Commit
·
eda0038
1
Parent(s):
5784b19
Upload 2 files
Browse files- README.md +14 -0
- solarirradiancedataset.py +90 -0
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: image
|
5 |
+
dtype: image
|
6 |
+
- name: irradiance
|
7 |
+
dtype: float32
|
8 |
+
splits:
|
9 |
+
- name: full
|
10 |
+
num_bytes: 13466250
|
11 |
+
num_examples: 1000
|
12 |
+
download_size: 14234112
|
13 |
+
dataset_size: 13466250
|
14 |
+
---
|
solarirradiancedataset.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# USAGE: this script is used to create an image dataset that is NOT hosted on HuggingFace but points to the original files
|
2 |
+
# to download and generate the dataset.
|
3 |
+
|
4 |
+
import csv
|
5 |
+
import os
|
6 |
+
import datasets
|
7 |
+
import io
|
8 |
+
import tarfile
|
9 |
+
|
10 |
+
# TODO: Add citation
|
11 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
12 |
+
# _CITATION = """\
|
13 |
+
# @InProceedings{huggingface:dataset,
|
14 |
+
# title = {A great new dataset},
|
15 |
+
# author={huggingface, Inc.
|
16 |
+
# },
|
17 |
+
# year={2020}
|
18 |
+
# }
|
19 |
+
# """
|
20 |
+
|
21 |
+
_DESCRIPTION = """\
|
22 |
+
Images taken from the Sage Waggle Node's top camera and the solar irradiance values were taken from the Argonne National Laboratory
|
23 |
+
tower readings. We made sure to exclude night time photos since there is no sun and we exclusively used summer-time photos as we wanted
|
24 |
+
to stick to a seasonal model that would be able to make estimates more consistently. Furthermore we also eventually downsized the images
|
25 |
+
original 2000x2000 images to 500x500 images since the training was taking a bit too long when the images were larger.
|
26 |
+
"""
|
27 |
+
_HOMEPAGE = "https://sagecontinuum.org/"
|
28 |
+
|
29 |
+
# TODO: Add the licence for the dataset here if you can find it
|
30 |
+
# _LICENSE = ""
|
31 |
+
|
32 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
33 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
34 |
+
_URLS = "https://web.lcrc.anl.gov/public/waggle/datasets/solar-irradiance-sample-224.tar"
|
35 |
+
|
36 |
+
|
37 |
+
class SolarIrradianceDataset(datasets.GeneratorBasedBuilder):
|
38 |
+
|
39 |
+
VERSION = datasets.Version("1.1.0")
|
40 |
+
|
41 |
+
def _info(self):
|
42 |
+
|
43 |
+
return datasets.DatasetInfo(
|
44 |
+
# This is the description that will appear on the datasets page.
|
45 |
+
description=_DESCRIPTION,
|
46 |
+
# This defines the different columns of the dataset and their types
|
47 |
+
features= datasets.Features(
|
48 |
+
{
|
49 |
+
"image": datasets.Image(),
|
50 |
+
"irradiance": datasets.Value("float32")
|
51 |
+
}
|
52 |
+
),
|
53 |
+
# Homepage of the dataset for documentation
|
54 |
+
homepage=_HOMEPAGE
|
55 |
+
# License for the dataset if available
|
56 |
+
# license=_LICENSE
|
57 |
+
# Citation for the dataset
|
58 |
+
# citation=_CITATION,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
data_dir = dl_manager.download(_URLS)
|
63 |
+
return [
|
64 |
+
datasets.SplitGenerator(
|
65 |
+
name="full",
|
66 |
+
# These kwargs will be passed to _generate_examples
|
67 |
+
gen_kwargs={
|
68 |
+
"files": dl_manager.iter_archive(data_dir)
|
69 |
+
},
|
70 |
+
)
|
71 |
+
]
|
72 |
+
|
73 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
74 |
+
def _generate_examples(self, files):
|
75 |
+
|
76 |
+
for file_path, file_obj in files:
|
77 |
+
if ".csv" in file_path:
|
78 |
+
csv_bytes = file_obj.read()
|
79 |
+
csv_contents = str(csv_bytes,'UTF-8')
|
80 |
+
break
|
81 |
+
|
82 |
+
for file_path, file_obj in files:
|
83 |
+
filename = os.path.basename(file_path)
|
84 |
+
if ".jpg" in filename:
|
85 |
+
for row in csv.DictReader(csv_contents.strip().splitlines(),delimiter=','):
|
86 |
+
if os.path.basename(row['image']) == filename:
|
87 |
+
yield file_path,{
|
88 |
+
"image": {"path": file_path, "bytes": file_obj.read()},
|
89 |
+
"irradiance": row['irradiance']
|
90 |
+
}
|