Datasets:
add assertion testing
Browse files
code/exploratory_data_analysis.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import seaborn as sns
|
|
@@ -5,6 +6,10 @@ import seaborn as sns
|
|
| 5 |
# Set seaborn style
|
| 6 |
sns.set(style="whitegrid")
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
# Function to plot age distribution
|
| 9 |
def plot_age_distribution(df):
|
| 10 |
plt.figure(figsize=(8, 5))
|
|
@@ -12,7 +17,11 @@ def plot_age_distribution(df):
|
|
| 12 |
plt.title('Age Distribution')
|
| 13 |
plt.xlabel('Age')
|
| 14 |
plt.ylabel('Count')
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Function to plot gender distribution (Donut Chart)
|
| 18 |
def plot_gender_distribution(df):
|
|
@@ -22,32 +31,48 @@ def plot_gender_distribution(df):
|
|
| 22 |
colors=sns.color_palette("pastel"))
|
| 23 |
plt.title('Gender Distribution')
|
| 24 |
plt.gca().set_aspect('equal')
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Function to plot nationality distribution
|
| 28 |
def plot_nationality_distribution(df):
|
| 29 |
plt.figure(figsize=(8, 5))
|
| 30 |
-
sns.countplot(y=df['Nationality'], palette='coolwarm')
|
| 31 |
plt.title('Nationality Distribution')
|
| 32 |
plt.gca().set_aspect('equal')
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Function to plot native language distribution
|
| 36 |
def plot_native_language_distribution(df):
|
| 37 |
plt.figure(figsize=(8, 5))
|
| 38 |
-
sns.countplot(y=df['Native Language'], palette='coolwarm')
|
| 39 |
plt.title('Native Language Distribution')
|
| 40 |
plt.gca().set_aspect('equal')
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Function to plot familiarity with English distribution
|
| 44 |
def plot_familiarity_with_english(df):
|
| 45 |
plt.figure(figsize=(8, 5))
|
| 46 |
-
sns.countplot(y=df['Familiarity with English'], palette='coolwarm')
|
| 47 |
plt.title('Familiarity with English')
|
| 48 |
plt.xlabel('Count')
|
| 49 |
plt.ylabel('Familiarity Level')
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Function to plot recording duration distribution
|
| 53 |
def plot_duration_distribution(df):
|
|
@@ -56,20 +81,31 @@ def plot_duration_distribution(df):
|
|
| 56 |
plt.title('Recording Duration Distribution')
|
| 57 |
plt.xlabel('Duration (seconds)')
|
| 58 |
plt.ylabel('Count')
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def main():
|
| 63 |
# Load the dataset
|
| 64 |
df = pd.read_csv("metadata.csv")
|
| 65 |
|
| 66 |
-
# Plot the distributions
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
import os
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import seaborn as sns
|
|
|
|
| 6 |
# Set seaborn style
|
| 7 |
sns.set(style="whitegrid")
|
| 8 |
|
| 9 |
+
# Ensure the 'assets' directory exists
|
| 10 |
+
if not os.path.exists('assets'):
|
| 11 |
+
os.makedirs('assets')
|
| 12 |
+
|
| 13 |
# Function to plot age distribution
|
| 14 |
def plot_age_distribution(df):
|
| 15 |
plt.figure(figsize=(8, 5))
|
|
|
|
| 17 |
plt.title('Age Distribution')
|
| 18 |
plt.xlabel('Age')
|
| 19 |
plt.ylabel('Count')
|
| 20 |
+
plot_filename = 'assets/age_distribution.png'
|
| 21 |
+
plt.savefig(plot_filename)
|
| 22 |
+
plt.show()
|
| 23 |
+
plt.close()
|
| 24 |
+
return plot_filename
|
| 25 |
|
| 26 |
# Function to plot gender distribution (Donut Chart)
|
| 27 |
def plot_gender_distribution(df):
|
|
|
|
| 31 |
colors=sns.color_palette("pastel"))
|
| 32 |
plt.title('Gender Distribution')
|
| 33 |
plt.gca().set_aspect('equal')
|
| 34 |
+
plot_filename = 'assets/gender_distribution.png'
|
| 35 |
+
plt.savefig(plot_filename)
|
| 36 |
+
plt.show()
|
| 37 |
+
plt.close()
|
| 38 |
+
return plot_filename
|
| 39 |
|
| 40 |
# Function to plot nationality distribution
|
| 41 |
def plot_nationality_distribution(df):
|
| 42 |
plt.figure(figsize=(8, 5))
|
| 43 |
+
sns.countplot(y=df['Nationality'], hue=df['Nationality'], palette='coolwarm', legend=False)
|
| 44 |
plt.title('Nationality Distribution')
|
| 45 |
plt.gca().set_aspect('equal')
|
| 46 |
+
plot_filename = 'assets/nationality_distribution.png'
|
| 47 |
+
plt.savefig(plot_filename)
|
| 48 |
+
plt.show()
|
| 49 |
+
plt.close()
|
| 50 |
+
return plot_filename
|
| 51 |
|
| 52 |
# Function to plot native language distribution
|
| 53 |
def plot_native_language_distribution(df):
|
| 54 |
plt.figure(figsize=(8, 5))
|
| 55 |
+
sns.countplot(y=df['Native Language'], hue=df['Native Language'], palette='coolwarm', legend=False)
|
| 56 |
plt.title('Native Language Distribution')
|
| 57 |
plt.gca().set_aspect('equal')
|
| 58 |
+
plot_filename = 'assets/native_language_distribution.png'
|
| 59 |
+
plt.savefig(plot_filename)
|
| 60 |
+
plt.show()
|
| 61 |
+
plt.close()
|
| 62 |
+
return plot_filename
|
| 63 |
|
| 64 |
# Function to plot familiarity with English distribution
|
| 65 |
def plot_familiarity_with_english(df):
|
| 66 |
plt.figure(figsize=(8, 5))
|
| 67 |
+
sns.countplot(y=df['Familiarity with English'], hue=df['Familiarity with English'], palette='coolwarm', legend=False)
|
| 68 |
plt.title('Familiarity with English')
|
| 69 |
plt.xlabel('Count')
|
| 70 |
plt.ylabel('Familiarity Level')
|
| 71 |
+
plot_filename = 'assets/familiarity_with_eng.png'
|
| 72 |
+
plt.savefig(plot_filename)
|
| 73 |
+
plt.show()
|
| 74 |
+
plt.close()
|
| 75 |
+
return plot_filename
|
| 76 |
|
| 77 |
# Function to plot recording duration distribution
|
| 78 |
def plot_duration_distribution(df):
|
|
|
|
| 81 |
plt.title('Recording Duration Distribution')
|
| 82 |
plt.xlabel('Duration (seconds)')
|
| 83 |
plt.ylabel('Count')
|
| 84 |
+
plot_filename = 'assets/recording_duration_distribution.png'
|
| 85 |
+
plt.savefig(plot_filename)
|
| 86 |
+
plt.show()
|
| 87 |
+
plt.close()
|
| 88 |
+
return plot_filename
|
| 89 |
|
| 90 |
|
| 91 |
def main():
|
| 92 |
# Load the dataset
|
| 93 |
df = pd.read_csv("metadata.csv")
|
| 94 |
|
| 95 |
+
# Plot the distributions and save files
|
| 96 |
+
plot_files = [
|
| 97 |
+
plot_age_distribution(df),
|
| 98 |
+
plot_gender_distribution(df),
|
| 99 |
+
plot_nationality_distribution(df),
|
| 100 |
+
plot_native_language_distribution(df),
|
| 101 |
+
plot_familiarity_with_english(df),
|
| 102 |
+
plot_duration_distribution(df)
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
# Testing
|
| 106 |
+
for plot_file in plot_files:
|
| 107 |
+
assert os.path.exists(plot_file), f"Plot {plot_file} was not saved."
|
| 108 |
+
print(f"Assertion passed for {plot_file}")
|
| 109 |
|
| 110 |
|
| 111 |
if __name__ == "__main__":
|