csaybar commited on
Commit
1b809e9
ยท
verified ยท
1 Parent(s): 47702da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +182 -3
README.md CHANGED
@@ -1,3 +1,182 @@
1
- ---
2
- license: cc0-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license:
3
+ - cc0-1.0
4
+ language:
5
+ - en
6
+ tags:
7
+ - sentinel-2
8
+ - super-resolution
9
+ - harmonization
10
+ - synthetic
11
+ - cross-sensor
12
+ - temporal
13
+ pretty_name: sen2naipv2
14
+ ---
15
+
16
+ <center>
17
+ <img src='images/logo.png' alt='drawing' width='20%'/>
18
+ </center>
19
+
20
+
21
+ # sen2naipv2
22
+
23
+ ****A large-scale dataset for Sentinel-2 Image Super-Resolution****
24
+
25
+
26
+ The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP),
27
+ containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
28
+ are named `sen2naipv2-unet-000{1..3}.part.taco`. This dataset comprises synthetic RGBN NAIP bands at 2.5 and 10 meters,
29
+ degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate
30
+ the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
31
+ harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
32
+ 1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into
33
+ reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851 % same-day
34
+ Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded
35
+ from one day to a 3-day range, and the search included the full Sentinel-2 archive available for the
36
+ USA, increasing the cross-sensor dataset size to 35,217 images. The kernel degradation and noise model
37
+ components remain consistent between the two versions.
38
+ In addition to the synthetic dataset (`sen2naipv2-unet`), two new variants are introduced in
39
+ SEN2NAIPv2:
40
+ 1. **sen2naipv2-histmatch:** Identical to `sen2naipv2-unet` but uses histogram matching instead of
41
+ style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
42
+ time difference between the NAIP and Sentinel-2 images used for harmonization.
43
+ 2. **sen2naipv2-crosssensor:** โ€“ In contrast to synthetic SEN2NAIPv2 datasets, the cross-sensor
44
+ SEN2NAIPv2 dataset is comparatively smaller, comprising only images captured within a one-day timeframe
45
+ between Sentinel-2 and NAIP. To guarantee that the Sentinel-2 images are cloud-free, we exclude any
46
+ images with a cloud cover greater than 0 % as reported by the [UnetMob-V2 cloud detector](https://cloudsen12.github.io/).
47
+ To ensure the reliability of the dataset, we first calculated the Pearson correlation in 16 x 16 kernels
48
+ between the Sentinel-2 images and a Sentinel-2-like version (see correlation field) obtained by degrading NAIP imagery. The
49
+ degradation process was similar to the one described in the synthetic SEN2NAIPv2 paper but employed histogram matching
50
+ instead of the U-Net-style transfer model, as a reliable LR reference exists. In addition, we applied a hard
51
+ constraint to the HR images using as a reference the real Sentinel-2 to further improve harmonization.
52
+ 3. **sen2naipv2-temporal:** A temporal variant of the SEN2NAIPv2 dataset, where the LR and HR image pairs are
53
+ generated synthetically using the same degradation model as the `sen2naipv2-unet` dataset.
54
+
55
+
56
+ <center>
57
+ <img src='images/map.png' alt='drawing' width='75%'/>
58
+ <sup>
59
+ The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches
60
+ measure 130 ร— 130 pixels, while the high-resolution (HR) patches measure 520 ร— 520 pixels. Blue stars indicate the spatial locations
61
+ of the cross-sensor subset.
62
+ </sup>
63
+ </center>
64
+
65
+
66
+ ## ๐ŸŒฎ TACO Snippet
67
+
68
+
69
+ Load this dataset using the `tacoreader` library.
70
+ ```python
71
+ import tacoreader
72
+ import rasterio as rio
73
+
74
+ # Load the Cloud-Optimized Dataset
75
+ file = "https://huggingface.co/datasets/tacofoundation/tortilla_demo/resolve/main/sen2naipv2_real.tortilla"
76
+ dataset = tacoreader.load(file)
77
+
78
+ # Read a sample
79
+ sample_idx = 2000
80
+ lr = dataset.read(sample_idx).read(0)
81
+ hr = dataset.read(sample_idx).read(1)
82
+
83
+ # Retrieve the data
84
+ with rio.open(lr) as src, rio.open(hr) as dst:
85
+ lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
86
+ hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))
87
+ ```
88
+
89
+ Or in R:
90
+
91
+ ```r
92
+ library(tacoreader)
93
+ file <- "https://huggingface.co/datasets/tacofoundation/tortilla_demo/resolve/main/sen2naipv2_real.tortilla"
94
+ dataset <- tacoreader::load(file)
95
+ ```
96
+ ## ๐Ÿ›ฐ๏ธ Sensor Information
97
+
98
+
99
+ The sensor related to the dataset: **sentinel2msi**
100
+ ## ๐ŸŽฏ Task
101
+
102
+
103
+ The task associated with this dataset: **super-resolution**
104
+ ## ๐Ÿ“‚ Original Data Repository
105
+
106
+
107
+ Source location of the raw data:**[https://huggingface.co/datasets/isp-uv-es/SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP)**
108
+ ## ๐Ÿ’ฌ Discussion
109
+
110
+
111
+ Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/sen2naipv2/discussions](https://huggingface.co/datasets/tacofoundation/sen2naipv2/discussions)**
112
+ ## ๐Ÿ”€ Split Strategy
113
+
114
+
115
+ How the dataset is divided for training, validation, and testing: **stratified**
116
+ ## ๐Ÿ“š Scientific Publications
117
+
118
+
119
+ Publications that reference or describe the dataset.
120
+
121
+ ### Publication 01
122
+ - **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
123
+ - **Summary**: Set of tools to evaluate super-resolution models in the context of Sentinel-2 imagery.
124
+ - **BibTeX Citation**:
125
+ ```bibtex
126
+ @article{aybar2024comprehensive,
127
+ title={A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution},
128
+ author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
129
+ journal={IEEE Geoscience and Remote Sensing Letters},
130
+ year={2024},
131
+ publisher={IEEE}
132
+ }
133
+ ```
134
+
135
+
136
+
137
+ ### Publication 02
138
+ - **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
139
+ - **Summary**: Version 1 of the SEN2NAIPv2 dataset.
140
+ - **BibTeX Citation**:
141
+ ```bibtex
142
+ @article{aybar2024sen2naip,
143
+ title={SEN2NAIP \: A large-scale dataset for Sentinel-2 Image Super-Resolution},
144
+ author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
145
+ journal={Scientific Data},
146
+ volume={9},
147
+ number={1},
148
+ pages={782},
149
+ year={2022},
150
+ publisher={Nature Publishing Group UK London}
151
+ }
152
+ ```
153
+
154
+
155
+ ## ๐Ÿค Data Providers
156
+
157
+
158
+ Organizations or individuals responsible for the dataset.
159
+ |**Name**|**Role**|**URL**|
160
+ | :--- | :--- | :--- |
161
+ |Image & Signal Processing|host|[https://isp.uv.es/](https://isp.uv.es/)|
162
+ |USDA Farm Production and Conservation - Business Center, Geospatial Enterprise Operations|producer|[https://www.fpacbc.usda.gov/](https://www.fpacbc.usda.gov/)|
163
+ |European Space Agency|producer|[https://www.esa.int/](https://www.esa.int/)|
164
+
165
+ ## ๐Ÿง‘โ€๐Ÿ”ฌ Curators
166
+
167
+
168
+ Responsible for structuring the dataset in the TACO format.
169
+ |**Name**|**Organization**|**URL**|
170
+ | :--- | :--- | :--- |
171
+ |Cesar Aybar|Image & Signal Processing|[https://csaybar.github.io/](https://csaybar.github.io/)|
172
+
173
+ ## ๐ŸŒˆ Optical Bands
174
+
175
+
176
+ Spectral bands related to the sensor.
177
+ |**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
178
+ | :--- | :--- | :--- | :--- | :--- | :--- |
179
+ |B02|blue|Band 2 - Blue - 10m|496.5|53.0|0|
180
+ |B03|green|Band 3 - Green - 10m|560.0|34.0|1|
181
+ |B04|red|Band 4 - Red - 10m|664.5|29.0|2|
182
+ |B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|