File size: 3,695 Bytes
82832ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import csv
import os

import datasets

_CITATION = """\
not yet
"""

_DESCRIPTION = """\
50k Korean online comments labeled for 44 emotion categories.
"""

_HOMEPAGE = "https://github.com/searle-j/KOTE"

_LICENSE = "MIT License"

_BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/"

_LABELS = [
'๋ถˆํ‰/๋ถˆ๋งŒ',
 'ํ™˜์˜/ํ˜ธ์˜',
 '๊ฐ๋™/๊ฐํƒ„',
 '์ง€๊ธ‹์ง€๊ธ‹',
 '๊ณ ๋งˆ์›€',
 '์Šฌํ””',
 'ํ™”๋‚จ/๋ถ„๋…ธ',
 '์กด๊ฒฝ',
 '๊ธฐ๋Œ€๊ฐ',
 '์šฐ์ญ๋Œ/๋ฌด์‹œํ•จ',
 '์•ˆํƒ€๊นŒ์›€/์‹ค๋ง',
 '๋น„์žฅํ•จ',
 '์˜์‹ฌ/๋ถˆ์‹ ',
 '๋ฟŒ๋“ฏํ•จ',
 'ํŽธ์•ˆ/์พŒ์ ',
 '์‹ ๊ธฐํ•จ/๊ด€์‹ฌ',
 '์•„๊ปด์ฃผ๋Š”',
 '๋ถ€๋„๋Ÿฌ์›€',
 '๊ณตํฌ/๋ฌด์„œ์›€',
 '์ ˆ๋ง',
 'ํ•œ์‹ฌํ•จ',
 '์—ญ๊ฒจ์›€/์ง•๊ทธ๋Ÿฌ์›€',
 '์งœ์ฆ',
 '์–ด์ด์—†์Œ',
 '์—†์Œ',
 'ํŒจ๋ฐฐ/์ž๊ธฐํ˜์˜ค',
 '๊ท€์ฐฎ์Œ',
 'ํž˜๋“ฆ/์ง€์นจ',
 '์ฆ๊ฑฐ์›€/์‹ ๋‚จ',
 '๊นจ๋‹ฌ์Œ',
 '์ฃ„์ฑ…๊ฐ',
 '์ฆ์˜ค/ํ˜์˜ค',
 'ํ๋ญ‡ํ•จ(๊ท€์—ฌ์›€/์˜ˆ์จ)',
 '๋‹นํ™ฉ/๋‚œ์ฒ˜',
 '๊ฒฝ์•…',
 '๋ถ€๋‹ด/์•ˆ_๋‚ดํ‚ด',
 '์„œ๋Ÿฌ์›€',
 '์žฌ๋ฏธ์—†์Œ',
 '๋ถˆ์Œํ•จ/์—ฐ๋ฏผ',
 '๋†€๋žŒ',
 'ํ–‰๋ณต',
 '๋ถˆ์•ˆ/๊ฑฑ์ •',
 '๊ธฐ์จ',
 '์•ˆ์‹ฌ/์‹ ๋ขฐ'
]

class KOTEConfig(datasets.BuilderConfig):
    @property
    def features(self):
        if self.name == "dichotomized":
            return {
                "ID": datasets.Value("string"),
                "text": datasets.Value("string"),
                "labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)),
            }

class KOTE(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")]
    BUILDER_CONFIG_CLASS = KOTEConfig
    DEFAULT_CONFIG_NAME = "dichotomized"
    
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(self.config.features),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )
    
    
    def _split_generators(self, dl_manager):
        if self.config.name=="dichotomized":
            train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv"))
            test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv"))
            val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv"))
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}),
                datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}),
                datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}),
            ]
            
    def _generate_examples(self, filepaths):
        if self.config.name=="dichotomized":
            for filepath in filepaths:
                with open(filepath, mode="r", encoding="utf-8") as f:
                    reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys()))
                    for idx, row in enumerate(reader):
                        row["labels"] = [int(lab) for lab in row["labels"].split(",")]
                        yield idx, row