sartajbhuvaji commited on
Commit
4e2297a
·
1 Parent(s): 3741a28

Data Count files

Browse files
training_data_count_001-100.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ File,W,S,A,D,WA,WD,SA,SD,NK,NONE
2
+ training_data-1.npy,3442,0,165,197,348,233,0,0,615,0
3
+ training_data-2.npy,3566,48,125,90,373,379,0,0,418,1
4
+ training_data-3.npy,3310,0,214,163,272,269,0,0,771,1
5
+ training_data-4.npy,3263,54,219,295,632,365,3,0,167,2
6
+ training_data-5.npy,3411,46,174,163,267,397,46,0,495,1
7
+ training_data-6.npy,3143,92,187,113,336,421,23,58,625,2
8
+ training_data-7.npy,3035,122,247,185,296,406,11,3,694,1
9
+ training_data-8.npy,3440,47,194,114,326,467,0,1,406,5
10
+ training_data-9.npy,3259,10,125,92,257,159,61,120,916,1
11
+ training_data-10.npy,4190,0,151,10,263,243,0,0,140,3
12
+ training_data-11.npy,4203,0,57,21,235,366,0,0,117,1
13
+ training_data-12.npy,4213,0,29,47,235,244,0,0,231,1
14
+ training_data-13.npy,3294,59,166,153,281,248,0,0,797,2
15
+ training_data-14.npy,3814,0,18,53,477,348,0,0,289,1
16
+ training_data-15.npy,3157,46,192,313,264,393,0,97,536,2
17
+ training_data-16.npy,3234,90,143,232,509,304,56,29,400,3
18
+ training_data-17.npy,3398,122,172,207,309,323,0,27,441,1
19
+ training_data-18.npy,3839,0,47,68,267,318,0,0,460,1
20
+ training_data-19.npy,2809,79,415,153,399,242,18,0,884,1
21
+ training_data-20.npy,3955,24,78,46,161,335,0,0,400,1
22
+ training_data-21.npy,2731,45,231,210,516,397,8,174,685,3
23
+ training_data-22.npy,3164,6,460,353,229,337,0,1,450,0
24
+ training_data-23.npy,2536,5,346,524,376,692,9,0,511,1
25
+ training_data-24.npy,3680,0,192,200,266,395,0,0,266,1
26
+ training_data-25.npy,4054,19,42,26,221,381,0,0,255,2
27
+ training_data-26.npy,3792,84,70,65,307,283,2,118,278,1
28
+ training_data-27.npy,3348,109,193,124,242,376,6,12,589,1
29
+ training_data-28.npy,3753,0,135,143,237,393,0,0,338,1
30
+ training_data-29.npy,2868,2,362,410,344,271,3,60,677,3
31
+ training_data-30.npy,3463,3,167,215,344,249,0,37,521,1
32
+ training_data-31.npy,3485,69,242,137,486,261,72,92,137,19
33
+ training_data-32.npy,4295,0,28,29,214,259,0,0,174,1
34
+ training_data-33.npy,3394,10,356,146,222,306,0,0,563,3
35
+ training_data-34.npy,4285,16,67,15,189,242,0,0,184,2
36
+ training_data-35.npy,4098,30,112,15,221,193,27,0,304,0
37
+ training_data-36.npy,4089,0,71,31,303,240,0,0,262,4
38
+ training_data-37.npy,3343,13,96,159,231,414,93,0,644,7
39
+ training_data-38.npy,4022,0,61,79,300,284,0,0,251,3
40
+ training_data-39.npy,3351,27,249,207,258,252,31,87,538,0
41
+ training_data-40.npy,3303,56,254,164,316,373,0,0,529,5
42
+ training_data-41.npy,4054,28,87,72,219,249,43,0,246,2
43
+ training_data-42.npy,2914,62,380,187,420,426,0,0,610,1
44
+ training_data-43.npy,3338,13,95,155,473,507,0,25,393,1
45
+ training_data-44.npy,3728,0,95,104,352,277,0,0,443,1
46
+ training_data-45.npy,3911,3,101,86,272,209,45,0,368,5
47
+ training_data-46.npy,3874,0,113,62,340,343,0,0,268,0
48
+ training_data-47.npy,3841,24,59,95,258,186,0,2,532,3
49
+ training_data-48.npy,4386,0,17,4,282,197,0,0,112,2
50
+ training_data-49.npy,3380,79,123,116,295,238,51,66,651,1
51
+ training_data-50.npy,4165,0,57,40,291,250,0,0,197,0
52
+ training_data-51.npy,3684,15,100,74,392,267,32,29,403,4
53
+ training_data-52.npy,3495,78,148,94,374,391,10,4,405,1
54
+ training_data-53.npy,3721,0,77,123,231,290,0,0,557,1
55
+ training_data-54.npy,3344,28,147,195,274,316,58,0,636,2
56
+ training_data-55.npy,4144,0,27,14,273,256,0,0,286,0
57
+ training_data-56.npy,3993,0,29,12,292,241,0,0,431,2
58
+ training_data-57.npy,3559,13,94,55,367,453,68,0,389,2
59
+ training_data-58.npy,3329,2,228,225,317,338,64,3,493,1
60
+ training_data-59.npy,3675,24,136,81,349,329,0,0,403,3
61
+ training_data-60.npy,3284,0,122,155,363,230,18,29,794,5
62
+ training_data-61.npy,3662,0,115,14,178,157,0,0,872,2
63
+ training_data-62.npy,3535,9,81,54,328,332,114,0,545,2
64
+ training_data-63.npy,3118,49,148,170,246,227,0,0,1039,3
65
+ training_data-64.npy,3170,0,287,150,252,326,0,0,809,6
66
+ training_data-65.npy,3257,42,161,254,430,359,0,0,496,1
67
+ training_data-66.npy,4023,0,30,22,208,284,0,0,433,0
68
+ training_data-67.npy,4176,0,7,26,274,183,0,0,333,1
69
+ training_data-68.npy,3648,0,121,103,264,238,0,0,625,1
70
+ training_data-69.npy,3859,0,64,64,247,222,0,0,544,0
71
+ training_data-70.npy,3391,26,127,145,322,234,0,0,754,1
72
+ training_data-71.npy,2771,0,345,462,293,229,0,0,899,1
73
+ training_data-72.npy,2930,7,258,173,300,265,109,0,951,7
74
+ training_data-73.npy,3797,18,174,79,204,244,8,0,473,3
75
+ training_data-74.npy,3621,0,27,110,320,209,0,0,713,0
76
+ training_data-75.npy,3635,0,60,6,125,128,0,0,1044,2
77
+ training_data-76.npy,2755,0,228,244,356,352,0,0,1059,6
78
+ training_data-77.npy,3649,26,155,211,322,378,0,13,243,3
79
+ training_data-78.npy,3334,0,97,125,370,326,115,0,632,1
80
+ training_data-79.npy,4224,0,0,6,246,301,0,0,223,0
81
+ training_data-80.npy,4034,0,75,57,153,160,0,0,520,1
82
+ training_data-81.npy,3851,21,96,44,218,320,0,0,445,5
83
+ training_data-82.npy,3682,0,67,70,266,271,0,0,640,4
84
+ training_data-83.npy,3429,47,40,122,482,260,59,0,560,1
85
+ training_data-84.npy,3179,1,192,98,298,344,46,0,838,4
86
+ training_data-85.npy,2804,0,299,249,536,421,65,65,555,6
87
+ training_data-86.npy,3188,38,157,279,513,254,90,71,403,7
88
+ training_data-87.npy,4184,0,5,16,211,291,0,0,292,1
89
+ training_data-88.npy,3988,41,21,42,214,255,0,0,436,3
90
+ training_data-89.npy,3255,5,160,90,390,290,139,0,665,6
91
+ training_data-90.npy,3777,0,62,200,243,241,0,0,475,2
92
+ training_data-91.npy,3398,153,30,56,262,298,11,121,665,6
93
+ training_data-92.npy,4025,0,3,42,161,210,0,0,554,5
94
+ training_data-93.npy,3908,0,71,37,212,216,0,0,553,3
95
+ training_data-94.npy,3276,0,96,102,295,219,0,0,1010,2
96
+ training_data-95.npy,2747,6,282,254,361,205,85,0,1057,3
97
+ training_data-96.npy,2792,0,328,189,307,281,11,28,1058,6
98
+ training_data-97.npy,3309,4,155,188,419,344,180,71,326,4
99
+ training_data-98.npy,3668,14,121,52,376,378,20,0,371,0
100
+ training_data-99.npy,2485,34,284,279,459,257,42,8,1148,4
101
+ training_data-100.npy,3343,0,187,314,453,277,0,0,423,3
training_data_count_101-200.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ File,W,S,A,D,WA,WD,SA,SD,NK,NONE
2
+ training_data-101.npy,2564,174,192,105,371,373,90,113,1015,3
3
+ training_data-102.npy,2769,64,135,244,539,292,0,50,902,5
4
+ training_data-103.npy,3536,0,88,91,231,284,0,0,769,1
5
+ training_data-104.npy,3889,7,28,117,288,255,0,12,402,2
6
+ training_data-105.npy,3931,10,27,40,184,229,0,0,578,1
7
+ training_data-106.npy,4167,15,12,12,210,210,0,0,373,1
8
+ training_data-107.npy,3925,45,60,27,225,209,0,0,505,4
9
+ training_data-108.npy,3703,0,23,51,199,250,0,0,767,7
10
+ training_data-109.npy,3209,20,148,232,292,288,0,0,806,5
11
+ training_data-110.npy,2594,62,114,297,703,423,228,70,501,8
12
+ training_data-111.npy,3373,8,126,186,471,498,17,0,318,3
13
+ training_data-112.npy,3854,0,62,110,295,275,0,0,401,3
14
+ training_data-113.npy,4134,0,14,17,149,213,0,0,471,2
15
+ training_data-114.npy,4088,0,35,15,222,285,0,0,353,2
16
+ training_data-115.npy,2838,13,265,144,238,262,75,0,1163,2
17
+ training_data-116.npy,2809,44,219,140,344,363,0,56,1019,6
18
+ training_data-117.npy,2997,136,33,112,478,500,44,57,635,8
19
+ training_data-118.npy,3044,38,148,177,520,459,0,18,593,3
20
+ training_data-119.npy,4086,0,26,22,275,245,0,0,344,2
21
+ training_data-120.npy,3812,0,81,34,253,224,0,0,595,1
22
+ training_data-121.npy,3821,8,113,59,334,351,0,45,264,5
23
+ training_data-122.npy,4249,0,17,6,161,237,0,0,329,1
24
+ training_data-123.npy,4002,19,46,57,241,218,0,0,417,0
25
+ training_data-124.npy,2883,63,322,227,428,389,0,0,686,2
26
+ training_data-125.npy,3329,81,166,155,339,283,31,0,613,3
27
+ training_data-126.npy,3090,29,281,252,232,186,182,0,745,3
28
+ training_data-127.npy,3350,10,175,157,375,301,0,77,553,2
29
+ training_data-128.npy,3422,12,193,304,375,196,0,0,495,3
30
+ training_data-129.npy,4161,0,10,18,243,262,0,0,305,1
31
+ training_data-130.npy,3921,0,29,7,145,115,0,0,781,2
32
+ training_data-131.npy,4118,0,12,18,366,256,0,0,227,3
33
+ training_data-132.npy,3822,0,135,49,289,360,0,0,343,2
34
+ training_data-133.npy,3348,7,100,180,456,377,0,43,486,3
35
+ training_data-134.npy,3164,0,229,177,293,255,0,0,882,0
36
+ training_data-135.npy,3285,7,426,69,438,276,0,0,497,2
37
+ training_data-136.npy,3946,18,36,80,233,252,11,0,419,5
38
+ training_data-137.npy,3199,0,186,144,491,186,0,106,682,6
39
+ training_data-138.npy,3144,0,75,48,419,247,0,0,1061,6
40
+ training_data-139.npy,3566,22,69,233,335,174,0,34,559,8
41
+ training_data-140.npy,3150,79,232,123,393,364,2,0,654,3
42
+ training_data-141.npy,3018,25,214,191,394,335,0,0,821,2
43
+ training_data-142.npy,3358,96,96,112,367,356,0,7,604,4
44
+ training_data-143.npy,2833,26,236,219,563,469,0,0,651,3
45
+ training_data-144.npy,3930,0,36,40,326,279,0,0,389,0
46
+ training_data-145.npy,4109,0,14,40,299,262,0,0,273,3
47
+ training_data-146.npy,3006,23,245,214,475,412,1,0,620,4
48
+ training_data-147.npy,3405,0,162,122,295,399,0,0,613,4
49
+ training_data-148.npy,4038,0,33,55,345,355,0,0,172,2
50
+ training_data-149.npy,3621,6,119,68,327,314,0,80,464,1
51
+ training_data-150.npy,4089,0,33,50,235,283,0,0,309,1
52
+ training_data-151.npy,4378,0,0,5,155,225,0,0,236,1
53
+ training_data-152.npy,4129,21,56,30,207,200,0,0,356,1
54
+ training_data-153.npy,3246,21,151,253,339,360,0,2,621,7
55
+ training_data-154.npy,3005,33,264,231,324,248,0,0,891,4
56
+ training_data-155.npy,3214,71,312,118,359,278,0,5,638,5
57
+ training_data-156.npy,2819,80,312,193,376,390,52,45,728,5
58
+ training_data-157.npy,3534,0,96,100,307,374,97,0,488,4
59
+ training_data-158.npy,4234,0,46,37,200,204,57,0,221,1
60
+ training_data-159.npy,3664,0,125,38,422,400,0,0,346,5
61
+ training_data-160.npy,4411,0,7,9,128,247,0,0,195,3
62
+ training_data-161.npy,3945,0,83,29,224,271,0,0,448,0
63
+ training_data-162.npy,3659,81,214,61,267,315,72,7,320,4
64
+ training_data-163.npy,3245,55,158,131,210,382,84,154,579,2
65
+ training_data-164.npy,3559,50,117,66,216,143,112,23,712,2
66
+ training_data-165.npy,3137,253,187,163,349,191,31,80,605,4
67
+ training_data-166.npy,2772,34,226,199,189,254,0,57,1266,3
68
+ training_data-167.npy,3292,55,121,133,265,403,93,0,628,10
69
+ training_data-168.npy,2550,92,389,110,417,396,35,100,905,6
70
+ training_data-169.npy,3523,4,75,98,477,170,0,111,539,3
71
+ training_data-170.npy,3774,0,56,81,296,334,0,0,454,5
72
+ training_data-171.npy,3828,28,45,39,232,262,0,0,565,1
73
+ training_data-172.npy,3988,0,5,6,298,213,0,0,489,1
74
+ training_data-173.npy,3778,0,122,70,365,344,0,0,319,2
75
+ training_data-174.npy,3457,61,66,131,509,451,0,17,306,2
76
+ training_data-175.npy,3137,11,167,91,378,316,0,85,807,8
77
+ training_data-176.npy,4074,0,63,40,359,308,0,0,154,2
78
+ training_data-177.npy,4146,31,54,0,323,243,0,0,202,1
79
+ training_data-178.npy,3792,49,124,9,410,297,11,92,209,7
80
+ training_data-179.npy,4347,0,0,0,342,220,0,0,88,3
81
+ training_data-180.npy,4167,0,58,28,296,382,14,0,55,0
82
+ training_data-181.npy,3218,7,20,88,358,235,0,113,955,6
83
+ training_data-182.npy,3806,58,65,91,262,307,2,137,271,1
84
+ training_data-183.npy,2709,122,197,75,362,476,30,288,736,5
85
+ training_data-184.npy,2935,21,211,235,432,211,0,159,795,1
86
+ training_data-185.npy,4210,33,51,7,202,198,1,0,295,3
87
+ training_data-186.npy,4022,22,6,115,316,163,0,0,353,3
88
+ training_data-187.npy,4407,0,0,0,254,130,0,0,207,2
89
+ training_data-188.npy,4427,0,3,13,181,230,0,0,146,0
90
+ training_data-189.npy,4107,33,108,17,197,223,0,2,313,0
91
+ training_data-190.npy,3536,14,76,76,214,474,0,91,512,7
92
+ training_data-191.npy,3183,58,167,74,372,632,26,4,480,4
93
+ training_data-192.npy,4062,0,34,0,310,391,0,0,202,1
94
+ training_data-193.npy,3880,0,53,111,317,325,0,0,313,1
95
+ training_data-194.npy,3910,0,14,24,192,277,51,0,527,5
96
+ training_data-195.npy,4306,0,2,13,208,160,0,0,310,1
97
+ training_data-196.npy,4135,8,0,12,225,240,0,34,345,1
98
+ training_data-197.npy,3364,138,51,188,305,364,82,20,485,3
99
+ training_data-198.npy,3132,34,177,111,546,257,168,20,551,4
100
+ training_data-199.npy,3627,50,104,106,364,416,35,47,248,3
101
+ training_data-200.npy,3546,39,111,137,341,340,8,0,475,3