Datasets:
File size: 16,541 Bytes
4b29ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "501d0d55-8d15-463d-95cb-1f70d72de7fb",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2023-12-30 12:56:11-- https://raw.githubusercontent.com/askplatypus/wikidata-simplequestions/master/annotated_wd_data_train_answerable.txt\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 1193868 (1,1M) [text/plain]\n",
"Saving to: βannotated_wd_data_train_answerable.txtβ\n",
"\n",
"annotated_wd_data_t 100%[===================>] 1,14M 6,45MB/s in 0,2s \n",
"\n",
"2023-12-30 12:56:11 (6,45 MB/s) - βannotated_wd_data_train_answerable.txtβ saved [1193868/1193868]\n",
"\n",
"--2023-12-30 12:56:11-- https://raw.githubusercontent.com/askplatypus/wikidata-simplequestions/master/annotated_wd_data_valid_answerable.txt\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 173187 (169K) [text/plain]\n",
"Saving to: βannotated_wd_data_valid_answerable.txtβ\n",
"\n",
"annotated_wd_data_v 100%[===================>] 169,13K --.-KB/s in 0,09s \n",
"\n",
"2023-12-30 12:56:12 (1,86 MB/s) - βannotated_wd_data_valid_answerable.txtβ saved [173187/173187]\n",
"\n",
"--2023-12-30 12:56:12-- https://raw.githubusercontent.com/askplatypus/wikidata-simplequestions/master/annotated_wd_data_test_answerable.txt\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.108.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 345052 (337K) [text/plain]\n",
"Saving to: βannotated_wd_data_test_answerable.txtβ\n",
"\n",
"annotated_wd_data_t 100%[===================>] 336,96K --.-KB/s in 0,1s \n",
"\n",
"2023-12-30 12:56:12 (2,70 MB/s) - βannotated_wd_data_test_answerable.txtβ saved [345052/345052]\n",
"\n"
]
}
],
"source": [
"!wget -nc https://raw.githubusercontent.com/askplatypus/wikidata-simplequestions/master/annotated_wd_data_train_answerable.txt\n",
"!wget -nc https://raw.githubusercontent.com/askplatypus/wikidata-simplequestions/master/annotated_wd_data_valid_answerable.txt\n",
"!wget -nc https://raw.githubusercontent.com/askplatypus/wikidata-simplequestions/master/annotated_wd_data_test_answerable.txt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "73af4417-0637-4848-9d35-e734a685ebc4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/salnikov/.cache/pypoetry/virtualenvs/kgqa-signatures-J3ZJKtLx-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import pandas as pd\n",
"import datasets \n",
"import numpy as np\n",
"import random\n",
"import logging\n",
"\n",
"np.random.seed(8)\n",
"random.seed(8)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6ffea0dd-3d28-416c-b7c3-c8dd73d5e304",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['subject', 'property', 'object', 'question'],\n",
" num_rows: 19481\n",
" })\n",
" valid: Dataset({\n",
" features: ['subject', 'property', 'object', 'question'],\n",
" num_rows: 2821\n",
" })\n",
" test: Dataset({\n",
" features: ['subject', 'property', 'object', 'question'],\n",
" num_rows: 5622\n",
" })\n",
"})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset = datasets.DatasetDict()\n",
"for split, data_path in [\n",
" (\"train\", \"annotated_wd_data_train_answerable.txt\"),\n",
" (\"valid\", \"annotated_wd_data_valid_answerable.txt\"),\n",
" (\"test\", \"annotated_wd_data_test_answerable.txt\"),\n",
"]:\n",
" df = pd.read_csv(data_path, names=['subject', 'property', 'object', 'question'], sep='\\t')\n",
" dataset[split] = datasets.Dataset.from_pandas(df)\n",
"\n",
"dataset"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f7e71241",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import os.path\n",
"import pickle\n",
"import warnings\n",
"\n",
"from joblib import register_store_backend, numpy_pickle\n",
"from joblib._store_backends import FileSystemStoreBackend, CacheWarning\n",
"\n",
"\n",
"class FileSystemStoreBackendNoNumpy(FileSystemStoreBackend):\n",
" NAME = \"no_numpy\"\n",
"\n",
" def load_item(self, path, verbose=1, msg=None):\n",
" \"\"\"Load an item from the store given its path as a list of\n",
" strings.\"\"\"\n",
" full_path = os.path.join(self.location, *path)\n",
"\n",
" if verbose > 1:\n",
" if verbose < 10:\n",
" print('{0}...'.format(msg))\n",
" else:\n",
" print('{0} from {1}'.format(msg, full_path))\n",
"\n",
" mmap_mode = (None if not hasattr(self, 'mmap_mode')\n",
" else self.mmap_mode)\n",
"\n",
" filename = os.path.join(full_path, 'output.pkl')\n",
" if not self._item_exists(filename):\n",
" raise KeyError(\"Non-existing item (may have been \"\n",
" \"cleared).\\nFile %s does not exist\" % filename)\n",
"\n",
" # file-like object cannot be used when mmap_mode is set\n",
" if mmap_mode is None:\n",
" with self._open_item(filename, \"rb\") as f:\n",
" item = pickle.load(f)\n",
" else:\n",
" item = numpy_pickle.load(filename, mmap_mode=mmap_mode)\n",
" return item\n",
"\n",
" def dump_item(self, path, item, verbose=1):\n",
" \"\"\"Dump an item in the store at the path given as a list of\n",
" strings.\"\"\"\n",
" try:\n",
" item_path = os.path.join(self.location, *path)\n",
" if not self._item_exists(item_path):\n",
" self.create_location(item_path)\n",
" filename = os.path.join(item_path, 'output.pkl')\n",
" if verbose > 10:\n",
" print('Persisting in %s' % item_path)\n",
"\n",
" def write_func(to_write, dest_filename):\n",
" mmap_mode = (None if not hasattr(self, 'mmap_mode')\n",
" else self.mmap_mode)\n",
" with self._open_item(dest_filename, \"wb\") as f:\n",
" try:\n",
" if mmap_mode is None:\n",
" pickle.dump(to_write, f)\n",
" else:\n",
" numpy_pickle.dump(to_write, f, compress=self.compress)\n",
" except pickle.PicklingError as e:\n",
" # TODO(1.5) turn into error\n",
" warnings.warn(\n",
" \"Unable to cache to disk: failed to pickle \"\n",
" \"output. In version 1.5 this will raise an \"\n",
" f\"exception. Exception: {e}.\",\n",
" FutureWarning\n",
" )\n",
"\n",
" self._concurrency_safe_write(item, filename, write_func)\n",
" except Exception as e: # noqa: E722\n",
" warnings.warn(\n",
" \"Unable to cache to disk. Possibly a race condition in the \"\n",
" f\"creation of the directory. Exception: {e}.\",\n",
" CacheWarning\n",
" )\n",
"\n",
"\n",
"register_store_backend(FileSystemStoreBackendNoNumpy.NAME, FileSystemStoreBackendNoNumpy)\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "41eb3bbd-19bb-4c0d-892c-35478eabc00b",
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"from http.client import RemoteDisconnected\n",
"\n",
"import requests\n",
"from joblib import Memory\n",
"from urllib3.exceptions import ProtocolError\n",
"\n",
"\n",
"SPARQL_API_URL = \"http://127.0.0.1:7001\"\n",
"CACHE_DIRECTORY = \"wikidata/cache\"\n",
"\n",
"logger = logging.getLogger()\n",
"memory = Memory(CACHE_DIRECTORY, verbose=0, backend=FileSystemStoreBackendNoNumpy.NAME)\n",
"\n",
"\n",
"def execute_wiki_request_with_delays(api_url, params, headers):\n",
" response = requests.get(\n",
" api_url,\n",
" params=params,\n",
" headers=headers,\n",
" )\n",
" to_sleep = 0.2\n",
" while response.status_code == 429:\n",
" logger.warning(\n",
" {\n",
" \"msg\": f\"Request to wikidata endpoint failed. Retry.\",\n",
" \"params\": params,\n",
" \"endpoint\": api_url,\n",
" \"response\": {\n",
" \"status_code\": response.status_code,\n",
" \"headers\": dict(response.headers),\n",
" },\n",
" \"retry_after\": to_sleep,\n",
" }\n",
" )\n",
" if \"retry-after\" in response.headers:\n",
" to_sleep += int(response.headers[\"retry-after\"])\n",
" to_sleep += 0.5\n",
" time.sleep(to_sleep)\n",
" response = requests.get(\n",
" api_url,\n",
" params=params,\n",
" headers=headers,\n",
" )\n",
"\n",
" return response\n",
"\n",
"\n",
"@memory.cache(ignore=['api_url'])\n",
"def execute_sparql_request(request: str, api_url: str = SPARQL_API_URL):\n",
" params = {\"format\": \"json\", \"query\": request}\n",
" headers = {\n",
" \"Accept\": \"application/sparql-results+json\",\n",
" \"User-Agent\": \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36\",\n",
" }\n",
" logger.info(\n",
" {\n",
" \"msg\": \"Send request to Wikidata\",\n",
" \"params\": params,\n",
" \"endpoint\": api_url,\n",
" \"request\": request\n",
" }\n",
" )\n",
" try:\n",
" response = execute_wiki_request_with_delays(api_url, params, headers)\n",
" except (ProtocolError, RemoteDisconnected, requests.exceptions.ConnectionError) as e:\n",
" logger.error(\n",
" {\n",
" \"msg\": str(e),\n",
" \"request\": request,\n",
" \"endpoint\": api_url,\n",
" }\n",
" )\n",
" return None\n",
"\n",
" try:\n",
" response = response.json()[\"results\"][\"bindings\"]\n",
" logger.debug(\n",
" {\n",
" \"msg\": \"Received response from Wikidata\",\n",
" \"params\": params,\n",
" \"endpoint\": api_url,\n",
" \"request\": request,\n",
" \"response\": response\n",
" }\n",
" )\n",
" return response\n",
" except Exception as e:\n",
" logger.error(\n",
" {\n",
" \"msg\": str(e),\n",
" \"params\": params,\n",
" \"endpoint\": api_url,\n",
" \"response\": {\n",
" \"status_code\": response.status_code,\n",
" \"headers\": dict(response.headers),\n",
" },\n",
" }\n",
" )\n",
" raise e\n",
"\n",
"def get_label(entity_id):\n",
" query = \"\"\"\n",
" PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> \n",
" PREFIX wd: <http://www.wikidata.org/entity/> \n",
" SELECT DISTINCT ?label\n",
" WHERE {\n",
" wd:<ENTITY> rdfs:label ?label\n",
" } \n",
" \"\"\".replace(\n",
" \"<ENTITY>\", entity_id\n",
" )\n",
" \n",
" for lbl_obj in execute_sparql_request(query):\n",
" if lbl_obj['label']['xml:lang'] == 'en':\n",
" return lbl_obj['label']['value']"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "2568fa09",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Map: 0%| | 0/19481 [00:00<?, ? examples/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Map: 100%|ββββββββββ| 19481/19481 [01:44<00:00, 185.89 examples/s]\n",
"Map: 100%|ββββββββββ| 2821/2821 [00:08<00:00, 334.13 examples/s]\n",
"Map: 100%|ββββββββββ| 5622/5622 [00:15<00:00, 352.59 examples/s]\n"
]
}
],
"source": [
"dataset = dataset.map(\n",
" lambda record: {'object_label': get_label(record['object'])}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "222d50c1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Creating parquet from Arrow format: 100%|ββββββββββ| 20/20 [00:00<00:00, 474.06ba/s]\n",
"Uploading the dataset shards: 100%|ββββββββββ| 1/1 [00:02<00:00, 2.07s/it]\n",
"Creating parquet from Arrow format: 100%|ββββββββββ| 3/3 [00:00<00:00, 921.29ba/s]\n",
"Uploading the dataset shards: 100%|ββββββββββ| 1/1 [00:01<00:00, 1.63s/it]\n",
"Creating parquet from Arrow format: 100%|ββββββββββ| 6/6 [00:00<00:00, 1000.75ba/s]\n",
"Uploading the dataset shards: 100%|ββββββββββ| 1/1 [00:01<00:00, 1.73s/it]\n"
]
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/datasets/s-nlp/sqwd/commit/680b8199969fc0389fc96feb4f3b8be15b2674d0', commit_message='Upload dataset', commit_description='', oid='680b8199969fc0389fc96feb4f3b8be15b2674d0', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset.push_to_hub('s-nlp/sqwd', 'answerable', set_default=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2652ed4d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|