added dataset.py
Browse files- dataset.py +178 -0
dataset.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
from PIL import Image
|
6 |
+
from torch.utils.data import Dataset, DataLoader
|
7 |
+
from torchvision import transforms
|
8 |
+
|
9 |
+
class RQADataset(Dataset):
|
10 |
+
def __init__(self, data_config, transform=None):
|
11 |
+
"""
|
12 |
+
Initializes the dataset.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
data_config: Configuration object containing paths and settings.
|
16 |
+
transform: Optional transform to be applied on a sample.
|
17 |
+
"""
|
18 |
+
self.img_dir = data_config.img_dir
|
19 |
+
self.json_dir = data_config.json_dir
|
20 |
+
self.filter_list_file = data_config.filter_list
|
21 |
+
self.train = data_config.train
|
22 |
+
self.transform = transform or transforms.Compose([
|
23 |
+
transforms.Resize((512, 512))
|
24 |
+
])
|
25 |
+
|
26 |
+
self.questions = []
|
27 |
+
|
28 |
+
# Load file names for testing or use all files for training
|
29 |
+
self.file_names = self._load_file_names()
|
30 |
+
self._create_questions()
|
31 |
+
print(f"Total Questions Loaded: {len(self.questions)}")
|
32 |
+
|
33 |
+
def _load_file_names(self):
|
34 |
+
"""
|
35 |
+
Loads the list of file names to be processed.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
A list of file names without extensions.
|
39 |
+
"""
|
40 |
+
if not self.train and self.filter_list_file:
|
41 |
+
with open(self.filter_list_file, 'r') as f:
|
42 |
+
file_names = [line.strip() for line in f]
|
43 |
+
print(f"Loaded {len(file_names)} test files from {self.filter_list_file}")
|
44 |
+
return file_names
|
45 |
+
else:
|
46 |
+
# Use all files for training
|
47 |
+
return [os.path.splitext(file)[0] for file in os.listdir(self.json_dir) if file.endswith('.json')]
|
48 |
+
|
49 |
+
def _create_questions(self):
|
50 |
+
"""
|
51 |
+
Creates the list of questions from JSON files.
|
52 |
+
"""
|
53 |
+
start_time = time.time()
|
54 |
+
unused_count = 0
|
55 |
+
|
56 |
+
for file_name in self.file_names:
|
57 |
+
json_path = os.path.join(self.json_dir, file_name + '.json')
|
58 |
+
if not os.path.exists(json_path):
|
59 |
+
unused_count += 1
|
60 |
+
continue
|
61 |
+
|
62 |
+
with open(json_path, 'r') as f:
|
63 |
+
json_data = json.load(f)
|
64 |
+
for item in json_data:
|
65 |
+
if 'PMC_ID' not in item or 'qa_id' not in item:
|
66 |
+
continue # Ensure all necessary fields are present
|
67 |
+
item['image_path'] = os.path.join(self.img_dir, item['PMC_ID'] + '.jpg')
|
68 |
+
if os.path.exists(item['image_path']):
|
69 |
+
self.questions.append(item)
|
70 |
+
else:
|
71 |
+
unused_count += 1
|
72 |
+
|
73 |
+
elapsed_time = time.time() - start_time
|
74 |
+
print(f"Elapsed time to create questions: {elapsed_time:.2f} seconds = {elapsed_time/60:.2f} minutes")
|
75 |
+
print(f'Total unused/used images: {unused_count} / {len(self.file_names) - unused_count}')
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
return len(self.questions)
|
79 |
+
|
80 |
+
def __getitem__(self, idx):
|
81 |
+
return self._load_data(idx)
|
82 |
+
|
83 |
+
def _load_data(self, idx):
|
84 |
+
"""
|
85 |
+
Loads a single data point.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
idx: Index of the data point.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
A dictionary containing the image, question, and answer data.
|
92 |
+
"""
|
93 |
+
question_block = self.questions[idx]
|
94 |
+
image_path = question_block['image_path']
|
95 |
+
image = Image.open(image_path).convert("RGB")
|
96 |
+
|
97 |
+
# Apply transformation if available
|
98 |
+
if self.transform:
|
99 |
+
image = self.transform(image)
|
100 |
+
|
101 |
+
return {
|
102 |
+
'image': image,
|
103 |
+
'question': question_block['question'],
|
104 |
+
'answer': question_block['answer'],
|
105 |
+
'qa_id': question_block['qa_id'],
|
106 |
+
'PMC_ID': question_block['PMC_ID']
|
107 |
+
}
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def custom_collate(batch):
|
111 |
+
"""
|
112 |
+
Custom collate function to handle batch processing.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
batch: A batch of data points.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
A dictionary containing the collated batch data.
|
119 |
+
"""
|
120 |
+
images = [item['image'] for item in batch]
|
121 |
+
questions = [item['question'] for item in batch]
|
122 |
+
answers = [item['answer'] for item in batch]
|
123 |
+
qa_ids = [item['qa_id'] for item in batch]
|
124 |
+
pmc_ids = [item['PMC_ID'] for item in batch]
|
125 |
+
|
126 |
+
return {
|
127 |
+
'images': images,
|
128 |
+
'questions': questions,
|
129 |
+
'answers': answers,
|
130 |
+
'qa_ids': qa_ids,
|
131 |
+
'PMC_IDs': pmc_ids
|
132 |
+
}
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
# Define a simple data structure to hold the paths
|
136 |
+
class DataConfig:
|
137 |
+
img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images'
|
138 |
+
json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa'
|
139 |
+
filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt'
|
140 |
+
train = False # Set to False to prepare the test files
|
141 |
+
|
142 |
+
# Initialize dataset
|
143 |
+
dataset = RQADataset(DataConfig)
|
144 |
+
|
145 |
+
# Test loading a single item
|
146 |
+
print(f"Number of samples in dataset: {len(dataset)}")
|
147 |
+
sample = dataset[0]
|
148 |
+
print("Sample data:", sample)
|
149 |
+
|
150 |
+
# Initialize DataLoader
|
151 |
+
dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate)
|
152 |
+
|
153 |
+
# Test DataLoader
|
154 |
+
for batch in dataloader:
|
155 |
+
print("Batch data:", batch)
|
156 |
+
break # Load only one batch for testing
|
157 |
+
|
158 |
+
class DataConfig:
|
159 |
+
img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images'
|
160 |
+
json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa'
|
161 |
+
filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt'
|
162 |
+
train = True # Set to False to prepare the test files
|
163 |
+
|
164 |
+
# Initialize dataset
|
165 |
+
dataset = RQADataset(DataConfig)
|
166 |
+
|
167 |
+
# Test loading a single item
|
168 |
+
print(f"Number of samples in dataset: {len(dataset)}")
|
169 |
+
sample = dataset[0]
|
170 |
+
print("Sample data:", sample)
|
171 |
+
|
172 |
+
# Initialize DataLoader
|
173 |
+
dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate)
|
174 |
+
|
175 |
+
# Test DataLoader
|
176 |
+
for batch in dataloader:
|
177 |
+
print("Batch data:", batch)
|
178 |
+
break # Load only one batch for testing
|