{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Processing an existing dataset for long-form question answering to filter out overly long answers." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Cut off value for the maximum number of tokens in the answer\n", "MAX_TOKENS_ANSWER = 512" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DatasetDict({\n", " train: Dataset({\n", " features: ['question', 'answer', 'context'],\n", " num_rows: 226147\n", " })\n", " validation: Dataset({\n", " features: ['question', 'answer', 'context'],\n", " num_rows: 3020\n", " })\n", "})" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import datasets\n", "\n", "# Long-form question answering dataset, nicely preprocessed already.\n", "# Similar to ELI5: https://facebookresearch.github.io/ELI5/index.html (which is unavailable now)\n", "dataset_lfqa = datasets.load_dataset(\"LLukas22/lfqa_preprocessed\")\n", "dataset_lfqa" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
questionanswercontext
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import random\n", "import pandas as pd\n", "from IPython.display import display, HTML\n", "\n", "def show_random_elements(dataset, num_examples=4):\n", " assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n", " picks = []\n", " for _ in range(num_examples):\n", " pick = random.randint(0, len(dataset)-1)\n", " while pick in picks:\n", " pick = random.randint(0, len(dataset)-1)\n", " picks.append(pick)\n", "\n", " df = pd.DataFrame(dataset[picks])\n", " for column, typ in dataset.features.items():\n", " if isinstance(typ, datasets.ClassLabel):\n", " df[column] = df[column].transform(lambda i: typ.names[i])\n", " display(HTML(df.to_html()))\n", "\n", "show_random_elements(dataset_lfqa[\"train\"], num_examples=0)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGzCAYAAADOnwhmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQppJREFUeJzt3QuczXX+x/HP3N1yv69LSrmULigUSqxJahO1yTXX2FGhkE2SdtcuCSEqMXZjQw9UhDQulUtkk0sR2xTJbWOIXOby+z8+n93f+Z8zM5jRcM6c3+v5ePwc5/y+53d+53fOzO8939svwnEcRwAAADwsMtg7AAAAEGwEIgAA4HkEIgAA4HkEIgAA4HkEIgAA4HkEIgAA4HkEIgAA4HkEIgAA4HkEIgAA4HkEIgC5cuedd9oS6kaMGCERERHyn//855K9xpVXXimPPvqohNv7AryIQATk0quvvmonpAYNGgR7VyAif/nLX2ThwoXB3g3kwOzZs2X8+PHB3g0gWwQiIJdmzZplNQMbNmyQ3bt3B3t3PC+YgWjnzp3yxhtvBOW18yMCEUIZgQjIheTkZFm7dq28/PLLUqZMGQtH4SYjI0NOnz4d7N3IF+Li4iQmJkbCjV7z+9SpU5If8H1FXiEQAbmgAahEiRLSunVrefDBB7MNRN999501qb300kvy+uuvy9VXX20nzltuuUU2btwYUPbAgQPSrVs3qVSpkpWpUKGC3H///bYNNXDgQClVqpSdoFyPP/64bf+VV17xPXbw4EF7bMqUKb7Hzpw5I88//7xUr17dtl25cmUZPHiwPe5Pn9evXz97L9ddd52VXbp0aa6OS25fS2t0rr/+eiurr5nd661atUrq168vBQoUsGP42muv+frP+G/v5MmTMnPmTPu/Lpn79KSkpNhjxYsXl2LFitnx/uWXXwLKLF++XBo3bmxlihQpIjVq1JA//vGPue5DlJiYaPuwZs0a++w0NBcuXFgeeOABOXz4cI6O5Y4dO+T3v/+9PbdgwYK2L88++2yWcjl5XzNmzJC77rpLypYta8e6du3aAd8R//dx7733yrJly+yY6+vq8c7NNtSSJUvkjjvukCuuuEKKFi1q33mtFVLa72zx4sXy/fff+z4rfd28/L6+/fbbUq9ePd/r16lTRyZMmJCj4w5EB3sHgPxEfwm3bdtWYmNj5ZFHHrETg4Yc/cWfmZ4Ifv75Z3nsscfsl/jo0aPtud9++62vVqFdu3ayfft2Czl6cjh06JCdnPfs2WP3mzRpIuPGjbMyGiDUJ598IpGRkXb7xBNP+B5TTZs29f3V/Lvf/U4+/fRT6d27t9SqVUu2bt1q2/rmm2+yNDGtWLFC5s6dayea0qVLB5yoLiS3r6Xl5s+fL3/4wx/sxKXBTo+DvmcNf+qLL76Qu+++2wLiCy+8IOnp6TJy5EgLCf7+8Y9/SM+ePeXWW2+111YanvxpuKhWrZqMGjVK/vWvf8m0adPs5P63v/3N1uux1TBwww032GvoCVabQjXUXCz9PDU46wlew602E+mxnTNnznmft2XLFvvM9fuh70c/h3//+9/y/vvvy5///OdcvS+l308NDfr5REdH23b0uOtnlpCQkKX5T7/T+n3t1auXBbHcbEPDYPfu3a3s0KFDLajp56hhpUOHDhbqjh07Jj/88IN9N5SGz7z6vurPje5/8+bNfcfg66+/ts/xySefvMhPEp7iAMiRzz//XKtpnOXLl9v9jIwMp1KlSs6TTz4ZUC45OdnKlSpVyjly5Ijv8Xfffdcef//99+3+0aNH7f6YMWPO+ZqHDh2yMq+++qrdT0lJcSIjI52HHnrIKVeunK/cE0884ZQsWdL2Sf3jH/+wcp988knA9qZOnWrbW7Nmje8xva9lt2/fnqPjcMcdd9jiyu1rxcbGOrt37/Y99uWXX9rjEydO9D123333OYUKFXL27dvne2zXrl1OdHS0lfVXuHBhp2vXrln28/nnn7ey3bt3D3j8gQcesM/GNW7cOCt3+PBhJ7eqVq0a8NozZsywbbVo0cL3WagBAwY4UVFR9vmdT9OmTZ0rrrjC+f777wMe999WTt+X+uWXX7K8Rnx8vHPVVVdleR+6zaVLl2Ypn5Nt6PvS/W7QoIFz6tSpc+5769at7bUyy4vvq/4cFi1a1ElLS8uyfSAnaDIDclE7VK5cOWnWrJnd11qfhx9+2KrptQYjM12ntQQu/ctfaQ2R0mYJrWnSpqGjR49m+5paI1KzZk35+OOP7b7+tRsVFSWDBg2yZrJdu3b5aoi0ycdtTpo3b579la3P1eHZ7qJNH2rlypUBr6PNHNoUcjFy+1otWrQIqMXRmhlt3nCPix7Ljz76SNq0aSMVK1b0ldOmlFatWuV6//r06RNwXz+Hn376SY4fP273tSZDvfvuu1ZTkRe0lsO/aU9fU9+XNhedizap6eestSxVqlQJWOe/rZy+L/c75tLaGf1c9LPWY633/WltU3x8fJbXyck2tHZGa0OfeeYZa+K80L5nlhffV/0ctflU9wW4GAQiIAf0ZKbBR8OQdqzWJhVddOi9BpOkpKQsz8l8UnPDkRt+tGlGq/a134UGLW3u0mY17VeU+UTnNonprfbx0KVkyZJ2X0+AX375pS9wKQ1K2hSkgcp/ufbaa229Ns1lPhlerNy+Vubj4h4b97hoee3QqwEos+weu5ALfQ4aXG+//XZretPPoX379tYc82vC0YVeMztuIHSbRvPiNTRAawDVfkwaGPRzcftGZReIspOTbWizXm72PbO8+L5qM56W19CsffI0WOa2Lxy8jT5EQA5on4X9+/dbKNIlu9qjli1bBjymNTnZ8e8g3b9/f7nvvvusj4R2aH3uueesT4i+3s0332xltOZHh3brCVMDkAYf/atbH9f7WouiJ2//QKT3tUOpjobLjnZYPVctQG7l9rVyclzy0oVeT9+71sxoLYR2+tWTqPb10dqJDz/88JzP/zWvmRcu9BoaUrQ/jda66Gejn4PWSH7wwQfWNydz4MvuO5DbbVysvPi+av+pzZs328+R/pGhi3YI79Kli3W6By6EQATkgAYe/YU7efLkLOu0g/CCBQtk6tSpFxUstPnoqaeeskX/Ur7ppptk7Nix8tZbb9l6N+hoU4B24NZmCaU1StrhVQOR/vWuo2v8t6m1Rnoyy0mTxa+R16+lx1mbXbKb4ym7x/LiNbWTuu6/LnpS1rmNtBOwhiStHbkcrrrqKrvdtm1bnmxPOz/rCK333nsvoDYpc/NTXmzDbQLVfT9fLd65Pqu8+g5pWNM/MHTRkKW1RjpaTv/QuJjaRXgLTWbABWjzjYYeHYmkQ+0zLzrSRftP6EkjN3SIdOb5U/TEoCOv/Icaa/PAb37zG/uLPDU11Zp33KCkf8G/88470rBhQxsB5D8Cad++fdlOGqjvR/ta5JW8fi2t+dAQorVmP/74Y0AY0r/6M9MwqEPQL9aRI0eyPKahVGUe8n0paRORhtzp06fbiLtfW7Pk1iD5P1ebuLTWJK+3obWj+r3V2s3M32n/5+pnlbmpLq++Q9p/KnPI1f5pl/tzRP5FDRFwARp0NPDosODsaBhxJ2nU/ig5pcOJ9S9iPRloB1ENNFrTpH2StB+LPw0/2lSnzQpuX5G6devaCUa3o8Oa/XXu3Nn6wWjHW/1rXkOU9oPSOW70cXe+mbxwKV5L5xvS5irdVt++fW17kyZNsj4q2iziT2vGtBO21uxobZkGyNxcVkWH2muTmc4tVbVqVeuvopdn0X4o2ix5OekUBPqa+tlqx2x9LzpsX5vyMr/vC9GQ4taY6FD6EydOWODQGjht/s3LbWineA3s2g9Lp6DQ76N+T7XWR4O/22Sln5U2R+ocTVpOh93rtvPiO6SvreFWmzr1s9MO7BMnTrRwqx22gQvK0Vg0wMN0CHiBAgWckydPnrPMo48+6sTExDj/+c9/fMPusxtOr4/rsGmlZRMSEpyaNWva0PFixYrZsOW5c+dmed7kyZPtuX379g14XId36+NJSUlZnnP27Fnnb3/7m3Pdddc5cXFxTokSJZx69eo5L7zwgnPs2LGAfdL9yKnMw+7z4rUyD19X+p5uvvlmG6Z/9dVXO9OmTXOeeuop+yz87dixw4arFyxY0Lbvbscdnp55OL07NF4/J/d17r//fqdixYr2Wnr7yCOPON98881FD7vfuHFjQLmVK1fa43p7Idu2bbMh9MWLF7f3WqNGDee5557zrc/p+1Lvvfeec8MNN9h2rrzySvuMpk+fnqWcvg8dEp+dnG7DLXvbbbfZZ6FD4G+99Vbnn//8p2/9iRMnnA4dOth70+f7D8H/td+hd955x2nZsqVTtmxZ+xyrVKniPPbYY87+/fsveMwBFaH/XDg2AUDw6VB8HY3kTjcAAHmFPkQAQlLma2lpCNLRTXoJCADIa9QQAQhJetkOvVaXjr7S/iA6ok47x+rlIK655ppg7x6AMEOnagAhSa9l9s9//tMmqtRJLBs1amTD4QlDAC4FaogAAIDn0YcIAAB4HoEIAAB4Hn2IckCngNcZc3Um1kt9GQQAAJA3tFeQTqyrk7bq7OXnQyDKAQ1DmS8uCAAA8oe9e/faDObnQyDKAa0Zcg+oTlEPAABC3/Hjx61Cwz2Pnw+BKAfcZjINQwQiAADyl5x0d6FTNQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCEQAA8LygBqL09HR57rnnpFq1alKwYEG5+uqr5cUXXxTHcXxl9P/Dhw+XChUqWJkWLVrIrl27ArZz5MgR6dixo11nrHjx4tKjRw85ceJEQJktW7ZIkyZNpECBAnaht9GjR1+29wkAAEJbUAPR3/72N5kyZYpMmjRJvv76a7uvQWXixIm+Mnr/lVdekalTp8pnn30mhQsXlvj4eDl9+rSvjIah7du3y/Lly2XRokXy8ccfS+/evQOudtuyZUupWrWqbNq0ScaMGSMjRoyQ119//bK/ZwAAEHoiHP/qmMvs3nvvlXLlysmbb77pe6xdu3ZWE/TWW29Z7VDFihXlqaeekqefftrWHzt2zJ6TmJgo7du3tyBVu3Zt2bhxo9SvX9/KLF26VO655x754Ycf7Pkaup599lk5cOCAxMbGWplnnnlGFi5cKDt27LjgfmqgKlasmL32pbzavb7f1NRUiYmJydGVeQEAQN6cv4NaQ3TbbbdJUlKSfPPNN3b/yy+/lE8//VRatWpl95OTky3EaDOZS99YgwYNZN26dXZfb7WZzA1DSstHRkZajZJbpmnTpr4wpLSWaefOnXL06NEs+3XmzBk7iP7L5aBh6OHJK+0WAABcPtESRFpLo2GjZs2aEhUVZX2K/vznP1sTmNIwpLRGyJ/ed9fpbdmyZQPWR0dHS8mSJQPKaD+lzNtw15UoUSJg3ahRo+SFF16QYIiMCupHAgCAJwW1hmju3Lkya9YsmT17tvzrX/+SmTNnyksvvWS3wTR06FCrXnOXvXv3XrbXzkhLlbNnz1621wMAAEGuIRo0aJDVEmlfIFWnTh35/vvvrYama9euUr58eXv84MGDNsrMpfdvuukm+7+WOXToUMB209LSbOSZ+3y91ef4c++7ZfzFxcXZAgAAvCGoNUS//PKL9fXxp01nGRkZ9n9t5tLAov2MXNrEpn2DGjVqZPf1NiUlxUaPuVasWGHb0L5GbhkdeebfN0dHpNWoUSNLcxkAAPCeoAai++67z/oMLV68WL777jtZsGCBvPzyy/LAAw/Yeh1p1b9/f/nTn/4k7733nmzdulW6dOliI8fatGljZWrVqiV333239OrVSzZs2CBr1qyRfv36Wa2TllMdOnSwDtU6P5EOz58zZ45MmDBBBg4cGMy3DwAAQkRQm8x0viGdmPEPf/iDNXtpgHnsscdsIkbX4MGD5eTJkzavkNYENW7c2IbV6wSLLu2HpCGoefPmVuOkQ/d17iL/kWkffvihJCQkSL169aR06dL2Gv5zFQEAAO8K6jxE+cXlmodIO1M/PGmF/KN3YylSpMglex0AALzgeH6ZhwgAACAUEIgAAIDnEYgAAIDnEYgAAIDnEYgAAIDnEYgAAIDnEYgAAIDnEYgAAIDnEYhChM6PyVXuAQAIDgJRiNALz3acskqcDCYOBwDgciMQhZDIqKBeWg4AAM8iEAEAAM8jEAEAAM8jEAEAAM8jEAEAAM8jEAEAAM8jEIXofER6CwAALg8CUYhx0tOk2/T1Ni8RAAC4PAhEIYj5iAAAuLwIRAAAwPMIRAAAwPMIRAAAwPMIRAAAwPMIRAAAwPMIRCEkIy1VHCfDbnUuIgAAcHkQiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcFNRBdeeWVEhERkWVJSEiw9adPn7b/lypVSooUKSLt2rWTgwcPBmxjz5490rp1aylUqJCULVtWBg0aJGlpaQFlVq1aJXXr1pW4uDipXr26JCYmXtb3CQAAQltQA9HGjRtl//79vmX58uX2+EMPPWS3AwYMkPfff1/mzZsnq1evlh9//FHatm3re356erqFIZ3Vee3atTJz5kwLO8OHD/eVSU5OtjLNmjWTzZs3S//+/aVnz56ybNmyILxjAAAQiiIcx3EkRGhYWbRokezatUuOHz8uZcqUkdmzZ8uDDz5o63fs2CG1atWSdevWScOGDWXJkiVy7733WlAqV66clZk6daoMGTJEDh8+LLGxsfb/xYsXy7Zt23yv0759e0lJSZGlS5fmaL90X4oVKybHjh2TokWLXpL3rqHuofHLJCM9XSKjY2RW3zusVgwAAFyc3Jy/Q6YPkQaCt956S7p3727NZps2bZLU1FRp0aKFr0zNmjWlSpUqFoiU3tapU8cXhlR8fLwdgO3bt/vK+G/DLeNuIztnzpyxbfgvAAAgfIVMIFq4cKHV2jz66KN2/8CBA1bDU7x48YByGn50nVvGPwy569115yujIefUqVPZ7suoUaMsUbpL5cqV8/CdAgCAUBMygejNN9+UVq1aScWKFYO9KzJ06FCrXnOXvXv3BnuXAADAJRQtIeD777+Xjz76SObPn+97rHz58taMprVG/rVEOspM17llNmzYELAtdxSaf5nMI9P0vrYlFixYMNv90dFoulxO+l6djJDpzgUAgKeERA3RjBkzbMi8jgZz1atXT2JiYiQpKcn32M6dO22YfaNGjey+3m7dulUOHTrkK6Mj1TTs1K5d21fGfxtuGXcbAAAAQQ9EGRkZFoi6du0q0dH/X2GlfXd69OghAwcOlJUrV1on627dulmQ0RFmqmXLlhZ8OnfuLF9++aUNpR82bJjNXeTW8PTp00e+/fZbGTx4sI1Se/XVV2Xu3Lk2pB8AACAkmsy0qUxrfXR0WWbjxo2TyMhIm5BRR37p6DANNK6oqCgbpt+3b18LSoULF7ZgNXLkSF+ZatWq2bB7DUATJkyQSpUqybRp02xbAAAAITcPUai6HPMQnThxQjpMWiGOk8E8RAAAeHUeIgAAgGAhEAEAAM8jEAEAAM8jEAEAAM8jEAEAAM8jEAEAAM8jEAEAAM8jEAEAAM8jEIUgnSvTLvbKnJkAAFwWBKIQ5KSnSbfp6yU1NTXYuwIAgCcQiEJUZFTQLzMHAIBnEIhCVEZaqjWbAQCAS49ABAAAPI9AFEKdqAEAQHDQUSUEaOfprq+tFpGIYO8KAACeRA1RiKATNQAAwUMgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnkcgAgAAnhf0QLRv3z7p1KmTlCpVSgoWLCh16tSRzz//3LfecRwZPny4VKhQwda3aNFCdu3aFbCNI0eOSMeOHaVo0aJSvHhx6dGjh5w4cSKgzJYtW6RJkyZSoEABqVy5sowePfqyvUcAABDaghqIjh49KrfffrvExMTIkiVL5KuvvpKxY8dKiRIlfGU0uLzyyisydepU+eyzz6Rw4cISHx8vp0+f9pXRMLR9+3ZZvny5LFq0SD7++GPp3bu3b/3x48elZcuWUrVqVdm0aZOMGTNGRowYIa+//vplf88AACD0RDhaBRMkzzzzjKxZs0Y++eSTbNfrrlWsWFGeeuopefrpp+2xY8eOSbly5SQxMVHat28vX3/9tdSuXVs2btwo9evXtzJLly6Ve+65R3744Qd7/pQpU+TZZ5+VAwcOSGxsrO+1Fy5cKDt27MjyumfOnLHFP1BprZK+ttZC5bWzZ8/KQ+OXSUZ6uu+xyOgYmdX3DilSpEievx4AAF5w/PhxKVasWI7O30GtIXrvvfcsxDz00ENStmxZufnmm+WNN97wrU9OTrYQo81kLn1jDRo0kHXr1tl9vdVmMjcMKS0fGRlpNUpumaZNm/rCkNJapp07d1otVWajRo2y13EXDUMAACB8BTUQffvtt1Z7c80118iyZcukb9++8sQTT8jMmTNtvYYhpTVC/vS+u05vNUz5i46OlpIlSwaUyW4b/q/hb+jQoZYm3WXv3r15+r4BAEBoiQ7mi2dkZFjNzl/+8he7rzVE27Zts/5CXbt2Ddp+xcXF2QIAALwhqDVEOnJM+//4q1WrluzZs8f+X758ebs9ePBgQBm9767T20OHDgWsT0tLs5Fn/mWy24b/awAAAO8KaiDSEWbaj8ffN998Y6PBVLVq1SywJCUlBXSQ0r5BjRo1svt6m5KSYqPHXCtWrLDaJ+1r5JbRkWepqam+MjoirUaNGgEj2gAAgDcFNRANGDBA1q9fb01mu3fvltmzZ9tQ+ISEBFsfEREh/fv3lz/96U/WAXvr1q3SpUsXGznWpk0bX43S3XffLb169ZINGzbYqLV+/frZCDQtpzp06GAdqnV+Ih2eP2fOHJkwYYIMHDgwmG8fAACEiKD2IbrllltkwYIF1ol55MiRViM0fvx4m1fINXjwYDl58qTNK6Q1QY0bN7Zh9TrBomvWrFkWgpo3b26jy9q1a2dzF7l0pNiHH35oQatevXpSunRpm+zRf66iUKTD8XXxHx0HAADCbB6icJzHIK/mIYqIipbXu9S3Jj06eAMAEMbzEOHcnPQ06ZX4WUC/JwAAcGkQiEJYZFRQWzQBAPAMAhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AhEAAPA8AlEIcxxHzp49a7cAAODSIRCFMCc9TbpNXy+pqanB3hUAAMIagSjERUZFB3sXAAAIewQiAADgeQQiAADgeQQiAADgeQQiAADgeQQiAADgeQQiAADgeQQiAADgeQQiAADgeQQiAADgeQQiAADgeQSiEJeRlmoXeAUAAJcOgQgAAHheUAPRiBEjJCIiImCpWbOmb/3p06clISFBSpUqJUWKFJF27drJwYMHA7axZ88ead26tRQqVEjKli0rgwYNkrS0tIAyq1atkrp160pcXJxUr15dEhMTL9t7BAAAoS/oNUTXXXed7N+/37d8+umnvnUDBgyQ999/X+bNmyerV6+WH3/8Udq2betbn56ebmFIm5TWrl0rM2fOtLAzfPhwX5nk5GQr06xZM9m8ebP0799fevbsKcuWLbvs7xUAAISm6KDvQHS0lC9fPsvjx44dkzfffFNmz54td911lz02Y8YMqVWrlqxfv14aNmwoH374oXz11Vfy0UcfSbly5eSmm26SF198UYYMGWK1T7GxsTJ16lSpVq2ajB071rahz9fQNW7cOImPj892n86cOWOL6/jx4xIsjuNY4NNbrUEDAABhWEO0a9cuqVixolx11VXSsWNHawJTmzZtktTUVGnRooWvrDanValSRdatW2f39bZOnToWhlwacjTAbN++3VfGfxtuGXcb2Rk1apQUK1bMt1SuXFmCxUlPk27T19uxAAAAYRiIGjRoYE1cS5culSlTpljzVpMmTeTnn3+WAwcOWA1P8eLFA56j4UfXKb31D0Puenfd+cpoaDp16lS2+zV06FCroXKXvXv3SjBFRgW9Ig8AgLAW1DNtq1atfP+/4YYbLCBVrVpV5s6dKwULFgzafmnna10AAIA3BL3JzJ/WBl177bWye/du61ekfWdSUlICyugoM7fPkd5mHnXm3r9QmaJFiwY1dAEAgNARUoHoxIkT8u9//1sqVKgg9erVk5iYGElKSvKt37lzp/UxatSokd3X261bt8qhQ4d8ZZYvX25hp3bt2r4y/ttwy7jbAAAACGogevrpp204/XfffWfD5h944AGJioqSRx55xDoz9+jRQwYOHCgrV660TtbdunWzIKMjzFTLli0t+HTu3Fm+/PJLG0o/bNgwm7vIbfLq06ePfPvttzJ48GDZsWOHvPrqq9Ykp0P6AQAAgt6H6IcffrDw89NPP0mZMmWkcePGNqRe/690aHxkZKRNyKjD4HV0mAYal4anRYsWSd++fS0oFS5cWLp27SojR470ldEh94sXL7YANGHCBKlUqZJMmzbtnEPuAQCA90Q4OsENzktHpGmNlY440+a4vKZ9pR4av0wy0tOzXR9doJDMSbjTRt0BAIC8P3+HVB8iAACAYCAQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAz7uoQHTVVVfZ9ccyS0lJsXUAAABhH4j06vTp2Vx3Sy/Aum/fvrzYLwAAgNC82v17773n+/+yZcvsgmkuDUhJSUly5ZVX5u0eAgAAhFIgatOmjd1GRERI165dA9bFxMRYGBo7dmze7iEAAEAoBaKMjAy7rVatmmzcuFFKly59qfYLAAAgNAORKzk5Oe/3BOfkOI6cPXvWauG0dg4AAIRAIFLaX0iXQ4cO+WqOXNOnT8+LfcP/OOlp0um1T2Xu43dJbGxssHcHAICwc1GB6IUXXpCRI0dK/fr1pUKFCtRaXGIZaakSXSAm2LsBAEDYuqhANHXqVElMTJTOnTvn/R4BAADkh3mItD/Lbbfdlvd7AwAAkF8CUc+ePWX27Nl5vzcAAAD5pcns9OnT8vrrr8tHH30kN9xwg41+8vfyyy/n1f4BAACEZiDasmWL3HTTTfb/bdu2BayjgzUAAPBEIFq5cmXe7wkAAEB+6kMEAAAgXq8hatas2XmbxlasWPFr9slzdNSek+EEezcAAPCsiwpEbv8hV2pqqmzevNn6E2W+6CsAAEBYBqJx48Zl+/iIESPkxIkTv3afAAAA8m8fok6dOnEdMwAA4O1AtG7dOilQoEBebhIAACA0m8zatm0bcN9xHNm/f798/vnn8txzz+XVvgEAAIRuICpWrFjA/cjISKlRo4aMHDlSWrZsmVf7hkxXvNfRaLGxscHeFQAAws5FBaIZM2bk/Z4AAADkxz5EmzZtkrfeesuWL7744lftyF//+leb26h///4B10xLSEiQUqVKSZEiRaRdu3Zy8ODBgOft2bNHWrduLYUKFZKyZcvKoEGDJC0tLaDMqlWrpG7duhIXFyfVq1eXxMTEX7WvAAAgvFxUDdGhQ4ekffv2FjSKFy9uj6WkpNiEjW+//baUKVMmV9vbuHGjvPbaa3ahWH8DBgyQxYsXy7x586yZrl+/ftZ/ac2aNbY+PT3dwlD58uVl7dq11o+pS5cudrHZv/zlL1YmOTnZyvTp00dmzZolSUlJ0rNnT6lQoYLEx8dfzNsHAABh5qJqiB5//HH5+eefZfv27XLkyBFbdFLG48ePyxNPPJGrbem8RR07dpQ33nhDSpQo4Xv82LFj8uabb8rLL78sd911l9SrV8+a6jT4rF+/3sp8+OGH8tVXX1kNlU4W2apVK3nxxRdl8uTJ1t9GTZ06VapVqyZjx46VWrVqWah68MEHzzmXkjpz5oy9F/8FAACEr4sKREuXLpVXX33VAoardu3aFkSWLFmSq21pk5jW4LRo0SJLc5zOgO3/eM2aNaVKlSo2vF/pbZ06daRcuXK+MlrrowFGw5pbJvO2tYy7jeyMGjXKaqTcpXLlyrl6TwAAwAOBKCMjw5qlMtPHdF1OafPav/71LwsgmR04cMBGVLlNci4NP7rOLeMfhtz17rrzldHQdOrUqWz3a+jQoVZD5S579+7N8XsCAAAeCUTahPXkk0/Kjz/+6Hts37591uenefPmOdqGhgzdhvbrCbXJHLXzddGiRQMWAAAQvi4qEE2aNMlqWK688kq5+uqrbdF+OvrYxIkTc7QNbRLTztk6+is6OtqW1atXyyuvvGL/11oc7QeknbX96Sgz7USt9DbzqDP3/oXKaMgpWLCg5Bc6+aUeD70FAAAhMMpM+9RoU9dHH30kO3bssMe0P1HmvjrnozVJW7duDXisW7du1k9oyJAh9hraBKejwnS4vdq5c6cNs2/UqJHd19s///nPFqx0yL1avny5hR3t0+SW+eCDDwJeR8u428gvnPQ06TZ9vcx7ogWTMwIAEMxAtGLFChulpaO8NHT89re/tUVpX5vrrrvORnU1adLkgtu64oor5Prrrw94rHDhwjbnkPt4jx49ZODAgVKyZEl7PR3dpkGmYcOGtl5nxdbg07lzZxk9erT1Fxo2bJh11NZmL6XD7bVGa/DgwdK9e3d7D3PnzrXh/PlNZNRF5VcAAJCXTWbjx4+XXr16ZdunRkdjPfbYYzZMPq/o0Ph7773XaoiaNm1qzV/z58/3rY+KipJFixbZrQalTp062TxEegkRlzblafjRWqEbb7zRht9PmzaNOYgAAIBPhJOLTilVq1a1Iff+w+39afOZ1tpos1Y40b5RGvi0FuxSdLDWuZg6TFohjnP+EXrRBQrJnIQ7aTIDACCPz9+5qiHSzsjZDbd3aWfow4cP52aTAAAAQZerQPSb3/zGZqQ+ly1bttglMQAAAMI2EN1zzz3y3HPP2UVXM9NJDp9//nnr8wMAAJCf5GrYko7g0k7N1157rY02q1Gjhq/vkF62Qy+2+uyzz16qfQUAAAh+INLJEvXiqn379rXLW7j9sSMiImzUloaizJfJAAAACHW5nthGR5rpRIdHjx6V3bt3Wyi65pprAq5UDwAAkJ9c9Ex/GoBuueWWvN0bAACA/HItMwAAgHBCIAIAAJ5HIMpHMtJS7Yr3AAAgbxGIAACA5xGIAACA5xGIAACA5xGIAACA5xGIgkwntqSjNAAA+XRiRuSN1NRU6fraar0ASrB3BQAAz6KGKARERpFLAQAIJgIRAADwPAIRAADwPAIRAADwPAIRAADwPAJRPhyir7cAACDvEIjyESc9TbpNX29D9QEAQN4hEOUzDNEHACDvEYgAAIDnEYjymYy0VC71AQBAHiMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzyMQAQAAzwtqIJoyZYrccMMNUrRoUVsaNWokS5Ys8a0/ffq0JCQkSKlSpaRIkSLSrl07OXjwYMA29uzZI61bt5ZChQpJ2bJlZdCgQZKWlhZQZtWqVVK3bl2Ji4uT6tWrS2Ji4mV7jwAAIPQFNRBVqlRJ/vrXv8qmTZvk888/l7vuukvuv/9+2b59u60fMGCAvP/++zJv3jxZvXq1/Pjjj9K2bVvf89PT0y0M6USFa9eulZkzZ1rYGT58uK9McnKylWnWrJls3rxZ+vfvLz179pRly5ZJfqXvl8kZAQDIOxFOiF06vWTJkjJmzBh58MEHpUyZMjJ79mz7v9qxY4fUqlVL1q1bJw0bNrTapHvvvdeCUrly5azM1KlTZciQIXL48GGJjY21/y9evFi2bdvme4327dtLSkqKLF26NNt9OHPmjC2u48ePS+XKleXYsWNWk5WXNNg8NH6ZZKSn56h8RFS0vN6lvpQoUcJqvAAAQPb0/F2sWLEcnb9Dpg+R1va8/fbbcvLkSWs601ojvap7ixYtfGVq1qwpVapUsUCk9LZOnTq+MKTi4+PtALi1TFrGfxtuGXcb2Rk1apQdQHfRMBRKV7zvlfgZV7wHACAPBT0Qbd261foHaW1Hnz59ZMGCBVK7dm05cOCA1fAUL148oLyGH12n9NY/DLnr3XXnK6Oh6dSpU9nu09ChQy1NusvevXsllHDFewAA8lbQz6w1atSwvj0aPN555x3p2rWr9RcKJg1nNEcBAOAdQQ9EWgukI79UvXr1ZOPGjTJhwgR5+OGHrX+N9vXxryXSUWbly5e3/+vthg0bArbnjkLzL5N5ZJre17bEggULXvL3BwAAQl/Qm8wyy8jIsA7NGo5iYmIkKSnJt27nzp02zF77GCm91Sa3Q4cO+cosX77cwo42u7ll/LfhlnG3AQAAENQaIu2r06pVK+so/fPPP9uIMp0zSIfEa2fmHj16yMCBA23kmYacxx9/3IKMjjBTLVu2tODTuXNnGT16tPUXGjZsmM1d5DZ5ab+kSZMmyeDBg6V79+6yYsUKmTt3ro08y690YKDWnultREREsHcHAIB8L6g1RFqz06VLF+tH1Lx5c2su0zD029/+1taPGzfOhtXrhIxNmza15q/58+f7nh8VFSWLFi2yWw1KnTp1su2NHDnSV6ZatWoWfrRW6MYbb5SxY8fKtGnTbKRZfqUjzbpNX89IMwAAwnUeovw+j8GlnofIFV2gkMxJuNP6YAEAgDCZhwgAACBYCEQAAMDzCEQAAMDzCEQAAMDzCEQAAMDzCET5VEZaqo1QAwAAvx6BCAAAeB6BCAAAeB6BKAwu3wEAAH4dAlE+xeU7AADIOwSifCwyKqjX5gUAIGwQiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiAAAgOcRiPKxjLRUu+I9AAD4dQhEAADA8whEAADA8whE+ZjjONZkprcAAODiEYjyMSc9TbpNXy+pqanB3hUAAPI1AlE+FxkVHexdAAAg3yMQAQAAzyMQAQAAzyMQAQAAzyMQ5XPpqWflxIkTjDQDACC/BqJRo0bJLbfcIldccYWULVtW2rRpIzt37gwoc/r0aUlISJBSpUpJkSJFpF27dnLw4MGAMnv27JHWrVtLoUKFbDuDBg2StLS0gDKrVq2SunXrSlxcnFSvXl0SExMlHDDSDACAfB6IVq9ebWFn/fr1snz5cjupt2zZUk6ePOkrM2DAAHn//fdl3rx5Vv7HH3+Utm3b+tanp6dbGNL5eNauXSszZ860sDN8+HBfmeTkZCvTrFkz2bx5s/Tv31969uwpy5Ytk3DASDMAAH6dCCeE2loOHz5sNTwafJo2bSrHjh2TMmXKyOzZs+XBBx+0Mjt27JBatWrJunXrpGHDhrJkyRK59957LSiVK1fOykydOlWGDBli24uNjbX/L168WLZt2+Z7rfbt20tKSoosXbr0gvt1/PhxKVasmO1P0aJF8/Q9a5B7aPwyyUhPv+htRBcoJHMS7rT3CgAAcn/+Dqk+RLrDqmTJkna7adMmqzVq0aKFr0zNmjWlSpUqFoiU3tapU8cXhlR8fLwdhO3bt/vK+G/DLeNuI7MzZ87Y8/0XAAAQvkImEGVkZFhT1u233y7XX3+9PXbgwAGr9ShevHhAWQ0/us4t4x+G3PXuuvOV0aBz6tSpbPs2aaJ0l8qVK+fxuwUAAKEkZAKR9iXSJq2333472LsiQ4cOtdoqd9m7d2+wdwkAAIR7IOrXr58sWrRIVq5cKZUqVfI9Xr58eetjo319/OkoM13nlsk86sy9f6Ey2p5YsGDBLPujI9F0nf8Syhh6DwBAPg5EegLXMLRgwQJZsWKFVKtWLWB9vXr1JCYmRpKSknyP6bB8HWbfqFEju6+3W7dulUOHDvnK6Ig1DTG1a9f2lfHfhlvG3UZ+x9B7AAB+nehgN5PpCLJ3333X5iJy+/xovx2tudHbHj16yMCBA62jtYacxx9/3IKMjjBTOkxfg0/nzp1l9OjRto1hw4bZtrWmR/Xp00cmTZokgwcPlu7du1v4mjt3ro08CxcMvQcAIJ/WEE2ZMsX66Nx5551SoUIF3zJnzhxfmXHjxtmwep2QUYfia/PX/PnzfeujoqKsuU1vNSh16tRJunTpIiNHjvSV0ZonDT9aK3TjjTfK2LFjZdq0aTbSLFxkpKVa8yIAAMjn8xCFqlCfh0hFRsfIrL532GzeAABA8u88RAAAAMFAIAIAAJ5HIAIAAJ5HIAIAAJ5HIAIAAJ5HIAoTOlhQR6wxaBAAgNwjEIUJna266+ufyMmTJ4O9KwAA5DsEojDCbNUAAFwcAhEAAPA8AhEAAPA8AlGY0Y7VXNMMAIDcIRCFEUaaAQBwcQhEYTbSrFfiZ5KamhrsXQEAIF8hEIUZRpoBAJB7BCIAAOB5BKIgsz4/GfT5AQAgmAhEAADA8whEYYih9wAA5A6BCAAAeB6BCAAAeB6BKAwxQSMAALlDIAozGoJOnjwpnV77lAkaAQDIIQJRGM5W3ffvGyQiko8WAICc4qwZhpitGgCA3CEQAQAAzyMQAQAAzyMQhan01LNy4sQJRpoBAJADBKIw7lzdbfp6RpoBAJADBKIwRudqAAByhkAEAAA8j0AUxuhHBABAzhCIwhj9iAAAyBkCUZiLiIziumYAAIRyIPr444/lvvvuk4oVK0pERIQsXLgwYL2exIcPHy4VKlSQggULSosWLWTXrl0BZY4cOSIdO3aUokWLSvHixaVHjx7WTORvy5Yt0qRJEylQoIBUrlxZRo8eLV6RfuaUPDIpya5vBgAAQjAQ6Un6xhtvlMmTJ2e7XoPLK6+8IlOnTpXPPvtMChcuLPHx8XL69GlfGQ1D27dvl+XLl8uiRYssZPXu3du3/vjx49KyZUupWrWqbNq0ScaMGSMjRoyQ119/XbyC0WYAAJxfUM+UrVq1siU7Wjs0fvx4GTZsmNx///322N///ncpV66c1SS1b99evv76a1m6dKls3LhR6tevb2UmTpwo99xzj7z00ktW8zRr1ixrMpo+fbrExsbKddddJ5s3b5aXX345IDgBAADvCtk+RMnJyXLgwAFrJnMVK1ZMGjRoIOvWrbP7eqvNZG4YUlo+MjLSapTcMk2bNrUw5NJapp07d8rRo0ezfe0zZ85YzZL/AgAAwlfIBiINQ0prhPzpfXed3pYtWzZgfXR0tJQsWTKgTHbb8H+NzEaNGmXhy1203xEAAAhfIRuIgmno0KFy7Ngx37J3795g7xIAAPBiICpfvrzdHjx4MOBxve+u09tDhw4FrE9LS7ORZ/5lstuG/2tkFhcXZ6PW/Jf8TvtR6eg7vQUAAPkkEFWrVs0CS1JSku8x7cujfYMaNWpk9/U2JSXFRo+5VqxYIRkZGdbXyC2jI8/8JyfUEWk1atSQEiVKiBdoB3XtF6UL8xEBABBigUhrLHTEly5uR2r9/549e2xeov79+8uf/vQnee+992Tr1q3SpUsXGznWpk0bK1+rVi25++67pVevXrJhwwZZs2aN9OvXz0agaTnVoUMH61Ct8xPp8Pw5c+bIhAkTZODAgeKlGat7vrlGHn3jU2atBgAg1Ibdf/7559KsWTPffTekdO3aVRITE2Xw4ME2V5EOj9eaoMaNG9swe51g0aXD6jUENW/e3EaXtWvXzuYucmmn6A8//FASEhKkXr16Urp0aZvs0WtD7nUuIuYjAgAgexEObSgXpE11Gqy0g3Ve9yfSWrIOk1aI42TIpRYRFS2vda4nRYoUsUVr4QAACFe5OX+HbB8iXLqms06vfULTGQAAfghEHkPTGQAAWRGIPEhbSXX4Pa2lAAD8F4HIo01nnV5jxBkAAC4CkUfRbAYAwP8jEHlQRlrqZRnVBgBAfkEg8qj01P9eyoN+RAAAEIg83Y/o0TfX2cSXhCIAgNcRiDzMSUuVRyYlWSgCAMDLCEQeFxEZxRB8AIDnEYg8TpvOuk1fzxB8AICnEYggTkYGHawBAJ5GIAK1RAAAzyMQwVdLdOTIEfn555+tTxEAAF5CIIJN1KhLzxnrrenszJkzNJ8BADyFQASfCBHp+eYa6Tj1Y+YnAgB4CoEIWa5xpsGIi78CALyEQIRz9inS/kSnT5+mCQ0AEPa45Dmy0P5E6tE3PpWIiEiJjI6RuY/fJbGxscHeNQAALglqiHBujiMRkZE2m7Xb2RoAgHBEIEIORqCdlUffWEOfIgBA2CIQIWdNaBERXPMMABC2CETI8WzWXV77WI4ePUooAgCEHQIRckyH4+slPrSmiNoiAEA4IRAh18PxDx48KA+9kmQdrXVYPkPzAQD5HcPukeums75/32ATOLafsMyG5OvQ/IioaJnVp4kUKlRI0tLSJCZGH9c6JQAAQh81RMg1DUO+2/8NzXfSUu2SH7/88os8PHklI9IAAPkKgQh5MgrNcTKsOe3IkSOSkZbOLNcAgHyFJjNckua0LlNWWnOadsVO7HW7FC5c2FdOm9J01mua1AAAoYJAhEvanCbiWDiyx/z6G731WGNfPyPCEQAg2AhEuGwhSQOS46SLk5EuHSavECc9XSJj42RG94a2ukiRIhaOtP8RnbIBAJcTgQjB4dcZW2uQtNbojUcb2Ko+szbLjO4NJDo62kIRNUkAgEuNQISQqUHq+eYa3/1Ok5PklUdulv5ztkhEVJRERsf6mtlchCQAQF7xVCCaPHmyjBkzRg4cOCA33nijTJw4UW699dZg7xYyN639b1bsJ2Z/IVEagBxHMlLP2LxH/txaJf+QpAFJl4ByfsFJR7xpk5zWPvnPl+Q+7m6LZjsA8BbPBKI5c+bIwIEDZerUqdKgQQMZP368xMfHy86dO6Vs2bLB3j1kIzI6+pyByeXWKp17G/8/0k0DjgadHjM3yvRHb5VHp62R1zrXtxFw+nj3GRusFkp1fmON/ON/z1Fu0507v5IbuvQSJtnd17L5fYJK/5CYX98DAORUhOORSWI0BN1yyy0yadIku5+RkSGVK1eWxx9/XJ555pnzPvf48eNSrFgxOXbsmBQtWjRP90svf9Fh0gqbxyeY8whpbUsonfTyep8y0tMCgpXed28zP575/yoqrqC83rme9J650fZrerdbLfz0mr4uoGN49+nrtOpKXut0szz21hdZmvnymlv7pdzry/mHt+x+vC+03qXrNRi+1buxzUDulqepEkB+kZvztycCkZ4o9Bf6O++8I23atPE93rVrV0lJSZF33303oLxOJqiLSw9klSpVZO/evZckEHWbEtxA5KSnikRES0Rk6JzgQnGf0s+elsjoONsn2z9rtvtv2Mnuvv7ffTyv/Xfb6Rr1ZHynhlbL1fuNVTaCT9eNe6SeDHz7CwuWWsYtr/2xdOqDl9vfLP3f2mDrLvQ6Srfnlo+KKyTTe9+RpWkSAH6NS/E7RQORVn7ouV6D0Xk5HrBv3z6bEGft2rUBjw8aNMi59dZbs5R//vnn/zuBDgsLCwsLC4uT35e9e/deMCt4pg9RbgwdOtT6G7ky/ndJilKlSuV5M4GbXi9F7ZOXcVwvDY7rpcOxvTQ4rt4+ro7j2KWkKlaseMGynghEpUuXlqioKDl48GDA43q/fPnyWcrHxcXZ4q948eKXdB/1CxXKX6r8iuN6aXBcLx2O7aXBcfXucS12oaYyL13cVdsl69WrJ0lJSQG1Pnq/UaNGQd03AAAQfJ6oIVLaBKadqOvXr29zD+mw+5MnT0q3bt2CvWsAACDIPBOIHn74YTl8+LAMHz7cJma86aabZOnSpVKuXLmg7pc2zT3//PNZmujw63BcLw2O66XDsb00OK6XRlwYHldPDLsHAAAQr/chAgAAOB8CEQAA8DwCEQAA8DwCEQAA8DwCEQAA8DwCURBNnjxZrrzySilQoIA0aNBANmzQi2fCNWLECLtUiv9Ss2ZN3/rTp09LQkKCXVKlSJEi0q5duyyzke/Zs0dat25tF/ctW7asDBo0SNLS/v8q9mrVqlVSt25dGz5avXp1SUxMlHDy8ccfy3333WdT1+sxXLhwYcB6HWiq01FUqFBBChYsKC1atJBdu3YFlNFL13Ts2NFmpNVZ23v06GEXJva3ZcsWadKkiX2fdUr/0aNHZ9mXefPm2WeoZerUqSMffPCBhOtxffTRR7N8f+++++6AMhzXrEaNGiW33HKLXHHFFfYzqxfk3rlzZ0CZy/mzH06/p3NybO+8884s39s+ffp449jm5UVUkXNvv/22Exsb60yfPt3Zvn2706tXL6d48eLOwYMHg71rIUMvsnvdddc5+/fv9y2HDx/2re/Tp49TuXJlJykpyfn888+dhg0bOrfddptvfVpamnP99dc7LVq0cL744gvngw8+cEqXLu0MHTrUV+bbb791ChUq5AwcOND56quvnIkTJzpRUVHO0qVLnXCh7/vZZ5915s+fbxc5XLBgQcD6v/71r06xYsWchQsXOl9++aXzu9/9zqlWrZpz6tQpX5m7777bufHGG53169c7n3zyiVO9enXnkUce8a0/duyYU65cOadjx47Otm3bnH/+859OwYIFnddee81XZs2aNXZsR48ebcd62LBhTkxMjLN161YnHI9r165d7bj5f3+PHDkSUIbjmlV8fLwzY8YMe7+bN2927rnnHqdKlSrOiRMnLvvPfrj9ns7Jsb3jjjvsffp/b/V76IVjSyAKkltvvdVJSEjw3U9PT3cqVqzojBo1Kqj7FWqBSE8W2UlJSbFf+vPmzfM99vXXX9uJad26dXZff1AjIyOdAwcO+MpMmTLFKVq0qHPmzBm7P3jwYAtd/h5++GH7xRGOMp+4MzIynPLlyztjxowJOLZxcXF28lX6C02ft3HjRl+ZJUuWOBEREc6+ffvs/quvvuqUKFHCd1zVkCFDnBo1avju//73v3dat24dsD8NGjRwHnvsMSe/O1cguv/++8/5HI5rzhw6dMiO0+rVqy/7z364/57OfGzdQPTkk0865xLOx5YmsyA4e/asbNq0yZomXJGRkXZ/3bp1Qd23UKNNN9okcdVVV1nTglbVKj1+qampAcdQmwyqVKniO4Z6q80H/rORx8fH21Wat2/f7ivjvw23jFc+h+TkZJu53f8Y6IUQtfra/zhqc45e9sal5fU7+9lnn/nKNG3a1K4b6H8ctTr+6NGjnj3W2mygTQo1atSQvn37yk8//eRbx3HNmWPHjtltyZIlL+vPvhd+T2c+tq5Zs2bZRdGvv/56GTp0qPzyyy++deF8bD1z6Y5Q8p///EfS09OzXDZE7+/YsSNo+xVq9KSs7c56Mtm/f7+88MIL1pdi27ZtdhLXk4SeUDIfQ12n9Da7Y+yuO18Z/eE+deqU9akJZ+5xyO4Y+B8jPan7i46Otl+i/mWqVauWZRvuuhIlSpzzWLvbCDfaX6ht27Z2XP7973/LH//4R2nVqpX9wo+KiuK45oBehLt///5y++2328lZXa6ffQ2c4fx7Ortjqzp06CBVq1a1P0S1/9qQIUMsgM+fPz/sjy2BCCFLTx6uG264wQKS/qDOnTs37IMK8r/27dv7/q9/Uet3+Oqrr7Zao+bNmwd13/IL7TitfwB9+umnwd4Vzxzb3r17B3xvdbCFfl811Ov3N5zRZBYEWhWpfyFmHhWh98uXLx+0/Qp1+hfhtddeK7t377bjpNWuKSkp5zyGepvdMXbXna+MjvrxQuhyj8P5vot6e+jQoYD1OqJER0jlxbH2yndem331Z1+/v4rjen79+vWTRYsWycqVK6VSpUq+xy/Xz344/54+17HNjv4hqvy/t+F6bAlEQaDVvfXq1ZOkpKSA6ku936hRo6DuWyjT4cj6V4r+xaLHLyYmJuAYarWu9jFyj6Hebt26NeCks3z5cvuhrF27tq+M/zbcMl75HLQ5Rn8B+R8DrdbWPiz+x1FPPtrm71qxYoV9Z91fllpGh6Fr3w7/46jNndqs45bx8rH+4YcfrA+Rfn8VxzV72kddT9gLFiyw45G5yfBy/eyH4+/pCx3b7GzevNlu/b+3YXtsg9ad2+N0yKGO5ElMTLTRJr1797Yhh/49973uqaeeclatWuUkJyfb0GId5qnDO3VkhDv0VoeMrlixwobeNmrUyJbMw0NbtmxpQ0x1yGeZMmWyHR46aNAgG6kyefLksBt2//PPP9vwWF30R/7ll1+2/3///fe+Yff63Xv33XedLVu22Mio7Ibd33zzzc5nn33mfPrpp84111wTMDxcR/7o8PDOnTvbkF79futxzTw8PDo62nnppZfsWOsowvw8PPx8x1XXPf300zbqSb+/H330kVO3bl07bqdPn/Ztg+OaVd++fW0aCP3Z9x/6/csvv/jKXK6f/XD7PX2hY7t7925n5MiRdkz1e6u/E6666iqnadOmnji2BKIg0rkZ9Ida52LQIYg6FwkCh2lWqFDBjs9vfvMbu68/sC49Yf/hD3+wYcn6w/fAAw/YD7e/7777zmnVqpXN3aJhSkNWampqQJmVK1c6N910k72O/vDrPB3hRN+fnrAzLzos3B16/9xzz9mJV39BNW/e3Nm5c2fANn766Sc7URcpUsSG13br1s1O+v50DqPGjRvbNvTz0qCV2dy5c51rr73WjrUOy128eLETjsdVTzB6wtAThYaTqlWr2jwrmX/Zc1yzyu6Y6uL/c3k5f/bD6ff0hY7tnj17LPyULFnSvm86L5aGGv95iML52EboP8GrnwIAAAg++hABAADPIxABAADPIxABAADPIxABAADPIxABAADPIxABAADPIxABAADPIxABAADPIxABAADPIxABAADPIxABAADxuv8DD579DoKS/rwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "\n", "answer_str_lens = [len(answer) for answer in dataset_lfqa[\"train\"][\"answer\"]]\n", "sns_plot = sns.histplot(answer_str_lens).set_title(\"Answer lengths in characters\")\n", "sns_plot.get_figure().savefig(\"plots/answer-lengths-chars-original.png\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "26123" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Max answer length in characters --> few answers are very long --> long-tail distribution\n", "max(answer_str_lens)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 226147/226147 [01:47<00:00, 2106.62it/s]\n" ] } ], "source": [ "# Check max length (in tokens) of answers in the dataset\n", "from transformers import AutoTokenizer\n", "from tqdm import tqdm\n", "import torch\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"allenai/led-base-16384\")\n", "\n", "answer_token_lens = torch.tensor(\n", " [\n", " len(tokenizer(answer)[\"input_ids\"])\n", " for answer in tqdm(dataset_lfqa[\"train\"][\"answer\"])\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGzCAYAAADOnwhmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO+NJREFUeJzt3Qm8lHP///HP2dq171SyVYhSSZbc1F2IW8RdFCEhWZK76LbWjdBtbRX/W92UiofIUkklSVp0p4UWhO5ooU6b6mzX//H++l1zz8w5dc6pc87MOdfr+XhM01xznZlrvjNzXe/5bleC53meAQAABFhirDcAAAAg1ghEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEQBH505/+5C7x7tFHH7WEhAT79ddfC+05jj32WLvhhhssnug133HHHVacbNy40cqUKWMLFiywkm7cuHHuPVq6dGlMnveHH34o0udNT0+3evXq2ahRo4r0eYOMQIQioy+2diytW7eO9abAzJ544gl75513rCT48MMPXZALmiFDhrjv0znnnBNapqBZoUKFPB3kD3b54osvQuuGL09OTraqVataixYt7O6777avv/46kJ+3opCSkmL9+/e3xx9/3Pbv3x/rzQmE5FhvAIJjwoQJrmZg8eLF9u2339oJJ5wQ600KNB2grrrqKuvcuXORP/fatWstMTGxQAPRyJEjAxWKtm3bZuPHj3eXIwlUDRs2zLY8+rv55z//2a6//nrTqS937txpX331lXte/ch56qmn3IE7nj9vR+K6666zbt26WenSpYv8uW+88Ua7//77beLEiXbTTTcV+fMHDYEIRWLDhg32+eef29tvv2233nqrC0ePPPKIlSRZWVmWlpbmmjBwaLE4uJQ0r7/+uquxueyyyw77MS6++GJr2bJlruuddNJJ1qNHj4hlTz75pHvue++91xo3bmyXXHKJlURJSUnuUlQUOlUjVLZsWatcubJ16NDB1egRiAofTWYoEgpAVapUsU6dOrlfibodTW30qpb/5z//aWPHjrXjjz/eHThbtWplS5YsiVh38+bN7tfTMccc49apU6eOXX755aF2fv1irVatmtu5+O688073+C+++GJo2ZYtW9yy0aNHh5YdOHDAhTX9StZjqx1/4MCBbnlOfU70Wk455RS37owZM/JVLvl9LjU5nHrqqW5dPWdOz/fJJ5+4g5yCmcrwpZdeCvULCn+8vXv3ul/5fnNIdJ+e1NRUt0w75UqVKrny/v333yPWmTVrlp177rluHTXTNGrUyP7+97/nuw+R34SjvjB672rUqGHly5e3K664wtWEHIoeR7VD/uvyLz69Th20VbYqN22jPmPhn42Deeyxx1xN1vDhw0PLpk+fbuedd57bvqOOOsp9plevXp1tm1QemzZtcjUi+r9e09/+9jfLzMyMWHfSpEmuCUqPVbFiRWvatKm98MILuW6bPgtqLsuteayw6PulbVcoU7POoeT2efvPf/7jwplev15Pu3btIprtDmbHjh125plnuv2Aah0L4zsV3YfI/y7ldAl/TfqB9Pzzz7vH1HexVq1a7segtjn6u3DppZfazJkz3fdWQUjf2fDauc8++8y2b9+ea3ngyFBDhCKh0HDllVdaqVKl7JprrnEBRCFHYSeaqod3797tdh7ayTz99NPub7///nvXri5dunRxByGFHO1Qtm7d6g7OP/30k7utA9Zzzz3n1tHOTubPn+8Obrq+6667Qsukbdu2oZ3YX/7yF7cDuuWWW6xJkya2cuVK91jr1q3L1gdizpw5NmXKFLdjrV69unvuvMrvc2k91bDdfvvt7uCpYKdy0GvWwck/sFx00UUuIA4ePNgdfNUsooNxuNdee81uvvlmdzDRc4vCU7i//vWvrjll6NChtmzZMnvllVesZs2arolEVLbakZ922mnuOXRAUVPokXTw1fup4KwDmg5AOqCobCdPnnzQv9Hn5Oeff3bvv15XOIUelfHcuXOtV69e1qxZM3fgGTBggAsrKuuDefDBB10zjw5OvXv3DpVbz549rWPHjq4cFBD1WVYoVNmHv/8qe62n0KIA9vHHH9szzzzjyrlPnz5uHW2zvg8KAH65fvPNN64M1UfnUB1u9f3xH+dwqfkruvO8vnP+5yk39evXt/PPP9+V765du1ygycmhPm/6HOn7qr9VcNF3XGWuAQjz5s07aJ9DbbfCgoKC1tPjFcZ3Kpr2RdFNil9++aX7rOr7Ef65VJjSDwntb1RLPmLECPc50fvr78tEYU6fA/2NPmsK7T6FZX2OVcOu7xsKkQcUsqVLl+qnuDdr1ix3OysryzvmmGO8u+++O2K9DRs2uPWqVavmbd++PbT83Xffdcvfe+89d3vHjh3u9rBhww76nFu3bnXrjBo1yt1OTU31EhMTvauvvtqrVatWaL277rrLq1q1qtsmee2119x68+fPj3i8MWPGuMdbsGBBaJlua93Vq1fnqRzOP/98d/Hl97lKlSrlffvtt6FlX331lVs+fPjw0LLLLrvMK1eunLdp06bQsvXr13vJyclu3XDly5f3evbsmW07H3nkEbfuTTfdFLH8iiuucO+N77nnnnPrbdu2zcuvBg0aRDz3q6++6h6rffv2ofdC7rnnHi8pKcm9f4fSt2/fbK9P3nnnHbf8sccei1h+1VVXeQkJCRHlqfX0OHLvvfe692bcuHGh+3fv3u1VrlzZ6927d8Rjbd682atUqVLEcr02Pd6QIUMi1m3evLnXokWL0G19BypWrOhlZGR4+aHtjn7vw59b7+2h+OWd06V06dIR64aXS070GrSOPo+HcrDPW+fOnd1n+7vvvgst+/nnn72jjjrKa9u2bbZtXrJkiffLL794p5xyinfcccd5P/zwQ6F+p/zn1f4pJ/r8169f32vatKm3Z88et0zPr7+ZMGFCxLozZszItlzfBS3TfTlRWej+p556Ksf7UXBoMkOR1A6puviCCy4I/QLt2rWrq26Pbj4Q3adaAp9+PYpqiERVyqppUtNQdPWzTzUi6tfw6aefutv6RaZ+AKoZUDPZ+vXrQzVE+nXvN7G8+eab7lel/la/QP3LhRde6O7XL+Fw+nV88sknH1a55Pe52rdvH1GLo5oZ/ar2y0VlqVoINdHUrVs3tJ5+zao5Ir9uu+22iNt6H3777TdXEyBqJpN3333X/TIvCPpVH97cpefU6/rxxx8Pu7O13ne/RtCnJjQdE9X8FU7LVCOlJiv10VFtkE+1OWpG1C/58PdLj69ajOj362Bl6L9ffhmqKUmPnR96HyT8e3I41NSo5w6/RJdJbvwmO9Xq5pfe248++sh9Zo877rjQctVwXnvtta4Gx/+8+f773/+6751qyfT9btCgQaF9p/Ky/fo86LVPnTrVNaP626FmZtVghW+HantUXtHboZpY1SbmxH+PC3MaDPyBJjMUKu0wFHwUhlRl7NMBRM0Hs2fPdp0Go6vhc9oh+OFHTTNqXtBBTUHrrLPOclXJGgVTu3btiIOPDoh+8FH7vC4aNqzb+luNltGO16egpCaL6CYmn5rmwuU0Qiev8vtc0eXil41fLlp/3759OY7eO5wRfYd6H3TQUHBVM5qaQjQSRs0+ak5QH7HDHUGW23ufXwpSCodqDgmng6Z/f7h///vftmfPHtcMpgNdOD9E+wfXaNHNReo3Ev3ehr9foqYaNbkqsB599NHuu6CmSjV75kVe+kEdipqw8tKp+lBUXhJdxnmh/mFqdgxvIgp/jxS0NdeS+uGEj/pSvyV9d8K/74XxncqNmlXVbP7BBx9EBCtth5ojw5vQDnc/4r/H4T8UUDgIRChU2ln88ssvLhTpklPtUXQgOtiIjvCdf79+/dwIF/UJUJ+Qhx56yPV10fM1b97craOan5dfftn92lMAUkDSTkXLdVsHSu1w/Roo0W11an322Wdz3AZ10Ayn2qrDld/nyku5FKTcnk+vXb/Q9WtXBwR1RlVfHwUG/eo/nJE5Rf0ao2k+n+XLl7u+HgomCs8+vxZM/WGiD8Sig3S4vLx+HTD1fPoMq2ZGl1dffdWF+0MNp/f7txxuUCxIq1atcq/1SH4c5IdCt4KravH0nY/Vd0r7Hv0w+8c//pEtwGo79N7mNHhEogPbofYj/nusPoooXAQiFCrtELRj8EcBhVNnRlUzjxkz5rCChX6RqZZIF/0iU4dZ1TqpqUP8oKNmAHVAVS2G34FaNQAKRKriVjV2+GOq1ki1HYX9i6ygn0vlrFoJdWyOltOygnhO1QRp+3XRQUidkB944AEXktQcUVQO9lrUnKJmRDVphNdgrFmzJnR/dE2aOvGrQ68OcqrB9P/OrwFQORfka1Pzr8K9LjqQqtZInYoV8g9Ws6eaDX1nwmtdY0Gdj9WhuU2bNrnWEOX0HikYlCtXLjRCLJzeI32+okOMOt6rXB5++GHXLOV/r4vy+6sO2mpOVVNfTqMqtR363ClgH8mPJvHfY79WE4WHPkQoNGq+UehRc5aaUaIv6quhA9W0adPy9biqYo+euVU7IO2Qw4fW6hermiE0wkT9DfzZfBWUvvvuO3vrrbdcc1v4L3vVCmj0kWqWcno96u9RUAr6ufRrVwdq/XLVqKvwMJRTvxCFQfWJOVw5DQNWKJXoIc6Fze+7Ef16NDeOmm1V4xNOnwkdMHPqW6V+JGpqVdOLQoreC1EfDzWLKfTp8xQtt+kBDtUXyKcAoOfPrQw1QklNXUV9Govo91/NiipfheDc5PR502dWNcTqhxZ+agz189NoU9Xm5jRyTWFRUxgMGjQoYsqMovj+qolQ00Fo3+JPIxBN26FyUe1RtIyMjHx97zSCTc+h0InCRQ0RCo2CjgKPhsHmRGFEvxBVi6T+KPn5daZfgNrpqEOzAo1qmrQT1Yyy4RR+1FSnanS/P8oZZ5zhds56nPD+Q37/BPXpUGdY1XIoRGnHpl+rWu7PFVIQCuO5NEeKmqv0WBqS7YcBTT2gpplwqhnTr1jV7Ki2TAEyP6dV0VB7NZlpHh7VtKhfhGYu1pwwOpAVJb+WT52nFVx0oNVnQYFG/dd0wNYB9/TTT3flowOwml2jpxoI/2xqHQUqhXeFTB2YdfDV+6bPkB5fn1/VkqjJUGUeHbxyo/5XChZqZlS5qU+T5jxSsMytRkDzbul15TTcXYFNcyhFUxOgaqB8Csp+bVm4s88+O6KTs74rqnlVU5KeT7Uw6jiscKDPT176PB3s86bt9Oez0rbp+6waMgVC1dYdzLBhw1w/nb59+7ofQ5o4sii+v5rOQqcsUf8hfUbC6fOk4KJO3xpCryY9fe8U+hRiVZOtclNznz5XeaGy0evI61QIOAIFOGINiKAh4GXKlPH27t170HVuuOEGLyUlxfv1119Dw+5zGk6v5RoOLlpXw4AbN27shvJqyHPr1q29KVOmZPu7kSNHur/t06dPxHIN79by2bNnZ/ubtLQ0N8RVw3o1BLlKlSpuqPTgwYO9nTt35nk4cm7D7gviuaKHr4tek4Z3a0jx8ccf773yyituGLnei3Br1qxxw5rLli3rHt9/HH/YffRw+ujhx3qeyy+/3Ktbt657Ll1fc8013rp16w572L2GVIebO3euW67rQ9Gw9TvvvNOrUaOGG04fvmvTcHkN39f26bN24oknus9Y+PD+g5WxpnzQlAVdu3b1MjMzQ9vUsWNH97lTmaqM9TnW9BK5DX33y9b31ltveR06dPBq1qzpylDDt2+99VY3rDw3W7Zscdumoebh/CH/OV20rbkNu9dF94eXi3/RkHZNPaDPl4bb53XKiUN93mTZsmWuTCtUqOCmjbjgggu8zz//POLvc/qM6D3RZ07loCkWCuM7Ff25P1T5Rn8Xx44d655br1nTCGho/sCBA91Q+vDn69SpU45lpukm9LnQdxiFL0H/HEmgAhD/1NdBE+D5I6VQMmiySdXe+BOMomTRZI+qJVMT/5H2RULu6EMElDB+nxefQpD6xKijMEoWzeitAQNHMjs44pOaPdW8qKY5wlDRoIYIKGE0qZ3OqaQ+IOqTon4v6o+hUwaceOKJsd48AIhLdKoGShh1cH3jjTfcCXA1iaU6eWpkFGEIAA6OGiIAABB49CECAACBRyACAACBRx+iPNB0+pr5V5N/cYI9AACKB/UK0gTBmgw0t5NOE4jyQGEo+nw6AACgeNi4caObDf5QCER54J+0UAWa03l1AABA/NGpZlShkdvJh4VAlAd+M5nCEIEIAIDiJS/dXehUDQAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9ABAAAAo9AFGfS0tLcBQAAFB0CEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCUZzwPM+dskPXAACgaBGI4kR6erp1HTnXXQMAgKJFIIojiUnJsd4EAAACiUAEAAACj0AEAAACj0AEAAACj0AEAAACj0AEAAACj0AEAAACj0AEAAACj0AEAAACj0AEAAACL6aBKDMz0x566CFr2LChlS1b1o4//nj7xz/+EXE+L/3/4Ycftjp16rh12rdvb+vXr494nO3bt1v37t2tYsWKVrlyZevVq5ft2bMnYp0VK1bYeeedZ2XKlLF69erZ008/XWSvEwAAxLeYBqKnnnrKRo8ebSNGjLBvvvnG3VZQGT58eGgd3X7xxRdtzJgxtmjRIitfvrx17NjR9u/fH1pHYWj16tU2a9Yse//99+3TTz+1W265JXT/rl27rEOHDtagQQP78ssvbdiwYfboo4/a2LFji/w1AwCAOOTFUKdOnbybbropYtmVV17pde/e3f0/KyvLq127tjds2LDQ/ampqV7p0qW9N954w93++uuvVZ3kLVmyJLTO9OnTvYSEBG/Tpk3u9qhRo7wqVap4Bw4cCK1z3333eY0aNcrTdu7cudM9h64Li7btyhc+9nbv3h2xnQAA4PDk5/gd0xqis88+22bPnm3r1q1zt7/66iv77LPP7OKLL3a3N2zYYJs3b3bNZL5KlSpZ69atbeHChe62rtVM1rJly9A6Wj8xMdHVKPnrtG3b1kqVKhVaR7VMa9eutR07dmTbrgMHDrhapfALAAAouWJ6evX777/fhY3GjRtbUlKS61P0+OOPuyYwURiSWrVqRfydbvv36bpmzZoR9ycnJ1vVqlUj1lE/pejH8O+rUqVKxH1Dhw61wYMHF/jrBQAA8SmmNURTpkyxCRMm2MSJE23ZsmU2fvx4++c//+muY2nQoEG2c+fO0GXjxo0x3R4AAFCCa4gGDBjgaom6devmbjdt2tR+/PFHV0PTs2dPq127tlu+ZcsWN8rMp9vNmjVz/9c6W7dujXjcjIwMN/LM/3td62/C+bf9dcKVLl3aXQAAQDDEtIbo999/d319wqnpLCsry/1fzVwKLOpn5FMTm/oGtWnTxt3WdWpqqhs95pszZ457DPU18tfRyLP09PTQOhqR1qhRo2zNZQAAIHhiGoguu+wy12fogw8+sB9++MGmTp1qzz77rF1xxRXu/oSEBOvXr5899thjNm3aNFu5cqVdf/31VrduXevcubNbp0mTJnbRRRdZ7969bfHixbZgwQK74447XK2T1pNrr73WdajW/EQanj958mR74YUXrH///rF8+QAAIE7EtMlM8w1pYsbbb7/dNXspwNx6661uIkbfwIEDbe/evW5eIdUEnXvuuTZjxgw3waJP/ZAUgtq1a+dqnLp06eLmLgofmfbRRx9Z3759rUWLFla9enX3HOFzFcWTtLQ0dx0+Kg4AABSeBI29L8THLxHUTKdQpQ7Wmg27sELQNWPm2/ibWofCEIEIAICiOX5zLjMAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BKI4ojkyNUEjc2UCAFC0CERxxMvMsBteXhBxEloAAFD4CERxJjEppqeXAwAgkAhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8JgWOY5kZaSbJZBRAQAoahx9AQBA4BGIAABA4BGIAABA4BGIAABA4BGIAABA4BGIAABA4BGIAABA4BGIAABA4BGI4ozneZaWluauAQBA0SAQxRkvM8N6j1tk6enpsd4UAAACg0AUhxKTOKMKAABFiUAEAAACj0AEAAACj0AEAAACj0AEAAACj0AEAAACj0AUJ9zcQ1nMPQQAQCwQiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiOKU53l/TNboMVkjAACFjUAUp9LT063ryLnuGgAAFC4CURxLTEqO9SYAABAIBCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BCIAABB4BKI45HmepaWlxXozAAAIDAJRHPIyM6z3uEXmZXmx3hQAAAKBQBSnEpOSY70JAAAEBoEoDtBEBgBAbFENEQfS09Ot50vzzCwh1psCAEAgUUMUJ2giAwAgdghEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8GIeiDZt2mQ9evSwatWqWdmyZa1p06a2dOnSiCHpDz/8sNWpU8fd3759e1u/fn3EY2zfvt26d+9uFStWtMqVK1uvXr1sz549EeusWLHCzjvvPCtTpozVq1fPnn766SJ7jQAAIL7FNBDt2LHDzjnnHEtJSbHp06fb119/bc8884xVqVIltI6Cy4svvmhjxoyxRYsWWfny5a1jx462f//+0DoKQ6tXr7ZZs2bZ+++/b59++qndcsstoft37dplHTp0sAYNGtiXX35pw4YNs0cffdTGjh1b5K8ZAADEnwRPVTAxcv/999uCBQts/vz5Od6vTatbt67de++99re//c0t27lzp9WqVcvGjRtn3bp1s2+++cZOPvlkW7JkibVs2dKtM2PGDLvkkkvsv//9r/v70aNH2wMPPGCbN2+2UqVKhZ77nXfesTVr1mR73gMHDrhLeKBSrZKeW7VQBU2TMl79/EzLyswMLUtMTrGklNI26fa2oW0GAAB5p+N3pUqV8nT8jmkN0bRp01yIufrqq61mzZrWvHlze/nll0P3b9iwwYUYNZP59MJat25tCxcudLd1rWYyPwyJ1k9MTHQ1Sv46bdtGBgvVMq1du9bVUkUbOnSoex7/ojAEAABKrpgGou+//97V3px44ok2c+ZM69Onj9111102fvx4d7/CkKhGKJxu+/fpWmEqXHJyslWtWjVinZweI/w5wg0aNMilSf+ycePGAn3dAAAgvsR0euSsrCxXs/PEE0+426ohWrVqlesv1LNnz5htV+nSpd0llrIy0l2zGQAAKOE1RBo5pv4/4Zo0aWI//fST+3/t2rXd9ZYtWyLW0W3/Pl1v3bo14v6MjAw38ix8nZweI/w5AABAcMU0EGmEmfrxhFu3bp0bDSYNGzZ0gWX27NkRHaTUN6hNmzbutq5TU1Pd6DHfnDlzXO2T+hr562jkmU6i6tOItEaNGkWMaAMAAMEU00B0zz332BdffOGazL799lubOHGiGwrft29fd39CQoL169fPHnvsMdcBe+XKlXb99de7kWOdO3cO1ShddNFF1rt3b1u8eLEbtXbHHXe4EWhaT6699lrXoVrzE2l4/uTJk+2FF16w/v37x/LlAwCAOBHTPkStWrWyqVOnuk7MQ4YMcTVCzz//vJtXyDdw4EDbu3evm1dINUHnnnuuG1avCRZ9EyZMcCGoXbt2bnRZly5d3NxFPo0U++ijj1zQatGihVWvXt1N9hg+VxEAAAiumM5DVBLnMSioeYgkuUw5m9z3T8xDBABASZ6HCAAAIB4QiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiAAAQOARiOKcznOmCwAAKDwEIgAAEHgEIgAAEHgEIgAAEHgEIgAAEHgEIgAAEHgEIgAAEHgEIgAAEHgEIgAAEHgEojiWlZHOpIwAABQBAhEAAAg8AlEc8zzP1RDpGgAAFB4CURzzMjOs97hFlp6eHutNAQCgRCMQxbnEpORYbwIAACUegQgAAAQegQgAAAQegSgOuI7TWXScBgAgVghEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8AhEAAAg8A4rEB133HH222+/ZVuemprq7gMAACjxgeiHH36wzMzMbMsPHDhgmzZtKojtAgAAKDL5OlHWtGnTQv+fOXOmVapUKXRbAWn27Nl27LHHFuwWAgAAxFMg6ty5s7tOSEiwnj17RtyXkpLiwtAzzzxTsFsIAAAQT4EoKyvLXTds2NCWLFli1atXL6ztAgAAiM9A5NuwYUPBbwkAAEBxCkSi/kK6bN26NVRz5PvXv/5VENsGAAAQv4Fo8ODBNmTIEGvZsqXVqVPH9SkCAAAIVCAaM2aMjRs3zq677rqC3yIAAIDiMA9RWlqanX322QW/NciR53muzHUNAADiJBDdfPPNNnHixILfGuQoPT3duo6c664BAECcNJnt37/fxo4dax9//LGddtppbg6icM8++2xBbR/+T2LSYfd/BwAAuTiso+yKFSusWbNm7v+rVq2KuI8O1gAAIBCBaO7cuQW/JQAAAMWpDxEAAIAFvYboggsuOGTT2Jw5c45kmwAAAOI/EPn9h3wa/bR8+XLXnyj6pK8AAAAlMhA999xzOS5/9NFHbc+ePUe6TQAAAMW3D1GPHj04j1khTcoIAACKSSBauHChlSlTpiAfMvC8zAzrPW6ReVnMUg0AQFw1mV155ZXZajF++eUXW7p0qT300EMFtW34P0zKCABA4TqsI22lSpUibicmJlqjRo1syJAh1qFDh4LaNgAAgPgNRK+++mrBbwkAAECMHFFbzJdffmnffPON+/8pp5xizZs3L6jtAgAAiO9AtHXrVuvWrZt98sknVrlyZbcsNTXVTdg4adIkq1GjRkFvJwAAQHyNMrvzzjtt9+7dtnr1atu+fbu7aFLGXbt22V133VXwWxlwWRnp5nlZsd4MAABKrMOqIZoxY4Z9/PHH1qRJk9Cyk08+2UaOHEmnagAAEIwaoqysLEtJScm2XMt0HwAAQIkPRBdeeKHdfffd9vPPP4eWbdq0ye655x5r165dQW4fAABAfAaiESNGuP5Cxx57rB1//PHu0rBhQ7ds+PDhBb+VCJ3CQ9cAACAO+hDVq1fPli1b5voRrVmzxi1Tf6L27dsX8OYh/BQePV76zKbceaGVKlUq1psDAEBwa4jmzJnjOk+rJighIcH+/Oc/uxFnurRq1crNRTR//vzC29qA4xQeAADEQSB6/vnnrXfv3laxYsUcT+dx66232rPPPluQ2wcAABBfgeirr76yiy666KD3a8i9Zq8GAAAosYFoy5YtOQ639yUnJ9u2bdsKYrsAAADiMxAdffTRbkbqg1mxYoXVqVOnILYLAAAgPgPRJZdcYg899JDt378/23379u2zRx55xC699NLD2pAnn3zSddTu169faJmep2/fvlatWjWrUKGCdenSxdVShfvpp5+sU6dOVq5cOatZs6YNGDDAMjIyItbROdfOOOMMK126tJ1wwgk2bty4w9pGAABQMuUrED344IPuvGUnnXSSPf300/buu++6y1NPPWWNGjVy9z3wwAP53oglS5bYSy+9ZKeddlrEck30+N5779mbb75p8+bNcxNBXnnllaH7MzMzXRjS/Dyff/65jR8/3oWdhx9+OLTOhg0b3Do68ezy5ctd4Lr55ptt5syZ+d5OAABQMiV4+Zzp78cff7Q+ffq4QOH/qWp2Onbs6M5lpgka82PPnj2u9mbUqFH22GOPWbNmzdxotp07d1qNGjVs4sSJdtVVV7l1NeeR5jtauHChnXXWWTZ9+nRXI6WgVKtWLbfOmDFj7L777nN9mTRfj/7/wQcfRDT1devWzVJTU9052fJC0wxoFJ22KacRdkdKZXDtiDmHPIFrYnKKJaWUtkm3t2UeIgAACvj4ne+Zqhs0aGAffvih/frrr7Zo0SL74osv3P+1LL9hSNQkphqc6EkdNVotPT09Ynnjxo2tfv36LhCJrps2bRoKQ6JgpgJYvXp1aJ3ox9Y6/mPk5MCBA+4xwi+xxhnvAQAoPIc901+VKlXcZIxHYtKkSW7GazWZRdu8ebOrCalcuXLEcoUf3eevEx6G/Pv9+w61jkKO+j2VLVs223MPHTrUBg8efESvDQAAlPBzmRWEjRs3uhPETpgwwcqUKWPxZNCgQa56zb9oWwEAQMkVs0CkJrGtW7e6/kOav0gXdZx+8cUX3f9Vi6PO0urrE06jzGrXru3+r+voUWf+7dzWUVtiTrVDotFouj/8AgAASq6YBaJ27drZypUr3cgv/9KyZUvr3r176P+aBHL27Nmhv1m7dq0bZt+mTRt3W9d6DAUr36xZs1yA0TnX/HXCH8Nfx38MAACAmJ0t9KijjrJTTz01Yln58uXdnEP+8l69eln//v2tatWqLuToJLIKMhph5p8qRMHnuuuuc9MAqL+QpgZQR23V8shtt91mI0aMsIEDB9pNN93kTlA7ZcoUN/IMAABA4vr06c8995wlJia6CRk18kujwzQ835eUlGTvv/++mwZAQUmBqmfPnjZkyJDQOhr5pvCjOY1eeOEFO+aYY+yVV15xjwUAAHBY8xAFUTzMQyTJZcrZ5L5/Yh4iAABiPQ8RAABASUMgAgAAgUcgAgAAgUcgAgAAgUcgAgAAgUcgAgAAgUcgAgAAgUcgAgAAgUcgAgAAgUcgAgAAgUcgKmbS0tLcBQAAFBwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCUTGSlZHOaTsAACgEBCIAABB4BCIAABB4BCIAABB4BCIAABB4BKJixPM816la1wAAoOAQiIoRLzPDeo9bZOnp6bHeFAAAShQCUTGTmJTsaokYfg8AQMEhEMVJMxgAAIid5Bg+N8xc81fPl+aZWUKsNwUAgMCihihOmsEAAEDsEIgAAEDgEYgAAEDgEYgAAEDgEYgAAEDgEYgAAEDgEYiKmayMdOYtAgCggBGIAABA4BGIAABA4BGIihnOeA8AQMEjEBXDM97f/voyzngPAEABIhAVQ4nJnOoDAICCRCACAACBRyACAACBRyACAACBRyACAACBRyACAACBRyACAACBRyACAACBRyAqppixGgCAgkMgKoYUgvbu3WtdR85lxmoAAAoAgaiYnr6j97hFlpCQFOtNAQCgRCAQFVOJSZy+AwCAgkIgAgAAgUcgAgAAgUcgKqayMtLN87JivRkAAJQIBCIAABB4BCIAABB4BKJijMkZAQAoGASiYj4fUY+XPmNyRgAAjhCBqJhjPiIAAI4cgQgAAAQegQgAAAQegQgAAAQegQgAAAQegQgAAAQegagY4/QdAAAUDAIRAAAIPAIRAAAIvJgGoqFDh1qrVq3sqKOOspo1a1rnzp1t7dq1Eevs37/f+vbta9WqVbMKFSpYly5dbMuWLRHr/PTTT9apUycrV66ce5wBAwZYRkZGxDqffPKJnXHGGVa6dGk74YQTbNy4cVZS6PQdugAAgGIYiObNm+fCzhdffGGzZs1yp6Do0KGD7d27N7TOPffcY++99569+eabbv2ff/7ZrrzyytD9mZmZLgwpEHz++ec2fvx4F3Yefvjh0DobNmxw61xwwQW2fPly69evn9188802c+bMIn/NAAAg/iR4cXRm0G3btrkaHgWftm3b2s6dO61GjRo2ceJEu+qqq9w6a9assSZNmtjChQvtrLPOsunTp9ull17qglKtWrXcOmPGjLH77rvPPV6pUqXc/z/44ANbtWpV6Lm6detmqampNmPGjFy3a9euXVapUiW3PRUrVizQ16wgd/XzMy0rMzPPHakTkpItISHB3U4uU85e6322e526AACA/B+/46oPkTZYqlat6q6//PJLV2vUvn370DqNGze2+vXru0Akum7atGkoDEnHjh1dIaxevTq0Tvhj+Ov4jxHtwIED7u/DLwAAoOSKm0CUlZXlmrLOOeccO/XUU92yzZs3u1qPypUrR6yr8KP7/HXCw5B/v3/fodZR0Nm3b1+OfZuUKP1LvXr1CvjVAgCAeBI3gUh9idSkNWnSpFhvig0aNMjVVvmXjRs3xnqTAABAIUq2OHDHHXfY+++/b59++qkdc8wxoeW1a9d2fWzU1ye8lkijzHSfv87ixYsjHs8fhRa+TvTINN1We2LZsmWzbY9GoukCAACCIaY1ROrPrTA0depUmzNnjjVs2DDi/hYtWlhKSorNnj07tEzD8jXMvk2bNu62rleuXGlbt24NraMRawo7J598cmid8Mfw1/EfozhTGSo0xlHfeAAAip3EWDeTvf76624UmeYiUl8fXfx+Peq/06tXL+vfv7/NnTvXdbK+8cYbXZDRCDPRMH0Fn+uuu86++uorN5T+wQcfdI/t1/Lcdttt9v3339vAgQPdKLVRo0bZlClT3JD+4i7zwD7rOXa+63wOAACKYSAaPXq066Pzpz/9yerUqRO6TJ48ObTOc88954bVa0JGDcVX89fbb78duj8pKck1t+laQalHjx52/fXX25AhQ0LrqOZJw+5VK3T66afbM888Y6+88oobaVYSJCYlU1MEAEBJmYcoXsXzPESSmJxir/ZqY73GL7HJfS9gPiIAAKwYz0OEI68pAgAA+UcgAgAAgUcgAgAAgUcgKgH8DtUAAODwEIhKAC8zw3qPW2ReFv3jAQA4HASiEoIO1QAAHD4CUQnCXEQAABweAlEJazrr8dJnzFoNAEA+EYhKCE3Y6HlZNJ0BAHAYCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQAACDwCEQlcOi9Jmfk3GYAAOQdgQgAAAQegQgAAAQegaiEyUxPsz179nA+MwAA8oFAVALPZ9Z73CLOZwYAQD4QiEognc9MNUTqWE1NEQAAuSMQlVCqIeo6ci41RQAA5AGBqATya4dUUwQAAHJHIIox16yV5RVKP6KCflwAAEoqAlEJRe0QAAB5RyACAACBRyACAACBRyAqoTivGQAAeUcgCgBCEQAAh0YgKuG1RAQhAAByRyAqwZitGgCAvCEQlWCc1wwAgLwhEJVwzEcEAEDuCEQBQcdqAAAOjkAEAAACj0BUwtGxGgCA3BGISjg6VgMAkDsCUQB4WVm2Z88ey8r6Y+ZqaosAAIhEIApILdHtry+z33//3bqOnEttEQAAUQhEAZGY/Mfwe4bhAwCQHYEIAAAEHoEoYKPNhDmJAACIRCAK2GgzL4sO1QAARKNDSYCo/1D0vESlSpWK9WYBABBz1BAFSFZGumVlpNkNLy9gpBkAAGEIRAHkjzRjFmsAAP5AIApgLZHnZbn/q5aIeYkAAKAPUSCpRujAgQPumnmJAAAgEAV2xNnN/2+BJSanWEqZ8rHeHAAAYo4ms4BSzRC1QwAA/IFAFPRRZ1mZ7sSv+/fvp4M1ACCwCEQBl3lgn/UcO99SU1Ptr8Pn0MEaABBIBCJYQmKSqx3yr6klAgAEDYEIrpN1n38vdpM29njpM2qJAACBQyCCow7W6lOUkMhHAgAQPBz9ECEzPc22b9/u5ikCACAoCETI1nzWe9wiN/JMl6ysLPoVAQBKPAIRslHn6h07dtg1I2a70Wec3gMAUNIRiJBjLdGdry9xwUg4GSwAoKQjECFHCkF+ABL9f+/evfbXEXPcNaEIAFCSEIhwyJqiXq98ZlmZmS4EXTtyrlmWx9B8AECJw8mskGtNkUaeqYO133Sma7/pLCEhwVJSUtw1AADFFTVEyPPEjZnpB0IXBSLVEtGEBgAoCQhEyBO/dkgUfjRPkS6qF6IJDQBQ3NFkhsOqMbr5/y0IBaWk0mVt9+7dLiiVKlXKXdSEpmtRWKJZDQAQzwhEOPIao8wM6zlmnnle1h/3JadYYnIpm3DbeS4IdRv1iU3ue0EoIAEAEG9oMsMRC50DTZ2sE5P+GLKfkW7dhn/sJnjUctUg6bJ//37X1EafIwBAPKGGCIUSkEQNZDoNSGJSiut4rVqkhKQkS0opbZPvuMCt4wcjv4mNZjUAQCwQiFC4PM+yMtLcKDXXzKYAlJDgao5u/n+fu2Y2NbEpJE2588L/+5P/1R4RkgAARYFAhCLvc5R5YJ+b8FHLEizRstLTdAI1++2330Kdr28Y+6lbNrHvhS4Uhc+aXbp0abdeRkaGuxY6bgMAjkSgAtHIkSNt2LBhtnnzZjv99NNt+PDhduaZZ8Z6syzoASl65Jp/v/ojuRmyR3zsZsv2aVTbiK5N7Y7JK21crzYuCF338gJ7rfc5LjyFhyU/IClQEZoAABb0TtWTJ0+2/v372yOPPGLLli1zgahjx462devWWG8awkKQfwk/dYh6I4Xfpw7bt/5rgatZuv6lT13zW1ZamnV7YaZ1eXa6e081YeT27dtt165driO3Ztq+6vmZLgz7y9S5Oysry9U86Vq3tTz8Er5OdEdwfz6m8HXD1+FkuABQfCR4Adlbt27d2lq1amUjRoxwt3WQq1evnt155512//33H/JvdQCtVKmS7dy50ypWrFig26UD9bUj5oSGrOdpRJdqT/JRyxHPf1MQz5WVmRFR4+Tf1nUEz/ujC1PiH8+jvx/V/QzrO3G5jby2md3+2tKI90F9mxTGXr7hTLvl30vs1V5nW/ny5UNNd3ruHmPmWWZamussrqkGXr/13IiO4n7Nld+0lxf+6VBUo1UQX8/ox6MDO4Cg2JWP43cgApEOYOXKlbO33nrLOnfuHFres2dPS01NtXfffTdifX8WZp8Ksn79+rZx48ZCCUQ3js57IPIy080S1JyU94NZPP9NrLdPyxKSUkLXOf2NviEKR+7vo0T/jdZR856a+5Q3/McOX99zzX9ZEcuy0g6YJSaG/mZkzzbWd9wC87L+11Tor5uQkPh/I/myf2YO9vh6vDtfX2xe1h9f95d6netCkb4b/mSaABBLhbEfUiBS5YeO9QpGFvQ+RL/++qtlZmZarVq1Ipbr9po1a7KtP3ToUBs8eHC25SpUoCic9HjhPl7Dxwr28QEgnmkePALRYRg0aJDrb+RT85r6o1SrVq3Amxn89FoYtU8lDWWVP5RX/lBeeUdZ5Q/lFbvyUiOYwlDdunVzXTcQgah69eqWlJRkW7ZsiViu27Vr1862voZ16xKucuXKhbqNetP5ouQNZZU/lFf+UF55R1nlD+UVm/LKrWYoUKPM1C7ZokULmz17dkStj263adMmptsGAABiLxA1RKImMHWibtmypZt76Pnnn3dz3Nx4442x3jQAABBjgQlEXbt2tW3bttnDDz/s5qJp1qyZzZgxI1tH66KmpjnNjRTdRIfsKKv8obzyh/LKO8oqfyiv4lFegRh2DwAAYEHvQwQAAHAoBCIAABB4BCIAABB4BCIAABB4BCIAABB4BKIYGjlypB177LFWpkwZa926tS1evNhKuk8//dQuu+wyN426ToPyzjvvRNyvQY+aGqFOnTpWtmxZa9++va1fvz5iHZ1GpXv37m4GU80g3qtXL3eS3HArVqyw8847z5WtpoB/+umnrbjROfVatWplRx11lNWsWdOdmHjt2rUR6+zfv9/69u3rTitToUIF69KlS7YZ2X/66Sfr1KmTO8GxHmfAgAGWkZERsc4nn3xiZ5xxhhvmesIJJ9i4ceOsuBk9erSddtppodltNenq9OnTQ/dTVgf35JNPuu9jv379Qssor/959NFHXfmEXxo3bhy6n7LKbtOmTdajRw9XJtqXN23a1JYuXRrf+3oNu0fRmzRpkleqVCnvX//6l7d69Wqvd+/eXuXKlb0tW7Z4JdmHH37oPfDAA97bb7+t6R68qVOnRtz/5JNPepUqVfLeeecd76uvvvL+8pe/eA0bNvT27dsXWueiiy7yTj/9dO+LL77w5s+f751wwgneNddcE7p/586dXq1atbzu3bt7q1at8t544w2vbNmy3ksvveQVJx07dvReffVV9xqWL1/uXXLJJV79+vW9PXv2hNa57bbbvHr16nmzZ8/2li5d6p111lne2WefHbo/IyPDO/XUU7327dt7//nPf1z5V69e3Rs0aFBone+//94rV66c179/f+/rr7/2hg8f7iUlJXkzZszwipNp06Z5H3zwgbdu3Tpv7dq13t///ncvJSXFlZ9QVjlbvHixd+yxx3qnnXaad/fdd4eWU17/88gjj3innHKK98svv4Qu27ZtC91PWUXavn2716BBA++GG27wFi1a5F7bzJkzvW+//Tau9/UEohg588wzvb59+4ZuZ2ZmenXr1vWGDh3qBUV0IMrKyvJq167tDRs2LLQsNTXVK126tPugi3YU+rslS5aE1pk+fbqXkJDgbdq0yd0eNWqUV6VKFe/AgQOhde677z6vUaNGXnG2detW99rnzZsXKhsd8N98883QOt98841bZ+HChe62dryJiYne5s2bQ+uMHj3aq1ixYqh8Bg4c6Hb24bp27eoCWXGnz8Err7xCWR3E7t27vRNPPNGbNWuWd/7554cCEeWVPRDpwJwTyio77W/PPfdc72DidV9Pk1kMpKWl2ZdffumqCH2JiYnu9sKFCy2oNmzY4GYRDy8XnZRPzYl+uehaVac6BYtP66v8Fi1aFFqnbdu27hx2vo4dO7rmph07dlhxtXPnTnddtWpVd63PUHp6ekR5qRq/fv36EeWlqurwGdlVFjqb9OrVq0PrhD+Gv05x/ixmZmbapEmT3Ol51HRGWeVMzTxqxol+TZRXdmrOUVP/cccd55px1AQmlFV206ZNc/voq6++2jUPNm/e3F5++eW439cTiGLg119/dTvs6NOG6LY+JEHlv/ZDlYuu9QULl5yc7EJC+Do5PUb4cxQ3Ohmx+necc845duqpp4Zei3YE2mkcqrxyK4uDraOd9b59+6w4WblypevDoT4Yt912m02dOtVOPvlkyioHCozLli1zfdWiUV6RdKBWfx6d7kl91XRAV7+V3bt3U1Y5+P777105nXjiiTZz5kzr06eP3XXXXTZ+/Pi43tcH5lxmQHGmX/KrVq2yzz77LNabEtcaNWpky5cvd7Vpb731ljuh87x582K9WXFn48aNdvfdd9usWbNcZ1Qc2sUXXxz6vzruKyA1aNDApkyZ4joEI/sPONXsPPHEE+62aoi0/xozZoz7TsYraohioHr16paUlJRtFIJu165d24LKf+2HKhddb926NeJ+jdTQaITwdXJ6jPDnKE7uuOMOe//9923u3Ll2zDHHhJbrtaj5NTU19ZDllVtZHGwdjewobjt7/VLX6JwWLVq4mo/TTz/dXnjhBcoqipp59D3SiCb96tZFwfHFF190/9evbMrr4FQbdNJJJ9m3337LZysHGjmmmtlwTZo0CTUzxuu+nkAUo522dtizZ8+OSNS6rf4OQdWwYUP3IQ4vF1UXq73YLxdda8ejHbpvzpw5rvz0q81fR8P71a7v0y9h1R5UqVLFigv1O1cYUrOPXqPKJ5w+QykpKRHlpbZz7XTCy0vNSOE7FpWFdrL+DkvrhD+Gv05J+Czqc3HgwAHKKkq7du3ca1Vtmn/RL3r1jfH/T3kdnIZ+f/fdd+7Az2crOzXtR08Rsm7dOlerFtf7+sPqio0CGXavHvXjxo1zvelvueUWN+w+fBRCSaRRLRp2qos+fs8++6z7/48//hgaiqlyePfdd70VK1Z4l19+eY5DMZs3b+6Gc3722WdulEz4UEyNVtBQzOuuu84NxVRZazhrcRt236dPHzcs9ZNPPokY7vv7779HDPfVUPw5c+a44b5t2rRxl+jhvh06dHBD9zWEt0aNGjkO9x0wYIAbHTNy5MhiOdz3/vvvdyPwNmzY4D47uq0RKR999JG7n7I6tPBRZkJ5/c+9997rvof6bC1YsMANn9eweY38FMoq+1QOycnJ3uOPP+6tX7/emzBhgnttr7/+emideNzXE4hiSPNM6Euk+Yg0DF9zLZR0c+fOdUEo+tKzZ8/QcMyHHnrIfcgVGNu1a+fmlAn322+/uS9FhQoV3LDVG2+80QWtcJrXQsM+9RhHH320+/IVNzmVky6am8inncftt9/uhp5qR3DFFVe40BTuhx9+8C6++GI3P4d24tq5p6enZ3tfmjVr5j6Lxx13XMRzFBc33XSTm/tEr0EHG312/DAklFX+AhHlFTn8vU6dOu41aH+i2+Fz6lBW2b333nsuBGof3LhxY2/s2LER98fjvj5B/+S/XgkAAKDkoA8RAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAAAIPAIRAACwoPv/u3dIbIZCH/UAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns_plot = sns.histplot(answer_token_lens).set_title(\"Answer lengths in tokens (LED tokenizer)\")\n", "sns_plot.get_figure().savefig(\"plots/answer-lengths-tokens-original.png\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(5964)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Max answer length in tokens\n", "answer_token_lens.max()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(228.0979)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "answer_token_lens.float().mean()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(0.1034)\n" ] } ], "source": [ "# How many anwers are longer than MAX_TOKENS_ANSWER tokens?\n", "print(sum(answer_token_lens > MAX_TOKENS_ANSWER) / len(answer_token_lens))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 3020/3020 [00:01<00:00, 1785.72it/s]\n" ] }, { "data": { "text/plain": [ "tensor(2414)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check max length (in tokens) in the validation set\n", "answer_token_lens_val = torch.tensor(\n", " [\n", " len(tokenizer(answer)[\"input_ids\"])\n", " for answer in tqdm(dataset_lfqa[\"validation\"][\"answer\"])\n", " ]\n", ")\n", "answer_token_lens_val.max()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(0.1238)\n" ] } ], "source": [ "print(sum(answer_token_lens_val > MAX_TOKENS_ANSWER) / len(answer_token_lens_val))" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f60cf8d9b72944008df6c5a46cca82c8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Filter: 0%| | 0/226147 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "sns_plot = sns.histplot(answer_token_lens_filtered).set_title(\"Answer lengths in tokens (LED tokenizer)\")\n", "sns_plot.get_figure().savefig(\"plots/answer-lengths-tokens-filtered.png\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(512)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "answer_token_lens_filtered.max()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 2646/2646 [00:00<00:00, 2846.88it/s]\n" ] }, { "data": { "text/plain": [ "tensor(512)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Same for validation set\n", "answer_token_lens_val_filtered = torch.tensor(\n", " [\n", " len(tokenizer(answer)[\"input_ids\"])\n", " for answer in tqdm(dataset_lfqa_filtered[\"validation\"][\"answer\"])\n", " ]\n", ")\n", "answer_token_lens_val_filtered.max()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGzCAYAAADOnwhmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPmpJREFUeJzt3Ql0FFX2+PELhDVAwhpASADZNxFUwAVBGAIyKMLMuDAMCqIwQQUUkFFWR+PgAKIGoiLLb0Qd8IjKIosBFAQFEWTfNAoCSVC2gARIUv9z35zqf3dnIQlNutP1/ZxTNNX1urq6utN1+7133ytmWZYlAAAADlbc3wcAAADgbwREAADA8QiIAACA4xEQAQAAxyMgAgAAjkdABAAAHI+ACAAAOB4BEQAAcDwCIgAA4HgERADypVOnTmYJdBMnTpRixYrJr7/+es2eo27duvLwww9LsL0uwIkIiIB8mjlzprkgtWvXzt+HAhF56aWX5OOPP/b3YSAP3nvvPXn11Vf9fRhAtgiIgHxasGCBqRnYvHmzHDp0yN+H43j+DIj2798vb7/9tl+euygiIEIgIyAC8iExMVE2btwo06ZNk2rVqpngKNhkZmZKWlqavw+jSChdurSULFlSgo3O+X3hwgUpCvi8wlcIiIB80ACoUqVK0rNnT/nTn/6UbUD0008/mSa1f//73/LWW2/J9ddfby6cN998s2zZssWjbFJSkjzyyCNSu3ZtU6ZmzZpy7733mn2okSNHSpUqVcwFyvbEE0+Y/b/22muu+5KTk819s2bNct138eJFmTBhgjRo0MDsu06dOjJ69Ghzvzt93LBhw8xrad68uSm7YsWKfJ2X/D6X1ui0aNHClNXnzO751q1bJzfddJOUKVPGnMM333zT1X/GfX/nz5+X+fPnm//r4t2n5/Tp0+a+8PBwCQsLM+f7999/9yizevVquf32202Z8uXLS+PGjeUf//hHvvsQzZs3zxzDV199Zd47DZpDQ0PlvvvukxMnTuTpXO7bt0/+8pe/mMeWLVvWHMtzzz2XpVxeXtfcuXPlrrvukurVq5tz3axZM4/PiPvr+OMf/ygrV64051yfV893fvahPvvsM7nzzjulQoUKUrFiRfOZ11ohpf3Oli1bJj///LPrvdLn9eXn9YMPPpC2bdu6nr9ly5YyY8aMPJ13IMTfBwAUJfol3KdPHylVqpQ8+OCD5sKgQY5+8XvTC0Fqaqo8/vjj5kt8ypQp5rE//vijq1ahb9++snv3bhPk6MUhJSXFXJwPHz5s1u+44w6ZPn26KaMBhFq/fr0UL17c3D755JOu+1THjh1dv5rvuece2bBhgzz22GPStGlT2blzp9nXgQMHsjQxrVmzRhYuXGguNFWrVvW4UF1Jfp9Ly3300Ufy97//3Vy4NLDT86CvWYM/tW3bNunevbsJECdNmiQZGRkyefJkEyS4+89//iOPPvqo3HLLLea5lQZP7jS4qFevnsTGxsp3330ns2fPNhf3f/3rX2a7nlsNBlq1amWeQy+w2hSqQU1B6fupgbNe4DW41WYiPbf//e9/c33cjh07zHuunw99Pfo+/PDDD7JkyRJ58cUX8/W6lH4+NWjQ9yckJMTsR8+7vmcxMTFZmv/0M62f18GDB5tALD/70GBw4MCBpuzYsWNNoKbvowYrDz30kAnqzpw5I7/88ov5bCgNPn31edW/Gz3+Ll26uM7B3r17zfv41FNPFfCdhKNYAPLk22+/1Woaa/Xq1WY9MzPTql27tvXUU095lEtMTDTlqlSpYp08edJ1/yeffGLuX7JkiVk/deqUWX/llVdyfM6UlBRTZubMmWb99OnTVvHixa0///nPVkREhKvck08+aVWuXNkck/rPf/5jyq1fv95jf/Hx8WZ/X331les+Xdeyu3fvztN5uPPOO81iy+9zlSpVyjp06JDrvu+//97c//rrr7vu69Wrl1WuXDnr6NGjrvsOHjxohYSEmLLuQkNDrQEDBmQ5zgkTJpiyAwcO9Lj/vvvuM++Nbfr06abciRMnrPyKioryeO65c+eafXXt2tX1XqgRI0ZYJUqUMO9fbjp27GhVqFDB+vnnnz3ud99XXl+X+v3337M8R3R0tFW/fv0sr0P3uWLFiizl87IPfV163O3atbMuXLiQ47H37NnTPJc3X3xe9e+wYsWKVnp6epb9A3lBkxmQj9qhiIgI6dy5s1nXWp/777/fVNNrDYY33aa1BDb95a+0hkhps4TWNGnT0KlTp7J9Tq0RadKkiXz55ZdmXX/tlihRQkaNGmWayQ4ePOiqIdImH7s5adGiReZXtj5W07PtRZs+1Nq1az2eR5s5tCmkIPL7XF27dvWoxdGaGW3esM+LnsvPP/9cevfuLbVq1XKV06aUHj165Pv4hgwZ4rGu78Nvv/0mZ8+eNetak6E++eQTU1PhC1rL4d60p8+pr0ubi3KiTWr6PmstS2RkpMc2933l9XXZnzGb1s7o+6LvtZ5rXXentU3R0dFZnicv+9DaGa0NffbZZ00T55WO3ZsvPq/6PmrzqR4LUBAEREAe6MVMAx8NhrRjtTap6KKp9xqYJCQkZHmM90XNDo7s4EebZrRqX/tdaKClzV3arKb9irwvdHaTmN5qHw9dKleubNb1Avj999+7Ai6lgZI2BWlA5b40atTIbNemOe+LYUHl97m8z4t9buzzouW1Q68GQN6yu+9KrvQ+aOB62223maY3fR8eeOAB0xxzNcHRlZ4zO3ZAaDeN+uI5NIDWAFT7MWnAoO+L3Tcqu4AoO3nZhzbr5efYvfni86rNeFpeg2btk6eBZX77wsHZ6EME5IH2WTh+/LgJinTJrvaoW7duHvdpTU523DtIDx8+XHr16mX6SGiH1nHjxpk+Ifp8N954oymjNT+a2q0XTA2ANPDRX916v65rLYpevN0DIl3XDqWaDZcd7bCaUy1AfuX3ufJyXnzpSs+nr11rZrQWQjv96kVU+/po7cSqVatyfPzVPKcvXOk5NEjR/jRa66Lvjb4PWiO5fPly0zfHO+DL7jOQ330UlC8+r9p/avv27ebvSH9k6KIdwv/2t7+ZTvfAlRAQAXmgAY9+4cbFxWXZph2EFy9eLPHx8QUKLLT56OmnnzaL/lJu3bq1TJ06Vd59912z3Q50tClAO3Brs4TSGiXt8KoBkf561+wa931qrZFezPLSZHE1fP1cep612SW7MZ6yu88Xz6md1PX4ddGLso5tpJ2ANUjS2pHCUL9+fXO7a9cun+xPOz9rhtann37qUZvk3fzki33YTaB67LnV4uX0XvnqM6TBmv7A0EWDLK010mw5/aFRkNpFOAtNZsAVaPONBj2aiaSp9t6LZrpo/wm9aOSHpkh7j5+iFwbNvHJPNdbmgeuuu878Ir98+bJp3rEDJf0F/+GHH0r79u1NBpB7BtLRo0ezHTRQX4/2tfAVXz+X1nxoEKK1ZseOHfMIhvRXvzcNBjUFvaBOnjyZ5T4NSpV3yve1pE1EGuTOmTPHZNxdbc2SXYPk/lht4tJaE1/vQ2tH9XOrtZven2n3x+p75d1U56vPkPaf8g5ytX9aYb+PKLqoIQKuQAMdDXg0LTg7GozYgzRqf5S80nRi/UWsFwPtIKoBjdY0aZ8k7cfiToMfbarTZgW7r0ibNm3MBUb3o2nN7vr372/6wWjHW/01r0GU9oPSMW70fnu8GV+4Fs+l4w1pc5Xua+jQoWZ/b7zxhumjos0i7rRmTDtha82O1pZpAJmfaVU01V6bzHRsqaioKNNfRadn0X4o2ixZmHQIAn1OfW+1Y7a+Fk3b16Y879d9JRqk2DUmmkp/7tw5E3BoDZw2//pyH9opXgN27YelQ1Do51E/p1rro4G/3WSl75U2R+oYTVpO0+513774DOlza3CrTZ363mkH9tdff90Et9phG7iiPOWiAQ6mKeBlypSxzp8/n2OZhx9+2CpZsqT166+/utLus0un1/s1bVpp2ZiYGKtJkyYmdTwsLMykLS9cuDDL4+Li4sxjhw4d6nG/pnfr/QkJCVkec+nSJetf//qX1bx5c6t06dJWpUqVrLZt21qTJk2yzpw543FMehx55Z1274vn8k5fV/qabrzxRpOmf/3111uzZ8+2nn76afNeuNu3b59JVy9btqzZv70fOz3dO53eTo3X98l+nnvvvdeqVauWeS69ffDBB60DBw4UOO1+y5YtHuXWrl1r7tfbK9m1a5dJoQ8PDzevtXHjxta4ceNc2/P6utSnn35qtWrVyuynbt265j2aM2dOlnL6OjQlPjt53Ydd9tZbbzXvhabA33LLLdb777/v2n7u3DnroYceMq9NH++egn+1n6EPP/zQ6tatm1W9enXzPkZGRlqPP/64dfz48Suec0AV03+uHDYBgP9pKr5mI9nDDQCAr9CHCEBA8p5LS4MgzW7SKSAAwNeoIQIQkHTaDp2rS7OvtD+IZtRp51idDqJhw4b+PjwAQYZO1QACks5l9v7775uBKnUQyw4dOph0eIIhANcCNUQAAMDx6EMEAAAcj4AIAAA4Hn2I8kCHgNcRc3Uk1ms9DQIAAPAN7RWkA+vqoK06enluCIjyQIMh78kFAQBA0XDkyBEzgnluCIjyQGuG7BOqQ9QDAIDAd/bsWVOhYV/Hc0NAlAd2M5kGQwREAAAULXnp7kKnagAA4HgERAAAwPEIiAAAgOMREAEAAMcjIAIAAI5HQAQAABzP7wHR0aNH5a9//atUqVJFypYtKy1btpRvv/3WY5TJ8ePHS82aNc32rl27ysGDBz32cfLkSenXr59JiQ8PD5dBgwbJuXPnPMrs2LFD7rjjDilTpowZk2DKlCmF9hoBAEBg82tAdOrUKbntttukZMmS8tlnn8mePXtk6tSpUqlSJVcZDVxee+01iY+Pl2+++UZCQ0MlOjpa0tLSXGU0GNq9e7esXr1ali5dKl9++aU89thjHgMzdevWTaKiomTr1q3yyiuvyMSJE+Wtt94q9NcMAAACTzFLq2D85Nlnn5WvvvpK1q9fn+12PTSdf+Tpp5+WZ555xtx35swZiYiIkHnz5skDDzwge/fulWbNmsmWLVvkpptuMmVWrFghd999t/zyyy/m8bNmzZLnnntOkpKSpFSpUq7n/vjjj2Xfvn1XPE4NqMLCwsxzMzAjAABFQ36u336tIfr0009NEPPnP/9ZqlevLjfeeKO8/fbbru2JiYkmiNFmMpu+sHbt2smmTZvMut5qM5kdDCktr5O4aY2SXaZjx46uYEhpLdP+/ftNLZW3ixcvmpPovgAAgODl14Doxx9/NLU3DRs2lJUrV8rQoUPlySeflPnz55vtGgwprRFyp+v2Nr3VYMpdSEiIVK5c2aNMdvtwfw53sbGxJvCyFyZ2BQAguPk1IMrMzJQ2bdrISy+9ZGqHtN/P4MGDTX8hfxo7dqypXrMXndQVAAAEL78GRJo5pv1/3DVt2lQOHz5s/l+jRg1zm5yc7FFG1+1tepuSkuKxPT093WSeuZfJbh/uz+GudOnSrolcmdAVAIDg59eASDPMtB+PuwMHDphsMFWvXj0TsCQkJLi2a38e7RvUoUMHs663p0+fNtljtjVr1pjaJ+1rZJfRzLPLly+7ymhGWuPGjT0y2pxGA8edO3d6LHofAABOE+LPJx8xYoTceuutpsnsL3/5i2zevNmkwtvp8MWKFZPhw4fLP//5T9PPSAOkcePGmcyx3r17u2qUunfv7mpq06Bn2LBhJgNNy6mHHnpIJk2aZMYnGjNmjOzatUtmzJgh06dPFyfTDL0hcUukQkSkWU9NPizxMWLGggIAwEn8GhDdfPPNsnjxYtNnZ/LkySbgefXVV824QrbRo0fL+fPnTf8irQm6/fbbTVq9DrBoW7BggQmCunTpYrLL+vbta8YusmnH6FWrVklMTIy0bdtWqlatagZ7dB+ryKk0GAq/7np/HwYAAM4dh6ioCNZxiLSJbNSH37sCopNHDsjjrctLo0aNXLVvmrGntClNa5Rs7tsAACjq12+uaHA5f+KYxC5Jk6pRF7I0n7k3r9G0BgAINgRE8BBarXaOTWg0rwEAgpXfJ3cFAADwNwIiAADgeDSZBTnvztCKDtEAAHjiqhjkGGsIAIArIyByADpDAwCQO/oQAQAAx6OGCNnKzMww88rZ9P+M4QkACFYERLjiII0qac9mCatLvyMAQHAiIEKeBmlMTT7i78MBAOCaoQ8RAABwPAIiAADgeAREAADA8QiIAACA4xEQAQAAxyMgAgAAjkdABAAAHI+ACAAAOB4BEQAAcDwCIgAA4HgERAAAwPEIiAAAgOMREAEAAMdjtnuHyczMkAMHDpj/661lWf4+JAAA/I6AyGHOnzgmsUvSpGrUBUnas1nC6rb09yEBAOB3BEQOFFqttoRfd72kJh+56lomW9OmTSUkhI8TAKBo4gqGq6plUqnJhyU+RqRlS2qbAABFEwERrqqWKbsaI2qLAABFDVct+LTGiNoiAEBRREAEn9cYAQBQ1BAQBaH09HTZu3ev+T+p9QAAXBkBURDSYGhI3BKpEBFJaj0AAHnASNVBSoMhbcIKrVLT34cCAEDAIyACAACOR0AEAAAcj4AIAAA4HgERAABwPAIiAADgeAREAADA8QiIAACA4xEQAQAAxyMgAgAAjkdABAAAHI+ACAAAOB4BEQAAcDwCIgAA4Hgh/j4AXL309HTZu3eva/3AgQNiWZZfjwkAgKLErzVEEydOlGLFinksTZo0cW1PS0uTmJgYqVKlipQvX1769u0rycnJHvs4fPiw9OzZU8qVKyfVq1eXUaNGmQDB3bp166RNmzZSunRpadCggcybN0+CiQZDQ+KWyKgPvzfLCx98IWkX0vx9WAAAFBl+bzJr3ry5HD9+3LVs2LDBtW3EiBGyZMkSWbRokXzxxRdy7Ngx6dOnj2t7RkaGCYYuXbokGzdulPnz55tgZ/z48a4yiYmJpkznzp1l+/btMnz4cHn00Udl5cqVEkwqRERK+HXXmyW0Sk1/Hw4AAEWK35vMQkJCpEaNGlnuP3PmjLzzzjvy3nvvyV133WXumzt3rjRt2lS+/vprad++vaxatUr27Nkjn3/+uUREREjr1q3lhRdekDFjxpjap1KlSkl8fLzUq1dPpk6davahj9ega/r06RIdHV3orxcAAAQev9cQHTx4UGrVqiX169eXfv36mSYwtXXrVrl8+bJ07drVVVab0yIjI2XTpk1mXW9btmxpgiGbBjlnz56V3bt3u8q478MuY+8jOxcvXjT7cF8AAEDw8mtA1K5dO9PEtWLFCpk1a5Zp3rrjjjskNTVVkpKSTA1PeHi4x2M0+NFtSm/dgyF7u70ttzIa5Fy4cCHb44qNjZWwsDDXUqdOHZ++bgAAEFj82mTWo0cP1/9btWplAqSoqChZuHChlC1b1m/HNXbsWBk5cqRrXYMngiIAAIKX3/sQudPaoEaNGsmhQ4fkD3/4g+ksffr0aY9aIs0ys/sc6e3mzZs99mFnobmX8c5M0/WKFSvmGHRpNpouyL/MzAyT9u9O+21pXzEAAAKV3/sQuTt37pz88MMPUrNmTWnbtq2ULFlSEhISXNv3799v+hh16NDBrOvtzp07JSUlxVVm9erVJthp1qyZq4z7Puwy9j7gW+dPHJPYJTtcQwDocADuYyQBABCI/Pqz/ZlnnpFevXqZZjJNqZ8wYYKUKFFCHnzwQdN3Z9CgQabpqnLlyibIeeKJJ0wgoxlmqlu3bibw6d+/v0yZMsX0F3r++efN2EV2Dc+QIUPkjTfekNGjR8vAgQNlzZo1pklu2bJl/nzpQS20Wm2T/g8AQFHh14Dol19+McHPb7/9JtWqVZPbb7/dpNTr/5WmxhcvXtwMyKiZX5odNnPmTNfjNXhaunSpDB061ARKoaGhMmDAAJk8ebKrjKbca/CjYxrNmDFDateuLbNnzyblHgAABEZA9MEHH+S6vUyZMhIXF2eWnGjt0vLly3PdT6dOnWTbtm0SrNN1MFUHAABXh56uRXy6Dh2hOmnPZgmr29LfhwQAQJEVUJ2qUbDpOpiqAwCAq0NABAAAHI+ACAAAOB59iFCoAzUySCMAIBBxZUIhDNSYJlWjLsjZ44nydPQBMxq5jQAJABAIuBKh0AZqTE0+Ykax1uBIpSYflvgYkZYtyZADAPgXAREKFaNYAwACEZ2qAQCA4xEQAQAAxyMgAgAAjkdABAAAHI+ACAAAOB4BEQAAcDwCIgAA4HgERAAAwPEIiAAAgOMREAEAAMcjIAIAAI5HQAQAAByPgAgAADgeAREAAHA8AiIAAOB4BEQAAMDxCIgAAIDjhfj7AACVnp4ue/fu9bivadOmEhLCRxQAcO1xtUFA0GBoSNwSqRARadZTkw9LfIxIy5Yt/X1oAAAHICBCwNBgKPy66/19GAAAB6IPEQAAcDwCIgAA4HgERAAAwPEIiAAAgOMREAEAAMcjIAIAAI5HQAQAAByPgAgAADgeAzPCbzIzM+TAgQPm/3prWZa/DwkA4FAERPCb8yeOSeySNKkadUGS9myWsLpM0wEA8A+azOBXodVqm+k6QqvU9PehAAAcjIAIAAA4HgERAABwPAIiAADgeAREAADA8QiIAACA4xEQAQAAx2McIgS89PR02bt3r8d9TZs2lZAQPr4AAN/gioKAp8HQkLglUiEi0qynJh+W+BiRli0ZyBEA4BsERCgSNBjSARwBALgW6EMEAAAcL2ACopdfflmKFSsmw4cPd92XlpYmMTExUqVKFSlfvrz07dtXkpOTPR53+PBh6dmzp5QrV06qV68uo0aNMn1O3K1bt07atGkjpUuXlgYNGsi8efMK7XUBAIDAFxAB0ZYtW+TNN9+UVq1aedw/YsQIWbJkiSxatEi++OILOXbsmPTp08e1PSMjwwRDly5dko0bN8r8+fNNsDN+/HhXmcTERFOmc+fOsn37dhNwPfroo7Jy5cpCfY0AACBw+T0gOnfunPTr10/efvttqVSpkuv+M2fOyDvvvCPTpk2Tu+66S9q2bStz5841gc/XX39tyqxatUr27Nkj7777rrRu3Vp69OghL7zwgsTFxZkgScXHx0u9evVk6tSpJjNp2LBh8qc//UmmT5/ut9cMAAACi98DIm0S0xqcrl27ety/detWuXz5ssf9TZo0kcjISNm0aZNZ11vNNIqIiHCViY6OlrNnz8ru3btdZbz3rWXsfWTn4sWLZh/uCwAACF5+zTL74IMP5LvvvjNNZt6SkpKkVKlSEh4e7nG/Bj+6zS7jHgzZ2+1tuZXRIOfChQtStmzZLM8dGxsrkyZN8sErBAAARYHfaoiOHDkiTz31lCxYsEDKlCkjgWTs2LGmyc5e9FgBAEDw8lsNkTaJpaSkmOwv907SX375pbzxxhum07P2Azp9+rRHLZFmmdWoUcP8X283b97ssV87C829jHdmmq5XrFgx29ohpdlousB/MjMz5MCBA+b/emtZlr8PCQAQxPwWEHXp0kV27tzpcd8jjzxi+gmNGTNG6tSpIyVLlpSEhASTbq/2799v0uw7dOhg1vX2xRdfNIGVptyr1atXm2CnWbNmrjLLly/3eB4tY+8Dgen8iWMSuyRNqkZdkKQ9myWsLqNSAwCCMCCqUKGCtGjRwuO+0NBQM+aQff+gQYNk5MiRUrlyZRPkPPHEEyaQad++vdnerVs3E/j0799fpkyZYvoLPf/886ajtl3DM2TIEFPjNHr0aBk4cKCsWbNGFi5cKMuWLfPDq0Z+hFarbUanTk2myRIA4OCpOzQ1vnjx4qaGSDO/NDts5syZru0lSpSQpUuXytChQ02gpAHVgAEDZPLkya4ymnKvwY+OaTRjxgypXbu2zJ492+wLAAAg4AIiHVHanXa21jGFdMlJVFRUliYxb506dZJt27b57DgBAEBw8fs4RAAAAP5GQAQAAByPgAgAADgeAREAAHA8AiIAAOB4BEQAAMDxCIgAAIDjERABAADHC6iBGYH8TvyqmjZtKiEhfJQBAAXHVQRFeuLX1OTDEh8j0rIlk78CAAqOgAhFeuJXAAB8gT5EAADA8QiIAACA4xEQAQAAx6MPEYIq40yRdQYAyC+uGgiajDNF1hkAoCAIiFDkkXEGALha9CECAACOR0AEAAAcj4AIAAA4HgERAABwPAIiAADgeGSZIajHJWJMIgBAXnClQNCOS8SYRACAvCIgQtBhXCIAQH7RhwgAADgeAREAAHA8AiIAAOB4BQqI6tevL7/99luW+0+fPm22AQAABH1A9NNPP0lGRkaW+y9evChHjx71xXEBAAAEZpbZp59+6vr/ypUrJSwszLWuAVJCQoLUrVvXt0cIAAAQSAFR7969zW2xYsVkwIABHttKlixpgqGpU6f69ggBH0lPT5e9e/e61hm0EQBgy9fVIDMz09zWq1dPtmzZIlWrVs3PwwG/jlqt/5+2ap9UqBHFoI0AAA8F+nmcmJhYkIcBfhu1WiXt2SxhdVsyaCMAIIsCtxdofyFdUlJSXDVHtjlz5hR0t8A1G7U6NfmIvw8HABBMAdGkSZNk8uTJctNNN0nNmjVNnyIAAABHBUTx8fEyb9486d+/v++PCHnqEKz9YSzL8usxAQDg6IDo0qVLcuutt/r+aJAjDYaGxC2RChGRHv1hAACAnwZmfPTRR+W9997zwdMjPzQY0v4wuoRWqenvwwEAwNk1RGlpafLWW2/J559/Lq1atTJjELmbNm2ar44PAAAgMAOiHTt2SOvWrc3/d+3a5bGNDtYAAMARAdHatWt9fyQAAABFqQ8RAACAOL2GqHPnzrk2ja1Zs+ZqjgkAACDwAyK7/5Dt8uXLsn37dtOfyHvSVwAAgKAMiKZPn57t/RMnTpRz585d7TEBAAAU3T5Ef/3rX5nHDAAAODsg2rRpk5QpU8aXuwQAAAjMgKhPnz4ey3333Sft27eXRx55RB5//PE872fWrFlmYMeKFSuapUOHDvLZZ595DAAZExMjVapUkfLly0vfvn0lOTnZYx+HDx+Wnj17Srly5aR69eoyatQoM++Xu3Xr1kmbNm2kdOnS0qBBAzMPGwAAwFX1IQoLC/NYL168uDRu3FgmT54s3bp1y/N+ateuLS+//LI0bNjQTFQ6f/58uffee2Xbtm3SvHlzGTFihCxbtkwWLVpknnPYsGEmAPvqq6/M4zMyMkwwVKNGDdm4caMcP35c/va3v5mRs1966SVTJjEx0ZQZMmSILFiwQBISEszUIzVr1pTo6OiCvHwEgczMDDNBrrumTZtKSEiB/iQAAEVcgb79586d65Mn79Wrl8f6iy++aGqNvv76axMsvfPOO2bOtLvuusv1vHrR0u1aI7Vq1SrZs2ePmUIkIiLCZL+98MILMmbMGNPBu1SpUhIfHy/16tWTqVOnmn3o4zds2GA6hhMQOdf5E8ckdkmaVI26YNZTkw9LfIxIy5ZMmAsATnRVfYi2bt0q7777rlm0VudqaG3PBx98IOfPnzdNZ7pvTefv2rWrq0yTJk0kMjLS9FVSeqsXMA2GbBrknD17Vnbv3u0q474Pu4y9j+xcvHjR7MN9QfAJrVbbNVmuTpwLAHCuAtUQpaSkyAMPPGD65oSHh5v7Tp8+bQZs1KCmWrVqed7Xzp07TQCk/YW0n9DixYulWbNmZlwjreGx92/T4CcpKcn8X2/dgyF7u70ttzIa5Fy4cEHKli2b5ZhiY2Nl0qRJeX4NAADAgTVETzzxhKSmpppamJMnT5pFB2XUIOPJJ5/M176075EGP998840MHTrUDOyozWD+NHbsWDlz5oxrOXLkiF+PBwAABGAN0YoVK0y/He2PY9Nanbi4uHx1qlZaC6SZX6pt27ayZcsWmTFjhtx///1y6dIlU/PkXkukWWbaiVrp7ebNmz32Z2ehuZfxzkzTdc1qy652SGk2mi4AAMAZClRDlJmZaTK5vOl9uu1q6OO1D48GR7o/zQqz7d+/36TZaxOb0lttctMmPNvq1atNsKMBml3GfR92GXsfAAAABaoh0qyvp556St5//32pVauWue/o0aMmTb5Lly75aprq0aOH6SitTXCaUab9klauXGnS7AcNGiQjR46UypUrmyBHm+o0kNEMM6W1URr49O/fX6ZMmWL6Cz3//PNm7CK7hkfT7d944w0ZPXq0DBw40Ew8u3DhQpPOH+h0PKW9e/ea/2uKuA5NgMI97zZS8gEguBXoG14DjHvuuUfq1q0rderUMfdpP5sWLVqYjLO80podHTdIxw/SAEgHadRg6A9/+IPZrqnxOsaRDsiotUaaHTZz5kzX40uUKCFLly41fY80UAoNDTV9kHQ8JJum3Gvwo8GaNsVpOv/s2bOLRMq9XpSHxC0xGVBJezZLWF1Swgv7vCtS8gEg+BUoINIg6LvvvjP9iPbt2+f6Be2d3n4lOs5QbnQaEO2XpEtOoqKiZPny5bnup1OnTlc9LIC/6EVZ08JTk+nY7Y/zDgBwhnz1IdLmJm2i0myyYsWKmZocbcbS5eabbzajS69fv/7aHS0AAIC/A6JXX31VBg8ebPrzeNMmL53HbNq0ab48PgAAgMAKiL7//nvp3r17jtu1k7OOMA0AABC0AZGO35Ndur1Ns3BOnDjhi+MCAAAIzIDouuuuMyNS52THjh1mFnkAAICgDYjuvvtuGTdunJl3zJvOCzZhwgT54x//6MvjAwpFZmaGGetJB/pkzCcAcJ58pd3roIcfffSRNGrUSIYNG2bmIVOaeq+p8Tpj/XPPPXetjhW4Zs6fOCaxS9KkatQFxnwCAAfKV0Cks8Rv3LjRDISoo0zbv6I1BV8HOtSgyHtmeaCoCK1WmzGfAMCh8j0woz0Q4qlTp+TQoUMmKGrYsKFUqlTp2hwhAADANVbgyZk0ANLBGAEAABw52z0AAEAwISACAACOR0AEAAAcj4AIAAA4HgERAABwPAIiAADgeAVOuwecNq2HrWnTpmYiYwBA8OBbHcjHtB5njyfK09EHzPQ1NgIkACj6+BYH8jmtR+ySHSY4UqnJhyU+RqRlS+Y+A4CijIAIKGBwBAAIHnSqBgAAjkdABAAAHI+ACAAAOB4BEQAAcDwCIgAA4HgERAAAwPEIiAAAgOMREAEAAMdjYEbgGs1zlp6eLnv37s12GwAgsPDtDPhonjPvaTw0GBoSt0QqREQyxQcABDgCIuAaTuWhwRDTfABA4KMPEQAAcDwCIgAA4HgERAAAwPHoQwRco4wz/b9lWX49JgBA3hAQAdcg40wl7dksYXWzzyojJR8AAgvfwMA1yjhLTT6SYzlS8gEgsBAQAX5CSj4ABA46VQMAAMcjIAIAAI5HQAQAAByPgAgAADgenaoDiHcqNuPYAABQOAiIAoh7KvaVxrFB0cKgjQAQ2AiIAjgVO7dxbBC8gzYCAAofAREQYIM2AgAKH52qAQCA4xEQAQAAx6PJDAgwTPwKAA6rIYqNjZWbb75ZKlSoINWrV5fevXvL/v37PcqkpaVJTEyMVKlSRcqXLy99+/aV5ORkjzKHDx+Wnj17Srly5cx+Ro0aZS4q7tatWydt2rSR0qVLS4MGDWTevHmF8hqBgmYbjvrwe3PrHhwBAIIwIPriiy9MsPP111/L6tWr5fLly9KtWzc5f/68q8yIESNkyZIlsmjRIlP+2LFj0qdPH9f2jIwMEwxdunRJNm7cKPPnzzfBzvjx411lEhMTTZnOnTvL9u3bZfjw4fLoo4/KypUrC/01A/nJNrSHYAAAXFt+rYdfsWKFx7oGMlrDs3XrVunYsaOcOXNG3nnnHXnvvffkrrvuMmXmzp1rmhA0iGrfvr2sWrVK9uzZI59//rlERERI69at5YUXXpAxY8bIxIkTpVSpUhIfHy/16tWTqVOnmn3o4zds2CDTp0+X6OjoLMd18eJFs9jOnj17zc8FnIsxigDA/wKqU7UGQKpy5crmVgMjrTXq2rWrq0yTJk0kMjJSNm3aZNb1tmXLliYYsmmQo0HM7t27XWXc92GXsfeRXVNeWFiYa6lTp841eLWA+xhFO0wTmS4vfPCFpF1I8/dhAYCjBExAlJmZaZqybrvtNmnRooW5LykpydTwhIeHe5TV4Ee32WXcgyF7u70ttzIaNF248L+B8tyNHTvWBGf2cuQIY8agcMYo0iW0Sk1/Hw4AOE7ApK5oX6Jdu3aZpix/047XugAAAGcIiBqiYcOGydKlS2Xt2rVSu3Zt1/01atQwnaVPnz7tUV6zzHSbXcY768xev1KZihUrStmyZa/Z6wIAAEWDXwMi7TiqwdDixYtlzZo1puOzu7Zt20rJkiUlISHBdZ+m5WuafYcOHcy63u7cuVNSUlJcZTRjTYOdZs2aucq478MuY+8DAAA4W4i/m8k0g+yTTz4xYxHZfX60I7PW3OjtoEGDZOTIkaajtQY5TzzxhAlkNMNMaZq+Bj79+/eXKVOmmH08//zzZt92s9eQIUPkjTfekNGjR8vAgQNN8LVw4UJZtmyZP18+kO8MNMVAjQDge379Vp01a5a57dSpk8f9mlr/8MMPm/9ranzx4sXNgIyaCq/ZYTNnznSVLVGihGluGzp0qAmUQkNDZcCAATJ58mRXGa150uBHxzSaMWOGaZabPXt2tin3QOBloKVJ1aj/df5PTT4s8TFiMisBAEESEOVlrJUyZcpIXFycWXISFRUly5cvz3U/GnRt27atQMcJBEIGGgAgyDtVAwAA+BMBEQAAcDwCIgAA4HgERAAAwPEIiAAAgOMxmAlQhMclYkwiAPANvkmBIsR9XCLGJAIA3yEgAooYxiUCAN+jDxEAAHA8aoiAIop5zgDAd/jmBIJwnrP09HTZu3evR3mCJQDIGd+OQBD2J9JgaEjcEqkQEWnW6YANALkjIAKClAZDdL4GgLyhUzUAAHA8AiIAAOB4NJkBQZh1preWZfn7kACgyCAgAoIw6yxpz2YJq0sHagDIK5rMgCDMOgutUtPfhwIARQoBEQAAcDyazAAHjmrNII0A4IlvRMBh/YsYpBEAsiIgAhzWv8i7tkin+VB2jRG1RwCciG89wOFzoGlGWkhoJaka1ZDaIwCORUAEOHwOtNTkIxJSoWq203x4TxJL7RGAYMU3G4AcuU8SS+0RgGBGQAQgV0wSC8AJGIcIAAA4HjVEAFy8M9CYEw2AUxAQAcg1A4050QA4AQERgFwz0ADACehDBAAAHI+ACAAAOB5NZgAKhEEbAQQTvr0AFAiDNgIIJgREAAqckl++ep1sJ4xV1BgBKEr4tgJw1Sn53tuoMQJQ1BAQAfBJSr77NgAoasgyAwAAjkcNEYBCzUZT9C8CEGj4RgLgc+6drPV22qp9UqFGlFmnfxGAQERABMDn3DtZ252v6V8EIJDRhwjANWF3sg6tUtPfhwIAV0RABAAAHI8mMwCFynsQRzpYAwgEfAsB8Fv/IjpYAwgUBEQACh2DOAIINPQhAgAAjkcNEYCAHcSR/kUAHFFD9OWXX0qvXr2kVq1aUqxYMfn44489tluWJePHj5eaNWtK2bJlpWvXrnLw4EGPMidPnpR+/fpJxYoVJTw8XAYNGiTnzp3zKLNjxw654447pEyZMlKnTh2ZMmVKobw+APmjwdCQuCUy6sPvza33CNcAEJQB0fnz5+WGG26QuLi4bLdr4PLaa69JfHy8fPPNNxIaGirR0dGSlpbmKqPB0O7du2X16tWydOlSE2Q99thjru1nz56Vbt26SVRUlGzdulVeeeUVmThxorz11luF8hoBXDnjbOfOnWbR/5evXud/4xdVu85jmy5agwQA14Jf66J79Ohhluxo7dCrr74qzz//vNx7773mvv/7v/+TiIgIU5P0wAMPmF+PK1askC1btshNN91kyrz++uty9913y7///W9T87RgwQK5dOmSzJkzR0qVKiXNmzeX7du3y7Rp0zwCJwD+zThT9qjW2W0jIw2AIztVJyYmSlJSkmkms4WFhUm7du1k06ZNZl1vtZnMDoaUli9evLipUbLLdOzY0QRDNq1l2r9/v5w6dSrb57548aKpWXJfAFzbjLPsRrX22OZVY0RtEQBHBEQaDCmtEXKn6/Y2va1evbrHdu2AWblyZY8y2e3D/Tm8xcbGmuDLXrTfEQD/+l+N0Q76FwG4JkjfyMbYsWNl5MiRrnWtISIoAvzPrjHyHu1akZEG4GoE7LdHjRo1zG1ycrLJMrPpeuvWrV1lUlJSPB6n1eiaeWY/Xm/1Me7sdbuMt9KlS5sFQGCifxEAxzSZ1atXzwQsCQkJHjU12jeoQ4cOZl1vT58+bbLHbGvWrJHMzEzT18guo5lnly9fdpXRjLTGjRtLpUqVCvU1AfAd+hcBCJoaIh0v6NChQx4dqTUDTPsARUZGyvDhw+Wf//ynNGzY0ARI48aNM5ljvXv3dlWRd+/eXQYPHmxS8zXoGTZsmMlA03LqoYcekkmTJpnxicaMGSO7du2SGTNmyPTp0yXQBqLTL3TNrgOQP8yPBqBIB0TffvutdO7c2bVu99sZMGCAzJs3T0aPHm3GKtL0eK0Juv32202avQ6waNO0eg2CunTpYrLL+vbta8Yusmmn6FWrVklMTIy0bdtWqlatagZ7DJSUe3sgugoRkR4pxwDyh/5FAK6GX78hOnXqlGuNiI5ePXnyZLPkRGuT3nvvvVyfp1WrVrJ+/XoJVBoM6Rd5avIRfx8KEHT9i84eT5Snow9Io0aNzDrBEYDs8K0AIGhri5T+0NB0fQ2QvIMjRYAEQPEtAMAxAZJ7cKTc+xt5TyzrHizltg1AcOCvGYBja4/c+xvp7bRV+6RCjagswZJ7Xz/vbQCCAwERAMdy729kJzXYwVJOff0ABKeAHYcIAAqzxsh7HjUAzkJABAAAHI+ACAAAOB59iADAh7wz0shGA4oG/koBIBveGWjug8h6j4btHvS4Z6Tllo1GKj8QWPjLA4A8ZqBlty27oCcvGWmk8gOBhYAIAPIwoGNO265mMufy1euQyg8ECAIiALgK3s1n3s1r7pjMGQhcBEQA4MPJZN0DneyCJbtWiMmcgcBCQAQAPp5MNi/BUm7ocA0UPv66AMAPwVJ+OlyfPZ4oT0cfkEaNGpl1giPA9/iLAoAATPN373CtgVTskh05ZrUBuHoERAAQ4Gn+7jVN3v2SFDVGwNXjLwgAikCaf079kqgxAnyDgAgAinC/JPcaI+2MrezaIu91apKAnPGXAQBB1NQWElpJqkY1NNvc171rkphzDfDEpx8AgqipLaRCVY/O2O7r7vI65xrgFAREAOBQeZlzjTGR4BR8ogHA4XLLXMttElqCJQQTPrUA4HBXylxzr0nyHi9p2qp9UqFGVLaPA4oSAiIAcIArTUKbU+aad7nsxku6UrMbUBQQEAGAA+RnXrW8DhLJBLUIJgREAOAQ+ZlXrSBBj3ctlHt/ItL8Eej4NAIAfMK9Zsm7P5F752zvyWoZQBKBgE8cAMBncppzzX3CWvfJar0HkPQOlhQBEgoDnzAAQKH3WfJuvrMHkPQOltwDJO+aJPdgiSY5XC0+LQAAv/dZyu1xdoDkPTWJe7McI2/jahEQAQCK5NQk3sMD2E1y3s119FFCXvCJAAAUSTkND5Bdc11Ok9wCNgIiAECRldPwADn1UQJyQkAEAHCM3OZtY242Z+NdBgA4hndzmnsWG3OzORsBEQDAUXLLYmNuNuciIAIAOFpO/ZDcm9dyGwMJwYF3EgCAPGSx5TQGEoIDAREAAPkcAwnBh4AIAIB8yq05jYEgiybeIQAAfNicxkCQRRMBEQAAPmxOo3mtaCIgAgDADwNBIrDwjgAA4IeBIBXBUeDgXQAAwA8DQXoHR4oAyX846wAA+KnvkR0cKTpg+xcBEQAAAVB7RCq/fznqbMbFxckrr7wiSUlJcsMNN8jrr78ut9xyi78PCwCAPKfy09R2bTjm7P33v/+VkSNHSnx8vLRr105effVViY6Olv3790v16tX9fXgAAOQpld+7qc09QGLOtYJzzBmaNm2aDB48WB555BGzroHRsmXLZM6cOfLss8/6+/AAALjqjtreNUtkteWdI87KpUuXZOvWrTJ27FjXfcWLF5euXbvKpk2bspS/ePGiWWxnzpwxt2fPnvX5sZ07d05OHTkg6RcvyNmknyXk7BkpWeJ/29zX2cY2trGNbXnbFqjHdU23lQs315GMy5ek2KWL5v8qNeWojH3roIRFXCcXTqXImL90kgYNGkggat68uc/3aV+3Lcu6YllHBES//vqrZGRkSEREhMf9ur5v374s5WNjY2XSpElZ7q9Tp841PU4AAK6lvy2dI06UmpoqYWFhuZZxRECUX1qTpP2NbJmZmXLy5EmpUqWKFCtWzGdRqwZYR44ckYoVK/pkn07EefQNzuPV4xz6BufRNziP4qoZ0mCoVq1aciWOCIiqVq0qJUqUkOTkZI/7db1GjRpZypcuXdos7sLDw6/JsekH1ckfVl/hPPoG5/HqcQ59g/PoG5xHuWLNkK24OECpUqWkbdu2kpCQ4FHro+sdOnTw67EBAAD/c0QNkdImsAEDBshNN91kxh7StPvz58+7ss4AAIBzOSYguv/+++XEiRMyfvx4MzBj69atZcWKFVk6WhcWbZKbMGFClqY55A/n0Tc4j1ePc+gbnEff4DzmXzErL7loAAAAQcwRfYgAAAByQ0AEAAAcj4AIAAA4HgERAABwPAIiAADgeAREfhIXFyd169aVMmXKSLt27WTz5s3+PqSAMXHiRDNFivvSpEkT1/a0tDSJiYkxU6mUL19e+vbtm2UU8sOHD0vPnj2lXLlyUr16dRk1apSkp6dLMPvyyy+lV69eZoh6PWcff/yxx3ZNKNVhJ2rWrClly5Y1kxsfPHjQo4xOUdOvXz8zsq2Ozj5o0CAzAbG7HTt2yB133GE+uzo1wJQpU8Qp5/Dhhx/O8tns3r27Rxmnn0OdC/Lmm2+WChUqmL+93r17y/79+z3K+OpveN26ddKmTRuTWq4Tls6bN0+cdB47deqU5fM4ZMgQjzJOP4/5omn3KFwffPCBVapUKWvOnDnW7t27rcGDB1vh4eFWcnKyvw8tIEyYMMFq3ry5dfz4cddy4sQJ1/YhQ4ZYderUsRISEqxvv/3Wat++vXXrrbe6tqenp1stWrSwunbtam3bts1avny5VbVqVWvs2LFWMNPX+dxzz1kfffSRDqVhLV682GP7yy+/bIWFhVkff/yx9f3331v33HOPVa9ePevChQuuMt27d7duuOEG6+uvv7bWr19vNWjQwHrwwQdd28+cOWNFRERY/fr1s3bt2mW9//77VtmyZa0333zTcsI5HDBggDlH7p/NkydPepRx+jmMjo625s6da17b9u3brbvvvtuKjIy0zp0759O/4R9//NEqV66cNXLkSGvPnj3W66+/bpUoUcJasWKF5ZTzeOedd5rrh/vnUT9fNs5j/hAQ+cEtt9xixcTEuNYzMjKsWrVqWbGxsX49rkAKiPSCkp3Tp09bJUuWtBYtWuS6b+/evebitWnTJrOuf/TFixe3kpKSXGVmzZplVaxY0bp48aLlBN4X88zMTKtGjRrWK6+84nEuS5cubS7ISr8M9XFbtmxxlfnss8+sYsWKWUePHjXrM2fOtCpVquRxHseMGWM1btzYCjY5BUT33ntvjo/hHGaVkpJizskXX3zh07/h0aNHmx9O7u6//34TSDjhPNoB0VNPPZXjYziP+UOTWSG7dOmSbN261TRX2IoXL27WN23a5NdjCyTalKPNFvXr1zfND1rtq/TcXb582eP8aXNaZGSk6/zpbcuWLT1GIY+OjjazP+/evVucKDEx0YzQ7n7edMJDba51P2/axKPT29i0vH4+v/nmG1eZjh07mvkB3c+tVuWfOnVKnECbF7TpoXHjxjJ06FD57bffXNs4h1mdOXPG3FauXNmnf8Naxn0fdplg/R71Po+2BQsWmAnMW7RoIWPHjpXff//dtY3zmD+OmbojUPz666+SkZGRZcoQXd+3b5/fjiuQ6EVa27D1gnP8+HGZNGmS6W+xa9cuc1HXC4ledLzPn25Tepvd+bW3OZH9urM7L+7nTS/07kJCQswXsHuZevXqZdmHva1SpUoSzLS/UJ8+fcw5+OGHH+Qf//iH9OjRw1w8SpQowTn0opNoDx8+XG677TZzwVa++hvOqYxe7C9cuGD6yQXzeVQPPfSQREVFmR+P2i9tzJgxJrD+6KOPzHbOY/4QECHg6AXG1qpVKxMg6R/9woULHfXHicDzwAMPuP6vv7z183n99debWqMuXbr49dgCkXac1h8yGzZs8PehBOV5fOyxxzw+j5owoZ9DDdb1c4n8ocmskGnVpv6S9M6o0PUaNWr47bgCmf6SbNSokRw6dMicI212PH36dI7nT2+zO7/2NieyX3dunzu9TUlJ8diu2SiaNcW5zZ426erftH42Fefw/xs2bJgsXbpU1q5dK7Vr13bd76u/4ZzKaHZfMP1wyuk8Zkd/PCr3zyPnMe8IiAqZVhW3bdtWEhISPKpDdb1Dhw5+PbZApSnL+otHf/3ouStZsqTH+dMqYu1jZJ8/vd25c6fHhWn16tXmD7xZs2biRNpEo1987udNq8S1X4v7edOLlPbxsK1Zs8Z8Pu0vWi2jqenaB8T93GrzZjA19eTVL7/8YvoQ6WdTcQ7/N7yDXsQXL15sXrt386Cv/oa1jPs+7DLB8j16pfOYne3bt5tb98+j089jvuSzEzZ8lHav2T3z5s0zWSmPPfaYSbt3zwRwsqefftpat26dlZiYaH311VcmZVRTRTXLwk7Z1fTTNWvWmJTdDh06mMU71bRbt24mXVXTR6tVqxb0afepqakmtVYX/dOeNm2a+f/PP//sSrvXz9knn3xi7dixw2RLZZd2f+ONN1rffPONtWHDBqthw4YeKeOaIaQp4/379zfpwPpZ1pTdYEkZz+0c6rZnnnnGZELpZ/Pzzz+32rRpY85RWlqaax9OP4dDhw41wzvo37B7Ovjvv//uKuOLv2E7XXzUqFEmSy0uLi6o0sWvdB4PHTpkTZ482Zw//Tzq33X9+vWtjh07uvbBecwfAiI/0bEe9AtBxyPSNHwdswT/P+WzZs2a5txcd911Zl3/+G16Af/73/9uUpf1D/m+++4zXxTufvrpJ6tHjx5mfBcNpjTIunz5shXM1q5day7i3oumitup9+PGjTMXYw3Iu3TpYu3fv99jH7/99pu5eJcvX96k5j7yyCMmEHCnYxjdfvvtZh/6/mig5YRzqBcivbDoBUXTxqOioswYMN4/ZJx+DrM7f7romDq+/hvW96t169bmu0KDAffnCPbzePjwYRP8VK5c2XyOdLwrDWrcxyFSTj+P+VFM/8lfnRIAAEBwoQ8RAABwPAIiAADgeAREAADA8QiIAACA4xEQAQAAxyMgAgAAjkdABAAAHI+ACAAAOB4BEQAAcDwCIgAA4HgERAAAQJzu/wHH6iB9qtIHnwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "answer_str_lens_filtered = [len(answer) for answer in dataset_lfqa_filtered[\"train\"][\"answer\"]]\n", "sns_plot = sns.histplot(answer_str_lens_filtered).set_title(\"Answer lengths in characters\")\n", "sns_plot.get_figure().savefig(\"plots/answer-lengths-chars-filtered.png\")" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2771" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(answer_str_lens_filtered)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We cut off the way out outliers without modifying the distribution and without losing too much data." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "17eba34a83454d4ab52018886b33bcc8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Uploading the dataset shards: 0%| | 0/3 [00:00