Datasets:
				
			
			
	
			
	
		
			
	
		Tasks:
	
	
	
	
	Text Classification
	
	
	Modalities:
	
	
	
		
	
	Text
	
	
	Formats:
	
	
	
		
	
	parquet
	
	
	Sub-tasks:
	
	
	
	
	sentiment-classification
	
	
	Languages:
	
	
	
		
	
	English
	
	
	Size:
	
	
	
	
	10K - 100K
	
	
	License:
	
	
	
	
	
	
	
Commit 
							
							·
						
						3c35933
	
1
								Parent(s):
							
							c1ac045
								
Add SST-2 dataset (#4473)
Browse files* Add SST-2 dataset
* Add dataset card
* Add metadata JSON
* Add dummy data
* Fix style
* Fix dataset card
* Remove default config from dataset card
 Commit from https://github.com/huggingface/datasets/commit/5eac250e652118dff0ba3d528fb9b336a75ade47
- README.md +177 -0
 - dataset_infos.json +1 -0
 - dummy/2.0.0/dummy_data.zip +3 -0
 - sst2.py +105 -0
 
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,177 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            annotations_creators:
         
     | 
| 3 | 
         
            +
            - crowdsourced
         
     | 
| 4 | 
         
            +
            language_creators:
         
     | 
| 5 | 
         
            +
            - found
         
     | 
| 6 | 
         
            +
            languages:
         
     | 
| 7 | 
         
            +
            - en
         
     | 
| 8 | 
         
            +
            licenses:
         
     | 
| 9 | 
         
            +
            - unknown
         
     | 
| 10 | 
         
            +
            multilinguality:
         
     | 
| 11 | 
         
            +
            - monolingual
         
     | 
| 12 | 
         
            +
            size_categories:
         
     | 
| 13 | 
         
            +
            - 10K<n<100K
         
     | 
| 14 | 
         
            +
            source_datasets:
         
     | 
| 15 | 
         
            +
            - original
         
     | 
| 16 | 
         
            +
            task_categories:
         
     | 
| 17 | 
         
            +
            - text-classification
         
     | 
| 18 | 
         
            +
            task_ids:
         
     | 
| 19 | 
         
            +
            - sentiment-classification
         
     | 
| 20 | 
         
            +
            paperswithcode_id: sst
         
     | 
| 21 | 
         
            +
            pretty_name: Stanford Sentiment Treebank v2
         
     | 
| 22 | 
         
            +
            ---
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            # Dataset Card for [Dataset Name]
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            ## Table of Contents
         
     | 
| 27 | 
         
            +
            - [Table of Contents](#table-of-contents)
         
     | 
| 28 | 
         
            +
            - [Dataset Description](#dataset-description)
         
     | 
| 29 | 
         
            +
              - [Dataset Summary](#dataset-summary)
         
     | 
| 30 | 
         
            +
              - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
         
     | 
| 31 | 
         
            +
              - [Languages](#languages)
         
     | 
| 32 | 
         
            +
            - [Dataset Structure](#dataset-structure)
         
     | 
| 33 | 
         
            +
              - [Data Instances](#data-instances)
         
     | 
| 34 | 
         
            +
              - [Data Fields](#data-fields)
         
     | 
| 35 | 
         
            +
              - [Data Splits](#data-splits)
         
     | 
| 36 | 
         
            +
            - [Dataset Creation](#dataset-creation)
         
     | 
| 37 | 
         
            +
              - [Curation Rationale](#curation-rationale)
         
     | 
| 38 | 
         
            +
              - [Source Data](#source-data)
         
     | 
| 39 | 
         
            +
              - [Annotations](#annotations)
         
     | 
| 40 | 
         
            +
              - [Personal and Sensitive Information](#personal-and-sensitive-information)
         
     | 
| 41 | 
         
            +
            - [Considerations for Using the Data](#considerations-for-using-the-data)
         
     | 
| 42 | 
         
            +
              - [Social Impact of Dataset](#social-impact-of-dataset)
         
     | 
| 43 | 
         
            +
              - [Discussion of Biases](#discussion-of-biases)
         
     | 
| 44 | 
         
            +
              - [Other Known Limitations](#other-known-limitations)
         
     | 
| 45 | 
         
            +
            - [Additional Information](#additional-information)
         
     | 
| 46 | 
         
            +
              - [Dataset Curators](#dataset-curators)
         
     | 
| 47 | 
         
            +
              - [Licensing Information](#licensing-information)
         
     | 
| 48 | 
         
            +
              - [Citation Information](#citation-information)
         
     | 
| 49 | 
         
            +
              - [Contributions](#contributions)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            ## Dataset Description
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            - **Homepage:** https://nlp.stanford.edu/sentiment/
         
     | 
| 54 | 
         
            +
            - **Repository:**
         
     | 
| 55 | 
         
            +
            - **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/)
         
     | 
| 56 | 
         
            +
            - **Leaderboard:**
         
     | 
| 57 | 
         
            +
            - **Point of Contact:**
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            ### Dataset Summary
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the
         
     | 
| 62 | 
         
            +
            compositional effects of sentiment in language. The corpus is based on the dataset introduced by Pang and Lee (2005)
         
     | 
| 63 | 
         
            +
            and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and
         
     | 
| 64 | 
         
            +
            includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges.
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            Binary classification experiments on full sentences (negative or somewhat negative vs somewhat positive or positive
         
     | 
| 67 | 
         
            +
            with neutral sentences discarded) refer to the dataset as SST-2 or SST binary.
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            ### Supported Tasks and Leaderboards
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            - `sentiment-classification`
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            ### Languages
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            The text in the dataset is in English (`en`).
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            ## Dataset Structure
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            ### Data Instances
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            ```
         
     | 
| 82 | 
         
            +
            {'idx': 0,
         
     | 
| 83 | 
         
            +
             'sentence': 'hide new secretions from the parental units ',
         
     | 
| 84 | 
         
            +
             'label': 0}
         
     | 
| 85 | 
         
            +
            ```
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            ### Data Fields
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            - `idx`: Monotonically increasing index ID.
         
     | 
| 90 | 
         
            +
            - `sentence`: Complete sentence expressing an opinion about a film.
         
     | 
| 91 | 
         
            +
            - `label`: Sentiment of the opinion, either "negative" (0) or positive (1).
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            ### Data Splits
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            |                    |    train | validation | test |
         
     | 
| 96 | 
         
            +
            |--------------------|---------:|-----------:|-----:|
         
     | 
| 97 | 
         
            +
            | Number of examples |    67349 |        872 | 1821 |
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            ## Dataset Creation
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            ### Curation Rationale
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            [More Information Needed]
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            ### Source Data
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            #### Initial Data Collection and Normalization
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            [More Information Needed]
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            #### Who are the source language producers?
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            Rotten Tomatoes reviewers.
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            ### Annotations
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            #### Annotation process
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            [More Information Needed]
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
            #### Who are the annotators?
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
            [More Information Needed]
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
            ### Personal and Sensitive Information
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
            [More Information Needed]
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
            ## Considerations for Using the Data
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            ### Social Impact of Dataset
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            [More Information Needed]
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
            ### Discussion of Biases
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
            [More Information Needed]
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            ### Other Known Limitations
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            [More Information Needed]
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            ## Additional Information
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            ### Dataset Curators
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            [More Information Needed]
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
            ### Licensing Information
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
            Unknown.
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            ### Citation Information
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
            ```bibtex
         
     | 
| 156 | 
         
            +
            @inproceedings{socher-etal-2013-recursive,
         
     | 
| 157 | 
         
            +
                title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
         
     | 
| 158 | 
         
            +
                author = "Socher, Richard  and
         
     | 
| 159 | 
         
            +
                  Perelygin, Alex  and
         
     | 
| 160 | 
         
            +
                  Wu, Jean  and
         
     | 
| 161 | 
         
            +
                  Chuang, Jason  and
         
     | 
| 162 | 
         
            +
                  Manning, Christopher D.  and
         
     | 
| 163 | 
         
            +
                  Ng, Andrew  and
         
     | 
| 164 | 
         
            +
                  Potts, Christopher",
         
     | 
| 165 | 
         
            +
                booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
         
     | 
| 166 | 
         
            +
                month = oct,
         
     | 
| 167 | 
         
            +
                year = "2013",
         
     | 
| 168 | 
         
            +
                address = "Seattle, Washington, USA",
         
     | 
| 169 | 
         
            +
                publisher = "Association for Computational Linguistics",
         
     | 
| 170 | 
         
            +
                url = "https://www.aclweb.org/anthology/D13-1170",
         
     | 
| 171 | 
         
            +
                pages = "1631--1642",
         
     | 
| 172 | 
         
            +
            }
         
     | 
| 173 | 
         
            +
            ```
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
            ### Contributions
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
            Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
         
     | 
    	
        dataset_infos.json
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {"default": {"description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n", "citation": "@inproceedings{socher2013recursive,\n  title={Recursive deep models for semantic compositionality over a sentiment treebank},\n  author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n  booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n  pages={1631--1642},\n  year={2013}\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "Unknown", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sst2", "config_name": "default", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4690022, "num_examples": 67349, "dataset_name": "sst2"}, "validation": {"name": "validation", "num_bytes": 106361, "num_examples": 872, "dataset_name": "sst2"}, "test": {"name": "test", "num_bytes": 216868, "num_examples": 1821, "dataset_name": "sst2"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5013251, "size_in_bytes": 12452528}}
         
     | 
    	
        dummy/2.0.0/dummy_data.zip
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:6cbcdd7df5dc2856008783c13b5cc7d1817b317c26776c44ef55f5814326ec28
         
     | 
| 3 | 
         
            +
            size 4694
         
     | 
    	
        sst2.py
    ADDED
    
    | 
         @@ -0,0 +1,105 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
            """SST-2 (Stanford Sentiment Treebank v2) dataset."""
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            import csv
         
     | 
| 18 | 
         
            +
            import os
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            import datasets
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            _CITATION = """\
         
     | 
| 24 | 
         
            +
            @inproceedings{socher2013recursive,
         
     | 
| 25 | 
         
            +
              title={Recursive deep models for semantic compositionality over a sentiment treebank},
         
     | 
| 26 | 
         
            +
              author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
         
     | 
| 27 | 
         
            +
              booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
         
     | 
| 28 | 
         
            +
              pages={1631--1642},
         
     | 
| 29 | 
         
            +
              year={2013}
         
     | 
| 30 | 
         
            +
            }
         
     | 
| 31 | 
         
            +
            """
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            _DESCRIPTION = """\
         
     | 
| 34 | 
         
            +
            The Stanford Sentiment Treebank consists of sentences from movie reviews and
         
     | 
| 35 | 
         
            +
            human annotations of their sentiment. The task is to predict the sentiment of a
         
     | 
| 36 | 
         
            +
            given sentence. We use the two-way (positive/negative) class split, and use only
         
     | 
| 37 | 
         
            +
            sentence-level labels.
         
     | 
| 38 | 
         
            +
            """
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            _HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            _LICENSE = "Unknown"
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            _URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            class Sst2(datasets.GeneratorBasedBuilder):
         
     | 
| 48 | 
         
            +
                """SST-2 dataset."""
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                VERSION = datasets.Version("2.0.0")
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def _info(self):
         
     | 
| 53 | 
         
            +
                    features = datasets.Features(
         
     | 
| 54 | 
         
            +
                        {
         
     | 
| 55 | 
         
            +
                            "idx": datasets.Value("int32"),
         
     | 
| 56 | 
         
            +
                            "sentence": datasets.Value("string"),
         
     | 
| 57 | 
         
            +
                            "label": datasets.features.ClassLabel(names=["negative", "positive"]),
         
     | 
| 58 | 
         
            +
                        }
         
     | 
| 59 | 
         
            +
                    )
         
     | 
| 60 | 
         
            +
                    return datasets.DatasetInfo(
         
     | 
| 61 | 
         
            +
                        description=_DESCRIPTION,
         
     | 
| 62 | 
         
            +
                        features=features,
         
     | 
| 63 | 
         
            +
                        homepage=_HOMEPAGE,
         
     | 
| 64 | 
         
            +
                        license=_LICENSE,
         
     | 
| 65 | 
         
            +
                        citation=_CITATION,
         
     | 
| 66 | 
         
            +
                    )
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                def _split_generators(self, dl_manager):
         
     | 
| 69 | 
         
            +
                    dl_dir = dl_manager.download_and_extract(_URL)
         
     | 
| 70 | 
         
            +
                    return [
         
     | 
| 71 | 
         
            +
                        datasets.SplitGenerator(
         
     | 
| 72 | 
         
            +
                            name=datasets.Split.TRAIN,
         
     | 
| 73 | 
         
            +
                            gen_kwargs={
         
     | 
| 74 | 
         
            +
                                "file_paths": dl_manager.iter_files(dl_dir),
         
     | 
| 75 | 
         
            +
                                "data_filename": "train.tsv",
         
     | 
| 76 | 
         
            +
                            },
         
     | 
| 77 | 
         
            +
                        ),
         
     | 
| 78 | 
         
            +
                        datasets.SplitGenerator(
         
     | 
| 79 | 
         
            +
                            name=datasets.Split.VALIDATION,
         
     | 
| 80 | 
         
            +
                            gen_kwargs={
         
     | 
| 81 | 
         
            +
                                "file_paths": dl_manager.iter_files(dl_dir),
         
     | 
| 82 | 
         
            +
                                "data_filename": "dev.tsv",
         
     | 
| 83 | 
         
            +
                            },
         
     | 
| 84 | 
         
            +
                        ),
         
     | 
| 85 | 
         
            +
                        datasets.SplitGenerator(
         
     | 
| 86 | 
         
            +
                            name=datasets.Split.TEST,
         
     | 
| 87 | 
         
            +
                            gen_kwargs={
         
     | 
| 88 | 
         
            +
                                "file_paths": dl_manager.iter_files(dl_dir),
         
     | 
| 89 | 
         
            +
                                "data_filename": "test.tsv",
         
     | 
| 90 | 
         
            +
                            },
         
     | 
| 91 | 
         
            +
                        ),
         
     | 
| 92 | 
         
            +
                    ]
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def _generate_examples(self, file_paths, data_filename):
         
     | 
| 95 | 
         
            +
                    for file_path in file_paths:
         
     | 
| 96 | 
         
            +
                        filename = os.path.basename(file_path)
         
     | 
| 97 | 
         
            +
                        if filename == data_filename:
         
     | 
| 98 | 
         
            +
                            with open(file_path, encoding="utf8") as f:
         
     | 
| 99 | 
         
            +
                                reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
         
     | 
| 100 | 
         
            +
                                for idx, row in enumerate(reader):
         
     | 
| 101 | 
         
            +
                                    yield idx, {
         
     | 
| 102 | 
         
            +
                                        "idx": row["index"] if "index" in row else idx,
         
     | 
| 103 | 
         
            +
                                        "sentence": row["sentence"],
         
     | 
| 104 | 
         
            +
                                        "label": int(row["label"]) if "label" in row else -1,
         
     | 
| 105 | 
         
            +
                                    }
         
     |