Datasets:
File size: 3,695 Bytes
82832ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import csv
import os
import datasets
_CITATION = """\
not yet
"""
_DESCRIPTION = """\
50k Korean online comments labeled for 44 emotion categories.
"""
_HOMEPAGE = "https://github.com/searle-j/KOTE"
_LICENSE = "MIT License"
_BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/"
_LABELS = [
'๋ถํ/๋ถ๋ง',
'ํ์/ํธ์',
'๊ฐ๋/๊ฐํ',
'์ง๊ธ์ง๊ธ',
'๊ณ ๋ง์',
'์ฌํ',
'ํ๋จ/๋ถ๋
ธ',
'์กด๊ฒฝ',
'๊ธฐ๋๊ฐ',
'์ฐ์ญ๋/๋ฌด์ํจ',
'์ํ๊น์/์ค๋ง',
'๋น์ฅํจ',
'์์ฌ/๋ถ์ ',
'๋ฟ๋ฏํจ',
'ํธ์/์พ์ ',
'์ ๊ธฐํจ/๊ด์ฌ',
'์๊ปด์ฃผ๋',
'๋ถ๋๋ฌ์',
'๊ณตํฌ/๋ฌด์์',
'์ ๋ง',
'ํ์ฌํจ',
'์ญ๊ฒจ์/์ง๊ทธ๋ฌ์',
'์ง์ฆ',
'์ด์ด์์',
'์์',
'ํจ๋ฐฐ/์๊ธฐํ์ค',
'๊ท์ฐฎ์',
'ํ๋ฆ/์ง์นจ',
'์ฆ๊ฑฐ์/์ ๋จ',
'๊นจ๋ฌ์',
'์ฃ์ฑ
๊ฐ',
'์ฆ์ค/ํ์ค',
'ํ๋ญํจ(๊ท์ฌ์/์์จ)',
'๋นํฉ/๋์ฒ',
'๊ฒฝ์
',
'๋ถ๋ด/์_๋ดํด',
'์๋ฌ์',
'์ฌ๋ฏธ์์',
'๋ถ์ํจ/์ฐ๋ฏผ',
'๋๋',
'ํ๋ณต',
'๋ถ์/๊ฑฑ์ ',
'๊ธฐ์จ',
'์์ฌ/์ ๋ขฐ'
]
class KOTEConfig(datasets.BuilderConfig):
@property
def features(self):
if self.name == "dichotomized":
return {
"ID": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)),
}
class KOTE(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")]
BUILDER_CONFIG_CLASS = KOTEConfig
DEFAULT_CONFIG_NAME = "dichotomized"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(self.config.features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name=="dichotomized":
train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv"))
test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv"))
val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv"))
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}),
]
def _generate_examples(self, filepaths):
if self.config.name=="dichotomized":
for filepath in filepaths:
with open(filepath, mode="r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys()))
for idx, row in enumerate(reader):
row["labels"] = [int(lab) for lab in row["labels"].split(",")]
yield idx, row |