File size: 7,772 Bytes
506b85f dfced60 506b85f dfced60 506b85f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CivilComments WILDS"""
import csv
import datasets
_CITATION = """\
@inproceedings{wilds2021,
title = {{WILDS}: A Benchmark of in-the-Wild Distribution Shifts},
author = {Pang Wei Koh and Shiori Sagawa and Henrik Marklund and Sang Michael Xie and Marvin Zhang and
Akshay Balsubramani and Weihua Hu and Michihiro Yasunaga and Richard Lanas Phillips and Irena Gao and
Tony Lee and Etienne David and Ian Stavness and Wei Guo and Berton A. Earnshaw and Imran S. Haque and
Sara Beery and Jure Leskovec and Anshul Kundaje and Emma Pierson and Sergey Levine and Chelsea Finn
and Percy Liang},
booktitle = {International Conference on Machine Learning (ICML)},
year = {2021}
}
@inproceedings{borkan2019nuanced,
title={Nuanced metrics for measuring unintended bias with real data for text classification},
author={Borkan, Daniel and Dixon, Lucas and Sorensen, Jeffrey and Thain, Nithum and Vasserman, Lucy},
booktitle={Companion Proceedings of The 2019 World Wide Web Conference},
pages={491--500},
year={2019}
}
@article{DBLP:journals/corr/abs-2211-09110,
author = {Percy Liang and
Rishi Bommasani and
Tony Lee and
Dimitris Tsipras and
Dilara Soylu and
Michihiro Yasunaga and
Yian Zhang and
Deepak Narayanan and
Yuhuai Wu and
Ananya Kumar and
Benjamin Newman and
Binhang Yuan and
Bobby Yan and
Ce Zhang and
Christian Cosgrove and
Christopher D. Manning and
Christopher R{\'{e}} and
Diana Acosta{-}Navas and
Drew A. Hudson and
Eric Zelikman and
Esin Durmus and
Faisal Ladhak and
Frieda Rong and
Hongyu Ren and
Huaxiu Yao and
Jue Wang and
Keshav Santhanam and
Laurel J. Orr and
Lucia Zheng and
Mert Y{\"{u}}ksekg{\"{o}}n{\"{u}}l and
Mirac Suzgun and
Nathan Kim and
Neel Guha and
Niladri S. Chatterji and
Omar Khattab and
Peter Henderson and
Qian Huang and
Ryan Chi and
Sang Michael Xie and
Shibani Santurkar and
Surya Ganguli and
Tatsunori Hashimoto and
Thomas Icard and
Tianyi Zhang and
Vishrav Chaudhary and
William Wang and
Xuechen Li and
Yifan Mai and
Yuhui Zhang and
Yuta Koreeda},
title = {Holistic Evaluation of Language Models},
journal = {CoRR},
volume = {abs/2211.09110},
year = {2022},
url = {https://doi.org/10.48550/arXiv.2211.09110},
doi = {10.48550/arXiv.2211.09110},
eprinttype = {arXiv},
eprint = {2211.09110},
timestamp = {Wed, 23 Nov 2022 18:03:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2211-09110.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
In this dataset, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others.
"""
class CivilCommentsWILDSConfig(datasets.BuilderConfig):
"""BuilderConfig for CivilCommentsWILDS."""
def __init__(self, name, **kwargs):
"""BuilderConfig for EmoContext.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(CivilCommentsWILDSConfig, self).__init__(**kwargs)
self.name = name
# _URL = (
# "https://worksheets.codalab.org/rest/bundles/0x8cd3de0634154aeaad2ee6eb96723c6e/"
# "contents/blob/all_data_with_identities.csv"
# )
_URL = "all_data_with_identities.csv"
class CivilCommentsWILDS(datasets.GeneratorBasedBuilder):
"""SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. Version 1.0.0"""
VERSION = datasets.Version("1.0.0")
ALL_DEMOGRAPHICS = "all"
DEMOGRAPHICS = {"male", "female", "LGBTQ", "christian", "muslim", "other_religions", "black", "white"}
DEMOGRAPHICS_COLUMN_INDEX = {
"male": 21,
"female": 22,
"LGBTQ": 47,
"christian": 29,
"muslim": 31,
"other_religions": 48,
"black": 36,
"white": 37
}
BUILDER_CONFIGS = [
CivilCommentsWILDSConfig(
name=name,
version=datasets.Version("1.0.0"),
description="Plain text",
)
for name in DEMOGRAPHICS | {ALL_DEMOGRAPHICS}
]
DEFAULT_CONFIG_NAME = ALL_DEMOGRAPHICS
LABERLS = ["False", "True"]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=CivilCommentsWILDS.LABERLS),
}
),
supervised_keys=None,
homepage="https://wilds.stanford.edu/datasets/#civilcomments",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_file, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": downloaded_file, "split": "val"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_file, "split": "test"},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
# Based on HELM's code
# https://github.com/stanford-crfm/helm/blob/abfdcd8acd23b5ef3ec7ec987f5c90fb9de81406/src/helm/benchmark/scenarios/civil_comments_scenario.py#L20
demographic = self.config.name
with open(filepath, "r") as f:
data = csv.reader(f, delimiter=",")
next(data, None)
for id_, row in enumerate(data):
if row[3] == split:
if (demographic == CivilCommentsWILDS.ALL_DEMOGRAPHICS
or float(row[CivilCommentsWILDS.DEMOGRAPHICS_COLUMN_INDEX[demographic]]) >= 0.5):
yield id_, {
"text": row[2],
"label": int(float(row[14]) >= 0.5),
}
|