Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
conversational-qa
License:
Commit
·
684c4a1
1
Parent(s):
a5a13b7
Fix missing tags in dataset cards (#4931)
Browse filesCommit from https://github.com/huggingface/datasets/commit/303e906e6c2aeb6821af23264ffb2e653a65aa86
- README.md +45 -14
- coqa.py +17 -24
- dataset_infos.json +1 -1
README.md
CHANGED
@@ -1,8 +1,28 @@
|
|
1 |
---
|
|
|
|
|
2 |
language:
|
3 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
paperswithcode_id: coqa
|
5 |
-
pretty_name: Conversational Question Answering Challenge
|
6 |
---
|
7 |
|
8 |
# Dataset Card for "coqa"
|
@@ -34,16 +54,18 @@ pretty_name: Conversational Question Answering Challenge
|
|
34 |
## Dataset Description
|
35 |
|
36 |
- **Homepage:** [https://stanfordnlp.github.io/coqa/](https://stanfordnlp.github.io/coqa/)
|
37 |
-
- **Repository:**
|
38 |
-
- **Paper:** [
|
39 |
-
- **Point of Contact:** [
|
40 |
- **Size of downloaded dataset files:** 55.40 MB
|
41 |
- **Size of the generated dataset:** 18.35 MB
|
42 |
- **Total amount of disk used:** 73.75 MB
|
43 |
|
44 |
### Dataset Summary
|
45 |
|
46 |
-
CoQA
|
|
|
|
|
47 |
|
48 |
### Supported Tasks and Leaderboards
|
49 |
|
@@ -146,22 +168,31 @@ The data fields are the same among all splits.
|
|
146 |
|
147 |
### Licensing Information
|
148 |
|
149 |
-
|
|
|
|
|
|
|
|
|
150 |
|
151 |
### Citation Information
|
152 |
|
153 |
```
|
154 |
-
@
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
}
|
161 |
-
|
162 |
```
|
163 |
|
164 |
-
|
165 |
### Contributions
|
166 |
|
167 |
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@ojasaar](https://github.com/ojasaar), [@lhoestq](https://github.com/lhoestq) for adding this dataset.
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
language:
|
5 |
- en
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license:
|
9 |
+
- other
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: "CoQA: Conversational Question Answering Challenge"
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- extended|race
|
17 |
+
- extended|cnn_dailymail
|
18 |
+
- extended|wikipedia
|
19 |
+
- extended|other
|
20 |
+
task_categories:
|
21 |
+
- question-answering
|
22 |
+
task_ids:
|
23 |
+
- extractive-qa
|
24 |
+
- question-answering-other-conversational-qa
|
25 |
paperswithcode_id: coqa
|
|
|
26 |
---
|
27 |
|
28 |
# Dataset Card for "coqa"
|
|
|
54 |
## Dataset Description
|
55 |
|
56 |
- **Homepage:** [https://stanfordnlp.github.io/coqa/](https://stanfordnlp.github.io/coqa/)
|
57 |
+
- **Repository:** https://github.com/stanfordnlp/coqa-baselines
|
58 |
+
- **Paper:** [CoQA: A Conversational Question Answering Challenge](https://arxiv.org/abs/1808.07042)
|
59 |
+
- **Point of Contact:** [Google Group](https://groups.google.com/forum/#!forum/coqa), [Siva Reddy](mailto:siva.[email protected]), [Danqi Chen](mailto:[email protected])
|
60 |
- **Size of downloaded dataset files:** 55.40 MB
|
61 |
- **Size of the generated dataset:** 18.35 MB
|
62 |
- **Total amount of disk used:** 73.75 MB
|
63 |
|
64 |
### Dataset Summary
|
65 |
|
66 |
+
CoQA is a large-scale dataset for building Conversational Question Answering systems.
|
67 |
+
|
68 |
+
Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage.
|
69 |
|
70 |
### Supported Tasks and Leaderboards
|
71 |
|
|
|
168 |
|
169 |
### Licensing Information
|
170 |
|
171 |
+
CoQA contains passages from seven domains. We make five of these public under the following licenses:
|
172 |
+
- Literature and Wikipedia passages are shared under [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) license.
|
173 |
+
- Children's stories are collected from [MCTest](https://www.microsoft.com/en-us/research/publication/mctest-challenge-dataset-open-domain-machine-comprehension-text/) which comes with [MSR-LA](https://github.com/mcobzarenco/mctest/blob/master/data/MCTest/LICENSE.pdf) license.
|
174 |
+
- Middle/High school exam passages are collected from [RACE](https://arxiv.org/abs/1704.04683) which comes with its [own](http://www.cs.cmu.edu/~glai1/data/race/) license.
|
175 |
+
- News passages are collected from the [DeepMind CNN dataset](https://arxiv.org/abs/1506.03340) which comes with [Apache](https://github.com/deepmind/rc-data/blob/master/LICENSE) license.
|
176 |
|
177 |
### Citation Information
|
178 |
|
179 |
```
|
180 |
+
@article{reddy-etal-2019-coqa,
|
181 |
+
title = "{C}o{QA}: A Conversational Question Answering Challenge",
|
182 |
+
author = "Reddy, Siva and
|
183 |
+
Chen, Danqi and
|
184 |
+
Manning, Christopher D.",
|
185 |
+
journal = "Transactions of the Association for Computational Linguistics",
|
186 |
+
volume = "7",
|
187 |
+
year = "2019",
|
188 |
+
address = "Cambridge, MA",
|
189 |
+
publisher = "MIT Press",
|
190 |
+
url = "https://aclanthology.org/Q19-1016",
|
191 |
+
doi = "10.1162/tacl_a_00266",
|
192 |
+
pages = "249--266",
|
193 |
}
|
|
|
194 |
```
|
195 |
|
|
|
196 |
### Contributions
|
197 |
|
198 |
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@ojasaar](https://github.com/ojasaar), [@lhoestq](https://github.com/lhoestq) for adding this dataset.
|
coqa.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
"""
|
2 |
|
3 |
|
4 |
import json
|
@@ -6,18 +6,25 @@ import json
|
|
6 |
import datasets
|
7 |
|
8 |
|
9 |
-
|
10 |
-
_CITATION = """\
|
11 |
-
@InProceedings{SivaAndAl:Coca,
|
12 |
-
author = {Siva, Reddy and Danqi, Chen and Christopher D., Manning},
|
13 |
-
title = {WikiQA: A Challenge Dataset for Open-Domain Question Answering},
|
14 |
-
journal = { arXiv},
|
15 |
-
year = {2018},
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
18 |
"""
|
19 |
|
20 |
-
# TODO(coqa):
|
21 |
_DESCRIPTION = """\
|
22 |
CoQA: A Conversational Question Answering Challenge
|
23 |
"""
|
@@ -27,17 +34,12 @@ _DEV_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json"
|
|
27 |
|
28 |
|
29 |
class Coqa(datasets.GeneratorBasedBuilder):
|
30 |
-
"""TODO(coqa): Short description of my dataset."""
|
31 |
|
32 |
-
# TODO(coqa): Set up version.
|
33 |
VERSION = datasets.Version("1.0.0")
|
34 |
|
35 |
def _info(self):
|
36 |
-
# TODO(coqa): Specifies the datasets.DatasetInfo object
|
37 |
return datasets.DatasetInfo(
|
38 |
-
# This is the description that will appear on the datasets page.
|
39 |
description=_DESCRIPTION,
|
40 |
-
# datasets.features.FeatureConnectors
|
41 |
features=datasets.Features(
|
42 |
{
|
43 |
"source": datasets.Value("string"),
|
@@ -52,20 +54,12 @@ class Coqa(datasets.GeneratorBasedBuilder):
|
|
52 |
),
|
53 |
}
|
54 |
),
|
55 |
-
|
56 |
-
# specify them here. They'll be used if as_supervised=True in
|
57 |
-
# builder.as_dataset.
|
58 |
-
supervised_keys=None,
|
59 |
-
# Homepage of the dataset for documentation
|
60 |
-
homepage="https://stanfordnlp.github.io/coqa/",
|
61 |
citation=_CITATION,
|
62 |
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
"""Returns SplitGenerators."""
|
66 |
-
# TODO(coqa): Downloads the data and defines the splits
|
67 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
68 |
-
# download and extract URLs
|
69 |
urls_to_download = {"train": _TRAIN_DATA_URL, "dev": _DEV_DATA_URL}
|
70 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
71 |
|
@@ -80,7 +74,6 @@ class Coqa(datasets.GeneratorBasedBuilder):
|
|
80 |
|
81 |
def _generate_examples(self, filepath, split):
|
82 |
"""Yields examples."""
|
83 |
-
# TODO(coqa): Yields (key, example) tuples from the dataset
|
84 |
with open(filepath, encoding="utf-8") as f:
|
85 |
data = json.load(f)
|
86 |
for row in data["data"]:
|
|
|
1 |
+
"""CoQA dataset."""
|
2 |
|
3 |
|
4 |
import json
|
|
|
6 |
import datasets
|
7 |
|
8 |
|
9 |
+
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
_CITATION = """\
|
12 |
+
@article{reddy-etal-2019-coqa,
|
13 |
+
title = "{C}o{QA}: A Conversational Question Answering Challenge",
|
14 |
+
author = "Reddy, Siva and
|
15 |
+
Chen, Danqi and
|
16 |
+
Manning, Christopher D.",
|
17 |
+
journal = "Transactions of the Association for Computational Linguistics",
|
18 |
+
volume = "7",
|
19 |
+
year = "2019",
|
20 |
+
address = "Cambridge, MA",
|
21 |
+
publisher = "MIT Press",
|
22 |
+
url = "https://aclanthology.org/Q19-1016",
|
23 |
+
doi = "10.1162/tacl_a_00266",
|
24 |
+
pages = "249--266",
|
25 |
}
|
26 |
"""
|
27 |
|
|
|
28 |
_DESCRIPTION = """\
|
29 |
CoQA: A Conversational Question Answering Challenge
|
30 |
"""
|
|
|
34 |
|
35 |
|
36 |
class Coqa(datasets.GeneratorBasedBuilder):
|
|
|
37 |
|
|
|
38 |
VERSION = datasets.Version("1.0.0")
|
39 |
|
40 |
def _info(self):
|
|
|
41 |
return datasets.DatasetInfo(
|
|
|
42 |
description=_DESCRIPTION,
|
|
|
43 |
features=datasets.Features(
|
44 |
{
|
45 |
"source": datasets.Value("string"),
|
|
|
54 |
),
|
55 |
}
|
56 |
),
|
57 |
+
homepage=_HOMEPAGE,
|
|
|
|
|
|
|
|
|
|
|
58 |
citation=_CITATION,
|
59 |
)
|
60 |
|
61 |
def _split_generators(self, dl_manager):
|
62 |
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
63 |
urls_to_download = {"train": _TRAIN_DATA_URL, "dev": _DEV_DATA_URL}
|
64 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
65 |
|
|
|
74 |
|
75 |
def _generate_examples(self, filepath, split):
|
76 |
"""Yields examples."""
|
|
|
77 |
with open(filepath, encoding="utf-8") as f:
|
78 |
data = json.load(f)
|
79 |
for row in data["data"]:
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "CoQA: A Conversational Question Answering Challenge\n", "citation": "@
|
|
|
1 |
+
{"default": {"description": "CoQA: A Conversational Question Answering Challenge\n", "citation": "@article{reddy-etal-2019-coqa,\n title = \"{C}o{QA}: A Conversational Question Answering Challenge\",\n author = \"Reddy, Siva and\n Chen, Danqi and\n Manning, Christopher D.\",\n journal = \"Transactions of the Association for Computational Linguistics\",\n volume = \"7\",\n year = \"2019\",\n address = \"Cambridge, MA\",\n publisher = \"MIT Press\",\n url = \"https://aclanthology.org/Q19-1016\",\n doi = \"10.1162/tacl_a_00266\",\n pages = \"249--266\",\n}\n", "homepage": "https://stanfordnlp.github.io/coqa/", "license": "", "features": {"source": {"dtype": "string", "id": null, "_type": "Value"}, "story": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answers": {"feature": {"input_text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}, "answer_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "coqa", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 17981459, "num_examples": 7199, "dataset_name": "coqa"}, "validation": {"name": "validation", "num_bytes": 1225518, "num_examples": 500, "dataset_name": "coqa"}}, "download_checksums": {"https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json": {"num_bytes": 49001836, "checksum": "b0fdb2bc1bd38dd3ca2ce5fa2ac3e02c6288ac914f241ac409a655ffb6619fa6"}, "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json": {"num_bytes": 9090845, "checksum": "dfa367a9733ce53222918d0231d9b3bedc2b8ee831a2845f62dfc70701f2540a"}}, "download_size": 58092681, "post_processing_size": null, "dataset_size": 19206977, "size_in_bytes": 77299658}}
|