Datasets:
update kobest v1 data loader
Browse files- dataset_infos.json +1 -1
- kobest_v1.py +102 -58
dataset_infos.json
CHANGED
|
@@ -166,7 +166,7 @@
|
|
| 166 |
"num_classes": 4,
|
| 167 |
"names": [
|
| 168 |
"ending_1",
|
| 169 |
-
"
|
| 170 |
"ending_3",
|
| 171 |
"ending_4"
|
| 172 |
],
|
|
|
|
| 166 |
"num_classes": 4,
|
| 167 |
"names": [
|
| 168 |
"ending_1",
|
| 169 |
+
"ending_2",
|
| 170 |
"ending_3",
|
| 171 |
"ending_4"
|
| 172 |
],
|
kobest_v1.py
CHANGED
|
@@ -16,7 +16,8 @@ _DESCRIPTION = """\
|
|
| 16 |
The dataset contains data for KoBEST dataset
|
| 17 |
"""
|
| 18 |
|
| 19 |
-
_URL = "https://github.com/SKT-LSL/KoBEST_datarepo"
|
|
|
|
| 20 |
|
| 21 |
_DATA_URLS = {
|
| 22 |
"boolq": {
|
|
@@ -46,6 +47,8 @@ _DATA_URLS = {
|
|
| 46 |
},
|
| 47 |
}
|
| 48 |
|
|
|
|
|
|
|
| 49 |
|
| 50 |
class KoBESTConfig(datasets.BuilderConfig):
|
| 51 |
"""Config for building KoBEST"""
|
|
@@ -66,6 +69,26 @@ class KoBESTConfig(datasets.BuilderConfig):
|
|
| 66 |
self.url = url
|
| 67 |
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
class KoBEST(datasets.GeneratorBasedBuilder):
|
| 70 |
BUILDER_CONFIGS = [
|
| 71 |
KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
|
|
@@ -76,7 +99,7 @@ class KoBEST(datasets.GeneratorBasedBuilder):
|
|
| 76 |
def _info(self):
|
| 77 |
features = {}
|
| 78 |
if self.config.name == "boolq":
|
| 79 |
-
labels = ["
|
| 80 |
features["paragraph"] = datasets.Value("string")
|
| 81 |
features["question"] = datasets.Value("string")
|
| 82 |
features["label"] = datasets.features.ClassLabel(names=labels)
|
|
@@ -90,7 +113,7 @@ class KoBEST(datasets.GeneratorBasedBuilder):
|
|
| 90 |
features["label"] = datasets.features.ClassLabel(names=labels)
|
| 91 |
|
| 92 |
if self.config.name == "wic":
|
| 93 |
-
labels = ["
|
| 94 |
features["word"] = datasets.Value("string")
|
| 95 |
features["context_1"] = datasets.Value("string")
|
| 96 |
features["context_2"] = datasets.Value("string")
|
|
@@ -127,76 +150,97 @@ class KoBEST(datasets.GeneratorBasedBuilder):
|
|
| 127 |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
| 128 |
]
|
| 129 |
|
| 130 |
-
# if self.config.name == "boolq":
|
| 131 |
-
# train = dl_manager.download_and_extract(self.config.data_url["train"])
|
| 132 |
-
# dev = dl_manager.download_and_extract(self.config.data_url["dev"])
|
| 133 |
-
# test = dl_manager.download_and_extract(self.config.data_url["test"])
|
| 134 |
-
#
|
| 135 |
-
# return [
|
| 136 |
-
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
|
| 137 |
-
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
|
| 138 |
-
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
| 139 |
-
# ]
|
| 140 |
-
#
|
| 141 |
-
|
| 142 |
def _generate_examples(self, filepath, split):
|
| 143 |
if self.config.name == "boolq":
|
| 144 |
df = pd.read_csv(filepath, sep="\t")
|
| 145 |
df = df.dropna()
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
|
| 154 |
-
|
| 155 |
df = pd.read_csv(filepath, sep="\t")
|
| 156 |
df = df.dropna()
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
df = pd.read_csv(filepath, sep="\t")
|
| 169 |
df = df.dropna()
|
|
|
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
df = pd.read_csv(filepath, sep="\t")
|
| 181 |
df = df.dropna()
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
df = pd.read_csv(filepath, sep="\t")
|
| 195 |
df = df.dropna()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
|
|
|
| 16 |
The dataset contains data for KoBEST dataset
|
| 17 |
"""
|
| 18 |
|
| 19 |
+
_URL = "https://github.com/SKT-LSL/KoBEST_datarepo/raw/main"
|
| 20 |
+
|
| 21 |
|
| 22 |
_DATA_URLS = {
|
| 23 |
"boolq": {
|
|
|
|
| 47 |
},
|
| 48 |
}
|
| 49 |
|
| 50 |
+
_LICENSE = "CC-BY-SA-4.0"
|
| 51 |
+
|
| 52 |
|
| 53 |
class KoBESTConfig(datasets.BuilderConfig):
|
| 54 |
"""Config for building KoBEST"""
|
|
|
|
| 69 |
self.url = url
|
| 70 |
|
| 71 |
|
| 72 |
+
# class KoBESTConfig(datasets.BuilderConfig):
|
| 73 |
+
# """BuilderConfig for KoTEST."""
|
| 74 |
+
#
|
| 75 |
+
# def __init__(
|
| 76 |
+
# self,
|
| 77 |
+
# features,
|
| 78 |
+
# data_url,
|
| 79 |
+
# file_map,
|
| 80 |
+
# url,
|
| 81 |
+
# **kwargs,
|
| 82 |
+
# ):
|
| 83 |
+
# """BuilderConfig for KoTEST."""
|
| 84 |
+
#
|
| 85 |
+
# super(KoBESTConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 86 |
+
# self.features = features
|
| 87 |
+
# self.data_url = data_url
|
| 88 |
+
# self.file_map = file_map
|
| 89 |
+
# self.url = url
|
| 90 |
+
|
| 91 |
+
|
| 92 |
class KoBEST(datasets.GeneratorBasedBuilder):
|
| 93 |
BUILDER_CONFIGS = [
|
| 94 |
KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
|
|
|
|
| 99 |
def _info(self):
|
| 100 |
features = {}
|
| 101 |
if self.config.name == "boolq":
|
| 102 |
+
labels = ["False", "True"]
|
| 103 |
features["paragraph"] = datasets.Value("string")
|
| 104 |
features["question"] = datasets.Value("string")
|
| 105 |
features["label"] = datasets.features.ClassLabel(names=labels)
|
|
|
|
| 113 |
features["label"] = datasets.features.ClassLabel(names=labels)
|
| 114 |
|
| 115 |
if self.config.name == "wic":
|
| 116 |
+
labels = ["False", "True"]
|
| 117 |
features["word"] = datasets.Value("string")
|
| 118 |
features["context_1"] = datasets.Value("string")
|
| 119 |
features["context_2"] = datasets.Value("string")
|
|
|
|
| 150 |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
| 151 |
]
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
def _generate_examples(self, filepath, split):
|
| 154 |
if self.config.name == "boolq":
|
| 155 |
df = pd.read_csv(filepath, sep="\t")
|
| 156 |
df = df.dropna()
|
| 157 |
+
df = df[['Text', 'Question', 'Answer']]
|
| 158 |
|
| 159 |
+
df = df.rename(columns={
|
| 160 |
+
'Text': 'paragraph',
|
| 161 |
+
'Question': 'question',
|
| 162 |
+
'Answer': 'label',
|
| 163 |
+
})
|
| 164 |
+
df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]
|
| 165 |
|
| 166 |
+
elif self.config.name == "copa":
|
| 167 |
df = pd.read_csv(filepath, sep="\t")
|
| 168 |
df = df.dropna()
|
| 169 |
+
df = df[['sentence', 'question', '1', '2', 'Answer']]
|
| 170 |
+
|
| 171 |
+
df = df.rename(columns={
|
| 172 |
+
'sentence': 'premise',
|
| 173 |
+
'question': 'question',
|
| 174 |
+
'1': 'alternative_1',
|
| 175 |
+
'2': 'alternative_2',
|
| 176 |
+
'Answer': 'label',
|
| 177 |
+
})
|
| 178 |
+
df['label'] = [i-1 for i in df['label'].tolist()]
|
| 179 |
+
|
| 180 |
+
elif self.config.name == "wic":
|
| 181 |
df = pd.read_csv(filepath, sep="\t")
|
| 182 |
df = df.dropna()
|
| 183 |
+
df = df[['Target', 'SENTENCE1', 'SENTENCE2', 'ANSWER']]
|
| 184 |
|
| 185 |
+
df = df.rename(columns={
|
| 186 |
+
'Target': 'word',
|
| 187 |
+
'SENTENCE1': 'context_1',
|
| 188 |
+
'SENTENCE2': 'context_2',
|
| 189 |
+
'ANSWER': 'label',
|
| 190 |
+
})
|
| 191 |
+
df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]
|
| 192 |
|
| 193 |
+
elif self.config.name == "hellaswag":
|
| 194 |
df = pd.read_csv(filepath, sep="\t")
|
| 195 |
df = df.dropna()
|
| 196 |
+
df = df[['context', 'choice1', 'choice2', 'choice3', 'choice4', 'label']]
|
| 197 |
+
|
| 198 |
+
# for id_, row in df.iterrows():
|
| 199 |
+
# yield id_, {
|
| 200 |
+
# "context": str(row["context"]),
|
| 201 |
+
# "ending_1": str(row["choice1"]),
|
| 202 |
+
# "ending_2": str(int(row["choice2"])),
|
| 203 |
+
# "ending_3": str(int(row["choice3"])),
|
| 204 |
+
# "ending_4": str(int(row["choice4"])),
|
| 205 |
+
# "label": str(row["label"]),
|
| 206 |
+
# }
|
| 207 |
+
#
|
| 208 |
+
df = df.rename(columns={
|
| 209 |
+
'context': 'context',
|
| 210 |
+
'choice1': 'ending_1',
|
| 211 |
+
'choice2': 'ending_2',
|
| 212 |
+
'choice3': 'ending_3',
|
| 213 |
+
'choice4': 'ending_4',
|
| 214 |
+
'label': 'label',
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
elif self.config.name == "sentineg":
|
| 218 |
df = pd.read_csv(filepath, sep="\t")
|
| 219 |
df = df.dropna()
|
| 220 |
+
df = df[['Text', 'Label']]
|
| 221 |
+
|
| 222 |
+
# for id_, row in df.iterrows():
|
| 223 |
+
# yield id_, {
|
| 224 |
+
# "sentence": str(row["Text"]),
|
| 225 |
+
# "label": str(int(row["Label"])),
|
| 226 |
+
# }
|
| 227 |
+
|
| 228 |
+
df = df.rename(columns={
|
| 229 |
+
'Text': 'sentence',
|
| 230 |
+
'Label': 'label',
|
| 231 |
+
})
|
| 232 |
+
|
| 233 |
+
else:
|
| 234 |
+
raise NotImplementedError
|
| 235 |
+
|
| 236 |
+
for id_, row in df.iterrows():
|
| 237 |
+
features = {key: row[key] for key in row.keys()}
|
| 238 |
+
yield id_, features
|
| 239 |
+
|
| 240 |
|
| 241 |
+
if __name__ == "__main__":
|
| 242 |
+
for task in ['boolq', 'copa', 'wic', 'hellaswag', 'sentineg']:
|
| 243 |
+
dataset = datasets.load_dataset("kobest_v1.py", task, ignore_verifications=True)
|
| 244 |
+
print(dataset)
|
| 245 |
+
print(dataset['train']['label'])
|
| 246 |
|