scofieldlin commited on
Commit
950ca69
·
1 Parent(s): 954804a

Create scofieldlin_2.py

Browse files
Files changed (1) hide show
  1. scofieldlin_2.py +154 -0
scofieldlin_2.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @InProceedings{huggingface:dataset,
29
+ title = {A great new dataset},
30
+ author={huggingface, Inc.
31
+ },
32
+ year={2020}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = ""
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = ""
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLS = {
52
+ "train": "http://9.134.110.95:3001/scofieldlin/test/raw/branch/master/mydata/train.txt",
53
+ "predict": "http://9.134.110.95:3001/scofieldlin/test/raw/branch/master/mydata/predict.txt",
54
+ }
55
+
56
+
57
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
58
+ class NewDataset(datasets.GeneratorBasedBuilder):
59
+ """TODO: Short description of my dataset."""
60
+
61
+ VERSION = datasets.Version("1.1.0")
62
+
63
+ # This is an example of a dataset with multiple configurations.
64
+ # If you don't want/need to define several sub-sets in your dataset,
65
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
66
+
67
+ # If you need to make complex sub-parts in the datasets with configurable options
68
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
69
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
70
+
71
+ # You will be able to load one or the other configurations in the following list with
72
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
73
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
74
+ BUILDER_CONFIGS = [
75
+ datasets.BuilderConfig(name="part_1", version=VERSION,
76
+ description="part 1"),
77
+ datasets.BuilderConfig(name="part_2", version=VERSION,
78
+ description="part 2"),
79
+ ]
80
+
81
+ # It's not mandatory to have a default configuration. Just use one if it make sense.
82
+ DEFAULT_CONFIG_NAME = "part_1"
83
+
84
+ def _info(self):
85
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
86
+ if self.config.name == "part_1": # This is the name of the configuration selected in BUILDER_CONFIGS above
87
+ features = datasets.Features(
88
+ {
89
+ "text": datasets.Value("string")
90
+ # These are the features of your dataset like images, labels ...
91
+ }
92
+ )
93
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
94
+ features = datasets.Features(
95
+ {
96
+ "text": datasets.Value("string"),
97
+ # These are the features of your dataset like images, labels ...
98
+ }
99
+ )
100
+ return datasets.DatasetInfo(
101
+ # This is the description that will appear on the datasets page.
102
+ description=_DESCRIPTION,
103
+ # This defines the different columns of the dataset and their types
104
+ features=features, # Here we define them above because they are different between the two configurations
105
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
106
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
107
+ # supervised_keys=("sentence", "label"),
108
+ # Homepage of the dataset for documentation
109
+ homepage=_HOMEPAGE,
110
+ # License for the dataset if available
111
+ license=_LICENSE,
112
+ # Citation for the dataset
113
+ citation=_CITATION,
114
+ )
115
+
116
+ def _split_generators(self, dl_manager: datasets.DownloadManager):
117
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
118
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
119
+
120
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
121
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
122
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
123
+ data_dir = dl_manager.download_and_extract(_URLS)
124
+ print("data_dir:")
125
+ print(data_dir)
126
+ return [
127
+ datasets.SplitGenerator(
128
+ name=datasets.Split.TRAIN,
129
+ # These kwargs will be passed to _generate_examples
130
+ gen_kwargs={
131
+ "filepath": data_dir["train"],
132
+ "split": "train",
133
+ },
134
+ ),
135
+ datasets.SplitGenerator(
136
+ # name=datasets.Split.VALIDATION,
137
+ name="predict",
138
+ # These kwargs will be passed to _generate_examples
139
+ gen_kwargs={
140
+ "filepath": data_dir["predict"],
141
+ "split": "predict",
142
+ },
143
+ )
144
+ ]
145
+
146
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
147
+ def _generate_examples(self, filepath, split):
148
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
149
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
150
+ with open(filepath, encoding="utf-8") as f:
151
+ for key, row in enumerate(f):
152
+ yield key, {
153
+ "text": row,
154
+ }