Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,840 Bytes
4195e4e
 
6dfe3dd
 
 
 
 
4195e4e
bf58e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
Programminglanguage: "C"
version: "N/A"
Date: "2015 POJ dataset from paper: https://arxiv.org/pdf/1409.5718.pdf"
Contaminated: "Very Likely"
Size: "Standard Tokenizer"
---

### Dataset is imported from CodeXGLUE and pre-processed using their script.

# Where to find in Semeru:
The dataset can be found at /nfs/semeru/semeru_datasets/code_xglue/code-to-code/Clone-detection-POJ-104 in Semeru


# CodeXGLUE -- Clone Detection (POJ-104)


## Task Definition

Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP@R score. MAP@R is defined as the mean of average precision scores, each of which is evaluated for retrieving R most similar samples given a query. For a code (query), R is the number of other codes in the same class, i.e. R=499 in this dataset.


## Dataset

We use [POJ-104](https://arxiv.org/pdf/1409.5718.pdf) dataset on this task.


### Data Format


For each file, each line in the uncompressed file represents one function.  One row is illustrated below.

   - **code:** the source code
   - **label:** the number of problem that the source code solves
   - **index:** the index of example

### Data Statistics

Data statistics of the dataset are shown in the below table:

|       | #Problems | #Examples |
| ----- | --------- | :-------: |
| Train | 64        |  32,000   |
| Dev   | 16        |   8,000   |
| Test  | 24        |  12,000   |

## Reference
<pre><code>@inproceedings{mou2016convolutional,
  title={Convolutional neural networks over tree structures for programming language processing},
  author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
  booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
  pages={1287--1293},
  year={2016}
}</code></pre>