File size: 5,893 Bytes
b9d97ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65446a
b9d97ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65446a
b9d97ff
 
 
 
 
 
 
 
 
 
3932de4
 
 
b9d97ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a00820
b9d97ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d92d1
b9d97ff
 
 
 
 
5637f96
b9d97ff
5fc16f6
b9d97ff
 
01d1771
 
 
b9d97ff
 
 
766aa8b
b9d97ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""sil-ai/audio-kw-in-context is a subset of MLCommons/ml_spoken_words focusing on keywords found in the Bible'"""

import json
import os

import datasets

_CITATION = """\

@InProceedings{huggingface:audio-kw-in-context,

title = {audio-kw-in-context},

author={Joshua Nemecek

},

year={2022}

}

"""
_DESCRIPTION = 'sil-ai/audio-kw-in-context is a subset of MLCommons/ml_spoken_words focusing on keywords found in the Bible'
_LANGUAGES = ['eng', 'ind', 'spa']
_LANG_ISO_DICT = {'en':'eng','es':'spa','id':'ind'}
_HOMEPAGE = 'https://ai.sil.org'
_URLS = {"metadata": "bible-keyword-context.json",
         "files": {lang: f'https://audio-keyword-spotting.s3.amazonaws.com/HF-context-v2/{lang}-kw-archive.tar.gz' for lang in _LANGUAGES},
         }
_LICENSE = 'CC-BY 4.0'
_GENDERS = ["MALE", "FEMALE", "OTHER", "NAN"]

class AudioKwInContextConfig(datasets.BuilderConfig):
    """BuilderConfig for Audio-Kw-In-Context"""
    def __init__(self, language='', **kwargs):
        super(AudioKwInContextConfig, self).__init__(**kwargs)
        self.language = _LANG_ISO_DICT.get(language, language)

class AudioKwInContext(datasets.GeneratorBasedBuilder):
    """Audio-Kw-In-Context class"""
    BUILDER_CONFIGS = [AudioKwInContextConfig(name=x, description=f'Audio keyword spotting for language code {x}', language=x) for x in _LANGUAGES]
    
    DEFAULT_CONFIG_NAME = ''

    BUILDER_CONFIG_CLASS = AudioKwInContextConfig

    VERSION = datasets.Version("0.0.2")

    def _info(self):
        features = datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "language": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "keywords": datasets.Sequence(datasets.Value("string")),  
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "start_times": datasets.Sequence(datasets.Value("float32")),
                    "end_times": datasets.Sequence(datasets.Value("float32")),
                    "confidence": datasets.Sequence(datasets.Value("float32")),
                }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        
        if self.config.language == '':
            raise ValueError('Please specify a language.')
        elif self.config.language not in _LANGUAGES:
            raise ValueError(f'{self.config.language} does not appear in the list of languages: {_LANGUAGES}')

        data_dir = dl_manager.download(_URLS['metadata'])
        with open(data_dir, 'r') as f:
            filemeta = json.load(f)

        audio_dir = dl_manager.download_and_extract(_URLS['files'][self.config.name])

        langmeta = filemeta[self.config.language]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "audio_dir": audio_dir,
                    "data": langmeta,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "audio_dir": audio_dir,
                    "data": langmeta,
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "audio_dir": audio_dir,
                    "data": langmeta,
                    "split": "test",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, audio_dir, data, split):
        for key, row in enumerate(data[split]):
            try:
                tfile = os.path.join(audio_dir, row['file'])
                if not tfile.endswith('.mp3'):
                    os.rename(tfile, tfile + '.mp3')
                    tfile += '.mp3'
                yield key, {
                    "file": tfile,
                    "sentence": row.get('sentence'),
                    "language": self.config.language,
                    "speaker_id": row.get('speaker_id',row.get('client_id')),
                    "keywords": row['keywords'],  
                    "audio": tfile,
                    "start_times": row.get('start_times'),
                    "end_times": row.get('end_times'),
                    "confidence": row.get('confidence'),
                }
            except Exception as e:
                print(e)
                print(f'In split {split}: {row["file"]} failed to load. Data may be missing.')
                pass