categorical_accuracy") fig.set_ylim(0.5, 0.6) ###Output _____no_output_____ ###Markdown Runtime boxplot ###Code composite_df = pd.concat([df_mp, df_mc]) #composite_df = composite_df.groupby(["model", "method", "run"]).mean() composite_df["query_time"] = composite_df["query_time"]*1000 selector = composite_df["method"] != "Random" #plt.figure(dpi=300) fig = sns.boxplot(data=composite_df[selector], y="method", x="query_time", hue="model") fig.set(xlabel="Query time in [ms]", ylabel="") fig.legend(title="Model") #plt.grid() plt.tight_layout() plt.savefig(os.path.join(STAT_PATH, "mp_mc_runtime_boxplot.png")) ###Output _____no_output_____ ###Markdown AUC/Query Time Table ###Code table_query_time = Table.query_time(pd.concat([df_mc, df_mp]), decimals=6) table_query_time = Frame.merge_mean_std(table_query_time) table_query_time.columns = ["Query Time"] table_query_time auc_mean_std = Table.auc(pd.concat([df_mc, df_mp]), decimals=3) auc_mean_std = Frame.merge_mean_std(auc_mean_std) auc_mean_std.columns = ["AUC"] auc_mean_std qt_auc = pd.concat([auc_mean_std, table_query_time], axis=1) qt_auc.to_latex(os.path.join(STAT_PATH, "tables", "auc_qt_mp_mc.tex")) qt_auc ###Output _____no_output_____
fenics_artery.ipynb
###Markdown Simulation of artery wall dynamics using FEniCS[FEniCS](https://fenicsproject.org/) is a finite element (FE) solver in Python and is used here to simulate artery wall dynamics under functional hyperaemia. This simulation was used to calculate IPAD under functional hyperaemia [1].FEniCS is best installed as a standalone Anaconda environment: ###Code conda create -n fenicsproject -c conda-forge fenics source activate fenicsproject ###Output _____no_output_____ ###Markdown Installing ```nb_conda``` in both the ```fenicsproject``` and the base environment adds the option to switch the kernel environment to Jupyter Notebook. ###Code conda install nb_conda ###Output _____no_output_____ ###Markdown Now we can begin modelling an arteriole using FEniCS. Begin with all your module imports ###Code from fenics import * from dolfin import * from mshr import * from matplotlib import pyplot as plt import numpy as np from scipy.interpolate import interp1d ###Output _____no_output_____ ###Markdown Next we define useful parameters for units and scaled parameters ###Code # Units cm = 1e-2 um = 1e-4 * cm dyn = 1 pa = 10 * dyn/cm**2 s = 1 # Scaled variables r0 = 20*um # arteriole radius R = r0/r0 # dimensionless radius We = 0.2*R # arteriole wall width w_ast = 10*um/r0 # width of an astrocyte gap = 1*um/r0 # gap between astrocytes Le = 10*R + 5*w_ast + 4*gap # length of the arteriole tf = 50*s # simulation time ###Output _____no_output_____ ###Markdown This example simulation will have 5 astrocytes placed along the arteriole wall. They're start and end points along the wall are defined next ###Code asta1 = Le/2 - 5*w_ast asta2 = asta1+w_ast astb1 = asta2+gap astb2 = astb1+w_ast astc1 = astb2+gap astc2 = astc1+w_ast astd1 = astc2+gap astd2 = astd1+w_ast aste1 = astd2+gap aste2 = aste1+w_ast ###Output _____no_output_____ ###Markdown Finally, we need the elasticity parameters for the artery wall ###Code Y = 1.0e6 * pa # Young's modulus nu = 0.49 # Poisson's ratio lam = Y*nu/((1+nu)*(1-2*nu)) # First Lame coefficient mu = Y/(2*(1+nu)) # Second Lame coefficient Mu = mu/mu # dimensionless Lame coefficient Lam = lam/mu # dimensionless Lame coefficient ###Output _____no_output_____ ###Markdown The displacement for the arteriole wall is obtained from the simulations of the neurovascular unit (NVU) following [2]. ###Code disp = np.loadtxt('./nvu/disp.csv', delimiter=',')/r0 # read displacement from data nt = disp.shape[0] # number of time steps dt = tf/nt ###Output _____no_output_____ ###Markdown To set up FEniCS we need to set up the geometry and mesh using meshr ###Code N = 512 deg = 2 elem = "Lagrange" geom = Rectangle(Point(0, 0), Point(We, Le)) mesh = generate_mesh(geom, N) ###Output _____no_output_____ ###Markdown We will need three function spaces for the simulation ###Code V = VectorFunctionSpace(mesh, elem, deg) W = FunctionSpace(mesh, elem, deg) WW = TensorFunctionSpace(mesh, elem, deg) ###Output _____no_output_____ ###Markdown Astrocytes on the arteriole wall are defined as Dirichlet boundary conditions on the top boundary of the arteriole wall with prescribed displacement obtained from ```disp```. The bottom boundary of the arteriole wall is allowed to move freely. The side boundaries of the rectangular arteriole geometry are fixed to zero displacement. ###Code def astr_a(x, on_boundary): return near(x[0], We) and (x[1] < asta2 and x[1] > asta1) def astr_b(x, on_boundary): return near(x[0], We) and (x[1] < astb2 and x[1] > astb1) def astr_c(x, on_boundary): return near(x[0], We) and (x[1] < astc2 and x[1] > astc1) def astr_d(x, on_boundary): return near(x[0], We) and (x[1] < astd2 and x[1] > astd1) def astr_e(x, on_boundary): return near(x[0], We) and (x[1] < aste2 and x[1] > aste1) def fixed_boundary(x, on_boundary): return near(x[1], 0) or near(x[1], Le) disps = Expression(('d', '0'), d=disp[0], degree=deg) bc0 = DirichletBC(V, Constant((0, 0)), fixed_boundary) bc1 = DirichletBC(V, disps, astr_a, method='pointwise') bc2 = DirichletBC(V, disps, astr_b, method='pointwise') bc3 = DirichletBC(V, disps, astr_c, method='pointwise') bc4 = DirichletBC(V, disps, astr_d, method='pointwise') bc5 = DirichletBC(V, disps, astr_e, method='pointwise') bcs = [bc0, bc1, bc2, bc3, bc4, bc5] ###Output _____no_output_____ ###Markdown Next we define functions for stress and strain in the PDE ###Code def epsilon(u): return 0.5*(nabla_grad(u) + nabla_grad(u).T) def sigma(u): return Lam*nabla_div(u)*Identity(d) + 2*Mu*epsilon(u) ###Output _____no_output_____ ###Markdown With all parameters and variables in place, we can set up the variational Problem in FEniCS ###Code u = TrialFunction(V) d = u.geometric_dimension() v = TestFunction(V) f = Constant((0, 0)) a = inner(sigma(u), epsilon(v))*dx L = dot(f, v)*dx ###Output _____no_output_____ ###Markdown Solutions should be stored in a VTK stack ###Code ufile = File('./fenics_artery/u.pvd') sfile = File('./fenics_artery/s.pvd') ###Output _____no_output_____ ###Markdown Finally, the simulation itself is run in a loop over time. Each time step the current displacement gets updated on the boundary conditions and the variational problem is solved. ###Code u = Function(V) t = 0.0 for i in range(nt): disps.d = disp[i] # update displacement in all astrocyte boundary conditions solve(a == L, u, bcs) u.rename('u (um/s)', 'u (um/s)') # Obtain principal stress component in radial direction sigma_w = project(sigma(u)*Identity(d), WW) sigma_r = project(sigma_w[0, 0], W) sigma_r.rename('sigma (Pa)', 'sigma (Pa)') # Save to file and plot solution ufile << (u, t) sfile << (sigma_r, t) t += dt ###Output _____no_output_____
assignments/A9/A9_BONUS.ipynb
###Markdown BONUSIn this question, we'll do some basic processing on a real-world dataset, courtesy of Kaggle: "A Million News Headlines" from ABC, published over the *15-year period* beginning 2003 and through 2017. You can [download the dataset and play with it yourself](https://www.kaggle.com/therohk/million-headlines/version/6) (though it's available on JupyterHub as well for this assignment). Part AWrite a function to read and process the input into a usable format. This function should - be named `parse_csv`, - take 1 argument: the name of the input file to read - return 1 value: a dictionary, where each key is a unique date, and each value is a *list* of *titles* of all headlines posted on that date The *input* file will be a comma-separated text file, the same one that's available on Kaggle. The very first line contains file metadata and can be safely ignored. Each subsequent line is a single news header, with its accompanying timestamp (year, month, day). These two values are separated by a comma--no other punctuation exists.The first four lines of the 1-million-plus line file look like this:```publish_date,headline_text20030219,aba decides against community broadcasting licence20030219,act fire witnesses must be aware of defamation20030219,a g calls for infrastructure protection summit```Again, skip the very first line. After that, for each line, keep track of both the date/timestamp and the news header. Add the key (timestamp) to the dictionary if it doesn't already exist, and include the value as a new element to a list under that key (make sure you `strip()` both strings before adding them). Do this for each header in the file, then return the dictionary containing all this information.**No external packages are allowed (this includes NumPy).** You can use built-in functions like `range`, `zip`, `enumerate`, and `open`. ###Code import json ytrue = json.load(open("d.json", "r")) ypred = parse_csv("abcnews-date-text.csv") assert ytrue == ypred ###Output _____no_output_____ ###Markdown Part BUsing your `parse_csv` function from Part A, answer the question: **how many total news headings are there, total?** Show the code you needed to run to obtain this answer, and use the text field to explain (in a paragraph that could fit in a tweet).**No other imports are allowed.***Hint*: you'll want to pass `abcnews-date-text.csv` into your function as its input argument. ###Code # Please DO NOT MODIFY THIS CELL! Thank you! ### BEGIN HIDDEN TESTS # The answer: 1103665 headings # The code should read in the data and count the number of elements # under each key. ### END HIDDEN TESTS ###Output _____no_output_____ ###Markdown Part CUsing your `parse_csv` function from Part A, answer the question: **in what *year* were the *most* headings posted?** Show the code you needed to run to obtain this answer, and use the text field to explain (in a paragraph that could fit in a tweet).**No other imports are allowed.***Hint*: you'll want to pass `abcnews-date-text.csv` into your function as its input argument. ###Code # Please DO NOT MODIFY THIS CELL! Thank you! ### BEGIN HIDDEN TESTS # The answer: 2012 and 2016 are tied for the most with 366 headings each. # The code will probably use another dictionary to key up the years # from the original data and count the headings under those years. ### END HIDDEN TESTS ###Output _____no_output_____ ###Markdown Part DUsing your `parse_csv` function from Part A, answer the question: **what are the most common words for each year?** Remove the following stopwords from consideration: `["to", "for", "in", "on", "of", "the", "over", "at", "and", "a", "with", "an", "after"]`. Show the code you needed to run to obtain this answer, and use the text field to explain (in a paragraph that could fit in a tweet).**You may use `defaultdict` and `Counter` to answer this question.** To use them, add the following statement at the beginning of your code:`from collections import defaultdict, Counter`The documentation for `defaultdict` is [here](https://docs.python.org/3/library/collections.htmlcollections.defaultdict), and for `Counter` is [here](https://docs.python.org/3/library/collections.htmlcollections.Counter) (both are on different parts of the same webpage).*Hint*: you'll want to pass `abcnews-date-text.csv` into your function as its input argument. ###Code # I've gone ahead and imported things you can use and defined your list of stopwords. from collections import defaultdict, Counter stopwords = ["to", "for", "in", "on", "of", "the", "over", "at", "and", "a", "with", "an", "after"] ### BEGIN SOLUTION ### END SOLUTION # Please DO NOT MODIFY THIS CELL! Thank you! ### BEGIN HIDDEN TESTS # The answer should look something like this: """ 2003 [('us', 2399)] 2004 [('police', 2767)] 2005 [('police', 2934)] 2006 [('police', 2458)] 2007 [('police', 3330)] 2008 [('police', 3141)] 2009 [('police', 2669)] 2010 [('interview', 2807)] 2011 [('police', 2102)] 2012 [('interview', 2438)] 2013 [('new', 2533)] 2014 [('new', 2405)] 2015 [('new', 2503)] 2016 [('man', 1820)] 2017 [('says', 1369)] """ # The code will again need to group the output of parse_csv # by year, but will also have to break the headings up into # individual words. defaultdict(int) may be used to count # these words. Counter can then be used for each year's # word count to pick out the top word. ### END HIDDEN TESTS ###Output _____no_output_____
notebooks/toxic-comment-lstm.ipynb
###Markdown Configuring TPU'sFor this version of Notebook we will be using TPU's as we have to built a BERT Model ###Code # Detect hardware, return appropriate distribution strategy try: # TPU detection. No parameters necessary if TPU_NAME environment variable is # set: this is always the case on Kaggle. tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: # Default distribution strategy in Tensorflow. Works on CPU and single GPU. strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync) train = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-toxic-comment-train.csv') train2 = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-unintended-bias-train.csv') validation = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/validation.csv') test = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/test.csv') train.drop(train.columns.difference(['id','comment_text','toxic']),axis=1,inplace=True) train2.drop(train2.columns.difference(['id','comment_text','toxic']),axis=1,inplace=True) train2.drop(train2.columns.difference(['id','comment_text','toxic']),axis=1,inplace=True) #print(train.head()) #print(train2.head()) #print(validation.head()) #print(test.head()) print(set(list(train.toxic.values))) train2['toxic'] = train2['toxic'].apply(lambda x: 1 if x>0.5 else 0) print(set(list(train2.toxic.values))) print(train.shape) train = train.append(train2, ignore_index=True) print(train.shape) max_len = train['comment_text'].apply(lambda x:len(str(x).split())).max() print("max_len", max_len) def roc_auc(predictions,target): fpr, tpr, thresholds = metrics.roc_curve(target, predictions) roc_auc = metrics.auc(fpr, tpr) return roc_auc ###Output _____no_output_____ ###Markdown Data Preparation ###Code train = train.sample(frac=1).reset_index(drop=True) xtrain, ytrain = train.comment_text.values, train.toxic.values xvalid, yvalid = validation.comment_text.values, validation.toxic.values # using keras tokenizer here token = text.Tokenizer(num_words=None) #max_len = 1500 token.fit_on_texts(list(xtrain) + list(xvalid)) xtrain_seq = token.texts_to_sequences(xtrain) xvalid_seq = token.texts_to_sequences(xvalid) #zero pad the sequences xtrain_pad = sequence.pad_sequences(xtrain_seq, maxlen=max_len) xvalid_pad = sequence.pad_sequences(xvalid_seq, maxlen=max_len) word_index = token.word_index # load the GloVe vectors in a dictionary: embeddings_index = {} f = open('/kaggle/input/glove840b300dtxt/glove.840B.300d.txt','r',encoding='utf-8') for line in tqdm(f): values = line.split(' ') word = values[0] coefs = np.asarray([float(val) for val in values[1:]]) embeddings_index[word] = coefs f.close() print('Found %s word vectors.' % len(embeddings_index)) # create an embedding matrix for the words we have in the dataset embedding_matrix = np.zeros((len(word_index) + 1, 300)) for word, i in tqdm(word_index.items()): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector %%time with strategy.scope(): # A simple bidirectional LSTM with glove embeddings and one dense layer model = Sequential() model.add(Embedding(len(word_index) + 1, 300, weights=[embedding_matrix], input_length=max_len, trainable=False)) model.add(Bidirectional(LSTM(300, dropout=0.3, recurrent_dropout=0.3))) model.add(Dense(1,activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) model.summary() model.fit(xtrain_pad, ytrain, nb_epoch=5, batch_size=64*strategy.num_replicas_in_sync) scores = model.predict(xvalid_pad) print("Auc: %.2f%%" % (roc_auc(scores,yvalid))) sub['toxic'] = model.predict(test_dataset, verbose=1) sub.to_csv('submission.csv', index=False) ###Output _____no_output_____
thesis/graph.ipynb
###Markdown 센서값 정규화- 진동센서는 제거 ###Code index = 1100 sensor_df = df.iloc[index:index+70, [1, 3, 4, 5, 6]].set_index("AddDt") normalization_df = (sensor_df - sensor_df.mean())/sensor_df.std() normalization_df.head() ###Output _____no_output_____ ###Markdown 정규화 후 산점도- 자신의 경우에는 빈도수를 나타내는 그래프가 보여짐 ###Code sns.pairplot(normalization_df, diag_kind="kde") ###Output _____no_output_____ ###Markdown 딱히 상관관계가 보이지 않음.일단 새로운 데이터셋인 `senval_new.csv`를 가지고 다시 시작 ###Code new_dataset = pd.read_csv("./senval_new.csv") new_dataset sensor_df = new_dataset.iloc[:, [3, 4, 5, 6]] sensor_df.plot() sensor_df.iloc[10500:11000, :].plot() sensor_df.iloc[:, [0, 1]].plot() ###Output _____no_output_____ ###Markdown 데이터 차이 추출- 각 센서의 이전 값 차를 이용하여 큰 폭으로 작아지거나 커지는 값을 추출 ###Code new = pd.DataFrame([(0, 0, 0, 0)], columns=["SSO", "FSR", "LIG", "HAL"]) new = new.append(sensor_df.copy(), ignore_index=True) sensor_df = sensor_df.append(pd.DataFrame([(0, 0, 0, 0)], columns=[ "SSO", "FSR", "LIG", "HAL"]), ignore_index=True) difference_df = (sensor_df-new).iloc[1:-1, :] difference_df.plot() ###Output _____no_output_____ ###Markdown 초음파센서와 압력센서의 차이를 살펴보자- 아래의 그래프로 보아 거의 동시에 값이 반비례한다. ###Code difference_df.iloc[10500:11000, :2].plot() ###Output _____no_output_____ ###Markdown 조도센서와 초음파+압력센서 간 차이를 살펴보자 ###Code difference_df.iloc[10650:10700, :3].plot() difference_df.iloc[10800:10850, :3].plot() ###Output _____no_output_____ ###Markdown 결과- 조도센서가 순간 증가한 뒤에 압력센서와 초음파센서가 변동되는 것을 볼 수 있으며 조도센서의 값이 낮아지면 그 뒤로는 값의 변동이 없다.- 각 조도센서는 순간 증가폭이 최소 150 이상이다. ###Code open_list = difference_df.index[difference_df["LIG"] > 150].to_numpy() closed_list = difference_df.index[difference_df["LIG"] < -150].to_numpy() open_list, closed_list ###Output _____no_output_____ ###Markdown 두 자릿수 인덱스는 세팅 중 오류로 발생한 결과물이므로 제거하여 테스트를 진행각 인덱스 값이 차이가 안나는 경우는 제거 ###Code open_list = open_list[2:] closed_list = closed_list[1:] for i in range(open_list.size-1): # 10으로 비교하는 것은 넉넉잡은 값 # 조도센서의 값차가 100이상 나는 인덱스가 연속으로 존재하지, 띄엄띄엄 나타나는 것은 데이터가 잘못 된 것임 if open_list[i+1] - open_list[i] < 10: open_list[i+1] = open_list[i] for i in range(closed_list.size-1): if closed_list[i+1] - closed_list[i] < 10: closed_list[i+1] = closed_list[i] open_list = sorted(list(set(open_list))) closed_list = sorted(list(set(closed_list))) ###Output _____no_output_____ ###Markdown 테스트 시도 ###Code start, end = open_list[-3], closed_list[-3] difference_df.iloc[start:end, :3].plot() difference_df.iloc[start:end, :2].mean() difference_df.iloc[7583:7596, :3].plot() difference_df.iloc[7583:7596, :2].mean() difference_df.iloc[2773:2785, :3].plot() difference_df.iloc[2773:2785, :2].mean() ###Output _____no_output_____ ###Markdown 아래는 랜덤으로 잡은 인덱스 (보관함을 조종하고있지 않은 상태)- 값의 변화가 매우 작은 것을 확인할 수 있다 ###Code difference_df.iloc[3003:3043, :3].plot() difference_df.iloc[3003:3043, :2].mean() for i in range(len(open_list)): start, end = open_list[i], closed_list[i] sso, fsr = difference_df.iloc[start:end, :2].mean() # threshold: 조도센서의 차가 +100이 날 때를 기준으로 + 40만큼의 행들의 센서별 평균값이 0.1 이상 차이나는 경우 if sso > 0.1 and fsr < -0.1: print("물건을 가져갔습니다. : 이용자(고객)") elif sso < -0.1 and fsr > 0.1: print("물건을 넣었습니다. : 집배원") else: print(f"UNKNOWN DATA, Index = {index}, sso = {sso}, fsr = {fsr}") difference_df["isUsed"] = 0 for i in range(len(open_list)): difference_df.iloc[open_list[i]:closed_list[i], -1] = 1 plt.plot(difference_df.iloc[:, -1]) plt.plot(difference_df.iloc[4000:5000, -1]) ###Output _____no_output_____
ml/prj3/Preprocessing.ipynb
###Markdown Load MNIST on Python 3.x ###Code import matplotlib.pyplot as plt %matplotlib inline import pickle from scipy.ndimage import imread import numpy as np with open('./mnist.pkl', 'rb') as f: training_data, validation_data, test_data = pickle.load(f, encoding='latin1') plt.imshow( (training_data[0][1].reshape(28,28) == 0), cmap='Greys_r' ) plt.imshow( plt.imread('./USPSdata/Numerals/0/0001b.png') ) from glob import glob imgs = { i: np.c_[[plt.imread(f) for f in glob(f'./USPSdata/Numerals/{i}/*png')]] for i in range(10) } ###Output _____no_output_____
array_strings/ipynb/first_non_repeating_str.ipynb
###Markdown Given a string, find the first non-repeating character in it and return it's index. If it doesn't exist, return -1.Examples:s = "leetcode"return 0.s = "loveleetcode",return 2. ###Code def n_repeat(ls): for i in range(len(ls)): if ls.count(ls[i]) == 1: return i return False print(n_repeat("geekgeeks")) #In this example we are returning value # Note we do not need dictionary over here def n_repeat(s): dic ={} for ch in s: if ch in dic.keys(): continue else: if s.count(ch) == 1: return ch else: dic[ch]=s.count(ch) return -1 print(n_repeat("geekgeeks")) # In this example iteration is done def firstUniqChar(s): """ :type s: str :rtype: int """ dic ={} for i in range(len(s)): if s[i] in dic.keys(): continue else: if s.count(s[i]) == 1: return i else: dic[s[i]]=s.count(s[i]) return -1 print(firstUniqChar("saspa")) def f_dup(st): dic = {} for i in range(len(st)): print("st[i]",st[i]) print("dic",dic) print("count",st.count(st[i]) ) if st[i] in dic.keys(): print("inside if") continue else: if st.count(st[i]) == 1: return i else: dic[st[i]]=st.count(st[i]) return -1 print(f_dup("sapsa")) ###Output st[i] s dic {} count 2 st[i] a dic {'s': 2} count 2 st[i] p dic {'s': 2, 'a': 2} count 1 2
analysis/poweranalysis/Neuropower_demo.ipynb
###Markdown Example neuropower methodology ###Code from __future__ import division from neuropower import cluster from neuropower import BUM from neuropower import neuropowermodels from neuropower import peakdistribution import nibabel as nib import nilearn.plotting import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import seaborn as sns import scipy import brewer2mpl import pandas as pd colors = brewer2mpl.get_map('Set2', 'qualitative', 5).mpl_colors twocol = brewer2mpl.get_map('Paired', 'qualitative', 5).mpl_colors %matplotlib inline ###Output _____no_output_____ ###Markdown load data and extract peaks ###Code map_display=nilearn.plotting.plot_stat_map("Zstat1.nii",threshold=2,title='Z-statistic image') SPM = nib.load("Zstat1.nii").get_data() maskfile = "Mask.nii" MASK = nib.load(maskfile).get_data() exc = 2 peaks = cluster.PeakTable(SPM,exc,MASK) pvalues = np.exp(-exc*(np.array(peaks.peak)-exc)) peaks['pval'] = [max(10**(-6),p) for p in pvalues] peaks[1:10] ###Output _____no_output_____ ###Markdown estimate $\pi_1$ ###Code bum = BUM.EstimatePi1(peaks['pval'],starts=10,seed=1) bum sns.set_style("white") sns.set_palette(sns.color_palette("Paired")) ax = sns.distplot(peaks['pval'],kde=False,norm_hist=True,bins=10) ax.set(xlabel="P-values",ylabel="Frequency",title="Histogram of peak p-values") xn_p = np.arange(0,1,0.01) alt_p = bum['pi1']*scipy.stats.beta.pdf(xn_p,bum['a'],1)+1-bum['pi1'] nul_p = [1-bum['pi1']]*len(xn_p) ax = sns.distplot(peaks['pval'],kde=False,norm_hist=True,bins=10) ax.set(xlabel="P-values",ylabel="Frequency",title="Histogram of peak p-values with estimated mixture distribution \n $\pi_0$="+str(1-bum['pi1'])) plt.plot(xn_p,alt_p,lw=3,color=twocol[1]) plt.plot(xn_p,nul_p,lw=3,color=twocol[0]) ###Output _____no_output_____ ###Markdown Fit model ###Code plt.figure(figsize=(4.5, 4)) sns.set_palette(sns.color_palette("Paired")) ax = sns.distplot(peaks['peak'],kde=False,norm_hist=True,bins=10) ax.set(xlabel="peak z-values",ylabel="Frequency",title="Histogram of peak z-values (exc = 2.0)") modelfit = neuropowermodels.modelfit(peaks.peak,bum['pi1'],exc=exc,starts=10,method="RFT") modelfit xn_t = np.arange(exc,10,0.01) alt_t = bum['pi1']*neuropowermodels.altPDF(xn_t,modelfit['mu'],modelfit['sigma'],exc=exc) nul_t = [1-bum['pi1']]*neuropowermodels.nulPDF(xn_t,exc=exc) mix_t = neuropowermodels.mixPDF(xn_t,pi1=bum['pi1'],mu=modelfit['mu'],sigma=modelfit['sigma'],exc=exc) plt.figure(figsize=(4.5, 4)) ax = sns.distplot(peaks['peak'],kde=False,norm_hist=True,bins=10) ax.set(xlabel="peak z-values",ylabel="Frequency",title="Histogram of peak z-values with theoretical nul distibution",xlim=[exc,6]) plt.plot(xn_t,nul_t) plt.figure(figsize=(4.5, 4)) ax = sns.distplot(peaks['peak'],kde=False,norm_hist=True,bins=10) ax.set(xlabel="peak z-values",ylabel="Frequency",title="Histogram of peak z-values with fitted distribution",xlim=[exc,6]) plt.plot(xn_t,nul_t,color=twocol[0]) plt.plot(xn_t,alt_t,color=twocol[0]) plt.plot(xn_t,mix_t,color=twocol[1]) thresholds = neuropowermodels.threshold(peaks.peak,peaks.pval,FWHM=[8,8,8],voxsize=[3,3,3],nvox=np.sum(MASK),alpha=0.05,exc=exc) effect_cohen = modelfit['mu']/np.sqrt(13) power_predicted = [] newsubs = range(10,71) for s in newsubs: projected_effect = effect_cohen*np.sqrt(s) powerpred = {k:1-neuropowermodels.altCDF(v,projected_effect,modelfit['sigma'],exc=exc,method="RFT") for k,v in thresholds.items() if v!='nan'} power_predicted.append(powerpred) power_predicted_df = pd.DataFrame(power_predicted) thresholds names = ["UN","BF","RFT","BH"] plt.figure(figsize=(4.5, 4)) ax = sns.distplot(peaks['peak'],kde=False,norm_hist=True,bins=10) ax.set(xlabel="peak z-values",ylabel="Frequency",title="Histogram of peak z-values with theoretical nul distibution",xlim=[exc,6]) plt.plot(xn_t,nul_t) k = 0 for method in names: k+=1 plt.axvline(thresholds[method],color=colors[k]) plt.figure(figsize=(4.5, 4)) names = ["UN","BF","RFT","BH"] for col in range(4): plt.plot(newsubs,power_predicted_df[names[col]],color=colors[col+1]) plt.legend(loc='lower right') plt.xlabel("subjects") plt.ylabel("power") plt.title("Power curves") power_predicted_df['newsubs'] = newsubs power_predicted_df[0:10] ind = np.min([i for i,elem in enumerate(power_predicted_df['UN']) if elem>0.8]) sub = power_predicted_df['newsubs'][ind] sub ###Output _____no_output_____
Alcohol-Sales-Prediction/Alcohol-Sales-Forecast.ipynb
###Markdown Using RNN (LSTM/GRU) on a Time Series - Alcohol Sales ForecastIn this project, we're using data from the Federal Reserve Economic Database concerning Sales of Beer, Wine, and Distilled Alcoholic Beverages in millions of dollars from January 1992 to January 2020.Data source: https://fred.stlouisfed.org/series/S4248SM144NCEN Perform standard imports ###Code import torch import torch.nn as nn import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline # This relates to plotting datetime values with matplotlib: from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() import matplotlib.pyplot as plt plt.rcParams[ "figure.facecolor" ] = "w" # force white background on plots when using dark mode in JupyterLab ###Output _____no_output_____ ###Markdown Load the datasetWe'll take advantage of pandas' built-in DatetimeIndex by passing parse_dates=True ###Code df = pd.read_csv('Data/Alcohol_Sales.csv',index_col=0,parse_dates=True) len(df) # Always a good idea with time series data: # There is no right or wrong here # You can either drop the null value rows or you can replace null with mean df.dropna(inplace=True) len(df) df.head() df.tail() ###Output _____no_output_____ ###Markdown Plotting time series dataWe can add titles, axis labels, and other features to the plot.We're going to tighten the x-axis to fit the width of the actual data with plt.autoscale(axis='x',tight=True).Alternatively you could set your own limits with plt.xlim(pd.Timestamp('1992-01-01'), pd.Timestamp('2019-01-01')) or some other values. ###Code plt.figure(figsize=(12,4)) plt.title('Beer, Wine, and Alcohol Sales') plt.ylabel('Sales (millions of dollars)') plt.grid(True) plt.autoscale(axis='x',tight=True) plt.plot(df['S4248SM144NCEN']) # name of the column given by Fed plt.show() ###Output _____no_output_____ ###Markdown Prepare the dataIn the next steps we'll divide the data into train/test sets, then normalize the training values so that they fall between -1 and 1 (to improve training). We'll train the model, then predict into a period that matches the test set. Finally, we'll forecast into an unknown future. ###Code # Extract values from the source .csv file y = df['S4248SM144NCEN'].values.astype(float) # Define a test size test_size = 12 # Create train and test sets train_set = y[:-test_size] test_set = y[-test_size:] test_set ###Output _____no_output_____ ###Markdown Normalize the dataThe formula for normalizing data around zero is: $X_{norm} = \frac{X - \mu} {\sigma}$where $\mu$ is the population mean, and $\sigma$ is the population standard deviation.We want to perform min/max feature scaling so that our values fall between -1 and 1, as this makes hyperparameters converge faster.The formula for this would be: $X^{\prime} = a + \frac{(X - X_{min}) (b - a)} {X_{max} - X_{min}}$where $a={-1}$ and $b=1$We can use scikit-learn to do this, with sklearn.preprocessing.MinMaxScaler()NOTE: We only want to normalize the training set to avoid data leakage. If we include the test set then the higher average values of the test set could become part of the signal in the training set. There's a good article on data leakage here.After using transformed data to train the model and generate predictions, we'll inverse_transform the predicted values so that we can compare them to the actual test data. ###Code from sklearn.preprocessing import MinMaxScaler # Instantiate a scaler with a feature range from -1 to 1 scaler = MinMaxScaler(feature_range=(-1, 1)) # Normalize the training set train_norm = scaler.fit_transform(train_set.reshape(-1, 1)) train_norm.min() train_norm.max() train_norm.mean() type(train_norm) ###Output _____no_output_____ ###Markdown Prepare data for LSTMHere we'll create our list of (seq/label) tuples from the training set. LSTM consumes a window of samples toward the first prediction, so the size of our training set will become ((325 - test_size) - window_size). ###Code # Convert train_norm from an array to a tensor train_norm = torch.FloatTensor(train_norm).view(-1) # Define a window size window_size = 12 # Define function to create seq/label tuples # ws is the window size def input_data(seq, ws): out = [] L = len(seq) for i in range(L-ws): window = seq[i:i+ws] label = seq[i+ws:i+ws+1] out.append((window,label)) return out # Apply the input_data function to train_norm train_data = input_data(train_norm, window_size) len(train_data) # this should equal 337-12-12 # Display the first seq/label tuple in the train data train_data[0] # Display the 2nd seq/label tuple in the train data train_data[1] # Display the 3rd seq/label tuple in the train data train_data[2] ###Output _____no_output_____ ###Markdown Define the modelThis time we'll use an LSTM layer of size (1,100). ###Code class LSTMnetwork(nn.Module): def __init__(self, input_size=1, hidden_size=100, output_size=1): super(LSTMnetwork, self).__init__() # Hidden dimensions self.hidden_size = hidden_size # Add an LSTM layer: self.lstm = nn.LSTM(input_size, hidden_size) # Add a fully-connected layer: self.linear = nn.Linear(hidden_size, output_size) # Initialize h0 and c0: self.hidden = (torch.zeros(1,1,self.hidden_size), torch.zeros(1,1,self.hidden_size)) def forward(self, seq): lstm_out, self.hidden = self.lstm(seq.view(len(seq),1,-1), self.hidden) pred = self.linear(lstm_out.view(len(seq),-1)) return pred[-1] # we only want the last value ###Output _____no_output_____ ###Markdown Instantiate the model, define loss and optimization functions ###Code model = LSTMnetwork() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) model # parameters depth len(list(model.parameters())) for i in range(len(list(model.parameters()))): print(list(model.parameters())[i].size()) ###Output torch.Size([400, 1]) torch.Size([400, 100]) torch.Size([400]) torch.Size([400]) torch.Size([1, 100]) torch.Size([1]) ###Markdown Train the model ###Code epochs = 100 import time start_time = time.time() for epoch in range(epochs): # extract the sequence & label from the training data for seq, y_train in train_data: # reset the parameters and hidden states optimizer.zero_grad() model.hidden = (torch.zeros(1,1,model.hidden_size), torch.zeros(1,1,model.hidden_size)) y_pred = model(seq) loss = criterion(y_pred, y_train) loss.backward() optimizer.step() # print training result print(f'Epoch: {epoch+1:2} Loss: {loss.item():10.8f}') print(f'\nDuration: {time.time() - start_time:.0f} seconds') ###Output Epoch: 1 Loss: 0.27213061 Epoch: 2 Loss: 0.23486409 Epoch: 3 Loss: 0.36305246 Epoch: 4 Loss: 0.23926432 Epoch: 5 Loss: 0.23267537 Epoch: 6 Loss: 0.21156687 Epoch: 7 Loss: 0.19906308 Epoch: 8 Loss: 0.18158565 Epoch: 9 Loss: 0.15881790 Epoch: 10 Loss: 0.15318750 Epoch: 11 Loss: 0.15143064 Epoch: 12 Loss: 0.15995049 Epoch: 13 Loss: 0.16027461 Epoch: 14 Loss: 0.15402775 Epoch: 15 Loss: 0.15876684 Epoch: 16 Loss: 0.15029652 Epoch: 17 Loss: 0.14277886 Epoch: 18 Loss: 0.11314578 Epoch: 19 Loss: 0.08872589 Epoch: 20 Loss: 0.08905081 Epoch: 21 Loss: 0.32246891 Epoch: 22 Loss: 0.27161974 Epoch: 23 Loss: 0.25211734 Epoch: 24 Loss: 0.22751518 Epoch: 25 Loss: 0.19006512 Epoch: 26 Loss: 0.32366836 Epoch: 27 Loss: 0.24500629 Epoch: 28 Loss: 0.15842056 Epoch: 29 Loss: 0.20487115 Epoch: 30 Loss: 0.09797894 Epoch: 31 Loss: 0.22789279 Epoch: 32 Loss: 0.22984600 Epoch: 33 Loss: 0.22901720 Epoch: 34 Loss: 0.21031110 Epoch: 35 Loss: 0.17113298 Epoch: 36 Loss: 0.13098751 Epoch: 37 Loss: 0.05924523 Epoch: 38 Loss: 0.06839544 Epoch: 39 Loss: 0.02218805 Epoch: 40 Loss: 0.05368588 Epoch: 41 Loss: 0.00053905 Epoch: 42 Loss: 0.00397253 Epoch: 43 Loss: 0.00043302 Epoch: 44 Loss: 0.02555052 Epoch: 45 Loss: 0.07280198 Epoch: 46 Loss: 0.06508605 Epoch: 47 Loss: 0.05368875 Epoch: 48 Loss: 0.03782743 Epoch: 49 Loss: 0.04207291 Epoch: 50 Loss: 0.03251502 Epoch: 51 Loss: 0.03522571 Epoch: 52 Loss: 0.04377595 Epoch: 53 Loss: 0.03071015 Epoch: 54 Loss: 0.03000759 Epoch: 55 Loss: 0.02351148 Epoch: 56 Loss: 0.02442423 Epoch: 57 Loss: 0.02387267 Epoch: 58 Loss: 0.03191353 Epoch: 59 Loss: 0.02241893 Epoch: 60 Loss: 0.01816599 Epoch: 61 Loss: 0.01922058 Epoch: 62 Loss: 0.01711075 Epoch: 63 Loss: 0.01479641 Epoch: 64 Loss: 0.01847376 Epoch: 65 Loss: 0.00193354 Epoch: 66 Loss: 0.01306059 Epoch: 67 Loss: 0.01081176 Epoch: 68 Loss: 0.01055785 Epoch: 69 Loss: 0.01070392 Epoch: 70 Loss: 0.01075548 Epoch: 71 Loss: 0.01068058 Epoch: 72 Loss: 0.01043542 Epoch: 73 Loss: 0.01003232 Epoch: 74 Loss: 0.00963149 Epoch: 75 Loss: 0.00944336 Epoch: 76 Loss: 0.00955658 Epoch: 77 Loss: 0.00994068 Epoch: 78 Loss: 0.01043198 Epoch: 79 Loss: 0.01080057 Epoch: 80 Loss: 0.01093336 Epoch: 81 Loss: 0.01084940 Epoch: 82 Loss: 0.01059914 Epoch: 83 Loss: 0.01037212 Epoch: 84 Loss: 0.01060433 Epoch: 85 Loss: 0.01132560 Epoch: 86 Loss: 0.01196929 Epoch: 87 Loss: 0.01217649 Epoch: 88 Loss: 0.01208251 Epoch: 89 Loss: 0.01173907 Epoch: 90 Loss: 0.01115024 Epoch: 91 Loss: 0.01088442 Epoch: 92 Loss: 0.01109031 Epoch: 93 Loss: 0.00801962 Epoch: 94 Loss: 0.00643960 Epoch: 95 Loss: 0.00116488 Epoch: 96 Loss: 0.00349307 Epoch: 97 Loss: 0.00024064 Epoch: 98 Loss: 0.00163518 Epoch: 99 Loss: 0.00022112 Epoch: 100 Loss: 0.00028595 Duration: 186 seconds ###Markdown Run predictions and compare to known test set ###Code future = 12 # Add the last window of training values to the list of predictions preds = train_norm[-window_size:].tolist() # Set the model to evaluation mode model.eval() for i in range(future): seq = torch.FloatTensor(preds[-window_size:]) with torch.no_grad(): model.hidden = (torch.zeros(1,1,model.hidden_size), torch.zeros(1,1,model.hidden_size)) preds.append(model(seq).item()) # Display predicted values preds[window_size:] # equivalent to preds[-future:] ###Output _____no_output_____ ###Markdown Invert the normalizationWe want to compare our test predictions to the original data, so we need to undo the previous normalization step. Note that inverse_transform uses the most recently applied parameters; we can rescale based on the test data, but not on the previous training data. ###Code true_predictions = scaler.inverse_transform(np.array(preds[window_size:]).reshape(-1, 1)) true_predictions df['S4248SM144NCEN'][-12:] ###Output _____no_output_____ ###Markdown It looks like our predictions weren't that far off! Plot the resultsOur original data contains a datetime index, but our predicted values do not. We can create a range of dates using NumPy that are spaced one month apart using dtype='datetime64[M]', and then store them with day values to match our dataset with .astype('datetime64[D]'). ###Code # Remember that the stop date has to be later than the last predicted value. x = np.arange('2019-04-01', '2020-04-01', dtype='datetime64[M]').astype('datetime64[D]') x plt.figure(figsize=(12,4)) plt.title('Beer, Wine, and Alcohol Sales') plt.ylabel('Sales (millions of dollars)') plt.grid(True) plt.autoscale(axis='x',tight=True) plt.plot(df['S4248SM144NCEN']) plt.plot(x,true_predictions) plt.show() # Plot the end of the graph fig = plt.figure(figsize=(12,4)) plt.title('Beer, Wine, and Alcohol Sales') plt.ylabel('Sales (millions of dollars)') plt.grid(True) plt.autoscale(axis='x',tight=True) fig.autofmt_xdate() # Select the end of the graph with slice notation: plt.plot(df['S4248SM144NCEN']['2017-01-01':]) plt.plot(x,true_predictions) plt.show() ###Output _____no_output_____ ###Markdown For more information on x-axis date formatting in matplotlib, check out matplotlib.figure.Figure.autofmt_xdate and matplotlib.dates.DateFormatter Forecast into an unknown futureThis time we'll continue training the model using the entire dataset, and predict 12 steps into the future. ###Code epochs = 100 # set model to back to training mode model.train() # feature scale the entire dataset y_norm = scaler.fit_transform(y.reshape(-1, 1)) y_norm = torch.FloatTensor(y_norm).view(-1) all_data = input_data(y_norm,window_size) import time start_time = time.time() for epoch in range(epochs): # train on the full set of sequences for seq, y_train in all_data: # reset the parameters and hidden states optimizer.zero_grad() model.hidden = (torch.zeros(1,1,model.hidden_size), torch.zeros(1,1,model.hidden_size)) y_pred = model(seq) loss = criterion(y_pred, y_train) loss.backward() optimizer.step() # print training result print(f'Epoch: {epoch+1:2} Loss: {loss.item():10.8f}') print(f'\nDuration: {time.time() - start_time:.0f} seconds') ###Output Epoch: 1 Loss: 0.00000716 Epoch: 2 Loss: 0.00057569 Epoch: 3 Loss: 0.00000475 Epoch: 4 Loss: 0.00318039 Epoch: 5 Loss: 0.00000296 Epoch: 6 Loss: 0.00535440 Epoch: 7 Loss: 0.00157587 Epoch: 8 Loss: 0.00066996 Epoch: 9 Loss: 0.00001635 Epoch: 10 Loss: 0.00019139 Epoch: 11 Loss: 0.00078499 Epoch: 12 Loss: 0.00206006 Epoch: 13 Loss: 0.00030018 Epoch: 14 Loss: 0.00004410 Epoch: 15 Loss: 0.00191987 Epoch: 16 Loss: 0.00007019 Epoch: 17 Loss: 0.00000234 Epoch: 18 Loss: 0.06088843 Epoch: 19 Loss: 0.00000417 Epoch: 20 Loss: 0.00005600 Epoch: 21 Loss: 0.00000887 Epoch: 22 Loss: 0.00005473 Epoch: 23 Loss: 0.00006495 Epoch: 24 Loss: 0.00005274 Epoch: 25 Loss: 0.00000278 Epoch: 26 Loss: 0.00063272 Epoch: 27 Loss: 0.00016414 Epoch: 28 Loss: 0.00008934 Epoch: 29 Loss: 0.00003102 Epoch: 30 Loss: 0.00002161 Epoch: 31 Loss: 0.00011580 Epoch: 32 Loss: 0.00009500 Epoch: 33 Loss: 0.00008028 Epoch: 34 Loss: 0.00000129 Epoch: 35 Loss: 0.00076566 Epoch: 36 Loss: 0.00007239 Epoch: 37 Loss: 0.00028869 Epoch: 38 Loss: 0.00003524 Epoch: 39 Loss: 0.00035948 Epoch: 40 Loss: 0.00027359 Epoch: 41 Loss: 0.00053236 Epoch: 42 Loss: 0.00016622 Epoch: 43 Loss: 0.00006576 Epoch: 44 Loss: 0.00054587 Epoch: 45 Loss: 0.00168048 Epoch: 46 Loss: 0.00030523 Epoch: 47 Loss: 0.00121771 Epoch: 48 Loss: 0.00109653 Epoch: 49 Loss: 0.00267132 Epoch: 50 Loss: 0.00200672 Epoch: 51 Loss: 0.00070872 Epoch: 52 Loss: 0.00074508 Epoch: 53 Loss: 0.00076156 Epoch: 54 Loss: 0.00145438 Epoch: 55 Loss: 0.00348031 Epoch: 56 Loss: 0.00002929 Epoch: 57 Loss: 0.00032769 Epoch: 58 Loss: 0.00389468 Epoch: 59 Loss: 0.00080655 Epoch: 60 Loss: 0.00185473 Epoch: 61 Loss: 0.00173423 Epoch: 62 Loss: 0.00004778 Epoch: 63 Loss: 0.00050959 Epoch: 64 Loss: 0.00028702 Epoch: 65 Loss: 0.00316277 Epoch: 66 Loss: 0.00050513 Epoch: 67 Loss: 0.00090066 Epoch: 68 Loss: 0.00074043 Epoch: 69 Loss: 0.00000010 Epoch: 70 Loss: 0.00025293 Epoch: 71 Loss: 0.00091662 Epoch: 72 Loss: 0.00003336 Epoch: 73 Loss: 0.00002637 Epoch: 74 Loss: 0.00071511 Epoch: 75 Loss: 0.00439526 Epoch: 76 Loss: 0.00132170 Epoch: 77 Loss: 0.00243867 Epoch: 78 Loss: 0.00036165 Epoch: 79 Loss: 0.00884334 Epoch: 80 Loss: 0.00011419 Epoch: 81 Loss: 0.00094733 Epoch: 82 Loss: 0.00039582 Epoch: 83 Loss: 0.00669908 Epoch: 84 Loss: 0.00047514 Epoch: 85 Loss: 0.00080109 Epoch: 86 Loss: 0.00148919 Epoch: 87 Loss: 0.00030508 Epoch: 88 Loss: 0.00004638 Epoch: 89 Loss: 0.00397905 Epoch: 90 Loss: 0.01397627 Epoch: 91 Loss: 0.00137753 Epoch: 92 Loss: 0.00034056 Epoch: 93 Loss: 0.00000783 Epoch: 94 Loss: 0.00081068 Epoch: 95 Loss: 0.00108648 Epoch: 96 Loss: 0.00043386 Epoch: 97 Loss: 0.00049079 Epoch: 98 Loss: 0.00175973 Epoch: 99 Loss: 0.00037281 Epoch: 100 Loss: 0.00017556 Duration: 200 seconds ###Markdown Predict future values, plot the result ###Code window_size = 12 future = 12 L = len(y) preds = y_norm[-window_size:].tolist() model.eval() for i in range(future): seq = torch.FloatTensor(preds[-window_size:]) with torch.no_grad(): # Reset the hidden parameters here! model.hidden = (torch.zeros(1,1,model.hidden_size), torch.zeros(1,1,model.hidden_size)) preds.append(model(seq).item()) # Inverse-normalize the prediction set true_predictions = scaler.inverse_transform(np.array(preds).reshape(-1, 1)) # PLOT THE RESULT # Set a data range for the predicted data. # Remember that the stop date has to be later than the last predicted value. x = np.arange('2019-02-01', '2020-02-01', dtype='datetime64[M]').astype('datetime64[D]') plt.figure(figsize=(12,4)) plt.title('Beer, Wine, and Alcohol Sales') plt.ylabel('Sales (millions of dollars)') plt.grid(True) plt.autoscale(axis='x',tight=True) plt.plot(df['S4248SM144NCEN']) plt.plot(x,true_predictions[window_size:]) plt.show() fig = plt.figure(figsize=(12,4)) plt.title('Beer, Wine, and Alcohol Sales') plt.ylabel('Sales (millions of dollars)') plt.grid(True) plt.autoscale(axis='x',tight=True) fig.autofmt_xdate() plt.plot(df['S4248SM144NCEN']['2017-01-01':]) plt.plot(x,true_predictions[window_size:]) plt.show() ###Output _____no_output_____ ###Markdown DONE BONUS:To save time in the future, we've written a function that will take in a time series training data set, and output a tensor of (seq, label) tuples. ###Code # Load dependencies from sklearn.preprocessing import MinMaxScaler # Instantiate a scaler """ This has to be done outside the function definition so that we can inverse_transform the prediction set later on. """ scaler = MinMaxScaler(feature_range=(-1, 1)) # Extract values from the source .csv file df = pd.read_csv('data/Alcohol_Sales.csv',index_col=0,parse_dates=True) y = df['S4248SM144NCEN'].values.astype(float) # Define a test size test_size = 12 # Create the training set of values train_set = y[:-test_size] # DEFINE A FUNCTION: def create_train_data(seq,ws=12): """Takes in a training sequence and window size (ws) of default size 12, returns a tensor of (seq/label) tuples""" seq_norm = scaler.fit_transform(seq.reshape(-1, 1)) seq_norm = torch.FloatTensor(seq_norm).view(-1) out = [] L = len(seq_norm) for i in range(L-ws): window = seq_norm[i:i+ws] label = seq_norm[i+ws:i+ws+1] out.append((window,label)) return out # Apply the function to train_set train_data = create_train_data(train_set,12) len(train_data) train_data[0] help(create_train_data) ###Output Help on function create_train_data in module __main__: create_train_data(seq, ws=12) Takes in a training sequence and window size (ws) of default size 12, returns a tensor of (seq/label) tuples
datascience/stats_2_sample_independent_t_test_1.ipynb
###Markdown PROBLEMWe've an input file (stats_2_sample_independent_t_test_1.csv) with the marks of students for Maths. Formulate a hypothesis and test it to see if there's significant difference between the marks of boys and girls. Hypothesis Testing Null Hypothesis (µo) µboys = µgirls i.e. there's no significant difference between the marks of boys and girls Alternate Hypothesis (µa) µboys != µgirls i.e. there's significant difference between the marks of boys and girls ###Code import os import pandas as pd import scipy.stats as st import matplotlib.pyplot as plt %matplotlib inline # Check the current working directory and set it appropriately. # cwd should point to the location where the input csv file resides. os.getcwd() # alternate way to list files in a directory import glob glob.glob('./*.csv') # Alternately you can specify the full path to the file. # Here, I'm giving only the filename. data = pd.read_csv("stats_2_sample_independent_t_test_1.csv") data.columns data.describe() data.info() # Using the pandas groupby() for grouping the data by gender grouped = data.groupby('Gender') grouped # Segregating boys and girls based on Gender # Value of Gender is 1 for girls and 0 for boys Girls = grouped.get_group(1) Boys = grouped.get_group(0) Girls.info() Girls.columns Boys.info() Boys.columns ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 91 entries, 0 to 91 Data columns (total 11 columns): ID 91 non-null int64 Gender 91 non-null int64 Race 91 non-null int64 SEB 91 non-null int64 School 91 non-null int64 Prog 91 non-null int64 Read 91 non-null int64 Write 91 non-null int64 Math1 91 non-null int64 Math2 91 non-null int64 SST 91 non-null int64 dtypes: int64(11) memory usage: 8.5 KB ###Markdown Here, we've two independent samples Two Sample Independent T-Test Note: we don't go for T-test for more than two samples ###Code st.ttest_ind(Girls.Math1, Boys.Math1) ###Output _____no_output_____
recursion/letter_combination_phone.ipynb
###Markdown Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent. Return the answer in any order.A mapping of digit to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.![](images/phone.jpg)Example 1:Input: digits = "23" Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"] Example 2:Input: digits = ""Output: []Example 3:Input: digits = "2" Output: ["a","b","c"] Constraints:0 digits[i] is a digit in the range ['2', '9']. Solution![](images/solution.jpg) ###Code def letterCombinations(digits): """ :type digits: str :rtype: List[str] """ phone = {'2': ['a', 'b', 'c'], '3': ['d', 'e', 'f'], '4': ['g', 'h', 'i'], '5': ['j', 'k', 'l'], '6': ['m', 'n', 'o'], '7': ['p', 'q', 'r', 's'], '8': ['t', 'u', 'v'], '9': ['w', 'x', 'y', 'z']} def backtrack(combination, next_digits): # if there is no more digits to check if len(next_digits) == 0: # the combination is done output.append(combination) # if there are still digits to check else: # iterate over all letters which map # the next available digit for letter in phone[next_digits[0]]: # append the current letter to the combination # and proceed to the next digits backtrack(combination + letter, next_digits[1:]) output = [] if digits: backtrack("", digits) return output print(letterCombinations("23")) def letterCombinations(digits): """ :type digits: str :rtype: List[str] """ phone = {'2': ['a', 'b', 'c'], '3': ['d', 'e', 'f'], '4': ['g', 'h', 'i'], '5': ['j', 'k', 'l'], '6': ['m', 'n', 'o'], '7': ['p', 'q', 'r', 's'], '8': ['t', 'u', 'v'], '9': ['w', 'x', 'y', 'z']} def backtrack(combination, next_digits): print("combination",combination) print("next_digits",next_digits) # if there is no more digits to check if len(next_digits) == 0: # the combination is done print("\nreturn") output.append(combination) print("output",output) # if there are still digits to check else: # iterate over all letters which map # the next available digit print("phone[",next_digits[0],"]",phone[next_digits[0]]) for letter in phone[next_digits[0]]: # append the current letter to the combination # and proceed to the next digits print("\nletter",letter) print("combination + letter",combination + letter) print("next_digits[1:]",next_digits[1:]) backtrack(combination + letter, next_digits[1:]) output = [] if digits: print("inside") backtrack("", digits) return output print(letterCombinations("23")) ###Output inside combination next_digits 23 phone[ 2 ] ['a', 'b', 'c'] letter a combination + letter a next_digits[1:] 3 combination a next_digits 3 phone[ 3 ] ['d', 'e', 'f'] letter d combination + letter ad next_digits[1:] combination ad next_digits return output ['ad'] letter e combination + letter ae next_digits[1:] combination ae next_digits return output ['ad', 'ae'] letter f combination + letter af next_digits[1:] combination af next_digits return output ['ad', 'ae', 'af'] letter b combination + letter b next_digits[1:] 3 combination b next_digits 3 phone[ 3 ] ['d', 'e', 'f'] letter d combination + letter bd next_digits[1:] combination bd next_digits return output ['ad', 'ae', 'af', 'bd'] letter e combination + letter be next_digits[1:] combination be next_digits return output ['ad', 'ae', 'af', 'bd', 'be'] letter f combination + letter bf next_digits[1:] combination bf next_digits return output ['ad', 'ae', 'af', 'bd', 'be', 'bf'] letter c combination + letter c next_digits[1:] 3 combination c next_digits 3 phone[ 3 ] ['d', 'e', 'f'] letter d combination + letter cd next_digits[1:] combination cd next_digits return output ['ad', 'ae', 'af', 'bd', 'be', 'bf', 'cd'] letter e combination + letter ce next_digits[1:] combination ce next_digits return output ['ad', 'ae', 'af', 'bd', 'be', 'bf', 'cd', 'ce'] letter f combination + letter cf next_digits[1:] combination cf next_digits return output ['ad', 'ae', 'af', 'bd', 'be', 'bf', 'cd', 'ce', 'cf'] ['ad', 'ae', 'af', 'bd', 'be', 'bf', 'cd', 'ce', 'cf']
deepLearning/presenciales/Semana_2_Sistemas_cognitivos_artificiales.ipynb
###Markdown En primer lugar vamos a importar tensorflow y vamos a comprobar su versión ###Code import tensorflow as tf print(tf.__version__) ###Output 2.4.1 ###Markdown Ahora, vamos a importar keras y a ver su versión ###Code from tensorflow import keras print(keras.__version__) ###Output 2.4.0 ###Markdown **Construcción de una clasificador de imagenes utilizando una API secuencial** vamos a cargar ahora uno de los dataset de entrenamiento de keras, el reconocimiento de los digitos ###Code fashion_mnist = keras.datasets.fashion_mnist (X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown Vamos a ver el tamaño del dataset, y el tamaño de la imagen ###Code X_train_full.shape ###Output _____no_output_____ ###Markdown Aqui comprobamos el tipo de dato ###Code X_train_full.dtype ###Output _____no_output_____ ###Markdown Un poco de pretratamiento de los datos, en este caso como vamos a usar el gradient descent, necesitamos reescalar los datos a 0-1 ###Code X_valid, X_train = X_train_full[:5000]/255.0, X_train_full[5000:]/255.0 y_valid, y_train = y_train_full[:5000], y_train_full[5000:] ###Output _____no_output_____ ###Markdown Le damos un nombre a cada una de las clases ###Code class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] class_names[y_train[0]] ###Output _____no_output_____ ###Markdown **Creación del modelo usando una API secuencial** ###Code model= keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28,28])) model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(10, activation="softmax")) ###Output _____no_output_____ ###Markdown otra forma de hacer esta misma operación de añadir capas: ###Code # model= keras.models.Sequential([] # keras.layers.Flatten(input_shape=[28,28]) # keras.layers.Dense(300, activation="relu") # keras.layers.Dense(300, activation="relu") # keras.layers.Dense(10, activation="softmax") #]) model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= flatten (Flatten) (None, 784) 0 _________________________________________________________________ dense (Dense) (None, 300) 235500 _________________________________________________________________ dense_1 (Dense) (None, 300) 90300 _________________________________________________________________ dense_2 (Dense) (None, 10) 3010 ================================================================= Total params: 328,810 Trainable params: 328,810 Non-trainable params: 0 _________________________________________________________________ ###Markdown Vamos ahora a ver las capas ###Code model.layers ###Output _____no_output_____ ###Markdown algunas operaciones y comando interesantes ###Code hidden1=model.layers[1] hidden1.name model.get_layer('dense_2') is hidden1 ###Output _____no_output_____ ###Markdown Todos los parametros de una capa estan accesibles utilizando "get_weights()" y "set_weights()" ###Code weights, biases = hidden1.get_weights() weights weights.shape biases biases.shape ###Output _____no_output_____ ###Markdown **Compilando el modelo** ###Code model.compile(loss="sparse_categorical_crossentropy", optimizer= "sgd", metrics =["accuracy"]) ###Output _____no_output_____ ###Markdown **Entrenando y evaluando el modelo** ###Code history = model.fit(X_train,y_train, epochs=30, validation_data=(X_valid, y_valid)) ###Output Epoch 1/30 1719/1719 [==============================] - 8s 4ms/step - loss: 1.0155 - accuracy: 0.6828 - val_loss: 0.5399 - val_accuracy: 0.8158 Epoch 2/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.5036 - accuracy: 0.8267 - val_loss: 0.4507 - val_accuracy: 0.8474 Epoch 3/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.4571 - accuracy: 0.8397 - val_loss: 0.4332 - val_accuracy: 0.8536 Epoch 4/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.4168 - accuracy: 0.8537 - val_loss: 0.4342 - val_accuracy: 0.8476 Epoch 5/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.4024 - accuracy: 0.8570 - val_loss: 0.3872 - val_accuracy: 0.8644 Epoch 6/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3818 - accuracy: 0.8659 - val_loss: 0.3819 - val_accuracy: 0.8680 Epoch 7/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3724 - accuracy: 0.8688 - val_loss: 0.3850 - val_accuracy: 0.8658 Epoch 8/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3619 - accuracy: 0.8718 - val_loss: 0.3603 - val_accuracy: 0.8734 Epoch 9/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3442 - accuracy: 0.8785 - val_loss: 0.3535 - val_accuracy: 0.8750 Epoch 10/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3403 - accuracy: 0.8801 - val_loss: 0.3412 - val_accuracy: 0.8784 Epoch 11/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3282 - accuracy: 0.8816 - val_loss: 0.3476 - val_accuracy: 0.8748 Epoch 12/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3231 - accuracy: 0.8837 - val_loss: 0.3485 - val_accuracy: 0.8752 Epoch 13/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3162 - accuracy: 0.8867 - val_loss: 0.3457 - val_accuracy: 0.8758 Epoch 14/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.3085 - accuracy: 0.8886 - val_loss: 0.3344 - val_accuracy: 0.8832 Epoch 15/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2960 - accuracy: 0.8935 - val_loss: 0.3313 - val_accuracy: 0.8828 Epoch 16/30 1719/1719 [==============================] - 7s 4ms/step - loss: 0.3064 - accuracy: 0.8888 - val_loss: 0.3268 - val_accuracy: 0.8842 Epoch 17/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2891 - accuracy: 0.8965 - val_loss: 0.3322 - val_accuracy: 0.8830 Epoch 18/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2903 - accuracy: 0.8951 - val_loss: 0.3177 - val_accuracy: 0.8836 Epoch 19/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2775 - accuracy: 0.9006 - val_loss: 0.3097 - val_accuracy: 0.8896 Epoch 20/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2717 - accuracy: 0.9031 - val_loss: 0.3197 - val_accuracy: 0.8838 Epoch 21/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2650 - accuracy: 0.9042 - val_loss: 0.3080 - val_accuracy: 0.8874 Epoch 22/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2587 - accuracy: 0.9071 - val_loss: 0.3241 - val_accuracy: 0.8848 Epoch 23/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2581 - accuracy: 0.9067 - val_loss: 0.3114 - val_accuracy: 0.8886 Epoch 24/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2503 - accuracy: 0.9102 - val_loss: 0.3032 - val_accuracy: 0.8924 Epoch 25/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2493 - accuracy: 0.9071 - val_loss: 0.3088 - val_accuracy: 0.8854 Epoch 26/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2467 - accuracy: 0.9128 - val_loss: 0.2991 - val_accuracy: 0.8930 Epoch 27/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2398 - accuracy: 0.9128 - val_loss: 0.3328 - val_accuracy: 0.8852 Epoch 28/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2347 - accuracy: 0.9133 - val_loss: 0.2932 - val_accuracy: 0.8938 Epoch 29/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2331 - accuracy: 0.9175 - val_loss: 0.2971 - val_accuracy: 0.8914 Epoch 30/30 1719/1719 [==============================] - 6s 4ms/step - loss: 0.2269 - accuracy: 0.9166 - val_loss: 0.3081 - val_accuracy: 0.8932 ###Markdown Ahora vamos a comprobar las variables loss, accuracy, validation_loss y validation_accuracy ###Code import pandas as pd import matplotlib.pyplot as plt pd.DataFrame(history.history).plot(figsize=(8,5)) plt.grid(True) plt.gca().set_ylim(0,1) plt.show() ###Output _____no_output_____ ###Markdown Fijaros que las curvas training accuracy y validation accuracy se van incrementando durante el entrenamiento, mientras que las loss se hacen mas pequeñas ###Code model.evaluate(X_test,y_test) ###Output 313/313 [==============================] - 1s 2ms/step - loss: 71.7711 - accuracy: 0.8399
facenet_classifier_all_three_datasets.ipynb
###Markdown ###Code import numpy as np from sklearn.model_selection import train_test_split from keras.utils import to_categorical # Load encoding # 3_frame_seq X = np.load('drive/My Drive/dataset_3_frame_seq_faces/X_3.npy') y = np.load('drive/My Drive/dataset_3_frame_seq_faces/Y_label_3.npy') frames = 3 # 5_frame_seq # X = np.load('drive/My Drive/dataset_5_frame_seq_faces/X_5.npy') # y = np.load('drive/My Drive/dataset_5_frame_seq_faces/Y_label_5.npy') # frames = 5 # 10_frame_seq # X = np.load('drive/My Drive/facea_seqs_one_frame_to_the_right/X.npy') # y = np.load('drive/My Drive/facea_seqs_one_frame_to_the_right/Y_label.npy') # frames = 10 test_size = 0.3 if frames ==5: test_size = 0.1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = test_size, random_state = 0) # y_train = to_categorical(y_train, num_classes=7) # y_test = to_categorical(y_test, num_classes=7) print(X_train.shape) print(y_train.shape) print(X_test.shape) X_train_new = np.zeros(shape=(X_train.shape[0] * X_train.shape[1], X_train.shape[2])) X_test_new = np.zeros(shape=(X_test.shape[0] * X_test.shape[1], X_test.shape[2])) y_train_new = np.zeros(shape=(y_train.shape[0] * X_train.shape[1])) y_test_new = np.zeros(shape=(y_test.shape[0] * X_train.shape[1])) train_index = 0 for seq in range(X_train.shape[0]): for frame in range(X_train.shape[1]): X_train_new[train_index] = X_train[seq,frame] y_train_new[train_index] = y_train[seq] train_index += 1 print(train_index) test_index = 0 for seq in range(X_test.shape[0]): for frame in range(X_test.shape[1]): X_test_new[test_index] = X_test[seq,frame] y_test_new[test_index] = y_test[seq] test_index += 1 print(test_index) y_train_new = to_categorical(y_train_new, num_classes=7) y_test_new = to_categorical(y_test_new, num_classes=7) from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD def classifier(): model = Sequential() model.add(Dense(64, input_dim=128, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(7, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model model = classifier() epochs = 50 if frames == 10: epochs = 100 model.fit(X_train_new, y_train_new, epochs=epochs, verbose=1, validation_split=0.1) def getFaceExpressionFromIndex(i): if (i == 0): return 'surprise' elif (i == 1): return 'smile' elif (i == 2): return 'sad' elif (i == 3): return 'anger' elif (i == 4): return 'fear' elif (i == 5): return 'disgust' elif (i == 6): return 'none' else: print(i) test_predictions = model.predict(X_test_new) correct = 0 for i in range(len(test_predictions)): if i % X_test.shape[1] ==0: truth = np.argmax(y_test_new[i]) predictions = [] for j in range(X_test.shape[1]): predictions.append(np.argmax(test_predictions[i + j])) if truth == max(predictions): correct += 1 else: print(f'Wrong classification, truth: {getFaceExpressionFromIndex(truth)}') print(f'Wrong classification, prediction: {getFaceExpressionFromIndex(max(predictions))}') print("---------------------------------------------------------------------------") print(f'Accuracy of predicitons: {correct / (len(test_predictions) / X_test.shape[1])}') print(f'Got correct: {correct}') print(f'Got wrong: {int(len(test_predictions) / X_test.shape[1]) - correct}') from sklearn.manifold import TSNE from matplotlib import pyplot as plt tsne = TSNE(n_components=2, random_state=0) X_2d = tsne.fit_transform(X_test_new[:1000]) target_ids = range(0,7) plt.figure(figsize=(20, 18)) colors = 'r', 'g', 'b', 'c', 'm', 'y', 'k' for i, c, label in zip(target_ids, colors, ["surprise", "smile","sad", "anger","fear", "disgust","none"]): plt.scatter(X_2d[y_new[:1000] == i, 0], X_2d[y_new[:1000] == i, 1], c=c, label=label) plt.legend(prop={'size': 30}) plt.show() ###Output _____no_output_____
10_pipeline/kubeflow/99_DISABLE_PUBLIC_ENDPOINT_TO_AVOID_GETTING_HACKED.ipynb
###Markdown Disable the Public Kubeflow UIYou must run this in your SageMaker notebook - not here in this notebook!This removes `istio-ingress` from the `istio-system` namespace and removes the publicly-available `LoadBalancer` endpoint.WE ARE REMOVING THE PUBLICLY AVAILABLE LOADBALANCER FOR THE KUBEFLOW DASHBOARD UI BECAUSE WE DON'T WANT TO GET HACKED. ###Code %%bash source ~/.bash_profile cd ${KF_DIR}/.cache/manifests/manifests-1.0.2/ kubectl delete -k aws/istio-ingress/base --namespace istio-system cd ${KF_DIR} ###Output _____no_output_____ ###Markdown _If you see an error ^^ above ^^, then you are running this in the wrong notebook server. Run this in your SageMaker Notebook. Not here!!_ ###Code %%javascript Jupyter.notebook.save_checkpoint() Jupyter.notebook.session.delete(); ###Output _____no_output_____
notebooks/kr08/2_2/python_original.ipynb
###Markdown Program 2.1 (SIR model) - original Python code ###Code import scipy.integrate as spi import numpy as np import pylab as pl %matplotlib inline beta=1.4247 gamma=0.14286 TS=1.0 ND=70.0 S0=1-1e-6 I0=1e-6 INPUT = (S0, I0, 0.0) def diff_eqs(INP,t): '''The main set of equations''' Y=np.zeros((3)) V = INP Y[0] = - beta * V[0] * V[1] Y[1] = beta * V[0] * V[1] - gamma * V[1] Y[2] = gamma * V[1] return Y # For odeint t_start = 0.0; t_end = ND; t_inc = TS t_range = np.arange(t_start, t_end+t_inc, t_inc) RES = spi.odeint(diff_eqs,INPUT,t_range) #Ploting pl.subplot(211) pl.plot(RES[:,0], '-g', label='Susceptibles') pl.plot(RES[:,2], '-k', label='Recovereds') pl.legend(loc=0) pl.title('Program_2_1.py') pl.xlabel('Time') pl.ylabel('Susceptibles and Recovereds') pl.subplot(212) pl.plot(RES[:,1], '-r', label='Infectious') pl.xlabel('Time') pl.ylabel('Infectious') pl.show() ###Output _____no_output_____
Mean_Reversion_BB_algo_tag_1_IBEX.ipynb
###Markdown Importing Data Download ticket master data from IBEX at close price ###Code ibex = MarketData("IBEX") ibex_close = ibex.get_close() ibex_close ###Output _____no_output_____ ###Markdown Mean Reversion Strategy using Bollinger Bands Generate empty signals dataframes for IBEX ###Code signals_ibex = ibex_close * 0 ###Output _____no_output_____ ###Markdown  Calculate moving average for IBEX for the chosen window ###Code window = 20 sma_ibex=ibex_close.rolling(window=window, min_periods=1, center=False).mean() ###Output _____no_output_____ ###Markdown  Calculate moving standard deviation for IBEX for the chosen window ###Code smsd_ibex = ibex_close.rolling(window=window, min_periods=1, center=False).std() ###Output _____no_output_____ ###Markdown Set upper band and lower band for IBEX ###Code upper_band_ibex = sma_ibex + 2 * smsd_ibex lower_band_ibex = sma_ibex - 2 * smsd_ibex ###Output _____no_output_____ ###Markdown Generate position signals for IBEX ###Code signals_ibex[window:] = np.where(ibex_close[window:] < lower_band_ibex[window:], 1.0, 0.0) signals_ibex ###Output _____no_output_____ ###Markdown Generate trading signals ###Code buy_sell_ibex = signals_ibex[window:].diff() buy_sell_ibex ###Output _____no_output_____ ###Markdown Recommendations ###Code recomendation_ibex_buy = list(buy_sell_ibex.columns[buy_sell_ibex.iloc[-1,:] == 1.0]) recomendation_ibex_buy recomendation_ibex_sell = list(buy_sell_ibex.columns[buy_sell_ibex.iloc[-1,:] == -1.0]) recomendation_ibex_sell if recomendation_ibex_buy == [] and recomendation_ibex_sell == []: print("No recommendations for IBEX") raise else: print("The algorithm recommends to allocate or re-allocate. Send new allocation to the API.") ###Output No recommendations for IBEX ###Markdown Portfolio management: Orders generation - Generate & Send Allocation to API Check algos & select algo_tag ###Code url = f'{API.url_base()}/participants/algorithms' params = {'competi': API.competi(), 'key': API.user_key(),} response = requests.get(url, params) algos = response.json() if algos: algos_df = pd.DataFrame(algos) print(algos_df.to_string()) algo_tag = algos_df.iloc[0].algo_tag ###Output _____no_output_____ ###Markdown Set allocations - Assign weights portfolio to algo ###Code from utils import gen_alloc_data allocation_ibex_sell = [gen_alloc_data(ticker, 0.0) for ticker in recomendation_ibex_sell] ###Output _____no_output_____ ###Markdown We will weight each asset equally and leave a 5% cash reserve. ###Code allocation_ibex_buy = [gen_alloc_data(ticker, 0.95/len(recomendation_ibex_buy)) for ticker in recomendation_ibex_buy] allocation_ibex = allocation_ibex_sell + allocation_ibex_buy ###Output _____no_output_____ ###Markdown  Set date and market ###Code market_alloc = "IBEX" today = datetime.now().strftime('%Y-%m-%d') url = f'{API.url_base()}/participants/allocation' url_auth = f'{url}?key={API.user_key()}' print(url_auth) str_date = today params = { 'competi': API.competi(), 'algo_tag': algo_tag, 'market': market_alloc, 'date': str_date, 'allocation': allocation_ibex } response = requests.post(url_auth, data=json.dumps(params)) print (response.json()) ###Output https://miax-gateway-jog4ew3z3q-ew.a.run.app/participants/allocation?key=AIzaSyBIAVe1BIJaxb-LVyMYMmhtoPPdJZSfRqI {'date': '2020-08-31', 'result': True} ###Markdown Query allocations ###Code from utils import allocs_to_frame url = f'{API.url_base()}/participants/algo_allocations' params = { 'key': API.user_key(), 'competi': API.competi(), 'algo_tag': algo_tag, 'market': market_alloc, } response = requests.get(url, params) allocs_to_frame(response.json()) ###Output _____no_output_____
challenges/ibm-quantum/iqc-2021/ex5/ex5.ipynb
###Markdown Exercise 5 - Variational quantum eigensolver Historical backgroundDuring the last decade, quantum computers matured quickly and began to realize Feynman's initial dream of a computing system that could simulate the laws of nature in a quantum way. A 2014 paper first authored by Alberto Peruzzo introduced the **Variational Quantum Eigensolver (VQE)**, an algorithm meant for finding the ground state energy (lowest energy) of a molecule, with much shallower circuits than other approaches.[1] And, in 2017, the IBM Quantum team used the VQE algorithm to simulate the ground state energy of the lithium hydride molecule.[2]VQE's magic comes from outsourcing some of the problem's processing workload to a classical computer. The algorithm starts with a parameterized quantum circuit called an ansatz (a best guess) then finds the optimal parameters for this circuit using a classical optimizer. The VQE's advantage over classical algorithms comes from the fact that a quantum processing unit can represent and store the problem's exact wavefunction, an exponentially hard problem for a classical computer. This exercise 5 allows you to realize Feynman's dream yourself, setting up a variational quantum eigensolver to determine the ground state and the energy of a molecule. This is interesting because the ground state can be used to calculate various molecular properties, for instance the exact forces on nuclei than can serve to run molecular dynamics simulations to explore what happens in chemical systems with time.[3] References1. Peruzzo, Alberto, et al. "A variational eigenvalue solver on a photonic quantum processor." Nature communications 5.1 (2014): 1-7.2. Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." Nature 549.7671 (2017): 242-246.3. Sokolov, Igor O., et al. "Microcanonical and finite-temperature ab initio molecular dynamics simulations on quantum computers." Physical Review Research 3.1 (2021): 013125. IntroductionFor the implementation of VQE, you will be able to make choices on how you want to compose your simulation, in particular focusing on the ansatz quantum circuits.This is motivated by the fact that one of the important tasks when running VQE on noisy quantum computers is to reduce the loss of fidelity (which introduces errors) by finding the most compact quantum circuit capable of representing the ground state.Practically, this entails to minimizing the number of two-qubit gates (e.g. CNOTs) while not loosing accuracy.Goal Find the shortest ansatz circuits for representing accurately the ground state of given problems. Be creative! Plan First you will learn how to compose a VQE simulation for the smallest molecule and then apply what you have learned to a case of a larger one. **1. Tutorial - VQE for H$_2$:** familiarize yourself with VQE and select the best combination of ansatz/classical optimizer by running statevector simulations.**2. Final Challenge - VQE for LiH:** perform similar investigation as in the first part but restricting to statevector simulator only. Use the qubit number reduction schemes available in Qiskit and find the optimal circuit for this larger system. Optimize the circuit and use your imagination to find ways to select the best building blocks of parameterized circuits and compose them to construct the most compact ansatz circuit for the ground state, better than the ones already available in Qiskit. Below is an introduction to the theory behind VQE simulations. You don't have to understand the whole thing before moving on. Don't be scared! TheoryHere below is the general workflow representing how the molecular simulations using VQE are performed on quantum computers.The core idea hybrid quantum-classical approach is to outsource to **CPU (classical processing unit)** and **QPU (quantum processing unit)** the parts that they can do best. The CPU takes care of listing the terms that need to be measured to compute the energy and also optimizing the circuit parameters. The QPU implements a quantum circuit representing the quantum state of a system and measures the energy. Some more details are given below:**CPU** can compute efficiently the energies associated to electron hopping and interactions (one-/two-body integrals by means of a Hartree-Fock calculation) that serve to represent the total energy operator, Hamiltonian. The [Hartree–Fock (HF) method](https://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_method:~:text=In%20computational%20physics%20and%20chemistry,system%20in%20a%20stationary%20state.) efficiently computes an approximate grounds state wavefunction by assuming that the latter can be represented by a single Slater determinant (e.g. for H$_2$ molecule in STO-3G basis with 4 spin-orbitals and qubits, $|\Psi_{HF} \rangle = |0101 \rangle$ where electrons occupy the lowest energy spin-orbitals). What QPU does later in VQE is finding a quantum state (corresponding circuit and its parameters) that can also represent other states associated missing electronic correlations (i.e. $\sum_i c_i |i\rangle$ states in $|\Psi \rangle = c_{HF}|\Psi_{HF} \rangle + \sum_i c_i |i\rangle $ where $i$ is a bitstring). After a HF calculation, operators in the Hamiltonian are mapped to measurements on a QPU using fermion-to-qubit transformations (see Hamiltonian section below). One can further analyze the properties of the system to reduce the number of qubits or shorten the ansatz circuit:- For Z2 symmetries and two-qubit reduction, see [Bravyi *et al*, 2017](https://arxiv.org/abs/1701.08213v1).- For entanglement forging, see [Eddins *et al.*, 2021](https://arxiv.org/abs/2104.10220v1).- For the adaptive ansatz see, [Grimsley *et al.*,2018](https://arxiv.org/abs/1812.11173v2), [Rattew *et al.*,2019](https://arxiv.org/abs/1910.09694), [Tang *et al.*,2019](https://arxiv.org/abs/1911.10205). You may use the ideas found in those works to find ways to shorten the quantum circuits.**QPU** implements quantum circuits (see Ansatzes section below), parameterized by angles $\vec\theta$, that would represent the ground state wavefunction by placing various single qubit rotations and entanglers (e.g. two-qubit gates). The quantum advantage lies in the fact that QPU can efficiently represent and store the exact wavefunction, which becomes intractable on a classical computer for systems that have more than a few atoms. Finally, QPU measures the operators of choice (e.g. ones representing a Hamiltonian).Below we go slightly more in mathematical details of each component of the VQE algorithm. It might be also helpful if you watch our [video episode about VQE](https://www.youtube.com/watch?v=Z-A6G0WVI9w). Hamiltonian Here we explain how we obtain the operators that we need to measure to obtain the energy of a given system.These terms are included in the molecular Hamiltonian defined as:$$\begin{aligned}\hat{H} &=\sum_{r s} h_{r s} \hat{a}_{r}^{\dagger} \hat{a}_{s} \\&+\frac{1}{2} \sum_{p q r s} g_{p q r s} \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}+E_{N N}\end{aligned}$$with$$h_{p q}=\int \phi_{p}^{*}(r)\left(-\frac{1}{2} \nabla^{2}-\sum_{I} \frac{Z_{I}}{R_{I}-r}\right) \phi_{q}(r)$$$$g_{p q r s}=\int \frac{\phi_{p}^{*}\left(r_{1}\right) \phi_{q}^{*}\left(r_{2}\right) \phi_{r}\left(r_{2}\right) \phi_{s}\left(r_{1}\right)}{\left|r_{1}-r_{2}\right|} $$where the $h_{r s}$ and $g_{p q r s}$ are the one-/two-body integrals (using the Hartree-Fock method) and $E_{N N}$ the nuclear repulsion energy. The one-body integrals represent the kinetic energy of the electrons and their interaction with nuclei. The two-body integrals represent the electron-electron interaction.The $\hat{a}_{r}^{\dagger}, \hat{a}_{r}$ operators represent creation and annihilation of electron in spin-orbital $r$ and require mappings to operators, so that we can measure them on a quantum computer.Note that VQE minimizes the electronic energy so you have to retrieve and add the nuclear repulsion energy $E_{NN}$ to compute the total energy. So, for every non-zero matrix element in the $ h_{r s}$ and $g_{p q r s}$ tensors, we can construct corresponding Pauli string (tensor product of Pauli operators) with the following fermion-to-qubit transformation. For instance, in Jordan-Wigner mapping for an orbital $r = 3$, we obtain the following Pauli string:$$\hat a_{3}^{\dagger}= \hat \sigma_z \otimes \hat \sigma_z \otimes\left(\frac{ \hat \sigma_x-i \hat \sigma_y}{2}\right) \otimes 1 \otimes \cdots \otimes 1$$where $\hat \sigma_x, \hat \sigma_y, \hat \sigma_z$ are the well-known Pauli operators. The tensor products of $\hat \sigma_z$ operators are placed to enforce the fermionic anti-commutation relations.A representation of the Jordan-Wigner mapping between the 14 spin-orbitals of a water molecule and some 14 qubits is given below:Then, one simply replaces the one-/two-body excitations (e.g. $\hat{a}_{r}^{\dagger} \hat{a}_{s}$, $\hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}$) in the Hamiltonian by corresponding Pauli strings (i.e. $\hat{P}_i$, see picture above). The resulting operator set is ready to be measured on the QPU.For additional details see [Seeley *et al.*, 2012](https://arxiv.org/abs/1208.5986v1). AnsatzesThere are mainly 2 types of ansatzes you can use for chemical problems. - **q-UCC ansatzes** are physically inspired, and roughly map the electron excitations to quantum circuits. The q-UCCSD ansatz (`UCCSD`in Qiskit) possess all possible single and double electron excitations. The paired double q-pUCCD (`PUCCD`) and singlet q-UCCD0 (`SUCCD`) just consider a subset of such excitations (meaning significantly shorter circuits) and have proved to provide good results for dissociation profiles. For instance, q-pUCCD doesn't have single excitations and the double excitations are paired as in the image below.- **Heuristic ansatzes (`TwoLocal`)** were invented to shorten the circuit depth but still be able to represent the ground state. As in the figure below, the R gates represent the parametrized single qubit rotations and $U_{CNOT}$ the entanglers (two-qubit gates). The idea is that after repeating certain $D$-times the same block (with independent parameters) one can reach the ground state. For additional details refer to [Sokolov *et al.* (q-UCC ansatzes)](https://arxiv.org/abs/1911.10864v2) and [Barkoutsos *et al.* (Heuristic ansatzes)](https://arxiv.org/pdf/1805.04340.pdf). VQEGiven a Hermitian operator $\hat H$ with an unknown minimum eigenvalue $E_{min}$, associated with the eigenstate $|\psi_{min}\rangle$, VQE provides an estimate $E_{\theta}$, bounded by $E_{min}$:\begin{align*} E_{min} \le E_{\theta} \equiv \langle \psi(\theta) |\hat H|\psi(\theta) \rangle\end{align*} where $|\psi(\theta)\rangle$ is the trial state associated with $E_{\theta}$. By applying a parameterized circuit, represented by $U(\theta)$, to some arbitrary starting state $|\psi\rangle$, the algorithm obtains an estimate $U(\theta)|\psi\rangle \equiv |\psi(\theta)\rangle$ on $|\psi_{min}\rangle$. The estimate is iteratively optimized by a classical optimizer by changing the parameter $\theta$ and minimizing the expectation value of $\langle \psi(\theta) |\hat H|\psi(\theta) \rangle$. As applications of VQE, there are possibilities in molecular dynamics simulations, see [Sokolov *et al.*, 2021](https://arxiv.org/abs/2008.08144v1), and excited states calculations, see [Ollitrault *et al.*, 2019](https://arxiv.org/abs/1910.12890) to name a few. References for additional details For the qiskit-nature tutorial that implements this algorithm see [here](https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html)but this won't be sufficient and you might want to look on the [first page of github repository](https://github.com/Qiskit/qiskit-nature) and the [test folder](https://github.com/Qiskit/qiskit-nature/tree/main/test) containing tests that are written for each component, they provide the base code for the use of each functionality. Part 1: Tutorial - VQE for H$_2$ molecule In this part, you will simulate H$_2$ molecule using the STO-3G basis with the PySCF driver and Jordan-Wigner mapping.We will guide you through the following parts so then you can tackle harder problems. 1. DriverThe interfaces to the classical chemistry codes that are available in Qiskit are called drivers.We have for example `PSI4Driver`, `PyQuanteDriver`, `PySCFDriver` are available. By running a driver (Hartree-Fock calculation for a given basis set and molecular geometry), in the cell below, we obtain all the necessary information about our molecule to apply then a quantum algorithm. ###Code from qiskit_nature.drivers import PySCFDriver molecule = "H .0 .0 .0; H .0 .0 0.739" driver = PySCFDriver(atom=molecule) qmolecule = driver.run() ###Output _____no_output_____ ###Markdown Tutorial questions 1 Look into the attributes of `qmolecule` and answer the questions below. 1. We need to know the basic characteristics of our molecule. What is the total number of electrons in your system?2. What is the number of molecular orbitals?3. What is the number of spin-orbitals?3. How many qubits would you need to simulate this molecule with Jordan-Wigner mapping?5. What is the value of the nuclear repulsion energy?You can find the answers at the end of this notebook. ###Code # WRITE YOUR CODE BETWEEN THESE LINES - START # WRITE YOUR CODE BETWEEN THESE LINES - END ###Output _____no_output_____ ###Markdown 2. Electronic structure problemYou can then create an `ElectronicStructureProblem` that can produce the list of fermionic operators before mapping them to qubits (Pauli strings). ###Code from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem problem = ElectronicStructureProblem(driver) # Generate the second-quantized operators second_q_ops = problem.second_q_ops() # Hamiltonian main_op = second_q_ops[0] ###Output _____no_output_____ ###Markdown 3. QubitConverterAllows to define the mapping that you will use in the simulation. You can try different mapping but we will stick to `JordanWignerMapper` as allows a simple correspondence: a qubit represents a spin-orbital in the molecule. ###Code from qiskit_nature.mappers.second_quantization import ParityMapper, BravyiKitaevMapper, JordanWignerMapper from qiskit_nature.converters.second_quantization.qubit_converter import QubitConverter # Setup the mapper and qubit converter mapper_type = 'JordanWignerMapper' if mapper_type == 'ParityMapper': mapper = ParityMapper() elif mapper_type == 'JordanWignerMapper': mapper = JordanWignerMapper() elif mapper_type == 'BravyiKitaevMapper': mapper = BravyiKitaevMapper() converter = QubitConverter(mapper=mapper, two_qubit_reduction=False) # The fermionic operators are mapped to qubit operators num_particles = (problem.molecule_data_transformed.num_alpha, problem.molecule_data_transformed.num_beta) qubit_op = converter.convert(main_op, num_particles=num_particles) ###Output _____no_output_____ ###Markdown 4. Initial stateAs we described in the Theory section, a good initial state in chemistry is the HF state (i.e. $|\Psi_{HF} \rangle = |0101 \rangle$). We can initialize it as follows: ###Code from qiskit_nature.circuit.library import HartreeFock num_particles = (problem.molecule_data_transformed.num_alpha, problem.molecule_data_transformed.num_beta) num_spin_orbitals = 2 * problem.molecule_data_transformed.num_molecular_orbitals init_state = HartreeFock(num_spin_orbitals, num_particles, converter) print(init_state) ###Output ┌───┐ q_0: ┤ X ├ └───┘ q_1: ───── ┌───┐ q_2: ┤ X ├ └───┘ q_3: ───── ###Markdown 5. AnsatzOne of the most important choices is the quantum circuit that you choose to approximate your ground state.Here is the example of qiskit circuit library that contains many possibilities for making your own circuit. ###Code from qiskit.circuit.library import TwoLocal from qiskit_nature.circuit.library import UCCSD, PUCCD, SUCCD # Choose the ansatz ansatz_type = "TwoLocal" # Parameters for q-UCC antatze num_particles = (problem.molecule_data_transformed.num_alpha, problem.molecule_data_transformed.num_beta) num_spin_orbitals = 2 * problem.molecule_data_transformed.num_molecular_orbitals # Put arguments for twolocal if ansatz_type == "TwoLocal": # Single qubit rotations that are placed on all qubits with independent parameters rotation_blocks = ['ry', 'rz'] # Entangling gates entanglement_blocks = 'cx' # How the qubits are entangled entanglement = 'full' # Repetitions of rotation_blocks + entanglement_blocks with independent parameters repetitions = 3 # Skip the final rotation_blocks layer skip_final_rotation_layer = True ansatz = TwoLocal(qubit_op.num_qubits, rotation_blocks, entanglement_blocks, reps=repetitions, entanglement=entanglement, skip_final_rotation_layer=skip_final_rotation_layer) # Add the initial state ansatz.compose(init_state, front=True, inplace=True) elif ansatz_type == "UCCSD": ansatz = UCCSD(converter,num_particles,num_spin_orbitals,initial_state = init_state) elif ansatz_type == "PUCCD": ansatz = PUCCD(converter,num_particles,num_spin_orbitals,initial_state = init_state) elif ansatz_type == "SUCCD": ansatz = SUCCD(converter,num_particles,num_spin_orbitals,initial_state = init_state) elif ansatz_type == "Custom": # Example of how to write your own circuit from qiskit.circuit import Parameter, QuantumCircuit, QuantumRegister # Define the variational parameter theta = Parameter('a') n = qubit_op.num_qubits # Make an empty quantum circuit qc = QuantumCircuit(qubit_op.num_qubits) qubit_label = 0 # Place a Hadamard gate qc.h(qubit_label) # Place a CNOT ladder for i in range(n-1): qc.cx(i, i+1) # Visual separator qc.barrier() # rz rotations on all qubits qc.rz(theta, range(n)) ansatz = qc ansatz.compose(init_state, front=True, inplace=True) print(ansatz) ###Output ┌───┐ ┌──────────┐┌──────────┐ ┌──────────┐» q_0: ───┤ X ├────┤ RY(θ[0]) ├┤ RZ(θ[4]) ├──■────■─────────■──┤ RY(θ[8]) ├» ┌──┴───┴───┐├──────────┤└──────────┘┌─┴─┐ │ │ └──────────┘» q_1: ┤ RY(θ[1]) ├┤ RZ(θ[5]) ├────────────┤ X ├──┼────■────┼───────■──────» └──┬───┬───┘├──────────┤┌──────────┐└───┘┌─┴─┐┌─┴─┐ │ │ » q_2: ───┤ X ├────┤ RY(θ[2]) ├┤ RZ(θ[6]) ├─────┤ X ├┤ X ├──┼───────┼──────» ┌──┴───┴───┐├──────────┤└──────────┘ └───┘└───┘┌─┴─┐ ┌─┴─┐ » q_3: ┤ RY(θ[3]) ├┤ RZ(θ[7]) ├───────────────────────────┤ X ├───┤ X ├────» └──────────┘└──────────┘ └───┘ └───┘ » « ┌───────────┐ ┌───────────┐» «q_0: ┤ RZ(θ[12]) ├───────────────────■────────■─────────■──┤ RY(θ[16]) ├» « └┬──────────┤┌───────────┐ ┌─┴─┐ │ │ └───────────┘» «q_1: ─┤ RY(θ[9]) ├┤ RZ(θ[13]) ├────┤ X ├──────┼────■────┼────────■──────» « └──────────┘├───────────┤┌───┴───┴───┐┌─┴─┐┌─┴─┐ │ │ » «q_2: ──────■──────┤ RY(θ[10]) ├┤ RZ(θ[14]) ├┤ X ├┤ X ├──┼────────┼──────» « ┌─┴─┐ ├───────────┤├───────────┤└───┘└───┘┌─┴─┐ ┌─┴─┐ » «q_3: ────┤ X ├────┤ RY(θ[11]) ├┤ RZ(θ[15]) ├──────────┤ X ├────┤ X ├────» « └───┘ └───────────┘└───────────┘ └───┘ └───┘ » « ┌───────────┐ «q_0: ┤ RZ(θ[20]) ├───────────────────■────────■─────────■──────────── « ├───────────┤┌───────────┐ ┌─┴─┐ │ │ «q_1: ┤ RY(θ[17]) ├┤ RZ(θ[21]) ├────┤ X ├──────┼────■────┼────■─────── « └───────────┘├───────────┤┌───┴───┴───┐┌─┴─┐┌─┴─┐ │ │ «q_2: ──────■──────┤ RY(θ[18]) ├┤ RZ(θ[22]) ├┤ X ├┤ X ├──┼────┼────■── « ┌─┴─┐ ├───────────┤├───────────┤└───┘└───┘┌─┴─┐┌─┴─┐┌─┴─┐ «q_3: ────┤ X ├────┤ RY(θ[19]) ├┤ RZ(θ[23]) ├──────────┤ X ├┤ X ├┤ X ├ « └───┘ └───────────┘└───────────┘ └───┘└───┘└───┘ ###Markdown 6. BackendThis is where you specify the simulator or device where you want to run your algorithm.We will focus on the `statevector_simulator` in this challenge. ###Code from qiskit import Aer backend = Aer.get_backend('statevector_simulator') ###Output _____no_output_____ ###Markdown 7. OptimizerThe optimizer guides the evolution of the parameters of the ansatz so it is very important to investigate the energy convergence as it would define the number of measurements that have to be performed on the QPU.A clever choice might reduce drastically the number of needed energy evaluations. ###Code from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SPSA, SLSQP optimizer_type = 'COBYLA' # You may want to tune the parameters # of each optimizer, here the defaults are used if optimizer_type == 'COBYLA': optimizer = COBYLA(maxiter=500) elif optimizer_type == 'L_BFGS_B': optimizer = L_BFGS_B(maxfun=500) elif optimizer_type == 'SPSA': optimizer = SPSA(maxiter=500) elif optimizer_type == 'SLSQP': optimizer = SLSQP(maxiter=500) ###Output _____no_output_____ ###Markdown 8. Exact eigensolverFor learning purposes, we can solve the problem exactly with the exact diagonalization of the Hamiltonian matrix so we know where to aim with VQE.Of course, the dimensions of this matrix scale exponentially in the number of molecular orbitals so you can try doing this for a large molecule of your choice and see how slow this becomes. For very large systems you would run out of memory trying to store their wavefunctions. ###Code from qiskit_nature.algorithms.ground_state_solvers.minimum_eigensolver_factories import NumPyMinimumEigensolverFactory from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver import numpy as np def exact_diagonalizer(problem, converter): solver = NumPyMinimumEigensolverFactory() calc = GroundStateEigensolver(converter, solver) result = calc.solve(problem) return result result_exact = exact_diagonalizer(problem, converter) exact_energy = np.real(result_exact.eigenenergies[0]) print("Exact electronic energy", exact_energy) print(result_exact) # The targeted electronic energy for H2 is -1.85336 Ha # Check with your VQE result. ###Output Exact electronic energy -1.8533636186720364 === GROUND STATE ENERGY === * Electronic ground state energy (Hartree): -1.853363618672 - computed part: -1.853363618672 ~ Nuclear repulsion energy (Hartree): 0.716072003951 > Total ground state energy (Hartree): -1.137291614721 === MEASURED OBSERVABLES === 0: # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000 === DIPOLE MOMENTS === ~ Nuclear dipole moment (a.u.): [0.0 0.0 1.39650761] 0: * Electronic dipole moment (a.u.): [0.0 0.0 1.39650761] - computed part: [0.0 0.0 1.39650761] > Dipole moment (a.u.): [0.0 0.0 0.0] Total: 0. (debye): [0.0 0.0 0.00000001] Total: 0.00000001 ###Markdown 9. VQE and initial parameters for the ansatzNow we can import the VQE class and run the algorithm. ###Code from qiskit.algorithms import VQE from IPython.display import display, clear_output # Print and save the data in lists def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) counts = [] values = [] params = [] deviation = [] # Set initial parameters of the ansatz # We choose a fixed small displacement # So all participants start from similar starting point try: initial_point = [0.01] * len(ansatz.ordered_parameters) except: initial_point = [0.01] * ansatz.num_parameters algorithm = VQE(ansatz, optimizer=optimizer, quantum_instance=backend, callback=callback, initial_point=initial_point) result = algorithm.compute_minimum_eigenvalue(qubit_op) print(result) ###Output { 'aux_operator_eigenvalues': None, 'cost_function_evals': 500, 'eigenstate': array([ 5.55839219e-07+4.33667242e-05j, -2.54817228e-04+1.69136374e-04j, -1.41198727e-05+1.07852951e-05j, -2.98933473e-05+3.34001403e-05j, -9.30756867e-06-2.69271113e-06j, 9.59165537e-01+2.59526293e-01j, 4.01826666e-04-2.39628624e-04j, -6.72818471e-08+1.34512394e-07j, 3.66141410e-08-2.52535990e-08j, -7.66350067e-04+4.00786325e-04j, -1.08531209e-01-2.94523377e-02j, 8.41316477e-05-1.50598909e-05j, 3.82451399e-06-3.01452469e-06j, 1.24046236e-04-9.64048191e-05j, -3.11599148e-05-1.51052025e-05j, -1.17678002e-04+1.17115410e-05j]), 'eigenvalue': -1.8533628495566552, 'optimal_parameters': { ParameterVectorElement(θ[11]): -0.01878165369801624, ParameterVectorElement(θ[21]): 1.1822559282436655, ParameterVectorElement(θ[12]): 0.9182692041658823, ParameterVectorElement(θ[5]): 0.21004383063116186, ParameterVectorElement(θ[15]): 0.3924753613255743, ParameterVectorElement(θ[19]): 0.2186285353170032, ParameterVectorElement(θ[4]): 0.22579514945005438, ParameterVectorElement(θ[14]): -0.18989856209494552, ParameterVectorElement(θ[13]): 0.22866321930163055, ParameterVectorElement(θ[3]): -0.23605585408984223, ParameterVectorElement(θ[0]): 0.22539103122433168, ParameterVectorElement(θ[7]): 0.3638889623695151, ParameterVectorElement(θ[20]): -0.31980898480092, ParameterVectorElement(θ[9]): -0.00023120672708110463, ParameterVectorElement(θ[22]): 1.0536585009278732, ParameterVectorElement(θ[23]): 0.5696994669998804, ParameterVectorElement(θ[8]): -6.155468509014689e-05, ParameterVectorElement(θ[18]): 0.00384029862590771, ParameterVectorElement(θ[1]): -0.00017629542703102578, ParameterVectorElement(θ[2]): 0.0038162025598846303, ParameterVectorElement(θ[17]): 3.1416457403459686, ParameterVectorElement(θ[16]): -0.00043981623804380666, ParameterVectorElement(θ[10]): -0.0003977930893254482, ParameterVectorElement(θ[6]): 0.287211763434586}, 'optimal_point': array([ 2.25391031e-01, -3.97793089e-04, -1.87816537e-02, 9.18269204e-01, 2.28663219e-01, -1.89898562e-01, 3.92475361e-01, -4.39816238e-04, 3.14164574e+00, 3.84029863e-03, 2.18628535e-01, -1.76295427e-04, -3.19808985e-01, 1.18225593e+00, 1.05365850e+00, 5.69699467e-01, 3.81620256e-03, -2.36055854e-01, 2.25795149e-01, 2.10043831e-01, 2.87211763e-01, 3.63888962e-01, -6.15546851e-05, -2.31206727e-04]), 'optimal_value': -1.8533628495566552, 'optimizer_evals': 500, 'optimizer_time': 3.769929885864258} ###Markdown 9. Scoring function We need to judge how good are your VQE simulations, your choice of ansatz/optimizer.For this, we implemented the following simple scoring function:$$ score = N_{CNOT}$$where $N_{CNOT}$ is the number of CNOTs. But you have to reach the chemical accuracy which is $\delta E_{chem} = 0.004$ Ha $= 4$ mHa, which may be hard to reach depending on the problem. You have to reach the accuracy we set in a minimal number of CNOTs to win the challenge. The lower the score the better! ###Code # Store results in a dictionary from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller # Unroller transpile your circuit into CNOTs and U gates pass_ = Unroller(['u', 'cx']) pm = PassManager(pass_) ansatz_tp = pm.run(ansatz) cnots = ansatz_tp.count_ops()['cx'] score = cnots accuracy_threshold = 4.0 # in mHa energy = result.optimal_value if ansatz_type == "TwoLocal": result_dict = { 'optimizer': optimizer.__class__.__name__, 'mapping': converter.mapper.__class__.__name__, 'ansatz': ansatz.__class__.__name__, 'rotation blocks': rotation_blocks, 'entanglement_blocks': entanglement_blocks, 'entanglement': entanglement, 'repetitions': repetitions, 'skip_final_rotation_layer': skip_final_rotation_layer, 'energy (Ha)': energy, 'error (mHa)': (energy-exact_energy)*1000, 'pass': (energy-exact_energy)*1000 <= accuracy_threshold, '# of parameters': len(result.optimal_point), 'final parameters': result.optimal_point, '# of evaluations': result.optimizer_evals, 'optimizer time': result.optimizer_time, '# of qubits': int(qubit_op.num_qubits), '# of CNOTs': cnots, 'score': score} else: result_dict = { 'optimizer': optimizer.__class__.__name__, 'mapping': converter.mapper.__class__.__name__, 'ansatz': ansatz.__class__.__name__, 'rotation blocks': None, 'entanglement_blocks': None, 'entanglement': None, 'repetitions': None, 'skip_final_rotation_layer': None, 'energy (Ha)': energy, 'error (mHa)': (energy-exact_energy)*1000, 'pass': (energy-exact_energy)*1000 <= accuracy_thresholdaccuract_thres, '# of parameters': len(result.optimal_point), 'final parameters': result.optimal_point, '# of evaluations': result.optimizer_evals, 'optimizer time': result.optimizer_time, '# of qubits': int(qubit_op.num_qubits), '# of CNOTs': cnots, 'score': score} # Plot the results import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) ax.set_xlabel('Iterations') ax.set_ylabel('Energy') ax.grid() fig.text(0.7, 0.75, f'Energy: {result.optimal_value:.3f}\nScore: {score:.0f}') plt.title(f"{result_dict['optimizer']}-{result_dict['mapping']}\n{result_dict['ansatz']}") ax.plot(counts, values) ax.axhline(exact_energy, linestyle='--') fig_title = f"\ {result_dict['optimizer']}-\ {result_dict['mapping']}-\ {result_dict['ansatz']}-\ Energy({result_dict['energy (Ha)']:.3f})-\ Score({result_dict['score']:.0f})\ .png" fig.savefig(fig_title, dpi=300) # Display and save the data import pandas as pd import os.path filename = 'results_h2.csv' if os.path.isfile(filename): result_df = pd.read_csv(filename) result_df = result_df.append([result_dict]) else: result_df = pd.DataFrame.from_dict([result_dict]) result_df.to_csv(filename) result_df[['optimizer','ansatz', '# of qubits', '# of parameters','rotation blocks', 'entanglement_blocks', 'entanglement', 'repetitions', 'error (mHa)', 'pass', 'score']] ###Output _____no_output_____ ###Markdown Tutorial questions 2 Experiment with all the parameters and then:1. Can you find your best (best score) heuristic ansatz (by modifying parameters of `TwoLocal` ansatz) and optimizer?2. Can you find your best q-UCC ansatz (choose among `UCCSD, PUCCD or SUCCD` ansatzes) and optimizer?3. In the cell where we define the ansatz, can you modify the `Custom` ansatz by placing gates yourself to write a better circuit than your `TwoLocal` circuit? For each question, give `ansatz` objects.Remember, you have to reach the chemical accuracy $|E_{exact} - E_{VQE}| \leq 0.004 $ Ha $= 4$ mHa. ###Code # WRITE YOUR CODE BETWEEN THESE LINES - START # WRITE YOUR CODE BETWEEN THESE LINES - END ###Output _____no_output_____ ###Markdown Part 2: Final Challenge - VQE for LiH molecule In this part, you will simulate LiH molecule using the STO-3G basis with the PySCF driver. Goal Experiment with all the parameters and then find your best ansatz. You can be as creative as you want!For each question, give `ansatz` objects as for Part 1. Your final score will be based only on Part 2. Be aware that the system is larger now. Work out how many qubits you would need for this system by retrieving the number of spin-orbitals. Reducing the problem sizeYou might want to reduce the number of qubits for your simulation:- you could freeze the core electrons that do not contribute significantly to chemistry and consider only the valence electrons. Qiskit  already has this functionality implemented. So inspect the different transformers in `qiskit_nature.transformers` and find the one that performs the freeze core approximation.- you could use `ParityMapper` with `two_qubit_reduction=True` to eliminate 2 qubits.- you could reduce the number of qubits by inspecting the symmetries of your Hamiltonian. Find a way to use `Z2Symmetries` in Qiskit. Custom ansatz You might want to explore the ideas proposed in [Grimsley *et al.*,2018](https://arxiv.org/abs/1812.11173v2), [H. L. Tang *et al.*,2019](https://arxiv.org/abs/1911.10205), [Rattew *et al.*,2019](https://arxiv.org/abs/1910.09694), [Tang *et al.*,2019](https://arxiv.org/abs/1911.10205). You can even get try machine learning algorithms to generate best ansatz circuits. Setup the simulationLet's now run the Hartree-Fock calculation and the rest is up to you!Attention We give below the `driver`, the `initial_point`, the `initial_state` that should remain as given.You are free then to explore all other things available in Qiskit.So you have to start from this initial point (all parameters set to 0.01): `initial_point = [0.01] * len(ansatz.ordered_parameters)` or`initial_point = [0.01] * ansatz.num_parameters`and your initial state has to be the Hartree-Fock state: `init_state = HartreeFock(num_spin_orbitals, num_particles, converter)` For each question, give `ansatz` object.Remember you have to reach the chemical accuracy $|E_{exact} - E_{VQE}| \leq 0.004 $ Ha $= 4$ mHa. ###Code from qiskit_nature.drivers import PySCFDriver molecule = 'Li 0.0 0.0 0.0; H 0.0 0.0 1.5474' driver = PySCFDriver(atom=molecule, basis='sto3g') qmolecule = driver.run() # WRITE YOUR CODE BETWEEN THESE LINES - START from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers import FreezeCoreTransformer from qiskit_nature.mappers.second_quantization import ParityMapper, BravyiKitaevMapper, JordanWignerMapper from qiskit_nature.converters.second_quantization.qubit_converter import QubitConverter from qiskit_nature.circuit.library import HartreeFock from qiskit.circuit.library import TwoLocal from qiskit_nature.circuit.library import UCCSD, PUCCD, SUCCD from qiskit import Aer from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SPSA, SLSQP from qiskit_nature.algorithms.ground_state_solvers.minimum_eigensolver_factories import NumPyMinimumEigensolverFactory from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver import numpy as np from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller import matplotlib.pyplot as plt import pandas as pd import os.path # decreases the # of qubits freezeCT = [FreezeCoreTransformer(freeze_core=True, remove_orbitals=[3,4])] problem = ElectronicStructureProblem(driver,q_molecule_transformers=freezeCT) # Generate the second-quantized operators second_q_ops = problem.second_q_ops() # Hamiltonian main_op = second_q_ops[0] # Setup the mapper and qubit converter # given in hints above mapper_type = 'ParityMapper' if mapper_type == 'ParityMapper': mapper = ParityMapper() elif mapper_type == 'JordanWignerMapper': mapper = JordanWignerMapper() elif mapper_type == 'BravyiKitaevMapper': mapper = BravyiKitaevMapper() # given in hints above converter = QubitConverter(mapper=mapper, two_qubit_reduction=True, z2symmetry_reduction=[1,1]) # The fermionic operators are mapped to qubit operators num_particles = (problem.molecule_data_transformed.num_alpha, problem.molecule_data_transformed.num_beta) qubit_op = converter.convert(main_op, num_particles=num_particles) num_particles = (problem.molecule_data_transformed.num_alpha, problem.molecule_data_transformed.num_beta) num_spin_orbitals = 2 * problem.molecule_data_transformed.num_molecular_orbitals init_state = HartreeFock(num_spin_orbitals, num_particles, converter) print(init_state) # Choose the ansatz ansatz_type = "TwoLocal" # Parameters for q-UCC antatze num_particles = (problem.molecule_data_transformed.num_alpha, problem.molecule_data_transformed.num_beta) num_spin_orbitals = 2 * problem.molecule_data_transformed.num_molecular_orbitals # Put arguments for twolocal if ansatz_type == "TwoLocal": # Single qubit rotations that are placed on all qubits with independent parameters rotation_blocks = ['ry', 'rz'] # Entangling gates entanglement_blocks = 'cx' # How the qubits are entangled # full -> linear : 18 -> 6 entanglement = 'linear' # Repetitions of rotation_blocks + entanglement_blocks with independent parameters # 3 -> 2 : 18 -> 6 repetitions = 2 # Skip the final rotation_blocks layer skip_final_rotation_layer = True ansatz = TwoLocal(qubit_op.num_qubits, rotation_blocks, entanglement_blocks, reps=repetitions, entanglement=entanglement, skip_final_rotation_layer=skip_final_rotation_layer) # Add the initial state ansatz.compose(init_state, front=True, inplace=True) elif ansatz_type == "UCCSD": ansatz = UCCSD(converter,num_particles,num_spin_orbitals,initial_state = init_state) elif ansatz_type == "PUCCD": ansatz = PUCCD(converter,num_particles,num_spin_orbitals,initial_state = init_state) elif ansatz_type == "SUCCD": ansatz = SUCCD(converter,num_particles,num_spin_orbitals,initial_state = init_state) elif ansatz_type == "Custom": # Example of how to write your own circuit from qiskit.circuit import Parameter, QuantumCircuit, QuantumRegister # Define the variational parameter theta = Parameter('a') n = qubit_op.num_qubits # Make an empty quantum circuit qc = QuantumCircuit(qubit_op.num_qubits) qubit_label = 0 # Place a Hadamard gate qc.h(qubit_label) # Place a CNOT ladder for i in range(n-1): qc.cx(i, i+1) # Visual separator qc.barrier() # rz rotations on all qubits qc.rz(theta, range(n)) ansatz = qc ansatz.compose(init_state, front=True, inplace=True) print(ansatz) backend = Aer.get_backend('statevector_simulator') # random choice from my side optimizer_type = 'SLSQP' # You may want to tune the parameters # of each optimizer, here the defaults are used if optimizer_type == 'COBYLA': optimizer = COBYLA(maxiter=500) elif optimizer_type == 'L_BFGS_B': optimizer = L_BFGS_B(maxfun=500) elif optimizer_type == 'SPSA': optimizer = SPSA(maxiter=500) elif optimizer_type == 'SLSQP': optimizer = SLSQP(maxiter=500) def exact_diagonalizer(problem, converter): solver = NumPyMinimumEigensolverFactory() calc = GroundStateEigensolver(converter, solver) result = calc.solve(problem) return result result_exact = exact_diagonalizer(problem, converter) exact_energy = np.real(result_exact.eigenenergies[0]) print("Exact electronic energy", exact_energy) print(result_exact) # The targeted electronic energy for H2 is -1.85336 Ha # Check with your VQE result. from qiskit.algorithms import VQE from IPython.display import display, clear_output # Print and save the data in lists def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) counts = [] values = [] params = [] deviation = [] # Set initial parameters of the ansatz # We choose a fixed small displacement # So all participants start from similar starting point try: initial_point = [0.01] * len(ansatz.ordered_parameters) except: initial_point = [0.01] * ansatz.num_parameters algorithm = VQE(ansatz, optimizer=optimizer, quantum_instance=backend, callback=callback, initial_point=initial_point) result = algorithm.compute_minimum_eigenvalue(qubit_op) print(result) # Store results in a dictionary # Unroller transpile your circuit into CNOTs and U gates pass_ = Unroller(['u', 'cx']) pm = PassManager(pass_) ansatz_tp = pm.run(ansatz) cnots = ansatz_tp.count_ops()['cx'] score = cnots accuracy_threshold = 4.0 # in mHa energy = result.optimal_value if ansatz_type == "TwoLocal": result_dict = { 'optimizer': optimizer.__class__.__name__, 'mapping': converter.mapper.__class__.__name__, 'ansatz': ansatz.__class__.__name__, 'rotation blocks': rotation_blocks, 'entanglement_blocks': entanglement_blocks, 'entanglement': entanglement, 'repetitions': repetitions, 'skip_final_rotation_layer': skip_final_rotation_layer, 'energy (Ha)': energy, 'error (mHa)': (energy-exact_energy)*1000, 'pass': (energy-exact_energy)*1000 <= accuracy_threshold, '# of parameters': len(result.optimal_point), 'final parameters': result.optimal_point, '# of evaluations': result.optimizer_evals, 'optimizer time': result.optimizer_time, '# of qubits': int(qubit_op.num_qubits), '# of CNOTs': cnots, 'score': score} else: result_dict = { 'optimizer': optimizer.__class__.__name__, 'mapping': converter.mapper.__class__.__name__, 'ansatz': ansatz.__class__.__name__, 'rotation blocks': None, 'entanglement_blocks': None, 'entanglement': None, 'repetitions': None, 'skip_final_rotation_layer': None, 'energy (Ha)': energy, 'error (mHa)': (energy-exact_energy)*1000, 'pass': (energy-exact_energy)*1000 <= accuracy_threshold, '# of parameters': len(result.optimal_point), 'final parameters': result.optimal_point, '# of evaluations': result.optimizer_evals, 'optimizer time': result.optimizer_time, '# of qubits': int(qubit_op.num_qubits), '# of CNOTs': cnots, 'score': score} # Plot the results fig, ax = plt.subplots(1, 1) ax.set_xlabel('Iterations') ax.set_ylabel('Energy') ax.grid() fig.text(0.7, 0.75, f'Energy: {result.optimal_value:.3f}\nScore: {score:.0f}') plt.title(f"{result_dict['optimizer']}-{result_dict['mapping']}\n{result_dict['ansatz']}") ax.plot(counts, values) ax.axhline(exact_energy, linestyle='--') fig_title = f"\ {result_dict['optimizer']}-\ {result_dict['mapping']}-\ {result_dict['ansatz']}-\ Energy({result_dict['energy (Ha)']:.3f})-\ Score({result_dict['score']:.0f})\ .png" fig.savefig(fig_title, dpi=300) # Display and save the data filename = 'results_h2.csv' if os.path.isfile(filename): result_df = pd.read_csv(filename) result_df = result_df.append([result_dict]) else: result_df = pd.DataFrame.from_dict([result_dict]) result_df.to_csv(filename) result_df[['optimizer','ansatz', '# of qubits', '# of parameters','rotation blocks', 'entanglement_blocks', 'entanglement', 'repetitions', 'error (mHa)', 'pass', 'score']] # WRITE YOUR CODE BETWEEN THESE LINES - END # Check your answer using following code from qc_grader import grade_ex5 freeze_core = True # change to True if you freezed core electrons grade_ex5(ansatz,qubit_op,result,freeze_core) # Submit your answer. You can re-submit at any time. from qc_grader import submit_ex5 submit_ex5(ansatz,qubit_op,result,freeze_core) ###Output Submitting your answer for ex5. Please wait... Success 🎉! Your answer has been submitted.
Regression/Simple LR/Simple_LR.ipynb
###Markdown Importing the essential Libraries ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown Importing the dataset ###Code data = pd.read_csv("/content/drive/MyDrive/Machine+Learning+A-Z+(Codes+and+Datasets)/Machine Learning A-Z (Codes and Datasets)/Part 2 - Regression/Section 4 - Simple Linear Regression/Python/Salary_Data.csv") data ###Output _____no_output_____ ###Markdown Creating the features and Labels ###Code X=data.iloc[:,:-1] Y=data.iloc[:,-1] X ###Output _____no_output_____ ###Markdown Splitting the dataset ###Code from sklearn.model_selection import train_test_split X_train,X_test,Y_Train,Y_test = train_test_split(X,Y,test_size=1/3,random_state=0) X_train ###Output _____no_output_____ ###Markdown Fitting the model to the dataset ###Code from sklearn.linear_model import LinearRegression # Creating an Object of the LinearRegression Class regressor= LinearRegression() # Fitting the model regressor.fit(X_train,Y_Train) # Predicting the values for the test Dataset y_pred = regressor.predict(X_test) plt.scatter(X_train, Y_Train, color = 'blue') plt.plot(X_train, regressor.predict(X_train), color = 'red') plt.title('Salary vs Experience (Training set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show() plt.scatter(X_test, Y_test, color = 'blue') plt.plot(X_train, regressor.predict(X_train), color = 'red') plt.title('Salary vs Experience (Test set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show() ###Output _____no_output_____
prem-step/ew-mcmcPost.ipynb
###Markdown Eng+Wales model MCMC post-processThis is the MCMC postprocess notebook.Outputs of this notebook:* `ewMod-result_mcmc.pik` : inference params at for representative set of samples* `ewMod-traj_mcmc.pik` : deterministic trajectories with parameters from posteriorThis notebook requires as *input*:* `ewMod-mcmc.pik` : result of MCMC computation. These files are very large in general and are not provided in this repo. This notebook *will not execute correctly* unless such a file is provided.** Note carefully ** : internal details of .pik files that are created by the MCMC notebook may be affected by changes to pyross source code. It is therefore useful to keep track of the specific commitID used for a given run. I am using git commit `be4eabc` . start notebook (the following line is for efficient parallel processing) ###Code %env OMP_NUM_THREADS=1 %matplotlib inline import numpy as np from matplotlib import pyplot as plt import pyross import time import pandas as pd import matplotlib.image as mpimg import pickle import os import pprint import scipy.stats #print(pyross.__file__) #print(os.getcwd()) #from ew_fns import * from uk_v2a_fns import * ## these are exactly the same functions as ew_fns, ## imported like this for compatibility with saved pik files (legacy) import expt_params_local import model_local verboseMod=False ## print ancillary info about the model? ## time unit is one week daysPerWeek = 7.0 ## these are params that might be varied in different expts exptParams = expt_params_local.getLocalParams() pprint.pprint(exptParams) ## this is used for filename handling throughout pikFileRoot = exptParams['pikFileRoot'] ###Output {'careFile': '../data/CareHomes.csv', 'chooseCM': 'premEtAl', 'dataFile': '../data/OnsData.csv', 'estimatorTol': 1e-08, 'exCare': True, 'forecastTime': 3, 'freeInitPriors': ['E', 'A', 'Is1', 'Is2', 'Is3'], 'infOptions': {'cma_population': 32, 'cma_processes': None, 'ftol': 5e-05, 'global_atol': 1.0, 'global_max_iter': 1500, 'local_max_iter': 400}, 'inferBetaNotAi': True, 'numCohorts': 16, 'numCohortsPopData': 19, 'pikFileRoot': 'ewMod', 'popFile': '../data/EWAgeDistributedNew.csv', 'timeLast': 8, 'timeZero': 0} ###Markdown convenience ###Code np.set_printoptions(precision=3) pltAuto = True plt.rcParams.update({'figure.autolayout': pltAuto}) plt.rcParams.update({'font.size': 14}) ###Output _____no_output_____ ###Markdown LOAD MODEL ###Code loadModel = model_local.loadModel(exptParams,daysPerWeek,verboseMod) ## should use a dictionary but... [ numCohorts, fi, N, Ni, model_spec, estimator, contactBasis, interventionFn, modParams, priorsAll, initPriorsLinMode, obsDeath, fltrDeath, simTime, deathCumulativeDat ] = loadModel ###Output ** model {'A': {'infection': [], 'linear': [['E', 'gammaE'], ['A', '-gammaA']]}, 'E': {'infection': [['A', 'beta'], ['Is1', 'beta'], ['Is2', 'betaLate'], ['Is3', 'betaLate']], 'linear': [['E', '-gammaE']]}, 'Im': {'infection': [], 'linear': [['Is3', 'cfr*gammaIs3']]}, 'Is1': {'infection': [], 'linear': [['A', 'gammaA'], ['Is1', '-alphabar*gammaIs1'], ['Is1', '-alpha*gammaIs1']]}, 'Is2': {'infection': [], 'linear': [['Is1', 'alphabar*gammaIs1'], ['Is2', '-gammaIs2']]}, 'Is3': {'infection': [], 'linear': [['Is2', 'gammaIs2'], ['Is3', '-cfrbar*gammaIs3'], ['Is3', '-cfr*gammaIs3']]}, 'S': {'infection': [['A', '-beta'], ['Is1', '-beta'], ['Is2', '-betaLate'], ['Is3', '-betaLate']], 'linear': []}, 'classes': ['S', 'E', 'A', 'Is1', 'Is2', 'Is3', 'Im']} typC 0.5952004647091569 ** using getPriorsControl ###Markdown helper functions for MCMC ###Code def dumpPickle(pikFileRoot,sampler) : opFile = pikFileRoot + "-mcmc.pik" print('opf',opFile) with open(opFile, 'wb') as f: pickle.dump([sampler,infResult],f) def loadPickle(pikFileRoot) : ipFile = pikFileRoot + "-mcmc.pik" print('ipf',ipFile) with open(ipFile, 'rb') as f: [ss,ii] = pickle.load(f) return [ss,ii] ###Output _____no_output_____ ###Markdown load data ###Code [sampler,infResult] = loadPickle(pikFileRoot) ###Output ipf ewMod-mcmc.pik ###Markdown plotting helper functions for MCMC ###Code def plotMCtrace(selected_dims,sampler,numTrace=None): # Plot the trace for these dimensions: plot_dim = len(selected_dims) fig, axes = plt.subplots(plot_dim, figsize=(12, plot_dim), sharex=True) samples = sampler.get_chain() if numTrace == None : numTrace = np.shape(samples)[1] ## corrected index for ii,dd in enumerate(selected_dims): ax = axes[ii] ax.plot(samples[:, :numTrace , dd], "k", alpha=0.3) ax.set_xlim(0, len(samples)) axes[-1].set_xlabel("step number"); plt.show(fig) plt.close() nDimMCMC = np.size(infResult['flat_params']) def plotInterestingTraces() : offset = 6 # full inference #offset = 1 # no inference of gammas ## these are cohorts 3,7,11,15 (which includes the eldest) selected_dims = [ i for i in range(3,numCohorts,4) ] print('beta, cohorts',selected_dims) plotMCtrace(selected_dims,sampler,numTrace=40) print('aF, cohorts',selected_dims) ## index hacking. plot aF with same cohorts as beta above selected_dims = [ i for i in range(numCohorts+offset+3,numCohorts+offset+numCohorts,4) ] plotMCtrace(selected_dims,sampler,numTrace=40) print('lockTime,lockWidth') selected_dims = [ i for i in range(numCohorts+offset+numCohorts,numCohorts+offset+numCohorts+2) ] plotMCtrace(selected_dims,sampler,numTrace=40) print('initConds') selected_dims = [ i for i in range(nDimMCMC-1-len(exptParams['freeInitPriors']),nDimMCMC) ] plotMCtrace(selected_dims,sampler,numTrace=40) ###Output _____no_output_____ ###Markdown MCMC traces (to check mixing) ###Code plotInterestingTraces() ###Output beta, cohorts [3, 7, 11, 15] ###Markdown collect results ###Code ## how many samples in total? pp = sampler.get_log_prob() nSampleTot = np.shape(pp)[0] ## for analysis we pull discard the initial 1/3 from burn-in ## then we pull out reprsentative samples spaced by 0.1 of the total run ## (total samples come out as 6 * batch size where batch size is twice the num of inferred params) result_mcmc = estimator.latent_infer_mcmc_process_result(sampler, obsDeath, fltrDeath, priorsAll, initPriorsLinMode, generator=contactBasis, intervention_fun=interventionFn, discard=int(nSampleTot/3), thin=int(nSampleTot/10) ) print("** samples",np.size(result_mcmc)) param_post_mean = pyross.utils.posterior_mean(result_mcmc) print( '** ave logLikelihood',np.mean( [ rr['log_likelihood'] for rr in result_mcmc ] ) ) print( '** ave logPost',np.mean( [ rr['log_posterior'] for rr in result_mcmc ] ) ) ###Output ** samples 552 ** ave logLikelihood -267.7965234473959 ** ave logPost -188.2400157993843 ###Markdown save this subset of results from MCMC ###Code opFile = pikFileRoot + "-result_mcmc.pik" print('opf',opFile) with open(opFile, 'wb') as f: pickle.dump([result_mcmc],f) ###Output opf ewMod-result_mcmc.pik ###Markdown run 100 deterministic trajectories using posterior samples ###Code runTime = 10 nSave = 100 saveTraj = [] for ii,rr in enumerate(result_mcmc[-nSave:]) : estimator.set_params(rr['params_dict']) estimator.set_contact_matrix( contactBasis.intervention_custom_temporal( interventionFn, **rr['control_params_dict']) ) mytraj = estimator.integrate( rr['x0'], 0, runTime, runTime+1) saveTraj.append( mytraj ) opFile = pikFileRoot + "-traj_mcmc.pik" print('opf',opFile) with open(opFile, 'wb') as f: pickle.dump([model_spec,saveTraj,N,numCohorts,deathCumulativeDat],f) ###Output opf ewMod-traj_mcmc.pik
src_optimization/21_nonlinear_stencil_01_precalc/e_roofline.ipynb
###Markdown based on: https://github.com/essentialsofparallelcomputing/Chapter3/blob/master/JupyterNotebook/HardwarePlatformCharaterization.ipynb Operator Benchmark on Gauss3 Theoretical Parameters ###Code Sockets=2 ProcessorFrequency=2.35 ProcessorCores=64 Hyperthreads=2 VectorWidth=256 WordSizeBits=64 FMA=2 DataTransferRate=3200 MemoryChannels=8 BytesTransferredPerAccess=8 TheoreticalMaximumFlops=Sockets*ProcessorCores*Hyperthreads*ProcessorFrequency*VectorWidth/WordSizeBits*FMA TheoreticalMemoryBandwidth=Sockets*DataTransferRate*MemoryChannels*BytesTransferredPerAccess/1000 TheoreticalMachineBalance=TheoreticalMaximumFlops/TheoreticalMemoryBandwidth ###Output _____no_output_____ ###Markdown Benchmark data Previous Versionsbased on:* `src_master_thesis/optimization/00_unoptimized/exe_op_bench_likwid-perfctr_gauss3_linear_stencil.out`* `src_master_thesis/optimization/01_compiler_optimized/exe_op_bench_linear_stencil_likwid-perfctr_gauss3.out`* * * `src_master_thesis/optimization/00_unoptimized/exe_op_bench_linear_stencil_likwid-perfctr_gauss3.out`* `src_master_thesis/optimization/00_unoptimized/exe_op_bench_linear_stencil_vcl_likwid-perfctr_gauss3.out` ###Code FLOPS_apply = [ 1.0653186, 4.1038111, 5.1812428, 4.2049185, 98.04469560000001 ] AI_apply = [ 0.0296, 0.0884, 0.1145, 0.1199455409875806, 0.42690517018704194 ] labels_apply = [ "00_stencil_unoptimized", "01_stencil_compiler_optimized", "03_stencil_vcl_vectorization", "04_stencil_tiling", "08_openmp_stencil_03_noedgecases" ] ###Output _____no_output_____ ###Markdown Current Versions ###Code import csv def read_Results(p_path): with open(p_path, 'r') as f: reader = csv.reader(f) # # NOTE skip the header # next(reader, None) for row in reader: # # NOTE select row # if row[3] == 'apply': performance = float(row[8]) memory_bandwidth = float(row[9]) break result = { # # NOTE MFLOP/s => GFLOP/s # 'flops': performance/1000, 'ai': performance/memory_bandwidth } return result results = read_Results('./e_roofline.csv') print(results) FLOPS_apply.append(results['flops']) AI_apply.append(results['ai']) labels_apply.append('20_several_coeff') # # Install a pip package in the current Jupyter kernel # import sys # !{sys.executable} -m pip install matplotlib # !{sys.executable} -m pip install numpy # %matplotlib inline import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors print(mcolors.TABLEAU_COLORS) font = { 'size' : 20} plt.rc('font', **font) markersize = 16 # colors = ['b','g','r','y','m','c'] colors = list(mcolors.TABLEAU_COLORS.values()) print(colors) styles = ['o','s','v','^','D',">","<","*","h","H","+","1","2","3","4","8","p","d","|","_",".",","] roofline_color = 'r' fig = plt.figure(1,figsize=(15,10)) plt.clf() ax = fig.gca() ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('Arithmetic Intensity [FLOPS/Byte]') ax.set_ylabel('Performance [GFLOP/sec]') ax.grid() ax.grid(which='minor', linestyle=':', linewidth=0.5, color='black') nx = 10000 xmin = -3 xmax = 2 ymin = 0.01 ymax = 10000 ax.set_xlim(10**xmin, 10**xmax) ax.set_ylim(ymin, ymax) ixx = int(nx*0.02) xlim = ax.get_xlim() ylim = ax.get_ylim() scomp_x_elbow = [] scomp_ix_elbow = [] smem_x_elbow = [] smem_ix_elbow = [] x = np.logspace(xmin,xmax,nx) # # rooflines # for ix in range(1,nx): if TheoreticalMemoryBandwidth * x[ix] >= TheoreticalMaximumFlops and TheoreticalMemoryBandwidth * x[ix-1] < TheoreticalMaximumFlops: theoMem_ix_elbow = ix-1 break for ix in range(1,nx): if (TheoreticalMaximumFlops <= TheoreticalMemoryBandwidth * x[ix] and TheoreticalMaximumFlops > TheoreticalMemoryBandwidth * x[ix-1]): theoFlops_ix_elbow = ix-1 break y = np.ones(len(x)) * TheoreticalMaximumFlops ax.plot(x[theoFlops_ix_elbow:],y[theoFlops_ix_elbow:],c=roofline_color,ls='--',lw='2') ax.text(x[-ixx],TheoreticalMaximumFlops*0.95, 'node1: P_T', horizontalalignment='right', verticalalignment='top', c=roofline_color) y = x * TheoreticalMemoryBandwidth ax.plot(x[:theoMem_ix_elbow+1],y[:theoMem_ix_elbow+1],c=roofline_color,ls='--',lw='2') ang = np.arctan(np.log10(xlim[1]/xlim[0]) / np.log10(ylim[1]/ylim[0]) * fig.get_size_inches()[1]/fig.get_size_inches()[0] ) ax.text(x[ixx],x[ixx]*TheoreticalMemoryBandwidth*(1+0.25*np.sin(ang)**2), 'node1: B_T', horizontalalignment='left', verticalalignment='bottom', rotation=180/np.pi*ang, c=roofline_color) plt.vlines(TheoreticalMachineBalance, 0, TheoreticalMaximumFlops, colors=roofline_color, linestyles='dashed', linewidth=2) ax.text(TheoreticalMachineBalance,2*ymin, 'node1: MB_T', horizontalalignment='right', verticalalignment='bottom', rotation=90, c=roofline_color) marker_handles = list() for i in range(0,len(AI_apply)): ax.plot(float(AI_apply[i]),float(FLOPS_apply[i]),c=colors[i],marker=styles[0],linestyle='None',ms=markersize,label=labels_apply[i]) marker_handles.append(ax.plot([],[],c=colors[i],marker=styles[0],linestyle='None',ms=markersize,label=labels_apply[i])[0]) leg1 = plt.legend(handles = marker_handles,loc=4, ncol=2) ax.add_artist(leg1) # plt.savefig('roofline.png') # plt.savefig('roofline.eps') # plt.savefig('roofline.pdf') # plt.savefig('roofline.svg') plt.show() ###Output OrderedDict([('tab:blue', '#1f77b4'), ('tab:orange', '#ff7f0e'), ('tab:green', '#2ca02c'), ('tab:red', '#d62728'), ('tab:purple', '#9467bd'), ('tab:brown', '#8c564b'), ('tab:pink', '#e377c2'), ('tab:gray', '#7f7f7f'), ('tab:olive', '#bcbd22'), ('tab:cyan', '#17becf')]) ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
ML-quantificacao-incertezas-2020-PLE/.ipynb_checkpoints/Bootstrap-checkpoint.ipynb
###Markdown 6Gerando 100 amostras de dados a partir da normal $\mu = 5, \, \sigma = 1$ ###Code X = np.random.normal(5,1,100) ###Output _____no_output_____ ###Markdown $\theta = e^5$ ###Code theta = np.exp(5) print(theta) def t_hat(X): return np.exp(np.mean(X)) theta_hat = t_hat(X) print(theta_hat) n = 100 B = 60 def bootstrap(X, f_hat): bootMtx = np.array([(np.random.choice(X,n)) for i in range(B)]) bootVec = np.array([f_hat(i) for i in bootMtx]) return bootMtx, bootVec bootMtrx, bootVec = bootstrap(X, t_hat) np.percentile(bootVec, 97.5) se = np.sqrt(np.var(bootVec)) alpha = 5 U = np.percentile(bootVec, 100-alpha/200) L = np.percentile(bootVec, alpha/200) interval = (2*theta_hat - U, 2*theta_hat - L) print(f'O intervalo de {100-alpha}% de confiança é {interval}') fig, axes = plt.subplots(2, 2, figsize=(15, 10), sharex=True) vecPlot = np.random.randint(0,29,4) sns.distplot(bootMtx[vecPlot[0]], rug=True, ax = axes[0,0], label='oi') sns.distplot(bootMtx[vecPlot[1]], rug=True, ax = axes[0,1]) sns.distplot(bootMtx[vecPlot[2]], rug=True, ax = axes[1,0]) sns.distplot(bootMtx[vecPlot[3]], rug=True, ax = axes[1,1]) axes[0,0].set_title(f'B = {vecPlot[0]}') axes[0,1].set_title(f'B = {vecPlot[1]}') axes[1,0].set_title(f'B = {vecPlot[2]}') axes[1,1].set_title(f'B = {vecPlot[3]}') plt.plot() ###Output _____no_output_____ ###Markdown Distribuição original ###Code x_axis = np.arange(0, 8, 0.01) plt.plot(x_axis, norm.pdf(x_axis, 5,1)) plt.show() ###Output _____no_output_____ ###Markdown 7 ###Code Y = np.random.uniform(0,1, 50) def t_hat2(X): return np.max(X) theta_hat2 = t_hat2(Y) bootMtx_Y, bootVec_Y = bootstrap(Y, t_hat2) fig, axes = plt.subplots(2, 2, figsize=(15, 10), sharex=True) vecPlot = np.random.randint(0,29,4) sns.distplot(bootMtx_Y[vecPlot[0]], rug=True, ax = axes[0,0], label='oi') sns.distplot(bootMtx_Y[vecPlot[1]], rug=True, ax = axes[0,1]) sns.distplot(bootMtx_Y[vecPlot[2]], rug=True, ax = axes[1,0]) sns.distplot(bootMtx_Y[vecPlot[3]], rug=True, ax = axes[1,1]) axes[0,0].set_title(f'B = {vecPlot[0]}') axes[0,1].set_title(f'B = {vecPlot[1]}') axes[1,0].set_title(f'B = {vecPlot[2]}') axes[1,1].set_title(f'B = {vecPlot[3]}') plt.plot() x_axis = np.arange(0, 1, 0.01) plt.plot(x_axis, uniform.pdf(x_axis, 0,1)) plt.show() ###Output _____no_output_____
7.sem/3.stochastic.programming/task1/task1.ipynb
###Markdown Регрессия ###Code data = pd.read_csv('task_1_capital.txt', sep='\s+') data.shape capital = data["Capital"].to_numpy() rental = data["Rental"].to_numpy() A = np.ones((data.shape[0], 2),dtype=float) A[:, 1], Y = capital, rental T = A.transpose() W = np.linalg.pinv(T @ A) @ T @ Y W plt.figure(figsize=(25, 5)) plt.scatter(capital, rental, c="black") plt.title("task 1") plt.xlabel("capital") plt.ylabel("rental") plt.plot(capital, A @ W, c="red"); ###Output _____no_output_____ ###Markdown --- SVM ###Code metrics = { "accuracy" : accuracy_score, "precision" : precision_score, "recall" : recall_score, "f1" : f1_score, } data = np.loadtxt("chips.txt", delimiter=",", dtype=float) print(data.shape) data[:10] X, Y = data[:, :2], data[:, 2] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, shuffle=True, stratify=Y) svc_param_grid = { "C" : [0.001, 0.1, 1 , 10, 100], "kernel" : ["linear", "poly", "rbf"], "gamma" : ["auto", "scale"] } svc = GridSearchCV(SVC(random_state=42), svc_param_grid, n_jobs=-1, scoring=["accuracy", "precision", "recall"], cv=5, iid=False, refit="accuracy") svc.fit(X_train, Y_train); svc.best_params_, svc.best_score_ fig = plt.figure(figsize=(10,5)) plot_decision_regions(X=X, y=Y.astype(np.integer), clf=svc.best_estimator_, legend=2) plt.title('SVM Decision Region Boundary', size=16); ###Output _____no_output_____ ###Markdown ---- KNN ###Code knn_param_grid = { "n_neighbors" : [ i for i in range(3, X.shape[0] // 2) ], "weights" : ["uniform", "distance"], "algorithm" : ["ball_tree", "kd_tree", "brute"], } knn = GridSearchCV(KNeighborsClassifier(), knn_param_grid, n_jobs=-1, scoring=["accuracy", "precision", "recall"], cv=5, iid=False, refit="accuracy") knn.fit(X_train, Y_train); knn.best_params_, knn.best_score_ accuracy_score(Y_test, knn.best_estimator_.predict(X_test)) fig = plt.figure(figsize=(10, 5)) plot_decision_regions(X=X, y=Y.astype(np.integer), clf=knn.best_estimator_, legend=2) plt.title('KNN Decision Region Boundary', size=16); ###Output _____no_output_____ ###Markdown --- ###Code print("accuracy") print("svc:", accuracy_score(Y_test, svc.best_estimator_.predict(X_test))) print("knn:", accuracy_score(Y_test, knn.best_estimator_.predict(X_test))) ###Output accuracy svc: 0.7777777777777778 knn: 0.7222222222222222
Fig2_map_decadal_ohc.ipynb
###Markdown Figure 2: Spatial fields of decadal vertically integrated ocean heat content- evalutate **first cell** to load necessary modules - scroll down to **Plotting** to reproduce figure with derived fields ###Code import xarray as xr import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import matplotlib.patches as mpatches import cmocean as cmo import numpy as np import cartopy.crs as ccrs import cartopy import pandas as pd from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import matplotlib.ticker as mticker import warnings warnings.filterwarnings("ignore") import pandas as pd from scipy.interpolate import griddata from scipy.io import loadmat import datetime # from datetime import datetime import string import sys sys.path.append("./") # adds upper level to working directory\n from utils_iohc_ummenhofer2020 import deseason,ohc_anomaly,cut_indo,plot_map,finished_plot,add_ipo_bar,monte_carlo # where to save plots plotsave = 'plots/' datapath = '/vortexfs1/share/clidex/data/' # baseline period for anomalies base = ['1960-01-01','2012-12-31'] # paper # values for heat content calculation cp = 3994 # heat capacity rho = 1029 # reference density # cp and rho from https://xgcm.readthedocs.io/en/latest/example_eccov4.html # masks masktype = 'orca' # 'levitus' if masktype=='orca': mask = xr.open_dataset(datapath+'ORCA/mesh_files/new_maskglo.nc') elif masktype=='levitus': mask = xr.open_dataset('./data/mask_ind_levitus_orca.nc') ###Output _____no_output_____ ###Markdown Load data ###Code ################### load data ###################### zrange = slice(0,22) #3m-734m for temp data datapath2 = datapath+'publications/IOHC_Ummenhofer/' k003 = xr.open_dataset(datapath2 + 'K003.hindcast_temp_IndoPacific_30E_150W_70S_30N.nc', chunks={'x': 200, 'y': 200, 'time_counter': 200}).isel(deptht=zrange) k004 = xr.open_dataset(datapath2 + 'K004.thermhal90_temp_IndoPacific_30E_150W_70S_30N.nc', chunks={'x': 200, 'y': 200, 'time_counter': 200}).isel(deptht=zrange) k005 = xr.open_dataset(datapath2 + 'K005.wind90_temp_IndoPacific_30E_150W_70S_30N.nc', chunks={'x': 200, 'y': 200, 'time_counter': 200}).isel(deptht=zrange) ############################################################################### ############################# load mask ######################################## ############################################################################### # load mask %timeit # rename dimesion to match mask_orca = mask.rename({'X':'x', 'Y':'y'}).drop(['x','y']) # cut out indo region mask_orca = cut_indo(mask_orca['tmaskind']).to_dataset() ############################################################################### ############################ load mesh variables ############################### ############################################################################### # horizontal meshpath = datapath+'ORCA/mesh_files/' mesh = xr.open_dataset(meshpath + 'mesh_hgr.nc').sel(z=zrange) # spatical weights (e1t=zonal, e2t=meridional) e2t = mesh['e2t'] e2t = e2t.rename({'t':'time_counter'}).squeeze() e1t = mesh['e1t'] e1t = e1t.rename({'t':'time_counter'}).squeeze() # vertical mesh = xr.open_dataset(meshpath + 'mesh_zgr.nc').sel(z=zrange) # vertical weight e3t = mesh['e3t_0'] e3t = e3t.rename({'t':'time_counter', 'z':'deptht'}) e3t = e3t.squeeze() # also need to cut weights for multiplication w3 = cut_indo(e3t).to_dataset() w3["deptht"] = k003['deptht'] w2 = cut_indo(e2t) w1 = cut_indo(e1t) # temperature mask (not sure what this does exactly) tmask = xr.open_dataset(meshpath + 'mask.nc')['tmask'].isel(z=zrange) tmask = cut_indo(tmask) tmask = np.squeeze(tmask.rename({'z':'deptht'})) ###Output _____no_output_____ ###Markdown Vertically integrate OHC ###Code # mask_full = xr.ones_like(k003['votemper'][0,0,::]).to_dataset() # mask_full = mask_full.rename({'votemper':'tmaskind'}).load() # mask_full = mask_full*tmask[0,::].values # weights = w3['e3t_0'].values * tmask # ohc_k003_700 = ohc_anomaly(k003['votemper'],mask_full,weights=weights,dims=['deptht'],base=base) # ohc_k004_700 = ohc_anomaly(k004['votemper'],mask_full,weights=weights,dims=['deptht'],base=base) # ohc_k005_700 = ohc_anomaly(k005['votemper'],mask_full,weights=weights,dims=['deptht'],base=base) ###Output _____no_output_____ ###Markdown Monte Carlo for significanceBecause last panel consists of different number of years we need to run monte-carlo simulation multiple times ###Code # # two-tailed 90% significance # years=[10,7,3] # k003_p5 = {} # k004_p5 = {} # k005_p5 = {} # k004_k005_p5 ={} # k003_p95 = {} # k004_p95 = {} # k005_p95 = {} # k004_k005_p95 = {} # for yy in years: # [k003_p5[str(yy)+'yr'],k003_p95[str(yy)+'yr']] = monte_carlo(ohc_k003_700,duration=yy*12,n=1000,pval=5,timevar='time_counter') # [k004_p5[str(yy)+'yr'],k004_p95[str(yy)+'yr']] = monte_carlo(ohc_k004_700,duration=yy*12,n=1000,pval=5,timevar='time_counter') # [k005_p5[str(yy)+'yr'],k005_p95[str(yy)+'yr']] = monte_carlo(ohc_k005_700,duration=yy*12,n=1000,pval=5,timevar='time_counter') # [k004_k005_p5[str(yy)+'yr'],k004_k005_p95[str(yy)+'yr']] = monte_carlo(ohc_k004_700+ohc_k005_700, # duration=yy*12,n=1000,pval=5,timevar='time_counter') # # save each dictionary to separate file # for dic,name in zip([k003_p95,k003_p5,k004_p95,k004_p5,k005_p95,k005_p5,k004_k005_p95,k004_k005_p5], # ['k003_p95','k003_p5','k004_p95','k004_p5','k005_p95','k005_p5','k004_k005_p95','k004_k005_p5']): # np.savez('./data/fig3_' + name + '_two_tail_90p_base_1960_2012_n1000',**dic) ########## # save files will be loaded during plotting ###Output _____no_output_____ ###Markdown Plotting Load data ###Code # load saved files datapath2 = datapath+'publications/IOHC_Ummenhofer/' ohc_k003_700 = deseason(xr.open_dataset(datapath2+'k003_ohc_zint_700m.nc'),refperiod=base)['votemper'].sel(y=slice(200,None)) ohc_k004_700 = deseason(xr.open_dataset(datapath2+'k004_ohc_zint_700m.nc'),refperiod=base)['votemper'].sel(y=slice(200,None)) ohc_k005_700 = deseason(xr.open_dataset(datapath2+'k005_ohc_zint_700m.nc'),refperiod=base)['votemper'].sel(y=slice(200,None)) ###Output _____no_output_____ ###Markdown No stippling - much faster ###Code plt.rcParams.update({'font.size': 12}) fig,ax=plt.subplots(nrows=6,ncols=4,figsize=(12,10), subplot_kw = dict(projection=ccrs.PlateCarree(central_longitude=120))) plt.subplots_adjust(bottom=0.1, top=0.9, left=0.03, right=0.97, wspace=0.04, hspace=0.05) vmin=-1.5 vmax=1.5 cmap = plt.get_cmap('RdBu_r',len(np.arange(-1.2,1.2,0.1))) # loop over datasets and plot j=0 ll = 0 for ds in [ohc_k003_700,ohc_k004_700,ohc_k005_700,ohc_k004_700+ohc_k005_700]: # loop over time jj = 0 for year in np.arange(1960,2020,10): year2 = year+9 #print(year,year2) time_bnds = [str(year) + '-01-01',str(year2) + '-12-31'] hh = ax[jj,j].pcolormesh(ds.nav_lon,ds.nav_lat,(ds/1e09).sel(time_counter=slice(*time_bnds)).mean('time_counter'), transform=ccrs.PlateCarree(),cmap=cmap,vmin=vmin,vmax=vmax) ax[jj,j].gridlines(crs=ccrs.PlateCarree(),draw_labels=False, xlocs=[40,80,120,160,200,-160],ylocs=range(-60,60,30)) ax[jj,j].coastlines(resolution='50m') ax[jj,j].add_feature(cartopy.feature.LAND, color='lightgray') ax[jj,j].set_title(str(year) + '-' + str(year2),fontsize=10,loc='left',weight='bold') ax[jj,j].tick_params(axis="x", direction="out") ax[jj,j].tick_params(axis="y",direction="out") # ax[jj,j].set_extent((30,211,-40,31),crs=ccrs.PlateCarree()) ax[jj,j].set_extent((30,211,-40,31),crs=ccrs.PlateCarree()) ############ adjust labels for subplots ######################### gl = ax[jj,j].gridlines(crs=ccrs.PlateCarree(),draw_labels=True, xlocs=[40,80,120,160,-160],ylocs=range(-60,60,30)) gl.ylabels_right = False gl.xlabels_top = False # ylabels if j==0: gl.yformatter = LATITUDE_FORMATTER gl.ylabel_style = {'size':10} else: gl.ylabels_left = False # xlabels if jj==5: gl.xformatter = LONGITUDE_FORMATTER gl.xlabel_style = {'size':10} else: gl.xlabels_bottom = False t = ax[jj,j].text(0.02, 0.82, string.ascii_lowercase[ll]+')', transform=ax[jj,j].transAxes, size=11, weight='bold') t.set_bbox(dict(facecolor='w',boxstyle='square,pad=0.2')) jj=jj+1 # move to next row ll=ll+1 # for labels j=j+1 # move to next column # add colorbar cbaxes = fig.add_axes([0.25, 0.05, 0.5, 0.015]) cb = plt.colorbar(hh,orientation='horizontal', cax = cbaxes,extend='both',label='OHC anomaly [$10^{9}\,$J]') cb.ax.tick_params(labelsize=9) # fix title for bottom panels ax[5,0].set_title('2010-2016',fontsize=10,loc='left',weight='bold') ax[5,1].set_title('2010-2016',fontsize=10,loc='left',weight='bold') ax[5,2].set_title('2010-2016',fontsize=10,loc='left',weight='bold') ax[5,3].set_title('2010-2016',fontsize=10,loc='left',weight='bold') # add names for columns ax[0,0].text(0.5, 1.3, 'hindcast', transform=ax[0,0].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ax[0,1].text(0.5, 1.3, 'buoyancy', transform=ax[0,1].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ax[0,2].text(0.5, 1.3, 'wind', transform=ax[0,2].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ax[0,3].text(0.5, 1.3, 'buoyancy+wind', transform=ax[0,3].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ###Output _____no_output_____ ###Markdown Stippling ###Code plt.rcParams.update({'font.size': 12}) fig,ax=plt.subplots(nrows=6,ncols=4,figsize=(12,10), subplot_kw = dict(projection=ccrs.PlateCarree(central_longitude=120))) plt.subplots_adjust(bottom=0.1, top=0.9, left=0.03, right=0.97, wspace=0.04, hspace=0.05) vmin=-1.5 vmax=1.5 cmap = plt.get_cmap('RdBu_r',len(np.arange(-1.2,1.2,0.1))) nyears = 7 # need to change longitude values in order to have hatching plotted properly lon = ohc_k003_700.nav_lon.values lon[lon<0] = lon[lon<0]+360 lon=lon[300,:] lat=ohc_k003_700.nav_lat[:,200].values # loop over datasets and plot j=0 ll = 0 for ds,name95,name5 in zip([ohc_k003_700,ohc_k004_700,ohc_k005_700,ohc_k004_700+ohc_k005_700], ['k003_p95','k004_p95','k005_p95','k004_k005_p95'], ['k003_p5','k004_p5','k005_p5','k004_k005_p5']): p95 = dict(np.load('./data/fig3_' + name95 + '_two_tail_90p_base_1960_2012_n1000.npz')) p5 = dict(np.load('./data/fig3_' + name5 + '_two_tail_90p_base_1960_2012_n1000.npz')) # loop over time jj = 0 for year,i in zip(np.arange(1960,2020,10),range(6)): if i==5: year2 = year+nyears-1 dummy_p95 = p95[str(nyears)+'yr'] dummy_p5 = p5[str(nyears)+'yr'] else: year2 = year+9 dummy_p95 = p95['10yr'] dummy_p5 = p5['10yr'] #print(year,year2) time_bnds = [str(year) + '-01-01',str(year2) + '-12-31'] hh = ax[jj,j].pcolormesh(lon,lat,(ds/1e09).sel(time_counter=slice(*time_bnds)).mean('time_counter'), transform=ccrs.PlateCarree(),cmap=cmap,vmin=vmin,vmax=vmax) print('ohc done, now stippling') # significance mask = (xr.zeros_like(ds.sel(time_counter=slice(*time_bnds)).mean('time_counter')).values)*np.nan dummy = (ds.sel(time_counter=slice(*time_bnds)).mean('time_counter').values-dummy_p95) mask[dummy>=0]=1 dummy = (ds.sel(time_counter=slice(*time_bnds)).mean('time_counter').values-dummy_p5) mask[dummy<=0]=1 mask[ds[0,::].values==0] = np.nan ax[jj,j].pcolor(lon,ds.nav_lat,mask,hatch='...',alpha=0.,transform=ccrs.PlateCarree()) print('stippling done') ax[jj,j].gridlines(crs=ccrs.PlateCarree(),draw_labels=False, xlocs=[40,80,120,160,200,-160],ylocs=range(-60,60,30)) ax[jj,j].coastlines(resolution='50m') ax[jj,j].add_feature(cartopy.feature.LAND, color='lightgray') ax[jj,j].set_title(str(year) + '-' + str(year2),fontsize=10,loc='left',weight='bold') ax[jj,j].tick_params(axis="x", direction="out") ax[jj,j].tick_params(axis="y",direction="out") ax[jj,j].set_extent((30,211,-40,31),crs=ccrs.PlateCarree()) ############ adjust labels for subplots ######################### gl = ax[jj,j].gridlines(crs=ccrs.PlateCarree(),draw_labels=True, xlocs=[40,80,120,160,-160],ylocs=range(-60,60,30)) gl.ylabels_right = False gl.xlabels_top = False # ylabels if j==0: gl.yformatter = LATITUDE_FORMATTER gl.ylabel_style = {'size':10} else: gl.ylabels_left = False # xlabels if jj==5: gl.xformatter = LONGITUDE_FORMATTER gl.xlabel_style = {'size':10} else: gl.xlabels_bottom = False t = ax[jj,j].text(0.02, 0.82, string.ascii_lowercase[ll]+')', transform=ax[jj,j].transAxes, size=11, weight='bold') t.set_bbox(dict(facecolor='w',boxstyle='square,pad=0.2')) jj=jj+1 # move to next row ll=ll+1 # for labels print(str(year)) # print(j) j=j+1 # move to next column # add colorbar cbaxes = fig.add_axes([0.25, 0.05, 0.5, 0.015]) cb = plt.colorbar(hh,orientation='horizontal', cax = cbaxes,extend='both',label='OHC anomaly [$10^{9}\,$J]') cb.ax.tick_params(labelsize=9) # fix title for bottom panels ax[5,0].set_title('2010-2016',fontsize=10,loc='left',weight='bold') ax[5,1].set_title('2010-2016',fontsize=10,loc='left',weight='bold') ax[5,2].set_title('2010-2016',fontsize=10,loc='left',weight='bold') # add names for columns ax[0,0].text(0.5, 1.3, 'hindcast', transform=ax[0,0].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ax[0,1].text(0.5, 1.3, 'buoyancy', transform=ax[0,1].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ax[0,2].text(0.5, 1.3, 'wind', transform=ax[0,2].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ax[0,3].text(0.5, 1.3, 'buoyancy+wind', transform=ax[0,3].transAxes, size=11, weight='bold',horizontalalignment='center',bbox=dict(facecolor='w',edgecolor='k')) ###Output _____no_output_____
Scripts/WrGrowth.ipynb
###Markdown Scrape Data ###Code #set years you want YearStart = 2010 YearEnd = 2020 TBigDF = pd.DataFrame() for i in range((YearStart - 1), (YearEnd + 1)): tempurl1 = "https://www.pro-football-reference.com/years/" tempurl2 = "/receiving.htm" tempurl3 = str(i) tempurlF = tempurl1 + tempurl3 + tempurl2 page = requests.get(tempurlF) soup = BeautifulSoup(page.text, 'html.parser') table = soup.find_all('table') df = pd.read_html(str(table))[0] df['Year'] = i TBigDF = TBigDF.append(df) ###Output _____no_output_____ ###Markdown Wrangle data ###Code #here we make a copy of the df and were going to use that so we dont have to scrape again any time we change things BigDF = TBigDF.copy() BigDF = BigDF.loc[(BigDF['Pos'] == "WR") | (BigDF['Pos'] == "wr") | (BigDF['Pos'].isnull())] BigDF['Player'].replace('\*\+', '',inplace = True, regex = True) BigDF['Player'].replace('\+', '',inplace = True, regex = True) BigDF['Player'].replace('\*', '',inplace = True, regex = True) BigDF['Player'] = BigDF['Player'].str.strip() BigDF['Yds'] = BigDF['Yds'].astype(int) BigDF.reset_index(inplace = True) BigDF = BigDF.sort_values(['Player', 'Age']) RnSDF = BigDF.groupby('Player').head(2) temp = RnSDF['Player'].value_counts() RnSDF = RnSDF[RnSDF['Player'].isin(temp[temp>1].index)] RnSDF['FantasyPoints'] = (RnSDF['Yds'].astype(int) * .1) + (RnSDF['TD'].astype(int) * 6) RookieDF = RnSDF.drop_duplicates(subset='Player', keep='first') RookieDF = RookieDF.loc[RookieDF['Year']> (YearStart - 1)] #set the threshold to whatever you want between -3 and 3. the bigger the number, the more elite the rookie seasons you will be looking at threshold = 1.5 RookieDF = RookieDF[(stats.zscore(RookieDF.Yds) > threshold)] SophDF = RnSDF.drop_duplicates(subset='Player', keep='last') RnSDF = pd.merge(RookieDF, SophDF, how="inner", on='Player') RnSDF = RnSDF.loc[RnSDF['GS_y'].astype(int)>10] RnSDF['Growth'] = RnSDF['Yds_y'] - RnSDF['Yds_x'] RnSDF['PercentGrowth'] = ((RnSDF['Yds_y'] - RnSDF['Yds_x']) / RnSDF['Yds_x'])*100 ###Output _____no_output_____ ###Markdown Analyze data ###Code RnSDF.Growth.mean() #regress year 2 on to year 1 sns.lmplot(x='Yds_x',y='Yds_y', data=RnSDF,fit_reg=True, aspect=1.5) plt.xlabel("Rookie Season") plt.ylabel("Sophomore Season") plt.title("Growth of wr recieving yds from year 1 to year 2") slope, intercept, r_value, pv, se = stats.linregress(RnSDF.Yds_x.values,RnSDF.Yds_y.values) print('beta = ', slope,' , ', 'intercept = ', intercept) # regress growth onto year 1 sns.lmplot(x='Yds_x',y='Growth', data=RnSDF,fit_reg=True, aspect=1.5) plt.xlabel("Rookie Season") plt.ylabel("Growth") plt.title("Growth of wr recieving yds predicted by year 1 yds") slope, intercept1, r_value, pv, se = stats.linregress(RnSDF.Yds_x.values, RnSDF.Growth.values) print('beta = ', slope,' , ', 'intercept = ', intercept1) #regress growth as percentage onto year 1 sns.lmplot(x='Yds_x',y='PercentGrowth', data=RnSDF,fit_reg=True, aspect=1.5) plt.xlabel("Rookie Season") plt.ylabel("Percent Growth") plt.title("Percent Growth of wr recieving yds predicted by year 1 yds") slope, intercept, r_value, pv, se = stats.linregress(RnSDF.Yds_x.values, RnSDF.PercentGrowth.values) print('beta = ', slope,' , ', 'intercept = ', intercept) #regress growth of fantasy points year 2 onto year 1 sns.lmplot(x='FantasyPoints_x',y='FantasyPoints_y', data=RnSDF,fit_reg=True, aspect=1.5) plt.xlabel("Rookie Season Points") plt.ylabel("Sophomore Season Points") plt.title("Second season fantasy points predicted by Rookie Season fantasy points") slope, intercept, r_value, pv, se = stats.linregress(RnSDF.FantasyPoints_x.values,RnSDF.FantasyPoints_y.values) print('beta = ', slope,' , ', 'intercept = ', intercept) ###Output beta = 0.41445050337679895 , intercept = 94.57034984977835
PLGA_analysis/PLGA_water.ipynb
###Markdown PLGA/water system analysis N = 6 ###Code # For the right Rg calculation using MD Analysis, use trajactory without pbc n6_plga_wat = mda.Universe("n6plga_wat/n6plgaonly_wat.pdb", "n6plga_wat/nowat_n6plga.xtc") n6_plga_wat.trajectory len(n6_plga_wat.trajectory) #Select the polymer heavy atoms plga_n6wat = n6_plga_wat.select_atoms("resname sPLG PLG tPLG and not type H") crv_n6plga_wat = pers_length(plga_n6wat,6) crv_n6plga_wat com_bond = np.zeros(shape=(1,18000)) count = 0 for ts in n6_plga_wat.trajectory[0:18000]: n6_mon1_wat = n6_plga_wat.select_atoms("resid 1") n6_mon2_wat = n6_plga_wat.select_atoms("resid 2") oo_len = mda.analysis.distances.distance_array(n6_mon1_wat.center_of_mass(), n6_mon2_wat.center_of_mass(), box=n6_plga_wat.trajectory.ts.dimensions) com_bond[0, count] = oo_len count += 1 com_bond lb_avg_pn6 = np.mean(com_bond) lb_avg_pn6 np.std(com_bond) ###Output _____no_output_____ ###Markdown Radius of Gyration vs. time N = 6 PLGA/water system ###Code n6plga_rgens_wat, cor_n6plga_wat, N6plga_cos_wat, rgwat_n6plga = get_rg_pers_poly(plga_n6wat, n6_plga_wat, 0, 18000) n6plga_rgens_wat[0].shape cor_n6plga_wat[3] N6plga_cos_wat rgwat_n6plga np.std(n6plga_rgens_wat) trj_len = np.arange(18000) #trj_len += 1 trj_len plt.figure(figsize=(7,7)) plt.title(r'PLGA Radius of Gyration', fontsize=18, y=1.01) plt.xlabel(r'Time [ns]', fontsize=15) plt.ylabel(r'$R_{g}$ [nm]', fontsize=15) plt.plot(trj_len/100, n6plga_rgens_wat[0]/10,linewidth=2, color='#CCBE9F') plt.tick_params(labelsize=14) plt.legend(['N = 6 in water'], frameon=False, fontsize=14) #plt.text(127, 0.96,r'N = 6 in water', fontsize=18, color='#1F2E69', family='Arial') plt.xlim(0,180) plt.ylim(0.2,2) ###Output _____no_output_____ ###Markdown Relaxation times vs monomer length ###Code # Key variables # def pos_bead_autocorr_RA(polymer_atoms, universe, n_monomers, t_corr, start, end): n_mon = 6 start = 0 end = 18000 t_corr = 1000 window_shift = 20 s_time = timeit.default_timer() tcRA_plgan6wat, tcSUM_plgan6wat = pos_bead_autocorr_RA(plga_n6wat, n6_plga_wat, n_mon, t_corr, window_shift, start, end) timeit.default_timer() - s_time tcSUM_plgan6wat.shape ###Output _____no_output_____ ###Markdown Fitting autocorrelation data ###Code xdata_n6wat = tcRA_plgan6wat[1]/100 ydata_n6wat = tcRA_plgan6wat[0] ydata_n6wat.shape xdata_n6wat.shape s_n6 =[2 for i in range(len(xdata_n6wat))] plt.figure(figsize=(8,8)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcRA_plgan6wat[1]/100, tcRA_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.yscale('symlog', linthreshy=0.5) plt.xscale('symlog') plt.grid(b=True) plt.xlim(0,30) plt.ylim(-1,1) plt.tick_params(labelsize=18, direction='in', which='both', width=1, length=10) rouse_relax(1, 2, 6) zimm_relax(1, 2, 0.1, 6) def res_polyn6wat(variabls, xnp, ynp): hs_np = variabls['h_star'] tr1_np = variabls['t_first'] n_m = 6 testnp = [] for i in range(len(xnp)): model_ynp = zimm_relax(xnp[i], tr1_np, hs_np, n_m) #model_ynp = rouse_relax(xnp[i], tr1_np, n_m) testnp.append(ynp[i] - model_ynp) tt_n30 = np.array(testnp) return tt_n30 #x1 = np.array([0,0]) #pfit, pcov, infodict, errmsg, success = leastsq(res_poly, x1, args=(xdata, ydata), full_output=1) from lmfit import Minimizer, Parameters, report_fit pfit_n6wat = Parameters() pfit_n6wat.add(name='h_star', value=0, min=0, max=0.26, vary=True) pfit_n6wat.add(name='t_first', value=2) mini_n6wat = Minimizer(res_polyn6wat, pfit_n6wat, fcn_args=(xdata_n6wat, ydata_n6wat)) out_n6wat = mini_n6wat.leastsq() #bfit_n10 = ydata_n10ace + out_n10ace.residual report_fit(out_n6wat.params) out_n6wat.params twat_n6plga = [] for i in range(len(xdata_n6wat)): twat_n6plga.append(zimm_relax(xdata_n6wat[i], 0.28, 0.26, n_mon)) s_n6 =[2 for i in range(len(xdata_n6wat))] plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcorr_plgan6wat[1]/100, tcorr_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.plot(xdata_n6wat, twat_n6plga, color='#CCBE9F') plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) rwat_msen6 = np.array([tcorr_plgan6wat[0] - np.array(twat_n6plga)]) rwat_msen6 plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" s_n6 =[2 for i in range(len(xdata_n6wat))] plt.scatter(xdata_n6wat, rwat_msen6, color='#CCBE9F', s=s_n6) plt.title(r'Relaxation time Fitting Residuals PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('Residuals', fontsize=18) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) ###Output _____no_output_____ ###Markdown Correlation values at each arc length for the whole 180 ns trajectory, N = 6 PLGA/water system ###Code # x values blen_wat = cor_n6plga_wat[3]*lb_avg_pn6 #nt_tt[0] = 0 blen_wat mk_n6p_wat = cor_n6plga_wat[1]/cor_n6plga_wat[0] mk_n6p_wat plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='b', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') # All the points give the best fits for N = 6 peg in water n6_blksplga_wat , n6plga_lpwat = bavg_pers_cnt(5, plga_n6wat, n6_plga_wat, lb_avg_pn6, 3, 3000 , 18000) n6_blksplga_wat n6plga_lpwat n6plga_lpwat[2] np.mean(n6plga_lpwat[3]) def line_fit(slope, x): return slope*x blen_wat gg_n6plga_wat = line_fit(np.mean(n6plga_lpwat[2]),blen_wat) gg_n6plga_wat ###Output _____no_output_____ ###Markdown Block averaged Radius of gyration and persistence length, N = 6 PLGA/water system ###Code np.mean(n6_blksplga_wat["Avg persistence length"]) np.std(n6_blksplga_wat["Avg persistence length"]) np.mean(n6_blksplga_wat["Avg Radius of gyration"]) np.std(n6_blksplga_wat["Avg Radius of gyration"]) plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='b', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.plot(blen_wat, gg_n6plga_wat, color='b') plt.title(r'Ensemble Averaged ln(Cosine $\theta$) in water', fontsize=15, y=1.01) plt.xlabel(r'Bond Length', fontsize=15) plt.ylabel(r'ln$\left< Cos(\theta)\right >$', fontsize=15) #plt.ylim(-1.9,0) font = font_manager.FontProperties(family='Arial', style='normal', size='14') plt.tick_params(labelsize=14) plt.text(0.5, -1.82,r'$N_{PLGA}$ = 6: $L_{p}$ = 16.0 $\AA$ ± 1.73 $\AA$', fontsize=15, color='b') #plt.text(5,-0.15,r'R$^{2}$ = 0.98', fontsize=15, color='blue') rgplga_olig_wat = pd.DataFrame(data=n6_blksplga_wat["Avg Radius of gyration"] , columns=['$R_{g}$ [Angstrom] N = 6 PLGA in water']) rgplga_olig_wat pers_plgat_wat = pd.DataFrame(data=n6_blksplga_wat["Avg persistence length"] , columns=[r"$L_{p}$ [Angstrom] N = 6 PLGA in water"]) pers_plgat_wat ###Output _____no_output_____ ###Markdown N = 8 PLGA/water system ###Code # For the right Rg calculation using MD Analysis, use trajactory without pbc n8_plga_wat = mda.Universe("n8plga_wat/n8plgaonly_wat.pdb", "n8plga_wat/nowat_n8plga.xtc") n8_plga_wat.trajectory len(n8_plga_wat.trajectory) #Select the polymer heavy atoms plga_n8wat = n8_plga_wat.select_atoms("resname sPLG PLG tPLG and not type H") crv_n8plga_wat = pers_length(plga_n8wat,8) crv_n8plga_wat com_bond_n8wat = np.zeros(shape=(1,18000)) count = 0 for ts in n8_plga_wat.trajectory[0:18000]: n8_mon1_wat = n8_plga_wat.select_atoms("resid 1") n8_mon2_wat = n8_plga_wat.select_atoms("resid 2") oo_len = mda.analysis.distances.distance_array(n8_mon1_wat.center_of_mass(), n8_mon2_wat.center_of_mass(), box=n8_plga_wat.trajectory.ts.dimensions) com_bond_n8wat[0, count] = oo_len count += 1 com_bond np.std(com_bond) lb_avg_pn6 = np.mean(com_bond) lb_avg_pn6 np.mean(com_bond_n8wat) np.std(com_bond_n8wat) ###Output _____no_output_____ ###Markdown Radius of Gyration vs. time N = 8 PLGA/water system ###Code n8plga_rgens_wat, cor_n8plga_wat, N8plga_cos_wat, rgwat_n8plga = get_rg_pers_poly(plga_n8wat, n8_plga_wat, 0, 18000) n8plga_rgens_wat[0].shape cor_n8plga_wat[3] N8plga_cos_wat rgwat_n8plga np.std(n8plga_rgens_wat) plt.figure(figsize=(7,7)) plt.title(r'PLGA Radius of Gyration', fontsize=18, y=1.01) plt.xlabel(r'Time [ns]', fontsize=15) plt.ylabel(r'$R_{g}$ [nm]', fontsize=15) plt.plot(trj_len/100, n6plga_rgens_wat[0]/10,linewidth=2, color='#CCBE9F') plt.plot(trj_len/100, n8plga_rgens_wat[0]/10,linewidth=2, color='#601A4A') plt.tick_params(labelsize=14) plt.legend(['N = 6 in water','N = 8 in water'], frameon=False, fontsize=14) #plt.text(127, 0.96,r'N = 6 in water', fontsize=18, color='#1F2E69', family='Arial') plt.xlim(0,180) plt.ylim(0.2,2) ###Output _____no_output_____ ###Markdown Relaxation times vs monomer length ###Code # Key variables # def pos_bead_autocorr_RA(polymer_atoms, universe, n_monomers, t_corr, start, end): n8_mon = 8 start = 0 end = 18000 t_corr = 1000 window_shift = 20 s_time = timeit.default_timer() tcRA_plgan8wat, tcSUM_plgan8wat = pos_bead_autocorr_RA(plga_n8wat, n8_plga_wat, n8_mon, t_corr, window_shift, start, end) timeit.default_timer() - s_time tcSUM_plgan8wat.shape ###Output _____no_output_____ ###Markdown Fitting autocorrelation data ###Code xdata_n8wat = tcRA_plgan8wat[1]/100 ydata_n8wat = tcRA_plgan8wat[0] ydata_n8wat.shape xdata_n8wat.shape s_n8 =[2 for i in range(len(xdata_n8wat))] plt.figure(figsize=(8,8)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcRA_plgan6wat[1]/100, tcRA_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcRA_plgan8wat[1]/100, tcRA_plgan8wat[0], color='#601A4A', s=s_n8) plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.yscale('symlog', linthreshy=0.5) plt.xscale('symlog') plt.grid(b=True) plt.xlim(0,30) plt.ylim(-1,1) plt.tick_params(labelsize=18, direction='in', which='both', width=1, length=10) def res_polyn8wat(variabls, xnp, ynp): hs_np = variabls['h_star'] tr1_np = variabls['t_first'] n_m = 8 testnp = [] for i in range(len(xnp)): model_ynp = zimm_relax(xnp[i], tr1_np, hs_np, n_m) #model_ynp = rouse_relax(xnp[i], tr1_np, n_m) testnp.append(ynp[i] - model_ynp) tt_n30 = np.array(testnp) return tt_n30 #x1 = np.array([0,0]) #pfit, pcov, infodict, errmsg, success = leastsq(res_poly, x1, args=(xdata, ydata), full_output=1) pfit_n8wat = Parameters() pfit_n8wat.add(name='h_star', value=0, min=0, max=0.26, vary=True) pfit_n8wat.add(name='t_first', value=2) mini_n8wat = Minimizer(res_polyn8wat, pfit_n8wat, fcn_args=(xdata_n8wat, ydata_n8wat)) out_n8wat = mini_n8wat.leastsq() #bfit_n10 = ydata_n10ace + out_n10ace.residual report_fit(out_n8wat.params) out_n8wat.params twat_n8plga = [] for i in range(len(xdata_n8wat)): twat_n8plga.append(zimm_relax(xdata_n8wat[i], 0.53, 0.26, n_mon)) s_n8 =[2 for i in range(len(xdata_n8wat))] plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcorr_plgan6wat[1]/100, tcorr_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcorr_plgan8wat[1]/100, tcorr_plgan8wat[0], color='#601A4A', s=s_n8) plt.plot(xdata_n6wat, twat_n6plga, color='#CCBE9F') plt.plot(xdata_n8wat, twat_n8plga, color='#601A4A') plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) rwat_msen8 = np.array([tcorr_plgan8wat[0] - np.array(twat_n8plga)]) rwat_msen8 plt.figure(figsize=(10,10)) s_n6 =[2 for i in range(len(xdata_n8wat))] plt.rcParams["font.family"] = "Arial" plt.scatter(xdata_n6wat, rwat_msen6, color='#CCBE9F', s=s_n6) plt.scatter(xdata_n8wat, rwat_msen8, color='#601A4A', s=s_n8) plt.title(r'Relaxation time Fitting Residuals PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('Residuals', fontsize=18) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) ###Output _____no_output_____ ###Markdown Correlation values at each arc length for the whole 180 ns trajectory, N = 8 PLGA/water system ###Code # x values blen_n8wat = cor_n8plga_wat[3]*lb_avg_pn6 #nt_tt[0] = 0 blen_n8wat mk_n8p_wat = cor_n8plga_wat[1]/cor_n8plga_wat[0] mk_n8p_wat plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') # All the points give the best fits for N = 6 peg in water n8_blksplga_wat , n8plga_lpwat = bavg_pers_cnt(5, plga_n8wat, n8_plga_wat, lb_avg_pn6, 4, 3000 , 18000) n8_blksplga_wat n8plga_lpwat n8plga_lpwat[2] np.mean(n8plga_lpwat[3]) blen_n8wat gg_n8plga_wat = line_fit(np.mean(n8plga_lpwat[2]),blen_n8wat) gg_n6plga_n8wat = line_fit(np.mean(n6plga_lpwat[2]),blen_n8wat) gg_n8plga_wat ###Output _____no_output_____ ###Markdown Block averaged Radius of gyration and persistence length, N = 8 PLGA/water system ###Code np.mean(n8_blksplga_wat["Avg persistence length"]) np.std(n8_blksplga_wat["Avg persistence length"]) np.mean(n8_blksplga_wat["Avg Radius of gyration"]) np.std(n8_blksplga_wat["Avg Radius of gyration"]) plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.plot(blen_n8wat, gg_n6plga_n8wat, color='#CCBE9F') plt.plot(blen_n8wat, gg_n8plga_wat, color='#601A4A') plt.title(r'Ensemble Averaged ln(Cosine $\theta$) in water', fontsize=15, y=1.01) plt.xlabel(r'Bond Length', fontsize=15) plt.ylabel(r'ln$\left< Cos(\theta)\right >$', fontsize=15) plt.ylim(-7,1) plt.xlim(0,165) font = font_manager.FontProperties(family='Arial', style='normal', size='14') #plt.legend([r'$N_{PEG}$ = 6: $L_{p}$ = 10.7 $\AA$ ± 1.62 $\AA$'], loc=3, frameon=0, fontsize=14, prop=font) plt.tick_params(labelsize=14) plt.text(0.5, -6.92,r'$N_{PLGA}$ = 6: $L_{p}$ = 16.0 $\AA$ ± 1.73 $\AA$', fontsize=15, color='#CCBE9F') plt.text(0.5, -6.54,r'$N_{PLGA}$ = 8: $L_{p}$ = 17.2 $\AA$ ± 2.13 $\AA$', fontsize=15, color='#601A4A') rgplga_olig_wat[r"$R_{g}$ [Angstrom] N = 8 PLGA in water"] = n8_blksplga_wat["Avg Radius of gyration"] rgplga_olig_wat pers_plgat_wat[r"$L_{p}$ [Angstrom] N = 8 PLGA in water"] = n8_blksplga_wat["Avg persistence length"] pers_plgat_wat ###Output _____no_output_____ ###Markdown N = 10 PLGA/water system ###Code # For the right Rg calculation using MD Analysis, use trajactory without pbc n10_plga_wat = mda.Universe("n10plga_wat/n10plgaonly_wat.pdb", "n10plga_wat/nowat_n10plga.xtc") n10_plga_wat.trajectory len(n10_plga_wat.trajectory) #Select the polymer heavy atoms plga_n10wat = n10_plga_wat.select_atoms("resname sPLG PLG tPLG and not type H") crv_n10plga_wat = pers_length(plga_n10wat,10) crv_n10plga_wat com_bond_n10wat = np.zeros(shape=(1,18000)) count = 0 for ts in n10_plga_wat.trajectory[0:18000]: n10_mon1_wat = n10_plga_wat.select_atoms("resid 1") n10_mon2_wat = n10_plga_wat.select_atoms("resid 2") oo_len = mda.analysis.distances.distance_array(n10_mon1_wat.center_of_mass(), n10_mon2_wat.center_of_mass(), box=n10_plga_wat.trajectory.ts.dimensions) com_bond_n10wat[0, count] = oo_len count += 1 com_bond np.std(com_bond) lb_avg_pn6 = np.mean(com_bond) lb_avg_pn6 np.mean(com_bond_n10wat) np.std(com_bond_n10wat) ###Output _____no_output_____ ###Markdown Radius of Gyration vs. time N = 10 PLGA/water system ###Code n10plga_rgens_wat, cor_n10plga_wat, N10plga_cos_wat, rgwat_n10plga = get_rg_pers_poly(plga_n10wat, n10_plga_wat, 0, 18000) n10plga_rgens_wat[0].shape cor_n10plga_wat[3] N10plga_cos_wat rgwat_n10plga np.std(n10plga_rgens_wat) plt.figure(figsize=(7,7)) plt.title(r'PLGA Radius of Gyration', fontsize=18, y=1.01) plt.xlabel(r'Time [ns]', fontsize=15) plt.ylabel(r'$R_{g}$ [nm]', fontsize=15) plt.plot(trj_len/100, n6plga_rgens_wat[0]/10,linewidth=2, color='#CCBE9F') plt.plot(trj_len/100, n8plga_rgens_wat[0]/10,linewidth=2, color='#601A4A') plt.plot(trj_len/100, n10plga_rgens_wat[0]/10,linewidth=2, color='#2B6322') plt.tick_params(labelsize=14) plt.legend(['N = 6 in water','N = 8 in water','N = 10 in water'], frameon=False, fontsize=14) #plt.text(127, 0.96,r'N = 6 in water', fontsize=18, color='#1F2E69', family='Arial') plt.xlim(0,180) plt.ylim(0.2,2) ###Output _____no_output_____ ###Markdown Relaxation times vs monomer length ###Code # Key variables # def pos_bead_autocorr_RA(polymer_atoms, universe, n_monomers, t_corr, start, end): n10_mon = 10 start = 0 end = 18000 t_corr = 1000 window_shift = 20 s_time = timeit.default_timer() tcRA_plgan10wat, tcSUM_plgan10wat = pos_bead_autocorr_RA(plga_n10wat, n10_plga_wat, n10_mon, t_corr, window_shift, start, end) timeit.default_timer() - s_time tcSUM_plgan10wat.shape ###Output _____no_output_____ ###Markdown Fitting autocorrelation data ###Code xdata_n10wat = tcRA_plgan10wat[1]/100 ydata_n10wat = tcRA_plgan10wat[0] xdata_n10wat.shape ydata_n10wat.shape s_n10 =[2 for i in range(len(xdata_n10wat))] plt.figure(figsize=(8,8)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcRA_plgan6wat[1]/100, tcRA_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcRA_plgan8wat[1]/100, tcRA_plgan8wat[0], color='#601A4A', s=s_n8) plt.scatter(tcRA_plgan10wat[1]/100, tcRA_plgan10wat[0], color='#2B6322', s=s_n10) plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.yscale('symlog', linthreshy=0.5) plt.xscale('symlog') plt.grid(b=True) plt.xlim(0,30) plt.ylim(-1,1) plt.tick_params(labelsize=18, direction='in', which='both', width=1, length=10) def res_polyn10wat(variabls, xnp, ynp): hs_np = variabls['h_star'] tr1_np = variabls['t_first'] n_m = 10 testnp = [] for i in range(len(xnp)): model_ynp = zimm_relax(xnp[i], tr1_np, hs_np, n_m) #model_ynp = rouse_relax(xnp[i], tr1_np, n_m) testnp.append(ynp[i] - model_ynp) tt_n30 = np.array(testnp) return tt_n30 #x1 = np.array([0,0]) #pfit, pcov, infodict, errmsg, success = leastsq(res_poly, x1, args=(xdata, ydata), full_output=1) pfit_n10wat = Parameters() pfit_n10wat.add(name='h_star', value=0, min=0, max=0.26, vary=True) pfit_n10wat.add(name='t_first', value=2) mini_n10wat = Minimizer(res_polyn10wat, pfit_n10wat, fcn_args=(xdata_n10wat, ydata_n10wat)) out_n10wat = mini_n10wat.leastsq() #bfit_n10 = ydata_n10ace + out_n10ace.residual report_fit(out_n10wat.params) out_n10wat.params twat_n10plga = [] for i in range(len(xdata_n10wat)): twat_n10plga.append(zimm_relax(xdata_n10wat[i], 1.82, 3.24e-6, n_mon)) s_n10 =[2 for i in range(len(xdata_n10wat))] plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcorr_plgan6wat[1]/100, tcorr_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcorr_plgan8wat[1]/100, tcorr_plgan8wat[0], color='#601A4A', s=s_n8) plt.scatter(tcorr_plgan10wat[1]/100, tcorr_plgan10wat[0], color='#2B6322', s=s_n10) plt.plot(xdata_n6wat, twat_n6plga, color='#CCBE9F') plt.plot(xdata_n8wat, twat_n8plga, color='#601A4A') plt.plot(xdata_n10wat, twat_n10plga, color='#2B6322') plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) rwat_msen10 = np.array([tcorr_plgan10wat[0] - np.array(twat_n10plga)]) rwat_msen10 plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" s_n10 =[2 for i in range(len(xdata_n10wat))] plt.scatter(xdata_n6wat, rwat_msen6, color='#CCBE9F', s=s_n6) plt.scatter(xdata_n8wat, rwat_msen8, color='#601A4A', s=s_n8) plt.scatter(xdata_n10wat, rwat_msen10, color='#2B6322', s=s_n10) plt.title(r'Relaxation time Fitting Residuals PLGA in DMSO', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('Residuals', fontsize=18) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) ###Output _____no_output_____ ###Markdown Correlation values at each arc length for the whole 180 ns trajectory, N = 10 PLGA/water system ###Code # x values blen_n10wat = cor_n10plga_wat[3]*lb_avg_pn6 #nt_tt[0] = 0 blen_n10wat mk_n10p_wat = cor_n10plga_wat[1]/cor_n10plga_wat[0] mk_n10p_wat plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n10wat, np.log(cor_n10plga_wat[0]), yerr=mk_n10p_wat, color='#2B6322', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') # All the points give the best fits for N = 6 peg in water n10_blksplga_wat , n10plga_lpwat = bavg_pers_cnt(5, plga_n10wat, n10_plga_wat, lb_avg_pn6, 4, 3000 , 18000) n10_blksplga_wat n10plga_lpwat n10plga_lpwat[2] np.mean(n10plga_lpwat[3]) blen_n10wat gg_n10plga_wat = line_fit(np.mean(n10plga_lpwat[2]),blen_n10wat) gg_n6plga_n10wat = line_fit(np.mean(n6plga_lpwat[2]),blen_n10wat) gg_n8plga_n10wat = line_fit(np.mean(n8plga_lpwat[2]),blen_n10wat) gg_n10plga_wat ###Output _____no_output_____ ###Markdown Block averaged Radius of gyration and persistence length, N = 10 PLGA/acetone system ###Code np.mean(n10_blksplga_wat["Avg persistence length"]) np.std(n10_blksplga_wat["Avg persistence length"]) np.mean(n10_blksplga_wat["Avg Radius of gyration"]) np.std(n10_blksplga_wat["Avg Radius of gyration"]) plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n10wat, np.log(cor_n10plga_wat[0]), yerr=mk_n10p_wat, color='#2B6322', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.plot(blen_n10wat, gg_n6plga_n10wat, color='#CCBE9F') plt.plot(blen_n10wat, gg_n8plga_n10wat, color='#601A4A') plt.plot(blen_n10wat, gg_n10plga_wat, color='#2B6322') plt.title(r'Ensemble Averaged ln(Cosine $\theta$) in acetone', fontsize=15, y=1.01) plt.xlabel(r'Bond Length', fontsize=15) plt.ylabel(r'ln$\left< Cos(\theta)\right >$', fontsize=15) plt.ylim(-7,1) plt.xlim(0,165) font = font_manager.FontProperties(family='Arial', style='normal', size='14') #plt.legend([r'$N_{PEG}$ = 6: $L_{p}$ = 10.7 $\AA$ ± 1.62 $\AA$'], loc=3, frameon=0, fontsize=14, prop=font) plt.tick_params(labelsize=14) plt.text(0.5, -6.92,r'$N_{PLGA}$ = 6: $L_{p}$ = 16.0 $\AA$ ± 1.73 $\AA$', fontsize=15, color='#CCBE9F') plt.text(0.5, -6.54,r'$N_{PLGA}$ = 8: $L_{p}$ = 17.2 $\AA$ ± 2.13 $\AA$', fontsize=15, color='#601A4A') plt.text(0.5, -6.14,r'$N_{PLGA}$ = 10: $L_{p}$ = 15.8 $\AA$ ± 1.01 $\AA$', fontsize=15, color='#2B6322') rgplga_olig_wat[r"$R_{g}$ [Angstrom] N = 10 PLGA in water"] = n10_blksplga_wat["Avg Radius of gyration"] rgplga_olig_wat pers_plgat_wat[r"$L_{p}$ [Angstrom] N = 10 PLGA in water"] = n10_blksplga_wat["Avg persistence length"] pers_plgat_wat ###Output _____no_output_____ ###Markdown N = 20 PLGA/water system ###Code # For the right Rg calculation using MD Analysis, use trajactory without pbc n20_plga_wat = mda.Universe("n20plga_wat/n20plgaonly_wat.pdb", "n20plga_wat/nowat_n20plga.xtc") n20_plga_wat.trajectory len(n20_plga_wat.trajectory) #Select the polymer heavy atoms plga_n20wat = n20_plga_wat.select_atoms("resname sPLG PLG tPLG and not type H") crv_n20plga_wat = pers_length(plga_n20wat,20) crv_n20plga_wat com_bond_n20wat = np.zeros(shape=(1,18000)) count = 0 for ts in n20_plga_wat.trajectory[0:18000]: n20_mon1_wat = n20_plga_wat.select_atoms("resid 1") n20_mon2_wat = n20_plga_wat.select_atoms("resid 2") oo_len = mda.analysis.distances.distance_array(n20_mon1_wat.center_of_mass(), n20_mon2_wat.center_of_mass(), box=n20_plga_wat.trajectory.ts.dimensions) com_bond_n20wat[0, count] = oo_len count += 1 com_bond np.std(com_bond) lb_avg_pn6 = np.mean(com_bond) lb_avg_pn6 np.mean(com_bond_n20wat) np.std(com_bond_n20wat) ###Output _____no_output_____ ###Markdown Radius of Gyration vs. time N = 20 PLGA/water system ###Code n20plga_rgens_wat, cor_n20plga_wat, N20plga_cos_wat, rgwat_n20plga = get_rg_pers_poly(plga_n20wat, n20_plga_wat, 0, 18000) n20plga_rgens_wat[0].shape cor_n20plga_wat[3] N20plga_cos_wat rgwat_n20plga np.std(n20plga_rgens_wat) plt.figure(figsize=(7,7)) plt.title(r'PLGA Radius of Gyration', fontsize=18, y=1.01) plt.xlabel(r'Time [ns]', fontsize=15) plt.ylabel(r'$R_{g}$ [nm]', fontsize=15) plt.plot(trj_len/100, n6plga_rgens_wat[0]/10,linewidth=2, color='#CCBE9F') plt.plot(trj_len/100, n8plga_rgens_wat[0]/10,linewidth=2, color='#601A4A') plt.plot(trj_len/100, n10plga_rgens_wat[0]/10,linewidth=2, color='#2B6322') plt.plot(trj_len/100, n20plga_rgens_wat[0]/10,linewidth=2, color='#562A8B') plt.tick_params(labelsize=14) plt.legend(['N = 6 in water','N = 8 in water','N = 10 in water','N = 20 in water'], frameon=False, fontsize=14) #plt.text(127, 0.96,r'N = 6 in water', fontsize=18, color='#1F2E69', family='Arial') plt.xlim(0,180) plt.ylim(0.2,2) ###Output _____no_output_____ ###Markdown Relaxation times vs monomer length ###Code # Key variables # def pos_bead_autocorr_RA(polymer_atoms, universe, n_monomers, t_corr, start, end): n20_mon = 20 start = 0 end = 18000 t_corr = 2500 window_shift = 20 s_time = timeit.default_timer() tcRA_plgan20wat, tcSUM_plgan20wat = pos_bead_autocorr_RA(plga_n20wat, n20_plga_wat, n20_mon, t_corr, window_shift, start, end) timeit.default_timer() - s_time tcSUM_plgan20wat.shape ###Output _____no_output_____ ###Markdown Fitting autocorrelation data ###Code xdata_n20wat = tcRA_plgan20wat[1]/100 ydata_n20wat = tcRA_plgan20wat[0] xdata_n20wat.shape xdata_n20wat.shape s_n20 =[2 for i in range(len(xdata_n20wat))] plt.figure(figsize=(8,8)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcRA_plgan6wat[1]/100, tcRA_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcRA_plgan8wat[1]/100, tcRA_plgan8wat[0], color='#601A4A', s=s_n8) plt.scatter(tcRA_plgan10wat[1]/100, tcRA_plgan10wat[0], color='#2B6322', s=s_n10) plt.scatter(tcRA_plgan20wat[1]/100, tcRA_plgan20wat[0], color='#562A8B', s=s_n20) plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.yscale('symlog', linthreshy=0.5) plt.xscale('symlog') plt.grid(b=True) plt.xlim(0,30) plt.ylim(-1,1) plt.tick_params(labelsize=18, direction='in', which='both', width=1, length=10) def res_polyn20wat(variabls, xnp, ynp): hs_np = variabls['h_star'] tr1_np = variabls['t_first'] n_m = 20 testnp = [] for i in range(len(xnp)): model_ynp = zimm_relax(xnp[i], tr1_np, hs_np, n_m) #model_ynp = rouse_relax(xnp[i], tr1_np, n_m) testnp.append(ynp[i] - model_ynp) tt_n30 = np.array(testnp) return tt_n30 #x1 = np.array([0,0]) #pfit, pcov, infodict, errmsg, success = leastsq(res_poly, x1, args=(xdata, ydata), full_output=1) pfit_n20wat = Parameters() pfit_n20wat.add(name='h_star', value=0, min=0, max=0.26, vary=True) pfit_n20wat.add(name='t_first', value=2) mini_n20wat = Minimizer(res_polyn20wat, pfit_n20wat, fcn_args=(xdata_n20wat, ydata_n20wat)) out_n20wat = mini_n20wat.leastsq() #bfit_n10 = ydata_n10ace + out_n10ace.residual report_fit(out_n20wat.params) out_n20wat.params twat_n20plga = [] for i in range(len(xdata_n20wat)): twat_n20plga.append(zimm_relax(xdata_n20wat[i], 0.96, 0.26, n_mon)) s_n20 =[2 for i in range(len(xdata_n20wat))] plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcorr_plgan6wat[1]/100, tcorr_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcorr_plgan8wat[1]/100, tcorr_plgan8wat[0], color='#601A4A', s=s_n8) plt.scatter(tcorr_plgan10wat[1]/100, tcorr_plgan10wat[0], color='#2B6322', s=s_n10) plt.scatter(tcorr_plgan20wat[1]/100, tcorr_plgan20wat[0], color='#562A8B', s=s_n20) plt.plot(xdata_n6wat, twat_n6plga, color='#CCBE9F') plt.plot(xdata_n8wat, twat_n8plga, color='#601A4A') plt.plot(xdata_n10wat, twat_n10plga, color='#2B6322') plt.plot(xdata_n20wat, twat_n20plga, color='#562A8B') plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) rwat_msen20 = np.array([tcorr_plgan20wat[0] - np.array(twat_n20plga)]) rwat_msen20 plt.figure(figsize=(10,10)) s_n20 =[2 for i in range(len(xdata_n20wat))] plt.rcParams["font.family"] = "Arial" plt.scatter(xdata_n6wat, rwat_msen6, color='#CCBE9F', s=s_n6) plt.scatter(xdata_n8wat, rwat_msen8, color='#601A4A', s=s_n8) plt.scatter(xdata_n10wat, rwat_msen10, color='#2B6322', s=s_n10) plt.scatter(xdata_n20wat, rwat_msen20, color='#562A8B', s=s_n20) plt.title(r'Relaxation time Fitting Residuals PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('Residuals', fontsize=18) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) font = font_manager.FontProperties(family='Cambria', style='normal', size='15') plt.tick_params(labelsize=15) ###Output _____no_output_____ ###Markdown Correlation values at each arc length for the whole 180 ns trajectory, N = 20 PLGA/water system ###Code # x values blen_n20wat = cor_n20plga_wat[3]*lb_avg_pn6 #nt_tt[0] = 0 blen_n20wat mk_n20p_wat = cor_n20plga_wat[1]/cor_n20plga_wat[0] mk_n20p_wat plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n10wat, np.log(cor_n10plga_wat[0]), yerr=mk_n10p_wat, color='#2B6322', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n20wat, np.log(cor_n20plga_wat[0]), yerr=mk_n20p_wat, color='#562A8B', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') # All the points give the best fits for N = 6 peg in water n20_blksplga_wat, n20plga_lpwat = bavg_pers_cnt(5, plga_n20wat, n20_plga_wat, lb_avg_pn6, 4, 3000 , 18000) n20_blksplga_wat n20plga_lpwat n20plga_lpwat[2] np.mean(n20plga_lpwat[3]) blen_n20wat gg_n20plga_wat = line_fit(np.mean(n20plga_lpwat[2]),blen_n20wat) gg_n6plga_n20wat = line_fit(np.mean(n6plga_lpwat[2]),blen_n20wat) gg_n8plga_n20wat = line_fit(np.mean(n8plga_lpwat[2]),blen_n20wat) gg_n10plga_n20wat = line_fit(np.mean(n10plga_lpwat[2]),blen_n20wat) gg_n20plga_wat ###Output _____no_output_____ ###Markdown Block averaged Radius of gyration and persistence length, N = 20 PLGA/water system ###Code np.mean(n20_blksplga_wat["Avg persistence length"]) np.std(n20_blksplga_wat["Avg persistence length"]) np.mean(n20_blksplga_wat["Avg Radius of gyration"]) np.std(n20_blksplga_wat["Avg Radius of gyration"]) plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n10wat, np.log(cor_n10plga_wat[0]), yerr=mk_n10p_wat, color='#2B6322', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n20wat, np.log(cor_n20plga_wat[0]), yerr=mk_n20p_wat, color='#562A8B', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.plot(blen_n20wat[:15], gg_n6plga_n20wat[:15], color='#CCBE9F') plt.plot(blen_n20wat[:15], gg_n8plga_n20wat[:15], color='#601A4A') plt.plot(blen_n20wat[:15], gg_n10plga_n20wat[:15], color='#2B6322') plt.plot(blen_n20wat[:15], gg_n20plga_wat[:15], color='#562A8B') plt.title(r'Ensemble Averaged ln(Cosine $\theta$) in water', fontsize=15, y=1.01) plt.xlabel(r'Bond Length', fontsize=15) plt.ylabel(r'ln$\left< Cos(\theta)\right >$', fontsize=15) plt.ylim(-7,1) plt.xlim(0,165) font = font_manager.FontProperties(family='Arial', style='normal', size='14') #plt.legend([r'$N_{PEG}$ = 6: $L_{p}$ = 10.7 $\AA$ ± 1.62 $\AA$'], loc=3, frameon=0, fontsize=14, prop=font) plt.tick_params(labelsize=14) plt.text(0.5, -6.92,r'$N_{PLGA}$ = 6: $L_{p}$ = 16.0 $\AA$ ± 1.73 $\AA$', fontsize=15, color='#CCBE9F') plt.text(0.5, -6.54,r'$N_{PLGA}$ = 8: $L_{p}$ = 17.2 $\AA$ ± 2.13 $\AA$', fontsize=15, color='#601A4A') plt.text(0.5, -6.14,r'$N_{PLGA}$ = 10: $L_{p}$ = 15.8 $\AA$ ± 1.01 $\AA$', fontsize=15, color='#2B6322') plt.text(0.5, -5.70,r'$N_{PLGA}$ = 20: $L_{p}$ = 17.6 $\AA$ ± 1.49 $\AA$', fontsize=15, color='#562A8B') rgplga_olig_wat[r"$R_{g}$ [Angstrom] N = 20 PLGA in water"] = n20_blksplga_wat["Avg Radius of gyration"] rgplga_olig_wat pers_plgat_wat[r"$L_{p}$ [Angstrom] N = 20 PLGA in water"] = n20_blksplga_wat["Avg persistence length"] pers_plgat_wat ###Output _____no_output_____ ###Markdown N = 30 PLGA/water system ###Code # For the right Rg calculation using MD Analysis, use trajactory without pbc n30_plga_wat = mda.Universe("n30plga_wat/n30plgaonly_wat.pdb", "n30plga_wat/nowat_n30plga.xtc") n30_plga_wat.trajectory len(n30_plga_wat.trajectory) #Select the polymer heavy atoms plga_n30wat = n30_plga_wat.select_atoms("resname sPLG PLG tPLG and not type H") crv_n30plga_wat = pers_length(plga_n30wat,30) crv_n30plga_wat com_bond_n30wat = np.zeros(shape=(1,18000)) count = 0 for ts in n30_plga_wat.trajectory[0:18000]: n30_mon1_wat = n30_plga_wat.select_atoms("resid 1") n30_mon2_wat = n30_plga_wat.select_atoms("resid 2") oo_len = mda.analysis.distances.distance_array(n30_mon1_wat.center_of_mass(), n30_mon2_wat.center_of_mass(), box=n30_plga_wat.trajectory.ts.dimensions) com_bond_n30wat[0, count] = oo_len count += 1 com_bond np.std(com_bond) lb_avg_pn6 = np.mean(com_bond) lb_avg_pn6 np.mean(com_bond_n30wat) np.std(com_bond_n30wat) ###Output _____no_output_____ ###Markdown Radius of Gyration vs. time N = 30 PLGA/water system ###Code n30plga_rgens_wat, cor_n30plga_wat, N30plga_cos_wat, rgwat_n30plga = get_rg_pers_poly(plga_n30wat, n30_plga_wat, 0, 18000) n30plga_rgens_wat[0].shape cor_n30plga_wat[3] N30plga_cos_wat rgwat_n30plga np.std(n30plga_rgens_wat) plt.figure(figsize=(7,7)) plt.title(r'PLGA Radius of Gyration', fontsize=18, y=1.01) plt.xlabel(r'Time [ns]', fontsize=15) plt.ylabel(r'$R_{g}$ [nm]', fontsize=15) plt.plot(trj_len/100, n6plga_rgens_wat[0]/10,linewidth=2, color='#CCBE9F') plt.plot(trj_len/100, n8plga_rgens_wat[0]/10,linewidth=2, color='#601A4A') plt.plot(trj_len/100, n10plga_rgens_wat[0]/10,linewidth=2, color='#2B6322') plt.plot(trj_len/100, n20plga_rgens_wat[0]/10,linewidth=2, color='#562A8B') plt.plot(trj_len/100, n30plga_rgens_wat[0]/10,linewidth=2, color='#1D77CF') plt.tick_params(labelsize=14) plt.legend(['N = 6 in water','N = 8 in water','N = 10 in water','N = 20 in water','N = 30 in water'], frameon=False, fontsize=14) #plt.text(127, 0.96,r'N = 6 in water', fontsize=18, color='#1F2E69', family='Arial') plt.xlim(0,180) plt.ylim(0.2,3) np.save('n6plga_watRg.npy', n6plga_rgens_wat[0]) np.save('n8plga_watRg.npy', n8plga_rgens_wat[0]) np.save('n10plga_watRg.npy', n10plga_rgens_wat[0]) np.save('n20plga_watRg.npy', n20plga_rgens_wat[0]) np.save('n30plga_watRg.npy', n30plga_rgens_wat[0]) ###Output _____no_output_____ ###Markdown Relaxation times vs monomer length ###Code # Key variables # def pos_bead_autocorr_RA(polymer_atoms, universe, n_monomers, t_corr, start, end): n30_mon = 30 start = 0 end = 18000 t_corr = 4000 window_shift = 20 s_time = timeit.default_timer() tcRA_plgan30wat, tcSUM_plgan30wat = pos_bead_autocorr_RA(plga_n30wat, n30_plga_wat, n30_mon, t_corr, window_shift, start, end) timeit.default_timer() - s_time tcRA_plgan30wat.shape tcSUM_plgan30wat.shape ###Output _____no_output_____ ###Markdown Fitting autocorrelation data ###Code xdata_n30wat = tcRA_plgan30wat[1]/100 ydata_n30wat = tcRA_plgan30wat[0] xdata_n30wat.shape ydata_n30wat.shape s_n30 =[3 for i in range(len(xdata_n30wat))] plt.figure(figsize=(8,8)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcRA_plgan6wat[1]/100, tcRA_plgan6wat[0], color='#CCBE9F', s=s_n6, label=r'$N_{PLGA}$ = 6') plt.scatter(tcRA_plgan8wat[1]/100, tcRA_plgan8wat[0], color='#601A4A', s=s_n8, label=r'$N_{PLGA}$ = 8') plt.scatter(tcRA_plgan10wat[1]/100, tcRA_plgan10wat[0], color='#2B6322', s=s_n10, label=r'$N_{PLGA}$ = 10') plt.scatter(tcRA_plgan20wat[1]/100, tcRA_plgan20wat[0], color='#562A8B', s=s_n20, label=r'$N_{PLGA}$ = 20') plt.scatter(tcRA_plgan30wat[1]/100, tcRA_plgan30wat[0], color='#1D77CF', s=s_n30, label=r'$N_{PLGA}$ = 30') plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.yscale('symlog', linthreshy=0.5) plt.xscale('symlog') plt.grid(b=True, axis='y') plt.xlim(0,45) plt.ylim(-1,1) plt.tick_params(labelsize=18, direction='in', which='both', width=1, length=10) np.save('n6plga_WATCt_RA.npy', tcRA_plgan6wat) np.save('n8plga_WATCt_RA.npy', tcRA_plgan8wat) np.save('n10plga_WATCt_RA.npy', tcRA_plgan10wat) np.save('n20plga_WATCt_RA.npy', tcRA_plgan20wat) np.save('n30plga_WATCt_RA.npy', tcRA_plgan30wat) def res_polyn30wat(variabls, xnp, ynp): hs_np = variabls['h_star'] tr1_np = variabls['t_first'] n_m = 30 testnp = [] for i in range(len(xnp)): model_ynp = zimm_relax(xnp[i], tr1_np, hs_np, n_m) #model_ynp = rouse_relax(xnp[i], tr1_np, n_m) testnp.append(ynp[i] - model_ynp) tt_n30 = np.array(testnp) return tt_n30 #x1 = npdmso.array([0,0]) #pfit, pcov, infodict, errmsg, success = leastsq(res_poly, x1, args=(xdata, ydata), full_output=1) pfit_n30wat = Parameters() pfit_n30wat.add(name='h_star', value=0, min=0, max=0.26, vary=True) pfit_n30wat.add(name='t_first', value=2) mini_n30wat = Minimizer(res_polyn30wat, pfit_n30wat, fcn_args=(xdata_n30wat, ydata_n30wat)) out_n30wat = mini_n30wat.leastsq() #bfit_n10 = ydata_n10ace + out_n10ace.residual report_fit(out_n30wat.params) out_n30wat.params twat_n30plga = [] for i in range(len(xdata_n30wat)): twat_n30plga.append(zimm_relax(xdata_n30wat[i], 4.23, 0.26, n30_mon)) s_n30 =[2 for i in range(len(xdata_n30wat))] plt.figure(figsize=(10,10)) plt.rcParams["font.family"] = "Arial" plt.scatter(tcorr_plgan6wat[1]/100, tcorr_plgan6wat[0], color='#CCBE9F', s=s_n6) plt.scatter(tcorr_plgan8wat[1]/100, tcorr_plgan8wat[0], color='#601A4A', s=s_n8) plt.scatter(tcorr_plgan10wat[1]/100, tcorr_plgan10wat[0], color='#2B6322', s=s_n10) plt.scatter(tcorr_plgan20wat[1]/100, tcorr_plgan20wat[0], color='#562A8B', s=s_n20) plt.scatter(tcorr_plgan30wat[1]/100, tcorr_plgan30wat[0], color='#1D77CF', s=s_n30) plt.plot(xdata_n6wat, twat_n6plga, color='#CCBE9F') plt.plot(xdata_n8wat, twat_n8plga, color='#601A4A') plt.plot(xdata_n10wat, twat_n10plga, color='#2B6322') plt.plot(xdata_n20wat, twat_n20plga, color='#562A8B') plt.plot(xdata_n30wat, twat_n30plga, color='#1D77CF') plt.title(r'Positional bead autocorrelation PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('C(t)', fontsize=18) #plt.legend(fontsize=14, frameon=False) plt.text(10, 0.95, r'$N_{PLGA}$ = 6: $\tau_{1}$ = 0.28 ± 0.03 ns, $h^{*}$ = 0.26 ± 0.43', fontsize=15, color='#CCBE9F') plt.text(10, 0.90, r'$N_{PLGA}$ = 8: $\tau_{1}$ = 0.53 ± 0.04 ns, $h^{*}$ = 0.26 ± 0.29', fontsize=15, color='#601A4A') plt.text(10, 0.85, r'$N_{PLGA}$ = 10: $\tau_{1}$ = 1.82 ± 0.06 ns, $h^{*}$ = 3.2e-6 ± 0.01', fontsize=15, color='#2B6322') plt.text(10, 0.80, r'$N_{PLGA}$ = 20: $\tau_{1}$ = 0.96 ± 0.04 ns, $h^{*}$ = 0.26 ± 0.10 ', fontsize=15, color='#562A8B') plt.text(10, 0.75, r'$N_{PLGA}$ = 30: $\tau_{1}$ = 4.23 ± 0.06 ns, $h^{*}$ = 0.26 ± 0.03', fontsize=15, color='#1D77CF') plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) plt.tick_params(labelsize=15) rwat_msen30 = np.array([tcorr_plgan30wat[0] - np.array(twat_n30plga)]) rwat_msen30 plt.figure(figsize=(10,10)) s_n30 =[10 for i in range(len(xdata_n30wat))] plt.rcParams["font.family"] = "Arial" plt.scatter(xdata_n6wat, rwat_msen6, color='#CCBE9F', s=s_n30, label=r'$N_{PLGA}$ = 6' ) plt.scatter(xdata_n8wat, rwat_msen8, color='#601A4A', s=s_n30, label=r'$N_{PLGA}$ = 8') plt.scatter(xdata_n10wat, rwat_msen10, color='#2B6322', s=s_n30, label=r'$N_{PLGA}$ = 10') plt.scatter(xdata_n20wat, rwat_msen20, color='#562A8B', s=s_n30, label=r'$N_{PLGA}$ = 20') plt.scatter(xdata_n30wat, rwat_msen30, color='#1D77CF', s=s_n30, label=r'$N_{PLGA}$ = 30') plt.title(r'Relaxation time Fitting Residuals PLGA in water', fontsize=18, y=1.01) plt.xlabel(r'Time lag [ns]', fontsize=18) plt.ylabel('Residuals', fontsize=18) plt.legend(fontsize=14, frameon=False) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlim([0,30]) plt.ylim([-0.7,1]) font = font_manager.FontProperties(family='Cambria', style='normal', size='15') plt.tick_params(labelsize=15) ###Output _____no_output_____ ###Markdown Correlation values at each arc length for the whole 180 ns trajectory, N = 30 PLGA/water system ###Code # x values blen_n30wat = cor_n30plga_wat[3]*lb_avg_pn6 #nt_tt[0] = 0 blen_n30wat mk_n30p_wat = cor_n30plga_wat[1]/cor_n30plga_wat[0] mk_n30p_wat plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n10wat, np.log(cor_n10plga_wat[0]), yerr=mk_n10p_wat, color='#2B6322', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n20wat, np.log(cor_n20plga_wat[0]), yerr=mk_n20p_wat, color='#562A8B', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n30wat, np.log(cor_n30plga_wat[0]), yerr=mk_n30p_wat, color='#1D77CF', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') # All the points give the best fits for N = 6 peg in water n30_blksplga_wat , n30plga_lpwat = bavg_pers_cnt(5, plga_n30wat, n30_plga_wat, lb_avg_pn6, 4, 3000 , 18000) n30_blksplga_wat n30plga_lpwat n30plga_lpwat[2] np.mean(n30plga_lpwat[3]) blen_n30wat gg_n30plga_wat = line_fit(np.mean(n30plga_lpwat[2]),blen_n30wat) gg_n6plga_n30wat = line_fit(np.mean(n6plga_lpwat[2]),blen_n30wat) gg_n8plga_n30wat = line_fit(np.mean(n8plga_lpwat[2]),blen_n30wat) gg_n10plga_n30wat = line_fit(np.mean(n10plga_lpwat[2]),blen_n30wat) gg_n20plga_n30wat = line_fit(np.mean(n20plga_lpwat[2]),blen_n30wat) gg_n30plga_wat ###Output _____no_output_____ ###Markdown Block averaged Radius of gyration and persistence length, N = 30 PLGA/water system ###Code np.mean(n30_blksplga_wat["Avg persistence length"]) np.std(n30_blksplga_wat["Avg persistence length"]) np.mean(n30_blksplga_wat["Avg Radius of gyration"]) np.std(n30_blksplga_wat["Avg Radius of gyration"]) plt.figure(figsize=(7,7)) plt.errorbar(blen_wat, np.log(cor_n6plga_wat[0]), yerr=mk_n6p_wat, color='#CCBE9F', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n8wat, np.log(cor_n8plga_wat[0]), yerr=mk_n8p_wat, color='#601A4A', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n10wat, np.log(cor_n10plga_wat[0]), yerr=mk_n10p_wat, color='#2B6322', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n20wat, np.log(cor_n20plga_wat[0]), yerr=mk_n20p_wat, color='#562A8B', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.errorbar(blen_n30wat, np.log(cor_n30plga_wat[0]), yerr=mk_n30p_wat, color='#1D77CF', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.plot(blen_n30wat[:15], gg_n6plga_n30wat[:15], color='#CCBE9F') plt.plot(blen_n30wat[:15], gg_n8plga_n30wat[:15], color='#601A4A') plt.plot(blen_n30wat[:15], gg_n10plga_n30wat[:15], color='#2B6322') plt.plot(blen_n30wat[:15], gg_n20plga_n30wat[:15], color='#562A8B') plt.plot(blen_n30wat[:15], gg_n30plga_wat[:15], color='#1D77CF') plt.title(r'Ensemble Averaged ln(Cosine $\theta$) in water', fontsize=15, y=1.01) plt.xlabel(r'Bond Length', fontsize=15) plt.ylabel(r'ln$\left< Cos(\theta)\right >$', fontsize=15) plt.ylim(-7,1) plt.xlim(0,165) font = font_manager.FontProperties(family='Arial', style='normal', size='14') #plt.legend([r'$N_{PEG}$ = 6: $L_{p}$ = 10.7 $\AA$ ± 1.62 $\AA$'], loc=3, frameon=0, fontsize=14, prop=font) plt.tick_params(labelsize=14) plt.text(0.5, -6.92,r'$N_{PLGA}$ = 6: $L_{p}$ = 16.0 $\AA$ ± 1.73 $\AA$', fontsize=15, color='#CCBE9F') plt.text(0.5, -6.54,r'$N_{PLGA}$ = 8: $L_{p}$ = 17.2 $\AA$ ± 2.13 $\AA$', fontsize=15, color='#601A4A') plt.text(0.5, -6.14,r'$N_{PLGA}$ = 10: $L_{p}$ = 15.8 $\AA$ ± 1.01 $\AA$', fontsize=15, color='#2B6322') plt.text(0.5, -5.70,r'$N_{PLGA}$ = 20: $L_{p}$ = 17.6 $\AA$ ± 1.49 $\AA$', fontsize=15, color='#562A8B') plt.text(0.5, -5.30,r'$N_{PLGA}$ = 30: $L_{p}$ = 18.8 $\AA$ ± 1.49 $\AA$', fontsize=15, color='#1D77CF') rgplga_olig_wat[r"$R_{g}$ [Angstrom] N = 30 PLGA in water"] = n30_blksplga_wat["Avg Radius of gyration"] rgplga_olig_wat pers_plgat_wat[r"$L_{p}$ [Angstrom] N = 30 PLGA in water"] = n30_blksplga_wat["Avg persistence length"] pers_plgat_wat rgplga_olig_wat.to_pickle("PLGA_water_Rg.pkl") pers_plgat_wat.to_pickle("PLGA_water_Lp.pkl") ###Output _____no_output_____ ###Markdown Fluory Exponent, PLGA/water system ###Code n_plga = np.array([6,8,10,20,30]) rg_nplga_wat = np.array([np.mean(n6_blksplga_wat["Avg Radius of gyration"]) ,np.mean(n8_blksplga_wat["Avg Radius of gyration"]),np.mean(n10_blksplga_wat["Avg Radius of gyration"]) ,np.mean(n20_blksplga_wat["Avg Radius of gyration"]),np.mean(n30_blksplga_wat["Avg Radius of gyration"])]) rg_nplga_wat rgwat_nplga_std = np.array([np.std(np.log10(n6_blksplga_wat["Avg Radius of gyration"])) ,np.std(np.log10(n8_blksplga_wat["Avg Radius of gyration"])) ,np.std(np.log10(n10_blksplga_wat["Avg Radius of gyration"])) ,np.std(np.log10(n20_blksplga_wat["Avg Radius of gyration"])) ,np.std(np.log10(n30_blksplga_wat["Avg Radius of gyration"]))]) rgwat_nplga_std n_plga np.log10(rg_nplga_wat) np.log10(n_plga) # From fitting all points, I get best fit from sklearn.linear_model import LinearRegression model_vpwat = LinearRegression(fit_intercept=True) model_vpwat.fit(np.log10(n_plga).reshape(-1,1), np.log10(rg_nplga_wat)) # Slope here is in nanometers print("Model slope: ", model_vpwat.coef_[0]) print("Model intercept:", model_vpwat.intercept_) gg_wat = model_vpwat.predict(np.log10(n_plga.reshape(-1,1))) gg_wat print("Mean Std Error:", sklearn.metrics.mean_squared_error(np.log10(rg_nplga_wat), gg_wat)) print("R2 score:", sklearn.metrics.r2_score(np.log10(rg_nplga_wat), gg_wat)) # Residuals between the true y data and model y data resid_vwat = np.log10(rg_nplga_wat) - gg_wat resid_vwat # How to calculate Sum((Xi - avg(X))^2): X values are the bond length values nt_ttwat = np.log10(n_plga) nt_ttwat -= np.mean(nt_ttwat) nhui_wat = nt_ttwat**2 np.sum(nhui_wat) # t-value with 95 % confidence intervals scipy.stats.t.ppf(0.975, 4) # How to calculate 95% confidence interval for the slope flc_vwat = scipy.stats.t.ppf(0.975, 4)*np.sqrt((np.sum(resid_vwat**2)/len(resid_vwat))/(np.sum(nhui_wat))) flc_vwat plt.figure(figsize=(7,7)) plt.errorbar(np.log10(n_plga), np.log10(rg_nplga_wat), yerr=rgwat_nplga_std, color='#A58262', linestyle="None",marker='o', capsize=5, capthick=1, ecolor='black') plt.plot(np.log10(n_plga), gg_wat, color='#A58262') plt.title(r'Fluory Exponent', fontsize=15) plt.xlabel(r'Log($N_{PLGA}$)', fontsize=15) plt.ylabel(r'Log($R_{g}$)', fontsize=15) plt.tick_params(labelsize=14) plt.text(1.1, 0.95, r'$v_{acetone}$ = 0.29 ± 0.04', fontsize=15, color='#A58262') ###Output _____no_output_____ ###Markdown Scaling exponent from relaxation times ###Code #np.array([1.03, 4.56, 1.39, 2.04, 6.97]) t1_nplga_wat = np.array([0.28, 0.53, 1.82, 0.96, 4.23]) t1_nplga_wat #np.array([0.05, 0.09, 0.05, 0.06, 0.11]) stdt1_nplga_wat = np.array([0.03, 0.04, 0.06, 0.04, 0.06]) stdt1_nplga_wat tr_plga_wat = pd.DataFrame(data=t1_nplga_wat, columns=[r"$\tau_{1}$ [ns] PLGA in DMSO"]) tr_plga_wat[r'Std. Error for $\tau_{1}$'] = stdt1_nplga_wat tr_plga_wat['Monomer length'] = np.array([6,8,10,20,30]) tr_plga_wat.to_pickle("PLGA_water_tr.pkl") #tr_plga_wat.head() ###Output _____no_output_____
course-2-improving-deep-neural-networks/Regularization+-+v2.ipynb
###Markdown RegularizationWelcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that **overfitting can be a serious problem**, if the training dataset is not big enough. Sure it does well on the training set, but the learned network **doesn't generalize to new examples** that it has never seen!**You will learn to:** Use regularization in your deep learning models.Let's first import the packages you are going to use. ###Code # import packages import numpy as np import matplotlib.pyplot as plt from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters import sklearn import sklearn.datasets import scipy.io from testCases import * %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' ###Output _____no_output_____ ###Markdown **Problem Statement**: You have just been hired as an AI expert by the French Football Corporation. They would like you to recommend positions where France's goal keeper should kick the ball so that the French team's players can then hit it with their head. **Figure 1** : **Football field** The goal keeper kicks the ball in the air, the players of each team are fighting to hit the ball with their head They give you the following 2D dataset from France's past 10 games. ###Code train_X, train_Y, test_X, test_Y = load_2D_dataset() ###Output _____no_output_____ ###Markdown Each dot corresponds to a position on the football field where a football player has hit the ball with his/her head after the French goal keeper has shot the ball from the left side of the football field.- If the dot is blue, it means the French player managed to hit the ball with his/her head- If the dot is red, it means the other team's player hit the ball with their head**Your goal**: Use a deep learning model to find the positions on the field where the goalkeeper should kick the ball. **Analysis of the dataset**: This dataset is a little noisy, but it looks like a diagonal line separating the upper left half (blue) from the lower right half (red) would work well. You will first try a non-regularized model. Then you'll learn how to regularize it and decide which model you will choose to solve the French Football Corporation's problem. 1 - Non-regularized modelYou will use the following neural network (already implemented for you below). This model can be used:- in *regularization mode* -- by setting the `lambd` input to a non-zero value. We use "`lambd`" instead of "`lambda`" because "`lambda`" is a reserved keyword in Python. - in *dropout mode* -- by setting the `keep_prob` to a value less than oneYou will first try the model without any regularization. Then, you will implement:- *L2 regularization* -- functions: "`compute_cost_with_regularization()`" and "`backward_propagation_with_regularization()`"- *Dropout* -- functions: "`forward_propagation_with_dropout()`" and "`backward_propagation_with_dropout()`"In each part, you will run this model with the correct inputs so that it calls the functions you've implemented. Take a look at the code below to familiarize yourself with the model. ###Code def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples) learning_rate -- learning rate of the optimization num_iterations -- number of iterations of the optimization loop print_cost -- If True, print the cost every 10000 iterations lambd -- regularization hyperparameter, scalar keep_prob - probability of keeping a neuron active during drop-out, scalar. Returns: parameters -- parameters learned by the model. They can then be used to predict. """ grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples layers_dims = [X.shape[0], 20, 3, 1] # Initialize parameters dictionary. parameters = initialize_parameters(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. if keep_prob == 1: a3, cache = forward_propagation(X, parameters) elif keep_prob < 1: a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob) # Cost function if lambd == 0: cost = compute_cost(a3, Y) else: cost = compute_cost_with_regularization(a3, Y, parameters, lambd) # Backward propagation. assert(lambd==0 or keep_prob==1) # it is possible to use both L2 regularization and dropout, # but this assignment will only explore one at a time if lambd == 0 and keep_prob == 1: grads = backward_propagation(X, Y, cache) elif lambd != 0: grads = backward_propagation_with_regularization(X, Y, cache, lambd) elif keep_prob < 1: grads = backward_propagation_with_dropout(X, Y, cache, keep_prob) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 10000 iterations if print_cost and i % 10000 == 0: print("Cost after iteration {}: {}".format(i, cost)) if print_cost and i % 1000 == 0: costs.append(cost) # plot the cost plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (x1,000)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown Let's train the model without any regularization, and observe the accuracy on the train/test sets. ###Code parameters = model(train_X, train_Y) print ("On the training set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6557412523481002 Cost after iteration 10000: 0.16329987525724216 Cost after iteration 20000: 0.13851642423255986 ###Markdown The train accuracy is 94.8% while the test accuracy is 91.5%. This is the **baseline model** (you will observe the impact of regularization on this model). Run the following code to plot the decision boundary of your model. ###Code plt.title("Model without regularization") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The non-regularized model is obviously overfitting the training set. It is fitting the noisy points! Lets now look at two techniques to reduce overfitting. 2 - L2 RegularizationThe standard way to avoid overfitting is called **L2 regularization**. It consists of appropriately modifying your cost function, from:$$J = -\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} \tag{1}$$To:$$J_{regularized} = \small \underbrace{-\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} }_\text{cross-entropy cost} + \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum\limits_l\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} }_\text{L2 regularization cost} \tag{2}$$Let's modify your cost and observe the consequences.**Exercise**: Implement `compute_cost_with_regularization()` which computes the cost given by formula (2). To calculate $\sum\limits_k\sum\limits_j W_{k,j}^{[l]2}$ , use :```pythonnp.sum(np.square(Wl))```Note that you have to do this for $W^{[1]}$, $W^{[2]}$ and $W^{[3]}$, then sum the three terms and multiply by $ \frac{1}{m} \frac{\lambda}{2} $. ###Code # GRADED FUNCTION: compute_cost_with_regularization def compute_cost_with_regularization(A3, Y, parameters, lambd): """ Implement the cost function with L2 regularization. See formula (2) above. Arguments: A3 -- post-activation, output of forward propagation, of shape (output size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) parameters -- python dictionary containing parameters of the model Returns: cost - value of the regularized loss function (formula (2)) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost ### START CODE HERE ### (approx. 1 line) L2_regularization_cost = (1/m)*(lambd/2)*(np.sum(np.square(W1))+np.sum(np.square(W2))+np.sum(np.square(W3))) ### END CODER HERE ### cost = cross_entropy_cost + L2_regularization_cost return cost A3, Y_assess, parameters = compute_cost_with_regularization_test_case() print("cost = " + str(compute_cost_with_regularization(A3, Y_assess, parameters, lambd = 0.1))) ###Output cost = 1.78648594516 ###Markdown **Expected Output**: **cost** 1.78648594516 Of course, because you changed the cost, you have to change backward propagation as well! All the gradients have to be computed with respect to this new cost. **Exercise**: Implement the changes needed in backward propagation to take into account regularization. The changes only concern dW1, dW2 and dW3. For each, you have to add the regularization term's gradient ($\frac{d}{dW} ( \frac{1}{2}\frac{\lambda}{m} W^2) = \frac{\lambda}{m} W$). ###Code # GRADED FUNCTION: backward_propagation_with_regularization def backward_propagation_with_regularization(X, Y, cache, lambd): """ Implements the backward propagation of our baseline model to which we added an L2 regularization. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) cache -- cache output from forward_propagation() lambd -- regularization hyperparameter, scalar Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y ### START CODE HERE ### (approx. 1 line) dW3 = 1./m * np.dot(dZ3, A2.T) + (lambd/m)*W3 ### END CODE HERE ### db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) ### START CODE HERE ### (approx. 1 line) dW2 = 1./m * np.dot(dZ2, A1.T) + (lambd/m)*W2 ### END CODE HERE ### db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) ### START CODE HERE ### (approx. 1 line) dW1 = 1./m * np.dot(dZ1, X.T) + (lambd/m)*W1 ### END CODE HERE ### db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients X_assess, Y_assess, cache = backward_propagation_with_regularization_test_case() grads = backward_propagation_with_regularization(X_assess, Y_assess, cache, lambd = 0.7) print ("dW1 = "+ str(grads["dW1"])) print ("dW2 = "+ str(grads["dW2"])) print ("dW3 = "+ str(grads["dW3"])) ###Output dW1 = [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]] dW2 = [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]] dW3 = [[-1.77691347 -0.11832879 -0.09397446]] ###Markdown **Expected Output**: **dW1** [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]] **dW2** [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]] **dW3** [[-1.77691347 -0.11832879 -0.09397446]] Let's now run the model with L2 regularization $(\lambda = 0.7)$. The `model()` function will call: - `compute_cost_with_regularization` instead of `compute_cost`- `backward_propagation_with_regularization` instead of `backward_propagation` ###Code parameters = model(train_X, train_Y, lambd = 0.7) print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6974484493131264 Cost after iteration 10000: 0.2684918873282239 Cost after iteration 20000: 0.2680916337127301 ###Markdown Congrats, the test set accuracy increased to 93%. You have saved the French football team!You are not overfitting the training data anymore. Let's plot the decision boundary. ###Code plt.title("Model with L2-regularization") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The value of $\lambda$ is a hyperparameter that you can tune using a dev set.- L2 regularization makes your decision boundary smoother. If $\lambda$ is too large, it is also possible to "oversmooth", resulting in a model with high bias.**What is L2-regularization actually doing?**:L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This leads to a smoother model in which the output changes more slowly as the input changes. **What you should remember** -- the implications of L2-regularization on:- The cost computation: - A regularization term is added to the cost- The backpropagation function: - There are extra terms in the gradients with respect to weight matrices- Weights end up smaller ("weight decay"): - Weights are pushed to smaller values. 3 - DropoutFinally, **dropout** is a widely used regularization technique that is specific to deep learning. **It randomly shuts down some neurons in each iteration.** Watch these two videos to see what this means!<!--To understand drop-out, consider this conversation with a friend:- Friend: "Why do you need all these neurons to train your network and classify images?". - You: "Because each neuron contains a weight and can learn specific features/details/shape of an image. The more neurons I have, the more featurse my model learns!"- Friend: "I see, but are you sure that your neurons are learning different features and not all the same features?"- You: "Good point... Neurons in the same layer actually don't talk to each other. It should be definitly possible that they learn the same image features/shapes/forms/details... which would be redundant. There should be a solution."!--> Figure 2 : Drop-out on the second hidden layer. At each iteration, you shut down (= set to zero) each neuron of a layer with probability $1 - keep\_prob$ or keep it with probability $keep\_prob$ (50% here). The dropped neurons don't contribute to the training in both the forward and backward propagations of the iteration. Figure 3 : Drop-out on the first and third hidden layers. $1^{st}$ layer: we shut down on average 40% of the neurons. $3^{rd}$ layer: we shut down on average 20% of the neurons. When you shut some neurons down, you actually modify your model. The idea behind drop-out is that at each iteration, you train a different model that uses only a subset of your neurons. With dropout, your neurons thus become less sensitive to the activation of one other specific neuron, because that other neuron might be shut down at any time. 3.1 - Forward propagation with dropout**Exercise**: Implement the forward propagation with dropout. You are using a 3 layer neural network, and will add dropout to the first and second hidden layers. We will not apply dropout to the input layer or output layer. **Instructions**:You would like to shut down some neurons in the first and second layers. To do that, you are going to carry out 4 Steps:1. In lecture, we dicussed creating a variable $d^{[1]}$ with the same shape as $a^{[1]}$ using `np.random.rand()` to randomly get numbers between 0 and 1. Here, you will use a vectorized implementation, so create a random matrix $D^{[1]} = [d^{[1](1)} d^{[1](2)} ... d^{[1](m)}] $ of the same dimension as $A^{[1]}$.2. Set each entry of $D^{[1]}$ to be 0 with probability (`1-keep_prob`) or 1 with probability (`keep_prob`), by thresholding values in $D^{[1]}$ appropriately. Hint: to set all the entries of a matrix X to 0 (if entry is less than 0.5) or 1 (if entry is more than 0.5) you would do: `X = (X < 0.5)`. Note that 0 and 1 are respectively equivalent to False and True.3. Set $A^{[1]}$ to $A^{[1]} * D^{[1]}$. (You are shutting down some neurons). You can think of $D^{[1]}$ as a mask, so that when it is multiplied with another matrix, it shuts down some of the values.4. Divide $A^{[1]}$ by `keep_prob`. By doing this you are assuring that the result of the cost will still have the same expected value as without drop-out. (This technique is also called inverted dropout.) ###Code # GRADED FUNCTION: forward_propagation_with_dropout def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5): """ Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID. Arguments: X -- input dataset, of shape (2, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape (20, 2) b1 -- bias vector of shape (20, 1) W2 -- weight matrix of shape (3, 20) b2 -- bias vector of shape (3, 1) W3 -- weight matrix of shape (1, 3) b3 -- bias vector of shape (1, 1) keep_prob - probability of keeping a neuron active during drop-out, scalar Returns: A3 -- last activation value, output of the forward propagation, of shape (1,1) cache -- tuple, information stored for computing the backward propagation """ np.random.seed(1) # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) ### START CODE HERE ### (approx. 4 lines) # Steps 1-4 below correspond to the Steps 1-4 described above. D1 = np.random.rand(A1.shape[0],A1.shape[1]) # Step 1: initialize matrix D1 = np.random.rand(..., ...) D1 = D1 < keep_prob # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold) A1 = np.multiply(A1,D1) # Step 3: shut down some neurons of A1 A1 = A1/keep_prob # Step 4: scale the value of neurons that haven't been shut down ### END CODE HERE ### Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) ### START CODE HERE ### (approx. 4 lines) D2 = np.random.rand(A2.shape[0],A2.shape[1]) # Step 1: initialize matrix D2 = np.random.rand(..., ...) D2 = D2 < keep_prob # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold) A2 = np.multiply(A2,D2) # Step 3: shut down some neurons of A2 A2 = A2/keep_prob # Step 4: scale the value of neurons that haven't been shut down ### END CODE HERE ### Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache X_assess, parameters = forward_propagation_with_dropout_test_case() A3, cache = forward_propagation_with_dropout(X_assess, parameters, keep_prob = 0.7) print ("A3 = " + str(A3)) ###Output A3 = [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] ###Markdown **Expected Output**: **A3** [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] 3.2 - Backward propagation with dropout**Exercise**: Implement the backward propagation with dropout. As before, you are training a 3 layer network. Add dropout to the first and second hidden layers, using the masks $D^{[1]}$ and $D^{[2]}$ stored in the cache. **Instruction**:Backpropagation with dropout is actually quite easy. You will have to carry out 2 Steps:1. You had previously shut down some neurons during forward propagation, by applying a mask $D^{[1]}$ to `A1`. In backpropagation, you will have to shut down the same neurons, by reapplying the same mask $D^{[1]}$ to `dA1`. 2. During forward propagation, you had divided `A1` by `keep_prob`. In backpropagation, you'll therefore have to divide `dA1` by `keep_prob` again (the calculus interpretation is that if $A^{[1]}$ is scaled by `keep_prob`, then its derivative $dA^{[1]}$ is also scaled by the same `keep_prob`). ###Code # GRADED FUNCTION: backward_propagation_with_dropout def backward_propagation_with_dropout(X, Y, cache, keep_prob): """ Implements the backward propagation of our baseline model to which we added dropout. Arguments: X -- input dataset, of shape (2, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) cache -- cache output from forward_propagation_with_dropout() keep_prob - probability of keeping a neuron active during drop-out, scalar Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1./m * np.dot(dZ3, A2.T) db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) ### START CODE HERE ### (≈ 2 lines of code) dA2 = np.multiply(dA2,D2) # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation dA2 = dA2/keep_prob # Step 2: Scale the value of neurons that haven't been shut down ### END CODE HERE ### dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1./m * np.dot(dZ2, A1.T) db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) ### START CODE HERE ### (≈ 2 lines of code) dA1 = np.multiply(dA1,D1) # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation dA1 = dA1/keep_prob # Step 2: Scale the value of neurons that haven't been shut down ### END CODE HERE ### dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1./m * np.dot(dZ1, X.T) db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients X_assess, Y_assess, cache = backward_propagation_with_dropout_test_case() gradients = backward_propagation_with_dropout(X_assess, Y_assess, cache, keep_prob = 0.8) print ("dA1 = " + str(gradients["dA1"])) print ("dA2 = " + str(gradients["dA2"])) ###Output dA1 = [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]] dA2 = [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]] ###Markdown **Expected Output**: **dA1** [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]] **dA2** [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]] Let's now run the model with dropout (`keep_prob = 0.86`). It means at every iteration you shut down each neurons of layer 1 and 2 with 14% probability. The function `model()` will now call:- `forward_propagation_with_dropout` instead of `forward_propagation`.- `backward_propagation_with_dropout` instead of `backward_propagation`. ###Code parameters = model(train_X, train_Y, keep_prob = 0.86, learning_rate = 0.3) print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6543912405149825 ###Markdown Dropout works great! The test accuracy has increased again (to 95%)! Your model is not overfitting the training set and does a great job on the test set. The French football team will be forever grateful to you! Run the code below to plot the decision boundary. ###Code plt.title("Model with dropout") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____
Week1/Convolution_model_Application_v1a.ipynb
###Markdown Convolutional Neural Networks: ApplicationWelcome to Course 4's second assignment! In this notebook, you will:- Implement helper functions that you will use when implementing a TensorFlow model- Implement a fully functioning ConvNet using TensorFlow **After this assignment you will be able to:**- Build and train a ConvNet in TensorFlow for a classification problem We assume here that you are already familiar with TensorFlow. If you are not, please refer the *TensorFlow Tutorial* of the third week of Course 2 ("*Improving deep neural networks*"). Updates to Assignment If you were working on a previous version* The current notebook filename is version "1a". * You can find your work in the file directory as version "1".* To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of Updates* `initialize_parameters`: added details about tf.get_variable, `eval`. Clarified test case.* Added explanations for the kernel (filter) stride values, max pooling, and flatten functions.* Added details about softmax cross entropy with logits.* Added instructions for creating the Adam Optimizer.* Added explanation of how to evaluate tensors (optimizer and cost).* `forward_propagation`: clarified instructions, use "F" to store "flatten" layer.* Updated print statements and 'expected output' for easier visual comparisons.* Many thanks to Kevin P. Brown (mentor for the deep learning specialization) for his suggestions on the assignments in this course! 1.0 - TensorFlow modelIn the previous assignment, you built helper functions using numpy to understand the mechanics behind convolutional neural networks. Most practical applications of deep learning today are built using programming frameworks, which have many built-in functions you can simply call. As usual, we will start by loading in the packages. ###Code import math import numpy as np import h5py import matplotlib.pyplot as plt import scipy from PIL import Image from scipy import ndimage import tensorflow as tf from tensorflow.python.framework import ops from cnn_utils import * %matplotlib inline np.random.seed(1) ###Output _____no_output_____ ###Markdown Run the next cell to load the "SIGNS" dataset you are going to use. ###Code # Loading the data (signs) X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() ###Output _____no_output_____ ###Markdown As a reminder, the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5.The next cell will show you an example of a labelled image in the dataset. Feel free to change the value of `index` below and re-run to see different examples. ###Code # Example of a picture index = 6 plt.imshow(X_train_orig[index]) print ("y = " + str(np.squeeze(Y_train_orig[:, index]))) ###Output y = 2 ###Markdown In Course 2, you had built a fully-connected network for this dataset. But since this is an image dataset, it is more natural to apply a ConvNet to it.To get started, let's examine the shapes of your data. ###Code X_train = X_train_orig/255. X_test = X_test_orig/255. Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) conv_layers = {} ###Output number of training examples = 1080 number of test examples = 120 X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape: (120, 64, 64, 3) Y_test shape: (120, 6) ###Markdown 1.1 - Create placeholdersTensorFlow requires that you create placeholders for the input data that will be fed into the model when running the session.**Exercise**: Implement the function below to create placeholders for the input image X and the output Y. You should not define the number of training examples for the moment. To do so, you could use "None" as the batch size, it will give you the flexibility to choose it later. Hence X should be of dimension **[None, n_H0, n_W0, n_C0]** and Y should be of dimension **[None, n_y]**. [Hint: search for the tf.placeholder documentation"](https://www.tensorflow.org/api_docs/python/tf/placeholder). ###Code # GRADED FUNCTION: create_placeholders def create_placeholders(n_H0, n_W0, n_C0, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ ### START CODE HERE ### (≈2 lines) X = tf.placeholder(tf.float32, [None ,n_H0, n_W0, n_C0]) Y = tf.placeholder(tf.float32, [None, n_y]) ### END CODE HERE ### return X, Y X, Y = create_placeholders(64, 64, 3, 6) print ("X = " + str(X)) print ("Y = " + str(Y)) ###Output X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32) Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32) ###Markdown **Expected Output** X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32) Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32) 1.2 - Initialize parametersYou will initialize weights/filters $W1$ and $W2$ using `tf.contrib.layers.xavier_initializer(seed = 0)`. You don't need to worry about bias variables as you will soon see that TensorFlow functions take care of the bias. Note also that you will only initialize the weights/filters for the conv2d functions. TensorFlow initializes the layers for the fully connected part automatically. We will talk more about that later in this assignment.**Exercise:** Implement initialize_parameters(). The dimensions for each group of filters are provided below. Reminder - to initialize a parameter $W$ of shape [1,2,3,4] in Tensorflow, use:```pythonW = tf.get_variable("W", [1,2,3,4], initializer = ...)``` tf.get_variable()[Search for the tf.get_variable documentation](https://www.tensorflow.org/api_docs/python/tf/get_variable). Notice that the documentation says:```Gets an existing variable with these parameters or create a new one.```So we can use this function to create a tensorflow variable with the specified name, but if the variables already exist, it will get the existing variable with that same name. ###Code # GRADED FUNCTION: initialize_parameters def initialize_parameters(): """ Initializes weight parameters to build a neural network with tensorflow. The shapes are: W1 : [4, 4, 3, 8] W2 : [2, 2, 8, 16] Note that we will hard code the shape values in the function to make the grading simpler. Normally, functions should take values as inputs rather than hard coding. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 2 lines of code) W1 = tf.get_variable("W1", [4, 4, 3, 8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2, 2, 8, 16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) ### END CODE HERE ### parameters = {"W1": W1, "W2": W2} return parameters tf.reset_default_graph() with tf.Session() as sess_test: parameters = initialize_parameters() init = tf.global_variables_initializer() sess_test.run(init) print("W1[1,1,1] = \n" + str(parameters["W1"].eval()[1,1,1])) print("W1.shape: " + str(parameters["W1"].shape)) print("\n") print("W2[1,1,1] = \n" + str(parameters["W2"].eval()[1,1,1])) print("W2.shape: " + str(parameters["W2"].shape)) ###Output W1[1,1,1] = [ 0.00131723 0.14176141 -0.04434952 0.09197326 0.14984085 -0.03514394 -0.06847463 0.05245192] W1.shape: (4, 4, 3, 8) W2[1,1,1] = [-0.08566415 0.17750949 0.11974221 0.16773748 -0.0830943 -0.08058 -0.00577033 -0.14643836 0.24162132 -0.05857408 -0.19055021 0.1345228 -0.22779644 -0.1601823 -0.16117483 -0.10286498] W2.shape: (2, 2, 8, 16) ###Markdown ** Expected Output:**```W1[1,1,1] = [ 0.00131723 0.14176141 -0.04434952 0.09197326 0.14984085 -0.03514394 -0.06847463 0.05245192]W1.shape: (4, 4, 3, 8)W2[1,1,1] = [-0.08566415 0.17750949 0.11974221 0.16773748 -0.0830943 -0.08058 -0.00577033 -0.14643836 0.24162132 -0.05857408 -0.19055021 0.1345228 -0.22779644 -0.1601823 -0.16117483 -0.10286498]W2.shape: (2, 2, 8, 16)``` 1.3 - Forward propagationIn TensorFlow, there are built-in functions that implement the convolution steps for you.- **tf.nn.conv2d(X,W, strides = [1,s,s,1], padding = 'SAME'):** given an input $X$ and a group of filters $W$, this function convolves $W$'s filters on X. The third parameter ([1,s,s,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev). Normally, you'll choose a stride of 1 for the number of examples (the first value) and for the channels (the fourth value), which is why we wrote the value as `[1,s,s,1]`. You can read the full documentation on [conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d).- **tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'):** given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window. For max pooling, we usually operate on a single example at a time and a single channel at a time. So the first and fourth value in `[1,f,f,1]` are both 1. You can read the full documentation on [max_pool](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool).- **tf.nn.relu(Z):** computes the elementwise ReLU of Z (which can be any shape). You can read the full documentation on [relu](https://www.tensorflow.org/api_docs/python/tf/nn/relu).- **tf.contrib.layers.flatten(P)**: given a tensor "P", this function takes each training (or test) example in the batch and flattens it into a 1D vector. * If a tensor P has the shape (m,h,w,c), where m is the number of examples (the batch size), it returns a flattened tensor with shape (batch_size, k), where $k=h \times w \times c$. "k" equals the product of all the dimension sizes other than the first dimension. * For example, given a tensor with dimensions [100,2,3,4], it flattens the tensor to be of shape [100, 24], where 24 = 2 * 3 * 4. You can read the full documentation on [flatten](https://www.tensorflow.org/api_docs/python/tf/contrib/layers/flatten).- **tf.contrib.layers.fully_connected(F, num_outputs):** given the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation on [full_connected](https://www.tensorflow.org/api_docs/python/tf/contrib/layers/fully_connected).In the last function above (`tf.contrib.layers.fully_connected`), the fully connected layer automatically initializes weights in the graph and keeps on training them as you train the model. Hence, you did not need to initialize those weights when initializing the parameters. Window, kernel, filterThe words "window", "kernel", and "filter" are used to refer to the same thing. This is why the parameter `ksize` refers to "kernel size", and we use `(f,f)` to refer to the filter size. Both "kernel" and "filter" refer to the "window." **Exercise**Implement the `forward_propagation` function below to build the following model: `CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED`. You should use the functions above. In detail, we will use the following parameters for all the steps: - Conv2D: stride 1, padding is "SAME" - ReLU - Max pool: Use an 8 by 8 filter size and an 8 by 8 stride, padding is "SAME" - Conv2D: stride 1, padding is "SAME" - ReLU - Max pool: Use a 4 by 4 filter size and a 4 by 4 stride, padding is "SAME" - Flatten the previous output. - FULLYCONNECTED (FC) layer: Apply a fully connected layer without an non-linear activation function. Do not call the softmax here. This will result in 6 neurons in the output layer, which then get passed later to a softmax. In TensorFlow, the softmax and cost function are lumped together into a single function, which you'll call in a different function when computing the cost. ###Code # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): """ Implements the forward propagation for the model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Note that for simplicity and grading purposes, we'll hard-code some values such as the stride and kernel (filter) sizes. Normally, functions should take these values as function parameters. Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2'] ### START CODE HERE ### # CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME') # RELU A1 = tf.nn.relu(Z1) # MAXPOOL: window 8x8, stride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME') # CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME') # RELU A2 = tf.nn.relu(Z2) # MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME') # FLATTEN F = tf.contrib.layers.flatten(P2) # FULLY-CONNECTED without non-linear activation function (not not call softmax). # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" Z3 = tf.contrib.layers.fully_connected(F, num_outputs = 6,activation_fn=None) ### END CODE HERE ### return Z3 tf.reset_default_graph() with tf.Session() as sess: np.random.seed(1) X, Y = create_placeholders(64, 64, 3, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) init = tf.global_variables_initializer() sess.run(init) a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)}) print("Z3 = \n" + str(a)) ###Output Z3 = [[-0.44670227 -1.57208765 -1.53049231 -2.31013036 -1.29104376 0.46852064] [-0.17601591 -1.57972014 -1.4737016 -2.61672091 -1.00810647 0.5747785 ]] ###Markdown **Expected Output**:```Z3 = [[-0.44670227 -1.57208765 -1.53049231 -2.31013036 -1.29104376 0.46852064] [-0.17601591 -1.57972014 -1.4737016 -2.61672091 -1.00810647 0.5747785 ]]``` 1.4 - Compute costImplement the compute cost function below. Remember that the cost function helps the neural network see how much the model's predictions differ from the correct labels. By adjusting the weights of the network to reduce the cost, the neural network can improve its predictions.You might find these two functions helpful: - **tf.nn.softmax_cross_entropy_with_logits(logits = Z, labels = Y):** computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss. You can check the full documentation [softmax_cross_entropy_with_logits](https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits).- **tf.reduce_mean:** computes the mean of elements across dimensions of a tensor. Use this to calculate the sum of the losses over all the examples to get the overall cost. You can check the full documentation [reduce_mean](https://www.tensorflow.org/api_docs/python/tf/reduce_mean). Details on softmax_cross_entropy_with_logits (optional reading)* Softmax is used to format outputs so that they can be used for classification. It assigns a value between 0 and 1 for each category, where the sum of all prediction values (across all possible categories) equals 1.* Cross Entropy is compares the model's predicted classifications with the actual labels and results in a numerical value representing the "loss" of the model's predictions.* "Logits" are the result of multiplying the weights and adding the biases. Logits are passed through an activation function (such as a relu), and the result is called the "activation."* The function is named `softmax_cross_entropy_with_logits` takes logits as input (and not activations); then uses the model to predict using softmax, and then compares the predictions with the true labels using cross entropy. These are done with a single function to optimize the calculations.** Exercise**: Compute the cost below using the function above. ###Code # GRADED FUNCTION: compute_cost def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (number of examples, 6) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ ### START CODE HERE ### (1 line of code) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y)) ### END CODE HERE ### return cost tf.reset_default_graph() with tf.Session() as sess: np.random.seed(1) X, Y = create_placeholders(64, 64, 3, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) cost = compute_cost(Z3, Y) init = tf.global_variables_initializer() sess.run(init) a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)}) print("cost = " + str(a)) ###Output cost = 2.91034 ###Markdown **Expected Output**: ```cost = 2.91034``` 1.5 Model Finally you will merge the helper functions you implemented above to build a model. You will train it on the SIGNS dataset. **Exercise**: Complete the function below. The model below should:- create placeholders- initialize parameters- forward propagate- compute the cost- create an optimizerFinally you will create a session and run a for loop for num_epochs, get the mini-batches, and then for each mini-batch you will optimize the function. [Hint for initializing the variables](https://www.tensorflow.org/api_docs/python/tf/global_variables_initializer) Adam OptimizerYou can use `tf.train.AdamOptimizer(learning_rate = ...)` to create the optimizer. The optimizer has a `minimize(loss=...)` function that you'll call to set the cost function that the optimizer will minimize.For details, check out the documentation for [Adam Optimizer](https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer) Random mini batchesIf you took course 2 of the deep learning specialization, you implemented `random_mini_batches()` in the "Optimization" programming assignment. This function returns a list of mini-batches. It is already implemented in the `cnn_utils.py` file and imported here, so you can call it like this:```Pythonminibatches = random_mini_batches(X, Y, mini_batch_size = 64, seed = 0)```(You will want to choose the correct variable names when you use it in your code). Evaluating the optimizer and costWithin a loop, for each mini-batch, you'll use the `tf.Session` object (named `sess`) to feed a mini-batch of inputs and labels into the neural network and evaluate the tensors for the optimizer as well as the cost. Remember that we built a graph data structure and need to feed it inputs and labels and use `sess.run()` in order to get values for the optimizer and cost.You'll use this kind of syntax:```output_for_var1, output_for_var2 = sess.run( fetches=[var1, var2], feed_dict={var_inputs: the_batch_of_inputs, var_labels: the_batch_of_labels} )```* Notice that `sess.run` takes its first argument `fetches` as a list of objects that you want it to evaluate (in this case, we want to evaluate the optimizer and the cost). * It also takes a dictionary for the `feed_dict` parameter. * The keys are the `tf.placeholder` variables that we created in the `create_placeholders` function above. * The values are the variables holding the actual numpy arrays for each mini-batch. * The sess.run outputs a tuple of the evaluated tensors, in the same order as the list given to `fetches`. For more information on how to use sess.run, see the documentation [tf.Sesssionrun](https://www.tensorflow.org/api_docs/python/tf/Sessionrun) documentation. ###Code # GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009, num_epochs = 100, minibatch_size = 64, print_cost = True): """ Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables tf.set_random_seed(1) # to keep results consistent (tensorflow seed) seed = 3 # to keep results consistent (numpy seed) (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # To keep track of the cost # Create Placeholders of the correct shape ### START CODE HERE ### (1 line) X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y) ### END CODE HERE ### # Initialize parameters ### START CODE HERE ### (1 line) parameters = initialize_parameters() ### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph ### START CODE HERE ### (1 line) Z3 = forward_propagation(X, parameters) ### END CODE HERE ### # Cost function: Add cost function to tensorflow graph ### START CODE HERE ### (1 line) cost = compute_cost(Z3, Y) ### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost. ### START CODE HERE ### (1 line) optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(loss=cost) ### END CODE HERE ### # Initialize all the variables globally init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch """ # IMPORTANT: The line that runs the graph on a minibatch. # Run the session to execute the optimizer and the cost. # The feedict should contain a minibatch for (X,Y). """ ### START CODE HERE ### (1 line) _ , temp_cost = sess.run( fetches=[optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y} ) ### END CODE HERE ### minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 5 == 0: print ("Cost after epoch %i: %f" % (epoch, minibatch_cost)) if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters ###Output _____no_output_____ ###Markdown Run the following cell to train your model for 100 epochs. Check if your cost after epoch 0 and 5 matches our output. If not, stop the cell and go back to your code! ###Code _, _, parameters = model(X_train, Y_train, X_test, Y_test) ###Output Cost after epoch 0: 1.917929 Cost after epoch 5: 1.506757 Cost after epoch 10: 0.955359 Cost after epoch 15: 0.845802 Cost after epoch 20: 0.701174 Cost after epoch 25: 0.571977 Cost after epoch 30: 0.518435 Cost after epoch 35: 0.495806 Cost after epoch 40: 0.429827 Cost after epoch 45: 0.407291 Cost after epoch 50: 0.366394 Cost after epoch 55: 0.376922 Cost after epoch 60: 0.299491 Cost after epoch 65: 0.338870 Cost after epoch 70: 0.316400 Cost after epoch 75: 0.310413 Cost after epoch 80: 0.249549 Cost after epoch 85: 0.243457 Cost after epoch 90: 0.200031 Cost after epoch 95: 0.175452 ###Markdown **Expected output**: although it may not match perfectly, your expected output should be close to ours and your cost value should decrease. **Cost after epoch 0 =** 1.917929 **Cost after epoch 5 =** 1.506757 **Train Accuracy =** 0.940741 **Test Accuracy =** 0.783333 Congratulations! You have finished the assignment and built a model that recognizes SIGN language with almost 80% accuracy on the test set. If you wish, feel free to play around with this dataset further. You can actually improve its accuracy by spending more time tuning the hyperparameters, or using regularization (as this model clearly has a high variance). Once again, here's a thumbs up for your work! ###Code fname = "images/thumbs_up.jpg" image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(64,64)) plt.imshow(my_image) ###Output _____no_output_____
SAM-L11 Cortex-M23/Experiments - AES Mode ECB/AES-256_Flash_WolfSSL_library/Experiment_AES_Flash.ipynb
###Markdown Import Libraries ###Code # %matplotlib ipympl # %matplotlib inline %matplotlib wx import matplotlib.pyplot as plt plt.ion() from pydgilib_extra import * from atprogram.atprogram import atprogram from os import getcwd, path, pardir import pickle ###Output _____no_output_____ ###Markdown Compile and program project ###Code project_path = [path.curdir, "AES_Flash-S"] project_path atprogram("./Crypto-Current", verbose=2) #atprogram(path.abspath(path.join(*project_path)), verbose=2) ###Output _____no_output_____ ###Markdown Data Logging ###Code live_plot = False ###Output _____no_output_____ ###Markdown Create a figure for the plot. ###Code if live_plot: fig = plt.figure(figsize=(10, 6)) fig.show() ###Output _____no_output_____ ###Markdown Create the configuration dictionary for `DGILibExtra`. ###Code config_dict = { "loggers": [LOGGER_OBJECT, LOGGER_CSV], "file_name_base": "experiment_aes_flash" } config_dict_plot = { "loggers": [LOGGER_OBJECT, LOGGER_PLOT, LOGGER_CSV], "plot_pins": [False, False, True, True], "plot_pins_method": "line", "plot_xmax": 5, "window_title": "Experiment AES-128 Flash", } ###Output _____no_output_____ ###Markdown Stop criteria to pass to the logger: ###Code def stop_fn(logger_data): return all(logger_data.gpio.values[-1]) ###Output _____no_output_____ ###Markdown Perform the measurement. ###Code data = [] cd = config_dict.copy() if live_plot: fig.clf() for ax in fig.get_axes(): ax.cla() cd.update(config_dict_plot) cd["fig"] = fig with DGILibExtra(**cd) as dgilib: dgilib.device_reset() dgilib.logger.log(1000,stop_fn) data = dgilib.data data.length() print(data) ###Output Interfaces: 48: gpio, samples: 6005 256: power, samples: 405000 ###Markdown Store Data ###Code import pickle pickle.dump(data, open("aes_flash_logger_data.p", "wb")) ###Output _____no_output_____ ###Markdown Load Data ###Code data = pickle.load(open("aes_flash_logger_data.p", "rb")) iteration = 0 name = "AES-128_Flash" data = pickle.load(open(path.join(path.pardir, path.pardir, f"{name}_{iteration}.p"), "rb")) ###Output _____no_output_____ ###Markdown Analysis Create Stop Function to stop parsing the data when all pins are high. ###Code def stop_function(pin_values): return all(pin_values) ###Output _____no_output_____ ###Markdown Parse the data. ###Code aes_charge, aes_time = power_and_time_per_pulse(data, 2, stop_function=stop_function) flash_charge, flash_time = power_and_time_per_pulse(data, 3, stop_function=stop_function) print(len(aes_charge), len(aes_time), len(flash_charge), len(flash_time)) # cutoff = min(len(aes_charge), len(aes_time), len(flash_charge), len(flash_time)) # aes_charge = aes_charge[:cutoff] # aes_time = aes_time[:cutoff] # flash_charge = flash_charge[:cutoff] # flash_time = flash_time[:cutoff] # length = len(aes_charge) # assert length == len(aes_time) # assert length == len(flash_charge) # assert length == len(flash_time) # print(length) aes_encrypt_charge = aes_charge[0::2] aes_decrypt_charge = aes_charge[1::2] aes_encrypt_time = aes_time[0::2] aes_decrypt_time = aes_time[1::2] aes_flash_write_charge = flash_charge[0::2] aes_flash_read_charge = flash_charge[1::2] aes_flash_write_time = flash_time[0::2] aes_flash_read_time = flash_time[1::2] len(aes_encrypt_charge), len(aes_decrypt_charge), len(aes_encrypt_time), len(aes_decrypt_time), len(aes_flash_write_charge), len(aes_flash_read_charge), len(aes_flash_write_time), len(aes_flash_read_time) drop = 0 cutoff = min(len(aes_encrypt_charge), len(aes_decrypt_charge), len(aes_encrypt_time), len(aes_decrypt_time), len(aes_flash_write_charge), len(aes_flash_read_charge), len(aes_flash_write_time), len(aes_flash_read_time)) - drop aes_encrypt_charge = aes_encrypt_charge[:cutoff] aes_decrypt_charge = aes_decrypt_charge[:cutoff] aes_encrypt_time = aes_encrypt_time[:cutoff] aes_decrypt_time = aes_decrypt_time[:cutoff] aes_flash_write_charge = aes_flash_write_charge[:cutoff] aes_flash_read_charge = aes_flash_read_charge[:cutoff] aes_flash_write_time = aes_flash_write_time[:cutoff] aes_flash_read_time = aes_flash_read_time[:cutoff] length = len(aes_encrypt_charge) assert length == len(aes_decrypt_charge) assert length == len(aes_encrypt_time) assert length == len(aes_decrypt_time) assert length == len(aes_flash_write_charge) assert length == len(aes_flash_read_charge) assert length == len(aes_flash_write_time) assert length == len(aes_flash_read_time) print(length) ###Output 375 ###Markdown Convert to Joule ###Code voltage = 3.33 j_scale = 1e3 # m t_scale = 1e3 # m model_j_scale = 1e6 # n model_t_scale = 1e3 # u experiment_name = 'AES-256' aes_encrypt_energy = aes_encrypt_charge[:cutoff] aes_flash_write_energy = aes_flash_write_charge[:cutoff] aes_flash_read_energy = aes_flash_read_charge[:cutoff] aes_decrypt_energy = aes_decrypt_charge[:cutoff] aes_encrypt_time_s = aes_encrypt_time[:cutoff] aes_flash_write_time_s = aes_flash_write_time[:cutoff] aes_flash_read_time_s = aes_flash_read_time[:cutoff] aes_decrypt_time_s = aes_decrypt_time[:cutoff] for i in range(len(aes_encrypt_energy)): aes_encrypt_energy[i] = aes_encrypt_energy[i] * voltage * j_scale for i in range(len(aes_flash_write_energy)): aes_flash_write_energy[i] = aes_flash_write_energy[i] * voltage * j_scale for i in range(len(aes_flash_read_energy)): aes_flash_read_energy[i] = aes_flash_read_energy[i] * voltage * j_scale for i in range(len(aes_decrypt_energy)): aes_decrypt_energy[i] = aes_decrypt_energy[i] * voltage * j_scale for i in range(len(aes_encrypt_time_s)): aes_encrypt_time_s[i] = aes_encrypt_time_s[i] * t_scale for i in range(len(aes_flash_write_time_s)): aes_flash_write_time_s[i] = aes_flash_write_time_s[i] * t_scale for i in range(len(aes_flash_read_time_s)): aes_flash_read_time_s[i] = aes_flash_read_time_s[i] * t_scale for i in range(len(aes_decrypt_time_s)): aes_decrypt_time_s[i] = aes_decrypt_time_s[i] * t_scale MBEDTLS_AES_BLOCK_SIZE = 16 STEP_SIZE = MBEDTLS_AES_BLOCK_SIZE MIN_NUM_BYTES = STEP_SIZE num_bytes = range(MIN_NUM_BYTES, MIN_NUM_BYTES + STEP_SIZE * len(aes_encrypt_energy), STEP_SIZE) print(f"MAX_NUM_BYTES: {num_bytes[-1]}") from lmfit import Model def line(x, slope, intercept): """a line""" return [slope*i + intercept for i in x] mod = Model(line) pars = mod.make_params(slope=0, intercept=1) # pars['intercept'].set(min=0) results = [] ylabels = (['Energy [mJ]'] * 2 + ['Time [ms]'] * 2) * 2 + ['Energy [mJ]'] + ['Time [ms]'] parameter_names = [ 'Encrypt Energy', 'Flash Write Energy', 'Flash Read Energy', 'Decrypt Energy', 'Encrypt Time', 'Flash Write Time', 'Flash Read Time', 'Decrypt Time', 'Total Energy', 'Total Time', ] for y in [aes_encrypt_energy, aes_flash_write_energy, aes_flash_read_energy, aes_decrypt_energy, aes_encrypt_time_s, aes_flash_write_time_s, aes_flash_read_time_s, aes_decrypt_time_s, [e + w + r + d for (e,w,r,d) in zip(aes_encrypt_energy, aes_flash_write_energy, aes_flash_read_energy, aes_decrypt_energy)], [e + w + r + d for (e,w,r,d) in zip(aes_encrypt_time_s, aes_flash_write_time_s, aes_flash_read_time_s, aes_decrypt_time_s)]]: result = mod.fit(y, pars, x=num_bytes) print(result.fit_report()) fig, grid = result.plot( xlabel='Checkpoint Size [Bytes]', ylabel=ylabels[len(results)]) fig.tight_layout(rect=(0.05, 0.05, 1, 1)) fig.set_size_inches(5, 4.5, forward=True) fig.canvas.set_window_title( f"Residuals of {experiment_name} {parameter_names[len(results)]}") fig.show() results.append(result) fig2 = plt.figure(figsize=(8, 6)) fig2.canvas.set_window_title(f"Analysis {experiment_name}") charge_color = 'r' time_color = 'b' fig2.clf() # fig2.suptitle("Energy analysis of AES") ax1 = fig2.add_subplot(1, 1, 1) ax2 = ax1.twinx() ax1.set_xlabel('Checkpoint Size [Bytes]') ax1.set_ylabel('Energy [mJ]', color=charge_color) ax2.set_ylabel('Time [ms]', color=time_color) ax1.tick_params('y', colors=charge_color) ax2.tick_params('y', colors=time_color) lines = [] lines += ax1.plot(num_bytes, aes_encrypt_energy, charge_color+'-', label=f'{parameter_names[len(lines)]}') lines += ax1.plot(num_bytes, aes_flash_write_energy, charge_color+'-.', label=f'{parameter_names[len(lines)]}') lines += ax1.plot(num_bytes, aes_flash_read_energy, charge_color+':', label=f'{parameter_names[len(lines)]}') lines += ax1.plot(num_bytes, aes_decrypt_energy, charge_color+'--', label=f'{parameter_names[len(lines)]}') lines += ax2.plot(num_bytes, aes_encrypt_time_s, time_color+'-', label=f'{parameter_names[len(lines)]}') lines += ax2.plot(num_bytes, aes_flash_write_time_s, time_color+'-.', label=f'{parameter_names[len(lines)]}') lines += ax2.plot(num_bytes, aes_flash_read_time_s, time_color+':', label=f'{parameter_names[len(lines)]}') lines += ax2.plot(num_bytes, aes_decrypt_time_s, time_color+'--', label=f'{parameter_names[len(lines)]}') ax1.legend(handles=lines) ax1.set_title( f"{parameter_names[0]}: Slope {results[0].params['slope'].value * model_j_scale:.04} nJ/B, Intercept {results[0].params['intercept'].value * model_j_scale:.04} nJ\n" + f"{parameter_names[1]}: Slope {results[1].params['slope'].value * model_j_scale:.04} nJ/B, Intercept {results[1].params['intercept'].value * model_j_scale:.04} nJ\n" + f"{parameter_names[2]}: Slope {results[2].params['slope'].value * model_j_scale:.04} nJ/B, Intercept {results[2].params['intercept'].value * model_j_scale:.04} nJ\n" + f"{parameter_names[3]}: Slope {results[3].params['slope'].value * model_j_scale:.04} nJ/B, Intercept {results[3].params['intercept'].value * model_j_scale:.04} nJ\n" + f"{parameter_names[4]}: Slope {results[4].params['slope'].value * model_t_scale:.04} $\mu$s/B, Intercept {results[4].params['intercept'].value * model_t_scale:.04} $\mu$s\n" + f"{parameter_names[5]}: Slope {results[5].params['slope'].value * model_t_scale:.04} $\mu$s/B, Intercept {results[5].params['intercept'].value * model_t_scale:.04} $\mu$s\n" + f"{parameter_names[6]}: Slope {results[6].params['slope'].value * model_t_scale:.04} $\mu$s/B, Intercept {results[6].params['intercept'].value * model_t_scale:.04} $\mu$s\n" + f"{parameter_names[7]}: Slope {results[7].params['slope'].value * model_t_scale:.04} $\mu$s/B, Intercept {results[7].params['intercept'].value * model_t_scale:.04} $\mu$s\n" + f"{parameter_names[8]}: Slope {results[8].params['slope'].value * model_j_scale:.04} nJ/B, Intercept {results[8].params['intercept'].value * model_j_scale:.04} nJ\n" + f"{parameter_names[9]}: Slope {results[9].params['slope'].value * model_t_scale:.04} $\mu$s/B, Intercept {results[9].params['intercept'].value * model_t_scale:.04} $\mu$s\n") fig2.tight_layout() fig2.show() print( f"{parameter_names[0]}: Slope {results[0].params['slope'].value * model_j_scale:.020} nJ/B, Intercept {results[0].params['intercept'].value * model_j_scale:.020} nJ\n" + f"{parameter_names[1]}: Slope {results[1].params['slope'].value * model_j_scale:.020} nJ/B, Intercept {results[1].params['intercept'].value * model_j_scale:.020} nJ\n" + f"{parameter_names[2]}: Slope {results[2].params['slope'].value * model_j_scale:.020} nJ/B, Intercept {results[2].params['intercept'].value * model_j_scale:.020} nJ\n" + f"{parameter_names[3]}: Slope {results[3].params['slope'].value * model_j_scale:.020} nJ/B, Intercept {results[3].params['intercept'].value * model_j_scale:.020} nJ\n" + f"{parameter_names[4]}: Slope {results[4].params['slope'].value * model_t_scale:.020} $\mu$s/B, Intercept {results[4].params['intercept'].value * model_t_scale:.020} $\mu$s\n" + f"{parameter_names[5]}: Slope {results[5].params['slope'].value * model_t_scale:.020} $\mu$s/B, Intercept {results[5].params['intercept'].value * model_t_scale:.020} $\mu$s\n" + f"{parameter_names[6]}: Slope {results[6].params['slope'].value * model_t_scale:.020} $\mu$s/B, Intercept {results[6].params['intercept'].value * model_t_scale:.020} $\mu$s\n" + f"{parameter_names[7]}: Slope {results[7].params['slope'].value * model_t_scale:.020} $\mu$s/B, Intercept {results[7].params['intercept'].value * model_t_scale:.020} $\mu$s\n" + f"{parameter_names[8]}: Slope {results[8].params['slope'].value * model_j_scale:.020} nJ/B, Intercept {results[8].params['intercept'].value * model_j_scale:.020} nJ\n" + f"{parameter_names[9]}: Slope {results[9].params['slope'].value * model_t_scale:.020} $\mu$s/B, Intercept {results[9].params['intercept'].value * model_t_scale:.020} $\mu$s\n" ) # Save Charge amount list into pickle file import pickle pickle.dump(aes_encrypt_energy, open("aes_flash_encrypt_energy_mJ.p", "wb")) pickle.dump(aes_decrypt_energy, open("aes_flash_decrypt_energy_mJ.p", "wb")) pickle.dump(aes_flash_write_energy, open("aes_flash_write_energy_mJ.p", "wb")) pickle.dump(aes_flash_read_energy, open("aes_flash_read_energy_mJ.p", "wb")) pickle.dump(aes_encrypt_time_s, open("aes_flash_encrypt_time_ms.p", "wb")) pickle.dump(aes_decrypt_time_s, open("aes_flash_decrypt_time_ms.p", "wb")) pickle.dump(aes_flash_write_time_s, open("aes_flash_write_time_ms.p", "wb")) pickle.dump(aes_flash_read_time_s, open("aes_flash_read_time_ms.p", "wb")) aes = [aes_encrypt_energy, aes_flash_write_energy, aes_flash_read_energy, aes_decrypt_energy, aes_encrypt_time_s, aes_flash_write_time_s, aes_flash_read_time_s, aes_decrypt_time_s] for i in aes: print(len(i), len(i)*16) ###Output 375 6000 375 6000 375 6000 375 6000 375 6000 375 6000 375 6000 375 6000 ###Markdown Write config file ###Code import json config = {} config["name"] = "AES-128 Flash" config["project_paths"] = [project_path] config["config_dict"] = config_dict config["config_dict_plot"] = config_dict_plot config["analysis"] = {"pins":{2: ["AES-128 Encrypt", "AES-128 Decrypt"], 3: ["AES-128 Flash Write", "AES-128 Flash Read"]}, "result_types": ["Charge", "Time"], "section_types": {"init": [], "store": ["AES-128 Encrypt", "AES-128 Flash Write"], "load": ["AES-128 Flash Read", "AES-128 Decrypt"], "exit": []}, "labels": { "Charge": {"x":"Data Size", "x_unit": "byte", "y": "Charge", "y_unit": "C"}, "Time": {"x":"Data Size", "x_unit": "byte", "y": "Time", "y_unit": "s"}, }, "x_step": MBEDTLS_AES_BLOCK_SIZE} with open("looped_experiment.json", 'w') as config_file: json.dump(config, config_file, indent=4) ###Output _____no_output_____ ###Markdown Write model data ###Code dump_pickle = True fit_lm = True verbose = 2 show_lm_plot = 2 # drop = 1 # Parse data analysis_config = config.get("analysis") result_types = analysis_config.get("result_types") x_step = analysis_config.get("x_step") parsed_data = {} for pin, parameter_names in analysis_config.get("pins").items(): data2 = power_and_time_per_pulse( data, int(pin), stop_function=stop_function) num_names = len(parameter_names) for i, parameter_name in enumerate(parameter_names): end_index = -drop * num_names or None parsed_data[parameter_name] = { result_types[0]: data2[0][i:end_index:num_names], result_types[1]: data2[1][i:end_index:num_names], "x_step": x_step} if dump_pickle: pickle.dump(parsed_data, open( path.join(path.curdir, f"{config_dict.get('file_name_base')}_looped.p"), "wb")) # Fit lm if fit_lm: model = None if model is None: def line(x, intercept, slope): """a line""" return [intercept + slope*i for i in x] model = Model(line) params = model.make_params(intercept=0, slope=1) # params['intercept'].set(min=0) else: params = model.params model_results = {} labels = analysis_config.get("labels") for parameter_name in parsed_data.keys(): length = len(parsed_data[parameter_name][result_types[0]]) x_step = parsed_data[parameter_name]["x_step"] num_bytes = range(x_step, (length+1)*x_step, x_step) if verbose: print( f"Fitting model to {parameter_name} with {length} " + f"samples, from {min(num_bytes)} to {max(num_bytes)} " f"bytes in steps of {x_step}.") model_result = {} for result_type in result_types: model_result[result_type] = model.fit( parsed_data[parameter_name][result_type], params, x=num_bytes) if verbose >= 2: print(model_result[result_type].fit_report()) # Plot multiple view if show_lm_plot >= 2: fig, grid = model_result[result_type].plot( xlabel=f"{labels[result_type]['x']} " + f"[{labels[result_type]['x_unit']}]", ylabel=f"{labels[result_type]['y']} " + f"[{labels[result_type]['y_unit']}]") fig.canvas.set_window_title( f"Residuals of {parameter_name}") fig.tight_layout() fig.show() model_results[parameter_name] = model_result # Plot single view if show_lm_plot: import matplotlib.pyplot as plt fig = plt.figure(figsize=(9, 6)) fig.canvas.set_window_title(f"Analysis {config.get('name')}") colors = dict(zip(result_types, ['r', 'b'])) line_styles = ( line_style for line_style in ('-', '--', '-.', ':') * 2) # fig.suptitle(f"Energy analysis of {config.get('name')}") ax = {} ax[result_types[0]] = fig.add_subplot(1, 1, 1) ax[result_types[1]] = ax[result_types[0]].twinx() ax[result_types[0]].set_xlabel( f"{labels[result_types[0]]['x']} " + f"[{labels[result_types[0]]['x_unit']}]") for result_type in result_types: ax[result_type].set_ylabel( f"{labels[result_type]['y']} " + f"[{labels[result_type]['y_unit']}]", color=colors[result_type]) ax[result_type].tick_params('y', colors=colors[result_type]) lines = [] title_str = "" for parameter_name in parsed_data.keys(): length = len(parsed_data[parameter_name][result_types[0]]) x_step = parsed_data[parameter_name]["x_step"] num_bytes = range(x_step, (length+1)*x_step, x_step) model_result = {} line_style = next(line_styles) for result_type in result_types: label = f"{parameter_name} {labels[result_type]['y']}" lines += ax[result_type].plot( num_bytes, parsed_data[parameter_name][result_type], colors[result_type] + line_style, label=label) title_str += f"{label} " for param in params.keys(): title_str += "".join( f"{params[param].name.capitalize()}: ") title_str += "".join( f"{model_results[parameter_name][result_type].params[param].value: .03} ") title_str += "".join( f"{labels[result_type]['y_unit']}, ") title_str = title_str[:-2] + \ f" per {labels[result_type]['x_unit']}\n" ax[result_types[0]].legend(handles=lines) ax[result_types[0]].set_title(title_str[:-1]) # fig.tight_layout() fig.tight_layout(rect=(0.05, 0.05, 1, 1)) fig.set_size_inches(8, 6, forward=True) fig.show() # Save model results to file if dump_pickle: model_results_dump = {} for parameter_name in model_results.keys(): model_results_dump[parameter_name] = {} for result_type in model_results[parameter_name].keys(): model_results_dump[parameter_name][result_type] = \ model_results[parameter_name][result_type].values pickle.dump(model_results_dump, open(path.join( path.curdir, f"{config_dict.get('file_name_base')}_model.p"), "wb")) ###Output Fitting model to AES-128 Encrypt with 375 samples, from 16 to 6000 bytes in steps of 16. [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 9 # data points = 375 # variables = 2 chi-square = 5.7782e-12 reduced chi-square = 1.5491e-14 Akaike info crit = -11922.4437 Bayesian info crit = -11914.5898 [[Variables]] intercept: 3.3739e-06 +/- 1.2880e-08 (0.38%) (init = 0) slope: -4.9129e-12 +/- 3.7108e-12 (75.53%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 7 # data points = 375 # variables = 2 chi-square = 4.0302e-07 reduced chi-square = 1.0805e-09 Akaike info crit = -7740.19966 Bayesian info crit = -7732.34581 [[Variables]] intercept: 8.9231e-04 +/- 3.4017e-06 (0.38%) (init = 0) slope: -1.4025e-09 +/- 9.8002e-10 (69.88%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 Fitting model to AES-128 Decrypt with 375 samples, from 16 to 6000 bytes in steps of 16. [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 9 # data points = 375 # variables = 2 chi-square = 3.7686e-12 reduced chi-square = 1.0103e-14 Akaike info crit = -12082.7175 Bayesian info crit = -12074.8636 [[Variables]] intercept: 3.3044e-06 +/- 1.0402e-08 (0.31%) (init = 0) slope: -4.5506e-12 +/- 2.9968e-12 (65.86%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 7 # data points = 375 # variables = 2 chi-square = 2.6456e-07 reduced chi-square = 7.0928e-10 Akaike info crit = -7898.04501 Bayesian info crit = -7890.19116 [[Variables]] intercept: 8.7554e-04 +/- 2.7561e-06 (0.31%) (init = 0) slope: -1.3265e-09 +/- 7.9402e-10 (59.86%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 Fitting model to AES-128 Flash Write with 375 samples, from 16 to 6000 bytes in steps of 16. [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 9 # data points = 375 # variables = 2 chi-square = 3.9208e-09 reduced chi-square = 1.0512e-11 Akaike info crit = -9477.46168 Bayesian info crit = -9469.60783 [[Variables]] intercept: 7.3718e-06 +/- 3.3552e-07 (4.55%) (init = 0) slope: 6.1834e-08 +/- 9.6662e-11 (0.16%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 7 # data points = 375 # variables = 2 chi-square = 1.2513e-04 reduced chi-square = 3.3546e-07 Akaike info crit = -5588.41432 Bayesian info crit = -5580.56047 [[Variables]] intercept: 0.00157029 +/- 5.9938e-05 (3.82%) (init = 0) slope: 1.1497e-05 +/- 1.7268e-08 (0.15%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 Fitting model to AES-128 Flash Read with 375 samples, from 16 to 6000 bytes in steps of 16. [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 10 # data points = 375 # variables = 2 chi-square = 3.7411e-12 reduced chi-square = 1.0030e-14 Akaike info crit = -12085.4601 Bayesian info crit = -12077.6062 [[Variables]] intercept: 1.7421e-08 +/- 1.0364e-08 (59.49%) (init = 0) slope: 8.1365e-09 +/- 2.9859e-12 (0.04%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 [[Model]] Model(line) [[Fit Statistics]] # fitting method = leastsq # function evals = 7 # data points = 375 # variables = 2 chi-square = 2.5668e-07 reduced chi-square = 6.8816e-10 Akaike info crit = -7909.38243 Bayesian info crit = -7901.52858 [[Variables]] intercept: 1.6196e-05 +/- 2.7147e-06 (16.76%) (init = 0) slope: 2.1250e-06 +/- 7.8211e-10 (0.04%) (init = 1) [[Correlations]] (unreported correlations are < 0.100) C(intercept, slope) = -0.867 ###Markdown Total from measurement ###Code n_samples = 5995 total_energy = sum(aes_encrypt_energy[:n_samples]) + sum(aes_flash_write_energy[:n_samples]) + sum(aes_flash_read_energy[:n_samples]) + sum(aes_decrypt_energy[:n_samples]) total_time = sum(aes_encrypt_time_s[:n_samples]) + sum(aes_flash_write_time_s[:n_samples]) + sum(aes_flash_read_time_s[:n_samples]) + sum(aes_decrypt_time_s[:n_samples]) print(total_energy, total_time) [e + w + r + d for (e,w,r,d) in zip(aes_encrypt_energy, aes_flash_write_energy, aes_flash_read_energy, aes_decrypt_energy)], [e + w + r + d for (e,w,r,d) in zip(aes_encrypt_time_s, aes_flash_write_time_s, aes_flash_read_time_s, aes_decrypt_time_s)] ###Output _____no_output_____