diff --git "a/random/random_our/val_increase.jsonl" "b/random/random_our/val_increase.jsonl" new file mode 100644--- /dev/null +++ "b/random/random_our/val_increase.jsonl" @@ -0,0 +1,3310 @@ +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "C : Type u_3", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : NonUnitalSemiring A", "inst✝⁹ : StarRing R", "inst✝⁸ : StarRing A", "inst✝⁷ : Module R A", "inst✝⁶ : SMulCommClass R A A", "inst✝⁵ : IsScalarTower R A A", "inst✝⁴ : StarModule R A", "inst✝³ : Semiring C", "inst✝² : StarRing C", "inst✝¹ : Algebra R C", "inst✝ : StarModule R C", "f : A →⋆ₙₐ[R] C", "c : StarSubalgebra R C"], "goal": "(starLift f).range ≤ c ↔ StarAlgebra.adjoin R ↑(NonUnitalStarAlgHom.range f) ≤ c"}], "premise": [112603, 123257], "state_str": "R : Type u_1\nA : Type u_2\nC : Type u_3\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : NonUnitalSemiring A\ninst✝⁹ : StarRing R\ninst✝⁸ : StarRing A\ninst✝⁷ : Module R A\ninst✝⁶ : SMulCommClass R A A\ninst✝⁵ : IsScalarTower R A A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring C\ninst✝² : StarRing C\ninst✝¹ : Algebra R C\ninst✝ : StarModule R C\nf : A →⋆ₙₐ[R] C\nc : StarSubalgebra R C\n⊢ (starLift f).range ≤ c ↔ StarAlgebra.adjoin R ↑(NonUnitalStarAlgHom.range f) ≤ c"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "C : Type u_3", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : NonUnitalSemiring A", "inst✝⁹ : StarRing R", "inst✝⁸ : StarRing A", "inst✝⁷ : Module R A", "inst✝⁶ : SMulCommClass R A A", "inst✝⁵ : IsScalarTower R A A", "inst✝⁴ : StarModule R A", "inst✝³ : Semiring C", "inst✝² : StarRing C", "inst✝¹ : Algebra R C", "inst✝ : StarModule R C", "f : A →⋆ₙₐ[R] C", "c : StarSubalgebra R C"], "goal": "NonUnitalStarAlgHom.range f ≤ c.toNonUnitalStarSubalgebra ↔ ↑(NonUnitalStarAlgHom.range f) ⊆ ↑c"}], "premise": [1713], "state_str": "R : Type u_1\nA : Type u_2\nC : Type u_3\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : NonUnitalSemiring A\ninst✝⁹ : StarRing R\ninst✝⁸ : StarRing A\ninst✝⁷ : Module R A\ninst✝⁶ : SMulCommClass R A A\ninst✝⁵ : IsScalarTower R A A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring C\ninst✝² : StarRing C\ninst✝¹ : Algebra R C\ninst✝ : StarModule R C\nf : A →⋆ₙₐ[R] C\nc : StarSubalgebra R C\n⊢ NonUnitalStarAlgHom.range f ≤ c.toNonUnitalStarSubalgebra ↔ ↑(NonUnitalStarAlgHom.range f) ⊆ ↑c"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "n : ℕ", "x : α", "inst✝ : StrictOrderedRing α", "hx : x < 0", "hx' : 0 < x + 1", "hn : 1 < n"], "goal": "0 < ∑ i ∈ range n, x ^ i ∧ ∑ i ∈ range n, x ^ i < 1"}], "premise": [145198], "state_str": "α : Type u\nβ : Type u_1\nn : ℕ\nx : α\ninst✝ : StrictOrderedRing α\nhx : x < 0\nhx' : 0 < x + 1\nhn : 1 < n\n⊢ 0 < ∑ i ∈ range n, x ^ i ∧ ∑ i ∈ range n, x ^ i < 1"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "n✝ : ℕ", "x : α", "inst✝ : StrictOrderedRing α", "hx : x < 0", "hx' : 0 < x + 1", "n : ℕ", "hmn✝ : 2 ≤ n", "ihn : 0 < ∑ i ∈ range n, x ^ i ∧ ∑ i ∈ range n, x ^ i < 1"], "goal": "0 < ∑ i ∈ range (n + 1), x ^ i ∧ ∑ i ∈ range (n + 1), x ^ i < 1"}], "premise": [104003, 105612, 112467, 122243], "state_str": "case refine_2\nα : Type u\nβ : Type u_1\nn✝ : ℕ\nx : α\ninst✝ : StrictOrderedRing α\nhx : x < 0\nhx' : 0 < x + 1\nn : ℕ\nhmn✝ : 2 ≤ n\nihn : 0 < ∑ i ∈ range n, x ^ i ∧ ∑ i ∈ range n, x ^ i < 1\n⊢ 0 < ∑ i ∈ range (n + 1), x ^ i ∧ ∑ i ∈ range (n + 1), x ^ i < 1"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "n✝ : ℕ", "x : α", "inst✝ : StrictOrderedRing α", "hx : x < 0", "hx' : 0 < x + 1", "n : ℕ", "hmn✝ : 2 ≤ n", "ihn : 0 < ∑ i ∈ range n, x ^ i ∧ ∑ i ∈ range n, x ^ i < 1"], "goal": "-x * ∑ i ∈ range n, x ^ i < 1 ∧ x * ∑ i ∈ range n, x ^ i < 0"}], "premise": [1674, 2106, 2107, 102663, 105612, 106818], "state_str": "case refine_2\nα : Type u\nβ : Type u_1\nn✝ : ℕ\nx : α\ninst✝ : StrictOrderedRing α\nhx : x < 0\nhx' : 0 < x + 1\nn : ℕ\nhmn✝ : 2 ≤ n\nihn : 0 < ∑ i ∈ range n, x ^ i ∧ ∑ i ∈ range n, x ^ i < 1\n⊢ -x * ∑ i ∈ range n, x ^ i < 1 ∧ x * ∑ i ∈ range n, x ^ i < 0"} +{"state": [{"context": ["α✝ : Type u_1", "inst✝⁸ : Zero α✝", "inst✝⁷ : One α✝", "inst✝⁶ : Neg α✝", "α : Type u_2", "β : Type u_3", "F : Type u_4", "inst✝⁵ : AddGroupWithOne α", "inst✝⁴ : One β", "inst✝³ : SubtractionMonoid β", "inst✝² : FunLike F α β", "inst✝¹ : AddMonoidHomClass F α β", "inst✝ : OneHomClass F α β", "f : F", "s : SignType"], "goal": "f ↑s = ↑s"}], "premise": [146302], "state_str": "α✝ : Type u_1\ninst✝⁸ : Zero α✝\ninst✝⁷ : One α✝\ninst✝⁶ : Neg α✝\nα : Type u_2\nβ : Type u_3\nF : Type u_4\ninst✝⁵ : AddGroupWithOne α\ninst✝⁴ : One β\ninst✝³ : SubtractionMonoid β\ninst✝² : FunLike F α β\ninst✝¹ : AddMonoidHomClass F α β\ninst✝ : OneHomClass F α β\nf : F\ns : SignType\n⊢ f ↑s = ↑s"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "A : Type u_3", "a✝ a₁ a�� b c : G", "inst✝ : Group G", "s✝ s t : Set G", "ht : IsSubgroup t", "h : s ⊆ t", "a : G", "ha : a ∈ closure s"], "goal": "a ∈ t"}], "premise": [125506, 125507, 126038], "state_str": "G : Type u_1\nH : Type u_2\nA : Type u_3\na✝ a₁ a₂ b c : G\ninst✝ : Group G\ns✝ s t : Set G\nht : IsSubgroup t\nh : s ⊆ t\na : G\nha : a ∈ closure s\n⊢ a ∈ t"} +{"state": [{"context": ["R : Type u", "inst✝² : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝¹ : Field F", "W : Jacobian F", "inst✝ : NoZeroDivisors R", "P Q : Fin 3 → R", "hP : W'.Equation P", "hQ : W'.Equation Q", "hx : P x * Q z ^ 2 = Q x * P z ^ 2", "hy : P y * Q z ^ 3 ≠ W'.negY Q * P z ^ 3"], "goal": "P y ≠ W'.negY P"}], "premise": [1673, 2112, 108583, 117831, 145499], "state_str": "R : Type u\ninst✝² : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝¹ : Field F\nW : Jacobian F\ninst✝ : NoZeroDivisors R\nP Q : Fin 3 → R\nhP : W'.Equation P\nhQ : W'.Equation Q\nhx : P x * Q z ^ 2 = Q x * P z ^ 2\nhy : P y * Q z ^ 3 ≠ W'.negY Q * P z ^ 3\n⊢ P y ≠ W'.negY P"} +{"state": [{"context": ["R : Type u", "inst✝² : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝¹ : Field F", "W : Jacobian F", "inst✝ : NoZeroDivisors R", "P Q : Fin 3 → R", "hP : W'.Equation P", "hQ : W'.Equation Q", "hx : P x * Q z ^ 2 = Q x * P z ^ 2", "hy : P y * Q z ^ 3 ≠ W'.negY Q * P z ^ 3", "hy' : P y * Q z ^ 3 - Q y * P z ^ 3 = 0"], "goal": "P y ≠ W'.negY P"}], "premise": [53688], "state_str": "R : Type u\ninst✝² : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝¹ : Field F\nW : Jacobian F\ninst✝ : NoZeroDivisors R\nP Q : Fin 3 → R\nhP : W'.Equation P\nhQ : W'.Equation Q\nhx : P x * Q z ^ 2 = Q x * P z ^ 2\nhy : P y * Q z ^ 3 ≠ W'.negY Q * P z ^ 3\nhy' : P y * Q z ^ 3 - Q y * P z ^ 3 = 0\n⊢ P y ≠ W'.negY P"} +{"state": [{"context": ["R : Type u", "inst✝² : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝¹ : Field F", "W : Jacobian F", "inst✝ : NoZeroDivisors R", "P Q : Fin 3 → R", "hP : W'.Equation P", "hQ : W'.Equation Q", "hx : P x * Q z ^ 2 = Q x * P z ^ 2", "hy' : P y * Q z ^ 3 - Q y * P z ^ 3 = 0", "hy : P y = W'.negY P"], "goal": "P y * Q z ^ 3 = W'.negY Q * P z ^ 3"}], "premise": [53890, 53893, 53896, 53903, 145503], "state_str": "R : Type u\ninst✝² : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝¹ : Field F\nW : Jacobian F\ninst✝ : NoZeroDivisors R\nP Q : Fin 3 → R\nhP : W'.Equation P\nhQ : W'.Equation Q\nhx : P x * Q z ^ 2 = Q x * P z ^ 2\nhy' : P y * Q z ^ 3 - Q y * P z ^ 3 = 0\nhy : P y = W'.negY P\n⊢ P y * Q z ^ 3 = W'.negY Q * P z ^ 3"} +{"state": [{"context": ["ι : Type u_1", "M : Type u_2", "n : ℕ", "I : Box ι", "i✝ : ι", "x✝ : ℝ", "y : ι → ℝ", "i : ι", "x : ℝ"], "goal": "I.splitUpper i x = ⊥ ↔ I.upper i ≤ x"}], "premise": [34370, 71471], "state_str": "ι : Type u_1\nM : Type u_2\nn : ℕ\nI : Box ι\ni✝ : ι\nx✝ : ℝ\ny : ι → ℝ\ni : ι\nx : ℝ\n⊢ I.splitUpper i x = ⊥ ↔ I.upper i ≤ x"} +{"state": [{"context": ["ι : Type u_1", "M : Type u_2", "n : ℕ", "I : Box ι", "i✝ : ι", "x✝ : ℝ", "y : ι → ℝ", "i : ι", "x : ℝ"], "goal": "(I.upper i ≤ max x (I.lower i) ∨ ∃ x, x ≠ i ∧ I.upper x ≤ I.lower x) ↔ I.upper i ≤ x"}], "premise": [34334], "state_str": "ι : Type u_1\nM : Type u_2\nn : ℕ\nI : Box ι\ni✝ : ι\nx✝ : ℝ\ny : ι → ℝ\ni : ι\nx : ℝ\n⊢ (I.upper i ≤ max x (I.lower i) ∨ ∃ x, x ≠ i ∧ I.upper x ≤ I.lower x) ↔ I.upper i ≤ x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s : ℕ → Set α", "H : ∀ (x : α), ∃ n, x ∈ s n", "inst✝ : (x : α) → (n : ℕ) → Decidable (x ∈ s n)", "n : ℕ", "x : α"], "goal": "x ∈ (fun x => Nat.find ⋯) ⁻¹' {n} ↔ x ∈ disjointed s n"}], "premise": [12881, 143303], "state_str": "case h\nα : Type u_1\nβ : Type u_2\ns : ℕ → Set α\nH : ∀ (x : α), ∃ n, x ∈ s n\ninst✝ : (x : α) → (n : ℕ) → Decidable (x ∈ s n)\nn : ℕ\nx : α\n⊢ x ∈ (fun x => Nat.find ⋯) ⁻¹' {n} ↔ x ∈ disjointed s n"} +{"state": [{"context": ["ι : Type u_1", "ι₂ : Type u_2", "ι₃ : Type u_3", "R : Type u_4", "inst✝⁷ : CommSemiring R", "R₁ : Type u_5", "R₂ : Type u_6", "s : ι → Type u_7", "inst✝⁶ : (i : ι) → AddCommMonoid (s i)", "inst✝⁵ : (i : ι) → Module R (s i)", "M : Type u_8", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R M", "E : Type u_9", "inst✝² : AddCommMonoid E", "inst✝¹ : Module R E", "F : Type u_10", "inst✝ : AddCommMonoid F", "x y : ⨂[R] (i : ι), s i", "p q : FreeAddMonoid (R × ((i : ι) → s i))", "hp : p ∈ x.lifts", "hq : q ∈ y.lifts"], "goal": "p + q ∈ (x + y).lifts"}], "premise": [7241, 131585], "state_str": "ι : Type u_1\nι₂ : Type u_2\nι₃ : Type u_3\nR : Type u_4\ninst✝⁷ : CommSemiring R\nR₁ : Type u_5\nR₂ : Type u_6\ns : ι → Type u_7\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type u_8\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_9\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type u_10\ninst✝ : AddCommMonoid F\nx y : ⨂[R] (i : ι), s i\np q : FreeAddMonoid (R × ((i : ι) → s i))\nhp : p ∈ x.lifts\nhq : q ∈ y.lifts\n⊢ p + q ∈ (x + y).lifts"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.30360, u_1} C", "inst✝ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "h : S.RightHomologyData", "A : C", "hf : S.f = 0", "hg : S.g = 0"], "goal": "S.f ≫ 𝟙 S.X₂ = 0"}], "premise": [96174], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.30360, u_1} C\ninst✝ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\nh : S.RightHomologyData\nA : C\nhf : S.f = 0\nhg : S.g = 0\n⊢ S.f ≫ 𝟙 S.X₂ = 0"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.30360, u_1} C", "inst✝ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "h : S.RightHomologyData", "A : C", "hf : S.f = 0", "hg : S.g = 0"], "goal": "𝟙 S.X₂ ≫ S.g = 0"}], "premise": [93604], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.30360, u_1} C\ninst✝ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\nh : S.RightHomologyData\nA : C\nhf : S.f = 0\nhg : S.g = 0\n⊢ 𝟙 S.X₂ ≫ S.g = 0"} +{"state": [{"context": ["r : ℝ"], "goal": "0 < r.toNNReal ↔ 0 < r"}], "premise": [14279, 146644], "state_str": "r : ℝ\n⊢ 0 < r.toNNReal ↔ 0 < r"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "f g : α → β", "c c₁ c₂ x : α", "inst✝¹ : AddGroup α", "inst✝ : AddGroup β", "h : Antiperiodic f c", "n : ℤ"], "goal": "f (x - n • c) = ↑n.negOnePow • f x"}], "premise": [109519, 117848, 119789, 122200], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf g : α → β\nc c₁ c₂ x : α\ninst✝¹ : AddGroup α\ninst✝ : AddGroup β\nh : Antiperiodic f c\nn : ℤ\n⊢ f (x - n • c) = ↑n.negOnePow • f x"} +{"state": [{"context": ["α : Type u_1", "s✝ t✝ : Finset α", "inst✝ : DecidableEq α", "s t : Finset α"], "goal": "t ∈ s.ssubsets ↔ t ⊂ s"}], "premise": [1713, 1723, 136708, 138701, 138958], "state_str": "α : Type u_1\ns✝ t✝ : Finset α\ninst✝ : DecidableEq α\ns t : Finset α\n⊢ t ∈ s.ssubsets ↔ t ⊂ s"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "c x y : P", "R : ℝ", "hR : R ≠ 0", "hy : y ≠ c"], "goal": "inversion c R ⁻¹' ↑(perpBisector c y) = sphere (inversion c R y) (R ^ 2 / dist y c) \\ {c}"}], "premise": [68673, 69018, 69020], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nc x y : P\nR : ℝ\nhR : R ≠ 0\nhy : y ≠ c\n⊢ inversion c R ⁻¹' ↑(perpBisector c y) = sphere (inversion c R y) (R ^ 2 / dist y c) \\ {c}"} +{"state": [{"context": ["G : Type u_1", "inst✝ : CommGroup G", "a b : G"], "goal": "a⁻¹ * b * a = b"}], "premise": [119707, 119829], "state_str": "G : Type u_1\ninst✝ : CommGroup G\na b : G\n⊢ a⁻¹ * b * a = b"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral"], "goal": "⊥.jacobson = ⊥"}], "premise": [109088, 109089], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\n⊢ ⊥.jacobson = ⊥"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S"], "goal": "⊥.jacobson = ⊥"}], "premise": [77704], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\n⊢ ⊥.jacobson = ⊥"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM"], "goal": "⊥.jacobson = ⊥"}], "premise": [119389], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\n⊢ ⊥.jacobson = ⊥"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯"], "goal": "⊥.jacobson = ⊥"}], "premise": [1674, 2106, 2107, 14273, 14277, 18803, 18818, 19220, 77539, 77547, 77550, 77699, 79950, 80706, 80712, 82157], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\n⊢ ⊥.jacobson = ⊥"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [80663], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this : (comap (algebraMap S Sₘ) I).IsPrime"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [80663], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis : (comap (algebraMap S Sₘ) I).IsPrime\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝¹ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝ : (comap (algebraMap S Sₘ) I).IsPrime", "this : (comap φ' I).IsPrime"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [80379], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝¹ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝ : (comap (algebraMap S Sₘ) I).IsPrime\nthis : (comap φ' I).IsPrime\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝¹ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝ : (comap φ' I).IsPrime", "this : ⊥.IsPrime"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [77646], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝¹ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝ : (comap φ' I).IsPrime\nthis : ⊥.IsPrime\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝¹ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝ : (comap φ' I).IsPrime", "this : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [14272], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝¹ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝ : (comap φ' I).IsPrime\nthis : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝¹ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝ : (comap φ' I).IsPrime", "this : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [14272], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝¹ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝ : (comap φ' I).IsPrime\nthis : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝¹ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝ : (comap φ' I).IsPrime", "this : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯", "g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [80942], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝² : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝¹ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝ : (comap φ' I).IsPrime\nthis : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\ng : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝³ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝² : (comap (algebraMap S Sₘ) I).IsPrime", "this✝¹ : (comap φ' I).IsPrime", "this✝ : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯", "g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯", "this : (comap φ' I).IsMaximal"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [1673, 2107, 77548], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝³ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝² : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝¹ : (comap φ' I).IsPrime\nthis✝ : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\ng : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯\nthis : (comap φ' I).IsMaximal\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝⁴ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝³ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝² : (comap φ' I).IsPrime", "this✝¹ : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯", "g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯", "this✝ : (comap φ' I).IsMaximal", "this : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [80644], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝⁴ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝³ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝² : (comap φ' I).IsPrime\nthis✝¹ : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\ng : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯\nthis✝ : (comap φ' I).IsMaximal\nthis : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝³ : (comap φ' I).IsPrime", "this✝² : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯", "g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯", "this✝¹ : (comap φ' I).IsMaximal", "this✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal", "this : (comap φ (comap (algebraMap S Sₘ) I)).IsMaximal"], "goal": "(comap (algebraMap S Sₘ) I).IsMaximal"}], "premise": [81168], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝³ : (comap φ' I).IsPrime\nthis✝² : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\ng : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯\nthis✝¹ : (comap φ' I).IsMaximal\nthis✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal\nthis : (comap φ (comap (algebraMap S Sₘ) I)).IsMaximal\n⊢ (comap (algebraMap S Sₘ) I).IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝³ : (comap φ' I).IsPrime", "this✝² : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯", "g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯", "this✝¹ : (comap φ' I).IsMaximal", "this✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal", "this : ⊥.IsMaximal"], "goal": "⊥.IsMaximal"}], "premise": [1674, 2100, 18818, 80682, 80937, 81212], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝³ : (comap φ' I).IsPrime\nthis✝² : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\ng : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯\nthis✝¹ : (comap φ' I).IsMaximal\nthis✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal\nthis : ⊥.IsMaximal\n⊢ ⊥.IsMaximal"} +{"state": [{"context": ["R✝ : Type u_1", "S : Type u_2", "inst✝¹³ : CommRing R✝", "inst✝¹² : CommRing S", "inst✝¹¹ : IsDomain S", "Rₘ✝ : Type u_3", "Sₘ✝ : Type u_4", "inst✝¹⁰ : CommRing Rₘ✝", "inst✝⁹ : CommRing Sₘ✝", "R : Type u_5", "inst✝⁸ : CommRing R", "inst✝⁷ : IsDomain R", "inst✝⁶ : IsJacobson R", "Rₘ : Type u_6", "Sₘ : Type u_7", "inst✝⁵ : CommRing Rₘ", "inst✝⁴ : CommRing Sₘ", "φ : R →+* S", "hφ : Function.Injective ⇑φ", "x : R", "hx : x ≠ 0", "inst✝³ : Algebra R Rₘ", "inst✝² : IsLocalization.Away x Rₘ", "inst✝¹ : Algebra S Sₘ", "inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ", "hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral", "hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S", "this✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM", "φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯", "I : Ideal Sₘ", "hI : I.IsMaximal", "this✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime", "this✝³ : (comap φ' I).IsPrime", "this✝² : ⊥.IsPrime", "hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ", "f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯", "g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯", "this✝¹ : (comap φ' I).IsMaximal", "this✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal", "this : ⊥.IsMaximal"], "goal": "f.IsIntegral"}], "premise": [2100, 76975, 80644, 81168, 81212, 81214, 81940, 81942, 81945, 81949], "state_str": "R✝ : Type u_1\nS : Type u_2\ninst✝¹³ : CommRing R✝\ninst✝¹² : CommRing S\ninst✝¹¹ : IsDomain S\nRₘ✝ : Type u_3\nSₘ✝ : Type u_4\ninst✝¹⁰ : CommRing Rₘ✝\ninst✝⁹ : CommRing Sₘ✝\nR : Type u_5\ninst✝⁸ : CommRing R\ninst✝⁷ : IsDomain R\ninst✝⁶ : IsJacobson R\nRₘ : Type u_6\nSₘ : Type u_7\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\nφ : R →+* S\nhφ : Function.Injective ⇑φ\nx : R\nhx : x ≠ 0\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization.Away x Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ\nhφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral\nhM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S\nthis✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM\nφ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯\nI : Ideal Sₘ\nhI : I.IsMaximal\nthis✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime\nthis✝³ : (comap φ' I).IsPrime\nthis✝² : ⊥.IsPrime\nhcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ\nf : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I :=\n quotientMap (comap (algebraMap S Sₘ) I) φ ⋯\ng : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯\nthis✝¹ : (comap φ' I).IsMaximal\nthis✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal\nthis : ⊥.IsMaximal\n⊢ f.IsIntegral"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝ : LinearOrder α", "s : Finset ι", "H : s.Nonempty", "f : ι → α", "a : α"], "goal": "s.sup' H f < a ↔ ∀ i ∈ s, f i < a"}], "premise": [20767, 20768, 139754, 139767], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝ : LinearOrder α\ns : Finset ι\nH : s.Nonempty\nf : ι → α\na : α\n⊢ s.sup' H f < a ↔ ∀ i ∈ s, f i < a"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝ : LinearOrder α", "s : Finset ι", "H : s.Nonempty", "f : ι → α", "a : α"], "goal": "(∀ b ∈ s, (WithBot.some ∘ f) b < ↑a) ↔ ∀ i ∈ s, f i < a"}], "premise": [2017, 20767], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝ : LinearOrder α\ns : Finset ι\nH : s.Nonempty\nf : ι → α\na : α\n⊢ (∀ b ∈ s, (WithBot.some ∘ f) b < ↑a) ↔ ∀ i ∈ s, f i < a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "f : α → β", "s✝ t✝ : Set α", "hf : Surjective f", "s t : Set β", "h : Disjoint (f ⁻¹' s) (f ⁻¹' t)"], "goal": "Disjoint s t"}], "premise": [133565, 133566, 134065, 134108, 134144], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : α → β\ns✝ t✝ : Set α\nhf : Surjective f\ns t : Set β\nh : Disjoint (f ⁻¹' s) (f ⁻¹' t)\n⊢ Disjoint s t"} +{"state": [{"context": ["C : Type u", "inst✝⁸ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w₁", "inst✝⁷ : Category.{max v u, w₁} D", "E : Type w₂", "inst✝⁶ : Category.{max v u, w₂} E", "F : D ⥤ E", "inst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D", "inst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E", "inst✝³ : (X : C) → (W : J.Cover X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (W.index P).multicospan F", "P : Cᵒᵖ ⥤ D", "inst✝² : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "inst✝¹ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ E", "inst✝ : (X : C) → PreservesColimitsOfShape (J.Cover X)ᵒᵖ F"], "goal": "J.toPlus (P ⋙ F) ≫ (J.plusCompIso F P).inv = whiskerRight (J.toPlus P) F"}], "premise": [88769], "state_str": "C : Type u\ninst✝⁸ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category.{max v u, w₁} D\nE : Type w₂\ninst✝⁶ : Category.{max v u, w₂} E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : (X : C) → (W : J.Cover X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (W.index P).multicospan F\nP : Cᵒᵖ ⥤ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\ninst✝¹ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ E\ninst✝ : (X : C) → PreservesColimitsOfShape (J.Cover X)ᵒᵖ F\n⊢ J.toPlus (P ⋙ F) ≫ (J.plusCompIso F P).inv = whiskerRight (J.toPlus P) F"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "R X Y Z : C", "f : X ⟶ Y", "a b : R ⟶ X", "f₁ : X ⟶ Y", "f₂ : Y ⟶ Z", "inst✝ : Mono f₂", "big_k : IsKernelPair (f₁ ≫ f₂) a b"], "goal": "a ≫ f₁ = b ≫ f₁"}], "premise": [96173, 96191, 98982], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\nR X Y Z : C\nf : X ⟶ Y\na b : R ⟶ X\nf₁ : X ⟶ Y\nf₂ : Y ⟶ Z\ninst✝ : Mono f₂\nbig_k : IsKernelPair (f₁ ≫ f₂) a b\n⊢ a ≫ f₁ = b ≫ f₁"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν✝ : Measure α", "inst✝² : MeasurableSpace δ", "inst✝¹ : NormedAddCommGroup β", "inst✝ : NormedAddCommGroup γ", "ν : Measure δ", "g : δ → β", "f : α → δ", "hf : MeasurePreserving f μ ν", "hg : AEStronglyMeasurable g ν"], "goal": "Integrable (g ∘ f) μ ↔ Integrable g ν"}], "premise": [88683], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν✝ : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nν : Measure δ\ng : δ → β\nf : α → δ\nhf : MeasurePreserving f μ ν\nhg : AEStronglyMeasurable g ν\n⊢ Integrable (g ∘ f) μ ↔ Integrable g ν"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν✝ : Measure α", "inst✝² : MeasurableSpace δ", "inst✝¹ : NormedAddCommGroup β", "inst✝ : NormedAddCommGroup γ", "ν : Measure δ", "g : δ → β", "f : α → δ", "hf : MeasurePreserving f μ ν", "hg : AEStronglyMeasurable g (Measure.map f μ)"], "goal": "Integrable (g ∘ f) μ ↔ Integrable g (Measure.map f μ)"}], "premise": [1718, 28478, 29106, 88684], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν✝ : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nν : Measure δ\ng : δ → β\nf : α → δ\nhf : MeasurePreserving f μ ν\nhg : AEStronglyMeasurable g (Measure.map f μ)\n⊢ Integrable (g ∘ f) μ ↔ Integrable g (Measure.map f μ)"} +{"state": [{"context": ["α : Type u_1", "M : Type u_2", "inst✝² : PartialOrder α", "inst✝¹ : CommMonoid M", "f : α → M", "a✝ b : α", "inst✝ : LocallyFiniteOrderTop α", "a : α"], "goal": "(∏ x ∈ Ioi a, f x) * f a = ∏ x ∈ Ici a, f x"}], "premise": [119707, 124698], "state_str": "α : Type u_1\nM : Type u_2\ninst✝² : PartialOrder α\ninst✝¹ : CommMonoid M\nf : α → M\na✝ b : α\ninst✝ : LocallyFiniteOrderTop α\na : α\n⊢ (∏ x ∈ Ioi a, f x) * f a = ∏ x ∈ Ici a, f x"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "inst✝ : Semiring R", "s : Set R[X]", "s_fin : s.Finite", "hs : s.Nonempty"], "goal": "∃ p' ∈ s, ∀ p ∈ Submodule.span R s, p.degree ≤ p'.degree"}], "premise": [135188], "state_str": "R : Type u\nS : Type u_1\ninst✝ : Semiring R\ns : Set R[X]\ns_fin : s.Finite\nhs : s.Nonempty\n⊢ ∃ p' ∈ s, ∀ p ∈ Submodule.span R s, p.degree ≤ p'.degree"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "inst✝ : Semiring R", "s : Set R[X]", "s_fin : s.Finite", "hs : s.Nonempty", "a : R[X]", "has : a ∈ s", "hmax : ∀ a' ∈ s, a.degree ≤ a'.degree → a.degree = a'.degree", "p : R[X]", "hp : p ∈ Submodule.span R s"], "goal": "p.degree ≤ a.degree"}], "premise": [75771], "state_str": "case intro.intro\nR : Type u\nS : Type u_1\ninst✝ : Semiring R\ns : Set R[X]\ns_fin : s.Finite\nhs : s.Nonempty\na : R[X]\nhas : a ∈ s\nhmax : ∀ a' ∈ s, a.degree ≤ a'.degree → a.degree = a'.degree\np : R[X]\nhp : p ∈ Submodule.span R s\n⊢ p.degree ≤ a.degree"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s : Multiset α", "t : Multiset β", "s₁ s₂ : Multiset α", "t₁ t₂ : Multiset β", "a : α", "b : β", "x : α ⊕ β"], "goal": "inl a ∈ s.disjSum t ↔ a ∈ s"}], "premise": [1989, 134337], "state_str": "α : Type u_1\nβ : Type u_2\ns : Multiset α\nt : Multiset β\ns₁ s₂ : Multiset α\nt₁ t₂ : Multiset β\na : α\nb : β\nx : α ⊕ β\n⊢ inl a ∈ s.disjSum t ↔ a ∈ s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s : Multiset α", "t : Multiset β", "s₁ s₂ : Multiset α", "t₁ t₂ : Multiset β", "a : α", "b✝ : β", "x : α ⊕ β", "b : β", "left✝ : b ∈ t", "hb : inr b = inl a"], "goal": "False"}], "premise": [187], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\ns : Multiset α\nt : Multiset β\ns₁ s₂ : Multiset α\nt₁ t₂ : Multiset β\na : α\nb✝ : β\nx : α ⊕ β\nb : β\nleft✝ : b ∈ t\nhb : inr b = inl a\n⊢ False"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "W : Type v", "G : SimpleGraph V", "G' : G.Subgraph", "s✝ s s' : Set (Sym2 V)", "h : s ⊆ s'"], "goal": "G'.deleteEdges s' ≤ G'.deleteEdges s"}], "premise": [1186, 19958, 20003, 52867, 52868], "state_str": "ι : Sort u_1\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : G.Subgraph\ns✝ s s' : Set (Sym2 V)\nh : s ⊆ s'\n⊢ G'.deleteEdges s' ≤ G'.deleteEdges s"} +{"state": [{"context": ["R : Type u_1", "α : Type u_2", "β : Type u_3", "δ : Type u_4", "γ : Type u_5", "ι : Type u_6", "m0 : MeasurableSpace α", "inst✝¹ : MeasurableSpace β", "inst✝ : MeasurableSpace γ", "μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α", "hs : MeasurableSet s"], "goal": "(μ.restrict s) t = μ (t ∩ s)"}], "premise": [27702, 29071, 32213], "state_str": "R : Type u_1\nα : Type u_2\nβ : Type u_3\nδ : Type u_4\nγ : Type u_5\nι : Type u_6\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nhs : MeasurableSet s\n⊢ (μ.restrict s) t = μ (t ∩ s)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "α : Type u_8", "l : Filter α", "g : α → M", "hg : ∀ᶠ (z : α) in l, g z ∈ f.source", "y : M", "hy : y ∈ f.source"], "goal": "Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y)) ↔ Tendsto g l (𝓝 y)"}], "premise": [1674, 16166, 16355, 55619, 67811], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\nα : Type u_8\nl : Filter α\ng : α → M\nhg : ∀ᶠ (z : α) in l, g z ∈ f.source\ny : M\nhy : y ∈ f.source\n⊢ Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y)) ↔ Tendsto g l (𝓝 y)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "α : Type u_8", "l : Filter α", "g : α → M", "hg : ∀ᶠ (z : α) in l, g z ∈ f.source", "y : M", "hy : y ∈ f.source", "h : Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y))", "u : Set M", "hu : u ∈ 𝓝 y"], "goal": "g ⁻¹' u ∈ l"}], "premise": [16355, 55619, 67821], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\nα : Type u_8\nl : Filter α\ng : α → M\nhg : ∀ᶠ (z : α) in l, g z ∈ f.source\ny : M\nhy : y ∈ f.source\nh : Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y))\nu : Set M\nhu : u ∈ 𝓝 y\n⊢ g ⁻¹' u ∈ l"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "α : Type u_8", "l : Filter α", "g : α → M", "hg : ∀ᶠ (z : α) in l, g z ∈ f.source", "y : M", "hy : y ∈ f.source", "h : Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y))", "u : Set M", "hu : u ∈ 𝓝 y", "this : Tendsto (↑(f.extend I).symm ∘ ↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I).symm (↑(f.extend I) y)))"], "goal": "g ⁻¹' u ∈ l"}], "premise": [67806], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\nα : Type u_8\nl : Filter α\ng : α → M\nhg : ∀ᶠ (z : α) in l, g z ∈ f.source\ny : M\nhy : y ∈ f.source\nh : Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y))\nu : Set M\nhu : u ∈ 𝓝 y\nthis : Tendsto (↑(f.extend I).symm ∘ ↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I).symm (↑(f.extend I) y)))\n⊢ g ⁻¹' u ∈ l"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "α : Type u_8", "l : Filter α", "g : α → M", "hg : ∀ᶠ (z : α) in l, g z ∈ f.source", "y : M", "hy : y ∈ f.source", "h : Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y))", "u : Set M", "hu : u ∈ 𝓝 y", "this : Tendsto (↑(f.extend I).symm ∘ ↑(f.extend I) ∘ g) l (𝓝 y)"], "goal": "g ⁻¹' u ∈ l"}], "premise": [1673, 15889, 16166, 131585], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\nα : Type u_8\nl : Filter α\ng : α → M\nhg : ∀ᶠ (z : α) in l, g z ∈ f.source\ny : M\nhy : y ∈ f.source\nh : Tendsto (↑(f.extend I) ∘ g) l (𝓝 (↑(f.extend I) y))\nu : Set M\nhu : u ∈ 𝓝 y\nthis : Tendsto (↑(f.extend I).symm ∘ ↑(f.extend I) ∘ g) l (𝓝 y)\n⊢ g ⁻¹' u ∈ l"} +{"state": [{"context": [], "goal": "Continuous negMulLog"}], "premise": [37741, 37751, 66669], "state_str": "⊢ Continuous negMulLog"} +{"state": [{"context": ["α : Type u", "inst✝ : Infinite α", "c : Cardinal.{u}"], "goal": "#{ t // #↑t ≤ c } ≤ #α ^ c"}], "premise": [14273, 48804, 49461], "state_str": "α : Type u\ninst✝ : Infinite α\nc : Cardinal.{u}\n⊢ #{ t // #↑t ≤ c } ≤ #α ^ c"} +{"state": [{"context": ["α : Type u", "inst✝ : Infinite α", "c : Cardinal.{u}"], "goal": "#{ t // #↑t ≤ c } ≤ (#α + 1) ^ c"}], "premise": [48571], "state_str": "α : Type u\ninst✝ : Infinite α\nc : Cardinal.{u}\n⊢ #{ t // #↑t ≤ c } ≤ (#α + 1) ^ c"} +{"state": [{"context": ["α : Type u", "inst✝ : Infinite α", "β : Type u"], "goal": "#{ t // #↑t ≤ #β } ≤ (#α + 1) ^ #β"}], "premise": [48589], "state_str": "case h\nα : Type u\ninst✝ : Infinite α\nβ : Type u\n⊢ #{ t // #↑t ≤ #β } ≤ (#α + 1) ^ #β"} +{"state": [{"context": ["α : Type u", "inst✝ : Infinite α", "β : Type u", "s : Set α", "g : ↑s ↪ β"], "goal": "∃ a, (fun f => ⟨Sum.inl ⁻¹' range f, ⋯⟩) a = ⟨s, ⋯⟩"}], "premise": [1674, 2045], "state_str": "case h.hf.mk.intro\nα : Type u\ninst✝ : Infinite α\nβ : Type u\ns : Set α\ng : ↑s ↪ β\n⊢ ∃ a, (fun f => ⟨Sum.inl ⁻¹' range f, ⋯⟩) a = ⟨s, ⋯⟩"} +{"state": [{"context": ["α : Type u", "inst✝ : Infinite α", "β : Type u", "s : Set α", "g : ↑s ↪ β"], "goal": "((fun f => ⟨Sum.inl ⁻¹' range f, ⋯⟩) fun y => if h : ∃ x, g x = y then Sum.inl ↑(Classical.choose h) else Sum.inr { down := 0 }) = ⟨s, ⋯⟩"}], "premise": [1751], "state_str": "case h\nα : Type u\ninst✝ : Infinite α\nβ : Type u\ns : Set α\ng : ↑s ↪ β\n⊢ ((fun f => ⟨Sum.inl ⁻¹' range f, ⋯⟩) fun y =>\n if h : ∃ x, g x = y then Sum.inl ↑(Classical.choose h) else Sum.inr { down := 0 }) =\n ⟨s, ⋯⟩"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝ : Category.{v₂, u₂} D", "F : C ⥤ D", "X Y Z✝ : C", "f : Y ⟶ X", "ι : Type u_1", "Z : ι → C", "g : (i : ι) → Z i ⟶ X", "j : ⦃Y : C⦄ → (f : Y ⟶ X) → ofArrows Z g f → Type u_2", "W : ⦃Y : C⦄ → (f : Y ⟶ X) → (H : ofArrows Z g f) → j f H → C", "k : ⦃Y : C⦄ → (f : Y ⟶ X) → (H : ofArrows Z g f) → (i : j f H) → W f H i ⟶ Y"], "goal": "((ofArrows Z g).bind fun Y f H => ofArrows (W f H) (k f H)) = ofArrows (fun i => W (g i.fst) ⋯ i.snd) fun ij => k (g ij.fst) ⋯ ij.snd ≫ g ij.fst"}], "premise": [1838], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝ : Category.{v₂, u₂} D\nF : C ⥤ D\nX Y Z✝ : C\nf : Y ⟶ X\nι : Type u_1\nZ : ι → C\ng : (i : ι) → Z i ⟶ X\nj : ⦃Y : C⦄ → (f : Y ⟶ X) → ofArrows Z g f → Type u_2\nW : ⦃Y : C⦄ → (f : Y ⟶ X) → (H : ofArrows Z g f) → j f H → C\nk : ⦃Y : C⦄ → (f : Y ⟶ X) → (H : ofArrows Z g f) → (i : j f H) → W f H i ⟶ Y\n⊢ ((ofArrows Z g).bind fun Y f H => ofArrows (W f H) (k f H)) =\n ofArrows (fun i => W (g i.fst) ⋯ i.snd) fun ij => k (g ij.fst) ⋯ ij.snd ≫ g ij.fst"} +{"state": [{"context": ["L : Language", "ι : Type v", "inst✝⁴ : Preorder ι", "G : ι → Type w", "inst✝³ : (i : ι) → L.Structure (G i)", "f : (i j : ι) → i ≤ j → G i ↪[L] G j", "inst✝² : IsDirected ι fun x x_1 => x ≤ x_1", "inst✝¹ : DirectedSystem G fun i j h => ⇑(f i j h)", "inst✝ : Nonempty ι", "n : ℕ", "F : L.Functions n", "i : ι", "x : Fin n → G i"], "goal": "(funMap F fun a => ⟦Structure.Sigma.mk f i (x a)⟧) = ⟦Structure.Sigma.mk f i (funMap F x)⟧"}], "premise": [24579, 127781], "state_str": "L : Language\nι : Type v\ninst✝⁴ : Preorder ι\nG : ι → Type w\ninst✝³ : (i : ι) → L.Structure (G i)\nf : (i j : ι) → i ≤ j → G i ↪[L] G j\ninst✝² : IsDirected ι fun x x_1 => x ≤ x_1\ninst✝¹ : DirectedSystem G fun i j h => ⇑(f i j h)\ninst✝ : Nonempty ι\nn : ℕ\nF : L.Functions n\ni : ι\nx : Fin n → G i\n⊢ (funMap F fun a => ⟦Structure.Sigma.mk f i (x a)⟧) = ⟦Structure.Sigma.mk f i (funMap F x)⟧"} +{"state": [{"context": ["L : Language", "ι : Type v", "inst✝⁴ : Preorder ι", "G : ι → Type w", "inst✝³ : (i : ι) → L.Structure (G i)", "f : (i j : ι) → i ≤ j → G i ↪[L] G j", "inst✝² : IsDirected ι fun x x_1 => x ≤ x_1", "inst✝¹ : DirectedSystem G fun i j h => ⇑(f i j h)", "inst✝ : Nonempty ι", "n : ℕ", "F : L.Functions n", "i : ι", "x : Fin n → G i", "k : ι", "ik : i ≤ k", "jk : Classical.choose ⋯ ≤ k"], "goal": "(f (Classical.choose ⋯) k jk) (funMap F (unify f (fun i_1 => Structure.Sigma.mk f i (x i_1)) (Classical.choose ⋯) ⋯)) = (f i k ik) (funMap F x)"}], "premise": [24277, 25036], "state_str": "case intro.intro\nL : Language\nι : Type v\ninst✝⁴ : Preorder ι\nG : ι → Type w\ninst✝³ : (i : ι) → L.Structure (G i)\nf : (i j : ι) → i ≤ j → G i ↪[L] G j\ninst✝² : IsDirected ι fun x x_1 => x ≤ x_1\ninst✝¹ : DirectedSystem G fun i j h => ⇑(f i j h)\ninst✝ : Nonempty ι\nn : ℕ\nF : L.Functions n\ni : ι\nx : Fin n → G i\nk : ι\nik : i ≤ k\njk : Classical.choose ⋯ ≤ k\n⊢ (f (Classical.choose ⋯) k jk)\n (funMap F (unify f (fun i_1 => Structure.Sigma.mk f i (x i_1)) (Classical.choose ⋯) ⋯)) =\n (f i k ik) (funMap F x)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : LinearOrderedSemifield α", "a b c d e : α", "m n : ℤ"], "goal": "a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a"}], "premise": [14317], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\n⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a"} +{"state": [{"context": ["α : Type u_1", "γ : Type u_2", "mα : MeasurableSpace α", "mγ : MeasurableSpace γ", "κ✝ η✝ : Kernel α γ", "hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ", "κ η : Kernel α γ", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel η", "a : α"], "goal": "(κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"}], "premise": [73326], "state_str": "α : Type u_1\nγ : Type u_2\nmα : MeasurableSpace α\nmγ : MeasurableSpace γ\nκ✝ η✝ : Kernel α γ\nhαγ : MeasurableSpace.CountableOrCountablyGenerated α γ\nκ η : Kernel α γ\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel η\na : α\n⊢ (κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"} +{"state": [{"context": ["α : Type u_1", "γ : Type u_2", "mα : MeasurableSpace α", "mγ : MeasurableSpace γ", "κ✝ η✝ : Kernel α γ", "hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ", "κ η : Kernel α γ", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel η", "a : α", "h_eq_add : η.withDensity (κ.rnDeriv η) + κ.singularPart η = κ"], "goal": "(κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"}], "premise": [29067, 72628], "state_str": "α : Type u_1\nγ : Type u_2\nmα : MeasurableSpace α\nmγ : MeasurableSpace γ\nκ✝ η✝ : Kernel α γ\nhαγ : MeasurableSpace.CountableOrCountablyGenerated α γ\nκ η : Kernel α γ\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel η\na : α\nh_eq_add : η.withDensity (κ.rnDeriv η) + κ.singularPart η = κ\n⊢ (κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"} +{"state": [{"context": ["α : Type u_1", "γ : Type u_2", "mα : MeasurableSpace α", "mγ : MeasurableSpace γ", "κ✝ η✝ : Kernel α γ", "hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ", "κ η : Kernel α γ", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel η", "a : α", "h_eq_add : ∀ (a : α) (s : Set γ), MeasurableSet s → ((η.withDensity (κ.rnDeriv η) + κ.singularPart η) a) s = (κ a) s"], "goal": "(κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"}], "premise": [73308], "state_str": "α : Type u_1\nγ : Type u_2\nmα : MeasurableSpace α\nmγ : MeasurableSpace γ\nκ✝ η✝ : Kernel α γ\nhαγ : MeasurableSpace.CountableOrCountablyGenerated α γ\nκ η : Kernel α γ\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel η\na : α\nh_eq_add : ∀ (a : α) (s : Set γ), MeasurableSet s → ((η.withDensity (κ.rnDeriv η) + κ.singularPart η) a) s = (κ a) s\n⊢ (κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"} +{"state": [{"context": ["α : Type u_1", "γ : Type u_2", "mα : MeasurableSpace α", "mγ : MeasurableSpace γ", "κ✝ η✝ : Kernel α γ", "hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ", "κ η : Kernel α γ", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel η", "a : α", "h_eq_add : ((η.withDensity (κ.rnDeriv η) + κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = (κ a) (κ.mutuallySingularSetSlice η a)"], "goal": "(κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"}], "premise": [31458, 72613, 73322, 119727, 120650], "state_str": "α : Type u_1\nγ : Type u_2\nmα : MeasurableSpace α\nmγ : MeasurableSpace γ\nκ✝ η✝ : Kernel α γ\nhαγ : MeasurableSpace.CountableOrCountablyGenerated α γ\nκ η : Kernel α γ\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel η\na : α\nh_eq_add :\n ((η.withDensity (κ.rnDeriv η) + κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) =\n (κ a) (κ.mutuallySingularSetSlice η a)\n⊢ (κ.singularPart η) a = 0 ↔ (κ a) (κ.mutuallySingularSetSlice η a) = 0"} +{"state": [{"context": ["α : Type u_1", "γ : Type u_2", "mα : MeasurableSpace α", "mγ : MeasurableSpace γ", "κ✝ η✝ : Kernel α γ", "hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ", "κ η : Kernel α γ", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel η", "a : α", "h_eq_add : ((κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = (κ a) (κ.mutuallySingularSetSlice η a)"], "goal": "(κ.singularPart η) a = 0 ↔ ((κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = 0"}], "premise": [73327], "state_str": "α : Type u_1\nγ : Type u_2\nmα : MeasurableSpace α\nmγ : MeasurableSpace γ\nκ✝ η✝ : Kernel α γ\nhαγ : MeasurableSpace.CountableOrCountablyGenerated α γ\nκ η : Kernel α γ\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel η\na : α\nh_eq_add : ((κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = (κ a) (κ.mutuallySingularSetSlice η a)\n⊢ (κ.singularPart η) a = 0 ↔ ((κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = 0"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "β : ι → Type u_3", "s s₁ s₂ : Set ι", "t t₁ t₂ : (i : ι) → Set (α i)", "i : ι"], "goal": "Disjoint (univ.pi t₁) (univ.pi t₂) ↔ ∃ i, Disjoint (t₁ i) (t₂ i)"}], "premise": [133565, 134012, 134019], "state_str": "ι : Type u_1\nα : ι → Type u_2\nβ : ι → Type u_3\ns s₁ s₂ : Set ι\nt t₁ t₂ : (i : ι) → Set (α i)\ni : ι\n⊢ Disjoint (univ.pi t₁) (univ.pi t₂) ↔ ∃ i, Disjoint (t₁ i) (t₂ i)"} +{"state": [{"context": ["n k : ℕ"], "goal": "n.descFactorial k = k ! * n.choose k"}], "premise": [2148], "state_str": "n k : ℕ\n⊢ n.descFactorial k = k ! * n.choose k"} +{"state": [{"context": ["n k : ℕ", "h : n ≥ k"], "goal": "n.descFactorial k = k ! * n.choose k"}], "premise": [3696], "state_str": "case inr\nn k : ℕ\nh : n ≥ k\n⊢ n.descFactorial k = k ! * n.choose k"} +{"state": [{"context": ["n k : ℕ", "h : n ≥ k"], "goal": "n.descFactorial k = n.choose k * k !"}], "premise": [4670, 144420], "state_str": "case inr\nn k : ℕ\nh : n ≥ k\n⊢ n.descFactorial k = n.choose k * k !"} +{"state": [{"context": ["n k : ℕ", "h : n ≥ k"], "goal": "n.descFactorial k * (n - k)! = n.choose k * k ! * (n - k)!"}], "premise": [3696, 143889, 144466], "state_str": "case inr\nn k : ℕ\nh : n ≥ k\n⊢ n.descFactorial k * (n - k)! = n.choose k * k ! * (n - k)!"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "K : Type u_5", "M : Type u_6", "M₁ : Type u_7", "M₂ : Type u_8", "M₃ : Type u_9", "V : Type u_10", "V₂ : Type u_11", "inst✝¹³ : Semiring R", "inst✝¹² : Semiring R₂", "inst✝¹¹ : Semiring R₃", "inst✝¹⁰ : AddCommMonoid M", "inst✝⁹ : AddCommMonoid M₂", "inst✝⁸ : AddCommMonoid M₃", "σ₁₂ : R →+* R₂", "σ₂₃ : R₂ →+* R₃", "σ₁₃ : R →+* R₃", "inst✝⁷ : RingHomCompTriple σ₁�� σ₂₃ σ₁₃", "inst✝⁶ : Module R M", "inst✝⁵ : Module R₂ M₂", "inst✝⁴ : Module R₃ M₃", "σ₂₁ : R₂ →+* R", "τ₁₂ : R →+* R₂", "τ₂₃ : R₂ →+* R₃", "τ₁₃ : R →+* R₃", "inst✝³ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃", "F : Type u_12", "inst✝² : FunLike F M M₂", "inst✝¹ : SemilinearMapClass F τ₁₂ M M₂", "inst✝ : RingHomSurjective τ₁₂", "f : F", "p : Submodule R M"], "goal": "p ≤ ker f ↔ map f p = ⊥"}], "premise": [1713, 18818, 110282], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nK : Type u_5\nM : Type u_6\nM₁ : Type u_7\nM₂ : Type u_8\nM₃ : Type u_9\nV : Type u_10\nV₂ : Type u_11\ninst✝¹³ : Semiring R\ninst✝¹² : Semiring R₂\ninst✝¹¹ : Semiring R₃\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : AddCommMonoid M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\ninst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁶ : Module R M\ninst✝⁵ : Module R₂ M₂\ninst✝⁴ : Module R₃ M₃\nσ₂₁ : R₂ →+* R\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝³ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type u_12\ninst✝² : FunLike F M M₂\ninst✝¹ : SemilinearMapClass F τ₁₂ M M₂\ninst✝ : RingHomSurjective τ₁₂\nf : F\np : Submodule R M\n⊢ p ≤ ker f ↔ map f p = ⊥"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "x : R"], "goal": "(X - C x).Separable"}], "premise": [88550, 101361, 119789], "state_str": "R : Type u\ninst✝ : CommRing R\nx : R\n⊢ (X - C x).Separable"} +{"state": [{"context": ["T : Type u", "inst✝ : Category.{v, u} T", "f g : Arrow T", "sq : f ⟶ g", "e : f ≅ g"], "goal": "e.inv.left ≫ e.hom.left = 𝟙 g.left"}], "premise": [88742, 96042, 96044], "state_str": "T : Type u\ninst✝ : Category.{v, u} T\nf g : Arrow T\nsq : f ⟶ g\ne : f ≅ g\n⊢ e.inv.left ≫ e.hom.left = 𝟙 g.left"} +{"state": [{"context": ["α✝ : Type u_1", "β✝ : Type u_2", "γ : Type u_3", "inst✝² : PseudoEMetricSpace α✝", "α : Type u_4", "β : Type u_5", "inst✝¹ : PseudoEMetricSpace α", "inst✝ : PseudoEMetricSpace β", "K : ℝ≥0"], "goal": "IsClosed {f | LipschitzWith K f}"}], "premise": [57400, 59090], "state_str": "α✝ : Type u_1\nβ✝ : Type u_2\nγ : Type u_3\ninst✝² : PseudoEMetricSpace α✝\nα : Type u_4\nβ : Type u_5\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nK : ℝ≥0\n⊢ IsClosed {f | LipschitzWith K f}"} +{"state": [{"context": ["R : Type u", "ι : Type u_1", "inst✝ : CommSemiring R", "I J K L : Ideal R", "h : I ⊔ J = ⊤", "i : R", "hi : i ∈ I ⊔ K"], "goal": "i ∈ I ⊔ J * K"}], "premise": [80343], "state_str": "R : Type u\nι : Type u_1\ninst✝ : CommSemiring R\nI J K L : Ideal R\nh : I ⊔ J = ⊤\ni : R\nhi : i ∈ I ⊔ K\n⊢ i ∈ I ⊔ J * K"} +{"state": [{"context": ["R : Type u", "ι : Type u_1", "inst✝ : CommSemiring R", "I J K L : Ideal R", "h : 1 ∈ I ⊔ J", "i : R", "hi : i ∈ I ⊔ K"], "goal": "i ∈ I ⊔ J * K"}], "premise": [86732], "state_str": "R : Type u\nι : Type u_1\ninst✝ : CommSemiring R\nI J K L : Ideal R\nh : 1 ∈ I ⊔ J\ni : R\nhi : i ∈ I ⊔ K\n⊢ i ∈ I ⊔ J * K"} +{"state": [{"context": ["R : Type u", "ι : Type u_1", "inst✝ : CommSemiring R", "I J K L : Ideal R", "i i1 : R", "hi1 : i1 ∈ I", "j : R", "hj : j ∈ J", "h : i1 + j = 1", "i' : R", "hi' : i' ∈ I", "k : R", "hk : k ∈ K", "hi : i' + k = i"], "goal": "∃ y ∈ I, ∃ z ∈ J * K, y + z = i"}], "premise": [80415, 82054, 116234], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\nι : Type u_1\ninst✝ : CommSemiring R\nI J K L : Ideal R\ni i1 : R\nhi1 : i1 ∈ I\nj : R\nhj : j ∈ J\nh : i1 + j = 1\ni' : R\nhi' : i' ∈ I\nk : R\nhk : k ∈ K\nhi : i' + k = i\n⊢ ∃ y ∈ I, ∃ z ∈ J * K, y + z = i"} +{"state": [{"context": ["R : Type u", "ι : Type u_1", "inst✝ : CommSemiring R", "I J K L : Ideal R", "i i1 : R", "hi1 : i1 ∈ I", "j : R", "hj : j ∈ J", "h : i1 + j = 1", "i' : R", "hi' : i' ∈ I", "k : R", "hk : k ∈ K", "hi : i' + k = i"], "goal": "i' + i1 * k + j * k = i"}], "premise": [119704, 119728], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\nι : Type u_1\ninst✝ : CommSemiring R\nI J K L : Ideal R\ni i1 : R\nhi1 : i1 ∈ I\nj : R\nhj : j ∈ J\nh : i1 + j = 1\ni' : R\nhi' : i' ∈ I\nk : R\nhk : k ∈ K\nhi : i' + k = i\n⊢ i' + i1 * k + j * k = i"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "R : Type u_3", "s✝ t✝ u : Finset α", "f : α → β", "n : ℕ", "inst✝ : DecidableEq α", "s t : Finset α", "a : α", "r : Finset α", "har : a ∉ r", "h : (s ∪ r).card + (s ∩ r).card = s.card + r.card"], "goal": "(s ∪ insert a r).card + (s ∩ insert a r).card = s.card + (insert a r).card"}], "premise": [117741, 119704], "state_str": "α : Type u_1\nβ : Type u_2\nR : Type u_3\ns✝ t✝ u : Finset α\nf : α → β\nn : ℕ\ninst✝ : DecidableEq α\ns t : Finset α\na : α\nr : Finset α\nhar : a ∉ r\nh : (s ∪ r).card + (s ∩ r).card = s.card + r.card\n⊢ (s ∪ insert a r).card + (s ∩ insert a r).card = s.card + (insert a r).card"} +{"state": [{"context": ["α : Type u", "β : Type v", "δ : Type w", "s : Stream' α"], "goal": "zip appendStream' s.inits s.tails = const s"}], "premise": [127846], "state_str": "α : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\n⊢ zip appendStream' s.inits s.tails = const s"} +{"state": [{"context": ["α : Type u", "β : Type v", "δ : Type w", "s : Stream' α", "n : ℕ"], "goal": "(zip appendStream' s.inits s.tails).get n = (const s).get n"}], "premise": [127845, 127883, 127893, 127934, 127942, 127951, 127958, 127964], "state_str": "case a\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn : ℕ\n⊢ (zip appendStream' s.inits s.tails).get n = (const s).get n"} +{"state": [{"context": ["R : Type u_1", "l : Type u_2", "m : Type u_3", "n : Type u_4", "α : Type u_5", "β : Type u_6", "ι : Type u_7", "inst✝⁵ : Fintype l", "inst✝⁴ : Fintype m", "inst✝³ : Fintype n", "inst✝² : Unique ι", "inst✝¹ : SeminormedAddCommGroup α", "inst✝ : SeminormedAddCommGroup β", "A : Matrix m n α", "f : α → β", "hf : ∀ (a : α), ‖f a‖₊ = ‖a‖₊"], "goal": "‖A.map f‖₊ = ‖A‖₊"}], "premise": [34690, 142132], "state_str": "R : Type u_1\nl : Type u_2\nm : Type u_3\nn : Type u_4\nα : Type u_5\nβ : Type u_6\nι : Type u_7\ninst✝⁵ : Fintype l\ninst✝⁴ : Fintype m\ninst✝³ : Fintype n\ninst✝² : Unique ι\ninst✝¹ : SeminormedAddCommGroup α\ninst✝ : SeminormedAddCommGroup β\nA : Matrix m n α\nf : α → β\nhf : ∀ (a : α), ‖f a‖₊ = ‖a‖₊\n⊢ ‖A.map f‖₊ = ‖A‖₊"} +{"state": [{"context": ["α : Sort u_2", "inst✝¹ : DecidableEq α", "β : Sort u_1", "inst✝ : DecidableEq β", "a b : α", "e : α ≃ β", "x : β"], "goal": "((e.symm.trans (swap a b)).trans e) x = (swap (e a) (e b)) x"}], "premise": [1717], "state_str": "α : Sort u_2\ninst✝¹ : DecidableEq α\nβ : Sort u_1\ninst✝ : DecidableEq β\na b : α\ne : α ≃ β\nx : β\n⊢ ((e.symm.trans (swap a b)).trans e) x = (swap (e a) (e b)) x"} +{"state": [{"context": ["α : Sort u_2", "inst✝¹ : DecidableEq α", "β : Sort u_1", "inst✝ : DecidableEq β", "a b : α", "e : α ≃ β", "x : β", "this : ∀ (a : α), e.symm x = a ↔ x = e a"], "goal": "((e.symm.trans (swap a b)).trans e) x = (swap (e a) (e b)) x"}], "premise": [70750, 71875], "state_str": "α : Sort u_2\ninst✝¹ : DecidableEq α\nβ : Sort u_1\ninst✝ : DecidableEq β\na b : α\ne : α ≃ β\nx : β\nthis : ∀ (a : α), e.symm x = a ↔ x = e a\n⊢ ((e.symm.trans (swap a b)).trans e) x = (swap (e a) (e b)) x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : DivisionMonoid α", "a✝ b c d a : α", "n : ℕ"], "goal": "a⁻¹ ^ ↑n = (a ^ ↑n)⁻¹"}], "premise": [117845, 119784], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : DivisionMonoid α\na✝ b c d a : α\nn : ℕ\n⊢ a⁻¹ ^ ↑n = (a ^ ↑n)⁻¹"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : DivisionMonoid α", "a✝ b c d a : α", "n : ℕ"], "goal": "a⁻¹ ^ Int.negSucc n = (a ^ Int.negSucc n)⁻¹"}], "premise": [117845, 119787], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : DivisionMonoid α\na✝ b c d a : α\nn : ℕ\n⊢ a⁻¹ ^ Int.negSucc n = (a ^ Int.negSucc n)⁻¹"} +{"state": [{"context": ["X : Type u_1", "inst✝² : LinearOrder X", "inst✝¹ : TopologicalSpace X", "inst✝ : OrderTopology X", "a b c : X", "s t : Set X", "hd : Disjoint s (closure t)", "x : X", "hx : x ∈ s"], "goal": "tᶜ ∈ 𝓝 x"}], "premise": [55440, 55497], "state_str": "X : Type u_1\ninst✝² : LinearOrder X\ninst✝¹ : TopologicalSpace X\ninst✝ : OrderTopology X\na b c : X\ns t : Set X\nhd : Disjoint s (closure t)\nx : X\nhx : x ∈ s\n⊢ tᶜ ∈ 𝓝 x"} +{"state": [{"context": ["X : Type u_1", "inst✝² : LinearOrder X", "inst✝¹ : TopologicalSpace X", "inst✝ : OrderTopology X", "a b c : X", "s t : Set X", "hd : Disjoint s (closure t)", "x : X", "hx : x ∈ s"], "goal": "x ∈ (closure t)ᶜ"}], "premise": [1673, 133567], "state_str": "X : Type u_1\ninst✝² : LinearOrder X\ninst✝¹ : TopologicalSpace X\ninst✝ : OrderTopology X\na b c : X\ns t : Set X\nhd : Disjoint s (closure t)\nx : X\nhx : x ∈ s\n⊢ x ∈ (closure t)ᶜ"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "inst✝¹² : SmoothManifoldWithCorners I M", "E' : Type u_5", "inst✝¹¹ : NormedAddCommGroup E'", "inst✝¹⁰ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝⁹ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁸ : TopologicalSpace M'", "inst✝⁷ : ChartedSpace H' M'", "inst✝⁶ : SmoothManifoldWithCorners I' M'", "E'' : Type u_8", "inst✝⁵ : NormedAddCommGroup E''", "inst✝⁴ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝³ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝² : TopologicalSpace M''", "inst✝¹ : ChartedSpace H'' M''", "inst✝ : SmoothManifoldWithCorners I'' M''", "s✝ : Set M", "x✝ : M", "s : Set (M × M')", "x : M × M'", "hxs : UniqueMDiffWithinAt (I.prod I') s x"], "goal": "mfderivWithin (I.prod I') I' Prod.snd s x = ContinuousLinearMap.snd 𝕜 (TangentSpace I x.1) (TangentSpace I' x.2)"}], "premise": [67978, 68517], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\ninst✝¹² : SmoothManifoldWithCorners I M\nE' : Type u_5\ninst✝¹¹ : NormedAddCommGroup E'\ninst✝¹⁰ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝⁹ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁸ : TopologicalSpace M'\ninst✝⁷ : ChartedSpace H' M'\ninst✝⁶ : SmoothManifoldWithCorners I' M'\nE'' : Type u_8\ninst✝⁵ : NormedAddCommGroup E''\ninst✝⁴ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝³ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝² : TopologicalSpace M''\ninst✝¹ : ChartedSpace H'' M''\ninst✝ : SmoothManifoldWithCorners I'' M''\ns✝ : Set M\nx✝ : M\ns : Set (M × M')\nx : M × M'\nhxs : UniqueMDiffWithinAt (I.prod I') s x\n⊢ mfderivWithin (I.prod I') I' Prod.snd s x = ContinuousLinearMap.snd 𝕜 (TangentSpace I x.1) (TangentSpace I' x.2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "inst✝¹² : SmoothManifoldWithCorners I M", "E' : Type u_5", "inst✝¹¹ : NormedAddCommGroup E'", "inst✝¹⁰ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝⁹ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁸ : TopologicalSpace M'", "inst✝⁷ : ChartedSpace H' M'", "inst✝⁶ : SmoothManifoldWithCorners I' M'", "E'' : Type u_8", "inst✝⁵ : NormedAddCommGroup E''", "inst✝⁴ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝³ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝² : TopologicalSpace M''", "inst✝¹ : ChartedSpace H'' M''", "inst✝ : SmoothManifoldWithCorners I'' M''", "s✝ : Set M", "x✝ : M", "s : Set (M × M')", "x : M × M'", "hxs : UniqueMDiffWithinAt (I.prod I') s x"], "goal": "mfderiv (I.prod I') I' Prod.snd x = ContinuousLinearMap.snd 𝕜 (TangentSpace I x.1) (TangentSpace I' x.2)"}], "premise": [67982], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\ninst✝¹² : SmoothManifoldWithCorners I M\nE' : Type u_5\ninst✝¹¹ : NormedAddCommGroup E'\ninst✝¹⁰ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝⁹ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁸ : TopologicalSpace M'\ninst✝⁷ : ChartedSpace H' M'\ninst✝⁶ : SmoothManifoldWithCorners I' M'\nE'' : Type u_8\ninst✝⁵ : NormedAddCommGroup E''\ninst✝⁴ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝³ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝² : TopologicalSpace M''\ninst✝¹ : ChartedSpace H'' M''\ninst✝ : SmoothManifoldWithCorners I'' M''\ns✝ : Set M\nx✝ : M\ns : Set (M × M')\nx : M × M'\nhxs : UniqueMDiffWithinAt (I.prod I') s x\n⊢ mfderiv (I.prod I') I' Prod.snd x = ContinuousLinearMap.snd 𝕜 (TangentSpace I x.1) (TangentSpace I' x.2)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n : ℕ", "p : Fin (n + 1) → Prop", "inst✝ : DecidablePred p"], "goal": "(if p 0 then 1 else 0) + (filter (p ∘ succ) univ).card = if p 0 then (filter (p ∘ succ) univ).card + 1 else (filter (p ∘ succ) univ).card"}], "premise": [119708], "state_str": "α : Type u_1\nβ : Type u_2\nn : ℕ\np : Fin (n + 1) → Prop\ninst✝ : DecidablePred p\n⊢ (if p 0 then 1 else 0) + (filter (p ∘ succ) univ).card =\n if p 0 then (filter (p ∘ succ) univ).card + 1 else (filter (p ∘ succ) univ).card"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace 𝕜 E", "inst✝² : InnerProductSpace 𝕜 F", "inst✝¹ : CompleteSpace E", "inst✝ : CompleteSpace F", "T : E →L[𝕜] E", "hT : T.IsPositive", "S : E →L[𝕜] F"], "goal": "(S.comp (T.comp (adjoint S))).IsPositive"}], "premise": [33438, 34776], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT : E →L[𝕜] E\nhT : T.IsPositive\nS : E →L[𝕜] F\n⊢ (S.comp (T.comp (adjoint S))).IsPositive"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace 𝕜 E", "inst✝² : InnerProductSpace 𝕜 F", "inst✝¹ : CompleteSpace E", "inst✝ : CompleteSpace F", "T : E →L[𝕜] E", "hT : T.IsPositive", "S : E →L[𝕜] F", "x : F"], "goal": "0 ≤ (S.comp (T.comp (adjoint S))).reApplyInnerSelf x"}], "premise": [34759, 68793], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT : E →L[𝕜] E\nhT : T.IsPositive\nS : E →L[𝕜] F\nx : F\n⊢ 0 ≤ (S.comp (T.comp (adjoint S))).reApplyInnerSelf x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace 𝕜 E", "inst✝² : InnerProductSpace 𝕜 F", "inst✝¹ : CompleteSpace E", "inst✝ : CompleteSpace F", "T : E →L[𝕜] E", "hT : T.IsPositive", "S : E →L[𝕜] F", "x : F"], "goal": "0 ≤ re ⟪(T.comp (adjoint S)) x, (adjoint S) x⟫_𝕜"}], "premise": [33439], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT : E →L[𝕜] E\nhT : T.IsPositive\nS : E →L[𝕜] F\nx : F\n⊢ 0 ≤ re ⟪(T.comp (adjoint S)) x, (adjoint S) x⟫_𝕜"} +{"state": [{"context": ["α : Type u", "t : TopologicalSpace α", "X : Type u_1", "inst✝² : TopologicalSpace X", "Y : Type u_2", "inst✝¹ : TopologicalSpace Y", "π : X → Y", "inst✝ : SecondCountableTopology X", "h' : QuotientMap π", "h : IsOpenMap π"], "goal": "∃ b, b.Countable ∧ inst✝¹ = generateFrom b"}], "premise": [57781], "state_str": "α : Type u\nt : TopologicalSpace α\nX : Type u_1\ninst✝² : TopologicalSpace X\nY : Type u_2\ninst✝¹ : TopologicalSpace Y\nπ : X → Y\ninst✝ : SecondCountableTopology X\nh' : QuotientMap π\nh : IsOpenMap π\n⊢ ∃ b, b.Countable ∧ inst✝¹ = generateFrom b"} +{"state": [{"context": ["α : Type u", "t : TopologicalSpace α", "X : Type u_1", "inst✝² : TopologicalSpace X", "Y : Type u_2", "inst✝¹ : TopologicalSpace Y", "π : X → Y", "inst✝ : SecondCountableTopology X", "h' : QuotientMap π", "h : IsOpenMap π", "V : Set (Set X)", "V_countable : V.Countable", "V_generates : IsTopologicalBasis V"], "goal": "∃ b, b.Countable ∧ inst✝¹ = generateFrom b"}], "premise": [57702, 57798, 132748], "state_str": "case intro.intro.intro\nα : Type u\nt : TopologicalSpace α\nX : Type u_1\ninst✝² : TopologicalSpace X\nY : Type u_2\ninst✝¹ : TopologicalSpace Y\nπ : X → Y\ninst✝ : SecondCountableTopology X\nh' : QuotientMap π\nh : IsOpenMap π\nV : Set (Set X)\nV_countable : V.Countable\nV_generates : IsTopologicalBasis V\n⊢ ∃ b, b.Countable ∧ inst✝¹ = generateFrom b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι✝ : Sort y", "s t u : Set α", "inst✝¹⁰ : TopologicalSpace α", "inst✝⁹ : MeasurableSpace α", "inst✝⁸ : BorelSpace α", "inst✝⁷ : TopologicalSpace β", "inst✝⁶ : MeasurableSpace β", "inst✝⁵ : BorelSpace β", "inst✝⁴ : MeasurableSpace δ", "inst✝³ : ConditionallyCompleteLinearOrder α", "inst✝² : OrderTopology α", "inst✝¹ : SecondCountableTopology α", "ι : Sort u_5", "inst✝ : Countable ι", "f : ι → δ → α", "hf : ∀ (i : ι), Measurable (f i)"], "goal": "Measurable fun b => ⨆ i, f i b"}], "premise": [70316], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι✝ : Sort y\ns t u : Set α\ninst✝¹⁰ : TopologicalSpace α\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : BorelSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : MeasurableSpace β\ninst✝⁵ : BorelSpace β\ninst✝⁴ : MeasurableSpace δ\ninst✝³ : ConditionallyCompleteLinearOrder α\ninst✝² : OrderTopology α\ninst✝¹ : SecondCountableTopology α\nι : Sort u_5\ninst✝ : Countable ι\nf : ι → δ → α\nhf : ∀ (i : ι), Measurable (f i)\n⊢ Measurable fun b => ⨆ i, f i b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι✝ : Sort y", "s t u : Set α", "inst✝¹⁰ : TopologicalSpace α", "inst✝⁹ : MeasurableSpace α", "inst✝⁸ : BorelSpace α", "inst✝⁷ : TopologicalSpace β", "inst✝⁶ : MeasurableSpace β", "inst✝⁵ : BorelSpace β", "inst✝⁴ : MeasurableSpace δ", "inst✝³ : ConditionallyCompleteLinearOrder α", "inst✝² : OrderTopology α", "inst✝¹ : SecondCountableTopology α", "ι : Sort u_5", "inst✝ : Countable ι", "f : ι → δ → α", "hf : ∀ (i : ι), Measurable (f i)", "hι : Nonempty ι"], "goal": "Measurable fun b => ⨆ i, f i b"}], "premise": [26497], "state_str": "case inr\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι✝ : Sort y\ns t u : Set α\ninst✝¹⁰ : TopologicalSpace α\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : BorelSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : MeasurableSpace β\ninst✝⁵ : BorelSpace β\ninst✝⁴ : MeasurableSpace δ\ninst✝³ : ConditionallyCompleteLinearOrder α\ninst✝² : OrderTopology α\ninst✝¹ : SecondCountableTopology α\nι : Sort u_5\ninst✝ : Countable ι\nf : ι → δ → α\nhf : ∀ (i : ι), Measurable (f i)\nhι : Nonempty ι\n⊢ Measurable fun b => ⨆ i, f i b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι✝ : Sort y", "s t u : Set α", "inst✝¹⁰ : TopologicalSpace α", "inst✝⁹ : MeasurableSpace α", "inst✝⁸ : BorelSpace α", "inst✝⁷ : TopologicalSpace β", "inst✝⁶ : MeasurableSpace β", "inst✝⁵ : BorelSpace β", "inst✝⁴ : MeasurableSpace δ", "inst✝³ : ConditionallyCompleteLinearOrder α", "inst✝² : OrderTopology α", "inst✝¹ : SecondCountableTopology α", "ι : Sort u_5", "inst✝ : Countable ι", "f : ι → δ → α", "hf : ∀ (i : ι), Measurable (f i)", "hι : Nonempty ι", "A : MeasurableSet {b | BddAbove (range fun i => f i b)}"], "goal": "Measurable fun b => ⨆ i, f i b"}], "premise": [28027], "state_str": "case inr\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι✝ : Sort y\ns t u : Set α\ninst✝¹⁰ : TopologicalSpace α\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : BorelSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : MeasurableSpace β\ninst✝⁵ : BorelSpace β\ninst✝⁴ : MeasurableSpace δ\ninst✝³ : ConditionallyCompleteLinearOrder α\ninst✝² : OrderTopology α\ninst✝¹ : SecondCountableTopology α\nι : Sort u_5\ninst✝ : Countable ι\nf : ι → δ → α\nhf : ∀ (i : ι), Measurable (f i)\nhι : Nonempty ι\nA : MeasurableSet {b | BddAbove (range fun i => f i b)}\n⊢ Measurable fun b => ⨆ i, f i b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι✝ : Sort y", "s t u : Set α", "inst✝¹⁰ : TopologicalSpace α", "inst✝⁹ : MeasurableSpace α", "inst✝⁸ : BorelSpace α", "inst✝⁷ : TopologicalSpace β", "inst✝⁶ : MeasurableSpace β", "inst✝⁵ : BorelSpace β", "inst✝⁴ : MeasurableSpace δ", "inst✝³ : ConditionallyCompleteLinearOrder α", "inst✝² : OrderTopology α", "inst✝¹ : SecondCountableTopology α", "ι : Sort u_5", "inst✝ : Countable ι", "f : ι → δ → α", "hf : ∀ (i : ι), Measurable (f i)", "hι : Nonempty ι", "A : MeasurableSet {b | BddAbove (range fun i => f i b)}", "this : Measurable fun _b => sSup ∅"], "goal": "Measurable fun b => ⨆ i, f i b"}], "premise": [26486], "state_str": "case inr\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι✝ : Sort y\ns t u : Set α\ninst✝¹⁰ : TopologicalSpace α\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : BorelSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : MeasurableSpace β\ninst✝⁵ : BorelSpace β\ninst✝⁴ : MeasurableSpace δ\ninst✝³ : ConditionallyCompleteLinearOrder α\ninst✝² : OrderTopology α\ninst✝¹ : SecondCountableTopology α\nι : Sort u_5\ninst✝ : Countable ι\nf : ι → δ → α\nhf : ∀ (i : ι), Measurable (f i)\nhι : Nonempty ι\nA : MeasurableSet {b | BddAbove (range fun i => f i b)}\nthis : Measurable fun _b => sSup ∅\n⊢ Measurable fun b => ⨆ i, f i b"} +{"state": [{"context": ["F : Type u_1", "inst✝² : Field F", "E : Type u_2", "inst✝¹ : Field E", "inst✝ : Algebra F E", "S : Set (IntermediateField F E)"], "goal": "↑(sInf S).toSubalgebra = ↑(sInf (toSubalgebra '' S))"}], "premise": [135422], "state_str": "F : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nS : Set (IntermediateField F E)\n⊢ ↑(sInf S).toSubalgebra = ↑(sInf (toSubalgebra '' S))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "δ : α → Sort u_6", "s✝ : Set α", "f g : (i : α) → δ i", "inst✝¹ : (j : α) → Decidable (j ∈ s✝)", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "f₁ f₂ : α → β", "inst✝ : (i : α) → Decidable (i ∈ s)", "h₁ : MapsTo f₁ (s₁ ∩ s) (t₁ ∩ t)", "h₂ : MapsTo f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)"], "goal": "MapsTo (s.piecewise f₁ f₂) (s.ite s₁ s₂) (t.ite t₁ t₂)"}], "premise": [135755, 135767], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\nδ : α → Sort u_6\ns✝ : Set α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s✝)\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nf₁ f₂ : α → β\ninst✝ : (i : α) → Decidable (i ∈ s)\nh₁ : MapsTo f₁ (s₁ ∩ s) (t₁ ∩ t)\nh₂ : MapsTo f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)\n⊢ MapsTo (s.piecewise f₁ f₂) (s.ite s₁ s₂) (t.ite t₁ t₂)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "δ : α → Sort u_6", "s✝ : Set α", "f g : (i : α) → δ i", "inst✝¹ : (j : α) → Decidable (j ∈ s✝)", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "f₁ f₂ : α → β", "inst✝ : (i : α) → Decidable (i ∈ s)", "h₁ : MapsTo f₁ (s₁ ∩ s) (t₁ ∩ t)", "h₂ : MapsTo f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)"], "goal": "EqOn f₁ (s.piecewise f₁ f₂) (s₁ ∩ s)"}, {"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "δ : α → Sort u_6", "s✝ : Set α", "f g : (i : α) → δ i", "inst✝¹ : (j : α) → Decidable (j ∈ s✝)", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "f₁ f₂ : α → β", "inst✝ : (i : α) → Decidable (i ∈ s)", "h₁ : MapsTo f₁ (s₁ ∩ s) (t₁ ∩ t)", "h₂ : MapsTo f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)"], "goal": "EqOn f₂ (s.piecewise f₁ f₂) (s₂ ∩ sᶜ)"}], "premise": [133448, 135711, 135718, 135974, 135975], "state_str": "case refine_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\nδ : α → Sort u_6\ns✝ : Set α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s✝)\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nf₁ f₂ : α → β\ninst✝ : (i : α) → Decidable (i ∈ s)\nh₁ : MapsTo f₁ (s₁ ∩ s) (t₁ ∩ t)\nh₂ : MapsTo f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)\n⊢ EqOn f₁ (s.piecewise f₁ f₂) (s₁ ∩ s)\n\ncase refine_2\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\nδ : α → Sort u_6\ns✝ : Set α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s✝)\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nf₁ f₂ : α → β\ninst✝ : (i : α) → Decidable (i ∈ s)\nh₁ : MapsTo f₁ (s₁ ∩ s) (t₁ ∩ t)\nh₂ : MapsTo f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)\n⊢ EqOn f₂ (s.piecewise f₁ f₂) (s₂ ∩ sᶜ)"} +{"state": [{"context": ["ι : Type u_1", "M : Type u_2", "n : ℕ", "I J : Box ι", "i : ι", "x : ℝ", "h : x ∉ Ioo (I.lower i) (I.upper i)"], "goal": "split I i x = ⊤"}], "premise": [2100, 34255, 34260], "state_str": "ι : Type u_1\nM : Type u_2\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\nh : x ∉ Ioo (I.lower i) (I.upper i)\n⊢ split I i x = ⊤"} +{"state": [{"context": ["ι : Type u_1", "M : Type u_2", "n : ℕ", "I J✝ : Box ι", "i : ι", "x : ℝ", "h : x ∉ Ioo (I.lower i) (I.upper i)", "J : Box ι", "hJ : J ∈ ⊤.boxes"], "goal": "J ∈ (split I i x).boxes"}], "premise": [1673, 34183], "state_str": "ι : Type u_1\nM : Type u_2\nn : ℕ\nI J✝ : Box ι\ni : ι\nx : ℝ\nh : x ∉ Ioo (I.lower i) (I.upper i)\nJ : Box ι\nhJ : J ∈ ⊤.boxes\n⊢ J ∈ (split I i x).boxes"} +{"state": [{"context": ["ι : Type u_1", "M : Type u_2", "n : ℕ", "J✝ : Box ι", "i : ι", "x : ℝ", "J : Box ι", "h : x ∉ Ioo (J.lower i) (J.upper i)"], "goal": "J ∈ (split J i x).boxes"}], "premise": [34026, 34169], "state_str": "ι : Type u_1\nM : Type u_2\nn : ℕ\nJ✝ : Box ι\ni : ι\nx : ℝ\nJ : Box ι\nh : x ∉ Ioo (J.lower i) (J.upper i)\n⊢ J ∈ (split J i x).boxes"} +{"state": [{"context": ["ι : Type u_1", "M : Type u_2", "n : ℕ", "J✝ : Box ι", "i : ι", "x : ℝ", "J : Box ι", "h : x ∉ Ioo (J.lower i) (J.upper i)"], "goal": "↑J = J.splitLower i x ∨ ↑J = J.splitUpper i x"}], "premise": [14323, 20157, 70089], "state_str": "ι : Type u_1\nM : Type u_2\nn : ℕ\nJ✝ : Box ι\ni : ι\nx : ℝ\nJ : Box ι\nh : x ∉ Ioo (J.lower i) (J.upper i)\n⊢ ↑J = J.splitLower i x ∨ ↑J = J.splitUpper i x"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝¹ : NormedAddCommGroup E", "f : ℝ → E", "a b : ℝ", "μ : Measure ℝ", "inst✝ : NoAtoms μ"], "goal": "IntervalIntegrable f μ a b ↔ IntegrableOn f [[a, b]] μ"}], "premise": [1713, 18563, 25660, 26278], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝¹ : NormedAddCommGroup E\nf : ℝ → E\na b : ℝ\nμ : Measure ℝ\ninst✝ : NoAtoms μ\n⊢ IntervalIntegrable f μ a b ↔ IntegrableOn f [[a, b]] μ"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α"], "goal": "toIocMod hp 0 (a - b) + toIcoMod hp 0 (b - a) = p"}], "premise": [105945, 119708], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIocMod hp 0 (a - b) + toIcoMod hp 0 (b - a) = p"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "A : Type u_3", "inst✝¹⁶ : Category.{u_4, u_1} C", "inst✝¹⁵ : HasZeroObject C", "inst✝¹⁴ : HasShift C ℤ", "inst✝¹³ : Preadditive C", "inst✝¹² : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝¹¹ : Pretriangulated C", "inst✝¹⁰ : Category.{?u.18320, u_2} D", "inst✝⁹ : HasZeroObject D", "inst✝⁸ : HasShift D ℤ", "inst✝⁷ : Preadditive D", "inst✝⁶ : ∀ (n : ℤ), (shiftFunctor D n).Additive", "inst✝⁵ : Pretriangulated D", "inst✝⁴ : Category.{u_5, u_3} A", "inst✝³ : Abelian A", "F : C ⥤ A", "inst✝² inst✝¹ : F.IsHomological", "inst✝ : F.ShiftSequence ℤ", "X : C"], "goal": "F.homologicalKernel.P X ↔ ∀ (n : ℤ), IsZero ((F.shift n).obj X)"}], "premise": [94060], "state_str": "C : Type u_1\nD : Type u_2\nA : Type u_3\ninst✝¹⁶ : Category.{u_4, u_1} C\ninst✝¹⁵ : HasZeroObject C\ninst✝¹⁴ : HasShift C ℤ\ninst✝¹³ : Preadditive C\ninst✝¹² : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝¹¹ : Pretriangulated C\ninst✝¹⁰ : Category.{?u.18320, u_2} D\ninst✝⁹ : HasZeroObject D\ninst✝⁸ : HasShift D ℤ\ninst✝⁷ : Preadditive D\ninst✝⁶ : ∀ (n : ℤ), (shiftFunctor D n).Additive\ninst✝⁵ : Pretriangulated D\ninst✝⁴ : Category.{u_5, u_3} A\ninst✝³ : Abelian A\nF : C ⥤ A\ninst✝² inst✝¹ : F.IsHomological\ninst✝ : F.ShiftSequence ℤ\nX : C\n⊢ F.homologicalKernel.P X ↔ ∀ (n : ℤ), IsZero ((F.shift n).obj X)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "A : Type u_3", "inst✝¹⁶ : Category.{u_4, u_1} C", "inst✝¹⁵ : HasZeroObject C", "inst✝¹⁴ : HasShift C ℤ", "inst✝¹³ : Preadditive C", "inst✝¹² : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝¹¹ : Pretriangulated C", "inst✝¹⁰ : Category.{?u.18320, u_2} D", "inst✝⁹ : HasZeroObject D", "inst✝⁸ : HasShift D ℤ", "inst✝⁷ : Preadditive D", "inst✝⁶ : ∀ (n : ℤ), (shiftFunctor D n).Additive", "inst✝⁵ : Pretriangulated D", "inst✝⁴ : Category.{u_5, u_3} A", "inst✝³ : Abelian A", "F : C ⥤ A", "inst✝² inst✝¹ : F.IsHomological", "inst✝ : F.ShiftSequence ℤ", "X : C"], "goal": "F.homologicalKernel.P X ↔ ∀ (n : ℤ), IsZero ((shiftFunctor C n ⋙ F).obj X)"}], "premise": [1713], "state_str": "C : Type u_1\nD : Type u_2\nA : Type u_3\ninst✝¹⁶ : Category.{u_4, u_1} C\ninst✝¹⁵ : HasZeroObject C\ninst✝¹⁴ : HasShift C ℤ\ninst✝¹³ : Preadditive C\ninst✝¹² : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝¹¹ : Pretriangulated C\ninst✝¹⁰ : Category.{?u.18320, u_2} D\ninst✝⁹ : HasZeroObject D\ninst✝⁸ : HasShift D ℤ\ninst✝⁷ : Preadditive D\ninst✝⁶ : ∀ (n : ℤ), (shiftFunctor D n).Additive\ninst✝⁵ : Pretriangulated D\ninst✝⁴ : Category.{u_5, u_3} A\ninst✝³ : Abelian A\nF : C ⥤ A\ninst✝² inst✝¹ : F.IsHomological\ninst✝ : F.ShiftSequence ℤ\nX : C\n⊢ F.homologicalKernel.P X ↔ ∀ (n : ℤ), IsZero ((shiftFunctor C n ⋙ F).obj X)"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : SeminormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "x y : E", "h : SameRay ℝ x y"], "goal": "‖x‖ • y = ‖y‖ • x"}], "premise": [83052], "state_str": "E : Type u_1\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : E\nh : SameRay ℝ x y\n⊢ ‖x‖ • y = ‖y‖ • x"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : SeminormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "u : E", "a b : ℝ", "ha : 0 ≤ a", "hb : 0 ≤ b", "h : SameRay ℝ (a • u) (b • u)"], "goal": "‖a • u‖ • b • u = ‖b • u‖ • a • u"}], "premise": [40548, 118866], "state_str": "case intro.intro.intro.intro.intro.intro.intro\nE : Type u_1\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nu : E\na b : ℝ\nha : 0 ≤ a\nhb : 0 ≤ b\nh : SameRay ℝ (a • u) (b • u)\n⊢ ‖a • u‖ • b • u = ‖b • u‖ • a • u"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : SeminormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "u : E", "a b : ℝ", "ha : 0 ≤ a", "hb : 0 ≤ b", "h : SameRay ℝ (a • u) (b • u)"], "goal": "a • ‖u‖ • b • u = b • ‖u‖ • a • u"}], "premise": [118875], "state_str": "case intro.intro.intro.intro.intro.intro.intro\nE : Type u_1\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nu : E\na b : ℝ\nha : 0 ≤ a\nhb : 0 ≤ b\nh : SameRay ℝ (a • u) (b • u)\n⊢ a • ‖u‖ • b • u = b • ‖u‖ • a • u"} +{"state": [{"context": ["R : Type u", "M : Type v", "inst✝³ : CommRing R", "inst✝² : IsDomain R", "inst✝¹ : IsBezout R", "inst✝ : GCDMonoid R", "x y : R"], "goal": "IsUnit (gcd x y) ↔ IsCoprime x y"}], "premise": [1713, 79507, 80343, 80390, 80410], "state_str": "R : Type u\nM : Type v\ninst✝³ : CommRing R\ninst✝² : IsDomain R\ninst✝¹ : IsBezout R\ninst✝ : GCDMonoid R\nx y : R\n⊢ IsUnit (gcd x y) ↔ IsCoprime x y"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι : Sort w", "α : Type u_1", "β : Type u_2", "x✝ : X", "s s₁ s₂ t : Set X", "p p₁ p₂ : X → Prop", "inst✝ : TopologicalSpace X", "x : X", "C : Set X"], "goal": "AccPt x (𝓟 C) ↔ ∃ᶠ (y : X) in 𝓝 x, y ≠ x ∧ y ∈ C"}], "premise": [1723, 55535, 55551], "state_str": "X : Type u\nY : Type v\nι : Sort w\nα : Type u_1\nβ : Type u_2\nx✝ : X\ns s₁ s₂ t : Set X\np p₁ p₂ : X → Prop\ninst✝ : TopologicalSpace X\nx : X\nC : Set X\n⊢ AccPt x (𝓟 C) ↔ ∃ᶠ (y : X) in 𝓝 x, y ≠ x ∧ y ∈ C"} +{"state": [{"context": ["R : Type u", "a✝ b✝ : R", "m n : ℕ", "inst✝ : Semiring R", "p q : R[X]", "a b : R[ℕ]"], "goal": "{ toFinsupp := a + b } = Polynomial.add { toFinsupp := a } { toFinsupp := b }"}], "premise": [101189], "state_str": "R : Type u\na✝ b✝ : R\nm n : ℕ\ninst✝ : Semiring R\np q : R[X]\na b : R[ℕ]\n⊢ { toFinsupp := a + b } = Polynomial.add { toFinsupp := a } { toFinsupp := b }"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : Append α", "a b : Part α", "ma mb : α", "ha : ma ∈ a", "hb : mb ∈ b"], "goal": "ma ++ mb ∈ a ++ b"}], "premise": [131136], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : Append α\na b : Part α\nma mb : α\nha : ma ∈ a\nhb : mb ∈ b\n⊢ ma ++ mb ∈ a ++ b"} +{"state": [{"context": ["α : Type u_1", "β✝ : Type u_2", "σ : Type u_3", "inst✝² : Primcodable α", "inst✝¹ : Primcodable β✝", "inst✝ : Primcodable σ", "β : Type u_4", "e : β ≃ α", "this : Primcodable β := Primcodable.ofEquiv α e"], "goal": "Primrec fun a => encode (e (e.symm a))"}], "premise": [72079], "state_str": "α : Type u_1\nβ✝ : Type u_2\nσ : Type u_3\ninst✝² : Primcodable α\ninst✝¹ : Primcodable β✝\ninst✝ : Primcodable σ\nβ : Type u_4\ne : β ≃ α\nthis : Primcodable β := Primcodable.ofEquiv α e\n⊢ Primrec fun a => encode (e (e.symm a))"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "m n : ℕ", "ι : Type y", "inst✝ : Semiring R", "f : R[X]", "i : ℕ"], "goal": "f.integralNormalization.coeff i = if f.degree = ↑i then 1 else f.coeff i * f.leadingCoeff ^ (f.natDegree - 1 - i)"}], "premise": [102150], "state_str": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\nf : R[X]\ni : ℕ\n⊢ f.integralNormalization.coeff i = if f.degree = ↑i then 1 else f.coeff i * f.leadingCoeff ^ (f.natDegree - 1 - i)"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "m n : ℕ", "ι : Type y", "inst✝ : Semiring R", "f : R[X]", "i : ℕ", "this : f.coeff i = 0 → f.degree ≠ ↑i"], "goal": "f.integralNormalization.coeff i = if f.degree = ↑i then 1 else f.coeff i * f.leadingCoeff ^ (f.natDegree - 1 - i)"}], "premise": [101269, 101278], "state_str": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\nf : R[X]\ni : ℕ\nthis : f.coeff i = 0 → f.degree ≠ ↑i\n⊢ f.integralNormalization.coeff i = if f.degree = ↑i then 1 else f.coeff i * f.leadingCoeff ^ (f.natDegree - 1 - i)"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "M : Comon_ C", "A : Mon_ Cᵒᵖ"], "goal": "A.mul.unop ≫ A.one.unop ▷ unop A.X = (λ_ (unop A.X)).inv"}], "premise": [89633, 98604, 100052], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nM : Comon_ C\nA : Mon_ Cᵒᵖ\n⊢ A.mul.unop ≫ A.one.unop ▷ unop A.X = (λ_ (unop A.X)).inv"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "M : Comon_ C", "A : Mon_ Cᵒᵖ"], "goal": "A.mul.unop ≫ unop A.X ◁ A.one.unop = (ρ_ (unop A.X)).inv"}], "premise": [89633, 98602, 100051], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nM : Comon_ C\nA : Mon_ Cᵒᵖ\n⊢ A.mul.unop ≫ unop A.X ◁ A.one.unop = (ρ_ (unop A.X)).inv"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "M : Comon_ C", "A : Mon_ Cᵒᵖ"], "goal": "A.mul.unop ≫ unop A.X ◁ A.mul.unop = A.mul.unop ≫ A.mul.unop ▷ unop A.X ≫ (α_ (unop A.X) (unop A.X) (unop A.X)).hom"}], "premise": [89633, 98602, 98604, 100059], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nM : Comon_ C\nA : Mon_ Cᵒᵖ\n⊢ A.mul.unop ≫ unop A.X ◁ A.mul.unop = A.mul.unop ≫ A.mul.unop ▷ unop A.X ≫ (α_ (unop A.X) (unop A.X) (unop A.X)).hom"} +{"state": [{"context": ["X : Type u", "Y : Type v", "inst✝⁵ : MetricSpace X", "inst✝⁴ : CompactSpace X", "inst✝³ : Nonempty X", "inst✝² : MetricSpace Y", "inst✝¹ : CompactSpace Y", "inst✝ : Nonempty Y", "f : GromovHausdorff.ProdSpaceFun X Y", "x y z t : X ⊕ Y"], "goal": "HD (candidatesBDist X Y) ≤ diam univ + 1 + diam univ"}], "premise": [16906, 19695], "state_str": "X : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ HD (candidatesBDist X Y) ≤ diam univ + 1 + diam univ"} +{"state": [{"context": ["K : Type u", "V : Type v", "inst✝³ : DivisionRing K", "inst✝² : AddCommGroup V", "inst✝¹ : Module K V", "inst✝ : FiniteDimensional K V", "s t : Submodule K V", "hdisjoint : Disjoint s t"], "goal": "finrank K ↥s + finrank K ↥t ≤ finrank K V"}], "premise": [13485, 81513, 86071, 119729], "state_str": "K : Type u\nV : Type v\ninst✝³ : DivisionRing K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\ns t : Submodule K V\nhdisjoint : Disjoint s t\n⊢ finrank K ↥s + finrank K ↥t ≤ finrank K V"} +{"state": [{"context": ["K : Type u", "V : Type v", "inst✝³ : DivisionRing K", "inst✝² : AddCommGroup V", "inst✝¹ : Module K V", "inst✝ : FiniteDimensional K V", "s t : Submodule K V", "hdisjoint : Disjoint s t"], "goal": "finrank K ↥(s ⊔ t) ≤ finrank K V"}], "premise": [86371], "state_str": "K : Type u\nV : Type v\ninst✝³ : DivisionRing K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\ns t : Submodule K V\nhdisjoint : Disjoint s t\n⊢ finrank K ↥(s ⊔ t) ≤ finrank K V"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DecidableEq α", "inst✝ : Group α", "e : α", "x : Finset α × Finset α"], "goal": "x.2.card + (e⁻¹ • x.2).card = 2 * x.2.card"}], "premise": [122222, 142011], "state_str": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Group α\ne : α\nx : Finset α × Finset α\n⊢ x.2.card + (e⁻¹ • x.2).card = 2 * x.2.card"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G H : SimpleGraph α", "s s₁ s₂ : Set α", "t : Finset α", "a b : α", "m n : ℕ", "hs : G.CliqueFreeOn s (n + 1)", "ha : a ∈ s"], "goal": "G.CliqueFreeOn (s ∩ G.neighborSet a) n"}], "premise": [1674, 2106, 51319, 133447, 133492], "state_str": "α : Type u_1\nβ : Type u_2\nG H : SimpleGraph α\ns s₁ s₂ : Set α\nt : Finset α\na b : α\nm n : ℕ\nhs : G.CliqueFreeOn s (n + 1)\nha : a ∈ s\n⊢ G.CliqueFreeOn (s ∩ G.neighborSet a) n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : PartialOrder α", "inst✝¹ : PredOrder α", "a b : α", "inst✝ : NoMinOrder α", "h : a ≤ b"], "goal": "Ioc (pred a) b = insert a (Ioc a b)"}], "premise": [1674, 17482, 20161, 20259, 133675], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : PartialOrder α\ninst✝¹ : PredOrder α\na b : α\ninst✝ : NoMinOrder α\nh : a ≤ b\n⊢ Ioc (pred a) b = insert a (Ioc a b)"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X✝ Y✝ Z✝ W X X' Y Z : C", "f : W ⟶ X", "g : X ⟶ Y", "f' : W ⟶ X'", "g' : X' ⟶ Y", "h : Z ≅ Y"], "goal": "f ≫ g ≫ h.inv = f' ≫ g' ≫ h.inv ↔ f ≫ g = f' ≫ g'"}], "premise": [96173, 96191], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX✝ Y✝ Z✝ W X X' Y Z : C\nf : W ⟶ X\ng : X ⟶ Y\nf' : W ⟶ X'\ng' : X' ⟶ Y\nh : Z ≅ Y\n⊢ f ≫ g ≫ h.inv = f' ≫ g' ≫ h.inv ↔ f ≫ g = f' ≫ g'"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "inst✝ : PseudoMetricSpace α", "s : Set α", "ι : Type u_1", "f : α → ↥(lp (fun i => ℝ) ⊤)", "K : ℝ≥0", "hfl : LipschitzOnWith K f s"], "goal": "∃ g, LipschitzWith K g ∧ EqOn f g s"}], "premise": [45247], "state_str": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : PseudoMetricSpace α\ns : Set α\nι : Type u_1\nf : α → ↥(lp (fun i => ℝ) ⊤)\nK : ℝ≥0\nhfl : LipschitzOnWith K f s\n⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "inst✝ : PseudoMetricSpace α", "s : Set α", "ι : Type u_1", "f : α → ↥(lp (fun i => ℝ) ⊤)", "K : ℝ≥0", "hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s"], "goal": "∃ g, LipschitzWith K g ∧ EqOn f g s"}], "premise": [60129], "state_str": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : PseudoMetricSpace α\ns : Set α\nι : Type u_1\nf : α → ↥(lp (fun i => ℝ) ⊤)\nK : ℝ≥0\nhfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s\n⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "inst✝ : PseudoMetricSpace α", "s : Set α", "ι : Type u_1", "f : α → ↥(lp (fun i => ℝ) ⊤)", "K : ℝ≥0", "hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s", "g : ι → α → ℝ", "hgl : ∀ (i : ι), LipschitzWith K (g i)", "hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s"], "goal": "∃ g, LipschitzWith K g ∧ EqOn f g s"}], "premise": [133383], "state_str": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : PseudoMetricSpace α\ns : Set α\nι : Type u_1\nf : α → ↥(lp (fun i => ℝ) ⊤)\nK : ℝ≥0\nhfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s\ng : ι → α → ℝ\nhgl : ∀ (i : ι), LipschitzWith K (g i)\nhgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s\n⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s"} +{"state": [{"context": ["x : ℤ", "r : ℝ"], "goal": "ball x r = Ioo ⌊↑x - r⌋ ⌈↑x + r⌉"}], "premise": [56182, 61302, 105213], "state_str": "x : ℤ\nr : ℝ\n⊢ ball x r = Ioo ⌊↑x - r⌋ ⌈↑x + r⌉"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "C : ℝ≥0"], "goal": "Tendsto (fun n => C / ↑n) atTop (𝓝 0)"}], "premise": [34055, 55522, 65038], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nC : ℝ≥0\n⊢ Tendsto (fun n => C / ↑n) atTop (𝓝 0)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "a a₁ a₂ : α", "b b₁ b₂ : β", "inst✝⁵ : GroupWithZero α", "inst✝⁴ : Preorder α", "inst✝³ : Preorder β", "inst✝² : MulAction α β", "inst✝¹ : PosSMulMono α β", "inst✝ : PosSMulReflectLE α β", "ha : 0 < a"], "goal": "b₁ ≤ a⁻¹ • b₂ ↔ a • b₁ ≤ b₂"}], "premise": [1713, 7383, 11234, 104875], "state_str": "α : Type u_1\nβ : Type u_2\na a₁ a₂ : α\nb b₁ b₂ : β\ninst✝⁵ : GroupWithZero α\ninst✝⁴ : Preorder α\ninst✝³ : Preorder β\ninst✝² : MulAction α β\ninst✝¹ : PosSMulMono α β\ninst✝ : PosSMulReflectLE α β\nha : 0 < a\n⊢ b₁ ≤ a⁻¹ • b₂ ↔ a • b₁ ≤ b₂"} +{"state": [{"context": ["z : ℍ", "k : ℤ", "N : ℕ", "hk : 3 ≤ k", "a : Fin 2 → ZMod N"], "goal": "TendstoLocallyUniformlyOn (fun s => (fun z => ∑ x ∈ s, eisSummand k (↑x) z) ∘ ↑ofComplex) ((eisensteinSeries_SIF a k).toFun ∘ ↑ofComplex) Filter.atTop {z | 0 < z.im}"}], "premise": [134297], "state_str": "z : ℍ\nk : ℤ\nN : ℕ\nhk : 3 ≤ k\na : Fin 2 → ZMod N\n⊢ TendstoLocallyUniformlyOn (fun s => (fun z => ∑ x ∈ s, eisSummand k (↑x) z) ∘ ↑ofComplex)\n ((eisensteinSeries_SIF a k).toFun ∘ ↑ofComplex) Filter.atTop {z | 0 < z.im}"} +{"state": [{"context": ["z : ℍ", "k : ℤ", "N : ℕ", "hk : 3 ≤ k", "a : Fin 2 → ZMod N"], "goal": "TendstoLocallyUniformlyOn (fun s => (fun z => ∑ x ∈ s, eisSummand k (↑x) z) ∘ ↑ofComplex) ((eisensteinSeries_SIF a k).toFun ∘ ↑ofComplex) Filter.atTop (Subtype.val '' Set.univ)"}], "premise": [60215, 66070], "state_str": "z : ℍ\nk : ℤ\nN : ℕ\nhk : 3 ≤ k\na : Fin 2 → ZMod N\n⊢ TendstoLocallyUniformlyOn (fun s => (fun z => ∑ x ∈ s, eisSummand k (↑x) z) ∘ ↑ofComplex)\n ((eisensteinSeries_SIF a k).toFun ∘ ↑ofComplex) Filter.atTop (Subtype.val '' Set.univ)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "inst✝⁷ : MeasurableSpace δ", "inst✝⁶ : NormedAddCommGroup β", "inst✝⁵ : NormedAddCommGroup γ", "E : Type u_5", "inst✝⁴ : NormedAddCommGroup E", "𝕜 : Type u_6", "inst✝³ : NontriviallyNormedField 𝕜", "inst✝² : NormedSpace 𝕜 E", "H : Type u_7", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "φ : α → H", "L : H ≃L[𝕜] E", "h : Integrable (fun a => L (φ a)) μ"], "goal": "Integrable φ μ"}], "premise": [28597], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁷ : MeasurableSpace δ\ninst✝⁶ : NormedAddCommGroup β\ninst✝⁵ : NormedAddCommGroup γ\nE : Type u_5\ninst✝⁴ : NormedAddCommGroup E\n𝕜 : Type u_6\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\nH : Type u_7\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nφ : α → H\nL : H ≃L[𝕜] E\nh : Integrable (fun a => L (φ a)) μ\n⊢ Integrable φ μ"} +{"state": [{"context": ["m : Type u_1 → Type u_2", "α α✝ : Type u_1", "p₁ : (α → α✝) → Prop", "f✝ : m (α → α✝)", "p₂ : α → Prop", "q : α✝ → Prop", "inst✝¹ : Applicative m", "inst✝ : LawfulApplicative m", "x✝ : m α", "hf : SatisfiesM p₁ f✝", "hx : SatisfiesM p₂ x✝", "H : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)", "f : m { a // p₁ a }", "x : m { a // p₂ a }"], "goal": "(Subtype.val <$> Seq.seq ((fun x x_1 => match x with | ⟨a, h₁⟩ => match x_1 with | ⟨b, h₂⟩ => ⟨a b, ⋯⟩) <$> f) fun x_1 => x) = Seq.seq (Subtype.val <$> f) fun x_1 => Subtype.val <$> x"}], "premise": [984], "state_str": "m : Type u_1 → Type u_2\nα α✝ : Type u_1\np₁ : (α → α✝) → Prop\nf✝ : m (α → α✝)\np₂ : α → Prop\nq : α✝ → Prop\ninst✝¹ : Applicative m\ninst✝ : LawfulApplicative m\nx✝ : m α\nhf : SatisfiesM p₁ f✝\nhx : SatisfiesM p₂ x✝\nH : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)\nf : m { a // p₁ a }\nx : m { a // p₂ a }\n⊢ (Subtype.val <$>\n Seq.seq\n ((fun x x_1 =>\n match x with\n | ⟨a, h₁⟩ =>\n match x_1 with\n | ⟨b, h₂⟩ => ⟨a b, ⋯⟩) <$>\n f)\n fun x_1 => x) =\n Seq.seq (Subtype.val <$> f) fun x_1 => Subtype.val <$> x"} +{"state": [{"context": ["m : Type u_1 → Type u_2", "α α✝ : Type u_1", "p₁ : (α → α✝) → Prop", "f✝ : m (α → α✝)", "p₂ : α → Prop", "q : α✝ → Prop", "inst✝¹ : Applicative m", "inst✝ : LawfulApplicative m", "x✝ : m α", "hf : SatisfiesM p₁ f✝", "hx : SatisfiesM p₂ x✝", "H : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)", "f : m { a // p₁ a }", "x : m { a // p₂ a }"], "goal": "(Seq.seq (pure Subtype.val) fun x_1 => Seq.seq (Seq.seq (pure fun x x_2 => ⟨x.val x_2.val, ⋯⟩) fun x => f) fun x_2 => x) = Seq.seq (Seq.seq (pure Subtype.val) fun x => f) fun x_1 => Seq.seq (pure Subtype.val) fun x_2 => x"}], "premise": [982], "state_str": "m : Type u_1 → Type u_2\nα α✝ : Type u_1\np₁ : (α → α✝) → Prop\nf✝ : m (α → α✝)\np₂ : α → Prop\nq : α✝ → Prop\ninst✝¹ : Applicative m\ninst✝ : LawfulApplicative m\nx✝ : m α\nhf : SatisfiesM p₁ f✝\nhx : SatisfiesM p₂ x✝\nH : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)\nf : m { a // p₁ a }\nx : m { a // p₂ a }\n⊢ (Seq.seq (pure Subtype.val) fun x_1 =>\n Seq.seq (Seq.seq (pure fun x x_2 => ⟨x.val x_2.val, ⋯⟩) fun x => f) fun x_2 => x) =\n Seq.seq (Seq.seq (pure Subtype.val) fun x => f) fun x_1 => Seq.seq (pure Subtype.val) fun x_2 => x"} +{"state": [{"context": ["m : Type u_1 → Type u_2", "α α✝ : Type u_1", "p₁ : (α → α✝) → Prop", "f✝ : m (α → α✝)", "p₂ : α → Prop", "q : α✝ → Prop", "inst✝¹ : Applicative m", "inst✝ : LawfulApplicative m", "x✝ : m α", "hf : SatisfiesM p₁ f✝", "hx : SatisfiesM p₂ x✝", "H : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)", "f : m { a // p₁ a }", "x : m { a // p₂ a }"], "goal": "(Seq.seq (Seq.seq (pure (Function.comp Subtype.val ∘ fun x x_1 => ⟨x.val x_1.val, ⋯⟩)) fun x => f) fun x_1 => x) = Seq.seq ((fun h => h Subtype.val) <$> Function.comp <$> Seq.seq (pure Subtype.val) fun x => f) fun x_1 => x"}], "premise": [984], "state_str": "m : Type u_1 → Type u_2\nα α✝ : Type u_1\np₁ : (α → α✝) → Prop\nf✝ : m (α → α✝)\np₂ : α → Prop\nq : α✝ → Prop\ninst✝¹ : Applicative m\ninst✝ : LawfulApplicative m\nx✝ : m α\nhf : SatisfiesM p₁ f✝\nhx : SatisfiesM p₂ x✝\nH : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)\nf : m { a // p₁ a }\nx : m { a // p₂ a }\n⊢ (Seq.seq (Seq.seq (pure (Function.comp Subtype.val ∘ fun x x_1 => ⟨x.val x_1.val, ⋯⟩)) fun x => f) fun x_1 => x) =\n Seq.seq ((fun h => h Subtype.val) <$> Function.comp <$> Seq.seq (pure Subtype.val) fun x => f) fun x_1 => x"} +{"state": [{"context": ["m : Type u_1 → Type u_2", "α α✝ : Type u_1", "p₁ : (α → α✝) → Prop", "f✝ : m (α → α✝)", "p₂ : α → Prop", "q : α✝ → Prop", "inst✝¹ : Applicative m", "inst✝ : LawfulApplicative m", "x✝ : m α", "hf : SatisfiesM p₁ f✝", "hx : SatisfiesM p₂ x✝", "H : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)", "f : m { a // p₁ a }", "x : m { a // p₂ a }"], "goal": "(Seq.seq (Seq.seq (pure (Function.comp Subtype.val ∘ fun x x_1 => ⟨x.val x_1.val, ⋯⟩)) fun x => f) fun x_1 => x) = Seq.seq (Seq.seq (pure fun h => h Subtype.val) fun x => Seq.seq (pure Function.comp) fun x => Seq.seq (pure Subtype.val) fun x => f) fun x_1 => x"}], "premise": [982, 1671], "state_str": "m : Type u_1 → Type u_2\nα α✝ : Type u_1\np₁ : (α → α✝) → Prop\nf✝ : m (α → α✝)\np₂ : α → Prop\nq : α✝ → Prop\ninst✝¹ : Applicative m\ninst✝ : LawfulApplicative m\nx✝ : m α\nhf : SatisfiesM p₁ f✝\nhx : SatisfiesM p₂ x✝\nH : ∀ {f : α → α✝} {a : α}, p₁ f → p₂ a → q (f a)\nf : m { a // p₁ a }\nx : m { a // p₂ a }\n⊢ (Seq.seq (Seq.seq (pure (Function.comp Subtype.val ∘ fun x x_1 => ⟨x.val x_1.val, ⋯⟩)) fun x => f) fun x_1 => x) =\n Seq.seq\n (Seq.seq (pure fun h => h Subtype.val) fun x =>\n Seq.seq (pure Function.comp) fun x => Seq.seq (pure Subtype.val) fun x => f)\n fun x_1 => x"} +{"state": [{"context": ["K : Type u", "inst✝² : CommRing K", "p : ℕ", "inst✝¹ : Fact (Nat.Prime p)", "inst✝ : CharP K p", "x : ℕ × K"], "goal": "(frobenius (PerfectClosure K p) p) (mk K p x) = mk K p (x.1, x.2 ^ p)"}], "premise": [124785], "state_str": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : ℕ × K\n⊢ (frobenius (PerfectClosure K p) p) (mk K p x) = mk K p (x.1, x.2 ^ p)"} +{"state": [{"context": ["K : Type u", "inst✝² : CommRing K", "p : ℕ", "inst✝¹ : Fact (Nat.Prime p)", "inst✝ : CharP K p", "x : ℕ × K"], "goal": "mk K p x ^ p = mk K p (x.1, x.2 ^ p)"}], "premise": [87868], "state_str": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : ℕ × K\n⊢ mk K p x ^ p = mk K p (x.1, x.2 ^ p)"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : ℝ → E", "a b : ℝ", "f' : ℝ → E", "C : ℝ", "hf : ∀ x ∈ Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x", "bound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C"], "goal": "∀ x ∈ Icc a b, ‖f x - f a‖ ≤ C * (x - a)"}], "premise": [44440, 46629], "state_str": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : ℝ → E\na b : ℝ\nf' : ℝ → E\nC : ℝ\nhf : ∀ x ∈ Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x\nbound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C\n⊢ ∀ x ∈ Icc a b, ‖f x - f a‖ ≤ C * (x - a)"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : ℝ → E", "a b : ℝ", "f' : ℝ → E", "C : ℝ", "hf : ∀ x ∈ Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x", "bound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C", "x : ℝ", "hx : x ∈ Ico a b"], "goal": "HasDerivWithinAt f (f' x) (Ici x) x"}], "premise": [20231, 44363, 54961], "state_str": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : ℝ → E\na b : ℝ\nf' : ℝ → E\nC : ℝ\nhf : ∀ x ∈ Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x\nbound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C\nx : ℝ\nhx : x ∈ Ico a b\n⊢ HasDerivWithinAt f (f' x) (Ici x) x"} +{"state": [{"context": ["F : Type u_1", "α✝ : Type u_2", "β✝ : Type u_3", "γ : Type u_4", "ι✝ : Type u_5", "κ✝ : Type u_6", "inst✝² : SemilatticeSup α✝", "s✝ : Finset β✝", "H : s✝.Nonempty", "f✝ : β✝ → α✝", "ι : Type u_7", "κ : Type u_8", "α : Type u_9", "β : Type u_10", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "s : Finset ι", "t : Finset κ", "f : ι → α", "g : κ → β", "i : α × β", "a : ι", "ha : a ∈ s", "b : κ", "hb : b ∈ t"], "goal": "(s.sup' ⋯ f, t.sup' ⋯ g) ≤ i ↔ (s ×ˢ t).sup' ⋯ (Prod.map f g) ≤ i"}], "premise": [1186, 11350, 136829, 137296, 139771], "state_str": "case intro.intro\nF : Type u_1\nα✝ : Type u_2\nβ✝ : Type u_3\nγ : Type u_4\nι✝ : Type u_5\nκ✝ : Type u_6\ninst✝² : SemilatticeSup α✝\ns✝ : Finset β✝\nH : s✝.Nonempty\nf✝ : β✝ → α✝\nι : Type u_7\nκ : Type u_8\nα : Type u_9\nβ : Type u_10\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\ns : Finset ι\nt : Finset κ\nf : ι → α\ng : κ → β\ni : α × β\na : ι\nha : a ∈ s\nb : κ\nhb : b ∈ t\n⊢ (s.sup' ⋯ f, t.sup' ⋯ g) ≤ i ↔ (s ×ˢ t).sup' ⋯ (Prod.map f g) ≤ i"} +{"state": [{"context": ["F : Type u_1", "α✝ : Type u_2", "β✝ : Type u_3", "γ : Type u_4", "ι✝ : Type u_5", "κ✝ : Type u_6", "inst✝² : SemilatticeSup α✝", "s✝ : Finset β✝", "H : s✝.Nonempty", "f✝ : β✝ → α✝", "ι : Type u_7", "κ : Type u_8", "α : Type u_9", "β : Type u_10", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "s : Finset ι", "t : Finset κ", "f : ι → α", "g : κ → β", "i : α × β", "a : ι", "ha : a ∈ s", "b : κ", "hb : b ∈ t"], "goal": "((∀ b ∈ s, f b ≤ i.1) ∧ ∀ b ∈ t, g b ≤ i.2) ↔ ∀ (a : ι) (b : κ), a ∈ s → b ∈ t → f a ≤ i.1 ∧ g b ≤ i.2"}], "premise": [2106, 2107], "state_str": "case intro.intro\nF : Type u_1\nα✝ : Type u_2\nβ✝ : Type u_3\nγ : Type u_4\nι✝ : Type u_5\nκ✝ : Type u_6\ninst✝² : SemilatticeSup α✝\ns✝ : Finset β✝\nH : s✝.Nonempty\nf✝ : β✝ → α✝\nι : Type u_7\nκ : Type u_8\nα : Type u_9\nβ : Type u_10\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\ns : Finset ι\nt : Finset κ\nf : ι → α\ng : κ → β\ni : α × β\na : ι\nha : a ∈ s\nb : κ\nhb : b ∈ t\n⊢ ((∀ b ∈ s, f b ≤ i.1) ∧ ∀ b ∈ t, g b ≤ i.2) ↔ ∀ (a : ι) (b : κ), a ∈ s → b ∈ t → f a ≤ i.1 ∧ g b ≤ i.2"} +{"state": [{"context": ["ι : Type u", "γ✝ : Type w", "β : ι → Type v", "β₁ : ι → Type v₁", "β₂ : ι → Type v₂", "inst✝³ : DecidableEq ι", "γ : Type w", "α : Type x", "inst✝² : (i : ι) → AddCommMonoid (β i)", "inst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)", "inst✝ : CommMonoid γ", "s : Finset α", "g : α → Π₀ (i : ι), β i", "h : (i : ι) → β i → γ", "h_zero : ∀ (i : ι), h i 0 = 1", "h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ * h i b₂"], "goal": "∏ i ∈ s, (g i).prod h = (∑ i ∈ s, g i).prod h"}], "premise": [138847, 149003, 149022], "state_str": "ι : Type u\nγ✝ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ninst✝³ : DecidableEq ι\nγ : Type w\nα : Type x\ninst✝² : (i : ι) → AddCommMonoid (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\ninst✝ : CommMonoid γ\ns : Finset α\ng : α → Π₀ (i : ι), β i\nh : (i : ι) → β i → γ\nh_zero : ∀ (i : ι), h i 0 = 1\nh_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ * h i b₂\n⊢ ∏ i ∈ s, (g i).prod h = (∑ i ∈ s, g i).prod h"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "inst✝³ : TopologicalSpace α", "inst✝² : PolishSpace α", "inst✝¹ : MeasurableSpace α", "inst✝ : BorelSpace α"], "goal": "∀ {s : Set α}, MeasurableSet s → IsClopenable s"}], "premise": [25862], "state_str": "α : Type u_1\nι : Type u_2\ninst✝³ : TopologicalSpace α\ninst✝² : PolishSpace α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\n⊢ ∀ {s : Set α}, MeasurableSet s → IsClopenable s"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "δ : Type u_3", "r : α → β → Prop", "p : γ → δ → Prop", "a : Multiset α"], "goal": "Rel r a 0 ↔ a = 0"}], "premise": [138209], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\nδ : Type u_3\nr : α → β → Prop\np : γ → δ → Prop\na : Multiset α\n⊢ Rel r a 0 ↔ a = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : DecidableEq α", "l : List α", "x : α", "xs : List α", "h : xs.Nodup", "n : ℕ", "hn : n < xs.length"], "goal": "xs.formPerm (xs.nthLe n hn) = xs.nthLe ((n + 1) % xs.length) ⋯"}], "premise": [8825], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : DecidableEq α\nl : List α\nx : α\nxs : List α\nh : xs.Nodup\nn : ℕ\nhn : n < xs.length\n⊢ xs.formPerm (xs.nthLe n hn) = xs.nthLe ((n + 1) % xs.length) ⋯"} +{"state": [{"context": ["R : Type u_1", "L : Type u_2", "M : Type u_3", "n : Type u_4", "ι : Type u_5", "ι' : Type u_6", "ιM : Type u_7", "inst✝¹² : CommRing R", "inst✝¹¹ : AddCommGroup L", "inst✝¹⁰ : Module R L", "inst✝⁹ : AddCommGroup M", "inst✝⁸ : Module R M", "φ : L →ₗ[R] Module.End R M", "inst✝⁷ : Fintype ι", "inst✝⁶ : Fintype ι'", "inst✝⁵ : Fintype ιM", "inst✝⁴ : DecidableEq ι", "inst✝³ : DecidableEq ι'", "inst✝² : DecidableEq ιM", "b : Basis ι R L", "bₘ : Basis ιM R M", "inst✝¹ : Module.Finite R M", "inst✝ : Module.Free R M", "x : ι → R"], "goal": "Polynomial.map (MvPolynomial.eval x) (φ.polyCharpolyAux b bₘ) = charpoly (φ (b.repr.symm (Finsupp.equivFunOnFinite.symm x)))"}], "premise": [70745, 110523, 110776, 148059], "state_str": "R : Type u_1\nL : Type u_2\nM : Type u_3\nn : Type u_4\nι : Type u_5\nι' : Type u_6\nιM : Type u_7\ninst✝¹² : CommRing R\ninst✝¹¹ : AddCommGroup L\ninst✝¹⁰ : Module R L\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : Module R M\nφ : L →ₗ[R] Module.End R M\ninst✝⁷ : Fintype ι\ninst✝⁶ : Fintype ι'\ninst✝⁵ : Fintype ιM\ninst✝⁴ : DecidableEq ι\ninst✝³ : DecidableEq ι'\ninst✝² : DecidableEq ιM\nb : Basis ι R L\nbₘ : Basis ιM R M\ninst✝¹ : Module.Finite R M\ninst✝ : Module.Free R M\nx : ι → R\n⊢ Polynomial.map (MvPolynomial.eval x) (φ.polyCharpolyAux b bₘ) =\n charpoly (φ (b.repr.symm (Finsupp.equivFunOnFinite.symm x)))"} +{"state": [{"context": ["M : Type u_1", "N✝ : Type u_2", "inst✝¹ : Monoid M", "inst✝ : AddMonoid N✝", "N : Submonoid M"], "goal": "FG ↥N ↔ N.FG"}], "premise": [119525, 119601], "state_str": "M : Type u_1\nN✝ : Type u_2\ninst✝¹ : Monoid M\ninst✝ : AddMonoid N✝\nN : Submonoid M\n⊢ FG ↥N ↔ N.FG"} +{"state": [{"context": ["M : Type u_1", "N✝ : Type u_2", "inst✝¹ : Monoid M", "inst✝ : AddMonoid N✝", "N : Submonoid M"], "goal": "FG ↥N ↔ (Submonoid.map N.subtype ⊤).FG"}], "premise": [6444, 6452, 6454, 137138], "state_str": "M : Type u_1\nN✝ : Type u_2\ninst✝¹ : Monoid M\ninst✝ : AddMonoid N✝\nN : Submonoid M\n⊢ FG ↥N ↔ (Submonoid.map N.subtype ⊤).FG"} +{"state": [{"context": ["m : ℕ", "hm : 2 ≤ m", "mZ1 : 1 < ↑m", "m1 : 1 < ↑m", "n : ℕ"], "goal": "∃ a b, 1 < b ∧ liouvilleNumber ↑m ≠ ↑a / ↑b ∧ |liouvilleNumber ↑m - ↑a / ↑b| < 1 / ↑b ^ n"}], "premise": [21311, 103765], "state_str": "m : ℕ\nhm : 2 ≤ m\nmZ1 : 1 < ↑m\nm1 : 1 < ↑m\nn : ℕ\n⊢ ∃ a b, 1 < b ∧ liouvilleNumber ↑m ≠ ↑a / ↑b ∧ |liouvilleNumber ↑m - ↑a / ↑b| < 1 / ↑b ^ n"} +{"state": [{"context": ["m : ℕ", "hm : 2 ≤ m", "mZ1 : 1 < ↑m", "m1 : 1 < ↑m", "n p : ℕ", "hp : partialSum (↑m) n = ↑p / ↑(m ^ n !)"], "goal": "∃ a b, 1 < b ∧ liouvilleNumber ↑m ≠ ↑a / ↑b ∧ |liouvilleNumber ↑m - ↑a / ↑b| < 1 / ↑b ^ n"}], "premise": [106249, 144421], "state_str": "case intro\nm : ℕ\nhm : 2 ≤ m\nmZ1 : 1 < ↑m\nm1 : 1 < ↑m\nn p : ℕ\nhp : partialSum (↑m) n = ↑p / ↑(m ^ n !)\n⊢ ∃ a b, 1 < b ∧ liouvilleNumber ↑m ≠ ↑a / ↑b ∧ |liouvilleNumber ↑m - ↑a / ↑b| < 1 / ↑b ^ n"} +{"state": [{"context": ["m : ℕ", "hm : 2 ≤ m", "mZ1 : 1 < ↑m", "m1 : 1 < ↑m", "n p : ℕ", "hp : partialSum (↑m) n = ↑p / ↑(m ^ n !)"], "goal": "liouvilleNumber ↑m ≠ ↑p / ↑m ^ n ! ∧ |liouvilleNumber ↑m - ↑p / ↑m ^ n !| < 1 / (↑m ^ n !) ^ n"}], "premise": [142652], "state_str": "case intro\nm : ℕ\nhm : 2 ≤ m\nmZ1 : 1 < ↑m\nm1 : 1 < ↑m\nn p : ℕ\nhp : partialSum (↑m) n = ↑p / ↑(m ^ n !)\n⊢ liouvilleNumber ↑m ≠ ↑p / ↑m ^ n ! ∧ |liouvilleNumber ↑m - ↑p / ↑m ^ n !| < 1 / (↑m ^ n !) ^ n"} +{"state": [{"context": ["m : ℕ", "hm : 2 ≤ m", "mZ1 : 1 < ↑m", "m1 : 1 < ↑m", "n p : ℕ", "hp : partialSum (↑m) n = ↑p / ↑m ^ n !"], "goal": "liouvilleNumber ↑m ≠ ↑p / ↑m ^ n ! ∧ |liouvilleNumber ↑m - ↑p / ↑m ^ n !| < 1 / (↑m ^ n !) ^ n"}], "premise": [21307], "state_str": "case intro\nm : ℕ\nhm : 2 ≤ m\nmZ1 : 1 < ↑m\nm1 : 1 < ↑m\nn p : ℕ\nhp : partialSum (↑m) n = ↑p / ↑m ^ n !\n⊢ liouvilleNumber ↑m ≠ ↑p / ↑m ^ n ! ∧ |liouvilleNumber ↑m - ↑p / ↑m ^ n !| < 1 / (↑m ^ n !) ^ n"} +{"state": [{"context": ["m : ℕ", "hm : 2 ≤ m", "mZ1 : 1 < ↑m", "m1 : 1 < ↑m", "n p : ℕ", "hp : partialSum (↑m) n = ↑p / ↑m ^ n !"], "goal": "partialSum (↑m) n + remainder (↑m) n ≠ partialSum (↑m) n ∧ |partialSum (↑m) n + remainder (↑m) n - partialSum (↑m) n| < 1 / (↑m ^ n !) ^ n"}], "premise": [21305], "state_str": "case intro\nm : ℕ\nhm : 2 ≤ m\nmZ1 : 1 < ↑m\nm1 : 1 < ↑m\nn p : ℕ\nhp : partialSum (↑m) n = ↑p / ↑m ^ n !\n⊢ partialSum (↑m) n + remainder (↑m) n ≠ partialSum (↑m) n ∧\n |partialSum (↑m) n + remainder (↑m) n - partialSum (↑m) n| < 1 / (↑m ^ n !) ^ n"} +{"state": [{"context": ["m : ℕ", "hm : 2 ≤ m", "mZ1 : 1 < ↑m", "m1 : 1 < ↑m", "n p : ℕ", "hp : partialSum (↑m) n = ↑p / ↑m ^ n !", "hpos : 0 < remainder (↑m) n"], "goal": "partialSum (↑m) n + remainder (↑m) n ≠ partialSum (↑m) n ∧ |partialSum (↑m) n + remainder (↑m) n - partialSum (↑m) n| < 1 / (↑m ^ n !) ^ n"}], "premise": [11234, 21310, 105284], "state_str": "case intro\nm : ℕ\nhm : 2 ≤ m\nmZ1 : 1 < ↑m\nm1 : 1 < ↑m\nn p : ℕ\nhp : partialSum (↑m) n = ↑p / ↑m ^ n !\nhpos : 0 < remainder (↑m) n\n⊢ partialSum (↑m) n + remainder (↑m) n ≠ partialSum (↑m) n ∧\n |partialSum (↑m) n + remainder (↑m) n - partialSum (↑m) n| < 1 / (↑m ^ n !) ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : MeasurableSpace α", "j : JordanDecomposition α", "r : ℝ", "hr : r < 0"], "goal": "(r • j).posPart = (-r).toNNReal • j.negPart"}], "premise": [1674, 1738, 14324, 32529, 32532, 32533], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : MeasurableSpace α\nj : JordanDecomposition α\nr : ℝ\nhr : r < 0\n⊢ (r • j).posPart = (-r).toNNReal • j.negPart"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : CompleteSpace E", "T : E →L[𝕜] E", "hT : IsSelfAdjoint T", "x₀ : E", "hx₀ : x₀ ≠ 0", "hextr : IsLocalExtrOn T.reApplyInnerSelf (sphere 0 ‖x₀‖) x₀"], "goal": "x₀ ∈ eigenspace ↑T ↑(T.rayleighQuotient x₀)"}], "premise": [88218], "state_str": "𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nT : E →L[𝕜] E\nhT : IsSelfAdjoint T\nx₀ : E\nhx₀ : x₀ ≠ 0\nhextr : IsLocalExtrOn T.reApplyInnerSelf (sphere 0 ‖x₀‖) x₀\n⊢ x₀ ∈ eigenspace ↑T ↑(T.rayleighQuotient x₀)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : CompleteSpace E", "T : E →L[𝕜] E", "hT : IsSelfAdjoint T", "x₀ : E", "hx₀ : x₀ ≠ 0", "hextr : IsLocalExtrOn T.reApplyInnerSelf (sphere 0 ‖x₀‖) x₀"], "goal": "↑T x₀ = ↑(T.rayleighQuotient x₀) • x₀"}], "premise": [33831], "state_str": "𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nT : E →L[𝕜] E\nhT : IsSelfAdjoint T\nx₀ : E\nhx₀ : x₀ ≠ 0\nhextr : IsLocalExtrOn T.reApplyInnerSelf (sphere 0 ‖x₀‖) x₀\n⊢ ↑T x₀ = ↑(T.rayleighQuotient x₀) • x₀"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α β", "f : β → ℝ≥0∞", "μ : Measure β", "a : α"], "goal": "∫⁻ (x : β), f x ∂(const α μ) a = ∫⁻ (x : β), f x ∂μ"}], "premise": [72658], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α β\nf : β → ℝ≥0∞\nμ : Measure β\na : α\n⊢ ∫⁻ (x : β), f x ∂(const α μ) a = ∫⁻ (x : β), f x ∂μ"} +{"state": [{"context": ["R : Type u", "inst✝ : CommSemiring R", "𝓟 : Ideal R", "f : R[X]", "hf : f.IsEisensteinAt 𝓟", "n : ℕ", "hn : n ≠ f.natDegree"], "goal": "f.coeff n ∈ 𝓟"}], "premise": [1673, 14321], "state_str": "R : Type u\ninst✝ : CommSemiring R\n𝓟 : Ideal R\nf : R[X]\nhf : f.IsEisensteinAt 𝓟\nn : ℕ\nhn : n ≠ f.natDegree\n⊢ f.coeff n ∈ 𝓟"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : Preorder α", "f : α → Part β", "g : α → β → Part γ", "hf : Monotone f", "hg : Monotone g", "x y : α", "h : x ≤ y", "a : γ"], "goal": "a ∈ (fun x => (f x).bind (g x)) x → a ∈ (fun x => (f x).bind (g x)) y"}], "premise": [1186, 2013, 2045, 131108, 131125], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : Preorder α\nf : α → Part β\ng : α → β → Part γ\nhf : Monotone f\nhg : Monotone g\nx y : α\nh : x ≤ y\na : γ\n⊢ a ∈ (fun x => (f x).bind (g x)) x → a ∈ (fun x => (f x).bind (g x)) y"} +{"state": [{"context": ["R : Type u", "L : Type v", "M : Type w", "M₂ : Type w₁", "inst✝¹⁰ : CommRing R", "inst✝⁹ : LieRing L", "inst✝⁸ : LieAlgebra R L", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M₂", "inst✝² : Module R M₂", "inst✝¹ : LieRingModule L M₂", "inst✝ : LieModule R L M₂", "N N' : LieSubmodule R L M", "I J : LieIdeal R L", "N₂ : LieSubmodule R L M₂"], "goal": "⁅I, N⁆ = ⊥ ↔ ∀ x ∈ I, ∀ m ∈ N, ⁅x, m⁆ = 0"}], "premise": [108476, 109332], "state_str": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ ⁅I, N⁆ = ⊥ ↔ ∀ x ∈ I, ∀ m ∈ N, ⁅x, m⁆ = 0"} +{"state": [{"context": ["V : Type u_1", "W : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : NormedSpace ℝ V", "inst✝¹ : NormedAddCommGroup W", "inst✝ : NormedSpace ℝ W", "L : V →L[ℝ] W →L[ℝ] ℝ", "v y : V", "w : W"], "goal": "(fderiv ℝ (fun v => ↑(𝐞 (-(L v) w))) v) y = -2 * ↑π * I * ↑((L y) w) * ↑(𝐞 (-(L v) w))"}], "premise": [1670, 41389, 46230, 46340, 46496, 68773, 68792, 117792, 118863, 120658, 122240], "state_str": "V : Type u_1\nW : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : NormedAddCommGroup W\ninst✝ : NormedSpace ℝ W\nL : V →L[ℝ] W →L[ℝ] ℝ\nv y : V\nw : W\n⊢ (fderiv ℝ (fun v => ↑(𝐞 (-(L v) w))) v) y = -2 * ↑π * I * ↑((L y) w) * ↑(𝐞 (-(L v) w))"} +{"state": [{"context": ["R : Type u_1", "inst✝ : AddGroupWithOne R", "n : ℕ"], "goal": "↑1 n = 1 n"}], "premise": [23860], "state_str": "case h\nR : Type u_1\ninst✝ : AddGroupWithOne R\nn : ℕ\n⊢ ↑1 n = 1 n"} +{"state": [{"context": ["G : Type w", "inst✝ : TopologicalSpace G", "μ : Content G", "K₁ K₂ : Compacts G"], "goal": "(fun s => ↑(μ.toFun s)) (K₁ ⊔ K₂) ≤ (fun s => ↑(μ.toFun s)) K₁ + (fun s => ↑(μ.toFun s)) K₂"}], "premise": [29949], "state_str": "G : Type w\ninst✝ : TopologicalSpace G\nμ : Content G\nK₁ K₂ : Compacts G\n⊢ (fun s => ↑(μ.toFun s)) (K₁ ⊔ K₂) ≤ (fun s => ↑(μ.toFun s)) K₁ + (fun s => ↑(μ.toFun s)) K₂"} +{"state": [{"context": ["G : Type w", "inst✝ : TopologicalSpace G", "μ : Content G", "K₁ K₂ : Compacts G"], "goal": "μ.toFun (K₁ ⊔ K₂) ≤ μ.toFun K₁ + μ.toFun K₂"}], "premise": [29947], "state_str": "G : Type w\ninst✝ : TopologicalSpace G\nμ : Content G\nK₁ K₂ : Compacts G\n⊢ μ.toFun (K₁ ⊔ K₂) ≤ μ.toFun K₁ + μ.toFun K₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s✝ t u : Set α", "m : MeasurableSpace α", "mβ : MeasurableSpace β", "mγ : MeasurableSpace γ", "inst✝ : Countable β", "x✝ : MeasurableSpace γ", "f : α × β → γ", "hf : ∀ (y : β), Measurable fun x => f (x, y)", "h'f : ∀ (y y' : β) (x : α), y' ∈ measurableAtom y → f (x, y') = f (x, y)", "s : Set γ", "hs : MeasurableSet s"], "goal": "MeasurableSet (f ⁻¹' s)"}], "premise": [16573, 28851, 131591, 131601], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns✝ t u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ninst✝ : Countable β\nx✝ : MeasurableSpace γ\nf : α × β → γ\nhf : ∀ (y : β), Measurable fun x => f (x, y)\nh'f : ∀ (y y' : β) (x : α), y' ∈ measurableAtom y → f (x, y') = f (x, y)\ns : Set γ\nhs : MeasurableSet s\n⊢ MeasurableSet (f ⁻¹' s)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s✝ t u : Set α", "m : MeasurableSpace α", "mβ : MeasurableSpace β", "mγ : MeasurableSpace γ", "inst✝ : Countable β", "x✝ : MeasurableSpace γ", "f : α × β → γ", "hf : ∀ (y : β), Measurable fun x => f (x, y)", "h'f : ∀ (y y' : β) (x : α), y' ∈ measurableAtom y → f (x, y') = f (x, y)", "s : Set γ", "hs : MeasurableSet s", "this : f ⁻¹' s = ⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ measurableAtom y"], "goal": "MeasurableSet (⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ measurableAtom y)"}], "premise": [27959, 28855, 28870], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns✝ t u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ninst✝ : Countable β\nx✝ : MeasurableSpace γ\nf : α × β → γ\nhf : ∀ (y : β), Measurable fun x => f (x, y)\nh'f : ∀ (y y' : β) (x : α), y' ∈ measurableAtom y → f (x, y') = f (x, y)\ns : Set γ\nhs : MeasurableSet s\nthis : f ⁻¹' s = ⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ measurableAtom y\n⊢ MeasurableSet (⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ measurableAtom y)"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasZeroObject C", "inst✝² : Preadditive C", "inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝ : Pretriangulated C", "T : Triangle C", "hT : T ∈ distinguishedTriangles"], "goal": "(triangleOpEquivalence C).functor.obj (Opposite.op T) ∈ distinguishedTriangles"}], "premise": [99834], "state_str": "C : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasZeroObject C\ninst✝² : Preadditive C\ninst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝ : Pretriangulated C\nT : Triangle C\nhT : T ∈ distinguishedTriangles\n⊢ (triangleOpEquivalence C).functor.obj (Opposite.op T) ∈ distinguishedTriangles"} +{"state": [{"context": ["E : Type u_1", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : InnerProductSpace ℝ E", "F : Type u_2", "inst✝⁶ : NormedAddCommGroup F", "inst✝⁵ : NormedSpace ℝ F", "H : Type u_3", "inst✝⁴ : TopologicalSpace H", "I : ModelWithCorners ℝ F H", "M : Type u_4", "inst✝³ : TopologicalSpace M", "inst✝² : ChartedSpace H M", "inst✝¹ : SmoothManifoldWithCorners I M", "n : ℕ", "inst✝ : Fact (finrank ℝ E = n + 1)"], "goal": "ContMDiff 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) ⊤ fun x => -x"}], "premise": [69241], "state_str": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace ℝ E\nF : Type u_2\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\nH : Type u_3\ninst✝⁴ : TopologicalSpace H\nI : ModelWithCorners ℝ F H\nM : Type u_4\ninst✝³ : TopologicalSpace M\ninst✝² : ChartedSpace H M\ninst✝¹ : SmoothManifoldWithCorners I M\nn : ℕ\ninst✝ : Fact (finrank ℝ E = n + 1)\n⊢ ContMDiff 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) ⊤ fun x => -x"} +{"state": [{"context": ["E : Type u_1", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : InnerProductSpace ℝ E", "F : Type u_2", "inst✝⁶ : NormedAddCommGroup F", "inst✝⁵ : NormedSpace ℝ F", "H : Type u_3", "inst✝⁴ : TopologicalSpace H", "I : ModelWithCorners ℝ F H", "M : Type u_4", "inst✝³ : TopologicalSpace M", "inst✝² : ChartedSpace H M", "inst✝¹ : SmoothManifoldWithCorners I M", "n : ℕ", "inst✝ : Fact (finrank ℝ E = n + 1)"], "goal": "ContMDiff 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) 𝓘(ℝ, E) ⊤ fun x => -↑x"}], "premise": [51674, 68036], "state_str": "case hf\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace ℝ E\nF : Type u_2\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\nH : Type u_3\ninst✝⁴ : TopologicalSpace H\nI : ModelWithCorners ℝ F H\nM : Type u_4\ninst✝³ : TopologicalSpace M\ninst✝² : ChartedSpace H M\ninst✝¹ : SmoothManifoldWithCorners I M\nn : ℕ\ninst✝ : Fact (finrank ℝ E = n + 1)\n⊢ ContMDiff 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) 𝓘(ℝ, E) ⊤ fun x => -↑x"} +{"state": [{"context": ["E : Type u_1", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : InnerProductSpace ℝ E", "F : Type u_2", "inst✝⁶ : NormedAddCommGroup F", "inst✝⁵ : NormedSpace ℝ F", "H : Type u_3", "inst✝⁴ : TopologicalSpace H", "I : ModelWithCorners ℝ F H", "M : Type u_4", "inst✝³ : TopologicalSpace M", "inst✝² : ChartedSpace H M", "inst✝¹ : SmoothManifoldWithCorners I M", "n : ℕ", "inst✝ : Fact (finrank ℝ E = n + 1)"], "goal": "ContMDiff 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) 𝓘(ℝ, E) ⊤ Subtype.val"}], "premise": [69240], "state_str": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace ℝ E\nF : Type u_2\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\nH : Type u_3\ninst✝⁴ : TopologicalSpace H\nI : ModelWithCorners ℝ F H\nM : Type u_4\ninst✝³ : TopologicalSpace M\ninst✝² : ChartedSpace H M\ninst✝¹ : SmoothManifoldWithCorners I M\nn : ℕ\ninst✝ : Fact (finrank ℝ E = n + 1)\n⊢ ContMDiff 𝓘(ℝ, EuclideanSpace ℝ (Fin n)) 𝓘(ℝ, E) ⊤ Subtype.val"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "S : AffineSpace V P", "ι : Type u_4", "s : Finset ι", "ι₂ : Type u_5", "s₂ : Finset ι₂", "inst✝ : DecidableEq ι", "i : ι", "h : i ∈ s"], "goal": "∑ j ∈ s, affineCombinationSingleWeights k i j = 1"}], "premise": [84225], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_4\ns : Finset ι\nι₂ : Type u_5\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\ni : ι\nh : i ∈ s\n⊢ ∑ j ∈ s, affineCombinationSingleWeights k i j = 1"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "S : AffineSpace V P", "ι : Type u_4", "s : Finset ι", "ι₂ : Type u_5", "s₂ : Finset ι₂", "inst✝ : DecidableEq ι", "i : ι", "h : i ∈ s"], "goal": "∑ j ∈ s, affineCombinationSingleWeights k i j = affineCombinationSingleWeights k i i"}], "premise": [84226, 127032], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_4\ns : Finset ι\nι₂ : Type u_5\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\ni : ι\nh : i ∈ s\n⊢ ∑ j ∈ s, affineCombinationSingleWeights k i j = affineCombinationSingleWeights k i i"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "H : Type u_4", "inst✝ : Semigroup G", "a b c : G", "h : SemiconjBy a b c", "j : G"], "goal": "(fun x => x * a) ((fun x => x * c) j) = (fun x => x * b) ((fun x => x * a) j)"}], "premise": [119703, 120103], "state_str": "M : Type u_1\nN : Type u_2\nG : Type u_3\nH : Type u_4\ninst✝ : Semigroup G\na b c : G\nh : SemiconjBy a b c\nj : G\n⊢ (fun x => x * a) ((fun x => x * c) j) = (fun x => x * b) ((fun x => x * a) j)"} +{"state": [{"context": ["a b : ℝ", "hab : a < b", "l : Filter ℝ", "f f' g g' : ℝ → ℝ", "hdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x", "hg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0", "hfa : Tendsto f (𝓝[<] a) (𝓝 0)", "hga : Tendsto g (𝓝[<] a) (𝓝 0)", "hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l"], "goal": "Tendsto (fun x => f x / g x) (𝓝[<] a) l"}], "premise": [16021, 16026, 44342, 70041], "state_str": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x\nhg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0\nhfa : Tendsto f (𝓝[<] a) (𝓝 0)\nhga : Tendsto g (𝓝[<] a) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l\n⊢ Tendsto (fun x => f x / g x) (𝓝[<] a) l"} +{"state": [{"context": ["a b : ℝ", "hab : a < b", "l : Filter ℝ", "f f' g g' : ℝ → ℝ", "hdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x", "hg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0", "hfa : Tendsto f (𝓝[<] a) (𝓝 0)", "hga : Tendsto g (𝓝[<] a) (𝓝 0)", "hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l", "hdg : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ g x"], "goal": "Tendsto (fun x => f x / g x) (𝓝[<] a) l"}], "premise": [16021, 16026, 44375], "state_str": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x\nhg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0\nhfa : Tendsto f (𝓝[<] a) (𝓝 0)\nhga : Tendsto g (𝓝[<] a) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l\nhdg : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) (𝓝[<] a) l"} +{"state": [{"context": ["a b : ℝ", "hab : a < b", "l : Filter ℝ", "f f' g g' : ℝ → ℝ", "hdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x", "hg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0", "hfa : Tendsto f (𝓝[<] a) (𝓝 0)", "hga : Tendsto g (𝓝[<] a) (𝓝 0)", "hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l", "hdg : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ g x", "hdf' : ∀ᶠ (x : ℝ) in 𝓝[<] a, HasDerivAt f (deriv f x) x"], "goal": "Tendsto (fun x => f x / g x) (𝓝[<] a) l"}], "premise": [16021, 16026, 44375], "state_str": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x\nhg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0\nhfa : Tendsto f (𝓝[<] a) (𝓝 0)\nhga : Tendsto g (𝓝[<] a) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l\nhdg : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ g x\nhdf' : ∀ᶠ (x : ℝ) in 𝓝[<] a, HasDerivAt f (deriv f x) x\n⊢ Tendsto (fun x => f x / g x) (𝓝[<] a) l"} +{"state": [{"context": ["a b : ℝ", "hab : a < b", "l : Filter ℝ", "f f' g g' : ℝ → ℝ", "hdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x", "hg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0", "hfa : Tendsto f (𝓝[<] a) (𝓝 0)", "hga : Tendsto g (𝓝[<] a) (𝓝 0)", "hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l", "hdg : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ g x", "hdf' : ∀ᶠ (x : ℝ) in 𝓝[<] a, HasDerivAt f (deriv f x) x", "hdg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, HasDerivAt g (deriv g x) x"], "goal": "Tendsto (fun x => f x / g x) (𝓝[<] a) l"}], "premise": [45452], "state_str": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ f x\nhg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, deriv g x ≠ 0\nhfa : Tendsto f (𝓝[<] a) (𝓝 0)\nhga : Tendsto g (𝓝[<] a) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[<] a) l\nhdg : ∀ᶠ (x : ℝ) in 𝓝[<] a, DifferentiableAt ℝ g x\nhdf' : ∀ᶠ (x : ℝ) in 𝓝[<] a, HasDerivAt f (deriv f x) x\nhdg' : ∀ᶠ (x : ℝ) in 𝓝[<] a, HasDerivAt g (deriv g x) x\n⊢ Tendsto (fun x => f x / g x) (𝓝[<] a) l"} +{"state": [{"context": ["p : ℕ", "R : Type u_1", "S : Type u_2", "T : Type u_3", "hp : Fact (Nat.Prime p)", "inst✝² : CommRing R", "inst✝¹ : CommRing S", "inst✝ : CommRing T", "α : Type u_4", "β : Type u_5", "x y : 𝕎 R"], "goal": "WittVector.ghostFun 0 = 0"}], "premise": [76236, 110717, 110848], "state_str": "p : ℕ\nR : Type u_1\nS : Type u_2\nT : Type u_3\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type u_4\nβ : Type u_5\nx y : 𝕎 R\n⊢ WittVector.ghostFun 0 = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "σ : Type u_1", "τ : Type u_2", "r : R", "e : ℕ", "n m : σ", "s : σ →₀ ℕ", "inst✝ : CommSemiring R", "p q : MvPolynomial σ R", "i j : σ", "f : MvPolynomial σ R", "h : i ≠ j"], "goal": "degreeOf i (f * X j) = degreeOf i f"}], "premise": [1670, 1915, 3847, 111125, 112269, 117767, 118965, 120650, 120689, 139654, 148059, 148168], "state_str": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type u_2\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ degreeOf i (f * X j) = degreeOf i f"} +{"state": [{"context": ["a b c : ℕ"], "goal": "a ⊔ b + 1 - a ⊓ b = (↑b - ↑a).natAbs + 1"}], "premise": [2528, 14619, 14620, 129964], "state_str": "a b c : ℕ\n⊢ a ⊔ b + 1 - a ⊓ b = (↑b - ↑a).natAbs + 1"} +{"state": [{"context": ["cf cg : Code", "a : ℕ"], "goal": "(cf.prec cg).eval (Nat.pair a 0) = cf.eval a"}], "premise": [142560], "state_str": "cf cg : Code\na : ℕ\n⊢ (cf.prec cg).eval (Nat.pair a 0) = cf.eval a"} +{"state": [{"context": ["cf cg : Code", "a : ℕ"], "goal": "Nat.rec (cf.eval a) (fun y IH => do let i ← IH cg.eval (Nat.pair a (Nat.pair y i))) 0 = cf.eval a"}], "premise": [145181], "state_str": "cf cg : Code\na : ℕ\n⊢ Nat.rec (cf.eval a)\n (fun y IH => do\n let i ← IH\n cg.eval (Nat.pair a (Nat.pair y i)))\n 0 =\n cf.eval a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "E : Type u_3", "F : Type u_4", "G : Type u_5", "E' : Type u_6", "F' : Type u_7", "G' : Type u_8", "E'' : Type u_9", "F'' : Type u_10", "G'' : Type u_11", "E''' : Type u_12", "R : Type u_13", "R' : Type u_14", "𝕜 : Type u_15", "𝕜' : Type u_16", "inst✝¹³ : Norm E", "inst✝¹² : Norm F", "inst✝¹¹ : Norm G", "inst✝¹⁰ : SeminormedAddCommGroup E'", "inst✝⁹ : SeminormedAddCommGroup F'", "inst✝⁸ : SeminormedAddCommGroup G'", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedAddCommGroup F''", "inst✝⁵ : NormedAddCommGroup G''", "inst✝⁴ : SeminormedRing R", "inst✝³ : SeminormedAddGroup E'''", "inst✝² : SeminormedRing R'", "inst✝¹ : NormedDivisionRing 𝕜", "inst✝ : NormedDivisionRing 𝕜'", "c c' c₁ c₂ : ℝ", "f : α → E", "g : α → F", "k : α → G", "f' : α → E'", "g' : α → F'", "k' : α → G'", "f'' : α → E''", "g'' : α → F''", "k'' : α → G''", "l l' : Filter α", "h : ∀ᶠ (x : α) in l, g'' x ≠ 0"], "goal": "f =O[l] g'' ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => ‖f x‖ / ‖g'' x‖"}], "premise": [16164, 43351], "state_str": "α : Type u_1\nβ : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type u_5\nE' : Type u_6\nF' : Type u_7\nG' : Type u_8\nE'' : Type u_9\nF'' : Type u_10\nG'' : Type u_11\nE''' : Type u_12\nR : Type u_13\nR' : Type u_14\n𝕜 : Type u_15\n𝕜' : Type u_16\ninst✝¹³ : Norm E\ninst✝¹² : Norm F\ninst✝¹¹ : Norm G\ninst✝¹⁰ : SeminormedAddCommGroup E'\ninst✝⁹ : SeminormedAddCommGroup F'\ninst✝⁸ : SeminormedAddCommGroup G'\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedAddCommGroup F''\ninst✝⁵ : NormedAddCommGroup G''\ninst✝⁴ : SeminormedRing R\ninst✝³ : SeminormedAddGroup E'''\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedDivisionRing 𝕜\ninst✝ : NormedDivisionRing 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nh : ∀ᶠ (x : α) in l, g'' x ≠ 0\n⊢ f =O[l] g'' ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => ‖f x‖ / ‖g'' x‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "E : Type u_3", "F : Type u_4", "G : Type u_5", "E' : Type u_6", "F' : Type u_7", "G' : Type u_8", "E'' : Type u_9", "F'' : Type u_10", "G'' : Type u_11", "E''' : Type u_12", "R : Type u_13", "R' : Type u_14", "𝕜 : Type u_15", "𝕜' : Type u_16", "inst✝¹³ : Norm E", "inst✝¹² : Norm F", "inst✝¹¹ : Norm G", "inst✝¹⁰ : SeminormedAddCommGroup E'", "inst✝⁹ : SeminormedAddCommGroup F'", "inst✝⁸ : SeminormedAddCommGroup G'", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedAddCommGroup F''", "inst✝⁵ : NormedAddCommGroup G''", "inst✝⁴ : SeminormedRing R", "inst✝³ : SeminormedAddGroup E'''", "inst✝² : SeminormedRing R'", "inst✝¹ : NormedDivisionRing 𝕜", "inst✝ : NormedDivisionRing 𝕜'", "c c' c₁ c₂ : ℝ", "f : α → E", "g : α → F", "k : α → G", "f' : α → E'", "g' : α → F'", "k' : α → G'", "f'' : α → E''", "g'' : α → F''", "k'' : α → G''", "l l' : Filter α", "h : ∀ᶠ (x : α) in l, g'' x ≠ 0"], "goal": "(∃ c, ∀ᶠ (x : α) in l, ‖f x‖ ≤ c * ‖g'' x‖) ↔ ∃ b, ∀ᶠ (a : α) in l, ‖f a‖ / ‖g'' a‖ ≤ b"}], "premise": [1674, 1718, 2016, 16027, 16031, 42922, 106024], "state_str": "α : Type u_1\nβ : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type u_5\nE' : Type u_6\nF' : Type u_7\nG' : Type u_8\nE'' : Type u_9\nF'' : Type u_10\nG'' : Type u_11\nE''' : Type u_12\nR : Type u_13\nR' : Type u_14\n𝕜 : Type u_15\n𝕜' : Type u_16\ninst✝¹³ : Norm E\ninst✝¹² : Norm F\ninst✝¹¹ : Norm G\ninst✝¹⁰ : SeminormedAddCommGroup E'\ninst✝⁹ : SeminormedAddCommGroup F'\ninst✝⁸ : SeminormedAddCommGroup G'\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedAddCommGroup F''\ninst✝⁵ : NormedAddCommGroup G''\ninst✝⁴ : SeminormedRing R\ninst✝³ : SeminormedAddGroup E'''\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedDivisionRing 𝕜\ninst✝ : NormedDivisionRing 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nh : ∀ᶠ (x : α) in l, g'' x ≠ 0\n⊢ (∃ c, ∀ᶠ (x : α) in l, ‖f x‖ ≤ c * ‖g'' x‖) ↔ ∃ b, ∀ᶠ (a : α) in l, ‖f a‖ / ‖g'' a‖ ≤ b"} +{"state": [{"context": ["α : Type u_1", "inst✝⁴ : LinearOrder α", "E : Type u_2", "inst✝³ : PseudoEMetricSpace E", "V : Type u_3", "inst✝² : NormedAddCommGroup V", "inst✝¹ : NormedSpace ℝ V", "inst✝ : FiniteDimensional ℝ V", "f : ℝ → V", "s : Set ℝ", "h : LocallyBoundedVariationOn f s", "hs : MeasurableSet s"], "goal": "∀ᵐ (x : ℝ) ∂volume.restrict s, DifferentiableWithinAt ℝ f s x"}], "premise": [32300], "state_str": "α : Type u_1\ninst✝⁴ : LinearOrder α\nE : Type u_2\ninst✝³ : PseudoEMetricSpace E\nV : Type u_3\ninst✝² : NormedAddCommGroup V\ninst✝¹ : NormedSpace ℝ V\ninst✝ : FiniteDimensional ℝ V\nf : ℝ → V\ns : Set ℝ\nh : LocallyBoundedVariationOn f s\nhs : MeasurableSet s\n⊢ ∀ᵐ (x : ℝ) ∂volume.restrict s, DifferentiableWithinAt ℝ f s x"} +{"state": [{"context": ["α : Type u_1", "inst✝⁴ : LinearOrder α", "E : Type u_2", "inst✝³ : PseudoEMetricSpace E", "V : Type u_3", "inst✝² : NormedAddCommGroup V", "inst✝¹ : NormedSpace ℝ V", "inst✝ : FiniteDimensional ℝ V", "f : ℝ → V", "s : Set ℝ", "h : LocallyBoundedVariationOn f s", "hs : MeasurableSet s"], "goal": "∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"}], "premise": [42154], "state_str": "α : Type u_1\ninst✝⁴ : LinearOrder α\nE : Type u_2\ninst✝³ : PseudoEMetricSpace E\nV : Type u_3\ninst✝² : NormedAddCommGroup V\ninst✝¹ : NormedSpace ℝ V\ninst✝ : FiniteDimensional ℝ V\nf : ℝ → V\ns : Set ℝ\nh : LocallyBoundedVariationOn f s\nhs : MeasurableSet s\n⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"} +{"state": [{"context": ["p : ℕ", "R : Type u_1", "S : Type u_2", "T : Type u_3", "hp : Fact (Nat.Prime p)", "inst✝² : CommRing R", "inst✝¹ : CommRing S", "inst✝ : CommRing T", "α : Type u_4", "β : Type u_5", "f : R →+* S", "x✝ y : 𝕎 R", "n : ℕ", "x : 𝕎 R"], "goal": "mapFun (⇑f) (n • x) = n • mapFun (⇑f) x"}], "premise": [1670, 75725, 75729, 75730, 75731, 75732, 75733, 75734, 75735, 112316, 112317, 112378, 117063, 121269, 128959], "state_str": "p : ℕ\nR : Type u_1\nS : Type u_2\nT : Type u_3\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type u_4\nβ : Type u_5\nf : R →+* S\nx✝ y : 𝕎 R\nn : ℕ\nx : 𝕎 R\n⊢ mapFun (⇑f) (n • x) = n • mapFun (⇑f) x"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁷ : Ring R", "inst✝⁶ : Invertible 2", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : Module R V", "inst✝³ : AddTorsor V P", "inst✝² : AddCommGroup V'", "inst✝¹ : Module R V'", "inst✝ : AddTorsor V' P'", "x✝ y✝ z x y : P"], "goal": "midpoint R x y = y ↔ x = y"}], "premise": [1713, 1717, 83125, 83143], "state_str": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁷ : Ring R\ninst✝⁶ : Invertible 2\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx✝ y✝ z x y : P\n⊢ midpoint R x y = y ↔ x = y"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "inst✝ : MeasurableSpace E", "m : MeasurableSpace Ω", "X : Ω → E", "ℙ : Measure Ω", "μ : autoParam (Measure E) _auto✝"], "goal": "Measurable (pdf X ℙ μ)"}], "premise": [34822], "state_str": "Ω : Type u_1\nE : Type u_2\ninst✝ : MeasurableSpace E\nm : MeasurableSpace Ω\nX : Ω → E\nℙ : Measure Ω\nμ : autoParam (Measure E) _auto✝\n⊢ Measurable (pdf X ℙ μ)"} +{"state": [{"context": ["G : Type u_1", "M : Type u_2", "S : Type u_3", "inst✝ : Group G", "a b : G", "h : Commute a b"], "goal": "a * b * a⁻¹ = b"}], "premise": [118327, 119832], "state_str": "G : Type u_1\nM : Type u_2\nS : Type u_3\ninst✝ : Group G\na b : G\nh : Commute a b\n⊢ a * b * a⁻¹ = b"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝² : TopologicalSpace α", "inst✝¹ : Group α", "inst✝ : ContinuousConstSMul αᵐᵒᵖ α", "s t : Set α", "hs : IsOpen s"], "goal": "IsOpen (s * t)"}], "premise": [132896], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝² : TopologicalSpace α\ninst✝¹ : Group α\ninst✝ : ContinuousConstSMul αᵐᵒᵖ α\ns t : Set α\nhs : IsOpen s\n⊢ IsOpen (s * t)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝² : TopologicalSpace α", "inst✝¹ : Group α", "inst✝ : ContinuousConstSMul αᵐᵒᵖ α", "s t : Set α", "hs : IsOpen s"], "goal": "IsOpen (⋃ a ∈ t, op a • s)"}], "premise": [55351, 64975], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝² : TopologicalSpace α\ninst✝¹ : Group α\ninst✝ : ContinuousConstSMul αᵐᵒᵖ α\ns t : Set α\nhs : IsOpen s\n⊢ IsOpen (⋃ a ∈ t, op a • s)"} +{"state": [{"context": ["G : Type u", "inst✝ : Group G", "B✝ B : GroupFilterBasis G"], "goal": "(𝓝 1).HasBasis (fun V => V ∈ B) id"}], "premise": [62995], "state_str": "G : Type u\ninst✝ : Group G\nB✝ B : GroupFilterBasis G\n⊢ (𝓝 1).HasBasis (fun V => V ∈ B) id"} +{"state": [{"context": ["G : Type u", "inst✝ : Group G", "B✝ B : GroupFilterBasis G"], "goal": "toFilterBasis.filter.HasBasis (fun V => V ∈ B) id"}], "premise": [12532], "state_str": "G : Type u\ninst✝ : Group G\nB✝ B : GroupFilterBasis G\n⊢ toFilterBasis.filter.HasBasis (fun V => V ∈ B) id"} +{"state": [{"context": ["a : ℝ"], "goal": "frontier {z | z.re ≤ a} = {z | z.re = a}"}], "premise": [46052, 56373], "state_str": "a : ℝ\n⊢ frontier {z | z.re ≤ a} = {z | z.re = a}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Lattice α", "inst✝¹ : Group α", "a : α", "inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1"], "goal": "a⁻ᵐ = 1 ↔ 1 ≤ a"}], "premise": [105481], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Lattice α\ninst✝¹ : Group α\na : α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\n⊢ a⁻ᵐ = 1 ↔ 1 ≤ a"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{?u.16556, u_1} C", "inst✝³ : Category.{?u.16560, u_2} D", "inst✝² : Preadditive C", "inst✝¹ : Preadditive D", "F G : CochainComplex C ℤ", "φ : F ⟶ G", "inst✝ : HasHomotopyCofiber φ", "p q : ℤ", "hpq : q + 1 = p"], "goal": "p + -1 = q"}], "premise": [119831], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{?u.16556, u_1} C\ninst✝³ : Category.{?u.16560, u_2} D\ninst✝² : Preadditive C\ninst✝¹ : Preadditive D\nF G : CochainComplex C ℤ\nφ : F ⟶ G\ninst✝ : HasHomotopyCofiber φ\np q : ℤ\nhpq : q + 1 = p\n⊢ p + -1 = q"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "p : A → Prop", "inst✝¹² : CommSemiring R", "inst✝¹¹ : Nontrivial R", "inst✝¹⁰ : StarRing R", "inst✝⁹ : MetricSpace R", "inst✝⁸ : TopologicalSemiring R", "inst✝⁷ : ContinuousStar R", "inst✝⁶ : NonUnitalRing A", "inst✝⁵ : StarRing A", "inst✝⁴ : TopologicalSpace A", "inst✝³ : Module R A", "inst✝² : IsScalarTower R A A", "inst✝¹ : SMulCommClass R A A", "inst✝ : NonUnitalContinuousFunctionalCalculus R p", "f✝ g : R → R", "a✝ : A", "hf✝ : autoParam (ContinuousOn f✝ (σₙ R a✝)) _auto✝", "hf0 : autoParam (f✝ 0 = 0) _auto✝", "hg : autoParam (ContinuousOn g (σₙ R a✝)) _auto✝", "hg0 : autoParam (g 0 = 0) _auto✝", "ha : autoParam (p a✝) _auto✝", "f : R → R", "a : A", "hf : ¬ContinuousOn f (σₙ R a)"], "goal": "cfcₙ f a = 0"}], "premise": [1740, 1966, 1967, 38024], "state_str": "R : Type u_1\nA : Type u_2\np : A → Prop\ninst✝¹² : CommSemiring R\ninst✝¹¹ : Nontrivial R\ninst✝¹⁰ : StarRing R\ninst✝⁹ : MetricSpace R\ninst✝⁸ : TopologicalSemiring R\ninst✝⁷ : ContinuousStar R\ninst✝⁶ : NonUnitalRing A\ninst✝⁵ : StarRing A\ninst✝⁴ : TopologicalSpace A\ninst✝³ : Module R A\ninst✝² : IsScalarTower R A A\ninst✝¹ : SMulCommClass R A A\ninst✝ : NonUnitalContinuousFunctionalCalculus R p\nf✝ g : R → R\na✝ : A\nhf✝ : autoParam (ContinuousOn f✝ (σₙ R a✝)) _auto✝\nhf0 : autoParam (f✝ 0 = 0) _auto✝\nhg : autoParam (ContinuousOn g (σₙ R a✝)) _auto✝\nhg0 : autoParam (g 0 = 0) _auto✝\nha : autoParam (p a✝) _auto✝\nf : R → R\na : A\nhf : ¬ContinuousOn f (σₙ R a)\n⊢ cfcₙ f a = 0"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "F : C ⥤ Type w", "F₁ F₂ : Cᵒᵖ ⥤ Type v", "α : F₁ ⟶ F₂"], "goal": "(map α).op ⋙ toCostructuredArrow F₂ = toCostructuredArrow F₁ ⋙ CostructuredArrow.map α"}], "premise": [97754], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nF : C ⥤ Type w\nF₁ F₂ : Cᵒᵖ ⥤ Type v\nα : F₁ ⟶ F₂\n⊢ (map α).op ⋙ toCostructuredArrow F₂ = toCostructuredArrow F₁ ⋙ CostructuredArrow.map α"} +{"state": [{"context": ["u v : ℤ", "hu : IsUnit u", "hv : IsUnit v"], "goal": "u ≠ v ↔ u = -v"}], "premise": [117520], "state_str": "u v : ℤ\nhu : IsUnit u\nhv : IsUnit v\n⊢ u ≠ v ↔ u = -v"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁵ : RCLike 𝕜", "inst✝⁴ : AddCommGroup E", "inst✝³ : TopologicalSpace E", "inst✝² : Module 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace 𝕜 F", "x : E", "y : NormedSpace.Dual 𝕜 F"], "goal": "Continuous fun A => y (A x)"}], "premise": [1673, 41922, 66536], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : RCLike 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalSpace E\ninst✝² : Module 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nx : E\ny : NormedSpace.Dual 𝕜 F\n⊢ Continuous fun A => y (A x)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : PseudoEMetricSpace α", "δ : ℝ", "δ_pos : 0 < δ", "E : Set α", "x : α", "x_out : x ∉ thickening δ E"], "goal": "thickenedIndicatorAux δ E x = 0"}], "premise": [14323, 131585], "state_str": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : x ∉ thickening δ E\n⊢ thickenedIndicatorAux δ E x = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝ : PseudoEMetricSpace α", "δ : ℝ", "δ_pos : 0 < δ", "E : Set α", "x : α", "x_out : ENNReal.ofReal δ ≤ infEdist x E"], "goal": "1 - infEdist x E / ENNReal.ofReal δ = 0"}], "premise": [14296, 18803], "state_str": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ 1 - infEdist x E / ENNReal.ofReal δ = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝ : PseudoEMetricSpace α", "δ : ℝ", "δ_pos : 0 < δ", "E : Set α", "x : α", "x_out : ENNReal.ofReal δ ≤ infEdist x E"], "goal": "1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥"}], "premise": [103366, 143820], "state_str": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥"} +{"state": [{"context": ["α : Type u_1", "inst✝ : PseudoEMetricSpace α", "δ : ℝ", "δ_pos : 0 < δ", "E : Set α", "x : α", "x_out : ENNReal.ofReal δ ≤ infEdist x E", "key : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - ENNReal.ofReal δ / ENNReal.ofReal δ"], "goal": "1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥"}], "premise": [1674, 14284, 143194, 143385, 143830], "state_str": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\nkey : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - ENNReal.ofReal δ / ENNReal.ofReal δ\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥"} +{"state": [{"context": ["α : Type u_1", "inst✝² : Preorder α", "inst✝¹ : LocallyFiniteOrder α", "a b c : α", "inst✝ : DecidablePred fun x => x < c", "hcb : c ≤ b"], "goal": "filter (fun x => x < c) (Ico a b) = Ico a c"}], "premise": [20573, 139087], "state_str": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : LocallyFiniteOrder α\na b c : α\ninst✝ : DecidablePred fun x => x < c\nhcb : c ≤ b\n⊢ filter (fun x => x < c) (Ico a b) = Ico a c"} +{"state": [{"context": ["M : Type u_1", "inst✝¹ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝ : CancelCommMonoidWithZero N", "m : Associates M", "n : Associates N", "d : { l // l ≤ m } ≃o { l // l ≤ n }"], "goal": "↑(d ⟨1, ⋯⟩) = 1"}], "premise": [18803], "state_str": "M : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝ : CancelCommMonoidWithZero N\nm : Associates M\nn : Associates N\nd : { l // l ≤ m } ≃o { l // l ≤ n }\n⊢ ↑(d ⟨1, ⋯⟩) = 1"} +{"state": [{"context": ["M : Type u_1", "inst✝¹ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝ : CancelCommMonoidWithZero N", "m : Associates M", "n : Associates N", "d : { l // l ≤ m } ≃o { l // l ≤ n }", "this : OrderBot { l // l ≤ m } := Subtype.orderBot ⋯"], "goal": "↑(d ⟨1, ⋯⟩) = 1"}], "premise": [18803], "state_str": "M : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝ : CancelCommMonoidWithZero N\nm : Associates M\nn : Associates N\nd : { l // l ≤ m } ≃o { l // l ≤ n }\nthis : OrderBot { l // l ≤ m } := Subtype.orderBot ⋯\n⊢ ↑(d ⟨1, ⋯⟩) = 1"} +{"state": [{"context": ["M : Type u_1", "inst✝¹ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝ : CancelCommMonoidWithZero N", "m : Associates M", "n : Associates N", "d : { l // l ≤ m } ≃o { l // l ≤ n }", "this✝ : OrderBot { l // l ≤ m } := Subtype.orderBot ⋯", "this : OrderBot { l // l ≤ n } := Subtype.orderBot ⋯"], "goal": "↑(d ⟨1, ⋯⟩) = 1"}], "premise": [18803, 18867, 18871, 125919], "state_str": "M : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝ : CancelCommMonoidWithZero N\nm : Associates M\nn : Associates N\nd : { l // l ≤ m } ≃o { l // l ≤ n }\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot ⋯\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot ⋯\n⊢ ↑(d ⟨1, ⋯⟩) = 1"} +{"state": [{"context": ["M : Type u_1", "inst✝¹ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝ : CancelCommMonoidWithZero N", "m : Associates M", "n : Associates N", "d : { l // l ≤ m } ≃o { l // l ≤ n }", "this✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot ⋯", "this✝ : OrderBot { l // l ≤ n } := Subtype.orderBot ⋯", "this : BotHomClass ({ l // l ≤ m } ≃o { l // l ≤ n }) { l // l ≤ m } { l // l ≤ n } := OrderIsoClass.toBotHomClass"], "goal": "d ⊥ = ⊥"}], "premise": [10482], "state_str": "M : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝ : CancelCommMonoidWithZero N\nm : Associates M\nn : Associates N\nd : { l // l ≤ m } ≃o { l // l ≤ n }\nthis✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot ⋯\nthis✝ : OrderBot { l // l ≤ n } := Subtype.orderBot ⋯\nthis : BotHomClass ({ l // l ≤ m } ≃o { l // l ≤ n }) { l // l ≤ m } { l // l ≤ n } := OrderIsoClass.toBotHomClass\n⊢ d ⊥ = ⊥"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "σ : Type u_5", "inst✝⁴ : Primcodable α", "inst✝³ : Primcodable β", "inst✝² : Primcodable γ", "inst✝¹ : Primcodable δ", "inst✝ : Primcodable σ", "m n : ℕ"], "goal": "(m, n).1 - (m, n).2 * (fun x x_1 => x / x_1) (m, n).1 (m, n).2 = m % n"}], "premise": [3893], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nσ : Type u_5\ninst✝⁴ : Primcodable α\ninst✝³ : Primcodable β\ninst✝² : Primcodable γ\ninst✝¹ : Primcodable δ\ninst✝ : Primcodable σ\nm n : ℕ\n⊢ (m, n).1 - (m, n).2 * (fun x x_1 => x / x_1) (m, n).1 (m, n).2 = m % n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "σ : Type u_5", "inst✝⁴ : Primcodable α", "inst✝³ : Primcodable β", "inst✝² : Primcodable γ", "inst✝¹ : Primcodable δ", "inst✝ : Primcodable σ", "m n : ℕ"], "goal": "(m, n).1 = m % n + (m, n).2 * (fun x x_1 => x / x_1) (m, n).1 (m, n).2"}], "premise": [4474, 119708], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nσ : Type u_5\ninst✝⁴ : Primcodable α\ninst✝³ : Primcodable β\ninst✝² : Primcodable γ\ninst✝¹ : Primcodable δ\ninst✝ : Primcodable σ\nm n : ℕ\n⊢ (m, n).1 = m % n + (m, n).2 * (fun x x_1 => x / x_1) (m, n).1 (m, n).2"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f"], "goal": "S.LeftHomologyData"}], "premise": [113553], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f", "f' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯"], "goal": "S.LeftHomologyData"}], "premise": [94851], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\nf' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f", "f' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯", "hf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ"], "goal": "S.LeftHomologyData"}], "premise": [93604, 94882, 96173], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\nf' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯\nhf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f", "f' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯", "hf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ", "wπ : f' ≫ cokernel.π (kernel.ι γ) = 0", "e : Abelian.image S.f ≅ kernel γ := S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))"], "goal": "S.LeftHomologyData"}], "premise": [94253], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\nf' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯\nhf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ\nwπ : f' ≫ cokernel.π (kernel.ι γ) = 0\ne : Abelian.image S.f ≅ kernel γ :=\n S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f", "f' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯", "hf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ", "wπ : f' ≫ cokernel.π (kernel.ι γ) = 0", "e : Abelian.image S.f ≅ kernel γ := S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))", "he : e.hom ≫ kernel.ι γ = S.abelianImageToKernel"], "goal": "S.LeftHomologyData"}], "premise": [94851, 96173, 96191], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\nf' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯\nhf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ\nwπ : f' ≫ cokernel.π (kernel.ι γ) = 0\ne : Abelian.image S.f ≅ kernel γ :=\n S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))\nhe : e.hom ≫ kernel.ι γ = S.abelianImageToKernel\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f", "f' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯", "hf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ", "wπ : f' ≫ cokernel.π (kernel.ι γ) = 0", "e : Abelian.image S.f ≅ kernel γ := S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))", "he : e.hom ≫ kernel.ι γ = S.abelianImageToKernel", "fac : f' = Abelian.factorThruImage S.f ≫ e.hom ≫ kernel.ι γ"], "goal": "S.LeftHomologyData"}], "premise": [93604, 94806, 94883, 96173, 96190], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\nf' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯\nhf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ\nwπ : f' ≫ cokernel.π (kernel.ι γ) = 0\ne : Abelian.image S.f ≅ kernel γ :=\n S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))\nhe : e.hom ≫ kernel.ι γ = S.abelianImageToKernel\nfac : f' = Abelian.factorThruImage S.f ≫ e.hom ≫ kernel.ι γ\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : Abelian C", "S : ShortComplex C", "γ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f", "f' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯", "hf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ", "wπ : f' ≫ cokernel.π (kernel.ι γ) = 0", "e : Abelian.image S.f ≅ kernel γ := S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))", "he : e.hom ≫ kernel.ι γ = S.abelianImageToKernel", "fac : f' = Abelian.factorThruImage S.f ≫ e.hom ≫ kernel.ι γ", "hπ : IsColimit (CokernelCofork.ofπ (cokernel.π (kernel.ι γ)) wπ)"], "goal": "S.LeftHomologyData"}], "premise": [94850], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nS : ShortComplex C\nγ : kernel S.g ⟶ cokernel S.f := kernel.ι S.g ≫ cokernel.π S.f\nf' : S.X₁ ⟶ kernel S.g := kernel.lift S.g S.f ⋯\nhf' : f' = kernel.lift γ f' ⋯ ≫ kernel.ι γ\nwπ : f' ≫ cokernel.π (kernel.ι γ) = 0\ne : Abelian.image S.f ≅ kernel γ :=\n S.abelianImageToKernelIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (kernel.ι S.g ≫ cokernel.π S.f) 0))\nhe : e.hom ≫ kernel.ι γ = S.abelianImageToKernel\nfac : f' = Abelian.factorThruImage S.f ≫ e.hom ≫ kernel.ι γ\nhπ : IsColimit (CokernelCofork.ofπ (cokernel.π (kernel.ι γ)) wπ)\n⊢ S.LeftHomologyData"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : CommGroup G", "a b c d : G", "h : b = c / a"], "goal": "a * b = c"}], "premise": [119707, 119790, 119829], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : CommGroup G\na b c d : G\nh : b = c / a\n⊢ a * b = c"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "S : Submonoid R", "P : Type u_2", "inst✝¹ : CommRing P", "inst✝ : Algebra R P", "loc : IsLocalization S P", "I : FractionalIdeal S P", "x : P", "hx : x ∈ 0"], "goal": "x ∈ I"}], "premise": [1673, 75651], "state_str": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : FractionalIdeal S P\nx : P\nhx : x ∈ 0\n⊢ x ∈ I"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "S : Submonoid R", "P : Type u_2", "inst✝¹ : CommRing P", "inst✝ : Algebra R P", "loc : IsLocalization S P", "I : FractionalIdeal S P", "x : P", "hx : x ∈ 0"], "goal": "0 ∈ I"}], "premise": [75638], "state_str": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : FractionalIdeal S P\nx : P\nhx : x ∈ 0\n⊢ 0 ∈ I"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "inst✝² : AddMonoid R", "inst✝¹ : StarAddMonoid R", "inst✝ : Star A", "a : A"], "goal": "(↑(star a)).fst = (star ↑a).fst"}], "premise": [110999, 123309, 123347], "state_str": "R : Type u_1\nA : Type u_2\ninst✝² : AddMonoid R\ninst✝¹ : StarAddMonoid R\ninst✝ : Star A\na : A\n⊢ (↑(star a)).fst = (star ↑a).fst"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedRing α", "n : ℕ", "a b c : α", "h : a ^ 2 ≤ b ^ 2", "hb : 0 ≤ b"], "goal": "|a| ≤ b"}], "premise": [105283, 106316], "state_str": "α : Type u_1\ninst✝ : LinearOrderedRing α\nn : ℕ\na b c : α\nh : a ^ 2 ≤ b ^ 2\nhb : 0 ≤ b\n⊢ |a| ≤ b"} +{"state": [{"context": ["α : Type ua", "β : Type ub", "γ : Type uc", "δ : Type ud", "ι : Sort u_1", "inst✝¹ : UniformSpace α", "inst✝ : TopologicalSpace β", "f : β → α", "s : Set β"], "goal": "ContinuousOn f s ↔ ∀ b ∈ s, Tendsto (fun x => (f b, f x)) (𝓝[s] b) (𝓤 α)"}], "premise": [60680], "state_str": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝¹ : UniformSpace α\ninst✝ : TopologicalSpace β\nf : β → α\ns : Set β\n⊢ ContinuousOn f s ↔ ∀ b ∈ s, Tendsto (fun x => (f b, f x)) (𝓝[s] b) (𝓤 α)"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "inst✝¹ : (i : ι) → Preorder (α i)", "x✝ y✝ : (i : ι) → α i", "inst✝ : DecidableEq ι", "x y : (i : ι) → α i", "i₀ : ι", "m : α i₀", "hm : m ≤ y i₀"], "goal": "(univ.pi fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ univ.pi fun i => Ioc (x i) (y i)"}], "premise": [1674, 20207, 20259, 133445, 133455], "state_str": "ι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\n⊢ (univ.pi fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ univ.pi fun i => Ioc (x i) (y i)"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "inst✝¹ : (i : ι) → Preorder (α i)", "x✝ y✝ : (i : ι) → α i", "inst✝ : DecidableEq ι", "x y : (i : ι) → α i", "i₀ : ι", "m : α i₀", "hm : m ≤ y i₀", "this : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)"], "goal": "(univ.pi fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ univ.pi fun i => Ioc (x i) (y i)"}], "premise": [133444, 134029, 134035, 134038], "state_str": "ι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\nthis : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)\n⊢ (univ.pi fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ univ.pi fun i => Ioc (x i) (y i)"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F"], "goal": "Bijective ⇑f ↔ (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f"}], "premise": [60836], "state_str": "𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : 𝕜' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\n⊢ Bijective ⇑f ↔ (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F", "h : Bijective ⇑f"], "goal": "(LinearMap.range f).topologicalClosure = ⊤"}, {"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F", "h : Bijective ⇑f"], "goal": "∃ c, AntilipschitzWith c ⇑f"}, {"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F", "x✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f", "hd : (LinearMap.range f).topologicalClosure = ⊤", "c : ℝ≥0", "hf : AntilipschitzWith c ⇑f"], "goal": "Surjective ⇑f"}], "premise": [2106, 55662, 128376], "state_str": "case eq_top\n𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : 𝕜' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\nh : Bijective ⇑f\n⊢ (LinearMap.range f).topologicalClosure = ⊤\n\ncase anti\n𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : 𝕜' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\nh : Bijective ⇑f\n⊢ ∃ c, AntilipschitzWith c ⇑f\n\ncase surj\n𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : 𝕜' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\nx✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f\nhd : (LinearMap.range f).topologicalClosure = ⊤\nc : ℝ≥0\nhf : AntilipschitzWith c ⇑f\n⊢ Surjective ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F", "h : Bijective ⇑f"], "goal": "∃ c, AntilipschitzWith c ⇑f"}, {"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F", "x✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f", "hd : (LinearMap.range f).topologicalClosure = ⊤", "c : ℝ≥0", "hf : AntilipschitzWith c ⇑f"], "goal": "Surjective ⇑f"}], "premise": [2106, 2107, 40711, 109937, 110001], "state_str": "case anti\n𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : 𝕜' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\nh : Bijective ⇑f\n⊢ ∃ c, AntilipschitzWith c ⇑f\n\ncase surj\n𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : 𝕜' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\nx✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f\nhd : (LinearMap.range f).topologicalClosure = ⊤\nc : ℝ≥0\nhf : AntilipschitzWith c ⇑f\n⊢ Surjective ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NontriviallyNormedField 𝕜'", "σ : 𝕜 →+* 𝕜'", "σ' : 𝕜' →+* 𝕜", "inst✝⁹ : RingHomInvPair σ σ'", "inst✝⁸ : RingHomInvPair σ' σ", "inst✝⁷ : RingHomIsometric σ", "inst✝⁶ : RingHomIsometric σ'", "E : Type u_3", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "F : Type u_4", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜' F", "f✝ : E →SL[σ] F", "inst✝¹ : CompleteSpace F", "inst✝ : CompleteSpace E", "f : E →SL[σ] F", "x✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f", "hd : (LinearMap.range f).topologicalClosure = ⊤", "c : ℝ≥0", "hf : AntilipschitzWith c ⇑f"], "goal": "Surjective ⇑f"}], "premise": [44323, 109937], "state_str": "case surj\n𝕜 : Type u_1\n𝕜' : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NontriviallyNormedField 𝕜'\nσ : 𝕜 →+* 𝕜'\nσ' : ����' →+* 𝕜\ninst✝⁹ : RingHomInvPair σ σ'\ninst✝⁸ : RingHomInvPair σ' σ\ninst✝⁷ : RingHomIsometric σ\ninst✝⁶ : RingHomIsometric σ'\nE : Type u_3\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nF : Type u_4\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜' F\nf✝ : E →SL[σ] F\ninst✝¹ : CompleteSpace F\ninst✝ : CompleteSpace E\nf : E →SL[σ] F\nx✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f\nhd : (LinearMap.range f).topologicalClosure = ⊤\nc : ℝ≥0\nhf : AntilipschitzWith c ⇑f\n⊢ Surjective ⇑f"} +{"state": [{"context": ["R : Type u", "inst✝⁶ : CommSemiring R", "M : Type v", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "ι : Type w", "inst✝³ : DecidableEq ι", "inst✝² : Fintype ι", "κ : Type u_1", "inst✝¹ : DecidableEq κ", "inst✝ : Fintype κ", "b✝ : Basis ι R M", "c : Basis κ R M", "f g : M →ₗ[R] M", "H : ∃ s, Nonempty (Basis { x // x ∈ s } R M)", "s : Finset M", "b : Basis { x // x ∈ s } R M"], "goal": "(trace R M) (f * g) = (trace R M) (g * f)"}], "premise": [81846, 87086], "state_str": "R : Type u\ninst✝⁶ : CommSemiring R\nM : Type v\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nι : Type w\ninst✝³ : DecidableEq ι\ninst✝² : Fintype ι\nκ : Type u_1\ninst✝¹ : DecidableEq κ\ninst✝ : Fintype κ\nb✝ : Basis ι R M\nc : Basis κ R M\nf g : M →ₗ[R] M\nH : ∃ s, Nonempty (Basis { x // x ∈ s } R M)\ns : Finset M\nb : Basis { x // x ∈ s } R M\n⊢ (trace R M) (f * g) = (trace R M) (g * f)"} +{"state": [{"context": ["R : Type u", "inst✝⁶ : CommSemiring R", "M : Type v", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "ι : Type w", "inst✝³ : DecidableEq ι", "inst✝² : Fintype ι", "κ : Type u_1", "inst✝¹ : DecidableEq κ", "inst✝ : Fintype κ", "b✝ : Basis ι R M", "c : Basis κ R M", "f g : M →ₗ[R] M", "H : ∃ s, Nonempty (Basis { x // x ∈ s } R M)", "s : Finset M", "b : Basis { x // x ∈ s } R M"], "goal": "((toMatrix b b) f * (toMatrix b b) g).trace = ((toMatrix b b) g * (toMatrix b b) f).trace"}], "premise": [83571], "state_str": "R : Type u\ninst✝⁶ : CommSemiring R\nM : Type v\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nι : Type w\ninst✝³ : DecidableEq ι\ninst✝² : Fintype ι\nκ : Type u_1\ninst✝¹ : DecidableEq κ\ninst✝ : Fintype κ\nb✝ : Basis ι R M\nc : Basis κ R M\nf g : M →ₗ[R] M\nH : ∃ s, Nonempty (Basis { x // x ∈ s } R M)\ns : Finset M\nb : Basis { x // x ∈ s } R M\n⊢ ((toMatrix b b) f * (toMatrix b b) g).trace = ((toMatrix b b) g * (toMatrix b b) f).trace"} +{"state": [{"context": ["R : Type u", "inst✝⁶ : CommSemiring R", "M : Type v", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "ι : Type w", "inst✝³ : DecidableEq ι", "inst✝² : Fintype ι", "κ : Type u_1", "inst✝¹ : DecidableEq κ", "inst✝ : Fintype κ", "b : Basis ι R M", "c : Basis κ R M", "f g : M →ₗ[R] M", "H : ¬∃ s, Nonempty (Basis { x // x ∈ s } R M)"], "goal": "(trace R M) (f * g) = (trace R M) (g * f)"}], "premise": [1740, 109784], "state_str": "R : Type u\ninst✝⁶ : CommSemiring R\nM : Type v\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nι : Type w\ninst✝³ : DecidableEq ι\ninst✝² : Fintype ι\nκ : Type u_1\ninst✝¹ : DecidableEq κ\ninst✝ : Fintype κ\nb : Basis ι R M\nc : Basis κ R M\nf g : M →ₗ[R] M\nH : ¬∃ s, Nonempty (Basis { x // x ∈ s } R M)\n⊢ (trace R M) (f * g) = (trace R M) (g * f)"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : CosimplicialObject C", "n : ℕ", "i : Fin (n + 2)"], "goal": "X.δ i ≫ X.δ i.castSucc = X.δ i ≫ X.δ i.succ"}], "premise": [50570], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX : CosimplicialObject C\nn : ℕ\ni : Fin (n + 2)\n⊢ X.δ i ≫ X.δ i.castSucc = X.δ i ≫ X.δ i.succ"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝² : LinearOrderedField 𝕜", "inst✝¹ : OrderedAddCommGroup E", "inst✝ : Module 𝕜 E", "S : ConvexCone 𝕜 E", "h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S", "x y : E", "z : 𝕜", "xy : x < y", "hz : 0 < z"], "goal": "z • x ≤ z • y"}], "premise": [108341], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : OrderedAddCommGroup E\ninst✝ : Module 𝕜 E\nS : ConvexCone 𝕜 E\nh : ∀ (x y : E), x ≤ y ↔ y - x ∈ S\nx y : E\nz : 𝕜\nxy : x < y\nhz : 0 < z\n⊢ z • x ≤ z • y"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝² : LinearOrderedField 𝕜", "inst✝¹ : OrderedAddCommGroup E", "inst✝ : Module 𝕜 E", "S : ConvexCone 𝕜 E", "h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S", "x y : E", "z : 𝕜", "xy : x < y", "hz : 0 < z"], "goal": "z • (y - x) ∈ S"}], "premise": [1673, 36084], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : OrderedAddCommGroup E\ninst✝ : Module 𝕜 E\nS : ConvexCone 𝕜 E\nh : ∀ (x y : E), x ≤ y ↔ y - x ∈ S\nx y : E\nz : 𝕜\nxy : x < y\nhz : 0 < z\n⊢ z • (y - x) ∈ S"} +{"state": [{"context": ["α : Type u", "l l' : List α"], "goal": "l.reverse ~r l'.reverse ↔ l ~r l'"}], "premise": [130429], "state_str": "α : Type u\nl l' : List α\n⊢ l.reverse ~r l'.reverse ↔ l ~r l'"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "X : Type u_5", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace M", "inst✝¹ : CommMonoid M", "inst✝ : ContinuousMul M", "f : ι → X → M", "p : ι → Prop", "hc : ∀ (i : ι), p i → Continuous (f i)", "hf : LocallyFinite fun i => mulSupport (f i)"], "goal": "Continuous fun x => ∏ᶠ (i : ι) (_ : p i), f i x"}], "premise": [125747], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nX : Type u_5\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : CommMonoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\np : ι → Prop\nhc : ∀ (i : ι), p i → Continuous (f i)\nhf : LocallyFinite fun i => mulSupport (f i)\n⊢ Continuous fun x => ∏ᶠ (i : ι) (_ : p i), f i x"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "X : Type u_5", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace M", "inst✝¹ : CommMonoid M", "inst✝ : ContinuousMul M", "f : ι → X → M", "p : ι → Prop", "hc : ∀ (i : ι), p i → Continuous (f i)", "hf : LocallyFinite fun i => mulSupport (f i)"], "goal": "Continuous fun x => ∏ᶠ (j : Subtype p), f (↑j) x"}], "premise": [2115, 62426, 65156, 137138], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nX : Type u_5\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : CommMonoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\np : ι → Prop\nhc : ∀ (i : ι), p i → Continuous (f i)\nhf : LocallyFinite fun i => mulSupport (f i)\n⊢ Continuous fun x => ∏ᶠ (j : Subtype p), f (↑j) x"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "c : R", "f : RingSeminorm R", "hf1 : f 1 ≤ 1", "hc : f c ≠ 0", "hpm : IsPowMul ⇑f", "x : R", "m : ℕ", "hm : 1 ≤ m"], "goal": "⋯.choose = ⋯.choose ^ m"}], "premise": [1674, 2045, 15680, 16355, 43740, 103883, 103961], "state_str": "R : Type u_1\ninst✝ : CommRing R\nc : R\nf : RingSeminorm R\nhf1 : f 1 ≤ 1\nhc : f c ≠ 0\nhpm : IsPowMul ⇑f\nx : R\nm : ℕ\nhm : 1 ≤ m\n⊢ ⋯.choose = ⋯.choose ^ m"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "c : R", "f : RingSeminorm R", "hf1 : f 1 ≤ 1", "hc : f c ≠ 0", "hpm : IsPowMul ⇑f", "x : R", "m : ℕ", "hm : 1 ≤ m", "hlim : Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (seminormFromConst' hf1 hc hpm (x ^ m)))"], "goal": "⋯.choose = ⋯.choose ^ m"}], "premise": [64823], "state_str": "R : Type u_1\ninst✝ : CommRing R\nc : R\nf : RingSeminorm R\nhf1 : f 1 ≤ 1\nhc : f c ≠ 0\nhpm : IsPowMul ⇑f\nx : R\nm : ℕ\nhm : 1 ≤ m\nhlim : Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (seminormFromConst' hf1 hc hpm (x ^ m)))\n⊢ ⋯.choose = ⋯.choose ^ m"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "c : R", "f : RingSeminorm R", "hf1 : f 1 ≤ 1", "hc : f c ≠ 0", "hpm : IsPowMul ⇑f", "x : R", "m : ℕ", "hm : 1 ≤ m", "hlim : Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (seminormFromConst' hf1 hc hpm (x ^ m)))"], "goal": "Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (⋯.choose ^ m))"}], "premise": [43740, 65124], "state_str": "R : Type u_1\ninst✝ : CommRing R\nc : R\nf : RingSeminorm R\nhf1 : f 1 ≤ 1\nhc : f c ≠ 0\nhpm : IsPowMul ⇑f\nx : R\nm : ℕ\nhm : 1 ≤ m\nhlim : Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (seminormFromConst' hf1 hc hpm (x ^ m)))\n⊢ Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (⋯.choose ^ m))"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "c : R", "f : RingSeminorm R", "hf1 : f 1 ≤ 1", "hc : f c ≠ 0", "hpm : IsPowMul ⇑f", "x : R", "m : ℕ", "hm : 1 ≤ m", "hlim : Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (seminormFromConst' hf1 hc hpm (x ^ m)))", "n : ℕ"], "goal": "seminormFromConst_seq c f (x ^ m) (m * n) = seminormFromConst_seq c f x n ^ m"}], "premise": [117764, 117927, 119707, 119761], "state_str": "case h.e'_3.h\nR : Type u_1\ninst✝ : CommRing R\nc : R\nf : RingSeminorm R\nhf1 : f 1 ≤ 1\nhc : f c ≠ 0\nhpm : IsPowMul ⇑f\nx : R\nm : ℕ\nhm : 1 ≤ m\nhlim : Tendsto (fun n => seminormFromConst_seq c f (x ^ m) (m * n)) atTop (𝓝 (seminormFromConst' hf1 hc hpm (x ^ m)))\nn : ℕ\n⊢ seminormFromConst_seq c f (x ^ m) (m * n) = seminormFromConst_seq c f x n ^ m"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "X Y : Mon_ C", "P Q : Bimod X Y", "f : P.X ≅ Q.X", "f_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft", "f_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight"], "goal": "Q.actLeft ≫ f.inv = X.X ◁ f.inv ≫ P.actLeft"}], "premise": [88742, 96173, 96174, 96175, 96191, 99216, 99219], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\nX Y : Mon_ C\nP Q : Bimod X Y\nf : P.X ≅ Q.X\nf_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft\nf_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight\n⊢ Q.actLeft ≫ f.inv = X.X ◁ f.inv ≫ P.actLeft"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "X Y : Mon_ C", "P Q : Bimod X Y", "f : P.X ≅ Q.X", "f_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft", "f_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight"], "goal": "Q.actRight ≫ f.inv = f.inv ▷ Y.X ≫ P.actRight"}], "premise": [88742, 96173, 96174, 96175, 96191, 99212, 99222], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\nX Y : Mon_ C\nP Q : Bimod X Y\nf : P.X ≅ Q.X\nf_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft\nf_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight\n⊢ Q.actRight ≫ f.inv = f.inv ▷ Y.X ≫ P.actRight"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "X Y : Mon_ C", "P Q : Bimod X Y", "f : P.X ≅ Q.X", "f_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft", "f_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight"], "goal": "f.hom ≫ f.inv = 𝟙 P.X"}], "premise": [88743], "state_str": "case h\nC : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\nX Y : Mon_ C\nP Q : Bimod X Y\nf : P.X ≅ Q.X\nf_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft\nf_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight\n⊢ f.hom ≫ f.inv = 𝟙 P.X"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "inst✝ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "X Y : Mon_ C", "P Q : Bimod X Y", "f : P.X ≅ Q.X", "f_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft", "f_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight"], "goal": "f.inv ≫ f.hom = 𝟙 Q.X"}], "premise": [88742], "state_str": "case h\nC : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\ninst✝ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\nX Y : Mon_ C\nP Q : Bimod X Y\nf : P.X ≅ Q.X\nf_left_act_hom : P.actLeft ≫ f.hom = X.X ◁ f.hom ≫ Q.actLeft\nf_right_act_hom : P.actRight ≫ f.hom = f.hom ▷ Y.X ≫ Q.actRight\n⊢ f.inv ≫ f.hom = 𝟙 Q.X"} +{"state": [{"context": ["x y z : ℤ", "h : PythagoreanTriple x y z", "k : ℤ"], "goal": "k ^ 2 * (x * x + y * y) = k ^ 2 * (z * z)"}], "premise": [22700], "state_str": "x y z : ℤ\nh : PythagoreanTriple x y z\nk : ℤ\n⊢ k ^ 2 * (x * x + y * y) = k ^ 2 * (z * z)"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Field K", "inst✝² : IsDedekindDomain A", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "I J : Ideal A", "h : J ≤ I", "hI : ¬I = ⊥"], "goal": "I ∣ J"}], "premise": [1674, 76835], "state_str": "case neg\nR : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nI J : Ideal A\nh : J ≤ I\nhI : ¬I = ⊥\n⊢ I ∣ J"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Field K", "inst✝² : IsDedekindDomain A", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "I J : Ideal A", "h : J ≤ I", "hI : ¬I = ⊥", "hI' : ↑I ≠ 0"], "goal": "I ∣ J"}], "premise": [1674, 14273, 14277, 75650, 75690, 108556], "state_str": "case neg\nR : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nI J : Ideal A\nh : J ≤ I\nhI : ¬I = ⊥\nhI' : ↑I ≠ 0\n⊢ I ∣ J"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Field K", "inst✝² : IsDedekindDomain A", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "I J : Ideal A", "h : J ≤ I", "hI : ¬I = ⊥", "hI' : ↑I ≠ 0", "this : (↑I)⁻¹ * ↑J ≤ 1"], "goal": "I ∣ J"}], "premise": [1673, 75703], "state_str": "case neg\nR : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nI J : Ideal A\nh : J ≤ I\nhI : ¬I = ⊥\nhI' : ↑I ≠ 0\nthis : (↑I)⁻¹ * ↑J ≤ 1\n⊢ I ∣ J"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Field K", "inst✝² : IsDedekindDomain A", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "I J : Ideal A", "h : J ≤ I", "hI : ¬I = ⊥", "hI' : ↑I ≠ 0", "this : (↑I)⁻¹ * ↑J ≤ 1", "H : Ideal A", "hH : ↑H = (↑I)⁻¹ * ↑J"], "goal": "I ∣ J"}], "premise": [1674, 2045], "state_str": "case neg.intro\nR : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nI J : Ideal A\nh : J ≤ I\nhI : ¬I = ⊥\nhI' : ↑I ≠ 0\nthis : (↑I)⁻¹ * ↑J ≤ 1\nH : Ideal A\nhH : ↑H = (↑I)⁻¹ * ↑J\n⊢ I ∣ J"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Field K", "inst✝² : IsDedekindDomain A", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "I J : Ideal A", "h : J ≤ I", "hI : ¬I = ⊥", "hI' : ↑I ≠ 0", "this : (↑I)⁻¹ * ↑J ≤ 1", "H : Ideal A", "hH : ↑H = (↑I)⁻¹ * ↑J"], "goal": "J = I * H"}], "premise": [76832], "state_str": "case h\nR : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nI J : Ideal A\nh : J ≤ I\nhI : ¬I = ⊥\nhI' : ↑I ≠ 0\nthis : (↑I)⁻¹ * ↑J ≤ 1\nH : Ideal A\nhH : ↑H = (↑I)⁻¹ * ↑J\n⊢ J = I * H"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Field K", "inst✝² : IsDedekindDomain A", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "I J : Ideal A", "h : J ≤ I", "hI : ¬I = ⊥", "hI' : ↑I ≠ 0", "this : (↑I)⁻¹ * ↑J ≤ 1", "H : Ideal A", "hH : ↑H = (↑I)⁻¹ * ↑J"], "goal": "↑J = ↑(I * H)"}], "premise": [75689, 108577, 119703, 119728], "state_str": "case h\nR : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nI J : Ideal A\nh : J ≤ I\nhI : ¬I = ⊥\nhI' : ↑I ≠ 0\nthis : (↑I)⁻¹ * ↑J ≤ 1\nH : Ideal A\nhH : ↑H = (↑I)⁻¹ * ↑J\n⊢ ↑J = ↑(I * H)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "X Y Z : Mon_ C", "f : Y ⟶ Z"], "goal": "(X ◁ f).hom = X.X ◁ f.hom"}], "premise": [99217], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nX Y Z : Mon_ C\nf : Y ⟶ Z\n⊢ (X ◁ f).hom = X.X ◁ f.hom"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "p : A → Prop", "inst✝¹² : CommSemiring R", "inst✝¹¹ : Nontrivial R", "inst✝¹⁰ : StarRing R", "inst✝⁹ : MetricSpace R", "inst✝⁸ : TopologicalSemiring R", "inst✝⁷ : ContinuousStar R", "inst✝⁶ : NonUnitalRing A", "inst✝⁵ : StarRing A", "inst✝⁴ : TopologicalSpace A", "inst✝³ : Module R A", "inst✝² : IsScalarTower R A A", "inst✝¹ : SMulCommClass R A A", "inst✝ : NonUnitalContinuousFunctionalCalculus R p", "f g : R → R", "a : A", "hf : autoParam (ContinuousOn f (σₙ R a)) _auto✝", "hf0 : autoParam (f 0 = 0) _auto✝", "hg : autoParam (ContinuousOn g (σₙ R a)) _auto✝", "hg0 : autoParam (g 0 = 0) _auto✝", "ha : autoParam (p a) _auto✝"], "goal": "cfcₙ (fun x => star x) a = star a"}], "premise": [38034, 38049], "state_str": "R : Type u_1\nA : Type u_2\np : A → Prop\ninst✝¹² : CommSemiring R\ninst✝¹¹ : Nontrivial R\ninst✝¹⁰ : StarRing R\ninst✝⁹ : MetricSpace R\ninst✝⁸ : TopologicalSemiring R\ninst✝⁷ : ContinuousStar R\ninst✝⁶ : NonUnitalRing A\ninst✝⁵ : StarRing A\ninst✝⁴ : TopologicalSpace A\ninst✝³ : Module R A\ninst✝² : IsScalarTower R A A\ninst✝¹ : SMulCommClass R A A\ninst✝ : NonUnitalContinuousFunctionalCalculus R p\nf g : R → R\na : A\nhf : autoParam (ContinuousOn f (σₙ R a)) _auto✝\nhf0 : autoParam (f 0 = 0) _auto✝\nhg : autoParam (ContinuousOn g (σₙ R a)) _auto✝\nhg0 : autoParam (g 0 = 0) _auto✝\nha : autoParam (p a) _auto✝\n⊢ cfcₙ (fun x => star x) a = star a"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "X✝ Y✝ : C", "f✝ : X✝ ⟶ Y✝", "X Y : C", "f : X ⟶ Y", "inst✝² : HasImage f", "inst✝¹ : Epi (image.ι f)", "inst✝ : Epi (factorThruImage f)"], "goal": "Epi f"}], "premise": [94368], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\nX✝ Y✝ : C\nf✝ : X✝ ⟶ Y✝\nX Y : C\nf : X ⟶ Y\ninst✝² : HasImage f\ninst✝¹ : Epi (image.ι f)\ninst✝ : Epi (factorThruImage f)\n⊢ Epi f"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "X✝ Y✝ : C", "f✝ : X✝ ⟶ Y✝", "X Y : C", "f : X ⟶ Y", "inst✝² : HasImage f", "inst✝¹ : Epi (image.ι f)", "inst✝ : Epi (factorThruImage f)"], "goal": "Epi (factorThruImage f ≫ image.ι f)"}], "premise": [96194], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\nX✝ Y✝ : C\nf✝ : X✝ ⟶ Y✝\nX Y : C\nf : X ⟶ Y\ninst✝² : HasImage f\ninst✝¹ : Epi (image.ι f)\ninst✝ : Epi (factorThruImage f)\n⊢ Epi (factorThruImage f ≫ image.ι f)"} +{"state": [{"context": [], "goal": "tan π = 0"}], "premise": [38666, 109483, 149234], "state_str": "⊢ tan π = 0"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "m n : ℕ", "s : Simplex ℝ P m", "e : Fin (m + 1) ≃ Fin (n + 1)"], "goal": "(s.reindex e).circumcenter = s.circumcenter"}], "premise": [72793], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nm n : ℕ\ns : Simplex ℝ P m\ne : Fin (m + 1) ≃ Fin (n + 1)\n⊢ (s.reindex e).circumcenter = s.circumcenter"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ"], "goal": "ρ {x | v.limRatioMeas hρ x = 0} = 0"}], "premise": [27576], "state_str": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\n⊢ ρ {x | v.limRatioMeas hρ x = 0} = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}"], "goal": "∃ u ∈ 𝓝[{x | v.limRatioMeas hρ x = 0}] x, ρ u = 0"}], "premise": [31839], "state_str": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\n⊢ ∃ u ∈ 𝓝[{x | v.limRatioMeas hρ x = 0}] x, ρ u = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o"], "goal": "∃ u ∈ 𝓝[{x | v.limRatioMeas hρ x = 0}] x, ρ u = 0"}], "premise": [14296, 18803, 55501, 57181], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\n⊢ ∃ u ∈ 𝓝[{x | v.limRatioMeas hρ x = 0}] x, ρ u = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o"], "goal": "ρ s ≤ 0"}], "premise": [27559, 133448], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\n⊢ ρ s ≤ 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o", "μs : μ s ≠ ⊤"], "goal": "ρ s ≤ 0"}], "premise": [2107, 27657, 131585, 143212], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\nμs : μ s ≠ ⊤\n⊢ ρ s ≤ 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o", "μs : μ s ≠ ⊤", "A : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s"], "goal": "ρ s ≤ 0"}], "premise": [57190, 58879, 58930], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\nμs : μ s ≠ ⊤\nA : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s\n⊢ ρ s ≤ 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o", "μs : μ s ≠ ⊤", "A : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s", "B : Tendsto (fun q => ↑q * μ s) (𝓝[>] 0) (𝓝 (↑0 * μ s))"], "goal": "ρ s ≤ 0"}], "premise": [108557, 143167], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\nμs : μ s ≠ ⊤\nA : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s\nB : Tendsto (fun q => ↑q * μ s) (𝓝[>] 0) (𝓝 (↑0 * μ s))\n⊢ ρ s ≤ 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o", "μs : μ s ≠ ⊤", "A : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s", "B : Tendsto (fun q => ↑q * μ s) (𝓝[>] 0) (𝓝 0)"], "goal": "ρ s ≤ 0"}], "premise": [54924], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\nμs : μ s ≠ ⊤\nA : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s\nB : Tendsto (fun q => ↑q * μ s) (𝓝[>] 0) (𝓝 0)\n⊢ ρ s ≤ 0"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : MetricSpace α", "m0 : MeasurableSpace α", "μ : Measure α", "v : VitaliFamily μ", "E : Type u_2", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : SecondCountableTopology α", "inst✝² : BorelSpace α", "inst✝¹ : IsLocallyFiniteMeasure μ", "ρ : Measure α", "inst✝ : IsLocallyFiniteMeasure ρ", "hρ : ρ ≪ μ", "x : α", "x✝ : x ∈ {x | v.limRatioMeas hρ x = 0}", "o : Set α", "xo : x ∈ o", "o_open : IsOpen o", "μo : μ o < ⊤", "s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o", "μs : μ s ≠ ⊤", "A : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s", "B : Tendsto (fun q => ↑q * μ s) (𝓝[>] 0) (𝓝 0)"], "goal": "∀ᶠ (c : ℝ≥0) in 𝓝[>] 0, ρ s ≤ ↑c * μ s"}], "premise": [15889, 57179, 131585], "state_str": "case intro.intro.intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : Measure α\nv : VitaliFamily μ\nE : Type u_2\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\nx : α\nx✝ : x ∈ {x | v.limRatioMeas hρ x = 0}\no : Set α\nxo : x ∈ o\no_open : IsOpen o\nμo : μ o < ⊤\ns : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o\nμs : μ s ≠ ⊤\nA : ∀ (q : ℝ≥0), 0 < q → ρ s ≤ ↑q * μ s\nB : Tendsto (fun q => ↑q * μ s) (𝓝[>] 0) (𝓝 0)\n⊢ ∀ᶠ (c : ℝ≥0) in 𝓝[>] 0, ρ s ≤ ↑c * μ s"} +{"state": [{"context": ["ι : Sort u_1", "M : Type u_2", "inst✝ : MulOneClass M", "s : Set M"], "goal": "(closure s).op = closure (MulOpposite.unop ⁻¹' s)"}], "premise": [117352, 117392, 134071], "state_str": "ι : Sort u_1\nM : Type u_2\ninst✝ : MulOneClass M\ns : Set M\n⊢ (closure s).op = closure (MulOpposite.unop ⁻¹' s)"} +{"state": [{"context": ["ι : Sort u_1", "M : Type u_2", "inst✝ : MulOneClass M", "s : Set M", "a : Submonoid Mᵐᵒᵖ"], "goal": "a ∈ {a | s ⊆ MulOpposite.op ⁻¹' ↑a} ↔ a ∈ {S | MulOpposite.unop ⁻¹' s ⊆ ↑S}"}], "premise": [71407, 100256], "state_str": "case e_a.h\nι : Sort u_1\nM : Type u_2\ninst✝ : MulOneClass M\ns : Set M\na : Submonoid Mᵐᵒᵖ\n⊢ a ∈ {a | s ⊆ MulOpposite.op ⁻¹' ↑a} ↔ a ∈ {S | MulOpposite.unop ⁻¹' s ⊆ ↑S}"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X : CoalgebraCat R"], "goal": "ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.ofHom Coalgebra.counit ▷ ModuleCat.of R ↑X.toModuleCat = (λ_ (ModuleCat.of R ↑X.toModuleCat)).inv"}], "premise": [79255, 112710], "state_str": "R : Type u\ninst✝ : CommRing R\nX : CoalgebraCat R\n⊢ ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.ofHom Coalgebra.counit ▷ ModuleCat.of R ↑X.toModuleCat =\n (λ_ (ModuleCat.of R ↑X.toModuleCat)).inv"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X : CoalgebraCat R"], "goal": "ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.of R ↑X.toModuleCat ◁ ModuleCat.ofHom Coalgebra.counit = (ρ_ (ModuleCat.of R ↑X.toModuleCat)).inv"}], "premise": [79254, 112710], "state_str": "R : Type u\ninst✝ : CommRing R\nX : CoalgebraCat R\n⊢ ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.of R ↑X.toModuleCat ◁ ModuleCat.ofHom Coalgebra.counit =\n (ρ_ (ModuleCat.of R ↑X.toModuleCat)).inv"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X : CoalgebraCat R"], "goal": "ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.of R ↑X.toModuleCat ◁ ModuleCat.ofHom Coalgebra.comul = ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.ofHom Coalgebra.comul ▷ ModuleCat.of R ↑X.toModuleCat ≫ (α_ (ModuleCat.of R ↑X.toModuleCat) (ModuleCat.of R ↑X.toModuleCat) (ModuleCat.of R ↑X.toModuleCat)).hom"}], "premise": [112710], "state_str": "R : Type u\ninst✝ : CommRing R\nX : CoalgebraCat R\n⊢ ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.of R ↑X.toModuleCat ◁ ModuleCat.ofHom Coalgebra.comul =\n ModuleCat.ofHom Coalgebra.comul ≫\n ModuleCat.ofHom Coalgebra.comul ▷ ModuleCat.of R ↑X.toModuleCat ≫\n (α_ (ModuleCat.of R ↑X.toModuleCat) (ModuleCat.of R ↑X.toModuleCat) (ModuleCat.of R ↑X.toModuleCat)).hom"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X : CoalgebraCat R"], "goal": "ModuleCat.ofHom Coalgebra.comul ≫ X.toModuleCat ◁ ModuleCat.ofHom Coalgebra.comul = ModuleCat.ofHom Coalgebra.comul ≫ ModuleCat.ofHom Coalgebra.comul ▷ X.toModuleCat ≫ (α_ X.toModuleCat X.toModuleCat X.toModuleCat).hom"}], "premise": [2100, 79256], "state_str": "R : Type u\ninst✝ : CommRing R\nX : CoalgebraCat R\n⊢ ModuleCat.ofHom Coalgebra.comul ≫ X.toModuleCat ◁ ModuleCat.ofHom Coalgebra.comul =\n ModuleCat.ofHom Coalgebra.comul ≫\n ModuleCat.ofHom Coalgebra.comul ▷ X.toModuleCat ≫ (α_ X.toModuleCat X.toModuleCat X.toModuleCat).hom"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "m : Type u_3", "n : Type u_4", "inst✝³ : DecidableEq m", "inst✝² : DecidableEq n", "inst✝¹ : Fintype m", "inst✝ : Fintype n", "M₁₁ : Matrix m m R", "M₁₂ : Matrix m n R", "M₂₁ : Matrix n m R", "M₂₂ M : Matrix n n R", "i j : n", "h : i ≠ j"], "goal": "M.charmatrix i j = -C (M i j)"}], "premise": [117930, 142132, 142141, 142158, 142270, 142299], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\nm : Type u_3\nn : Type u_4\ninst✝³ : DecidableEq m\ninst✝² : DecidableEq n\ninst✝¹ : Fintype m\ninst✝ : Fintype n\nM₁₁ : Matrix m m R\nM₁₂ : Matrix m n R\nM₂₁ : Matrix n m R\nM₂₂ M : Matrix n n R\ni j : n\nh : i ≠ j\n⊢ M.charmatrix i j = -C (M i j)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝² : TopologicalSpace G", "inst✝¹ : MulOneClass G", "inst✝ : ContinuousMul G", "K U : Set G", "hK : IsCompact K", "hU : IsOpen U", "hKU : K ⊆ U"], "goal": "∃ V ∈ 𝓝 1, K * V ⊆ U"}], "premise": [58058], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝² : TopologicalSpace G\ninst✝¹ : MulOneClass G\ninst✝ : ContinuousMul G\nK U : Set G\nhK : IsCompact K\nhU : IsOpen U\nhKU : K ⊆ U\n⊢ ∃ V ∈ 𝓝 1, K * V ⊆ U"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ"], "goal": "(J.plusMap (J.toPlus P)).app X = (J.toPlus (J.plusObj P)).app X"}], "premise": [93401], "state_str": "case w.h\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\n⊢ (J.plusMap (J.toPlus P)).app X = (J.toPlus (J.plusObj P)).app X"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ"], "goal": "colimit.ι (J.diagram P (unop X)) S ≫ colimMap (J.diagramNatTrans { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ } (unop X)) = colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P) ≫ colimit.ι (J.diagram (J.plusObj P) (unop X)) (op ⊤)"}], "premise": [18777], "state_str": "case w.h\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\n⊢ colimit.ι (J.diagram P (unop X)) S ≫\n colimMap\n (J.diagramNatTrans\n { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ }\n (unop X)) =\n colimit.ι (J.diagram P (unop X)) S ≫\n ⊤.toMultiequalizer (J.plusObj P) ≫ colimit.ι (J.diagram (J.plusObj P) (unop X)) (op ⊤)"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯"], "goal": "colimit.ι (J.diagram P (unop X)) S ≫ colimMap (J.diagramNatTrans { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ } (unop X)) = colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P) ≫ colimit.ι (J.diagram (J.plusObj P) (unop X)) (op ⊤)"}], "premise": [93390, 93393, 96173], "state_str": "case w.h\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\n⊢ colimit.ι (J.diagram P (unop X)) S ≫\n colimMap\n (J.diagramNatTrans\n { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ }\n (unop X)) =\n colimit.ι (J.diagram P (unop X)) S ≫\n ⊤.toMultiequalizer (J.plusObj P) ≫ colimit.ι (J.diagram (J.plusObj P) (unop X)) (op ⊤)"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯"], "goal": "(J.diagramNatTrans { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ } (unop X)).app S = (colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P)) ≫ (J.diagram (J.plusObj P) (unop X)).map e.op"}], "premise": [95099], "state_str": "case w.h.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\n⊢ (J.diagramNatTrans { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ }\n (unop X)).app\n S =\n (colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P)) ≫\n (J.diagram (J.plusObj P) (unop X)).map e.op"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯", "I : ((unop S).index (J.plusObj P)).L"], "goal": "(J.diagramNatTrans { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ } (unop X)).app S ≫ Multiequalizer.ι ((unop S).index (J.plusObj P)) I = ((colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P)) ≫ (J.diagram (J.plusObj P) (unop X)).map e.op) ≫ Multiequalizer.ι ((unop S).index (J.plusObj P)) I"}], "premise": [95098], "state_str": "case w.h.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\nI : ((unop S).index (J.plusObj P)).L\n⊢ (J.diagramNatTrans { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ }\n (unop X)).app\n S ≫\n Multiequalizer.ι ((unop S).index (J.plusObj P)) I =\n ((colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P)) ≫\n (J.diagram (J.plusObj P) (unop X)).map e.op) ≫\n Multiequalizer.ι ((unop S).index (J.plusObj P)) I"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯", "I : ((unop S).index (J.plusObj P)).L"], "goal": "Multiequalizer.ι ((unop S).index P) I ≫ { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ }.app (op I.Y) = ((colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P)) ≫ (J.diagram (J.plusObj P) (unop X)).map e.op) ≫ Multiequalizer.ι ((unop S).index (J.plusObj P)) I"}], "premise": [91856, 93340, 95052, 96173, 130987, 130988], "state_str": "case w.h.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\nI : ((unop S).index (J.plusObj P)).L\n⊢ Multiequalizer.ι ((unop S).index P) I ≫\n { app := fun X => ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop X)) (op ⊤), naturality := ⋯ }.app (op I.Y) =\n ((colimit.ι (J.diagram P (unop X)) S ≫ ⊤.toMultiequalizer (J.plusObj P)) ≫\n (J.diagram (J.plusObj P) (unop X)).map e.op) ≫\n Multiequalizer.ι ((unop S).index (J.plusObj P)) I"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯", "I : ((unop S).index (J.plusObj P)).L"], "goal": "Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P I.Y) (op ⊤) = colimit.ι (J.diagram P (unop X)) S ≫ (J.plusObj P).map (Cover.Arrow.map I e.op.unop).f.op"}], "premise": [18777], "state_str": "case w.h.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\nI : ((unop S).index (J.plusObj P)).L\n⊢ Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P I.Y) (op ⊤) =\n colimit.ι (J.diagram P (unop X)) S ≫ (J.plusObj P).map (Cover.Arrow.map I e.op.unop).f.op"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯", "I : ((unop S).index (J.plusObj P)).L", "ee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯"], "goal": "Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P I.Y) (op ⊤) = colimit.ι (J.diagram P (unop X)) S ≫ (J.plusObj P).map (Cover.Arrow.map I e.op.unop).f.op"}], "premise": [91857, 93390, 93413, 96173], "state_str": "case w.h.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\nI : ((unop S).index (J.plusObj P)).L\nee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯\n⊢ Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P I.Y) (op ⊤) =\n colimit.ι (J.diagram P (unop X)) S ≫ (J.plusObj P).map (Cover.Arrow.map I e.op.unop).f.op"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯", "I : ((unop S).index (J.plusObj P)).L", "ee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯"], "goal": "(Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P) ≫ (J.diagram P I.Y).map ee.op = Multiequalizer.lift ((unop ((J.pullback (Cover.Arrow.map I e.op.unop).f.op.unop).op.obj S)).index P) ((J.diagram P (unop X)).obj S) (fun I_1 => Multiequalizer.ι ((unop S).index P) (Cover.Arrow.base I_1)) ⋯"}], "premise": [95099], "state_str": "case w.h.e_a.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\nI : ((unop S).index (J.plusObj P)).L\nee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯\n⊢ (Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P) ≫ (J.diagram P I.Y).map ee.op =\n Multiequalizer.lift ((unop ((J.pullback (Cover.Arrow.map I e.op.unop).f.op.unop).op.obj S)).index P)\n ((J.diagram P (unop X)).obj S) (fun I_1 => Multiequalizer.ι ((unop S).index P) (Cover.Arrow.base I_1)) ⋯"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "J : GrothendieckTopology C", "D : Type w", "inst✝² : Category.{max v u, w} D", "inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)", "P : Cᵒᵖ ⥤ D", "inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D", "X : Cᵒᵖ", "S : (J.Cover (unop X))ᵒᵖ", "e : unop S ⟶ ⊤ := homOfLE ⋯", "I : ((unop S).index (J.plusObj P)).L", "ee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯", "II : ((unop (op ((J.pullback (Cover.Arrow.map I e).f).obj (unop S)))).index P).L"], "goal": "((Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P) ≫ (J.diagram P I.Y).map ee.op) ≫ Multiequalizer.ι ((unop (op ((J.pullback (Cover.Arrow.map I e).f).obj (unop S)))).index P) II = Multiequalizer.lift ((unop ((J.pullback (Cover.Arrow.map I e.op.unop).f.op.unop).op.obj S)).index P) ((J.diagram P (unop X)).obj S) (fun I_1 => Multiequalizer.ι ((unop S).index P) (Cover.Arrow.base I_1)) ⋯ ≫ Multiequalizer.ι ((unop (op ((J.pullback (Cover.Arrow.map I e).f).obj (unop S)))).index P) II"}], "premise": [95097], "state_str": "case w.h.e_a.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category.{max v u, w} D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)\nP : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D\nX : Cᵒᵖ\nS : (J.Cover (unop X))ᵒᵖ\ne : unop S ⟶ ⊤ := homOfLE ⋯\nI : ((unop S).index (J.plusObj P)).L\nee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯\nII : ((unop (op ((J.pullback (Cover.Arrow.map I e).f).obj (unop S)))).index P).L\n⊢ ((Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P) ≫ (J.diagram P I.Y).map ee.op) ≫\n Multiequalizer.ι ((unop (op ((J.pullback (Cover.Arrow.map I e).f).obj (unop S)))).index P) II =\n Multiequalizer.lift ((unop ((J.pullback (Cover.Arrow.map I e.op.unop).f.op.unop).op.obj S)).index P)\n ((J.diagram P (unop X)).obj S) (fun I_1 => Multiequalizer.ι ((unop S).index P) (Cover.Arrow.base I_1)) ⋯ ≫\n Multiequalizer.ι ((unop (op ((J.pullback (Cover.Arrow.map I e).f).obj (unop S)))).index P) II"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l l₁ l₂ l₃ : List α", "a b : α", "m n : ℕ", "L : List (List (Option α))", "hm : m < L.length"], "goal": "take m L <+: take n L ↔ m ≤ n"}], "premise": [3059, 129670], "state_str": "α : Type u_1\nβ : Type u_2\nl l₁ l₂ l₃ : List α\na b : α\nm n : ℕ\nL : List (List (Option α))\nhm : m < L.length\n⊢ take m L <+: take n L ↔ m ≤ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l l₁ l₂ l₃ : List α", "a b : α", "m n : ℕ", "L : List (List (Option α))", "hm : m < L.length"], "goal": "take m L = take (min m L.length) (take n L) ↔ m ≤ n"}], "premise": [1793, 2134, 2581, 3503, 3679, 3731, 4576, 19701], "state_str": "α : Type u_1\nβ : Type u_2\nl l₁ l₂ l₃ : List α\na b : α\nm n : ℕ\nL : List (List (Option α))\nhm : m < L.length\n⊢ take m L = take (min m L.length) (take n L) ↔ m ≤ n"} +{"state": [{"context": ["𝓕 : Type u_1", "α : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝¹ : SeminormedCommGroup E", "inst✝ : SeminormedCommGroup F", "a✝ a₁ a₂ b✝ b₁ b₂ : E", "r r₁ r₂ : ℝ", "a b : E"], "goal": "dist a (a * b) = ‖b‖"}], "premise": [42663, 61420, 119730], "state_str": "𝓕 : Type u_1\nα : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ dist a (a * b) = ‖b‖"} +{"state": [{"context": ["x : SimplexCategory", "i : x ⟶ x", "inst✝ : Epi i"], "goal": "i = 𝟙 x"}], "premise": [47487], "state_str": "x : SimplexCategory\ni : x ⟶ x\ninst✝ : Epi i\n⊢ i = 𝟙 x"} +{"state": [{"context": ["x : SimplexCategory", "i : x ⟶ x", "inst✝ : Epi i"], "goal": "IsIso i"}], "premise": [47485], "state_str": "x : SimplexCategory\ni : x ⟶ x\ninst✝ : Epi i\n⊢ IsIso i"} +{"state": [{"context": ["x : SimplexCategory", "i : x ⟶ x", "inst✝ : Epi i"], "goal": "Function.Bijective ⇑(Hom.toOrderHom i)"}], "premise": [1793, 20002, 47480, 141421], "state_str": "case hf\nx : SimplexCategory\ni : x ⟶ x\ninst✝ : Epi i\n⊢ Function.Bijective ⇑(Hom.toOrderHom i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "E : Type u_4", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "b : ℝ", "f : ℕ → ℝ", "z : ℕ → E", "hfa : Monotone f", "hf0 : Tendsto f atTop (𝓝 0)"], "goal": "CauchySeq fun n => ∑ i ∈ Finset.range n, (-1) ^ i * f i"}], "premise": [119707], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nE : Type u_4\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nb : ℝ\nf : ℕ → ℝ\nz : ℕ → E\nhfa : Monotone f\nhf0 : Tendsto f atTop (𝓝 0)\n⊢ CauchySeq fun n => ∑ i ∈ Finset.range n, (-1) ^ i * f i"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "E : Type u_4", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "b : ℝ", "f : ℕ → ℝ", "z : ℕ → E", "hfa : Monotone f", "hf0 : Tendsto f atTop (𝓝 0)"], "goal": "CauchySeq fun n => ∑ x ∈ Finset.range n, f x * (-1) ^ x"}], "premise": [34528, 34530], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nE : Type u_4\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nb : ℝ\nf : ℕ → ℝ\nz : ℕ → E\nhfa : Monotone f\nhf0 : Tendsto f atTop (𝓝 0)\n⊢ CauchySeq fun n => ∑ x ∈ Finset.range n, f x * (-1) ^ x"} +{"state": [{"context": ["it : Iterator"], "goal": "ValidFor it.s.data.reverse [] { s := it.s, i := it.s.endPos }"}], "premise": [2307, 5293], "state_str": "it : Iterator\n⊢ ValidFor it.s.data.reverse [] { s := it.s, i := it.s.endPos }"} +{"state": [{"context": ["K : Type u_1", "inst✝¹ : Field K", "inst✝ : NumberField K", "i : Free.ChooseBasisIndex ℤ (𝓞 K)"], "goal": "(latticeBasis K) i = (canonicalEmbedding K) ((integralBasis K) i)"}], "premise": [1670, 22033, 70751, 81528], "state_str": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NumberField K\ni : Free.ChooseBasisIndex ℤ (𝓞 K)\n⊢ (latticeBasis K) i = (canonicalEmbedding K) ((integralBasis K) i)"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "W : Type v", "G : SimpleGraph V", "v w : V", "hvw : G.Adj v w", "v✝ w✝ : V", "h : (fun a b => s(v, w) = s(a, b)) v✝ w✝"], "goal": "G.Adj v✝ w✝"}], "premise": [50423], "state_str": "ι : Sort u_1\nV : Type u\nW : Type v\nG : SimpleGraph V\nv w : V\nhvw : G.Adj v w\nv✝ w✝ : V\nh : (fun a b => s(v, w) = s(a, b)) v✝ w✝\n⊢ G.Adj v✝ w✝"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "W : Type v", "G : SimpleGraph V", "v w : V", "hvw : G.Adj v w", "a b : V", "h : (a ∈ s(v, w)) = (a ∈ s(a, b))"], "goal": "a ∈ {v, w}"}], "premise": [1190, 1194, 1792, 128272], "state_str": "ι : Sort u_1\nV : Type u\nW : Type v\nG : SimpleGraph V\nv w : V\nhvw : G.Adj v w\na b : V\nh : (a ∈ s(v, w)) = (a ∈ s(a, b))\n⊢ a ∈ {v, w}"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "A : Type u_3", "K : Type u_4", "inst✝³ : Semiring S", "inst✝² : CommSemiring R", "inst✝¹ : Semiring A", "inst✝ : Field K", "p : R[X]", "r s : R", "n✝ : ℕ"], "goal": "(p.scaleRoots (r * s)).coeff n✝ = ((p.scaleRoots r).scaleRoots s).coeff n✝"}], "premise": [117764, 119703], "state_str": "case a\nR : Type u_1\nS : Type u_2\nA : Type u_3\nK : Type u_4\ninst✝³ : Semiring S\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Field K\np : R[X]\nr s : R\nn✝ : ℕ\n⊢ (p.scaleRoots (r * s)).coeff n✝ = ((p.scaleRoots r).scaleRoots s).coeff n✝"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "f : X → Y", "inst✝¹ : T1Space X", "inst✝ : WeaklyLocallyCompactSpace Y", "hf' : Continuous f", "hf : Tendsto f cofinite (cocompact Y)"], "goal": "DiscreteTopology X"}], "premise": [1673, 57523], "state_str": "X : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\nf : X → Y\ninst✝¹ : T1Space X\ninst✝ : WeaklyLocallyCompactSpace Y\nhf' : Continuous f\nhf : Tendsto f cofinite (cocompact Y)\n⊢ DiscreteTopology X"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "f : X → Y", "inst✝¹ : T1Space X", "inst✝ : WeaklyLocallyCompactSpace Y", "hf' : Continuous f", "hf : Tendsto f cofinite (cocompact Y)", "x : X"], "goal": "IsOpen {x}"}], "premise": [54090], "state_str": "X : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\nf : X → Y\ninst✝¹ : T1Space X\ninst✝ : WeaklyLocallyCompactSpace Y\nhf' : Continuous f\nhf : Tendsto f cofinite (cocompact Y)\nx : X\n⊢ IsOpen {x}"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "f : X → Y", "inst✝¹ : T1Space X", "inst✝ : WeaklyLocallyCompactSpace Y", "hf' : Continuous f", "hf : Tendsto f cofinite (cocompact Y)", "x : X", "K : Set Y", "hK : IsCompact K", "hK' : K ∈ 𝓝 (f x)"], "goal": "IsOpen {x}"}], "premise": [1673, 55494], "state_str": "case intro.intro\nX : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\nf : X → Y\ninst✝¹ : T1Space X\ninst✝ : WeaklyLocallyCompactSpace Y\nhf' : Continuous f\nhf : Tendsto f cofinite (cocompact Y)\nx : X\nK : Set Y\nhK : IsCompact K\nhK' : K ∈ 𝓝 (f x)\n⊢ IsOpen {x}"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "f : X → Y", "inst��¹ : T1Space X", "inst✝ : WeaklyLocallyCompactSpace Y", "hf' : Continuous f", "hf : Tendsto f cofinite (cocompact Y)", "x : X", "K : Set Y", "hK : IsCompact K", "hK' : K ∈ 𝓝 (f x)", "U : Set Y", "hU₁ : U ⊆ K", "hU₂ : IsOpen U", "hU₃ : f x ∈ U"], "goal": "IsOpen {x}"}], "premise": [1673, 56786, 134062, 135040], "state_str": "case intro.intro.intro.intro.intro\nX : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\nf : X → Y\ninst✝¹ : T1Space X\ninst✝ : WeaklyLocallyCompactSpace Y\nhf' : Continuous f\nhf : Tendsto f cofinite (cocompact Y)\nx : X\nK : Set Y\nhK : IsCompact K\nhK' : K ∈ 𝓝 (f x)\nU : Set Y\nhU₁ : U ⊆ K\nhU₂ : IsOpen U\nhU₃ : f x ∈ U\n⊢ IsOpen {x}"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "f : X → Y", "inst✝¹ : T1Space X", "inst✝ : WeaklyLocallyCompactSpace Y", "hf' : Continuous f", "hf : Tendsto f cofinite (cocompact Y)", "x : X", "K : Set Y", "hK : IsCompact K", "hK' : K ∈ 𝓝 (f x)", "U : Set Y", "hU₁ : U ⊆ K", "hU₂ : IsOpen U", "hU₃ : f x ∈ U", "hU₄ : (f ⁻¹' U).Finite"], "goal": "IsOpen {x}"}], "premise": [55501, 55616, 64749], "state_str": "case intro.intro.intro.intro.intro\nX : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\nf : X → Y\ninst✝¹ : T1Space X\ninst✝ : WeaklyLocallyCompactSpace Y\nhf' : Continuous f\nhf : Tendsto f cofinite (cocompact Y)\nx : X\nK : Set Y\nhK : IsCompact K\nhK' : K ∈ 𝓝 (f x)\nU : Set Y\nhU₁ : U ⊆ K\nhU₂ : IsOpen U\nhU₃ : f x ∈ U\nhU₄ : (f ⁻¹' U).Finite\n⊢ IsOpen {x}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "inst✝ : NoetherianSpace α"], "goal": "(irreducibleComponents α).Finite"}], "premise": [54379, 55365], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : NoetherianSpace α\n⊢ (irreducibleComponents α).Finite"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "inst✝ : NoetherianSpace α", "S : Set (Set α)", "hSf : S.Finite", "hSc : ∀ t ∈ S, IsClosed t", "hSi : ∀ t ∈ S, IsIrreducible t", "hSU : Set.univ = ⋃₀ S"], "goal": "(irreducibleComponents α).Finite"}], "premise": [135040], "state_str": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : NoetherianSpace α\nS : Set (Set α)\nhSf : S.Finite\nhSc : ∀ t ∈ S, IsClosed t\nhSi : ∀ t ∈ S, IsIrreducible t\nhSU : Set.univ = ⋃₀ S\n⊢ (irreducibleComponents α).Finite"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "inst✝ : NoetherianSpace α", "s : Set α", "hs : s ∈ irreducibleComponents α", "S : Finset (Set α)", "hSc : ∀ t ∈ ↑S, IsClosed t", "hSi : ∀ t ∈ ↑S, IsIrreducible t", "hSU : Set.univ = ⋃₀ ↑S"], "goal": "s ∈ ↑S"}], "premise": [1673, 2107, 56230, 133391], "state_str": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : NoetherianSpace α\ns : Set α\nhs : s ∈ irreducibleComponents α\nS : Finset (Set α)\nhSc : ∀ t ∈ ↑S, IsClosed t\nhSi : ∀ t ∈ ↑S, IsIrreducible t\nhSU : Set.univ = ⋃₀ ↑S\n⊢ s ∈ ↑S"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "inst✝ : NoetherianSpace α", "s : Set α", "hs : s ∈ irreducibleComponents α", "S : Finset (Set α)", "hSc : ∀ t ∈ ↑S, IsClosed t", "hSi : ∀ t ∈ ↑S, IsIrreducible t", "hSU : Set.univ = ⋃₀ ↑S", "t : Set α", "htS : t ∈ S", "ht : s ⊆ t"], "goal": "s ∈ ↑S"}], "premise": [2106], "state_str": "case intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : NoetherianSpace α\ns : Set α\nhs : s ∈ irreducibleComponents α\nS : Finset (Set α)\nhSc : ∀ t ∈ ↑S, IsClosed t\nhSi : ∀ t ∈ ↑S, IsIrreducible t\nhSU : Set.univ = ⋃₀ ↑S\nt : Set α\nhtS : t ∈ S\nht : s ⊆ t\n⊢ s ∈ ↑S"} +{"state": [{"context": ["R : Type u_1", "inst✝² : Monoid R", "S : Submonoid R", "inst✝¹ : OreSet S", "X : Type u_2", "inst✝ : MulAction R X", "r₁ : R", "r₂ : X", "s₁ s₂ : ↥S", "r' : R", "s' : ↥S", "huv : ↑s' * r₁ = r' * ↑s₂"], "goal": "(r₁ /ₒ s₁) • (r₂ /ₒ s₂) = r' • r₂ /ₒ (s' * s₁)"}], "premise": [81636], "state_str": "R : Type u_1\ninst✝² : Monoid R\nS : Submonoid R\ninst✝¹ : OreSet S\nX : Type u_2\ninst✝ : MulAction R X\nr₁ : R\nr₂ : X\ns₁ s₂ : ↥S\nr' : R\ns' : ↥S\nhuv : ↑s' * r₁ = r' * ↑s₂\n⊢ (r₁ /ₒ s₁) • (r₂ /ₒ s₂) = r' • r₂ /ₒ (s' * s₁)"} +{"state": [{"context": ["B : Type u_1", "inst✝⁶ : TopologicalSpace B", "F₁ : Type u_2", "inst✝⁵ : TopologicalSpace F₁", "E₁ : B → Type u_3", "inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁)", "F₂ : Type u_4", "inst✝³ : TopologicalSpace F₂", "E₂ : B → Type u_5", "inst✝² : TopologicalSpace (TotalSpace F₂ E₂)", "e₁ : Trivialization F₁ TotalSpace.proj", "e₂ : Trivialization F₂ TotalSpace.proj", "inst✝¹ : (x : B) → Zero (E₁ x)", "inst✝ : (x : B) → Zero (E₂ x)", "x : B", "v₁ : E₁ x", "v₂ : E₂ x", "h₁ : x ∈ e₁.baseSet", "h₂ : x ∈ e₂.baseSet"], "goal": "invFun' e₁ e₂ (toFun' e₁ e₂ { proj := x, snd := (v₁, v₂) }) = { proj := x, snd := (v₁, v₂) }"}], "premise": [59405], "state_str": "case mk.mk.intro\nB : Type u_1\ninst✝⁶ : TopologicalSpace B\nF₁ : Type u_2\ninst✝⁵ : TopologicalSpace F₁\nE₁ : B → Type u_3\ninst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁)\nF₂ : Type u_4\ninst✝³ : TopologicalSpace F₂\nE₂ : B → Type u_5\ninst✝² : TopologicalSpace (TotalSpace F₂ E₂)\ne₁ : Trivialization F₁ TotalSpace.proj\ne₂ : Trivialization F₂ TotalSpace.proj\ninst✝¹ : (x : B) → Zero (E₁ x)\ninst✝ : (x : B) → Zero (E₂ x)\nx : B\nv₁ : E₁ x\nv₂ : E₂ x\nh₁ : x ∈ e₁.baseSet\nh₂ : x ∈ e₂.baseSet\n⊢ invFun' e₁ e₂ (toFun' e₁ e₂ { proj := x, snd := (v₁, v₂) }) = { proj := x, snd := (v₁, v₂) }"} +{"state": [{"context": ["V : Type u_1", "W : Type u_2", "X : Type u_3", "G : SimpleGraph V", "G' : SimpleGraph W", "u v✝ : V", "f : G ≃g G'", "v : V", "w : ↑(G'.neighborSet (f v))"], "goal": "f.symm ↑w ∈ G.neighborSet v"}], "premise": [1674, 2115, 14177, 50862], "state_str": "V : Type u_1\nW : Type u_2\nX : Type u_3\nG : SimpleGraph V\nG' : SimpleGraph W\nu v✝ : V\nf : G ≃g G'\nv : V\nw : ↑(G'.neighborSet (f v))\n⊢ f.symm ↑w ∈ G.neighborSet v"} +{"state": [{"context": ["G : Type u_1", "inst✝ : Group G", "H✝ K : Subgroup G", "S T : Set G", "H' H : Subgroup G", "h : H' ≤ H", "H'' : Subgroup ↥H := comap H.subtype H'", "this : H' = map H.subtype H''"], "goal": "∃ S, S * ↑(map H.subtype H'') = ↑H ∧ Nat.card ↑S * Nat.card ↥(map H.subtype H'') = Nat.card ↥H"}], "premise": [8079], "state_str": "G : Type u_1\ninst✝ : Group G\nH✝ K : Subgroup G\nS T : Set G\nH' H : Subgroup G\nh : H' ≤ H\nH'' : Subgroup ↥H := comap H.subtype H'\nthis : H' = map H.subtype H''\n⊢ ∃ S, S * ↑(map H.subtype H'') = ↑H ∧ Nat.card ↑S * Nat.card ↥(map H.subtype H'') = Nat.card ↥H"} +{"state": [{"context": ["R : Type u_1", "inst✝ : AddMonoidWithOne R"], "goal": "3 + 1 = 4"}], "premise": [143125, 143126, 143129, 143130], "state_str": "R : Type u_1\ninst✝ : AddMonoidWithOne R\n⊢ 3 + 1 = 4"} +{"state": [{"context": ["R : Type u_1", "inst✝ : AddMonoidWithOne R"], "goal": "↑(1 + 1 + 1 + 1) = 4"}], "premise": [2102], "state_str": "R : Type u_1\ninst✝ : AddMonoidWithOne R\n⊢ ↑(1 + 1 + 1 + 1) = 4"} +{"state": [{"context": ["R : Type u", "S : Type v", "inst✝² : CommRing R", "inst✝¹ : CommRing S", "inst✝ : Algebra R S", "P : Generators R S", "r : S", "x : P.Ring", "i : P.vars"], "goal": "(P.cotangentSpaceBasis.repr (r ⊗ₜ[P.Ring] (D R P.Ring) x)) i = r * (aeval P.val) ((pderiv i) x)"}], "premise": [77268, 83502, 119707, 121165], "state_str": "R : Type u\nS : Type v\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\nP : Generators R S\nr : S\nx : P.Ring\ni : P.vars\n⊢ (P.cotangentSpaceBasis.repr (r ⊗ₜ[P.Ring] (D R P.Ring) x)) i = r * (aeval P.val) ((pderiv i) x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "E : Type u_3", "F : Type u_4", "G : Type u_5", "E' : Type u_6", "F' : Type u_7", "G' : Type u_8", "E'' : Type u_9", "F'' : Type u_10", "G'' : Type u_11", "E''' : Type u_12", "R : Type u_13", "R' : Type u_14", "𝕜 : Type u_15", "𝕜' : Type u_16", "inst✝¹³ : Norm E", "inst✝¹² : Norm F", "inst✝¹¹ : Norm G", "inst✝¹⁰ : SeminormedAddCommGroup E'", "inst✝⁹ : SeminormedAddCommGroup F'", "inst✝⁸ : SeminormedAddCommGroup G'", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedAddCommGroup F''", "inst✝⁵ : NormedAddCommGroup G''", "inst✝⁴ : SeminormedRing R", "inst✝³ : SeminormedAddGroup E'''", "inst✝² : SeminormedRing R'", "inst✝¹ : NormedDivisionRing 𝕜", "inst✝ : NormedDivisionRing 𝕜'", "c c' c₁ c₂ : ℝ", "f : α → E", "g : α → F", "k : α → G", "f' : α → E'", "g' : α → F'", "k' : α → G'", "f'' : α → E''", "g'' : α → F''", "k'' : α → G''", "l l' : Filter α", "ι : Type u_17", "A : ι → α → E'", "C : ι → ℝ", "s : Finset ι", "h : ∀ i ∈ s, A i =O[l] g"], "goal": "(fun x => ∑ i ∈ s, A i x) =O[l] g"}], "premise": [43349], "state_str": "α : Type u_1\nβ : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type u_5\nE' : Type u_6\nF' : Type u_7\nG' : Type u_8\nE'' : Type u_9\nF'' : Type u_10\nG'' : Type u_11\nE''' : Type u_12\nR : Type u_13\nR' : Type u_14\n𝕜 : Type u_15\n𝕜' : Type u_16\ninst✝¹³ : Norm E\ninst✝¹² : Norm F\ninst✝¹¹ : Norm G\ninst✝¹⁰ : SeminormedAddCommGroup E'\ninst✝⁹ : SeminormedAddCommGroup F'\ninst✝⁸ : SeminormedAddCommGroup G'\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedAddCommGroup F''\ninst✝⁵ : NormedAddCommGroup G''\ninst✝⁴ : SeminormedRing R\ninst✝³ : SeminormedAddGroup E'''\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedDivisionRing 𝕜\ninst✝ : NormedDivisionRing 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_17\nA : ι → α → E'\nC : ι → ℝ\ns : Finset ι\nh : ∀ i ∈ s, A i =O[l] g\n⊢ (fun x => ∑ i ∈ s, A i x) =O[l] g"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "E : Type u_3", "F : Type u_4", "G : Type u_5", "E' : Type u_6", "F' : Type u_7", "G' : Type u_8", "E'' : Type u_9", "F'' : Type u_10", "G'' : Type u_11", "E''' : Type u_12", "R : Type u_13", "R' : Type u_14", "𝕜 : Type u_15", "𝕜' : Type u_16", "inst✝¹³ : Norm E", "inst✝¹² : Norm F", "inst✝¹¹ : Norm G", "inst✝¹⁰ : SeminormedAddCommGroup E'", "inst✝⁹ : SeminormedAddCommGroup F'", "inst✝⁸ : SeminormedAddCommGroup G'", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedAddCommGroup F''", "inst✝⁵ : NormedAddCommGroup G''", "inst✝⁴ : SeminormedRing R", "inst✝³ : SeminormedAddGroup E'''", "inst✝² : SeminormedRing R'", "inst✝¹ : NormedDivisionRing 𝕜", "inst✝ : NormedDivisionRing 𝕜'", "c c' c₁ c₂ : ℝ", "f : α → E", "g : α → F", "k : α → G", "f' : α → E'", "g' : α → F'", "k' : α → G'", "f'' : α → E''", "g'' : α → F''", "k'' : α → G''", "l l' : Filter α", "ι : Type u_17", "A : ι → α → E'", "C✝ : ι → ℝ", "s : Finset ι", "C : ι → ℝ", "hC : ∀ i ∈ s, IsBigOWith (C i) l (A i) g"], "goal": "∃ c, IsBigOWith c l (fun x => ∑ i ∈ s, A i x) g"}], "premise": [43615], "state_str": "α : Type u_1\nβ : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type u_5\nE' : Type u_6\nF' : Type u_7\nG' : Type u_8\nE'' : Type u_9\nF'' : Type u_10\nG'' : Type u_11\nE''' : Type u_12\nR : Type u_13\nR' : Type u_14\n𝕜 : Type u_15\n𝕜' : Type u_16\ninst✝¹³ : Norm E\ninst✝¹² : Norm F\ninst✝¹¹ : Norm G\ninst✝¹⁰ : SeminormedAddCommGroup E'\ninst✝⁹ : SeminormedAddCommGroup F'\ninst✝⁸ : SeminormedAddCommGroup G'\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedAddCommGroup F''\ninst✝⁵ : NormedAddCommGroup G''\ninst✝⁴ : SeminormedRing R\ninst✝³ : SeminormedAddGroup E'''\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedDivisionRing 𝕜\ninst✝ : NormedDivisionRing 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_17\nA : ι → α → E'\nC✝ : ι → ℝ\ns : Finset ι\nC : ι → ℝ\nhC : ∀ i ∈ s, IsBigOWith (C i) l (A i) g\n⊢ ∃ c, IsBigOWith c l (fun x => ∑ i ∈ s, A i x) g"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "m n : ℕ", "ι : Type y", "inst✝¹ : Semiring R", "p q r : R[X]", "inst✝ : Semiring S", "f : R →+* S", "hp : p.Monic", "a✝ : Nontrivial S"], "goal": "(Polynomial.map f p).leadingCoeff = 1"}], "premise": [113018, 121565], "state_str": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R\np q r : R[X]\ninst✝ : Semiring S\nf : R →+* S\nhp : p.Monic\na✝ : Nontrivial S\n⊢ (Polynomial.map f p).leadingCoeff = 1"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "m n : ℕ", "ι : Type y", "inst✝¹ : Semiring R", "p q r : R[X]", "inst✝ : Semiring S", "f : R →+* S", "hp : p.Monic", "a✝ : Nontrivial S", "this : f p.leadingCoeff ≠ 0"], "goal": "(Polynomial.map f p).leadingCoeff = 1"}], "premise": [102928], "state_str": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R\np q r : R[X]\ninst✝ : Semiring S\nf : R →+* S\nhp : p.Monic\na✝ : Nontrivial S\nthis : f p.leadingCoeff ≠ 0\n⊢ (Polynomial.map f p).leadingCoeff = 1"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "m n : ℕ", "ι : Type y", "inst✝¹ : Semiring R", "p q r : R[X]", "inst✝ : Semiring S", "f : R →+* S", "hp : p.Monic", "a✝ : Nontrivial S", "this : f p.leadingCoeff ≠ 0"], "goal": "p.coeff (Polynomial.map f p).natDegree = 1"}], "premise": [102103, 102942], "state_str": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R\np q r : R[X]\ninst✝ : Semiring S\nf : R →+* S\nhp : p.Monic\na✝ : Nontrivial S\nthis : f p.leadingCoeff ≠ 0\n⊢ p.coeff (Polynomial.map f p).natDegree = 1"} +{"state": [{"context": ["d : ℕ", "a b c : ℤ√↑d", "h : c + a ≤ c + b"], "goal": "a ≤ b"}], "premise": [23827], "state_str": "d : ℕ\na b c : ℤ√↑d\nh : c + a ≤ c + b\n⊢ a ≤ b"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α"], "goal": "∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"}], "premise": [14308], "state_str": "α : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\n⊢ ∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l"], "goal": "∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"}], "premise": [51941, 141351], "state_str": "case inr\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\n⊢ ∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card"], "goal": "∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"}], "premise": [11234, 51394, 51939], "state_str": "case inr\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\n⊢ ∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l"], "goal": "∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"}], "premise": [14308], "state_str": "case inr.intro.intro\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\n⊢ ∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1"], "goal": "∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"}], "premise": [51943, 141401], "state_str": "case inr.intro.intro.inr\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\n⊢ ∃ P, P.IsEquipartition ∧ l ≤ P.parts.card ∧ P.parts.card ≤ bound ε l ∧ P.IsUniform G ε"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1", "this : Nonempty α", "i : ℕ", "P : Finpartition univ", "hP₁ : P.IsEquipartition", "hP₂ : t ≤ P.parts.card", "hP₃ : P.parts.card ≤ stepBound^[i] t", "hP₄ : P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)", "huniform : ¬P.IsUniform G ε"], "goal": "∃ P, P.IsEquipartition ∧ t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"}], "premise": [2111], "state_str": "case neg\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\nthis : Nonempty α\ni : ℕ\nP : Finpartition univ\nhP₁ : P.IsEquipartition\nhP₂ : t ≤ P.parts.card\nhP₃ : P.parts.card ≤ stepBound^[i] t\nhP₄ : P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)\nhuniform : ¬P.IsUniform G ε\n⊢ ∃ P,\n P.IsEquipartition ∧\n t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1", "this : Nonempty α", "i : ℕ", "P : Finpartition univ", "hP₁ : P.IsEquipartition", "hP₂ : t ≤ P.parts.card", "hP₃ : P.parts.card ≤ stepBound^[i] t", "huniform : ¬P.IsUniform G ε", "hP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)"], "goal": "∃ P, P.IsEquipartition ∧ t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"}], "premise": [51940, 102622, 106246], "state_str": "case neg\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\nthis : Nonempty α\ni : ℕ\nP : Finpartition univ\nhP₁ : P.IsEquipartition\nhP₂ : t ≤ P.parts.card\nhP₃ : P.parts.card ≤ stepBound^[i] t\nhuniform : ¬P.IsUniform G ε\nhP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)\n⊢ ∃ P,\n P.IsEquipartition ∧\n t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1", "this : Nonempty α", "i : ℕ", "P : Finpartition univ", "hP₁ : P.IsEquipartition", "hP₂ : t ≤ P.parts.card", "hP₃ : P.parts.card ≤ stepBound^[i] t", "huniform : ¬P.IsUniform G ε", "hP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)", "hεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5"], "goal": "∃ P, P.IsEquipartition ∧ t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"}], "premise": [50685, 106023, 106024, 106843, 117906], "state_str": "case neg\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\nthis : Nonempty α\ni : ℕ\nP : Finpartition univ\nhP₁ : P.IsEquipartition\nhP₂ : t ≤ P.parts.card\nhP₃ : P.parts.card ≤ stepBound^[i] t\nhuniform : ¬P.IsUniform G ε\nhP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)\nhεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5\n⊢ ∃ P,\n P.IsEquipartition ∧\n t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1", "this : Nonempty α", "i : ℕ", "P : Finpartition univ", "hP₁ : P.IsEquipartition", "hP₂ : t ≤ P.parts.card", "hP₃ : P.parts.card ≤ stepBound^[i] t", "huniform : ¬P.IsUniform G ε", "hP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)", "hεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5", "hi : ↑i ≤ 4 / ε ^ 5"], "goal": "∃ P, P.IsEquipartition ∧ t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"}], "premise": [14044, 51920, 105005], "state_str": "case neg\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\nthis : Nonempty α\ni : ℕ\nP : Finpartition univ\nhP₁ : P.IsEquipartition\nhP₂ : t ≤ P.parts.card\nhP₃ : P.parts.card ≤ stepBound^[i] t\nhuniform : ¬P.IsUniform G ε\nhP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)\nhεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5\nhi : ↑i ≤ 4 / ε ^ 5\n⊢ ∃ P,\n P.IsEquipartition ∧\n t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1", "this : Nonempty α", "i : ℕ", "P : Finpartition univ", "hP₁ : P.IsEquipartition", "hP₂ : t ≤ P.parts.card", "hP₃ : P.parts.card ≤ stepBound^[i] t", "huniform : ¬P.IsUniform G ε", "hP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)", "hεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5", "hi : ↑i ≤ 4 / ε ^ 5", "hsize : P.parts.card ≤ stepBound^[⌊4 / ε ^ 5⌋₊] t"], "goal": "∃ P, P.IsEquipartition ∧ t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"}], "premise": [3852, 3863], "state_str": "case neg\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\nthis : Nonempty α\ni : ℕ\nP : Finpartition univ\nhP₁ : P.IsEquipartition\nhP₂ : t ≤ P.parts.card\nhP₃ : P.parts.card ≤ stepBound^[i] t\nhuniform : ¬P.IsUniform G ε\nhP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)\nhεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5\nhi : ↑i ≤ 4 / ε ^ 5\nhsize : P.parts.card ≤ stepBound^[⌊4 / ε ^ 5⌋₊] t\n⊢ ∃ P,\n P.IsEquipartition ∧\n t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"} +{"state": [{"context": ["α : Type u_1", "inst✝² : DecidableEq α", "inst✝¹ : Fintype α", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : ℝ", "l : ℕ", "hε : 0 < ε", "hl : l ≤ Fintype.card α", "hα : bound ε l ≤ Fintype.card α", "t : ℕ := initialBound ε l", "htα : t ≤ univ.card", "dum : Finpartition univ", "hdum₁ : dum.IsEquipartition", "hdum₂ : dum.parts.card = initialBound ε l", "hε₁ : ε ≤ 1", "this : Nonempty α", "i : ℕ", "P : Finpartition univ", "hP₁ : P.IsEquipartition", "hP₂ : t ≤ P.parts.card", "hP₃ : P.parts.card ≤ stepBound^[i] t", "huniform : ¬P.IsUniform G ε", "hP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)", "hεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5", "hi : ↑i ≤ 4 / ε ^ 5", "hsize : P.parts.card ≤ stepBound^[⌊4 / ε ^ 5⌋₊] t", "hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α"], "goal": "∃ P, P.IsEquipartition ∧ t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"}], "premise": [14273, 51817, 51821, 51938], "state_str": "case neg\nα : Type u_1\ninst✝² : DecidableEq α\ninst✝¹ : Fintype α\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : ℝ\nl : ℕ\nhε : 0 < ε\nhl : l ≤ Fintype.card α\nhα : bound ε l ≤ Fintype.card α\nt : ℕ := initialBound ε l\nhtα : t ≤ univ.card\ndum : Finpartition univ\nhdum₁ : dum.IsEquipartition\nhdum₂ : dum.parts.card = initialBound ε l\nhε₁ : ε ≤ 1\nthis : Nonempty α\ni : ℕ\nP : Finpartition univ\nhP₁ : P.IsEquipartition\nhP₂ : t ≤ P.parts.card\nhP₃ : P.parts.card ≤ stepBound^[i] t\nhuniform : ¬P.IsUniform G ε\nhP₄ : ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G)\nhεl' : 100 ≤ 4 ^ P.parts.card * ε ^ 5\nhi : ↑i ≤ 4 / ε ^ 5\nhsize : P.parts.card ≤ stepBound^[⌊4 / ε ^ 5⌋₊] t\nhPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α\n⊢ ∃ P,\n P.IsEquipartition ∧\n t ≤ P.parts.card ∧ P.parts.card ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "α β : A₁ ⟶ A₂"], "goal": "F.map (α.f + β.f) ≫ A₂.str = A₁.str ≫ (α.f + β.f)"}], "premise": [89949, 91598, 91599, 91682], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nα β : A₁ ⟶ A₂\n⊢ F.map (α.f + β.f) ≫ A₂.str = A₁.str ≫ (α.f + β.f)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F"], "goal": "F.map 0 ≫ A₂.str = A₁.str ≫ 0"}], "premise": [93604, 93605, 94325], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\n⊢ F.map 0 ≫ A₂.str = A₁.str ≫ 0"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "n : ℕ", "α : A₁ ⟶ A₂"], "goal": "F.map (n • α.f) ≫ A₂.str = A₁.str ≫ (n • α.f)"}], "premise": [89949, 91605, 91606, 91687], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nn : ℕ\nα : A₁ ⟶ A₂\n⊢ F.map (n • α.f) ≫ A₂.str = A₁.str ≫ (n • α.f)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "α : A₁ ⟶ A₂"], "goal": "F.map (-α.f) ≫ A₂.str = A₁.str ≫ (-α.f)"}], "premise": [89949, 91602, 91603, 91685], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nα : A₁ ⟶ A₂\n⊢ F.map (-α.f) ≫ A₂.str = A₁.str ≫ (-α.f)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "α β : A₁ ⟶ A₂"], "goal": "F.map (α.f - β.f) ≫ A₂.str = A₁.str ≫ (α.f - β.f)"}], "premise": [89949, 91600, 91601, 91686], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nα β : A₁ ⟶ A₂\n⊢ F.map (α.f - β.f) ≫ A₂.str = A₁.str ≫ (α.f - β.f)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "r : ℤ", "α : A₁ ⟶ A₂"], "goal": "F.map (r • α.f) ≫ A₂.str = A₁.str ≫ (r • α.f)"}], "premise": [89949, 91607, 91608, 91688], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nr : ℤ\nα : A₁ ⟶ A₂\n⊢ F.map (r • α.f) ≫ A₂.str = A₁.str ≫ (r • α.f)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ b✝ c✝ : A₁ ⟶ A₂"], "goal": "(a✝ + b✝ + c✝).f = (a✝ + (b✝ + c✝)).f"}], "premise": [119704], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ b✝ c✝ : A₁ ⟶ A₂\n⊢ (a✝ + b✝ + c✝).f = (a✝ + (b✝ + c✝)).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ : A₁ ⟶ A₂"], "goal": "(0 + a✝).f = a✝.f"}], "premise": [119727], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ : A₁ ⟶ A₂\n⊢ (0 + a✝).f = a✝.f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ : A₁ ⟶ A₂"], "goal": "(a✝ + 0).f = a✝.f"}], "premise": [119729], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ : A₁ ⟶ A₂\n⊢ (a✝ + 0).f = a✝.f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "x✝ : A₁ ⟶ A₂"], "goal": "((fun n α => { f := n • α.f, h := ⋯ }) 0 x✝).f = Algebra.Hom.f 0"}], "premise": [115738], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nx✝ : A₁ ⟶ A₂\n⊢ ((fun n α => { f := n • α.f, h := ⋯ }) 0 x✝).f = Algebra.Hom.f 0"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "n✝ : ℕ", "x✝ : A₁ ⟶ A₂"], "goal": "((fun n α => { f := n • α.f, h := ⋯ }) (n✝ + 1) x✝).f = ((fun n α => { f := n • α.f, h := ⋯ }) n✝ x✝ + x✝).f"}], "premise": [119741], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nn✝ : ℕ\nx✝ : A₁ ⟶ A₂\n⊢ ((fun n α => { f := n • α.f, h := ⋯ }) (n✝ + 1) x✝).f = ((fun n α => { f := n • α.f, h := ⋯ }) n✝ x✝ + x✝).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ b✝ : A₁ ⟶ A₂"], "goal": "(a✝ - b✝).f = (a✝ + -b✝).f"}], "premise": [119789], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ b✝ : A₁ ⟶ A₂\n⊢ (a✝ - b✝).f = (a✝ + -b✝).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ : A₁ ⟶ A₂"], "goal": "((fun r α => { f := r • α.f, h := ⋯ }) 0 a✝).f = Algebra.Hom.f 0"}], "premise": [115738], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ : A₁ ⟶ A₂\n⊢ ((fun r α => { f := r • α.f, h := ⋯ }) 0 a✝).f = Algebra.Hom.f 0"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "n✝ : ℕ", "a✝ : A₁ ⟶ A₂"], "goal": "↑(n✝ + 1) • a✝.f = ({ f := ↑n✝ • a✝.f, h := ⋯ } + a✝).f"}], "premise": [119741, 119783], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nn✝ : ℕ\na✝ : A₁ ⟶ A₂\n⊢ ↑(n✝ + 1) • a✝.f = ({ f := ↑n✝ • a✝.f, h := ⋯ } + a✝).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "n✝ : ℕ", "a✝ : A₁ ⟶ A₂"], "goal": "((fun r α => { f := r • α.f, h := ⋯ }) (Int.negSucc n✝) a✝).f = (-(fun r α => { f := r • α.f, h := ⋯ }) (↑n✝.succ) a✝).f"}], "premise": [110040, 117792, 119788], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\nn✝ : ℕ\na✝ : A₁ ⟶ A₂\n⊢ ((fun r α => { f := r • α.f, h := ⋯ }) (Int.negSucc n✝) a✝).f =\n (-(fun r α => { f := r • α.f, h := ⋯ }) (↑n✝.succ) a✝).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ : A₁ ⟶ A₂"], "goal": "(-a✝ + a✝).f = Algebra.Hom.f 0"}], "premise": [119817], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ : A₁ ⟶ A₂\n⊢ (-a✝ + a✝).f = Algebra.Hom.f 0"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "A₁ A₂ : Algebra F", "a✝ b✝ : A₁ ⟶ A₂"], "goal": "(a✝ + b✝).f = (b✝ + a✝).f"}], "premise": [119708], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nA₁ A₂ : Algebra F\na✝ b✝ : A₁ ⟶ A₂\n⊢ (a✝ + b✝).f = (b✝ + a✝).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "P✝ Q✝ R✝ : Algebra F", "f✝ f'✝ : P✝ ⟶ Q✝", "g✝ : Q✝ ⟶ R✝"], "goal": "((f✝ + f'✝) ≫ g✝).f = (f✝ ≫ g✝ + f'✝ ≫ g✝).f"}], "premise": [91598], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nP✝ Q✝ R✝ : Algebra F\nf✝ f'✝ : P✝ �� Q✝\ng✝ : Q✝ ⟶ R✝\n⊢ ((f✝ + f'✝) ≫ g✝).f = (f✝ ≫ g✝ + f'✝ ≫ g✝).f"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : Preadditive C", "F : C ⥤ C", "inst✝ : F.Additive", "P✝ Q✝ R✝ : Algebra F", "f✝ : P✝ ⟶ Q✝", "g✝ g'✝ : Q✝ ⟶ R✝"], "goal": "(f✝ ≫ (g✝ + g'✝)).f = (f✝ ≫ g✝ + f✝ ≫ g'✝).f"}], "premise": [91599], "state_str": "case f\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : Preadditive C\nF : C ⥤ C\ninst✝ : F.Additive\nP✝ Q✝ R✝ : Algebra F\nf✝ : P✝ ⟶ Q✝\ng✝ g'✝ : Q✝ ⟶ R✝\n⊢ (f✝ ≫ (g✝ + g'✝)).f = (f✝ ≫ g✝ + f✝ ≫ g'✝).f"} +{"state": [{"context": ["F : Type u_1", "R : Type u_2", "A : Type u_3", "B : Type u_4", "inst✝⁶ : CommSemiring R", "inst✝⁵ : Ring A", "inst✝⁴ : Ring B", "inst✝³ : Algebra R A", "inst✝² : Algebra R B", "inst✝¹ : EquivLike F A B", "inst✝ : AlgEquivClass F R A B", "f : F", "a : A"], "goal": "spectrum R a ⊆ spectrum R (f a)"}], "premise": [121505, 121679, 121690], "state_str": "F : Type u_1\nR : Type u_2\nA : Type u_3\nB : Type u_4\ninst✝⁶ : CommSemiring R\ninst✝⁵ : Ring A\ninst✝⁴ : Ring B\ninst✝³ : Algebra R A\ninst✝² : Algebra R B\ninst✝¹ : EquivLike F A B\ninst✝ : AlgEquivClass F R A B\nf : F\na : A\n⊢ spectrum R a ⊆ spectrum R (f a)"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "m n : ℕ", "s : Simplex ℝ P m", "e : Fin (m + 1) ≃ Fin (n + 1)"], "goal": "(s.reindex e).circumradius = s.circumradius"}], "premise": [72793], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nm n : ℕ\ns : Simplex ℝ P m\ne : Fin (m + 1) ≃ Fin (n + 1)\n⊢ (s.reindex e).circumradius = s.circumradius"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "r p q : α → α → Prop", "f g : ι → α", "s t u : Set α", "a b✝ : α", "ha : a ∉ s", "b : α", "hb : b ∈ s"], "goal": "a ≠ b → r a b ∧ r b a ↔ r a b ∧ r b a"}], "premise": [35, 1690], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\nr p q : α → α → Prop\nf g : ι → α\ns t u : Set α\na b✝ : α\nha : a ∉ s\nb : α\nhb : b ∈ s\n⊢ a ≠ b → r a b ∧ r b a ↔ r a b ∧ r b a"} +{"state": [{"context": ["G : Type u_1", "inst✝¹⁵ : Group G", "inst✝¹⁴ : MeasurableSpace G", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : TopologicalGroup G", "inst✝¹¹ : BorelSpace G", "inst✝¹⁰ : PolishSpace G", "Γ : Subgroup G", "inst✝⁹ : Countable ↥Γ", "inst✝⁸ : Γ.Normal", "inst✝⁷ : T2Space (G ⧸ Γ)", "inst✝⁶ : SecondCountableTopology (G ⧸ Γ)", "μ : Measure (G ⧸ Γ)", "ν : Measure G", "inst✝⁵ : ν.IsMulLeftInvariant", "inst✝⁴ : ν.IsMulRightInvariant", "inst✝³ : SigmaFinite ν", "inst✝² : μ.IsMulLeftInvariant", "inst✝¹ : SigmaFinite μ", "inst✝ : IsFiniteMeasure μ", "hasFun : HasFundamentalDomain (↥Γ.op) G ν", "h : covolume (↥Γ.op) G ν = μ univ"], "goal": "QuotientMeasureEqMeasurePreimage ν μ"}], "premise": [33102], "state_str": "G : Type u_1\ninst✝¹⁵ : Group G\ninst✝¹⁴ : MeasurableSpace G\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : TopologicalGroup G\ninst✝¹¹ : BorelSpace G\ninst✝¹⁰ : PolishSpace G\nΓ : Subgroup G\ninst✝⁹ : Countable ↥Γ\ninst✝⁸ : Γ.Normal\ninst✝⁷ : T2Space (G ⧸ Γ)\ninst✝⁶ : SecondCountableTopology (G ⧸ Γ)\nμ : Measure (G ⧸ Γ)\nν : Measure G\ninst✝⁵ : ν.IsMulLeftInvariant\ninst✝⁴ : ν.IsMulRightInvariant\ninst✝³ : SigmaFinite ν\ninst✝² : μ.IsMulLeftInvariant\ninst✝¹ : SigmaFinite μ\ninst✝ : IsFiniteMeasure μ\nhasFun : HasFundamentalDomain (↥Γ.op) G ν\nh : covolume (↥Γ.op) G ν = μ univ\n⊢ QuotientMeasureEqMeasurePreimage ν μ"} +{"state": [{"context": ["G : Type u_1", "inst✝¹⁵ : Group G", "inst✝¹⁴ : MeasurableSpace G", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : TopologicalGroup G", "inst✝¹¹ : BorelSpace G", "inst✝¹⁰ : PolishSpace G", "Γ : Subgroup G", "inst✝⁹ : Countable ↥Γ", "inst✝⁸ : Γ.Normal", "inst✝⁷ : T2Space (G ⧸ Γ)", "inst✝⁶ : SecondCountableTopology (G ⧸ Γ)", "μ : Measure (G ⧸ Γ)", "ν : Measure G", "inst✝⁵ : ν.IsMulLeftInvariant", "inst✝⁴ : ν.IsMulRightInvariant", "inst✝³ : SigmaFinite ν", "inst✝² : μ.IsMulLeftInvariant", "inst✝¹ : SigmaFinite μ", "inst✝ : IsFiniteMeasure μ", "hasFun : HasFundamentalDomain (↥Γ.op) G ν", "h : covolume (↥Γ.op) G ν = μ univ", "s : Set G", "fund_dom_s : IsFundamentalDomain (↥Γ.op) s ν"], "goal": "QuotientMeasureEqMeasurePreimage ν μ"}], "premise": [31709], "state_str": "case intro\nG : Type u_1\ninst✝¹⁵ : Group G\ninst✝¹⁴ : MeasurableSpace G\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : TopologicalGroup G\ninst✝¹¹ : BorelSpace G\ninst✝¹⁰ : PolishSpace G\nΓ : Subgroup G\ninst✝⁹ : Countable ↥Γ\ninst✝⁸ : Γ.Normal\ninst✝⁷ : T2Space (G ⧸ Γ)\ninst✝⁶ : SecondCountableTopology (G ⧸ Γ)\nμ : Measure (G ⧸ Γ)\nν : Measure G\ninst✝⁵ : ν.IsMulLeftInvariant\ninst✝⁴ : ν.IsMulRightInvariant\ninst✝³ : SigmaFinite ν\ninst✝² : μ.IsMulLeftInvariant\ninst✝¹ : SigmaFinite μ\ninst✝ : IsFiniteMeasure μ\nhasFun : HasFundamentalDomain (↥Γ.op) G ν\nh : covolume (↥Γ.op) G ν = μ univ\ns : Set G\nfund_dom_s : IsFundamentalDomain (↥Γ.op) s ν\n⊢ QuotientMeasureEqMeasurePreimage ν μ"} +{"state": [{"context": ["G : Type u_1", "inst✝¹⁵ : Group G", "inst✝¹⁴ : MeasurableSpace G", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : TopologicalGroup G", "inst✝¹¹ : BorelSpace G", "inst✝¹⁰ : PolishSpace G", "Γ : Subgroup G", "inst✝⁹ : Countable ↥Γ", "inst✝⁸ : Γ.Normal", "inst✝⁷ : T2Space (G ⧸ Γ)", "inst✝⁶ : SecondCountableTopology (G ⧸ Γ)", "μ : Measure (G ⧸ Γ)", "ν : Measure G", "inst✝⁵ : ν.IsMulLeftInvariant", "inst✝⁴ : ν.IsMulRightInvariant", "inst✝³ : SigmaFinite ν", "inst✝² : μ.IsMulLeftInvariant", "inst✝¹ : SigmaFinite μ", "inst✝ : IsFiniteMeasure μ", "hasFun : HasFundamentalDomain (↥Γ.op) G ν", "h : covolume (↥Γ.op) G ν = μ univ", "s : Set G", "fund_dom_s : IsFundamentalDomain (↥Γ.op) s ν", "finiteCovol : μ univ < ⊤"], "goal": "QuotientMeasureEqMeasurePreimage ν μ"}], "premise": [33105], "state_str": "case intro\nG : Type u_1\ninst✝¹⁵ : Group G\ninst✝¹⁴ : MeasurableSpace G\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : TopologicalGroup G\ninst✝¹¹ : BorelSpace G\ninst✝¹⁰ : PolishSpace G\nΓ : Subgroup G\ninst✝⁹ : Countable ↥Γ\ninst✝⁸ : Γ.Normal\ninst✝⁷ : T2Space (G ⧸ Γ)\ninst✝⁶ : SecondCountableTopology (G ⧸ Γ)\nμ : Measure (G ⧸ Γ)\nν : Measure G\ninst✝⁵ : ν.IsMulLeftInvariant\ninst✝⁴ : ν.IsMulRightInvariant\ninst✝³ : SigmaFinite ν\ninst✝² : μ.IsMulLeftInvariant\ninst✝¹ : SigmaFinite μ\ninst✝ : IsFiniteMeasure μ\nhasFun : HasFundamentalDomain (↥Γ.op) G ν\nh : covolume (↥Γ.op) G ν = μ univ\ns : Set G\nfund_dom_s : IsFundamentalDomain (↥Γ.op) s ν\nfiniteCovol : μ univ < ⊤\n⊢ QuotientMeasureEqMeasurePreimage ν μ"} +{"state": [{"context": ["G : Type u_1", "inst✝¹⁵ : Group G", "inst✝¹⁴ : MeasurableSpace G", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : TopologicalGroup G", "inst✝¹¹ : BorelSpace G", "inst✝¹⁰ : PolishSpace G", "Γ : Subgroup G", "inst✝⁹ : Countable ↥Γ", "inst✝⁸ : Γ.Normal", "inst✝⁷ : T2Space (G ⧸ Γ)", "inst✝⁶ : SecondCountableTopology (G ⧸ Γ)", "μ : Measure (G ⧸ Γ)", "ν : Measure G", "inst✝⁵ : ν.IsMulLeftInvariant", "inst✝⁴ : ν.IsMulRightInvariant", "inst✝³ : SigmaFinite ν", "inst✝² : μ.IsMulLeftInvariant", "inst✝¹ : SigmaFinite μ", "inst✝ : IsFiniteMeasure μ", "hasFun : HasFundamentalDomain (↥Γ.op) G ν", "s : Set G", "h : ν s = μ univ", "fund_dom_s : IsFundamentalDomain (↥Γ.op) s ν", "finiteCovol : μ univ < ⊤", "meas_s_ne_zero : ¬ν s = 0"], "goal": "QuotientMeasureEqMeasurePreimage ν μ"}], "premise": [27956, 29916], "state_str": "case neg\nG : Type u_1\ninst✝¹⁵ : Group G\ninst✝¹⁴ : MeasurableSpace G\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : TopologicalGroup G\ninst✝¹¹ : BorelSpace G\ninst✝¹⁰ : PolishSpace G\nΓ : Subgroup G\ninst✝⁹ : Countable ↥Γ\ninst✝⁸ : Γ.Normal\ninst✝⁷ : T2Space (G ⧸ Γ)\ninst✝⁶ : SecondCountableTopology (G ⧸ Γ)\nμ : Measure (G ⧸ Γ)\nν : Measure G\ninst✝⁵ : ν.IsMulLeftInvariant\ninst✝⁴ : ν.IsMulRightInvariant\ninst✝³ : SigmaFinite ν\ninst✝² : μ.IsMulLeftInvariant\ninst✝¹ : SigmaFinite μ\ninst✝ : IsFiniteMeasure μ\nhasFun : HasFundamentalDomain (↥Γ.op) G ν\ns : Set G\nh : ν s = μ univ\nfund_dom_s : IsFundamentalDomain (↥Γ.op) s ν\nfiniteCovol : μ univ < ⊤\nmeas_s_ne_zero : ¬ν s = 0\n⊢ QuotientMeasureEqMeasurePreimage ν μ"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝² : PseudoEMetricSpace α", "inst✝¹ : PseudoEMetricSpace β", "inst✝ : PseudoEMetricSpace γ", "K : ℝ≥0", "f✝ : α → β", "x✝ y : α", "r : ℝ≥0∞", "f : α → α", "hf : LipschitzWith K f", "x : α", "n : ℕ"], "goal": "edist (f^[n] x) (f^[n + 1] x) ≤ edist x (f x) * ↑K ^ n"}], "premise": [71250, 119707], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nK : ℝ≥0\nf✝ : α → β\nx✝ y : α\nr : ℝ≥0∞\nf : α → α\nhf : LipschitzWith K f\nx : α\nn : ℕ\n⊢ edist (f^[n] x) (f^[n + 1] x) ≤ edist x (f x) * ↑K ^ n"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝² : PseudoEMetricSpace α", "inst✝¹ : PseudoEMetricSpace β", "inst✝ : PseudoEMetricSpace γ", "K : ℝ≥0", "f✝ : α → β", "x✝ y : α", "r : ℝ≥0∞", "f : α → α", "hf : LipschitzWith K f", "x : α", "n : ℕ"], "goal": "edist (f^[n] x) ((f^[n] ∘ f) x) ≤ ↑K ^ n * edist x (f x)"}], "premise": [57435, 143218], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nK : ℝ≥0\nf✝ : α → β\nx✝ y : α\nr : ℝ≥0∞\nf : α → α\nhf : LipschitzWith K f\nx : α\nn : ℕ\n⊢ edist (f^[n] x) ((f^[n] ∘ f) x) ≤ ↑K ^ n * edist x (f x)"} +{"state": [{"context": ["α : Type u_1", "f g h✝ : Perm α", "x : α", "hffx : f (f x) = x", "n : ℕ", "h : (f ^ n) x = x"], "goal": "(f ^ (n + 1)) x = f x"}], "premise": [7819, 119745], "state_str": "α : Type u_1\nf g h✝ : Perm α\nx : α\nhffx : f (f x) = x\nn : ℕ\nh : (f ^ n) x = x\n⊢ (f ^ (n + 1)) x = f x"} +{"state": [{"context": ["α : Type u_1", "f g h✝ : Perm α", "x : α", "hffx : f (f x) = x", "n : ℕ", "h : (f ^ n) x = f x"], "goal": "(f ^ (n + 1)) x = x"}], "premise": [7819, 119745], "state_str": "α : Type u_1\nf g h✝ : Perm α\nx : α\nhffx : f (f x) = x\nn : ℕ\nh : (f ^ n) x = f x\n⊢ (f ^ (n + 1)) x = x"} +{"state": [{"context": ["a b n : ℕ"], "goal": "n.ceilRoot a ≠ 0 ↔ n ≠ 0 ∧ a ≠ 0"}], "premise": [1999, 70072, 144137], "state_str": "a b n : ℕ\n⊢ n.ceilRoot a ≠ 0 ↔ n ≠ 0 ∧ a ≠ 0"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "a b : ℝ", "f : ℕ → Ω → ℝ", "N n m : ℕ", "ω : Ω", "ℱ : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "hf : Adapted ℱ f", "hab : a < b"], "goal": "∀ᵐ (ω : Ω) ∂μ, ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N"}], "premise": [131585], "state_str": "Ω : Type u_1\nι : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\na b : ℝ\nf : ℕ → Ω → ℝ\nN n m : ℕ\nω : Ω\nℱ : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nhf : Adapted ℱ f\nhab : a < b\n⊢ ∀ᵐ (ω : Ω) ∂μ, ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "a b : ℝ", "f : ℕ → Ω → ℝ", "N n m : ℕ", "ω✝ : Ω", "ℱ : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "hf : Adapted ℱ f", "hab : a < b", "ω : Ω"], "goal": "‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N"}], "premise": [42903, 142597, 142644], "state_str": "case h\nΩ : Type u_1\nι : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\na b : ℝ\nf : ℕ → Ω → ℝ\nN n m : ℕ\nω✝ : Ω\nℱ : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nhf : Adapted ℱ f\nhab : a < b\nω : Ω\n⊢ ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "a b : ℝ", "f : ℕ → Ω → ℝ", "N n m : ℕ", "ω✝ : Ω", "ℱ : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "hf : Adapted ℱ f", "hab : a < b", "ω : Ω"], "goal": "upcrossingsBefore a b f N ω ≤ N"}], "premise": [74437], "state_str": "case h\nΩ : Type u_1\nι : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\na b : ℝ\nf : ℕ → Ω → ℝ\nN n m : ℕ\nω✝ : Ω\nℱ : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nhf : Adapted ℱ f\nhab : a < b\nω : Ω\n⊢ upcrossingsBefore a b f N ω ≤ N"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝¹ : Preorder α", "inst✝ : LocallyFiniteOrder α", "a a₁ a₂ b b₁ b₂ c x : α"], "goal": "Ico a b = ∅ ↔ ¬a < b"}], "premise": [1713, 19595, 20273, 138731], "state_str": "ι : Type u_1\nα : Type u_2\ninst✝¹ : Preorder α\ninst✝ : LocallyFiniteOrder α\na a₁ a₂ b b₁ b₂ c x : α\n⊢ Ico a b = ∅ ↔ ¬a < b"} +{"state": [{"context": ["F : Type w", "R : Type u", "S✝ : Type v", "T : Type u_1", "inst✝⁴ : NonUnitalNonAssocRing R", "inst✝³ : NonUnitalNonAssocRing S✝", "inst✝² : NonUnitalNonAssocRing T", "inst✝¹ : FunLike F R S✝", "inst✝ : NonUnitalRingHomClass F R S✝", "g : S✝ →ₙ+* T", "f : R →ₙ+* S✝", "ι : Sort u_2", "hι : Nonempty ι", "S : ι → NonUnitalSubring R", "hS : Directed (fun x x_1 => x ≤ x_1) S", "x : R"], "goal": "x ∈ ⨆ i, S i ↔ ∃ i, x ∈ S i"}], "premise": [19295], "state_str": "F : Type w\nR : Type u\nS✝ : Type v\nT : Type u_1\ninst✝⁴ : NonUnitalNonAssocRing R\ninst✝³ : NonUnitalNonAssocRing S✝\ninst✝² : NonUnitalNonAssocRing T\ninst✝¹ : FunLike F R S✝\ninst✝ : NonUnitalRingHomClass F R S✝\ng : S✝ →ₙ+* T\nf : R →ₙ+* S✝\nι : Sort u_2\nhι : Nonempty ι\nS : ι → NonUnitalSubring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\n⊢ x ∈ ⨆ i, S i ↔ ∃ i, x ∈ S i"} +{"state": [{"context": ["F : Type w", "R : Type u", "S✝ : Type v", "T : Type u_1", "inst✝⁴ : NonUnitalNonAssocRing R", "inst✝³ : NonUnitalNonAssocRing S✝", "inst✝² : NonUnitalNonAssocRing T", "inst✝¹ : FunLike F R S✝", "inst✝ : NonUnitalRingHomClass F R S✝", "g : S✝ →ₙ+* T", "f : R →ₙ+* S✝", "ι : Sort u_2", "hι : Nonempty ι", "S : ι → NonUnitalSubring R", "hS : Directed (fun x x_1 => x ≤ x_1) S", "x : R"], "goal": "x ∈ ⨆ i, S i → ∃ i, x ∈ S i"}], "premise": [116213, 122759], "state_str": "F : Type w\nR : Type u\nS✝ : Type v\nT : Type u_1\ninst✝⁴ : NonUnitalNonAssocRing R\ninst✝³ : NonUnitalNonAssocRing S✝\ninst✝² : NonUnitalNonAssocRing T\ninst✝¹ : FunLike F R S✝\ninst✝ : NonUnitalRingHomClass F R S✝\ng : S✝ →ₙ+* T\nf : R →ₙ+* S✝\nι : Sort u_2\nhι : Nonempty ι\nS : ι → NonUnitalSubring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\n⊢ x ∈ ⨆ i, S i → ∃ i, x ∈ S i"} +{"state": [{"context": ["F : Type w", "R : Type u", "S✝ : Type v", "T : Type u_1", "inst✝⁴ : NonUnitalNonAssocRing R", "inst✝³ : NonUnitalNonAssocRing S✝", "inst✝² : NonUnitalNonAssocRing T", "inst✝¹ : FunLike F R S✝", "inst✝ : NonUnitalRingHomClass F R S✝", "g : S✝ →ₙ+* T", "f : R →ₙ+* S✝", "ι : Sort u_2", "hι : Nonempty ι", "S : ι → NonUnitalSubring R", "hS : Directed (fun x x_1 => x ≤ x_1) S", "x : R", "U : NonUnitalSubring R := NonUnitalSubring.mk' (⋃ i, ↑(S i)) (⨆ i, (S i).toSubsemigroup) (⨆ i, (S i).toAddSubgroup) ⋯ ⋯"], "goal": "⨆ i, S i ≤ U"}], "premise": [1674, 16573, 19309], "state_str": "F : Type w\nR : Type u\nS✝ : Type v\nT : Type u_1\ninst✝⁴ : NonUnitalNonAssocRing R\ninst✝³ : NonUnitalNonAssocRing S✝\ninst✝² : NonUnitalNonAssocRing T\ninst✝¹ : FunLike F R S✝\ninst✝ : NonUnitalRingHomClass F R S✝\ng : S✝ →ₙ+* T\nf : R →ₙ+* S✝\nι : Sort u_2\nhι : Nonempty ι\nS : ι → NonUnitalSubring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\nU : NonUnitalSubring R := NonUnitalSubring.mk' (⋃ i, ↑(S i)) (⨆ i, (S i).toSubsemigroup) (⨆ i, (S i).toAddSubgroup) ⋯ ⋯\n⊢ ⨆ i, S i ≤ U"} +{"state": [{"context": ["α : Type u", "r : α → α → Prop", "a✝ : α", "l✝ : List α", "inst✝¹ : Inhabited α", "inst✝ : Preorder α", "a : α", "l : List α", "h : Sorted (fun x x_1 => x > x_1) l", "ha : a ∈ l"], "goal": "a ≤ l.head!"}], "premise": [5037, 132430], "state_str": "α : Type u\nr : α → α → Prop\na✝ : α\nl✝ : List α\ninst✝¹ : Inhabited α\ninst✝ : Preorder α\na : α\nl : List α\nh : Sorted (fun x x_1 => x > x_1) l\nha : a ∈ l\n⊢ a ≤ l.head!"} +{"state": [{"context": ["x : ℝ*", "h : x.Infinite"], "goal": "(-x).st = -x.st"}], "premise": [1674, 119802, 146106, 146144], "state_str": "x : ℝ*\nh : x.Infinite\n⊢ (-x).st = -x.st"} +{"state": [{"context": ["α✝ : Type u_1", "l₁✝ l₂ : List α✝", "p : α✝ → Bool", "l₁ l₂✝ : List α✝", "a : α✝", "s : l₁ <+ l₂✝", "h : p a = true"], "goal": "eraseP p l₁ <+ l₂✝"}, {"context": ["α✝ : Type u_1", "l₁✝ l₂ : List α✝", "p : α✝ → Bool", "l₁ l₂✝ : List α✝", "a : α✝", "s : l₁ <+ l₂✝", "h : ¬p a = true"], "goal": "eraseP p l₁ <+ a :: eraseP p l₂✝"}], "premise": [1291, 1372], "state_str": "case pos\nα✝ : Type u_1\nl₁✝ l₂ : List α✝\np : α✝ → Bool\nl₁ l₂✝ : List α✝\na : α✝\ns : l₁ <+ l₂✝\nh : p a = true\n⊢ eraseP p l₁ <+ l₂✝\n\ncase neg\nα✝ : Type u_1\nl₁✝ l₂ : List α✝\np : α✝ → Bool\nl₁ l₂✝ : List α✝\na : α✝\ns : l₁ <+ l₂✝\nh : ¬p a = true\n⊢ eraseP p l₁ <+ a :: eraseP p l₂✝"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝³ : TopologicalSpace β", "inst✝² : Group α", "inst✝¹ : MulAction α β", "inst✝ : ContinuousConstSMul α β", "s : Set α", "t : Set β", "ht : IsOpen t"], "goal": "IsOpen (s • t)"}], "premise": [132858], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝³ : TopologicalSpace β\ninst✝² : Group α\ninst✝¹ : MulAction α β\ninst✝ : ContinuousConstSMul α β\ns : Set α\nt : Set β\nht : IsOpen t\n⊢ IsOpen (s • t)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝³ : TopologicalSpace β", "inst✝² : Group α", "inst✝¹ : MulAction α β", "inst✝ : ContinuousConstSMul α β", "s : Set α", "t : Set β", "ht : IsOpen t"], "goal": "IsOpen (⋃ a ∈ s, a • t)"}], "premise": [55351, 64975], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝³ : TopologicalSpace β\ninst✝² : Group α\ninst✝¹ : MulAction α β\ninst✝ : ContinuousConstSMul α β\ns : Set α\nt : Set β\nht : IsOpen t\n⊢ IsOpen (⋃ a ∈ s, a • t)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "W : WeierstrassCurve R", "inst✝ : Nontrivial R", "n : ℤ"], "goal": "(W.Φ n).leadingCoeff = 1"}], "premise": [129133, 129135], "state_str": "R : Type u\ninst✝¹ : CommRing R\nW : WeierstrassCurve R\ninst✝ : Nontrivial R\nn : ℤ\n⊢ (W.Φ n).leadingCoeff = 1"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : IsDomain R", "inst✝ : NormalizedGCDMonoid R", "p : R[X]", "h : ¬C p.content = 0"], "goal": "p.primPart.natDegree = p.natDegree"}], "premise": [74877, 74881, 102121, 103436, 119727], "state_str": "case neg\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : NormalizedGCDMonoid R\np : R[X]\nh : ¬C p.content = 0\n⊢ p.primPart.natDegree = p.natDegree"} +{"state": [{"context": ["a b : Prop"], "goal": "Xor' (¬a) ¬b ↔ Xor' a b"}], "premise": [1723, 1726], "state_str": "a b : Prop\n⊢ Xor' (¬a) ¬b ↔ Xor' a b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ✝ ν : Measure α", "ι : Type u_5", "inst✝ : Countable ι", "f : α →ₛ ℝ≥0∞", "s : ι → Set α", "hd : Directed (fun x x_1 => x ⊆ x_1) s", "μ : Measure α"], "goal": "f.lintegral (μ.restrict (⋃ i, s i)) = ⨆ i, f.lintegral (μ.restrict (s i))"}], "premise": [27747, 32258, 58972], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ✝ ν : Measure α\nι : Type u_5\ninst✝ : Countable ι\nf : α →ₛ ℝ≥0∞\ns : ι → Set α\nhd : Directed (fun x x_1 => x ⊆ x_1) s\nμ : Measure α\n⊢ f.lintegral (μ.restrict (⋃ i, s i)) = ⨆ i, f.lintegral (μ.restrict (s i))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ✝ ν : Measure α", "ι : Type u_5", "inst✝ : Countable ι", "f : α →ₛ ℝ≥0∞", "s : ι → Set α", "hd : Directed (fun x x_1 => x ⊆ x_1) s", "μ : Measure α"], "goal": "∑ x ∈ f.range, ⨆ i, x * (μ.restrict (s i)) (↑f ⁻¹' {x}) = ⨆ i, ∑ x ∈ f.range, x * (μ.restrict (s i)) (↑f ⁻¹' {x})"}], "premise": [2011, 58970], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ✝ ν : Measure α\nι : Type u_5\ninst✝ : Countable ι\nf : α →ₛ ℝ≥0∞\ns : ι → Set α\nhd : Directed (fun x x_1 => x ⊆ x_1) s\nμ : Measure α\n⊢ ∑ x ∈ f.range, ⨆ i, x * (μ.restrict (s i)) (↑f ⁻¹' {x}) = ⨆ i, ∑ x ∈ f.range, x * (μ.restrict (s i)) (↑f ⁻¹' {x})"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "γ : Type u_4", "mγ : MeasurableSpace γ", "μ : Measure β", "inst✝¹ : SFinite μ", "ν : Measure γ", "inst✝ : SFinite ν", "x : α", "s✝ : Set (β × γ)", "a✝ : MeasurableSet s✝"], "goal": "((const α μ ×ₖ const α ν) x) s✝ = ((const α (μ.prod ν)) x) s✝"}], "premise": [72658, 74314], "state_str": "case h.h\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nγ : Type u_4\nmγ : MeasurableSpace γ\nμ : Measure β\ninst✝¹ : SFinite μ\nν : Measure γ\ninst✝ : SFinite ν\nx : α\ns✝ : Set (β × γ)\na✝ : MeasurableSet s✝\n⊢ ((const α μ ×ₖ const α ν) x) s✝ = ((const α (μ.prod ν)) x) s✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : MeasurableSpace α", "inst✝ : SeparatesPoints α", "x y : α", "h : x ≠ y"], "goal": "∃ s, MeasurableSet s ∧ x ∈ s ∧ y ∉ s"}], "premise": [53688], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : MeasurableSpace α\ninst✝ : SeparatesPoints α\nx y : α\nh : x ≠ y\n⊢ ∃ s, MeasurableSet s ∧ x ∈ s ∧ y ∉ s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : MeasurableSpace α", "inst✝ : SeparatesPoints α", "x y : α", "h : ∀ (s : Set α), MeasurableSet s → x ∈ s → y ∈ s"], "goal": "x = y"}], "premise": [28043], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : MeasurableSpace α\ninst✝ : SeparatesPoints α\nx y : α\nh : ∀ (s : Set α), MeasurableSet s → x ∈ s → y ∈ s\n⊢ x = y"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Monoid α", "inst✝² : Monoid β", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "a b : α", "k : ℕ", "hk : a ^ k ∣ b", "hsucc : ¬a ^ (k + 1) ∣ b", "this : Finite a b"], "goal": "multiplicity a b ≤ ↑k"}], "premise": [144900], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Monoid α\ninst✝² : Monoid β\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nk : ℕ\nhk : a ^ k ∣ b\nhsucc : ¬a ^ (k + 1) ∣ b\nthis : Finite a b\n⊢ multiplicity a b ≤ ↑k"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Monoid α", "inst✝² : Monoid β", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "a b : α", "k : ℕ", "hk : a ^ k ∣ b", "hsucc : ¬a ^ (k + 1) ∣ b", "this : Finite a b"], "goal": "∃ (h : (multiplicity a b).Dom), (multiplicity a b).get h ≤ k"}], "premise": [143302], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Monoid α\ninst✝² : Monoid β\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nk : ℕ\nhk : a ^ k ∣ b\nhsucc : ¬a ^ (k + 1) ∣ b\nthis : Finite a b\n⊢ ∃ (h : (multiplicity a b).Dom), (multiplicity a b).get h ≤ k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "S : Type u_3", "M₀ : Type u_4", "M₁ : Type u_5", "R : Type u_6", "G : Type u_7", "G₀ : Type u_8", "inst✝⁷ : Mul M", "inst✝⁶ : Monoid N", "inst✝⁵ : Semigroup S", "inst✝⁴ : MulZeroClass M₀", "inst✝³ : MulOneClass M₁", "inst✝² : NonAssocRing R", "inst✝¹ : Group G", "inst✝ : CancelMonoidWithZero G₀", "p : R", "h : IsIdempotentElem p"], "goal": "IsIdempotentElem (1 - p)"}], "premise": [117816, 117981, 119728, 119730, 121375], "state_str": "M : Type u_1\nN : Type u_2\nS : Type u_3\nM₀ : Type u_4\nM₁ : Type u_5\nR : Type u_6\nG : Type u_7\nG₀ : Type u_8\ninst✝⁷ : Mul M\ninst✝⁶ : Monoid N\ninst✝⁵ : Semigroup S\ninst✝⁴ : MulZeroClass M₀\ninst✝³ : MulOneClass M₁\ninst✝² : NonAssocRing R\ninst✝¹ : Group G\ninst✝ : CancelMonoidWithZero G₀\np : R\nh : IsIdempotentElem p\n⊢ IsIdempotentElem (1 - p)"} +{"state": [{"context": ["R : Type u_1", "inst✝⁹ : CommSemiring R", "M : Submonoid R", "S : Type u_2", "inst✝⁸ : CommSemiring S", "inst✝⁷ : Algebra R S", "P : Type u_3", "inst✝⁶ : CommSemiring P", "N : Submonoid S", "T : Type u_4", "inst✝⁵ : CommSemiring T", "inst✝⁴ : Algebra R T", "inst✝³ : Algebra S T", "inst✝² : IsScalarTower R S T", "inst✝¹ : IsLocalization M S", "inst✝ : IsLocalization N T", "y : ↥(localizationLocalizationSubmodule M N)"], "goal": "IsUnit ((algebraMap R T) ↑y)"}], "premise": [1673, 77398, 137122], "state_str": "R : Type u_1\ninst✝⁹ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommSemiring S\ninst✝⁷ : Algebra R S\nP : Type u_3\ninst✝⁶ : CommSemiring P\nN : Submonoid S\nT : Type u_4\ninst✝⁵ : CommSemiring T\ninst✝⁴ : Algebra R T\ninst✝³ : Algebra S T\ninst✝² : IsScalarTower R S T\ninst✝¹ : IsLocalization M S\ninst✝ : IsLocalization N T\ny : ↥(localizationLocalizationSubmodule M N)\n⊢ IsUnit ((algebraMap R T) ↑y)"} +{"state": [{"context": ["R : Type u_1", "inst✝⁹ : CommSemiring R", "M : Submonoid R", "S : Type u_2", "inst✝⁸ : CommSemiring S", "inst✝⁷ : Algebra R S", "P : Type u_3", "inst✝⁶ : CommSemiring P", "N : Submonoid S", "T : Type u_4", "inst✝⁵ : CommSemiring T", "inst✝⁴ : Algebra R T", "inst✝³ : Algebra S T", "inst✝² : IsScalarTower R S T", "inst✝¹ : IsLocalization M S", "inst✝ : IsLocalization N T", "y : ↥(localizationLocalizationSubmodule M N)", "y' : ↥N", "z : ↥M", "eq : (algebraMap R S) ↑y = ↑y' * (algebraMap R S) ↑z"], "goal": "IsUnit ((algebraMap R T) ↑y)"}], "premise": [120517, 121202, 121567], "state_str": "case intro.intro\nR : Type u_1\ninst✝⁹ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommSemiring S\ninst✝⁷ : Algebra R S\nP : Type u_3\ninst✝⁶ : CommSemiring P\nN : Submonoid S\nT : Type u_4\ninst✝⁵ : CommSemiring T\ninst✝⁴ : Algebra R T\ninst✝³ : Algebra S T\ninst✝² : IsScalarTower R S T\ninst✝¹ : IsLocalization M S\ninst✝ : IsLocalization N T\ny : ↥(localizationLocalizationSubmodule M N)\ny' : ↥N\nz : ↥M\neq : (algebraMap R S) ↑y = ↑y' * (algebraMap R S) ↑z\n⊢ IsUnit ((algebraMap R T) ↑y)"} +{"state": [{"context": ["R : Type u_1", "inst✝⁹ : CommSemiring R", "M : Submonoid R", "S : Type u_2", "inst✝⁸ : CommSemiring S", "inst✝⁷ : Algebra R S", "P : Type u_3", "inst✝⁶ : CommSemiring P", "N : Submonoid S", "T : Type u_4", "inst✝⁵ : CommSemiring T", "inst✝⁴ : Algebra R T", "inst✝³ : Algebra S T", "inst✝² : IsScalarTower R S T", "inst✝¹ : IsLocalization M S", "inst✝ : IsLocalization N T", "y : ↥(localizationLocalizationSubmodule M N)", "y' : ↥N", "z : ↥M", "eq : (algebraMap R S) ↑y = ↑y' * (algebraMap R S) ↑z"], "goal": "IsUnit ((algebraMap S T) ↑y') ∧ IsUnit ((algebraMap S T) ((algebraMap R S) ↑z))"}], "premise": [77573, 116782], "state_str": "case intro.intro\nR : Type u_1\ninst✝⁹ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommSemiring S\ninst✝⁷ : Algebra R S\nP : Type u_3\ninst✝⁶ : CommSemiring P\nN : Submonoid S\nT : Type u_4\ninst✝⁵ : CommSemiring T\ninst✝⁴ : Algebra R T\ninst✝³ : Algebra S T\ninst✝² : IsScalarTower R S T\ninst✝¹ : IsLocalization M S\ninst✝ : IsLocalization N T\ny : ↥(localizationLocalizationSubmodule M N)\ny' : ↥N\nz : ↥M\neq : (algebraMap R S) ↑y = ↑y' * (algebraMap R S) ↑z\n⊢ IsUnit ((algebraMap S T) ↑y') ∧ IsUnit ((algebraMap S T) ((algebraMap R S) ↑z))"} +{"state": [{"context": ["R : Type u", "S : Type v", "A : Type w", "B : Type u_1", "inst✝² : CommSemiring R", "inst✝¹ : Ring A", "inst✝ : Algebra R A", "x : A", "r : R"], "goal": "x * (x - (algebraMap R A) r) = (x - (algebraMap R A) r) * x"}], "premise": [121168], "state_str": "R : Type u\nS : Type v\nA : Type w\nB : Type u_1\ninst✝² : CommSemiring R\ninst✝¹ : Ring A\ninst✝ : Algebra R A\nx : A\nr : R\n⊢ x * (x - (algebraMap R A) r) = (x - (algebraMap R A) r) * x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "a a₁ a₂ : α", "b b₁ b₂ : β", "inst✝⁴ : OrderedRing α", "inst✝³ : OrderedAddCommGroup β", "inst✝² : Module α β", "inst✝¹ : PosSMulMono α β", "inst✝ : PosSMulReflectLE α β", "ha : a < 0"], "goal": "a • b₁ ≤ a • b₂ ↔ b₂ ≤ b₁"}], "premise": [105657, 110032, 119769], "state_str": "α : Type u_1\nβ : Type u_2\na a₁ a₂ : α\nb b₁ b₂ : β\ninst✝⁴ : OrderedRing α\ninst✝³ : OrderedAddCommGroup β\ninst✝² : Module α β\ninst✝¹ : PosSMulMono α β\ninst✝ : PosSMulReflectLE α β\nha : a < 0\n⊢ a • b₁ ≤ a • b₂ ↔ b₂ ≤ b₁"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "a a₁ a₂ : α", "b b₁ b₂ : β", "inst✝⁴ : OrderedRing α", "inst✝³ : OrderedAddCommGroup β", "inst✝² : Module α β", "inst✝¹ : PosSMulMono α β", "inst✝ : PosSMulReflectLE α β", "ha : a < 0"], "goal": "-a • b₂ ≤ -a • b₁ ↔ b₂ ≤ b₁"}], "premise": [104875], "state_str": "α : Type u_1\nβ : Type u_2\na a₁ a₂ : α\nb b₁ b₂ : β\ninst✝⁴ : OrderedRing α\ninst✝³ : OrderedAddCommGroup β\ninst✝² : Module α β\ninst✝¹ : PosSMulMono α β\ninst✝ : PosSMulReflectLE α β\nha : a < 0\n⊢ -a • b₂ ≤ -a • b₁ ↔ b₂ ≤ b₁"} +{"state": [{"context": ["G : Type u_1", "inst✝⁶ : TopologicalSpace G", "inst✝⁵ : Group G", "inst✝⁴ : TopologicalGroup G", "inst✝³ : MeasurableSpace G", "inst✝² : BorelSpace G", "μ' μ : Measure G", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure", "H : μ'.haarScalarFactor μ = 0"], "goal": "False"}], "premise": [31672], "state_str": "G : Type u_1\ninst✝⁶ : TopologicalSpace G\ninst✝⁵ : Group G\ninst✝⁴ : TopologicalGroup G\ninst✝³ : MeasurableSpace G\ninst✝² : BorelSpace G\nμ' μ : Measure G\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\nH : μ'.haarScalarFactor μ = 0\n⊢ False"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "D : Type u₂", "inst✝¹ : Category.{v₂, u₂} D", "E : Type u₃", "inst✝ : Category.{v₃, u₃} E", "F G H✝ I✝ : C ⥤ D", "H I : D ⥤ E", "α : F ⟶ G", "β : H ⟶ I", "X Y : C", "f : X ⟶ Y"], "goal": "(F ⋙ H).map f ≫ (fun X => β.app (F.obj X) ≫ I.map (α.app X)) Y = (fun X => β.app (F.obj X) ≫ I.map (α.app X)) X ≫ (G ⋙ I).map f"}], "premise": [96173, 97888, 99919, 99925], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\nD : Type u₂\ninst✝¹ : Category.{v₂, u₂} D\nE : Type u₃\ninst✝ : Category.{v₃, u₃} E\nF G H✝ I✝ : C ⥤ D\nH I : D ⥤ E\nα : F ⟶ G\nβ : H ⟶ I\nX Y : C\nf : X ⟶ Y\n⊢ (F ⋙ H).map f ≫ (fun X => β.app (F.obj X) ≫ I.map (α.app X)) Y =\n (fun X => β.app (F.obj X) ≫ I.map (α.app X)) X ≫ (G ⋙ I).map f"} +{"state": [{"context": ["σ : Type u_1", "R : Type u_2", "inst✝ : CommSemiring R", "x : MvPolynomial σ R", "s : Set (σ →₀ ℕ)"], "goal": "x ∈ Ideal.span ((fun s => (monomial s) 1) '' s) ↔ ∀ xi ∈ x.support, ∃ si ∈ s, (monomial si) 1 ∣ (monomial xi) (coeff xi x)"}], "premise": [1715, 2017, 77500], "state_str": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nx : MvPolynomial σ R\ns : Set (σ →₀ ℕ)\n⊢ x ∈ Ideal.span ((fun s => (monomial s) 1) '' s) ↔\n ∀ xi ∈ x.support, ∃ si ∈ s, (monomial si) 1 ∣ (monomial xi) (coeff xi x)"} +{"state": [{"context": ["σ : Type u_1", "R : Type u_2", "inst✝ : CommSemiring R", "x : MvPolynomial σ R", "s : Set (σ →₀ ℕ)", "xi : σ →₀ ℕ", "hxi : xi ∈ x.support"], "goal": "(∃ si ∈ s, si ≤ xi) ↔ ∃ si ∈ s, (monomial si) 1 ∣ (monomial xi) (coeff xi x)"}], "premise": [1673, 20002, 20008, 108887, 110390, 112238], "state_str": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nx : MvPolynomial σ R\ns : Set (σ →₀ ℕ)\nxi : σ →₀ ℕ\nhxi : xi ∈ x.support\n⊢ (∃ si ∈ s, si ≤ xi) ↔ ∃ si ∈ s, (monomial si) 1 ∣ (monomial xi) (coeff xi x)"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "inst✝⁴ : CommRing R", "inst✝³ : IsDedekindDomain R", "inst✝² : Field K", "inst✝¹ : Algebra R K", "inst✝ : IsFractionRing R K", "v : HeightOneSpectrum R", "x y : R_hat R K"], "goal": "{ toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun (x * y) = { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun x * { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun y"}], "premise": [1838], "state_str": "R : Type u_1\nK : Type u_2\ninst✝⁴ : CommRing R\ninst✝³ : IsDedekindDomain R\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nx y : R_hat R K\n⊢ { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun (x * y) =\n { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun x * { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun y"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "inst✝⁴ : CommRing R", "inst✝³ : IsDedekindDomain R", "inst✝² : Field K", "inst✝¹ : Algebra R K", "inst✝ : IsFractionRing R K", "v : HeightOneSpectrum R", "x y : R_hat R K", "p : HeightOneSpectrum R"], "goal": "{ toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun (x * y) p = ({ toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun x * { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun y) p"}], "premise": [120651, 123499], "state_str": "R : Type u_1\nK : Type u_2\ninst✝⁴ : CommRing R\ninst✝³ : IsDedekindDomain R\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nx y : R_hat R K\np : HeightOneSpectrum R\n⊢ { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun (x * y) p =\n ({ toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun x * { toFun := fun x v => ↑(x v), map_one' := ⋯ }.toFun y) p"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "inst✝⁴ : CommRing R", "inst✝³ : IsDedekindDomain R", "inst✝² : Field K", "inst✝¹ : Algebra R K", "inst✝ : IsFractionRing R K", "v : HeightOneSpectrum R", "x y : R_hat R K", "p : HeightOneSpectrum R"], "goal": "↑((x * y) p) = ((fun v => ↑(x v)) * fun v => ↑(y v)) p"}], "premise": [120651, 123499], "state_str": "R : Type u_1\nK : Type u_2\ninst✝⁴ : CommRing R\ninst✝³ : IsDedekindDomain R\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nx y : R_hat R K\np : HeightOneSpectrum R\n⊢ ↑((x * y) p) = ((fun v => ↑(x v)) * fun v => ↑(y v)) p"} +{"state": [{"context": ["α : Type u_1", "a : α", "l : List α", "p : α → Option α", "h : p a = none"], "goal": "replaceF p (a :: l) = a :: replaceF p l"}], "premise": [1416], "state_str": "α : Type u_1\na : α\nl : List α\np : α → Option α\nh : p a = none\n⊢ replaceF p (a :: l) = a :: replaceF p l"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B"], "goal": "‖(map f p).coeff i‖ ≤ B ^ (p.natDegree - i) * ↑(p.natDegree.choose i)"}], "premise": [14316], "state_str": "α : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\n⊢ ‖(map f p).coeff i‖ ≤ B ^ (p.natDegree - i) * ↑(p.natDegree.choose i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B", "hB : 0 ≤ B"], "goal": "‖(map f p).coeff i‖ ≤ B ^ (p.natDegree - i) * ↑(p.natDegree.choose i)"}], "premise": [101758], "state_str": "case inr\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\nhB : 0 ≤ B\n⊢ ‖(map f p).coeff i‖ ≤ B ^ (p.natDegree - i) * ↑(p.natDegree.choose i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B", "hB : 0 ≤ B"], "goal": "‖(map f p).coeff i‖ ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)"}], "premise": [14316], "state_str": "case inr\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\nhB : 0 ≤ B\n⊢ ‖(map f p).coeff i‖ ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B", "hB : 0 ≤ B", "hi : i ≤ (map f p).natDegree"], "goal": "‖(map f p).coeff i‖ ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)"}], "premise": [1674, 42667, 43260, 43287, 43291, 74549, 101124, 101725, 102087, 119728, 119756], "state_str": "case inr.inr\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\nhB : 0 ≤ B\nhi : i ≤ (map f p).natDegree\n⊢ ‖(map f p).coeff i‖ ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B", "hB : 0 ≤ B", "hi : i ≤ (map f p).natDegree"], "goal": "‖(map f p).roots.esymm ((map f p).natDegree - i)‖ ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)"}], "premise": [42857, 106508], "state_str": "case inr.inr\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\nhB : 0 ≤ B\nhi : i ≤ (map f p).natDegree\n⊢ ‖(map f p).roots.esymm ((map f p).natDegree - i)‖ ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B", "hB : 0 ≤ B", "hi : i ≤ (map f p).natDegree", "r : ℝ", "hr : r ∈ Multiset.map (fun x => ‖x‖) (Multiset.map prod (powersetCard ((map f p).natDegree - i) (map f p).roots))"], "goal": "r ≤ B ^ ((map f p).natDegree - i)"}], "premise": [137990], "state_str": "α : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\nhB : 0 ≤ B\nhi : i ≤ (map f p).natDegree\nr : ℝ\nhr : r ∈ Multiset.map (fun x => ‖x‖) (Multiset.map prod (powersetCard ((map f p).natDegree - i) (map f p).roots))\n⊢ r ≤ B ^ ((map f p).natDegree - i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "B : ℝ", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B", "hB : 0 ≤ B", "hi : i ≤ (map f p).natDegree", "s : Multiset K", "hs : s ∈ powersetCard ((map f p).natDegree - i) (map f p).roots"], "goal": "‖s.prod‖ ≤ B ^ ((map f p).natDegree - i)"}], "premise": [134955], "state_str": "case intro.intro.intro.intro\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\nB : ℝ\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B\nhB : 0 ≤ B\nhi : i ≤ (map f p).natDegree\ns : Multiset K\nhs : s ∈ powersetCard ((map f p).natDegree - i) (map f p).roots\n⊢ ‖s.prod‖ ≤ B ^ ((map f p).natDegree - i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "hi : i ≤ (map f p).natDegree", "s : Multiset K", "hs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i", "B : ℝ≥0", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B"], "goal": "‖s.prod‖ ≤ ↑B ^ ((map f p).natDegree - i)"}], "premise": [42755, 43290, 117086, 124362, 146628, 146643], "state_str": "case intro.intro.intro.intro.intro\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nhi : i ≤ (map f p).natDegree\ns : Multiset K\nhs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i\nB : ℝ≥0\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B\n⊢ ‖s.prod‖ ≤ ↑B ^ ((map f p).natDegree - i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "hi : i ≤ (map f p).natDegree", "s : Multiset K", "hs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i", "B : ℝ≥0", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B"], "goal": "(Multiset.map (⇑↑nnnormHom) s).prod ≤ B ^ ((map f p).natDegree - i)"}], "premise": [2106, 106507, 137991], "state_str": "case intro.intro.intro.intro.intro\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nhi : i ≤ (map f p).natDegree\ns : Multiset K\nhs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i\nB : ℝ≥0\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B\n⊢ (Multiset.map (⇑↑nnnormHom) s).prod ≤ B ^ ((map f p).natDegree - i)"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "hi : i ≤ (map f p).natDegree", "s : Multiset K", "hs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i", "B : ℝ≥0", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B", "x : ℝ≥0", "hx : x ∈ Multiset.map (⇑↑nnnormHom) s"], "goal": "x ≤ B"}], "premise": [1673, 137990], "state_str": "case intro.intro.intro.intro.intro\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nhi : i ≤ (map f p).natDegree\ns : Multiset K\nhs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i\nB : ℝ≥0\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B\nx : ℝ≥0\nhx : x ∈ Multiset.map (⇑↑nnnormHom) s\n⊢ x ≤ B"} +{"state": [{"context": ["α : Type u_1", "R : Type u_2", "inst✝³ : NormedRing R", "inst✝² : IsAbsoluteValue norm", "F : Type u_3", "K : Type u_4", "inst✝¹ : CommRing F", "inst✝ : NormedField K", "p : F[X]", "f : F →+* K", "i : ℕ", "h1 : p.Monic", "h2 : Splits f p", "hi : i ≤ (map f p).natDegree", "s : Multiset K", "hs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i", "B : ℝ≥0", "h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B", "z : K", "hz : z ∈ s", "hx : ↑nnnormHom z ∈ Multiset.map (⇑↑nnnormHom) s"], "goal": "↑nnnormHom z ≤ B"}], "premise": [2107, 137873], "state_str": "case intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nR : Type u_2\ninst✝³ : NormedRing R\ninst✝² : IsAbsoluteValue norm\nF : Type u_3\nK : Type u_4\ninst✝¹ : CommRing F\ninst✝ : NormedField K\np : F[X]\nf : F →+* K\ni : ℕ\nh1 : p.Monic\nh2 : Splits f p\nhi : i ≤ (map f p).natDegree\ns : Multiset K\nhs : s ≤ (map f p).roots ∧ card s = (map f p).natDegree - i\nB : ℝ≥0\nh3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ ↑B\nz : K\nhz : z ∈ s\nhx : ↑nnnormHom z ∈ Multiset.map (⇑↑nnnormHom) s\n⊢ ↑nnnormHom z ≤ B"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α", "m : ℤ"], "goal": "toIcoMod hp (m • p + a) b = m • p + toIcoMod hp a b"}], "premise": [105884, 119708], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ toIcoMod hp (m • p + a) b = m • p + toIcoMod hp a b"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : AddCommGroup E", "inst✝⁴ : TopologicalSpace E", "inst✝³ : Module 𝕜 E", "inst✝² : Module ℝ E", "inst✝¹ : IsScalarTower ℝ 𝕜 E", "inst✝ : ContinuousSMul ℝ E", "s : AbsConvexOpenSets 𝕜 E"], "goal": "(gaugeSeminorm ⋯ ⋯ ⋯).ball 0 1 = ↑s"}], "premise": [36275], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : TopologicalSpace E\ninst✝³ : Module 𝕜 E\ninst✝² : Module ℝ E\ninst✝¹ : IsScalarTower ℝ 𝕜 E\ninst✝ : ContinuousSMul ℝ E\ns : AbsConvexOpenSets 𝕜 E\n⊢ (gaugeSeminorm ⋯ ⋯ ⋯).ball 0 1 = ↑s"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : AddCommGroup E", "inst✝⁴ : TopologicalSpace E", "inst✝³ : Module 𝕜 E", "inst✝² : Module ℝ E", "inst✝¹ : IsScalarTower ℝ 𝕜 E", "inst✝ : ContinuousSMul ℝ E", "s : AbsConvexOpenSets 𝕜 E"], "goal": "{y | (gaugeSeminorm ⋯ ⋯ ⋯) y < 1} = ↑s"}], "premise": [35568], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : TopologicalSpace E\ninst✝³ : Module 𝕜 E\ninst✝² : Module ℝ E\ninst✝¹ : IsScalarTower ℝ 𝕜 E\ninst✝ : ContinuousSMul ℝ E\ns : AbsConvexOpenSets 𝕜 E\n⊢ {y | (gaugeSeminorm ⋯ ⋯ ⋯) y < 1} = ↑s"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : AddCommGroup E", "inst✝⁴ : TopologicalSpace E", "inst✝³ : Module 𝕜 E", "inst✝² : Module ℝ E", "inst✝¹ : IsScalarTower ℝ 𝕜 E", "inst✝ : ContinuousSMul ℝ E", "s : AbsConvexOpenSets 𝕜 E"], "goal": "{y | gauge (↑s) y < 1} = ↑s"}], "premise": [35553, 40950, 40951, 40954], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : TopologicalSpace E\ninst✝³ : Module 𝕜 E\ninst✝² : Module ℝ E\ninst✝¹ : IsScalarTower ℝ 𝕜 E\ninst✝ : ContinuousSMul ℝ E\ns : AbsConvexOpenSets 𝕜 E\n⊢ {y | gauge (↑s) y < 1} = ↑s"} +{"state": [{"context": ["𝓕 : Type u_1", "𝕜 : Type u_2", "α : Type u_3", "ι : Type u_4", "κ : Type u_5", "E : Type u_6", "F : Type u_7", "G : Type u_8", "inst✝² : SeminormedGroup E", "inst✝¹ : SeminormedGroup F", "inst✝ : SeminormedGroup G", "s : Set E", "a✝ a₁ a₂ b b₁ b₂ : E", "r r₁ r₂ : ℝ", "y : E", "ε : ℝ", "a : E"], "goal": "a ∈ ball y ε ↔ a ∈ {x | ‖x / y‖ < ε}"}], "premise": [42654], "state_str": "𝓕 : Type u_1\n𝕜 : Type u_2\nα : Type u_3\nι : Type u_4\nκ : Type u_5\nE : Type u_6\nF : Type u_7\nG : Type u_8\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na✝ a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ny : E\nε : ℝ\na : E\n⊢ a ∈ ball y ε ↔ a ∈ {x | ‖x / y‖ < ε}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "G : Type u_5", "inst✝³ : TopologicalSpace G", "inst✝² : CommGroup G", "inst✝¹ : TopologicalGroup G", "f : α → G", "inst✝ : T2Space G", "a : G"], "goal": "∏' (x : β), a = a ^ Nat.card β"}], "premise": [141507], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nG : Type u_5\ninst✝³ : TopologicalSpace G\ninst✝² : CommGroup G\ninst✝¹ : TopologicalGroup G\nf : α → G\ninst✝ : T2Space G\na : G\n⊢ ∏' (x : β), a = a ^ Nat.card β"} +{"state": [{"context": ["M : Type u_1", "inst✝⁷ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁶ : CancelCommMonoidWithZero N", "inst✝⁵ : Unique Mˣ", "inst✝⁴ : Unique Nˣ", "inst✝³ : UniqueFactorizationMonoid M", "inst✝² : UniqueFactorizationMonoid N", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : M", "n : N", "hm : m ≠ 0", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : { l // l ∣ m } ≃ { l // l ∣ n }", "hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'"], "goal": "multiplicity (↑(d ⟨p, ⋯⟩)) n = multiplicity p m"}], "premise": [2100], "state_str": "M : Type u_1\ninst✝⁷ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁶ : CancelCommMonoidWithZero N\ninst✝⁵ : Unique Mˣ\ninst✝⁴ : Unique Nˣ\ninst✝³ : UniqueFactorizationMonoid M\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : M\nn : N\nhm : m ≠ 0\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : { l // l ∣ m } ≃ { l // l ∣ n }\nhd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'\n⊢ multiplicity (↑(d ⟨p, ⋯⟩)) n = multiplicity p m"} +{"state": [{"context": ["M : Type u_1", "inst✝⁷ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁶ : CancelCommMonoidWithZero N", "inst✝⁵ : Unique Mˣ", "inst✝⁴ : Unique Nˣ", "inst✝³ : UniqueFactorizationMonoid M", "inst✝² : UniqueFactorizationMonoid N", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : M", "n : N", "hm : m ≠ 0", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : { l // l ∣ m } ≃ { l // l ∣ n }", "hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'"], "goal": "multiplicity p m = multiplicity (↑(d ⟨p, ⋯⟩)) n"}], "premise": [76126, 79579, 126197, 126301, 126302, 126303], "state_str": "case h\nM : Type u_1\ninst✝⁷ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁶ : CancelCommMonoidWithZero N\ninst✝⁵ : Unique Mˣ\ninst✝⁴ : Unique Nˣ\ninst✝³ : UniqueFactorizationMonoid M\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : M\nn : N\nhm : m ≠ 0\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : { l // l ∣ m } ≃ { l // l ∣ n }\nhd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'\n⊢ multiplicity p m = multiplicity (↑(d ⟨p, ⋯⟩)) n"} +{"state": [{"context": ["M : Type u_1", "inst✝⁷ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁶ : CancelCommMonoidWithZero N", "inst✝⁵ : Unique Mˣ", "inst✝⁴ : Unique Nˣ", "inst✝³ : UniqueFactorizationMonoid M", "inst✝² : UniqueFactorizationMonoid N", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : M", "n : N", "hm : m ≠ 0", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : { l // l ∣ m } ≃ { l // l ∣ n }", "hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'"], "goal": "multiplicity (Associates.mk p) (Associates.mk m) = multiplicity (Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩)) (Associates.mk n)"}], "premise": [76126, 77035, 125939, 126197, 126301, 126302, 126303], "state_str": "case h\nM : Type u_1\ninst✝⁷ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁶ : CancelCommMonoidWithZero N\ninst✝⁵ : Unique Mˣ\ninst✝⁴ : Unique Nˣ\ninst✝³ : UniqueFactorizationMonoid M\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : M\nn : N\nhm : m ≠ 0\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : { l // l ∣ m } ≃ { l // l ∣ n }\nhd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'\n⊢ multiplicity (Associates.mk p) (Associates.mk m) =\n multiplicity (Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩))\n (Associates.mk n)"} +{"state": [{"context": ["M : Type u_1", "inst✝⁷ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁶ : CancelCommMonoidWithZero N", "inst✝⁵ : Unique Mˣ", "inst✝⁴ : Unique Nˣ", "inst✝³ : UniqueFactorizationMonoid M", "inst✝² : UniqueFactorizationMonoid N", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : M", "n : N", "hm : m ≠ 0", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : { l // l ∣ m } ≃ { l // l ∣ n }", "hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'", "this : Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) = ↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)"], "goal": "multiplicity (Associates.mk p) (Associates.mk m) = multiplicity (↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)) (Associates.mk n)"}], "premise": [1674, 77033, 125947], "state_str": "case h\nM : Type u_1\ninst✝⁷ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁶ : CancelCommMonoidWithZero N\ninst✝⁵ : Unique Mˣ\ninst✝⁴ : Unique Nˣ\ninst✝³ : UniqueFactorizationMonoid M\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : M\nn : N\nhm : m ≠ 0\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : { l // l ∣ m } ≃ { l // l ∣ n }\nhd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'\nthis :\n Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) =\n ↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)\n⊢ multiplicity (Associates.mk p) (Associates.mk m) =\n multiplicity (↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)) (Associates.mk n)"} +{"state": [{"context": ["M : Type u_1", "inst✝⁷ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁶ : CancelCommMonoidWithZero N", "inst✝⁵ : Unique Mˣ", "inst✝⁴ : Unique Nˣ", "inst✝³ : UniqueFactorizationMonoid M", "inst✝² : UniqueFactorizationMonoid N", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : M", "n : N", "hm : m ≠ 0", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : { l // l ∣ m } ≃ { l // l ∣ n }", "hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'", "this : Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) = ↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)"], "goal": "Associates.mk p ∈ normalizedFactors (Associates.mk m)"}], "premise": [1674, 76109, 76114, 76126, 125839, 125939, 125947, 125951], "state_str": "case h\nM : Type u_1\ninst✝⁷ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁶ : CancelCommMonoidWithZero N\ninst✝⁵ : Unique Mˣ\ninst✝⁴ : Unique Nˣ\ninst✝³ : UniqueFactorizationMonoid M\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : M\nn : N\nhm : m ≠ 0\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : { l // l ∣ m } ≃ { l // l ∣ n }\nhd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'\nthis :\n Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) =\n ↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)\n⊢ Associates.mk p ∈ normalizedFactors (Associates.mk m)"} +{"state": [{"context": ["M : Type u_1", "inst✝⁷ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁶ : CancelCommMonoidWithZero N", "inst✝⁵ : Unique Mˣ", "inst✝⁴ : Unique Nˣ", "inst✝³ : UniqueFactorizationMonoid M", "inst✝² : UniqueFactorizationMonoid N", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : M", "n : N", "hm : m ≠ 0", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : { l // l ∣ m } ≃ { l // l ∣ n }", "hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'", "this : Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) = ↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)", "q : Associates M", "hq : q ∈ normalizedFactors (Associates.mk m)", "hq' : Associated (Associates.mk p) q"], "goal": "Associates.mk p ∈ normalizedFactors (Associates.mk m)"}], "premise": [1673, 125904], "state_str": "case h.intro.intro\nM : Type u_1\ninst✝⁷ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁶ : CancelCommMonoidWithZero N\ninst✝⁵ : Unique Mˣ\ninst✝⁴ : Unique Nˣ\ninst✝³ : UniqueFactorizationMonoid M\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : M\nn : N\nhm : m ≠ 0\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : { l // l ∣ m } ≃ { l // l ∣ n }\nhd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l'\nthis :\n Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) =\n ↑((mkFactorOrderIsoOfFactorDvdEquiv hd) ⟨associatesEquivOfUniqueUnits.symm p, ⋯⟩)\nq : Associates M\nhq : q ∈ normalizedFactors (Associates.mk m)\nhq' : Associated (Associates.mk p) q\n⊢ Associates.mk p ∈ normalizedFactors (Associates.mk m)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F✝ : Type u_3", "𝕜 : Type u_4", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedSpace ℝ E", "hE : CompleteSpace E", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedSpace 𝕜 E", "inst✝⁷ : SMulCommClass ℝ 𝕜 E", "inst✝⁶ : NormedAddCommGroup F✝", "inst✝⁵ : NormedSpace ℝ F✝", "inst✝⁴ : CompleteSpace F✝", "G : Type u_5", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace ℝ G", "f✝ g : α → E", "m : MeasurableSpace α", "μ✝ : Measure α", "X : Type u_6", "inst✝¹ : TopologicalSpace X", "inst✝ : FirstCountableTopology X", "μ : Measure α", "f : ℕ → α → ℝ", "F : α → ℝ", "hf : ∀ (n : ℕ), Integrable (f n) μ", "hF : Integrable F μ", "h_mono : ∀ᵐ (x : α) ∂μ, Antitone fun n => f n x", "h_tendsto : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (F x))"], "goal": "Tendsto (fun n => ∫ (x : α), f n x ∂μ) atTop (𝓝 (∫ (x : α), F x ∂μ))"}], "premise": [33644, 66667, 119769], "state_str": "α : Type u_1\nE : Type u_2\nF✝ : Type u_3\n𝕜 : Type u_4\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\nhE : CompleteSpace E\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedSpace 𝕜 E\ninst✝⁷ : SMulCommClass ℝ 𝕜 E\ninst✝⁶ : NormedAddCommGroup F✝\ninst✝⁵ : NormedSpace ℝ F✝\ninst✝⁴ : CompleteSpace F✝\nG : Type u_5\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace ℝ G\nf✝ g : α → E\nm : MeasurableSpace α\nμ✝ : Measure α\nX : Type u_6\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nμ : Measure α\nf : ℕ → α → ℝ\nF : α → ℝ\nhf : ∀ (n : ℕ), Integrable (f n) μ\nhF : Integrable F μ\nh_mono : ∀ᵐ (x : α) ∂μ, Antitone fun n => f n x\nh_tendsto : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (F x))\n⊢ Tendsto (fun n => ∫ (x : α), f n x ∂μ) atTop (𝓝 (∫ (x : α), F x ∂μ))"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F✝ : Type u_3", "𝕜 : Type u_4", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedSpace ℝ E", "hE : CompleteSpace E", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedSpace 𝕜 E", "inst✝⁷ : SMulCommClass ℝ 𝕜 E", "inst✝⁶ : NormedAddCommGroup F✝", "inst✝⁵ : NormedSpace ℝ F✝", "inst✝⁴ : CompleteSpace F✝", "G : Type u_5", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace ℝ G", "f✝ g : α → E", "m : MeasurableSpace α", "μ✝ : Measure α", "X : Type u_6", "inst✝¹ : TopologicalSpace X", "inst✝ : FirstCountableTopology X", "μ : Measure α", "f : ℕ → α → ℝ", "F : α → ℝ", "hf : ∀ (n : ℕ), Integrable (f n) μ", "hF : Integrable F μ", "h_mono : ∀ᵐ (x : α) ∂μ, Antitone fun n => f n x", "h_tendsto : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (F x))"], "goal": "Tendsto (fun n => ∫ (x : α), -f n x ∂μ) atTop (𝓝 (∫ (x : α), -F x ∂μ))"}], "premise": [28491, 33688], "state_str": "α : Type u_1\nE : Type u_2\nF✝ : Type u_3\n𝕜 : Type u_4\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\nhE : CompleteSpace E\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedSpace 𝕜 E\ninst✝⁷ : SMulCommClass ℝ 𝕜 E\ninst✝⁶ : NormedAddCommGroup F✝\ninst✝⁵ : NormedSpace ℝ F✝\ninst✝⁴ : CompleteSpace F✝\nG : Type u_5\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace ℝ G\nf✝ g : α → E\nm : MeasurableSpace α\nμ✝ : Measure α\nX : Type u_6\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nμ : Measure α\nf : ℕ → α → ℝ\nF : α → ℝ\nhf : ∀ (n : ℕ), Integrable (f n) μ\nhF : Integrable F μ\nh_mono : ∀ᵐ (x : α) ∂μ, Antitone fun n => f n x\nh_tendsto : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (F x))\n⊢ Tendsto (fun n => ∫ (x : α), -f n x ∂μ) atTop (𝓝 (∫ (x : α), -F x ∂μ))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝³ : MeasurableSpace α", "inst✝² : MeasurableSpace β", "inst✝¹ : MeasurableSpace γ", "inst✝ : MeasurableSpace δ", "μa : Measure α", "μb : Measure β", "μc : Measure γ", "μd : Measure δ", "f : α → β", "hf : MeasurePreserving f μa μb", "h₂ : MeasurableEmbedding f", "g : β → γ"], "goal": "AEMeasurable (g ∘ f) μa ↔ AEMeasurable g μb"}], "premise": [1713, 30701, 88683], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nμa : Measure α\nμb : Measure β\nμc : Measure γ\nμd : Measure δ\nf : α → β\nhf : MeasurePreserving f μa μb\nh₂ : MeasurableEmbedding f\ng : β → γ\n⊢ AEMeasurable (g ∘ f) μa ↔ AEMeasurable g μb"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [110022], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [35213, 35223, 36006, 108341, 110020, 117810, 118056, 118909], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [110022], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [36003, 117714, 117810, 118076, 118909], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [36003, 117714, 117810, 118076, 118909], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [36003, 108334, 108341, 117714, 117810, 118076, 118909], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s", "hvw : x + (v + w) ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [35213, 36006, 108334, 108341, 118909], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\nhvw : x + (v + w) ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s", "hvw : x + (v + w) ∈ interior s", "h2vw : x + (2 • v + w) ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [7382, 35213, 36006, 110022, 113020, 117810, 117986, 118076], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\nhvw : x + (v + w) ∈ interior s\nh2vw : x + (2 • v + w) ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s", "hvw : x + (v + w) ∈ interior s", "h2vw : x + (2 • v + w) ∈ interior s", "hvww : x + (v + w) + w ∈ interior s"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [46574], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\nhvw : x + (v + w) ∈ interior s\nh2vw : x + (2 • v + w) ∈ interior s\nhvww : x + (v + w) + w ∈ interior s\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s", "hvw : x + (v + w) ∈ interior s", "h2vw : x + (2 • v + w) ∈ interior s", "hvww : x + (v + w) + w ∈ interior s", "TA1 : (fun h => f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [46574], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\nhvw : x + (v + w) ∈ interior s\nh2vw : x + (2 • v + w) ∈ interior s\nhvww : x + (v + w) + w ∈ interior s\nTA1 :\n (fun h =>\n f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w -\n (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0]\n fun h => h ^ 2\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s", "hvw : x + (v + w) ∈ interior s", "h2vw : x + (2 • v + w) ∈ interior s", "hvww : x + (v + w) + w ∈ interior s", "TA1 : (fun h => f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2", "TA2 : (fun h => f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2"], "goal": "(fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2"}], "premise": [43509], "state_str": "E : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\nhvw : x + (v + w) ∈ interior s\nh2vw : x + (2 • v + w) ∈ interior s\nhvww : x + (v + w) + w ∈ interior s\nTA1 :\n (fun h =>\n f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w -\n (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0]\n fun h => h ^ 2\nTA2 :\n (fun h =>\n f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w -\n (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0]\n fun h => h ^ 2\n⊢ (fun h =>\n f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w) =o[𝓝[>] 0]\n fun h => h ^ 2"} +{"state": [{"context": ["E : Type u_1", "F : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s : Set E", "s_conv : Convex ℝ s", "f : E → F", "f' : E → E →L[ℝ] F", "f'' : E →L[ℝ] E →L[ℝ] F", "hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x", "x : E", "xs : x ∈ s", "hx : HasFDerivWithinAt f' f'' (interior s) x", "v w : E", "h4v : x + 4 • v ∈ interior s", "h4w : x + 4 • w ∈ interior s", "A : 1 / 2 ∈ Ioc 0 1", "B : 1 / 2 ∈ Icc 0 1", "C : ∀ (w : E), 2 • w = 2 • w", "h2v2w : x + 2 • v + 2 • w ∈ interior s", "h2vww : x + (2 • v + w) + w ∈ interior s", "h2v : x + 2 • v ∈ interior s", "h2w : x + 2 • w ∈ interior s", "hvw : x + (v + w) ∈ interior s", "h2vw : x + (2 • v + w) ∈ interior s", "hvww : x + (v + w) + w ∈ interior s", "TA1 : (fun h => f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2", "TA2 : (fun h => f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2", "h : ℝ"], "goal": "f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w = f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w - (h ^ 2 / 2) • (f'' w) w - (f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w - (h ^ 2 / 2) • (f'' w) w)"}], "premise": [68759, 68761, 68773, 68785, 108334, 110022, 119704, 120658], "state_str": "case h.e'_7.h\nE : Type u_1\nF : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns : Set E\ns_conv : Convex ℝ s\nf : E → F\nf' : E → E →L[ℝ] F\nf'' : E →L[ℝ] E →L[ℝ] F\nhf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x\nx : E\nxs : x ∈ s\nhx : HasFDerivWithinAt f' f'' (interior s) x\nv w : E\nh4v : x + 4 • v ∈ interior s\nh4w : x + 4 • w ∈ interior s\nA : 1 / 2 ∈ Ioc 0 1\nB : 1 / 2 ∈ Icc 0 1\nC : ∀ (w : E), 2 • w = 2 • w\nh2v2w : x + 2 • v + 2 • w ∈ interior s\nh2vww : x + (2 • v + w) + w ∈ interior s\nh2v : x + 2 • v ∈ interior s\nh2w : x + 2 • w ∈ interior s\nhvw : x + (v + w) ∈ interior s\nh2vw : x + (2 • v + w) ∈ interior s\nhvww : x + (v + w) + w ∈ interior s\nTA1 :\n (fun h =>\n f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w -\n (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0]\n fun h => h ^ 2\nTA2 :\n (fun h =>\n f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w -\n (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0]\n fun h => h ^ 2\nh : ℝ\n⊢ f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -\n h ^ 2 • (f'' v) w =\n f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w -\n (h ^ 2 / 2) • (f'' w) w -\n (f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w -\n (h ^ 2 / 2) • (f'' w) w)"} +{"state": [{"context": ["o : Ordinal.{u_1}", "ho : 0 < o"], "goal": "(sup fun n => o ^ ↑n) = o ^ ω"}], "premise": [1674, 14302, 49765], "state_str": "o : Ordinal.{u_1}\nho : 0 < o\n⊢ (sup fun n => o ^ ↑n) = o ^ ω"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ε : Type u_5", "ι : Type u_6", "f✝ : α →. β", "f : β →. γ", "g : α →. β", "a : Part α", "c : γ"], "goal": "c ∈ a.bind (f.comp g) ↔ c ∈ (a.bind g).bind f"}], "premise": [2038, 2039, 128217, 131108], "state_str": "case H\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nε : Type u_5\nι : Type u_6\nf✝ : α →. β\nf : β →. γ\ng : α →. β\na : Part α\nc : γ\n⊢ c ∈ a.bind (f.comp g) ↔ c ∈ (a.bind g).bind f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ε : Type u_5", "ι : Type u_6", "f✝ : α →. β", "f : β →. γ", "g : α →. β", "a : Part α", "c : γ"], "goal": "(∃ a_1 x, a_1 ∈ a ∧ x ∈ g a_1 ∧ c ∈ f x) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1"}], "premise": [2049], "state_str": "case H\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nε : Type u_5\nι : Type u_6\nf✝ : α →. β\nf : β →. γ\ng : α →. β\na : Part α\nc : γ\n⊢ (∃ a_1 x, a_1 ∈ a ∧ x ∈ g a_1 ∧ c ∈ f x) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ε : Type u_5", "ι : Type u_6", "f✝ : α →. β", "f : β →. γ", "g : α →. β", "a : Part α", "c : γ"], "goal": "(∃ b, ∃ a_1 ∈ a, b ∈ g a_1 ∧ c ∈ f b) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1"}], "premise": [1206], "state_str": "case H\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nε : Type u_5\nι : Type u_6\nf✝ : α →. β\nf : β →. γ\ng : α →. β\na : Part α\nc : γ\n⊢ (∃ b, ∃ a_1 ∈ a, b ∈ g a_1 ∧ c ∈ f b) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m : MeasurableSpace Ω", "X : Ω → ℝ", "p : ℕ", "μ : Measure Ω", "t : ℝ"], "goal": "cgf (-X) μ t = cgf X μ (-t)"}], "premise": [73759], "state_str": "Ω : Type u_1\nι : Type u_2\nm : MeasurableSpace Ω\nX : Ω → ℝ\np : ℕ\nμ : Measure Ω\nt : ℝ\n⊢ cgf (-X) μ t = cgf X μ (-t)"} +{"state": [{"context": ["𝕜 : Type u_1", "B : Type u_2", "inst✝³ : LinearOrderedAddCommGroup 𝕜", "inst✝² : Archimedean 𝕜", "inst✝¹ : TopologicalSpace 𝕜", "inst✝ : OrderTopology 𝕜", "p : 𝕜", "hp : 0 < p", "a x : 𝕜"], "goal": "ContinuousWithinAt (toIocMod hp a) (Iic x) x"}], "premise": [1838, 2101, 105913, 119769], "state_str": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : Archimedean 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\np : 𝕜\nhp : 0 < p\na x : 𝕜\n⊢ ContinuousWithinAt (toIocMod hp a) (Iic x) x"} +{"state": [{"context": ["𝕜 : Type u_1", "B : Type u_2", "inst✝³ : LinearOrderedAddCommGroup 𝕜", "inst✝² : Archimedean 𝕜", "inst✝¹ : TopologicalSpace 𝕜", "inst✝ : OrderTopology 𝕜", "p : 𝕜", "hp : 0 < p", "a x : 𝕜", "this : ContinuousNeg 𝕜"], "goal": "ContinuousWithinAt ((fun x => p - x) ∘ toIcoMod hp (-a) ∘ Neg.neg) (Iic x) x"}], "premise": [55638, 57316, 57318, 57325, 57983, 66646, 66828, 104741], "state_str": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : Archimedean 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\np : 𝕜\nhp : 0 < p\na x : 𝕜\nthis : ContinuousNeg 𝕜\n⊢ ContinuousWithinAt ((fun x => p - x) ∘ toIcoMod hp (-a) ∘ Neg.neg) (Iic x) x"} +{"state": [{"context": ["J : Type w", "K : Type u_1", "C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : HasZeroMorphisms C", "f g : J → C", "inst✝¹ : HasBiproduct f", "inst✝ : HasBiproduct g", "p : (b : J) → f b ⟶ g b", "j✝¹ j✝ : J"], "goal": "ι f j✝ ≫ map p ≫ π g j✝¹ = ι f j✝ ≫ map' p ≫ π g j✝¹"}], "premise": [92507, 94244, 96173, 96227, 96232, 96249, 96250], "state_str": "case w.w\nJ : Type w\nK : Type u_1\nC : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : HasZeroMorphisms C\nf g : J → C\ninst✝¹ : HasBiproduct f\ninst✝ : HasBiproduct g\np : (b : J) → f b ⟶ g b\nj✝¹ j✝ : J\n⊢ ι f j✝ ≫ map p ≫ π g j✝¹ = ι f j✝ ≫ map' p ≫ π g j✝¹"} +{"state": [{"context": ["J : Type w", "K : Type u_1", "C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : HasZeroMorphisms C", "f g : J → C", "inst✝¹ : HasBiproduct f", "inst✝ : HasBiproduct g", "p : (b : J) → f b ⟶ g b", "j✝¹ j✝ : J"], "goal": "ι f j✝ ≫ π f j✝¹ ≫ p j✝¹ = p j✝ ≫ ι g j✝ ≫ π g j✝¹"}], "premise": [96251], "state_str": "case w.w\nJ : Type w\nK : Type u_1\nC : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : HasZeroMorphisms C\nf g : J → C\ninst✝¹ : HasBiproduct f\ninst✝ : HasBiproduct g\np : (b : J) → f b ⟶ g b\nj✝¹ j✝ : J\n⊢ ι f j✝ ≫ π f j✝¹ ≫ p j✝¹ = p j✝ ≫ ι g j✝ ≫ π g j✝¹"} +{"state": [{"context": ["α : Type u", "β : Type v", "f : α → β", "p : α", "s : Set α", "hps : (of p).IsSupported s", "this✝ : DecidablePred s", "this : ∃ n, (lift fun a => if a ∈ s then 0 else X) (of p) = ↑n"], "goal": "p ∈ s"}], "premise": [76632], "state_str": "α : Type u\nβ : Type v\nf : α → β\np : α\ns : Set α\nhps : (of p).IsSupported s\nthis✝ : DecidablePred s\nthis : ∃ n, (lift fun a => if a ∈ s then 0 else X) (of p) = ↑n\n⊢ p ∈ s"} +{"state": [{"context": ["α : Type u", "β : Type v", "f : α → β", "p : α", "s : Set α", "hps : (of p).IsSupported s", "this✝ : DecidablePred s", "h : p ∉ s", "this : ∃ n, X = ↑n"], "goal": "False"}], "premise": [1690, 2198], "state_str": "case neg\nα : Type u\nβ : Type v\nf : α → β\np : α\ns : Set α\nhps : (of p).IsSupported s\nthis✝ : DecidablePred s\nh : p ∉ s\nthis : ∃ n, X = ↑n\n⊢ False"} +{"state": [{"context": ["α : Type u", "β : Type v", "f : α → β", "p : α", "s : Set α", "hps : (of p).IsSupported s", "this : DecidablePred s", "h : p ∉ s", "w : ℤ", "H : X = ↑w"], "goal": "1 = 0"}], "premise": [101360], "state_str": "case neg.intro\nα : Type u\nβ : Type v\nf : α → β\np : α\ns : Set α\nhps : (of p).IsSupported s\nthis : DecidablePred s\nh : p ∉ s\nw : ℤ\nH : X = ↑w\n⊢ 1 = 0"} +{"state": [{"context": ["α : Type u", "β : Type v", "f : α → β", "p : α", "s : Set α", "hps : (of p).IsSupported s", "this✝ : DecidablePred s", "h : p ∉ s", "w : ℤ", "H : X = C ↑w", "this : X.coeff 1 = (C w).coeff 1"], "goal": "1 = 0"}], "premise": [1737, 1738, 101276, 101280, 113018], "state_str": "case neg.intro\nα : Type u\nβ : Type v\nf : α → β\np : α\ns : Set α\nhps : (of p).IsSupported s\nthis✝ : DecidablePred s\nh : p ∉ s\nw : ℤ\nH : X = C ↑w\nthis : X.coeff 1 = (C w).coeff 1\n⊢ 1 = 0"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb"], "goal": "(fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)) =o[lt] fun t => ‖∫ (x : ℝ) in ua t..va t, 1 ∂μ‖ + ‖∫ (x : ℝ) in ub t..vb t, 1 ∂μ‖"}], "premise": [27278], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\n⊢ (fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)) =o[lt]\n fun t => ‖∫ (x : ℝ) in ua t..va t, 1 ∂μ‖ + ‖∫ (x : ℝ) in ub t..vb t, 1 ∂μ‖"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this : la'.IsMeasurablyGenerated"], "goal": "(fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)) =o[lt] fun t => ‖∫ (x : ℝ) in ua t..va t, 1 ∂μ‖ + ‖∫ (x : ℝ) in ub t..vb t, 1 ∂μ‖"}], "premise": [27278], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis : la'.IsMeasurablyGenerated\n⊢ (fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)) =o[lt]\n fun t => ‖∫ (x : ℝ) in ua t..va t, 1 ∂μ‖ + ‖∫ (x : ℝ) in ub t..vb t, 1 ∂μ‖"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated"], "goal": "(fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)) =o[lt] fun t => ‖∫ (x : ℝ) in ua t..va t, 1 ∂μ‖ + ‖∫ (x : ℝ) in ub t..vb t, 1 ∂μ‖"}], "premise": [16091, 27285, 43393, 43501], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\n⊢ (fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)) =o[lt]\n fun t => ‖∫ (x : ℝ) in ua t..va t, 1 ∂μ‖ + ‖∫ (x : ℝ) in ub t..vb t, 1 ∂μ‖"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated"], "goal": "(fun x => -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) + (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt] fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"}], "premise": [26331, 27281], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\n⊢ (fun x =>\n -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) +\n (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt]\n fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)"], "goal": "(fun x => -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) + (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt] fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"}], "premise": [16358, 16384, 26331, 27280, 27281], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\n⊢ (fun x =>\n -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) +\n (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt]\n fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)"], "goal": "(fun x => -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) + (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt] fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"}], "premise": [26331, 27281], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\n⊢ (fun x =>\n -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) +\n (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt]\n fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)", "B : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)"], "goal": "(fun x => -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) + (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt] fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"}], "premise": [16358, 16384, 26331, 27280, 27281], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\nB : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)\n⊢ (fun x =>\n -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) +\n (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt]\n fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)", "B : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)", "B' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)"], "goal": "(fun x => -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) + (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt] fun t => ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ - (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"}], "premise": [15889, 131585], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\nB : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)\nB' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)\n⊢ (fun x =>\n -(∫ (x : ℝ) in ua x..va x, f x ∂μ - ∫ (x : ℝ) in ua x..va x, ca ∂μ) +\n (∫ (x : ℝ) in ub x..vb x, f x ∂μ - ∫ (x : ℝ) in ub x..vb x, cb ∂μ)) =ᶠ[lt]\n fun t =>\n ∫ (x : ℝ) in va t..vb t, f x ∂μ - ∫ (x : ℝ) in ua t..ub t, f x ∂μ -\n (∫ (x : ℝ) in ub t..vb t, cb ∂μ - ∫ (x : ℝ) in ua t..va t, ca ∂μ)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)", "B : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)", "B' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)", "a✝ : ι", "ua_va : IntervalIntegrable f μ (ua a✝) (va a✝)", "a_ua : IntervalIntegrable f μ a (ua a✝)", "ub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)", "b_ub : IntervalIntegrable f μ b (ub a✝)"], "goal": "-(∫ (x : ℝ) in ua a✝..va a✝, f x ∂μ - ∫ (x : ℝ) in ua a✝..va a✝, ca ∂μ) + (∫ (x : ℝ) in ub a✝..vb a✝, f x ∂μ - ∫ (x : ℝ) in ub a✝..vb a✝, cb ∂μ) = ∫ (x : ℝ) in va a✝..vb a✝, f x ∂μ - ∫ (x : ℝ) in ua a✝..ub a✝, f x ∂μ - (∫ (x : ℝ) in ub a✝..vb a✝, cb ∂μ - ∫ (x : ℝ) in ua a✝..va a✝, ca ∂μ)"}], "premise": [26406], "state_str": "case h\nι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\nB : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)\nB' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)\na✝ : ι\nua_va : IntervalIntegrable f μ (ua a✝) (va a✝)\na_ua : IntervalIntegrable f μ a (ua a✝)\nub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)\nb_ub : IntervalIntegrable f μ b (ub a✝)\n⊢ -(∫ (x : ℝ) in ua a✝..va a✝, f x ∂μ - ∫ (x : ℝ) in ua a✝..va a✝, ca ∂μ) +\n (∫ (x : ℝ) in ub a✝..vb a✝, f x ∂μ - ∫ (x : ℝ) in ub a✝..vb a✝, cb ∂μ) =\n ∫ (x : ℝ) in va a✝..vb a✝, f x ∂μ - ∫ (x : ℝ) in ua a✝..ub a✝, f x ∂μ -\n (∫ (x : ℝ) in ub a✝..vb a✝, cb ∂μ - ∫ (x : ℝ) in ua a✝..va a✝, ca ∂μ)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)", "B : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)", "B' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)", "a✝ : ι", "ua_va : IntervalIntegrable f μ (ua a✝) (va a✝)", "a_ua : IntervalIntegrable f μ a (ua a✝)", "ub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)", "b_ub : IntervalIntegrable f μ b (ub a✝)"], "goal": "IntervalIntegrable f μ (ub a✝) (vb a✝)"}, {"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)", "B : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)", "B' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)", "a✝ : ι", "ua_va : IntervalIntegrable f μ (ua a✝) (va a✝)", "a_ua : IntervalIntegrable f μ a (ua a✝)", "ub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)", "b_ub : IntervalIntegrable f μ b (ub a✝)"], "goal": "IntervalIntegrable f μ (ua a✝) (va a✝)"}, {"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "f : ℝ → E", "a b : ℝ", "c ca cb : E", "l l' la la' lb lb' : Filter ℝ", "lt : Filter ι", "μ : Measure ℝ", "u v ua va ub vb : ι → ℝ", "inst✝³ : CompleteSpace E", "inst✝² : FTCFilter a la la'", "inst✝¹ : FTCFilter b lb lb'", "inst✝ : IsLocallyFiniteMeasure μ", "hab : IntervalIntegrable f μ a b", "hmeas_a : StronglyMeasurableAtFilter f la' μ", "hmeas_b : StronglyMeasurableAtFilter f lb' μ", "ha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)", "hb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)", "hua : Tendsto ua lt la", "hva : Tendsto va lt la", "hub : Tendsto ub lt lb", "hvb : Tendsto vb lt lb", "this✝ : la'.IsMeasurablyGenerated", "this : lb'.IsMeasurablyGenerated", "A : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)", "A' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)", "B : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)", "B' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)", "a✝ : ι", "ua_va : IntervalIntegrable f μ (ua a✝) (va a✝)", "a_ua : IntervalIntegrable f μ a (ua a✝)", "ub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)", "b_ub : IntervalIntegrable f μ b (ub a✝)"], "goal": "IntervalIntegrable f μ (ub a✝) (ua a✝)"}], "premise": [26289, 26291], "state_str": "case h.hab\nι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\nB : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)\nB' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)\na✝ : ι\nua_va : IntervalIntegrable f μ (ua a✝) (va a✝)\na_ua : IntervalIntegrable f μ a (ua a✝)\nub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)\nb_ub : IntervalIntegrable f μ b (ub a✝)\n⊢ IntervalIntegrable f μ (ub a✝) (vb a✝)\n\ncase h.hcd\nι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\nB : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)\nB' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)\na✝ : ι\nua_va : IntervalIntegrable f μ (ua a✝) (va a✝)\na_ua : IntervalIntegrable f μ a (ua a✝)\nub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)\nb_ub : IntervalIntegrable f μ b (ub a✝)\n⊢ IntervalIntegrable f μ (ua a✝) (va a✝)\n\ncase h.hac\nι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝³ : CompleteSpace E\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas_a : StronglyMeasurableAtFilter f la' μ\nhmeas_b : StronglyMeasurableAtFilter f lb' μ\nha_lim : Tendsto f (la' ⊓ ae μ) (𝓝 ca)\nhb_lim : Tendsto f (lb' ⊓ ae μ) (𝓝 cb)\nhua : Tendsto ua lt la\nhva : Tendsto va lt la\nhub : Tendsto ub lt lb\nhvb : Tendsto vb lt lb\nthis✝ : la'.IsMeasurablyGenerated\nthis : lb'.IsMeasurablyGenerated\nA : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ua t) (va t)\nA' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ a (ua t)\nB : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (ub t) (vb t)\nB' : ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ b (ub t)\na✝ : ι\nua_va : IntervalIntegrable f μ (ua a✝) (va a✝)\na_ua : IntervalIntegrable f μ a (ua a✝)\nub_vb : IntervalIntegrable f μ (ub a✝) (vb a✝)\nb_ub : IntervalIntegrable f μ b (ub a✝)\n⊢ IntervalIntegrable f μ (ub a✝) (ua a✝)"} +{"state": [{"context": ["R✝ : Type u_1", "inst✝¹⁰ : CommRing R✝", "M✝ : Submonoid R✝", "S✝ : Type u_2", "inst✝⁹ : CommRing S✝", "inst✝⁸ : Algebra R✝ S✝", "P : Type u_3", "inst✝⁷ : CommRing P", "A : Type u_4", "K : Type u_5", "inst✝⁶ : CommRing A", "inst✝⁵ : IsDomain A", "R : Type u_6", "inst✝⁴ : CommRing R", "M : Submonoid R", "S : Type u_7", "inst✝³ : CommRing S", "inst✝² : Nontrivial R", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "x : S"], "goal": "IsAlgebraic R x"}], "premise": [77600], "state_str": "case isAlgebraic\nR✝ : Type u_1\ninst✝¹⁰ : CommRing R✝\nM✝ : Submonoid R✝\nS✝ : Type u_2\ninst✝⁹ : CommRing S✝\ninst✝⁸ : Algebra R✝ S✝\nP : Type u_3\ninst✝⁷ : CommRing P\nA : Type u_4\nK : Type u_5\ninst✝⁶ : CommRing A\ninst✝⁵ : IsDomain A\nR : Type u_6\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_7\ninst✝³ : CommRing S\ninst✝² : Nontrivial R\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nx : S\n⊢ IsAlgebraic R x"} +{"state": [{"context": ["M✝ : Type u_1", "N : Type u_2", "P : Type u_3", "α : Type u_4", "M : Type u_5", "inst✝² : MulOneClass M", "inst✝¹ : SMul α M", "inst✝ : IsScalarTower α M M", "c : Con M", "a : α", "w x : M", "h : c w x"], "goal": "c (a • w) (a • x)"}], "premise": [7215, 118946, 145792], "state_str": "M✝ : Type u_1\nN : Type u_2\nP : Type u_3\nα : Type u_4\nM : Type u_5\ninst✝² : MulOneClass M\ninst✝¹ : SMul α M\ninst✝ : IsScalarTower α M M\nc : Con M\na : α\nw x : M\nh : c w x\n⊢ c (a • w) (a • x)"} +{"state": [{"context": ["α : Type u_1", "c : Set (Set α)", "hc : IsPartition c", "x : α", "t : Set α", "ht : (fun b => b ∈ c ∧ x ∈ b) t ∧ ∀ (y : Set α), (fun b => b ∈ c ∧ x ∈ b) y → y = t"], "goal": "t ∈ c ∧ x ∈ t"}], "premise": [70128], "state_str": "α : Type u_1\nc : Set (Set α)\nhc : IsPartition c\nx : α\nt : Set α\nht : (fun b => b ∈ c ∧ x ∈ b) t ∧ ∀ (y : Set α), (fun b => b ∈ c ∧ x ∈ b) y → y = t\n⊢ t ∈ c ∧ x ∈ t"} +{"state": [{"context": ["α : Type u_1", "c : Set (Set α)", "hc : IsPartition c", "x : α", "t : Set α", "ht : (t ∈ c ∧ x ∈ t) ∧ ∀ (y : Set α), y ∈ c ∧ x ∈ y → y = t"], "goal": "t ∈ c ∧ x ∈ t"}], "premise": [1101, 1674], "state_str": "α : Type u_1\nc : Set (Set α)\nhc : IsPartition c\nx : α\nt : Set α\nht : (t ∈ c ∧ x ∈ t) ∧ ∀ (y : Set α), y ∈ c ∧ x ∈ y → y = t\n⊢ t ∈ c ∧ x ∈ t"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "inst✝² : DecidableEq ι", "inst✝¹ : Fintype ι", "inst✝ : CommMonoid α", "s : Finset ι", "f : ι → α"], "goal": "(∏ i : ι, if i ∈ s then f i else 1) = ∏ i ∈ s, f i"}], "premise": [127031, 139122, 140869], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ninst✝² : DecidableEq ι\ninst✝¹ : Fintype ι\ninst✝ : CommMonoid α\ns : Finset ι\nf : ι → α\n⊢ (∏ i : ι, if i ∈ s then f i else 1) = ∏ i ∈ s, f i"} +{"state": [{"context": ["R : Type u", "a b : R", "m n✝ : ℕ", "inst✝ : Semiring R", "p q : R[X]", "n : ℕ"], "goal": "(X ^ n).toFinsupp = Finsupp.single n 1"}], "premise": [101228, 101313], "state_str": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\n⊢ (X ^ n).toFinsupp = Finsupp.single n 1"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "p✝ : α → Prop", "inst✝¹ : DecidablePred p✝", "f : α → β", "s : Multiset α", "p : β → Prop", "inst✝ : DecidablePred p"], "goal": "countP p (map f s) = card (filter (fun a => p (f a)) s)"}], "premise": [137824], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\np✝ : α → Prop\ninst✝¹ : DecidablePred p✝\nf : α → β\ns : Multiset α\np : β → Prop\ninst✝ : DecidablePred p\n⊢ countP p (map f s) = card (filter (fun a => p (f a)) s)"} +{"state": [{"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x"], "goal": "x ^ y < 1 ↔ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y"}], "premise": [1713, 37890, 37893, 39997, 106931, 149309], "state_str": "x y z : ℝ\nn : ℕ\nhx : 0 < x\n⊢ x ^ y < 1 ↔ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y"} +{"state": [{"context": [], "goal": "∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (n + 1))"}], "premise": [39168], "state_str": "⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (n + 1))"} +{"state": [{"context": ["d : ℝ", "h : ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (n + 1)) ≤ d"], "goal": "∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (n + 1))"}], "premise": [1673, 105728], "state_str": "case intro\nd : ℝ\nh : ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (n + 1)) ≤ d\n⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (n + 1))"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "γ : Type x", "f : α → β", "s : Set β", "h : s.Finite", "hf : ∀ b ∈ s, (f ⁻¹' {b}).Finite"], "goal": "(f ⁻¹' s).Finite"}], "premise": [135520], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nf : α → β\ns : Set β\nh : s.Finite\nhf : ∀ b ∈ s, (f ⁻¹' {b}).Finite\n⊢ (f ⁻¹' s).Finite"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "γ : Type x", "f : α → β", "s : Set β", "h : s.Finite", "hf : ∀ b ∈ s, (f ⁻¹' {b}).Finite"], "goal": "(⋃ y ∈ s, f ⁻¹' {y}).Finite"}], "premise": [135054], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nf : α → β\ns : Set β\nh : s.Finite\nhf : ∀ b ∈ s, (f ⁻¹' {b}).Finite\n⊢ (⋃ y ∈ s, f ⁻¹' {y}).Finite"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝ : Category.{v₂, u₂} D", "F G : (C ⥤ D)ᵒᵖ", "f : F ⟶ G"], "goal": "f ≫ (NatIso.ofComponents (fun X => Iso.refl ((unop G).obj X)) ⋯).hom.op = (NatIso.ofComponents (fun X => Iso.refl ((unop F).obj X)) ⋯).hom.op ≫ Quiver.Hom.op { app := fun X => f.unop.app X, naturality := ⋯ }"}], "premise": [89631], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝ : Category.{v₂, u₂} D\nF G : (C ⥤ D)ᵒᵖ\nf : F ⟶ G\n⊢ f ≫ (NatIso.ofComponents (fun X => Iso.refl ((unop G).obj X)) ⋯).hom.op =\n (NatIso.ofComponents (fun X => Iso.refl ((unop F).obj X)) ⋯).hom.op ≫\n Quiver.Hom.op { app := fun X => f.unop.app X, naturality := ⋯ }"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "inst✝³ : SemilatticeInf α", "inst✝² : OrderBot α", "inst✝¹ : SemilatticeInf β", "inst✝ : OrderBot β", "a b : α", "f : α ≃o β", "ha : Disjoint a b"], "goal": "Disjoint (f a) (f b)"}], "premise": [11122, 11127, 13482], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\ninst✝³ : SemilatticeInf α\ninst✝² : OrderBot α\ninst✝¹ : SemilatticeInf β\ninst✝ : OrderBot β\na b : α\nf : α ≃o β\nha : Disjoint a b\n⊢ Disjoint (f a) (f b)"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "inst✝³ : SemilatticeInf α", "inst✝² : OrderBot α", "inst✝¹ : SemilatticeInf β", "inst✝ : OrderBot β", "a b : α", "f : α ≃o β", "ha : Disjoint a b"], "goal": "f (a ⊓ b) ≤ f ⊥"}], "premise": [11105, 13484], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\ninst✝³ : SemilatticeInf α\ninst✝² : OrderBot α\ninst✝¹ : SemilatticeInf β\ninst✝ : OrderBot β\na b : α\nf : α ≃o β\nha : Disjoint a b\n⊢ f (a ⊓ b) ≤ f ⊥"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "F : Type u_3", "K : Type u_4", "P Q : Cubic R", "a b c d a' b' c' d' : R", "inst✝ : Semiring R", "ha : P.a = 0", "hb : P.b ≠ 0"], "goal": "P.toPoly.degree = 2"}], "premise": [102287, 112044], "state_str": "R : Type u_1\nS : Type u_2\nF : Type u_3\nK : Type u_4\nP Q : Cubic R\na b c d a' b' c' d' : R\ninst✝ : Semiring R\nha : P.a = 0\nhb : P.b ≠ 0\n⊢ P.toPoly.degree = 2"} +{"state": [{"context": ["f : ℝ → ℂ", "hf : ContinuousOn f (Icc 0 (π / 2))"], "goal": "Tendsto (fun n => (∫ (x : ℝ) in 0 ..π / 2, ↑(cos x) ^ n * f x) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n)) atTop (𝓝 (f 0))"}], "premise": [26334, 28328, 38517, 117883, 148328, 148388, 148394], "state_str": "f : ℝ → ℂ\nhf : ContinuousOn f (Icc 0 (π / 2))\n⊢ Tendsto (fun n => (∫ (x : ℝ) in 0 ..π / 2, ↑(cos x) ^ n * f x) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n)) atTop (𝓝 (f 0))"} +{"state": [{"context": ["f : ℝ → ℂ", "hf : ContinuousOn f (Icc 0 (π / 2))"], "goal": "Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume) atTop (𝓝 (f 0))"}], "premise": [1690, 2106, 2107, 14271, 14298, 38607], "state_str": "f : ℝ → ℂ\nhf : ContinuousOn f (Icc 0 (π / 2))\n⊢ Tendsto\n (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume)\n atTop (𝓝 (f 0))"} +{"state": [{"context": ["f : ℝ → ℂ", "hf : ContinuousOn f (Icc 0 (π / 2))", "c_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0"], "goal": "Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume) atTop (𝓝 (f 0))"}], "premise": [20217, 38517, 38588, 104746], "state_str": "f : ℝ → ℂ\nhf : ContinuousOn f (Icc 0 (π / 2))\nc_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0\n⊢ Tendsto\n (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume)\n atTop (𝓝 (f 0))"} +{"state": [{"context": ["f : ℝ → ℂ", "hf : ContinuousOn f (Icc 0 (π / 2))", "c_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0", "c_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x"], "goal": "Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume) atTop (𝓝 (f 0))"}], "premise": [101702, 149222], "state_str": "f : ℝ → ℂ\nhf : ContinuousOn f (Icc 0 (π / 2))\nc_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0\nc_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x\n⊢ Tendsto\n (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume)\n atTop (𝓝 (f 0))"} +{"state": [{"context": ["f : ℝ → ℂ", "hf : ContinuousOn f (Icc 0 (π / 2))", "c_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0", "c_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x", "c_zero_pos : 0 < cos 0"], "goal": "Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume) atTop (𝓝 (f 0))"}], "premise": [20167, 38517, 56354, 56361], "state_str": "f : ℝ → ℂ\nhf : ContinuousOn f (Icc 0 (π / 2))\nc_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0\nc_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x\nc_zero_pos : 0 < cos 0\n⊢ Tendsto\n (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume)\n atTop (𝓝 (f 0))"} +{"state": [{"context": ["f : ℝ → ℂ", "hf : ContinuousOn f (Icc 0 (π / 2))", "c_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0", "c_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x", "c_zero_pos : 0 < cos 0", "zero_mem : 0 ∈ closure (interior (Icc 0 (π / 2)))"], "goal": "Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume) atTop (𝓝 (f 0))"}], "premise": [26740, 38505, 63094], "state_str": "f : ℝ → ℂ\nhf : ContinuousOn f (Icc 0 (π / 2))\nc_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0\nc_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x\nc_zero_pos : 0 < cos 0\nzero_mem : 0 ∈ closure (interior (Icc 0 (π / 2)))\n⊢ Tendsto\n (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n ∂volume)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x ∂volume)\n atTop (𝓝 (f 0))"} +{"state": [{"context": ["R : Type u", "L : Type v", "L' : Type w₂", "M : Type w", "M' : Type w₁", "inst✝¹² : CommRing R", "inst✝¹¹ : LieRing L", "inst✝¹⁰ : LieAlgebra R L", "inst✝⁹ : LieRing L'", "inst✝⁸ : LieAlgebra R L'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M'", "inst✝² : Module R M'", "inst✝¹ : LieRingModule L M'", "inst✝ : LieModule R L M'", "f : L →ₗ⁅R⁆ L'", "I : LieIdeal R L", "J : LieIdeal R L'", "h : Function.Surjective ⇑f"], "goal": "f.IsIdealMorphism"}], "premise": [1674, 109361, 109377, 109390, 109391], "state_str": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nh : Function.Surjective ⇑f\n⊢ f.IsIdealMorphism"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "a✝ a : α", "h : 0 < a", "b c : α"], "goal": "(fun x => a * x) '' Ioo b c = Ioo (a * b) (a * c)"}], "premise": [119707, 134597], "state_str": "α : Type u_1\ninst✝ : LinearOrderedField α\na✝ a : α\nh : 0 < a\nb c : α\n⊢ (fun x => a * x) '' Ioo b c = Ioo (a * b) (a * c)"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "p q : R[X]", "hq : q.Monic"], "goal": "p %ₘ q = 0 ↔ (Ideal.Quotient.mk (Ideal.span {q})) p = 0"}], "premise": [1713, 80143, 103308], "state_str": "R : Type u_1\ninst✝ : CommRing R\np q : R[X]\nhq : q.Monic\n⊢ p %ₘ q = 0 ↔ (Ideal.Quotient.mk (Ideal.span {q})) p = 0"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝¹⁸ : CommSemiring R", "inst✝¹⁷ : AddCommMonoid M", "inst✝¹⁶ : Module R M", "R₁ : Type u_3", "M₁ : Type u_4", "inst✝¹⁵ : CommRing R₁", "inst✝¹⁴ : AddCommGroup M₁", "inst✝¹³ : Module R₁ M₁", "V : Type u_5", "K : Type u_6", "inst✝¹² : Field K", "inst✝¹¹ : AddCommGroup V", "inst✝¹⁰ : Module K V", "M'✝ : Type u_7", "M''✝ : Type u_8", "inst✝⁹ : AddCommMonoid M'✝", "inst✝⁸ : AddCommMonoid M''✝", "inst✝⁷ : Module R M'✝", "inst✝⁶ : Module R M''✝", "B : BilinForm R M", "B₁ : BilinForm R₁ M₁", "F : BilinForm R M", "M' : Type u_9", "inst✝⁵ : AddCommMonoid M'", "inst✝⁴ : Module R M'", "B' : BilinForm R M'", "f✝ f'✝ : M →ₗ[R] M'", "g✝ g'✝ : M' →ₗ[R] M", "M₁' : Type u_10", "inst✝³ : AddCommGroup M₁'", "inst✝² : Module R₁ M₁'", "B₁' : BilinForm R₁ M₁'", "f₁ f₁' : M₁ →ₗ[R₁] M₁'", "g₁ g₁' : M₁' →ₗ[R₁] M₁", "B₂' : BilinForm R M'", "f₂ f₂' : M →ₗ[R] M'", "g₂ g₂' : M' →ₗ[R] M", "M'' : Type u_11", "inst✝¹ : AddCommMonoid M''", "inst✝ : Module R M''", "B'' : BilinForm R M''", "f g f' g' : Module.End R M", "h : B.IsAdjointPair B f g", "h' : B.IsAdjointPair B f' g'", "x y : M"], "goal": "(B ((f * f') x)) y = (B x) ((g' * g) y)"}], "premise": [109196], "state_str": "R : Type u_1\nM : Type u_2\ninst✝¹⁸ : CommSemiring R\ninst✝¹⁷ : AddCommMonoid M\ninst✝¹⁶ : Module R M\nR₁ : Type u_3\nM₁ : Type u_4\ninst✝¹⁵ : CommRing R₁\ninst✝¹⁴ : AddCommGroup M₁\ninst✝¹³ : Module R₁ M₁\nV : Type u_5\nK : Type u_6\ninst✝¹² : Field K\ninst✝¹¹ : AddCommGroup V\ninst✝¹⁰ : Module K V\nM'✝ : Type u_7\nM''✝ : Type u_8\ninst✝⁹ : AddCommMonoid M'✝\ninst✝⁸ : AddCommMonoid M''✝\ninst✝⁷ : Module R M'✝\ninst✝⁶ : Module R M''✝\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nF : BilinForm R M\nM' : Type u_9\ninst✝⁵ : AddCommMonoid M'\ninst✝⁴ : Module R M'\nB' : BilinForm R M'\nf✝ f'✝ : M →ₗ[R] M'\ng✝ g'✝ : M' →ₗ[R] M\nM₁' : Type u_10\ninst✝³ : AddCommGroup M₁'\ninst✝² : Module R₁ M₁'\nB₁' : BilinForm R₁ M₁'\nf₁ f₁' : M₁ →ₗ[R₁] M₁'\ng₁ g₁' : M₁' →ₗ[R₁] M₁\nB₂' : BilinForm R M'\nf₂ f₂' : M →ₗ[R] M'\ng₂ g₂' : M' →ₗ[R] M\nM'' : Type u_11\ninst✝¹ : AddCommMonoid M''\ninst✝ : Module R M''\nB'' : BilinForm R M''\nf g f' g' : Module.End R M\nh : B.IsAdjointPair B f g\nh' : B.IsAdjointPair B f' g'\nx y : M\n⊢ (B ((f * f') x)) y = (B x) ((g' * g) y)"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "α : Type u_3", "inst✝³ : Fintype n", "inst✝² : DecidableEq n", "inst✝¹ : Semiring α", "A : Matrix m n α", "B : Matrix n n α", "inst✝ : Invertible B"], "goal": "A * B * ⅟B = A"}], "premise": [118833, 142258, 142263], "state_str": "m : Type u_1\nn : Type u_2\nα : Type u_3\ninst✝³ : Fintype n\ninst✝² : DecidableEq n\ninst✝¹ : Semiring α\nA : Matrix m n α\nB : Matrix n n α\ninst✝ : Invertible B\n⊢ A * B * ⅟B = A"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝¹ : DecidableEq α", "inst✝ : Fintype α", "s : Finset α"], "goal": "s.card + sᶜ.card = Fintype.card α"}], "premise": [3890, 3891, 141354, 141359], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ns : Finset α\n⊢ s.card + sᶜ.card = Fintype.card α"} +{"state": [{"context": ["N✝ : ℕ", "g : ConjAct SL(2, ℤ)", "Γ : Subgroup SL(2, ℤ)", "N : ℕ+", "HN : Gamma ↑N ≤ Γ"], "goal": "Gamma ↑N ≤ g • Γ"}], "premise": [21493, 119082], "state_str": "case intro\nN✝ : ℕ\ng : ConjAct SL(2, ℤ)\nΓ : Subgroup SL(2, ℤ)\nN : ℕ+\nHN : Gamma ↑N ≤ Γ\n⊢ Gamma ↑N ≤ g • Γ"} +{"state": [{"context": ["R : Type u", "inst✝⁴ : CommRing R", "S : Type v", "inst✝³ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "inst✝² : Algebra R S", "inst✝¹ : Algebra (R ⧸ p) (S ⧸ P)", "inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)", "hp : p.IsMaximal"], "goal": "inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P)"}], "premise": [24060, 86069], "state_str": "R : Type u\ninst✝⁴ : CommRing R\nS : Type v\ninst✝³ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\ninst✝² : Algebra R S\ninst✝¹ : Algebra (R ⧸ p) (S ⧸ P)\ninst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)\nhp : p.IsMaximal\n⊢ inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P)"} +{"state": [{"context": ["R : Type u", "inst✝⁴ : CommRing R", "S : Type v", "inst✝³ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "inst✝² : Algebra R S", "inst✝¹ : Algebra (R ⧸ p) (S ⧸ P)", "inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)", "hp : p.IsMaximal", "a✝ : Nontrivial (S ⧸ P)"], "goal": "inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P)"}], "premise": [80927, 115860], "state_str": "R : Type u\ninst✝⁴ : CommRing R\nS : Type v\ninst✝³ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\ninst✝² : Algebra R S\ninst✝¹ : Algebra (R ⧸ p) (S ⧸ P)\ninst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)\nhp : p.IsMaximal\na✝ : Nontrivial (S ⧸ P)\n⊢ inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P)"} +{"state": [{"context": ["R : Type u", "inst✝⁴ : CommRing R", "S : Type v", "inst✝³ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "inst✝² : Algebra R S", "inst✝¹ : Algebra (R ⧸ p) (S ⧸ P)", "inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)", "hp : p.IsMaximal", "a✝ : Nontrivial (S ⧸ P)", "this : comap (algebraMap R S) P = p"], "goal": "inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P)"}], "premise": [1739], "state_str": "R : Type u\ninst✝⁴ : CommRing R\nS : Type v\ninst✝³ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\ninst✝² : Algebra R S\ninst✝¹ : Algebra (R ⧸ p) (S ⧸ P)\ninst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)\nhp : p.IsMaximal\na✝ : Nontrivial (S ⧸ P)\nthis : comap (algebraMap R S) P = p\n⊢ inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P)"} +{"state": [{"context": ["R : Type u", "inst✝⁴ : CommRing R", "S : Type v", "inst✝³ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "inst✝² : Algebra R S", "inst✝¹ : Algebra (R ⧸ p) (S ⧸ P)", "inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)", "hp : p.IsMaximal", "a✝ : Nontrivial (S ⧸ P)", "this : comap (algebraMap R S) P = p"], "goal": "(Quotient.lift p ((Quotient.mk P).comp (algebraMap R S)) ⋯).toAlgebra = inst✝¹"}], "premise": [121164, 127818], "state_str": "case h.e_5.h.h.e_5.h\nR : Type u\ninst✝⁴ : CommRing R\nS : Type v\ninst✝³ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\ninst✝² : Algebra R S\ninst✝¹ : Algebra (R ⧸ p) (S ⧸ P)\ninst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)\nhp : p.IsMaximal\na✝ : Nontrivial (S ⧸ P)\nthis : comap (algebraMap R S) P = p\n⊢ (Quotient.lift p ((Quotient.mk P).comp (algebraMap R S)) ⋯).toAlgebra = inst✝¹"} +{"state": [{"context": ["R : Type u", "inst✝⁴ : CommRing R", "S : Type v", "inst✝³ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "inst✝² : Algebra R S", "inst✝¹ : Algebra (R ⧸ p) (S ⧸ P)", "inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)", "hp : p.IsMaximal", "a✝ : Nontrivial (S ⧸ P)", "this : comap (algebraMap R S) P = p", "x' : R ⧸ p", "x : R"], "goal": "(Quotient.lift p ((Quotient.mk P).comp (algebraMap R S)) ⋯) ((Quotient.mk p) x) = (algebraMap (R ⧸ p) (S ⧸ P)) ((Quotient.mk p) x)"}], "premise": [80156, 81189, 121201, 121202], "state_str": "case h.e_5.h.h.e_5.h\nR : Type u\ninst✝⁴ : CommRing R\nS : Type v\ninst✝³ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\ninst✝² : Algebra R S\ninst✝¹ : Algebra (R ⧸ p) (S ⧸ P)\ninst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P)\nhp : p.IsMaximal\na✝ : Nontrivial (S ⧸ P)\nthis : comap (algebraMap R S) P = p\nx' : R ⧸ p\nx : R\n⊢ (Quotient.lift p ((Quotient.mk P).comp (algebraMap R S)) ⋯) ((Quotient.mk p) x) =\n (algebraMap (R ⧸ p) (S ⧸ P)) ((Quotient.mk p) x)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "k n : ℕ", "hk : k ≠ 0", "h : k ≤ n"], "goal": "∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹"}], "premise": [145198], "state_str": "α : Type u_1\ninst✝ : LinearOrderedField α\nk n : ℕ\nhk : k ≠ 0\nh : k ≤ n\n⊢ ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "k n✝ : ℕ", "hk : k ≠ 0", "h : k ≤ n✝", "n : ℕ", "hn : k ≤ n", "IH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹"], "goal": "∑ i ∈ Ioc k (n + 1), (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑(n + 1))⁻¹"}], "premise": [124720], "state_str": "case refine_2\nα : Type u_1\ninst✝ : LinearOrderedField α\nk n✝ : ℕ\nhk : k ≠ 0\nh : k ≤ n✝\nn : ℕ\nhn : k ≤ n\nIH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹\n⊢ ∑ i ∈ Ioc k (n + 1), (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑(n + 1))⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "k n✝ : ℕ", "hk : k ≠ 0", "h : k ≤ n✝", "n : ℕ", "hn : k ≤ n", "IH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹"], "goal": "∑ k ∈ Ioc k n, (↑k ^ 2)⁻¹ + (↑(n + 1) ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑(n + 1))⁻¹"}], "premise": [14272, 103917], "state_str": "case refine_2\nα : Type u_1\ninst✝ : LinearOrderedField α\nk n✝ : ℕ\nhk : k ≠ 0\nh : k ≤ n✝\nn : ℕ\nhn : k ≤ n\nIH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹\n⊢ ∑ k ∈ Ioc k n, (↑k ^ 2)⁻¹ + (↑(n + 1) ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑(n + 1))⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "k n✝ : ℕ", "hk : k ≠ 0", "h : k ≤ n✝", "n : ℕ", "hn : k ≤ n", "IH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹"], "goal": "(↑k)⁻¹ - (↑n)⁻¹ + (↑(n + 1) ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑(n + 1))⁻¹"}], "premise": [103977, 105594, 105630, 119704, 119729, 119789, 143125, 143126], "state_str": "case refine_2\nα : Type u_1\ninst✝ : LinearOrderedField α\nk n✝ : ℕ\nhk : k ≠ 0\nh : k ≤ n✝\nn : ℕ\nhn : k ≤ n\nIH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹\n⊢ (↑k)⁻¹ - (↑n)⁻¹ + (↑(n + 1) ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑(n + 1))⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "k n✝ : ℕ", "hk : k ≠ 0", "h : k ≤ n✝", "n : ℕ", "hn : k ≤ n", "IH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹"], "goal": "((↑n + 1) ^ 2)⁻¹ + (↑n + 1)⁻¹ ≤ (↑n)⁻¹"}], "premise": [18824], "state_str": "case refine_2\nα : Type u_1\ninst✝ : LinearOrderedField α\nk n✝ : ℕ\nhk : k ≠ 0\nh : k ≤ n✝\nn : ℕ\nhn : k ≤ n\nIH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹\n⊢ ((↑n + 1) ^ 2)⁻¹ + (↑n + 1)⁻¹ ≤ (↑n)⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedField α", "k n✝ : ℕ", "hk : k ≠ 0", "h : k ≤ n✝", "n : ℕ", "hn : k ≤ n", "IH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹", "A : 0 < ↑n", "B : 0 < ↑n + 1"], "goal": "(↑n + 1 + (↑n + 1) ^ 2) / ((↑n + 1) ^ 2 * (↑n + 1)) ≤ 1 / ↑n"}], "premise": [105706, 106079], "state_str": "case refine_2\nα : Type u_1\ninst✝ : LinearOrderedField α\nk n✝ : ℕ\nhk : k ≠ 0\nh : k ≤ n✝\nn : ℕ\nhn : k ≤ n\nIH : ∑ i ∈ Ioc k n, (↑i ^ 2)⁻¹ ≤ (↑k)⁻¹ - (↑n)⁻¹\nA : 0 < ↑n\nB : 0 < ↑n + 1\n⊢ (↑n + 1 + (↑n + 1) ^ 2) / ((↑n + 1) ^ 2 * (↑n + 1)) ≤ 1 / ↑n"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "κ : Type u_7", "inst✝ : TopologicalSpace X", "T : (i : ι) → TopologicalSpace (π i)", "f : X → (i : ι) → π i", "I : Set ι", "s : (i : ι) → Set (π i)", "a : (i : ι) → π i", "hs : I.pi s ∈ 𝓝 a", "i : ι", "hi : i ∈ I"], "goal": "s i ∈ 𝓝 (a i)"}], "premise": [66542], "state_str": "X : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\nι : Type u_5\nπ : ι → Type u_6\nκ : Type u_7\ninst✝ : TopologicalSpace X\nT : (i : ι) → TopologicalSpace (π i)\nf : X → (i : ι) → π i\nI : Set ι\ns : (i : ι) → Set (π i)\na : (i : ι) → π i\nhs : I.pi s ∈ 𝓝 a\ni : ι\nhi : i ∈ I\n⊢ s i ∈ 𝓝 (a i)"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "κ : Type u_7", "inst✝ : TopologicalSpace X", "T : (i : ι) → TopologicalSpace (π i)", "f : X → (i : ι) → π i", "I : Set ι", "s : (i : ι) → Set (π i)", "a : (i : ι) → π i", "hs : I.pi s ∈ Filter.pi fun i => 𝓝 (a i)", "i : ι", "hi : i ∈ I"], "goal": "s i ∈ 𝓝 (a i)"}], "premise": [11490], "state_str": "X : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\nι : Type u_5\nπ : ι → Type u_6\nκ : Type u_7\ninst✝ : TopologicalSpace X\nT : (i : ι) → TopologicalSpace (π i)\nf : X → (i : ι) → π i\nI : Set ι\ns : (i : ι) → Set (π i)\na : (i : ι) → π i\nhs : I.pi s ∈ Filter.pi fun i => 𝓝 (a i)\ni : ι\nhi : i ∈ I\n⊢ s i ∈ 𝓝 (a i)"} +{"state": [{"context": ["K : Type u_1", "inst✝² : Field K", "inst✝¹ inst✝ : NumberField K", "a₁✝ a₂✝ : Additive ((𝓞 K)ˣ ⧸ torsion K)", "h : (MonoidHom.toAdditive' ((QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))).comp (QuotientGroup.quotientMulEquivOfEq ⋯).toMonoidHom)) a₁✝ = (MonoidHom.toAdditive' ((QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))).comp (QuotientGroup.quotientMulEquivOfEq ⋯).toMonoidHom)) a₂✝"], "goal": "a₁✝ = a₂✝"}], "premise": [1670, 117181, 119966, 120084, 128619], "state_str": "K : Type u_1\ninst✝² : Field K\ninst✝¹ inst✝ : NumberField K\na₁✝ a₂✝ : Additive ((𝓞 K)ˣ ⧸ torsion K)\nh :\n (MonoidHom.toAdditive'\n ((QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))).comp\n (QuotientGroup.quotientMulEquivOfEq ⋯).toMonoidHom))\n a₁✝ =\n (MonoidHom.toAdditive'\n ((QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))).comp\n (QuotientGroup.quotientMulEquivOfEq ⋯).toMonoidHom))\n a₂✝\n⊢ a₁✝ = a₂✝"} +{"state": [{"context": ["K : Type u_1", "inst✝² : Field K", "inst✝¹ inst✝ : NumberField K", "a₁✝ a₂✝ : Additive ((𝓞 K)ˣ ⧸ torsion K)", "h : (QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))) ((QuotientGroup.quotientMulEquivOfEq ⋯) (Additive.toMul a₁✝)) = (QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))) ((QuotientGroup.quotientMulEquivOfEq ⋯) (Additive.toMul a₂✝))"], "goal": "a₁✝ = a₂✝"}], "premise": [1673, 10396, 71387, 128619], "state_str": "K : Type u_1\ninst✝² : Field K\ninst✝¹ inst✝ : NumberField K\na₁✝ a₂✝ : Additive ((𝓞 K)ˣ ⧸ torsion K)\nh :\n (QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K)))\n ((QuotientGroup.quotientMulEquivOfEq ⋯) (Additive.toMul a₁✝)) =\n (QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K)))\n ((QuotientGroup.quotientMulEquivOfEq ⋯) (Additive.toMul a₂✝))\n⊢ a₁✝ = a₂✝"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ Q₀ : PresheafOfModules R₀", "N : SheafOfModules R", "f : P₀ ⟶ Q₀", "g : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N"], "goal": "((fun x x_1 => sheafificationHomEquiv α) P₀ N).symm (f ≫ g) = (sheafification α).map f ≫ ((fun x x_1 => sheafificationHomEquiv α) Q₀ N).symm g"}], "premise": [100147], "state_str": "C : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ Q₀ : PresheafOfModules R₀\nN : SheafOfModules R\nf : P₀ ⟶ Q₀\ng : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N\n⊢ ((fun x x_1 => sheafificationHomEquiv α) P₀ N).symm (f ≫ g) =\n (sheafification α).map f ≫ ((fun x x_1 => sheafificationHomEquiv α) Q₀ N).symm g"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ Q₀ : PresheafOfModules R₀", "N : SheafOfModules R", "f : P₀ ⟶ Q₀", "g : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N"], "goal": "(SheafOfModules.toSheaf R).map (((fun x x_1 => sheafificationHomEquiv α) P₀ N).symm (f ≫ g)) = (SheafOfModules.toSheaf R).map ((sheafification α).map f ≫ ((fun x x_1 => sheafificationHomEquiv α) Q₀ N).symm g)"}], "premise": [99919], "state_str": "case a\nC : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ Q₀ : PresheafOfModules R₀\nN : SheafOfModules R\nf : P₀ ⟶ Q₀\ng : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N\n⊢ (SheafOfModules.toSheaf R).map (((fun x x_1 => sheafificationHomEquiv α) P₀ N).symm (f ≫ g)) =\n (SheafOfModules.toSheaf R).map ((sheafification α).map f ≫ ((fun x x_1 => sheafificationHomEquiv α) Q₀ N).symm g)"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ Q₀ : PresheafOfModules R₀", "N : SheafOfModules R", "f : P₀ ⟶ Q₀", "g : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N"], "goal": "(SheafOfModules.toSheaf R).map (((fun x x_1 => sheafificationHomEquiv α) P₀ N).symm (f ≫ g)) = (SheafOfModules.toSheaf R).map ((sheafification α).map f) ≫ (SheafOfModules.toSheaf R).map (((fun x x_1 => sheafificationHomEquiv α) Q₀ N).symm g)"}], "premise": [112653], "state_str": "case a\nC : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ Q₀ : PresheafOfModules R₀\nN : SheafOfModules R\nf : P₀ ⟶ Q₀\ng : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N\n⊢ (SheafOfModules.toSheaf R).map (((fun x x_1 => sheafificationHomEquiv α) P₀ N).symm (f ≫ g)) =\n (SheafOfModules.toSheaf R).map ((sheafification α).map f) ≫\n (SheafOfModules.toSheaf R).map (((fun x x_1 => sheafificationHomEquiv α) Q₀ N).symm g)"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ Q₀ : PresheafOfModules R₀", "N : SheafOfModules R", "f : P₀ ⟶ Q₀", "g : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N"], "goal": "((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj N)).symm (f ≫ g).hom = (SheafOfModules.toSheaf R).map ((sheafification α).map f) ≫ ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv Q₀.presheaf ((SheafOfModules.toSheaf R).obj N)).symm g.hom"}], "premise": [95793], "state_str": "case a\nC : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ Q₀ : PresheafOfModules R₀\nN : SheafOfModules R\nf : P₀ ⟶ Q₀\ng : Q₀ ⟶ (SheafOfModules.forget R ⋙ restrictScalars α).obj N\n⊢ ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj N)).symm\n (f ≫ g).hom =\n (SheafOfModules.toSheaf R).map ((sheafification α).map f) ≫\n ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv Q₀.presheaf\n ((SheafOfModules.toSheaf R).obj N)).symm\n g.hom"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ : PresheafOfModules R₀", "M N : SheafOfModules R", "f : (sheafification α).obj P₀ ⟶ M", "g : M ⟶ N"], "goal": "((fun x x_1 => sheafificationHomEquiv α) P₀ N) (f ≫ g) = ((fun x x_1 => sheafificationHomEquiv α) P₀ M) f ≫ (SheafOfModules.forget R ⋙ restrictScalars α).map g"}], "premise": [100147], "state_str": "C : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ : PresheafOfModules R₀\nM N : SheafOfModules R\nf : (sheafification α).obj P₀ ⟶ M\ng : M ⟶ N\n⊢ ((fun x x_1 => sheafificationHomEquiv α) P₀ N) (f ≫ g) =\n ((fun x x_1 => sheafificationHomEquiv α) P₀ M) f ≫ (SheafOfModules.forget R ⋙ restrictScalars α).map g"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ : PresheafOfModules R₀", "M N : SheafOfModules R", "f : (sheafification α).obj P₀ ⟶ M", "g : M ⟶ N"], "goal": "((sheafificationHomEquiv α) (f ≫ g)).hom = ((sheafificationHomEquiv α) f).hom ≫ g.val.hom"}], "premise": [112652], "state_str": "case a\nC : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ : PresheafOfModules R₀\nM N : SheafOfModules R\nf : (sheafification α).obj P₀ ⟶ M\ng : M ⟶ N\n⊢ ((sheafificationHomEquiv α) (f ≫ g)).hom = ((sheafificationHomEquiv α) f).hom ≫ g.val.hom"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ : PresheafOfModules R₀", "M N : SheafOfModules R", "f : (sheafification α).obj P₀ ⟶ M", "g : M ⟶ N"], "goal": "((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj N)) ((SheafOfModules.toSheaf R).map (f ≫ g)) = ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj M)) ((SheafOfModules.toSheaf R).map f) ≫ g.val.hom"}], "premise": [99919], "state_str": "case a\nC : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ : PresheafOfModules R₀\nM N : SheafOfModules R\nf : (sheafification α).obj P₀ ⟶ M\ng : M ⟶ N\n⊢ ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj N))\n ((SheafOfModules.toSheaf R).map (f ≫ g)) =\n ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj M))\n ((SheafOfModules.toSheaf R).map f) ≫\n g.val.hom"} +{"state": [{"context": ["C : Type u'", "inst✝⁴ : Category.{v', u'} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "inst✝¹ : J.WEqualsLocallyBijective AddCommGrp", "inst✝ : HasWeakSheafify J AddCommGrp", "P₀ : PresheafOfModules R₀", "M N : SheafOfModules R", "f : (sheafification α).obj P₀ ⟶ M", "g : M ⟶ N"], "goal": "((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj N)) ((SheafOfModules.toSheaf R).map f ≫ (SheafOfModules.toSheaf R).map g) = ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj M)) ((SheafOfModules.toSheaf R).map f) ≫ g.val.hom"}], "premise": [95795], "state_str": "case a\nC : Type u'\ninst✝⁴ : Category.{v', u'} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\ninst✝¹ : J.WEqualsLocallyBijective AddCommGrp\ninst✝ : HasWeakSheafify J AddCommGrp\nP₀ : PresheafOfModules R₀\nM N : SheafOfModules R\nf : (sheafification α).obj P₀ ⟶ M\ng : M ⟶ N\n⊢ ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj N))\n ((SheafOfModules.toSheaf R).map f ≫ (SheafOfModules.toSheaf R).map g) =\n ((CategoryTheory.sheafificationAdjunction J AddCommGrp).homEquiv P₀.presheaf ((SheafOfModules.toSheaf R).obj M))\n ((SheafOfModules.toSheaf R).map f) ≫\n g.val.hom"} +{"state": [{"context": ["x✝ : Substring", "h✝ : x✝.Valid", "n : Nat", "l m r : List Char", "h : ValidFor l m r x✝"], "goal": "x✝.nextn n { byteIdx := x✝.bsize } = { byteIdx := x✝.bsize }"}], "premise": [2363, 2371], "state_str": "x✝ : Substring\nh✝ : x✝.Valid\nn : Nat\nl m r : List Char\nh : ValidFor l m r x✝\n⊢ x✝.nextn n { byteIdx := x✝.bsize } = { byteIdx := x✝.bsize }"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "M : Type u_5", "M₁ : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "Mₗ₁ : Type u_9", "Mₗ₁' : Type u_10", "Mₗ₂ : Type u_11", "Mₗ₂' : Type u_12", "K : Type u_13", "K₁ : Type u_14", "K₂ : Type u_15", "V : Type u_16", "V₁ : Type u_17", "V₂ : Type u_18", "n : Type u_19", "inst✝⁶ : CommSemiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "inst✝³ : CommSemiring R₁", "inst✝² : AddCommMonoid M₁", "inst✝¹ : Module R₁ M₁", "I₁ I₂ I : R₁ →+* R", "B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M", "H : B.IsAlt", "inst✝ : IsCancelAdd M", "a b c : M₁", "hAdd : a + b + c = 0"], "goal": "(B a) b = (B b) c"}], "premise": [81817, 109784, 117063, 117079], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nM : Type u_5\nM₁ : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nMₗ₁ : Type u_9\nMₗ₁' : Type u_10\nMₗ₂ : Type u_11\nMₗ₂' : Type u_12\nK : Type u_13\nK₁ : Type u_14\nK₂ : Type u_15\nV : Type u_16\nV₁ : Type u_17\nV₂ : Type u_18\nn : Type u_19\ninst✝⁶ : CommSemiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : CommSemiring R₁\ninst✝² : AddCommMonoid M₁\ninst✝¹ : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M\nH : B.IsAlt\ninst✝ : IsCancelAdd M\na b c : M₁\nhAdd : a + b + c = 0\n⊢ (B a) b = (B b) c"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "M : Type u_5", "M₁ : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "Mₗ₁ : Type u_9", "Mₗ₁' : Type u_10", "Mₗ₂ : Type u_11", "Mₗ₂' : Type u_12", "K : Type u_13", "K₁ : Type u_14", "K₂ : Type u_15", "V : Type u_16", "V₁ : Type u_17", "V₂ : Type u_18", "n : Type u_19", "inst✝⁶ : CommSemiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "inst✝³ : CommSemiring R₁", "inst✝² : AddCommMonoid M₁", "inst✝¹ : Module R₁ M₁", "I₁ I₂ I : R₁ →+* R", "B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M", "H : B.IsAlt", "inst✝ : IsCancelAdd M", "a b c : M₁", "hAdd : a + b + c = 0", "this : (B a) a + (B a) b + (B a) c = (B a) c + (B b) c + (B c) c"], "goal": "(B a) b = (B b) c"}], "premise": [119708, 119727, 119729], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nM : Type u_5\nM₁ : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nMₗ₁ : Type u_9\nMₗ₁' : Type u_10\nMₗ₂ : Type u_11\nMₗ₂' : Type u_12\nK : Type u_13\nK₁ : Type u_14\nK₂ : Type u_15\nV : Type u_16\nV₁ : Type u_17\nV₂ : Type u_18\nn : Type u_19\ninst✝⁶ : CommSemiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : CommSemiring R₁\ninst✝² : AddCommMonoid M₁\ninst✝¹ : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M\nH : B.IsAlt\ninst✝ : IsCancelAdd M\na b c : M₁\nhAdd : a + b + c = 0\nthis : (B a) a + (B a) b + (B a) c = (B a) c + (B b) c + (B c) c\n⊢ (B a) b = (B b) c"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "M : Type u_5", "M₁ : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "Mₗ₁ : Type u_9", "Mₗ₁' : Type u_10", "Mₗ₂ : Type u_11", "Mₗ₂' : Type u_12", "K : Type u_13", "K₁ : Type u_14", "K₂ : Type u_15", "V : Type u_16", "V₁ : Type u_17", "V₂ : Type u_18", "n : Type u_19", "inst✝⁶ : CommSemiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "inst✝³ : CommSemiring R₁", "inst✝² : AddCommMonoid M₁", "inst✝¹ : Module R₁ M₁", "I₁ I₂ I : R₁ →+* R", "B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M", "H : B.IsAlt", "inst✝ : IsCancelAdd M", "a b c : M₁", "hAdd : a + b + c = 0", "this : (B a) c + (B a) b = (B a) c + (B b) c"], "goal": "(B a) b = (B b) c"}], "premise": [119693], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nM : Type u_5\nM₁ : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nMₗ₁ : Type u_9\nMₗ₁' : Type u_10\nMₗ₂ : Type u_11\nMₗ₂' : Type u_12\nK : Type u_13\nK₁ : Type u_14\nK₂ : Type u_15\nV : Type u_16\nV₁ : Type u_17\nV₂ : Type u_18\nn : Type u_19\ninst✝⁶ : CommSemiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : CommSemiring R₁\ninst✝² : AddCommMonoid M₁\ninst✝¹ : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M\nH : B.IsAlt\ninst✝ : IsCancelAdd M\na b c : M₁\nhAdd : a + b + c = 0\nthis : (B a) c + (B a) b = (B a) c + (B b) c\n⊢ (B a) b = (B b) c"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : DecidableEq α", "s t : Finset α", "x : α × α", "a : α"], "goal": "{a}.diag = {(a, a)}"}], "premise": [136860, 136881, 136886, 139011], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : DecidableEq α\ns t : Finset α\nx : α × α\na : α\n⊢ {a}.diag = {(a, a)}"} +{"state": [{"context": ["q : ℍ"], "goal": "exp ℝ q = exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im)"}], "premise": [40260, 40852, 40856, 127621, 127626, 127692], "state_str": "q : ℍ\n⊢ exp ℝ q = exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im)"} +{"state": [{"context": ["q : ℍ"], "goal": "Commute (↑q.re) q.im"}], "premise": [121168], "state_str": "q : ℍ\n⊢ Commute (↑q.re) q.im"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁶ : CommRing R", "inst✝⁵ : CommRing A", "inst✝⁴ : Field K", "R₁ : Type u_4", "inst✝³ : CommRing R₁", "inst✝² : IsDomain R₁", "inst✝¹ : Algebra R₁ K", "inst✝ : IsFractionRing R₁ K", "I✝ J✝ I : FractionalIdeal R₁⁰ K", "x✝ : ∃ J, I * J = 1", "J : FractionalIdeal R₁⁰ K", "hJ : I * J = 1"], "goal": "I * I⁻¹ = 1"}], "premise": [81404], "state_str": "R : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\nR₁ : Type u_4\ninst✝³ : CommRing R₁\ninst✝² : IsDomain R₁\ninst✝¹ : Algebra R₁ K\ninst✝ : IsFractionRing R₁ K\nI✝ J✝ I : FractionalIdeal R₁⁰ K\nx✝ : ∃ J, I * J = 1\nJ : FractionalIdeal R₁⁰ K\nhJ : I * J = 1\n⊢ I * I⁻¹ = 1"} +{"state": [{"context": ["n : ℕ", "R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal (MvPolynomial (Fin n) R)", "hP : P.IsMaximal"], "goal": "(algebraMap R (MvPolynomial (Fin n) R ⧸ P)).IsIntegral"}], "premise": [77566], "state_str": "n : ℕ\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal (MvPolynomial (Fin n) R)\nhP : P.IsMaximal\n⊢ (algebraMap R (MvPolynomial (Fin n) R ⧸ P)).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁶ : OrderedRing R", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : Module R V", "inst✝³ : AddTorsor V P", "inst✝² : AddCommGroup V'", "inst✝¹ : Module R V'", "inst✝ : AddTorsor V' P'", "x y z p : P"], "goal": "z -ᵥ p ∈ affineSegment R (x -ᵥ p) (y -ᵥ p) ↔ z ∈ affineSegment R x y"}], "premise": [1713, 37469, 115890, 134090], "state_str": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁶ : OrderedRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx y z p : P\n⊢ z -ᵥ p ∈ affineSegment R (x -ᵥ p) (y -ᵥ p) ↔ z ∈ affineSegment R x y"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "p : PMF α", "s t : Set α", "a : α"], "goal": "p.toOuterMeasure {a} = p a"}], "premise": [2101, 64173, 73705], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\np : PMF α\ns t : Set α\na : α\n⊢ p.toOuterMeasure {a} = p a"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "inst✝¹ : (i : α) → NormedAddCommGroup (E i)", "p : ℝ≥0∞", "inst✝ : Fintype α", "f : ↥(lp E p)"], "goal": "‖Equiv.lpPiLp f‖ = ‖f‖"}], "premise": [143432], "state_str": "α : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\np : ℝ≥0∞\ninst✝ : Fintype α\nf : ↥(lp E p)\n⊢ ‖Equiv.lpPiLp f‖ = ‖f‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝² : TopologicalSpace α", "inst✝¹ : LinearOrderedAddCommGroup α", "inst✝ : OrderTopology α", "l : Filter β", "f g : β → α", "x : Filter β", "a : α"], "goal": "Tendsto f x (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ (b : β) in x, |f b - a| < ε"}], "premise": [55863, 105280], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrderedAddCommGroup α\ninst✝ : OrderTopology α\nl : Filter β\nf g : β → α\nx : Filter β\na : α\n⊢ Tendsto f x (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ (b : β) in x, |f b - a| < ε"} +{"state": [{"context": ["G : Type u", "inst✝² : Group G", "N : Subgroup G", "nN : N.Normal", "H : Type v", "inst✝¹ : Group H", "M : Type x", "inst✝ : Monoid M", "φ : G →* H", "ψ : H → G", "hφ : Function.RightInverse ψ ⇑φ", "x : G ⧸ φ.ker"], "goal": "(kerLift φ) ((mk ∘ ψ) ((kerLift φ) x)) = (kerLift φ) x"}], "premise": [1670, 10394], "state_str": "G : Type u\ninst✝² : Group G\nN : Subgroup G\nnN : N.Normal\nH : Type v\ninst✝¹ : Group H\nM : Type x\ninst✝ : Monoid M\nφ : G →* H\nψ : H → G\nhφ : Function.RightInverse ψ ⇑φ\nx : G ⧸ φ.ker\n⊢ (kerLift φ) ((mk ∘ ψ) ((kerLift φ) x)) = (kerLift φ) x"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L"], "goal": "1 = chainTopCoeff (⇑α) 0"}], "premise": [11251], "state_str": "K : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\n⊢ 1 = chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L"], "goal": "¬1 < chainTopCoeff (⇑α) 0"}], "premise": [110405], "state_str": "case hba\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\n⊢ ¬1 < chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0"], "goal": "¬1 < chainTopCoeff (⇑α) 0"}], "premise": [111734], "state_str": "case hba.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\n⊢ ¬1 < chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "h e f : L", "isSl2 : IsSl2Triple h e f", "he : e ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)"], "goal": "¬1 < chainTopCoeff (⇑α) 0"}], "premise": [111735], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\nh e f : L\nisSl2 : IsSl2Triple h e f\nhe : e ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\n⊢ ¬1 < chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e f : L", "he : e ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e f"], "goal": "¬1 < chainTopCoeff (⇑α) 0"}], "premise": [2100, 108638, 108957, 110470], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne f : L\nhe : e ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e f\n⊢ ¬1 < chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e f : L", "he : e ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e f", "prim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)"], "goal": "¬1 < chainTopCoeff (⇑α) 0"}], "premise": [1673, 87666, 107468, 108340, 108639, 108950, 110406, 111736, 111740, 119704, 119729, 119746, 119819], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne f : L\nhe : e ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e f\nprim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)\n⊢ ¬1 < chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e f : L", "he : e ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e f", "prim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)", "k : K", "hk : ⁅f, k • f⁆ = ⁅f, ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1)) x⁆"], "goal": "¬1 < chainTopCoeff (⇑α) 0"}], "premise": [107474, 107708, 107712, 108328], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne f : L\nhe : e ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e f\nprim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)\nk : K\nhk : ⁅f, k • f⁆ = ⁅f, ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1)) x⁆\n⊢ ¬1 < chainTopCoeff (⇑α) 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e✝ f : L", "he : e✝ ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e✝ f", "prim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)", "k : K", "hk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x", "e : 1 < chainTopCoeff (⇑α) 0"], "goal": "False"}], "premise": [2100, 107477], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne✝ f : L\nhe : e✝ ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e✝ f\nprim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)\nk : K\nhk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x\ne : 1 < chainTopCoeff (⇑α) 0\n⊢ False"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e✝ f : L", "he : e✝ ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e✝ f", "prim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)", "k : K", "hk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x", "e : 1 < chainTopCoeff (⇑α) 0"], "goal": "chainTopCoeff (⇑α) 0 + 1 + 1 ≤ chainLength α 0"}], "premise": [2100, 110471], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne✝ f : L\nhe : e✝ ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e✝ f\nprim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)\nk : K\nhk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x\ne : 1 < chainTopCoeff (⇑α) 0\n⊢ chainTopCoeff (⇑α) 0 + 1 + 1 ≤ chainLength α 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e✝ f : L", "he : e✝ ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e✝ f", "prim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)", "k : K", "hk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x", "e : 1 < chainTopCoeff (⇑α) 0", "this : ↑(↑(chainLength α 0) - 2 * ↑(chainTopCoeff (⇑α) 0)) = 0 (coroot α)"], "goal": "chainTopCoeff (⇑α) 0 + 1 + 1 ≤ chainLength α 0"}], "premise": [110407, 111254, 118004, 128912, 142648, 143128], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne✝ f : L\nhe : e✝ ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e✝ f\nprim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)\nk : K\nhk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x\ne : 1 < chainTopCoeff (⇑α) 0\nthis : ↑(↑(chainLength α 0) - 2 * ↑(chainTopCoeff (⇑α) 0)) = 0 (coroot α)\n⊢ chainTopCoeff (⇑α) 0 + 1 + 1 ≤ chainLength α 0"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "inst✝⁸ : Field K", "inst✝⁷ : CharZero K", "inst✝⁶ : LieRing L", "inst✝⁵ : LieAlgebra K L", "inst✝⁴ : IsKilling K L", "inst✝³ : FiniteDimensional K L", "H : LieSubalgebra K L", "inst✝² : H.IsCartanSubalgebra", "inst✝¹ : IsTriangularizable K (↥H) L", "α β : Weight K (↥H) L", "hα : α.IsNonZero", "inst✝ : Nontrivial L", "x : L", "hx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)", "x_ne0 : x ≠ 0", "e✝ f : L", "he : e✝ ∈ rootSpace H ⇑α", "hf : f ∈ rootSpace H (-⇑α)", "isSl2 : IsSl2Triple (↑(coroot α)) e✝ f", "prim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)", "k : K", "hk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x", "e : 1 < chainTopCoeff (⇑α) 0", "this : chainLength α 0 = 2 * chainTopCoeff (⇑α) 0"], "goal": "chainTopCoeff (⇑α) 0 + 1 + 1 ≤ chainLength α 0"}], "premise": [3814, 103894, 122222], "state_str": "case hba.intro.intro.intro.intro.intro.intro.intro.intro\nK : Type u_1\nL : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : CharZero K\ninst✝⁶ : LieRing L\ninst✝⁵ : LieAlgebra K L\ninst✝⁴ : IsKilling K L\ninst✝³ : FiniteDimensional K L\nH : LieSubalgebra K L\ninst✝² : H.IsCartanSubalgebra\ninst✝¹ : IsTriangularizable K (↥H) L\nα β : Weight K (↥H) L\nhα : α.IsNonZero\ninst✝ : Nontrivial L\nx : L\nhx : x ∈ weightSpace L ⇑(chainTop (⇑α) 0)\nx_ne0 : x ≠ 0\ne✝ f : L\nhe : e✝ ∈ rootSpace H ⇑α\nhf : f ∈ rootSpace H (-⇑α)\nisSl2 : IsSl2Triple (↑(coroot α)) e✝ f\nprim : isSl2.HasPrimitiveVectorWith x ↑(chainLength α 0)\nk : K\nhk : 0 = ((toEnd K L L) f ^ (chainTopCoeff (⇑α) 0 + 1 + 1)) x\ne : 1 < chainTopCoeff (⇑α) 0\nthis : chainLength α 0 = 2 * chainTopCoeff (⇑α) 0\n⊢ chainTopCoeff (⇑α) 0 + 1 + 1 ≤ chainLength α 0"} +{"state": [{"context": ["α : Type u_1", "R✝ : Type u_2", "k : Type u_3", "S✝ : Type u_4", "M : Type u_5", "M₂ : Type u_6", "M₃ : Type u_7", "ι : Type u_8", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : AddCommGroup M₂", "F : Type u_9", "inst✝⁵ : FunLike F M M₂", "inst✝⁴ : AddMonoidHomClass F M M₂", "f : F", "R : Type u_10", "S : Type u_11", "inst✝³ : Ring R", "inst✝² : Ring S", "inst✝¹ : Module R M", "inst✝ : Module S M₂", "x : ℤ", "a : M"], "goal": "f (↑x • a) = ↑x • f a"}], "premise": [110044, 117114], "state_str": "α : Type u_1\nR✝ : Type u_2\nk : Type u_3\nS✝ : Type u_4\nM : Type u_5\nM₂ : Type u_6\nM₃ : Type u_7\nι : Type u_8\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : AddCommGroup M₂\nF : Type u_9\ninst✝⁵ : FunLike F M M₂\ninst✝⁴ : AddMonoidHomClass F M M₂\nf : F\nR : Type u_10\nS : Type u_11\ninst✝³ : Ring R\ninst✝² : Ring S\ninst✝¹ : Module R M\ninst✝ : Module S M₂\nx : ℤ\na : M\n⊢ f (↑x • a) = ↑x • f a"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "r₁ r₂ : R"], "goal": "(ι 0) r₁ * (ι 0) r₂ = 0"}], "premise": [82290, 83890, 108328, 109741, 118863, 118917, 119730, 121564], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nr₁ r₂ : R\n⊢ (ι 0) r₁ * (ι 0) r₂ = 0"} +{"state": [{"context": ["α✝ β : Type u", "α : Type u_1", "s : Set α"], "goal": "s.Countable ∧ s.Infinite ↔ Nonempty (Denumerable ↑s)"}], "premise": [1713, 70617, 132730, 135141], "state_str": "α✝ β : Type u\nα : Type u_1\ns : Set α\n⊢ s.Countable ∧ s.Infinite ↔ Nonempty (Denumerable ↑s)"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝³ : CommRing R", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Field F", "i : K →+* L", "ι : Type u", "s : ι → K[X]", "t : Finset ι"], "goal": "(∀ j ∈ t, s j ≠ 0) → (Splits i (∏ x ∈ t, s x) ↔ ∀ j ∈ t, Splits i (s j))"}], "premise": [1674, 1713, 2106, 2107, 101117, 101136, 123871, 126900, 138715, 138847, 139166], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝³ : CommRing R\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nι : Type u\ns : ι → K[X]\nt : Finset ι\n⊢ (∀ j ∈ t, s j ≠ 0) → (Splits i (∏ x ∈ t, s x) ↔ ∀ j ∈ t, Splits i (s j))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : NormedAddCommGroup β", "f g : ι → α → β", "p : ℝ≥0∞", "hf : UnifIntegrable f p μ", "E : Set α", "ε : ℝ", "hε✝ : 0 < ε", "δ : ℝ", "hδ_pos : 0 < δ", "hε : ∀ (i : ι) (s : Set α), MeasurableSet s → μ s ≤ ENNReal.ofReal δ → eLpNorm (s.indicator (f i)) p μ ≤ ENNReal.ofReal ε", "i : ι", "s : Set α", "hs : MeasurableSet s", "hμs : μ s ≤ ENNReal.ofReal δ"], "goal": "eLpNorm (s.indicator ((fun i => E.indicator (f i)) i)) p μ ≤ ENNReal.ofReal ε"}], "premise": [31039, 120897, 133443], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\nf g : ι → α → β\np : ℝ≥0∞\nhf : UnifIntegrable f p μ\nE : Set α\nε : ℝ\nhε✝ : 0 < ε\nδ : ℝ\nhδ_pos : 0 < δ\nhε :\n ∀ (i : ι) (s : Set α), MeasurableSet s → μ s ≤ ENNReal.ofReal δ → eLpNorm (s.indicator (f i)) p μ ≤ ENNReal.ofReal ε\ni : ι\ns : Set α\nhs : MeasurableSet s\nhμs : μ s ≤ ENNReal.ofReal δ\n⊢ eLpNorm (s.indicator ((fun i => E.indicator (f i)) i)) p μ ≤ ENNReal.ofReal ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : TopologicalSpace α", "z : α", "s : Set α"], "goal": "z ∈ closure (s \\ {z}) ↔ ∃ᶠ (x : α) in 𝓝[≠] z, x ∈ s"}], "premise": [55569, 57161], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : TopologicalSpace α\nz : α\ns : Set α\n⊢ z ∈ closure (s \\ {z}) ↔ ∃ᶠ (x : α) in 𝓝[≠] z, x ∈ s"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "Z X✝ Y P : C", "f : Z ⟶ X✝", "g : Z ⟶ Y", "inl : X✝ ⟶ P", "inr : Y ⟶ P", "inst✝¹ : HasZeroObject C", "inst✝ : HasZeroMorphisms C", "X : C"], "goal": "0 ≫ ((coprodZeroIso X).symm ≪≫ (pushoutZeroZeroIso X 0).symm).hom = pushout.inr 0 0"}], "premise": [39], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\nZ X✝ Y P : C\nf : Z ⟶ X✝\ng : Z ⟶ Y\ninl : X✝ ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nX : C\n⊢ 0 ≫ ((coprodZeroIso X).symm ≪≫ (pushoutZeroZeroIso X 0).symm).hom = pushout.inr 0 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "hdeg : Q.degree < P.degree", "hpos : 0 < P.leadingCoeff / Q.leadingCoeff"], "goal": "Tendsto (fun x => eval x P / eval x Q) atTop atTop"}], "premise": [11233, 102194, 108303], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nhdeg : Q.degree < P.degree\nhpos : 0 < P.leadingCoeff / Q.leadingCoeff\n⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "hdeg : Q.degree < P.degree", "hpos : 0 < P.leadingCoeff / Q.leadingCoeff", "hQ : Q ≠ 0"], "goal": "Tendsto (fun x => eval x P / eval x Q) atTop atTop"}], "premise": [102184], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nhdeg : Q.degree < P.degree\nhpos : 0 < P.leadingCoeff / Q.leadingCoeff\nhQ : Q ≠ 0\n⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "hdeg : Q.natDegree < P.natDegree", "hpos : 0 < P.leadingCoeff / Q.leadingCoeff", "hQ : Q ≠ 0"], "goal": "Tendsto (fun x => eval x P / eval x Q) atTop atTop"}], "premise": [39226, 41439, 41463], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nhdeg : Q.natDegree < P.natDegree\nhpos : 0 < P.leadingCoeff / Q.leadingCoeff\nhQ : Q ≠ 0\n⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "hdeg : Q.natDegree < P.natDegree", "hpos : 0 < P.leadingCoeff / Q.leadingCoeff", "hQ : Q ≠ 0"], "goal": "Tendsto (fun x => P.leadingCoeff / Q.leadingCoeff * x ^ (↑P.natDegree - ↑Q.natDegree)) atTop atTop"}], "premise": [15632], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nhdeg : Q.natDegree < P.natDegree\nhpos : 0 < P.leadingCoeff / Q.leadingCoeff\nhQ : Q ≠ 0\n⊢ Tendsto (fun x => P.leadingCoeff / Q.leadingCoeff * x ^ (↑P.natDegree - ↑Q.natDegree)) atTop atTop"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "hdeg : Q.natDegree < P.natDegree", "hpos : 0 < P.leadingCoeff / Q.leadingCoeff", "hQ : Q ≠ 0"], "goal": "Tendsto (fun x => x ^ (↑P.natDegree - ↑Q.natDegree)) atTop atTop"}], "premise": [15637], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nhdeg : Q.natDegree < P.natDegree\nhpos : 0 < P.leadingCoeff / Q.leadingCoeff\nhQ : Q ≠ 0\n⊢ Tendsto (fun x => x ^ (↑P.natDegree - ↑Q.natDegree)) atTop atTop"} +{"state": [{"context": ["x✝ y : ℂ", "x : ℝ"], "goal": "(starRingEnd ℂ) (cosh ↑x) = cosh ↑x"}], "premise": [148350, 149113], "state_str": "x✝ y : ℂ\nx : ℝ\n⊢ (starRingEnd ℂ) (cosh ↑x) = cosh ↑x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : Group G", "a b c d : G", "n : ℤ", "h : b * a = c"], "goal": "a = b⁻¹ * c"}], "premise": [2100], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : Group G\na b c d : G\nn : ℤ\nh : b * a = c\n⊢ a = b⁻¹ * c"} +{"state": [{"context": ["f : Ordinal.{u} → Ordinal.{u}", "H : IsNormal f"], "goal": "deriv f = enumOrd (fixedPoints f)"}], "premise": [49023], "state_str": "f : Ordinal.{u} → Ordinal.{u}\nH : IsNormal f\n⊢ deriv f = enumOrd (fixedPoints f)"} +{"state": [{"context": ["f : Ordinal.{u} → Ordinal.{u}", "H : IsNormal f"], "goal": "fixedPoints f = ⋂ i, fixedPoints f"}], "premise": [2100, 135284], "state_str": "case h.e'_3.h.e'_1\nf : Ordinal.{u} → Ordinal.{u}\nH : IsNormal f\n⊢ fixedPoints f = ⋂ i, fixedPoints f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace γ", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α", "inst✝² : SemilatticeSup α", "inst✝¹ : NoMaxOrder α", "inst✝ : atTop.IsCountablyGenerated", "μ : Measure α", "a : α", "this : Nonempty α", "h_mono : Monotone fun x => μ (Ico a x)"], "goal": "Tendsto (fun x => μ (Ico a x)) atTop (𝓝 (μ (Ici a)))"}], "premise": [55061], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝² : SemilatticeSup α\ninst✝¹ : NoMaxOrder α\ninst✝ : atTop.IsCountablyGenerated\nμ : Measure α\na : α\nthis : Nonempty α\nh_mono : Monotone fun x => μ (Ico a x)\n⊢ Tendsto (fun x => μ (Ico a x)) atTop (𝓝 (μ (Ici a)))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace γ", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α", "inst✝² : SemilatticeSup α", "inst✝¹ : NoMaxOrder α", "inst✝ : atTop.IsCountablyGenerated", "μ : Measure α", "a : α", "this : Nonempty α", "h_mono : Monotone fun x => μ (Ico a x)"], "goal": "μ (Ici a) = ⨆ i, μ (Ico a i)"}], "premise": [15757], "state_str": "case h.e'_5.h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝² : SemilatticeSup α\ninst✝¹ : NoMaxOrder α\ninst✝ : atTop.IsCountablyGenerated\nμ : Measure α\na : α\nthis : Nonempty α\nh_mono : Monotone fun x => μ (Ico a x)\n⊢ μ (Ici a) = ⨆ i, μ (Ico a i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace γ", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α", "inst✝² : SemilatticeSup α", "inst✝¹ : NoMaxOrder α", "inst✝ : atTop.IsCountablyGenerated", "μ : Measure α", "a : α", "this : Nonempty α", "h_mono : Monotone fun x => μ (Ico a x)", "xs : ℕ → α", "hxs_mono : Monotone xs", "hxs_tendsto : Tendsto xs atTop atTop"], "goal": "μ (Ici a) = ⨆ i, μ (Ico a i)"}], "premise": [1215, 1673, 2038, 13860, 14272, 15676, 16573, 20158, 20163], "state_str": "case h.e'_5.h.e'_3.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝² : SemilatticeSup α\ninst✝¹ : NoMaxOrder α\ninst✝ : atTop.IsCountablyGenerated\nμ : Measure α\na : α\nthis : Nonempty α\nh_mono : Monotone fun x => μ (Ico a x)\nxs : ℕ → α\nhxs_mono : Monotone xs\nhxs_tendsto : Tendsto xs atTop atTop\n⊢ μ (Ici a) = ⨆ i, μ (Ico a i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace ��", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α", "inst✝² : SemilatticeSup α", "inst✝¹ : NoMaxOrder α", "inst✝ : atTop.IsCountablyGenerated", "μ : Measure α", "a : α", "this : Nonempty α", "h_mono : Monotone fun x => μ (Ico a x)", "xs : ℕ → α", "hxs_mono : Monotone xs", "hxs_tendsto : Tendsto xs atTop atTop", "h_Ici : Ici a = ⋃ n, Ico a (xs n)"], "goal": "μ (Ici a) = ⨆ i, μ (Ico a i)"}], "premise": [31429, 55079], "state_str": "case h.e'_5.h.e'_3.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝² : SemilatticeSup α\ninst✝¹ : NoMaxOrder α\ninst✝ : atTop.IsCountablyGenerated\nμ : Measure α\na : α\nthis : Nonempty α\nh_mono : Monotone fun x => μ (Ico a x)\nxs : ℕ → α\nhxs_mono : Monotone xs\nhxs_tendsto : Tendsto xs atTop atTop\nh_Ici : Ici a = ⋃ n, Ico a (xs n)\n⊢ μ (Ici a) = ⨆ i, μ (Ico a i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace γ", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α", "inst✝² : SemilatticeSup α", "inst✝¹ : NoMaxOrder α", "inst✝ : atTop.IsCountablyGenerated", "μ : Measure α", "a : α", "this : Nonempty α", "h_mono : Monotone fun x => μ (Ico a x)", "xs : ℕ → α", "hxs_mono : Monotone xs", "hxs_tendsto : Tendsto xs atTop atTop", "h_Ici : Ici a = ⋃ n, Ico a (xs n)"], "goal": "Directed (fun x x_1 => x ⊆ x_1) fun n => Ico a (xs n)"}], "premise": [16484, 20215], "state_str": "case h.e'_5.h.e'_3.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝² : SemilatticeSup α\ninst✝¹ : NoMaxOrder α\ninst✝ : atTop.IsCountablyGenerated\nμ : Measure α\na : α\nthis : Nonempty α\nh_mono : Monotone fun x => μ (Ico a x)\nxs : ℕ → α\nhxs_mono : Monotone xs\nhxs_tendsto : Tendsto xs atTop atTop\nh_Ici : Ici a = ⋃ n, Ico a (xs n)\n⊢ Directed (fun x x_1 => x ⊆ x_1) fun n => Ico a (xs n)"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "P : WeakFEPair E"], "goal": "(fun x => P.f x - P.f₀) =O[𝓝[>] 0] fun x => x ^ (-P.k)"}], "premise": [118000], "state_str": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nP : WeakFEPair E\n⊢ (fun x => P.f x - P.f₀) =O[𝓝[>] 0] fun x => x ^ (-P.k)"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "P : WeakFEPair E"], "goal": "(fun x => P.f x - (P.ε * ↑(x ^ (-P.k))) • P.g₀ + ((P.ε * ↑(x ^ (-P.k))) • P.g₀ - P.f₀)) =O[𝓝[>] 0] fun x => x ^ (-P.k)"}], "premise": [23147, 43499, 43508], "state_str": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nP : WeakFEPair E\n⊢ (fun x => P.f x - (P.ε * ↑(x ^ (-P.k))) • P.g₀ + ((P.ε * ↑(x ^ (-P.k))) • P.g₀ - P.f₀)) =O[𝓝[>] 0] fun x => x ^ (-P.k)"} +{"state": [{"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x", "hxy : x < y", "hz : z < 0", "this : 0 < y"], "goal": "y ^ z < x ^ z"}], "premise": [40030, 106055], "state_str": "x y z : ℝ\nn : ℕ\nhx : 0 < x\nhxy : x < y\nhz : z < 0\nthis : 0 < y\n⊢ y ^ z < x ^ z"} +{"state": [{"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x", "hxy : x < y", "hz : z < 0", "this : 0 < y"], "goal": "x ^ (-z) < y ^ (-z)"}, {"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x", "hxy : x < y", "hz : z < 0", "this : 0 < y"], "goal": "0 ≤ y"}, {"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x", "hxy : x < y", "hz : z < 0", "this : 0 < y"], "goal": "0 ≤ x"}, {"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x", "hxy : x < y", "hz : z < 0", "this : 0 < y"], "goal": "0 < x ^ z"}, {"context": ["x y z : ℝ", "n : ℕ", "hx : 0 < x", "hxy : x < y", "hz : z < 0", "this : 0 < y"], "goal": "0 < y ^ z"}], "premise": [1674, 40080], "state_str": "x y z : ℝ\nn : ℕ\nhx : 0 < x\nhxy : x < y\nhz : z < 0\nthis : 0 < y\n⊢ x ^ (-z) < y ^ (-z)\n\ncase hx\nx y z : ℝ\nn : ℕ\nhx : 0 < x\nhxy : x < y\nhz : z < 0\nthis : 0 < y\n⊢ 0 ≤ y\n\ncase hx\nx y z : ℝ\nn : ℕ\nhx : 0 < x\nhxy : x < y\nhz : z < 0\nthis : 0 < y\n⊢ 0 ≤ x\n\ncase ha\nx y z : ℝ\nn : ℕ\nhx : 0 < x\nhxy : x < y\nhz : z < 0\nthis : 0 < y\n⊢ 0 < x ^ z\n\ncase hb\nx y z : ℝ\nn : ℕ\nhx : 0 < x\nhxy : x < y\nhz : z < 0\nthis : 0 < y\n⊢ 0 < y ^ z"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m✝ : MeasurableSpace α", "μ✝ μ₁ μ₂ : Measure α", "s✝ s₁ s₂ t✝ : Set α", "m : MeasurableSpace α", "μ : Measure α", "s t u : Set α", "ht : MeasurableSet t", "h's : s ⊆ u", "h't : t ⊆ u", "h : μ u < μ s + μ t"], "goal": "(s ∩ t).Nonempty"}], "premise": [133570], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm✝ : MeasurableSpace α\nμ✝ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t✝ : Set α\nm : MeasurableSpace α\nμ : Measure α\ns t u : Set α\nht : MeasurableSet t\nh's : s ⊆ u\nh't : t ⊆ u\nh : μ u < μ s + μ t\n⊢ (s ∩ t).Nonempty"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m✝ : MeasurableSpace α", "μ✝ μ₁ μ₂ : Measure α", "s✝ s₁ s₂ t✝ : Set α", "m : MeasurableSpace α", "μ : Measure α", "s t u : Set α", "ht : MeasurableSet t", "h's : s ⊆ u", "h't : t ⊆ u", "h : μ u < μ s + μ t"], "goal": "¬Disjoint s t"}], "premise": [53688], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm✝ : MeasurableSpace α\nμ✝ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t✝ : Set α\nm : MeasurableSpace α\nμ : Measure α\ns t u : Set α\nht : MeasurableSet t\nh's : s ⊆ u\nh't : t ⊆ u\nh : μ u < μ s + μ t\n⊢ ¬Disjoint s t"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m✝ : MeasurableSpace α", "μ✝ μ₁ μ₂ : Measure α", "s✝ s₁ s₂ t✝ : Set α", "m : MeasurableSpace α", "μ : Measure α", "s t u : Set α", "ht : MeasurableSet t", "h's : s ⊆ u", "h't : t ⊆ u", "h : Disjoint s t"], "goal": "μ s + μ t ≤ μ u"}], "premise": [2100, 27559, 31376, 133421], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm✝ : MeasurableSpace α\nμ✝ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t✝ : Set α\nm : MeasurableSpace α\nμ : Measure α\ns t u : Set α\nht : MeasurableSet t\nh's : s ⊆ u\nh't : t ⊆ u\nh : Disjoint s t\n⊢ μ s + μ t ≤ μ u"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "M : Type u_3", "inst✝ : CommMonoid M", "n : ℕ", "v : Fin n.succ → M"], "goal": "∏ i ∈ Ioi 0, v i = ∏ j : Fin n, v j.succ"}], "premise": [126917, 140341, 142895], "state_str": "α : Type u_1\nβ : Type u_2\nM : Type u_3\ninst✝ : CommMonoid M\nn : ℕ\nv : Fin n.succ → M\n⊢ ∏ i ∈ Ioi 0, v i = ∏ j : Fin n, v j.succ"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "w x y z : α", "inst✝ : GeneralizedBooleanAlgebra α", "hx : y ≤ x", "hy : y ≠ ⊥"], "goal": "x \\ y < x"}], "premise": [15063], "state_str": "α : Type u\nβ : Type u_1\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\nhx : y ≤ x\nhy : y ≠ ⊥\n⊢ x \\ y < x"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "w x y z : α", "inst✝ : GeneralizedBooleanAlgebra α", "hx : y ≤ x", "hy : y ≠ ⊥", "h : x \\ y = x"], "goal": "y = ⊥"}], "premise": [12025, 13483], "state_str": "α : Type u\nβ : Type u_1\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\nhx : y ≤ x\nhy : y ≠ ⊥\nh : x \\ y = x\n⊢ y = ⊥"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "w x y z : α", "inst✝ : GeneralizedBooleanAlgebra α", "hx : y ≤ x", "hy : y ≠ ⊥", "h : x ⊓ y = ⊥"], "goal": "y = ⊥"}], "premise": [1674, 14569], "state_str": "α : Type u\nβ : Type u_1\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\nhx : y ≤ x\nhy : y ≠ ⊥\nh : x ⊓ y = ⊥\n⊢ y = ⊥"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R"], "goal": "(Ideal.span {X}).IsPrime"}], "premise": [80718], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\n⊢ (Ideal.span {X}).IsPrime"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R"], "goal": "Ideal.span {X} = RingHom.ker (constantCoeff R)"}], "premise": [80339], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\n⊢ Ideal.span {X} = RingHom.ker (constantCoeff R)"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R", "φ : R⟦X⟧"], "goal": "φ ∈ Ideal.span {X} ↔ φ ∈ RingHom.ker (constantCoeff R)"}], "premise": [1713, 79149, 80405, 80704], "state_str": "case h\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nφ : R⟦X⟧\n⊢ φ ∈ Ideal.span {X} ↔ φ ∈ RingHom.ker (constantCoeff R)"} +{"state": [{"context": ["ι : Type u", "X : Type v", "inst✝⁴ : TopologicalSpace X", "E : Type u_1", "inst✝³ : AddCommMonoid E", "inst✝² : SMulWithZero ℝ E", "inst✝¹ : TopologicalSpace E", "inst✝ : ContinuousSMul ℝ E", "s✝ : Set X", "f : PartitionOfUnity ι X s✝", "s : Set X", "ρ : PartitionOfUnity ι X s", "x₀ : X", "i : ι", "hi : i ∈ ρ.finsupport x₀"], "goal": "i ∈ ρ.fintsupport x₀"}], "premise": [61887], "state_str": "ι : Type u\nX : Type v\ninst✝⁴ : TopologicalSpace X\nE : Type u_1\ninst✝³ : AddCommMonoid E\ninst✝² : SMulWithZero ℝ E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns✝ : Set X\nf : PartitionOfUnity ι X s✝\ns : Set X\nρ : PartitionOfUnity ι X s\nx₀ : X\ni : ι\nhi : i ∈ ρ.finsupport x₀\n⊢ i ∈ ρ.fintsupport x₀"} +{"state": [{"context": ["ι : Type u", "X : Type v", "inst✝⁴ : TopologicalSpace X", "E : Type u_1", "inst✝³ : AddCommMonoid E", "inst✝² : SMulWithZero ℝ E", "inst✝¹ : TopologicalSpace E", "inst✝ : ContinuousSMul ℝ E", "s✝ : Set X", "f : PartitionOfUnity ι X s✝", "s : Set X", "ρ : PartitionOfUnity ι X s", "x₀ : X", "i : ι", "hi : i ∈ ρ.finsupport x₀"], "goal": "x₀ ∈ tsupport ⇑(ρ i)"}], "premise": [55410], "state_str": "ι : Type u\nX : Type v\ninst✝⁴ : TopologicalSpace X\nE : Type u_1\ninst✝³ : AddCommMonoid E\ninst✝² : SMulWithZero ℝ E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns✝ : Set X\nf : PartitionOfUnity ι X s✝\ns : Set X\nρ : PartitionOfUnity ι X s\nx₀ : X\ni : ι\nhi : i ∈ ρ.finsupport x₀\n⊢ x₀ ∈ tsupport ⇑(ρ i)"} +{"state": [{"context": ["ι : Type u", "X : Type v", "inst✝⁴ : TopologicalSpace X", "E : Type u_1", "inst✝³ : AddCommMonoid E", "inst✝² : SMulWithZero ℝ E", "inst✝¹ : TopologicalSpace E", "inst✝ : ContinuousSMul ℝ E", "s✝ : Set X", "f : PartitionOfUnity ι X s✝", "s : Set X", "ρ : PartitionOfUnity ι X s", "x₀ : X", "i : ι", "hi : i ∈ ρ.finsupport x₀"], "goal": "x₀ ∈ support ⇑(ρ i)"}], "premise": [1673, 61881], "state_str": "case a\nι : Type u\nX : Type v\ninst✝⁴ : TopologicalSpace X\nE : Type u_1\ninst✝³ : AddCommMonoid E\ninst✝² : SMulWithZero ℝ E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns✝ : Set X\nf : PartitionOfUnity ι X s✝\ns : Set X\nρ : PartitionOfUnity ι X s\nx₀ : X\ni : ι\nhi : i ∈ ρ.finsupport x₀\n⊢ x₀ ∈ support ⇑(ρ i)"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "inst✝¹ : Group G", "inst✝ : Group G'", "H K L : Subgroup G", "f : G →* G'", "hf : Function.Surjective ⇑f"], "goal": "(map f H).index ∣ H.index"}], "premise": [6554, 6575, 119730, 122997], "state_str": "G : Type u_1\nG' : Type u_2\ninst✝¹ : Group G\ninst✝ : Group G'\nH K L : Subgroup G\nf : G →* G'\nhf : Function.Surjective ⇑f\n⊢ (map f H).index ∣ H.index"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "inst✝¹ : Group G", "inst✝ : Group G'", "H K L : Subgroup G", "f : G →* G'", "hf : Function.Surjective ⇑f"], "goal": "(H ⊔ f.ker).index ∣ H.index"}], "premise": [6524, 14517], "state_str": "G : Type u_1\nG' : Type u_2\ninst✝¹ : Group G\ninst✝ : Group G'\nH K L : Subgroup G\nf : G →* G'\nhf : Function.Surjective ⇑f\n⊢ (H ⊔ f.ker).index ∣ H.index"} +{"state": [{"context": ["f : ℕ → ℂ", "h : f =O[atTop] 1"], "goal": "abscissaOfAbsConv f ≤ 1"}], "premise": [22385], "state_str": "f : ℕ → ℂ\nh : f =O[atTop] 1\n⊢ abscissaOfAbsConv f ≤ 1"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : FirstCountableTopology X"], "goal": "T2Space (SeparationQuotient X) ↔ R1Space X"}], "premise": [1101, 1169, 16273, 61717, 61718, 61725, 64778, 64808, 71408], "state_str": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\n⊢ T2Space (SeparationQuotient X) ↔ R1Space X"} +{"state": [{"context": ["R : Type u_1", "inst✝⁵ : Ring R", "A : Type u_2", "inst✝⁴ : CommRing A", "M : Type u_3", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "U U₁ U₂ : Submodule R M", "x x₁ x₂ y y₁ y₂ z z₁ z₂ : M", "N : Type u_4", "inst✝¹ : AddCommGroup N", "inst✝ : Module R N", "V V₁ V₂ : Submodule R N"], "goal": "x ≡ y [SMOD U] ↔ x - y ∈ U"}], "premise": [1713, 81316, 82370], "state_str": "R : Type u_1\ninst✝⁵ : Ring R\nA : Type u_2\ninst✝⁴ : CommRing A\nM : Type u_3\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\nU U₁ U₂ : Submodule R M\nx x₁ x₂ y y₁ y₂ z z₁ z₂ : M\nN : Type u_4\ninst✝¹ : AddCommGroup N\ninst✝ : Module R N\nV V₁ V₂ : Submodule R N\n⊢ x ≡ y [SMOD U] ↔ x - y ∈ U"} +{"state": [{"context": ["α : Type u_1", "inst✝ : CommRing α", "p : α", "h1 : p ≠ 0", "h2 : ¬IsUnit p", "h3 : ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b"], "goal": "Prime (-p)"}], "premise": [1674, 117865, 121979, 121991], "state_str": "case intro.intro\nα : Type u_1\ninst✝ : CommRing α\np : α\nh1 : p ≠ 0\nh2 : ¬IsUnit p\nh3 : ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b\n⊢ Prime (-p)"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝ : UniformSpace β", "F : ι → α → β", "f : α → β", "s s' : Set α", "x : α", "p : Filter ι", "p' : Filter α", "g : ι → α", "c : β"], "goal": "Tendsto (↿F) (p ×ˢ p') (𝓝 c) ↔ TendstoUniformlyOnFilter F (fun x => c) p p'"}], "premise": [16363, 60481], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nc : β\n⊢ Tendsto (↿F) (p ×ˢ p') (𝓝 c) ↔ TendstoUniformlyOnFilter F (fun x => c) p p'"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝ : UniformSpace β", "F : ι → α → β", "f : α → β", "s s' : Set α", "x : α", "p : Filter ι", "p' : Filter α", "g : ι → α", "c : β"], "goal": "Tendsto (Prod.mk c ∘ ↿F) (p ×ˢ p') (𝓤 β) ↔ TendstoUniformlyOnFilter F (fun x => c) p p'"}], "premise": [1713], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nc : β\n⊢ Tendsto (Prod.mk c ∘ ↿F) (p ×ˢ p') (𝓤 β) ↔ TendstoUniformlyOnFilter F (fun x => c) p p'"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "p q : α → Prop", "inst✝¹ : DecidablePred p", "inst✝ : DecidablePred q", "s✝ t s : Finset α", "a : α"], "goal": "a ∈ filter q (filter p s) ↔ a ∈ filter (fun a => p a ∧ q a) s"}], "premise": [1206, 1240, 2871, 2872, 139089], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\ns✝ t s : Finset α\na : α\n⊢ a ∈ filter q (filter p s) ↔ a ∈ filter (fun a => p a ∧ q a) s"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "π : ι → Type u_5", "rα : α → α → Prop", "rβ : β → β → Prop", "f : γ → α", "g : γ → β", "s : Set γ", "hα : WellFounded (rα on f)", "hβ : ∀ (a : α), (f ⁻¹' {a}).WellFoundedOn (rβ on g)"], "goal": "WellFounded (Prod.Lex rα rβ on fun c => (f c, g c))"}], "premise": [1674, 13050, 15429, 15430, 20146], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nπ : ι → Type u_5\nrα : α → α → Prop\nrβ : β → β → Prop\nf : γ → α\ng : γ → β\ns : Set γ\nhα : WellFounded (rα on f)\nhβ : ∀ (a : α), (f ⁻¹' {a}).WellFoundedOn (rβ on g)\n⊢ WellFounded (Prod.Lex rα rβ on fun c => (f c, g c))"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "π : ι → Type u_5", "rα : α → α → Prop", "rβ : β → β → Prop", "f : γ → α", "g : γ → β", "s : Set γ", "hα : WellFounded (rα on f)", "hβ : ∀ (a : α), (f ⁻¹' {a}).WellFoundedOn (rβ on g)", "c c' : γ", "h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'"], "goal": "((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c => ⟨⟨f c, ⋯⟩, ⟨c, ⋯⟩⟩) c c'"}], "premise": [1673, 137338], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nπ : ι → Type u_5\nrα : α → α → Prop\nrβ : β → β → Prop\nf : γ → α\ng : γ → β\ns : Set γ\nhα : WellFounded (rα on f)\nhβ : ∀ (a : α), (f ⁻¹' {a}).WellFoundedOn (rβ on g)\nc c' : γ\nh : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'\n⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c => ⟨⟨f c, ⋯⟩, ⟨c, ⋯⟩⟩) c c'"} +{"state": [{"context": ["x✝ y x : ℝ"], "goal": "arsinh (-x) = -arsinh x"}], "premise": [38446, 149217, 149306], "state_str": "x✝ y x : ℝ\n⊢ arsinh (-x) = -arsinh x"} +{"state": [{"context": ["x✝ y x : ℝ"], "goal": "-x + √(1 + (-x) ^ 2) = (x + √(1 + x ^ 2))⁻¹"}], "premise": [119814], "state_str": "x✝ y x : ℝ\n⊢ -x + √(1 + (-x) ^ 2) = (x + √(1 + x ^ 2))⁻¹"} +{"state": [{"context": ["x✝ y x : ℝ"], "goal": "(-x + √(1 + (-x) ^ 2)) * (x + √(1 + x ^ 2)) = 1"}], "premise": [117884, 117983, 119707, 119708, 122273, 122284, 146004], "state_str": "case h\nx✝ y x : ℝ\n⊢ (-x + √(1 + (-x) ^ 2)) * (x + √(1 + x ^ 2)) = 1"} +{"state": [{"context": ["x✝ y x : ℝ"], "goal": "0 ≤ 1 + x ^ 2"}], "premise": [101700, 106925], "state_str": "case h\nx✝ y x : ℝ\n⊢ 0 ≤ 1 + x ^ 2"} +{"state": [{"context": ["a b : Rat"], "goal": "a - b = a + -b"}], "premise": [723, 733, 2481, 2557], "state_str": "a b : Rat\n⊢ a - b = a + -b"} +{"state": [{"context": ["a✝ b c d : ℝ≥0∞", "r p q : ℝ≥0", "a : ℝ≥0∞", "h : 0 < a"], "goal": "a ∈ {b | 1 ≤ ⊤ * b}"}], "premise": [11234, 143513], "state_str": "a✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\na : ℝ≥0∞\nh : 0 < a\n⊢ a ∈ {b | 1 ≤ ⊤ * b}"} +{"state": [{"context": ["X Y : CommRingCat", "f : X ⟶ Y"], "goal": "(𝟭 CommRingCat).map f ≫ ((fun R => asIso (toSpecΓ R)) Y).hom = ((fun R => asIso (toSpecΓ R)) X).hom ≫ (Spec.toLocallyRingedSpace.rightOp ⋙ Γ).map f"}], "premise": [128425], "state_str": "X Y : CommRingCat\nf : X ⟶ Y\n⊢ (𝟭 CommRingCat).map f ≫ ((fun R => asIso (toSpecΓ R)) Y).hom =\n ((fun R => asIso (toSpecΓ R)) X).hom ≫ (Spec.toLocallyRingedSpace.rightOp ⋙ Γ).map f"} +{"state": [{"context": ["R : Type u", "ι : Type w", "s : Finset ι", "inst✝ : CommRing R", "t : Multiset R"], "goal": "(Multiset.map (fun x => X - C x) t).prod.nextCoeff = -t.sum"}], "premise": [101756], "state_str": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommRing R\nt : Multiset R\n⊢ (Multiset.map (fun x => X - C x) t).prod.nextCoeff = -t.sum"} +{"state": [{"context": ["n k : ℕ", "hk : k ≤ n"], "goal": "n.choose (n - k) = n.choose k"}], "premise": [3696, 3719, 4597, 143891], "state_str": "n k : ℕ\nhk : k ≤ n\n⊢ n.choose (n - k) = n.choose k"} +{"state": [{"context": ["G : Type u_1", "inst✝ : Group G", "H K : Subgroup G", "g : G", "s : Set G"], "goal": "g ∈ centralizer s ↔ ∀ h ∈ s, h * g * h⁻¹ * g⁻¹ = 1"}], "premise": [6112, 117966, 119728], "state_str": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\ng : G\ns : Set G\n⊢ g ∈ centralizer s ↔ ∀ h ∈ s, h * g * h⁻¹ * g⁻¹ = 1"} +{"state": [{"context": ["ι : Sort uι", "R : Type u", "inst✝² : CommSemiring R", "A : Type v", "inst✝¹ : Semiring A", "inst✝ : Algebra R A", "S T : Set A", "M N P Q : Submodule R A", "m n x y : A"], "goal": "x ∈ map ((LinearMap.mul R A) y) P ↔ ∃ z ∈ P, Mul.mul y z = x"}], "premise": [1713], "state_str": "ι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P Q : Submodule R A\nm n x y : A\n⊢ x ∈ map ((LinearMap.mul R A) y) P ↔ ∃ z ∈ P, Mul.mul y z = x"} +{"state": [{"context": ["x y : ℂ"], "goal": "cos x ^ 2 = 1 - sin x ^ 2"}], "premise": [118076, 149189], "state_str": "x y : ℂ\n⊢ cos x ^ 2 = 1 - sin x ^ 2"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "R : Type u_4", "α : Type u_5", "inst✝⁴ : DecidableEq l", "inst✝³ : DecidableEq m", "inst✝² : DecidableEq n", "inst✝¹ : Semiring α", "inst✝ : Fintype n", "i j k : n", "M : Matrix n n α", "hM : Commute (stdBasisMatrix i j 1) M", "hki : k ≠ i"], "goal": "M k i = 0"}], "premise": [1674, 142128], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nR : Type u_4\nα : Type u_5\ninst✝⁴ : DecidableEq l\ninst✝³ : DecidableEq m\ninst✝² : DecidableEq n\ninst✝¹ : Semiring α\ninst✝ : Fintype n\ni j k : n\nM : Matrix n n α\nhM : Commute (stdBasisMatrix i j 1) M\nhki : k ≠ i\n⊢ M k i = 0"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁶ : StrictOrderedCommRing R", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : Module R V", "inst✝³ : AddTorsor V P", "inst✝² : AddCommGroup V'", "inst✝¹ : Module R V'", "inst✝ : AddTorsor V' P'", "s : AffineSubspace R P", "x y : P", "v : V", "hv : v ∈ s.direction"], "goal": "s.WOppSide x (v +ᵥ y) ↔ s.WOppSide x y"}], "premise": [1713, 37590, 37606], "state_str": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\nv : V\nhv : v ∈ s.direction\n⊢ s.WOppSide x (v +ᵥ y) ↔ s.WOppSide x y"} +{"state": [{"context": ["ι✝ : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "inst✝ : TopologicalSpace γ", "ι : Type u_5", "b : ι → Opens α", "hb : IsBasis (range b)", "hb' : ∀ (i : ι), IsCompact ↑(b i)", "U : Set α"], "goal": "IsCompact U ∧ IsOpen U ↔ ∃ s, s.Finite ∧ U = ⋃ i ∈ s, ↑(b i)"}], "premise": [58115], "state_str": "ι✝ : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Type u_5\nb : ι → Opens α\nhb : IsBasis (range b)\nhb' : ∀ (i : ι), IsCompact ↑(b i)\nU : Set α\n⊢ IsCompact U ∧ IsOpen U ↔ ∃ s, s.Finite ∧ U = ⋃ i ∈ s, ↑(b i)"} +{"state": [{"context": ["K R : Type v", "V M : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : Field K", "inst✝¹ : AddCommGroup V", "inst✝ : Module K V", "f : End K V", "a b : K", "hb : b ≠ 0"], "goal": "f.eigenspace (a / b) = f.eigenspace (b⁻¹ * a)"}], "premise": [119707, 119790], "state_str": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\na b : K\nhb : b ≠ 0\n⊢ f.eigenspace (a / b) = f.eigenspace (b⁻¹ * a)"} +{"state": [{"context": ["K R : Type v", "V M : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : Field K", "inst✝¹ : AddCommGroup V", "inst✝ : Module K V", "f : End K V", "a b : K", "hb : b ≠ 0"], "goal": "LinearMap.ker (f - (b⁻¹ * a) • LinearMap.id) = LinearMap.ker (f - b⁻¹ • a • LinearMap.id)"}], "premise": [118909], "state_str": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\na b : K\nhb : b ≠ 0\n⊢ LinearMap.ker (f - (b⁻¹ * a) • LinearMap.id) = LinearMap.ker (f - b⁻¹ • a • LinearMap.id)"} +{"state": [{"context": ["K R : Type v", "V M : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : Field K", "inst✝¹ : AddCommGroup V", "inst✝ : Module K V", "f : End K V", "a b : K", "hb : b ≠ 0"], "goal": "LinearMap.ker (f - b⁻¹ • (algebraMap K (End K V)) a) = LinearMap.ker (b • (f - b⁻¹ • (algebraMap K (End K V)) a))"}], "premise": [110005], "state_str": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\na b : K\nhb : b ≠ 0\n⊢ LinearMap.ker (f - b⁻¹ • (algebraMap K (End K V)) a) = LinearMap.ker (b • (f - b⁻¹ • (algebraMap K (End K V)) a))"} +{"state": [{"context": ["K R : Type v", "V M : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : Field K", "inst✝¹ : AddCommGroup V", "inst✝ : Module K V", "f : End K V", "a b : K", "hb : b ≠ 0"], "goal": "LinearMap.ker (b • (f - b⁻¹ • (algebraMap K (End K V)) a)) = LinearMap.ker (b • f - (algebraMap K (End K V)) a)"}], "premise": [7383, 108341], "state_str": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\na b : K\nhb : b ≠ 0\n⊢ LinearMap.ker (b • (f - b⁻¹ • (algebraMap K (End K V)) a)) = LinearMap.ker (b • f - (algebraMap K (End K V)) a)"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : Fintype α", "inst✝² : DecidableEq α", "P : Finpartition univ", "hP : P.IsEquipartition", "G : SimpleGraph α", "inst✝¹ : DecidableRel G.Adj", "ε : ℝ", "inst✝ : Nonempty α", "x : { i // i ∈ P.parts.offDiag }", "hε₁ : ε ≤ 1", "hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α", "hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5"], "goal": "↑(G.edgeDensity (↑x).1 (↑x).2) ^ 2 + ((if G.IsUniform ε (↑x).1 (↑x).2 then 0 else ε ^ 4 / 3) - ε ^ 5 / 25) ≤ (∑ i ∈ SzemerediRegularity.distinctPairs hP G ε x, ↑(G.edgeDensity i.1 i.2) ^ 2) / 16 ^ P.parts.card"}], "premise": [117807, 117903], "state_str": "α : Type u_1\ninst✝³ : Fintype α\ninst✝² : DecidableEq α\nP : Finpartition univ\nhP : P.IsEquipartition\nG : SimpleGraph α\ninst✝¹ : DecidableRel G.Adj\nε : ℝ\ninst✝ : Nonempty α\nx : { i // i ∈ P.parts.offDiag }\nhε₁ : ε ≤ 1\nhPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α\nhPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5\n⊢ ↑(G.edgeDensity (↑x).1 (↑x).2) ^ 2 + ((if G.IsUniform ε (↑x).1 (↑x).2 then 0 else ε ^ 4 / 3) - ε ^ 5 / 25) ≤\n (∑ i ∈ SzemerediRegularity.distinctPairs hP G ε x, ↑(G.edgeDensity i.1 i.2) ^ 2) / 16 ^ P.parts.card"} +{"state": [{"context": ["R : Type u", "L : Type v", "L' : Type w₂", "M : Type w", "M' : Type w₁", "inst✝¹² : CommRing R", "inst✝¹¹ : LieRing L", "inst✝¹⁰ : LieAlgebra R L", "inst✝⁹ : LieRing L'", "inst✝⁸ : LieAlgebra R L'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M'", "inst✝² : Module R M'", "inst✝¹ : LieRingModule L M'", "inst✝ : LieModule R L M'", "f : L →ₗ⁅R⁆ L'", "I I₂ : LieIdeal R L", "J : LieIdeal R L'"], "goal": "map f (comap f J) ≤ J"}], "premise": [109367], "state_str": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI I₂ : LieIdeal R L\nJ : LieIdeal R L'\n⊢ map f (comap f J) ≤ J"} +{"state": [{"context": ["R : Type u_1", "inst✝⁶ : CommRing R", "S : Submonoid R", "P : Type u_2", "inst✝⁵ : CommRing P", "inst✝⁴ : Algebra R P", "loc : IsLocalization S P", "R₁ : Type u_3", "inst✝³ : CommRing R₁", "K : Type u_4", "inst✝² : Field K", "inst✝¹ : Algebra R₁ K", "frac : IsFractionRing R₁ K", "inst✝ : IsDomain R₁", "I✝ J I : FractionalIdeal R₁⁰ K"], "goal": "I / 1 = I"}], "premise": [76843, 113024], "state_str": "R : Type u_1\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_3\ninst✝³ : CommRing R₁\nK : Type u_4\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI✝ J I : FractionalIdeal R₁⁰ K\n⊢ I / 1 = I"} +{"state": [{"context": ["S : Type u_1", "R R' : Type u", "M : Type v", "inst✝²⁶ : CommSemiring S", "inst✝²⁵ : Semiring R", "inst✝²⁴ : CommSemiring R'", "inst✝²³ : AddCommMonoid M", "inst✝²² : Algebra S R", "inst✝²¹ : Algebra S R'", "inst✝²⁰ : Module S M", "inst✝¹⁹ : Module R M", "inst✝¹⁸ : Module Rᵐᵒᵖ M", "inst✝¹⁷ : SMulCommClass R Rᵐᵒᵖ M", "inst✝¹⁶ : IsScalarTower S R M", "inst✝¹⁵ : IsScalarTower S Rᵐᵒᵖ M", "inst✝¹⁴ : Module R' M", "inst✝¹³ : Module R'ᵐᵒᵖ M", "inst✝¹² : IsCentralScalar R' M", "inst✝¹¹ : IsScalarTower S R' M", "A : Type u_2", "inst✝¹⁰ : Semiring A", "inst✝⁹ : Algebra S A", "inst✝⁸ : Algebra R' A", "N : Type u_3", "P : Type u_4", "inst✝⁷ : AddCommMonoid N", "inst✝⁶ : Module R' N", "inst✝⁵ : Module R'ᵐᵒᵖ N", "inst✝⁴ : IsCentralScalar R' N", "inst✝³ : AddCommMonoid P", "inst✝² : Module R' P", "inst✝¹ : Module R'ᵐᵒᵖ P", "inst✝ : IsCentralScalar R' P", "f : M →ₗ[R'] N", "x : tsze R' M"], "goal": "((map f) x).fst = x.fst"}], "premise": [121101, 126400, 126407], "state_str": "S : Type u_1\nR R' : Type u\nM : Type v\ninst✝²⁶ : CommSemiring S\ninst✝²⁵ : Semiring R\ninst✝²⁴ : CommSemiring R'\ninst✝²³ : AddCommMonoid M\ninst✝²² : Algebra S R\ninst✝²¹ : Algebra S R'\ninst✝²⁰ : Module S M\ninst✝¹⁹ : Module R M\ninst✝¹⁸ : Module Rᵐᵒᵖ M\ninst✝¹⁷ : SMulCommClass R Rᵐᵒᵖ M\ninst✝¹⁶ : IsScalarTower S R M\ninst✝¹⁵ : IsScalarTower S Rᵐᵒᵖ M\ninst✝¹⁴ : Module R' M\ninst✝¹³ : Module R'ᵐᵒᵖ M\ninst✝¹² : IsCentralScalar R' M\ninst✝¹¹ : IsScalarTower S R' M\nA : Type u_2\ninst✝¹⁰ : Semiring A\ninst✝⁹ : Algebra S A\ninst✝⁸ : Algebra R' A\nN : Type u_3\nP : Type u_4\ninst✝⁷ : AddCommMonoid N\ninst✝⁶ : Module R' N\ninst✝⁵ : Module R'ᵐᵒᵖ N\ninst✝⁴ : IsCentralScalar R' N\ninst✝³ : AddCommMonoid P\ninst✝² : Module R' P\ninst✝¹ : Module R'ᵐᵒᵖ P\ninst✝ : IsCentralScalar R' P\nf : M →ₗ[R'] N\nx : tsze R' M\n⊢ ((map f) x).fst = x.fst"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "ms : MeasurableSpace α", "s✝ t : Set α", "m : OuterMeasure α", "h : ms ≤ m.caratheodory", "s : Set α", "hs : NullMeasurableSet s (m.toMeasure h)"], "goal": "(m.toMeasure h) s = m s"}], "premise": [14296, 31447], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nms : MeasurableSpace α\ns✝ t : Set α\nm : OuterMeasure α\nh : ms ≤ m.caratheodory\ns : Set α\nhs : NullMeasurableSet s (m.toMeasure h)\n⊢ (m.toMeasure h) s = m s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "ms : MeasurableSpace α", "s✝ t : Set α", "m : OuterMeasure α", "h : ms ≤ m.caratheodory", "s : Set α", "hs : NullMeasurableSet s (m.toMeasure h)"], "goal": "(m.toMeasure h) s ≤ m s"}], "premise": [29194], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nms : MeasurableSpace α\ns✝ t : Set α\nm : OuterMeasure α\nh : ms ≤ m.caratheodory\ns : Set α\nhs : NullMeasurableSet s (m.toMeasure h)\n⊢ (m.toMeasure h) s ≤ m s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "ms : MeasurableSpace α", "s✝ t✝ : Set α", "m : OuterMeasure α", "h : ms ≤ m.caratheodory", "s : Set α", "hs : NullMeasurableSet s (m.toMeasure h)", "t : Set α", "hts : t ⊆ s", "htm : MeasurableSet t", "heq : t =ᶠ[ae (m.toMeasure h)] s"], "goal": "(m.toMeasure h) s ≤ m s"}], "premise": [16092, 27511, 27639, 31446], "state_str": "case intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nms : MeasurableSpace α\ns✝ t✝ : Set α\nm : OuterMeasure α\nh : ms ≤ m.caratheodory\ns : Set α\nhs : NullMeasurableSet s (m.toMeasure h)\nt : Set α\nhts : t ⊆ s\nhtm : MeasurableSet t\nheq : t =ᶠ[ae (m.toMeasure h)] s\n⊢ (m.toMeasure h) s ≤ m s"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "hp : p ≠ 2", "this : 2 = ↑2"], "goal": "legendreSym p 2 = χ₈ ↑p"}], "premise": [1685, 21583, 136233, 138285], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nhp : p ≠ 2\nthis : 2 = ↑2\n⊢ legendreSym p 2 = χ₈ ↑p"} +{"state": [{"context": ["u v : ℤ"], "goal": "IsUnit u ↔ u = 1 ∨ u = -1"}], "premise": [117520], "state_str": "u v : ℤ\n⊢ IsUnit u ↔ u = 1 ∨ u = -1"} +{"state": [{"context": ["α : Type u_1", "r : α → α → Prop", "inst✝² : IsTrans α r", "β : Type u_2", "γ : Type u_3", "inst✝¹ : Nonempty γ", "f : γ → α", "inst✝ : Finite β", "D : Directed r f", "s : Set γ", "hs : s.Finite"], "goal": "∃ z, ∀ i ∈ s, r (f i) (f z)"}], "premise": [136516], "state_str": "α : Type u_1\nr : α → α → Prop\ninst✝² : IsTrans α r\nβ : Type u_2\nγ : Type u_3\ninst✝¹ : Nonempty γ\nf : γ → α\ninst✝ : Finite β\nD : Directed r f\ns : Set γ\nhs : s.Finite\n⊢ ∃ z, ∀ i ∈ s, r (f i) (f z)"} +{"state": [{"context": ["α : Type u_1", "r : α → α → Prop", "inst✝² : IsTrans α r", "β : Type u_2", "γ : Type u_3", "inst✝¹ : Nonempty γ", "f : γ → α", "inst✝ : Finite β", "D : Directed r f", "s : Set γ", "hs : s.Finite", "x✝ a✝ : γ"], "goal": "a✝ ∈ s ↔ a✝ ∈ hs.toFinset"}], "premise": [1713, 135002], "state_str": "case h.e'_2.h.h.h.a\nα : Type u_1\nr : α → α → Prop\ninst✝² : IsTrans α r\nβ : Type u_2\nγ : Type u_3\ninst✝¹ : Nonempty γ\nf : γ → α\ninst✝ : Finite β\nD : Directed r f\ns : Set γ\nhs : s.Finite\nx✝ a✝ : γ\n⊢ a✝ ∈ s ↔ a✝ ∈ hs.toFinset"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : HasZeroMorphisms C", "X Y : C", "f : X ⟶ Y", "s : CokernelCofork f"], "goal": "f ≫ Cofork.π s = 0"}], "premise": [93605, 94754], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ns : CokernelCofork f\n⊢ f ≫ Cofork.π s = 0"} +{"state": [{"context": ["C : Type u", "A : Type u_1", "inst✝¹ : Category.{v, u} C", "inst✝ : AddMonoid A", "h : ShiftMkCore C A", "m₁ m₂ m₃ : A", "X : C"], "goal": "(h.F (m₁ + (m₂ + m₃))).obj X = (h.F (m₁ + m₂ + m₃)).obj X"}], "premise": [119704], "state_str": "C : Type u\nA : Type u_1\ninst✝¹ : Category.{v, u} C\ninst✝ : AddMonoid A\nh : ShiftMkCore C A\nm₁ m₂ m₃ : A\nX : C\n⊢ (h.F (m₁ + (m₂ + m₃))).obj X = (h.F (m₁ + m₂ + m₃)).obj X"} +{"state": [{"context": ["C : Type u", "A : Type u_1", "inst✝¹ : Category.{v, u} C", "inst✝ : AddMonoid A", "h : ShiftMkCore C A", "m₁ m₂ m₃ : A", "X : C"], "goal": "(h.F m₃).map ((h.add m₁ m₂).inv.app X) ≫ (h.add (m₁ + m₂) m₃).inv.app X = (h.add m₂ m₃).inv.app ((h.F m₁).obj X) ≫ (h.add m₁ (m₂ + m₃)).inv.app X ≫ eqToHom ⋯"}], "premise": [92824, 96099, 96173, 96175, 96191, 97736, 99919, 99920], "state_str": "C : Type u\nA : Type u_1\ninst✝¹ : Category.{v, u} C\ninst✝ : AddMonoid A\nh : ShiftMkCore C A\nm₁ m₂ m₃ : A\nX : C\n⊢ (h.F m₃).map ((h.add m₁ m₂).inv.app X) ≫ (h.add (m₁ + m₂) m₃).inv.app X =\n (h.add m₂ m₃).inv.app ((h.F m₁).obj X) ≫ (h.add m₁ (m₂ + m₃)).inv.app X ≫ eqToHom ⋯"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g✝ g' : G → E'", "x x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddGroup G", "inst✝³ : TopologicalSpace G", "inst✝² : TopologicalAddGroup G", "inst✝¹ : BorelSpace G", "inst✝ : TopologicalSpace P", "s : Set P", "v : P → G", "hv : ContinuousOn v s", "g : P → G → E'", "k : Set G", "hk : IsCompact k", "hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0", "hf : LocallyIntegrable f μ", "hg : ContinuousOn (↿g) (s ×ˢ univ)"], "goal": "ContinuousOn (fun x => (f ⋆[L, μ] g x) (v x)) s"}], "premise": [43970, 57319, 57341, 57353], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng✝ g' : G → E'\nx x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddGroup G\ninst✝³ : TopologicalSpace G\ninst✝² : TopologicalAddGroup G\ninst✝¹ : BorelSpace G\ninst✝ : TopologicalSpace P\ns : Set P\nv : P → G\nhv : ContinuousOn v s\ng : P → G → E'\nk : Set G\nhk : IsCompact k\nhgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0\nhf : LocallyIntegrable f μ\nhg : ContinuousOn (↿g) (s ×ˢ univ)\n⊢ ContinuousOn (fun x => (f ⋆[L, μ] g x) (v x)) s"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g✝ g' : G → E'", "x✝ x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddGroup G", "inst✝³ : TopologicalSpace G", "inst✝² : TopologicalAddGroup G", "inst✝¹ : BorelSpace G", "inst✝ : TopologicalSpace P", "s : Set P", "v : P → G", "hv : ContinuousOn v s", "g : P → G → E'", "k : Set G", "hk : IsCompact k", "hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0", "hf : LocallyIntegrable f μ", "hg : ContinuousOn (↿g) (s ×ˢ univ)", "x : P", "hx : x ∈ s"], "goal": "(fun x => (_root_.id x, v x)) x ∈ s ×ˢ univ"}], "premise": [1957, 131586, 131602], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng✝ g' : G → E'\nx✝ x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddGroup G\ninst✝³ : TopologicalSpace G\ninst✝² : TopologicalAddGroup G\ninst✝¹ : BorelSpace G\ninst✝ : TopologicalSpace P\ns : Set P\nv : P → G\nhv : ContinuousOn v s\ng : P → G → E'\nk : Set G\nhk : IsCompact k\nhgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0\nhf : LocallyIntegrable f μ\nhg : ContinuousOn (↿g) (s ×ˢ univ)\nx : P\nhx : x ∈ s\n⊢ (fun x => (_root_.id x, v x)) x ∈ s ×ˢ univ"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁴ : _root_.RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace ℝ F", "x y : E"], "goal": "⟪x + y, x + y⟫_𝕜 = ⟪x, x⟫_𝕜 + ⟪x, y⟫_𝕜 + ⟪y, x⟫_𝕜 + ⟪y, y⟫_𝕜"}], "premise": [36754, 36755], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁴ : _root_.RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\nx y : E\n⊢ ⟪x + y, x + y⟫_𝕜 = ⟪x, x⟫_𝕜 + ⟪x, y⟫_𝕜 + ⟪y, x⟫_𝕜 + ⟪y, y⟫_𝕜"} +{"state": [{"context": ["R : Type uR", "S : Type uS", "A : Type uA", "B : Type uB", "M : Type uM", "N : Type uN", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : CommSemiring S", "inst✝⁹ : Semiring A", "inst✝⁸ : Semiring B", "inst✝⁷ : Algebra R S", "inst✝⁶ : Algebra R A", "inst✝⁵ : Algebra R B", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R M", "inst✝² : AddCommMonoid N", "inst✝¹ : Module R N", "ι : Type u_1", "inst✝ : Finite ι"], "goal": "FiniteType R (MvPolynomial ι R)"}], "premise": [141384], "state_str": "R : Type uR\nS : Type uS\nA : Type uA\nB : Type uB\nM : Type uM\nN : Type uN\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : CommSemiring S\ninst✝⁹ : Semiring A\ninst✝⁸ : Semiring B\ninst✝⁷ : Algebra R S\ninst✝⁶ : Algebra R A\ninst✝⁵ : Algebra R B\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid N\ninst✝¹ : Module R N\nι : Type u_1\ninst✝ : Finite ι\n⊢ FiniteType R (MvPolynomial ι R)"} +{"state": [{"context": ["R : Type uR", "S : Type uS", "A : Type uA", "B : Type uB", "M : Type uM", "N : Type uN", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : CommSemiring S", "inst✝⁹ : Semiring A", "inst✝⁸ : Semiring B", "inst✝⁷ : Algebra R S", "inst✝⁶ : Algebra R A", "inst✝⁵ : Algebra R B", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R M", "inst✝² : AddCommMonoid N", "inst✝¹ : Module R N", "ι : Type u_1", "inst✝ : Finite ι", "val✝ : Fintype ι"], "goal": "FiniteType R (MvPolynomial ι R)"}], "premise": [112227, 134174, 137423, 140826], "state_str": "case intro\nR : Type uR\nS : Type uS\nA : Type uA\nB : Type uB\nM : Type uM\nN : Type uN\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : CommSemiring S\ninst✝⁹ : Semiring A\ninst✝⁸ : Semiring B\ninst✝⁷ : Algebra R S\ninst✝⁶ : Algebra R A\ninst✝⁵ : Algebra R B\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid N\ninst✝¹ : Module R N\nι : Type u_1\ninst✝ : Finite ι\nval✝ : Fintype ι\n⊢ FiniteType R (MvPolynomial ι R)"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "f : CauSeq ℚ_[p] ⇑padicNormE", "ε : ℚ", "hε : ε > 0"], "goal": "∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε"}], "premise": [104338], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nf : CauSeq ℚ_[p] ⇑padicNormE\nε : ℚ\nhε : ε > 0\n⊢ ∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "f : CauSeq ℚ_[p] ⇑padicNormE", "ε : ℚ", "hε : ε > 0", "hε3 : 0 < ε / 3"], "goal": "∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε"}], "premise": [23645], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nf : CauSeq ℚ_[p] ⇑padicNormE\nε : ℚ\nhε : ε > 0\nhε3 : 0 < ε / 3\n⊢ ∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "f : CauSeq ℚ_[p] ⇑padicNormE", "ε : ℚ", "hε : ε > 0", "hε3 : 0 < ε / 3", "N : ℕ", "hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3"], "goal": "∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε"}], "premise": [107850], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nf : CauSeq ℚ_[p] ⇑padicNormE\nε : ℚ\nhε : ε > 0\nhε3 : 0 < ε / 3\nN : ℕ\nhN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3\n⊢ ∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "f : CauSeq ℚ_[p] ⇑padicNormE", "ε : ℚ", "hε : ε > 0", "hε3 : 0 < ε / 3", "N : ℕ", "hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3", "N2 : ℕ", "hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3", "j : ℕ", "hj : j ≥ max N N2"], "goal": "padicNorm p (limSeq f j - limSeq f (max N N2)) < ε"}], "premise": [23641], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nf : CauSeq ℚ_[p] ⇑padicNormE\nε : ℚ\nhε : ε > 0\nhε3 : 0 < ε / 3\nN : ℕ\nhN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3\nN2 : ℕ\nhN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3\nj : ℕ\nhj : j ≥ max N N2\n⊢ padicNorm p (limSeq f j - limSeq f (max N N2)) < ε"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "f : CauSeq ℚ_[p] ⇑padicNormE", "ε : ℚ", "hε : ε > 0", "hε3 : 0 < ε / 3", "N : ℕ", "hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3", "N2 : ℕ", "hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3", "j : ℕ", "hj : j ≥ max N N2"], "goal": "padicNormE (↑(limSeq f j) - ↑f (max N N2) + (↑f (max N N2) - ↑(limSeq f (max N N2)))) < ε"}], "premise": [14288], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nf : CauSeq ℚ_[p] ⇑padicNormE\nε : ℚ\nhε : ε > 0\nhε3 : 0 < ε / 3\nN : ℕ\nhN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3\nN2 : ℕ\nhN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3\nj : ℕ\nhj : j ≥ max N N2\n⊢ padicNormE (↑(limSeq f j) - ↑f (max N N2) + (↑f (max N N2) - ↑(limSeq f (max N N2)))) < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "κ : Sort u_6", "r p q : α → α → Prop", "inst✝ : CompleteLattice α", "s : Set ι", "t : Set ι'", "f : ι × ι' → α", "hs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i')", "ht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i')", "i : ι", "i' : ι'", "hi : (i, i') ∈ s ×ˢ t", "j : ι", "j' : ι'", "hj : (j, j') ∈ s ×ˢ t", "h : (i, i') ≠ (j, j')"], "goal": "(Disjoint on f) (i, i') (j, j')"}], "premise": [131601], "state_str": "case mk.mk\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\nκ : Sort u_6\nr p q : α → α → Prop\ninst✝ : CompleteLattice α\ns : Set ι\nt : Set ι'\nf : ι × ι' → α\nhs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i')\nht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i')\ni : ι\ni' : ι'\nhi : (i, i') ∈ s ×ˢ t\nj : ι\nj' : ι'\nhj : (j, j') ∈ s ×ˢ t\nh : (i, i') ≠ (j, j')\n⊢ (Disjoint on f) (i, i') (j, j')"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "κ : Sort u_6", "r p q : α → α → Prop", "inst✝ : CompleteLattice α", "s : Set ι", "t : Set ι'", "f : ι × ι' → α", "hs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i')", "ht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i')", "i : ι", "i' : ι'", "hi : (i, i').1 ∈ s ∧ (i, i').2 ∈ t", "j : ι", "j' : ι'", "hj : (j, j').1 ∈ s ∧ (j, j').2 ∈ t", "h : (i, i') ≠ (j, j')"], "goal": "(Disjoint on f) (i, i') (j, j')"}], "premise": [70039], "state_str": "case mk.mk\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\nκ : Sort u_6\nr p q : α → α → Prop\ninst✝ : CompleteLattice α\ns : Set ι\nt : Set ι'\nf : ι × ι' → α\nhs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i')\nht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i')\ni : ι\ni' : ι'\nhi : (i, i').1 ∈ s ∧ (i, i').2 ∈ t\nj : ι\nj' : ι'\nhj : (j, j').1 ∈ s ∧ (j, j').2 ∈ t\nh : (i, i') ≠ (j, j')\n⊢ (Disjoint on f) (i, i') (j, j')"} +{"state": [{"context": ["α✝ : Type u_1", "β✝ : Type u_2", "ι : Type u_3", "π : ι → Type u_4", "inst✝³ : Bornology α✝", "inst✝² : Bornology β✝", "inst✝¹ : (i : ι) → Bornology (π i)", "α : Type u_5", "β : Type u_6", "inst✝ : Bornology β", "f : α → β"], "goal": "BoundedSpace α ↔ IsBounded (range f)"}], "premise": [1713, 54837, 54862, 134174], "state_str": "α✝ : Type u_1\nβ✝ : Type u_2\nι : Type u_3\nπ : ι → Type u_4\ninst✝³ : Bornology α✝\ninst✝² : Bornology β✝\ninst✝¹ : (i : ι) → Bornology (π i)\nα : Type u_5\nβ : Type u_6\ninst✝ : Bornology β\nf : α → β\n⊢ BoundedSpace α ↔ IsBounded (range f)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Preorder α", "inst✝ : Preorder β", "e : α ≃o β", "b : β", "x : α"], "goal": "x ∈ ⇑e ⁻¹' Iic b ↔ x ∈ Iic (e.symm b)"}], "premise": [11102], "state_str": "case h\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ne : α ≃o β\nb : β\nx : α\n⊢ x ∈ ⇑e ⁻¹' Iic b ↔ x ∈ Iic (e.symm b)"} +{"state": [{"context": ["R : Type u_1", "R₂ : Type u_2", "R₃ : Type u_3", "K : Type u_4", "K₂ : Type u_5", "M : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "V : Type u_9", "V₂ : Type u_10", "inst✝¹¹ : Semiring R", "inst✝¹⁰ : Semiring R₂", "inst✝⁹ : Semiring R₃", "inst✝⁸ : AddCommMonoid M", "inst✝⁷ : AddCommMonoid M₂", "inst✝⁶ : AddCommMonoid M₃", "inst✝⁵ : Module R M", "inst✝⁴ : Module R₂ M₂", "inst✝³ : Module R₃ M₃", "τ₁₂ : R →+* R₂", "τ₂₃ : R₂ →+* R₃", "τ₁₃ : R →+* R₃", "inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃", "M' : Type u_11", "inst✝¹ : AddCommMonoid M'", "inst✝ : Module R M'", "O : Submodule R M", "ϕ : ↥O →ₗ[R] M'", "N : Submodule R M", "hNO : N ≤ O", "x : M'"], "goal": "x ∈ ϕ.submoduleImage N ↔ ∃ y, ∃ (yN : y ∈ N), ϕ ⟨y, ⋯⟩ = x"}], "premise": [1715, 109970], "state_str": "R : Type u_1\nR₂ : Type u_2\nR₃ : Type u_3\nK : Type u_4\nK₂ : Type u_5\nM : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nV : Type u_9\nV₂ : Type u_10\ninst✝¹¹ : Semiring R\ninst✝¹⁰ : Semiring R₂\ninst✝⁹ : Semiring R₃\ninst✝⁸ : AddCommMonoid M\ninst✝⁷ : AddCommMonoid M₂\ninst✝⁶ : AddCommMonoid M₃\ninst✝⁵ : Module R M\ninst✝⁴ : Module R₂ M₂\ninst✝³ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nM' : Type u_11\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nO : Submodule R M\nϕ : ↥O →ₗ[R] M'\nN : Submodule R M\nhNO : N ≤ O\nx : M'\n⊢ x ∈ ϕ.submoduleImage N ↔ ∃ y, ∃ (yN : y ∈ N), ϕ ⟨y, ⋯⟩ = x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁴ : _root_.RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace ℝ F", "x : E"], "goal": "‖(innerSL 𝕜) x‖ = ‖x‖"}], "premise": [14296, 36843, 40885, 42680], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁴ : _root_.RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\nx : E\n⊢ ‖(innerSL 𝕜) x‖ = ‖x‖"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁴ : _root_.RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace ℝ F", "x : E"], "goal": "‖x‖ ≤ ‖(innerSL 𝕜) x‖"}], "premise": [70039], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁴ : _root_.RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\nx : E\n⊢ ‖x‖ ≤ ‖(innerSL 𝕜) x‖"} +{"state": [{"context": ["R : Type u_1", "inst✝ : Semiring R", "p q : R[X]"], "goal": "eval 1 p.mirror = eval 1 p"}], "premise": [101456, 102861, 119730, 119756], "state_str": "R : Type u_1\ninst✝ : Semiring R\np q : R[X]\n⊢ eval 1 p.mirror = eval 1 p"} +{"state": [{"context": ["R : Type u_1", "inst✝ : Semiring R", "p q : R[X]"], "goal": "∑ x ∈ Finset.range (p.natDegree + 1), p.mirror.coeff x = ∑ x ∈ Finset.range (p.natDegree + 1), p.coeff x"}], "premise": [127126], "state_str": "R : Type u_1\ninst✝ : Semiring R\np q : R[X]\n⊢ ∑ x ∈ Finset.range (p.natDegree + 1), p.mirror.coeff x = ∑ x ∈ Finset.range (p.natDegree + 1), p.coeff x"} +{"state": [{"context": ["α : Type u", "β : Type v", "X : Type u_1", "ι : Type u_2", "inst✝ : PseudoMetricSpace α", "x y z : α", "δ ε ε₁ ε₂ : ℝ", "s : Set α"], "goal": "y ∈ sphere x ε ↔ dist x y = ε"}], "premise": [1713, 61121, 61171], "state_str": "α : Type u\nβ : Type v\nX : Type u_1\nι : Type u_2\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\n⊢ y ∈ sphere x ε ↔ dist x y = ε"} +{"state": [{"context": ["X : Type w", "t : TopologicalSpace X", "h : ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y), (∀ (S : CompHaus) (g : C(↑S.toTop, X)), Continuous (f ∘ ⇑g)) → Continuous f"], "goal": "t ≤ compactlyGenerated X"}], "premise": [57598], "state_str": "X : Type w\nt : TopologicalSpace X\nh :\n ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y),\n (∀ (S : CompHaus) (g : C(↑S.toTop, X)), Continuous (f ∘ ⇑g)) → Continuous f\n⊢ t ≤ compactlyGenerated X"} +{"state": [{"context": ["X : Type w", "t : TopologicalSpace X", "h : ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y), (∀ (S : CompHaus) (g : C(↑S.toTop, X)), Continuous (f ∘ ⇑g)) → Continuous f", "S : CompHaus", "g : C(↑S.toTop, X)", "f : (i : (T : CompHaus) × C(↑T.toTop, X)) × ↑i.fst.toTop → X := fun x => match x with | ⟨⟨fst, i⟩, s⟩ => i s"], "goal": "∀ (i : (T : CompHaus) × C(↑T.toTop, X)), Continuous fun a => f ⟨i, a⟩"}], "premise": [66592], "state_str": "case a\nX : Type w\nt : TopologicalSpace X\nh :\n ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y),\n (∀ (S : CompHaus) (g : C(↑S.toTop, X)), Continuous (f ∘ ⇑g)) → Continuous f\nS : CompHaus\ng : C(↑S.toTop, X)\nf : (i : (T : CompHaus) × C(↑T.toTop, X)) × ↑i.fst.toTop → X :=\n fun x =>\n match x with\n | ⟨⟨fst, i⟩, s⟩ => i s\n⊢ ∀ (i : (T : CompHaus) × C(↑T.toTop, X)), Continuous fun a => f ⟨i, a⟩"} +{"state": [{"context": ["X : Type w", "t : TopologicalSpace X", "h : ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y), (∀ (S : CompHaus) (g : C(↑S.toTop, X)), Continuous (f ∘ ⇑g)) → Continuous f", "S : CompHaus", "g : C(↑S.toTop, X)", "f : (i : (T : CompHaus) × C(↑T.toTop, X)) × ↑i.fst.toTop → X := fun x => match x with | ⟨⟨fst, i⟩, s⟩ => i s"], "goal": "Continuous f"}], "premise": [57578], "state_str": "case a\nX : Type w\nt : TopologicalSpace X\nh :\n ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y),\n (∀ (S : CompHaus) (g : C(↑S.toTop, X)), Continuous (f ∘ ⇑g)) → Continuous f\nS : CompHaus\ng : C(↑S.toTop, X)\nf : (i : (T : CompHaus) × C(↑T.toTop, X)) × ↑i.fst.toTop → X :=\n fun x =>\n match x with\n | ⟨⟨fst, i⟩, s⟩ => i s\n⊢ Continuous f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : PseudoMetricSpace α", "x y z : α", "s✝ t : Set α", "inst✝ : DecidableEq α", "s : Finset α", "hs : s.offDiag = ∅"], "goal": "(↑s).infsep = 0"}], "premise": [138728], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns✝ t : Set α\ninst✝ : DecidableEq α\ns : Finset α\nhs : s.offDiag = ∅\n⊢ (↑s).infsep = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : PseudoMetricSpace α", "x y z : α", "s✝ t : Set α", "inst✝ : DecidableEq α", "s : Finset α", "hs : ¬s.offDiag.Nonempty"], "goal": "(↑s).infsep = 0"}], "premise": [1740, 61530], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns✝ t : Set α\ninst✝ : DecidableEq α\ns : Finset α\nhs : ¬s.offDiag.Nonempty\n⊢ (↑s).infsep = 0"} +{"state": [{"context": ["α : Type u", "β : α → Type v", "inst✝ : DecidableEq α", "a : α", "b : β a"], "goal": "lookup a (singleton a b) = some b"}], "premise": [131274, 140487], "state_str": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\nb : β a\n⊢ lookup a (singleton a b) = some b"} +{"state": [{"context": ["σ : Type u_1", "R : Type u_2", "τ : Type u_3", "S : Type u_4", "inst✝³ : CommSemiring R", "inst✝² : CommSemiring S", "inst✝¹ : Fintype σ", "inst✝ : Fintype τ"], "goal": "esymm σ R = (Multiset.map X univ.val).esymm"}], "premise": [1838, 2100, 77823], "state_str": "σ : Type u_1\nR : Type u_2\nτ : Type u_3\nS : Type u_4\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring S\ninst✝¹ : Fintype σ\ninst✝ : Fintype τ\n⊢ esymm σ R = (Multiset.map X univ.val).esymm"} +{"state": [{"context": ["X✝ : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "inst✝⁵ : TopologicalSpace X✝", "inst✝⁴ : TopologicalSpace Y", "inst✝³ : TopologicalSpace Z", "inst✝² : TopologicalSpace W", "inst✝¹ : TopologicalSpace ε", "inst✝ : TopologicalSpace ζ", "X : Type u_5", "seq : X → Y × Z", "f : Filter X", "p : Y × Z"], "goal": "Tendsto seq f (𝓝 p) ↔ Tendsto (fun n => (seq n).1) f (𝓝 p.1) ∧ Tendsto (fun n => (seq n).2) f (𝓝 p.2)"}], "premise": [1713, 12234, 66413], "state_str": "X✝ : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\ninst✝⁵ : TopologicalSpace X✝\ninst✝⁴ : TopologicalSpace Y\ninst✝³ : TopologicalSpace Z\ninst✝² : TopologicalSpace W\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\nX : Type u_5\nseq : X → Y × Z\nf : Filter X\np : Y × Z\n⊢ Tendsto seq f (𝓝 p) ↔ Tendsto (fun n => (seq n).1) f (𝓝 p.1) ∧ Tendsto (fun n => (seq n).2) f (𝓝 p.2)"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "α : Type u_3", "β : Type u_4", "E : Type u_5", "inst✝⁶ : Countable G", "inst✝⁵ : Group G", "inst✝⁴ : MulAction G α", "inst✝³ : MeasurableSpace α", "μ : Measure α", "s : Set α", "hs : IsFundamentalDomain G s μ", "inst✝² : MeasurableSpace G", "inst✝¹ : MeasurableSMul G α", "inst✝ : SMulInvariantMeasure G α μ"], "goal": "∀ᵐ (x : α) ∂μ, ∃ g, g • x ∈ fundamentalInterior G s"}], "premise": [2025, 27600, 132970, 133313, 133596, 135246, 135287], "state_str": "G : Type u_1\nH : Type u_2\nα : Type u_3\nβ : Type u_4\nE : Type u_5\ninst✝⁶ : Countable G\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G α\ninst✝³ : MeasurableSpace α\nμ : Measure α\ns : Set α\nhs : IsFundamentalDomain G s μ\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\ninst✝ : SMulInvariantMeasure G α μ\n⊢ ∀ᵐ (x : α) ∂μ, ∃ g, g • x ∈ fundamentalInterior G s"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "α : Type u_3", "β : Type u_4", "E : Type u_5", "inst✝⁶ : Countable G", "inst✝⁵ : Group G", "inst✝⁴ : MulAction G α", "inst✝³ : MeasurableSpace α", "μ : Measure α", "s : Set α", "hs : IsFundamentalDomain G s μ", "inst✝² : MeasurableSpace G", "inst✝¹ : MeasurableSMul G α", "inst✝ : SMulInvariantMeasure G α μ"], "goal": "μ (⋃ i, i⁻¹ • fundamentalInterior G s)ᶜ = 0"}], "premise": [33077, 132878, 133659, 135295], "state_str": "G : Type u_1\nH : Type u_2\nα : Type u_3\nβ : Type u_4\nE : Type u_5\ninst✝⁶ : Countable G\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G α\ninst✝³ : MeasurableSpace α\nμ : Measure α\ns : Set α\nhs : IsFundamentalDomain G s μ\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\ninst✝ : SMulInvariantMeasure G α μ\n⊢ μ (⋃ i, i⁻¹ • fundamentalInterior G s)ᶜ = 0"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "α : Type u_3", "β : Type u_4", "E : Type u_5", "inst✝⁶ : Countable G", "inst✝⁵ : Group G", "inst✝⁴ : MulAction G α", "inst✝³ : MeasurableSpace α", "μ : Measure α", "s : Set α", "hs : IsFundamentalDomain G s μ", "inst✝² : MeasurableSpace G", "inst✝¹ : MeasurableSMul G α", "inst✝ : SMulInvariantMeasure G α μ", "this : (⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s ⊆ ⋃ g, g⁻¹ • fundamentalInterior G s"], "goal": "μ (⋃ i, i⁻¹ • fundamentalInterior G s)ᶜ = 0"}], "premise": [1674, 18819, 27511, 133619], "state_str": "G : Type u_1\nH : Type u_2\nα : Type u_3\nβ : Type u_4\nE : Type u_5\ninst✝⁶ : Countable G\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G α\ninst✝³ : MeasurableSpace α\nμ : Measure α\ns : Set α\nhs : IsFundamentalDomain G s μ\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\ninst✝ : SMulInvariantMeasure G α μ\nthis : (⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s ⊆ ⋃ g, g⁻¹ • fundamentalInterior G s\n⊢ μ (⋃ i, i⁻¹ • fundamentalInterior G s)ᶜ = 0"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "α : Type u_3", "β : Type u_4", "E : Type u_5", "inst✝⁶ : Countable G", "inst✝⁵ : Group G", "inst✝⁴ : MulAction G α", "inst✝³ : MeasurableSpace α", "μ : Measure α", "s : Set α", "hs : IsFundamentalDomain G s μ", "inst✝² : MeasurableSpace G", "inst✝¹ : MeasurableSMul G α", "inst✝ : SMulInvariantMeasure G α μ", "this : (⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s ⊆ ⋃ g, g⁻¹ • fundamentalInterior G s"], "goal": "μ.measureOf ((⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s)ᶜ = ⊥"}], "premise": [12065, 12091, 133002, 133003, 133290, 143236], "state_str": "G : Type u_1\nH : Type u_2\nα : Type u_3\nβ : Type u_4\nE : Type u_5\ninst✝⁶ : Countable G\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G α\ninst✝³ : MeasurableSpace α\nμ : Measure α\ns : Set α\nhs : IsFundamentalDomain G s μ\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\ninst✝ : SMulInvariantMeasure G α μ\nthis : (⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s ⊆ ⋃ g, g⁻¹ • fundamentalInterior G s\n⊢ μ.measureOf ((⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s)ᶜ = ⊥"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "α : Type u_3", "β : Type u_4", "E : Type u_5", "inst✝⁶ : Countable G", "inst✝⁵ : Group G", "inst✝⁴ : MulAction G α", "inst✝³ : MeasurableSpace α", "μ : Measure α", "s : Set α", "hs : IsFundamentalDomain G s μ", "inst✝² : MeasurableSpace G", "inst✝¹ : MeasurableSMul G α", "inst✝ : SMulInvariantMeasure G α μ", "this : (⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s ⊆ ⋃ g, g⁻¹ • fundamentalInterior G s"], "goal": "μ.measureOf ((⋃ g, g • fundamentalFrontier G s) ∪ {a | ∃ g, g • a ∈ s}ᶜ) = 0"}], "premise": [27573, 30520, 32979, 33093], "state_str": "G : Type u_1\nH : Type u_2\nα : Type u_3\nβ : Type u_4\nE : Type u_5\ninst✝⁶ : Countable G\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G α\ninst✝³ : MeasurableSpace α\nμ : Measure α\ns : Set α\nhs : IsFundamentalDomain G s μ\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\ninst✝ : SMulInvariantMeasure G α μ\nthis : (⋃ g, g⁻¹ • s) \\ ⋃ g, g⁻¹ • fundamentalFrontier G s ⊆ ⋃ g, g⁻¹ • fundamentalInterior G s\n⊢ μ.measureOf ((⋃ g, g • fundamentalFrontier G s) ∪ {a | ∃ g, g • a ∈ s}ᶜ) = 0"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁷ : OrderedRing R", "inst✝⁶ : AddCommGroup V", "inst✝⁵ : Module R V", "inst✝⁴ : AddTorsor V P", "inst✝³ : AddCommGroup V'", "inst✝² : Module R V'", "inst✝¹ : AddTorsor V' P'", "inst✝ : NoZeroSMulDivisors R V", "x y : P", "r : R"], "goal": "Sbtw R x ((lineMap x y) r) y ↔ x ≠ y ∧ r ∈ Set.Ioo 0 1"}], "premise": [1204, 1713, 1723, 37505], "state_str": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁷ : OrderedRing R\ninst✝⁶ : AddCommGroup V\ninst✝⁵ : Module R V\ninst✝⁴ : AddTorsor V P\ninst✝³ : AddCommGroup V'\ninst✝² : Module R V'\ninst✝¹ : AddTorsor V' P'\ninst✝ : NoZeroSMulDivisors R V\nx y : P\nr : R\n⊢ Sbtw R x ((lineMap x y) r) y ↔ x ≠ y ∧ r ∈ Set.Ioo 0 1"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁷ : OrderedRing R", "inst✝⁶ : AddCommGroup V", "inst✝⁵ : Module R V", "inst✝⁴ : AddTorsor V P", "inst✝³ : AddCommGroup V'", "inst✝² : Module R V'", "inst✝¹ : AddTorsor V' P'", "inst✝ : NoZeroSMulDivisors R V", "x y : P", "r : R", "hxy : x ≠ y"], "goal": "(lineMap x y) r ∈ ⇑(lineMap x y) '' Set.Ioo 0 1 ↔ r ∈ Set.Ioo 0 1"}], "premise": [1713, 84339, 134090], "state_str": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁷ : OrderedRing R\ninst✝⁶ : AddCommGroup V\ninst✝⁵ : Module R V\ninst✝⁴ : AddTorsor V P\ninst✝³ : AddCommGroup V'\ninst✝² : Module R V'\ninst✝¹ : AddTorsor V' P'\ninst✝ : NoZeroSMulDivisors R V\nx y : P\nr : R\nhxy : x ≠ y\n⊢ (lineMap x y) r ∈ ⇑(lineMap x y) '' Set.Ioo 0 1 ↔ r ∈ Set.Ioo 0 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "𝕜 : Type u_3", "E : Type u_4", "F : Type u_5", "inst✝⁵ : RCLike 𝕜", "inst✝⁴ : NormedAddCommGroup E", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : CompleteSpace F", "u : α → ℝ", "inst✝ : NormedSpace 𝕜 F", "f : α → E → F", "f' : α → E → E →L[𝕜] F", "g g' : α → 𝕜 → F", "v : ℕ → α → ℝ", "s : Set E", "t : Set 𝕜", "x₀ x : E", "y₀ y : 𝕜", "N : ℕ∞", "hf : ∀ (i : α), ContDiff 𝕜 N (f i)", "hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)", "h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i"], "goal": "ContDiff 𝕜 N fun x => ∑' (i : α), f i x"}], "premise": [1096, 1187, 1673, 1674, 2025, 2045, 2100, 3800, 10639, 14323, 14324, 15889, 16034, 20840, 42184, 45153, 48444, 48449, 48454, 51668, 51688, 64020, 64025, 103545, 131585, 135002, 139145, 139155], "state_str": "α : Type u_1\nβ : Type u_2\n𝕜 : Type u_3\nE : Type u_4\nF : Type u_5\ninst✝⁵ : RCLike 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\ng g' : α → 𝕜 → F\nv : ℕ → α → ℝ\ns : Set E\nt : Set 𝕜\nx₀ x : E\ny₀ y : 𝕜\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\n⊢ ContDiff 𝕜 N fun x => ∑' (i : α), f i x"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "o : Type u_4", "R : Type u_5", "α : Type v", "β : Type w", "ι : Type u_6", "M : Matrix m n α", "i : m", "j : n", "b : n → α", "c : m → α", "inst✝ : DecidableEq n", "f : α → β", "i✝ : m", "j✝ : n"], "goal": "(M.updateColumn j c).map f i✝ j✝ = (M.map f).updateColumn j (f ∘ c) i✝ j✝"}], "premise": [137775, 142132], "state_str": "case a\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nR : Type u_5\nα : Type v\nβ : Type w\nι : Type u_6\nM : Matrix m n α\ni : m\nj : n\nb : n → α\nc : m → α\ninst✝ : DecidableEq n\nf : α → β\ni✝ : m\nj✝ : n\n⊢ (M.updateColumn j c).map f i✝ j✝ = (M.map f).updateColumn j (f ∘ c) i✝ j✝"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "o : Type u_4", "R : Type u_5", "α : Type v", "β : Type w", "ι : Type u_6", "M : Matrix m n α", "i : m", "j : n", "b : n → α", "c : m → α", "inst✝ : DecidableEq n", "f : α → β", "i✝ : m", "j✝ : n"], "goal": "f (if j✝ = j then c i✝ else M i✝ j✝) = if j✝ = j then (f ∘ c) i✝ else f (M i✝ j✝)"}], "premise": [1911], "state_str": "case a\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nR : Type u_5\nα : Type v\nβ : Type w\nι : Type u_6\nM : Matrix m n α\ni : m\nj : n\nb : n → α\nc : m → α\ninst✝ : DecidableEq n\nf : α → β\ni✝ : m\nj✝ : n\n⊢ f (if j✝ = j then c i✝ else M i✝ j✝) = if j✝ = j then (f ∘ c) i✝ else f (M i✝ j✝)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "E' : Type u_5", "inst✝¹² : NormedAddCommGroup E'", "inst✝¹¹ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝¹⁰ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁹ : TopologicalSpace M'", "inst✝⁸ : ChartedSpace H' M'", "E'' : Type u_8", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝⁵ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝⁴ : TopologicalSpace M''", "inst✝³ : ChartedSpace H'' M''", "inst✝² : SmoothManifoldWithCorners I M", "inst✝¹ : SmoothManifoldWithCorners I' M'", "inst✝ : SmoothManifoldWithCorners I'' M''", "e : PartialHomeomorph M H", "h : e ∈ atlas H M", "x : M", "hx : x ∈ e.source"], "goal": "MDifferentiableAt I I (↑e) x"}], "premise": [65997], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\nE' : Type u_5\ninst✝¹² : NormedAddCommGroup E'\ninst✝¹¹ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝¹⁰ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁹ : TopologicalSpace M'\ninst✝⁸ : ChartedSpace H' M'\nE'' : Type u_8\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝⁵ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝⁴ : TopologicalSpace M''\ninst✝³ : ChartedSpace H'' M''\ninst✝² : SmoothManifoldWithCorners I M\ninst✝¹ : SmoothManifoldWithCorners I' M'\ninst✝ : SmoothManifoldWithCorners I'' M''\ne : PartialHomeomorph M H\nh : e ∈ atlas H M\nx : M\nhx : x ∈ e.source\n⊢ MDifferentiableAt I I (↑e) x"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "E' : Type u_5", "inst✝¹² : NormedAddCommGroup E'", "inst✝¹¹ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝¹⁰ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁹ : TopologicalSpace M'", "inst✝⁸ : ChartedSpace H' M'", "E'' : Type u_8", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝⁵ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝⁴ : TopologicalSpace M''", "inst✝³ : ChartedSpace H'' M''", "inst✝² : SmoothManifoldWithCorners I M", "inst✝¹ : SmoothManifoldWithCorners I' M'", "inst✝ : SmoothManifoldWithCorners I'' M''", "e : PartialHomeomorph M H", "h : e ∈ atlas H M", "x : M", "hx : x ∈ e.source"], "goal": "ContinuousAt (↑e) x ∧ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"}], "premise": [55501, 57312, 66067, 66069], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\nE' : Type u_5\ninst✝¹² : NormedAddCommGroup E'\ninst✝¹¹ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝¹⁰ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁹ : TopologicalSpace M'\ninst✝⁸ : ChartedSpace H' M'\nE'' : Type u_8\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝⁵ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝⁴ : TopologicalSpace M''\ninst✝³ : ChartedSpace H'' M''\ninst✝² : SmoothManifoldWithCorners I M\ninst✝¹ : SmoothManifoldWithCorners I' M'\ninst✝ : SmoothManifoldWithCorners I'' M''\ne : PartialHomeomorph M H\nh : e ∈ atlas H M\nx : M\nhx : x ∈ e.source\n⊢ ContinuousAt (↑e) x ∧ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "E' : Type u_5", "inst✝¹² : NormedAddCommGroup E'", "inst✝¹¹ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝¹⁰ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁹ : TopologicalSpace M'", "inst✝⁸ : ChartedSpace H' M'", "E'' : Type u_8", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝⁵ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝⁴ : TopologicalSpace M''", "inst✝³ : ChartedSpace H'' M''", "inst✝² : SmoothManifoldWithCorners I M", "inst✝¹ : SmoothManifoldWithCorners I' M'", "inst✝ : SmoothManifoldWithCorners I'' M''", "e : PartialHomeomorph M H", "h : e ∈ atlas H M", "x : M", "hx : x ∈ e.source", "mem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I"], "goal": "DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"}], "premise": [67288, 67316], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\nE' : Type u_5\ninst✝¹² : NormedAddCommGroup E'\ninst✝¹¹ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝¹⁰ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁹ : TopologicalSpace M'\ninst✝⁸ : ChartedSpace H' M'\nE'' : Type u_8\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝⁵ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝⁴ : TopologicalSpace M''\ninst✝³ : ChartedSpace H'' M''\ninst✝² : SmoothManifoldWithCorners I M\ninst✝¹ : SmoothManifoldWithCorners I' M'\ninst✝ : SmoothManifoldWithCorners I'' M''\ne : PartialHomeomorph M H\nh : e ∈ atlas H M\nx : M\nhx : x ∈ e.source\nmem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I\n⊢ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "E' : Type u_5", "inst✝¹² : NormedAddCommGroup E'", "inst✝¹¹ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝¹⁰ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁹ : TopologicalSpace M'", "inst✝⁸ : ChartedSpace H' M'", "E'' : Type u_8", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝⁵ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝⁴ : TopologicalSpace M''", "inst✝³ : ChartedSpace H'' M''", "inst✝² : SmoothManifoldWithCorners I M", "inst✝¹ : SmoothManifoldWithCorners I' M'", "inst✝ : SmoothManifoldWithCorners I'' M''", "e : PartialHomeomorph M H", "h : e ∈ atlas H M", "x : M", "hx : x ∈ e.source", "mem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I", "this : (chartAt H x).symm ≫ₕ e ∈ contDiffGroupoid ⊤ I"], "goal": "DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"}], "premise": [2107], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\nE' : Type u_5\ninst✝¹² : NormedAddCommGroup E'\ninst✝¹¹ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝¹⁰ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁹ : TopologicalSpace M'\ninst✝⁸ : ChartedSpace H' M'\nE'' : Type u_8\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝⁵ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝⁴ : TopologicalSpace M''\ninst✝³ : ChartedSpace H'' M''\ninst✝² : SmoothManifoldWithCorners I M\ninst✝¹ : SmoothManifoldWithCorners I' M'\ninst✝ : SmoothManifoldWithCorners I'' M''\ne : PartialHomeomorph M H\nh : e ∈ atlas H M\nx : M\nhx : x ∈ e.source\nmem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I\nthis : (chartAt H x).symm ≫ₕ e ∈ contDiffGroupoid ⊤ I\n⊢ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "E' : Type u_5", "inst✝¹² : NormedAddCommGroup E'", "inst✝¹¹ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝¹⁰ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁹ : TopologicalSpace M'", "inst✝⁸ : ChartedSpace H' M'", "E'' : Type u_8", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝⁵ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝⁴ : TopologicalSpace M''", "inst✝³ : ChartedSpace H'' M''", "inst✝² : SmoothManifoldWithCorners I M", "inst✝¹ : SmoothManifoldWithCorners I' M'", "inst✝ : SmoothManifoldWithCorners I'' M''", "e : PartialHomeomorph M H", "h : e ∈ atlas H M", "x : M", "hx : x ∈ e.source", "mem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I", "this : (chartAt H x).symm ≫ₕ e ∈ contDiffGroupoid ⊤ I", "A : ContDiffOn 𝕜 ⊤ (↑I ∘ ↑((chartAt H x).symm ≫ₕ e) ∘ ↑I.symm) (↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I)"], "goal": "DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"}], "premise": [18778, 48361], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\nE' : Type u_5\ninst✝¹² : NormedAddCommGroup E'\ninst✝¹¹ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝¹⁰ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁹ : TopologicalSpace M'\ninst✝⁸ : ChartedSpace H' M'\nE'' : Type u_8\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝⁵ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝⁴ : TopologicalSpace M''\ninst✝³ : ChartedSpace H'' M''\ninst✝² : SmoothManifoldWithCorners I M\ninst✝¹ : SmoothManifoldWithCorners I' M'\ninst✝ : SmoothManifoldWithCorners I'' M''\ne : PartialHomeomorph M H\nh : e ∈ atlas H M\nx : M\nhx : x ∈ e.source\nmem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I\nthis : (chartAt H x).symm ≫ₕ e ∈ contDiffGroupoid ⊤ I\nA : ContDiffOn 𝕜 ⊤ (↑I ∘ ↑((chartAt H x).symm ≫ₕ e) ∘ ↑I.symm) (↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I)\n⊢ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "H : Type u_3", "inst✝¹⁵ : TopologicalSpace H", "I : ModelWithCorners 𝕜 E H", "M : Type u_4", "inst✝¹⁴ : TopologicalSpace M", "inst✝¹³ : ChartedSpace H M", "E' : Type u_5", "inst✝¹² : NormedAddCommGroup E'", "inst✝¹¹ : NormedSpace 𝕜 E'", "H' : Type u_6", "inst✝¹⁰ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M' : Type u_7", "inst✝⁹ : TopologicalSpace M'", "inst✝⁸ : ChartedSpace H' M'", "E'' : Type u_8", "inst✝⁷ : NormedAddCommGroup E''", "inst✝⁶ : NormedSpace 𝕜 E''", "H'' : Type u_9", "inst✝⁵ : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M'' : Type u_10", "inst✝⁴ : TopologicalSpace M''", "inst✝³ : ChartedSpace H'' M''", "inst✝² : SmoothManifoldWithCorners I M", "inst✝¹ : SmoothManifoldWithCorners I' M'", "inst✝ : SmoothManifoldWithCorners I'' M''", "e : PartialHomeomorph M H", "h : e ∈ atlas H M", "x : M", "hx : x ∈ e.source", "mem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I", "this : (chartAt H x).symm ≫ₕ e ∈ contDiffGroupoid ⊤ I", "A : ContDiffOn 𝕜 ⊤ (↑I ∘ ↑((chartAt H x).symm ≫ₕ e) ∘ ↑I.symm) (↑I.symm ���¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I)", "B : DifferentiableWithinAt 𝕜 (↑I ∘ (↑e ∘ ↑(chartAt H x).symm) ∘ ↑I.symm) (↑I.symm ⁻¹' (chartAt H x).target ∩ ↑I.symm ⁻¹' (↑(chartAt H x).symm ⁻¹' e.source) ∩ range ↑I) (↑I (↑(chartAt H x) x))"], "goal": "DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"}], "premise": [46349, 133443], "state_str": "𝕜 : Type u_1\ninst✝¹⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nH : Type u_3\ninst✝¹⁵ : TopologicalSpace H\nI : ModelWithCorners 𝕜 E H\nM : Type u_4\ninst✝¹⁴ : TopologicalSpace M\ninst✝¹³ : ChartedSpace H M\nE' : Type u_5\ninst✝¹² : NormedAddCommGroup E'\ninst✝¹¹ : NormedSpace 𝕜 E'\nH' : Type u_6\ninst✝¹⁰ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM' : Type u_7\ninst✝⁹ : TopologicalSpace M'\ninst✝⁸ : ChartedSpace H' M'\nE'' : Type u_8\ninst✝⁷ : NormedAddCommGroup E''\ninst✝⁶ : NormedSpace 𝕜 E''\nH'' : Type u_9\ninst✝⁵ : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM'' : Type u_10\ninst✝⁴ : TopologicalSpace M''\ninst✝³ : ChartedSpace H'' M''\ninst✝² : SmoothManifoldWithCorners I M\ninst✝¹ : SmoothManifoldWithCorners I' M'\ninst✝ : SmoothManifoldWithCorners I'' M''\ne : PartialHomeomorph M H\nh : e ∈ atlas H M\nx : M\nhx : x ∈ e.source\nmem : ↑I (↑(chartAt H x) x) ∈ ↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I\nthis : (chartAt H x).symm ≫ₕ e ∈ contDiffGroupoid ⊤ I\nA : ContDiffOn 𝕜 ⊤ (↑I ∘ ↑((chartAt H x).symm ≫ₕ e) ∘ ↑I.symm) (↑I.symm ⁻¹' ((chartAt H x).symm ≫ₕ e).source ∩ range ↑I)\nB :\n DifferentiableWithinAt 𝕜 (↑I ∘ (↑e ∘ ↑(chartAt H x).symm) ∘ ↑I.symm)\n (↑I.symm ⁻¹' (chartAt H x).target ∩ ↑I.symm ⁻¹' (↑(chartAt H x).symm ⁻¹' e.source) ∩ range ↑I)\n (↑I (↑(chartAt H x) x))\n⊢ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I x ↑e) (range ↑I) (↑(extChartAt I x) x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f : α → β", "p q r : α → α → Prop", "a b : α", "c : { x // p a x ∧ q x b }", "h : ∀ {x : α}, r (↑c) x → p a x", "x✝ : α"], "goal": "x✝ ∈ {x | p a x ∧ q x b} ∩ {y | r (↑c) y} ↔ x✝ ∈ {y | r (↑c) y ∧ q y b}"}], "premise": [1723], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nf : α → β\np q r : α → α → Prop\na b : α\nc : { x // p a x ∧ q x b }\nh : ∀ {x : α}, r (↑c) x → p a x\nx✝ : α\n⊢ x✝ ∈ {x | p a x ∧ q x b} ∩ {y | r (↑c) y} ↔ x✝ ∈ {y | r (↑c) y ∧ q y b}"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q : R[X]", "ι : Type u_1", "p : R[X]"], "goal": "(p ^ 0).degree ≤ 0 • p.degree"}], "premise": [119739, 119740], "state_str": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q : R[X]\nι : Type u_1\np : R[X]\n⊢ (p ^ 0).degree ≤ 0 • p.degree"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q : R[X]", "ι : Type u_1", "p : R[X]"], "goal": "degree 1 ≤ 0"}], "premise": [102120], "state_str": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q : R[X]\nι : Type u_1\np : R[X]\n⊢ degree 1 ≤ 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n✝ m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q : R[X]", "ι : Type u_1", "p : R[X]", "n : ℕ"], "goal": "(p ^ (n + 1)).degree ≤ (p ^ n).degree + p.degree"}], "premise": [119742], "state_str": "R : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q : R[X]\nι : Type u_1\np : R[X]\nn : ℕ\n⊢ (p ^ (n + 1)).degree ≤ (p ^ n).degree + p.degree"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n✝ m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q : R[X]", "ι : Type u_1", "p : R[X]", "n : ℕ"], "goal": "(p ^ n * p).degree ≤ (p ^ n).degree + p.degree"}], "premise": [102217], "state_str": "R : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q : R[X]\nι : Type u_1\np : R[X]\nn : ℕ\n⊢ (p ^ n * p).degree ≤ (p ^ n).degree + p.degree"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n✝ m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q : R[X]", "ι : Type u_1", "p : R[X]", "n : ℕ"], "goal": "(p ^ n).degree + p.degree ≤ (n + 1) • p.degree"}], "premise": [119741], "state_str": "R : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q : R[X]\nι : Type u_1\np : R[X]\nn : ℕ\n⊢ (p ^ n).degree + p.degree ≤ (n + 1) • p.degree"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n✝ m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q : R[X]", "ι : Type u_1", "p : R[X]", "n : ℕ"], "goal": "(p ^ n).degree + p.degree ��� n • p.degree + p.degree"}], "premise": [103886], "state_str": "R : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q : R[X]\nι : Type u_1\np : R[X]\nn : ℕ\n⊢ (p ^ n).degree + p.degree ≤ n • p.degree + p.degree"} +{"state": [{"context": ["α : Type u_1", "a b c d : ℝ≥0∞", "r p q : ℝ≥0"], "goal": "⋂ n, Ici ↑n = {⊤}"}], "premise": [12072, 20351, 135287, 143268], "state_str": "α : Type u_1\na b c d : ℝ≥0∞\nr p q : ℝ≥0\n⊢ ⋂ n, Ici ↑n = {⊤}"} +{"state": [{"context": ["α : Type u", "r : α → α → Prop", "a b : α", "hwf : WellFounded r"], "goal": "hwf.rank a = sup fun b => succ (hwf.rank ↑b)"}], "premise": [52576], "state_str": "α : Type u\nr : α → α → Prop\na b : α\nhwf : WellFounded r\n⊢ hwf.rank a = sup fun b => succ (hwf.rank ↑b)"} +{"state": [{"context": ["a b : Cardinal.{u}", "n m : ℕ"], "goal": "Prime ↑n ↔ Nat.Prime n"}], "premise": [144342], "state_str": "a b : Cardinal.{u}\nn m : ℕ\n⊢ Prime ↑n ↔ Nat.Prime n"} +{"state": [{"context": ["a b : Cardinal.{u}", "n m : ℕ"], "goal": "(↑n ≠ 0 ∧ ¬IsUnit ↑n ∧ ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b) ↔ n ≠ 0 ∧ ¬IsUnit n ∧ ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b"}], "premise": [1963], "state_str": "a b : Cardinal.{u}\nn m : ℕ\n⊢ (↑n ≠ 0 ∧ ¬IsUnit ↑n ∧ ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b) ↔\n n ≠ 0 ∧ ¬IsUnit n ∧ ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b"} +{"state": [{"context": ["a b✝ : Cardinal.{u}", "n m : ℕ", "h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b", "b c : Cardinal.{u_1}", "hbc : ↑n ∣ b * c"], "goal": "↑n ∣ b ∨ ↑n ∣ c"}], "premise": [14316], "state_str": "case refine_3\na b✝ : Cardinal.{u}\nn m : ℕ\nh : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b\nb c : Cardinal.{u_1}\nhbc : ↑n ∣ b * c\n⊢ ↑n ∣ b ∨ ↑n ∣ c"} +{"state": [{"context": ["a b✝ : Cardinal.{u}", "n m : ℕ", "h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b", "b c : Cardinal.{u_1}", "hbc : ↑n ∣ b * c", "h' : ℵ₀ ≤ b * c"], "goal": "↑n ∣ b ∨ ↑n ∣ c"}], "premise": [1673, 48796], "state_str": "case refine_3.inr\na b✝ : Cardinal.{u}\nn m : ℕ\nh : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b\nb c : Cardinal.{u_1}\nhbc : ↑n ∣ b * c\nh' : ℵ₀ ≤ b * c\n⊢ ↑n ∣ b ∨ ↑n ∣ c"} +{"state": [{"context": ["a b✝ : Cardinal.{u}", "n m : ℕ", "h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b", "b c : Cardinal.{u_1}", "hbc : ↑n ∣ b * c", "h' : ℵ₀ ≤ b * c", "hb : b ≠ 0", "hc : c ≠ 0", "hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c"], "goal": "↑n ∣ b ∨ ↑n ∣ c"}], "premise": [108583, 108656], "state_str": "case refine_3.inr.intro.intro\na b✝ : Cardinal.{u}\nn m : ℕ\nh : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b\nb c : Cardinal.{u_1}\nhbc : ↑n ∣ b * c\nh' : ℵ₀ ≤ b * c\nhb : b ≠ 0\nhc : c ≠ 0\nhℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c\n⊢ ↑n ∣ b ∨ ↑n ∣ c"} +{"state": [{"context": ["a b✝ : Cardinal.{u}", "n m : ℕ", "h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b", "b c : Cardinal.{u_1}", "hbc : ↑n ∣ b * c", "h' : ℵ₀ ≤ b * c", "hb : b ≠ 0", "hc : c ≠ 0", "hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c", "hn : ↑n ≠ 0", "this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c", "hℵ₀b : ¬ℵ₀ ≤ b"], "goal": "↑n ∣ b ∨ ↑n ∣ c"}, {"context": ["n✝ : ℕ", "a b✝ : Cardinal.{u}", "n m : ℕ", "h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b", "b c : Cardinal.{u_1}", "hbc : ↑n ∣ b * c", "h' : ℵ₀ ≤ b * c", "hb : b ≠ 0", "hc : c ≠ 0", "hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c", "hn : ↑n ≠ 0", "hℵ₀b : ℵ₀ ≤ b"], "goal": "↑n ∣ b ∨ ↑n ∣ c"}], "premise": [1724, 2111], "state_str": "case refine_3.inr.intro.intro.inr\na b✝ : Cardinal.{u}\nn m : ℕ\nh : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b\nb c : Cardinal.{u_1}\nhbc : ↑n ∣ b * c\nh' : ℵ₀ ≤ b * c\nhb : b ≠ 0\nhc : c ≠ 0\nhℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c\nhn : ↑n ≠ 0\nthis :\n ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},\n (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →\n ∀ (b c : Cardinal.{u_1}),\n ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c\nhℵ₀b : ¬ℵ₀ ≤ b\n⊢ ↑n ∣ b ∨ ↑n ∣ c\n\nn✝ : ℕ\na b✝ : Cardinal.{u}\nn m : ℕ\nh : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b\nb c : Cardinal.{u_1}\nhbc : ↑n ∣ b * c\nh' : ℵ₀ ≤ b * c\nhb : b ≠ 0\nhc : c ≠ 0\nhℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c\nhn : ↑n ≠ 0\nhℵ₀b : ℵ��� ≤ b\n⊢ ↑n ∣ b ∨ ↑n ∣ c"} +{"state": [{"context": ["R : Type u", "I : Type v", "inst✝ : CommSemiring R", "x y z : R", "s : I → R", "t : Finset I", "m n : ℕ"], "goal": "IsCoprime ↑m ↑n ↔ m.Coprime n"}], "premise": [1713, 74463, 128978], "state_str": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt : Finset I\nm n : ℕ\n⊢ IsCoprime ↑m ↑n ↔ m.Coprime n"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝¹ : LinearOrder α", "inst✝ : LinearOrder β", "f : α → β", "s : Set α", "a b c d : α", "hf : Monotone f"], "goal": "f (max a b) = max (f a) (f b)"}], "premise": [14308], "state_str": "α : Type u\nβ : Type v\ninst✝¹ : LinearOrder α\ninst✝ : LinearOrder β\nf : α → β\ns : Set α\na b c d : α\nhf : Monotone f\n⊢ f (max a b) = max (f a) (f b)"} +{"state": [{"context": ["C : Type u_1", "C₁ : Type u_2", "C₂ : Type u_3", "C₃ : Type u_4", "D₁ : Type u_5", "D₂ : Type u_6", "D₃ : Type u_7", "inst✝⁹ : Category.{u_8, u_1} C", "inst✝⁸ : Category.{?u.46756, u_2} C₁", "inst✝⁷ : Category.{?u.46760, u_3} C₂", "inst✝⁶ : Category.{?u.46764, u_4} C₃", "inst✝⁵ : Category.{u_10, u_5} D₁", "inst✝⁴ : Category.{u_9, u_6} D₂", "inst✝³ : Category.{?u.46776, u_7} D₃", "W : MorphismProperty C", "L₁ : C ⥤ D₁", "inst✝² : L₁.IsLocalization W", "L₂ : C ⥤ D₂", "inst✝¹ : L₂.IsLocalization W", "L₃ : C ⥤ D₃", "inst✝ : L₃.IsLocalization W", "X Y Z : C", "f : X ⟶ Y"], "goal": "(homEquiv W L₁ L₂) (L₁.map f) = L₂.map f"}], "premise": [92006], "state_str": "C : Type u_1\nC₁ : Type u_2\nC₂ : Type u_3\nC₃ : Type u_4\nD₁ : Type u_5\nD₂ : Type u_6\nD₃ : Type u_7\ninst✝⁹ : Category.{u_8, u_1} C\ninst✝⁸ : Category.{?u.46756, u_2} C₁\ninst✝⁷ : Category.{?u.46760, u_3} C₂\ninst✝⁶ : Category.{?u.46764, u_4} C₃\ninst✝⁵ : Category.{u_10, u_5} D₁\ninst✝⁴ : Category.{u_9, u_6} D₂\ninst✝³ : Category.{?u.46776, u_7} D₃\nW : MorphismProperty C\nL₁ : C ⥤ D₁\ninst✝² : L₁.IsLocalization W\nL₂ : C ⥤ D₂\ninst✝¹ : L₂.IsLocalization W\nL₃ : C ⥤ D₃\ninst✝ : L₃.IsLocalization W\nX Y Z : C\nf : X ⟶ Y\n⊢ (homEquiv W L₁ L₂) (L₁.map f) = L₂.map f"} +{"state": [{"context": ["α : Type u_1", "a b : α", "s : α → α → Bool", "l r : List α", "h : ¬s a b = true"], "goal": "merge s (a :: l) (b :: r) = b :: merge s (a :: l) r"}], "premise": [1595, 1738], "state_str": "α : Type u_1\na b : α\ns : α → α → Bool\nl r : List α\nh : ¬s a b = true\n⊢ merge s (a :: l) (b :: r) = b :: merge s (a :: l) r"} +{"state": [{"context": ["S : Type u_1", "T : Type u_2", "R : Type u_3", "M : Type u_4", "N : Type u_5", "P : Type u_6", "A : Type u_7", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "htwo : Invertible 2", "B : BilinForm R M", "Q : QuadraticMap R M R", "hB₁✝ hB₁ : (QuadraticMap.associatedHom ℕ) Q ≠ 0"], "goal": "∃ x, ¬IsOrtho ((QuadraticMap.associatedHom ℕ) Q) x x"}], "premise": [83940], "state_str": "case intro\nS : Type u_1\nT : Type u_2\nR : Type u_3\nM : Type u_4\nN : Type u_5\nP : Type u_6\nA : Type u_7\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nhtwo : Invertible 2\nB : BilinForm R M\nQ : QuadraticMap R M R\nhB₁✝ hB₁ : (QuadraticMap.associatedHom ℕ) Q ≠ 0\n⊢ ∃ x, ¬IsOrtho ((QuadraticMap.associatedHom ℕ) Q) x x"} +{"state": [{"context": ["S : Type u_1", "T : Type u_2", "R : Type u_3", "M : Type u_4", "N : Type u_5", "P : Type u_6", "A : Type u_7", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "htwo : Invertible 2", "B : BilinForm R M", "Q : QuadraticMap R M R", "hB₁✝ hB₁ : (QuadraticMap.associatedHom ℕ) Q ≠ 0", "x : M", "hx : Q x ≠ 0"], "goal": "∃ x, ¬IsOrtho ((QuadraticMap.associatedHom ℕ) Q) x x"}], "premise": [83937], "state_str": "case intro.intro\nS : Type u_1\nT : Type u_2\nR : Type u_3\nM : Type u_4\nN : Type u_5\nP : Type u_6\nA : Type u_7\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nhtwo : Invertible 2\nB : BilinForm R M\nQ : QuadraticMap R M R\nhB₁✝ hB₁ : (QuadraticMap.associatedHom ℕ) Q ≠ 0\nx : M\nhx : Q x ≠ 0\n⊢ ∃ x, ¬IsOrtho ((QuadraticMap.associatedHom ℕ) Q) x x"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X Y Z : C", "f g : X ⟶ Y", "h : Y ⟶ Z"], "goal": "inv (𝟙 X) = 𝟙 X"}], "premise": [88790], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX Y Z : C\nf g : X ⟶ Y\nh : Y ⟶ Z\n⊢ inv (𝟙 X) = 𝟙 X"} +{"state": [{"context": ["z : ℂ", "t : ℝ"], "goal": "‖cexp (↑t * I)‖ = 1"}], "premise": [46164, 149348], "state_str": "z : ℂ\nt : ℝ\n⊢ ‖cexp (↑t * I)‖ = 1"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_3, u_1} C", "inst✝³ : Category.{?u.2051, u_2} D", "inst✝² : HasZeroMorphisms C", "inst✝¹ : HasZeroMorphisms D", "S S₁ S₂ : ShortComplex C", "inst✝ : S.HasHomology", "h : S.LeftHomologyData"], "goal": "S.Exact ↔ IsZero h.H"}], "premise": [114537], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_3, u_1} C\ninst✝³ : Category.{?u.2051, u_2} D\ninst✝² : HasZeroMorphisms C\ninst✝¹ : HasZeroMorphisms D\nS S₁ S₂ : ShortComplex C\ninst✝ : S.HasHomology\nh : S.LeftHomologyData\n⊢ S.Exact ↔ IsZero h.H"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_3, u_1} C", "inst✝³ : Category.{?u.2051, u_2} D", "inst✝² : HasZeroMorphisms C", "inst✝¹ : HasZeroMorphisms D", "S S₁ S₂ : ShortComplex C", "inst✝ : S.HasHomology", "h : S.LeftHomologyData"], "goal": "IsZero S.homology ↔ IsZero h.H"}], "premise": [94060], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_3, u_1} C\ninst✝³ : Category.{?u.2051, u_2} D\ninst✝² : HasZeroMorphisms C\ninst✝¹ : HasZeroMorphisms D\nS S₁ S₂ : ShortComplex C\ninst✝ : S.HasHomology\nh : S.LeftHomologyData\n⊢ IsZero S.homology ↔ IsZero h.H"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Preorder α", "inst✝ : Preorder β", "a b c : α", "f : α ↪o β", "hab : a ⩿ b", "h : (range ⇑f).OrdConnected"], "goal": "f a ⩿ f b"}], "premise": [11045, 16579], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\na b c : α\nf : α ↪o β\nhab : a ⩿ b\nh : (range ⇑f).OrdConnected\n⊢ f a ⩿ f b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Preorder α", "inst✝ : Preorder β", "a b c✝ : α", "f : α ↪o β", "hab : a ⩿ b", "h : (range ⇑f).OrdConnected", "c : β", "ha : f a < c", "hb : c < f b"], "goal": "False"}], "premise": [17541, 131596], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\na b c✝ : α\nf : α ↪o β\nhab : a ⩿ b\nh : (range ⇑f).OrdConnected\nc : β\nha : f a < c\nhb : c < f b\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Preorder α", "inst✝ : Preorder β", "a b c✝ : α", "f : α ↪o β", "hab : a ⩿ b", "h : (range ⇑f).OrdConnected", "c : α", "ha : f a < f c", "hb : f c < f b"], "goal": "False"}], "premise": [11043], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\na b c✝ : α\nf : α ↪o β\nhab : a ⩿ b\nh : (range ⇑f).OrdConnected\nc : α\nha : f a < f c\nhb : f c < f b\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Preorder α", "inst✝ : Preorder β", "a b c✝ : α", "f : α ↪o β", "hab : a ⩿ b", "h : (range ⇑f).OrdConnected", "c : α", "ha : a < c", "hb : c < b"], "goal": "False"}], "premise": [2106], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\na b c✝ : α\nf : α ↪o β\nhab : a ⩿ b\nh : (range ⇑f).OrdConnected\nc : α\nha : a < c\nhb : c < b\n⊢ False"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "X : C"], "goal": "(β_ X (𝟙_ C)).inv = (λ_ X).hom ≫ (ρ_ X).inv"}], "premise": [88815], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nX : C\n⊢ (β_ X (𝟙_ C)).inv = (λ_ X).hom ≫ (ρ_ X).inv"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "X : C"], "goal": "(β_ X (𝟙_ C)).hom ≫ (λ_ X).hom ≫ (ρ_ X).inv = 𝟙 (X ⊗ 𝟙_ C)"}], "premise": [107103], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nX : C\n⊢ (β_ X (𝟙_ C)).hom ≫ (λ_ X).hom ≫ (ρ_ X).inv = 𝟙 (X ⊗ 𝟙_ C)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "X : C"], "goal": "((ρ_ X).hom ≫ (λ_ X).inv) ≫ (λ_ X).hom ≫ (ρ_ X).inv = 𝟙 (X ⊗ 𝟙_ C)"}], "premise": [96173, 99211, 99212, 99216, 99217, 99218, 99219, 99220, 99221, 99222, 99223, 99224, 99225, 99601, 99602, 99603, 99604, 99605, 99606, 99607, 99611, 99612], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nX : C\n⊢ ((ρ_ X).hom ≫ (λ_ X).inv) ≫ (λ_ X).hom ≫ (ρ_ X).inv = 𝟙 (X ⊗ 𝟙_ C)"} +{"state": [{"context": ["n m : ℕ", "p✝ : Fin (n + 1)", "i✝ j : Fin n", "p i : Fin (n + 1)", "h : p < i", "hi : optParam (i ≠ 0) ⋯"], "goal": "p.succAbove (i.pred hi) = i"}], "premise": [4137, 143003], "state_str": "n m : ℕ\np✝ : Fin (n + 1)\ni✝ j : Fin n\np i : Fin (n + 1)\nh : p < i\nhi : optParam (i ≠ 0) ⋯\n⊢ p.succAbove (i.pred hi) = i"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "γ : Type u_2", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "o : Ordinal.{u_3}", "c : Cardinal.{u_3}"], "goal": "o.card ≤ c ↔ o < (succ c).ord"}], "premise": [1713, 17389, 49800], "state_str": "α : Type u\nβ : Type u_1\nγ : Type u_2\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal.{u_3}\nc : Cardinal.{u_3}\n⊢ o.card ≤ c ↔ o < (succ c).ord"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "f f₁ f₂ : (i : ι) → Filter (α i)", "s : (i : ι) → Set (α i)", "p : (i : ι) → α i → Prop", "inst✝ : ∀ (i : ι), (f i).NeBot", "I : Set ι", "h : I.pi s ∈ pi f", "i : ι", "hi : i ∈ I"], "goal": "s i ∈ f i"}], "premise": [1673, 11488], "state_str": "ι : Type u_1\nα : ι → Type u_2\nf f₁ f₂ : (i : ι) → Filter (α i)\ns : (i : ι) → Set (α i)\np : (i : ι) → α i → Prop\ninst✝ : ∀ (i : ι), (f i).NeBot\nI : Set ι\nh : I.pi s ∈ pi f\ni : ι\nhi : i ∈ I\n⊢ s i ∈ f i"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "f f₁ f₂ : (i : ι) → Filter (α i)", "s : (i : ι) → Set (α i)", "p : (i : ι) → α i → Prop", "inst✝ : ∀ (i : ι), (f i).NeBot", "I : Set ι", "h : I.pi s ∈ pi f", "i : ι", "hi : i ∈ I", "I' : Set ι", "t : (i : ι) → Set (α i)", "htf : ∀ (i : ι), t i ∈ f i", "hts : I'.pi t ⊆ I.pi s"], "goal": "s i ∈ f i"}], "premise": [15884], "state_str": "case intro.intro.intro.intro\nι : Type u_1\nα : ι → Type u_2\nf f₁ f₂ : (i : ι) → Filter (α i)\ns : (i : ι) → Set (α i)\np : (i : ι) → α i → Prop\ninst✝ : ∀ (i : ι), (f i).NeBot\nI : Set ι\nh : I.pi s ∈ pi f\ni : ι\nhi : i ∈ I\nI' : Set ι\nt : (i : ι) → Set (α i)\nhtf : ∀ (i : ι), t i ∈ f i\nhts : I'.pi t ⊆ I.pi s\n⊢ s i ∈ f i"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "f f₁ f₂ : (i : ι) → Filter (α i)", "s : (i : ι) → Set (α i)", "p : (i : ι) → α i → Prop", "inst✝ : ∀ (i : ι), (f i).NeBot", "I : Set ι", "h : I.pi s ∈ pi f", "i : ι", "hi : i ∈ I", "I' : Set ι", "t : (i : ι) → Set (α i)", "htf : ∀ (i : ι), t i ∈ f i", "hts : I'.pi t ⊆ I.pi s", "x : α i", "hx : x ∈ t i"], "goal": "x ∈ s i"}], "premise": [15959], "state_str": "case intro.intro.intro.intro\nι : Type u_1\nα : ι → Type u_2\nf f₁ f₂ : (i : ι) → Filter (α i)\ns : (i : ι) → Set (α i)\np : (i : ι) → α i → Prop\ninst✝ : ∀ (i : ι), (f i).NeBot\nI : Set ι\nh : I.pi s ∈ pi f\ni : ι\nhi : i ∈ I\nI' : Set ι\nt : (i : ι) → Set (α i)\nhtf : ∀ (i : ι), t i ∈ f i\nhts : I'.pi t ⊆ I.pi s\nx : α i\nhx : x ∈ t i\n⊢ x ∈ s i"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "f f₁ f₂ : (i : ι) → Filter (α i)", "s : (i : ι) → Set (α i)", "p : (i : ι) → α i → Prop", "inst✝ : ∀ (i : ι), (f i).NeBot", "I : Set ι", "h : I.pi s ∈ pi f", "i : ι", "hi : i ∈ I", "I' : Set ι", "t : (i : ι) → Set (α i)", "htf : ∀ (i : ι), t i ∈ f i", "hts : I'.pi t ⊆ I.pi s", "x : α i", "hx : x ∈ t i", "g : (i : ι) → α i", "hg : ∀ (i : ι), g i ∈ t i"], "goal": "x ∈ s i"}], "premise": [70039], "state_str": "case intro.intro.intro.intro\nι : Type u_1\nα : ι → Type u_2\nf f₁ f₂ : (i : ι) → Filter (α i)\ns : (i : ι) → Set (α i)\np : (i : ι) → α i → Prop\ninst✝ : ∀ (i : ι), (f i).NeBot\nI : Set ι\nh : I.pi s ∈ pi f\ni : ι\nhi : i ∈ I\nI' : Set ι\nt : (i : ι) → Set (α i)\nhtf : ∀ (i : ι), t i ∈ f i\nhts : I'.pi t ⊆ I.pi s\nx : α i\nhx : x ∈ t i\ng : (i : ι) → α i\nhg : ∀ (i : ι), g i ∈ t i\n⊢ x ∈ s i"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "p : α → Prop", "inst✝ : DecidablePred p", "s : Multiset α", "l : List α"], "goal": "List.filterMap (Option.guard p) l = List.filter (fun b => decide (p b)) l"}], "premise": [5170], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\np : α → Prop\ninst✝ : DecidablePred p\ns : Multiset α\nl : List α\n⊢ List.filterMap (Option.guard p) l = List.filter (fun b => decide (p b)) l"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "p : α → Prop", "inst✝ : DecidablePred p", "s : Multiset α", "l : List α"], "goal": "Option.guard p = Option.guard fun x => decide (p x) = true"}], "premise": [1838], "state_str": "case e_f\nα : Type u_1\nβ : Type v\nγ : Type u_2\np : α → Prop\ninst✝ : DecidablePred p\ns : Multiset α\nl : List α\n⊢ Option.guard p = Option.guard fun x => decide (p x) = true"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : LinearOrderedRing α", "inst✝ : FloorRing α", "z : ℤ", "a : α"], "goal": "0 ≤ ⌊a⌋ ↔ 0 ≤ a"}], "premise": [1713, 105090, 128749], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na : α\n⊢ 0 ≤ ⌊a⌋ ↔ 0 ≤ a"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β✝ : Type u_4", "γ : Type u_5", "f✝ : α → β✝ → β✝", "op : α → α → α", "inst✝³ : Monoid β✝", "inst✝² : Monoid γ", "inst✝¹ : FunLike F ��✝ γ", "β : Type u_6", "inst✝ : CommMonoid β", "s : Finset α", "f : α → β"], "goal": "s.noncommProd f ⋯ = s.prod f"}], "premise": [138845], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ✝ : Type u_4\nγ : Type u_5\nf✝ : α → β✝ → β✝\nop : α → α → α\ninst✝³ : Monoid β✝\ninst✝² : Monoid γ\ninst✝¹ : FunLike F β✝ γ\nβ : Type u_6\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\n⊢ s.noncommProd f ⋯ = s.prod f"} +{"state": [{"context": ["𝕂 : Type u_1", "𝔸 : Type u_2", "inst✝³ : NontriviallyNormedField 𝕂", "inst✝² : NormedRing 𝔸", "inst✝¹ : NormedAlgebra 𝕂 𝔸", "inst✝ : CompleteSpace 𝔸", "h : 0 < (expSeries 𝕂 𝔸).radius"], "goal": "HasStrictFDerivAt (exp 𝕂) 1 0"}], "premise": [40234, 46818], "state_str": "𝕂 : Type u_1\n𝔸 : Type u_2\ninst✝³ : NontriviallyNormedField 𝕂\ninst✝² : NormedRing 𝔸\ninst✝¹ : NormedAlgebra 𝕂 𝔸\ninst✝ : CompleteSpace 𝔸\nh : 0 < (expSeries 𝕂 𝔸).radius\n⊢ HasStrictFDerivAt (exp 𝕂) 1 0"} +{"state": [{"context": ["𝕂 : Type u_1", "𝔸 : Type u_2", "inst✝³ : NontriviallyNormedField 𝕂", "inst✝² : NormedRing 𝔸", "inst✝¹ : NormedAlgebra 𝕂 𝔸", "inst✝ : CompleteSpace 𝔸", "h : 0 < (expSeries 𝕂 𝔸).radius", "x : 𝔸"], "goal": "x = (expSeries 𝕂 𝔸 1) fun x_1 => x"}], "premise": [40210], "state_str": "case h.e'_10.h\n𝕂 : Type u_1\n𝔸 : Type u_2\ninst✝³ : NontriviallyNormedField 𝕂\ninst✝² : NormedRing 𝔸\ninst✝¹ : NormedAlgebra 𝕂 𝔸\ninst✝ : CompleteSpace 𝔸\nh : 0 < (expSeries 𝕂 𝔸).radius\nx : 𝔸\n⊢ x = (expSeries 𝕂 𝔸 1) fun x_1 => x"} +{"state": [{"context": ["I₁ : Type u_1", "I₂ : Type u_2", "I₁₂ : Type u_3", "c₁ : ComplexShape I₁", "c₂ : ComplexShape I₂", "c₁₂ : ComplexShape I₁₂", "inst✝ : TotalComplexShape c₁ c₂ c₁₂", "i₁ i₁' : I₁", "i₂ i₂' : I₂", "h₁ : c₁.Rel i₁ i₁'", "h₂ : c₂.Rel i₂ i₂'"], "goal": "c₁.ε₁ c₂ c₁₂ (i₁, i₂) * c₁.ε₂ c₂ c₁₂ (i₁, i₂) * 1 = -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')"}], "premise": [119703, 128841], "state_str": "I₁ : Type u_1\nI₂ : Type u_2\nI₁₂ : Type u_3\nc₁ : ComplexShape I₁\nc₂ : ComplexShape I₂\nc₁₂ : ComplexShape I₁₂\ninst✝ : TotalComplexShape c₁ c₂ c₁₂\ni₁ i₁' : I₁\ni₂ i₂' : I₂\nh₁ : c₁.Rel i₁ i₁'\nh₂ : c₂.Rel i₂ i₂'\n⊢ c₁.ε₁ c₂ c₁₂ (i₁, i₂) * c₁.ε₂ c₂ c₁₂ (i₁, i₂) * 1 = -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')"} +{"state": [{"context": ["I₁ : Type u_1", "I₂ : Type u_2", "I₁₂ : Type u_3", "c₁ : ComplexShape I₁", "c₂ : ComplexShape I₂", "c₁₂ : ComplexShape I₁₂", "inst✝ : TotalComplexShape c₁ c₂ c₁₂", "i₁ i₁' : I₁", "i₂ i₂' : I₂", "h₁ : c₁.Rel i₁ i₁'", "h₂ : c₂.Rel i₂ i₂'"], "goal": "c₁.ε₁ c₂ c₁₂ (i₁, i₂) * (c₁.ε₂ c₂ c₁₂ (i₁, i₂) * (c₁.ε₁ c₂ c₁₂ (i₁, i₂') * c₁.ε₁ c₂ c₁₂ (i₁, i₂'))) = -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')"}], "premise": [114832, 119703], "state_str": "I₁ : Type u_1\nI₂ : Type u_2\nI₁₂ : Type u_3\nc₁ : ComplexShape I₁\nc₂ : ComplexShape I₂\nc₁₂ : ComplexShape I₁₂\ninst✝ : TotalComplexShape c₁ c₂ c₁₂\ni₁ i₁' : I₁\ni₂ i₂' : I₂\nh₁ : c₁.Rel i₁ i₁'\nh₂ : c₂.Rel i₂ i₂'\n⊢ c₁.ε₁ c₂ c₁₂ (i₁, i₂) * (c₁.ε₂ c₂ c₁₂ (i₁, i₂) * (c₁.ε₁ c₂ c₁₂ (i₁, i₂') * c₁.ε₁ c₂ c₁₂ (i₁, i₂'))) =\n -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')"} +{"state": [{"context": ["I₁ : Type u_1", "I₂ : Type u_2", "I₁₂ : Type u_3", "c₁ : ComplexShape I₁", "c₂ : ComplexShape I₂", "c₁₂ : ComplexShape I₁₂", "inst✝ : TotalComplexShape c₁ c₂ c₁₂", "i₁ i₁' : I₁", "i₂ i₂' : I₂", "h₁ : c₁.Rel i₁ i₁'", "h₂ : c₂.Rel i₂ i₂'"], "goal": "c₁.ε₁ c₂ c₁₂ (i₁, i₂) * (-c₁.ε₁ c₂ c₁₂ (i₁, i₂) * c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')) = -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')"}], "premise": [117792, 119703, 119728, 122240, 122241, 128841], "state_str": "I₁ : Type u_1\nI₂ : Type u_2\nI₁₂ : Type u_3\nc₁ : ComplexShape I₁\nc₂ : ComplexShape I₂\nc₁₂ : ComplexShape I₁₂\ninst✝ : TotalComplexShape c₁ c₂ c₁₂\ni₁ i₁' : I₁\ni₂ i₂' : I₂\nh₁ : c₁.Rel i₁ i₁'\nh₂ : c₂.Rel i₂ i₂'\n⊢ c₁.ε₁ c₂ c₁₂ (i₁, i₂) * (-c₁.ε₁ c₂ c₁₂ (i₁, i₂) * c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')) =\n -c₁.ε₂ c₂ c₁₂ (i₁', i₂) * c₁.ε₁ c₂ c₁₂ (i₁, i₂')"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "α : Type u_3", "β : Type u_4", "E : Type u_5", "inst✝⁴ : Group G", "inst✝³ : MulAction G α", "s : Set α", "x : α", "inst✝² : Group H", "inst✝¹ : MulAction H α", "inst✝ : SMulCommClass H G α", "g : H"], "goal": "fundamentalFrontier G (g • s) = g • fundamentalFrontier G s"}], "premise": [118875, 132882, 132982], "state_str": "G : Type u_1\nH : Type u_2\nα : Type u_3\nβ : Type u_4\nE : Type u_5\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ns : Set α\nx : α\ninst✝² : Group H\ninst✝¹ : MulAction H α\ninst✝ : SMulCommClass H G α\ng : H\n⊢ fundamentalFrontier G (g • s) = g • fundamentalFrontier G s"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "Z✝ : Type u_3", "Z : Type u_4", "inst✝² : TopologicalSpace X", "inst✝¹ : TopologicalSpace Y", "inst✝ : TopologicalSpace Z", "e : X ≃ Y", "he : ∀ (s : Set Y), IsOpen (⇑e ⁻¹' s) ↔ IsOpen s", "s : Set X"], "goal": "IsOpen (⇑e.symm ⁻¹' s) ↔ IsOpen s"}], "premise": [1718], "state_str": "X : Type u_1\nY : Type u_2\nZ✝ : Type u_3\nZ : Type u_4\ninst✝² : TopologicalSpace X\ninst✝¹ : TopologicalSpace Y\ninst✝ : TopologicalSpace Z\ne : X ≃ Y\nhe : ∀ (s : Set Y), IsOpen (⇑e ⁻¹' s) ↔ IsOpen s\ns : Set X\n⊢ IsOpen (⇑e.symm ⁻¹' s) ↔ IsOpen s"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : TopologicalSpace α", "inst✝ : MeasurableSpace α", "μ ν : Measure α", "s k : Set α", "hk : IsCompact k", "h'k : k ⊆ s \\ μ.everywherePosSubset s"], "goal": "μ k = 0"}], "premise": [58058], "state_str": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : MeasurableSpace α\nμ ν : Measure α\ns k : Set α\nhk : IsCompact k\nh'k : k ⊆ s \\ μ.everywherePosSubset s\n⊢ μ k = 0"} +{"state": [{"context": ["ι : Type u_1", "μ : Type u_2", "μ' : Type u_3", "inst✝ : DecidableEq ι", "n k : ℕ", "a✝ : Fin k → ℕ"], "goal": "a✝ ∈ univ.piAntidiag n ↔ a✝ ∈ Nat.antidiagonalTuple k n"}], "premise": [142551], "state_str": "case a\nι : Type u_1\nμ : Type u_2\nμ' : Type u_3\ninst✝ : DecidableEq ι\nn k : ℕ\na✝ : Fin k → ℕ\n⊢ a✝ ∈ univ.piAntidiag n ↔ a✝ ∈ Nat.antidiagonalTuple k n"} +{"state": [{"context": ["α : Type u", "k : ℕ", "i : Fin k"], "goal": "indexOf i (finRange k) = ↑i"}], "premise": [1674, 132462], "state_str": "α : Type u\nk : ℕ\ni : Fin k\n⊢ indexOf i (finRange k) = ↑i"} +{"state": [{"context": ["α : Type u", "k : ℕ", "i : Fin k", "this : indexOf i (finRange k) < (finRange k).length"], "goal": "indexOf i (finRange k) = ↑i"}], "premise": [132487], "state_str": "α : Type u\nk : ℕ\ni : Fin k\nthis : indexOf i (finRange k) < (finRange k).length\n⊢ indexOf i (finRange k) = ↑i"} +{"state": [{"context": ["α : Type u", "k : ℕ", "i : Fin k", "this : indexOf i (finRange k) < (finRange k).length", "h₁ : (finRange k).get ⟨indexOf i (finRange k), this⟩ = i"], "goal": "indexOf i (finRange k) = ↑i"}], "premise": [129281], "state_str": "α : Type u\nk : ℕ\ni : Fin k\nthis : indexOf i (finRange k) < (finRange k).length\nh₁ : (finRange k).get ⟨indexOf i (finRange k), this⟩ = i\n⊢ indexOf i (finRange k) = ↑i"} +{"state": [{"context": ["α : Type u", "k : ℕ", "i : Fin k", "this : indexOf i (finRange k) < (finRange k).length", "h₁ : (finRange k).get ⟨indexOf i (finRange k), this⟩ = i", "h₂ : (finRange k).get ⟨↑i, ⋯⟩ = i"], "goal": "indexOf i (finRange k) = ↑i"}], "premise": [1673, 2100, 2101, 129270, 129728], "state_str": "α : Type u\nk : ℕ\ni : Fin k\nthis : indexOf i (finRange k) < (finRange k).length\nh₁ : (finRange k).get ⟨indexOf i (finRange k), this⟩ = i\nh₂ : (finRange k).get ⟨↑i, ⋯⟩ = i\n⊢ indexOf i (finRange k) = ↑i"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "inst✝³ : Nonempty β", "inst✝² : LinearOrder β", "inst✝¹ : Preorder γ", "inst✝ : NoMaxOrder γ", "g : β → γ", "f : α → β", "l : Filter α", "hg : Monotone g", "hg' : Tendsto g atTop atTop"], "goal": "IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"}], "premise": [14706], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "inst✝³ : Nonempty β", "inst✝² : LinearOrder β", "inst✝¹ : Preorder γ", "inst✝ : NoMaxOrder γ", "g : β → γ", "f : α → β", "l : Filter α", "hg : Monotone g", "hg' : Tendsto g atTop atTop", "c : γ", "hc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x x_1 => x ≤ x_1) x c"], "goal": "IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"}], "premise": [16164], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x x_1 => x ≤ x_1) x c\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "inst✝³ : Nonempty β", "inst✝² : LinearOrder β", "inst✝¹ : Preorder γ", "inst✝ : NoMaxOrder γ", "g : β → γ", "f : α → β", "l : Filter α", "hg : Monotone g", "hg' : Tendsto g atTop atTop", "c : γ", "hc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c"], "goal": "IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"}], "premise": [1673, 15489, 15495], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "ι' : Type u_5", "inst✝³ : Nonempty β", "inst✝² : LinearOrder β", "inst✝¹ : Preorder γ", "inst✝ : NoMaxOrder γ", "g : β → γ", "f : α → β", "l : Filter α", "hg : Monotone g", "hg' : Tendsto g atTop atTop", "c : γ", "hc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c", "b : β", "hb : ∀ a ≥ b, c < g a"], "goal": "IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"}], "premise": [1673, 14323, 16027], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nι' : Type u_5\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c\nb : β\nhb : ∀ a ≥ b, c < g a\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ → Set α := disjointed (spanningSets μ)"], "goal": "∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"}], "premise": [12879, 27559, 31793], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\n⊢ ∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ → Set α := disjointed (spanningSets μ)", "this : ∀ (n : ℕ), μ (s n) < ⊤"], "goal": "∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"}], "premise": [34115], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\nthis : ∀ (n : ℕ), μ (s n) < ⊤\n⊢ ∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ✝ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ → Set α := disjointed (spanningSets μ)", "this : ∀ (n : ℕ), μ (s n) < ⊤", "δ : ℕ → ℝ≥0", "δpos : ∀ (i : ℕ), 0 < δ i", "δsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε", "N : α → ℕ := spanningSetsIndex μ"], "goal": "∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"}], "premise": [31796], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ✝ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\nthis : ∀ (n : ℕ), μ (s n) < ⊤\nδ : ℕ → ℝ≥0\nδpos : ∀ (i : ℕ), 0 < δ i\nδsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε\nN : α → ℕ := spanningSetsIndex μ\n⊢ ∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ✝ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ �� Set α := disjointed (spanningSets μ)", "this : ∀ (n : ℕ), μ (s n) < ⊤", "δ : ℕ → ℝ≥0", "δpos : ∀ (i : ℕ), 0 < δ i", "δsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε", "N : α → ℕ := spanningSetsIndex μ", "hN_meas : Measurable N"], "goal": "∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"}], "premise": [31797], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ✝ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\nthis : ∀ (n : ℕ), μ (s n) < ⊤\nδ : ℕ → ℝ≥0\nδpos : ∀ (i : ℕ), 0 < δ i\nδsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε\nN : α → ℕ := spanningSetsIndex μ\nhN_meas : Measurable N\n⊢ ∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ✝ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ → Set α := disjointed (spanningSets μ)", "this : ∀ (n : ℕ), μ (s n) < ⊤", "δ : ℕ → ℝ≥0", "δpos : ∀ (i : ℕ), 0 < δ i", "δsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε", "N : α → ℕ := spanningSetsIndex μ", "hN_meas : Measurable N", "hNs : ∀ (n : ℕ), N ⁻¹' {n} = s n"], "goal": "∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"}], "premise": [28025, 28819], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ✝ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\nthis : ∀ (n : ℕ), μ (s n) < ⊤\nδ : ℕ → ℝ≥0\nδpos : ∀ (i : ℕ), 0 < δ i\nδsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε\nN : α → ℕ := spanningSetsIndex μ\nhN_meas : Measurable N\nhNs : ∀ (n : ℕ), N ⁻¹' {n} = s n\n⊢ ∃ g, (∀ (x : α), 0 < g x) ∧ Measurable g ∧ ∫⁻ (x : α), ↑(g x) ∂μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ✝ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ → Set α := disjointed (spanningSets μ)", "this : ∀ (n : ℕ), μ (s n) < ⊤", "δ : ℕ → ℝ≥0", "δpos : ∀ (i : ℕ), 0 < δ i", "δsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε", "N : α → ℕ := spanningSetsIndex μ", "hN_meas : Measurable N", "hNs : ∀ (n : ℕ), N ⁻¹' {n} = s n"], "goal": "∫⁻ (x : α), ↑((δ ∘ N) x) ∂μ < ε"}], "premise": [25969, 28819, 30370], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ✝ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\nthis : ∀ (n : ℕ), μ (s n) < ⊤\nδ : ℕ → ℝ≥0\nδpos : ∀ (i : ℕ), 0 < δ i\nδsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε\nN : α → ℕ := spanningSetsIndex μ\nhN_meas : Measurable N\nhNs : ∀ (n : ℕ), N ⁻¹' {n} = s n\n⊢ ∫⁻ (x : α), ↑((δ ∘ N) x) ∂μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ✝ : Type u_4", "m m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SigmaFinite μ", "ε : ℝ≥0∞", "ε0 : ε ≠ 0", "s : ℕ → Set α := disjointed (spanningSets μ)", "this : ∀ (n : ℕ), μ (s n) < ⊤", "δ : ℕ → ℝ≥0", "δpos : ∀ (i : ℕ), 0 < δ i", "δsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε", "N : α → ℕ := spanningSetsIndex μ", "hN_meas : Measurable N", "hNs : ∀ (n : ℕ), N ⁻¹' {n} = s n"], "goal": "∫⁻ (a : ℕ), ↑(δ a) ∂Measure.map N μ < ε"}], "premise": [30394, 31796, 119707], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ✝ : Type u_4\nm m0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\nε : ℝ≥0∞\nε0 : ε ≠ 0\ns : ℕ → Set α := disjointed (spanningSets μ)\nthis : ∀ (n : ℕ), μ (s n) < ⊤\nδ : ℕ → ℝ≥0\nδpos : ∀ (i : ℕ), 0 < δ i\nδsum : ∑' (i : ℕ), μ (s i) * ↑(δ i) < ε\nN : α → ℕ := spanningSetsIndex μ\nhN_meas : Measurable N\nhNs : ∀ (n : ℕ), N ⁻¹' {n} = s n\n⊢ ∫⁻ (a : ℕ), ↑(δ a) ∂Measure.map N μ < ε"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : DivInvOneMonoid G", "a : G"], "goal": "a / 1 = a"}], "premise": [119790], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : DivInvOneMonoid G\na : G\n⊢ a / 1 = a"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S"], "goal": "T R (-2) = 2 * X ^ 2 - 1"}], "premise": [75220], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\n⊢ T R (-2) = 2 * X ^ 2 - 1"} +{"state": [{"context": ["V : Type u", "V' : Type v", "V'' : Type w", "G : SimpleGraph V", "G' : SimpleGraph V'", "G'' : SimpleGraph V''", "u v w : V", "p : G.Walk u v", "h : G.Adj v w"], "goal": "(p.concat h).support = p.support.concat w"}], "premise": [51977], "state_str": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w : V\np : G.Walk u v\nh : G.Adj v w\n⊢ (p.concat h).support = p.support.concat w"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ : ℕ → Ω → E", "ℱ : Filtration ℕ m0", "n✝ : ℕ", "inst✝ : SigmaFiniteFiltration μ ℱ", "f g : ℕ → Ω → E", "hf : Martingale f ℱ μ", "hg : Adapted ℱ fun n => g (n + 1)", "hg0 : g 0 = 0", "hgint : ∀ (n : ℕ), Integrable (g n) μ", "n : ℕ"], "goal": "predictablePart (f + g) ℱ μ n =ᶠ[ae μ] g n"}], "premise": [15889, 73801, 131585], "state_str": "Ω : Type u_1\nE : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ : ℕ → Ω → E\nℱ : Filtration ℕ m0\nn✝ : ℕ\ninst✝ : SigmaFiniteFiltration μ ℱ\nf g : ℕ → Ω → E\nhf : Martingale f ℱ μ\nhg : Adapted ℱ fun n => g (n + 1)\nhg0 : g 0 = 0\nhgint : ∀ (n : ℕ), Integrable (g n) μ\nn : ℕ\n⊢ predictablePart (f + g) ℱ μ n =ᶠ[ae μ] g n"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ : ℕ → Ω → E", "ℱ : Filtration ℕ m0", "n✝ : ℕ", "inst✝ : SigmaFiniteFiltration μ ℱ", "f g : ℕ → Ω → E", "hf : Martingale f ℱ μ", "hg : Adapted ℱ fun n => g (n + 1)", "hg0 : g 0 = 0", "hgint : ∀ (n : ℕ), Integrable (g n) μ", "n : ℕ", "ω : Ω", "hω : martingalePart (f + g) ℱ μ n ω = f n ω"], "goal": "predictablePart (f + g) ℱ μ n ω = g n ω"}], "premise": [117714], "state_str": "case h\nΩ : Type u_1\nE : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ : ℕ → Ω → E\nℱ : Filtration ℕ m0\nn✝ : ℕ\ninst✝ : SigmaFiniteFiltration μ ℱ\nf g : ℕ → Ω → E\nhf : Martingale f ℱ μ\nhg : Adapted ℱ fun n => g (n + 1)\nhg0 : g 0 = 0\nhgint : ∀ (n : ℕ), Integrable (g n) μ\nn : ℕ\nω : Ω\nhω : martingalePart (f + g) ℱ μ n ω = f n ω\n⊢ predictablePart (f + g) ℱ μ n ω = g n ω"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ : ℕ → Ω → E", "ℱ : Filtration ℕ m0", "n✝ : ℕ", "inst✝ : SigmaFiniteFiltration μ ℱ", "f g : ℕ → Ω → E", "hf : Martingale f ℱ μ", "hg : Adapted ℱ fun n => g (n + 1)", "hg0 : g 0 = 0", "hgint : ∀ (n : ℕ), Integrable (g n) μ", "n : ℕ", "ω : Ω", "hω : martingalePart (f + g) ℱ μ n ω = f n ω"], "goal": "f n ω + predictablePart (f + g) ℱ μ n ω = f n ω + g n ω"}], "premise": [73796, 120650], "state_str": "case h\nΩ : Type u_1\nE : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ : ℕ → Ω → E\nℱ : Filtration ℕ m0\nn✝ : ℕ\ninst✝ : SigmaFiniteFiltration μ ℱ\nf g : ℕ → Ω → E\nhf : Martingale f ℱ μ\nhg : Adapted ℱ fun n => g (n + 1)\nhg0 : g 0 = 0\nhgint : ∀ (n : ℕ), Integrable (g n) μ\nn : ℕ\nω : Ω\nhω : martingalePart (f + g) ℱ μ n ω = f n ω\n⊢ f n ω + predictablePart (f + g) ℱ μ n ω = f n ω + g n ω"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ : ℕ → Ω → E", "ℱ : Filtration ℕ m0", "n✝ : ℕ", "inst✝ : SigmaFiniteFiltration μ ℱ", "f g : ℕ → Ω → E", "hf : Martingale f ℱ μ", "hg : Adapted ℱ fun n => g (n + 1)", "hg0 : g 0 = 0", "hgint : ∀ (n : ℕ), Integrable (g n) μ", "n : ℕ", "ω : Ω", "hω : martingalePart (f + g) ℱ μ n ω = f n ω"], "goal": "f n ω + predictablePart (f + g) ℱ μ n ω = (martingalePart (f + g) ℱ μ + predictablePart (f + g) ℱ μ) n ω"}], "premise": [120650], "state_str": "case h\nΩ : Type u_1\nE : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ : ℕ → Ω → E\nℱ : Filtration ℕ m0\nn✝ : ℕ\ninst✝ : SigmaFiniteFiltration μ ℱ\nf g : ℕ → Ω → E\nhf : Martingale f ℱ μ\nhg : Adapted ℱ fun n => g (n + 1)\nhg0 : g 0 = 0\nhgint : ∀ (n : ℕ), Integrable (g n) μ\nn : ℕ\nω : Ω\nhω : martingalePart (f + g) ℱ μ n ω = f n ω\n⊢ f n ω + predictablePart (f + g) ℱ μ n ω = (martingalePart (f + g) ℱ μ + predictablePart (f + g) ℱ μ) n ω"} +{"state": [{"context": ["β : Type u_1", "G : Type u_2", "M : Type u_3", "inst✝³ : Monoid M", "inst✝² : Preorder M", "inst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "x : M", "inst✝ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "a : M", "n m : ℕ", "ha : 1 < a", "h : n < m"], "goal": "a ^ n < a ^ m"}], "premise": [3756], "state_str": "β : Type u_1\nG : Type u_2\nM : Type u_3\ninst✝³ : Monoid M\ninst✝² : Preorder M\ninst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nx : M\ninst✝ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : M\nn m : ℕ\nha : 1 < a\nh : n < m\n⊢ a ^ n < a ^ m"} +{"state": [{"context": ["β : Type u_1", "G : Type u_2", "M : Type u_3", "inst✝³ : Monoid M", "inst✝² : Preorder M", "inst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "x : M", "inst✝ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "a : M", "n : ℕ", "ha : 1 < a", "k : ℕ"], "goal": "a ^ n < a ^ (n.succ + k)"}], "premise": [119703, 119742, 119745, 119758], "state_str": "case intro\nβ : Type u_1\nG : Type u_2\nM : Type u_3\ninst✝³ : Monoid M\ninst✝² : Preorder M\ninst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nx : M\ninst✝ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : M\nn : ℕ\nha : 1 < a\nk : ℕ\n⊢ a ^ n < a ^ (n.succ + k)"} +{"state": [{"context": ["β : Type u_1", "G : Type u_2", "M : Type u_3", "inst✝³ : Monoid M", "inst✝² : Preorder M", "inst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "x : M", "inst✝ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "a : M", "n : ℕ", "ha : 1 < a", "k : ℕ"], "goal": "a ^ n < a ^ n * a ^ (k + 1)"}], "premise": [3849, 103783, 103980], "state_str": "case intro\nβ : Type u_1\nG : Type u_2\nM : Type u_3\ninst✝³ : Monoid M\ninst✝² : Preorder M\ninst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nx : M\ninst✝ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : M\nn : ℕ\nha : 1 < a\nk : ℕ\n⊢ a ^ n < a ^ n * a ^ (k + 1)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "inst✝² : Category.{?u.20707, u_1} C", "inst✝¹ : Category.{?u.20711, u_2} D", "inst✝ : Category.{?u.20715, u_3} E", "F : D ⥤ E", "G : E ⥤ D", "adj : F ⊣ G", "x : D ⥤ C", "x✝ : E"], "goal": "(𝟙 (x.obj (G.obj x✝)) ≫ x.map (adj.unit.app (G.obj x✝)) ≫ 𝟙 (x.obj (G.obj (F.obj (G.obj x✝))))) ≫ 𝟙 (x.obj (G.obj (F.obj (G.obj x✝)))) ≫ 𝟙 (x.obj (G.obj (F.obj (G.obj x✝)))) ≫ x.map (G.map (adj.counit.app x✝)) ≫ 𝟙 (x.obj (G.obj x✝)) = 𝟙 (x.obj (G.obj x✝))"}], "premise": [96174, 96175, 99919], "state_str": "case w.h.w.h\nC : Type u_1\nD : Type u_2\nE : Type u_3\ninst✝² : Category.{?u.20707, u_1} C\ninst✝¹ : Category.{?u.20711, u_2} D\ninst✝ : Category.{?u.20715, u_3} E\nF : D ⥤ E\nG : E ⥤ D\nadj : F ⊣ G\nx : D ⥤ C\nx✝ : E\n⊢ (𝟙 (x.obj (G.obj x✝)) ≫ x.map (adj.unit.app (G.obj x✝)) ≫ 𝟙 (x.obj (G.obj (F.obj (G.obj x✝))))) ≫\n 𝟙 (x.obj (G.obj (F.obj (G.obj x✝)))) ≫\n 𝟙 (x.obj (G.obj (F.obj (G.obj x✝)))) ≫ x.map (G.map (adj.counit.app x✝)) ≫ 𝟙 (x.obj (G.obj x✝)) =\n 𝟙 (x.obj (G.obj x✝))"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "inst✝² : Category.{?u.20707, u_1} C", "inst✝¹ : Category.{?u.20711, u_2} D", "inst✝ : Category.{?u.20715, u_3} E", "F : D ⥤ E", "G : E ⥤ D", "adj : F ⊣ G", "x : E ⥤ C", "x✝ : D"], "goal": "(𝟙 (x.obj (F.obj x✝)) ≫ x.map (F.map (adj.unit.app x✝)) ≫ 𝟙 (x.obj (F.obj (G.obj (F.obj x✝))))) ≫ 𝟙 (x.obj (F.obj (G.obj (F.obj x✝)))) ≫ 𝟙 (x.obj (F.obj (G.obj (F.obj x✝)))) ≫ x.map (adj.counit.app (F.obj x✝)) ≫ 𝟙 (x.obj (F.obj x✝)) = 𝟙 (x.obj (F.obj x✝))"}], "premise": [96174, 96175, 99919], "state_str": "case w.h.w.h\nC : Type u_1\nD : Type u_2\nE : Type u_3\ninst✝² : Category.{?u.20707, u_1} C\ninst✝¹ : Category.{?u.20711, u_2} D\ninst✝ : Category.{?u.20715, u_3} E\nF : D ⥤ E\nG : E ⥤ D\nadj : F ⊣ G\nx : E ⥤ C\nx✝ : D\n⊢ (𝟙 (x.obj (F.obj x✝)) ≫ x.map (F.map (adj.unit.app x✝)) ≫ 𝟙 (x.obj (F.obj (G.obj (F.obj x✝))))) ≫\n 𝟙 (x.obj (F.obj (G.obj (F.obj x✝)))) ≫\n 𝟙 (x.obj (F.obj (G.obj (F.obj x✝)))) ≫ x.map (adj.counit.app (F.obj x✝)) ≫ 𝟙 (x.obj (F.obj x✝)) =\n 𝟙 (x.obj (F.obj x✝))"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "n m : σ", "s : σ →₀ ℕ", "inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S₁", "p q : MvPolynomial σ R", "S : Subalgebra R (MvPolynomial σ R) := Algebra.adjoin R (range X)"], "goal": "S = ⊤"}], "premise": [18788], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nS : Subalgebra R (MvPolynomial σ R) := Algebra.adjoin R (range X)\n⊢ S = ⊤"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "n m : σ", "s : σ →₀ ℕ", "inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S₁", "p✝ q : MvPolynomial σ R", "S : Subalgebra R (MvPolynomial σ R) := Algebra.adjoin R (range X)", "p : MvPolynomial σ R"], "goal": "p ∈ S"}], "premise": [78306, 112219, 122018, 122024, 122027, 131596], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nS : Subalgebra R (MvPolynomial σ R) := Algebra.adjoin R (range X)\np : MvPolynomial σ R\n⊢ p ∈ S"} +{"state": [{"context": ["α : Type u_1", "n : Nat", "a' : α", "l : List α", "h : n < l.length"], "goal": "∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂"}], "premise": [1343], "state_str": "α : Type u_1\nn : Nat\na' : α\nl : List α\nh : n < l.length\n⊢ ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂"} +{"state": [{"context": ["α : Type u_1", "n : Nat", "a' : α", "l : List α", "h : n < l.length"], "goal": "∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth (fun x => a') n l = l₁ ++ a' :: l₂"}], "premise": [1339], "state_str": "α : Type u_1\nn : Nat\na' : α\nl : List α\nh : n < l.length\n⊢ ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth (fun x => a') n l = l₁ ++ a' :: l₂"} +{"state": [{"context": ["k : ℕ", "hk : k ≠ 0"], "goal": "∫ (x : ℝ) in 0 ..1, bernoulliFun k x = 0"}], "premise": [22244, 26326, 27334, 64522], "state_str": "k : ℕ\nhk : k ≠ 0\n⊢ ∫ (x : ℝ) in 0 ..1, bernoulliFun k x = 0"} +{"state": [{"context": ["k : ℕ", "hk : k ≠ 0"], "goal": "bernoulliFun (k + 1) 1 / (↑k + 1) - bernoulliFun (k + 1) 0 / (↑k + 1) = 0"}], "premise": [22242], "state_str": "k : ℕ\nhk : k ≠ 0\n⊢ bernoulliFun (k + 1) 1 / (↑k + 1) - bernoulliFun (k + 1) 0 / (↑k + 1) = 0"} +{"state": [{"context": ["R✝ : Type u", "S : Type v", "T : Type w", "inst✝³ : NonAssocSemiring R✝", "M : Submonoid R✝", "inst✝² : NonAssocSemiring S", "inst✝¹ : NonAssocSemiring T", "R : Type u_1", "inst✝ : Semiring R", "s : Set R"], "goal": "centralizer s.centralizer.centralizer = centralizer s"}], "premise": [128372], "state_str": "R✝ : Type u\nS : Type v\nT : Type w\ninst✝³ : NonAssocSemiring R✝\nM : Submonoid R✝\ninst✝² : NonAssocSemiring S\ninst✝¹ : NonAssocSemiring T\nR : Type u_1\ninst✝ : Semiring R\ns : Set R\n⊢ centralizer s.centralizer.centralizer = centralizer s"} +{"state": [{"context": ["R✝ : Type u", "S : Type v", "T : Type w", "inst✝³ : NonAssocSemiring R✝", "M : Submonoid R✝", "inst✝² : NonAssocSemiring S", "inst✝¹ : NonAssocSemiring T", "R : Type u_1", "inst✝ : Semiring R", "s : Set R"], "goal": "↑(centralizer s.centralizer.centralizer) = ↑(centralizer s)"}], "premise": [119321, 124191], "state_str": "case a\nR✝ : Type u\nS : Type v\nT : Type w\ninst✝³ : NonAssocSemiring R✝\nM : Submonoid R✝\ninst✝² : NonAssocSemiring S\ninst✝¹ : NonAssocSemiring T\nR : Type u_1\ninst✝ : Semiring R\ns : Set R\n⊢ ↑(centralizer s.centralizer.centralizer) = ↑(centralizer s)"} +{"state": [{"context": ["M : Type u_1", "inst✝ : Mul M", "c d : Con M"], "goal": "{ toFun := op, invFun := unop, left_inv := ⋯, right_inv := ⋯ } c ≤ { toFun := op, invFun := unop, left_inv := ⋯, right_inv := ⋯ } d ↔ c ≤ d"}], "premise": [7245], "state_str": "M : Type u_1\ninst✝ : Mul M\nc d : Con M\n⊢ { toFun := op, invFun := unop, left_inv := ⋯, right_inv := ⋯ } c ≤\n { toFun := op, invFun := unop, left_inv := ⋯, right_inv := ⋯ } d ↔\n c ≤ d"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "a b : Ordinal.{u_4}", "l : a.IsLimit", "h : b < a"], "goal": "b + 0 < a"}], "premise": [119729], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b : Ordinal.{u_4}\nl : a.IsLimit\nh : b < a\n⊢ b + 0 < a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "a b : Ordinal.{u_4}", "l : a.IsLimit", "h✝ : b < a", "c : Ordinal.{u_4}", "h : c < a - b"], "goal": "succ c < a - b"}], "premise": [49764, 52299], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b : Ordinal.{u_4}\nl : a.IsLimit\nh✝ : b < a\nc : Ordinal.{u_4}\nh : c < a - b\n⊢ succ c < a - b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "a b : Ordinal.{u_4}", "l : a.IsLimit", "h✝ : b < a", "c : Ordinal.{u_4}", "h : c < a - b"], "goal": "succ (b + c) < a"}], "premise": [1673, 2106, 52299], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b : Ordinal.{u_4}\nl : a.IsLimit\nh✝ : b < a\nc : Ordinal.{u_4}\nh : c < a - b\n⊢ succ (b + c) < a"} +{"state": [{"context": ["R✝ : Type u", "A✝ : Type v", "inst✝⁹ : CommSemiring R✝", "inst✝⁸ : Ring A✝", "inst✝⁷ : Algebra R✝ A✝", "S : Type u_1", "R : Type u_2", "A : Type u_3", "inst✝⁶ : CommSemiring R", "inst✝⁵ : CommSemiring S", "inst✝⁴ : Ring A", "inst✝³ : Algebra R S", "inst✝² : Algebra R A", "inst✝¹ : Algebra S A", "inst✝ : IsScalarTower R S A", "a : A", "r : R"], "goal": "(algebraMap R S) r ∈ spectrum S a ↔ r ∈ σ a"}], "premise": [118884, 118910, 121166, 121463], "state_str": "R✝ : Type u\nA✝ : Type v\ninst✝⁹ : CommSemiring R✝\ninst✝⁸ : Ring A✝\ninst✝⁷ : Algebra R✝ A✝\nS : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁶ : CommSemiring R\ninst✝⁵ : CommSemiring S\ninst✝⁴ : Ring A\ninst✝³ : Algebra R S\ninst✝² : Algebra R A\ninst✝¹ : Algebra S A\ninst✝ : IsScalarTower R S A\na : A\nr : R\n⊢ (algebraMap R S) r ∈ spectrum S a ↔ r ∈ σ a"} +{"state": [{"context": ["α✝ α : Type u_1", "inst✝¹ : Nonempty α", "inst✝ : DecidableEq α", "s : Finset α", "f : α → ℤ", "n : ℕ", "h : ∑ i ∈ s, (f i).natAbs ≤ n"], "goal": "∃ β x sgn g, (∀ (b : β), g b ∉ s → sgn b = 0) ∧ Fintype.card β = n ∧ ∀ a ∈ s, (∑ i : β, if g i = a then ↑(sgn i) else 0) = f a"}], "premise": [146339], "state_str": "α✝ α : Type u_1\ninst✝¹ : Nonempty α\ninst✝ : DecidableEq α\ns : Finset α\nf : α → ℤ\nn : ℕ\nh : ∑ i ∈ s, (f i).natAbs ≤ n\n⊢ ∃ β x sgn g,\n (∀ (b : β), g b ∉ s → sgn b = 0) ∧ Fintype.card β = n ∧ ∀ a ∈ s, (∑ i : β, if g i = a then ↑(sgn i) else 0) = f a"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ"], "goal": "(fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"}], "premise": [1670, 15608, 43402, 66646, 105279], "state_str": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\n⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ", "h1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)"], "goal": "(fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"}], "premise": [15609, 41201, 43402], "state_str": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\nh1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)\n⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ", "h1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)", "h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘ Neg.neg) =O[atBot] ((fun x => |x| ^ (-b)) ∘ Neg.neg)"], "goal": "(fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"}], "premise": [1670, 105279], "state_str": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\nh1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)\nh2 :\n ((fun x =>\n ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘\n Neg.neg) =O[atBot]\n ((fun x => |x| ^ (-b)) ∘ Neg.neg)\n⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ", "h1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)", "h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b)", "this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)"], "goal": "(fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"}], "premise": [43411, 43422], "state_str": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\nh1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)\nh2 :\n ((fun x =>\n ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘\n Neg.neg) =O[atBot]\n fun x => |x| ^ (-b)\nthis : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)\n⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ", "h1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)", "h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b)", "this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)", "x : ℝ"], "goal": "‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ ‖((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘ Neg.neg) x‖"}], "premise": [1670, 42680, 43341, 62351], "state_str": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\nh1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)\nh2 :\n ((fun x =>\n ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘\n Neg.neg) =O[atBot]\n fun x => |x| ^ (-b)\nthis : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)\nx : ℝ\n⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤\n ‖((fun x =>\n ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘\n Neg.neg)\n x‖"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ", "h1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)", "h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b)", "this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)", "x✝ x : ℝ", "hx : x ∈ Icc (x✝ + R) (x✝ + S)"], "goal": "‖(ContinuousMap.restrict (Icc (x✝ + R) (x✝ + S)) f) ⟨x, hx⟩‖ ≤ ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖"}], "premise": [62144], "state_str": "case mk\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\nh1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)\nh2 :\n ((fun x =>\n ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘\n Neg.neg) =O[atBot]\n fun x => |x| ^ (-b)\nthis : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)\nx✝ x : ℝ\nhx : x ∈ Icc (x✝ + R) (x✝ + S)\n⊢ ‖(ContinuousMap.restrict (Icc (x✝ + R) (x✝ + S)) f) ⟨x, hx⟩‖ ≤\n ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖"} +{"state": [{"context": ["E : Type u_1", "inst✝ : NormedAddCommGroup E", "f : C(ℝ, E)", "b : ℝ", "hb : 0 < b", "hf : ⇑f =O[atBot] fun x => |x| ^ (-b)", "R S : ℝ", "h1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)", "h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b)", "this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)", "x✝ x : ℝ", "hx : x ∈ Icc (x✝ + R) (x✝ + S)"], "goal": "‖f x‖ ≤ ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖"}], "premise": [14277, 62349], "state_str": "case mk\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nb : ℝ\nhb : 0 < b\nhf : ⇑f =O[atBot] fun x => |x| ^ (-b)\nR S : ℝ\nh1 : ⇑(f.comp { toFun := fun a => -a, continuous_toFun := ⋯ }) =O[atTop] fun x => |x| ^ (-b)\nh2 :\n ((fun x =>\n ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖) ∘\n Neg.neg) =O[atBot]\n fun x => |x| ^ (-b)\nthis : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)\nx✝ x : ℝ\nhx : x ∈ Icc (x✝ + R) (x✝ + S)\n⊢ ‖f x‖ ≤ ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (f.comp { toFun := fun a => -a, continuous_toFun := ⋯ })‖"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "a : α", "l : List α", "x : α", "n : ℕ"], "goal": "l.length ≤ (insertNth n x l).length"}], "premise": [14317], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\n⊢ l.length ≤ (insertNth n x l).length"} +{"state": [{"context": ["K : Type u_1", "inst✝⁴ : Field K", "inst✝³ : NumberField K", "inst✝² : IsCyclotomicExtension {3} ℚ K", "ζ : K", "hζ : IsPrimitiveRoot ζ ↑3", "S : Solution hζ", "S' : Solution' hζ", "inst✝¹ : DecidableRel fun a b => a ∣ b", "inst✝ : DecidableEq (𝓞 K)"], "goal": "S.Solution'_descent.multiplicity = S.multiplicity - 1"}], "premise": [2100, 24535, 79545], "state_str": "K : Type u_1\ninst✝⁴ : Field K\ninst✝³ : NumberField K\ninst✝² : IsCyclotomicExtension {3} ℚ K\nζ : K\nhζ : IsPrimitiveRoot ζ ↑3\nS : Solution hζ\nS' : Solution' hζ\ninst✝¹ : DecidableRel fun a b => a ∣ b\ninst✝ : DecidableEq (𝓞 K)\n⊢ S.Solution'_descent.multiplicity = S.multiplicity - 1"} +{"state": [{"context": ["K : Type u_1", "inst✝⁴ : Field K", "inst✝³ : NumberField K", "inst✝² : IsCyclotomicExtension {3} ℚ K", "ζ : K", "hζ : IsPrimitiveRoot ζ ↑3", "S : Solution hζ", "S' : Solution' hζ", "inst✝¹ : DecidableRel fun a b => a ∣ b", "inst✝ : DecidableEq (𝓞 K)", "k : 𝓞 K", "hk : λ ^ (S.multiplicity - 1) * FermatLastTheoremForThreeGen.Solution.X S = λ ^ (S.multiplicity - 1 + 1) * k"], "goal": "λ ∣ FermatLastTheoremForThreeGen.Solution.X S"}], "premise": [119703, 119742], "state_str": "case intro\nK : Type u_1\ninst✝⁴ : Field K\ninst✝³ : NumberField K\ninst✝² : IsCyclotomicExtension {3} ℚ K\nζ : K\nhζ : IsPrimitiveRoot ζ ↑3\nS : Solution hζ\nS' : Solution' hζ\ninst✝¹ : DecidableRel fun a b => a ∣ b\ninst✝ : DecidableEq (𝓞 K)\nk : 𝓞 K\nhk : λ ^ (S.multiplicity - 1) * FermatLastTheoremForThreeGen.Solution.X S = λ ^ (S.multiplicity - 1 + 1) * k\n⊢ λ ∣ FermatLastTheoremForThreeGen.Solution.X S"} +{"state": [{"context": ["K : Type u_1", "inst✝⁴ : Field K", "inst✝³ : NumberField K", "inst✝² : IsCyclotomicExtension {3} ℚ K", "ζ : K", "hζ : IsPrimitiveRoot ζ ↑3", "S : Solution hζ", "S' : Solution' hζ", "inst✝¹ : DecidableRel fun a b => a ∣ b", "inst✝ : DecidableEq (𝓞 K)", "k : 𝓞 K", "hk : λ ^ (S.multiplicity - 1) * FermatLastTheoremForThreeGen.Solution.X S = λ ^ (S.multiplicity - 1) * (λ * k)"], "goal": "λ ∣ FermatLastTheoremForThreeGen.Solution.X S"}], "premise": [1169, 1182, 1191, 24765, 108286, 108288, 125797], "state_str": "case intro\nK : Type u_1\ninst✝⁴ : Field K\ninst✝³ : NumberField K\ninst✝² : IsCyclotomicExtension {3} ℚ K\nζ : K\nhζ : IsPrimitiveRoot ζ ↑3\nS : Solution hζ\nS' : Solution' hζ\ninst✝¹ : DecidableRel fun a b => a ∣ b\ninst✝ : DecidableEq (𝓞 K)\nk : 𝓞 K\nhk : λ ^ (S.multiplicity - 1) * FermatLastTheoremForThreeGen.Solution.X S = λ ^ (S.multiplicity - 1) * (λ * k)\n⊢ λ ∣ FermatLastTheoremForThreeGen.Solution.X S"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "X✝ Y Z : C", "inst✝² : HasZeroMorphisms C", "f : X✝ ⟶ Y", "inst✝¹ : HasKernel f", "inst✝ : HasCokernels C", "X A B : C", "g : B ⟶ X", "hg : Mono g", "i : A ≅ B", "hf : Mono (i.hom ≫ g)"], "goal": "(fun A f x => Subobject.mk (cokernel.π f).op) A (i.hom ≫ g) hf = (fun A f x => Subobject.mk (cokernel.π f).op) B g hg"}], "premise": [89269, 89626], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\nX✝ Y Z : C\ninst✝² : HasZeroMorphisms C\nf : X✝ ⟶ Y\ninst✝¹ : HasKernel f\ninst✝ : HasCokernels C\nX A B : C\ng : B ⟶ X\nhg : Mono g\ni : A ≅ B\nhf : Mono (i.hom ≫ g)\n⊢ (fun A f x => Subobject.mk (cokernel.π f).op) A (i.hom ≫ g) hf = (fun A f x => Subobject.mk (cokernel.π f).op) B g hg"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "X✝ Y Z : C", "inst✝² : HasZeroMorphisms C", "f✝ : X✝ ⟶ Y", "inst✝¹ : HasKernel f✝", "inst✝ : HasCokernels C", "X A B : C", "f : A ⟶ X", "g : B ⟶ X", "hf : Mono f", "hg : Mono g", "h : Subobject.mk f ≤ Subobject.mk g"], "goal": "Subobject.lift (fun A f x => Subobject.mk (cokernel.π f).op) ⋯ (Subobject.mk f) ≤ Subobject.lift (fun A f x => Subobject.mk (cokernel.π f).op) ⋯ (Subobject.mk g)"}], "premise": [89253], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\nX✝ Y Z : C\ninst✝² : HasZeroMorphisms C\nf✝ : X✝ ⟶ Y\ninst✝¹ : HasKernel f✝\ninst✝ : HasCokernels C\nX A B : C\nf : A ⟶ X\ng : B ⟶ X\nhf : Mono f\nhg : Mono g\nh : Subobject.mk f ≤ Subobject.mk g\n⊢ Subobject.lift (fun A f x => Subobject.mk (cokernel.π f).op) ⋯ (Subobject.mk f) ≤\n Subobject.lift (fun A f x => Subobject.mk (cokernel.π f).op) ⋯ (Subobject.mk g)"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "X✝ Y Z : C", "inst✝² : HasZeroMorphisms C", "f✝ : X✝ ⟶ Y", "inst✝¹ : HasKernel f✝", "inst✝ : HasCokernels C", "X A B : C", "f : A ⟶ X", "g : B ⟶ X", "hf : Mono f", "hg : Mono g", "h : Subobject.mk f ≤ Subobject.mk g"], "goal": "Subobject.mk (cokernel.π f).op ≤ Subobject.mk (cokernel.π g).op"}], "premise": [89261], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\nX✝ Y Z : C\ninst✝² : HasZeroMorphisms C\nf✝ : X✝ ⟶ Y\ninst✝¹ : HasKernel f✝\ninst✝ : HasCokernels C\nX A B : C\nf : A ⟶ X\ng : B ⟶ X\nhf : Mono f\nhg : Mono g\nh : Subobject.mk f ≤ Subobject.mk g\n⊢ Subobject.mk (cokernel.π f).op ≤ Subobject.mk (cokernel.π g).op"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "ι' : Sort u_5", "ι₂ : Sort u_6", "κ : ι → Sort u_7", "κ₁ : ι → Sort u_8", "κ₂ : ι → Sort u_9", "κ' : ι' → Sort u_10", "inst✝ : CompleteLattice β", "S : Set (Set α)", "f : α → β"], "goal": "⨅ x ∈ ⋃₀ S, f x = ⨅ s ∈ S, ⨅ x ∈ s, f x"}], "premise": [19391, 135451, 135594], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nι' : Sort u_5\nι₂ : Sort u_6\nκ : ι → Sort u_7\nκ₁ : ι → Sort u_8\nκ₂ : ι → Sort u_9\nκ' : ι' → Sort u_10\ninst✝ : CompleteLattice β\nS : Set (Set α)\nf : α → β\n⊢ ⨅ x ∈ ⋃₀ S, f x = ⨅ s ∈ S, ⨅ x ∈ s, f x"} +{"state": [{"context": ["f : ℝ → ℝ", "x : ℝ", "n : ℕ", "hf_conv : ConvexOn ℝ (Ioi 0) f", "hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y", "hx : 0 < x", "hn : n ≠ 0"], "goal": "f 1 + (x * log ↑n + log ↑n ! - ∑ m ∈ Finset.range (n + 1), log (x + ↑m)) ≤ f x"}], "premise": [39598, 105713, 117807, 119708], "state_str": "f : ℝ → ℝ\nx : ℝ\nn : ℕ\nhf_conv : ConvexOn ℝ (Ioi 0) f\nhf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y\nhx : 0 < x\nhn : n ≠ 0\n⊢ f 1 + (x * log ↑n + log ↑n ! - ∑ m ∈ Finset.range (n + 1), log (x + ↑m)) ≤ f x"} +{"state": [{"context": ["f : ℝ → ℝ", "x : ℝ", "n : ℕ", "hf_conv : ConvexOn ℝ (Ioi 0) f", "hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y", "hx : 0 < x", "hn : n ≠ 0"], "goal": "f 1 + (x * log ↑n + log ↑n !) ≤ f (↑(n + 1) + x)"}], "premise": [14273, 14277, 39600], "state_str": "f : ℝ → ℝ\nx : ℝ\nn : ℕ\nhf_conv : ConvexOn ℝ (Ioi 0) f\nhf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y\nhx : 0 < x\nhn : n ≠ 0\n⊢ f 1 + (x * log ↑n + log ↑n !) ≤ f (↑(n + 1) + x)"} +{"state": [{"context": ["J : Type v", "inst✝ : SmallCategory J", "F : J ⥤ Cat", "X✝ Y : limit (F ⋙ objects)", "X : J"], "goal": "{ obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y, map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map (𝟙 X) = 𝟙 ({ obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y, map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj X)"}], "premise": [1838], "state_str": "J : Type v\ninst✝ : SmallCategory J\nF : J ⥤ Cat\nX✝ Y : limit (F ⋙ objects)\nX : J\n⊢ { obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n (𝟙 X) =\n 𝟙\n ({ obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj\n X)"} +{"state": [{"context": ["J : Type v", "inst✝ : SmallCategory J", "F : J ⥤ Cat", "X✝ Y : limit (F ⋙ objects)", "X : J", "f : { obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y, map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj X", "this : Category.{v, v} (objects.obj (F.obj X)) := inferInstance"], "goal": "{ obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y, map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map (𝟙 X) f = 𝟙 ({ obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y, map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj X) f"}], "premise": [97759, 99920], "state_str": "case h\nJ : Type v\ninst✝ : SmallCategory J\nF : J ⥤ Cat\nX✝ Y : limit (F ⋙ objects)\nX : J\nf :\n { obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj\n X\nthis : Category.{v, v} (objects.obj (F.obj X)) := inferInstance\n⊢ { obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n (𝟙 X) f =\n 𝟙\n ({ obj := fun j => limit.π (F ⋙ objects) j X✝ ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj\n X)\n f"} +{"state": [{"context": ["J : Type v", "inst✝ : SmallCategory J", "F : J ⥤ Cat", "X Y : limit (F ⋙ objects)", "x✝¹ x✝ Z : J", "f : x✝¹ ⟶ x✝", "g : x✝ ⟶ Z"], "goal": "{ obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map (f ≫ g) = { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map f ≫ { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map g"}], "premise": [1838], "state_str": "J : Type v\ninst✝ : SmallCategory J\nF : J ⥤ Cat\nX Y : limit (F ⋙ objects)\nx✝¹ x✝ Z : J\nf : x✝¹ ⟶ x✝\ng : x✝ ⟶ Z\n⊢ { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n (f ≫ g) =\n { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n f ≫\n { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n g"} +{"state": [{"context": ["J : Type v", "inst✝ : SmallCategory J", "F : J ⥤ Cat", "X Y : limit (F ⋙ objects)", "x✝¹ x✝ Z : J", "f : x✝¹ ⟶ x✝", "g : x✝ ⟶ Z", "h : { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj x✝¹", "this : Category.{v, v} (objects.obj (F.obj Z)) := inferInstance"], "goal": "{ obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map (f ≫ g) h = ({ obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map f ≫ { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y, map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map g) h"}], "premise": [97759, 97767, 99919], "state_str": "case h\nJ : Type v\ninst✝ : SmallCategory J\nF : J ⥤ Cat\nX Y : limit (F ⋙ objects)\nx✝¹ x✝ Z : J\nf : x✝¹ ⟶ x✝\ng : x✝ ⟶ Z\nh :\n { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.obj\n x✝¹\nthis : Category.{v, v} (objects.obj (F.obj Z)) := inferInstance\n⊢ { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n (f ≫ g) h =\n ({ obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n f ≫\n { obj := fun j => limit.π (F ⋙ objects) j X ⟶ limit.π (F ⋙ objects) j Y,\n map := fun {X_1 Y_1} f g => eqToHom ⋯ ≫ (F.map f).map g ≫ eqToHom ⋯ }.map\n g)\n h"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M✝ : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝¹ : Zero M✝", "α : Type u_13", "M : Type u_14", "inst✝ : Zero M", "f g : α →₀ M", "h : f.graph = g.graph"], "goal": "f = g"}], "premise": [1674, 2100, 148067, 148437, 148438, 148440], "state_str": "α✝ : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM✝ : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝¹ : Zero M✝\nα : Type u_13\nM : Type u_14\ninst✝ : Zero M\nf g : α →₀ M\nh : f.graph = g.graph\n⊢ f = g"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ : P", "s : Set P", "h : affineSpan k s = ⊤"], "goal": "s.Nonempty"}], "premise": [133378], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns : Set P\nh : affineSpan k s = ⊤\n⊢ s.Nonempty"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ : P", "h : affineSpan k ∅ = ⊤"], "goal": "False"}], "premise": [84449], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\nh : affineSpan k ∅ = ⊤\n⊢ False"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ : P", "h : ⊥ = ⊤"], "goal": "False"}], "premise": [84461], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\nh : ⊥ = ⊤\n⊢ False"} +{"state": [{"context": ["α : Type ua", "β : Type ub", "γ : Type uc", "δ : Type ud", "ι : Sort u_1", "inst✝ : UniformSpace α", "p : ι → Prop", "s : ι → Set (α × α)", "h : (𝓤 α).HasBasis p s", "x : α"], "goal": "(𝓝 x).HasBasis p fun i => {y | (y, x) ∈ s i}"}], "premise": [12603], "state_str": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nh : (𝓤 α).HasBasis p s\nx : α\n⊢ (𝓝 x).HasBasis p fun i => {y | (y, x) ∈ s i}"} +{"state": [{"context": ["α : Type ua", "β : Type ub", "γ : Type uc", "δ : Type ud", "ι : Sort u_1", "inst✝ : UniformSpace α", "p : ι → Prop", "s : ι → Set (α × α)", "x : α", "h : (comap Prod.swap (𝓤 α)).HasBasis p fun i => Prod.swap ⁻¹' s i"], "goal": "(𝓝 x).HasBasis p fun i => {y | (y, x) ∈ s i}"}], "premise": [60501], "state_str": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nx : α\nh : (comap Prod.swap (𝓤 α)).HasBasis p fun i => Prod.swap ⁻¹' s i\n⊢ (𝓝 x).HasBasis p fun i => {y | (y, x) ∈ s i}"} +{"state": [{"context": ["α : Type ua", "β : Type ub", "γ : Type uc", "δ : Type ud", "ι : Sort u_1", "inst✝ : UniformSpace α", "p : ι → Prop", "s : ι → Set (α × α)", "x : α", "h : (𝓤 α).HasBasis p fun i => Prod.swap ⁻¹' s i"], "goal": "(𝓝 x).HasBasis p fun i => {y | (y, x) ∈ s i}"}], "premise": [60529], "state_str": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nx : α\nh : (𝓤 α).HasBasis p fun i => Prod.swap ⁻¹' s i\n⊢ (𝓝 x).HasBasis p fun i => {y | (y, x) ∈ s i}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝¹ : Finite α", "inst✝ : Finite β", "this✝ : Fintype α", "this : Fintype β"], "goal": "Nat.card α = Nat.card β ↔ Nonempty (α ≃ β)"}], "premise": [47564, 141346], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝¹ : Finite α\ninst✝ : Finite β\nthis✝ : Fintype α\nthis : Fintype β\n⊢ Nat.card α = Nat.card β ↔ Nonempty (α ≃ β)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁴ : MeasurableSpace α", "μ ν✝ : Measure α", "inst✝³ : TopologicalSpace β", "inst✝² : TopologicalSpace γ", "inst✝¹ : TopologicalSpace δ", "inst✝ : MeasurableSpace β", "ν : Measure β", "f : α → β", "g : β →ₘ[ν] γ", "hf : QuasiMeasurePreserving f μ ν"], "goal": "↑(g.compQuasiMeasurePreserving f hf) =ᶠ[ae μ] ↑g ∘ f"}], "premise": [27069], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁴ : MeasurableSpace α\nμ ν✝ : Measure α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : MeasurableSpace β\nν : Measure β\nf : α → β\ng : β →ₘ[ν] γ\nhf : QuasiMeasurePreserving f μ ν\n⊢ ↑(g.compQuasiMeasurePreserving f hf) =ᶠ[ae μ] ↑g ∘ f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁴ : MeasurableSpace α", "μ ν✝ : Measure α", "inst✝³ : TopologicalSpace β", "inst✝² : TopologicalSpace γ", "inst✝¹ : TopologicalSpace δ", "inst✝ : MeasurableSpace β", "ν : Measure β", "f : α → β", "g : β →ₘ[ν] γ", "hf : QuasiMeasurePreserving f μ ν"], "goal": "↑(mk (↑g ∘ f) ⋯) =ᶠ[ae μ] ↑g ∘ f"}], "premise": [27064], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁴ : MeasurableSpace α\nμ ν✝ : Measure α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : MeasurableSpace β\nν : Measure β\nf : α → β\ng : β →ₘ[ν] γ\nhf : QuasiMeasurePreserving f μ ν\n⊢ ↑(mk (↑g ∘ f) ⋯) =ᶠ[ae μ] ↑g ∘ f"} +{"state": [{"context": ["ι : Type u_1", "M : ι → Type u_2", "inst✝² : (i : ι) → Monoid (M i)", "N : Type u_3", "inst✝¹ : Monoid N", "inst✝ : DecidableEq ι", "i : ι", "x : M i"], "goal": "(lift (Pi.mulSingle i (MonoidHom.id (M i)))) (of x) = x"}], "premise": [9571, 117176, 120687], "state_str": "ι : Type u_1\nM : ι → Type u_2\ninst✝² : (i : ι) → Monoid (M i)\nN : Type u_3\ninst✝¹ : Monoid N\ninst✝ : DecidableEq ι\ni : ι\nx : M i\n⊢ (lift (Pi.mulSingle i (MonoidHom.id (M i)))) (of x) = x"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "o : Type u_4", "R : Type u_5", "inst✝⁴ : Fintype n", "inst✝³ : Fintype o", "inst✝² : CommRing R", "inst✝¹ : StrongRankCondition R", "inst✝ : DecidableEq n"], "goal": "rank 1 = Fintype.card n"}], "premise": [85539, 86358, 87026, 109934], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nR : Type u_5\ninst✝⁴ : Fintype n\ninst✝³ : Fintype o\ninst✝² : CommRing R\ninst✝¹ : StrongRankCondition R\ninst✝ : DecidableEq n\n⊢ rank 1 = Fintype.card n"} +{"state": [{"context": ["α : Type u", "L L₁ L₂ L₃ L₄ : List (α × Bool)", "inst✝ : DecidableEq α", "x y : FreeGroup α"], "goal": "(x * y).norm = (mk (x.toWord ++ y.toWord)).norm"}], "premise": [10135, 10265], "state_str": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\ninst✝ : DecidableEq α\nx y : FreeGroup α\n⊢ (x * y).norm = (mk (x.toWord ++ y.toWord)).norm"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝¹ : UniformSpace β", "F : ι → α → β", "f : α → β", "s s' : Set α", "x : α", "p : Filter ι", "p' : Filter α", "g : ι → α", "inst✝ : TopologicalSpace α", "h : ContinuousAt f x", "hg : Tendsto g p (𝓝 x)", "hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u"], "goal": "Tendsto (fun n => F n (g n)) p (𝓝 (f x))"}], "premise": [57251], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : ContinuousAt f x\nhg : Tendsto g p (𝓝 x)\nhunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u\n⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x))"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝¹ : UniformSpace β", "F : ι → α → β", "f : α → β", "s s' : Set α", "x : α", "p : Filter ι", "p' : Filter α", "g : ι → α", "inst✝ : TopologicalSpace α", "h : ContinuousWithinAt f univ x", "hg : Tendsto g p (𝓝 x)", "hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u"], "goal": "Tendsto (fun n => F n (g n)) p (𝓝 (f x))"}], "premise": [57165], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : ContinuousWithinAt f univ x\nhg : Tendsto g p (𝓝 x)\nhunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u\n⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x))"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝¹ : UniformSpace β", "F : ι → α → β", "f : α → β", "s s' : Set α", "x : α", "p : Filter ι", "p' : Filter α", "g : ι → α", "inst✝ : TopologicalSpace α", "h : ContinuousWithinAt f univ x", "hg : Tendsto g p (𝓝[univ] x)", "hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝[univ] x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u"], "goal": "Tendsto (fun n => F n (g n)) p (𝓝 (f x))"}], "premise": [60236], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : ContinuousWithinAt f univ x\nhg : Tendsto g p (𝓝[univ] x)\nhunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝[univ] x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u\n⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x))"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DecidableEq α", "inst✝ : Mul α", "s s₁ s₂ t t₁ t₂ : Finset α", "h : 0 < Eₘ[s, t]", "H : ¬(s.Nonempty ∧ t.Nonempty)"], "goal": "False"}], "premise": [70089, 138728], "state_str": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Mul α\ns s₁ s₂ t t₁ t₂ : Finset α\nh : 0 < Eₘ[s, t]\nH : ¬(s.Nonempty ∧ t.Nonempty)\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DecidableEq α", "inst✝ : Mul α", "s s₁ s₂ t t₁ t₂ : Finset α", "h : 0 < Eₘ[s, t]", "H : s = ∅ ∨ t = ∅"], "goal": "False"}], "premise": [2133], "state_str": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Mul α\ns s₁ s₂ t t₁ t₂ : Finset α\nh : 0 < Eₘ[s, t]\nH : s = ∅ ∨ t = ∅\n⊢ False"} +{"state": [{"context": ["M : Type u_1", "A : Type u_2", "B : Type u_3", "inst✝ : MulOneClass M", "ι : Sort u_4", "hι : Nonempty ι", "S : ι → Submonoid M", "hS : Directed (fun x x_1 => x ≤ x_1) S", "x : M"], "goal": "x ∈ ⨆ i, S i ↔ ∃ i, x ∈ S i"}], "premise": [19295], "state_str": "M : Type u_1\nA : Type u_2\nB : Type u_3\ninst✝ : MulOneClass M\nι : Sort u_4\nhι : Nonempty ι\nS : ι → Submonoid M\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : M\n⊢ x ∈ ⨆ i, S i ↔ ∃ i, x ∈ S i"} +{"state": [{"context": ["M : Type u_1", "A : Type u_2", "B : Type u_3", "inst✝ : MulOneClass M", "ι : Sort u_4", "hι : Nonempty ι", "S : ι → Submonoid M", "hS : Directed (fun x x_1 => x ≤ x_1) S", "x : M"], "goal": "x ∈ ⨆ i, S i → ∃ i, x ∈ S i"}], "premise": [117668, 117679], "state_str": "M : Type u_1\nA : Type u_2\nB : Type u_3\ninst✝ : MulOneClass M\nι : Sort u_4\nhι : Nonempty ι\nS : ι → Submonoid M\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : M\n⊢ x ∈ ⨆ i, S i → ∃ i, x ∈ S i"} +{"state": [{"context": ["M : Type u_1", "A : Type u_2", "B : Type u_3", "inst✝ : MulOneClass M", "ι : Sort u_4", "hι : Nonempty ι", "S : ι → Submonoid M", "hS : Directed (fun x x_1 => x ≤ x_1) S", "x : M"], "goal": "x ∈ closure (⋃ i, ↑(S i)) → ∃ i, x ∈ S i"}], "premise": [1673, 16573, 117660], "state_str": "M : Type u_1\nA : Type u_2\nB : Type u_3\ninst✝ : MulOneClass M\nι : Sort u_4\nhι : Nonempty ι\nS : ι → Submonoid M\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : M\n⊢ x ∈ closure (⋃ i, ↑(S i)) → ∃ i, x ∈ S i"} +{"state": [{"context": ["J : Type u", "inst✝ : Category.{v, u} J", "F G : J ⥤ Type w", "φ : F ⟶ G", "x : (fun F => ↑F.sections) F", "j j' : J", "f : j ⟶ j'"], "goal": "(F.map f ≫ φ.app j') (↑x j) = (fun j => φ.app j (↑x j)) j'"}], "premise": [2115], "state_str": "J : Type u\ninst✝ : Category.{v, u} J\nF G : J ⥤ Type w\nφ : F ⟶ G\nx : (fun F => ↑F.sections) F\nj j' : J\nf : j ⟶ j'\n⊢ (F.map f ≫ φ.app j') (↑x j) = (fun j => φ.app j (↑x j)) j'"} +{"state": [{"context": ["X Y : Scheme", "U : X.Opens", "hU : IsAffineOpen U", "f : ↑Γ(X, U)", "r : ↑Γ(X, ⊤)"], "goal": "IsAffineOpen ((X.basicOpen r).ι ⁻¹ᵁ U)"}], "premise": [1673, 128478], "state_str": "X Y : Scheme\nU : X.Opens\nhU : IsAffineOpen U\nf : ↑Γ(X, U)\nr : ↑Γ(X, ⊤)\n⊢ IsAffineOpen ((X.basicOpen r).ι ⁻¹ᵁ U)"} +{"state": [{"context": ["X Y : Scheme", "U : X.Opens", "hU : IsAffineOpen U", "f : ↑Γ(X, U)", "r : ↑Γ(X, ⊤)"], "goal": "IsAffineOpen (⋯.functor.obj ((X.basicOpen r).ι ⁻¹ᵁ U))"}], "premise": [14579, 18778, 58360, 58364, 126610], "state_str": "X Y : Scheme\nU : X.Opens\nhU : IsAffineOpen U\nf : ↑Γ(X, U)\nr : ↑Γ(X, ⊤)\n⊢ IsAffineOpen (⋯.functor.obj ((X.basicOpen r).ι ⁻¹ᵁ U))"} +{"state": [{"context": ["X Y : Scheme", "U : X.Opens", "hU : IsAffineOpen U", "f : ↑Γ(X, U)", "r : ↑Γ(X, ⊤)"], "goal": "IsAffineOpen (X.basicOpen ((X.presheaf.map (homOfLE ⋯).op) r))"}], "premise": [128490], "state_str": "X Y : Scheme\nU : X.Opens\nhU : IsAffineOpen U\nf : ↑Γ(X, U)\nr : ↑Γ(X, ⊤)\n⊢ IsAffineOpen (X.basicOpen ((X.presheaf.map (homOfLE ⋯).op) r))"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "δ : Type u_1", "ι : Sort x", "f✝ g : Filter α", "s✝ t : Set α", "f : Filter α", "s : Set α"], "goal": "f ⊓ 𝓟 s = ⊥ ↔ sᶜ ∈ f"}], "premise": [15958, 16003], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type u_1\nι : Sort x\nf✝ g : Filter α\ns✝ t : Set α\nf : Filter α\ns : Set α\n⊢ f ⊓ 𝓟 s = ⊥ ↔ sᶜ ∈ f"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "δ : Type u_1", "ι : Sort x", "f✝ g : Filter α", "s✝ t : Set α", "f : Filter α", "s : Set α"], "goal": "{x | x ∈ s → x ∈ ∅} ∈ f ↔ sᶜ ∈ f"}], "premise": [1814, 133368, 133594], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type u_1\nι : Sort x\nf✝ g : Filter α\ns✝ t : Set α\nf : Filter α\ns : Set α\n⊢ {x | x ∈ s → x ∈ ∅} ∈ f ↔ sᶜ ∈ f"} +{"state": [{"context": ["a✝ b✝ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a b : ℝ"], "goal": "∫ (x : ℝ) in a..b, Complex.cos (z * ↑x) = Complex.sin (z * ↑b) / z - Complex.sin (z * ↑a) / z"}], "premise": [27334], "state_str": "a✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ ∫ (x : ℝ) in a..b, Complex.cos (z * ↑x) = Complex.sin (z * ↑b) / z - Complex.sin (z * ↑a) / z"} +{"state": [{"context": ["a✝¹ b✝ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a b x : ℝ", "a✝ : x ∈ [[a, b]]"], "goal": "HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"}], "premise": [38870], "state_str": "case hderiv\na✝¹ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b x : ℝ\na✝ : x ∈ [[a, b]]\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"} +{"state": [{"context": ["a✝² b✝ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a✝¹ b x : ℝ", "a✝ : x ∈ [[a✝¹, b]]", "a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)"], "goal": "HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"}], "premise": [45312], "state_str": "case hderiv\na✝² b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b x : ℝ\na✝ : x ∈ [[a✝¹, b]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"} +{"state": [{"context": ["a✝² b✝¹ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a✝¹ b✝ x : ℝ", "a✝ : x ∈ [[a✝¹, b✝]]", "a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)", "b : HasDerivAt (fun y => y * z) z ↑x"], "goal": "HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"}], "premise": [44898], "state_str": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"} +{"state": [{"context": ["a✝² b✝¹ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a✝¹ b✝ x : ℝ", "a✝ : x ∈ [[a✝¹, b✝]]", "a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)", "b : HasDerivAt (fun y => y * z) z ↑x", "c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x"], "goal": "HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"}], "premise": [45334, 46895], "state_str": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"} +{"state": [{"context": ["a✝² b✝¹ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a✝¹ b✝ x : ℝ", "a✝ : x ∈ [[a✝¹, b✝]]", "a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)", "b : HasDerivAt (fun y => y * z) z ↑x", "c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x", "d : HasDerivAt (fun y => Complex.sin (↑y * z) / z) (Complex.cos (↑x * z) * z / z) x"], "goal": "HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"}], "premise": [119707], "state_str": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (↑y * z) / z) (Complex.cos (↑x * z) * z / z) x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x"} +{"state": [{"context": ["a✝² b✝¹ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a✝¹ b✝ x : ℝ", "a✝ : x ∈ [[a✝¹, b✝]]", "a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)", "b : HasDerivAt (fun y => y * z) z ↑x", "c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x", "d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x"], "goal": "Complex.cos (z * ↑x) = z * Complex.cos (z * ↑x) / z"}], "premise": [119707], "state_str": "case h.e'_7\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ Complex.cos (z * ↑x) = z * Complex.cos (z * ↑x) / z"} +{"state": [{"context": ["a✝² b✝¹ : ℝ", "n : ℕ", "z : ℂ", "hz : z ≠ 0", "a✝¹ b✝ x : ℝ", "a✝ : x ∈ [[a✝¹, b✝]]", "a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)", "b : HasDerivAt (fun y => y * z) z ↑x", "c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x", "d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x"], "goal": "Complex.cos (z * ↑x) = Complex.cos (z * ↑x) * z / z"}], "premise": [108573], "state_str": "case h.e'_7\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ Complex.cos (z * ↑x) = Complex.cos (z * ↑x) * z / z"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : SemilatticeInf α", "inst✝ : SemilatticeInf β", "s✝ t✝ : Set α", "a b : α", "s : Set α", "t : Set β", "u : Finset α", "hu : u.Nonempty", "hus : ↑u ⊆ s", "v : Finset β", "hv : v.Nonempty", "hvt : ↑v ⊆ t"], "goal": "(u.inf' hu id, v.inf' hv id) ∈ infClosure (s ×ˢ t)"}], "premise": [136853], "state_str": "case mk.intro.intro.intro.intro.intro.intro.intro\nF : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : SemilatticeInf α\ninst✝ : SemilatticeInf β\ns✝ t✝ : Set α\na b : α\ns : Set α\nt : Set β\nu : Finset α\nhu : u.Nonempty\nhus : ↑u ⊆ s\nv : Finset β\nhv : v.Nonempty\nhvt : ↑v ⊆ t\n⊢ (u.inf' hu id, v.inf' hv id) ∈ infClosure (s ×ˢ t)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : DecidableEq α", "s t u v : Finset α", "a b : α", "hts : t ⊆ s", "ha : a ∈ t"], "goal": "s \\ t ∪ t.erase a = s.erase a"}], "premise": [1674, 138756, 139041, 139060], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : DecidableEq α\ns t u v : Finset α\na b : α\nhts : t ⊆ s\nha : a ∈ t\n⊢ s \\ t ∪ t.erase a = s.erase a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : PartialOrder α", "a b c : α", "h : a ⩿ b", "h2✝ : a ≤ c", "h3✝ : c ≤ b", "h2 : a < c", "h3 : c < b"], "goal": "c = a ∨ c = b"}], "premise": [2106], "state_str": "case inr.inr\nα : Type u_1\nβ : Type u_2\ninst✝ : PartialOrder α\na b c : α\nh : a ⩿ b\nh2✝ : a ≤ c\nh3✝ : c ≤ b\nh2 : a < c\nh3 : c < b\n⊢ c = a ∨ c = b"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "γ₀ γ₁ : Γ₀ˣ"], "goal": "∃ k, v.ltAddSubgroup k ≤ v.ltAddSubgroup γ₀ ⊓ v.ltAddSubgroup γ₁"}], "premise": [1674, 2045], "state_str": "R : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nγ₀ γ₁ : Γ₀ˣ\n⊢ ∃ k, v.ltAddSubgroup k ≤ v.ltAddSubgroup γ₀ ⊓ v.ltAddSubgroup γ₁"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "γ₀ γ₁ : Γ₀ˣ"], "goal": "v.ltAddSubgroup (min γ₀ γ₁) ≤ v.ltAddSubgroup γ₀ ⊓ v.ltAddSubgroup γ₁"}], "premise": [1179, 1186, 1199, 1813, 2029, 12956, 14567, 103342, 103349, 122573, 133320], "state_str": "case h\nR : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nγ₀ γ₁ : Γ₀ˣ\n⊢ v.ltAddSubgroup (min γ₀ γ₁) ≤ v.ltAddSubgroup γ₀ ⊓ v.ltAddSubgroup γ₁"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "γ₀ γ₁ : Γ₀ˣ"], "goal": "∀ (a : R), v a < ↑γ₀ → v a < ↑γ₁ → v a < ↑γ₀"}], "premise": [1101, 1674], "state_str": "case h\nR : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nγ₀ γ₁ : Γ₀ˣ\n⊢ ∀ (a : R), v a < ↑γ₀ → v a < ↑γ₁ → v a < ↑γ₀"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "γ : Γ₀ˣ"], "goal": "∃ j, ↑(v.ltAddSubgroup j) * ↑(v.ltAddSubgroup j) ⊆ ↑(v.ltAddSubgroup γ)"}], "premise": [104110], "state_str": "R : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nγ : Γ₀ˣ\n⊢ ∃ j, ↑(v.ltAddSubgroup j) * ↑(v.ltAddSubgroup j) ⊆ ↑(v.ltAddSubgroup γ)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "γ γ₀ : Γ₀ˣ", "h : γ₀ * γ₀ ≤ γ"], "goal": "∃ j, ↑(v.ltAddSubgroup j) * ↑(v.ltAddSubgroup j) ⊆ ↑(v.ltAddSubgroup γ)"}], "premise": [1674, 2045], "state_str": "case intro\nR : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nγ γ₀ : Γ₀ˣ\nh : γ₀ * γ₀ ≤ γ\n⊢ ∃ j, ↑(v.ltAddSubgroup j) * ↑(v.ltAddSubgroup j) ⊆ ↑(v.ltAddSubgroup γ)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "γ γ₀ : Γ₀ˣ", "h : γ₀ * γ₀ ≤ γ", "r : R", "r_in : r ∈ ↑(v.ltAddSubgroup γ₀)", "s : R", "s_in : s ∈ ↑(v.ltAddSubgroup γ₀)"], "goal": "(fun x x_1 => x * x_1) r s ∈ ↑(v.ltAddSubgroup γ)"}], "premise": [75408, 102787], "state_str": "case h.intro.intro.intro.intro\nR : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nγ γ₀ : Γ₀ˣ\nh : γ₀ * γ₀ ≤ γ\nr : R\nr_in : r ∈ ↑(v.ltAddSubgroup γ₀)\ns : R\ns_in : s ∈ ↑(v.ltAddSubgroup γ₀)\n⊢ (fun x x_1 => x * x_1) r s ∈ ↑(v.ltAddSubgroup γ)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "x : R", "γ : Γ���ˣ"], "goal": "∃ j, ↑(v.ltAddSubgroup j) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(v.ltAddSubgroup γ)"}], "premise": [108401], "state_str": "R : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nx : R\nγ : Γ₀ˣ\n⊢ ∃ j, ↑(v.ltAddSubgroup j) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(v.ltAddSubgroup γ)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Ring R", "Γ₀ : Type v", "inst✝ : LinearOrderedCommGroupWithZero Γ₀", "v : Valuation R Γ₀", "x : R", "γ : Γ₀ˣ"], "goal": "∃ j, ↑(v.ltAddSubgroup j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(v.ltAddSubgroup γ)"}], "premise": [108401], "state_str": "R : Type u\ninst✝¹ : Ring R\nΓ₀ : Type v\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nv : Valuation R Γ₀\nx : R\nγ : Γ₀ˣ\n⊢ ∃ j, ↑(v.ltAddSubgroup j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(v.ltAddSubgroup γ)"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "G : SimpleGraph V", "a b c u v w : V", "e : Sym2 V", "h : G.Adj a b"], "goal": "G.incidenceSet a ∩ G.incidenceSet b = {s(a, b)}"}], "premise": [50400, 50458], "state_str": "ι : Sort u_1\nV : Type u\nG : SimpleGraph V\na b c u v w : V\ne : Sym2 V\nh : G.Adj a b\n⊢ G.incidenceSet a ∩ G.incidenceSet b = {s(a, b)}"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "G : SimpleGraph V", "a b c u v w : V", "e : Sym2 V", "h : G.Adj a b"], "goal": "s(a, b) ∈ G.incidenceSet a ∩ G.incidenceSet b"}], "premise": [1674, 50455, 50456], "state_str": "ι : Sort u_1\nV : Type u\nG : SimpleGraph V\na b c u v w : V\ne : Sym2 V\nh : G.Adj a b\n⊢ s(a, b) ∈ G.incidenceSet a ∩ G.incidenceSet b"} +{"state": [{"context": ["n : ℕ", "r : ℝ"], "goal": "↑n ≤ r.toNNReal ↔ ↑n ≤ r ∨ n = 0"}], "premise": [11227, 142636, 146700], "state_str": "n : ℕ\nr : ℝ\n⊢ ↑n ≤ r.toNNReal ↔ ↑n ≤ r ∨ n = 0"} +{"state": [{"context": ["σ : Type u_1", "R : Type u_2", "inst✝ : CommSemiring R", "φ ψ x y : R[X]", "h : Coe.coe x = Coe.coe y", "n✝ : ℕ"], "goal": "x.coeff n✝ = y.coeff n✝"}], "premise": [79173], "state_str": "case a\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ x y : R[X]\nh : Coe.coe x = Coe.coe y\nn✝ : ℕ\n⊢ x.coeff n✝ = y.coeff n✝"} +{"state": [{"context": ["α : Type u_1", "G : Type u_2", "A : Type u_3", "S : Type u_4", "inst✝² : Group G", "inst✝¹ : SetLike S G", "inst✝ : SubgroupClass S G", "s : S", "a : G", "ha : a ∈ s", "x✝ : G"], "goal": "x✝ ∈ MulOpposite.op a • ↑s ↔ x✝ ∈ ↑s"}], "premise": [122539, 132968], "state_str": "case h\nα : Type u_1\nG : Type u_2\nA : Type u_3\nS : Type u_4\ninst✝² : Group G\ninst✝¹ : SetLike S G\ninst✝ : SubgroupClass S G\ns : S\na : G\nha : a ∈ s\nx✝ : G\n⊢ x✝ ∈ MulOpposite.op a • ↑s ↔ x✝ ∈ ↑s"} +{"state": [{"context": ["R : Type u_1", "inst✝³ : Monoid R", "S : Submonoid R", "inst✝² : OreSet S", "X : Type u_2", "inst✝¹ : AddMonoid X", "inst✝ : DistribMulAction R X", "s : ↥S"], "goal": "0 /ₒ s = 0"}], "premise": [81624, 81701], "state_str": "R : Type u_1\ninst✝³ : Monoid R\nS : Submonoid R\ninst✝² : OreSet S\nX : Type u_2\ninst✝¹ : AddMonoid X\ninst✝ : DistribMulAction R X\ns : ↥S\n⊢ 0 /ₒ s = 0"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "t : R[X]", "ht : t ∈ Submonoid.closure {X}"], "goal": "IsUnit ((algebraMap R[X] R[T;T⁻¹]) ↑⟨t, ht⟩)"}], "premise": [1673, 119186], "state_str": "case mk\nR : Type u_1\ninst✝ : CommSemiring R\nt : R[X]\nht : t ∈ Submonoid.closure {X}\n⊢ IsUnit ((algebraMap R[X] R[T;T⁻¹]) ↑⟨t, ht⟩)"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "n : ℕ", "ht : X ^ n ∈ Submonoid.closure {X}"], "goal": "IsUnit ((algebraMap R[X] R[T;T⁻¹]) ↑⟨X ^ n, ht⟩)"}], "premise": [102017, 102020, 102048], "state_str": "case mk.intro\nR : Type u_1\ninst✝ : CommSemiring R\nn : ℕ\nht : X ^ n ∈ Submonoid.closure {X}\n⊢ IsUnit ((algebraMap R[X] R[T;T⁻¹]) ↑⟨X ^ n, ht⟩)"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "f : R[T;T⁻¹]"], "goal": "∃ x, f * (algebraMap R[X] R[T;T⁻¹]) ↑x.2 = (algebraMap R[X] R[T;T⁻¹]) x.1"}], "premise": [102032], "state_str": "R : Type u_1\ninst✝ : CommSemiring R\nf : R[T;T⁻¹]\n⊢ ∃ x, f * (algebraMap R[X] R[T;T⁻¹]) ↑x.2 = (algebraMap R[X] R[T;T⁻¹]) x.1"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "f : R[X]", "n : ℕ"], "goal": "∃ x, toLaurent f * T (-↑n) * (algebraMap R[X] R[T;T⁻¹]) ↑x.2 = (algebraMap R[X] R[T;T⁻¹]) x.1"}], "premise": [119187, 119475], "state_str": "case Qf\nR : Type u_1\ninst✝ : CommSemiring R\nf : R[X]\nn : ℕ\n⊢ ∃ x, toLaurent f * T (-↑n) * (algebraMap R[X] R[T;T⁻¹]) ↑x.2 = (algebraMap R[X] R[T;T⁻¹]) x.1"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "f : R[X]", "n : ℕ", "this : X ^ n ∈ Submonoid.closure {X}"], "goal": "toLaurent f * T (-↑n) * (algebraMap R[X] R[T;T⁻¹]) ↑(f, ⟨X ^ n, this⟩).2 = (algebraMap R[X] R[T;T⁻¹]) (f, ⟨X ^ n, this⟩).1"}], "premise": [102005, 102009, 102017, 102048, 119730, 119817], "state_str": "case Qf\nR : Type u_1\ninst✝ : CommSemiring R\nf : R[X]\nn : ℕ\nthis : X ^ n ∈ Submonoid.closure {X}\n⊢ toLaurent f * T (-↑n) * (algebraMap R[X] R[T;T⁻¹]) ↑(f, ⟨X ^ n, this⟩).2 =\n (algebraMap R[X] R[T;T⁻¹]) (f, ⟨X ^ n, this⟩).1"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "f g : R[X]"], "goal": "(algebraMap R[X] R[T;T⁻¹]) f = (algebraMap R[X] R[T;T⁻¹]) g → ∃ c, ↑c * f = ↑c * g"}], "premise": [102029, 102048], "state_str": "R : Type u_1\ninst✝ : CommSemiring R\nf g : R[X]\n⊢ (algebraMap R[X] R[T;T⁻¹]) f = (algebraMap R[X] R[T;T⁻¹]) g → ∃ c, ↑c * f = ↑c * g"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "A : Type u_3", "a✝ a₁ a₂ b✝ c : G", "inst✝¹ : Group G", "inst✝ : Group H", "f : G → H", "hf : IsGroupHom f", "a b : G"], "goal": "f a = f b ↔ a⁻¹ * b ∈ ker f"}], "premise": [126071], "state_str": "G : Type u_1\nH : Type u_2\nA : Type u_3\na✝ a₁ a₂ b✝ c : G\ninst✝¹ : Group G\ninst✝ : Group H\nf : G → H\nhf : IsGroupHom f\na b : G\n⊢ f a = f b ↔ a⁻¹ * b ∈ ker f"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "A : Type u_3", "a✝ a₁ a₂ b✝ c : G", "inst✝¹ : Group G", "inst✝ : Group H", "f : G → H", "hf : IsGroupHom f", "a b : G"], "goal": "f a = f b ↔ f (a⁻¹ * b) = 1"}], "premise": [126084], "state_str": "G : Type u_1\nH : Type u_2\nA : Type u_3\na✝ a₁ a₂ b✝ c : G\ninst✝¹ : Group G\ninst✝ : Group H\nf : G → H\nhf : IsGroupHom f\na b : G\n⊢ f a = f b ↔ f (a⁻¹ * b) = 1"} +{"state": [{"context": ["J : Type v", "inst✝¹ : Category.{w, v} J", "F : J ⥤ Type u", "inst✝ : HasColimit F", "j j' : J", "x : F.obj j", "x' : F.obj j'", "f : j ⟶ j'", "w : F.map f x = x'"], "goal": "colimit.ι F j x = colimit.ι F j' x'"}], "premise": [93151], "state_str": "J : Type v\ninst✝¹ : Category.{w, v} J\nF : J ⥤ Type u\ninst✝ : HasColimit F\nj j' : J\nx : F.obj j\nx' : F.obj j'\nf : j ⟶ j'\nw : F.map f x = x'\n⊢ colimit.ι F j x = colimit.ι F j' x'"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁷ : NontriviallyNormedField 𝕜", "E✝ : Type u", "inst✝⁶ : NormedAddCommGroup E✝", "inst✝⁵ : NormedSpace 𝕜 E✝", "F : Type v", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : NormedSpace 𝕜 F", "ι : Type u_2", "E : ι → Type u_3", "inst✝² : (i : ι) → NormedAddCommGroup (E i)", "inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i)", "inst✝ : Fintype ι", "f : ContinuousMultilinearMap 𝕜 E F", "y : (i : ι) → E i", "x✝ : y ∈ EMetric.ball 0 ⊤"], "goal": "(∑ i ∈ Finset.range (Fintype.card ι + 1), (f.toFormalMultilinearSeries i) fun x => y) = f (0 + y)"}], "premise": [119727, 127032, 139152], "state_str": "𝕜 : Type u_1\ninst✝⁷ : NontriviallyNormedField 𝕜\nE✝ : Type u\ninst✝⁶ : NormedAddCommGroup E✝\ninst✝⁵ : NormedSpace 𝕜 E✝\nF : Type v\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace 𝕜 F\nι : Type u_2\nE : ι → Type u_3\ninst✝² : (i : ι) → NormedAddCommGroup (E i)\ninst✝¹ : (i : ι) → NormedSpace 𝕜 (E i)\ninst✝ : Fintype ι\nf : ContinuousMultilinearMap 𝕜 E F\ny : (i : ι) → E i\nx✝ : y ∈ EMetric.ball 0 ⊤\n⊢ (∑ i ∈ Finset.range (Fintype.card ι + 1), (f.toFormalMultilinearSeries i) fun x => y) = f (0 + y)"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type u_1", "f✝ g : Ultrafilter α", "s t : Set α", "p q : α → Prop", "f : Ultrafilter α", "h₀ : optParam (Injective id) ⋯"], "goal": "range id ∈ f"}], "premise": [134205], "state_str": "α : Type u\nβ : Type v\nγ : Type u_1\nf✝ g : Ultrafilter α\ns t : Set α\np q : α → Prop\nf : Ultrafilter α\nh₀ : optParam (Injective id) ⋯\n⊢ range id ∈ f"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type u_1", "f✝ g : Ultrafilter α", "s t : Set α", "p q : α → Prop", "f : Ultrafilter α", "h₀ : optParam (Injective id) ⋯"], "goal": "univ ∈ f"}], "premise": [15883], "state_str": "α : Type u\nβ : Type v\nγ : Type u_1\nf✝ g : Ultrafilter α\ns t : Set α\np q : α → Prop\nf : Ultrafilter α\nh₀ : optParam (Injective id) ⋯\n⊢ univ ∈ f"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "s : Finset α", "p : α → Prop", "hp : DecidablePred p", "inst✝ : DecidablePred fun x => ¬p x", "f : (x : α) → p x → γ", "g : (x : α) → ¬p x → γ", "h : γ → β", "x : { x // x ∈ filter p s }"], "goal": "p ↑x"}], "premise": [1673, 2106, 2115, 139089], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ns : Finset α\np : α → Prop\nhp : DecidablePred p\ninst✝ : DecidablePred fun x => ¬p x\nf : (x : α) → p x → γ\ng : (x : α) → ¬p x → γ\nh : γ → β\nx : { x // x ∈ filter p s }\n⊢ p ↑x"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "s : Finset α", "p : α → Prop", "hp : DecidablePred p", "inst✝ : DecidablePred fun x => ¬p x", "f : (x : α) → p x → γ", "g : (x : α) → ¬p x → γ", "h : γ → β", "x : { x // x ∈ filter (fun x => ¬p x) s }"], "goal": "¬p ↑x"}], "premise": [1673, 2106, 2115, 139089], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ns : Finset α\np : α → Prop\nhp : DecidablePred p\ninst✝ : DecidablePred fun x => ¬p x\nf : (x : α) → p x → γ\ng : (x : α) → ¬p x → γ\nh : γ → β\nx : { x // x ∈ filter (fun x => ¬p x) s }\n⊢ ¬p ↑x"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "s : Finset α", "p : α → Prop", "hp : DecidablePred p", "inst✝ : DecidablePred fun x => ¬p x", "f : (x : α) → p x → γ", "g : (x : α) → ¬p x → γ", "h : γ → β", "x : { x // x ∈ filter p s }"], "goal": "p ↑x"}], "premise": [1673, 2106, 2115, 139089], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ns : Finset α\np : α → Prop\nhp : DecidablePred p\ninst✝ : DecidablePred fun x => ¬p x\nf : (x : α) → p x → γ\ng : (x : α) → ¬p x → γ\nh : γ → β\nx : { x // x ∈ filter p s }\n⊢ p ↑x"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "s : Finset α", "p : α → Prop", "hp : DecidablePred p", "inst✝ : DecidablePred fun x => ¬p x", "f : (x : α) → p x → γ", "g : (x : α) → ¬p x → γ", "h : γ → β", "x : { x // x ∈ filter (fun x => ¬p x) s }"], "goal": "¬p ↑x"}], "premise": [1673, 2106, 2115, 139089], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ns : Finset α\np : α → Prop\nhp : DecidablePred p\ninst✝ : DecidablePred fun x => ¬p x\nf : (x : α) → p x → γ\ng : (x : α) → ¬p x → γ\nh : γ → β\nx : { x // x ∈ filter (fun x => ¬p x) s }\n⊢ ¬p ↑x"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "s : Finset α", "p : α → Prop", "hp : DecidablePred p", "inst✝ : DecidablePred fun x => ¬p x", "f : (x : α) → p x → γ", "g : (x : α) → ¬p x → γ", "h : γ → β", "x : { x // x ∈ filter p s }", "_hx : x ∈ (filter p s).attach"], "goal": "p ↑x"}], "premise": [1673, 2106, 2115, 139089], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ns : Finset α\np : α → Prop\nhp : DecidablePred p\ninst✝ : DecidablePred fun x => ¬p x\nf : (x : α) → p x → γ\ng : (x : α) → ¬p x → γ\nh : γ → β\nx : { x // x ∈ filter p s }\n_hx : x ∈ (filter p s).attach\n⊢ p ↑x"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "s : Finset α", "p : α → Prop", "hp : DecidablePred p", "inst✝ : DecidablePred fun x => ¬p x", "f : (x : α) → p x → γ", "g : (x : α) → ¬p x → γ", "h : γ → β", "x : { x // x ∈ filter (fun x => ¬p x) s }", "_hx : x ∈ (filter (fun x => ¬p x) s).attach"], "goal": "¬p ↑x"}], "premise": [1673, 2106, 2115, 139089], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ns : Finset α\np : α → Prop\nhp : DecidablePred p\ninst✝ : DecidablePred fun x => ¬p x\nf : (x : α) → p x → γ\ng : (x : α) → ¬p x → γ\nh : γ → β\nx : { x // x ∈ filter (fun x => ¬p x) s }\n_hx : x ∈ (filter (fun x => ¬p x) s).attach\n⊢ ¬p ↑x"} +{"state": [{"context": ["K : Type u", "L : Type v", "M : Type w", "inst✝² : DivisionRing K", "inst✝¹ : DivisionRing L", "inst✝ : DivisionRing M", "f : K →+* L", "s : Subfield L", "h : s ≤ f.fieldRange"], "goal": "map f (comap f s) = s"}], "premise": [116898], "state_str": "K : Type u\nL : Type v\nM : Type w\ninst✝² : DivisionRing K\ninst✝¹ : DivisionRing L\ninst✝ : DivisionRing M\nf : K →+* L\ns : Subfield L\nh : s ≤ f.fieldRange\n⊢ map f (comap f s) = s"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedAddCommGroup G", "f : α → E", "hf : Memℒp f p μ"], "goal": "edist (Memℒp.toLp f hf) 0 = eLpNorm f p μ"}], "premise": [28637, 31010], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → E\nhf : Memℒp f p μ\n⊢ edist (Memℒp.toLp f hf) 0 = eLpNorm f p μ"} +{"state": [{"context": ["R : Type u", "inst✝ : AddGroupWithOne R", "m n : ℕ"], "goal": "↑(↑m + ↑n) = ↑↑m + ↑↑n"}], "premise": [2451, 2577], "state_str": "R : Type u\ninst✝ : AddGroupWithOne R\nm n : ℕ\n⊢ ↑(↑m + ↑n) = ↑↑m + ↑↑n"} +{"state": [{"context": ["R : Type u", "inst✝ : AddGroupWithOne R", "m n : ℕ"], "goal": "↑(↑m + -[n+1]) = ↑↑m + ↑-[n+1]"}], "premise": [119789, 128748, 128750, 128754], "state_str": "R : Type u\ninst✝ : AddGroupWithOne R\nm n : ℕ\n⊢ ↑(↑m + -[n+1]) = ↑↑m + ↑-[n+1]"} +{"state": [{"context": ["R : Type u", "inst✝ : AddGroupWithOne R", "m n : ℕ"], "goal": "↑(-[m+1] + ↑n) = ↑-[m+1] + ↑↑n"}], "premise": [3682, 117963, 118013, 119704, 128748, 128750, 128754, 143126], "state_str": "R : Type u\ninst✝ : AddGroupWithOne R\nm n : ℕ\n⊢ ↑(-[m+1] + ↑n) = ↑-[m+1] + ↑↑n"} +{"state": [{"context": ["R : Type u", "inst✝ : AddGroupWithOne R", "m n : ℕ"], "goal": "↑-[m + n + 1+1] = ↑-[m+1] + ↑-[n+1]"}], "premise": [3682, 3683, 3685, 119807, 128748, 143126], "state_str": "R : Type u\ninst✝ : AddGroupWithOne R\nm n : ℕ\n⊢ ↑-[m + n + 1+1] = ↑-[m+1] + ↑-[n+1]"} +{"state": [{"context": ["a b : Ordinal.{u_1}"], "goal": "a ≤ a ♯ b"}], "premise": [49694, 51846], "state_str": "a b : Ordinal.{u_1}\n⊢ a ≤ a ♯ b"} +{"state": [{"context": ["ι✝ : Type u_1", "κ✝ : Type u_2", "α✝ : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α✝", "a : α✝", "f✝ g : α✝ → β", "ι : Type u_6", "κ : Type u_7", "α : Type u_8", "inst✝² : Fintype ι", "inst✝¹ : Fintype κ", "inst✝ : CommMonoid α", "s : Finset ι", "f : ι → α", "h : ∀ (i : ι), f i ≠ 1 → i ∈ s"], "goal": "∀ x ∈ univ, x ∉ s → f x = 1"}], "premise": [70047], "state_str": "ι✝ : Type u_1\nκ✝ : Type u_2\nα✝ : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α✝\na : α✝\nf✝ g : α✝ → β\nι : Type u_6\nκ : Type u_7\nα : Type u_8\ninst✝² : Fintype ι\ninst✝¹ : Fintype κ\ninst✝ : CommMonoid α\ns : Finset ι\nf : ι → α\nh : ∀ (i : ι), f i ≠ 1 → i ∈ s\n⊢ ∀ x ∈ univ, x ∉ s → f x = 1"} +{"state": [{"context": ["C₁ : Type u₁", "C₂ : Type u₂", "C₃ : Type u₃", "D₁ : Type u₄", "D₂ : Type u₅", "D₃ : Type u₆", "inst✝⁸ : Category.{v₁, u₁} C₁", "inst✝⁷ : Category.{v₂, u₂} C₂", "inst✝⁶ : Category.{v₃, u₃} C₃", "inst✝⁵ : Category.{v₄, u₄} D₁", "inst✝⁴ : Category.{v₅, u₅} D₂", "inst✝³ : Category.{v₆, u₆} D₃", "W₁ : MorphismProperty C₁", "W₂ : MorphismProperty C₂", "W₃ : MorphismProperty C₃", "Φ : LocalizerMorphism W₁ W₂", "L₁ : C₁ ⥤ D₁", "inst✝² : L₁.IsLocalization W₁", "L₂ : C₂ ⥤ D₂", "inst✝¹ : L₂.IsLocalization W₂", "G : D₁ ⥤ D₂", "inst✝ : Φ.functor.IsEquivalence", "h : W₂ ≤ W₁.map Φ.functor"], "goal": "Φ.IsLocalizedEquivalence"}], "premise": [91744, 91883, 97499, 97506], "state_str": "C₁ : Type u₁\nC₂ : Type u₂\nC₃ : Type u₃\nD₁ : Type u₄\nD₂ : Type u₅\nD₃ : Type u₆\ninst✝⁸ : Category.{v₁, u₁} C₁\ninst✝⁷ : Category.{v₂, u₂} C₂\ninst✝⁶ : Category.{v₃, u₃} C₃\ninst✝⁵ : Category.{v₄, u₄} D₁\ninst✝⁴ : Category.{v₅, u₅} D₂\ninst✝³ : Category.{v₆, u₆} D₃\nW₁ : MorphismProperty C₁\nW₂ : MorphismProperty C₂\nW₃ : MorphismProperty C₃\nΦ : LocalizerMorphism W₁ W₂\nL₁ : C₁ ⥤ D₁\ninst✝² : L₁.IsLocalization W₁\nL₂ : C₂ ⥤ D₂\ninst✝¹ : L₂.IsLocalization W₂\nG : D₁ ⥤ D₂\ninst✝ : Φ.functor.IsEquivalence\nh : W₂ ≤ W₁.map Φ.functor\n⊢ Φ.IsLocalizedEquivalence"} +{"state": [{"context": ["C₁ : Type u₁", "C₂ : Type u₂", "C₃ : Type u₃", "D₁ : Type u₄", "D₂ : Type u₅", "D₃ : Type u₆", "inst✝⁸ : Category.{v₁, u₁} C₁", "inst✝⁷ : Category.{v₂, u₂} C₂", "inst✝⁶ : Category.{v₃, u₃} C₃", "inst✝⁵ : Category.{v₄, u₄} D₁", "inst✝⁴ : Category.{v₅, u₅} D₂", "inst✝³ : Category.{v₆, u₆} D₃", "W₁ : MorphismProperty C₁", "W₂ : MorphismProperty C₂", "W₃ : MorphismProperty C₃", "Φ : LocalizerMorphism W₁ W₂", "L₁ : C₁ ⥤ D₁", "inst✝² : L₁.IsLocalization W₁", "L₂ : C₂ ⥤ D₂", "inst✝¹ : L₂.IsLocalization W₂", "G : D₁ ⥤ D₂", "inst✝ : Φ.functor.IsEquivalence", "h : W₂ ≤ W₁.map Φ.functor", "this : (Φ.functor ⋙ W₂.Q).IsLocalization W₁"], "goal": "Φ.IsLocalizedEquivalence"}], "premise": [91889], "state_str": "C₁ : Type u₁\nC₂ : Type u₂\nC₃ : Type u₃\nD₁ : Type u₄\nD₂ : Type u₅\nD₃ : Type u₆\ninst✝⁸ : Category.{v₁, u₁} C₁\ninst✝⁷ : Category.{v₂, u₂} C₂\ninst✝⁶ : Category.{v₃, u₃} C₃\ninst✝⁵ : Category.{v₄, u₄} D₁\ninst✝⁴ : Category.{v₅, u₅} D₂\ninst✝³ : Category.{v₆, u₆} D₃\nW₁ : MorphismProperty C₁\nW₂ : MorphismProperty C₂\nW₃ : MorphismProperty C₃\nΦ : LocalizerMorphism W₁ W₂\nL₁ : C₁ ⥤ D₁\ninst✝² : L₁.IsLocalization W₁\nL₂ : C₂ ⥤ D₂\ninst✝¹ : L₂.IsLocalization W₂\nG : D₁ ⥤ D₂\ninst✝ : Φ.functor.IsEquivalence\nh : W₂ ≤ W₁.map Φ.functor\nthis : (Φ.functor ⋙ W₂.Q).IsLocalization W₁\n⊢ Φ.IsLocalizedEquivalence"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "L : Type u", "B : Type u_3", "inst✝²² : CommRing A", "inst✝²¹ : Field K", "inst✝²⁰ : CommRing B", "inst✝¹⁹ : Field L", "inst✝¹⁸ : Algebra A K", "inst✝¹⁷ : Algebra B L", "inst✝¹⁶ : Algebra A B", "inst✝¹⁵ : Algebra K L", "inst✝¹⁴ : Algebra A L", "inst✝¹³ : IsScalarTower A K L", "inst✝¹² : IsScalarTower A B L", "inst✝¹¹ : IsDomain A", "inst✝¹⁰ : IsFractionRing A K", "inst✝⁹ : IsIntegralClosure B A L", "inst✝⁸ : IsFractionRing B L", "inst✝⁷ : FiniteDimensional K L", "inst✝⁶ : Algebra.IsSeparable K L", "inst✝⁵ : IsIntegrallyClosed A", "inst✝⁴ : IsDedekindDomain B", "inst✝³ : NoZeroSMulDivisors A B", "inst✝² : Algebra.IsIntegral A B", "inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)", "inst✝ : FiniteDimensional (FractionRing A) (FractionRing B)", "this : IsIntegralClosure B A (FractionRing B)"], "goal": "coeSubmodule (FractionRing B) (differentIdeal A B) = 1 / Submodule.traceDual A (FractionRing A) 1"}], "premise": [14569, 109946], "state_str": "A : Type u_1\nK : Type u_2\nL : Type u\nB : Type u_3\ninst✝²² : CommRing A\ninst✝²¹ : Field K\ninst✝²⁰ : CommRing B\ninst✝¹⁹ : Field L\ninst✝¹⁸ : Algebra A K\ninst✝¹⁷ : Algebra B L\ninst✝¹⁶ : Algebra A B\ninst✝¹⁵ : Algebra K L\ninst✝¹⁴ : Algebra A L\ninst✝¹³ : IsScalarTower A K L\ninst✝¹² : IsScalarTower A B L\ninst✝¹¹ : IsDomain A\ninst✝¹⁰ : IsFractionRing A K\ninst✝⁹ : IsIntegralClosure B A L\ninst✝⁸ : IsFractionRing B L\ninst✝⁷ : FiniteDimensional K L\ninst✝⁶ : Algebra.IsSeparable K L\ninst✝⁵ : IsIntegrallyClosed A\ninst✝⁴ : IsDedekindDomain B\ninst✝³ : NoZeroSMulDivisors A B\ninst✝² : Algebra.IsIntegral A B\ninst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)\ninst✝ : FiniteDimensional (FractionRing A) (FractionRing B)\nthis : IsIntegralClosure B A (FractionRing B)\n⊢ coeSubmodule (FractionRing B) (differentIdeal A B) = 1 / Submodule.traceDual A (FractionRing A) 1"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "L : Type u", "B : Type u_3", "inst✝²² : CommRing A", "inst✝²¹ : Field K", "inst✝²⁰ : CommRing B", "inst✝¹⁹ : Field L", "inst✝¹⁸ : Algebra A K", "inst✝¹⁷ : Algebra B L", "inst✝¹⁶ : Algebra A B", "inst✝¹⁵ : Algebra K L", "inst✝¹⁴ : Algebra A L", "inst✝¹³ : IsScalarTower A K L", "inst✝¹² : IsScalarTower A B L", "inst✝¹¹ : IsDomain A", "inst✝¹⁰ : IsFractionRing A K", "inst✝⁹ : IsIntegralClosure B A L", "inst✝⁸ : IsFractionRing B L", "inst✝⁷ : FiniteDimensional K L", "inst✝⁶ : Algebra.IsSeparable K L", "inst✝⁵ : IsIntegrallyClosed A", "inst✝⁴ : IsDedekindDomain B", "inst✝³ : NoZeroSMulDivisors A B", "inst✝² : Algebra.IsIntegral A B", "inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)", "inst✝ : FiniteDimensional (FractionRing A) (FractionRing B)", "this : IsIntegralClosure B A (FractionRing B)"], "goal": "1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))"}], "premise": [81361], "state_str": "A : Type u_1\nK : Type u_2\nL : Type u\nB : Type u_3\ninst✝²² : CommRing A\ninst✝²¹ : Field K\ninst✝²⁰ : CommRing B\ninst✝¹⁹ : Field L\ninst✝¹⁸ : Algebra A K\ninst✝¹⁷ : Algebra B L\ninst✝¹⁶ : Algebra A B\ninst✝¹⁵ : Algebra K L\ninst✝¹⁴ : Algebra A L\ninst✝¹³ : IsScalarTower A K L\ninst✝¹² : IsScalarTower A B L\ninst✝¹¹ : IsDomain A\ninst✝¹⁰ : IsFractionRing A K\ninst✝⁹ : IsIntegralClosure B A L\ninst✝⁸ : IsFractionRing B L\ninst✝⁷ : FiniteDimensional K L\ninst✝⁶ : Algebra.IsSeparable K L\ninst✝⁵ : IsIntegrallyClosed A\ninst✝⁴ : IsDedekindDomain B\ninst✝³ : NoZeroSMulDivisors A B\ninst✝² : Algebra.IsIntegral A B\ninst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)\ninst✝ : FiniteDimensional (FractionRing A) (FractionRing B)\nthis : IsIntegralClosure B A (FractionRing B)\n⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "L : Type u", "B : Type u_3", "inst✝²² : CommRing A", "inst✝²¹ : Field K", "inst✝²⁰ : CommRing B", "inst✝¹⁹ : Field L", "inst✝¹⁸ : Algebra A K", "inst✝¹⁷ : Algebra B L", "inst✝¹⁶ : Algebra A B", "inst✝¹⁵ : Algebra K L", "inst✝¹⁴ : Algebra A L", "inst✝¹³ : IsScalarTower A K L", "inst✝¹² : IsScalarTower A B L", "inst✝¹¹ : IsDomain A", "inst✝¹⁰ : IsFractionRing A K", "inst✝⁹ : IsIntegralClosure B A L", "inst✝⁸ : IsFractionRing B L", "inst✝⁷ : FiniteDimensional K L", "inst✝⁶ : Algebra.IsSeparable K L", "inst✝⁵ : IsIntegrallyClosed A", "inst✝⁴ : IsDedekindDomain B", "inst✝³ : NoZeroSMulDivisors A B", "inst✝² : Algebra.IsIntegral A B", "inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)", "inst✝ : FiniteDimensional (FractionRing A) (FractionRing B)", "this✝¹ : IsIntegralClosure B A (FractionRing B)", "this✝ : (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ 1", "this : (fun a => ↑a) (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ ↑1"], "goal": "1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))"}], "premise": [75639, 117810], "state_str": "A : Type u_1\nK : Type u_2\nL : Type u\nB : Type u_3\ninst✝²² : CommRing A\ninst✝²¹ : Field K\ninst✝²⁰ : CommRing B\ninst✝¹⁹ : Field L\ninst✝¹⁸ : Algebra A K\ninst✝¹⁷ : Algebra B L\ninst✝¹⁶ : Algebra A B\ninst✝¹⁵ : Algebra K L\ninst✝¹⁴ : Algebra A L\ninst✝¹³ : IsScalarTower A K L\ninst✝¹² : IsScalarTower A B L\ninst✝¹¹ : IsDomain A\ninst✝¹⁰ : IsFractionRing A K\ninst✝⁹ : IsIntegralClosure B A L\ninst✝⁸ : IsFractionRing B L\ninst✝⁷ : FiniteDimensional K L\ninst✝⁶ : Algebra.IsSeparable K L\ninst✝⁵ : IsIntegrallyClosed A\ninst✝⁴ : IsDedekindDomain B\ninst✝³ : NoZeroSMulDivisors A B\ninst✝² : Algebra.IsIntegral A B\ninst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)\ninst✝ : FiniteDimensional (FractionRing A) (FractionRing B)\nthis✝¹ : IsIntegralClosure B A (FractionRing B)\nthis✝ : (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ 1\nthis : (fun a => ↑a) (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ ↑1\n⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "L : Type u", "B : Type u_3", "inst✝²² : CommRing A", "inst✝²¹ : Field K", "inst✝²⁰ : CommRing B", "inst✝¹⁹ : Field L", "inst✝¹⁸ : Algebra A K", "inst✝¹⁷ : Algebra B L", "inst✝¹⁶ : Algebra A B", "inst✝¹⁵ : Algebra K L", "inst✝¹⁴ : Algebra A L", "inst✝¹³ : IsScalarTower A K L", "inst✝¹² : IsScalarTower A B L", "inst✝¹¹ : IsDomain A", "inst✝¹⁰ : IsFractionRing A K", "inst✝⁹ : IsIntegralClosure B A L", "inst✝⁸ : IsFractionRing B L", "inst✝⁷ : FiniteDimensional K L", "inst✝⁶ : Algebra.IsSeparable K L", "inst✝⁵ : IsIntegrallyClosed A", "inst✝⁴ : IsDedekindDomain B", "inst✝³ : NoZeroSMulDivisors A B", "inst✝² : Algebra.IsIntegral A B", "inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)", "inst✝ : FiniteDimensional (FractionRing A) (FractionRing B)", "this✝¹ : IsIntegralClosure B A (FractionRing B)", "this✝ : (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ 1", "this : ↑(1 / FractionalIdeal.dual A (FractionRing A) 1) ≤ ↑1"], "goal": "1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))"}], "premise": [76844, 81350, 81354], "state_str": "A : Type u_1\nK : Type u_2\nL : Type u\nB : Type u_3\ninst✝²² : CommRing A\ninst✝²¹ : Field K\ninst✝²⁰ : CommRing B\ninst✝¹⁹ : Field L\ninst✝¹⁸ : Algebra A K\ninst✝¹⁷ : Algebra B L\ninst✝¹⁶ : Algebra A B\ninst✝¹⁵ : Algebra K L\ninst✝¹⁴ : Algebra A L\ninst✝¹³ : IsScalarTower A K L\ninst✝¹² : IsScalarTower A B L\ninst✝¹¹ : IsDomain A\ninst✝¹⁰ : IsFractionRing A K\ninst✝⁹ : IsIntegralClosure B A L\ninst✝⁸ : IsFractionRing B L\ninst✝⁷ : FiniteDimensional K L\ninst✝⁶ : Algebra.IsSeparable K L\ninst✝⁵ : IsIntegrallyClosed A\ninst✝⁴ : IsDedekindDomain B\ninst✝³ : NoZeroSMulDivisors A B\ninst✝² : Algebra.IsIntegral A B\ninst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)\ninst✝ : FiniteDimensional (FractionRing A) (FractionRing B)\nthis✝¹ : IsIntegralClosure B A (FractionRing B)\nthis✝ : (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ 1\nthis : ↑(1 / FractionalIdeal.dual A (FractionRing A) 1) ≤ ↑1\n⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))"} +{"state": [{"context": ["y : ℝ", "h : 0 < y"], "goal": "⊤ ^ y = ⊤"}], "premise": [39745], "state_str": "y : ℝ\nh : 0 < y\n⊢ ⊤ ^ y = ⊤"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ✝ : Kernel α (β × ℝ)", "ν✝ : Kernel α β", "x✝ : MeasurableSpace β", "f✝ : α × β → StieltjesFunction", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α → StieltjesFunction", "hf : ∀ (q : ℝ), Measurable fun a => ↑(f a) q", "hf_bot : ∀ (a : α), Tendsto (↑(f a)) atBot (𝓝 0)", "hf_top : ∀ (a : α), Tendsto (↑(f a)) atTop (𝓝 1)"], "goal": "Measurable fun a => (f a).measure"}], "premise": [1674, 29721], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ✝ : Kernel α (β × ℝ)\nν✝ : Kernel α β\nx✝ : MeasurableSpace β\nf✝ : α × β → StieltjesFunction\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α → StieltjesFunction\nhf : ∀ (q : ℝ), Measurable fun a => ↑(f a) q\nhf_bot : ∀ (a : α), Tendsto (↑(f a)) atBot (𝓝 0)\nhf_top : ∀ (a : α), Tendsto (↑(f a)) atTop (𝓝 1)\n⊢ Measurable fun a => (f a).measure"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ✝ : Kernel α (β × ℝ)", "ν✝ : Kernel α β", "x✝ : MeasurableSpace β", "f✝ : α × β → StieltjesFunction", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α → StieltjesFunction", "hf : ∀ (q : ℝ), Measurable fun a => ↑(f a) q", "hf_bot : ∀ (a : α), Tendsto (↑(f a)) atBot (𝓝 0)", "hf_top : ∀ (a : α), Tendsto (↑(f a)) atTop (𝓝 1)", "s : Set ℝ", "hs : MeasurableSet s"], "goal": "Measurable fun b => (f b).measure s"}], "premise": [30584], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ✝ : Kernel α (β × ℝ)\nν✝ : Kernel α β\nx✝ : MeasurableSpace β\nf✝ : α × β → StieltjesFunction\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α → StieltjesFunction\nhf : ∀ (q : ℝ), Measurable fun a => ↑(f a) q\nhf_bot : ∀ (a : α), Tendsto (↑(f a)) atBot (𝓝 0)\nhf_top : ∀ (a : α), Tendsto (↑(f a)) atTop (𝓝 1)\ns : Set ℝ\nhs : MeasurableSet s\n⊢ Measurable fun b => (f b).measure s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ✝ : Kernel α (β × ℝ)", "ν✝ : Kernel α β", "x✝ : MeasurableSpace β", "f✝ : α × β → StieltjesFunction", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α → StieltjesFunction", "hf : ∀ (q : ℝ), Measurable fun a => ↑(f a) q", "hf_bot : ∀ (a : α), Tendsto (↑(f a)) atBot (𝓝 0)", "hf_top : ∀ (a : α), Tendsto (↑(f a)) atTop (𝓝 1)", "s : Set ℝ", "hs : MeasurableSet s", "this : ∀ (a : α), IsProbabilityMeasure (f a).measure"], "goal": "Measurable fun b => (f b).measure s"}], "premise": [26151, 26204, 26439], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ✝ : Kernel α (β × ℝ)\nν✝ : Kernel α β\nx✝ : MeasurableSpace β\nf✝ : α × β → StieltjesFunction\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α → StieltjesFunction\nhf : ∀ (q : ℝ), Measurable fun a => ↑(f a) q\nhf_bot : ∀ (a : α), Tendsto (↑(f a)) atBot (𝓝 0)\nhf_top : ∀ (a : α), Tendsto (↑(f a)) atTop (𝓝 1)\ns : Set ℝ\nhs : MeasurableSet s\nthis : ∀ (a : α), IsProbabilityMeasure (f a).measure\n⊢ Measurable fun b => (f b).measure s"} +{"state": [{"context": ["R : Type u", "inst✝¹ : AddGroupWithOne R", "n : ℕ", "inst✝ : n.AtLeastTwo"], "goal": "↑(OfNat.ofNat n) = OfNat.ofNat n"}], "premise": [128762], "state_str": "R : Type u\ninst✝¹ : AddGroupWithOne R\nn : ℕ\ninst✝ : n.AtLeastTwo\n⊢ ↑(OfNat.ofNat n) = OfNat.ofNat n"} +{"state": [{"context": ["α : Type u_1", "le : α → α → Bool", "r : Nat", "a : α", "c : HeapNode α", "s : Heap α"], "goal": "(cons r a c s).realSize = (merge le (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).node.toHeap ((findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).before (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).next)).realSize + 1"}], "premise": [2174, 3685], "state_str": "case cons.refl\nα : Type u_1\nle : α → α → Bool\nr : Nat\na : α\nc : HeapNode α\ns : Heap α\n⊢ (cons r a c s).realSize =\n (merge le (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).node.toHeap\n ((findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).before\n (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).next)).realSize +\n 1"} +{"state": [{"context": ["α : Type u_1", "le : α → α → Bool", "r : Nat", "a : α", "c : HeapNode α", "s : Heap α"], "goal": "Batteries.BinomialHeap.Imp.FindMin.HasSize (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }) (c.realSize + s.realSize + 1) → (cons r a c s).realSize = (merge le (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).node.toHeap ((findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).before (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).next)).realSize + 1"}], "premise": [2173, 2176, 3683, 3684, 3685], "state_str": "case cons.refl\nα : Type u_1\nle : α → α → Bool\nr : Nat\na : α\nc : HeapNode α\ns : Heap α\n⊢ Batteries.BinomialHeap.Imp.FindMin.HasSize\n (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }) (c.realSize + s.realSize + 1) →\n (cons r a c s).realSize =\n (merge le (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).node.toHeap\n ((findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).before\n (findMin le (cons r a c) s { before := id, val := a, node := c, next := s }).next)).realSize +\n 1"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "o : Type u_4", "R : Type u_5", "inst✝⁴ : Fintype n", "inst✝³ : Fintype o", "inst✝² : CommRing R", "inst✝¹ : StrongRankCondition R", "inst✝ : Fintype m", "f : n → m", "e : n ≃ m", "A : Matrix m m R"], "goal": "(A.submatrix f ⇑e).rank ≤ A.rank"}], "premise": [87024, 109835, 109935, 109958], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nR : Type u_5\ninst✝⁴ : Fintype n\ninst✝³ : Fintype o\ninst✝² : CommRing R\ninst✝¹ : StrongRankCondition R\ninst✝ : Fintype m\nf : n → m\ne : n ≃ m\nA : Matrix m m R\n⊢ (A.submatrix f ⇑e).rank ≤ A.rank"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "o : Type u_4", "R : Type u_5", "inst✝⁴ : Fintype n", "inst✝³ : Fintype o", "inst✝² : CommRing R", "inst✝¹ : StrongRankCondition R", "inst✝ : Fintype m", "f : n → m", "e : n ≃ m", "A : Matrix m m R"], "goal": "finrank R ↥(Submodule.map (LinearMap.funLeft R R f) (LinearMap.range A.mulVecLin)) ≤ finrank R ↥(LinearMap.range A.mulVecLin)"}], "premise": [86373], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nR : Type u_5\ninst✝⁴ : Fintype n\ninst✝³ : Fintype o\ninst✝² : CommRing R\ninst✝¹ : StrongRankCondition R\ninst✝ : Fintype m\nf : n → m\ne : n ≃ m\nA : Matrix m m R\n⊢ finrank R ↥(Submodule.map (LinearMap.funLeft R R f) (LinearMap.range A.mulVecLin)) ≤\n finrank R ↥(LinearMap.range A.mulVecLin)"} +{"state": [{"context": ["J : Type u₁", "inst✝⁴ : Category.{v₁, u₁} J", "K : Type u₂", "inst✝³ : Category.{v₂, u₂} K", "C : Type u", "inst✝² : Category.{v, u} C", "F✝ : J ⥤ C", "J' : Type u₂", "inst✝¹ : Category.{v₂, u₂} J'", "e : J ≌ J'", "inst✝ : HasLimitsOfShape J C", "F : J' ⥤ C"], "goal": "HasLimit F"}], "premise": [93370], "state_str": "case has_limit\nJ : Type u₁\ninst✝⁴ : Category.{v₁, u₁} J\nK : Type u₂\ninst✝³ : Category.{v₂, u₂} K\nC : Type u\ninst✝² : Category.{v, u} C\nF✝ : J ⥤ C\nJ' : Type u₂\ninst✝¹ : Category.{v₂, u₂} J'\ne : J ≌ J'\ninst✝ : HasLimitsOfShape J C\nF : J' ⥤ C\n⊢ HasLimit F"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : DistribLattice α", "inst✝² : BoundedOrder α", "inst✝¹ : DecidableEq α", "inst✝ : DecidableRel fun x x_1 => x ≤ x_1", "s t : Finset α", "a : α", "hs : a ∈ lowerClosure ↑s", "ht : a ∈ lowerClosure ↑t"], "goal": "(s ⊼ t).truncatedSup a = s.truncatedSup a ⊓ t.truncatedSup a"}], "premise": [1674, 50897, 50922, 138515, 139837], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : DistribLattice α\ninst✝² : BoundedOrder α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns t : Finset α\na : α\nhs : a ∈ lowerClosure ↑s\nht : a ∈ lowerClosure ↑t\n⊢ (s ⊼ t).truncatedSup a = s.truncatedSup a ⊓ t.truncatedSup a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : DistribLattice α", "inst✝² : BoundedOrder α", "inst✝¹ : DecidableEq α", "inst✝ : DecidableRel fun x x_1 => x ≤ x_1", "s t : Finset α", "a : α", "hs : a ∈ lowerClosure ↑s", "ht : a ∈ lowerClosure ↑t"], "goal": "((filter (fun x => a ≤ x) s ⊼ filter (fun x => a ≤ x) t).sup' ⋯ fun x => id x) = (filter (fun b => a ≤ b) s ×ˢ filter (fun b => a ≤ b) t).sup' ⋯ fun i => id i.1 ⊓ id i.2"}], "premise": [138518], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : DistribLattice α\ninst✝² : BoundedOrder α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns t : Finset α\na : α\nhs : a ∈ lowerClosure ↑s\nht : a ∈ lowerClosure ↑t\n⊢ ((filter (fun x => a ≤ x) s ⊼ filter (fun x => a ≤ x) t).sup' ⋯ fun x => id x) =\n (filter (fun b => a ≤ b) s ×ˢ filter (fun b => a ≤ b) t).sup' ⋯ fun i => id i.1 ⊓ id i.2"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : DistribLattice α", "inst✝² : BoundedOrder α", "inst✝¹ : DecidableEq α", "inst✝ : DecidableRel fun x x_1 => x ≤ x_1", "s t : Finset α", "a : α", "hs : a ∈ lowerClosure ↑s", "ht : a ∈ lowerClosure ↑t"], "goal": "((image (Function.uncurry fun x x_1 => x ⊓ x_1) (filter (fun x => a ≤ x) s ×ˢ filter (fun x => a ≤ x) t)).sup' ⋯ fun x => id x) = (filter (fun b => a ≤ b) s ×ˢ filter (fun b => a ≤ b) t).sup' ⋯ fun i => id i.1 ⊓ id i.2"}], "premise": [139788], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : DistribLattice α\ninst✝² : BoundedOrder α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns t : Finset α\na : α\nhs : a ∈ lowerClosure ↑s\nht : a ∈ lowerClosure ↑t\n⊢ ((image (Function.uncurry fun x x_1 => x ⊓ x_1) (filter (fun x => a ≤ x) s ×ˢ filter (fun x => a ≤ x) t)).sup' ⋯\n fun x => id x) =\n (filter (fun b => a ≤ b) s ×ˢ filter (fun b => a ≤ b) t).sup' ⋯ fun i => id i.1 ⊓ id i.2"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : DistribLattice α", "inst✝² : BoundedOrder α", "inst✝¹ : DecidableEq α", "inst✝ : DecidableRel fun x x_1 => x ≤ x_1", "s t : Finset α", "a : α", "hs : a ∈ lowerClosure ↑s", "ht : a ∈ lowerClosure ↑t"], "goal": "(filter (fun x => a ≤ x) s ×ˢ filter (fun x => a ≤ x) t).sup' ⋯ ((fun x => id x) ∘ Function.uncurry fun x x_1 => x ⊓ x_1) = (filter (fun b => a ≤ b) s ×ˢ filter (fun b => a ≤ b) t).sup' ⋯ fun i => id i.1 ⊓ id i.2"}], "premise": [71505], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : DistribLattice α\ninst✝² : BoundedOrder α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns t : Finset α\na : α\nhs : a ∈ lowerClosure ↑s\nht : a ∈ lowerClosure ↑t\n⊢ (filter (fun x => a ≤ x) s ×ˢ filter (fun x => a ≤ x) t).sup' ⋯\n ((fun x => id x) ∘ Function.uncurry fun x x_1 => x ⊓ x_1) =\n (filter (fun b => a ≤ b) s ×ˢ filter (fun b => a ≤ b) t).sup' ⋯ fun i => id i.1 ⊓ id i.2"} +{"state": [{"context": ["M : Type u_1", "A : Type u_2", "B : Type u_3", "N : Type u_4", "α : Type u_5", "inst✝³ : Monoid M", "inst✝² : MulAction M N", "inst✝¹ : SMul N α", "inst✝ : MulAction M α", "s : Set M", "htop : Submonoid.closure s = ⊤", "hs : ∀ x ∈ s, ∀ (y : N) (z : α), (x • y) • z = x • y • z"], "goal": "IsScalarTower M N α"}], "premise": [119211], "state_str": "M : Type u_1\nA : Type u_2\nB : Type u_3\nN : Type u_4\nα : Type u_5\ninst✝³ : Monoid M\ninst✝² : MulAction M N\ninst✝¹ : SMul N α\ninst✝ : MulAction M α\ns : Set M\nhtop : Submonoid.closure s = ⊤\nhs : ∀ x ∈ s, ∀ (y : N) (z : α), (x • y) • z = x • y • z\n⊢ IsScalarTower M N α"} +{"state": [{"context": ["R : Type uR", "S : Type uS", "A : Type uA", "B : Type uB", "M : Type uM", "N : Type uN", "inst✝¹⁰ : CommSemiring R", "inst✝⁹ : CommSemiring S", "inst✝⁸ : Semiring A", "inst✝⁷ : Semiring B", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra R A", "inst✝⁴ : Algebra R B", "inst✝³ : AddCommMonoid M", "inst✝² : Module R M", "inst✝¹ : AddCommMonoid N", "inst✝ : Module R N"], "goal": "adjoin R ↑{X} = ⊤"}], "premise": [138747], "state_str": "R : Type uR\nS : Type uS\nA : Type uA\nB : Type uB\nM : Type uM\nN : Type uN\ninst✝¹⁰ : CommSemiring R\ninst✝⁹ : CommSemiring S\ninst✝⁸ : Semiring A\ninst✝⁷ : Semiring B\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra R A\ninst✝⁴ : Algebra R B\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\n⊢ adjoin R ↑{X} = ⊤"} +{"state": [{"context": ["R : Type uR", "S : Type uS", "A : Type uA", "B : Type uB", "M : Type uM", "N : Type uN", "inst✝¹⁰ : CommSemiring R", "inst✝⁹ : CommSemiring S", "inst✝⁸ : Semiring A", "inst✝⁷ : Semiring B", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra R A", "inst✝⁴ : Algebra R B", "inst✝³ : AddCommMonoid M", "inst✝² : Module R M", "inst✝¹ : AddCommMonoid N", "inst✝ : Module R N"], "goal": "adjoin R {X} = ⊤"}], "premise": [100957], "state_str": "R : Type uR\nS : Type uS\nA : Type uA\nB : Type uB\nM : Type uM\nN : Type uN\ninst✝¹⁰ : CommSemiring R\ninst✝⁹ : CommSemiring S\ninst✝⁸ : Semiring A\ninst✝⁷ : Semiring B\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra R A\ninst✝⁴ : Algebra R B\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\n⊢ adjoin R {X} = ⊤"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Semiring R", "S : Type v", "inst✝ : Semiring S", "f : R →+* S", "s : S", "n : ℕ", "h : s ∈ Set.range ⇑f"], "goal": "(monomial n) s ∈ lifts f"}], "premise": [1673, 131595], "state_str": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\ns : S\nn : ℕ\nh : s ∈ Set.range ⇑f\n⊢ (monomial n) s ∈ lifts f"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Semiring R", "S : Type v", "inst✝ : Semiring S", "f : R →+* S", "n : ℕ", "r : R", "h : f r ∈ Set.range ⇑f"], "goal": "(monomial n) (f r) ∈ lifts f"}], "premise": [1674, 2045], "state_str": "case intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nn : ℕ\nr : R\nh : f r ∈ Set.range ⇑f\n⊢ (monomial n) (f r) ∈ lifts f"} +{"state": [{"context": ["R : Type u", "inst✝¹ : Semiring R", "S : Type v", "inst✝ : Semiring S", "f : R →+* S", "n : ℕ", "r : R", "h : f r ∈ Set.range ⇑f"], "goal": "(mapRingHom f) ((monomial n) r) = (monomial n) (f r)"}], "premise": [1793, 1957, 102918, 102924, 124160, 131586], "state_str": "case h\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nn : ℕ\nr : R\nh : f r ∈ Set.range ⇑f\n⊢ (mapRingHom f) ((monomial n) r) = (monomial n) (f r)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : DistribLattice α", "a a₁ a₂ b b₁ b₂ c x : α"], "goal": "b ∈ [[a, c]] → c ∈ [[a, b]] → b = c"}], "premise": [18531, 18551], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : DistribLattice α\na a₁ a₂ b b₁ b₂ c x : α\n⊢ b ∈ [[a, c]] → c ∈ [[a, b]] → b = c"} +{"state": [{"context": ["L : Language", "L' : Language", "M : Type w", "N : Type w'", "inst✝³ : L.Structure M", "inst✝² : L.Structure N", "P : Type u_1", "inst✝¹ : L.Structure P", "Q : Type u_2", "inst✝ : L.Structure Q", "f : M ≃[L] N"], "goal": "f.toHom.comp f.symm.toHom = Hom.id L N"}], "premise": [24322, 24325, 24327], "state_str": "L : Language\nL' : Language\nM : Type w\nN : Type w'\ninst✝³ : L.Structure M\ninst✝² : L.Structure N\nP : Type u_1\ninst✝¹ : L.Structure P\nQ : Type u_2\ninst✝ : L.Structure Q\nf : M ≃[L] N\n⊢ f.toHom.comp f.symm.toHom = Hom.id L N"} +{"state": [{"context": ["n : ℕ"], "goal": "Gamma (-↑n) = 0"}], "premise": [39875, 39886, 148289, 148301, 148332], "state_str": "n : ℕ\n⊢ Gamma (-↑n) = 0"} +{"state": [{"context": ["a b c : Ordinal.{u_1}", "c0 : 0 < c", "ha : a < ω ^ c", "hb : b < ω"], "goal": "a * b < ω ^ c"}], "premise": [52268], "state_str": "a b c : Ordinal.{u_1}\nc0 : 0 < c\nha : a < ω ^ c\nhb : b < ω\n⊢ a * b < ω ^ c"} +{"state": [{"context": ["α : Type u_1", "α' : Type u_2", "β : Type u_3", "β' : Type u_4", "γ : Type u_5", "γ' : Type u_6", "δ : Type u_7", "δ' : Type u_8", "ε : Type u_9", "ε' : Type u_10", "m✝ : α → β → γ", "f f₁ f₂ : Filter α", "g g₁ g₂ : Filter β", "h h₁ h₂ : Filter γ", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "u : Set γ", "v : Set δ", "a : α", "b : β", "c : γ", "m : α → δ → ε", "n : β → γ → δ", "m' : α → γ → δ'", "n' : β → δ' → ε", "h_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c)"], "goal": "map₂ m f (map₂ n g h) = map₂ n' g (map₂ m' f h)"}], "premise": [11178], "state_str": "α : Type u_1\nα' : Type u_2\nβ : Type u_3\nβ' : Type u_4\nγ : Type u_5\nγ' : Type u_6\nδ : Type u_7\nδ' : Type u_8\nε : Type u_9\nε' : Type u_10\nm✝ : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nm : α → δ → ε\nn : β → γ → δ\nm' : α → γ → δ'\nn' : β → δ' → ε\nh_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c)\n⊢ map₂ m f (map₂ n g h) = map₂ n' g (map₂ m' f h)"} +{"state": [{"context": ["α : Type u_1", "α' : Type u_2", "β : Type u_3", "β' : Type u_4", "γ : Type u_5", "γ' : Type u_6", "δ : Type u_7", "δ' : Type u_8", "ε : Type u_9", "ε' : Type u_10", "m✝ : α → β → γ", "f f₁ f₂ : Filter α", "g g₁ g₂ : Filter β", "h h₁ h₂ : Filter γ", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "u : Set γ", "v : Set δ", "a : α", "b : β", "c : γ", "m : α → δ → ε", "n : β → γ → δ", "m' : α → γ → δ'", "n' : β → δ' → ε", "h_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c)"], "goal": "map₂ (fun a b => m b a) (map₂ n g h) f = map₂ n' g (map₂ (fun a b => m' b a) h f)"}], "premise": [11186], "state_str": "α : Type u_1\nα' : Type u_2\nβ : Type u_3\nβ' : Type u_4\nγ : Type u_5\nγ' : Type u_6\nδ : Type u_7\nδ' : Type u_8\nε : Type u_9\nε' : Type u_10\nm✝ : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nm : α → δ → ε\nn : β → γ → δ\nm' : α → γ → δ'\nn' : β → δ' → ε\nh_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c)\n⊢ map₂ (fun a b => m b a) (map₂ n g h) f = map₂ n' g (map₂ (fun a b => m' b a) h f)"} +{"state": [{"context": ["G✝ : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝⁶ : TopologicalSpace G✝", "inst✝⁵ : Inv G✝", "inst✝⁴ : ContinuousInv G✝", "G : Type u_1", "inst✝³ : DivInvMonoid G", "inst✝² : TopologicalSpace G", "inst✝¹ : ContinuousMul G", "inst✝ : ContinuousInv G", "x y : G", "h : x ⤳ y", "n : ℕ"], "goal": "(x ^ Int.ofNat n) ⤳ (y ^ Int.ofNat n)"}], "premise": [65058], "state_str": "G✝ : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝⁶ : TopologicalSpace G✝\ninst✝⁵ : Inv G✝\ninst✝⁴ : ContinuousInv G✝\nG : Type u_1\ninst✝³ : DivInvMonoid G\ninst✝² : TopologicalSpace G\ninst✝¹ : ContinuousMul G\ninst✝ : ContinuousInv G\nx y : G\nh : x ⤳ y\nn : ℕ\n⊢ (x ^ Int.ofNat n) ⤳ (y ^ Int.ofNat n)"} +{"state": [{"context": ["G✝ : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝⁶ : TopologicalSpace G✝", "inst✝⁵ : Inv G✝", "inst✝⁴ : ContinuousInv G✝", "G : Type u_1", "inst✝³ : DivInvMonoid G", "inst✝² : TopologicalSpace G", "inst✝¹ : ContinuousMul G", "inst✝ : ContinuousInv G", "x y : G", "h : x ⤳ y", "n : ℕ"], "goal": "(x ^ Int.negSucc n) ⤳ (y ^ Int.negSucc n)"}], "premise": [65058, 66651], "state_str": "G✝ : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝⁶ : TopologicalSpace G✝\ninst✝⁵ : Inv G✝\ninst✝⁴ : ContinuousInv G✝\nG : Type u_1\ninst✝³ : DivInvMonoid G\ninst✝² : TopologicalSpace G\ninst✝¹ : ContinuousMul G\ninst✝ : ContinuousInv G\nx y : G\nh : x ⤳ y\nn : ℕ\n⊢ (x ^ Int.negSucc n) ⤳ (y ^ Int.negSucc n)"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝ : PseudoEMetricSpace α", "f g : α → ℝ", "hf : LocallyLipschitz f", "a : ℝ"], "goal": "LocallyLipschitz fun x => min a (f x)"}], "premise": [19697, 60126], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : PseudoEMetricSpace α\nf g : α → ℝ\nhf : LocallyLipschitz f\na : ℝ\n⊢ LocallyLipschitz fun x => min a (f x)"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝ : TopologicalSpace α", "s✝ t✝ u✝ v✝ : Set α", "S : Set (Set α)", "K : DirectedOn (fun x x_1 => x ⊆ x_1) S", "H : ∀ s ∈ S, IsPreconnected s", "u v : Set α", "hu : IsOpen u", "hv : IsOpen v", "Huv : ⋃₀ S ⊆ u ∪ v", "a : α", "hau : a ∈ u", "s : Set α", "hsS : s ∈ S", "has : a ∈ s", "b : α", "hbv : b ∈ v", "t : Set α", "htS : t ∈ S", "hbt : b ∈ t", "r : Set α", "hrS : r ∈ S", "hsr : s ⊆ r", "htr : t ⊆ r"], "goal": "(⋃₀ S ∩ (u ∩ v)).Nonempty"}], "premise": [135392], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝ : TopologicalSpace α\ns✝ t✝ u✝ v✝ : Set α\nS : Set (Set α)\nK : DirectedOn (fun x x_1 => x ⊆ x_1) S\nH : ∀ s ∈ S, IsPreconnected s\nu v : Set α\nhu : IsOpen u\nhv : IsOpen v\nHuv : ⋃₀ S ⊆ u ∪ v\na : α\nhau : a ∈ u\ns : Set α\nhsS : s ∈ S\nhas : a ∈ s\nb : α\nhbv : b ∈ v\nt : Set α\nhtS : t ∈ S\nhbt : b ∈ t\nr : Set α\nhrS : r ∈ S\nhsr : s ⊆ r\nhtr : t ⊆ r\n⊢ (⋃₀ S ∩ (u ∩ v)).Nonempty"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝ : TopologicalSpace α", "s✝ t✝ u✝ v✝ : Set α", "S : Set (Set α)", "K : DirectedOn (fun x x_1 => x ⊆ x_1) S", "H : ∀ s ∈ S, IsPreconnected s", "u v : Set α", "hu : IsOpen u", "hv : IsOpen v", "Huv : ⋃₀ S ⊆ u ∪ v", "a : α", "hau : a ∈ u", "s : Set α", "hsS : s ∈ S", "has : a ∈ s", "b : α", "hbv : b ∈ v", "t : Set α", "htS : t ∈ S", "hbt : b ∈ t", "r : Set α", "hrS : r ∈ S", "hsr : s ⊆ r", "htr : t ⊆ r", "Hnuv : (r ∩ (u ∩ v)).Nonempty"], "goal": "(⋃₀ S ∩ (u ∩ v)).Nonempty"}], "premise": [133464, 135392], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝ : TopologicalSpace α\ns✝ t✝ u✝ v✝ : Set α\nS : Set (Set α)\nK : DirectedOn (fun x x_1 => x ⊆ x_1) S\nH : ∀ s ∈ S, IsPreconnected s\nu v : Set α\nhu : IsOpen u\nhv : IsOpen v\nHuv : ⋃₀ S ⊆ u ∪ v\na : α\nhau : a ∈ u\ns : Set α\nhsS : s ∈ S\nhas : a ∈ s\nb : α\nhbv : b ∈ v\nt : Set α\nhtS : t ∈ S\nhbt : b ∈ t\nr : Set α\nhrS : r ∈ S\nhsr : s ⊆ r\nhtr : t ⊆ r\nHnuv : (r ∩ (u ∩ v)).Nonempty\n⊢ (⋃₀ S ∩ (u ∩ v)).Nonempty"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝ : TopologicalSpace α", "s✝ t✝ u✝ v✝ : Set α", "S : Set (Set α)", "K : DirectedOn (fun x x_1 => x ⊆ x_1) S", "H : ∀ s ∈ S, IsPreconnected s", "u v : Set α", "hu : IsOpen u", "hv : IsOpen v", "Huv : ⋃₀ S ⊆ u ∪ v", "a : α", "hau : a ∈ u", "s : Set α", "hsS : s ∈ S", "has : a ∈ s", "b : α", "hbv : b ∈ v", "t : Set α", "htS : t ∈ S", "hbt : b ∈ t", "r : Set α", "hrS : r ∈ S", "hsr : s ⊆ r", "htr : t ⊆ r", "Hnuv : (r ∩ (u ∩ v)).Nonempty", "Kruv : r ∩ (u ∩ v) ⊆ ⋃₀ S ∩ (u ∩ v)"], "goal": "(⋃₀ S ∩ (u ∩ v)).Nonempty"}], "premise": [133349], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝ : TopologicalSpace α\ns✝ t✝ u✝ v✝ : Set α\nS : Set (Set α)\nK : DirectedOn (fun x x_1 => x ⊆ x_1) S\nH : ∀ s ∈ S, IsPreconnected s\nu v : Set α\nhu : IsOpen u\nhv : IsOpen v\nHuv : ⋃₀ S ⊆ u ∪ v\na : α\nhau : a ∈ u\ns : Set α\nhsS : s ∈ S\nhas : a ∈ s\nb : α\nhbv : b ∈ v\nt : Set α\nhtS : t ∈ S\nhbt : b ∈ t\nr : Set α\nhrS : r ∈ S\nhsr : s ⊆ r\nhtr : t ⊆ r\nHnuv : (r ∩ (u ∩ v)).Nonempty\nKruv : r ∩ (u ∩ v) ⊆ ⋃₀ S ∩ (u ∩ v)\n⊢ (⋃₀ S ∩ (u ∩ v)).Nonempty"} +{"state": [{"context": ["α : Type u_1", "r : Rel α α", "β : Type u_2", "s : Rel β β", "p : RelSeries r", "i : Fin p.length"], "goal": "r ((p.toFun ∘ Fin.rev) i.succ) ((p.toFun ∘ Fin.rev) i.castSucc)"}], "premise": [1670], "state_str": "α : Type u_1\nr : Rel α α\nβ : Type u_2\ns : Rel β β\np : RelSeries r\ni : Fin p.length\n⊢ r ((p.toFun ∘ Fin.rev) i.succ) ((p.toFun ∘ Fin.rev) i.castSucc)"} +{"state": [{"context": ["α : Type u_1", "r : Rel α α", "β : Type u_2", "s : Rel β β", "p : RelSeries r", "i : Fin p.length", "hi : ↑i + 1 ≤ p.length"], "goal": "r (p.toFun i.succ.rev) (p.toFun i.castSucc.rev)"}], "premise": [15205], "state_str": "α : Type u_1\nr : Rel α α\nβ : Type u_2\ns : Rel β β\np : RelSeries r\ni : Fin p.length\nhi : ↑i + 1 ≤ p.length\n⊢ r (p.toFun i.succ.rev) (p.toFun i.castSucc.rev)"} +{"state": [{"context": ["xl xr : Type u", "x : PGame"], "goal": "0 ⧏ x ↔ ∃ i, ∀ (j : (x.moveLeft i).RightMoves), 0 ⧏ (x.moveLeft i).moveRight j"}], "premise": [50196], "state_str": "xl xr : Type u\nx : PGame\n⊢ 0 ⧏ x ↔ ∃ i, ∀ (j : (x.moveLeft i).RightMoves), 0 ⧏ (x.moveLeft i).moveRight j"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : SemilatticeSup α", "a✝ b✝ c✝ d a b c : α"], "goal": "a ⊔ b ⊔ c = a ⊔ c ⊔ b"}], "premise": [14537, 14538], "state_str": "α : Type u\nβ : Type v\ninst✝ : SemilatticeSup α\na✝ b✝ c✝ d a b c : α\n⊢ a ⊔ b ⊔ c = a ⊔ c ⊔ b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "Ω : Type u_4", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "mγ : MeasurableSpace γ", "inst✝⁵ : CountablyGenerated γ", "inst✝⁴ : MeasurableSpace Ω", "inst✝³ : StandardBorelSpace Ω", "inst✝² : Nonempty Ω", "inst✝¹ : Countable α", "κ : Kernel α (β × Ω)", "inst✝ : IsFiniteKernel κ", "x y : α", "h : x ∈ measurableAtom y"], "goal": "(fun a => (κ a).condKernel) x = (fun a => (κ a).condKernel) y"}], "premise": [72633], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nΩ : Type u_4\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ninst✝⁵ : CountablyGenerated γ\ninst✝⁴ : MeasurableSpace Ω\ninst✝³ : StandardBorelSpace Ω\ninst✝² : Nonempty Ω\ninst✝¹ : Countable α\nκ : Kernel α (β × Ω)\ninst✝ : IsFiniteKernel κ\nx y : α\nh : x ∈ measurableAtom y\n⊢ (fun a => (κ a).condKernel) x = (fun a => (κ a).condKernel) y"} +{"state": [{"context": ["n : ℤ"], "goal": "cos (↑n * (2 * ↑π) + ↑π) = -1"}], "premise": [38709, 38710, 109478, 109550, 149150], "state_str": "n : ℤ\n⊢ cos (↑n * (2 * ↑π) + ↑π) = -1"} +{"state": [{"context": ["t : ℝ", "ht : 0 < t"], "goal": "‖F_nat 0 0 t - 1‖ ≤ rexp (-π * t) / (1 - rexp (-π * t))"}], "premise": [21572, 101700], "state_str": "t : ℝ\nht : 0 < t\n⊢ ‖F_nat 0 0 t - 1‖ ≤ rexp (-π * t) / (1 - rexp (-π * t))"} +{"state": [{"context": ["a b c d : ℝ≥0∞", "r p q : ℝ≥0", "ha : a ≠ ⊤", "hb : b ≠ 0"], "goal": "a < a + b"}], "premise": [103552, 119729, 143500], "state_str": "a b c d : ℝ≥0∞\nr p q : ℝ≥0\nha : a ≠ ⊤\nhb : b ≠ 0\n⊢ a < a + b"} +{"state": [{"context": ["α : Type u_1", "t : Ordnode α", "ht : t.Sized"], "goal": "t.size = 0 ↔ t = nil"}], "premise": [2107], "state_str": "α : Type u_1\nt : Ordnode α\nht : t.Sized\n⊢ t.size = 0 ↔ t = nil"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "s s' : Set α", "x : α", "p : Filter ι", "g : ι → α", "inst✝ : UniformSpace β", "𝔖 : Set (Set α)", "u₁ u₂ : UniformSpace γ"], "goal": "uniformSpace α γ 𝔖 = uniformSpace α γ 𝔖 ⊓ uniformSpace α γ 𝔖"}], "premise": [19459, 60300], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nu₁ u₂ : UniformSpace γ\n⊢ uniformSpace α γ 𝔖 = uniformSpace α γ 𝔖 ⊓ uniformSpace α γ 𝔖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "s s' : Set α", "x : α", "p : Filter ι", "g : ι → α", "inst✝ : UniformSpace β", "𝔖 : Set (Set α)", "u₁ u₂ : UniformSpace γ"], "goal": "⨅ i, uniformSpace α γ 𝔖 = ⨅ b, bif b then uniformSpace α γ 𝔖 else uniformSpace α γ 𝔖"}], "premise": [19283], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nu₁ u₂ : UniformSpace γ\n⊢ ⨅ i, uniformSpace α γ 𝔖 = ⨅ b, bif b then uniformSpace α γ 𝔖 else uniformSpace α γ 𝔖"} +{"state": [{"context": ["α✝ : Type u_1", "G : Type u_2", "α : Type u_3", "inst✝⁵ : MeasurableSpace G", "inst✝⁴ : Div G", "m : MeasurableSpace α", "f✝ g✝ : α → G", "μ : Measure α", "E : Type u_4", "inst✝³ : MeasurableSpace E", "inst✝² : AddGroup E", "inst✝¹ : MeasurableSingletonClass E", "inst✝ : MeasurableSub₂ E", "f g : α → E", "hf : AEMeasurable f μ", "hg : AEMeasurable g μ"], "goal": "NullMeasurableSet {x | f x = g x} μ"}], "premise": [29107, 29169, 29177, 31225], "state_str": "α✝ : Type u_1\nG : Type u_2\nα : Type u_3\ninst✝⁵ : MeasurableSpace G\ninst✝⁴ : Div G\nm : MeasurableSpace α\nf✝ g✝ : α → G\nμ : Measure α\nE : Type u_4\ninst✝³ : MeasurableSpace E\ninst✝² : AddGroup E\ninst✝¹ : MeasurableSingletonClass E\ninst✝ : MeasurableSub₂ E\nf g : α → E\nhf : AEMeasurable f μ\nhg : AEMeasurable g μ\n⊢ NullMeasurableSet {x | f x = g x} μ"} +{"state": [{"context": ["α✝ : Type u_1", "G : Type u_2", "α : Type u_3", "inst✝⁵ : MeasurableSpace G", "inst✝⁴ : Div G", "m : MeasurableSpace α", "f✝ g✝ : α → G", "μ : Measure α", "E : Type u_4", "inst✝³ : MeasurableSpace E", "inst✝² : AddGroup E", "inst✝¹ : MeasurableSingletonClass E", "inst✝ : MeasurableSub₂ E", "f g : α → E", "hf : AEMeasurable f μ", "hg : AEMeasurable g μ"], "goal": "{x | AEMeasurable.mk f hf x = AEMeasurable.mk g hg x} =ᶠ[ae μ] {x | f x = g x}"}], "premise": [15889, 29108, 131585], "state_str": "α✝ : Type u_1\nG : Type u_2\nα : Type u_3\ninst✝⁵ : MeasurableSpace G\ninst✝⁴ : Div G\nm : MeasurableSpace α\nf✝ g✝ : α → G\nμ : Measure α\nE : Type u_4\ninst✝³ : MeasurableSpace E\ninst✝² : AddGroup E\ninst✝¹ : MeasurableSingletonClass E\ninst✝ : MeasurableSub₂ E\nf g : α → E\nhf : AEMeasurable f μ\nhg : AEMeasurable g μ\n⊢ {x | AEMeasurable.mk f hf x = AEMeasurable.mk g hg x} =ᶠ[ae μ] {x | f x = g x}"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "inst✝⁸ : CommRing R", "Ms : ι → Type u_3", "inst✝⁷ : (i : ι) → AddCommGroup (Ms i)", "inst✝⁶ : (i : ι) → Module R (Ms i)", "N : Type u_4", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "Ns : ι → Type u_5", "inst✝³ : (i : ι) → AddCommGroup (Ns i)", "inst✝² : (i : ι) → Module R (Ns i)", "inst✝¹ : Fintype ι", "inst✝ : DecidableEq ι", "p : (i : ι) → Submodule R (Ms i)"], "goal": "Function.RightInverse ⇑(piQuotientLift p (pi Set.univ p) single ⋯) ⇑(quotientPiLift p (fun i => (p i).mkQ) ⋯)"}], "premise": [71430, 109729, 109759], "state_str": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type u_5\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\n⊢ Function.RightInverse ⇑(piQuotientLift p (pi Set.univ p) single ⋯) ⇑(quotientPiLift p (fun i => (p i).mkQ) ⋯)"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "inst✝⁸ : CommRing R", "Ms : ι → Type u_3", "inst✝⁷ : (i : ι) → AddCommGroup (Ms i)", "inst✝⁶ : (i : ι) → Module R (Ms i)", "N : Type u_4", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "Ns : ι → Type u_5", "inst✝³ : (i : ι) → AddCommGroup (Ns i)", "inst✝² : (i : ι) → Module R (Ns i)", "inst✝¹ : Fintype ι", "inst✝ : DecidableEq ι", "p : (i : ι) → Submodule R (Ms i)"], "goal": "⇑(quotientPiLift p (fun i => (p i).mkQ) ⋯ ∘ₗ piQuotientLift p (pi Set.univ p) single ⋯) = ⇑LinearMap.id"}], "premise": [1838, 83990, 127818], "state_str": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type u_5\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\n⊢ ⇑(quotientPiLift p (fun i => (p i).mkQ) ⋯ ∘ₗ piQuotientLift p (pi Set.univ p) single ⋯) = ⇑LinearMap.id"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "inst✝⁸ : CommRing R", "Ms : ι → Type u_3", "inst✝⁷ : (i : ι) → AddCommGroup (Ms i)", "inst✝⁶ : (i : ι) → Module R (Ms i)", "N : Type u_4", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "Ns : ι → Type u_5", "inst✝³ : (i : ι) → AddCommGroup (Ns i)", "inst✝² : (i : ι) → Module R (Ns i)", "inst✝¹ : Fintype ι", "inst✝ : DecidableEq ι", "p : (i : ι) → Submodule R (Ms i)", "i : ι", "x : Ms i ⧸ p i", "x' : Ms i", "j : ι"], "goal": "(quotientPiLift p (fun i => (p i).mkQ) ⋯ ∘ₗ piQuotientLift p (pi Set.univ p) single ⋯) (Pi.single i (Quotient.mk'' x')) j = LinearMap.id (Pi.single i (Quotient.mk'' x')) j"}], "premise": [82367, 82397, 82693, 82694, 109728, 109758], "state_str": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type u_5\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\ni : ι\nx : Ms i ⧸ p i\nx' : Ms i\nj : ι\n⊢ (quotientPiLift p (fun i => (p i).mkQ) ⋯ ∘ₗ piQuotientLift p (pi Set.univ p) single ⋯)\n (Pi.single i (Quotient.mk'' x')) j =\n LinearMap.id (Pi.single i (Quotient.mk'' x')) j"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "inst✝⁸ : CommRing R", "Ms : ι → Type u_3", "inst✝⁷ : (i : ι) → AddCommGroup (Ms i)", "inst✝⁶ : (i : ι) → Module R (Ms i)", "N : Type u_4", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "Ns : ι → Type u_5", "inst✝³ : (i : ι) → AddCommGroup (Ns i)", "inst✝² : (i : ι) → Module R (Ns i)", "inst✝¹ : Fintype ι", "inst✝ : DecidableEq ι", "p : (i : ι) → Submodule R (Ms i)", "i : ι", "x : Ms i ⧸ p i", "x' : Ms i", "j : ι"], "goal": "(fun i_1 => (p i_1).mkQ ((single i) x' i_1)) j = Pi.single i (Quotient.mk x') j"}], "premise": [82385, 83986], "state_str": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type u_5\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\ni : ι\nx : Ms i ⧸ p i\nx' : Ms i\nj : ι\n⊢ (fun i_1 => (p i_1).mkQ ((single i) x' i_1)) j = Pi.single i (Quotient.mk x') j"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "m n : ℕ", "h : m ≤ n"], "goal": "(ZMod.castHom ⋯ (ZMod (p ^ m))).comp ((zmodEquivTrunc p n).symm.toRingHom.comp (truncate n)) = ((zmodEquivTrunc p m).symm.toRingHom.comp (TruncatedWittVector.truncate h)).comp (truncate n)"}], "premise": [75624, 121580], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nm n : ℕ\nh : m ≤ n\n⊢ (ZMod.castHom ⋯ (ZMod (p ^ m))).comp ((zmodEquivTrunc p n).symm.toRingHom.comp (truncate n)) =\n ((zmodEquivTrunc p m).symm.toRingHom.comp (TruncatedWittVector.truncate h)).comp (truncate n)"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "m n : ℕ", "h : m ≤ n"], "goal": "((zmodEquivTrunc p m).symm.toRingHom.comp (TruncatedWittVector.truncate h)).comp (truncate n) = (zmodEquivTrunc p m).symm.toRingHom.comp (truncate m)"}], "premise": [75884, 121580], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nm n : ℕ\nh : m ≤ n\n⊢ ((zmodEquivTrunc p m).symm.toRingHom.comp (TruncatedWittVector.truncate h)).comp (truncate n) =\n (zmodEquivTrunc p m).symm.toRingHom.comp (truncate m)"} +{"state": [{"context": ["x✝ : ℂ"], "goal": "LSeries 0 x✝ = 0 x✝"}], "premise": [1178, 64162, 108302, 120640], "state_str": "case h\nx✝ : ℂ\n⊢ LSeries 0 x✝ = 0 x✝"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_4, u_1} C", "inst✝³ : Category.{u_3, u_2} D", "inst✝² : Preadditive C", "L : C ⥤ D", "W : MorphismProperty C", "inst✝¹ : L.IsLocalization W", "inst✝ : W.HasLeftCalculusOfFractions", "X Y Z : C", "f : L.obj X ⟶ L.obj Y", "g₁ g₂ : L.obj Y ⟶ L.obj Z"], "goal": "f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"}], "premise": [92953], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_4, u_1} C\ninst✝³ : Category.{u_3, u_2} D\ninst✝² : Preadditive C\nL : C ⥤ D\nW : MorphismProperty C\ninst✝¹ : L.IsLocalization W\ninst✝ : W.HasLeftCalculusOfFractions\nX Y Z : C\nf : L.obj X ⟶ L.obj Y\ng₁ g₂ : L.obj Y ⟶ L.obj Z\n⊢ f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_4, u_1} C", "inst✝³ : Category.{u_3, u_2} D", "inst✝² : Preadditive C", "L : C ⥤ D", "W : MorphismProperty C", "inst✝¹ : L.IsLocalization W", "inst✝ : W.HasLeftCalculusOfFractions", "X Y Z : C", "f : L.obj X ⟶ L.obj Y", "g₁ g₂ : L.obj Y ⟶ L.obj Z", "α : W.LeftFraction X Y", "hα : f = α.map L ⋯"], "goal": "f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"}], "premise": [92129], "state_str": "case intro\nC : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_4, u_1} C\ninst✝³ : Category.{u_3, u_2} D\ninst✝² : Preadditive C\nL : C ⥤ D\nW : MorphismProperty C\ninst✝¹ : L.IsLocalization W\ninst✝ : W.HasLeftCalculusOfFractions\nX Y Z : C\nf : L.obj X ��� L.obj Y\ng₁ g₂ : L.obj Y ⟶ L.obj Z\nα : W.LeftFraction X Y\nhα : f = α.map L ⋯\n⊢ f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_4, u_1} C", "inst✝³ : Category.{u_3, u_2} D", "inst✝² : Preadditive C", "L : C ⥤ D", "W : MorphismProperty C", "inst✝¹ : L.IsLocalization W", "inst✝ : W.HasLeftCalculusOfFractions", "X Y Z : C", "f : L.obj X ⟶ L.obj Y", "g₁ g₂ : L.obj Y ⟶ L.obj Z", "α : W.LeftFraction X Y", "hα : f = α.map L ⋯", "β : W.LeftFraction₂ Y Z", "hβ₁ : g₁ = β.fst.map L ⋯", "hβ₂ : g₂ = β.snd.map L ⋯"], "goal": "f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"}], "premise": [92128, 92892], "state_str": "case intro.intro.intro\nC : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_4, u_1} C\ninst✝³ : Category.{u_3, u_2} D\ninst✝² : Preadditive C\nL : C ⥤ D\nW : MorphismProperty C\ninst✝¹ : L.IsLocalization W\ninst✝ : W.HasLeftCalculusOfFractions\nX Y Z : C\nf : L.obj X ⟶ L.obj Y\ng₁ g₂ : L.obj Y ⟶ L.obj Z\nα : W.LeftFraction X Y\nhα : f = α.map L ⋯\nβ : W.LeftFraction₂ Y Z\nhβ₁ : g₁ = β.fst.map L ⋯\nhβ₂ : g₂ = β.snd.map L ⋯\n⊢ f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_4, u_1} C", "inst✝³ : Category.{u_3, u_2} D", "inst✝² : Preadditive C", "L : C ⥤ D", "W : MorphismProperty C", "inst✝¹ : L.IsLocalization W", "inst✝ : W.HasLeftCalculusOfFractions", "X Y Z : C", "f : L.obj X ⟶ L.obj Y", "g₁ g₂ : L.obj Y ⟶ L.obj Z", "α : W.LeftFraction X Y", "hα : f = α.map L ⋯", "β : W.LeftFraction₂ Y Z", "hβ₁ : g₁ = β.fst.map L ⋯", "hβ₂ : g₂ = β.snd.map L ⋯", "γ : W.LeftFraction₂ α.Y' β.Y'", "hγ₁ : β.f ≫ γ.s = α.s ≫ γ.f", "hγ₂ : β.f' ≫ γ.s = α.s ≫ γ.f'"], "goal": "f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"}], "premise": [91598, 91599, 92122, 92187, 92952, 97269], "state_str": "case intro.intro.intro.intro.intro\nC : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_4, u_1} C\ninst✝³ : Category.{u_3, u_2} D\ninst✝² : Preadditive C\nL : C ⥤ D\nW : MorphismProperty C\ninst✝¹ : L.IsLocalization W\ninst✝ : W.HasLeftCalculusOfFractions\nX Y Z : C\nf : L.obj X ⟶ L.obj Y\ng₁ g₂ : L.obj Y ⟶ L.obj Z\nα : W.LeftFraction X Y\nhα : f = α.map L ⋯\nβ : W.LeftFraction₂ Y Z\nhβ₁ : g₁ = β.fst.map L ⋯\nhβ₂ : g₂ = β.snd.map L ⋯\nγ : W.LeftFraction₂ α.Y' β.Y'\nhγ₁ : β.f ≫ γ.s = α.s ≫ γ.f\nhγ₂ : β.f' ≫ γ.s = α.s ≫ γ.f'\n⊢ f ≫ add' W g₁ g₂ = add' W (f ≫ g₁) (f ≫ g₂)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_4, u_1} C", "inst✝³ : Category.{u_3, u_2} D", "inst✝² : Preadditive C", "L : C ⥤ D", "W : MorphismProperty C", "inst✝¹ : L.IsLocalization W", "inst✝ : W.HasLeftCalculusOfFractions", "X Y Z : C", "f : L.obj X ⟶ L.obj Y", "g₁ g₂ : L.obj Y ⟶ L.obj Z", "α : W.LeftFraction X Y", "hα : f = α.map L ⋯", "β : W.LeftFraction₂ Y Z", "hβ₁ : g₁ = β.fst.map L ⋯", "hβ₂ : g₂ = β.snd.map L ⋯", "γ : W.LeftFraction₂ α.Y' β.Y'", "hγ₁ : β.f ≫ γ.s = α.s ≫ γ.f", "hγ₂ : β.f' ≫ γ.s = α.s ≫ γ.f'"], "goal": "(LeftFraction.mk (α.f ≫ (γ.f + γ.f')) (β.s ≫ γ.s) ⋯).map L ⋯ = (LeftFraction.mk (α.f ≫ γ.f + α.f ≫ γ.f') (β.s ≫ γ.s) ⋯).map L ⋯"}], "premise": [91599], "state_str": "case intro.intro.intro.intro.intro\nC : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_4, u_1} C\ninst✝³ : Category.{u_3, u_2} D\ninst✝² : Preadditive C\nL : C ⥤ D\nW : MorphismProperty C\ninst✝¹ : L.IsLocalization W\ninst✝ : W.HasLeftCalculusOfFractions\nX Y Z : C\nf : L.obj X ⟶ L.obj Y\ng₁ g₂ : L.obj Y ⟶ L.obj Z\nα : W.LeftFraction X Y\nhα : f = α.map L ⋯\nβ : W.LeftFraction₂ Y Z\nhβ₁ : g₁ = β.fst.map L ⋯\nhβ₂ : g₂ = β.snd.map L ⋯\nγ : W.LeftFraction₂ α.Y' β.Y'\nhγ₁ : β.f ≫ γ.s = α.s ≫ γ.f\nhγ₂ : β.f' ≫ γ.s = α.s ≫ γ.f'\n⊢ (LeftFraction.mk (α.f ≫ (γ.f + γ.f')) (β.s ≫ γ.s) ⋯).map L ⋯ =\n (LeftFraction.mk (α.f ≫ γ.f + α.f ≫ γ.f') (β.s ≫ γ.s) ⋯).map L ⋯"} +{"state": [{"context": ["R✝ : Type u", "S : Type u_1", "A✝ : Type v", "inst✝⁹ : CommRing R✝", "inst✝⁸ : CommRing S", "inst✝⁷ : Ring A✝", "inst✝⁶ : Algebra R✝ A✝", "inst✝⁵ : Algebra R✝ S", "inst✝⁴ : Algebra S A✝", "inst✝³ : IsScalarTower R✝ S A✝", "R : Type u", "A : Type v", "inst✝² : DivisionRing A", "inst✝¹ : Field R", "inst✝ : Algebra R A", "n : ℚ"], "goal": "IsAlgebraic R ↑n"}], "premise": [148050], "state_str": "R✝ : Type u\nS : Type u_1\nA✝ : Type v\ninst✝⁹ : CommRing R✝\ninst✝⁸ : CommRing S\ninst✝⁷ : Ring A✝\ninst✝⁶ : Algebra R✝ A✝\ninst✝⁵ : Algebra R✝ S\ninst✝⁴ : Algebra S A✝\ninst✝³ : IsScalarTower R✝ S A✝\nR : Type u\nA : Type v\ninst✝² : DivisionRing A\ninst✝¹ : Field R\ninst✝ : Algebra R A\nn : ℚ\n⊢ IsAlgebraic R ↑n"} +{"state": [{"context": ["R✝ : Type u", "S : Type u_1", "A✝ : Type v", "inst✝⁹ : CommRing R✝", "inst✝⁸ : CommRing S", "inst✝⁷ : Ring A✝", "inst✝⁶ : Algebra R✝ A✝", "inst✝⁵ : Algebra R✝ S", "inst✝⁴ : Algebra S A✝", "inst✝³ : IsScalarTower R✝ S A✝", "R : Type u", "A : Type v", "inst✝² : DivisionRing A", "inst✝¹ : Field R", "inst✝ : Algebra R A", "n : ℚ"], "goal": "IsAlgebraic R ((algebraMap R A) ↑n)"}], "premise": [75563], "state_str": "R✝ : Type u\nS : Type u_1\nA✝ : Type v\ninst✝⁹ : CommRing R✝\ninst✝⁸ : CommRing S\ninst✝⁷ : Ring A✝\ninst✝⁶ : Algebra R✝ A✝\ninst✝⁵ : Algebra R✝ S\ninst✝⁴ : Algebra S A✝\ninst✝³ : IsScalarTower R✝ S A✝\nR : Type u\nA : Type v\ninst✝² : DivisionRing A\ninst✝¹ : Field R\ninst✝ : Algebra R A\nn : ℚ\n⊢ IsAlgebraic R ((algebraMap R A) ↑n)"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜' : Type u_2", "D : Type u_3", "E : Type u_4", "F : Type u_5", "G : Type u_6", "V : Type u_7", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : E →L[ℝ] F"], "goal": "Function.HasTemperateGrowth ⇑f"}], "premise": [36647, 45100], "state_str": "𝕜 : Type u_1\n𝕜' : Type u_2\nD : Type u_3\nE : Type u_4\nF : Type u_5\nG : Type u_6\nV : Type u_7\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : E →L[ℝ] F\n⊢ Function.HasTemperateGrowth ⇑f"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "inst✝² : TopologicalSpace X", "inst✝¹ : TopologicalSpace Y", "inst✝ : TopologicalSpace Z", "p : X → Prop", "s : Set X", "t : Set ↑s"], "goal": "Dense t ↔ s ⊆ closure (val '' t)"}], "premise": [56029, 66494, 133298], "state_str": "X : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\ninst✝² : TopologicalSpace X\ninst✝¹ : TopologicalSpace Y\ninst✝ : TopologicalSpace Z\np : X → Prop\ns : Set X\nt : Set ↑s\n⊢ Dense t ↔ s ⊆ closure (val '' t)"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "inst✝² : TopologicalSpace X", "inst✝¹ : TopologicalSpace Y", "inst✝ : TopologicalSpace Z", "p : X → Prop", "s : Set X", "t : Set ↑s"], "goal": "(∀ (x : X) (h : x ∈ s), ↑⟨x, h⟩ ∈ closure (val '' t)) ↔ s ⊆ closure (val '' t)"}], "premise": [1713], "state_str": "X : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\ninst✝² : TopologicalSpace X\ninst✝¹ : TopologicalSpace Y\ninst✝ : TopologicalSpace Z\np : X → Prop\ns : Set X\nt : Set ↑s\n⊢ (∀ (x : X) (h : x ∈ s), ↑⟨x, h⟩ ∈ closure (val '' t)) ↔ s ⊆ closure (val '' t)"} +{"state": [{"context": ["X✝ : Type u_1", "X : Type u_2", "x : FreeAbelianGroup X"], "goal": "toFreeAbelianGroup (toFinsupp x) = x"}], "premise": [6254, 117175, 117188], "state_str": "X✝ : Type u_1\nX : Type u_2\nx : FreeAbelianGroup X\n⊢ toFreeAbelianGroup (toFinsupp x) = x"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "X : Type u_5", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace M", "inst✝¹ : Monoid M", "inst✝ : ContinuousMul M"], "goal": "Continuous fun a => a ^ 0"}], "premise": [55641], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nX : Type u_5\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\n⊢ Continuous fun a => a ^ 0"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "X : Type u_5", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace M", "inst✝¹ : Monoid M", "inst✝ : ContinuousMul M", "k : ℕ"], "goal": "Continuous fun a => a ^ (k + 1)"}], "premise": [119745], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nX : Type u_5\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nk : ℕ\n⊢ Continuous fun a => a ^ (k + 1)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "X : Type u_5", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace M", "inst✝¹ : Monoid M", "inst✝ : ContinuousMul M", "k : ℕ"], "goal": "Continuous fun a => a * a ^ k"}], "premise": [55628, 65028], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nX : Type u_5\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nk : ℕ\n⊢ Continuous fun a => a * a ^ k"} +{"state": [{"context": ["E : Type u_1", "inst✝¹ : NormedAddCommGroup E", "inst✝ : InnerProductSpace ℝ E", "v✝ v : E"], "goal": "HasFDerivAt (stereoInvFunAux v ∘ Subtype.val) (Submodule.span ℝ {v})ᗮ.subtypeL 0"}], "premise": [69222], "state_str": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : InnerProductSpace ℝ E\nv✝ v : E\n⊢ HasFDerivAt (stereoInvFunAux v ∘ Subtype.val) (Submodule.span ℝ {v})ᗮ.subtypeL 0"} +{"state": [{"context": ["E : Type u_1", "inst✝¹ : NormedAddCommGroup E", "inst✝ : InnerProductSpace ℝ E", "v✝ v : E", "this : HasFDerivAt (stereoInvFunAux v) (ContinuousLinearMap.id ℝ E) ((Submodule.span ℝ {v})ᗮ.subtypeL 0)"], "goal": "HasFDerivAt (stereoInvFunAux v ∘ Subtype.val) (Submodule.span ℝ {v})ᗮ.subtypeL 0"}], "premise": [45095, 45115], "state_str": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : InnerProductSpace ℝ E\nv✝ v : E\nthis : HasFDerivAt (stereoInvFunAux v) (ContinuousLinearMap.id ℝ E) ((Submodule.span ℝ {v})ᗮ.subtypeL 0)\n⊢ HasFDerivAt (stereoInvFunAux v ∘ Subtype.val) (Submodule.span ℝ {v})ᗮ.subtypeL 0"} +{"state": [{"context": ["C : Type u_1", "C₁ : Type u_2", "C₂ : Type u_3", "C₃ : Type u_4", "D₁ : Type u_5", "D₂ : Type u_6", "D₃ : Type u_7", "inst✝⁹ : Category.{?u.15810, u_1} C", "inst✝⁸ : Category.{u_10, u_2} C₁", "inst✝⁷ : Category.{u_11, u_3} C₂", "inst✝⁶ : Category.{?u.15822, u_4} C₃", "inst✝⁵ : Category.{u_8, u_5} D₁", "inst✝⁴ : Category.{u_9, u_6} D₂", "inst✝³ : Category.{?u.15834, u_7} D₃", "W₁ : MorphismProperty C₁", "W₂ : MorphismProperty C₂", "W₃ : MorphismProperty C₃", "Φ : LocalizerMorphism W₁ W₂", "Ψ : LocalizerMorphism W₂ W₃", "L₁ : C₁ ⥤ D₁", "inst✝² : L₁.IsLocalization W₁", "L₂ : C₂ ⥤ D₂", "inst✝¹ : L₂.IsLocalization W₂", "L₃ : C₃ ⥤ D₃", "inst✝ : L₃.IsLocalization W₃", "X Y Z : C₁", "G : D₁ ⥤ D₂", "e : Φ.functor ⋙ L₂ ≅ L₁ ⋙ G", "f : L₁.obj X ⟶ L₁.obj Y", "G' : D₁ ⥤ D₂ := Φ.localizedFunctor L₁ L₂", "e' : Φ.functor ⋙ L₂ ≅ L₁ ⋙ G' := CatCommSq.iso Φ.functor L₁ L₂ G'", "this : Localization.Lifting L₁ W₁ (Φ.functor ⋙ L₂) G := { iso' := e.symm }", "α : G' ≅ G := Localization.liftNatIso L₁ W₁ (L₁ ⋙ G') (Φ.functor ⋙ L₂) G' G e'.symm"], "goal": "e'.hom.app X ≫ G'.map f ≫ e'.inv.app Y = e.hom.app X ≫ G.map f ≫ e.inv.app Y"}], "premise": [92287, 96175], "state_str": "C : Type u_1\nC₁ : Type u_2\nC₂ : Type u_3\nC₃ : Type u_4\nD₁ : Type u_5\nD₂ : Type u_6\nD₃ : Type u_7\ninst✝⁹ : Category.{?u.15810, u_1} C\ninst✝⁸ : Category.{u_10, u_2} C₁\ninst✝⁷ : Category.{u_11, u_3} C₂\ninst✝⁶ : Category.{?u.15822, u_4} C₃\ninst✝⁵ : Category.{u_8, u_5} D₁\ninst✝⁴ : Category.{u_9, u_6} D₂\ninst✝³ : Category.{?u.15834, u_7} D₃\nW₁ : MorphismProperty C₁\nW₂ : MorphismProperty C₂\nW₃ : MorphismProperty C₃\nΦ : LocalizerMorphism W₁ W₂\nΨ : LocalizerMorphism W₂ W₃\nL₁ : C₁ ⥤ D₁\ninst✝² : L₁.IsLocalization W₁\nL₂ : C₂ ⥤ D₂\ninst✝¹ : L₂.IsLocalization W₂\nL₃ : C₃ ⥤ D₃\ninst✝ : L₃.IsLocalization W₃\nX Y Z : C₁\nG : D₁ ⥤ D₂\ne : Φ.functor ⋙ L₂ ≅ L₁ ⋙ G\nf : L₁.obj X ⟶ L₁.obj Y\nG' : D₁ ⥤ D₂ := Φ.localizedFunctor L₁ L₂\ne' : Φ.functor ⋙ L₂ ≅ L₁ ⋙ G' := CatCommSq.iso Φ.functor L₁ L₂ G'\nthis : Localization.Lifting L₁ W₁ (Φ.functor ⋙ L₂) G := { iso' := e.symm }\nα : G' ≅ G := Localization.liftNatIso L₁ W₁ (L₁ ⋙ G') (Φ.functor ⋙ L₂) G' G e'.symm\n⊢ e'.hom.app X ≫ G'.map f ≫ e'.inv.app Y = e.hom.app X ≫ G.map f ≫ e.inv.app Y"} +{"state": [{"context": ["G : Type u_1", "inst✝ : Group G", "H K : Subgroup G", "S T : Set G", "hS : S ∈ rightTransversals ↑H", "g : G"], "goal": "(g * (↑(toFun hS g))⁻¹)⁻¹ = ↑(toFun hS g) * g⁻¹"}], "premise": [119770, 119808], "state_str": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\nS T : Set G\nhS : S ∈ rightTransversals ↑H\ng : G\n⊢ (g * (↑(toFun hS g))⁻¹)⁻¹ = ↑(toFun hS g) * g⁻¹"} +{"state": [{"context": ["c : ℝ", "f g : ℕ → Bool", "n : ℕ"], "goal": "¬Set.univ.Countable"}], "premise": [14324, 48787, 145877], "state_str": "c : ℝ\nf g : ℕ → Bool\nn : ℕ\n⊢ ¬Set.univ.Countable"} +{"state": [{"context": ["c : ℝ", "f g : ℕ → Bool", "n : ℕ"], "goal": "ℵ₀ < 𝔠"}], "premise": [48651], "state_str": "c : ℝ\nf g : ℕ → Bool\nn : ℕ\n⊢ ℵ₀ < 𝔠"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "a b c : Ordinal.{u_4}"], "goal": "a + b < a + c ↔ b < c"}], "premise": [1713, 14324, 103890], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b c : Ordinal.{u_4}\n⊢ a + b < a + c ↔ b < c"} +{"state": [{"context": [], "goal": "0 < 2 * π"}], "premise": [38514], "state_str": "⊢ 0 < 2 * π"} +{"state": [{"context": ["Ω : Type u_1", "inst✝¹ : MeasurableSpace Ω", "inst✝ : MeasurableSingletonClass Ω", "s t✝ u✝ u t : Set Ω", "hs : s.Finite"], "goal": "(condCount (s ∩ u)) t * (condCount s) u + (condCount (s ∩ uᶜ)) t * (condCount s) uᶜ = (condCount s) t"}], "premise": [13471, 14561, 15131, 73791, 133648, 135045], "state_str": "Ω : Type u_1\ninst✝¹ : MeasurableSpace Ω\ninst✝ : MeasurableSingletonClass Ω\ns t✝ u✝ u t : Set Ω\nhs : s.Finite\n⊢ (condCount (s ∩ u)) t * (condCount s) u + (condCount (s ∩ uᶜ)) t * (condCount s) uᶜ = (condCount s) t"} +{"state": [{"context": ["Ω : Type u_1", "inst✝¹ : MeasurableSpace Ω", "inst✝ : MeasurableSingletonClass Ω", "s t✝ u✝ u t : Set Ω", "hs : s.Finite", "this : (condCount s) t = (condCount (s ∩ u)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) + (condCount (s ∩ uᶜ)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)"], "goal": "(condCount (s ∩ u)) t * (condCount s) u + (condCount (s ∩ uᶜ)) t * (condCount s) uᶜ = (condCount (s ∩ u)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) + (condCount (s ∩ uᶜ)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)"}], "premise": [73781], "state_str": "Ω : Type u_1\ninst✝¹ : MeasurableSpace Ω\ninst✝ : MeasurableSingletonClass Ω\ns t✝ u✝ u t : Set Ω\nhs : s.Finite\nthis :\n (condCount s) t =\n (condCount (s ∩ u)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) +\n (condCount (s ∩ uᶜ)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)\n⊢ (condCount (s ∩ u)) t * (condCount s) u + (condCount (s ∩ uᶜ)) t * (condCount s) uᶜ =\n (condCount (s ∩ u)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) +\n (condCount (s ∩ uᶜ)) t * (condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)"} +{"state": [{"context": ["J : Type v", "inst✝³ : SmallCategory J", "inst✝² : IsCofiltered J", "F : J ⥤ Profinite", "C : Cone F", "α : Type u_1", "inst✝¹ : Finite α", "inst✝ : Nonempty α", "hC : IsLimit C", "f : LocallyConstant (↑C.pt.toTop) α", "inhabited_h : Inhabited α"], "goal": "∃ j g, f = LocallyConstant.comap (C.π.app j) g"}], "premise": [59420], "state_str": "J : Type v\ninst✝³ : SmallCategory J\ninst✝² : IsCofiltered J\nF : J ⥤ Profinite\nC : Cone F\nα : Type u_1\ninst✝¹ : Finite α\ninst✝ : Nonempty α\nhC : IsLimit C\nf : LocallyConstant (↑C.pt.toTop) α\ninhabited_h : Inhabited α\n⊢ ∃ j g, f = LocallyConstant.comap (C.π.app j) g"} +{"state": [{"context": ["J : Type v", "inst✝³ : SmallCategory J", "inst✝² : IsCofiltered J", "F : J ⥤ Profinite", "C : Cone F", "α : Type u_1", "inst✝¹ : Finite α", "inst✝ : Nonempty α", "hC : IsLimit C", "f : LocallyConstant (↑C.pt.toTop) α", "inhabited_h : Inhabited α", "j : J", "gg : LocallyConstant (↑(F.obj j).toTop) (α → Fin 2)", "h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (C.π.app j) gg", "ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1", "σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then h.choose else default", "x : ↑C.pt.toTop"], "goal": "f x = (LocallyConstant.comap (C.π.app j) (LocallyConstant.map σ gg)) x"}], "premise": [1670, 62686, 62691, 99936], "state_str": "case intro.intro.h\nJ : Type v\ninst✝³ : SmallCategory J\ninst✝² : IsCofiltered J\nF : J ⥤ Profinite\nC : Cone F\nα : Type u_1\ninst✝¹ : Finite α\ninst✝ : Nonempty α\nhC : IsLimit C\nf : LocallyConstant (↑C.pt.toTop) α\ninhabited_h : Inhabited α\nj : J\ngg : LocallyConstant (↑(F.obj j).toTop) (α → Fin 2)\nh : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (C.π.app j) gg\nι : α → α → Fin 2 := fun a b => if a = b then 0 else 1\nσ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then h.choose else default\nx : ↑C.pt.toTop\n⊢ f x = (LocallyConstant.comap (C.π.app j) (LocallyConstant.map σ gg)) x"} +{"state": [{"context": ["J : Type v", "inst✝³ : SmallCategory J", "inst✝² : IsCofiltered J", "F : J ⥤ Profinite", "C : Cone F", "α : Type u_1", "inst✝¹ : Finite α", "inst✝ : Nonempty α", "hC : IsLimit C", "f : LocallyConstant (↑C.pt.toTop) α", "inhabited_h : Inhabited α", "j : J", "gg : LocallyConstant (↑(F.obj j).toTop) (α → Fin 2)", "h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (C.π.app j) gg", "ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1", "σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then h.choose else default", "x : ↑C.pt.toTop", "h1 : ι (f x) = gg ((C.π.app j) x)", "h2 : ∃ a, ι a = gg ((C.π.app j) x)"], "goal": "f x = if h : ∃ a, ι a = gg ((C.π.app j) x) then h.choose else default"}], "premise": [1739], "state_str": "case intro.intro.h\nJ : Type v\ninst✝³ : SmallCategory J\ninst✝² : IsCofiltered J\nF : J ⥤ Profinite\nC : Cone F\nα : Type u_1\ninst✝¹ : Finite α\ninst✝ : Nonempty α\nhC : IsLimit C\nf : LocallyConstant (↑C.pt.toTop) α\ninhabited_h : Inhabited α\nj : J\ngg : LocallyConstant (↑(F.obj j).toTop) (α → Fin 2)\nh : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (C.π.app j) gg\nι : α → α → Fin 2 := fun a b => if a = b then 0 else 1\nσ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then h.choose else default\nx : ↑C.pt.toTop\nh1 : ι (f x) = gg ((C.π.app j) x)\nh2 : ∃ a, ι a = gg ((C.π.app j) x)\n⊢ f x = if h : ∃ a, ι a = gg ((C.π.app j) x) then h.choose else default"} +{"state": [{"context": ["Γ : Type u_1", "Γ' : Type u_2", "R : Type u_3", "V : Type u_4", "inst✝⁶ : PartialOrder Γ", "inst✝⁵ : PartialOrder Γ'", "inst✝⁴ : VAdd Γ Γ'", "inst✝³ : IsOrderedCancelVAdd Γ Γ'", "inst✝² : AddCommMonoid V", "inst✝¹ : MulZeroClass R", "inst✝ : SMulWithZero R V", "x : HahnSeries Γ R", "y : HahnModule Γ' R V", "h : x.support +ᵥ ((of R).symm y).support = x.support +ᵥ ((of R).symm y).support"], "goal": "((of R).symm (x • y)).support ⊆ x.support +ᵥ ((of R).symm y).support"}], "premise": [80591], "state_str": "Γ : Type u_1\nΓ' : Type u_2\nR : Type u_3\nV : Type u_4\ninst✝⁶ : PartialOrder Γ\ninst✝⁵ : PartialOrder Γ'\ninst✝⁴ : VAdd Γ Γ'\ninst✝³ : IsOrderedCancelVAdd Γ Γ'\ninst✝² : AddCommMonoid V\ninst✝¹ : MulZeroClass R\ninst✝ : SMulWithZero R V\nx : HahnSeries Γ R\ny : HahnModule Γ' R V\nh : x.support +ᵥ ((of R).symm y).support = x.support +ᵥ ((of R).symm y).support\n⊢ ((of R).symm (x • y)).support ⊆ x.support +ᵥ ((of R).symm y).support"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁶ : _root_.RCLike 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : InnerProductSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : InnerProductSpace ℝ F", "V : Type u_4", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℂ V", "T : V →ₗ[ℂ] V", "x y : V"], "goal": "⟪T y, x⟫_ℂ = (⟪T (x + y), x + y⟫_ℂ - ⟪T (x - y), x - y⟫_ℂ + Complex.I * ⟪T (x + Complex.I • y), x + Complex.I • y⟫_ℂ - Complex.I * ⟪T (x - Complex.I • y), x - Complex.I • y⟫_ℂ) / 4"}], "premise": [36754, 36755, 36758, 36761, 36792, 36793, 109741, 117079, 117101, 117874, 117897, 119703, 119728, 119750, 119769, 122241, 122248, 148351, 148383], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : _root_.RCLike 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : InnerProductSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace ℝ F\nV : Type u_4\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℂ V\nT : V →ₗ[ℂ] V\nx y : V\n⊢ ⟪T y, x⟫_ℂ =\n (⟪T (x + y), x + y⟫_ℂ - ⟪T (x - y), x - y⟫_ℂ + Complex.I * ⟪T (x + Complex.I • y), x + Complex.I • y⟫_ℂ -\n Complex.I * ⟪T (x - Complex.I • y), x - Complex.I • y⟫_ℂ) /\n 4"} +{"state": [{"context": ["R : Type u_1", "inst✝¹⁶ : Semiring R", "M : Type u_2", "inst✝¹⁵ : AddCommMonoid M", "inst✝¹⁴ : Module R M", "N : Type u_3", "inst✝¹³ : AddCommMonoid N", "inst✝¹² : Module R N", "P : Type u_4", "inst✝¹¹ : AddCommMonoid P", "inst✝¹⁰ : Module R P", "M' : Type u_5", "inst✝⁹ : AddCommGroup M'", "inst✝⁸ : Module R M'", "N' : Type u_6", "inst✝⁷ : AddCommGroup N'", "inst✝⁶ : Module R N'", "ι : Type u_7", "ι' : Type u_8", "ι'' : Type u_9", "M₂ : Type u_10", "inst✝⁵ : AddCommMonoid M₂", "inst✝⁴ : Module R M₂", "M₃ : Type u_11", "inst✝³ : AddCommMonoid M₃", "inst✝² : Module R M₃", "f f' : M [⋀^ι]→ₗ[R] N", "g g₂ : M [⋀^ι]→ₗ[R] N'", "g' : M' [⋀^ι]→ₗ[R] N'", "v : ι → M", "v' : ι → M'", "inst✝¹ : DecidableEq ι", "inst✝ : Fintype ι", "σ : Equiv.Perm ι"], "goal": "g v = Equiv.Perm.sign σ • g (v ∘ ⇑σ)"}], "premise": [87478, 118909], "state_str": "R : Type u_1\ninst✝¹⁶ : Semiring R\nM : Type u_2\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nN : Type u_3\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : Module R N\nP : Type u_4\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : Module R P\nM' : Type u_5\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nN' : Type u_6\ninst✝⁷ : AddCommGroup N'\ninst✝⁶ : Module R N'\nι : Type u_7\nι' : Type u_8\nι'' : Type u_9\nM₂ : Type u_10\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\nM₃ : Type u_11\ninst✝³ : AddCommMonoid M₃\ninst✝² : Module R M₃\nf f' : M [⋀^ι]→ₗ[R] N\ng g₂ : M [⋀^ι]→ₗ[R] N'\ng' : M' [⋀^ι]→ₗ[R] N'\nv : ι → M\nv' : ι → M'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nσ : Equiv.Perm ι\n⊢ g v = Equiv.Perm.sign σ • g (v ∘ ⇑σ)"} +{"state": [{"context": ["X✝ : Type u_1", "Y : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝² : MeasurableSpace X✝", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "f g : X✝ → E", "s✝ t : Set X✝", "μ✝ ν : Measure X✝", "l l' : Filter X✝", "X : Type u_5", "m : MeasurableSpace X", "μ : Measure X", "s : Set X", "hs : μ s ≠ ⊤"], "goal": "ENNReal.ofReal (∫ (x : X) in s, 1 ∂μ) = ENNReal.ofReal (∫ (x : X) in s, ‖1‖ ∂μ)"}], "premise": [43260], "state_str": "X✝ : Type u_1\nY : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝² : MeasurableSpace X✝\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nf g : X✝ → E\ns✝ t : Set X✝\nμ✝ ν : Measure X✝\nl l' : Filter X✝\nX : Type u_5\nm : MeasurableSpace X\nμ : Measure X\ns : Set X\nhs : μ s ≠ ⊤\n⊢ ENNReal.ofReal (∫ (x : X) in s, 1 ∂μ) = ENNReal.ofReal (∫ (x : X) in s, ‖1‖ ∂μ)"} +{"state": [{"context": ["X✝ : Type u_1", "Y : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝² : MeasurableSpace X✝", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "f g : X✝ → E", "s✝ t : Set X✝", "μ✝ ν : Measure X✝", "l l' : Filter X✝", "X : Type u_5", "m : MeasurableSpace X", "μ : Measure X", "s : Set X", "hs : μ s ≠ ⊤"], "goal": "ENNReal.ofReal (∫ (x : X) in s, ‖1‖ ∂μ) = ∫⁻ (x : X) in s, 1 ∂μ"}], "premise": [1674, 18794, 25578, 33671], "state_str": "X✝ : Type u_1\nY : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝² : MeasurableSpace X✝\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nf g : X✝ → E\ns✝ t : Set X✝\nμ✝ ν : Measure X✝\nl l' : Filter X✝\nX : Type u_5\nm : MeasurableSpace X\nμ : Measure X\ns : Set X\nhs : μ s ≠ ⊤\n⊢ ENNReal.ofReal (∫ (x : X) in s, ‖1‖ ∂μ) = ∫⁻ (x : X) in s, 1 ∂μ"} +{"state": [{"context": ["X✝ : Type u_1", "Y : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝² : MeasurableSpace X✝", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "f g : X✝ → E", "s✝ t : Set X✝", "μ✝ ν : Measure X✝", "l l' : Filter X✝", "X : Type u_5", "m : MeasurableSpace X", "μ : Measure X", "s : Set X", "hs : μ s ≠ ⊤"], "goal": "∫⁻ (x : X) in s, ↑‖1‖₊ ∂μ = ∫⁻ (x : X) in s, 1 ∂μ"}], "premise": [43261, 143168], "state_str": "X✝ : Type u_1\nY : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝² : MeasurableSpace X✝\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nf g : X✝ → E\ns✝ t : Set X✝\nμ✝ ν : Measure X✝\nl l' : Filter X✝\nX : Type u_5\nm : MeasurableSpace X\nμ : Measure X\ns : Set X\nhs : μ s ≠ ⊤\n⊢ ∫⁻ (x : X) in s, ↑‖1‖₊ ∂μ = ∫⁻ (x : X) in s, 1 ∂μ"} +{"state": [{"context": ["R : Type u_1", "α : Type u_2", "α' : Type u_3", "β : Type u_4", "β' : Type u_5", "γ : Type u_6", "γ' : Type u_7", "l : Type u_8", "m : Type u_9", "n : Type u_10", "p : Type u_11", "q : Type u_12", "r : Type u_13", "l' : Type u_14", "m' : Type u_15", "n' : Type u_16", "p' : Type u_17", "inst✝¹ : NonAssocSemiring α", "inst✝ : DecidableEq l", "a : ℕ", "B : Matrix m n α", "x✝ : l", "i✝ : m", "j✝ : n"], "goal": "(↑a • B) i✝ j✝ = (a • B) i✝ j✝"}], "premise": [118327, 142801], "state_str": "case h.e'_6.h.e'_7.h.a\nR : Type u_1\nα : Type u_2\nα' : Type u_3\nβ : Type u_4\nβ' : Type u_5\nγ : Type u_6\nγ' : Type u_7\nl : Type u_8\nm : Type u_9\nn : Type u_10\np : Type u_11\nq : Type u_12\nr : Type u_13\nl' : Type u_14\nm' : Type u_15\nn' : Type u_16\np' : Type u_17\ninst✝¹ : NonAssocSemiring α\ninst✝ : DecidableEq l\na : ℕ\nB : Matrix m n α\nx✝ : l\ni✝ : m\nj✝ : n\n⊢ (↑a • B) i✝ j✝ = (a • B) i✝ j✝"} +{"state": [{"context": ["p : ℕ", "R : Type u_1", "S : Type u_2", "T : Type u_3", "hp : Fact (Nat.Prime p)", "inst✝² : CommRing R", "inst✝¹ : CommRing S", "inst✝ : CommRing T", "α : Type u_4", "β : Type u_5", "x y : 𝕎 R"], "goal": "WittVector.ghostFun 1 = 1"}], "premise": [76236, 110717, 110848], "state_str": "p : ℕ\nR : Type u_1\nS : Type u_2\nT : Type u_3\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type u_4\nβ : Type u_5\nx y : 𝕎 R\n⊢ WittVector.ghostFun 1 = 1"} +{"state": [{"context": ["b x y : ℝ"], "goal": "logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1"}], "premise": [37910, 108406], "state_str": "b x y : ℝ\n⊢ logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1"} +{"state": [{"context": ["b x y : ℝ"], "goal": "(x = 0 ∨ x = 1 ∨ x = -1) ∨ b = 0 ∨ b = 1 ∨ b = -1 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1"}], "premise": [1101, 1674], "state_str": "b x y : ℝ\n⊢ (x = 0 ∨ x = 1 ∨ x = -1) ∨ b = 0 ∨ b = 1 ∨ b = -1 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "α : Type u_4", "β : Type u_5", "inst✝² : TopologicalSpace X", "inst✝¹ : UniformSpace α", "inst✝ : UniformSpace β", "F : ι → X → α", "G : ι → β → α", "𝔖 : Set (Set X)", "𝔖_compact : ∀ K ∈ 𝔖, IsCompact K", "𝔖_covers : ⋃₀ 𝔖 = univ", "F_eqcont : ∀ K ∈ 𝔖, EquicontinuousOn F K"], "goal": "IsClosed (range (⇑(UniformOnFun.ofFun 𝔖) ∘ F)) ↔ IsClosed (range F)"}], "premise": [16236, 55544, 55546, 55593, 59643, 70736, 70737, 71407, 134090, 134180], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\nα : Type u_4\nβ : Type u_5\ninst✝² : TopologicalSpace X\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\nF : ι → X → α\nG : ι → β → α\n𝔖 : Set (Set X)\n𝔖_compact : ∀ K ∈ 𝔖, IsCompact K\n𝔖_covers : ⋃₀ 𝔖 = univ\nF_eqcont : ∀ K ∈ 𝔖, EquicontinuousOn F K\n⊢ IsClosed (range (⇑(UniformOnFun.ofFun 𝔖) ∘ F)) ↔ IsClosed (range F)"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁵ : NormedAddCommGroup V", "inst✝⁴ : InnerProductSpace ℝ V", "inst✝³ : MetricSpace P", "inst✝² : NormedAddTorsor V P", "s : AffineSubspace ℝ P", "inst✝¹ : Nonempty ↥s", "inst✝ : HasOrthogonalProjection s.direction", "p₁ p₂ : P"], "goal": "dist p₁ ((reflection s) p₂) = dist ((reflection s) p₁) p₂"}], "premise": [69911], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty ↥s\ninst✝ : HasOrthogonalProjection s.direction\np₁ p₂ : P\n⊢ dist p₁ ((reflection s) p₂) = dist ((reflection s) p₁) p₂"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁵ : NormedAddCommGroup V", "inst✝⁴ : InnerProductSpace ℝ V", "inst✝³ : MetricSpace P", "inst✝² : NormedAddTorsor V P", "s : AffineSubspace ℝ P", "inst✝¹ : Nonempty ↥s", "inst✝ : HasOrthogonalProjection s.direction", "p₁ p₂ : P"], "goal": "dist ((reflection s) ((reflection s) p₁)) ((reflection s) p₂) = dist ((reflection s) p₁) p₂"}], "premise": [41069], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty ↥s\ninst✝ : HasOrthogonalProjection s.direction\np₁ p₂ : P\n⊢ dist ((reflection s) ((reflection s) p₁)) ((reflection s) p₂) = dist ((reflection s) p₁) p₂"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasLimits C", "inst✝ : EnoughInjectives C", "G : C", "hG : IsSeparator G"], "goal": "∃ G, Injective G ∧ IsCoseparator G"}], "premise": [97993, 98019], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasLimits C\ninst✝ : EnoughInjectives C\nG : C\nhG : IsSeparator G\n⊢ ∃ G, Injective G ∧ IsCoseparator G"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasLimits C", "inst✝ : EnoughInjectives C", "G : C", "hG : IsSeparator G", "this : WellPowered C"], "goal": "∃ G, Injective G ∧ IsCoseparator G"}], "premise": [94711], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasLimits C\ninst✝ : EnoughInjectives C\nG : C\nhG : IsSeparator G\nthis : WellPowered C\n⊢ ∃ G, Injective G ∧ IsCoseparator G"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasLimits C", "inst✝ : EnoughInjectives C", "G : C", "hG : IsSeparator G", "this✝ : WellPowered C", "this : HasProductsOfShape (Subobject (op G)) C", "T : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))"], "goal": "∃ G, Injective G ∧ IsCoseparator G"}], "premise": [1674, 91593], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasLimits C\ninst✝ : EnoughInjectives C\nG : C\nhG : IsSeparator G\nthis✝ : WellPowered C\nthis : HasProductsOfShape (Subobject (op G)) C\nT : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))\n⊢ ∃ G, Injective G ∧ IsCoseparator G"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasLimits C", "inst✝ : EnoughInjectives C", "G : C", "hG : IsSeparator G", "this✝ : WellPowered C", "this : HasProductsOfShape (Subobject (op G)) C", "T : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))", "X Y : C", "f : X ⟶ Y", "hf : ∀ (h : Y ⟶ T), f ≫ h = 0"], "goal": "f = 0"}], "premise": [1673, 91592], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasLimits C\ninst✝ : EnoughInjectives C\nG : C\nhG : IsSeparator G\nthis✝ : WellPowered C\nthis : HasProductsOfShape (Subobject (op G)) C\nT : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))\nX Y : C\nf : X ⟶ Y\nhf : ∀ (h : Y ⟶ T), f ≫ h = 0\n⊢ f = 0"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasLimits C", "inst✝ : EnoughInjectives C", "G : C", "hG : IsSeparator G", "this✝ : WellPowered C", "this : HasProductsOfShape (Subobject (op G)) C", "T : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))", "X Y : C", "f : X ⟶ Y", "hf : ∀ (h : Y ⟶ T), f ≫ h = 0", "h : G ⟶ X"], "goal": "h ≫ f = 0"}], "premise": [93605, 94368], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasLimits C\ninst✝ : EnoughInjectives C\nG : C\nhG : IsSeparator G\nthis✝ : WellPowered C\nthis : HasProductsOfShape (Subobject (op G)) C\nT : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))\nX Y : C\nf : X ⟶ Y\nhf : ∀ (h : Y ⟶ T), f ≫ h = 0\nh : G ⟶ X\n⊢ h ≫ f = 0"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasLimits C", "inst✝ : EnoughInjectives C", "G : C", "hG : IsSeparator G", "this✝ : WellPowered C", "this : HasProductsOfShape (Subobject (op G)) C", "T : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))", "X Y : C", "f : X ⟶ Y", "hf : ∀ (h : Y ⟶ T), f ≫ h = 0", "h : G ⟶ X", "R : Subobject (op G) := Subobject.mk (factorThruImage (h ≫ f)).op", "q₁ : image (h ≫ f) ⟶ unop (Subobject.underlying.obj R) := (Subobject.underlyingIso (factorThruImage (h ≫ f)).op).unop.hom", "q₂ : unop (Subobject.underlying.obj R) ⟶ ∏ᶜ fun P => unop (Subobject.underlying.obj P) := section_ (Pi.π (fun P => unop (Subobject.underlying.obj P)) R)", "q : image (h ≫ f) ⟶ T := q₁ ≫ q₂ ≫ Injective.ι (∏ᶜ fun P => unop (Subobject.underlying.obj P))"], "goal": "factorThruImage (h ≫ f) = 0"}], "premise": [91650, 93604, 93610, 96173], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasLimits C\ninst✝ : EnoughInjectives C\nG : C\nhG : IsSeparator G\nthis✝ : WellPowered C\nthis : HasProductsOfShape (Subobject (op G)) C\nT : C := Injective.under (∏ᶜ fun P => unop (Subobject.underlying.obj P))\nX Y : C\nf : X ⟶ Y\nhf : ∀ (h : Y ⟶ T), f ≫ h = 0\nh : G ⟶ X\nR : Subobject (op G) := Subobject.mk (factorThruImage (h ≫ f)).op\nq₁ : image (h ≫ f) ⟶ unop (Subobject.underlying.obj R) :=\n (Subobject.underlyingIso (factorThruImage (h ≫ f)).op).unop.hom\nq₂ : unop (Subobject.underlying.obj R) ⟶ ∏ᶜ fun P => unop (Subobject.underlying.obj P) :=\n section_ (Pi.π (fun P => unop (Subobject.underlying.obj P)) R)\nq : image (h ≫ f) ⟶ T := q₁ ≫ q₂ ≫ Injective.ι (∏ᶜ fun P => unop (Subobject.underlying.obj P))\n⊢ factorThruImage (h ≫ f) = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : UniformSpace α", "inst✝¹ : Group α", "inst✝ : UniformGroup α"], "goal": "𝓤 α = comap (fun x => x.2⁻¹ * x.1) (𝓝 1)"}], "premise": [16208, 60501, 67160], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\n⊢ 𝓤 α = comap (fun x => x.2⁻¹ * x.1) (𝓝 1)"} +{"state": [{"context": ["m n✝ n : ℕ"], "goal": "shiftLeft' false m (n + 1) = m <<< (n + 1)"}], "premise": [3696, 3703, 3859], "state_str": "m n✝ n : ℕ\n⊢ shiftLeft' false m (n + 1) = m <<< (n + 1)"} +{"state": [{"context": ["m n✝ n : ℕ", "this : 2 * (m * 2 ^ n) = 2 ^ (n + 1) * m"], "goal": "shiftLeft' false m (n + 1) = m <<< (n + 1)"}], "premise": [3417, 144087], "state_str": "m n✝ n : ℕ\nthis : 2 * (m * 2 ^ n) = 2 ^ (n + 1) * m\n⊢ shiftLeft' false m (n + 1) = m <<< (n + 1)"} +{"state": [{"context": ["M✝ : Type u_1", "A : Type u_2", "B : Type u_3", "inst✝⁵ : Monoid M✝", "inst✝⁴ : SetLike B M✝", "inst✝³ : SubmonoidClass B M✝", "S : B", "M : Type u_4", "inst✝² : CommMonoid M", "inst✝¹ : SetLike B M", "inst✝ : SubmonoidClass B M", "m : Multiset ↥S"], "goal": "(Multiset.map Subtype.val m).prod ∈ S"}], "premise": [119136], "state_str": "case intro\nM✝ : Type u_1\nA : Type u_2\nB : Type u_3\ninst✝⁵ : Monoid M✝\ninst✝⁴ : SetLike B M✝\ninst✝³ : SubmonoidClass B M✝\nS : B\nM : Type u_4\ninst✝² : CommMonoid M\ninst✝¹ : SetLike B M\ninst✝ : SubmonoidClass B M\nm : Multiset ↥S\n⊢ (Multiset.map Subtype.val m).prod ∈ S"} +{"state": [{"context": ["M✝ : Type u_1", "A : Type u_2", "B : Type u_3", "inst✝⁵ : Monoid M✝", "inst✝⁴ : SetLike B M✝", "inst✝³ : SubmonoidClass B M✝", "S : B", "M : Type u_4", "inst✝² : CommMonoid M", "inst✝¹ : SetLike B M", "inst✝ : SubmonoidClass B M", "m : Multiset ↥S"], "goal": "↑m.prod ∈ S"}], "premise": [137164], "state_str": "case intro\nM✝ : Type u_1\nA : Type u_2\nB : Type u_3\ninst✝⁵ : Monoid M✝\ninst✝⁴ : SetLike B M✝\ninst✝³ : SubmonoidClass B M✝\nS : B\nM : Type u_4\ninst✝² : CommMonoid M\ninst✝¹ : SetLike B M\ninst✝ : SubmonoidClass B M\nm : Multiset ↥S\n⊢ ↑m.prod ∈ S"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝ : InvolutiveInv α", "s t : Set α", "a : α"], "goal": "s⁻¹ ⊆ t ↔ s ⊆ t⁻¹"}], "premise": [1713, 119770, 131790], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝ : InvolutiveInv α\ns t : Set α\na : α\n⊢ s⁻¹ ⊆ t ↔ s ⊆ t⁻¹"} +{"state": [{"context": ["X : Type u_1", "inst✝ : TopologicalSpace X", "P : Set X → Prop", "c : CU P", "h0 : 0 < 2⁻¹", "h1234 : 2⁻¹ < 3 / 4", "h1 : 3 / 4 < 1"], "goal": "Continuous c.lim"}], "premise": [1674, 12615, 55639, 61256], "state_str": "case intro.intro\nX : Type u_1\ninst✝ : TopologicalSpace X\nP : Set X → Prop\nc : CU P\nh0 : 0 < 2⁻¹\nh1234 : 2⁻¹ < 3 / 4\nh1 : 3 / 4 < 1\n⊢ Continuous c.lim"} +{"state": [{"context": ["X : Type u_1", "inst✝ : TopologicalSpace X", "P : Set X → Prop", "c : CU P", "h0 : 0 < 2⁻¹", "h1234 : 2⁻¹ < 3 / 4", "h1 : 3 / 4 < 1", "x : X", "n : ℕ", "x✝ : True"], "goal": "∀ᶠ (x_1 : X) in 𝓝 x, c.lim x_1 ∈ Metric.closedBall (c.lim x) ((3 / 4) ^ n)"}], "premise": [61169], "state_str": "case intro.intro\nX : Type u_1\ninst✝ : TopologicalSpace X\nP : Set X → Prop\nc : CU P\nh0 : 0 < 2⁻¹\nh1234 : 2⁻¹ < 3 / 4\nh1 : 3 / 4 < 1\nx : X\nn : ℕ\nx✝ : True\n⊢ ∀ᶠ (x_1 : X) in 𝓝 x, c.lim x_1 ∈ Metric.closedBall (c.lim x) ((3 / 4) ^ n)"} +{"state": [{"context": ["F : Type u", "K : Type v", "L : Type w", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Field F", "f : K[X]", "n : ℕ", "hfn : f.natDegree = n + 1"], "goal": "f.removeFactor.natDegree = n"}], "premise": [3889, 87945], "state_str": "F : Type u\nK : Type v\nL : Type w\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Field F\nf : K[X]\nn : ℕ\nhfn : f.natDegree = n + 1\n⊢ f.removeFactor.natDegree = n"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "ε : Type u_6", "inst✝ : Monoid α", "f g : Filter α", "s : Set α", "a : α", "m n : ℕ", "hf : 1 ≤ f"], "goal": "f * ⊤ = ⊤"}], "premise": [1673, 18787], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\nε : Type u_6\ninst✝ : Monoid α\nf g : Filter α\ns : Set α\na : α\nm n : ℕ\nhf : 1 ≤ f\n⊢ f * ⊤ = ⊤"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "ε : Type u_6", "inst✝ : Monoid α", "f g : Filter α", "s✝ : Set α", "a : α", "m n : ℕ", "hf : 1 ≤ f", "s : Set α"], "goal": "s ∈ f * ⊤ → s ∈ ⊤"}], "premise": [2036, 2038, 13660, 15918], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\nε : Type u_6\ninst✝ : Monoid α\nf g : Filter α\ns✝ : Set α\na : α\nm n : ℕ\nhf : 1 ≤ f\ns : Set α\n⊢ s ∈ f * ⊤ → s ∈ ⊤"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "ε : Type u_6", "inst✝ : Monoid α", "f g : Filter α", "s✝ : Set α", "a : α", "m n : ℕ", "hf : 1 ≤ f", "s t : Set α", "ht : t ∈ f", "hs : t * univ ⊆ s"], "goal": "s = univ"}], "premise": [1673, 13603, 131963, 133392], "state_str": "case intro.intro\nF : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\nε : Type u_6\ninst✝ : Monoid α\nf g : Filter α\ns✝ : Set α\na : α\nm n : ℕ\nhf : 1 ≤ f\ns t : Set α\nht : t ∈ f\nhs : t * univ ⊆ s\n⊢ s = univ"} +{"state": [{"context": ["n : ℕ", "F : TypeVec.{u} (n + 1) → Type u", "q : MvQPF F", "α : TypeVec.{u} n", "x y : Cofix F α", "h : x.dest = y.dest"], "goal": "x = y"}], "premise": [142623], "state_str": "n : ℕ\nF : TypeVec.{u} (n + 1) → Type u\nq : MvQPF F\nα : TypeVec.{u} n\nx y : Cofix F α\nh : x.dest = y.dest\n⊢ x = y"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "S : AffineSpace V P", "p₁ p₂ : P", "s : Set P", "inst✝ : Nontrivial P"], "goal": "affineSpan k s = ⊤ ↔ vectorSpan k s = ⊤"}], "premise": [133383], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns : Set P\ninst✝ : Nontrivial P\n⊢ affineSpan k s = ⊤ ↔ vectorSpan k s = ⊤"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : HasShift C ℤ", "X : Cᵒᵖ"], "goal": "(shiftFunctorZero Cᵒᵖ ℤ).hom.app X = (shiftFunctorOpIso C 0 0 ⋯).hom.app X ≫ ((shiftFunctorZero C ℤ).inv.app (Opposite.unop X)).op"}], "premise": [91995, 92054], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : HasShift C ℤ\nX : Cᵒᵖ\n⊢ (shiftFunctorZero Cᵒᵖ ℤ).hom.app X =\n (shiftFunctorOpIso C 0 0 ⋯).hom.app X ≫ ((shiftFunctorZero C ℤ).inv.app (Opposite.unop X)).op"} +{"state": [{"context": ["α : Type u_1", "α' : Type u_2", "β : Type u_3", "β' : Type u_4", "γ : Type u_5", "E : Type u_6", "inst✝⁷ : MeasurableSpace α", "inst✝⁶ : MeasurableSpace α'", "inst✝⁵ : MeasurableSpace β", "inst✝⁴ : MeasurableSpace β'", "inst✝³ : MeasurableSpace γ", "μ μ' : Measure α", "ν ν' : Measure β", "τ : Measure γ", "inst✝² : NormedAddCommGroup E", "inst✝¹ : SFinite ν", "inst✝ : SFinite μ", "s : Set α", "t : Set β"], "goal": "NullMeasurableSet (s ×ˢ t) (μ.prod ν) ↔ NullMeasurableSet s μ ∧ NullMeasurableSet t ν ∨ μ s = 0 ∨ ν t = 0"}], "premise": [70039], "state_str": "α : Type u_1\nα' : Type u_2\nβ : Type u_3\nβ' : Type u_4\nγ : Type u_5\nE : Type u_6\ninst✝⁷ : MeasurableSpace α\ninst✝⁶ : MeasurableSpace α'\ninst✝⁵ : MeasurableSpace β\ninst✝⁴ : MeasurableSpace β'\ninst✝³ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝² : NormedAddCommGroup E\ninst✝¹ : SFinite ν\ninst✝ : SFinite μ\ns : Set α\nt : Set β\n⊢ NullMeasurableSet (s ×ˢ t) (μ.prod ν) ↔ NullMeasurableSet s μ ∧ NullMeasurableSet t ν ∨ μ s = 0 ∨ ν t = 0"} +{"state": [{"context": ["α : Type u_1", "α' : Type u_2", "β : Type u_3", "β' : Type u_4", "γ : Type u_5", "E : Type u_6", "inst✝⁷ : MeasurableSpace α", "inst✝⁶ : MeasurableSpace α'", "inst✝⁵ : MeasurableSpace β", "inst✝⁴ : MeasurableSpace β'", "inst✝³ : MeasurableSpace γ", "μ μ' : Measure α", "ν ν' : Measure β", "τ : Measure γ", "inst✝² : NormedAddCommGroup E", "inst✝¹ : SFinite ν", "inst✝ : SFinite μ", "s : Set α", "t : Set β", "hs : μ s ≠ 0"], "goal": "NullMeasurableSet (s ×ˢ t) (μ.prod ν) ↔ NullMeasurableSet s μ ∧ NullMeasurableSet t ν ∨ μ s = 0 ∨ ν t = 0"}], "premise": [70039], "state_str": "case inr\nα : Type u_1\nα' : Type u_2\nβ : Type u_3\nβ' : Type u_4\nγ : Type u_5\nE : Type u_6\ninst✝⁷ : MeasurableSpace α\ninst✝⁶ : MeasurableSpace α'\ninst✝⁵ : MeasurableSpace β\ninst✝⁴ : MeasurableSpace β'\ninst✝³ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝² : NormedAddCommGroup E\ninst✝¹ : SFinite ν\ninst✝ : SFinite μ\ns : Set α\nt : Set β\nhs : μ s ≠ 0\n⊢ NullMeasurableSet (s ×ˢ t) (μ.prod ν) ↔ NullMeasurableSet s μ ∧ NullMeasurableSet t ν ∨ μ s = 0 ∨ ν t = 0"} +{"state": [{"context": ["α : Type u_1", "α' : Type u_2", "β : Type u_3", "β' : Type u_4", "γ : Type u_5", "E : Type u_6", "inst✝⁷ : MeasurableSpace α", "inst✝⁶ : MeasurableSpace α'", "inst✝⁵ : MeasurableSpace β", "inst✝⁴ : MeasurableSpace β'", "inst✝³ : MeasurableSpace γ", "μ μ' : Measure α", "ν ν' : Measure β", "τ : Measure γ", "inst✝² : NormedAddCommGroup E", "inst✝¹ : SFinite ν", "inst✝ : SFinite μ", "s : Set α", "t : Set β", "hs : μ s ≠ 0", "ht : ν t ≠ 0"], "goal": "NullMeasurableSet (s ×ˢ t) (μ.prod ν) ↔ NullMeasurableSet s μ ∧ NullMeasurableSet t ν ∨ μ s = 0 ∨ ν t = 0"}], "premise": [27001], "state_str": "case inr.inr\nα : Type u_1\nα' : Type u_2\nβ : Type u_3\nβ' : Type u_4\nγ : Type u_5\nE : Type u_6\ninst✝⁷ : MeasurableSpace α\ninst✝⁶ : MeasurableSpace α'\ninst✝⁵ : MeasurableSpace β\ninst✝⁴ : MeasurableSpace β'\ninst✝³ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝² : NormedAddCommGroup E\ninst✝¹ : SFinite ν\ninst✝ : SFinite μ\ns : Set α\nt : Set β\nhs : μ s ≠ 0\nht : ν t ≠ 0\n⊢ NullMeasurableSet (s ×ˢ t) (μ.prod ν) ↔ NullMeasurableSet s μ ∧ NullMeasurableSet t ν ∨ μ s = 0 ∨ ν t = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "G : Type u_4", "M : Type u_5", "N : Type u_6", "inst✝¹ : CommMonoid M", "inst✝ : CommMonoid N", "f g : α → M", "a b : α", "s t : Set α", "hs : (s ∩ mulSupport f).Finite", "ht : (t ∩ mulSupport f).Finite"], "goal": "(∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i"}], "premise": [125654, 125702, 133471], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nG : Type u_4\nM : Type u_5\nN : Type u_6\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf g : α → M\na b : α\ns t : Set α\nhs : (s ∩ mulSupport f).Finite\nht : (t ∩ mulSupport f).Finite\n⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i =\n (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "G : Type u_4", "M : Type u_5", "N : Type u_6", "inst✝¹ : CommMonoid M", "inst✝ : CommMonoid N", "f g : α → M", "a b : α", "s t : Set α", "hs : (s ∩ mulSupport f).Finite", "ht : (t ∩ mulSupport f).Finite"], "goal": "(fun i => ∏ᶠ (_ : i ∈ s ∩ t ∩ mulSupport f), f i) = fun i => ∏ᶠ (_ : i ∈ s ∩ mulSupport f ∩ (t ∩ mulSupport f)), f i"}], "premise": [133440, 133444, 133445], "state_str": "case e_a.e_f\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nG : Type u_4\nM : Type u_5\nN : Type u_6\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf g : α → M\na b : α\ns t : Set α\nhs : (s ∩ mulSupport f).Finite\nht : (t ∩ mulSupport f).Finite\n⊢ (fun i => ∏ᶠ (_ : i ∈ s ∩ t ∩ mulSupport f), f i) = fun i => ∏ᶠ (_ : i ∈ s ∩ mulSupport f ∩ (t ∩ mulSupport f)), f i"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p q : ℝ≥0∞", "inst✝ : (i : α) → NormedAddCommGroup (E i)", "f : ↥(lp E ⊤)", "C : ℝ", "hC : 0 ≤ C", "hCf : ∀ (i : α), ‖↑f i‖ ≤ C"], "goal": "‖f‖ ≤ C"}], "premise": [70316], "state_str": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝ : (i : α) → NormedAddCommGroup (E i)\nf : ↥(lp E ⊤)\nC : ℝ\nhC : 0 ≤ C\nhCf : ∀ (i : α), ‖↑f i‖ ≤ C\n⊢ ‖f‖ ≤ C"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : MetricSpace P", "inst✝¹ : NormedAddTorsor V P", "hd2 : Fact (finrank ℝ V = 2)", "inst✝ : Module.Oriented ℝ V (Fin 2)", "p₁ p₂ p₃ : P", "h : ∡ p₁ p₂ p₃ = ↑(π / 2)"], "goal": "(∡ p₂ p₃ p₁).cos * dist p₁ p₃ = dist p₃ p₂"}], "premise": [38411, 70381], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : MetricSpace P\ninst✝¹ : NormedAddTorsor V P\nhd2 : Fact (finrank ℝ V = 2)\ninst✝ : Module.Oriented ℝ V (Fin 2)\np₁ p₂ p₃ : P\nh : ∡ p₁ p₂ p₃ = ↑(π / 2)\n⊢ (∡ p₂ p₃ p₁).cos * dist p₁ p₃ = dist p₃ p₂"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : MetricSpace P", "inst✝¹ : NormedAddTorsor V P", "hd2 : Fact (finrank ℝ V = 2)", "inst✝ : Module.Oriented ℝ V (Fin 2)", "p₁ p₂ p₃ : P", "h : ∡ p₁ p₂ p₃ = ↑(π / 2)", "hs : (∡ p₂ p₃ p₁).sign = 1"], "goal": "(∡ p₂ p₃ p₁).cos * dist p₁ p₃ = dist p₃ p₂"}], "premise": [38304, 69452, 70370, 70374], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : MetricSpace P\ninst✝¹ : NormedAddTorsor V P\nhd2 : Fact (finrank ℝ V = 2)\ninst✝ : Module.Oriented ℝ V (Fin 2)\np₁ p₂ p₃ : P\nh : ∡ p₁ p₂ p₃ = ↑(π / 2)\nhs : (∡ p₂ p₃ p₁).sign = 1\n⊢ (∡ p₂ p₃ p₁).cos * dist p₁ p₃ = dist p₃ p₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁵ : RCLike 𝕜", "inst✝¹⁴ : NormedAddCommGroup F", "inst✝¹³ : NormedSpace 𝕜 F", "inst✝¹² : NormedAddCommGroup F'", "inst✝¹¹ : NormedSpace 𝕜 F'", "inst✝¹⁰ : NormedSpace ℝ F'", "inst✝⁹ : CompleteSpace F'", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup G'", "inst✝⁶ : NormedSpace ℝ G'", "inst✝⁵ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "hm : m ≤ m0", "inst✝⁴ : SigmaFinite (μ.trim hm)", "f✝ g✝ : α → F'", "s : Set α", "E : Type u_8", "inst✝³ : NormedLatticeAddCommGroup E", "inst✝² : CompleteSpace E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : OrderedSMul ℝ E", "f g : α → E", "hf : Integrable f μ", "hg : Integrable g μ", "hfg : f ≤ᶠ[ae μ] g"], "goal": "↑↑(condexpL1 hm μ f) ≤ᶠ[ae μ] ↑↑(condexpL1 hm μ g)"}], "premise": [26517], "state_str": "α : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁵ : RCLike 𝕜\ninst✝¹⁴ : NormedAddCommGroup F\ninst✝¹³ : NormedSpace 𝕜 F\ninst✝¹² : NormedAddCommGroup F'\ninst✝¹¹ : NormedSpace 𝕜 F'\ninst✝¹⁰ : NormedSpace ℝ F'\ninst✝⁹ : CompleteSpace F'\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup G'\ninst✝⁶ : NormedSpace ℝ G'\ninst✝⁵ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\nhm : m ≤ m0\ninst✝⁴ : SigmaFinite (μ.trim hm)\nf✝ g✝ : α → F'\ns : Set α\nE : Type u_8\ninst✝³ : NormedLatticeAddCommGroup E\ninst✝² : CompleteSpace E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : OrderedSMul ℝ E\nf g : α → E\nhf : Integrable f μ\nhg : Integrable g μ\nhfg : f ≤ᶠ[ae μ] g\n⊢ ↑↑(condexpL1 hm μ f) ≤ᶠ[ae μ] ↑↑(condexpL1 hm μ g)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁵ : RCLike 𝕜", "inst✝¹⁴ : NormedAddCommGroup F", "inst✝¹³ : NormedSpace 𝕜 F", "inst✝¹² : NormedAddCommGroup F'", "inst✝¹¹ : NormedSpace 𝕜 F'", "inst✝¹⁰ : NormedSpace ℝ F'", "inst✝⁹ : CompleteSpace F'", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup G'", "inst✝⁶ : NormedSpace ℝ G'", "inst✝⁵ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "hm : m ≤ m0", "inst✝⁴ : SigmaFinite (μ.trim hm)", "f✝ g✝ : α → F'", "s : Set α", "E : Type u_8", "inst✝³ : NormedLatticeAddCommGroup E", "inst✝² : CompleteSpace E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : OrderedSMul ℝ E", "f g : α → E", "hf : Integrable f μ", "hg : Integrable g μ", "hfg : f ≤ᶠ[ae μ] g"], "goal": "condexpL1 hm μ f ≤ condexpL1 hm μ g"}], "premise": [29770], "state_str": "α : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁵ : RCLike 𝕜\ninst✝¹⁴ : NormedAddCommGroup F\ninst✝¹³ : NormedSpace 𝕜 F\ninst✝¹² : NormedAddCommGroup F'\ninst✝¹¹ : NormedSpace 𝕜 F'\ninst✝¹⁰ : NormedSpace ℝ F'\ninst✝⁹ : CompleteSpace F'\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup G'\ninst✝⁶ : NormedSpace ℝ G'\ninst✝⁵ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\nhm : m ≤ m0\ninst✝⁴ : SigmaFinite (μ.trim hm)\nf✝ g✝ : α → F'\ns : Set α\nE : Type u_8\ninst✝³ : NormedLatticeAddCommGroup E\ninst✝² : CompleteSpace E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : OrderedSMul ℝ E\nf g : α → E\nhf : Integrable f μ\nhg : Integrable g μ\nhfg : f ≤ᶠ[ae μ] g\n⊢ condexpL1 hm μ f ≤ condexpL1 hm μ g"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁵ : RCLike 𝕜", "inst✝¹⁴ : NormedAddCommGroup F", "inst✝¹³ : NormedSpace 𝕜 F", "inst✝¹² : NormedAddCommGroup F'", "inst✝¹¹ : NormedSpace 𝕜 F'", "inst✝¹⁰ : NormedSpace ℝ F'", "inst✝⁹ : CompleteSpace F'", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup G'", "inst✝⁶ : NormedSpace ℝ G'", "inst✝⁵ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "hm : m ≤ m0", "inst✝⁴ : SigmaFinite (μ.trim hm)", "f✝ g✝ : α → F'", "s : Set α", "E : Type u_8", "inst✝³ : NormedLatticeAddCommGroup E", "inst✝² : CompleteSpace E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : OrderedSMul ℝ E", "f g : α → E", "hf : Integrable f μ", "hg : Integrable g μ", "hfg : f ≤ᶠ[ae μ] g", "h_nonneg : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∀ (x : E), 0 ≤ x → 0 ≤ (condexpInd E hm μ s) x"], "goal": "condexpL1 hm μ f ≤ condexpL1 hm μ g"}], "premise": [29767, 32190], "state_str": "α : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁵ : RCLike 𝕜\ninst✝¹⁴ : NormedAddCommGroup F\ninst✝¹³ : NormedSpace 𝕜 F\ninst✝¹² : NormedAddCommGroup F'\ninst✝¹¹ : NormedSpace 𝕜 F'\ninst✝¹⁰ : NormedSpace ℝ F'\ninst✝⁹ : CompleteSpace F'\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup G'\ninst✝⁶ : NormedSpace ℝ G'\ninst✝⁵ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\nhm : m ≤ m0\ninst✝⁴ : SigmaFinite (μ.trim hm)\nf✝ g✝ : α → F'\ns : Set α\nE : Type u_8\ninst✝³ : NormedLatticeAddCommGroup E\ninst✝² : CompleteSpace E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : OrderedSMul ℝ E\nf g : α → E\nhf : Integrable f μ\nhg : Integrable g μ\nhfg : f ≤ᶠ[ae μ] g\nh_nonneg : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∀ (x : E), 0 ≤ x → 0 ≤ (condexpInd E hm μ s) x\n⊢ condexpL1 hm μ f ≤ condexpL1 hm μ g"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : Field K", "inst✝³ : Field L", "inst✝² : Field F", "i : K →+* L", "inst✝¹ : Algebra R K", "inst✝ : Algebra R L", "p : R[X]", "h : Splits (algebraMap R K) p", "f : K →ₐ[R] L"], "goal": "Algebra.adjoin R (p.rootSet L) = f.range ↔ Algebra.adjoin R (p.rootSet K) = ⊤"}], "premise": [78328, 101146, 122125], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\ninst✝¹ : Algebra R K\ninst✝ : Algebra R L\np : R[X]\nh : Splits (algebraMap R K) p\nf : K →ₐ[R] L\n⊢ Algebra.adjoin R (p.rootSet L) = f.range ↔ Algebra.adjoin R (p.rootSet K) = ⊤"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : Field K", "inst✝³ : Field L", "inst✝² : Field F", "i : K →+* L", "inst✝¹ : Algebra R K", "inst✝ : Algebra R L", "p : R[X]", "h : Splits (algebraMap R K) p", "f : K →ₐ[R] L"], "goal": "Subalgebra.map f (Algebra.adjoin R (p.rootSet K)) = Subalgebra.map f ⊤ ↔ Algebra.adjoin R (p.rootSet K) = ⊤"}], "premise": [71387, 115860, 122063], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\ninst✝¹ : Algebra R K\ninst✝ : Algebra R L\np : R[X]\nh : Splits (algebraMap R K) p\nf : K →ₐ[R] L\n⊢ Subalgebra.map f (Algebra.adjoin R (p.rootSet K)) = Subalgebra.map f ⊤ ↔ Algebra.adjoin R (p.rootSet K) = ⊤"} +{"state": [{"context": ["P : Type u_1", "L : Type u_2", "inst✝³ : Membership P L", "inst✝² : HasLines P L", "inst✝¹ : Fintype P", "inst✝ : Fintype L", "h : Fintype.card P = Fintype.card L"], "goal": "∃ f, Function.Bijective f ∧ ∀ (l : L), pointCount P l = lineCount L (f l)"}], "premise": [1673, 1674, 2100, 2101, 11238, 53029, 53030, 53031, 107034, 127283, 140822, 141420], "state_str": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nh : Fintype.card P = Fintype.card L\n⊢ ∃ f, Function.Bijective f ∧ ∀ (l : L), pointCount P l = lineCount L (f l)"} +{"state": [{"context": ["a b c d m n k : ℕ", "p q : ℕ → Prop"], "goal": "∀ {n : ℕ}, n ≤ 1 ↔ n = 0 ∨ n = 1"}], "premise": [145038], "state_str": "a b c d m n k : ℕ\np q : ℕ → Prop\n⊢ ∀ {n : ℕ}, n ≤ 1 ↔ n = 0 ∨ n = 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s✝ t : Multiset α", "a : α", "inst✝ : DecidableEq α", "s : Multiset α", "_l : List α"], "goal": "Nodup (Quot.mk Setoid.r _l) ↔ ∀ (a : α), count a (Quot.mk Setoid.r _l) ≤ 1"}], "premise": [134817, 137812, 137828, 138158], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns✝ t : Multiset α\na : α\ninst✝ : DecidableEq α\ns : Multiset α\n_l : List α\n⊢ Nodup (Quot.mk Setoid.r _l) ↔ ∀ (a : α), count a (Quot.mk Setoid.r _l) ≤ 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s✝ t : Multiset α", "a : α", "inst✝ : DecidableEq α", "s : Multiset α", "_l : List α"], "goal": "_l.Nodup ↔ ∀ (a : α), List.count a _l ≤ 1"}], "premise": [129737], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns✝ t : Multiset α\na : α\ninst✝ : DecidableEq α\ns : Multiset α\n_l : List α\n⊢ _l.Nodup ↔ ∀ (a : α), List.count a _l ≤ 1"} +{"state": [{"context": ["K : Type u_1", "inst✝¹ : Field K", "inst✝ : NumberField K", "B : ℝ", "x : ({ w // w.IsReal } → ℝ) × ({ w // w.IsComplex } → ℂ)"], "goal": "convexBodySumFun x = 0 ↔ x = 0"}], "premise": [1674, 23203, 23211, 23334, 106973, 142640], "state_str": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NumberField K\nB : ℝ\nx : ({ w // w.IsReal } → ℝ) × ({ w // w.IsComplex } → ℂ)\n⊢ convexBodySumFun x = 0 ↔ x = 0"} +{"state": [{"context": ["K : Type u_1", "inst✝¹ : Field K", "inst✝ : NumberField K", "B : ℝ", "x : ({ w // w.IsReal } → ℝ) × ({ w // w.IsComplex } → ℂ)"], "goal": "(∀ i ∈ Finset.univ, ↑i.mult * (normAtPlace i) x = 0) ↔ ∀ (w : InfinitePlace K), (normAtPlace w) x = 0"}], "premise": [1674, 23335, 109065, 109084, 111256], "state_str": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NumberField K\nB : ℝ\nx : ({ w // w.IsReal } → ℝ) × ({ w // w.IsComplex } → ℂ)\n⊢ (∀ i ∈ Finset.univ, ↑i.mult * (normAtPlace i) x = 0) ↔ ∀ (w : InfinitePlace K), (normAtPlace w) x = 0"} +{"state": [{"context": ["K : Type u_1", "inst✝¹ : Field K", "inst✝ : NumberField K", "B : ℝ", "x : ({ w // w.IsReal } → ℝ) × ({ w // w.IsComplex } → ℂ)"], "goal": "(∀ w ∈ Finset.univ, (normAtPlace w) x = 0) ↔ ∀ (w : InfinitePlace K), (normAtPlace w) x = 0"}], "premise": [1200, 140822], "state_str": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NumberField K\nB : ℝ\nx : ({ w // w.IsReal } → ℝ) × ({ w // w.IsComplex } → ℂ)\n⊢ (∀ w ∈ Finset.univ, (normAtPlace w) x = 0) ↔ ∀ (w : InfinitePlace K), (normAtPlace w) x = 0"} +{"state": [{"context": ["M : Type u", "N : Type v", "inst✝¹ : Monoid M", "inst✝ : Monoid N", "e : M ≃* N"], "goal": "𝟭 (SingleObj M) = e.toMonoidHom.toFunctor ⋙ e.symm.toMonoidHom.toFunctor"}], "premise": [99131, 99132], "state_str": "M : Type u\nN : Type v\ninst✝¹ : Monoid M\ninst✝ : Monoid N\ne : M ≃* N\n⊢ 𝟭 (SingleObj M) = e.toMonoidHom.toFunctor ⋙ e.symm.toMonoidHom.toFunctor"} +{"state": [{"context": ["M : Type u", "N : Type v", "inst✝¹ : Monoid M", "inst✝ : Monoid N", "e : M ≃* N"], "goal": "e.symm.toMonoidHom.toFunctor ⋙ e.toMonoidHom.toFunctor = 𝟭 (SingleObj N)"}], "premise": [99131, 99132], "state_str": "M : Type u\nN : Type v\ninst✝¹ : Monoid M\ninst✝ : Monoid N\ne : M ≃* N\n⊢ e.symm.toMonoidHom.toFunctor ⋙ e.toMonoidHom.toFunctor = 𝟭 (SingleObj N)"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "M : Type u_1", "inst✝¹ : Category.{u_2, u_1} M", "inst✝ : MonoidalCategory M", "F : MonoidalFunctor M (C ⥤ C)", "m n n' : M", "g : n ⟶ n'", "X : C"], "goal": "(F.μIso m n).inv.app X ≫ (F.map g).app ((F.obj m).obj X) = (F.map (m ◁ g)).app X ≫ (F.μIso m n').inv.app X"}], "premise": [88800, 88801, 96173], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\nM : Type u_1\ninst✝¹ : Category.{u_2, u_1} M\ninst✝ : MonoidalCategory M\nF : MonoidalFunctor M (C ⥤ C)\nm n n' : M\ng : n ⟶ n'\nX : C\n⊢ (F.μIso m n).inv.app X ≫ (F.map g).app ((F.obj m).obj X) = (F.map (m ◁ g)).app X ≫ (F.μIso m n').inv.app X"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "inst✝ : DecidableEq α", "s✝ t : Multiset α", "a✝ b a : α", "s : Multiset α", "h : a ∈ s"], "goal": "s.erase a < s"}], "premise": [137880], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\ninst✝ : DecidableEq α\ns✝ t : Multiset α\na✝ b a : α\ns : Multiset α\nh : a ∈ s\n⊢ s.erase a < s"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : GeneralizedBooleanAlgebra α", "inst✝² : DecidableRel Disjoint", "inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1", "s : Finset α", "u v a b : α", "inst✝ : DecidableEq α", "ha : a ∈ 𝓒 u v s", "hva : v ≤ a", "hua : Disjoint u a"], "goal": "(a ⊔ u) \\ v ∈ s"}], "premise": [50780, 50786], "state_str": "α : Type u_1\ninst✝³ : GeneralizedBooleanAlgebra α\ninst✝² : DecidableRel Disjoint\ninst✝¹ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b : α\ninst✝ : DecidableEq α\nha : a ∈ 𝓒 u v s\nhva : v ≤ a\nhua : Disjoint u a\n⊢ (a ⊔ u) \\ v ∈ s"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : GeneralizedBooleanAlgebra α", "inst✝² : DecidableRel Disjoint", "inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1", "s : Finset α", "u v b✝ : α", "inst✝ : DecidableEq α", "b : α", "hb : b ∈ s", "hva : v ≤ compress u v b", "hua : Disjoint u (compress u v b)", "left✝ : compress u v b ∉ s"], "goal": "(compress u v b ⊔ u) \\ v ∈ s"}], "premise": [13473, 13474, 14518, 15098, 15104, 50780, 50784], "state_str": "case inr.intro.intro.intro\nα : Type u_1\ninst✝³ : GeneralizedBooleanAlgebra α\ninst✝² : DecidableRel Disjoint\ninst✝¹ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v b✝ : α\ninst✝ : DecidableEq α\nb : α\nhb : b ∈ s\nhva : v ≤ compress u v b\nhua : Disjoint u (compress u v b)\nleft✝ : compress u v b ∉ s\n⊢ (compress u v b ⊔ u) \\ v ∈ s"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : GeneralizedBooleanAlgebra α", "inst✝² : DecidableRel Disjoint", "inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1", "s : Finset α", "u v b✝ : α", "inst✝ : DecidableEq α", "b : α", "hb : b ∈ s", "hva : v ≤ compress u v b", "hua : Disjoint u (compress u v b)", "left✝ : compress u v b ∉ s", "hu : u = ⊥"], "goal": "(compress u v b ⊔ u) \\ v ∈ s"}], "premise": [12013, 13473, 13474, 50780, 50784], "state_str": "case inr.intro.intro.intro\nα : Type u_1\ninst✝³ : GeneralizedBooleanAlgebra α\ninst✝² : DecidableRel Disjoint\ninst✝¹ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v b✝ : α\ninst✝ : DecidableEq α\nb : α\nhb : b ∈ s\nhva : v ≤ compress u v b\nhua : Disjoint u (compress u v b)\nleft✝ : compress u v b ∉ s\nhu : u = ⊥\n⊢ (compress u v b ⊔ u) \\ v ∈ s"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : GeneralizedBooleanAlgebra α", "inst✝² : DecidableRel Disjoint", "inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1", "s : Finset α", "u v b✝ : α", "inst✝ : DecidableEq α", "b : α", "hb : b ∈ s", "hva : v ≤ compress u v b", "hua : Disjoint u (compress u v b)", "left✝ : compress u v b ∉ s", "hu : u = ⊥", "hv : v = ⊥"], "goal": "(compress u v b ⊔ u) \\ v ∈ s"}], "premise": [15083, 18835, 50782], "state_str": "case inr.intro.intro.intro\nα : Type u_1\ninst✝³ : GeneralizedBooleanAlgebra α\ninst✝² : DecidableRel Disjoint\ninst✝¹ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v b✝ : α\ninst✝ : DecidableEq α\nb : α\nhb : b ∈ s\nhva : v ≤ compress u v b\nhua : Disjoint u (compress u v b)\nleft✝ : compress u v b ∉ s\nhu : u = ⊥\nhv : v = ⊥\n⊢ (compress u v b ⊔ u) \\ v ∈ s"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "M : Type u_4", "N : Type u_5", "G : Type u_6", "k : Type u_7", "R : Type u_8", "inst✝¹ : CommMonoid M", "inst✝ : OrderedCommMonoid N", "f✝ g : ι → N", "s✝ t s : Finset ι", "f : ι → N", "n : N", "h : ∀ x ∈ s, f x ≤ n"], "goal": "s.prod f ≤ n ^ s.card"}], "premise": [106507], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nM : Type u_4\nN : Type u_5\nG : Type u_6\nk : Type u_7\nR : Type u_8\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf✝ g : ι → N\ns✝ t s : Finset ι\nf : ι → N\nn : N\nh : ∀ x ∈ s, f x ≤ n\n⊢ s.prod f ≤ n ^ s.card"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "f✝ : α → β → β", "op : α → α → α", "inst✝¹ : Monoid β", "inst✝ : Monoid γ", "a : α", "f : α → β"], "goal": "{a}.Pairwise fun a b => Commute (f a) (f b)"}], "premise": [133090], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\nf✝ : α → β → β\nop : α → α → α\ninst✝¹ : Monoid β\ninst✝ : Monoid γ\na : α\nf : α → β\n⊢ {a}.Pairwise fun a b => Commute (f a) (f b)"} +{"state": [{"context": ["𝕜 : Type u", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedSpace 𝕜 F", "E : Type w", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "G : Type u_1", "inst✝⁵ : NormedAddCommGroup G", "inst✝⁴ : NormedSpace 𝕜 G", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L L₁ L₂ : Filter 𝕜", "𝕜' : Type u_2", "𝔸 : Type u_3", "inst✝³ : NormedField 𝕜'", "inst✝² : NormedRing 𝔸", "inst✝¹ : NormedAlgebra 𝕜 𝕜'", "inst✝ : NormedAlgebra 𝕜 𝔸", "c d✝ : 𝕜 → 𝔸", "c' d' : 𝔸", "u v : 𝕜 → 𝕜'", "hc : HasDerivAt c c' x", "d : 𝔸"], "goal": "HasDerivAt (fun y => c y * d) (c' * d) x"}], "premise": [44368], "state_str": "𝕜 : Type u\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nE : Type w\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nG : Type u_1\ninst✝⁵ : NormedAddCommGroup G\ninst✝⁴ : NormedSpace 𝕜 G\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\n𝕜' : Type u_2\n𝔸 : Type u_3\ninst✝³ : NormedField 𝕜'\ninst✝² : NormedRing 𝔸\ninst✝¹ : NormedAlgebra 𝕜 𝕜'\ninst✝ : NormedAlgebra 𝕜 𝔸\nc d✝ : 𝕜 → 𝔸\nc' d' : 𝔸\nu v : 𝕜 → 𝕜'\nhc : HasDerivAt c c' x\nd : 𝔸\n⊢ HasDerivAt (fun y => c y * d) (c' * d) x"} +{"state": [{"context": ["𝕜 : Type u", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedSpace 𝕜 F", "E : Type w", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "G : Type u_1", "inst✝⁵ : NormedAddCommGroup G", "inst✝⁴ : NormedSpace 𝕜 G", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L L₁ L₂ : Filter 𝕜", "𝕜' : Type u_2", "𝔸 : Type u_3", "inst✝³ : NormedField 𝕜'", "inst✝² : NormedRing 𝔸", "inst✝¹ : NormedAlgebra 𝕜 𝕜'", "inst✝ : NormedAlgebra 𝕜 𝔸", "c d✝ : 𝕜 → 𝔸", "c' d' : 𝔸", "u v : 𝕜 → 𝕜'", "hc : HasDerivWithinAt c c' univ x", "d : 𝔸"], "goal": "HasDerivWithinAt (fun y => c y * d) (c' * d) univ x"}], "premise": [45310], "state_str": "𝕜 : Type u\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nE : Type w\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nG : Type u_1\ninst✝⁵ : NormedAddCommGroup G\ninst✝⁴ : NormedSpace 𝕜 G\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\n𝕜' : Type u_2\n𝔸 : Type u_3\ninst✝³ : NormedField 𝕜'\ninst✝² : NormedRing 𝔸\ninst✝¹ : NormedAlgebra 𝕜 𝕜'\ninst✝ : NormedAlgebra 𝕜 𝔸\nc d✝ : 𝕜 → 𝔸\nc' d' : 𝔸\nu v : 𝕜 → 𝕜'\nhc : HasDerivWithinAt c c' univ x\nd : 𝔸\n⊢ HasDerivWithinAt (fun y => c y * d) (c' * d) univ x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "K : Type u_3", "inst✝ : DivisionSemiring α", "a b c d : α", "h : b ≠ 0"], "goal": "(b + a) / b = 1 + a / b"}], "premise": [108408, 115817], "state_str": "α : Type u_1\nβ : Type u_2\nK : Type u_3\ninst✝ : DivisionSemiring α\na b c d : α\nh : b ≠ 0\n⊢ (b + a) / b = 1 + a / b"} +{"state": [{"context": ["α : Sort u_1", "n : Nat", "f : α → Fin (n + 1) → α", "x : α"], "goal": "foldl (n + 1) f x = f (foldl n (fun x x_1 => f x x_1.castSucc) x) (last n)"}], "premise": [464], "state_str": "α : Sort u_1\nn : Nat\nf : α → Fin (n + 1) → α\nx : α\n⊢ foldl (n + 1) f x = f (foldl n (fun x x_1 => f x x_1.castSucc) x) (last n)"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : MetricSpace P", "inst✝¹ : NormedAddTorsor V P", "hd2 : Fact (finrank ℝ V = 2)", "inst✝ : Module.Oriented ℝ V (Fin 2)", "p₁ p₂ p₃ : P"], "goal": "(∡ p₁ p₂ p₃).sign = 0 ↔ Collinear ℝ {p₁, p₂, p₃}"}], "premise": [1713, 38402, 70349], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : MetricSpace P\ninst✝¹ : NormedAddTorsor V P\nhd2 : Fact (finrank ℝ V = 2)\ninst✝ : Module.Oriented ℝ V (Fin 2)\np₁ p₂ p₃ : P\n⊢ (∡ p₁ p₂ p₃).sign = 0 ↔ Collinear ℝ {p₁, p₂, p₃}"} +{"state": [{"context": ["β : Type w", "α : Type w₂", "γ : Type w₃", "C : Type u", "inst✝³ : Category.{v, u} C", "D : Type u₂", "inst✝² : Category.{v₂, u₂} D", "G : C ⥤ D", "f : β → C", "inst✝¹ : HasCoproduct f", "inst✝ : HasCoproduct fun b => G.obj (f b)", "P : C", "g : (j : β) → f j ⟶ P", "j : β"], "goal": "Sigma.ι (fun b => G.obj (f b)) j ≫ sigmaComparison G f ≫ G.map (Sigma.desc g) = Sigma.ι (fun b => G.obj (f b)) j ≫ Sigma.desc fun j => G.map (g j)"}], "premise": [92502, 93392, 93678, 93679, 99919], "state_str": "case h\nβ : Type w\nα : Type w₂\nγ : Type w₃\nC : Type u\ninst✝³ : Category.{v, u} C\nD : Type u₂\ninst✝² : Category.{v₂, u₂} D\nG : C ⥤ D\nf : β → C\ninst✝¹ : HasCoproduct f\ninst✝ : HasCoproduct fun b => G.obj (f b)\nP : C\ng : (j : β) → f j ⟶ P\nj : β\n⊢ Sigma.ι (fun b => G.obj (f b)) j ≫ sigmaComparison G f ≫ G.map (Sigma.desc g) =\n Sigma.ι (fun b => G.obj (f b)) j ≫ Sigma.desc fun j => G.map (g j)"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝² : TopologicalSpace X", "inst✝¹ : FirstCountableTopology X", "inst✝ : R1Space X", "x y : X", "K U V : Set X", "hK : IsCompact K", "hU : IsOpen U", "hV : IsOpen V", "h2K : K ⊆ U ∪ V"], "goal": "∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"}], "premise": [64785], "state_str": "X : Type u_1\nY : Type u_2\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\ninst✝ : R1Space X\nx y : X\nK U V : Set X\nhK : IsCompact K\nhU : IsOpen U\nhV : IsOpen V\nh2K : K ⊆ U ∪ V\n⊢ ∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝² : TopologicalSpace X", "inst✝¹ : FirstCountableTopology X", "inst✝ : R1Space X", "x y : X", "K U V : Set X", "hK : IsCompact K", "hU : IsOpen U", "hV : IsOpen V", "h2K : K ⊆ U ∪ V", "hK' : IsCompact (closure K)"], "goal": "∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"}], "premise": [55352, 55373, 55409, 58061, 64784, 64788, 133565, 133654, 133667], "state_str": "X : Type u_1\nY : Type u_2\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\ninst✝ : R1Space X\nx y : X\nK U V : Set X\nhK : IsCompact K\nhU : IsOpen U\nhV : IsOpen V\nh2K : K ⊆ U ∪ V\nhK' : IsCompact (closure K)\n⊢ ∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝² : TopologicalSpace X", "inst✝¹ : FirstCountableTopology X", "inst✝ : R1Space X", "x y : X", "K U V : Set X", "hK : IsCompact K", "hU : IsOpen U", "hV : IsOpen V", "h2K : K ⊆ U ∪ V", "hK' : IsCompact (closure K)", "this : SeparatedNhds (closure K \\ U) (closure K \\ V)"], "goal": "∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"}], "premise": [55410, 64649, 133650], "state_str": "X : Type u_1\nY : Type u_2\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\ninst✝ : R1Space X\nx y : X\nK U V : Set X\nhK : IsCompact K\nhU : IsOpen U\nhV : IsOpen V\nh2K : K ⊆ U ∪ V\nhK' : IsCompact (closure K)\nthis : SeparatedNhds (closure K \\ U) (closure K \\ V)\n⊢ ∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝² : TopologicalSpace X", "inst✝¹ : FirstCountableTopology X", "inst✝ : R1Space X", "x y : X", "K U V : Set X", "hK : IsCompact K", "hU : IsOpen U", "hV : IsOpen V", "h2K : K ⊆ U ∪ V", "hK' : IsCompact (closure K)", "this : SeparatedNhds (closure K \\ U) (closure K \\ V)", "O₁ O₂ : Set X", "h1O₁ : IsOpen O₁", "h1O₂ : IsOpen O₂", "h2O₁ : K \\ U ⊆ O₁", "h2O₂ : K \\ V ⊆ O₂", "hO : Disjoint O₁ O₂"], "goal": "∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"}], "premise": [1673, 58061, 133566, 133655, 133665, 133666], "state_str": "case intro.intro.intro.intro.intro.intro\nX : Type u_1\nY : Type u_2\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\ninst✝ : R1Space X\nx y : X\nK U V : Set X\nhK : IsCompact K\nhU : IsOpen U\nhV : IsOpen V\nh2K : K ⊆ U ∪ V\nhK' : IsCompact (closure K)\nthis : SeparatedNhds (closure K \\ U) (closure K \\ V)\nO₁ O₂ : Set X\nh1O₁ : IsOpen O₁\nh1O₂ : IsOpen O₂\nh2O₁ : K \\ U ⊆ O₁\nh2O₂ : K \\ V ⊆ O₂\nhO : Disjoint O₁ O₂\n⊢ ∃ K₁ K₂, IsCompact K₁ ∧ IsCompact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂"} +{"state": [{"context": ["R : Type u", "I : Type v", "inst✝ : CommSemiring R", "x y z : R", "s : I → R", "t : Finset I"], "goal": "(∀ i ∈ t, IsCoprime x (s i)) → IsCoprime x (∏ i ∈ t, s i)"}], "premise": [74060, 74467], "state_str": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt : Finset I\n⊢ (∀ i ∈ t, IsCoprime x (s i)) → IsCoprime x (∏ i ∈ t, s i)"} +{"state": [{"context": ["Ω : Type u_1", "β : Type u_2", "ι : Type u_3", "m : MeasurableSpace Ω", "μ : Measure Ω", "τ σ : Ω → ι", "E : Type u_4", "p : ℝ≥0∞", "u : ι → Ω → E", "inst✝¹ : LinearOrder ι", "inst✝ : AddCommMonoid E", "s : Finset ι", "n : ι", "hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s", "ω : Ω"], "goal": "stoppedProcess u τ n ω = ({a | n ≤ τ a}.indicator (u n) + ∑ i ∈ Finset.filter (fun x => x < n) s, {ω | τ ω = i}.indicator (u i)) ω"}], "premise": [120650, 123837], "state_str": "case h\nΩ : Type u_1\nβ : Type u_2\nι : Type u_3\nm : MeasurableSpace Ω\nμ : Measure Ω\nτ σ : Ω → ι\nE : Type u_4\np : ℝ≥0∞\nu : ι → Ω → E\ninst✝¹ : LinearOrder ι\ninst✝ : AddCommMonoid E\ns : Finset ι\nn : ι\nhbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s\nω : Ω\n⊢ stoppedProcess u τ n ω =\n ({a | n ≤ τ a}.indicator (u n) + ∑ i ∈ Finset.filter (fun x => x < n) s, {ω | τ ω = i}.indicator (u i)) ω"} +{"state": [{"context": ["Ω : Type u_1", "β : Type u_2", "ι : Type u_3", "m : MeasurableSpace Ω", "μ : Measure Ω", "τ σ : Ω → ι", "E : Type u_4", "p : ℝ≥0∞", "u : ι → Ω → E", "inst✝¹ : LinearOrder ι", "inst✝ : AddCommMonoid E", "s : Finset ι", "n : ι", "hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s", "ω : Ω"], "goal": "stoppedProcess u τ n ω = {a | n ≤ τ a}.indicator (u n) ω + ∑ c ∈ Finset.filter (fun x => x < n) s, {ω | τ ω = c}.indicator (u c) ω"}], "premise": [14317], "state_str": "case h\nΩ : Type u_1\nβ : Type u_2\nι : Type u_3\nm : MeasurableSpace Ω\nμ : Measure Ω\nτ σ : Ω → ι\nE : Type u_4\np : ℝ≥0∞\nu : ι → Ω → E\ninst✝¹ : LinearOrder ι\ninst✝ : AddCommMonoid E\ns : Finset ι\nn : ι\nhbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s\nω : Ω\n⊢ stoppedProcess u τ n ω =\n {a | n ≤ τ a}.indicator (u n) ω + ∑ c ∈ Finset.filter (fun x => x < n) s, {ω | τ ω = c}.indicator (u c) ω"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : Topology.IsUpperSet α", "s✝ s : Set α"], "goal": "closure s = ↑(lowerClosure s)"}], "premise": [19966], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : Topology.IsUpperSet α\ns✝ s : Set α\n⊢ closure s = ↑(lowerClosure s)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : Topology.IsUpperSet α", "s✝ s : Set α"], "goal": "closure s ⊆ ↑(lowerClosure s) ∧ ↑(lowerClosure s) ⊆ closure s"}], "premise": [1673, 21147, 54165, 55409, 55410], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : Topology.IsUpperSet α\ns✝ s : Set α\n⊢ closure s ⊆ ↑(lowerClosure s) ∧ ↑(lowerClosure s) ⊆ closure s"} +{"state": [{"context": ["s : Set Ordinal.{u}", "a : Ordinal.{u}"], "goal": "IsClosed s ↔ ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s"}], "premise": [1674, 2045, 48491], "state_str": "s : Set Ordinal.{u}\na : Ordinal.{u}\n⊢ IsClosed s ↔ ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s"} +{"state": [{"context": ["s : Set Ordinal.{u}", "a : Ordinal.{u}"], "goal": "(∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) → IsClosed s"}], "premise": [55425], "state_str": "case mpr\ns : Set Ordinal.{u}\na : Ordinal.{u}\n⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) → IsClosed s"} +{"state": [{"context": ["s : Set Ordinal.{u}", "a : Ordinal.{u}", "h : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s", "x : Ordinal.{u}", "hx : x ∈ closure s"], "goal": "x ∈ s"}], "premise": [1673, 48490], "state_str": "case mpr\ns : Set Ordinal.{u}\na : Ordinal.{u}\nh : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s\nx : Ordinal.{u}\nhx : x ∈ closure s\n⊢ x ∈ s"} +{"state": [{"context": ["α : Type u_1", "M : Type u_2", "N : Type u_3", "P : Type u_4", "R : Type u_5", "S : Type u_6", "inst✝⁷ : Semiring R", "inst✝⁶ : Semiring S", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "inst✝³ : AddCommMonoid N", "inst✝² : Module R N", "inst✝¹ : AddCommMonoid P", "inst✝ : Module R P", "ι : Type u_7", "κ : Type u_8", "e₁ : ι ≃ κ", "e₂ : M ≃ₗ[R] N", "k : κ", "n : N"], "goal": "(lcongr e₁ e₂).symm (single k n) = single (e₁.symm k) (e₂.symm n)"}], "premise": [110557], "state_str": "α : Type u_1\nM : Type u_2\nN : Type u_3\nP : Type u_4\nR : Type u_5\nS : Type u_6\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nι : Type u_7\nκ : Type u_8\ne₁ : ι ≃ κ\ne₂ : M ≃ₗ[R] N\nk : κ\nn : N\n⊢ (lcongr e₁ e₂).symm (single k n) = single (e₁.symm k) (e₂.symm n)"} +{"state": [{"context": ["R' : Type u'", "R : Type u", "A : Type v", "B : Type w", "C : Type w'", "inst✝⁶ : CommSemiring R", "inst✝⁵ : Semiring A", "inst✝⁴ : Algebra R A", "inst✝³ : Semiring B", "inst✝² : Algebra R B", "inst✝¹ : Semiring C", "inst✝ : Algebra R C", "φ✝ φ : A →ₐ[R] B", "x✝ : B"], "goal": "x✝ ∈ ↑φ.range ↔ x✝ ∈ Set.range ⇑φ"}], "premise": [122081, 128379], "state_str": "case h\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : Semiring A\ninst✝⁴ : Algebra R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : Semiring C\ninst✝ : Algebra R C\nφ✝ φ : A →ₐ[R] B\nx✝ : B\n⊢ x✝ ∈ ↑φ.range �� x✝ ∈ Set.range ⇑φ"} +{"state": [{"context": ["R' : Type u'", "R : Type u", "A : Type v", "B : Type w", "C : Type w'", "inst✝⁶ : CommSemiring R", "inst✝⁵ : Semiring A", "inst✝⁴ : Algebra R A", "inst✝³ : Semiring B", "inst✝² : Algebra R B", "inst✝¹ : Semiring C", "inst✝ : Algebra R C", "φ✝ φ : A →ₐ[R] B", "x✝ : B"], "goal": "(∃ x, φ x = x✝) ↔ x✝ ∈ Set.range ⇑φ"}], "premise": [1713], "state_str": "case h\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : Semiring A\ninst✝⁴ : Algebra R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : Semiring C\ninst✝ : Algebra R C\nφ✝ φ : A →ₐ[R] B\nx✝ : B\n⊢ (∃ x, φ x = x✝) ↔ x✝ ∈ Set.range ⇑φ"} +{"state": [{"context": ["L : Language", "ι : Type v", "inst✝³ : Preorder ι", "G : ι → Type w", "inst✝² : (i : ι) → L.Structure (G i)", "f : (i j : ι) → i ≤ j → G i ↪[L] G j", "inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1", "inst✝ : DirectedSystem G fun i j h => ⇑(f i j h)", "i fst✝¹ : ι", "snd✝¹ : G fst✝¹", "hx : ⟨fst✝¹, snd✝¹⟩.fst ≤ i", "fst✝ : ι", "snd✝ : G fst✝", "hy : ⟨fst✝, snd✝⟩.fst ≤ i", "j : ι", "w✝¹ : fst✝¹ ≤ j", "w✝ : fst✝ ≤ j", "h✝ : (f fst✝¹ j w✝¹) snd✝¹ = (f fst✝ j w✝) snd✝", "k : ι", "ik : i ≤ k", "jk : j ≤ k", "h : (f j k jk) ((f fst✝¹ j w✝¹) snd✝¹) = (f j k jk) ((f fst✝ j w✝) snd✝)"], "goal": "(f ⟨fst✝¹, snd✝¹⟩.fst i hx) ⟨fst✝¹, snd✝¹⟩.snd = (f ⟨fst✝, snd✝⟩.fst i hy) ⟨fst✝, snd✝⟩.snd"}], "premise": [24286], "state_str": "case mk.mk.intro.intro.intro.intro.intro\nL : Language\nι : Type v\ninst✝³ : Preorder ι\nG : ι → Type w\ninst✝² : (i : ι) → L.Structure (G i)\nf : (i j : ι) → i ≤ j → G i ↪[L] G j\ninst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1\ninst✝ : DirectedSystem G fun i j h => ⇑(f i j h)\ni fst✝¹ : ι\nsnd✝¹ : G fst✝¹\nhx : ⟨fst✝¹, snd✝¹⟩.fst ≤ i\nfst✝ : ι\nsnd✝ : G fst✝\nhy : ⟨fst✝, snd✝⟩.fst ≤ i\nj : ι\nw✝¹ : fst✝¹ ≤ j\nw✝ : fst✝ ≤ j\nh✝ : (f fst✝¹ j w✝¹) snd✝¹ = (f fst✝ j w✝) snd✝\nk : ι\nik : i ≤ k\njk : j ≤ k\nh : (f j k jk) ((f fst✝¹ j w✝¹) snd✝¹) = (f j k jk) ((f fst✝ j w✝) snd✝)\n⊢ (f ⟨fst✝¹, snd✝¹⟩.fst i hx) ⟨fst✝¹, snd✝¹⟩.snd = (f ⟨fst✝, snd✝⟩.fst i hy) ⟨fst✝, snd✝⟩.snd"} +{"state": [{"context": ["L : Language", "ι : Type v", "inst✝³ : Preorder ι", "G : ι → Type w", "inst✝² : (i : ι) → L.Structure (G i)", "f : (i j : ι) → i ≤ j → G i ↪[L] G j", "inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1", "inst✝ : DirectedSystem G fun i j h => ⇑(f i j h)", "i fst✝¹ : ι", "snd✝¹ : G fst✝¹", "hx : ⟨fst✝¹, snd✝¹⟩.fst ≤ i", "fst✝ : ι", "snd✝ : G fst✝", "hy : ⟨fst✝, snd✝⟩.fst ≤ i", "j : ι", "w✝¹ : fst✝¹ ≤ j", "w✝ : fst✝ ≤ j", "h✝ : (f fst✝¹ j w✝¹) snd✝¹ = (f fst✝ j w✝) snd✝", "k : ι", "ik : i ≤ k", "jk : j ≤ k", "h : (f j k jk) ((f fst✝¹ j w✝¹) snd✝¹) = (f j k jk) ((f fst✝ j w✝) snd✝)"], "goal": "(f i k ik) ((f ⟨fst✝¹, snd✝¹⟩.fst i hx) ⟨fst✝¹, snd✝¹⟩.snd) = (f i k ik) ((f ⟨fst✝, snd✝⟩.fst i hy) ⟨fst✝, snd✝⟩.snd)"}], "premise": [25033], "state_str": "case mk.mk.intro.intro.intro.intro.intro.a\nL : Language\nι : Type v\ninst✝³ : Preorder ι\nG : ι → Type w\ninst✝² : (i : ι) → L.Structure (G i)\nf : (i j : ι) → i ≤ j → G i ↪[L] G j\ninst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1\ninst✝ : DirectedSystem G fun i j h => ⇑(f i j h)\ni fst✝¹ : ι\nsnd✝¹ : G fst✝¹\nhx : ⟨fst✝¹, snd✝¹⟩.fst ≤ i\nfst✝ : ι\nsnd✝ : G fst✝\nhy : ⟨fst✝, snd✝⟩.fst ≤ i\nj : ι\nw✝¹ : fst✝¹ ≤ j\nw✝ : fst✝ ≤ j\nh✝ : (f fst✝¹ j w✝¹) snd✝¹ = (f fst✝ j w✝) snd✝\nk : ι\nik : i ≤ k\njk : j ≤ k\nh : (f j k jk) ((f fst✝¹ j w✝¹) snd✝¹) = (f j k jk) ((f fst✝ j w✝) snd✝)\n⊢ (f i k ik) ((f ⟨fst✝¹, snd✝¹⟩.fst i hx) ⟨fst✝¹, snd✝¹⟩.snd) = (f i k ik) ((f ⟨fst✝, snd✝⟩.fst i hy) ⟨fst✝, snd✝⟩.snd)"} +{"state": [{"context": ["α : Type u_1", "s t : Finset α", "a : α"], "goal": "IsAtom s ↔ ∃ a, s = {a}"}], "premise": [1717, 18915, 136906], "state_str": "α : Type u_1\ns t : Finset α\na : α\n⊢ IsAtom s ↔ ∃ a, s = {a}"} +{"state": [{"context": ["R M : Type u", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "I : Ideal R", "F F' : I.Filtration M", "h : F.Stable"], "goal": "Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(F.N i)) = F.submodule"}], "premise": [77317, 86700, 109628], "state_str": "R M : Type u\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI : Ideal R\nF F' : I.Filtration M\nh : F.Stable\n⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(F.N i)) = F.submodule"} +{"state": [{"context": ["R M : Type u", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "I : Ideal R", "F F' : I.Filtration M", "h : F.Stable"], "goal": "Submodule.span ↥(reesAlgebra I) ↑F.submodule = F.submodule"}], "premise": [86688], "state_str": "R M : Type u\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI : Ideal R\nF F' : I.Filtration M\nh : F.Stable\n⊢ Submodule.span ↥(reesAlgebra I) ↑F.submodule = F.submodule"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : TopologicalSpace α", "inst✝ : TopologicalSpace β", "f : α → β", "s : Set β", "ι : Type u_3", "U : ι → Opens β", "hU : iSup U = ⊤", "h : Continuous f"], "goal": "ClosedEmbedding f ↔ ∀ (i : ι), ClosedEmbedding ((U i).carrier.restrictPreimage f)"}], "premise": [54009], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns : Set β\nι : Type u_3\nU : ι → Opens β\nhU : iSup U = ⊤\nh : Continuous f\n⊢ ClosedEmbedding f ↔ ∀ (i : ι), ClosedEmbedding ((U i).carrier.restrictPreimage f)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : TopologicalSpace α", "inst✝ : TopologicalSpace β", "f : α → β", "s : Set β", "ι : Type u_3", "U : ι → Opens β", "hU : iSup U = ⊤", "h : Continuous f"], "goal": "Embedding f ∧ IsClosed (range f) ↔ ∀ (i : ι), Embedding ((U i).carrier.restrictPreimage f) ∧ IsClosed (range ((U i).carrier.restrictPreimage f))"}], "premise": [2026], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns : Set β\nι : Type u_3\nU : ι → Opens β\nhU : iSup U = ⊤\nh : Continuous f\n⊢ Embedding f ∧ IsClosed (range f) ↔\n ∀ (i : ι), Embedding ((U i).carrier.restrictPreimage f) ∧ IsClosed (range ((U i).carrier.restrictPreimage f))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : TopologicalSpace α", "inst✝ : TopologicalSpace β", "f : α → β", "s : Set β", "ι : Type u_3", "U : ι → Opens β", "hU : iSup U = ⊤", "h : Continuous f"], "goal": "Embedding f ∧ IsClosed (range f) ↔ (∀ (x : ι), Embedding ((U x).carrier.restrictPreimage f)) ∧ ∀ (x : ι), IsClosed (range ((U x).carrier.restrictPreimage f))"}], "premise": [1963], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns : Set β\nι : Type u_3\nU : ι → Opens β\nhU : iSup U = ⊤\nh : Continuous f\n⊢ Embedding f ∧ IsClosed (range f) ↔\n (∀ (x : ι), Embedding ((U x).carrier.restrictPreimage f)) ∧\n ∀ (x : ι), IsClosed (range ((U x).carrier.restrictPreimage f))"} +{"state": [{"context": ["x : ℝ", "hx : 0 < x"], "goal": "HasStrictDerivAt log x⁻¹ x"}], "premise": [11234, 14284, 16027, 37865, 37923, 39394, 43844, 55910, 149295], "state_str": "x : ℝ\nhx : 0 < x\n⊢ HasStrictDerivAt log x⁻¹ x"} +{"state": [{"context": ["x : ℝ", "hx : 0 < x", "this : HasStrictDerivAt log (rexp (log x))⁻¹ x"], "goal": "HasStrictDerivAt log x⁻¹ x"}], "premise": [37865], "state_str": "x : ℝ\nhx : 0 < x\nthis : HasStrictDerivAt log (rexp (log x))⁻¹ x\n⊢ HasStrictDerivAt log x⁻¹ x"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "X Y Z : Scheme", "𝒰 : X.OpenCover", "f : X ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (i : 𝒰.J), HasPullback (𝒰.map i ≫ f) g", "i j k : 𝒰.J"], "goal": "t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst (fV 𝒰 f g i j) (fV 𝒰 f g i k) ≫ pullback.snd (pullback.fst (𝒰.map i ≫ f) g ≫ 𝒰.map i) (𝒰.map j) = pullback.fst (fV 𝒰 f g i j) (fV 𝒰 f g i k) ≫ pullback.snd (pullback.fst (𝒰.map i ≫ f) g ≫ 𝒰.map i) (𝒰.map j)"}], "premise": [130194, 130196, 130199], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\nX Y Z : Scheme\n𝒰 : X.OpenCover\nf : X ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (i : 𝒰.J), HasPullback (𝒰.map i ≫ f) g\ni j k : 𝒰.J\n⊢ t' 𝒰 f g i j k ≫\n t' 𝒰 f g j k i ≫\n t' 𝒰 f g k i j ≫\n pullback.fst (fV 𝒰 f g i j) (fV 𝒰 f g i k) ≫ pullback.snd (pullback.fst (𝒰.map i ≫ f) g ≫ 𝒰.map i) (𝒰.map j) =\n pullback.fst (fV 𝒰 f g i j) (fV 𝒰 f g i k) ≫ pullback.snd (pullback.fst (𝒰.map i ≫ f) g ≫ 𝒰.map i) (𝒰.map j)"} +{"state": [{"context": ["x : ℝ", "hx this : |x| ≤ 1"], "goal": "|rexp x - 1| ≤ 2 * |x|"}], "premise": [149317], "state_str": "x : ℝ\nhx this : |x| ≤ 1\n⊢ |rexp x - 1| ≤ 2 * |x|"} +{"state": [{"context": ["x : ℝ", "hx this✝ : |x| ≤ 1", "this : Complex.abs (cexp ↑x - 1) ≤ 2 * Complex.abs ↑x"], "goal": "|rexp x - 1| ≤ 2 * |x|"}], "premise": [148226, 148293, 148387, 149093], "state_str": "x : ℝ\nhx this✝ : |x| ≤ 1\nthis : Complex.abs (cexp ↑x - 1) ≤ 2 * Complex.abs ↑x\n⊢ |rexp x - 1| ≤ 2 * |x|"} +{"state": [{"context": ["n : ℤ"], "goal": "↑↑n.natAbs = ↑(nnabs ↑n)"}], "premise": [105577, 105582, 146639, 146780], "state_str": "case a\nn : ℤ\n⊢ ↑↑n.natAbs = ↑(nnabs ↑n)"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "p : Type u_3", "R : Type u_4", "inst✝⁷ : Fintype m", "inst✝⁶ : Fintype n", "inst✝⁵ : Fintype p", "inst✝⁴ : PartialOrder R", "inst✝³ : NonUnitalRing R", "inst✝² : StarRing R", "inst✝¹ : StarOrderedRing R", "inst✝ : NoZeroDivisors R", "A : Matrix m n R", "v : m → R"], "goal": "(A * Aᴴ) *ᵥ v = 0 ↔ Aᴴ *ᵥ v = 0"}], "premise": [85011, 142402], "state_str": "m : Type u_1\nn : Type u_2\np : Type u_3\nR : Type u_4\ninst✝⁷ : Fintype m\ninst✝⁶ : Fintype n\ninst✝⁵ : Fintype p\ninst✝⁴ : PartialOrder R\ninst✝³ : NonUnitalRing R\ninst✝² : StarRing R\ninst✝¹ : StarOrderedRing R\ninst✝ : NoZeroDivisors R\nA : Matrix m n R\nv : m → R\n⊢ (A * Aᴴ) *ᵥ v = 0 ↔ Aᴴ *ᵥ v = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Preorder α", "inst✝ : DecidableRel fun x x_1 => x ≤ x_1", "x : α", "t : Ordset α", "h_mem : x ∈ t"], "goal": "0 < t.size"}], "premise": [2715], "state_str": "α : Type u_1\ninst✝¹ : Preorder α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordset α\nh_mem : x ∈ t\n⊢ 0 < t.size"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Preorder α", "inst✝ : DecidableRel fun x x_1 => x ≤ x_1", "x : α", "t : Ordset α", "h_mem : Ordnode.mem x ↑t = true"], "goal": "0 < t.size"}], "premise": [2115, 146408, 146456], "state_str": "α : Type u_1\ninst✝¹ : Preorder α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordset α\nh_mem : Ordnode.mem x ↑t = true\n⊢ 0 < t.size"} +{"state": [{"context": ["C : Type u_2", "D : Type ?u.23461", "inst✝¹ : Category.{u_1, u_2} C", "inst✝ : Category.{?u.23469, ?u.23461} D", "X : C", "S : Presieve X", "T : Sieve X", "h : S.FactorsThru T.arrows", "Y W : C", "i : Y ⟶ W", "e : W ⟶ X", "h1 : T.arrows e", "hf : i ≫ e ∈ S"], "goal": "i ≫ e ∈ T.arrows"}], "premise": [91045], "state_str": "case intro.intro.intro.intro\nC : Type u_2\nD : Type ?u.23461\ninst✝¹ : Category.{u_1, u_2} C\ninst✝ : Category.{?u.23469, ?u.23461} D\nX : C\nS : Presieve X\nT : Sieve X\nh : S.FactorsThru T.arrows\nY W : C\ni : Y ⟶ W\ne : W ⟶ X\nh1 : T.arrows e\nhf : i ≫ e ∈ S\n⊢ i ≫ e ∈ T.arrows"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁶ : Category.{?u.266427, u_1} C", "inst✝⁵ : Category.{?u.266431, u_2} D", "inst✝⁴ : Preadditive C", "inst✝³ : Preadditive D", "F G : CochainComplex C ℤ", "φ : F ⟶ G", "inst✝² : HasHomotopyCofiber φ", "H : C ⥤ D", "inst✝¹ : H.Additive", "inst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)", "n m : ℤ", "hnm : n + 1 = m"], "goal": "(H.map ((↑(fst φ)).v n m ⋯) ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ + H.map ((snd φ).v n n ⋯) ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) ≫ ((↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫ H.map ((inl φ).v m n ⋯) + (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫ H.map ((inr φ).f n)) = 𝟙 (((H.mapHomologicalComplex (ComplexShape.up ℤ)).obj (mappingCone φ)).X n)"}], "premise": [91598, 91599, 91682, 93604, 93605, 96173, 99919, 113954, 119727, 119729], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁶ : Category.{?u.266427, u_1} C\ninst✝⁵ : Category.{?u.266431, u_2} D\ninst✝⁴ : Preadditive C\ninst✝³ : Preadditive D\nF G : CochainComplex C ℤ\nφ : F ⟶ G\ninst✝² : HasHomotopyCofiber φ\nH : C ⥤ D\ninst✝¹ : H.Additive\ninst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)\nn m : ℤ\nhnm : n + 1 = m\n⊢ (H.map ((↑(fst φ)).v n m ⋯) ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ +\n H.map ((snd φ).v n n ⋯) ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) ≫\n ((↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫ H.map ((inl φ).v m n ⋯) +\n (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫ H.map ((inr φ).f n)) =\n 𝟙 (((H.mapHomologicalComplex (ComplexShape.up ℤ)).obj (mappingCone φ)).X n)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁶ : Category.{?u.266427, u_1} C", "inst✝⁵ : Category.{?u.266431, u_2} D", "inst✝⁴ : Preadditive C", "inst✝³ : Preadditive D", "F G : CochainComplex C ℤ", "φ : F ⟶ G", "inst✝² : HasHomotopyCofiber φ", "H : C ⥤ D", "inst✝¹ : H.Additive", "inst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)", "n m : ℤ", "hnm : n + 1 = m"], "goal": "H.map ((↑(fst φ)).v n m ⋯ ≫ (inl φ).v m n ⋯ + (snd φ).v n n ⋯ ≫ (inr φ).f n) = 𝟙 (H.obj ((mappingCone φ).X n))"}], "premise": [99920], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁶ : Category.{?u.266427, u_1} C\ninst✝⁵ : Category.{?u.266431, u_2} D\ninst✝⁴ : Preadditive C\ninst✝³ : Preadditive D\nF G : CochainComplex C ℤ\nφ : F ⟶ G\ninst✝² : HasHomotopyCofiber φ\nH : C ⥤ D\ninst✝¹ : H.Additive\ninst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)\nn m : ℤ\nhnm : n + 1 = m\n⊢ H.map ((↑(fst φ)).v n m ⋯ ≫ (inl φ).v m n ⋯ + (snd φ).v n n ⋯ ≫ (inr φ).f n) = 𝟙 (H.obj ((mappingCone φ).X n))"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁶ : Category.{?u.266427, u_1} C", "inst✝⁵ : Category.{?u.266431, u_2} D", "inst✝⁴ : Preadditive C", "inst✝³ : Preadditive D", "F G : CochainComplex C ℤ", "φ : F ⟶ G", "inst✝² : HasHomotopyCofiber φ", "H : C ⥤ D", "inst✝¹ : H.Additive", "inst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)", "n m : ℤ", "hnm : n + 1 = m"], "goal": "(↑(fst φ)).v n m ⋯ ≫ (inl φ).v m n ⋯ + (snd φ).v n n ⋯ ≫ (inr φ).f n = 𝟙 ((mappingCone φ).X n)"}], "premise": [114192], "state_str": "case e_a\nC : Type u_1\nD : Type u_2\ninst✝⁶ : Category.{?u.266427, u_1} C\ninst✝⁵ : Category.{?u.266431, u_2} D\ninst✝⁴ : Preadditive C\ninst✝³ : Preadditive D\nF G : CochainComplex C ℤ\nφ : F ⟶ G\ninst✝² : HasHomotopyCofiber φ\nH : C ⥤ D\ninst✝¹ : H.Additive\ninst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)\nn m : ℤ\nhnm : n + 1 = m\n⊢ (↑(fst φ)).v n m ⋯ ≫ (inl φ).v m n ⋯ + (snd φ).v n n ⋯ ≫ (inr φ).f n = 𝟙 ((mappingCone φ).X n)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁶ : Category.{?u.266427, u_1} C", "inst✝⁵ : Category.{?u.266431, u_2} D", "inst✝⁴ : Preadditive C", "inst✝³ : Preadditive D", "F G : CochainComplex C ℤ", "φ : F ⟶ G", "inst✝² : HasHomotopyCofiber φ", "H : C ⥤ D", "inst✝¹ : H.Additive", "inst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)", "n m : ℤ", "hnm : n + 1 = m"], "goal": "((↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫ H.map ((inl φ).v m n ⋯) + (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫ H.map ((inr φ).f n)) ≫ (H.map ((↑(fst φ)).v n m ⋯) ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ + H.map ((snd φ).v n n ⋯) ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) = 𝟙 ((mappingCone ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).X n)"}], "premise": [91598, 91599, 96173, 96175, 99920, 99921, 113954, 114177, 114178, 114179, 114180], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁶ : Category.{?u.266427, u_1} C\ninst✝⁵ : Category.{?u.266431, u_2} D\ninst✝⁴ : Preadditive C\ninst✝³ : Preadditive D\nF G : CochainComplex C ℤ\nφ : F ⟶ G\ninst✝² : HasHomotopyCofiber φ\nH : C ⥤ D\ninst✝¹ : H.Additive\ninst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)\nn m : ℤ\nhnm : n + 1 = m\n⊢ ((↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫ H.map ((inl φ).v m n ⋯) +\n (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫ H.map ((inr φ).f n)) ≫\n (H.map ((↑(fst φ)).v n m ⋯) ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ +\n H.map ((snd φ).v n n ⋯) ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) =\n 𝟙 ((mappingCone ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).X n)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁶ : Category.{?u.266427, u_1} C", "inst✝⁵ : Category.{?u.266431, u_2} D", "inst✝⁴ : Preadditive C", "inst✝³ : Preadditive D", "F G : CochainComplex C ℤ", "φ : F ⟶ G", "inst✝² : HasHomotopyCofiber φ", "H : C ⥤ D", "inst✝¹ : H.Additive", "inst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)", "n m : ℤ", "hnm : n + 1 = m"], "goal": "(↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ + (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫ H.map 0 ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ + ((↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫ H.map 0 ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n + (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) = 𝟙 ((mappingCone ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).X n)"}], "premise": [114192], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁶ : Category.{?u.266427, u_1} C\ninst✝⁵ : Category.{?u.266431, u_2} D\ninst✝⁴ : Preadditive C\ninst✝³ : Preadditive D\nF G : CochainComplex C ℤ\nφ : F ⟶ G\ninst✝² : HasHomotopyCofiber φ\nH : C ⥤ D\ninst✝¹ : H.Additive\ninst✝ : HasHomotopyCofiber ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)\nn m : ℤ\nhnm : n + 1 = m\n⊢ (↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫\n (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ +\n (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫\n H.map 0 ≫ (inl ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v m n ⋯ +\n ((↑(fst ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ))).v n m ⋯ ≫\n H.map 0 ≫ (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n +\n (snd ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v n n ⋯ ≫\n (inr ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) =\n 𝟙 ((mappingCone ((H.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).X n)"} +{"state": [{"context": ["n : ℕ", "c : Composition n"], "goal": "c.boundary 0 = 0"}], "premise": [3976], "state_str": "n : ℕ\nc : Composition n\n⊢ c.boundary 0 = 0"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "R : Type u_4", "inst✝¹ : Semiring α", "inst✝ : Semiring β", "m n : ℕ", "a b : α"], "goal": "Odd (a + a + (2 * b + 1))"}], "premise": [119704, 122222], "state_str": "case intro.intro\nF : Type u_1\nα : Type u_2\nβ : Type u_3\nR : Type u_4\ninst✝¹ : Semiring α\ninst✝ : Semiring β\nm n : ℕ\na b : α\n⊢ Odd (a + a + (2 * b + 1))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "ρ : Measure (α × ℝ)"], "goal": "Measurable fun a r => (preCDF ρ r a).toReal"}], "premise": [28880], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nρ : Measure (α × ℝ)\n⊢ Measurable fun a r => (preCDF ρ r a).toReal"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "ρ : Measure (α × ℝ)"], "goal": "∀ (a : ℚ), Measurable fun x => (preCDF ρ a x).toReal"}], "premise": [25989, 72727], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nρ : Measure (α × ℝ)\n⊢ ∀ (a : ℚ), Measurable fun x => (preCDF ρ a x).toReal"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝ : Category.{v₂, u₂} D", "F : C ⥤ D", "X Y Z : C", "f : Y ⟶ X", "S R : Sieve X", "Y✝ : C", "f✝ : Y✝ ⟶ X"], "goal": "(sieveOfSubfunctor S.functorInclusion).arrows f✝ ↔ S.arrows f✝"}], "premise": [91117, 91119], "state_str": "case h\nC : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝ : Category.{v₂, u₂} D\nF : C ⥤ D\nX Y Z : C\nf : Y ⟶ X\nS R : Sieve X\nY✝ : C\nf✝ : Y✝ ⟶ X\n⊢ (sieveOfSubfunctor S.functorInclusion).arrows f✝ ↔ S.arrows f✝"} +{"state": [{"context": ["m n✝ n : ℕ"], "goal": "Even (n * (n + 1))"}], "premise": [119671, 119677], "state_str": "m n✝ n : ℕ\n⊢ Even (n * (n + 1))"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedAddCommGroup G", "β : Type u_5", "mβ : MeasurableSpace β", "f : α → β", "g✝ : β → E", "g : β → F", "hf : MeasurableEmbedding f"], "goal": "Memℒp g p (Measure.map f μ) ↔ Memℒp (g ∘ f) p μ"}], "premise": [28735, 29434], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nβ : Type u_5\nmβ : MeasurableSpace β\nf : α → β\ng✝ : β → E\ng : β → F\nhf : MeasurableEmbedding f\n⊢ Memℒp g p (Measure.map f μ) ↔ Memℒp (g ∘ f) p μ"} +{"state": [{"context": ["ι : Type u_1", "inst✝ : Fintype ι", "a b : ℝ"], "goal": "volume (uIcc a b) = ofReal |b - a|"}], "premise": [18563, 30087, 105360], "state_str": "ι : Type u_1\ninst✝ : Fintype ι\na b : ℝ\n⊢ volume (uIcc a b) = ofReal |b - a|"} +{"state": [{"context": ["n₁ n₂ d₁ d₂ : Int", "z₁ : d₁ ≠ 0", "z₂ : d₂ ≠ 0"], "goal": "n₁ /. d₁ * (n₂ /. d₂) = n₁ * n₂ /. (d₁ * d₂)"}], "premise": [713, 744, 2465, 2557, 2558, 2578, 3407], "state_str": "n₁ n₂ d₁ d₂ : Int\nz₁ : d₁ ≠ 0\nz₂ : d₂ ≠ 0\n⊢ n₁ /. d₁ * (n₂ /. d₂) = n₁ * n₂ /. (d₁ * d₂)"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝¹ : TopologicalSpace α", "s✝ t u v : Set α", "inst✝ : TopologicalSpace β", "f : α → β", "hf : _root_.Embedding f", "s : Set α"], "goal": "IsTotallyDisconnected (f '' s) ↔ IsTotallyDisconnected s"}], "premise": [65544], "state_str": "α : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝¹ : TopologicalSpace α\ns✝ t u v : Set α\ninst✝ : TopologicalSpace β\nf : α → β\nhf : _root_.Embedding f\ns : Set α\n⊢ IsTotallyDisconnected (f '' s) ↔ IsTotallyDisconnected s"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝¹ : TopologicalSpace α", "s✝ t u✝ v : Set α", "inst✝ : TopologicalSpace β", "f : α → β", "hf : _root_.Embedding f", "s : Set α", "hs : IsTotallyDisconnected s", "u : Set β", "hus : u ⊆ f '' s", "hu : IsPreconnected u"], "goal": "u.Subsingleton"}], "premise": [133448, 133451, 134148], "state_str": "α : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝¹ : TopologicalSpace α\ns✝ t u✝ v : Set α\ninst✝ : TopologicalSpace β\nf : α → β\nhf : _root_.Embedding f\ns : Set α\nhs : IsTotallyDisconnected s\nu : Set β\nhus : u ⊆ f '' s\nhu : IsPreconnected u\n⊢ u.Subsingleton"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝¹ : TopologicalSpace α", "s✝ t u v✝ : Set α", "inst✝ : TopologicalSpace β", "f : α → β", "hf : _root_.Embedding f", "s : Set α", "hs : IsTotallyDisconnected s", "v : Set α", "hvs : v ⊆ s", "hus : f '' v ⊆ f '' s", "hu : IsPreconnected (f '' v)"], "goal": "(f '' v).Subsingleton"}], "premise": [65877], "state_str": "case intro.intro\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝¹ : TopologicalSpace α\ns✝ t u v✝ : Set α\ninst✝ : TopologicalSpace β\nf : α → β\nhf : _root_.Embedding f\ns : Set α\nhs : IsTotallyDisconnected s\nv : Set α\nhvs : v ⊆ s\nhus : f '' v ⊆ f '' s\nhu : IsPreconnected (f '' v)\n⊢ (f '' v).Subsingleton"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝¹ : TopologicalSpace α", "s✝ t u v✝ : Set α", "inst✝ : TopologicalSpace β", "f : α → β", "hf : _root_.Embedding f", "s : Set α", "hs : IsTotallyDisconnected s", "v : Set α", "hvs : v ⊆ s", "hus : f '' v ⊆ f '' s", "hu : IsPreconnected v"], "goal": "(f '' v).Subsingleton"}], "premise": [134262], "state_str": "case intro.intro\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝¹ : TopologicalSpace α\ns✝ t u v✝ : Set α\ninst✝ : TopologicalSpace β\nf : α → β\nhf : _root_.Embedding f\ns : Set α\nhs : IsTotallyDisconnected s\nv : Set α\nhvs : v ⊆ s\nhus : f '' v ⊆ f '' s\nhu : IsPreconnected v\n⊢ (f '' v).Subsingleton"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedAddCommGroup E'", "inst✝¹⁵ : NormedAddCommGroup E''", "inst✝¹⁴ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹³ : RCLike 𝕜", "inst✝¹² : NormedSpace 𝕜 E", "inst✝¹¹ : NormedSpace 𝕜 E'", "inst✝¹⁰ : NormedSpace 𝕜 E''", "inst✝⁹ : NormedSpace ℝ F", "inst✝⁸ : NormedSpace 𝕜 F", "n : ℕ∞", "inst✝⁷ : CompleteSpace F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁵ : NormedAddCommGroup G", "inst✝⁴ : BorelSpace G", "inst✝³ : NormedSpace 𝕜 G", "inst✝² : SFinite μ", "inst✝¹ : μ.IsAddLeftInvariant", "inst✝ : μ.IsNegInvariant", "hcf : HasCompactSupport f", "hf : ContDiff 𝕜 1 f", "hg : LocallyIntegrable g μ", "x₀ : G"], "goal": "HasFDerivAt (f ⋆[L, μ] g) ((fderiv 𝕜 f ⋆[precompL G L, μ] g) x₀) x₀"}], "premise": [43975], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedAddCommGroup E'\ninst✝¹⁵ : NormedAddCommGroup E''\ninst✝¹⁴ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹³ : RCLike 𝕜\ninst✝¹² : NormedSpace 𝕜 E\ninst✝¹¹ : NormedSpace 𝕜 E'\ninst✝¹⁰ : NormedSpace 𝕜 E''\ninst✝⁹ : NormedSpace ℝ F\ninst✝⁸ : NormedSpace 𝕜 F\nn : ℕ∞\ninst✝⁷ : CompleteSpace F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁵ : NormedAddCommGroup G\ninst✝⁴ : BorelSpace G\ninst✝³ : NormedSpace 𝕜 G\ninst✝² : SFinite μ\ninst✝¹ : μ.IsAddLeftInvariant\ninst✝ : μ.IsNegInvariant\nhcf : HasCompactSupport f\nhf : ContDiff 𝕜 1 f\nhg : LocallyIntegrable g μ\nx₀ : G\n⊢ HasFDerivAt (f ⋆[L, μ] g) ((fderiv 𝕜 f ⋆[precompL G L, μ] g) x₀) x₀"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedAddCommGroup E'", "inst✝¹⁵ : NormedAddCommGroup E''", "inst✝¹⁴ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹³ : RCLike 𝕜", "inst✝¹² : NormedSpace 𝕜 E", "inst✝¹¹ : NormedSpace 𝕜 E'", "inst✝¹⁰ : NormedSpace 𝕜 E''", "inst✝⁹ : NormedSpace ℝ F", "inst✝⁸ : NormedSpace 𝕜 F", "n : ℕ∞", "inst✝⁷ : CompleteSpace F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁵ : NormedAddCommGroup G", "inst✝⁴ : BorelSpace G", "inst✝³ : NormedSpace 𝕜 G", "inst✝² : SFinite μ", "inst✝¹ : μ.IsAddLeftInvariant", "inst✝ : μ.IsNegInvariant", "hcf : HasCompactSupport f", "hf : ContDiff 𝕜 1 f", "hg : LocallyIntegrable g μ", "x₀ : G"], "goal": "HasFDerivAt (g ⋆[L.flip, μ] f) ((g ⋆[(precompL G L).flip, μ] fderiv 𝕜 f) x₀) x₀"}], "premise": [43990], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedAddCommGroup E'\ninst✝¹⁵ : NormedAddCommGroup E''\ninst✝¹⁴ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹³ : RCLike 𝕜\ninst✝¹² : NormedSpace 𝕜 E\ninst✝¹¹ : NormedSpace 𝕜 E'\ninst✝¹⁰ : NormedSpace 𝕜 E''\ninst✝⁹ : NormedSpace ℝ F\ninst✝⁸ : NormedSpace 𝕜 F\nn : ℕ∞\ninst✝⁷ : CompleteSpace F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁵ : NormedAddCommGroup G\ninst✝⁴ : BorelSpace G\ninst✝³ : NormedSpace 𝕜 G\ninst✝² : SFinite μ\ninst✝¹ : μ.IsAddLeftInvariant\ninst✝ : μ.IsNegInvariant\nhcf : HasCompactSupport f\nhf : ContDiff 𝕜 1 f\nhg : LocallyIntegrable g μ\nx₀ : G\n⊢ HasFDerivAt (g ⋆[L.flip, μ] f) ((g ⋆[(precompL G L).flip, μ] fderiv 𝕜 f) x₀) x₀"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ✝ κ : Kernel α β", "y' y : α", "hy' : y' ∈ measurableAtom y", "s : Set β", "hs : MeasurableSet s"], "goal": "(κ y') s = (κ y) s"}], "premise": [27986, 28852, 72632], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ✝ κ : Kernel α β\ny' y : α\nhy' : y' ∈ measurableAtom y\ns : Set β\nhs : MeasurableSet s\n⊢ (κ y') s = (κ y) s"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "X Y Z : Scheme", "𝒰✝ : X.OpenCover", "f✝ : X ⟶ Z", "g✝ : Y ⟶ Z", "inst✝ : ∀ (i : 𝒰✝.J), HasPullback (𝒰✝.map i ≫ f✝) g✝", "s : PullbackCone f✝ g✝", "𝒰 : Y.OpenCover", "f : X ⟶ Z", "g : Y ⟶ Z"], "goal": "(pullback f g).OpenCover"}], "premise": [96174], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\nX Y Z : Scheme\n𝒰✝ : X.OpenCover\nf✝ : X ⟶ Z\ng✝ : Y ⟶ Z\ninst✝ : ∀ (i : 𝒰✝.J), HasPullback (𝒰✝.map i ≫ f✝) g✝\ns : PullbackCone f✝ g✝\n𝒰 : Y.OpenCover\nf : X ⟶ Z\ng : Y ⟶ Z\n⊢ (pullback f g).OpenCover"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "X Y Z : Scheme", "𝒰✝ : X.OpenCover", "f✝ : X ⟶ Z", "g✝ : Y ⟶ Z", "inst✝ : ∀ (i : 𝒰✝.J), HasPullback (𝒰✝.map i ≫ f✝) g✝", "s : PullbackCone f✝ g✝", "𝒰 : Y.OpenCover", "f : X ⟶ Z", "g : Y ⟶ Z", "i : 𝒰.J"], "goal": "pullback.map f (𝒰.map i ≫ g) f g (𝟙 X) (𝒰.map i) (𝟙 Z) ⋯ ⋯ = (pullbackSymmetry f (𝒰.map i ≫ g)).hom ≫ pullback.map (𝒰.map i ≫ g) f g f (𝒰.map i) (𝟙 X) (𝟙 Z) ⋯ ⋯ ≫ (pullbackSymmetry g f).hom"}], "premise": [93876], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\nX Y Z : Scheme\n𝒰✝ : X.OpenCover\nf✝ : X ⟶ Z\ng✝ : Y ⟶ Z\ninst✝ : ∀ (i : 𝒰✝.J), HasPullback (𝒰✝.map i ≫ f✝) g✝\ns : PullbackCone f✝ g✝\n𝒰 : Y.OpenCover\nf : X ⟶ Z\ng : Y ⟶ Z\ni : 𝒰.J\n⊢ pullback.map f (𝒰.map i ≫ g) f g (𝟙 X) (𝒰.map i) (𝟙 Z) ⋯ ⋯ =\n (pullbackSymmetry f (𝒰.map i ≫ g)).hom ≫\n pullback.map (𝒰.map i ≫ g) f g f (𝒰.map i) (𝟙 X) (𝟙 Z) ⋯ ⋯ ≫ (pullbackSymmetry g f).hom"} +{"state": [{"context": ["R : Type u_1", "l : Type u_2", "m : Type u_3", "n : Type u_4", "α : Type u_5", "β : Type u_6", "ι : Type u_7", "inst✝⁵ : Fintype l", "inst✝⁴ : Fintype m", "inst✝³ : Fintype n", "inst✝² : Unique ι", "inst✝¹ : SeminormedAddCommGroup α", "inst✝ : SeminormedAddCommGroup β", "r : ℝ≥0", "hr : 0 < r", "A : Matrix m n α"], "goal": "‖A‖₊ < r ↔ ∀ (i : m) (j : n), ‖A i j‖₊ < r"}], "premise": [34650, 42621], "state_str": "R : Type u_1\nl : Type u_2\nm : Type u_3\nn : Type u_4\nα : Type u_5\nβ : Type u_6\nι : Type u_7\ninst✝⁵ : Fintype l\ninst✝⁴ : Fintype m\ninst✝³ : Fintype n\ninst✝² : Unique ι\ninst✝¹ : SeminormedAddCommGroup α\ninst✝ : SeminormedAddCommGroup β\nr : ℝ≥0\nhr : 0 < r\nA : Matrix m n α\n⊢ ‖A‖₊ < r ↔ ∀ (i : m) (j : n), ‖A i j‖₊ < r"} +{"state": [{"context": ["f : ℕ → ℂ", "s : ℂ", "hf : LSeriesSummable f s"], "goal": "LSeriesSummable (-f) s"}], "premise": [22291, 63961], "state_str": "f : ℕ → ℂ\ns : ℂ\nhf : LSeriesSummable f s\n⊢ LSeriesSummable (-f) s"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Group α", "inst✝ : DecidableEq α", "x y : Finset α × Finset α", "s t : Finset α"], "goal": "{x | x.1.Nonempty ∧ x.2.Nonempty}.WellFoundedOn DevosMulRel"}], "premise": [13049, 13144, 15430, 19937], "state_str": "α : Type u_1\ninst✝¹ : Group α\ninst✝ : DecidableEq α\nx y : Finset α × Finset α\ns t : Finset α\n⊢ {x | x.1.Nonempty ∧ x.2.Nonempty}.WellFoundedOn DevosMulRel"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Group α", "inst✝ : DecidableEq α", "x y : Finset α × Finset α", "s t : Finset α", "n : ℕ"], "goal": "({x | x.1.Nonempty ∧ x.2.Nonempty} ∩ (fun x => (x.1 * x.2).card) ⁻¹' {n}).WellFoundedOn ((fun x x_1 => x > x_1) on fun x => x.1.card + x.2.card)"}], "premise": [2106, 2107, 13049, 13054, 15430, 19937, 103632, 103917, 141974, 141979], "state_str": "α : Type u_1\ninst✝¹ : Group α\ninst✝ : DecidableEq α\nx y : Finset α × Finset α\ns t : Finset α\nn : ℕ\n⊢ ({x | x.1.Nonempty ∧ x.2.Nonempty} ∩ (fun x => (x.1 * x.2).card) ⁻¹' {n}).WellFoundedOn\n ((fun x x_1 => x > x_1) on fun x => x.1.card + x.2.card)"} +{"state": [{"context": ["K : Type u_1", "V : Type u_2", "inst✝⁴ : DivisionRing K", "inst✝³ : AddCommGroup V", "inst✝² : Module K V", "inst✝¹ : Fintype K", "inst✝ : Fintype V", "k : ℕ", "hk : k ≤ n"], "goal": "Nat.card { s // LinearIndependent K s } = ∏ i : Fin k, (q ^ n - q ^ ↑i)"}], "premise": [47564], "state_str": "K : Type u_1\nV : Type u_2\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\ninst✝¹ : Fintype K\ninst✝ : Fintype V\nk : ℕ\nhk : k ≤ n\n⊢ Nat.card { s // LinearIndependent K s } = ∏ i : Fin k, (q ^ n - q ^ ↑i)"} +{"state": [{"context": ["K : Type u_1", "V : Type u_2", "inst✝⁴ : DivisionRing K", "inst✝³ : AddCommGroup V", "inst✝² : Module K V", "inst✝¹ : Fintype K", "inst✝ : Fintype V", "k : ℕ", "hk : k ≤ n"], "goal": "card { s // LinearIndependent K s } = ∏ i : Fin k, (q ^ n - q ^ ↑i)"}], "premise": [2115, 3729, 85253, 86381, 88907, 109992, 119707, 124539, 126895, 128369, 140582, 140834, 141344, 141347, 141362, 141363], "state_str": "K : Type u_1\nV : Type u_2\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\ninst✝¹ : Fintype K\ninst✝ : Fintype V\nk : ℕ\nhk : k ≤ n\n⊢ card { s // LinearIndependent K s } = ∏ i : Fin k, (q ^ n - q ^ ↑i)"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω"], "goal": "(cs.rightInvSeq ω).Nodup"}], "premise": [1674, 129732], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\n⊢ (cs.rightInvSeq ω).Nodup"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "dup : (cs.rightInvSeq ω).get? j = (cs.rightInvSeq ω).get? j'", "j'_lt_length : j' < ω.length"], "goal": "False"}], "premise": [4986], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\ndup : (cs.rightInvSeq ω).get? j = (cs.rightInvSeq ω).get? j'\nj'_lt_length : j' < ω.length\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : some ((cs.rightInvSeq ω).get ⟨j, ⋯⟩) = some ((cs.rightInvSeq ω).get ⟨j', ⋯⟩)"], "goal": "False"}], "premise": [140976], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : some ((cs.rightInvSeq ω).get ⟨j, ⋯⟩) = some ((cs.rightInvSeq ω).get ⟨j', ⋯⟩)\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).get ⟨j, ⋯⟩ = (cs.rightInvSeq ω).get ⟨j', ⋯⟩"], "goal": "False"}], "premise": [129394], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).get ⟨j, ⋯⟩ = (cs.rightInvSeq ω).get ⟨j', ⋯⟩\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1"], "goal": "False"}], "premise": [152, 2623, 3059, 3082, 3090, 3840, 3886, 4989, 5180, 5303, 5323, 8934, 19710, 117715, 117721, 119704], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₃ : t' = (cs.rightInvSeq ω).getD j' 1"], "goal": "False"}], "premise": [8936], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₃ : t' = (cs.rightInvSeq ω).getD j' 1\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₃ : t' = (cs.rightInvSeq ω).getD j' 1", "h₄ : t * t' = 1", "h₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))"], "goal": "False"}], "premise": [2100, 2102, 8160], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₃ : t' = (cs.rightInvSeq ω).getD j' 1\nh₄ : t * t' = 1\nh₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₃ : t' = (cs.rightInvSeq ω).getD j' 1", "h₄ : t * t' = 1", "h₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))", "h₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length"], "goal": "False"}], "premise": [103886], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₃ : t' = (cs.rightInvSeq ω).getD j' 1\nh₄ : t * t' = 1\nh₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))\nh₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₃ : t' = (cs.rightInvSeq ω).getD j' 1", "h₄ : t * t' = 1", "h₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))", "h₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length", "h₇ : ω.length + 1 + 1 ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length + 1 + 1"], "goal": "False"}], "premise": [1673, 3886, 4576, 132677], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₃ : t' = (cs.rightInvSeq ω).getD j' 1\nh₄ : t * t' = 1\nh₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))\nh₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length\nh₇ : ω.length + 1 + 1 ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length + 1 + 1\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₃ : t' = (cs.rightInvSeq ω).getD j' 1", "h₄ : t * t' = 1", "h₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))", "h₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length", "h₇ : ω.length + 1 + 1 ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length + 1 + 1", "h₈ : j' - 1 < (ω.eraseIdx j).length"], "goal": "False"}], "premise": [132677], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₃ : t' = (cs.rightInvSeq ω).getD j' 1\nh₄ : t * t' = 1\nh₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))\nh₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length\nh₇ : ω.length + 1 + 1 ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length + 1 + 1\nh₈ : j' - 1 < (ω.eraseIdx j).length\n⊢ False"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "rω : cs.IsReduced ω", "j j' : ℕ", "j_lt_j' : j < j'", "j'_lt_length : j' < ω.length", "dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1", "t : W := (cs.rightInvSeq ω).getD j 1", "h₁ : t = (cs.rightInvSeq ω).getD j 1", "t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1", "h₃ : t' = (cs.rightInvSeq ω).getD j' 1", "h₄ : t * t' = 1", "h₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))", "h₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length", "h₇ : ω.length + 1 + 1 ≤ (ω.eraseIdx j).length + 1", "h₈ : j' - 1 < (ω.eraseIdx j).length"], "goal": "False"}], "premise": [132677], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nrω : cs.IsReduced ω\nj j' : ℕ\nj_lt_j' : j < j'\nj'_lt_length : j' < ω.length\ndup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1\nt : W := (cs.rightInvSeq ω).getD j 1\nh₁ : t = (cs.rightInvSeq ω).getD j 1\nt' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1\nh₃ : t' = (cs.rightInvSeq ω).getD j' 1\nh₄ : t * t' = 1\nh₅ : cs.wordProd ω = cs.wordProd ((ω.eraseIdx j).eraseIdx (j' - 1))\nh₆ : ω.length ≤ ((ω.eraseIdx j).eraseIdx (j' - 1)).length\nh₇ : ω.length + 1 + 1 ≤ (ω.eraseIdx j).length + 1\nh₈ : j' - 1 < (ω.eraseIdx j).length\n⊢ False"} +{"state": [{"context": ["n : ℕ", "E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "f g : (Fin n → ℂ) → E", "c : Fin n → ℂ", "R : Fin n → ℝ", "hf : TorusIntegrable f c R", "hg : TorusIntegrable g c R"], "goal": "(∯ (x : Fin n → ℂ) in T(c, R), f x + g x) = (∯ (x : Fin n → ℂ) in T(c, R), f x) + ∯ (x : Fin n → ℂ) in T(c, R), g x"}], "premise": [25460, 33641, 108334, 120650], "state_str": "n : ℕ\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nf g : (Fin n → ℂ) → E\nc : Fin n → ℂ\nR : Fin n → ℝ\nhf : TorusIntegrable f c R\nhg : TorusIntegrable g c R\n⊢ (∯ (x : Fin n → ℂ) in T(c, R), f x + g x) = (∯ (x : Fin n → ℂ) in T(c, R), f x) + ∯ (x : Fin n → ℂ) in T(c, R), g x"} +{"state": [{"context": ["F✝ : Type u_1", "inst✝⁴ : AddCommGroup F✝", "inst✝³ : Module ℝ F✝", "inst✝² : TopologicalSpace F✝", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "x : F", "a✝ : x ∈ univ"], "goal": "(convexHull ℝ) (connectedComponentIn univ x) = univ"}], "premise": [34907, 65908, 65928], "state_str": "F✝ : Type u_1\ninst✝⁴ : AddCommGroup F✝\ninst✝³ : Module ℝ F✝\ninst✝² : TopologicalSpace F✝\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx : F\na✝ : x ∈ univ\n⊢ (convexHull ℝ) (connectedComponentIn univ x) = univ"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : IsReduced R", "p k m : ℕ", "inst✝ : ExpChar R p", "x : R"], "goal": "x ^ (p ^ k * m) = 1 ↔ x ^ m = 1"}], "premise": [119764], "state_str": "R : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsReduced R\np k m : ℕ\ninst✝ : ExpChar R p\nx : R\n⊢ x ^ (p ^ k * m) = 1 ↔ x ^ m = 1"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : IsReduced R", "p k m : ℕ", "inst✝ : ExpChar R p", "x : R"], "goal": "(x ^ m) ^ p ^ k = 1 ↔ x ^ m = 1"}], "premise": [71387, 124463], "state_str": "R : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsReduced R\np k m : ℕ\ninst✝ : ExpChar R p\nx : R\n⊢ (x ^ m) ^ p ^ k = 1 ↔ x ^ m = 1"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : IsReduced R", "p k m : ℕ", "inst✝ : ExpChar R p", "x : R"], "goal": "(iterateFrobenius R p k) 1 = 1"}], "premise": [117064], "state_str": "case h.e'_1.h.e'_3\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsReduced R\np k m : ℕ\ninst✝ : ExpChar R p\nx : R\n⊢ (iterateFrobenius R p k) 1 = 1"} +{"state": [{"context": ["M : Type u_1", "inst✝² : CommMonoid M", "S : Submonoid M", "N : Type u_2", "inst✝¹ : CommMonoid N", "P : Type u_3", "inst✝ : CommMonoid P", "f : M →* N", "hf : ∀ (y : ↥S), IsUnit (f ↑y)", "y z : ↥S", "h : ((IsUnit.liftRight (f.restrict S) hf) y)⁻¹ = ((IsUnit.liftRight (f.restrict S) hf) z)⁻¹"], "goal": "f ↑y = f ↑z"}], "premise": [1717, 9137, 119730], "state_str": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type u_3\ninst✝ : CommMonoid P\nf : M →* N\nhf : ∀ (y : ↥S), IsUnit (f ↑y)\ny z : ↥S\nh : ((IsUnit.liftRight (f.restrict S) hf) y)⁻¹ = ((IsUnit.liftRight (f.restrict S) hf) z)⁻¹\n⊢ f ↑y = f ↑z"} +{"state": [{"context": ["M : Type u_1", "inst✝² : CommMonoid M", "S : Submonoid M", "N : Type u_2", "inst✝¹ : CommMonoid N", "P : Type u_3", "inst✝ : CommMonoid P", "f : M →* N", "hf : ∀ (y : ↥S), IsUnit (f ↑y)", "y z : ↥S", "h : ((IsUnit.liftRight (f.restrict S) hf) y)⁻¹ = ((IsUnit.liftRight (f.restrict S) hf) z)⁻¹"], "goal": "f ↑z * ↑((IsUnit.liftRight (f.restrict S) hf) z)⁻¹ = 1"}], "premise": [120397], "state_str": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type u_3\ninst✝ : CommMonoid P\nf : M →* N\nhf : ∀ (y : ↥S), IsUnit (f ↑y)\ny z : ↥S\nh : ((IsUnit.liftRight (f.restrict S) hf) y)⁻¹ = ((IsUnit.liftRight (f.restrict S) hf) z)⁻¹\n⊢ f ↑z * ↑((IsUnit.liftRight (f.restrict S) hf) z)⁻¹ = 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "F : ℕ → α → ℝ≥0∞", "f bound : α → ℝ≥0∞", "hF_meas : ∀ (n : ℕ), AEMeasurable (F n) μ", "h_bound : ∀ (n : ℕ), F n ≤ᶠ[ae μ] bound", "h_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤", "h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))"], "goal": "Tendsto (fun n => ∫⁻ (a : α), F n a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))"}], "premise": [29108, 30260], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n) μ\nh_bound : ∀ (n : ℕ), F n ≤ᶠ[ae μ] bound\nh_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\n⊢ Tendsto (fun n => ∫⁻ (a : α), F n a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "F : ℕ → α → ℝ≥0∞", "f bound : α → ℝ≥0∞", "hF_meas : ∀ (n : ℕ), AEMeasurable (F n) μ", "h_bound : ∀ (n : ℕ), F n ≤ᶠ[ae μ] bound", "h_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤", "h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))", "this : ∀ (n : ℕ), ∫⁻ (a : α), F n a ∂μ = ∫⁻ (a : α), AEMeasurable.mk (F n) ⋯ a ∂μ"], "goal": "Tendsto (fun n => ∫⁻ (a : α), AEMeasurable.mk (F n) ⋯ a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))"}], "premise": [29107, 30345], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n) μ\nh_bound : ∀ (n : ℕ), F n ≤ᶠ[ae μ] bound\nh_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), ∫⁻ (a : α), F n a ∂μ = ∫⁻ (a : α), AEMeasurable.mk (F n) ⋯ a ∂μ\n⊢ Tendsto (fun n => ∫⁻ (a : α), AEMeasurable.mk (F n) ⋯ a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : TopologicalSpace α", "ι : Type u_5", "I : Set ι", "hI : I.Finite", "s : ι → Set α", "a : α", "a✝ : ι", "s✝ : Set ι", "x✝¹ : a✝ ∉ s✝", "x✝ : s✝.Finite", "hT : 𝓝[⋃ i ∈ s✝, s i] a = ⨆ i ∈ s✝, 𝓝[s i] a"], "goal": "𝓝[⋃ i ∈ insert a✝ s✝, s i] a = ⨆ i ∈ insert a✝ s✝, 𝓝[s i] a"}], "premise": [19442, 57197, 135383], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : TopologicalSpace α\nι : Type u_5\nI : Set ι\nhI : I.Finite\ns : ι → Set α\na : α\na✝ : ι\ns✝ : Set ι\nx✝¹ : a✝ ∉ s✝\nx✝ : s✝.Finite\nhT : 𝓝[⋃ i ∈ s✝, s i] a = ⨆ i ∈ s✝, 𝓝[s i] a\n⊢ 𝓝[⋃ i ∈ insert a✝ s✝, s i] a = ⨆ i ∈ insert a✝ s✝, 𝓝[s i] a"} +{"state": [{"context": ["xl xr : Type u", "x : PGame"], "goal": "x ≤ 0 ↔ ∀ (i : x.LeftMoves), ∃ j, (x.moveLeft i).moveRight j ≤ 0"}], "premise": [50195], "state_str": "xl xr : Type u\nx : PGame\n⊢ x ≤ 0 ↔ ∀ (i : x.LeftMoves), ∃ j, (x.moveLeft i).moveRight j ≤ 0"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : OrderedCommGroup α", "inst✝ : OrderedCommGroup β", "s : Set ι", "f f₁ f₂ : ι → α", "g g₁ g₂ : ι → β"], "goal": "Monovary f g⁻¹ ↔ Antivary f g"}], "premise": [70116], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : OrderedCommGroup α\ninst✝ : OrderedCommGroup β\ns : Set ι\nf f₁ f₂ : ι → α\ng g₁ g₂ : ι → β\n⊢ Monovary f g⁻¹ ↔ Antivary f g"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "G'' : Type u_3", "inst✝⁴ : Group G", "inst✝³ : Group G'", "inst✝² : Group G''", "A : Type u_4", "inst✝¹ : AddGroup A", "N : Type u_5", "inst✝ : Group N", "f✝ f : G →* N", "H : Subgroup N", "h : H ≤ f.range"], "goal": "map f (comap f H) = H"}], "premise": [14569, 123088], "state_str": "G : Type u_1\nG' : Type u_2\nG'' : Type u_3\ninst✝⁴ : Group G\ninst✝³ : Group G'\ninst✝² : Group G''\nA : Type u_4\ninst✝¹ : AddGroup A\nN : Type u_5\ninst✝ : Group N\nf✝ f : G →* N\nH : Subgroup N\nh : H ≤ f.range\n⊢ map f (comap f H) = H"} +{"state": [{"context": ["s : Set ℤ", "h1 : s.Nonempty", "h2 : BddBelow s"], "goal": "sInf s ∈ s"}], "premise": [1084, 2107, 2115], "state_str": "s : Set ℤ\nh1 : s.Nonempty\nh2 : BddBelow s\n⊢ sInf s ∈ s"} +{"state": [{"context": ["s : Set ℤ", "h1 : s.Nonempty", "h2 : BddBelow s"], "goal": "sInf s = ↑((Classical.choose h2).leastOfBdd ⋯ h1)"}], "premise": [1739], "state_str": "case h.e'_4\ns : Set ℤ\nh1 : s.Nonempty\nh2 : BddBelow s\n⊢ sInf s = ↑((Classical.choose h2).leastOfBdd ⋯ h1)"} +{"state": [{"context": ["ι✝ : Type u_1", "α : Type u_2", "M : Matroid α", "F X Y : Set α", "e : α", "ι : Sort u_3", "I J B : Set α", "f x y : α", "h : M.Basis' I X"], "goal": "M.closure I = M.closure X"}], "premise": [139580, 140075, 140111], "state_str": "ι✝ : Type u_1\nα : Type u_2\nM : Matroid α\nF X Y : Set α\ne : α\nι : Sort u_3\nI J B : Set α\nf x y : α\nh : M.Basis' I X\n⊢ M.closure I = M.closure X"} +{"state": [{"context": ["α✝ : Type u", "β✝ : Type u_1", "γ : Type u_2", "r : α✝ → α✝ → Prop", "s✝ : β✝ → β✝ → Prop", "t : γ → γ → Prop", "c : Cardinal.{u_3}", "o : Ordinal.{u_3}", "α β : Type u_3", "s : β → β → Prop", "x✝ : IsWellOrder β s"], "goal": "(#α).ord ≤ type s ↔ #α ≤ (type s).card"}], "premise": [49796], "state_str": "α✝ : Type u\nβ✝ : Type u_1\nγ : Type u_2\nr : α✝ → α✝ → Prop\ns✝ : β✝ → β✝ → Prop\nt : γ → γ → Prop\nc : Cardinal.{u_3}\no : Ordinal.{u_3}\nα β : Type u_3\ns : β → β → Prop\nx✝ : IsWellOrder β s\n⊢ (#α).ord ≤ type s ↔ #α ≤ (type s).card"} +{"state": [{"context": ["α✝ : Type u", "β✝ : Type u_1", "γ : Type u_2", "r✝ : α✝ → α✝ → Prop", "s✝ : β✝ → β✝ → Prop", "t : γ → γ → Prop", "c : Cardinal.{u_3}", "o : Ordinal.{u_3}", "α β : Type u_3", "s : β → β → Prop", "x✝ : IsWellOrder β s", "r : α → α → Prop", "w✝ : IsWellOrder α r", "e : (#α).ord = type r"], "goal": "(#α).ord ≤ type s ↔ #α ≤ (type s).card"}], "premise": [49717], "state_str": "α✝ : Type u\nβ✝ : Type u_1\nγ : Type u_2\nr✝ : α✝ → α✝ → Prop\ns✝ : β✝ → β✝ → Prop\nt : γ → γ → Prop\nc : Cardinal.{u_3}\no : Ordinal.{u_3}\nα β : Type u_3\ns : β → β → Prop\nx✝ : IsWellOrder β s\nr : α → α → Prop\nw✝ : IsWellOrder α r\ne : (#α).ord = type r\n⊢ (#α).ord ≤ type s ↔ #α ≤ (type s).card"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁶ : StrictOrderedCommRing R", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : Module R V", "inst✝³ : AddTorsor V P", "inst✝² : AddCommGroup V'", "inst✝¹ : Module R V'", "inst✝ : AddTorsor V' P'", "s : AffineSubspace R P", "x y : P", "f : P →ᵃ[R] P'", "hf : Function.Injective ⇑f"], "goal": "(map f s).WOppSide (f x) (f y) ↔ s.WOppSide x y"}], "premise": [37573], "state_str": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\nf : P →ᵃ[R] P'\nhf : Function.Injective ⇑f\n⊢ (map f s).WOppSide (f x) (f y) ↔ s.WOppSide x y"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁶ : StrictOrderedCommRing R", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : Module R V", "inst✝³ : AddTorsor V P", "inst✝² : AddCommGroup V'", "inst✝¹ : Module R V'", "inst✝ : AddTorsor V' P'", "s : AffineSubspace R P", "x y : P", "f : P →ᵃ[R] P'", "hf : Function.Injective ⇑f", "fp₁ : P'", "hfp₁ : fp₁ ∈ map f s", "fp₂ : P'", "hfp₂ : fp₂ ∈ map f s", "h : SameRay R (f x -ᵥ fp₁) (fp₂ -ᵥ f y)"], "goal": "s.WOppSide x y"}], "premise": [84539], "state_str": "case intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\nf : P →ᵃ[R] P'\nhf : Function.Injective ⇑f\nfp₁ : P'\nhfp₁ : fp₁ ∈ map f s\nfp₂ : P'\nhfp₂ : fp₂ ∈ map f s\nh : SameRay R (f x -ᵥ fp₁) (fp₂ -ᵥ f y)\n⊢ s.WOppSide x y"} +{"state": [{"context": ["R : Type u_1", "V : Type u_2", "V' : Type u_3", "P : Type u_4", "P' : Type u_5", "inst✝⁶ : StrictOrderedCommRing R", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : Module R V", "inst✝³ : AddTorsor V P", "inst✝² : AddCommGroup V'", "inst✝¹ : Module R V'", "inst✝ : AddTorsor V' P'", "s : AffineSubspace R P", "x y : P", "f : P →ᵃ[R] P'", "hf : Function.Injective ⇑f", "p₁ : P", "hp₁ : p₁ ∈ s", "p₂ : P", "hp₂ : p₂ ∈ s", "h : SameRay R (f x -ᵥ f p₁) (f p₂ -ᵥ f y)"], "goal": "SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)"}], "premise": [1674, 83004, 84279, 84320], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\nf : P →ᵃ[R] P'\nhf : Function.Injective ⇑f\np₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (f x -ᵥ f p₁) (f p₂ -ᵥ f y)\n⊢ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X Y Z✝ : C", "f : X ⟶ Y", "I : IsIso f", "Z : C", "g : Y ⟶ Z"], "goal": "inv f ≫ f ≫ g = g"}], "premise": [96173], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX Y Z✝ : C\nf : X ⟶ Y\nI : IsIso f\nZ : C\ng : Y ⟶ Z\n⊢ inv f ≫ f ≫ g = g"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝ : Zero M", "a✝ a' : α", "b✝ : M", "f : α →₀ M", "a : α", "b : M"], "goal": "f = single a b ↔ f.support ⊆ {a} ∧ f a = b"}], "premise": [2100, 148085, 148092], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝ : Zero M\na✝ a' : α\nb✝ : M\nf : α →₀ M\na : α\nb : M\n⊢ f = single a b ↔ f.support ⊆ {a} ∧ f a = b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝ : Zero M", "a✝ a' : α", "b : M", "f : α →₀ M", "a : α", "h : f.support ⊆ {a}", "x : α"], "goal": "f x = (single a (f a)) x"}], "premise": [1787, 148085, 148086], "state_str": "case intro.h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝ : Zero M\na✝ a' : α\nb : M\nf : α →₀ M\na : α\nh : f.support ⊆ {a}\nx : α\n⊢ f x = (single a (f a)) x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝ : Zero M", "a✝ a' : α", "b : M", "f : α →₀ M", "a : α", "h : f.support ⊆ {a}", "x : α", "hx : ¬a = x"], "goal": "f x = 0"}], "premise": [1673, 1681, 2100, 138737, 148065], "state_str": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝ : Zero M\na✝ a' : α\nb : M\nf : α →₀ M\na : α\nh : f.support ⊆ {a}\nx : α\nhx : ¬a = x\n⊢ f x = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "f : α → β", "hf : ClosedEmbedding f", "inst✝ : QuasiSober β", "S✝ : Set α", "hS : IsIrreducible S✝", "hS' : IsClosed S✝"], "goal": "∃ x, IsGenericPoint x S✝"}], "premise": [56112, 56225, 57324], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\nf : α → β\nhf : ClosedEmbedding f\ninst✝ : QuasiSober β\nS✝ : Set α\nhS : IsIrreducible S✝\nhS' : IsClosed S✝\n⊢ ∃ x, IsGenericPoint x S✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "f : α → β", "hf : ClosedEmbedding f", "inst✝ : QuasiSober β", "S✝ : Set α", "hS : IsIrreducible S✝", "hS' : IsClosed S✝", "hS'' : IsIrreducible (f '' S✝)"], "goal": "∃ x, IsGenericPoint x S✝"}], "premise": [56113, 57691], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\nf : α → β\nhf : ClosedEmbedding f\ninst✝ : QuasiSober β\nS✝ : Set α\nhS : IsIrreducible S✝\nhS' : IsClosed S✝\nhS'' : IsIrreducible (f '' S✝)\n⊢ ∃ x, IsGenericPoint x S✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "f : α → β", "hf : ClosedEmbedding f", "inst✝ : QuasiSober β", "S✝ : Set α", "hS : IsIrreducible S✝", "hS' : IsClosed S✝", "hS'' : IsIrreducible (f '' S✝)", "x : β", "hx : IsGenericPoint x (f '' S✝)"], "goal": "∃ x, IsGenericPoint x S✝"}], "premise": [57680], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\nf : α → β\nhf : ClosedEmbedding f\ninst✝ : QuasiSober β\nS✝ : Set α\nhS : IsIrreducible S✝\nhS' : IsClosed S✝\nhS'' : IsIrreducible (f '' S✝)\nx : β\nhx : IsGenericPoint x (f '' S✝)\n⊢ ∃ x, IsGenericPoint x S✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "f : α → β", "hf : ClosedEmbedding f", "inst✝ : QuasiSober β", "S✝ : Set α", "hS : IsIrreducible S✝", "hS' : IsClosed S✝", "hS'' : IsIrreducible (f '' S✝)", "y : α", "hx : IsGenericPoint (f y) (f '' S✝)"], "goal": "∃ x, IsGenericPoint x S✝"}], "premise": [1674, 2045], "state_str": "case intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\nf : α → β\nhf : ClosedEmbedding f\ninst✝ : QuasiSober β\nS✝ : Set α\nhS : IsIrreducible S✝\nhS' : IsClosed S✝\nhS'' : IsIrreducible (f '' S✝)\ny : α\nhx : IsGenericPoint (f y) (f '' S✝)\n⊢ ∃ x, IsGenericPoint x S✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "f : α → β", "hf : ClosedEmbedding f", "inst✝ : QuasiSober β", "S✝ : Set α", "hS : IsIrreducible S✝", "hS' : IsClosed S✝", "hS'' : IsIrreducible (f '' S✝)", "y : α", "hx : IsGenericPoint (f y) (f '' S✝)"], "goal": "IsGenericPoint y S✝"}], "premise": [1674, 54005, 134318], "state_str": "case h\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\nf : α → β\nhf : ClosedEmbedding f\ninst✝ : QuasiSober β\nS✝ : Set α\nhS : IsIrreducible S✝\nhS' : IsClosed S✝\nhS'' : IsIrreducible (f '' S✝)\ny : α\nhx : IsGenericPoint (f y) (f '' S✝)\n⊢ IsGenericPoint y S✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : TopologicalSpace α", "inst✝¹ : TopologicalSpace β", "f : α → β", "hf : ClosedEmbedding f", "inst✝ : QuasiSober β", "S✝ : Set α", "hS : IsIrreducible S✝", "hS' : IsClosed S✝", "hS'' : IsIrreducible (f '' S✝)", "y : α", "hx : IsGenericPoint (f y) (f '' S✝)"], "goal": "f '' closure {y} = f '' S✝"}], "premise": [56121, 57675, 134113], "state_str": "case h.a\nα : Type u_1\nβ : Type u_2\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\nf : α → β\nhf : ClosedEmbedding f\ninst✝ : QuasiSober β\nS✝ : Set α\nhS : IsIrreducible S✝\nhS' : IsClosed S✝\nhS'' : IsIrreducible (f '' S✝)\ny : α\nhx : IsGenericPoint (f y) (f '' S✝)\n⊢ f '' closure {y} = f '' S✝"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "γ : Type u_3", "A : Type u_4", "B : Type u_5", "C : Type u_6", "inst✝⁶ : AddCommMonoid A", "inst✝⁵ : AddCommMonoid B", "inst✝⁴ : AddCommMonoid C", "t : ι → A → C", "h0 : ∀ (i : ι), t i 0 = 0", "h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y", "s : Finset α", "f✝ : α → ι →₀ A", "i : ι", "g : ι →₀ A", "k : ι → A → γ → B", "x : γ", "β : Type u_7", "M : Type u_8", "M' : Type u_9", "N : Type u_10", "P : Type u_11", "G : Type u_12", "H : Type u_13", "R : Type u_14", "S : Type u_15", "inst✝³ : Zero M", "inst✝² : Zero M'", "inst✝¹ : CommMonoid N", "inst✝ : DecidableEq α", "f : α →₀ M", "a : α", "b : α → M → N"], "goal": "(∏ a_1 ∈ f.support, if a_1 = a then b a_1 (f a_1) else 1) = if a ∈ f.support then b a (f a) else 1"}], "premise": [127099], "state_str": "α : Type u_1\nι : Type u_2\nγ : Type u_3\nA : Type u_4\nB : Type u_5\nC : Type u_6\ninst✝⁶ : AddCommMonoid A\ninst✝⁵ : AddCommMonoid B\ninst✝⁴ : AddCommMonoid C\nt : ι → A → C\nh0 : ∀ (i : ι), t i 0 = 0\nh1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y\ns : Finset α\nf✝ : α → ι →₀ A\ni : ι\ng : ι →₀ A\nk : ι → A → γ → B\nx : γ\nβ : Type u_7\nM : Type u_8\nM' : Type u_9\nN : Type u_10\nP : Type u_11\nG : Type u_12\nH : Type u_13\nR : Type u_14\nS : Type u_15\ninst✝³ : Zero M\ninst✝² : Zero M'\ninst✝¹ : CommMonoid N\ninst✝ : DecidableEq α\nf : α →₀ M\na : α\nb : α → M → N\n⊢ (∏ a_1 ∈ f.support, if a_1 = a then b a_1 (f a_1) else 1) = if a ∈ f.support then b a (f a) else 1"} +{"state": [{"context": ["C : Type u₁", "inst✝ : Category.{v₁, u₁} C", "X X' Y : C", "p : X = X'", "f : X ⟶ Y", "g : X' ⟶ Y", "h : g = eqToHom ⋯ ≫ f"], "goal": "eqToHom p ≫ eqToHom ⋯ ≫ f = f"}], "premise": [96177], "state_str": "C : Type u₁\ninst✝ : Category.{v₁, u₁} C\nX X' Y : C\np : X = X'\nf : X ⟶ Y\ng : X' ⟶ Y\nh : g = eqToHom ⋯ ≫ f\n⊢ eqToHom p ≫ eqToHom ⋯ ≫ f = f"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹¹ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁸ : NormedAddCommGroup F", "inst✝⁷ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝⁶ : NormedAddCommGroup G", "inst✝⁵ : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝⁴ : NormedAddCommGroup G'", "inst✝³ : NormedSpace 𝕜 G'", "f f₀ f₁ g : E → F", "f' f₀' f₁' g' e : E →L[𝕜] F", "x✝ : E", "s t : Set E", "L L₁ L₂ : Filter E", "R : Type u_6", "inst✝² : NormedRing R", "inst✝¹ : NormedAlgebra 𝕜 R", "inst✝ : CompleteSpace R", "x : Rˣ", "this : (fun t => Ring.inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =o[𝓝 0] _root_.id"], "goal": "HasFDerivAt Ring.inverse (-((mulLeftRight 𝕜 R) ↑x⁻¹) ↑x⁻¹) ↑x"}], "premise": [46303], "state_str": "𝕜 : Type u_1\ninst✝¹¹ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝⁴ : NormedAddCommGroup G'\ninst✝³ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\nR : Type u_6\ninst✝² : NormedRing R\ninst✝¹ : NormedAlgebra 𝕜 R\ninst✝ : CompleteSpace R\nx : Rˣ\nthis : (fun t => Ring.inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =o[𝓝 0] _root_.id\n⊢ HasFDerivAt Ring.inverse (-((mulLeftRight 𝕜 R) ↑x⁻¹) ↑x⁻¹) ↑x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "s s₁✝ s₂✝ : Set α", "t t₁ t₂ : Set β", "p : Set γ", "f f₁ f₂ f₃ : α → β", "g g₁ g₂ : β → γ", "f' f₁' f₂' : β → α", "g' : γ → β", "a : α", "b : β", "h : InjOn f s", "s₁ : Set α", "hs₁ : s₁ ∈ 𝒫 s", "s₂ : Set α", "hs₂ : s₂ ∈ 𝒫 s", "h' : f '' s₁ = f '' s₂"], "goal": "s₁ = s₂"}], "premise": [135819], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\ns s₁✝ s₂✝ : Set α\nt t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nh : InjOn f s\ns₁ : Set α\nhs₁ : s₁ ∈ 𝒫 s\ns₂ : Set α\nhs₂ : s₂ ∈ 𝒫 s\nh' : f '' s₁ = f '' s₂\n⊢ s₁ = s₂"} +{"state": [{"context": ["C : Type u_1", "inst✝² : Category.{?u.76625, u_1} C", "inst✝¹ : Preadditive C", "S : ShortComplex (CochainComplex C ℤ)", "σ : (n : ℤ) → (S.map (eval C (ComplexShape.up ℤ) n)).Splitting", "inst✝ : HasBinaryBiproducts C", "p : ℤ"], "goal": "((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) p).hom ≫ ((CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂).d p (p + 1) = (mappingCone (homOfDegreewiseSplit S σ)).d p (p + 1) ≫ ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) (p + 1)).hom"}], "premise": [114599], "state_str": "C : Type u_1\ninst✝² : Category.{?u.76625, u_1} C\ninst✝¹ : Preadditive C\nS : ShortComplex (CochainComplex C ℤ)\nσ : (n : ℤ) → (S.map (eval C (ComplexShape.up ℤ) n)).Splitting\ninst✝ : HasBinaryBiproducts C\np : ℤ\n⊢ ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) p).hom ≫\n ((CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂).d p (p + 1) =\n (mappingCone (homOfDegreewiseSplit S σ)).d p (p + 1) ≫\n ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) (p + 1)).hom"} +{"state": [{"context": ["C : Type u_1", "inst✝² : Category.{?u.76625, u_1} C", "inst✝¹ : Preadditive C", "S : ShortComplex (CochainComplex C ℤ)", "σ : (n : ℤ) → (S.map (eval C (ComplexShape.up ℤ) n)).Splitting", "inst✝ : HasBinaryBiproducts C", "p : ℤ", "r_f : (σ (p + 1 + 1)).r ≫ (S.map (eval C (ComplexShape.up ℤ) (p + 1 + 1))).f = 𝟙 (S.map (eval C (ComplexShape.up ℤ) (p + 1 + 1))).X₂ - (S.map (eval C (ComplexShape.up ℤ) (p + 1 + 1))).g ≫ (σ (p + 1 + 1)).s"], "goal": "((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) p).hom ≫ ((CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂).d p (p + 1) = (mappingCone (homOfDegreewiseSplit S σ)).d p (p + 1) ≫ ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) (p + 1)).hom"}], "premise": [114597], "state_str": "C : Type u_1\ninst✝² : Category.{?u.76625, u_1} C\ninst✝¹ : Preadditive C\nS : ShortComplex (CochainComplex C ℤ)\nσ : (n : ℤ) → (S.map (eval C (ComplexShape.up ℤ) n)).Splitting\ninst✝ : HasBinaryBiproducts C\np : ℤ\nr_f :\n (σ (p + 1 + 1)).r ≫ (S.map (eval C (ComplexShape.up ℤ) (p + 1 + 1))).f =\n 𝟙 (S.map (eval C (ComplexShape.up ℤ) (p + 1 + 1))).X₂ -\n (S.map (eval C (ComplexShape.up ℤ) (p + 1 + 1))).g ≫ (σ (p + 1 + 1)).s\n⊢ ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) p).hom ≫\n ((CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂).d p (p + 1) =\n (mappingCone (homOfDegreewiseSplit S σ)).d p (p + 1) ≫\n ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) (p + 1)).hom"} +{"state": [{"context": ["C : Type u_1", "inst✝² : Category.{?u.76625, u_1} C", "inst✝¹ : Preadditive C", "S : ShortComplex (CochainComplex C ℤ)", "σ : (n : ℤ) → (S.map (eval C (ComplexShape.up ℤ) n)).Splitting", "inst✝ : HasBinaryBiproducts C", "p : ℤ", "r_f : (σ (p + 1 + 1)).r ≫ S.f.f (p + 1 + 1) = 𝟙 (S.X₂.X (p + 1 + 1)) - S.g.f (p + 1 + 1) ≫ (σ (p + 1 + 1)).s", "s_g : (σ (p + 1)).s ≫ S.g.f (p + 1) = 𝟙 (S.X₃.X (p + 1))"], "goal": "((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) p).hom ≫ ((CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂).d p (p + 1) = (mappingCone (homOfDegreewiseSplit S σ)).d p (p + 1) ≫ ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) (p + 1)).hom"}], "premise": [114192], "state_str": "C : Type u_1\ninst✝² : Category.{?u.76625, u_1} C\ninst✝¹ : Preadditive C\nS : ShortComplex (CochainComplex C ℤ)\nσ : (n : ℤ) → (S.map (eval C (ComplexShape.up ℤ) n)).Splitting\ninst✝ : HasBinaryBiproducts C\np : ℤ\nr_f : (σ (p + 1 + 1)).r ≫ S.f.f (p + 1 + 1) = 𝟙 (S.X₂.X (p + 1 + 1)) - S.g.f (p + 1 + 1) ≫ (σ (p + 1 + 1)).s\ns_g : (σ (p + 1)).s ≫ S.g.f (p + 1) = 𝟙 (S.X₃.X (p + 1))\n⊢ ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) p).hom ≫\n ((CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂).d p (p + 1) =\n (mappingCone (homOfDegreewiseSplit S σ)).d p (p + 1) ≫\n ((fun p => mappingConeHomOfDegreewiseSplitXIso S σ p (p + { as := 1 }.as) ⋯) (p + 1)).hom"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝ : SemilatticeSup α", "f✝ : β → α", "t : Finset β", "f g : β → α", "H : t.Nonempty", "h₂ : ∀ x ∈ t, f x = g x"], "goal": "t.sup' H f = t.sup' ⋯ g"}], "premise": [11278], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝ : SemilatticeSup α\nf✝ : β → α\nt : Finset β\nf g : β → α\nH : t.Nonempty\nh₂ : ∀ x ∈ t, f x = g x\n⊢ t.sup' H f = t.sup' ⋯ g"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝ : SemilatticeSup α", "f✝ : β → α", "t : Finset β", "f g : β → α", "H : t.Nonempty", "h₂ : ∀ x ∈ t, f x = g x", "c : α"], "goal": "t.sup' H f ≤ c ↔ t.sup' ⋯ g ≤ c"}], "premise": [139771], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝ : SemilatticeSup α\nf✝ : β → α\nt : Finset β\nf g : β → α\nH : t.Nonempty\nh₂ : ∀ x ∈ t, f x = g x\nc : α\n⊢ t.sup' H f ≤ c ↔ t.sup' ⋯ g ≤ c"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "γ : Type x", "f : α → β", "s : Set α", "p : Set β → Prop"], "goal": "(∃ t ⊆ f '' s, t.Finite ∧ p t) ↔ ∃ t ⊆ s, t.Finite ∧ p (f '' t)"}], "premise": [1206, 1723, 135096, 137485], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nf : α → β\ns : Set α\np : Set β → Prop\n⊢ (∃ t ⊆ f '' s, t.Finite ∧ p t) ↔ ∃ t ⊆ s, t.Finite ∧ p (f '' t)"} +{"state": [{"context": ["M : Type u_1", "m₁ m₂ : DivInvMonoid M", "h_mul : HMul.hMul = HMul.hMul", "h_inv : Inv.inv = Inv.inv"], "goal": "m₁ = m₂"}], "premise": [118434], "state_str": "M : Type u_1\nm₁ m₂ : DivInvMonoid M\nh_mul : HMul.hMul = HMul.hMul\nh_inv : Inv.inv = Inv.inv\n⊢ m₁ = m₂"} +{"state": [{"context": ["M : Type u_1", "m₁ m₂ : DivInvMonoid M", "h_mul : HMul.hMul = HMul.hMul", "h_inv : Inv.inv = Inv.inv", "h_mon : toMonoid = toMonoid", "h₁ : One.one = One.one", "f : M →* M := { toFun := id, map_one' := h₁, map_mul' := ⋯ }", "this : Monoid.npow = Monoid.npow"], "goal": "m₁ = m₂"}], "premise": [117226], "state_str": "M : Type u_1\nm₁ m₂ : DivInvMonoid M\nh_mul : HMul.hMul = HMul.hMul\nh_inv : Inv.inv = Inv.inv\nh_mon : toMonoid = toMonoid\nh₁ : One.one = One.one\nf : M →* M := { toFun := id, map_one' := h₁, map_mul' := ⋯ }\nthis : Monoid.npow = Monoid.npow\n⊢ m₁ = m₂"} +{"state": [{"context": ["M : Type u_1", "m₁ m₂ : DivInvMonoid M", "h_mul : HMul.hMul = HMul.hMul", "h_inv : Inv.inv = Inv.inv", "h_mon : toMonoid = toMonoid", "h₁ : One.one = One.one", "f : M →* M := { toFun := id, map_one' := h₁, map_mul' := ⋯ }", "this✝ : Monoid.npow = Monoid.npow", "this : DivInvMonoid.zpow = DivInvMonoid.zpow"], "goal": "m₁ = m₂"}], "premise": [117090], "state_str": "M : Type u_1\nm₁ m₂ : DivInvMonoid M\nh_mul : HMul.hMul = HMul.hMul\nh_inv : Inv.inv = Inv.inv\nh_mon : toMonoid = toMonoid\nh₁ : One.one = One.one\nf : M →* M := { toFun := id, map_one' := h₁, map_mul' := ⋯ }\nthis✝ : Monoid.npow = Monoid.npow\nthis : DivInvMonoid.zpow = DivInvMonoid.zpow\n⊢ m₁ = m₂"} +{"state": [{"context": ["R : Type u", "M : Type v", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "W : Submodule R M", "φ : Module.Dual R M"], "goal": "φ ∈ W.dualAnnihilator ↔ ∀ w ∈ W, φ w = 0"}], "premise": [1715, 109977], "state_str": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nφ : Module.Dual R M\n⊢ φ ∈ W.dualAnnihilator ↔ ∀ w ∈ W, φ w = 0"} +{"state": [{"context": ["R : Type u", "M : Type v", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "W : Submodule R M", "φ : Module.Dual R M"], "goal": "W.dualRestrict φ = 0 ↔ ∀ w ∈ W, φ w = 0"}], "premise": [88089, 109736], "state_str": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nφ : Module.Dual R M\n⊢ W.dualRestrict φ = 0 ↔ ∀ w ∈ W, φ w = 0"} +{"state": [{"context": ["R : Type u", "M : Type v", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "W : Submodule R M", "φ : Module.Dual R M"], "goal": "(∀ (x : ↥W), φ ↑x = 0 x) ↔ ∀ w ∈ W, φ w = 0"}], "premise": [2115], "state_str": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nφ : Module.Dual R M\n⊢ (∀ (x : ↥W), φ ↑x = 0 x) ↔ ∀ w ∈ W, φ w = 0"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "inst✝ : AffineSpace V P", "s : AffineSubspace k P", "p1 p2 : P", "hp1 : p1 ∈ s"], "goal": "(affineSpan k (insert p2 ↑s)).direction = Submodule.span k {p2 -ᵥ p1} ⊔ s.direction"}], "premise": [14537, 84452, 133529], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\np1 p2 : P\nhp1 : p1 ∈ s\n⊢ (affineSpan k (insert p2 ↑s)).direction = Submodule.span k {p2 -ᵥ p1} ⊔ s.direction"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "inst✝ : AffineSpace V P", "s : AffineSubspace k P", "p1 p2 : P", "hp1 : p1 ∈ s"], "goal": "(s ⊔ affineSpan k {p2}).direction = s.direction ⊔ Submodule.span k {p2 -ᵥ p1}"}], "premise": [84439, 84440, 84534, 133516], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\np1 p2 : P\nhp1 : p1 ∈ s\n⊢ (s ⊔ affineSpan k {p2}).direction = s.direction ⊔ Submodule.span k {p2 -ᵥ p1}"} +{"state": [{"context": ["C : Type u_2", "inst✝⁵ : Category.{u_1, u_2} C", "inst✝⁴ : HasZeroMorphisms C", "S₁ S₂ S₃ S₄ : ShortComplex C", "inst✝³ : S₁.HasHomology", "inst✝² : S₂.HasHomology", "inst✝¹ : S₃.HasHomology", "inst✝ : S₄.HasHomology", "φ : S₁ ⟶ S₂", "h₁ : S₁.LeftHomologyData", "h₂ : S₂.LeftHomologyData", "γ : LeftHomologyMapData φ h₁ h₂"], "goal": "QuasiIso φ ↔ IsIso (leftHomologyMap' φ h₁ h₂)"}], "premise": [1713, 113980, 115076], "state_str": "C : Type u_2\ninst✝⁵ : Category.{u_1, u_2} C\ninst✝⁴ : HasZeroMorphisms C\nS₁ S₂ S₃ S₄ : ShortComplex C\ninst✝³ : S₁.HasHomology\ninst✝² : S₂.HasHomology\ninst✝¹ : S₃.HasHomology\ninst✝ : S₄.HasHomology\nφ : S₁ ⟶ S₂\nh₁ : S₁.LeftHomologyData\nh₂ : S₂.LeftHomologyData\nγ : LeftHomologyMapData φ h₁ h₂\n⊢ QuasiIso φ ↔ IsIso (leftHomologyMap' φ h₁ h₂)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s t : Set α", "hst : s ⊆ t", "ht : autoParam t.Finite _auto✝"], "goal": "s.ncard ≤ t.ncard"}], "premise": [135040, 136392, 142597], "state_str": "α : Type u_1\nβ : Type u_2\ns t : Set α\nhst : s ⊆ t\nht : autoParam t.Finite _auto✝\n⊢ s.ncard ≤ t.ncard"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s t : Set α", "hst : s ⊆ t", "ht : autoParam t.Finite _auto✝"], "goal": "s.encard ≤ t.encard"}], "premise": [136340], "state_str": "α : Type u_1\nβ : Type u_2\ns t : Set α\nhst : s ⊆ t\nht : autoParam t.Finite _auto✝\n⊢ s.encard ≤ t.encard"} +{"state": [{"context": ["P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (α → β) → Prop", "hP : ∀ {α β γ : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] [inst_2 : TopologicalSpace γ] (f : α → β) (g : β → γ), P f → P g → P (g ∘ f)", "X Y Z : Scheme", "f : X ⟶ Y", "g : Y ⟶ Z", "hf : topologically (fun {α β} [TopologicalSpace α] [TopologicalSpace β] => P) f", "hg : topologically (fun {α β} [TopologicalSpace α] [TopologicalSpace β] => P) g"], "goal": "topologically (fun {α β} [TopologicalSpace α] [TopologicalSpace β] => P) (f ≫ g)"}], "premise": [57808, 126568], "state_str": "P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (α → β) → Prop\nhP :\n ∀ {α β γ : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] [inst_2 : TopologicalSpace γ] (f : α → β)\n (g : β → γ), P f → P g → P (g ∘ f)\nX Y Z : Scheme\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : topologically (fun {α β} [TopologicalSpace α] [TopologicalSpace β] => P) f\nhg : topologically (fun {α β} [TopologicalSpace α] [TopologicalSpace β] => P) g\n⊢ topologically (fun {α β} [TopologicalSpace α] [TopologicalSpace β] => P) (f ≫ g)"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t"], "goal": "eVariationOn (f ∘ φ) t = eVariationOn f (φ '' t)"}], "premise": [14296, 42121, 131609], "state_str": "α : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\n⊢ eVariationOn (f ∘ φ) t = eVariationOn f (φ '' t)"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t"], "goal": "eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"}], "premise": [70316], "state_str": "α : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\n⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t", "h✝ : Nonempty β", "ψ : α → β := Function.invFunOn φ t"], "goal": "eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"}], "premise": [135844, 135946], "state_str": "case inr\nα : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\nh✝ : Nonempty β\nψ : α → β := Function.invFunOn φ t\n⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t", "h✝ : Nonempty β", "ψ : α → β := Function.invFunOn φ t", "ψφs : EqOn (φ ∘ ψ) id (φ '' t)"], "goal": "eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"}], "premise": [135844, 135949], "state_str": "case inr\nα : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\nh✝ : Nonempty β\nψ : α → β := Function.invFunOn φ t\nψφs : EqOn (φ ∘ ψ) id (φ '' t)\n⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t", "h✝ : Nonempty β", "ψ : α → β := Function.invFunOn φ t", "ψφs : EqOn (φ ∘ ψ) id (φ '' t)", "ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t"], "goal": "eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"}], "premise": [136025], "state_str": "case inr\nα : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\nh✝ : Nonempty β\nψ : α → β := Function.invFunOn φ t\nψφs : EqOn (φ ∘ ψ) id (φ '' t)\nψts : MapsTo (Function.invFunOn φ t) (φ '' t) t\n⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t", "h✝ : Nonempty β", "ψ : α → β := Function.invFunOn φ t", "ψφs : EqOn (φ ∘ ψ) id (φ '' t)", "ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t", "hψ : AntitoneOn ψ (φ '' t)"], "goal": "eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t"}], "premise": [42100, 135721], "state_str": "case inr\nα : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\nh✝ : Nonempty β\nψ : α → β := Function.invFunOn φ t\nψφs : EqOn (φ ∘ ψ) id (φ '' t)\nψts : MapsTo (Function.invFunOn φ t) (φ '' t) t\nhψ : AntitoneOn ψ (φ '' t)\n⊢ eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t"} +{"state": [{"context": ["α : Type u_1", "inst✝² : LinearOrder α", "E : Type u_2", "inst✝¹ : PseudoEMetricSpace E", "β : Type u_3", "inst✝ : LinearOrder β", "f : α → E", "t : Set β", "φ : β → α", "hφ : AntitoneOn φ t", "h✝ : Nonempty β", "ψ : α → β := Function.invFunOn φ t", "ψφs : EqOn (φ ∘ ψ) id (φ '' t)", "ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t", "hψ : AntitoneOn ψ (φ '' t)"], "goal": "eVariationOn (f ∘ φ ∘ ψ) (φ '' t) ≤ eVariationOn (f ∘ φ) t"}], "premise": [42121], "state_str": "case inr\nα : Type u_1\ninst✝² : LinearOrder α\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace E\nβ : Type u_3\ninst✝ : LinearOrder β\nf : α → E\nt : Set β\nφ : β → α\nhφ : AntitoneOn φ t\nh✝ : Nonempty β\nψ : α → β := Function.invFunOn φ t\nψφs : EqOn (φ ∘ ψ) id (φ '' t)\nψts : MapsTo (Function.invFunOn φ t) (φ '' t) t\nhψ : AntitoneOn ψ (φ '' t)\n⊢ eVariationOn (f ∘ φ ∘ ψ) (φ '' t) ≤ eVariationOn (f ∘ φ) t"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝¹ : LinearOrder α", "s✝ : Finset α", "H : s✝.Nonempty", "x : α", "inst✝ : LinearOrder β", "f : α → β", "hf : Monotone f", "s : Finset α", "h : (image f s).Nonempty"], "goal": "(image f s).min' h = f (s.min' ⋯)"}], "premise": [139817], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : s✝.Nonempty\nx : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : (image f s).Nonempty\n⊢ (image f s).min' h = f (s.min' ⋯)"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝¹ : LinearOrder α", "s✝ : Finset α", "H : s✝.Nonempty", "x : α", "inst✝ : LinearOrder β", "f : α → β", "hf : Monotone f", "s : Finset α", "h : (image f s).Nonempty"], "goal": "s.inf' ⋯ (id ∘ f) = f (s.inf' ⋯ id)"}], "premise": [2100, 13002, 139811], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : s✝.Nonempty\nx : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : (image f s).Nonempty\n⊢ s.inf' ⋯ (id ∘ f) = f (s.inf' ⋯ id)"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "T : Type w", "a b : R", "n : ℕ", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "p✝ q : R[X]", "inst✝³ : CommRing T", "p : T[X]", "S : Type u_1", "inst✝² : CommRing S", "inst✝¹ : IsDomain S", "inst✝ : Algebra T S"], "goal": "(-p).rootSet S = p.rootSet S"}], "premise": [102578], "state_str": "R : Type u\nS✝ : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\np✝ q : R[X]\ninst✝³ : CommRing T\np : T[X]\nS : Type u_1\ninst✝² : CommRing S\ninst✝¹ : IsDomain S\ninst✝ : Algebra T S\n⊢ (-p).rootSet S = p.rootSet S"} +{"state": [{"context": ["f : ℕ → ℝ≥0", "h_ant : Antitone f"], "goal": "∃ r, Tendsto f atTop (𝓝 r)"}], "premise": [146609], "state_str": "f : ℕ → ℝ≥0\nh_ant : Antitone f\n⊢ ∃ r, Tendsto f atTop (𝓝 r)"} +{"state": [{"context": ["f : ℕ → ℝ≥0", "h_ant : Antitone f", "h_bdd_0 : 0 ∈ lowerBounds (range fun n => ↑(f n))"], "goal": "∃ r, Tendsto f atTop (𝓝 r)"}], "premise": [56456], "state_str": "f : ℕ → ℝ≥0\nh_ant : Antitone f\nh_bdd_0 : 0 ∈ lowerBounds (range fun n => ↑(f n))\n⊢ ∃ r, Tendsto f atTop (𝓝 r)"} +{"state": [{"context": ["f : ℕ → ℝ≥0", "h_ant : Antitone f", "h_bdd_0 : 0 ∈ lowerBounds (range fun n => ↑(f n))", "L : ℝ", "hL : Tendsto (fun n => ↑(f n)) atTop (𝓝 L)"], "goal": "∃ r, Tendsto f atTop (𝓝 r)"}], "premise": [1674, 17821, 55076], "state_str": "case intro\nf : ℕ → ℝ≥0\nh_ant : Antitone f\nh_bdd_0 : 0 ∈ lowerBounds (range fun n => ↑(f n))\nL : ℝ\nhL : Tendsto (fun n => ↑(f n)) atTop (𝓝 L)\n⊢ ∃ r, Tendsto f atTop (𝓝 r)"} +{"state": [{"context": ["f : ℕ → ℝ≥0", "h_ant : Antitone f", "h_bdd_0 : 0 ∈ lowerBounds (range fun n => ↑(f n))", "L : ℝ", "hL : Tendsto (fun n => ↑(f n)) atTop (𝓝 L)", "hL0 : 0 ≤ L"], "goal": "∃ r, Tendsto f atTop (𝓝 r)"}], "premise": [1673, 56424], "state_str": "case intro\nf : ℕ → ℝ≥0\nh_ant : Antitone f\nh_bdd_0 : 0 ∈ lowerBounds (range fun n => ↑(f n))\nL : ℝ\nhL : Tendsto (fun n => ↑(f n)) atTop (𝓝 L)\nhL0 : 0 ≤ L\n⊢ ∃ r, Tendsto f atTop (𝓝 r)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "L S : TopologicalSpace α", "inst✝¹ : IsLawson α", "inst✝ : IsScott α"], "goal": "scottHausdorff α ≤ L"}], "premise": [54654], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\nL S : TopologicalSpace α\ninst✝¹ : IsLawson α\ninst✝ : IsScott α\n⊢ scottHausdorff α ≤ L"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "L S : TopologicalSpace α", "inst✝¹ : IsLawson α", "inst✝ : IsScott α"], "goal": "scottHausdorff α ≤ lawson α"}], "premise": [54667], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\nL S : TopologicalSpace α\ninst✝¹ : IsLawson α\ninst✝ : IsScott α\n⊢ scottHausdorff α ≤ lawson α"} +{"state": [{"context": ["C : Type u₁", "inst✝³ : Category.{v₁, u₁} C", "W X Y Z : C", "f : W ⟶ X", "g : W ⟶ Y", "h : X ⟶ Z", "i : Y ⟶ Z", "inst✝² : HasZeroObject C", "inst✝¹ : HasZeroMorphisms C", "inst✝ : HasBinaryBiproduct X Y"], "goal": "BicartesianSq 0 0 biprod.inl biprod.inr"}], "premise": [94189], "state_str": "C : Type u₁\ninst✝³ : Category.{v₁, u₁} C\nW X Y Z : C\nf : W ⟶ X\ng : W ⟶ Y\nh : X ⟶ Z\ni : Y ⟶ Z\ninst✝² : HasZeroObject C\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasBinaryBiproduct X Y\n⊢ BicartesianSq 0 0 biprod.inl biprod.inr"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "F✝ : C ⥤ Type w", "F : Cᵒᵖ ⥤ Type v"], "goal": "(fromCostructuredArrow F).rightOp ⋙ toCostructuredArrow F = 𝟭 (CostructuredArrow yoneda F)"}], "premise": [97754], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nF✝ : C ⥤ Type w\nF : Cᵒᵖ ⥤ Type v\n⊢ (fromCostructuredArrow F).rightOp ⋙ toCostructuredArrow F = 𝟭 (CostructuredArrow yoneda F)"} +{"state": [{"context": ["R : Type u_1", "B : Type u_2", "F : Type u_3", "E : B → Type u_4", "inst✝⁸ : NontriviallyNormedField R", "inst✝⁷ : (x : B) → AddCommMonoid (E x)", "inst✝⁶ : (x : B) → Module R (E x)", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace R F", "inst✝³ : TopologicalSpace B", "inst✝² : TopologicalSpace (TotalSpace F E)", "inst✝¹ : (x : B) → TopologicalSpace (E x)", "inst✝ : FiberBundle F E", "ι : Type u_5", "Z : VectorBundleCore R B F ι", "b✝ : B", "a : F", "i j : ι", "b : B", "hb : b ∈ Z.baseSet i ∩ Z.baseSet j", "v : F"], "goal": "(Trivialization.coordChangeL R (Z.localTriv i) (Z.localTriv j) b) v = (Z.coordChange i j b) v"}], "premise": [60894, 60918, 60925, 60929], "state_str": "R : Type u_1\nB : Type u_2\nF : Type u_3\nE : B → Type u_4\ninst✝⁸ : NontriviallyNormedField R\ninst✝⁷ : (x : B) → AddCommMonoid (E x)\ninst✝⁶ : (x : B) → Module R (E x)\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace R F\ninst✝³ : TopologicalSpace B\ninst✝² : TopologicalSpace (TotalSpace F E)\ninst✝¹ : (x : B) → TopologicalSpace (E x)\ninst✝ : FiberBundle F E\nι : Type u_5\nZ : VectorBundleCore R B F ι\nb✝ : B\na : F\ni j : ι\nb : B\nhb : b ∈ Z.baseSet i ∩ Z.baseSet j\nv : F\n⊢ (Trivialization.coordChangeL R (Z.localTriv i) (Z.localTriv j) b) v = (Z.coordChange i j b) v"} +{"state": [{"context": ["R : Type u_1", "B : Type u_2", "F : Type u_3", "E : B → Type u_4", "inst✝⁸ : NontriviallyNormedField R", "inst✝⁷ : (x : B) → AddCommMonoid (E x)", "inst✝⁶ : (x : B) → Module R (E x)", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace R F", "inst✝³ : TopologicalSpace B", "inst✝² : TopologicalSpace (TotalSpace F E)", "inst✝¹ : (x : B) → TopologicalSpace (E x)", "inst✝ : FiberBundle F E", "ι : Type u_5", "Z : VectorBundleCore R B F ι", "b✝ : B", "a : F", "i j : ι", "b : B", "hb : b ∈ Z.baseSet i ∩ Z.baseSet j", "v : F"], "goal": "{ proj := (b, v).1, snd := (Z.coordChange i (Z.indexAt (b, v).1) (b, v).1) (b, v).2 }.proj ∈ Z.baseSet i ∩ Z.baseSet (Z.indexAt { proj := (b, v).1, snd := (Z.coordChange i (Z.indexAt (b, v).1) (b, v).1) (b, v).2 }.proj) ∩ Z.baseSet j"}, {"context": ["R : Type u_1", "B : Type u_2", "F : Type u_3", "E : B → Type u_4", "inst✝⁸ : NontriviallyNormedField R", "inst✝⁷ : (x : B) → AddCommMonoid (E x)", "inst✝⁶ : (x : B) → Module R (E x)", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace R F", "inst✝³ : TopologicalSpace B", "inst✝² : TopologicalSpace (TotalSpace F E)", "inst✝¹ : (x : B) → TopologicalSpace (E x)", "inst✝ : FiberBundle F E", "ι : Type u_5", "Z : VectorBundleCore R B F ι", "b✝ : B", "a : F", "i j : ι", "b : B", "hb : b ∈ Z.baseSet i ∩ Z.baseSet j", "v : F"], "goal": "b ∈ (Z.localTriv i).baseSet ∩ (Z.localTriv j).baseSet"}], "premise": [2106, 2107, 60915], "state_str": "case a\nR : Type u_1\nB : Type u_2\nF : Type u_3\nE : B → Type u_4\ninst✝⁸ : NontriviallyNormedField R\ninst✝⁷ : (x : B) → AddCommMonoid (E x)\ninst✝⁶ : (x : B) → Module R (E x)\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace R F\ninst✝³ : TopologicalSpace B\ninst✝² : TopologicalSpace (TotalSpace F E)\ninst✝¹ : (x : B) → TopologicalSpace (E x)\ninst✝ : FiberBundle F E\nι : Type u_5\nZ : VectorBundleCore R B F ι\nb✝ : B\na : F\ni j : ι\nb : B\nhb : b ∈ Z.baseSet i ∩ Z.baseSet j\nv : F\n⊢ { proj := (b, v).1, snd := (Z.coordChange i (Z.indexAt (b, v).1) (b, v).1) (b, v).2 }.proj ∈\n Z.baseSet i ∩\n Z.baseSet\n (Z.indexAt { proj := (b, v).1, snd := (Z.coordChange i (Z.indexAt (b, v).1) (b, v).1) (b, v).2 }.proj) ∩\n Z.baseSet j\n\ncase hb\nR : Type u_1\nB : Type u_2\nF : Type u_3\nE : B → Type u_4\ninst✝⁸ : NontriviallyNormedField R\ninst✝⁷ : (x : B) → AddCommMonoid (E x)\ninst✝⁶ : (x : B) → Module R (E x)\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace R F\ninst✝³ : TopologicalSpace B\ninst✝² : TopologicalSpace (TotalSpace F E)\ninst✝¹ : (x : B) → TopologicalSpace (E x)\ninst✝ : FiberBundle F E\nι : Type u_5\nZ : VectorBundleCore R B F ι\nb✝ : B\na : F\ni j : ι\nb : B\nhb : b ∈ Z.baseSet i ∩ Z.baseSet j\nv : F\n⊢ b ∈ (Z.localTriv i).baseSet ∩ (Z.localTriv j).baseSet"} +{"state": [{"context": ["l : Type u_1", "R : Type u_2", "inst✝² : DecidableEq l", "inst✝¹ : Fintype l", "inst✝ : CommRing R"], "goal": "J l R ∈ symplecticGroup l R"}], "premise": [81384, 140699, 140711], "state_str": "l : Type u_1\nR : Type u_2\ninst✝² : DecidableEq l\ninst✝¹ : Fintype l\ninst✝ : CommRing R\n⊢ J l R ∈ symplecticGroup l R"} +{"state": [{"context": ["ι : Type u_1", "V : Type u", "inst✝³ : Category.{v, u} V", "inst✝² : HasZeroMorphisms V", "c : ComplexShape ι", "C : HomologicalComplex V c", "inst✝¹ : HasImages V", "inst✝ : HasEqualizers V", "i j : ι", "r : c.Rel i j"], "goal": "imageSubobject (C.dTo j) = imageSubobject (C.d i j)"}], "premise": [113873], "state_str": "ι : Type u_1\nV : Type u\ninst✝³ : Category.{v, u} V\ninst✝² : HasZeroMorphisms V\nc : ComplexShape ι\nC : HomologicalComplex V c\ninst✝¹ : HasImages V\ninst✝ : HasEqualizers V\ni j : ι\nr : c.Rel i j\n⊢ imageSubobject (C.dTo j) = imageSubobject (C.d i j)"} +{"state": [{"context": ["ι : Type u_1", "V : Type u", "inst✝³ : Category.{v, u} V", "inst✝² : HasZeroMorphisms V", "c : ComplexShape ι", "C : HomologicalComplex V c", "inst✝¹ : HasImages V", "inst✝ : HasEqualizers V", "i j : ι", "r : c.Rel i j"], "goal": "imageSubobject ((C.xPrevIso r).hom ≫ C.d i j) = imageSubobject (C.d i j)"}], "premise": [89353], "state_str": "ι : Type u_1\nV : Type u\ninst✝³ : Category.{v, u} V\ninst✝² : HasZeroMorphisms V\nc : ComplexShape ι\nC : HomologicalComplex V c\ninst✝¹ : HasImages V\ninst✝ : HasEqualizers V\ni j : ι\nr : c.Rel i j\n⊢ imageSubobject ((C.xPrevIso r).hom ≫ C.d i j) = imageSubobject (C.d i j)"} +{"state": [{"context": ["h : Nat.Primrec fun n => ack n n"], "goal": "False"}], "premise": [69837], "state_str": "h : Nat.Primrec fun n => ack n n\n⊢ False"} +{"state": [{"context": ["h : Nat.Primrec fun n => ack n n", "m : ℕ", "hm : ∀ (n : ℕ), ack n n < ack m n"], "goal": "False"}], "premise": [11233], "state_str": "case intro\nh : Nat.Primrec fun n => ack n n\nm : ℕ\nhm : ∀ (n : ℕ), ack n n < ack m n\n⊢ False"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R", "n : ℕ", "μ : R", "hμ : IsPrimitiveRoot μ (n + 1)"], "goal": "(-1) ^ n * ∏ k ∈ range n, (μ ^ (k + 1) - 1) = ↑n + 1"}], "premise": [127178, 137642], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nn : ℕ\nμ : R\nhμ : IsPrimitiveRoot μ (n + 1)\n⊢ (-1) ^ n * ∏ k ∈ range n, (μ ^ (k + 1) - 1) = ↑n + 1"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R", "n : ℕ", "μ : R", "hμ : IsPrimitiveRoot μ (n + 1)", "this : (-1) ^ n = ∏ k ∈ range n, -1"], "goal": "(-1) ^ n * ∏ k ∈ range n, (μ ^ (k + 1) - 1) = ↑n + 1"}], "premise": [78046, 117837, 122248, 127009], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nn : ℕ\nμ : R\nhμ : IsPrimitiveRoot μ (n + 1)\nthis : (-1) ^ n = ∏ k ∈ range n, -1\n⊢ (-1) ^ n * ∏ k ∈ range n, (μ ^ (k + 1) - 1) = ↑n + 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l✝ l₁ l₂ l₃ : List α", "a b : α", "m n : ℕ", "l : List α"], "goal": "l.tail <:+ l"}], "premise": [1271], "state_str": "α : Type u_1\nβ : Type u_2\nl✝ l₁ l₂ l₃ : List α\na b : α\nm n : ℕ\nl : List α\n⊢ l.tail <:+ l"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l✝ l₁ l₂ l₃ : List α", "a b : α", "m n : ℕ", "l : List α"], "goal": "drop 1 l <:+ l"}], "premise": [1521], "state_str": "α : Type u_1\nβ : Type u_2\nl✝ l₁ l₂ l₃ : List α\na b : α\nm n : ℕ\nl : List α\n⊢ drop 1 l <:+ l"} +{"state": [{"context": ["M : Type u_1", "S✝ T : Set M", "inst✝ : Mul M", "S : Set M"], "goal": "S.centralizer.centralizer.centralizer = S.centralizer"}], "premise": [119320, 133329], "state_str": "M : Type u_1\nS✝ T : Set M\ninst✝ : Mul M\nS : Set M\n⊢ S.centralizer.centralizer.centralizer = S.centralizer"} +{"state": [{"context": ["M : Type u_1", "S✝ T : Set M", "inst✝ : Mul M", "S : Set M", "x : M", "hx : x ∈ S.centralizer.centralizer.centralizer"], "goal": "x ∈ S.centralizer"}], "premise": [119312], "state_str": "M : Type u_1\nS✝ T : Set M\ninst✝ : Mul M\nS : Set M\nx : M\nhx : x ∈ S.centralizer.centralizer.centralizer\n⊢ x ∈ S.centralizer"} +{"state": [{"context": ["M : Type u_1", "S✝ T : Set M", "inst✝ : Mul M", "S : Set M", "x : M", "hx : x ∈ S.centralizer.centralizer.centralizer", "y : M", "hy : y ∈ S"], "goal": "y * x = x * y"}], "premise": [119312], "state_str": "M : Type u_1\nS✝ T : Set M\ninst✝ : Mul M\nS : Set M\nx : M\nhx : x ∈ S.centralizer.centralizer.centralizer\ny : M\nhy : y ∈ S\n⊢ y * x = x * y"} +{"state": [{"context": ["M : Type u_1", "S✝ T : Set M", "inst✝ : Mul M", "S : Set M", "x : M", "hx : ∀ m ∈ S.centralizer.centralizer, m * x = x * m", "y : M", "hy : y ∈ S"], "goal": "y * x = x * y"}], "premise": [119320], "state_str": "M : Type u_1\nS✝ T : Set M\ninst✝ : Mul M\nS : Set M\nx : M\nhx : ∀ m ∈ S.centralizer.centralizer, m * x = x * m\ny : M\nhy : y ∈ S\n⊢ y * x = x * y"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "κ : ι → Sort u_5", "inst✝ : Preorder α", "s : UpperSet α", "t : Set α", "a : α", "hts : t ⊆ ↑s", "hst : ∀ b ∈ s, ∀ c ∈ t, b ≤ c → b ∈ t"], "goal": "upperClosure t ⊓ s.sdiff t = s"}], "premise": [14579, 21214], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nκ : ι → Sort u_5\ninst✝ : Preorder α\ns : UpperSet α\nt : Set α\na : α\nhts : t ⊆ ↑s\nhst : ∀ b ∈ s, ∀ c ∈ t, b ≤ c → b ∈ t\n⊢ upperClosure t ⊓ s.sdiff t = s"} +{"state": [{"context": ["X : Type u_1", "Y✝ : Type u_2", "Z : Type u_3", "inst✝⁶ : TopologicalSpace X", "inst✝⁵ : TopologicalSpace Y✝", "inst✝⁴ : TopologicalSpace Z", "X' : Type u_4", "Y' : Type u_5", "inst✝³ : TopologicalSpace X'", "inst✝² : TopologicalSpace Y'", "ι : Type u_6", "p : ι → Prop", "Y : ι → Type u_7", "inst✝¹ : (i : ι) → TopologicalSpace (Y i)", "inst✝ : DecidablePred p"], "goal": "Continuous (Equiv.piEquivPiSubtypeProd p Y).toFun"}], "premise": [66393, 66537, 66538], "state_str": "X : Type u_1\nY✝ : Type u_2\nZ : Type u_3\ninst✝⁶ : TopologicalSpace X\ninst✝⁵ : TopologicalSpace Y✝\ninst✝⁴ : TopologicalSpace Z\nX' : Type u_4\nY' : Type u_5\ninst✝³ : TopologicalSpace X'\ninst✝² : TopologicalSpace Y'\nι : Type u_6\np : ι → Prop\nY : ι → Type u_7\ninst✝¹ : (i : ι) → TopologicalSpace (Y i)\ninst✝ : DecidablePred p\n⊢ Continuous (Equiv.piEquivPiSubtypeProd p Y).toFun"} +{"state": [{"context": ["X : Type u_1", "Y✝ : Type u_2", "Z : Type u_3", "inst✝⁶ : TopologicalSpace X", "inst✝⁵ : TopologicalSpace Y✝", "inst✝⁴ : TopologicalSpace Z", "X' : Type u_4", "Y' : Type u_5", "inst✝³ : TopologicalSpace X'", "inst✝² : TopologicalSpace Y'", "ι : Type u_6", "p : ι → Prop", "Y : ι → Type u_7", "inst✝¹ : (i : ι) → TopologicalSpace (Y i)", "inst✝ : DecidablePred p", "j : ι", "h✝ : p j"], "goal": "Continuous fun a => a.1 ⟨j, h✝⟩"}, {"context": ["X : Type u_1", "Y✝ : Type u_2", "Z : Type u_3", "inst✝⁶ : TopologicalSpace X", "inst✝⁵ : TopologicalSpace Y✝", "inst✝⁴ : TopologicalSpace Z", "X' : Type u_4", "Y' : Type u_5", "inst✝³ : TopologicalSpace X'", "inst✝² : TopologicalSpace Y'", "ι : Type u_6", "p : ι → Prop", "Y : ι → Type u_7", "inst✝¹ : (i : ι) → TopologicalSpace (Y i)", "inst✝ : DecidablePred p", "j : ι", "h✝ : ¬p j"], "goal": "Continuous fun a => a.2 ⟨j, h✝⟩"}], "premise": [55630, 66377, 66385, 66538], "state_str": "case pos\nX : Type u_1\nY✝ : Type u_2\nZ : Type u_3\ninst✝⁶ : TopologicalSpace X\ninst✝⁵ : TopologicalSpace Y✝\ninst✝⁴ : TopologicalSpace Z\nX' : Type u_4\nY' : Type u_5\ninst✝³ : TopologicalSpace X'\ninst✝² : TopologicalSpace Y'\nι : Type u_6\np : ι → Prop\nY : ι → Type u_7\ninst✝¹ : (i : ι) → TopologicalSpace (Y i)\ninst✝ : DecidablePred p\nj : ι\nh✝ : p j\n⊢ Continuous fun a => a.1 ⟨j, h✝⟩\n\ncase neg\nX : Type u_1\nY✝ : Type u_2\nZ : Type u_3\ninst✝⁶ : TopologicalSpace X\ninst✝⁵ : TopologicalSpace Y✝\ninst✝⁴ : TopologicalSpace Z\nX' : Type u_4\nY' : Type u_5\ninst✝³ : TopologicalSpace X'\ninst✝² : TopologicalSpace Y'\nι : Type u_6\np : ι → Prop\nY : ι → Type u_7\ninst✝¹ : (i : ι) → TopologicalSpace (Y i)\ninst✝ : DecidablePred p\nj : ι\nh✝ : ¬p j\n⊢ Continuous fun a => a.2 ⟨j, h✝⟩"} +{"state": [{"context": ["α : Type u", "x y : α", "h : pure x = pure y"], "goal": "x = y"}], "premise": [16310], "state_str": "α : Type u\nx y : α\nh : pure x = pure y\n⊢ x = y"} +{"state": [{"context": ["α : Type u", "x y : α", "h : pure x = pure y", "this : {x} ∈ pure y"], "goal": "x = y"}], "premise": [1673, 2100, 16188, 133512], "state_str": "α : Type u\nx y : α\nh : pure x = pure y\nthis : {x} ∈ pure y\n⊢ x = y"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₀ : PositiveCompacts G", "U : Set G", "hU : (interior U).Nonempty", "K : Set G", "h1K : IsCompact K", "h2K : (interior K).Nonempty"], "goal": "0 < prehaar (↑K₀) U { carrier := K, isCompact' := h1K }"}], "premise": [104338], "state_str": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₀ : PositiveCompacts G\nU : Set G\nhU : (interior U).Nonempty\nK : Set G\nh1K : IsCompact K\nh2K : (interior K).Nonempty\n⊢ 0 < prehaar (↑K₀) U { carrier := K, isCompact' := h1K }"} +{"state": [{"context": ["𝕜 : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : SeminormedRing β", "l : Filter α", "f g : α → β", "hf : l.BoundedAtFilter f", "hg : l.BoundedAtFilter g"], "goal": "l.BoundedAtFilter (f * g)"}], "premise": [43411, 43587], "state_str": "𝕜 : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : SeminormedRing β\nl : Filter α\nf g : α → β\nhf : l.BoundedAtFilter f\nhg : l.BoundedAtFilter g\n⊢ l.BoundedAtFilter (f * g)"} +{"state": [{"context": ["𝕜 : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : SeminormedRing β", "l : Filter α", "f g : α → β", "hf : l.BoundedAtFilter f", "hg : l.BoundedAtFilter g"], "goal": "(fun x => 1 x * 1 x) =O[l] 1"}], "premise": [43424], "state_str": "𝕜 : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : SeminormedRing β\nl : Filter α\nf g : α → β\nhf : l.BoundedAtFilter f\nhg : l.BoundedAtFilter g\n⊢ (fun x => 1 x * 1 x) =O[l] 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "x : α", "h : some x = none"], "goal": "False"}], "premise": [1695], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nx : α\nh : some x = none\n⊢ False"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Preadditive C", "R : Type u_1", "inst✝¹ : Ring R", "inst✝ : Linear R C", "F G K L : CochainComplex C ℤ", "n m n₂ : ℤ", "z₁ : Cochain F G 0", "z₂ : Cochain G K n₂", "m₂ : ���", "h₂ : n₂ + 1 = m₂"], "goal": "1 + n₂ = m₂"}], "premise": [119708], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Preadditive C\nR : Type u_1\ninst✝¹ : Ring R\ninst✝ : Linear R C\nF G K L : CochainComplex C ℤ\nn m n₂ : ℤ\nz₁ : Cochain F G 0\nz₂ : Cochain G K n₂\nm₂ : ℤ\nh₂ : n₂ + 1 = m₂\n⊢ 1 + n₂ = m₂"} +{"state": [{"context": ["𝕜 : Type u", "inst✝¹¹ : NontriviallyNormedField 𝕜", "E : Type v", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace 𝕜 E", "F : Type w", "inst✝⁸ : NormedAddCommGroup F", "inst✝⁷ : NormedSpace 𝕜 F", "F' : Type x", "inst✝⁶ : AddCommGroup F'", "inst✝⁵ : Module 𝕜 F'", "inst✝⁴ : TopologicalSpace F'", "inst✝³ : TopologicalAddGroup F'", "inst✝² : ContinuousSMul 𝕜 F'", "inst✝¹ : CompleteSpace 𝕜", "ι : Type u_1", "inst✝ : Fintype ι", "v : Basis ι 𝕜 E", "u : E →L[𝕜] F", "M : ℝ≥0", "hu : ∀ (i : ι), ‖u (v i)‖₊ ≤ M", "e : E", "φ : E →L[𝕜] ι → 𝕜 := ↑v.equivFunL"], "goal": "‖u e‖₊ ≤ Fintype.card ι • ‖φ‖₊ * M * ‖e‖₊"}], "premise": [39967, 41372, 42636, 42900, 87368, 103772, 109741, 117740, 118899, 125067, 126889], "state_str": "𝕜 : Type u\ninst✝¹¹ : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁶ : AddCommGroup F'\ninst✝⁵ : Module 𝕜 F'\ninst✝⁴ : TopologicalSpace F'\ninst✝³ : TopologicalAddGroup F'\ninst✝² : ContinuousSMul 𝕜 F'\ninst✝¹ : CompleteSpace 𝕜\nι : Type u_1\ninst✝ : Fintype ι\nv : Basis ι 𝕜 E\nu : E →L[𝕜] F\nM : ℝ≥0\nhu : ∀ (i : ι), ‖u (v i)‖₊ ≤ M\ne : E\nφ : E →L[𝕜] ι → 𝕜 := ↑v.equivFunL\n⊢ ‖u e‖₊ ≤ Fintype.card ι • ‖φ‖₊ * M * ‖e‖₊"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "A : Type u_1", "inst✝ : Category.{?u.31588, u_1} A", "J : GrothendieckTopology C", "X : C", "S : J.Cover X", "f₁ f₂ : S.Arrow", "W : C", "p₁ : W ⟶ f₁.Y", "p₂ : W ⟶ f₂.Y", "w : p₁ ≫ f₁.f = p₂ ≫ f₂.f", "Y : C", "f : Y ⟶ W"], "goal": "(S.preOneHypercover.sieve₁ p₁ p₂).arrows f ↔ ⊤.arrows f"}], "premise": [1194, 91053], "state_str": "case h\nC : Type u\ninst✝¹ : Category.{v, u} C\nA : Type u_1\ninst✝ : Category.{?u.31588, u_1} A\nJ : GrothendieckTopology C\nX : C\nS : J.Cover X\nf₁ f₂ : S.Arrow\nW : C\np₁ : W ⟶ f₁.Y\np₂ : W ⟶ f₂.Y\nw : p₁ ≫ f₁.f = p₂ ≫ f₂.f\nY : C\nf : Y ⟶ W\n⊢ (S.preOneHypercover.sieve₁ p₁ p₂).arrows f ↔ ⊤.arrows f"} +{"state": [{"context": ["p : ℕ", "G : Type u_1", "inst✝¹ : Group G", "H : Subgroup G", "hH : IsPGroup p ↥H", "K : Type u_2", "inst✝ : Group K", "ϕ : K →* G", "hϕ : IsPGroup p ↥ϕ.ker", "g : ↥(Subgroup.comap ϕ H)"], "goal": "∃ k, g ^ p ^ k = 1"}], "premise": [2115], "state_str": "p : ℕ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\nhH : IsPGroup p ↥H\nK : Type u_2\ninst✝ : Group K\nϕ : K →* G\nhϕ : IsPGroup p ↥ϕ.ker\ng : ↥(Subgroup.comap ϕ H)\n⊢ ∃ k, g ^ p ^ k = 1"} +{"state": [{"context": ["p : ℕ", "G : Type u_1", "inst✝¹ : Group G", "H : Subgroup G", "hH : IsPGroup p ↥H", "K : Type u_2", "inst✝ : Group K", "ϕ : K →* G", "hϕ : IsPGroup p ↥ϕ.ker", "g : ↥(Subgroup.comap ϕ H)", "j : ℕ", "hj : ⟨ϕ ↑g, ⋯⟩ ^ p ^ j = 1"], "goal": "∃ k, g ^ p ^ k = 1"}], "premise": [117223, 122634, 137128, 137134], "state_str": "case intro\np : ℕ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\nhH : IsPGroup p ↥H\nK : Type u_2\ninst✝ : Group K\nϕ : K →* G\nhϕ : IsPGroup p ↥ϕ.ker\ng : ↥(Subgroup.comap ϕ H)\nj : ℕ\nhj : ⟨ϕ ↑g, ⋯⟩ ^ p ^ j = 1\n⊢ ∃ k, g ^ p ^ k = 1"} +{"state": [{"context": ["p : ℕ", "G : Type u_1", "inst✝¹ : Group G", "H : Subgroup G", "hH : IsPGroup p ↥H", "K : Type u_2", "inst✝ : Group K", "ϕ : K →* G", "hϕ : IsPGroup p ↥ϕ.ker", "g : ↥(Subgroup.comap ϕ H)", "j : ℕ", "hj : ϕ (↑g ^ p ^ j) = ↑1", "k : ℕ", "hk : ⟨↑g ^ p ^ j, hj⟩ ^ p ^ k = 1"], "goal": "∃ k, g ^ p ^ k = 1"}], "premise": [119758, 119761, 122634, 137128, 137134], "state_str": "case intro.intro\np : ℕ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\nhH : IsPGroup p ↥H\nK : Type u_2\ninst✝ : Group K\nϕ : K →* G\nhϕ : IsPGroup p ↥ϕ.ker\ng : ↥(Subgroup.comap ϕ H)\nj : ℕ\nhj : ϕ (↑g ^ p ^ j) = ↑1\nk : ℕ\nhk : ⟨↑g ^ p ^ j, hj⟩ ^ p ^ k = 1\n⊢ ∃ k, g ^ p ^ k = 1"} +{"state": [{"context": ["p : ℕ", "G : Type u_1", "inst✝¹ : Group G", "H : Subgroup G", "hH : IsPGroup p ↥H", "K : Type u_2", "inst✝ : Group K", "ϕ : K →* G", "hϕ : IsPGroup p ↥ϕ.ker", "g : ↥(Subgroup.comap ϕ H)", "j : ℕ", "hj : ϕ (↑g ^ p ^ j) = ↑1", "k : ℕ", "hk : ↑g ^ p ^ (j + k) = ↑1"], "goal": "∃ k, g ^ p ^ k = 1"}], "premise": [122634, 137128], "state_str": "case intro.intro\np : ℕ\nG : Type u_1\ninst��¹ : Group G\nH : Subgroup G\nhH : IsPGroup p ↥H\nK : Type u_2\ninst✝ : Group K\nϕ : K →* G\nhϕ : IsPGroup p ↥ϕ.ker\ng : ↥(Subgroup.comap ϕ H)\nj : ℕ\nhj : ϕ (↑g ^ p ^ j) = ↑1\nk : ℕ\nhk : ↑g ^ p ^ (j + k) = ↑1\n⊢ ∃ k, g ^ p ^ k = 1"} +{"state": [{"context": ["R : Type u_1", "inst✝⁶ : CommRing R", "inst✝⁵ : IsDedekindDomain R", "inst✝⁴ : Module.Free ℤ R", "inst✝³ : Module.Finite ℤ R", "K : Type u_2", "inst✝² : CommRing K", "inst✝¹ : Algebra R K", "inst✝ : IsFractionRing R K", "I : FractionalIdeal R⁰ K", "a : ↥R⁰", "I₀ : Ideal R", "h : a • ↑I = Submodule.map (Algebra.linearMap R K) I₀"], "goal": "absNorm I = ↑(Ideal.absNorm I₀) / ↑|(Algebra.norm ℤ) ↑a|"}], "premise": [75607, 108522, 117117], "state_str": "R : Type u_1\ninst✝⁶ : CommRing R\ninst✝⁵ : IsDedekindDomain R\ninst✝⁴ : Module.Free ℤ R\ninst✝³ : Module.Finite ℤ R\nK : Type u_2\ninst✝² : CommRing K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nI : FractionalIdeal R⁰ K\na : ↥R⁰\nI₀ : Ideal R\nh : a • ↑I = Submodule.map (Algebra.linearMap R K) I₀\n⊢ absNorm I = ↑(Ideal.absNorm I₀) / ↑|(Algebra.norm ℤ) ↑a|"} +{"state": [{"context": ["α : Sort u_1", "β : Sort u_2", "γ : Sort u_3", "f : α → β", "g : α → γ", "hf : FactorsThrough g f", "e' : β → γ", "a : α"], "goal": "extend f g e' (f a) = g a"}], "premise": [1739, 2046, 71489], "state_str": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\ng : α → γ\nhf : FactorsThrough g f\ne' : β → γ\na : α\n⊢ extend f g e' (f a) = g a"} +{"state": [{"context": ["α : Sort u_1", "β : Sort u_2", "γ : Sort u_3", "f : α → β", "g : α → γ", "hf : FactorsThrough g f", "e' : β → γ", "a : α"], "goal": "g (Classical.choose ⋯) = g a"}], "premise": [1084, 2046], "state_str": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\ng : α → γ\nhf : FactorsThrough g f\ne' : β → γ\na : α\n⊢ g (Classical.choose ⋯) = g a"} +{"state": [{"context": ["R : Type u_1", "C : Type u_2", "inst✝³ : Semiring R", "inst✝² : Category.{u_3, u_2} C", "inst✝¹ : Preadditive C", "inst✝ : Linear R C", "S₁ S₂ : ShortComplex C", "φ φ' : S₁ ⟶ S₂", "h₁ : S₁.RightHomologyData", "h₂ : S₂.RightHomologyData", "a : R", "γ : RightHomologyMapData φ h₁ h₂"], "goal": "rightHomologyMap' (a • φ) h₁ h₂ = a • rightHomologyMap' φ h₁ h₂"}], "premise": [114136, 115296], "state_str": "R : Type u_1\nC : Type u_2\ninst✝³ : Semiring R\ninst✝² : Category.{u_3, u_2} C\ninst✝¹ : Preadditive C\ninst✝ : Linear R C\nS₁ S₂ : ShortComplex C\nφ φ' : S₁ ⟶ S₂\nh₁ : S₁.RightHomologyData\nh₂ : S₂.RightHomologyData\na : R\nγ : RightHomologyMapData φ h₁ h₂\n⊢ rightHomologyMap' (a • φ) h₁ h₂ = a • rightHomologyMap' φ h₁ h₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "M : Type u_3", "E : Type u_4", "inst✝ : One β", "l : Filter α", "f : α → β", "s : Set α", "hf : f =ᶠ[l] 1"], "goal": "s.mulIndicator 1 =ᶠ[l] 1"}], "premise": [120895], "state_str": "α : Type u_1\nβ : Type u_2\nM : Type u_3\nE : Type u_4\ninst✝ : One β\nl : Filter α\nf : α → β\ns : Set α\nhf : f =ᶠ[l] 1\n⊢ s.mulIndicator 1 =ᶠ[l] 1"} +{"state": [{"context": ["n : ℕ", "F : TypeVec.{u} (n + 1) → Type u", "q : MvQPF F", "α : TypeVec.{u} n", "x : (P F).W α"], "goal": "WEquiv (wrepr x) x"}], "premise": [128361], "state_str": "n : ℕ\nF : TypeVec.{u} (n + 1) → Type u\nq : MvQPF F\nα : TypeVec.{u} n\nx : (P F).W α\n⊢ WEquiv (wrepr x) x"} +{"state": [{"context": ["n : ℕ", "F : TypeVec.{u} (n + 1) → Type u", "q : MvQPF F", "α : TypeVec.{u} n", "x : (P F).W α", "a : (P F).A", "f' : (P F).drop.B a ⟹ α", "f : (P F).last.B a → (P F).W α", "ih : ∀ (i : (P F).last.B a), WEquiv (wrepr (f i)) (f i)"], "goal": "WEquiv ((P F).wMk' ((TypeVec.id ::: wrepr) <$$> ⟨a, (P F).appendContents f' f⟩)) ((P F).wMk a f' f)"}], "premise": [128094, 137028, 137045], "state_str": "case a\nn : ℕ\nF : TypeVec.{u} (n + 1) → Type u\nq : MvQPF F\nα : TypeVec.{u} n\nx : (P F).W α\na : (P F).A\nf' : (P F).drop.B a ⟹ α\nf : (P F).last.B a → (P F).W α\nih : ∀ (i : (P F).last.B a), WEquiv (wrepr (f i)) (f i)\n⊢ WEquiv ((P F).wMk' ((TypeVec.id ::: wrepr) <$$> ⟨a, (P F).appendContents f' f⟩)) ((P F).wMk a f' f)"} +{"state": [{"context": ["G : Type u", "α : Type v", "β : Type w", "inst✝¹ : Group G", "inst✝ : Finite G", "p n : ℕ", "hp : Fact (Nat.Prime p)", "hdvd : p ^ (n + 1) ∣ Nat.card G", "H : Subgroup G", "hH : Nat.card ↥H = p ^ n", "s : ℕ", "hs : Nat.card G = s * p ^ (n + 1)"], "goal": "Nat.card (G ⧸ H) * Nat.card ↥H = s * p * Nat.card ↥H"}], "premise": [6962, 119703, 119707, 119745], "state_str": "G : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Finite G\np n : ℕ\nhp : Fact (Nat.Prime p)\nhdvd : p ^ (n + 1) ∣ Nat.card G\nH : Subgroup G\nhH : Nat.card ↥H = p ^ n\ns : ℕ\nhs : Nat.card G = s * p ^ (n + 1)\n⊢ Nat.card (G ⧸ H) * Nat.card ↥H = s * p * Nat.card ↥H"} +{"state": [{"context": ["G : Type u", "α : Type v", "β : Type w", "inst✝¹ : Group G", "inst✝ : Finite G", "p n : ℕ", "hp : Fact (Nat.Prime p)", "hdvd : p ^ (n + 1) ∣ Nat.card G", "H : Subgroup G", "hH : Nat.card ↥H = p ^ n", "s : ℕ", "hs : Nat.card G = s * p ^ (n + 1)", "hcard : Nat.card (G ⧸ H) = s * p", "hm : s * p % p = Nat.card (↥H.normalizer ⧸ comap H.normalizer.subtype H) % p"], "goal": "Nat.card (↥H.normalizer ⧸ comap H.normalizer.subtype H) % p = 0"}], "premise": [1717, 3528, 108897], "state_str": "G : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Finite G\np n : ℕ\nhp : Fact (Nat.Prime p)\nhdvd : p ^ (n + 1) ∣ Nat.card G\nH : Subgroup G\nhH : Nat.card ↥H = p ^ n\ns : ℕ\nhs : Nat.card G = s * p ^ (n + 1)\nhcard : Nat.card (G ⧸ H) = s * p\nhm : s * p % p = Nat.card (↥H.normalizer ⧸ comap H.normalizer.subtype H) % p\n⊢ Nat.card (↥H.normalizer ⧸ comap H.normalizer.subtype H) % p = 0"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommMonoid R", "R' : Type u_2", "inst✝¹ : CommRing R'", "R'' : Type u_3", "inst✝ : CommRing R''", "χ : MulChar R R'", "f : R' →+* R''", "n : ℕ"], "goal": "χ.ringHomComp f ^ n = (χ ^ n).ringHomComp f"}], "premise": [23055, 23057, 119739, 119742], "state_str": "R : Type u_1\ninst✝² : CommMonoid R\nR' : Type u_2\ninst✝¹ : CommRing R'\nR'' : Type u_3\ninst✝ : CommRing R''\nχ : MulChar R R'\nf : R' →+* R''\nn : ℕ\n⊢ χ.ringHomComp f ^ n = (χ ^ n).ringHomComp f"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝² : PseudoEMetricSpace α", "inst✝¹ : PseudoEMetricSpace β", "inst✝ : PseudoEMetricSpace γ", "f✝ f : α → β", "hf : LocallyLipschitz f"], "goal": "Continuous f"}], "premise": [55639], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nf✝ f : α → β\nhf : LocallyLipschitz f\n⊢ Continuous f"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝² : PseudoEMetricSpace α", "inst✝¹ : PseudoEMetricSpace β", "inst✝ : PseudoEMetricSpace γ", "f✝ f : α → β", "hf : LocallyLipschitz f", "x : α", "K : ℝ≥0", "t : Set α", "ht : t ∈ 𝓝 x", "hK : LipschitzOnWith K f t"], "goal": "ContinuousAt f x"}], "premise": [57314, 57441], "state_str": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nf✝ f : α → β\nhf : LocallyLipschitz f\nx : α\nK : ℝ≥0\nt : Set α\nht : t ∈ 𝓝 x\nhK : LipschitzOnWith K f t\n⊢ ContinuousAt f x"} +{"state": [{"context": ["R : Type u", "S : Type v", "σ : Type u_1", "τ : Type u_2", "r : R", "e : ℕ", "n m : σ", "s✝ : σ →₀ ℕ", "inst✝ : CommSemiring R", "p q : MvPolynomial σ R", "ι : Type u_3", "s : Finset ι", "f : ι → MvPolynomial σ R"], "goal": "(∏ i ∈ s, f i).degrees ≤ ∑ i ∈ s, (f i).degrees"}], "premise": [117063, 117079, 124112], "state_str": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type u_2\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_3\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ (∏ i ∈ s, f i).degrees ≤ ∑ i ∈ s, (f i).degrees"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : DivisionMonoid α", "a b c d : α", "h : 1 / a = 1 / b"], "goal": "a = b"}], "premise": [117840], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : DivisionMonoid α\na b c d : α\nh : 1 / a = 1 / b\n⊢ a = b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r✝ : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "ι : Type u", "r : ι → ι → Prop", "inst✝ : IsWellOrder ι r", "o : Ordinal.{u}", "ho : type r = o", "f : (a : Ordinal.{u}) → a < o → α"], "goal": "range (familyOfBFamily' r ho f) = o.brange f"}], "premise": [20495], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr✝ : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nr : ι → ι → Prop\ninst✝ : IsWellOrder ι r\no : Ordinal.{u}\nho : type r = o\nf : (a : Ordinal.{u}) → a < o → α\n⊢ range (familyOfBFamily' r ho f) = o.brange f"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "c : ComplexShape ι", "c' : ComplexShape ι'", "e : c.Embedding c'", "inst✝ : e.IsRelIff", "i j : ι", "hi : c.Rel i j"], "goal": "¬(c'.Rel (e.f i) (c'.next (e.f i)) ∧ ∀ (k : ι), ¬c'.Rel (e.f i) (e.f k))"}], "premise": [1095, 1096, 1187], "state_str": "ι : Type u_1\nι' : Type u_2\nc : ComplexShape ι\nc' : ComplexShape ι'\ne : c.Embedding c'\ninst✝ : e.IsRelIff\ni j : ι\nhi : c.Rel i j\n⊢ ¬(c'.Rel (e.f i) (c'.next (e.f i)) ∧ ∀ (k : ι), ¬c'.Rel (e.f i) (e.f k))"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "c : ComplexShape ι", "c' : ComplexShape ι'", "e : c.Embedding c'", "inst✝ : e.IsRelIff", "i j : ι", "hi : c.Rel i j", "a✝ : c'.Rel (e.f i) (c'.next (e.f i))"], "goal": "∃ x, c'.Rel (e.f i) (e.f x)"}], "premise": [114001], "state_str": "ι : Type u_1\nι' : Type u_2\nc : ComplexShape ι\nc' : ComplexShape ι'\ne : c.Embedding c'\ninst✝ : e.IsRelIff\ni j : ι\nhi : c.Rel i j\na✝ : c'.Rel (e.f i) (c'.next (e.f i))\n⊢ ∃ x, c'.Rel (e.f i) (e.f x)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : Group α", "s : Subgroup α", "x y : α"], "goal": "(∃ a, y * ↑a = x) ↔ ∃ a, x⁻¹ * y = ↑a⁻¹"}], "premise": [117961, 117965, 122628], "state_str": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∃ a, y * ↑a = x) ↔ ∃ a, x⁻¹ * y = ↑a⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝ : Group α", "s : Subgroup α", "x y : α"], "goal": "(∃ a, x⁻¹ * y = ↑a⁻¹) ↔ x⁻¹ * y ∈ s"}], "premise": [122537], "state_str": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∃ a, x⁻¹ * y = ↑a⁻¹) ↔ x⁻¹ * y ∈ s"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : Preadditive C", "X : SimplicialObject C", "n : ℕ"], "goal": "(PInfty ≫ PInfty).f n = PInfty.f n"}], "premise": [47432], "state_str": "case h\nC : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : Preadditive C\nX : SimplicialObject C\nn : ℕ\n⊢ (PInfty ≫ PInfty).f n = PInfty.f n"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "x : ↑(PrimeSpectrum.Top R)", "f : ↥x.asIdeal.primeCompl"], "goal": "IsUnit ((toStalk R x) ↑f)"}], "premise": [2115, 131475], "state_str": "R : Type u\ninst✝ : CommRing R\nx : ↑(PrimeSpectrum.Top R)\nf : ↥x.asIdeal.primeCompl\n⊢ IsUnit ((toStalk R x) ↑f)"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "x : ↑(PrimeSpectrum.Top R)", "f : ↥x.asIdeal.primeCompl"], "goal": "IsUnit (((structureSheaf R).presheaf.germ ⟨x, ⋯⟩) ((toOpen R (PrimeSpectrum.basicOpen ↑f)) ↑f))"}], "premise": [121184, 131477], "state_str": "R : Type u\ninst✝ : CommRing R\nx : ↑(PrimeSpectrum.Top R)\nf : ↥x.asIdeal.primeCompl\n⊢ IsUnit (((structureSheaf R).presheaf.germ ⟨x, ⋯⟩) ((toOpen R (PrimeSpectrum.basicOpen ↑f)) ↑f))"} +{"state": [{"context": ["n : ℕ", "i✝ : Fin n", "M : Type u_1", "inst✝ : Zero M", "y : M", "t : Fin (n + 1) →₀ M", "s : Fin n →₀ M", "i : Fin (n + 1)", "hi : i ∈ (cons y s).support"], "goal": "i = 0 ∨ ∃ a, ¬s a = 0 ∧ a.succ = i"}], "premise": [1217, 2011, 4016], "state_str": "n : ℕ\ni✝ : Fin n\nM : Type u_1\ninst✝ : Zero M\ny : M\nt : Fin (n + 1) →₀ M\ns : Fin n →₀ M\ni : Fin (n + 1)\nhi : i ∈ (cons y s).support\n⊢ i = 0 ∨ ∃ a, ¬s a = 0 ∧ a.succ = i"} +{"state": [{"context": ["n : ℕ", "i✝ : Fin n", "M : Type u_1", "inst✝ : Zero M", "y : M", "t : Fin (n + 1) →₀ M", "s : Fin n →₀ M", "i : Fin n", "hi : i.succ ∈ (cons y s).support"], "goal": "¬s i = 0 ∧ i.succ = i.succ"}], "premise": [148063], "state_str": "n : ℕ\ni✝ : Fin n\nM : Type u_1\ninst✝ : Zero M\ny : M\nt : Fin (n + 1) →₀ M\ns : Fin n →₀ M\ni : Fin n\nhi : i.succ ∈ (cons y s).support\n⊢ ¬s i = 0 ∧ i.succ = i.succ"} +{"state": [{"context": ["X : Type u_1", "X' : Type u_2", "Y : Type u_3", "Y' : Type u_4", "Z : Type u_5", "Z' : Type u_6", "inst✝⁵ : TopologicalSpace X", "inst✝⁴ : TopologicalSpace X'", "inst✝³ : TopologicalSpace Y", "inst✝² : TopologicalSpace Y'", "inst✝¹ : TopologicalSpace Z", "inst✝ : TopologicalSpace Z'", "e : PartialHomeomorph X Y", "s : Set X", "hs : IsOpen s"], "goal": "(e.restr s).source = e.source ∩ s"}], "premise": [55383, 66183], "state_str": "X : Type u_1\nX' : Type u_2\nY : Type u_3\nY' : Type u_4\nZ : Type u_5\nZ' : Type u_6\ninst✝⁵ : TopologicalSpace X\ninst✝⁴ : TopologicalSpace X'\ninst✝³ : TopologicalSpace Y\ninst✝² : TopologicalSpace Y'\ninst✝¹ : TopologicalSpace Z\ninst✝ : TopologicalSpace Z'\ne : PartialHomeomorph X Y\ns : Set X\nhs : IsOpen s\n⊢ (e.restr s).source = e.source ∩ s"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CommMonoid α", "inst✝ : OrderedCommMonoid β", "f : α → β", "p : α → Prop", "h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b", "hp_mul : ∀ (a b : α), p a → p b → p (a * b)"], "goal": "∀ (s : Multiset α), s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod"}], "premise": [137823], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\np : α → Prop\nh_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b\nhp_mul : ∀ (a b : α), p a → p b → p (a * b)\n⊢ ∀ (s : Multiset α), s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CommMonoid α", "inst✝ : OrderedCommMonoid β", "f : α → β", "p : α �� Prop", "h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b", "hp_mul : ∀ (a b : α), p a → p b → p (a * b)", "a : α", "s : Multiset α", "hs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod", "hsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1"], "goal": "f (a ::ₘ s).prod ≤ (map f (a ::ₘ s)).prod"}], "premise": [124313, 137983], "state_str": "case refine_2\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\np : α → Prop\nh_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b\nhp_mul : ∀ (a b : α), p a → p b → p (a * b)\na : α\ns : Multiset α\nhs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod\nhsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1\n⊢ f (a ::ₘ s).prod ≤ (map f (a ::ₘ s)).prod"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CommMonoid α", "inst✝ : OrderedCommMonoid β", "f : α → β", "p : α → Prop", "h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b", "hp_mul : ∀ (a b : α), p a → p b → p (a * b)", "a : α", "s : Multiset α", "hs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod", "hsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1", "hs_empty : ¬s = ∅"], "goal": "f (a * s.prod) ≤ f a * (map f s).prod"}], "premise": [137830], "state_str": "case neg\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\np : α → Prop\nh_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b\nhp_mul : ∀ (a b : α), p a → p b → p (a * b)\na : α\ns : Multiset α\nhs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod\nhsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1\nhs_empty : ¬s = ∅\n⊢ f (a * s.prod) ≤ f a * (map f s).prod"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CommMonoid α", "inst✝ : OrderedCommMonoid β", "f : α → β", "p : α → Prop", "h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b", "hp_mul : ∀ (a b : α), p a → p b → p (a * b)", "a : α", "s : Multiset α", "hs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod", "hsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1", "hs_empty : ¬s = ∅", "hsa_restrict : ∀ x ∈ s, p x"], "goal": "f (a * s.prod) ≤ f a * (map f s).prod"}], "premise": [124357], "state_str": "case neg\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\np : α → Prop\nh_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b\nhp_mul : ∀ (a b : α), p a → p b → p (a * b)\na : α\ns : Multiset α\nhs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod\nhsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1\nhs_empty : ¬s = ∅\nhsa_restrict : ∀ x ∈ s, p x\n⊢ f (a * s.prod) ≤ f a * (map f s).prod"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CommMonoid α", "inst✝ : OrderedCommMonoid β", "f : α → β", "p : α → Prop", "h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b", "hp_mul : ∀ (a b : α), p a → p b → p (a * b)", "a : α", "s : Multiset α", "hs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod", "hsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1", "hs_empty : ¬s = ∅", "hsa_restrict : ∀ x ∈ s, p x", "hp_sup : p s.prod"], "goal": "f (a * s.prod) ≤ f a * (map f s).prod"}], "premise": [137831], "state_str": "case neg\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\np : α → Prop\nh_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b\nhp_mul : ∀ (a b : α), p a → p b → p (a * b)\na : α\ns : Multiset α\nhs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod\nhsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1\nhs_empty : ¬s = ∅\nhsa_restrict : ∀ x ∈ s, p x\nhp_sup : p s.prod\n⊢ f (a * s.prod) ≤ f a * (map f s).prod"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CommMonoid α", "inst✝ : OrderedCommMonoid β", "f : α → β", "p : α → Prop", "h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b", "hp_mul : ∀ (a b : α), p a → p b → p (a * b)", "a : α", "s : Multiset α", "hs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod", "hsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1", "hs_empty : ¬s = ∅", "hsa_restrict : ∀ x ∈ s, p x", "hp_sup : p s.prod", "hp_a : p a"], "goal": "f (a * s.prod) ≤ f a * (map f s).prod"}], "premise": [103883], "state_str": "case neg\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\np : α → Prop\nh_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b\nhp_mul : ∀ (a b : α), p a → p b → p (a * b)\na : α\ns : Multiset α\nhs : s ≠ ∅ → (∀ a ∈ s, p a) → f s.prod ≤ (map f s).prod\nhsa_prop : ∀ a_1 ∈ a ::ₘ s, p a_1\nhs_empty : ¬s = ∅\nhsa_restrict : ∀ x ∈ s, p x\nhp_sup : p s.prod\nhp_a : p a\n⊢ f (a * s.prod) ≤ f a * (map f s).prod"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "a a₁ a₂ : α", "b b₁ b₂ : β", "inst✝⁶ : Monoid α", "inst✝⁵ : Zero α", "inst✝⁴ : Zero β", "inst✝³ : MulAction α β", "inst✝² : Preorder α", "inst✝¹ : Preorder β", "inst✝ : SMulPosMono α β", "hb : 0 ≤ b", "h : a ≤ 1"], "goal": "a • b ≤ b"}], "premise": [104879, 118910], "state_str": "α : Type u_1\nβ : Type u_2\na a₁ a₂ : α\nb b₁ b₂ : β\ninst✝⁶ : Monoid α\ninst✝⁵ : Zero α\ninst✝⁴ : Zero β\ninst✝³ : MulAction α β\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ninst✝ : SMulPosMono α β\nhb : 0 ≤ b\nh : a ≤ 1\n⊢ a • b ≤ b"} +{"state": [{"context": ["n : ℕ", "R : Type u", "S : Type v", "T : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "inst✝³ : CommRing T", "inst✝² : IsJacobson S", "inst✝¹ : Algebra R S", "inst✝ : Algebra R T", "IH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral", "v : S[X] ≃ₐ[R] T", "P : Ideal T", "hP : P.IsMaximal", "Q : Ideal S[X] := comap (↑v).toRingHom P"], "goal": "(algebraMap R (T ⧸ P)).IsIntegral"}], "premise": [80671, 121685], "state_str": "n : ℕ\nR : Type u\nS : Type v\nT : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\ninst✝³ : CommRing T\ninst✝² : IsJacobson S\ninst✝¹ : Algebra R S\ninst✝ : Algebra R T\nIH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral\nv : S[X] ≃ₐ[R] T\nP : Ideal T\nhP : P.IsMaximal\nQ : Ideal S[X] := comap (↑v).toRingHom P\n⊢ (algebraMap R (T ⧸ P)).IsIntegral"} +{"state": [{"context": ["n : ℕ", "R : Type u", "S : Type v", "T : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "inst✝³ : CommRing T", "inst✝² : IsJacobson S", "inst✝¹ : Algebra R S", "inst✝ : Algebra R T", "IH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral", "v : S[X] ≃ₐ[R] T", "P : Ideal T", "hP : P.IsMaximal", "Q : Ideal S[X] := comap (↑v).toRingHom P", "hw : map v Q = P"], "goal": "(algebraMap R (T ⧸ P)).IsIntegral"}], "premise": [80691, 121685], "state_str": "n : ℕ\nR : Type u\nS : Type v\nT : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\ninst✝³ : CommRing T\ninst✝² : IsJacobson S\ninst✝¹ : Algebra R S\ninst✝ : Algebra R T\nIH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral\nv : S[X] ≃ₐ[R] T\nP : Ideal T\nhP : P.IsMaximal\nQ : Ideal S[X] := comap (↑v).toRingHom P\nhw : map v Q = P\n⊢ (algebraMap R (T ⧸ P)).IsIntegral"} +{"state": [{"context": ["n : ℕ", "R : Type u", "S : Type v", "T : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "inst✝³ : CommRing T", "inst✝² : IsJacobson S", "inst✝¹ : Algebra R S", "inst✝ : Algebra R T", "IH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral", "v : S[X] ≃ₐ[R] T", "P : Ideal T", "hP : P.IsMaximal", "Q : Ideal S[X] := comap (↑v).toRingHom P", "hw : map v Q = P", "hQ : Q.IsMaximal"], "goal": "(algebraMap R (T ⧸ P)).IsIntegral"}], "premise": [2100], "state_str": "n : ℕ\nR : Type u\nS : Type v\nT : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\ninst✝³ : CommRing T\ninst✝² : IsJacobson S\ninst✝¹ : Algebra R S\ninst✝ : Algebra R T\nIH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral\nv : S[X] ≃ₐ[R] T\nP : Ideal T\nhP : P.IsMaximal\nQ : Ideal S[X] := comap (↑v).toRingHom P\nhw : map v Q = P\nhQ : Q.IsMaximal\n⊢ (algebraMap R (T ⧸ P)).IsIntegral"} +{"state": [{"context": ["n : ℕ", "R : Type u", "S : Type v", "T : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "inst✝³ : CommRing T", "inst✝² : IsJacobson S", "inst✝¹ : Algebra R S", "inst✝ : Algebra R T", "IH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral", "v : S[X] ≃ₐ[R] T", "P : Ideal T", "hP : P.IsMaximal", "Q : Ideal S[X] := comap (↑v).toRingHom P", "hw : map v Q = P", "hQ : Q.IsMaximal", "w : (S[X] ⧸ Q) ≃ₐ[R] T ⧸ P := Q.quotientEquivAlg P v ⋯", "Q' : Ideal S := comap Polynomial.C Q"], "goal": "(algebraMap R (T ⧸ P)).IsIntegral"}], "premise": [14272], "state_str": "n : ℕ\nR : Type u\nS : Type v\nT : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\ninst✝³ : CommRing T\ninst✝² : IsJacobson S\ninst✝¹ : Algebra R S\ninst✝ : Algebra R T\nIH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral\nv : S[X] ≃ₐ[R] T\nP : Ideal T\nhP : P.IsMaximal\nQ : Ideal S[X] := comap (↑v).toRingHom P\nhw : map v Q = P\nhQ : Q.IsMaximal\nw : (S[X] ⧸ Q) ≃ₐ[R] T ⧸ P := Q.quotientEquivAlg P v ⋯\nQ' : Ideal S := comap Polynomial.C Q\n⊢ (algebraMap R (T ⧸ P)).IsIntegral"} +{"state": [{"context": ["n : ℕ", "R : Type u", "S : Type v", "T : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "inst✝³ : CommRing T", "inst✝² : IsJacobson S", "inst✝¹ : Algebra R S", "inst✝ : Algebra R T", "IH : �� (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral", "v : S[X] ≃ₐ[R] T", "P : Ideal T", "hP : P.IsMaximal", "Q : Ideal S[X] := comap (↑v).toRingHom P", "hw : map v Q = P", "hQ : Q.IsMaximal", "w : (S[X] ⧸ Q) ≃ₐ[R] T ⧸ P := Q.quotientEquivAlg P v ⋯", "Q' : Ideal S := comap Polynomial.C Q", "w' : S ⧸ Q' →ₐ[R] S[X] ⧸ Q := quotientMapₐ Q (Ideal.MvPolynomial.Cₐ R S) ⋯"], "goal": "(algebraMap R (T ⧸ P)).IsIntegral"}], "premise": [1670, 121046, 121208, 121548, 121581, 121665, 121667, 121674, 121678, 123757], "state_str": "n : ℕ\nR : Type u\nS : Type v\nT : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\ninst✝³ : CommRing T\ninst✝² : IsJacobson S\ninst✝¹ : Algebra R S\ninst✝ : Algebra R T\nIH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral\nv : S[X] ≃ₐ[R] T\nP : Ideal T\nhP : P.IsMaximal\nQ : Ideal S[X] := comap (↑v).toRingHom P\nhw : map v Q = P\nhQ : Q.IsMaximal\nw : (S[X] ⧸ Q) ≃ₐ[R] T ⧸ P := Q.quotientEquivAlg P v ⋯\nQ' : Ideal S := comap Polynomial.C Q\nw' : S ⧸ Q' →ₐ[R] S[X] ⧸ Q := quotientMapₐ Q (Ideal.MvPolynomial.Cₐ R S) ⋯\n⊢ (algebraMap R (T ⧸ P)).IsIntegral"} +{"state": [{"context": ["n : ℕ", "R : Type u", "S : Type v", "T : Type w", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "inst✝³ : CommRing T", "inst✝² : IsJacobson S", "inst✝¹ : Algebra R S", "inst✝ : Algebra R T", "IH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral", "v : S[X] ≃ₐ[R] T", "P : Ideal T", "hP : P.IsMaximal", "Q : Ideal S[X] := comap (↑v).toRingHom P", "hw : map v Q = P", "hQ : Q.IsMaximal", "w : (S[X] ⧸ Q) ≃ₐ[R] T ⧸ P := Q.quotientEquivAlg P v ⋯", "Q' : Ideal S := comap Polynomial.C Q", "w' : S ⧸ Q' →ₐ[R] S[X] ⧸ Q := quotientMapₐ Q (Ideal.MvPolynomial.Cₐ R S) ⋯", "h_eq : algebraMap R (T ⧸ P) = w.toRingEquiv.toRingHom.comp (w'.comp (algebraMap R (S ⧸ Q')))"], "goal": "(w.toRingEquiv.toRingHom.comp (w'.comp (algebraMap R (S ⧸ Q')))).IsIntegral"}], "premise": [81940], "state_str": "n : ℕ\nR : Type u\nS : Type v\nT : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\ninst✝³ : CommRing T\ninst✝² : IsJacobson S\ninst✝¹ : Algebra R S\ninst✝ : Algebra R T\nIH : ∀ (Q : Ideal S), Q.IsMaximal → (algebraMap R (S ⧸ Q)).IsIntegral\nv : S[X] ≃ₐ[R] T\nP : Ideal T\nhP : P.IsMaximal\nQ : Ideal S[X] := comap (↑v).toRingHom P\nhw : map v Q = P\nhQ : Q.IsMaximal\nw : (S[X] ⧸ Q) ≃ₐ[R] T ⧸ P := Q.quotientEquivAlg P v ⋯\nQ' : Ideal S := comap Polynomial.C Q\nw' : S ⧸ Q' →ₐ[R] S[X] ⧸ Q := quotientMapₐ Q (Ideal.MvPolynomial.Cₐ R S) ⋯\nh_eq : algebraMap R (T ⧸ P) = w.toRingEquiv.toRingHom.comp (w'.comp (algebraMap R (S ⧸ Q')))\n⊢ (w.toRingEquiv.toRingHom.comp (w'.comp (algebraMap R (S ⧸ Q')))).IsIntegral"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasFiniteProducts C", "inst✝ : HasPullbacks C", "X Y : Dial C"], "goal": "(X.tensorObj Y).rel = (Subobject.pullback (prod.map (prod.braiding X.src Y.src).hom (prod.braiding X.tgt Y.tgt).hom)).obj (Y.tensorObj X).rel"}], "premise": [14579, 89300, 90541], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasFiniteProducts C\ninst✝ : HasPullbacks C\nX Y : Dial C\n⊢ (X.tensorObj Y).rel =\n (Subobject.pullback (prod.map (prod.braiding X.src Y.src).hom (prod.braiding X.tgt Y.tgt).hom)).obj\n (Y.tensorObj X).rel"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "R : Type x", "inst✝ : CommSemiring α", "a✝ b✝ c a b : α"], "goal": "(a + b) ^ 2 = a ^ 2 + b ^ 2 + 2 * a * b"}], "premise": [119704, 119708, 122236], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nR : Type x\ninst✝ : CommSemiring α\na✝ b✝ c a b : α\n⊢ (a + b) ^ 2 = a ^ 2 + b ^ 2 + 2 * a * b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "o : Ordinal.{u_4}", "h : ∃ a, succ o = succ a"], "goal": "(succ o).pred = o"}], "premise": [1084, 1739, 2100, 17414], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal.{u_4}\nh : ∃ a, succ o = succ a\n⊢ (succ o).pred = o"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "κ : ι → Sort w'", "minAx : MinimalAxioms α", "f : (a : ι) → κ a → α", "x✝ : CompleteLattice α := minAx.toCompleteLattice"], "goal": "let x := minAx.toCompleteLattice; ⨅ i, ⨆ j, f i j = ⨆ g, ⨅ i, f i (g i)"}], "premise": [14296, 14950], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nκ : ι → Sort w'\nminAx : MinimalAxioms α\nf : (a : ι) → κ a → α\nx✝ : CompleteLattice α := minAx.toCompleteLattice\n⊢ let x := minAx.toCompleteLattice;\n ⨅ i, ⨆ j, f i j = ⨆ g, ⨅ i, f i (g i)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "(tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ (tensor_μ C (M.X, N.X) (M.X, N.X) ≫ (M.mul ⊗ N.mul) ⊗ P.mul)) ≫ (α_ M.X N.X P.X).hom = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"}], "premise": [96173, 99312, 99340], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ (tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ (tensor_μ C (M.X, N.X) (M.X, N.X) ≫ (M.mul ⊗ N.mul) ⊗ P.mul)) ≫\n (α_ M.X N.X P.X).hom =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ (tensor_μ C (M.X, N.X) (M.X, N.X) ≫ (M.mul ⊗ N.mul) ⊗ P.mul) ≫ (α_ M.X N.X P.X).hom = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"}], "premise": [96173, 96175, 99215], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫\n (tensor_μ C (M.X, N.X) (M.X, N.X) ≫ (M.mul ⊗ N.mul) ⊗ P.mul) ≫ (α_ M.X N.X P.X).hom =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ ((tensor_μ C (M.X, N.X) (M.X, N.X) ⊗ 𝟙 (P.X ⊗ P.X)) ≫ ((M.mul ⊗ N.mul) ⊗ P.mul)) ≫ (α_ M.X N.X P.X).hom = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"}], "premise": [96173, 99210], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫\n ((tensor_μ C (M.X, N.X) (M.X, N.X) ⊗ 𝟙 (P.X ⊗ P.X)) ≫ ((M.mul ⊗ N.mul) ⊗ P.mul)) ≫ (α_ M.X N.X P.X).hom =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ (tensor_μ C (M.X, N.X) (M.X, N.X) ⊗ 𝟙 (P.X ⊗ P.X)) ≫ (α_ (M.X ⊗ M.X) (N.X ⊗ N.X) (P.X ⊗ P.X)).hom ≫ (M.mul ⊗ N.mul ⊗ P.mul) = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"}], "premise": [96173, 96175, 99215], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫\n (tensor_μ C (M.X, N.X) (M.X, N.X) ⊗ 𝟙 (P.X ⊗ P.X)) ≫\n (α_ (M.X ⊗ M.X) (N.X ⊗ N.X) (P.X ⊗ P.X)).hom ≫ (M.mul ⊗ N.mul ⊗ P.mul) =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.mul ⊗ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (N.mul ⊗ P.mul))"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ (tensor_μ C (M.X, N.X) (M.X, N.X) ⊗ 𝟙 (P.X ⊗ P.X)) ≫ (α_ (M.X ⊗ M.X) (N.X ⊗ N.X) (P.X ⊗ P.X)).hom ≫ (M.mul ⊗ N.mul ⊗ P.mul) = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (𝟙 (M.X ⊗ M.X) ⊗ tensor_μ C (N.X, P.X) (N.X, P.X)) ≫ (M.mul ⊗ N.mul ⊗ P.mul)"}], "premise": [99217, 99218], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫\n (tensor_μ C (M.X, N.X) (M.X, N.X) ⊗ 𝟙 (P.X ⊗ P.X)) ≫\n (α_ (M.X ⊗ M.X) (N.X ⊗ N.X) (P.X ⊗ P.X)).hom ≫ (M.mul ⊗ N.mul ⊗ P.mul) =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫\n (𝟙 (M.X ⊗ M.X) ⊗ tensor_μ C (N.X, P.X) (N.X, P.X)) ≫ (M.mul ⊗ N.mul ⊗ P.mul)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫ tensor_μ C (M.X, N.X) (M.X, N.X) ▷ (P.X ⊗ P.X) ≫ (α_ (M.X ⊗ M.X) (N.X ⊗ N.X) (P.X ⊗ P.X)).hom ≫ (M.mul ⊗ N.mul ⊗ P.mul) = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.X ⊗ M.X) ◁ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (M.mul ⊗ N.mul ⊗ P.mul)"}], "premise": [96173, 107150], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ tensor_μ C (M.X ⊗ N.X, P.X) (M.X ⊗ N.X, P.X) ≫\n tensor_μ C (M.X, N.X) (M.X, N.X) ▷ (P.X ⊗ P.X) ≫\n (α_ (M.X ⊗ M.X) (N.X ⊗ N.X) (P.X ⊗ P.X)).hom ≫ (M.mul ⊗ N.mul ⊗ P.mul) =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫\n (M.X ⊗ M.X) ◁ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (M.mul ⊗ N.mul ⊗ P.mul)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "inst✝¹ : MonoidalCategory C", "inst✝ : BraidedCategory C", "M N P : Mon_ C"], "goal": "(((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.X ⊗ M.X) ◁ tensor_μ C (N.X, P.X) (N.X, P.X)) ≫ (M.mul ⊗ N.mul ⊗ P.mul) = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.X ⊗ M.X) ◁ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (M.mul ⊗ N.mul ⊗ P.mul)"}], "premise": [96173], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\ninst✝¹ : MonoidalCategory C\ninst✝ : BraidedCategory C\nM N P : Mon_ C\n⊢ (((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫ (M.X ⊗ M.X) ◁ tensor_μ C (N.X, P.X) (N.X, P.X)) ≫\n (M.mul ⊗ N.mul ⊗ P.mul) =\n ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫\n tensor_μ C (M.X, N.X ⊗ P.X) (M.X, N.X ⊗ P.X) ≫\n (M.X ⊗ M.X) ◁ tensor_μ C (N.X, P.X) (N.X, P.X) ≫ (M.mul ⊗ N.mul ⊗ P.mul)"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "D : Type u'", "inst✝² : Category.{v', u'} D", "F : C ⥤ D", "G : D ⥤ C", "adj : F ⊣ G", "inst✝¹ : F.Full", "inst✝ : F.Faithful", "P : C", "hP : Projective (F.obj P)", "E✝ X✝ : C", "f : P ⟶ X✝", "g : E✝ ⟶ X✝", "x✝ : Epi g", "this : PreservesColimitsOfSize.{0, 0, v, v', u, u'} F"], "goal": "∃ f', f' ≫ g = f"}], "premise": [91435], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\nD : Type u'\ninst✝² : Category.{v', u'} D\nF : C ⥤ D\nG : D ⥤ C\nadj : F ⊣ G\ninst✝¹ : F.Full\ninst✝ : F.Faithful\nP : C\nhP : Projective (F.obj P)\nE✝ X✝ : C\nf : P ⟶ X✝\ng : E✝ ⟶ X✝\nx✝ : Epi g\nthis : PreservesColimitsOfSize.{0, 0, v, v', u, u'} F\n⊢ ∃ f', f' ≫ g = f"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "D : Type u'", "inst✝² : Category.{v', u'} D", "F : C ⥤ D", "G : D ⥤ C", "adj : F ⊣ G", "inst✝¹ : F.Full", "inst✝ : F.Faithful", "P : C", "hP : Projective (F.obj P)", "E✝ X✝ : C", "f : P ⟶ X✝", "g : E✝ ⟶ X✝", "x✝ : Epi g", "this : PreservesColimitsOfSize.{0, 0, v, v', u, u'} F", "f' : F.obj P ⟶ F.obj E✝", "hf' : f' ≫ F.map g = F.map f"], "goal": "∃ f', f' ≫ g = f"}], "premise": [1674, 2045], "state_str": "case intro\nC : Type u\ninst✝³ : Category.{v, u} C\nD : Type u'\ninst✝² : Category.{v', u'} D\nF : C ⥤ D\nG : D ⥤ C\nadj : F ⊣ G\ninst✝¹ : F.Full\ninst✝ : F.Faithful\nP : C\nhP : Projective (F.obj P)\nE✝ X✝ : C\nf : P ⟶ X✝\ng : E✝ ⟶ X✝\nx✝ : Epi g\nthis : PreservesColimitsOfSize.{0, 0, v, v', u, u'} F\nf' : F.obj P ⟶ F.obj E✝\nhf' : f' ≫ F.map g = F.map f\n⊢ ∃ f', f' ≫ g = f"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "D : Type u'", "inst✝² : Category.{v', u'} D", "F : C ⥤ D", "G : D ⥤ C", "adj : F ⊣ G", "inst✝¹ : F.Full", "inst✝ : F.Faithful", "P : C", "hP : Projective (F.obj P)", "E✝ X✝ : C", "f : P ⟶ X✝", "g : E✝ ⟶ X✝", "x✝ : Epi g", "this : PreservesColimitsOfSize.{0, 0, v, v', u, u'} F", "f' : F.obj P ⟶ F.obj E✝", "hf' : f' ≫ F.map g = F.map f"], "goal": "(adj.unit.app P ≫ G.map f' ≫ inv (adj.unit.app E✝)) ≫ g = f"}], "premise": [100147], "state_str": "case h\nC : Type u\ninst✝³ : Category.{v, u} C\nD : Type u'\ninst✝² : Category.{v', u'} D\nF : C ⥤ D\nG : D ⥤ C\nadj : F ⊣ G\ninst✝¹ : F.Full\ninst✝ : F.Faithful\nP : C\nhP : Projective (F.obj P)\nE✝ X✝ : C\nf : P ⟶ X✝\ng : E✝ ⟶ X✝\nx✝ : Epi g\nthis : PreservesColimitsOfSize.{0, 0, v, v', u, u'} F\nf' : F.obj P ⟶ F.obj E✝\nhf' : f' ≫ F.map g = F.map f\n⊢ (adj.unit.app P ≫ G.map f' ≫ inv (adj.unit.app E✝)) ≫ g = f"} +{"state": [{"context": ["R : Type u", "a b : R", "m n✝ : ℕ", "inst✝ : Semiring R", "p q : R[X]", "n : ℕ", "toFinsupp✝ : R[ℕ]"], "goal": "(erase n { toFinsupp := toFinsupp✝ }).support = { toFinsupp := toFinsupp✝ }.support.erase n"}], "premise": [101337, 148129], "state_str": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\ntoFinsupp✝ : R[ℕ]\n⊢ (erase n { toFinsupp := toFinsupp✝ }).support = { toFinsupp := toFinsupp✝ }.support.erase n"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x✝ y✝ x y : V"], "goal": "angle x y = 0 ↔ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x"}], "premise": [1713, 1717, 11227, 36907, 37321], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ x y : V\n⊢ angle x y = 0 ↔ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x✝ y✝ x y : V"], "goal": "⟪x, y⟫_ℝ / (‖x‖ * ‖y‖) ≤ 1"}], "premise": [1673, 2106, 36893, 105372], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ x y : V\n⊢ ⟪x, y⟫_ℝ / (‖x‖ * ‖y‖) ≤ 1"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "h : S.RightHomologyData", "A : C", "hf : S.f = 0"], "goal": "S.f ≫ 𝟙 S.X₂ = 0"}], "premise": [96174], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\nh : S.RightHomologyData\nA : C\nhf : S.f = 0\n⊢ S.f ≫ 𝟙 S.X₂ = 0"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "h : S.RightHomologyData", "A : C", "hf : S.f = 0"], "goal": "h.descQ (𝟙 S.X₂) ⋯ ≫ h.p = 𝟙 h.Q"}], "premise": [96174, 96175, 96190], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\nh : S.RightHomologyData\nA : C\nhf : S.f = 0\n⊢ h.descQ (𝟙 S.X₂) ⋯ ≫ h.p = 𝟙 h.Q"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "a : α", "s : Multiset α", "n : ℕ"], "goal": "a ∈ n • s ↔ n ≠ 0 ∧ a ∈ s"}], "premise": [137901], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\na : α\ns : Multiset α\nn : ℕ\n⊢ a ∈ n • s ↔ n ≠ 0 ∧ a ∈ s"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "a : α", "s : Multiset α", "n : ℕ", "h : n ≠ 0 ∧ a ∈ s"], "goal": "a ∈ n • s"}], "premise": [2107, 3844], "state_str": "case refine_2\nα : Type u_1\nβ : Type v\nγ : Type u_2\na : α\ns : Multiset α\nn : ℕ\nh : n ≠ 0 ∧ a ∈ s\n⊢ a ∈ n • s"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "a : α", "s : Multiset α", "n : ℕ", "h : n.succ ≠ 0 ∧ a ∈ s"], "goal": "a ∈ n.succ • s"}], "premise": [119741, 137900], "state_str": "case refine_2.intro\nα : Type u_1\nβ : Type v\nγ : Type u_2\na : α\ns : Multiset α\nn : ℕ\nh : n.succ ≠ 0 ∧ a ∈ s\n⊢ a ∈ n.succ • s"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "a : α", "s : Multiset α", "n : ℕ", "h : n.succ ≠ 0 ∧ a ∈ s"], "goal": "a ∈ n • s ∨ a ∈ s"}], "premise": [2106], "state_str": "case refine_2.intro\nα : Type u_1\nβ : Type v\nγ : Type u_2\na : α\ns : Multiset α\nn : ℕ\nh : n.succ ≠ 0 ∧ a ∈ s\n⊢ a ∈ n • s ∨ a ∈ s"} +{"state": [{"context": ["n : ℕ", "c : Composition n", "i : Fin c.length", "j : Fin (c.blocksFun i)"], "goal": "i = c.index ((c.embedding i) j)"}], "premise": [50722], "state_str": "n : ℕ\nc : Composition n\ni : Fin c.length\nj : Fin (c.blocksFun i)\n⊢ i = c.index ((c.embedding i) j)"} +{"state": [{"context": ["n : ℕ", "c : Composition n", "i : Fin c.length", "j : Fin (c.blocksFun i)"], "goal": "(c.embedding i) j ∈ Set.range ⇑(c.embedding i)"}], "premise": [131596], "state_str": "n : ℕ\nc : Composition n\ni : Fin c.length\nj : Fin (c.blocksFun i)\n⊢ (c.embedding i) j ∈ Set.range ⇑(c.embedding i)"} +{"state": [{"context": ["X✝ Y✝ Z : Scheme", "𝒰 : X✝.OpenCover", "f✝ : X✝ ⟶ Z", "g : Y✝ ⟶ Z", "inst✝¹ : ∀ (x : 𝒰.J), HasPullback (𝒰.map x ≫ f✝) g", "X Y : Scheme", "f : X ⟶ Y", "inst✝ : IsIso f", "x : ↑↑Y.toPresheafedSpace"], "goal": "x ∈ Set.range ⇑((fun x => f) ((fun x => PUnit.unit) x)).val.base"}], "premise": [1674, 134172], "state_str": "X✝ Y✝ Z : Scheme\n𝒰 : X✝.OpenCover\nf✝ : X✝ ⟶ Z\ng : Y✝ ⟶ Z\ninst✝¹ : ∀ (x : 𝒰.J), HasPullback (𝒰.map x ≫ f✝) g\nX Y : Scheme\nf : X ⟶ Y\ninst✝ : IsIso f\nx : ↑↑Y.toPresheafedSpace\n⊢ x ∈ Set.range ⇑((fun x => f) ((fun x => PUnit.unit) x)).val.base"} +{"state": [{"context": ["X✝ Y✝ Z : Scheme", "𝒰 : X✝.OpenCover", "f✝ : X✝ ⟶ Z", "g : Y✝ ⟶ Z", "inst✝¹ : ∀ (x : 𝒰.J), HasPullback (𝒰.map x ≫ f✝) g", "X Y : Scheme", "f : X ⟶ Y", "inst✝ : IsIso f", "x : ↑↑Y.toPresheafedSpace"], "goal": "Function.Surjective ⇑((fun x => f) ((fun x => PUnit.unit) x)).val.base"}], "premise": [57394], "state_str": "X✝ Y✝ Z : Scheme\n𝒰 : X✝.OpenCover\nf✝ : X✝ ⟶ Z\ng : Y✝ ⟶ Z\ninst✝¹ : ∀ (x : 𝒰.J), HasPullback (𝒰.map x ≫ f✝) g\nX Y : Scheme\nf : X ⟶ Y\ninst✝ : IsIso f\nx : ↑↑Y.toPresheafedSpace\n⊢ Function.Surjective ⇑((fun x => f) ((fun x => PUnit.unit) x)).val.base"} +{"state": [{"context": ["E : Type u_1", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : MeasurableSpace E", "inst✝⁴ : BorelSpace E", "inst✝³ : FiniteDimensional ℝ E", "μ : Measure E", "inst✝² : μ.IsAddHaarMeasure", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "s✝ : Set E", "f : E → F", "R : ℝ", "s : Set E", "hR : R ≠ 0", "e : E ≃ᵐ E := (Homeomorph.smul (Units.mk0 R hR)).toMeasurableEquiv"], "goal": "∫ (x : E) in s, f (R • x) ∂μ = |(R ^ finrank ℝ E)⁻¹| • ∫ (x : E) in R • s, f x ∂μ"}], "premise": [1713, 2100, 28311, 32843, 33715, 105294, 133012, 134079, 143161], "state_str": "E : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : MeasurableSpace E\ninst✝⁴ : BorelSpace E\ninst✝³ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝² : μ.IsAddHaarMeasure\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ns✝ : Set E\nf : E → F\nR : ℝ\ns : Set E\nhR : R ≠ 0\ne : E ≃ᵐ E := (Homeomorph.smul (Units.mk0 R hR)).toMeasurableEquiv\n⊢ ∫ (x : E) in s, f (R • x) ∂μ = |(R ^ finrank ℝ E)⁻¹| • ∫ (x : E) in R • s, f x ∂μ"} +{"state": [{"context": ["R : Type w₁", "A : Type w₂", "B : Type w₃", "inst✝⁶ : CommRing R", "inst✝⁵ : CommRing A", "inst✝⁴ : Algebra R A", "inst✝³ : CommRing B", "inst✝² : Algebra R B", "f : A →ₐ[R] B", "hf : Surjective ⇑f", "inst✝¹ : FinitePresentation R A", "inst✝ : FinitePresentation R B"], "goal": "(RingHom.ker f.toRingHom).FG"}], "premise": [78371], "state_str": "R : Type w₁\nA : Type w₂\nB : Type w₃\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Algebra R A\ninst✝³ : CommRing B\ninst✝² : Algebra R B\nf : A →ₐ[R] B\nhf : Surjective ⇑f\ninst✝¹ : FinitePresentation R A\ninst✝ : FinitePresentation R B\n⊢ (RingHom.ker f.toRingHom).FG"} +{"state": [{"context": ["R : Type w₁", "A : Type w₂", "B : Type w₃", "inst✝⁶ : CommRing R", "inst✝⁵ : CommRing A", "inst✝⁴ : Algebra R A", "inst✝³ : CommRing B", "inst✝² : Algebra R B", "f : A →ₐ[R] B", "hf : Surjective ⇑f", "inst✝¹ : FinitePresentation R A", "inst✝ : FinitePresentation R B", "n : ℕ", "g : MvPolynomial (Fin n) R →ₐ[R] A", "hg : Surjective ⇑g", "right✝ : (RingHom.ker g.toRingHom).FG"], "goal": "(RingHom.ker f.toRingHom).FG"}], "premise": [71026, 78381, 79062], "state_str": "case intro.intro.intro\nR : Type w₁\nA : Type w₂\nB : Type w₃\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Algebra R A\ninst✝³ : CommRing B\ninst✝² : Algebra R B\nf : A →ₐ[R] B\nhf : Surjective ⇑f\ninst✝¹ : FinitePresentation R A\ninst✝ : FinitePresentation R B\nn : ℕ\ng : MvPolynomial (Fin n) R →ₐ[R] A\nhg : Surjective ⇑g\nright✝ : (RingHom.ker g.toRingHom).FG\n⊢ (RingHom.ker f.toRingHom).FG"} +{"state": [{"context": ["R : Type w₁", "A : Type w₂", "B : Type w₃", "inst✝⁶ : CommRing R", "inst✝⁵ : CommRing A", "inst✝⁴ : Algebra R A", "inst✝³ : CommRing B", "inst✝² : Algebra R B", "f : A →ₐ[R] B", "hf : Surjective ⇑f", "inst✝¹ : FinitePresentation R A", "inst✝ : FinitePresentation R B", "n : ℕ", "g : MvPolynomial (Fin n) R →ₐ[R] A", "hg : Surjective ⇑g", "right✝ : (RingHom.ker g.toRingHom).FG"], "goal": "RingHom.ker f.toRingHom = Ideal.map g.toRingHom (RingHom.ker (f.comp g).toRingHom)"}], "premise": [80706, 121046, 121076], "state_str": "case h.e'_3\nR : Type w₁\nA : Type w₂\nB : Type w₃\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Algebra R A\ninst✝³ : CommRing B\ninst✝² : Algebra R B\nf : A →ₐ[R] B\nhf : Surjective ⇑f\ninst✝¹ : FinitePresentation R A\ninst✝ : FinitePresentation R B\nn : ℕ\ng : MvPolynomial (Fin n) R →ₐ[R] A\nhg : Surjective ⇑g\nright✝ : (RingHom.ker g.toRingHom).FG\n⊢ RingHom.ker f.toRingHom = Ideal.map g.toRingHom (RingHom.ker (f.comp g).toRingHom)"} +{"state": [{"context": ["R : Type w₁", "A : Type w₂", "B : Type w₃", "inst✝⁶ : CommRing R", "inst✝⁵ : CommRing A", "inst✝⁴ : Algebra R A", "inst✝³ : CommRing B", "inst✝² : Algebra R B", "f : A ��ₐ[R] B", "hf : Surjective ⇑f", "inst✝¹ : FinitePresentation R A", "inst✝ : FinitePresentation R B", "n : ℕ", "g : MvPolynomial (Fin n) R →ₐ[R] A", "hg : Surjective ⇑g", "right✝ : (RingHom.ker g.toRingHom).FG"], "goal": "Ideal.comap ↑f ⊥ = Ideal.map (↑g) (Ideal.comap ((↑f).comp ↑g) ⊥)"}], "premise": [80644, 80671], "state_str": "case h.e'_3\nR : Type w₁\nA : Type w₂\nB : Type w₃\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Algebra R A\ninst✝³ : CommRing B\ninst✝² : Algebra R B\nf : A →ₐ[R] B\nhf : Surjective ⇑f\ninst✝¹ : FinitePresentation R A\ninst✝ : FinitePresentation R B\nn : ℕ\ng : MvPolynomial (Fin n) R →ₐ[R] A\nhg : Surjective ⇑g\nright✝ : (RingHom.ker g.toRingHom).FG\n⊢ Ideal.comap ↑f ⊥ = Ideal.map (↑g) (Ideal.comap ((↑f).comp ↑g) ⊥)"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u", "β : Type v", "inst✝¹ : PseudoMetricSpace α", "inst✝ : PseudoMetricSpace β", "s t u : Set α", "x y : α", "Φ : α → β", "hx : x ∈ closure s"], "goal": "infDist x s = 0"}], "premise": [61828], "state_str": "ι : Sort u_1\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nhx : x ∈ closure s\n⊢ infDist x s = 0"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u", "β : Type v", "inst✝¹ : PseudoMetricSpace α", "inst✝ : PseudoMetricSpace β", "s t u : Set α", "x y : α", "Φ : α → β", "hx : x ∈ closure s"], "goal": "infDist x (closure s) = 0"}], "premise": [61813], "state_str": "ι : Sort u_1\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nhx : x ∈ closure s\n⊢ infDist x (closure s) = 0"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "actLeft P Q ▷ T.X ≫ actRight P Q = (α_ R.X (X P Q) T.X).hom ≫ R.X ◁ actRight P Q ≫ actLeft P Q"}], "premise": [1673, 96190], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ actLeft P Q ▷ T.X ≫ actRight P Q = (α_ R.X (X P Q) T.X).hom ≫ R.X ◁ actRight P Q ≫ actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫ actLeft P Q ▷ T.X ≫ actRight P Q = (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫ (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫ R.X ◁ actRight P Q ≫ actLeft P Q"}], "premise": [96173, 99222, 106560], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫\n actLeft P Q ▷ T.X ≫ actRight P Q =\n (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫\n (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫\n R.X ◁ actRight P Q ≫ actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "((α_ R.X P.X Q.X).inv ▷ T.X ≫ P.actLeft ▷ Q.X ▷ T.X ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) ▷ T.X) ≫ actRight P Q = (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫ (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫ R.X ◁ actRight P Q ≫ actLeft P Q"}], "premise": [96173, 106563], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ ((α_ R.X P.X Q.X).inv ▷ T.X ≫\n P.actLeft ▷ Q.X ▷ T.X ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) ▷ T.X) ≫\n actRight P Q =\n (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫\n (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫\n R.X ◁ actRight P Q ≫ actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(α_ R.X P.X Q.X).inv ▷ T.X ≫ P.actLeft ▷ Q.X ▷ T.X ≫ (α_ P.X Q.X T.X).hom ≫ P.X ◁ Q.actRight ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫ (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫ R.X ◁ actRight P Q ≫ actLeft P Q"}], "premise": [96173, 99258], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫\n P.actLeft ▷ Q.X ▷ T.X ≫\n (α_ P.X Q.X T.X).hom ≫\n P.X ◁ Q.actRight ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) =\n (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫\n (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫\n R.X ◁ actRight P Q ≫ actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(α_ R.X P.X Q.X).inv ▷ T.X ≫ (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫ (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫ R.X ◁ actRight P Q ≫ actLeft P Q"}], "premise": [96173, 99261], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫\n (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫\n coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) =\n (R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ▷ T.X ≫\n (α_ R.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) T.X).hom ≫\n R.X ◁ actRight P Q ≫ actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(α_ R.X P.X Q.X).inv ▷ T.X ≫ (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (((α_ R.X (P.X ⊗ Q.X) T.X).hom ≫ R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) ▷ T.X) ≫ R.X ◁ actRight P Q) ≫ actLeft P Q"}], "premise": [96173, 99219, 106563], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫\n (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫\n coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) =\n (((α_ R.X (P.X ⊗ Q.X) T.X).hom ≫\n R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) ▷ T.X) ≫\n R.X ◁ actRight P Q) ≫\n actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(α_ R.X P.X Q.X).inv ▷ T.X ≫ (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫ (R.X ◁ (α_ P.X Q.X T.X).hom ≫ R.X ◁ P.X ◁ Q.actRight ≫ R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ≫ actLeft P Q"}], "premise": [96173, 106560], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫\n (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫\n coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) =\n (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫\n (R.X ◁ (α_ P.X Q.X T.X).hom ≫\n R.X ◁ P.X ◁ Q.actRight ≫ R.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ≫\n actLeft P Q"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(α_ R.X P.X Q.X).inv ▷ T.X ≫ (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫ R.X ◁ (α_ P.X Q.X T.X).hom ≫ R.X ◁ P.X ◁ Q.actRight ≫ (α_ R.X P.X Q.X).inv ≫ P.actLeft ▷ Q.X ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)"}], "premise": [96173, 99265], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫\n (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫\n coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) =\n (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫\n R.X ◁ (α_ P.X Q.X T.X).hom ≫\n R.X ◁ P.X ◁ Q.actRight ≫\n (α_ R.X P.X Q.X).inv ≫\n P.actLeft ▷ Q.X ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "inst✝³ : MonoidalCategory C", "A B : Mon_ C", "M : Bimod A B", "inst✝² : HasCoequalizers C", "R S T : Mon_ C", "P : Bimod R S", "Q : Bimod S T", "inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)", "inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)"], "goal": "(α_ R.X P.X Q.X).inv ▷ T.X ≫ (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫ R.X ◁ (α_ P.X Q.X T.X).hom ≫ (((α_ R.X P.X (Q.X ⊗ T.X)).inv ≫ (R.X ⊗ P.X) ◁ Q.actRight) ≫ P.actLeft ▷ Q.X) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)"}], "premise": [96173, 99226], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\ninst✝³ : MonoidalCategory C\nA B : Mon_ C\nM : Bimod A B\ninst✝² : HasCoequalizers C\nR S T : Mon_ C\nP : Bimod R S\nQ : Bimod S T\ninst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X)\ninst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X)\n⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫\n (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫\n coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) =\n (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫\n R.X ◁ (α_ P.X Q.X T.X).hom ≫\n (((α_ R.X P.X (Q.X ⊗ T.X)).inv ≫ (R.X ⊗ P.X) ◁ Q.actRight) ≫ P.actLeft ▷ Q.X) ≫\n coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)"} +{"state": [{"context": ["α : Type u_1", "p : α → Prop", "inst✝ : DecidablePred p", "l : List α", "a : α"], "goal": "(l.any fun a => decide (p a)) = true ↔ ∃ a, a ∈ l ∧ p a"}], "premise": [140221], "state_str": "α : Type u_1\np : α → Prop\ninst✝ : DecidablePred p\nl : List α\na : α\n⊢ (l.any fun a => decide (p a)) = true ↔ ∃ a, a ∈ l ∧ p a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "p✝ q✝ : α → Prop", "inst✝⁴ : DecidablePred p✝", "inst✝³ : DecidablePred q✝", "s✝ t : Finset α", "inst✝² : DecidableEq α", "s : Finset α", "p q : α → Prop", "inst✝¹ : DecidablePred p", "inst✝ : DecidablePred q"], "goal": "filter (fun a => p a ∧ ¬q a) s = filter p s \\ filter q s"}], "premise": [1674, 138947, 139004, 139088, 139129, 139130], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\np✝ q✝ : α → Prop\ninst✝⁴ : DecidablePred p✝\ninst✝³ : DecidablePred q✝\ns✝ t : Finset α\ninst✝² : DecidableEq α\ns : Finset α\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\n⊢ filter (fun a => p a ∧ ¬q a) s = filter p s \\ filter q s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "m : MeasurableSpace α", "μ : Measure α", "inst✝¹ : NormedAddCommGroup β", "p : ℝ≥0∞", "f : ι → α → β", "inst✝ : IsFiniteMeasure μ", "hp : 1 ≤ p", "hp' : p ≠ ⊤", "hf : ∀ (i : ι), StronglyMeasurable (f i)", "h : ∀ (ε : ℝ), 0 < ε → ∃ C, ∀ (i : ι), eLpNorm ({x | C ≤ ‖f i x‖₊}.indicator (f i)) p μ ≤ ENNReal.ofReal ε"], "goal": "UniformIntegrable f p μ"}], "premise": [29231, 30456], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝¹ : NormedAddCommGroup β\np : ℝ≥0∞\nf : ι → α → β\ninst✝ : IsFiniteMeasure μ\nhp : 1 ≤ p\nhp' : p ≠ ⊤\nhf : ∀ (i : ι), StronglyMeasurable (f i)\nh : ∀ (ε : ℝ), 0 < ε → ∃ C, ∀ (i : ι), eLpNorm ({x | C ≤ ‖f i x‖₊}.indicator (f i)) p μ ≤ ENNReal.ofReal ε\n⊢ UniformIntegrable f p μ"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "inst✝⁴ : Monoid M", "inst✝³ : AddMonoid N", "G : Type u_3", "H : Type u_4", "inst✝² : Group G", "inst✝¹ : AddGroup H", "s : Set G", "inst✝ : Finite ↑s", "this : Fintype ↑s"], "goal": "Group.rank ↥(closure s) ≤ Nat.card ↑s"}], "premise": [6495, 47564, 140898, 141350], "state_str": "M : Type u_1\nN : Type u_2\ninst✝⁴ : Monoid M\ninst✝³ : AddMonoid N\nG : Type u_3\nH : Type u_4\ninst✝² : Group G\ninst✝¹ : AddGroup H\ns : Set G\ninst✝ : Finite ↑s\nthis : Fintype ↑s\n⊢ Group.rank ↥(closure s) ≤ Nat.card ↑s"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "inst✝⁴ : Monoid M", "inst✝³ : AddMonoid N", "G : Type u_3", "H : Type u_4", "inst✝² : Group G", "inst✝¹ : AddGroup H", "s : Set G", "inst✝ : Finite ↑s", "this : Fintype ↑s"], "goal": "Group.rank ↥(closure ↑s.toFinset) ≤ s.toFinset.card"}], "premise": [6496], "state_str": "M : Type u_1\nN : Type u_2\ninst✝⁴ : Monoid M\ninst✝³ : AddMonoid N\nG : Type u_3\nH : Type u_4\ninst✝² : Group G\ninst✝¹ : AddGroup H\ns : Set G\ninst✝ : Finite ↑s\nthis : Fintype ↑s\n⊢ Group.rank ↥(closure ↑s.toFinset) ≤ s.toFinset.card"} +{"state": [{"context": ["α : Type u_1", "inst✝ : DecidableEq α", "l : List α", "x : α", "h : l.Nodup"], "goal": "pmap l.next l ⋯ = l.rotate 1"}], "premise": [132485], "state_str": "α : Type u_1\ninst✝ : DecidableEq α\nl : List α\nx : α\nh : l.Nodup\n⊢ pmap l.next l ⋯ = l.rotate 1"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "X : Type u_3", "X' : Type u_4", "Y : Type u_5", "Z : Type u_6", "α : Type u_7", "α' : Type u_8", "β : Type u_9", "β' : Type u_10", "γ : Type u_11", "𝓕 : Type u_12", "tX : TopologicalSpace X", "tY : TopologicalSpace Y", "tZ : TopologicalSpace Z", "uα : UniformSpace α", "uβ : UniformSpace β", "uγ : UniformSpace γ", "p : κ → Prop", "s : κ → Set (α × α)", "F : ι → β → α", "S : Set β", "hα : (𝓤 α).HasBasis p s"], "goal": "UniformEquicontinuousOn F S ↔ ∀ (k : κ), p k → ∀ᶠ (xy : β × β) in 𝓤 β ⊓ 𝓟 (S ×ˢ S), ∀ (i : ι), (F i xy.1, F i xy.2) ∈ s k"}], "premise": [12615, 60257, 60387], "state_str": "ι : Type u_1\nκ : Type u_2\nX : Type u_3\nX' : Type u_4\nY : Type u_5\nZ : Type u_6\nα : Type u_7\nα' : Type u_8\nβ : Type u_9\nβ' : Type u_10\nγ : Type u_11\n𝓕 : Type u_12\ntX : TopologicalSpace X\ntY : TopologicalSpace Y\ntZ : TopologicalSpace Z\nuα : UniformSpace α\nuβ : UniformSpace β\nuγ : UniformSpace γ\np : κ → Prop\ns : κ → Set (α × α)\nF : ι → β → α\nS : Set β\nhα : (𝓤 α).HasBasis p s\n⊢ UniformEquicontinuousOn F S ↔\n ∀ (k : κ), p k → ∀ᶠ (xy : β × β) in 𝓤 β ⊓ 𝓟 (S ×ˢ S), ∀ (i : ι), (F i xy.1, F i xy.2) ∈ s k"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "X : Type u_3", "X' : Type u_4", "Y : Type u_5", "Z : Type u_6", "α : Type u_7", "α' : Type u_8", "β : Type u_9", "β' : Type u_10", "γ : Type u_11", "𝓕 : Type u_12", "tX : TopologicalSpace X", "tY : TopologicalSpace Y", "tZ : TopologicalSpace Z", "uα : UniformSpace α", "uβ : UniformSpace β", "uγ : UniformSpace γ", "p : κ → Prop", "s : κ → Set (α × α)", "F : ι → β → α", "S : Set β", "hα : (𝓤 α).HasBasis p s"], "goal": "(∀ (i : κ), p i → ∀ᶠ (x : β × β) in 𝓤 β ⊓ 𝓟 (S ×ˢ S), ((⇑UniformFun.ofFun ∘ swap F) x.1, (⇑UniformFun.ofFun ∘ swap F) x.2) ∈ (UniformFun.gen ι α ∘ s) i) ↔ ∀ (k : κ), p k → ∀ᶠ (xy : β × β) in 𝓤 β ⊓ 𝓟 (S ×ˢ S), ∀ (i : ι), (F i xy.1, F i xy.2) ∈ s k"}], "premise": [1713], "state_str": "ι : Type u_1\nκ : Type u_2\nX : Type u_3\nX' : Type u_4\nY : Type u_5\nZ : Type u_6\nα : Type u_7\nα' : Type u_8\nβ : Type u_9\nβ' : Type u_10\nγ : Type u_11\n𝓕 : Type u_12\ntX : TopologicalSpace X\ntY : TopologicalSpace Y\ntZ : TopologicalSpace Z\nuα : UniformSpace α\nuβ : UniformSpace β\nuγ : UniformSpace γ\np : κ → Prop\ns : κ → Set (α × α)\nF : ι → β → α\nS : Set β\nhα : (𝓤 α).HasBasis p s\n⊢ (∀ (i : κ),\n p i →\n ∀ᶠ (x : β × β) in 𝓤 β ⊓ 𝓟 (S ×ˢ S),\n ((⇑UniformFun.ofFun ∘ swap F) x.1, (⇑UniformFun.ofFun ∘ swap F) x.2) ∈ (UniformFun.gen ι α ∘ s) i) ↔\n ∀ (k : κ), p k → ∀ᶠ (xy : β × β) in 𝓤 β ⊓ 𝓟 (S ×ˢ S), ∀ (i : ι), (F i xy.1, F i xy.2) ∈ s k"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "α : Type u_4", "β : Type u_5", "inst✝³ : TopologicalSpace X", "inst✝² : UniformSpace α", "inst✝¹ : UniformSpace β", "F : ι → X → α", "G : ι → β → α", "inst✝ : CompactSpace X", "F_eqcont : Equicontinuous F", "ℱ : Filter ι", "f : X → α"], "goal": "Tendsto (⇑UniformFun.ofFun ∘ F) ℱ (𝓝 (UniformFun.ofFun f)) ↔ Tendsto F ℱ (𝓝 f)"}], "premise": [15928], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\nα : Type u_4\nβ : Type u_5\ninst✝³ : TopologicalSpace X\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\nF : ι → X → α\nG : ι → β → α\ninst✝ : CompactSpace X\nF_eqcont : Equicontinuous F\nℱ : Filter ι\nf : X → α\n⊢ Tendsto (⇑UniformFun.ofFun ∘ F) ℱ (𝓝 (UniformFun.ofFun f)) ↔ Tendsto F ℱ (𝓝 f)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l l₁✝ l₂✝ : List α", "a✝ : α", "inst✝ : DecidableEq α", "l₁ l₂ : List α", "p : l₁ ~ l₂", "a : α", "h : a ∈ l₁"], "goal": "count a l₁.dedup = count a l₂.dedup"}], "premise": [771, 130548], "state_str": "α : Type u_1\nβ : Type u_2\nl l₁✝ l₂✝ : List α\na✝ : α\ninst✝ : DecidableEq α\nl₁ l₂ : List α\np : l₁ ~ l₂\na : α\nh : a ∈ l₁\n⊢ count a l₁.dedup = count a l₂.dedup"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l l₁✝ l₂✝ : List α", "a✝ : α", "inst✝ : DecidableEq α", "l₁ l₂ : List α", "p : l₁ ~ l₂", "a : α", "h : a ∉ l₁"], "goal": "count a l₁.dedup = count a l₂.dedup"}], "premise": [770, 1674, 1681], "state_str": "α : Type u_1\nβ : Type u_2\nl l₁✝ l₂✝ : List α\na✝ : α\ninst✝ : DecidableEq α\nl₁ l₂ : List α\np : l₁ ~ l₂\na : α\nh : a ∉ l₁\n⊢ count a l₁.dedup = count a l₂.dedup"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁵ : NormedDivisionRing 𝕜", "inst✝⁴ : SeminormedAddCommGroup E", "inst✝³ : Module 𝕜 E", "inst✝² : BoundedSMul 𝕜 E", "P : Type u_3", "inst✝¹ : PseudoMetricSpace P", "inst✝ : NormedAddTorsor E P", "c : P", "k : 𝕜", "hk : k ≠ 0", "x : E"], "goal": "(k⁻¹ • fun x => x -ᵥ c) ((fun x => k • x +ᵥ c) x) = x"}], "premise": [7382], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝⁵ : NormedDivisionRing 𝕜\ninst✝⁴ : SeminormedAddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : BoundedSMul 𝕜 E\nP : Type u_3\ninst✝¹ : PseudoMetricSpace P\ninst✝ : NormedAddTorsor E P\nc : P\nk : 𝕜\nhk : k ≠ 0\nx : E\n⊢ (k⁻¹ • fun x => x -ᵥ c) ((fun x => k • x +ᵥ c) x) = x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁵ : NormedDivisionRing 𝕜", "inst✝⁴ : SeminormedAddCommGroup E", "inst✝³ : Module 𝕜 E", "inst✝² : BoundedSMul 𝕜 E", "P : Type u_3", "inst✝¹ : PseudoMetricSpace P", "inst✝ : NormedAddTorsor E P", "c : P", "k : 𝕜", "hk : k ≠ 0", "p : P"], "goal": "(fun x => k • x +ᵥ c) ((k⁻¹ • fun x => x -ᵥ c) p) = p"}], "premise": [7383], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝⁵ : NormedDivisionRing 𝕜\ninst✝⁴ : SeminormedAddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : BoundedSMul 𝕜 E\nP : Type u_3\ninst✝¹ : PseudoMetricSpace P\ninst✝ : NormedAddTorsor E P\nc : P\nk : 𝕜\nhk : k ≠ 0\np : P\n⊢ (fun x => k • x +ᵥ c) ((k⁻¹ • fun x => x -ᵥ c) p) = p"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁵ : NormedDivisionRing 𝕜", "inst✝⁴ : SeminormedAddCommGroup E", "inst✝³ : Module 𝕜 E", "inst✝² : BoundedSMul 𝕜 E", "P : Type u_3", "inst✝¹ : PseudoMetricSpace P", "inst✝ : NormedAddTorsor E P", "c : P", "k : 𝕜", "hk : k ≠ 0", "x y : E"], "goal": "edist ({ toFun := fun x => k • x +ᵥ c, invFun := k⁻¹ • fun x => x -ᵥ c, left_inv := ⋯, right_inv := ⋯ }.toFun x) ({ toFun := fun x => k • x +ᵥ c, invFun := k⁻¹ • fun x => x -ᵥ c, left_inv := ⋯, right_inv := ⋯ }.toFun y) = ↑‖k‖₊ * edist x y"}], "premise": [59856], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝⁵ : NormedDivisionRing 𝕜\ninst✝⁴ : SeminormedAddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : BoundedSMul 𝕜 E\nP : Type u_3\ninst✝¹ : PseudoMetricSpace P\ninst✝ : NormedAddTorsor E P\nc : P\nk : 𝕜\nhk : k ≠ 0\nx y : E\n⊢ edist ({ toFun := fun x => k • x +ᵥ c, invFun := k⁻¹ • fun x => x -ᵥ c, left_inv := ⋯, right_inv := ⋯ }.toFun x)\n ({ toFun := fun x => k • x +ᵥ c, invFun := k⁻¹ • fun x => x -ᵥ c, left_inv := ⋯, right_inv := ⋯ }.toFun y) =\n ↑‖k‖₊ * edist x y"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁵ : NormedDivisionRing 𝕜", "inst✝⁴ : SeminormedAddCommGroup E", "inst✝³ : Module 𝕜 E", "inst✝² : BoundedSMul 𝕜 E", "P : Type u_3", "inst✝¹ : PseudoMetricSpace P", "inst✝ : NormedAddTorsor E P", "c : P", "k : 𝕜", "hk : k ≠ 0", "x y : E"], "goal": "edist (k • x) (k • y) = ↑‖k‖₊ * edist x y"}], "premise": [41375], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝⁵ : NormedDivisionRing 𝕜\ninst✝⁴ : SeminormedAddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : BoundedSMul 𝕜 E\nP : Type u_3\ninst✝¹ : PseudoMetricSpace P\ninst✝ : NormedAddTorsor E P\nc : P\nk : 𝕜\nhk : k ≠ 0\nx y : E\n⊢ edist (k • x) (k • y) = ↑‖k‖₊ * edist x y"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f g : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0"], "goal": "Continuous fun f => Integrable.toL1 ↑↑f ⋯"}], "premise": [61270], "state_str": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf g : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\n⊢ Continuous fun f => Integrable.toL1 ↑↑f ⋯"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0"], "goal": "∃ δ > 0, ∀ (a : ↥(Lp G 1 μ)), dist a f < δ → dist (Integrable.toL1 ↑↑a ⋯) (Integrable.toL1 ↑↑f ⋯) < ε"}], "premise": [1674, 2045], "state_str": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\n⊢ ∃ δ > 0, ∀ (a : ↥(Lp G 1 μ)), dist a f < δ → dist (Integrable.toL1 ↑↑a ⋯) (Integrable.toL1 ↑↑f ⋯) < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0"], "goal": "ε / 2 / c'.toReal > 0 ∧ ∀ (a : ↥(Lp G 1 μ)), dist a f < ε / 2 / c'.toReal → dist (Integrable.toL1 ↑↑a ⋯) (Integrable.toL1 ↑↑f ⋯) < ε"}], "premise": [104338, 106102, 143376], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\n⊢ ε / 2 / c'.toReal > 0 ∧\n ∀ (a : ↥(Lp G 1 μ)), dist a f < ε / 2 / c'.toReal → dist (Integrable.toL1 ↑↑a ⋯) (Integrable.toL1 ↑↑f ⋯) < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g✝ : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0", "g : ↥(Lp G 1 μ)", "hfg : dist g f < ε / 2 / c'.toReal"], "goal": "dist (Integrable.toL1 ↑↑g ⋯) (Integrable.toL1 ↑↑f ⋯) < ε"}], "premise": [31005], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g✝ : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\ng : ↥(Lp G 1 μ)\nhfg : dist g f < ε / 2 / c'.toReal\n⊢ dist (Integrable.toL1 ↑↑g ⋯) (Integrable.toL1 ↑↑f ⋯) < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g✝ : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0", "g : ↥(Lp G 1 μ)", "hfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal"], "goal": "(eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ').toReal < ε"}], "premise": [28465, 28568], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g✝ : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\ng : ↥(Lp G 1 μ)\nhfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal\n⊢ (eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ').toReal < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g✝ : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0", "g : ↥(Lp G 1 μ)", "hfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal", "h_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' := fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')"], "goal": "(eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ').toReal < ε"}], "premise": [16105, 28581, 28685], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g✝ : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\ng : ↥(Lp G 1 μ)\nhfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal\nh_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' :=\n fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')\n⊢ (eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ').toReal < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g✝ : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0", "g : ↥(Lp G 1 μ)", "hfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal", "h_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' := fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')", "this : eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ' = eLpNorm (↑↑g - ↑↑f) 1 μ'"], "goal": "(eLpNorm (↑↑g - ↑↑f) 1 μ').toReal < ε"}], "premise": [28685, 30989, 30996], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g✝ : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\ng : ↥(Lp G 1 μ)\nhfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal\nh_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' :=\n fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')\nthis : eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ' = eLpNorm (↑↑g - ↑↑f) 1 μ'\n⊢ (eLpNorm (↑↑g - ↑↑f) 1 μ').toReal < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g✝ : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0", "g : ↥(Lp G 1 μ)", "hfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal", "h_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' := fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')", "this : eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ' = eLpNorm (↑↑g - ↑↑f) 1 μ'", "h_eLpNorm_ne_top : eLpNorm (↑↑g - ↑↑f) 1 μ ≠ ⊤"], "goal": "(eLpNorm (↑↑g - ↑↑f) 1 μ').toReal < ε"}], "premise": [28696, 28704, 118863, 143517], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g✝ : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\ng : ↥(Lp G 1 μ)\nhfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal\nh_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' :=\n fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')\nthis : eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ' = eLpNorm (↑↑g - ↑↑f) 1 μ'\nh_eLpNorm_ne_top : eLpNorm (↑↑g - ↑↑f) 1 μ ≠ ⊤\n⊢ (eLpNorm (↑↑g - ↑↑f) 1 μ').toReal < ε"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "inst✝³ : NormedAddCommGroup F'", "inst✝² : NormedSpace ℝ F'", "inst✝¹ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝ : CompleteSpace F", "T T' T'' : Set α → E →L[ℝ] F", "C C' C'' : ℝ", "f✝ g✝ : α → E", "μ' : Measure α", "c' : ℝ≥0∞", "hc' : c' ≠ ⊤", "hμ'_le : μ' ≤ c' • μ", "hc'0 : ¬c' = 0", "f : ↥(Lp G 1 μ)", "ε : ℝ", "hε_pos : ε > 0", "g : ↥(Lp G 1 μ)", "hfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal", "h_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' := fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')", "this : eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ' = eLpNorm (↑↑g - ↑↑f) 1 μ'", "h_eLpNorm_ne_top : eLpNorm (↑↑g - ↑↑f) 1 μ ≠ ⊤", "h_eLpNorm_ne_top' : eLpNorm (↑↑g - ↑↑f) 1 μ' ≠ ⊤"], "goal": "(eLpNorm (↑↑g - ↑↑f) 1 μ').toReal < ε"}], "premise": [14272, 28696, 28704, 108459, 118863, 143169, 143184, 143356, 143423, 143518], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g✝ : α → E\nμ' : Measure α\nc' : ℝ≥0∞\nhc' : c' ≠ ⊤\nhμ'_le : μ' ≤ c' • μ\nhc'0 : ¬c' = 0\nf : ↥(Lp G 1 μ)\nε : ℝ\nhε_pos : ε > 0\ng : ↥(Lp G 1 μ)\nhfg : (eLpNorm (↑↑g - ↑↑f) 1 μ).toReal < ε / 2 / c'.toReal\nh_int : ∀ (f' : ↥(Lp G 1 μ)), Integrable (↑↑f') μ' :=\n fun f' => Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f')\nthis : eLpNorm (↑↑(Integrable.toL1 ↑↑g ⋯) - ↑↑(Integrable.toL1 ↑↑f ⋯)) 1 μ' = eLpNorm (↑↑g - ↑↑f) 1 μ'\nh_eLpNorm_ne_top : eLpNorm (↑↑g - ↑↑f) 1 μ ≠ ⊤\nh_eLpNorm_ne_top' : eLpNorm (↑↑g - ↑↑f) 1 μ' ≠ ⊤\n⊢ (eLpNorm (↑↑g - ↑↑f) 1 μ').toReal < ε"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : SimplicialObject C", "n : ℕ", "i : Fin (n + 2)"], "goal": "X.map (SimplexCategory.δ i.castSucc).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ i.succ).op ≫ X.map (SimplexCategory.δ i).op"}], "premise": [47463, 89631, 99919], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 2)\n⊢ X.map (SimplexCategory.δ i.castSucc).op ≫ X.map (SimplexCategory.δ i).op =\n X.map (SimplexCategory.δ i.succ).op ≫ X.map (SimplexCategory.δ i).op"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "A : Type v", "inst✝⁷ : CommRing R", "inst✝⁶ : CommRing S", "inst✝⁵ : Ring A", "inst✝⁴ : Algebra R A", "inst✝³ : Algebra R S", "inst✝² : Algebra S A", "inst✝¹ : IsScalarTower R S A", "inst✝ : Nontrivial R", "n : ℤ"], "goal": "IsAlgebraic R ↑n"}], "premise": [128957], "state_str": "R : Type u\nS : Type u_1\nA : Type v\ninst✝⁷ : CommRing R\ninst✝⁶ : CommRing S\ninst✝⁵ : Ring A\ninst✝⁴ : Algebra R A\ninst✝³ : Algebra R S\ninst✝² : Algebra S A\ninst✝¹ : IsScalarTower R S A\ninst✝ : Nontrivial R\nn : ℤ\n⊢ IsAlgebraic R ↑n"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "A : Type v", "inst✝⁷ : CommRing R", "inst✝⁶ : CommRing S", "inst✝⁵ : Ring A", "inst✝⁴ : Algebra R A", "inst✝³ : Algebra R S", "inst✝² : Algebra S A", "inst✝¹ : IsScalarTower R S A", "inst✝ : Nontrivial R", "n : ℤ"], "goal": "IsAlgebraic R ((algebraMap R A) ↑n)"}], "premise": [75563], "state_str": "R : Type u\nS : Type u_1\nA : Type v\ninst✝⁷ : CommRing R\ninst✝⁶ : CommRing S\ninst✝⁵ : Ring A\ninst✝⁴ : Algebra R A\ninst✝³ : Algebra R S\ninst✝² : Algebra S A\ninst✝¹ : IsScalarTower R S A\ninst✝ : Nontrivial R\nn : ℤ\n⊢ IsAlgebraic R ((algebraMap R A) ↑n)"} +{"state": [{"context": ["α : Type u", "a : α", "G : Type u_1", "H : Type u_2", "inst✝ : AddGroup G", "g : G", "x✝ : ℤ"], "goal": "x✝ ∈ ((zmultiplesHom G) g).ker ↔ x✝ ∈ zmultiples ↑(addOrderOf g)"}], "premise": [1717, 8442, 108873, 123017, 128923, 128946, 129975], "state_str": "case h\nα : Type u\na : α\nG : Type u_1\nH : Type u_2\ninst✝ : AddGroup G\ng : G\nx✝ : ℤ\n⊢ x✝ ∈ ((zmultiplesHom G) g).ker ↔ x✝ ∈ zmultiples ↑(addOrderOf g)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝² : _root_.RCLike 𝕜", "inst✝¹ : AddCommGroup F", "inst✝ : Module 𝕜 F", "c : Core 𝕜 F", "x y : F"], "goal": "⟪x, -y⟫_𝕜 = -⟪x, y⟫_𝕜"}], "premise": [36720, 36737], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝² : _root_.RCLike 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\n⊢ ⟪x, -y⟫_𝕜 = -⟪x, y⟫_𝕜"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝² : _root_.RCLike 𝕜", "inst✝¹ : AddCommGroup F", "inst✝ : Module 𝕜 F", "c : Core 𝕜 F", "x y : F"], "goal": "(starRingEnd 𝕜) (-⟪y, x⟫_𝕜) = -⟪x, y⟫_𝕜"}], "premise": [36720, 121575], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝² : _root_.RCLike 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\n⊢ (starRingEnd 𝕜) (-⟪y, x⟫_𝕜) = -⟪x, y⟫_𝕜"} +{"state": [{"context": ["α : Type u_1", "inst✝⁴ : DecidableEq α", "inst✝³ : Fintype α", "f✝ g✝ : Perm α", "β : Type u_2", "inst✝² : DecidableEq β", "inst✝¹ : Fintype β", "p : β → Prop", "inst✝ : DecidablePred p", "f : α ≃ Subtype p", "g : Perm α", "b : β"], "goal": "b ∈ (g.extendDomain f).support ↔ b ∈ map f.asEmbedding g.support"}], "premise": [2045, 8669, 70657, 70663, 70668, 137366], "state_str": "case a\nα : Type u_1\ninst✝⁴ : DecidableEq α\ninst✝³ : Fintype α\nf✝ g✝ : Perm α\nβ : Type u_2\ninst✝² : DecidableEq β\ninst✝¹ : Fintype β\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\ng : Perm α\nb : β\n⊢ b ∈ (g.extendDomain f).support ↔ b ∈ map f.asEmbedding g.support"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "f : R → ℝ", "c : ℝ", "f_ne_zero : f ≠ 0", "f_nonneg : 0 ≤ f", "f_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y"], "goal": "seminormFromBounded' f ≠ 0"}], "premise": [1673, 71383], "state_str": "R : Type u_1\ninst✝ : CommRing R\nf : R → ℝ\nc : ℝ\nf_ne_zero : f ≠ 0\nf_nonneg : 0 ≤ f\nf_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y\n⊢ seminormFromBounded' f ≠ 0"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "f : R → ℝ", "c : ℝ", "f_ne_zero : f ≠ 0", "f_nonneg : 0 ≤ f", "f_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y", "x : R", "hx : f x ≠ 0 x"], "goal": "seminormFromBounded' f ≠ 0"}], "premise": [71383], "state_str": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R → ℝ\nc : ℝ\nf_ne_zero : f ≠ 0\nf_nonneg : 0 ≤ f\nf_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y\nx : R\nhx : f x ≠ 0 x\n⊢ seminormFromBounded' f ≠ 0"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "f : R → ℝ", "c : ℝ", "f_ne_zero : f ≠ 0", "f_nonneg : 0 ≤ f", "f_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y", "x : R", "hx : f x ≠ 0 x"], "goal": "∃ a, seminormFromBounded' f a ≠ 0 a"}], "premise": [1674, 2045], "state_str": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R → ℝ\nc : ℝ\nf_ne_zero : f ≠ 0\nf_nonneg : 0 ≤ f\nf_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y\nx : R\nhx : f x ≠ 0 x\n⊢ ∃ a, seminormFromBounded' f a ≠ 0 a"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "f : R → ℝ", "c : ℝ", "f_ne_zero : f ≠ 0", "f_nonneg : 0 ≤ f", "f_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y", "x : R", "hx : f x ≠ 0 x"], "goal": "seminormFromBounded' f x ≠ 0 x"}], "premise": [1169, 43875, 120640], "state_str": "case h\nR : Type u_1\ninst✝ : CommRing R\nf : R → ℝ\nc : ℝ\nf_ne_zero : f ≠ 0\nf_nonneg : 0 ≤ f\nf_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y\nx : R\nhx : f x ≠ 0 x\n⊢ seminormFromBounded' f x ≠ 0 x"} +{"state": [{"context": ["a b : EReal"], "goal": "-a < b ↔ -b < a"}], "premise": [1713, 119769, 147225], "state_str": "a b : EReal\n⊢ -a < b ↔ -b < a"} +{"state": [{"context": ["C : Type u₁", "inst✝ : Category.{v, u₁} C", "X : Scheme", "U : X.Opens", "r : ↑Γ(↑U, ⊤)"], "goal": "U.ι ''ᵁ (↑U).basicOpen r = X.basicOpen r"}], "premise": [126611, 129851], "state_str": "C : Type u₁\ninst✝ : Category.{v, u₁} C\nX : Scheme\nU : X.Opens\nr : ↑Γ(↑U, ⊤)\n⊢ U.ι ''ᵁ (↑U).basicOpen r = X.basicOpen r"} +{"state": [{"context": ["α : Type u_1", "inst✝ : CommSemiring α", "E : LinearRecurrence α", "init : Fin E.order → α", "n : Fin E.order"], "goal": "(if h : ↑n < E.order then init ⟨↑n, h⟩ else ∑ k : Fin E.order, let_fun x := ⋯; E.coeffs k * E.mkSol init (↑n - E.order + ↑k)) = init n"}], "premise": [1739, 3972, 3974, 3982], "state_str": "α : Type u_1\ninst✝ : CommSemiring α\nE : LinearRecurrence α\ninit : Fin E.order → α\nn : Fin E.order\n⊢ (if h : ↑n < E.order then init ⟨↑n, h⟩\n else\n ∑ k : Fin E.order,\n let_fun x := ⋯;\n E.coeffs k * E.mkSol init (↑n - E.order + ↑k)) =\n init n"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "y : M", "hy : y ∈ f.source"], "goal": "map (↑(f.extend I)) (𝓝[s] y) = 𝓝[↑(f.extend I).symm ⁻¹' s ∩ range ↑I] ↑(f.extend I) y"}], "premise": [57201, 67819, 67826, 71106, 133443], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\ny : M\nhy : y ∈ f.source\n⊢ map (↑(f.extend I)) (𝓝[s] y) = 𝓝[↑(f.extend I).symm ⁻¹' s ∩ range ↑I] ↑(f.extend I) y"} +{"state": [{"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I"], "goal": "(delayReflRight 0 γ) t = (γ.trans (refl y)) t"}], "premise": [1670, 67462, 67468, 67489, 67491], "state_str": "case a.h\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\n⊢ (delayReflRight 0 γ) t = (γ.trans (refl y)) t"} +{"state": [{"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I", "h : ¬↑t ≤ 1 / 2"], "goal": "γ (qRight (t, 0)) = y"}, {"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I", "h : ↑t ≤ 1 / 2"], "goal": "γ (qRight (t, 0)) = γ ⟨2 * ↑t, ⋯⟩"}], "premise": [67465], "state_str": "case neg\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\nh : ¬↑t ≤ 1 / 2\n⊢ γ (qRight (t, 0)) = y\n\ncase pos\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\nh : ↑t ≤ 1 / 2\n⊢ γ (qRight (t, 0)) = γ ⟨2 * ↑t, ⋯⟩"} +{"state": [{"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I", "h : ¬↑t ≤ 1 / 2"], "goal": "γ (qRight (t, 0)) = γ 1"}, {"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I", "h : ↑t ≤ 1 / 2"], "goal": "γ (qRight (t, 0)) = γ ⟨2 * ↑t, ⋯⟩"}], "premise": [56193], "state_str": "case neg\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\nh : ¬↑t ≤ 1 / 2\n⊢ γ (qRight (t, 0)) = γ 1\n\ncase pos\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\nh : ↑t ≤ 1 / 2\n⊢ γ (qRight (t, 0)) = γ ⟨2 * ↑t, ⋯⟩"} +{"state": [{"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I", "h : ¬↑t ≤ 1 / 2"], "goal": "(if ↑t ≤ 1 / 2 then 2 * ↑t else 1) = ↑1"}, {"context": ["X : Type u", "inst✝ : TopologicalSpace X", "x y : X", "γ : Path x y", "t : ↑I", "h : ↑t ≤ 1 / 2"], "goal": "(if ↑t ≤ 1 / 2 then 2 * ↑t else 1) = ↑⟨2 * ↑t, ⋯⟩"}], "premise": [1737, 1738], "state_str": "case neg.a\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\nh : ¬↑t ≤ 1 / 2\n⊢ (if ↑t ≤ 1 / 2 then 2 * ↑t else 1) = ↑1\n\ncase pos.a\nX : Type u\ninst✝ : TopologicalSpace X\nx y : X\nγ : Path x y\nt : ↑I\nh : ↑t ≤ 1 / 2\n⊢ (if ↑t ≤ 1 / 2 then 2 * ↑t else 1) = ↑⟨2 * ↑t, ⋯⟩"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "a : α", "f : α → Seq1 β"], "goal": "(ret a).bind f = f a"}], "premise": [147613], "state_str": "α : Type u\nβ : Type v\nγ : Type w\na : α\nf : α → Seq1 β\n⊢ (ret a).bind f = f a"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0"], "goal": "∃ K, AntilipschitzWith K ⇑f"}], "premise": [1673, 12556, 12603, 61246], "state_str": "𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\n⊢ ∃ K, AntilipschitzWith K ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ", "ε0 : 0 < ε", "hε : ⇑f ⁻¹' ball 0 ε ⊆ ball 0 1"], "goal": "∃ K, AntilipschitzWith K ⇑f"}], "premise": [42718, 131591, 133323], "state_str": "case intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ\nε0 : 0 < ε\nhε : ⇑f ⁻¹' ball 0 ε ⊆ ball 0 1\n⊢ ∃ K, AntilipschitzWith K ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1"], "goal": "∃ K, AntilipschitzWith K ⇑f"}], "premise": [43327], "state_str": "case intro.intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\n⊢ ∃ K, AntilipschitzWith K ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c✝ : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1", "c : 𝕜", "hc : 1 < ‖c‖"], "goal": "∃ K, AntilipschitzWith K ⇑f"}], "premise": [42032], "state_str": "case intro.intro.intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc✝ : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\nc : 𝕜\nhc : 1 < ‖c‖\n⊢ ∃ K, AntilipschitzWith K ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c✝ : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x✝ y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1", "c : 𝕜", "hc : 1 < ‖c‖", "x : E", "hx : ¬f x = 0"], "goal": "‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"}], "premise": [1673, 42922], "state_str": "case neg\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc✝ : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx✝ y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\nc : 𝕜\nhc : 1 < ‖c‖\nx : E\nhx : ¬f x = 0\n⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c✝ : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x✝ y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1", "c : 𝕜", "hc : 1 < ‖c‖", "x : E", "hx : ¬f x = 0", "hc₀ : c ≠ 0"], "goal": "‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"}], "premise": [43345], "state_str": "case neg\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc✝ : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx✝ y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\nc : 𝕜\nhc : 1 < ‖c‖\nx : E\nhx : ¬f x = 0\nhc₀ : c ≠ 0\n⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c✝ : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x✝ y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1", "c : 𝕜", "hc : 1 < ‖σ₁₂ c‖", "x : E", "hx : ¬f x = 0", "hc₀ : c ≠ 0"], "goal": "‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"}], "premise": [36366], "state_str": "case neg\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc✝ : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx✝ y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\nc : 𝕜\nhc : 1 < ‖σ₁₂ c‖\nx : E\nhx : ¬f x = 0\nhc₀ : c ≠ 0\n⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c✝ : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x✝ y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1", "c : 𝕜", "hc : 1 < ‖σ₁₂ c‖", "x : E", "hx : ¬f x = 0", "hc₀ : c ≠ 0", "n : ℤ", "hlt : ‖σ₁₂ c ^ n • f x‖ < ↑ε", "hle : ‖σ₁₂ c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖σ₁₂ c‖ * ‖f x‖"], "goal": "‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"}], "premise": [8241, 43345, 108204], "state_str": "case neg.intro.intro.intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc✝ : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx✝ y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\nc : 𝕜\nhc : 1 < ‖σ₁₂ c‖\nx : E\nhx : ¬f x = 0\nhc₀ : c ≠ 0\nn : ℤ\nhlt : ‖σ₁₂ c ^ n • f x‖ < ↑ε\nhle : ‖σ₁₂ c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖σ₁₂ c‖ * ‖f x‖\n⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕜₂ : Type u_2", "𝕜₃ : Type u_3", "E : Type u_4", "Eₗ : Type u_5", "F : Type u_6", "Fₗ : Type u_7", "G : Type u_8", "Gₗ : Type u_9", "𝓕 : Type u_10", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedAddCommGroup Fₗ", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NontriviallyNormedField 𝕜₂", "inst✝⁴ : NontriviallyNormedField 𝕜₃", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : NormedSpace 𝕜₂ F", "inst✝¹ : NormedSpace 𝕜₃ G", "inst✝ : NormedSpace 𝕜 Fₗ", "c✝ : 𝕜", "σ₁₂ : 𝕜 →+* 𝕜₂", "σ₂₃ : 𝕜₂ →+* 𝕜₃", "f✝ g : E →SL[σ₁₂] F", "x✝ y z : E", "h : RingHomIsometric σ₁₂", "f : E →ₛₗ[σ₁₂] F", "hf : comap (⇑f) (𝓝 0) ≤ 𝓝 0", "ε : ℝ≥0", "ε0 : 0 < ↑ε", "hε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1", "c : 𝕜", "hc : 1 < ‖σ₁₂ c‖", "x : E", "hx : ¬f x = 0", "hc₀ : c ≠ 0", "n : ℤ", "hlt : ‖f (c ^ n • x)‖ < ↑ε", "hle : ‖c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖c‖ * ‖f x‖"], "goal": "‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"}], "premise": [1674, 7382, 41371, 42680, 43297, 102621, 104331, 108446, 119730], "state_str": "case neg.intro.intro.intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type u_3\nE : Type u_4\nEₗ : Type u_5\nF : Type u_6\nFₗ : Type u_7\nG : Type u_8\nGₗ : Type u_9\n𝓕 : Type u_10\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedAddCommGroup Fₗ\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NontriviallyNormedField 𝕜₂\ninst✝⁴ : NontriviallyNormedField 𝕜₃\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedSpace 𝕜₂ F\ninst✝¹ : NormedSpace 𝕜₃ G\ninst✝ : NormedSpace 𝕜 Fₗ\nc✝ : 𝕜\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nf✝ g : E →SL[σ₁₂] F\nx✝ y z : E\nh : RingHomIsometric σ₁₂\nf : E →ₛₗ[σ₁₂] F\nhf : comap (⇑f) (𝓝 0) ≤ 𝓝 0\nε : ℝ≥0\nε0 : 0 < ↑ε\nhε : ∀ (x : E), ‖f x‖ < ↑ε → ‖x‖ < 1\nc : 𝕜\nhc : 1 < ‖σ₁₂ c‖\nx : E\nhx : ¬f x = 0\nhc₀ : c ≠ 0\nn : ℤ\nhlt : ‖f (c ^ n • x)‖ < ↑ε\nhle : ‖c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖c‖ * ‖f x‖\n⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖f x‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "p q : α → Prop", "inst✝² : DecidablePred p", "inst✝¹ : DecidablePred q", "s t : Finset α", "inst✝ : DecidableEq α", "s₁ s₂ : Finset α"], "goal": "s₁ \\ s₂ = s₁ ↔ s₁ ∩ s₂ ⊆ ∅"}], "premise": [138692, 138855], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\np q : α → Prop\ninst✝² : DecidablePred p\ninst✝¹ : DecidablePred q\ns t : Finset α\ninst✝ : DecidableEq α\ns₁ s₂ : Finset α\n⊢ s₁ \\ s₂ = s₁ ↔ s₁ ∩ s₂ ⊆ ∅"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝⁷ : MeasurableSpace X", "μ : Measure X", "𝕜 : Type u_5", "inst✝⁶ : RCLike 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "p : ℝ≥0∞", "inst✝¹ : NormedSpace ℝ E", "inst✝ : NormedSpace ℝ F", "f : X → ℝ≥0", "s : Set X", "hf : AEMeasurable f (μ.restrict s)", "g : X → E", "hs : MeasurableSet s"], "goal": "(∫ (x : X) in s, g x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X) in s, f x • g x ∂μ"}], "premise": [28391, 31336], "state_str": "X : Type u_1\nY : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝⁷ : MeasurableSpace X\nμ : Measure X\n𝕜 : Type u_5\ninst✝⁶ : RCLike 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\np : ℝ≥0∞\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℝ F\nf : X → ℝ≥0\ns : Set X\nhf : AEMeasurable f (μ.restrict s)\ng : X → E\nhs : MeasurableSet s\n⊢ (∫ (x : X) in s, g x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X) in s, f x • g x ∂μ"} +{"state": [{"context": ["K : Type u", "inst✝⁵ : Field K", "n : ℕ", "hζ : (primitiveRoots n K).Nonempty", "hn : 0 < n", "a✝ : K", "H : Irreducible (X ^ n - C a✝)", "L : Type u_1", "inst✝⁴ : Field L", "inst✝³ : Algebra K L", "inst✝² : IsGalois K L", "inst✝¹ : FiniteDimensional K L", "inst✝ : IsCyclic (L ≃ₐ[K] L)", "hK : (primitiveRoots (finrank K L) K).Nonempty", "a : K", "α : L", "ha : α ^ finrank K L = (algebraMap K L) a", "hα : K⟮α⟯ = ⊤", "this : X ^ finrank K L - C a = minpoly K α"], "goal": "Irreducible (X ^ finrank K L - C a)"}], "premise": [80739, 87712], "state_str": "K : Type u\ninst✝⁵ : Field K\nn : ℕ\nhζ : (primitiveRoots n K).Nonempty\nhn : 0 < n\na✝ : K\nH : Irreducible (X ^ n - C a✝)\nL : Type u_1\ninst✝⁴ : Field L\ninst✝³ : Algebra K L\ninst✝² : IsGalois K L\ninst✝¹ : FiniteDimensional K L\ninst✝ : IsCyclic (L ≃ₐ[K] L)\nhK : (primitiveRoots (finrank K L) K).Nonempty\na : K\nα : L\nha : α ^ finrank K L = (algebraMap K L) a\nhα : K⟮α⟯ = ⊤\nthis : X ^ finrank K L - C a = minpoly K α\n⊢ Irreducible (X ^ finrank K L - C a)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "k : ℕ", "a : R"], "goal": "dickson 2 0 0 = X ^ 0"}], "premise": [74334, 119739], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nk : ℕ\na : R\n⊢ dickson 2 0 0 = X ^ 0"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "k : ℕ", "a : R"], "goal": "dickson 2 0 1 = X ^ 1"}], "premise": [74335, 119743], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nk : ℕ\na : R\n⊢ dickson 2 0 1 = X ^ 1"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "k : ℕ", "a : R", "n : ℕ"], "goal": "dickson 2 0 (n + 2) = X ^ (n + 2)"}], "premise": [74337, 101241, 108557, 117816], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nk : ℕ\na : R\nn : ℕ\n⊢ dickson 2 0 (n + 2) = X ^ (n + 2)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "k : ℕ", "a : R", "n : ℕ"], "goal": "X * dickson 2 0 (n + 1) = X ^ (n + 2)"}], "premise": [119707, 119743, 119758], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nk : ℕ\na : R\nn : ℕ\n⊢ X * dickson 2 0 (n + 1) = X ^ (n + 2)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l : Filter α", "k f g g' : α → β", "inst✝¹ : NormedLinearOrderedField β", "inst✝ : OrderTopology β", "hk : Tendsto k l atTop"], "goal": "SuperpolynomialDecay l k f ↔ ∀ (z : ℤ), f =o[l] fun a => k a ^ z"}], "premise": [1674, 41361, 43365], "state_str": "α : Type u_1\nβ : Type u_2\nl : Filter α\nk f g g' : α → β\ninst✝¹ : NormedLinearOrderedField β\ninst✝ : OrderTopology β\nhk : Tendsto k l atTop\n⊢ SuperpolynomialDecay l k f ↔ ∀ (z : ℤ), f =o[l] fun a => k a ^ z"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l : Filter α", "k f g g' : α → β", "inst✝¹ : NormedLinearOrderedField β", "inst✝ : OrderTopology β", "hk : Tendsto k l atTop", "h : SuperpolynomialDecay l k f", "z : ℤ"], "goal": "f =o[l] fun a => k a ^ z"}], "premise": [15497], "state_str": "α : Type u_1\nβ : Type u_2\nl : Filter α\nk f g g' : α → β\ninst✝¹ : NormedLinearOrderedField β\ninst✝ : OrderTopology β\nhk : Tendsto k l atTop\nh : SuperpolynomialDecay l k f\nz : ℤ\n⊢ f =o[l] fun a => k a ^ z"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l : Filter α", "k f g g' : α → β", "inst✝¹ : NormedLinearOrderedField β", "inst✝ : OrderTopology β", "hk : Tendsto k l atTop", "h : SuperpolynomialDecay l k f", "z : ℤ", "hk0 : ∀ᶠ (x : α) in l, k x ≠ 0"], "goal": "f =o[l] fun a => k a ^ z"}], "premise": [16027, 62831], "state_str": "α : Type u_1\nβ : Type u_2\nl : Filter α\nk f g g' : α → β\ninst✝¹ : NormedLinearOrderedField β\ninst✝ : OrderTopology β\nhk : Tendsto k l atTop\nh : SuperpolynomialDecay l k f\nz : ℤ\nhk0 : ∀ᶠ (x : α) in l, k x ≠ 0\n⊢ f =o[l] fun a => k a ^ z"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l : Filter α", "k f g g' : α → β", "inst✝¹ : NormedLinearOrderedField β", "inst✝ : OrderTopology β", "hk : Tendsto k l atTop", "h : SuperpolynomialDecay l k f", "z : ℤ", "hk0 : ∀ᶠ (x : α) in l, k x ≠ 0", "this : (fun x => 1) =o[l] k"], "goal": "f =o[l] fun a => k a ^ z"}], "premise": [1673, 41361, 43589], "state_str": "α : Type u_1\nβ : Type u_2\nl : Filter α\nk f g g' : α → β\ninst✝¹ : NormedLinearOrderedField β\ninst✝ : OrderTopology β\nhk : Tendsto k l atTop\nh : SuperpolynomialDecay l k f\nz : ℤ\nhk0 : ∀ᶠ (x : α) in l, k x ≠ 0\nthis : (fun x => 1) =o[l] k\n⊢ f =o[l] fun a => k a ^ z"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l : Filter α", "k f g g' : α → β", "inst✝¹ : NormedLinearOrderedField β", "inst✝ : OrderTopology β", "hk : Tendsto k l atTop", "h : SuperpolynomialDecay l k f", "z : ℤ", "hk0 : ∀ᶠ (x : α) in l, k x ≠ 0", "this✝ : (fun x => 1) =o[l] k", "this : f =o[l] fun x => k x * k x ^ (z - 1)"], "goal": "f =o[l] fun a => k a ^ z"}], "premise": [14277, 16027, 43354, 43413], "state_str": "α : Type u_1\nβ : Type u_2\nl : Filter α\nk f g g' : α → β\ninst✝¹ : NormedLinearOrderedField β\ninst✝ : OrderTopology β\nhk : Tendsto k l atTop\nh : SuperpolynomialDecay l k f\nz : ℤ\nhk0 : ∀ᶠ (x : α) in l, k x ≠ 0\nthis✝ : (fun x => 1) =o[l] k\nthis : f =o[l] fun x => k x * k x ^ (z - 1)\n⊢ f =o[l] fun a => k a ^ z"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "l : Filter α", "k f g g' : α → β", "inst✝¹ : NormedLinearOrderedField β", "inst✝ : OrderTopology β", "hk : Tendsto k l atTop", "h : SuperpolynomialDecay l k f", "z : ℤ", "hk0 : ∀ᶠ (x : α) in l, k x ≠ 0", "this✝ : (fun x => 1) =o[l] k", "this : f =o[l] fun x => k x * k x ^ (z - 1)", "x : α", "hkx : k x ≠ 0"], "goal": "‖k x * k x ^ (z - 1)‖ = 1 * ‖k x ^ z‖"}], "premise": [108321, 108556, 119703, 119707, 119728, 119730], "state_str": "α : Type u_1\nβ : Type u_2\nl : Filter α\nk f g g' : α → β\ninst✝¹ : NormedLinearOrderedField β\ninst✝ : OrderTopology β\nhk : Tendsto k l atTop\nh : SuperpolynomialDecay l k f\nz : ℤ\nhk0 : ∀ᶠ (x : α) in l, k x ≠ 0\nthis✝ : (fun x => 1) =o[l] k\nthis : f =o[l] fun x => k x * k x ^ (z - 1)\nx : α\nhkx : k x ≠ 0\n⊢ ‖k x * k x ^ (z - 1)‖ = 1 * ‖k x ^ z‖"} +{"state": [{"context": ["R✝ : Type u_1", "M : Type u_2", "inst✝⁵ : Semiring R✝", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R✝ M", "R : Type u_3", "S : Type u_4", "A : Type u_5", "inst✝² : CommRing R", "inst✝¹ : CommRing S", "inst✝ : CommRing A", "f : R →+* S", "g : S →+* A", "hf : (RingHom.ker f).FG", "hg : (RingHom.ker g).FG", "hsur : Surjective ⇑f", "this✝¹ : Algebra R S := f.toAlgebra", "this✝ : Algebra R A := (g.comp f).toAlgebra", "this : Algebra S A := g.toAlgebra"], "goal": "(RingHom.ker (g.comp f)).FG"}], "premise": [121199], "state_str": "R✝ : Type u_1\nM : Type u_2\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_3\nS : Type u_4\nA : Type u_5\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing A\nf : R →+* S\ng : S →+* A\nhf : (RingHom.ker f).FG\nhg : (RingHom.ker g).FG\nhsur : Surjective ⇑f\nthis✝¹ : Algebra R S := f.toAlgebra\nthis✝ : Algebra R A := (g.comp f).toAlgebra\nthis : Algebra S A := g.toAlgebra\n⊢ (RingHom.ker (g.comp f)).FG"} +{"state": [{"context": ["R✝ : Type u_1", "M : Type u_2", "inst✝⁵ : Semiring R✝", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R✝ M", "R : Type u_3", "S : Type u_4", "A : Type u_5", "inst✝² : CommRing R", "inst✝¹ : CommRing S", "inst✝ : CommRing A", "f : R →+* S", "g : S →+* A", "hf : (RingHom.ker f).FG", "hg : (RingHom.ker g).FG", "hsur : Surjective ⇑f", "this✝² : Algebra R S := f.toAlgebra", "this✝¹ : Algebra R A := (g.comp f).toAlgebra", "this✝ : Algebra S A := g.toAlgebra", "this : IsScalarTower R S A := IsScalarTower.of_algebraMap_eq fun x => rfl", "f₁ : R →ₗ[R] S := Algebra.linearMap R S", "g₁ : S →ₗ[R] A := (IsScalarTower.toAlgHom R S A).toLinearMap"], "goal": "(RingHom.ker (g.comp f)).FG"}], "premise": [79054, 79055], "state_str": "R✝ : Type u_1\nM : Type u_2\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_3\nS : Type u_4\nA : Type u_5\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing A\nf : R →+* S\ng : S →+* A\nhf : (RingHom.ker f).FG\nhg : (RingHom.ker g).FG\nhsur : Surjective ⇑f\nthis✝² : Algebra R S := f.toAlgebra\nthis✝¹ : Algebra R A := (g.comp f).toAlgebra\nthis✝ : Algebra S A := g.toAlgebra\nthis : IsScalarTower R S A := IsScalarTower.of_algebraMap_eq fun x => rfl\nf₁ : R →ₗ[R] S := Algebra.linearMap R S\ng₁ : S →ₗ[R] A := (IsScalarTower.toAlgHom R S A).toLinearMap\n⊢ (RingHom.ker (g.comp f)).FG"} +{"state": [{"context": ["𝕜 : Type u", "𝕜' : Type u'", "E : Type v", "F : Type w", "G : Type x", "inst✝⁴ : NontriviallyNormedField 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedSpace 𝕜 E", "inst✝ : NormedSpace 𝕜 F", "n : ℕ", "x : Fin n → E"], "goal": "(constFormalMultilinearSeries 𝕜 E 0 n) x = (0 n) x"}], "premise": [46122, 64548], "state_str": "case h.H\n𝕜 : Type u\n𝕜' : Type u'\nE : Type v\nF : Type w\nG : Type x\ninst✝⁴ : NontriviallyNormedField 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace 𝕜 E\ninst✝ : NormedSpace 𝕜 F\nn : ℕ\nx : Fin n → E\n⊢ (constFormalMultilinearSeries 𝕜 E 0 n) x = (0 n) x"} +{"state": [{"context": ["R : Type u_1", "K✝ : Type u_2", "L✝ : Type u_3", "M : Type u_4", "inst✝¹⁸ : CommRing R", "inst✝¹⁷ : Field K✝", "inst✝¹⁶ : Field L✝", "inst✝¹⁵ : CommRing M", "inst✝¹⁴ : Algebra R K✝", "inst✝¹³ : Algebra R L✝", "inst✝¹² : Algebra R M", "x✝ : L✝", "int✝ : IsIntegral R x✝", "h : Splits (algebraMap R K✝) (minpoly R x✝)", "inst✝¹¹ : Algebra K✝ M", "inst✝¹⁰ : IsScalarTower R K✝ M", "x : M", "int : IsIntegral R x", "F : Type u_5", "E : Type u_6", "K : Type u_7", "inst✝⁹ : CommRing F", "inst✝⁸ : StrongRankCondition F", "inst✝⁷ : CommRing E", "inst✝⁶ : StrongRankCondition E", "inst✝⁵ : Ring K", "inst✝⁴ : SMul F E", "inst✝³ : Algebra E K", "inst✝² : Algebra F K", "inst✝¹ : IsScalarTower F E K", "L : Subalgebra F K", "inst✝ : Module.Free F ↥L"], "goal": "Module.rank E ↥(Algebra.adjoin E ↑L) ≤ Module.rank F ↥L"}], "premise": [78357, 85824, 86386], "state_str": "R : Type u_1\nK✝ : Type u_2\nL✝ : Type u_3\nM : Type u_4\ninst✝¹⁸ : CommRing R\ninst✝¹⁷ : Field K✝\ninst✝¹⁶ : Field L✝\ninst✝¹⁵ : CommRing M\ninst✝¹⁴ : Algebra R K✝\ninst✝¹³ : Algebra R L✝\ninst✝¹² : Algebra R M\nx✝ : L✝\nint✝ : IsIntegral R x✝\nh : Splits (algebraMap R K✝) (minpoly R x✝)\ninst✝¹¹ : Algebra K✝ M\ninst✝¹⁰ : IsScalarTower R K✝ M\nx : M\nint : IsIntegral R x\nF : Type u_5\nE : Type u_6\nK : Type u_7\ninst✝⁹ : CommRing F\ninst✝⁸ : StrongRankCondition F\ninst✝⁷ : CommRing E\ninst✝⁶ : StrongRankCondition E\ninst✝⁵ : Ring K\ninst✝⁴ : SMul F E\ninst✝³ : Algebra E K\ninst✝² : Algebra F K\ninst✝¹ : IsScalarTower F E K\nL : Subalgebra F K\ninst✝ : Module.Free F ↥L\n⊢ Module.rank E ↥(Algebra.adjoin E ↑L) ≤ Module.rank F ↥L"} +{"state": [{"context": ["R : Type u_1", "K✝ : Type u_2", "L✝ : Type u_3", "M : Type u_4", "inst✝¹⁸ : CommRing R", "inst✝¹⁷ : Field K✝", "inst✝¹⁶ : Field L✝", "inst✝¹⁵ : CommRing M", "inst✝¹⁴ : Algebra R K✝", "inst✝¹³ : Algebra R L✝", "inst✝¹² : Algebra R M", "x✝ : L✝", "int✝ : IsIntegral R x✝", "h : Splits (algebraMap R K✝) (minpoly R x✝)", "inst✝¹¹ : Algebra K✝ M", "inst✝¹⁰ : IsScalarTower R K✝ M", "x : M", "int : IsIntegral R x", "F : Type u_5", "E : Type u_6", "K : Type u_7", "inst✝⁹ : CommRing F", "inst✝⁸ : StrongRankCondition F", "inst✝⁷ : CommRing E", "inst✝⁶ : StrongRankCondition E", "inst✝⁵ : Ring K", "inst✝⁴ : SMul F E", "inst✝³ : Algebra E K", "inst✝² : Algebra F K", "inst✝¹ : IsScalarTower F E K", "L : Subalgebra F K", "inst✝ : Module.Free F ↥L"], "goal": "Module.rank E ↥(Submodule.span E (Set.range fun i => ↑((Module.Free.chooseBasis F ↥L) i))) ≤ Cardinal.mk (Module.Free.ChooseBasisIndex F ↥L)"}], "premise": [48841, 86375], "state_str": "R : Type u_1\nK✝ : Type u_2\nL✝ : Type u_3\nM : Type u_4\ninst✝¹⁸ : CommRing R\ninst✝¹⁷ : Field K✝\ninst✝¹⁶ : Field L✝\ninst✝¹⁵ : CommRing M\ninst✝¹⁴ : Algebra R K✝\ninst✝¹³ : Algebra R L✝\ninst✝¹² : Algebra R M\nx✝ : L✝\nint✝ : IsIntegral R x✝\nh : Splits (algebraMap R K✝) (minpoly R x✝)\ninst✝¹¹ : Algebra K✝ M\ninst✝¹⁰ : IsScalarTower R K✝ M\nx : M\nint : IsIntegral R x\nF : Type u_5\nE : Type u_6\nK : Type u_7\ninst✝⁹ : CommRing F\ninst✝⁸ : StrongRankCondition F\ninst✝⁷ : CommRing E\ninst✝⁶ : StrongRankCondition E\ninst✝⁵ : Ring K\ninst✝⁴ : SMul F E\ninst✝³ : Algebra E K\ninst✝² : Algebra F K\ninst✝¹ : IsScalarTower F E K\nL : Subalgebra F K\ninst✝ : Module.Free F ↥L\n⊢ Module.rank E ↥(Submodule.span E (Set.range fun i => ↑((Module.Free.chooseBasis F ↥L) i))) ≤\n Cardinal.mk (Module.Free.ChooseBasisIndex F ↥L)"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : Preadditive C"], "goal": "N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor = karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ (KaroubiKaroubi.equivalence C).inverse.mapHomologicalComplex (ComplexShape.down ℕ)"}], "premise": [97754], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : Preadditive C\n⊢ N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor =\n karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙\n N₁ ⋙\n (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙\n (KaroubiKaroubi.equivalence C).inverse.mapHomologicalComplex (ComplexShape.down ℕ)"} +{"state": [{"context": ["n a b : ℕ", "hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b"], "goal": "a ∣ b"}], "premise": [70039], "state_str": "n a b : ℕ\nhdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b\n⊢ a ∣ b"} +{"state": [{"context": ["n a b : ℕ", "hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b", "ha : a ≠ 1"], "goal": "a ∣ b"}], "premise": [144338], "state_str": "case inr\nn a b : ℕ\nhdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b\nha : a ≠ 1\n⊢ a ∣ b"} +{"state": [{"context": ["n a b : ℕ", "hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b", "ha : a ≠ 1", "p : ℕ", "hp : Prime p ∧ p ∣ a"], "goal": "a ∣ b"}], "premise": [2106, 2107, 20067, 108897], "state_str": "case inr.intro\nn a b : ℕ\nhdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b\nha : a ≠ 1\np : ℕ\nhp : Prime p ∧ p ∣ a\n⊢ a ∣ b"} +{"state": [{"context": ["R : Type u_1", "inst✝³ : Semiring R", "r : R", "p : R[X]", "S : Type u_2", "inst✝² : AddCommMonoid S", "inst✝¹ : Pow S ℕ", "inst✝ : MulActionWithZero R S", "x : S", "n : ℕ"], "goal": "(X ^ n).smeval x = x ^ n"}], "premise": [101066, 101313, 101326, 115738, 118910], "state_str": "R : Type u_1\ninst✝³ : Semiring R\nr : R\np : R[X]\nS : Type u_2\ninst✝² : AddCommMonoid S\ninst✝¹ : Pow S ℕ\ninst✝ : MulActionWithZero R S\nx : S\nn : ℕ\n⊢ (X ^ n).smeval x = x ^ n"} +{"state": [{"context": ["G : Type u_1", "inst✝ : Group G", "H K : Subgroup G", "S T : Set G"], "goal": "IsComplement S univ ↔ ∃ g, S = {g}"}], "premise": [1674, 132279], "state_str": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\nS T : Set G\n⊢ IsComplement S univ ↔ ∃ g, S = {g}"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "inst✝³ : CommSemiring R", "inst✝² : CommRing A", "inst✝¹ : Algebra R A", "𝒜 : ℕ → Submodule R A", "inst✝ : GradedAlgebra 𝒜"], "goal": "vanishingIdeal ∅ = ⊤"}], "premise": [12790, 127423], "state_str": "R : Type u_1\nA : Type u_2\ninst✝³ : CommSemiring R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ℕ → Submodule R A\ninst✝ : GradedAlgebra 𝒜\n⊢ vanishingIdeal ∅ = ⊤"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α"], "goal": "toIocDiv hp (-a) b = -(toIcoDiv hp a (-b) + 1)"}], "premise": [105881, 119769], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIocDiv hp (-a) b = -(toIcoDiv hp a (-b) + 1)"} +{"state": [{"context": ["ι : Type u'", "ι' : Type u_1", "R : Type u_2", "K : Type u_3", "M : Type u_4", "M' : Type u_5", "M'' : Type u_6", "V : Type u", "V' : Type u_7", "inst✝⁴ : DivisionRing K", "inst✝³ : AddCommGroup V", "inst✝² : AddCommGroup V'", "inst✝¹ : Module K V", "inst✝ : Module K V'", "v : ι → V", "s t : Set V", "x y z : V"], "goal": "LinearIndependent K v ↔ ∀ (i : ι), v i ∉ span K (v '' (univ \\ {i}))"}], "premise": [1715, 83779], "state_str": "ι : Type u'\nι' : Type u_1\nR : Type u_2\nK : Type u_3\nM : Type u_4\nM' : Type u_5\nM'' : Type u_6\nV : Type u\nV' : Type u_7\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\n⊢ LinearIndependent K v ↔ ∀ (i : ι), v i ∉ span K (v '' (univ \\ {i}))"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "n✝ m : ℕ", "inst✝ : Semiring R", "p✝ q r p : R[X]", "n d : ℕ"], "goal": "(X ^ n * p).coeff (d + n) = p.coeff d"}], "premise": [101260, 101429, 118327], "state_str": "R : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\n⊢ (X ^ n * p).coeff (d + n) = p.coeff d"} +{"state": [{"context": ["M : Type u_1", "inst✝ : CommMonoid M", "S : Submonoid M", "hS : S ≤ IsUnit.submonoid M", "x : ↥S.leftInv"], "goal": "↑((S.leftInvEquiv hS) x) * ↑x = 1"}], "premise": [6142, 6150], "state_str": "M : Type u_1\ninst✝ : CommMonoid M\nS : Submonoid M\nhS : S ≤ IsUnit.submonoid M\nx : ↥S.leftInv\n⊢ ↑((S.leftInvEquiv hS) x) * ↑x = 1"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕝 : Type u_2", "E : Type u_3", "F : Type u_4", "β : Type u_5", "inst✝⁶ : OrderedSemiring 𝕜", "inst✝⁵ : TopologicalSpace E", "inst✝⁴ : TopologicalSpace F", "inst✝³ : AddCommMonoid E", "inst✝² : AddCommMonoid F", "inst✝¹ : SMul 𝕜 E", "inst✝ : SMul 𝕜 F", "s : Set E", "x✝ y✝ : E", "a✝ b✝ : 𝕜", "t : Set E", "hs : StrictConvex 𝕜 s", "ht : StrictConvex 𝕜 t", "x : E", "hx : x ∈ s ∩ t", "y : E", "hy : y ∈ s ∩ t", "hxy : x ≠ y", "a b : 𝕜", "ha : 0 < a", "hb : 0 < b", "hab : a + b = 1"], "goal": "a • x + b • y ∈ interior (s ∩ t)"}], "premise": [55394], "state_str": "𝕜 : Type u_1\n𝕝 : Type u_2\nE : Type u_3\nF : Type u_4\nβ : Type u_5\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : SMul 𝕜 E\ninst✝ : SMul 𝕜 F\ns : Set E\nx✝ y✝ : E\na✝ b✝ : 𝕜\nt : Set E\nhs : StrictConvex 𝕜 s\nht : StrictConvex 𝕜 t\nx : E\nhx : x ∈ s ∩ t\ny : E\nhy : y ∈ s ∩ t\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • x + b • y ∈ interior (s ∩ t)"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕝 : Type u_2", "E : Type u_3", "F : Type u_4", "β : Type u_5", "inst✝⁶ : OrderedSemiring 𝕜", "inst✝⁵ : TopologicalSpace E", "inst✝⁴ : TopologicalSpace F", "inst✝³ : AddCommMonoid E", "inst✝² : AddCommMonoid F", "inst✝¹ : SMul 𝕜 E", "inst✝ : SMul 𝕜 F", "s : Set E", "x✝ y✝ : E", "a✝ b✝ : 𝕜", "t : Set E", "hs : StrictConvex 𝕜 s", "ht : StrictConvex 𝕜 t", "x : E", "hx : x ∈ s ∩ t", "y : E", "hy : y ∈ s ∩ t", "hxy : x ≠ y", "a b : 𝕜", "ha : 0 < a", "hb : 0 < b", "hab : a + b = 1"], "goal": "a • x + b • y ∈ interior s ∩ interior t"}], "premise": [2106, 2107], "state_str": "𝕜 : Type u_1\n𝕝 : Type u_2\nE : Type u_3\nF : Type u_4\nβ : Type u_5\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : SMul 𝕜 E\ninst✝ : SMul 𝕜 F\ns : Set E\nx✝ y✝ : E\na✝ b✝ : 𝕜\nt : Set E\nhs : StrictConvex 𝕜 s\nht : StrictConvex 𝕜 t\nx : E\nhx : x ∈ s ∩ t\ny : E\nhy : y ∈ s ∩ t\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • x + b • y ∈ interior s ∩ interior t"} +{"state": [{"context": ["s : ℂ", "hs : 0 < s.re", "n : ℕ"], "goal": "s.GammaSeq n = ↑n ^ s * s.betaIntegral (↑n + 1)"}], "premise": [40589, 117806], "state_str": "s : ℂ\nhs : 0 < s.re\nn : ℕ\n⊢ s.GammaSeq n = ↑n ^ s * s.betaIntegral (↑n + 1)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ε : Type u_5", "ζ : Type u_6", "r : α → α → Prop", "a b c d : α"], "goal": "TransGen r a c ↔ ∃ b, r a b ∧ ReflTransGen r b c"}], "premise": [70459], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nε : Type u_5\nζ : Type u_6\nr : α → α → Prop\na b c d : α\n⊢ TransGen r a c ↔ ∃ b, r a b ∧ ReflTransGen r b c"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "F : Type w", "inst✝⁷ : CommRing R", "inst✝⁶ : Semiring S✝", "R₁ : Type u_1", "R₂ : Type u_2", "A : Type u_3", "B : Type u_4", "inst✝⁵ : CommSemiring R₁", "inst✝⁴ : CommSemiring R₂", "inst✝³ : CommRing A", "inst✝² : Algebra R₁ A", "inst✝¹ : Algebra R₂ A", "S : Type v", "inst✝ : CommRing S", "I : Ideal R", "J : Ideal S", "f : R ≃+* S", "hIJ : J = map (↑f) I"], "goal": "I ≤ comap (↑f) (map (↑f) I)"}], "premise": [80649], "state_str": "R : Type u\nS✝ : Type v\nF : Type w\ninst✝⁷ : CommRing R\ninst✝⁶ : Semiring S✝\nR₁ : Type u_1\nR₂ : Type u_2\nA : Type u_3\nB : Type u_4\ninst✝⁵ : CommSemiring R₁\ninst✝⁴ : CommSemiring R₂\ninst✝³ : CommRing A\ninst✝² : Algebra R₁ A\ninst✝¹ : Algebra R₂ A\nS : Type v\ninst✝ : CommRing S\nI : Ideal R\nJ : Ideal S\nf : R ≃+* S\nhIJ : J = map (↑f) I\n⊢ I ≤ comap (↑f) (map (↑f) I)"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "F : Type w", "inst✝⁷ : CommRing R", "inst✝⁶ : Semiring S✝", "R₁ : Type u_1", "R₂ : Type u_2", "A : Type u_3", "B : Type u_4", "inst✝⁵ : CommSemiring R₁", "inst✝⁴ : CommSemiring R₂", "inst✝³ : CommRing A", "inst✝² : Algebra R₁ A", "inst✝¹ : Algebra R₂ A", "S : Type v", "inst✝ : CommRing S", "I : Ideal R", "J : Ideal S", "f : R ≃+* S", "hIJ : J = map (↑f) I"], "goal": "map (↑f) I ≤ comap (↑f.symm) I"}], "premise": [14277, 80686], "state_str": "R : Type u\nS✝ : Type v\nF : Type w\ninst✝⁷ : CommRing R\ninst✝⁶ : Semiring S✝\nR₁ : Type u_1\nR₂ : Type u_2\nA : Type u_3\nB : Type u_4\ninst✝⁵ : CommSemiring R₁\ninst✝⁴ : CommSemiring R₂\ninst✝³ : CommRing A\ninst✝² : Algebra R₁ A\ninst✝¹ : Algebra R₂ A\nS : Type v\ninst✝ : CommRing S\nI : Ideal R\nJ : Ideal S\nf : R ≃+* S\nhIJ : J = map (↑f) I\n⊢ map (↑f) I ≤ comap (↑f.symm) I"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "F : Type w", "inst✝⁷ : CommRing R", "inst✝⁶ : Semiring S✝", "R₁ : Type u_1", "R₂ : Type u_2", "A : Type u_3", "B : Type u_4", "inst✝⁵ : CommSemiring R₁", "inst✝⁴ : CommSemiring R₂", "inst✝³ : CommRing A", "inst✝² : Algebra R₁ A", "inst✝¹ : Algebra R₂ A", "S : Type v", "inst✝ : CommRing S", "I : Ideal R", "J : Ideal S", "f : R ≃+* S", "hIJ : J = map (↑f) I", "x✝ : R ⧸ I", "r : R"], "goal": "(quotientMap I ↑f.symm ⋯) ((↑↑__src✝).toFun (Quot.mk Setoid.r r)) = Quot.mk Setoid.r r"}], "premise": [80141, 81204, 82368, 121546, 123710, 123758], "state_str": "case mk\nR : Type u\nS✝ : Type v\nF : Type w\ninst✝⁷ : CommRing R\ninst✝⁶ : Semiring S✝\nR₁ : Type u_1\nR₂ : Type u_2\nA : Type u_3\nB : Type u_4\ninst✝⁵ : CommSemiring R₁\ninst✝⁴ : CommSemiring R₂\ninst✝³ : CommRing A\ninst✝² : Algebra R₁ A\ninst✝¹ : Algebra R₂ A\nS : Type v\ninst✝ : CommRing S\nI : Ideal R\nJ : Ideal S\nf : R ≃+* S\nhIJ : J = map (↑f) I\nx✝ : R ⧸ I\nr : R\n⊢ (quotientMap I ↑f.symm ⋯) ((↑↑__src✝).toFun (Quot.mk Setoid.r r)) = Quot.mk Setoid.r r"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "F : Type w", "inst✝⁷ : CommRing R", "inst✝⁶ : Semiring S✝", "R₁ : Type u_1", "R₂ : Type u_2", "A : Type u_3", "B : Type u_4", "inst✝⁵ : CommSemiring R₁", "inst✝⁴ : CommSemiring R₂", "inst✝³ : CommRing A", "inst✝² : Algebra R₁ A", "inst✝¹ : Algebra R₂ A", "S : Type v", "inst✝ : CommRing S", "I : Ideal R", "J : Ideal S", "f : R ≃+* S", "hIJ : J = map (↑f) I", "x✝ : S ⧸ J", "s : S"], "goal": "(↑↑__src✝).toFun ((quotientMap I ↑f.symm ⋯) (Quot.mk Setoid.r s)) = Quot.mk Setoid.r s"}], "premise": [80141, 81204, 82368, 121546, 123709, 123758], "state_str": "case mk\nR : Type u\nS✝ : Type v\nF : Type w\ninst✝⁷ : CommRing R\ninst✝⁶ : Semiring S✝\nR₁ : Type u_1\nR₂ : Type u_2\nA : Type u_3\nB : Type u_4\ninst✝⁵ : CommSemiring R₁\ninst✝⁴ : CommSemiring R₂\ninst✝³ : CommRing A\ninst✝² : Algebra R₁ A\ninst✝¹ : Algebra R₂ A\nS : Type v\ninst✝ : CommRing S\nI : Ideal R\nJ : Ideal S\nf : R ≃+* S\nhIJ : J = map (↑f) I\nx✝ : S ⧸ J\ns : S\n⊢ (↑↑__src✝).toFun ((quotientMap I ↑f.symm ⋯) (Quot.mk Setoid.r s)) = Quot.mk Setoid.r s"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "inst✝⁴ : CommSemiring R", "inst✝³ : AddCommMonoid A", "inst✝² : Module R A", "inst✝¹ : Module R[X] A", "inst✝ : IsScalarTower R R[X] A", "f : R[X]"], "goal": "((mkDerivation R) 1) f = derivative f"}], "premise": [101058], "state_str": "R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : AddCommMonoid A\ninst✝² : Module R A\ninst✝¹ : Module R[X] A\ninst✝ : IsScalarTower R R[X] A\nf : R[X]\n⊢ ((mkDerivation R) 1) f = derivative f"} +{"state": [{"context": ["X✝ : Type u_1", "Y : Type u_2", "inst✝² : TopologicalSpace X✝", "inst✝¹ : FirstCountableTopology X✝", "inst✝ : R1Space X✝", "x✝¹ y✝ : X✝", "X : Type u_3", "T : Set (TopologicalSpace X)", "hT : ∀ t ∈ T, R1Space X", "x✝ : TopologicalSpace X := sInf T", "x y : X"], "goal": "x ⤳ y ∨ Disjoint (𝓝 x) (𝓝 y)"}], "premise": [57569], "state_str": "X✝ : Type u_1\nY : Type u_2\ninst✝² : TopologicalSpace X✝\ninst✝¹ : FirstCountableTopology X✝\ninst✝ : R1Space X✝\nx✝¹ y✝ : X✝\nX : Type u_3\nT : Set (TopologicalSpace X)\nhT : ∀ t ∈ T, R1Space X\nx✝ : TopologicalSpace X := sInf T\nx y : X\n⊢ x ⤳ y ∨ Disjoint (𝓝 x) (𝓝 y)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "E : Type u_3", "F : Type u_4", "G : Type u_5", "E' : Type u_6", "F' : Type u_7", "G' : Type u_8", "E'' : Type u_9", "F'' : Type u_10", "G'' : Type u_11", "R : Type u_12", "R' : Type u_13", "𝕜 : Type u_14", "𝕜' : Type u_15", "inst✝¹² : Norm E", "inst✝¹¹ : Norm F", "inst✝¹⁰ : Norm G", "inst✝⁹ : SeminormedAddCommGroup E'", "inst✝⁸ : SeminormedAddCommGroup F'", "inst✝⁷ : SeminormedAddCommGroup G'", "inst✝⁶ : NormedAddCommGroup E''", "inst✝⁵ : NormedAddCommGroup F''", "inst✝⁴ : NormedAddCommGroup G''", "inst✝³ : SeminormedRing R", "inst✝² : SeminormedRing R'", "inst✝¹ : NormedField 𝕜", "inst✝ : NormedField 𝕜'", "c c' c₁ c₂ : ℝ", "f : α → E", "g : α → F", "k : α → G", "f' : α → E'", "g' : α → F'", "k' : α → G'", "f'' : α → E''", "g'' : α → F''", "l l' : Filter α"], "goal": "(fun x => 0) =Θ[l] g'' ↔ g'' =ᶠ[l] 0"}], "premise": [20003, 43524, 43528], "state_str": "α : Type u_1\nβ : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type u_5\nE' : Type u_6\nF' : Type u_7\nG' : Type u_8\nE'' : Type u_9\nF'' : Type u_10\nG'' : Type u_11\nR : Type u_12\nR' : Type u_13\n𝕜 : Type u_14\n𝕜' : Type u_15\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nl l' : Filter α\n⊢ (fun x => 0) =Θ[l] g'' ↔ g'' =ᶠ[l] 0"} +{"state": [{"context": ["K✝ : Type u", "V✝ : Type v", "inst✝⁹ : Ring K✝", "inst✝⁸ : StrongRankCondition K✝", "inst✝⁷ : AddCommGroup V✝", "inst✝⁶ : Module K✝ V✝", "K V : Type u", "inst✝⁵ : Ring K", "inst✝⁴ : StrongRankCondition K", "inst✝³ : AddCommGroup V", "inst✝² : Module K V", "inst✝¹ : Module.Free K V", "inst✝ : Module.Finite K V"], "goal": "#V = #K ^ Module.rank K V"}], "premise": [85812], "state_str": "K✝ : Type u\nV✝ : Type v\ninst✝⁹ : Ring K✝\ninst✝⁸ : StrongRankCondition K✝\ninst✝⁷ : AddCommGroup V✝\ninst✝⁶ : Module K✝ V✝\nK V : Type u\ninst✝⁵ : Ring K\ninst✝⁴ : StrongRankCondition K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\ninst✝¹ : Module.Free K V\ninst✝ : Module.Finite K V\n⊢ #V = #K ^ Module.rank K V"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "p : FormalMultilinearSeries 𝕜 E F", "x y : E", "r R : ℝ≥0", "k l : ℕ", "s : Finset (Fin (k + l))", "hs : s.card = l"], "goal": "(fun s => ⟨s.fst - s.snd.card, ⟨s.snd.card, ⟨Finset.map (finCongr ⋯).toEmbedding s.snd, ⋯⟩⟩⟩) ((fun s => ⟨s.fst + s.snd.fst, ↑s.snd.snd⟩) ⟨k, ⟨l, ⟨s, hs⟩⟩⟩) = ⟨k, ⟨l, ⟨s, hs⟩⟩⟩"}], "premise": [137134], "state_str": "case mk.mk.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\np : FormalMultilinearSeries 𝕜 E F\nx y : E\nr R : ℝ≥0\nk l : ℕ\ns : Finset (Fin (k + l))\nhs : s.card = l\n⊢ (fun s => ⟨s.fst - s.snd.card, ⟨s.snd.card, ⟨Finset.map (finCongr ⋯).toEmbedding s.snd, ⋯⟩⟩⟩)\n ((fun s => ⟨s.fst + s.snd.fst, ↑s.snd.snd⟩) ⟨k, ⟨l, ⟨s, hs⟩⟩⟩) =\n ⟨k, ⟨l, ⟨s, hs⟩⟩⟩"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "p : FormalMultilinearSeries 𝕜 E F", "x y : E", "r R : ℝ≥0", "k l : ℕ", "s : Finset (Fin (k + l))", "hs : s.card = l"], "goal": "⟨k + l - s.card, ⟨s.card, ⟨Finset.map (finCongr ⋯).toEmbedding s, ⋯⟩⟩⟩ = ⟨k, ⟨l, ⟨s, hs⟩⟩⟩"}], "premise": [103403], "state_str": "case mk.mk.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\np : FormalMultilinearSeries 𝕜 E F\nx y : E\nr R : ℝ≥0\nk l : ℕ\ns : Finset (Fin (k + l))\nhs : s.card = l\n⊢ ⟨k + l - s.card, ⟨s.card, ⟨Finset.map (finCongr ⋯).toEmbedding s, ⋯⟩⟩⟩ = ⟨k, ⟨l, ⟨s, hs⟩⟩⟩"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "p : FormalMultilinearSeries 𝕜 E F", "x y : E", "r R : ℝ≥0", "k'✝ l'✝ : ℕ", "s : Finset (Fin (k'✝ + l'✝))", "hs : s.card = l'✝", "hkl : k'✝ + l'✝ = k'✝ + l'✝", "hs' : (Finset.map (finCongr hkl).toEmbedding s).card = l'✝"], "goal": "⟨k'✝, ⟨l'✝, ⟨Finset.map (finCongr hkl).toEmbedding s, hs'⟩⟩⟩ = ⟨k'✝, ⟨l'✝, ⟨s, hs⟩⟩⟩"}], "premise": [17, 1793, 1957, 11074, 70696, 137376, 142924], "state_str": "case mk.mk.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\np : FormalMultilinearSeries 𝕜 E F\nx y : E\nr R : ℝ≥0\nk'✝ l'✝ : ℕ\ns : Finset (Fin (k'✝ + l'✝))\nhs : s.card = l'✝\nhkl : k'✝ + l'✝ = k'✝ + l'✝\nhs' : (Finset.map (finCongr hkl).toEmbedding s).card = l'✝\n⊢ ⟨k'✝, ⟨l'✝, ⟨Finset.map (finCongr hkl).toEmbedding s, hs'⟩⟩⟩ = ⟨k'✝, ⟨l'✝, ⟨s, hs⟩⟩⟩"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "p : FormalMultilinearSeries 𝕜 E F", "x y : E", "r R : ℝ≥0", "n : ℕ", "s : Finset (Fin n)"], "goal": "(fun s => ⟨s.fst + s.snd.fst, ↑s.snd.snd⟩) ((fun s => ⟨s.fst - s.snd.card, ⟨s.snd.card, ⟨Finset.map (finCongr ⋯).toEmbedding s.snd, ⋯⟩⟩⟩) ⟨n, s⟩) = ⟨n, s⟩"}], "premise": [103586, 141368, 142928], "state_str": "case mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\np : FormalMultilinearSeries 𝕜 E F\nx y : E\nr R : ℝ≥0\nn : ℕ\ns : Finset (Fin n)\n⊢ (fun s => ⟨s.fst + s.snd.fst, ↑s.snd.snd⟩)\n ((fun s => ⟨s.fst - s.snd.card, ⟨s.snd.card, ⟨Finset.map (finCongr ⋯).toEmbedding s.snd, ⋯⟩⟩⟩) ⟨n, s⟩) =\n ⟨n, s⟩"} +{"state": [{"context": ["p : ℝ", "hp_pos : 0 < p", "hp_le_one : p ≤ 1"], "goal": "HasSum (fun n => (1 - p) ^ n * p) 1"}], "premise": [1674, 34078, 105706], "state_str": "p : ℝ\nhp_pos : 0 < p\nhp_le_one : p ≤ 1\n⊢ HasSum (fun n => (1 - p) ^ n * p) 1"} +{"state": [{"context": ["p : ℝ", "hp_pos : 0 < p", "hp_le_one : p ≤ 1", "this : HasSum (fun n => (1 - p) ^ n) (1 - (1 - p))⁻¹"], "goal": "HasSum (fun n => (1 - p) ^ n * p) 1"}], "premise": [1674, 11234, 63053], "state_str": "p : ℝ\nhp_pos : 0 < p\nhp_le_one : p ≤ 1\nthis : HasSum (fun n => (1 - p) ^ n) (1 - (1 - p))⁻¹\n⊢ HasSum (fun n => (1 - p) ^ n * p) 1"} +{"state": [{"context": ["p : ℝ", "hp_pos : 0 < p", "hp_le_one : p ≤ 1", "this : HasSum (fun i => (1 - p) ^ i * p) ((1 - (1 - p))⁻¹ * p)"], "goal": "HasSum (fun n => (1 - p) ^ n * p) 1"}], "premise": [118068], "state_str": "p : ℝ\nhp_pos : 0 < p\nhp_le_one : p ≤ 1\nthis : HasSum (fun i => (1 - p) ^ i * p) ((1 - (1 - p))⁻¹ * p)\n⊢ HasSum (fun n => (1 - p) ^ n * p) 1"} +{"state": [{"context": ["p : ℝ", "hp_pos : 0 < p", "hp_le_one : p ≤ 1", "this : HasSum (fun i => (1 - p) ^ i * p) (p⁻¹ * p)"], "goal": "HasSum (fun n => (1 - p) ^ n * p) 1"}], "premise": [11234, 108408, 117885], "state_str": "p : ℝ\nhp_pos : 0 < p\nhp_le_one : p ≤ 1\nthis : HasSum (fun i => (1 - p) ^ i * p) (p⁻¹ * p)\n⊢ HasSum (fun n => (1 - p) ^ n * p) 1"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "I✝ : MultispanIndex C", "K : Multicofork I✝", "I : MultispanIndex C", "P : C", "π : (b : I.R) → I.right b ⟶ P", "w : ∀ (a : I.L), I.fst a ≫ π (I.fstFrom a) = I.snd a ≫ π (I.sndFrom a)"], "goal": "∀ ⦃X Y : WalkingMultispan I.fstFrom I.sndFrom⦄ (f : X ⟶ Y), I.multispan.map f ≫ (fun x => match x with | WalkingMultispan.left a => I.fst a ≫ π (I.fstFrom a) | WalkingMultispan.right b => π b) Y = (fun x => match x with | WalkingMultispan.left a => I.fst a ≫ π (I.fstFrom a) | WalkingMultispan.right b => π b) X ≫ ((Functor.const (WalkingMultispan I.fstFrom I.sndFrom)).obj P).map f"}], "premise": [95041, 95042, 96174, 96175, 99920], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nI✝ : MultispanIndex C\nK : Multicofork I✝\nI : MultispanIndex C\nP : C\nπ : (b : I.R) → I.right b ⟶ P\nw : ∀ (a : I.L), I.fst a ≫ π (I.fstFrom a) = I.snd a ≫ π (I.sndFrom a)\n⊢ ∀ ⦃X Y : WalkingMultispan I.fstFrom I.sndFrom⦄ (f : X ⟶ Y),\n I.multispan.map f ≫\n (fun x =>\n match x with\n | WalkingMultispan.left a => I.fst a ≫ π (I.fstFrom a)\n | WalkingMultispan.right b => π b)\n Y =\n (fun x =>\n match x with\n | WalkingMultispan.left a => I.fst a ≫ π (I.fstFrom a)\n | WalkingMultispan.right b => π b)\n X ≫\n ((Functor.const (WalkingMultispan I.fstFrom I.sndFrom)).obj P).map f"} +{"state": [{"context": ["X : Scheme", "𝒰 : X.OpenCover", "x y z : 𝒰.J"], "goal": "(fun x y z => 𝒰.gluedCoverT' x y z) x y z ≫ pullback.snd ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) y z) ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) y x) = pullback.fst ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) x y) ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) x z) ≫ (fun x y => (pullbackSymmetry (𝒰.map x) (𝒰.map y)).hom) x y"}], "premise": [93876], "state_str": "X : Scheme\n𝒰 : X.OpenCover\nx y z : 𝒰.J\n⊢ (fun x y z => 𝒰.gluedCoverT' x y z) x y z ≫\n pullback.snd ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) y z)\n ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) y x) =\n pullback.fst ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) x y)\n ((fun x y => pullback.fst (𝒰.map x) (𝒰.map y)) x z) ≫\n (fun x y => (pullbackSymmetry (𝒰.map x) (𝒰.map y)).hom) x y"} +{"state": [{"context": ["α : Type u", "β : Type v", "δ : Type w", "n : ℕ", "xs : Stream' α"], "goal": "(take n xs).dropLast = take (n - 1) xs"}], "premise": [4595, 5353, 127944], "state_str": "α : Type u\nβ : Type v\nδ : Type w\nn : ℕ\nxs : Stream' α\n⊢ (take n xs).dropLast = take (n - 1) xs"} +{"state": [{"context": ["p q : ℝ", "hp : 0 < p", "hq : -1 < q"], "goal": "∫ (x : ℝ) in Ioi 0, x ^ q * rexp (-x ^ p) = 1 / p * Gamma ((q + 1) / p)"}], "premise": [1673, 1674, 14284, 14286, 26447, 26839, 28263, 33649, 39883, 40014, 40023, 40050, 104334, 104338, 105406, 105642, 108310, 108423, 117906, 118863, 119703, 119728], "state_str": "p q : ℝ\nhp : 0 < p\nhq : -1 < q\n⊢ ∫ (x : ℝ) in Ioi 0, x ^ q * rexp (-x ^ p) = 1 / p * Gamma ((q + 1) / p)"} +{"state": [{"context": ["R : Type u", "S : Type v", "inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "f g : R", "x : PrimeSpectrum R"], "goal": "x ∈ zeroLocus {f * g} ↔ x ∈ zeroLocus {f} ∪ zeroLocus {g}"}], "premise": [77738, 80420], "state_str": "R : Type u\nS : Type v\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nf g : R\nx : PrimeSpectrum R\n⊢ x ∈ zeroLocus {f * g} ↔ x ∈ zeroLocus {f} ∪ zeroLocus {g}"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝³ : LinearOrderedRing α", "inst✝² : LinearOrderedAddCommGroup β", "inst✝¹ : Module α β", "inst✝ : OrderedSMul α β", "s : Finset ι", "σ : Perm ι", "f : ι → α", "g : ι → β", "hfg : MonovaryOn f g ↑s", "hσ : {x | σ x ≠ x} ⊆ ↑s"], "goal": "∑ i ∈ s, f (σ i) • g i < ∑ i ∈ s, f i • g i ↔ ¬MonovaryOn (f ∘ ⇑σ) g ↑s"}], "premise": [11244, 106703, 106704], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝³ : LinearOrderedRing α\ninst✝² : LinearOrderedAddCommGroup β\ninst✝¹ : Module α β\ninst✝ : OrderedSMul α β\ns : Finset ι\nσ : Perm ι\nf : ι → α\ng : ι → β\nhfg : MonovaryOn f g ↑s\nhσ : {x | σ x ≠ x} ⊆ ↑s\n⊢ ∑ i ∈ s, f (σ i) • g i < ∑ i ∈ s, f i • g i ↔ ¬MonovaryOn (f ∘ ⇑σ) g ↑s"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝³ : Category.{?u.60429, u_1} C", "inst✝² : Category.{?u.60433, u_2} D", "inst✝¹ : HasZeroMorphisms C", "S✝ S₁ S₂ S₃ : ShortComplex C", "inst✝ : HasZeroMorphisms D", "S : ShortComplex Cᵒᵖ"], "goal": "S.g.unop ≫ S.f.unop = 0"}], "premise": [89633, 113553], "state_str": "C : Type u_1\nD : Type u_2\ninst✝³ : Category.{?u.60429, u_1} C\ninst✝² : Category.{?u.60433, u_2} D\ninst✝¹ : HasZeroMorphisms C\nS✝ S₁ S₂ S₃ : ShortComplex C\ninst✝ : HasZeroMorphisms D\nS : ShortComplex Cᵒᵖ\n⊢ S.g.unop ≫ S.f.unop = 0"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace ℝ E", "inst✝⁸ : NormedAddCommGroup F", "inst✝⁷ : NormedSpace ℝ F", "inst✝⁶ : NormedAddCommGroup F'", "inst✝⁵ : NormedSpace ℝ F'", "inst✝⁴ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝³ : NontriviallyNormedField 𝕜", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace 𝕜 F", "inst✝ : CompleteSpace F", "T✝ T'✝ T'' : Set α → E →L[ℝ] F", "C✝ C'✝ C'' : ℝ", "T T' : Set α → E →L[ℝ] F", "C C' : ℝ", "hT : DominatedFinMeasAdditive μ T C", "hT' : DominatedFinMeasAdditive μ T' C'", "h : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = T' s", "f : ↥(Lp E 1 μ)"], "goal": "setToL1 hT = setToL1 hT'"}], "premise": [39991], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace ℝ F\ninst✝⁶ : NormedAddCommGroup F'\ninst✝⁵ : NormedSpace ℝ F'\ninst✝⁴ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : CompleteSpace F\nT✝ T'✝ T'' : Set α → E →L[ℝ] F\nC✝ C'✝ C'' : ℝ\nT T' : Set α → E →L[ℝ] F\nC C' : ℝ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ T' C'\nh : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = T' s\nf : ↥(Lp E 1 μ)\n⊢ setToL1 hT = setToL1 hT'"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace ℝ E", "inst✝⁸ : NormedAddCommGroup F", "inst✝⁷ : NormedSpace ℝ F", "inst✝⁶ : NormedAddCommGroup F'", "inst✝⁵ : NormedSpace ℝ F'", "inst✝⁴ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝³ : NontriviallyNormedField 𝕜", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace 𝕜 F", "inst✝ : CompleteSpace F", "T✝ T'✝ T'' : Set α → E →L[ℝ] F", "C✝ C'✝ C'' : ℝ", "T T' : Set α → E →L[ℝ] F", "C C' : ℝ", "hT : DominatedFinMeasAdditive μ T C", "hT' : DominatedFinMeasAdditive μ T' C'", "h : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = T' s", "f✝ : ↥(Lp E 1 μ)", "f : ↥(simpleFunc E 1 μ)"], "goal": "(setToL1 hT') ↑f = (setToL1SCLM α E μ hT) f"}], "premise": [32137], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace ℝ F\ninst✝⁶ : NormedAddCommGroup F'\ninst✝⁵ : NormedSpace ℝ F'\ninst✝⁴ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : CompleteSpace F\nT✝ T'✝ T'' : Set α → E →L[ℝ] F\nC✝ C'✝ C'' : ℝ\nT T' : Set α → E →L[ℝ] F\nC C' : ℝ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ T' C'\nh : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = T' s\nf✝ : ↥(Lp E 1 μ)\nf : ↥(simpleFunc E 1 μ)\n⊢ (setToL1 hT') ↑f = (setToL1SCLM α E μ hT) f"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "𝕜 : Type u_6", "p : ℝ≥0∞", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace ℝ E", "inst✝⁸ : NormedAddCommGroup F", "inst✝⁷ : NormedSpace ℝ F", "inst✝⁶ : NormedAddCommGroup F'", "inst✝⁵ : NormedSpace ℝ F'", "inst✝⁴ : NormedAddCommGroup G", "m : MeasurableSpace α", "μ : Measure α", "inst✝³ : NontriviallyNormedField 𝕜", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace 𝕜 F", "inst✝ : CompleteSpace F", "T✝ T'✝ T'' : Set α → E →L[ℝ] F", "C✝ C'✝ C'' : ℝ", "T T' : Set α → E →L[ℝ] F", "C C' : ℝ", "hT : DominatedFinMeasAdditive μ T C", "hT' : DominatedFinMeasAdditive μ T' C'", "h : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = T' s", "f✝ : ↥(Lp E 1 μ)", "f : ↥(simpleFunc E 1 μ)"], "goal": "(setToL1SCLM α E μ hT') f = (setToL1SCLM α E μ hT) f"}], "premise": [2100, 32124], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\n𝕜 : Type u_6\np : ℝ≥0∞\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace ℝ F\ninst✝⁶ : NormedAddCommGroup F'\ninst✝⁵ : NormedSpace ℝ F'\ninst✝⁴ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : CompleteSpace F\nT✝ T'✝ T'' : Set α → E →L[ℝ] F\nC✝ C'✝ C'' : ℝ\nT T' : Set α → E →L[ℝ] F\nC C' : ℝ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ T' C'\nh : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = T' s\nf✝ : ↥(Lp E 1 μ)\nf : ↥(simpleFunc E 1 μ)\n⊢ (setToL1SCLM α E μ hT') f = (setToL1SCLM α E μ hT) f"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝² : LinearOrderedField 𝕜", "inst✝¹ : AddCommGroup E", "inst✝ : Module 𝕜 E", "x : E", "s : Set E", "hs : StarConvex 𝕜 0 s", "hx : x ∈ s", "t : 𝕜", "ht : 1 ≤ t"], "goal": "x ∈ t • s"}], "premise": [11234, 101702, 133012], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx : E\ns : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht : 1 ≤ t\n⊢ x ∈ t • s"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝² : LinearOrderedField 𝕜", "inst✝¹ : AddCommGroup E", "inst✝ : Module 𝕜 E", "x : E", "s : Set E", "hs : StarConvex 𝕜 0 s", "hx : x ∈ s", "t : 𝕜", "ht : 1 ≤ t"], "goal": "t⁻¹ • x ∈ s"}], "premise": [36202, 106062], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx : E\ns : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht : 1 ≤ t\n⊢ t⁻¹ • x ∈ s"} +{"state": [{"context": ["m n✝ p n : ℕ", "_h : 0 ≤ ↑n"], "goal": "↑(↑n).toNat = ↑↑n"}], "premise": [128750, 130051], "state_str": "m n✝ p n : ℕ\n_h : 0 ≤ ↑n\n⊢ ↑(↑n).toNat = ↑↑n"} +{"state": [{"context": ["R : Type u", "inst✝² : CommRing R", "n : Type w", "inst✝¹ : DecidableEq n", "inst✝ : Fintype n", "P A : Matrix n n R", "h : Invertible P"], "goal": "(P.lieConj h).symm A = P⁻¹ * A * P"}], "premise": [87036, 87047, 110241], "state_str": "R : Type u\ninst✝² : CommRing R\nn : Type w\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\nP A : Matrix n n R\nh : Invertible P\n⊢ (P.lieConj h).symm A = P⁻¹ * A * P"} +{"state": [{"context": ["α : Type u_1", "𝕜 : Type u_2", "inst✝¹ : LinearOrderedField 𝕜", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : 𝕜", "s t : Finset α", "a b : α", "h : ¬G.IsUniform ε s t"], "goal": "↑t.card * ε ≤ ↑(G.nonuniformWitnesses ε s t).2.card"}], "premise": [1739], "state_str": "α : Type u_1\n𝕜 : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : 𝕜\ns t : Finset α\na b : α\nh : ¬G.IsUniform ε s t\n⊢ ↑t.card * ε ≤ ↑(G.nonuniformWitnesses ε s t).2.card"} +{"state": [{"context": ["α : Type u_1", "𝕜 : Type u_2", "inst✝¹ : LinearOrderedField 𝕜", "G : SimpleGraph α", "inst✝ : DecidableRel G.Adj", "ε : 𝕜", "s t : Finset α", "a b : α", "h : ¬G.IsUniform ε s t"], "goal": "↑t.card * ε ≤ ↑(⋯.choose, ⋯.choose).2.card"}], "premise": [1111, 1673, 2106, 2107, 51453], "state_str": "α : Type u_1\n𝕜 : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\nε : 𝕜\ns t : Finset α\na b : α\nh : ¬G.IsUniform ε s t\n⊢ ↑t.card * ε ≤ ↑(⋯.choose, ⋯.choose).2.card"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "K : Type u_3", "inst✝⁹ : CommRing R", "inst✝⁸ : CommRing A", "inst✝⁷ : Field K", "R₁ : Type u_4", "inst✝⁶ : CommRing R₁", "inst✝⁵ : IsDomain R₁", "inst✝⁴ : Algebra R₁ K", "inst✝³ : IsFractionRing R₁ K", "I J : FractionalIdeal R₁⁰ K", "K' : Type u_5", "inst✝² : Field K'", "inst✝¹ : Algebra R₁ K'", "inst✝ : IsFractionRing R₁ K'", "x : K", "hx : x ≠ 0"], "goal": "(spanSingleton R₁⁰ x)⁻¹ * spanSingleton R₁⁰ x = 1"}], "premise": [81412, 119707], "state_str": "R : Type u_1\nA : Type u_2\nK : Type u_3\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A\ninst✝⁷ : Field K\nR₁ : Type u_4\ninst✝⁶ : CommRing R₁\ninst✝⁵ : IsDomain R₁\ninst✝⁴ : Algebra R₁ K\ninst✝³ : IsFractionRing R₁ K\nI J : FractionalIdeal R₁⁰ K\nK' : Type u_5\ninst✝² : Field K'\ninst✝¹ : Algebra R₁ K'\ninst✝ : IsFractionRing R₁ K'\nx : K\nhx : x ≠ 0\n⊢ (spanSingleton R₁⁰ x)⁻¹ * spanSingleton R₁⁰ x = 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : α → α → Prop", "s : β → β → Prop", "t : γ → γ → Prop", "a : Ordinal.{u_4}"], "goal": "a - a = 0"}], "premise": [52300, 119729], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal.{u_4}\n⊢ a - a = 0"} +{"state": [{"context": ["E : Type u_1", "inst✝ : SeminormedCommGroup E", "ε δ : ℝ", "s t : Set E", "x y : E"], "goal": "ball 1 δ * {x} = ball x δ"}], "premise": [42981], "state_str": "E : Type u_1\ninst✝ : SeminormedCommGroup E\nε δ : ℝ\ns t : Set E\nx y : E\n⊢ ball 1 δ * {x} = ball x δ"} +{"state": [{"context": ["G✝ : Type u_1", "inst✝⁵ : Group G✝", "G : Type u_2", "inst✝⁴ : Group G", "inst✝³ : (x : ConjClasses G) → Fintype ↑x.carrier", "inst✝² : Fintype G", "inst✝¹ : Fintype ↥(Subgroup.center G)", "inst✝ : Fintype ↑(noncenter G)"], "goal": "Fintype.card ↥(Subgroup.center G) + ∑ x ∈ (noncenter G).toFinset, x.carrier.toFinset.card = Fintype.card G"}], "premise": [6244], "state_str": "G✝ : Type u_1\ninst✝⁵ : Group G✝\nG : Type u_2\ninst✝⁴ : Group G\ninst✝³ : (x : ConjClasses G) → Fintype ↑x.carrier\ninst✝² : Fintype G\ninst✝¹ : Fintype ↥(Subgroup.center G)\ninst✝ : Fintype ↑(noncenter G)\n⊢ Fintype.card ↥(Subgroup.center G) + ∑ x ∈ (noncenter G).toFinset, x.carrier.toFinset.card = Fintype.card G"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "s : Multiset α", "p : { a // a ∈ s } → Prop", "inst✝¹ : DecidableEq α", "inst✝ : DecidablePred p"], "goal": "filter p s.attach = map (Subtype.map id ⋯) (filter (fun x => ∃ (h : x ∈ s), p ⟨x, h⟩) s).attach"}], "premise": [2037, 2039, 137125, 137134, 137139, 137981, 137997, 138037, 138116, 138235], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\ns : Multiset α\np : { a // a ∈ s } → Prop\ninst✝¹ : DecidableEq α\ninst✝ : DecidablePred p\n⊢ filter p s.attach = map (Subtype.map id ⋯) (filter (fun x => ∃ (h : x ∈ s), p ⟨x, h⟩) s).attach"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : Abelian C", "inst✝ : HasInjectiveResolutions C", "X Y : C", "f : X ⟶ Y", "I : InjectiveResolution X", "J : InjectiveResolution Y", "φ : I.cocomplex ⟶ J.cocomplex", "comm : I.ι.f 0 ≫ φ.f 0 = f ≫ J.ι.f 0"], "goal": "I.iso.inv ≫ (injectiveResolutions C).map f = (HomotopyCategory.quotient C (ComplexShape.up ℕ)).map φ ≫ J.iso.inv"}], "premise": [88742, 95259, 96173, 96174, 96191], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : Abelian C\ninst✝ : HasInjectiveResolutions C\nX Y : C\nf : X ⟶ Y\nI : InjectiveResolution X\nJ : InjectiveResolution Y\nφ : I.cocomplex ⟶ J.cocomplex\ncomm : I.ι.f 0 ≫ φ.f 0 = f ≫ J.ι.f 0\n⊢ I.iso.inv ≫ (injectiveResolutions C).map f = (HomotopyCategory.quotient C (ComplexShape.up ℕ)).map φ ≫ J.iso.inv"} +{"state": [{"context": ["k G : Type u", "inst✝¹ : CommRing k", "inst✝ : Group G", "A : Rep k G", "f : G × G → CoeSort.coe A"], "goal": "(dTwo A) f = 0 ↔ ∀ (g h j : G), (A.ρ g) (f (h, j)) - f (g * h, j) + f (g, h * j) - f (g, h) = 0"}], "premise": [24], "state_str": "k G : Type u\ninst✝¹ : CommRing k\ninst✝ : Group G\nA : Rep k G\nf : G × G → CoeSort.coe A\n⊢ (dTwo A) f = 0 ↔ ∀ (g h j : G), (A.ρ g) (f (h, j)) - f (g * h, j) + f (g, h * j) - f (g, h) = 0"} +{"state": [{"context": ["k G : Type u", "inst✝¹ : CommRing k", "inst✝ : Group G", "A : Rep k G", "f : G × G → CoeSort.coe A"], "goal": "(∀ (a : G × G × G), (dTwo A) f a = 0 a) ↔ ∀ (g h j : G), (A.ρ g) (f (h, j)) - f (g * h, j) + f (g, h * j) - f (g, h) = 0"}], "premise": [25150, 120640, 137295, 137296], "state_str": "k G : Type u\ninst✝¹ : CommRing k\ninst✝ : Group G\nA : Rep k G\nf : G × G → CoeSort.coe A\n⊢ (∀ (a : G × G × G), (dTwo A) f a = 0 a) ↔\n ∀ (g h j : G), (A.ρ g) (f (h, j)) - f (g * h, j) + f (g, h * j) - f (g, h) = 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁹ : NontriviallyNormedField 𝕜", "H : Type u_2", "inst✝¹⁸ : TopologicalSpace H", "E : Type u_3", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "I : ModelWithCorners 𝕜 E H", "F : Type u_4", "inst✝¹⁵ : NormedAddCommGroup F", "inst✝¹⁴ : NormedSpace 𝕜 F", "J : ModelWithCorners 𝕜 F F", "G : Type u_5", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : ChartedSpace H G", "inst✝¹¹ : Group G", "inst✝¹⁰ : LieGroup I G", "E' : Type u_6", "inst✝⁹ : NormedAddCommGroup E'", "inst✝⁸ : NormedSpace 𝕜 E'", "H' : Type u_7", "inst✝⁷ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M : Type u_8", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H' M", "E'' : Type u_9", "inst✝⁴ : NormedAddCommGroup E''", "inst✝³ : NormedSpace 𝕜 E''", "H'' : Type u_10", "inst✝² : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M' : Type u_11", "inst✝¹ : TopologicalSpace M'", "inst✝ : ChartedSpace H'' M'", "n : ℕ∞", "f g : M → G", "s : Set M", "hf : ContMDiffOn I' I n f s", "hg : ContMDiffOn I' I n g s"], "goal": "ContMDiffOn I' I n (fun x => f x / g x) s"}], "premise": [119790], "state_str": "𝕜 : Type u_1\ninst✝¹⁹ : NontriviallyNormedField 𝕜\nH : Type u_2\ninst✝¹⁸ : TopologicalSpace H\nE : Type u_3\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nI : ModelWithCorners 𝕜 E H\nF : Type u_4\ninst✝¹⁵ : NormedAddCommGroup F\ninst✝¹⁴ : NormedSpace 𝕜 F\nJ : ModelWithCorners 𝕜 F F\nG : Type u_5\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : ChartedSpace H G\ninst✝¹¹ : Group G\ninst✝¹⁰ : LieGroup I G\nE' : Type u_6\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : NormedSpace 𝕜 E'\nH' : Type u_7\ninst✝⁷ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM : Type u_8\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H' M\nE'' : Type u_9\ninst✝⁴ : NormedAddCommGroup E''\ninst✝³ : NormedSpace 𝕜 E''\nH'' : Type u_10\ninst✝² : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM' : Type u_11\ninst✝¹ : TopologicalSpace M'\ninst✝ : ChartedSpace H'' M'\nn : ℕ∞\nf g : M → G\ns : Set M\nhf : ContMDiffOn I' I n f s\nhg : ContMDiffOn I' I n g s\n⊢ ContMDiffOn I' I n (fun x => f x / g x) s"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁹ : NontriviallyNormedField 𝕜", "H : Type u_2", "inst✝¹⁸ : TopologicalSpace H", "E : Type u_3", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "I : ModelWithCorners 𝕜 E H", "F : Type u_4", "inst✝¹⁵ : NormedAddCommGroup F", "inst✝¹⁴ : NormedSpace 𝕜 F", "J : ModelWithCorners 𝕜 F F", "G : Type u_5", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : ChartedSpace H G", "inst✝¹¹ : Group G", "inst✝¹⁰ : LieGroup I G", "E' : Type u_6", "inst✝⁹ : NormedAddCommGroup E'", "inst✝⁸ : NormedSpace 𝕜 E'", "H' : Type u_7", "inst✝⁷ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M : Type u_8", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H' M", "E'' : Type u_9", "inst✝⁴ : NormedAddCommGroup E''", "inst✝³ : NormedSpace 𝕜 E''", "H'' : Type u_10", "inst✝² : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M' : Type u_11", "inst✝¹ : TopologicalSpace M'", "inst✝ : ChartedSpace H'' M'", "n : ℕ∞", "f g : M → G", "s : Set M", "hf : ContMDiffOn I' I n f s", "hg : ContMDiffOn I' I n g s"], "goal": "ContMDiffOn I' I n (fun x => f x * (g x)⁻¹) s"}], "premise": [67356, 67596], "state_str": "𝕜 : Type u_1\ninst✝¹⁹ : NontriviallyNormedField 𝕜\nH : Type u_2\ninst✝¹⁸ : TopologicalSpace H\nE : Type u_3\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nI : ModelWithCorners 𝕜 E H\nF : Type u_4\ninst✝¹⁵ : NormedAddCommGroup F\ninst✝¹⁴ : NormedSpace 𝕜 F\nJ : ModelWithCorners 𝕜 F F\nG : Type u_5\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : ChartedSpace H G\ninst✝¹¹ : Group G\ninst✝¹⁰ : LieGroup I G\nE' : Type u_6\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : NormedSpace 𝕜 E'\nH' : Type u_7\ninst✝⁷ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM : Type u_8\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H' M\nE'' : Type u_9\ninst✝⁴ : NormedAddCommGroup E''\ninst✝³ : NormedSpace 𝕜 E''\nH'' : Type u_10\ninst✝² : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM' : Type u_11\ninst✝¹ : TopologicalSpace M'\ninst✝ : ChartedSpace H'' M'\nn : ℕ∞\nf g : M → G\ns : Set M\nhf : ContMDiffOn I' I n f s\nhg : ContMDiffOn I' I n g s\n⊢ ContMDiffOn I' I n (fun x => f x * (g x)⁻¹) s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2"], "goal": "(Algebra.norm K) (ζ ^ ↑p ^ s - 1) = ↑↑p ^ ↑p ^ s"}], "premise": [70028, 74794], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\n⊢ (Algebra.norm K) (ζ ^ ↑p ^ s - 1) = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑p ^ (k - s + 1)) K)"], "goal": "(Algebra.norm K) (ζ ^ ↑p ^ s - 1) = ↑↑p ^ ↑p ^ s"}], "premise": [141238], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑p ^ (k - s + 1)) K)\n⊢ (Algebra.norm K) (ζ ^ ↑p ^ s - 1) = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η"], "goal": "(Algebra.norm K) η = ↑↑p ^ ↑p ^ s"}], "premise": [2140, 3886, 14273, 78756, 117979, 119708, 119758, 141094, 141238], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\n⊢ (Algebra.norm K) η = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "hη : IsPrimitiveRoot (η + 1) (↑p ^ (k + 1 - s))", "this : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯"], "goal": "(Algebra.norm K) η = ↑↑p ^ ↑p ^ s"}], "premise": [1673, 4598, 78741, 141238], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nhη : IsPrimitiveRoot (η + 1) (↑p ^ (k + 1 - s))\nthis : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\n⊢ (Algebra.norm K) η = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))"], "goal": "(Algebra.norm K) η = ↑↑p ^ ↑p ^ s"}], "premise": [24220], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝�� : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\n⊢ (Algebra.norm K) η = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this : FiniteDimensional K L"], "goal": "(Algebra.norm K) η = ↑↑p ^ ↑p ^ s"}], "premise": [24228], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis : FiniteDimensional K L\n⊢ (Algebra.norm K) η = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝ : FiniteDimensional K L", "this : IsGalois K L"], "goal": "(Algebra.norm K) η = ↑↑p ^ ↑p ^ s"}], "premise": [78561], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝ : FiniteDimensional K L\nthis : IsGalois K L\n⊢ (Algebra.norm K) η = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝ : FiniteDimensional K L", "this : IsGalois K L"], "goal": "(Algebra.norm K) (IntermediateField.AdjoinSimple.gen K η) ^ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑↑p ^ ↑p ^ s"}], "premise": [25238], "state_str": "p n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝ : FiniteDimensional K L\nthis : IsGalois K L\n⊢ (Algebra.norm K) (IntermediateField.AdjoinSimple.gen K η) ^ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝ : FiniteDimensional K L", "this : IsGalois K L", "H : (Algebra.norm K) (η₁ + 1 - 1) = ↑(↑(p ^ (k - s + 1))).minFac"], "goal": "(Algebra.norm K) (IntermediateField.AdjoinSimple.gen K η) ^ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑↑p ^ ↑p ^ s"}], "premise": [117983], "state_str": "case refine_2\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝ : FiniteDimensional K L\nthis : IsGalois K L\nH : (Algebra.norm K) (η₁ + 1 - 1) = ↑(↑(p ^ (k - s + 1))).minFac\n⊢ (Algebra.norm K) (IntermediateField.AdjoinSimple.gen K η) ^ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑↑p ^ ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝ : FiniteDimensional K L", "this : IsGalois K L", "H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac"], "goal": "FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"}], "premise": [85823], "state_str": "case refine_2.e_a\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝ : FiniteDimensional K L\nthis : IsGalois K L\nH : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac\n⊢ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝¹ : FiniteDimensional K L", "this✝ : IsGalois K L", "H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac", "this : FiniteDimensional.finrank K ↥K⟮η⟯ * FiniteDimensional.finrank (↥K⟮η⟯) L = FiniteDimensional.finrank K L"], "goal": "FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"}], "premise": [2143, 25228, 70028, 119703, 119707, 141238, 145335], "state_str": "case refine_2.e_a\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝¹ : FiniteDimensional K L\nthis✝ : IsGalois K L\nH : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac\nthis : FiniteDimensional.finrank K ↥K⟮η⟯ * FiniteDimensional.finrank (↥K⟮η⟯) L = FiniteDimensional.finrank K L\n⊢ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝¹ : FiniteDimensional K L", "this✝ : IsGalois K L", "H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac", "this : (↑p - 1) * (↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L) = (↑p - 1) * ↑p ^ (k.succ - 1)"], "goal": "FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"}], "premise": [1674, 11234, 70028, 103654, 108560, 144294], "state_str": "case refine_2.e_a\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝¹ : FiniteDimensional K L\nthis✝ : IsGalois K L\nH : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac\nthis : (↑p - 1) * (↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L) = (↑p - 1) * ↑p ^ (k.succ - 1)\n⊢ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝¹ : FiniteDimensional K L", "this✝ : IsGalois K L", "H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac", "this : ↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ (k.succ - 1)"], "goal": "FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"}], "premise": [2100, 3715, 3886, 103416], "state_str": "case refine_2.e_a\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝¹ : FiniteDimensional K L\nthis✝ : IsGalois K L\nH : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac\nthis : ↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ (k.succ - 1)\n⊢ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝¹ : FiniteDimensional K L", "this✝ : IsGalois K L", "H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac", "this : ↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ (k.succ - 1)", "Hex : k.succ - 1 = (k - s).succ - 1 + s"], "goal": "FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"}], "premise": [119758], "state_str": "case refine_2.e_a\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝¹ : FiniteDimensional K L\nthis✝ : IsGalois K L\nH : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac\nthis : ↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ (k.succ - 1)\nHex : k.succ - 1 = (k - s).succ - 1 + s\n⊢ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"} +{"state": [{"context": ["p n : ℕ+", "A : Type w", "B : Type z", "K : Type u", "L : Type v", "C : Type w", "inst✝⁷ : CommRing A", "inst✝⁶ : CommRing B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsCyclotomicExtension {n} A B", "inst✝³ : Field L", "ζ : L", "hζ✝ : IsPrimitiveRoot ζ ↑n", "inst✝² : Field K", "inst✝¹ : Algebra K L", "k s : ℕ", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "hpri : Fact (Nat.Prime ↑p)", "inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L", "hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)", "hs : s ≤ k", "htwo : p ^ (k - s + 1) ≠ 2", "hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)", "η : L := ζ ^ ↑p ^ s - 1", "η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η", "this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯", "hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))", "this✝¹ : FiniteDimensional K L", "this✝ : IsGalois K L", "H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac", "this : ↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ ((k - s).succ - 1) * ↑p ^ s", "Hex : k.succ - 1 = (k - s).succ - 1 + s"], "goal": "FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"}], "premise": [70028, 108284, 108560, 144291], "state_str": "case refine_2.e_a\np n : ℕ+\nA : Type w\nB : Type z\nK : Type u\nL : Type v\nC : Type w\ninst✝⁷ : CommRing A\ninst✝⁶ : CommRing B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsCyclotomicExtension {n} A B\ninst✝³ : Field L\nζ : L\nhζ✝ : IsPrimitiveRoot ζ ↑n\ninst✝² : Field K\ninst✝¹ : Algebra K L\nk s : ℕ\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nhpri : Fact (Nat.Prime ↑p)\ninst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L\nhirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K)\nhs : s ≤ k\nhtwo : p ^ (k - s + 1) ≠ 2\nhirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K)\nη : L := ζ ^ ↑p ^ s - 1\nη₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η\nthis✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯\nhη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1))\nthis✝¹ : FiniteDimensional K L\nthis✝ : IsGalois K L\nH : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac\nthis : ↑p ^ ((k - s).succ - 1) * FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ ((k - s).succ - 1) * ↑p ^ s\nHex : k.succ - 1 = (k - s).succ - 1 + s\n⊢ FiniteDimensional.finrank (↥K⟮η⟯) L = ↑p ^ s"} +{"state": [{"context": ["a b : ℤ", "H : b ≠ 0"], "goal": "a % b < |b|"}], "premise": [104494], "state_str": "a b : ℤ\nH : b ≠ 0\n⊢ a % b < |b|"} +{"state": [{"context": ["a b : ℤ", "H : b ≠ 0"], "goal": "a % |b| < |b|"}], "premise": [1674, 4276, 105333], "state_str": "a b : ℤ\nH : b ≠ 0\n⊢ a % |b| < |b|"} +{"state": [{"context": ["α β : DistLat", "e : ↑α ≃o ↑β", "x✝ : (forget DistLat).obj α"], "goal": "({ toFun := ⇑e, map_sup' := ⋯, map_inf' := ⋯ } ≫ { toFun := ⇑e.symm, map_sup' := ⋯, map_inf' := ⋯ }) x✝ = (𝟙 α) x✝"}], "premise": [11076], "state_str": "case w\nα β : DistLat\ne : ↑α ≃o ↑β\nx✝ : (forget DistLat).obj α\n⊢ ({ toFun := ⇑e, map_sup' := ⋯, map_inf' := ⋯ } ≫ { toFun := ⇑e.symm, map_sup' := ⋯, map_inf' := ⋯ }) x✝ = (𝟙 α) x✝"} +{"state": [{"context": ["α β : DistLat", "e : ↑α ≃o ↑β", "x✝ : (forget DistLat).obj β"], "goal": "({ toFun := ⇑e.symm, map_sup' := ⋯, map_inf' := ⋯ } ≫ { toFun := ⇑e, map_sup' := ⋯, map_inf' := ⋯ }) x✝ = (𝟙 β) x✝"}], "premise": [11075], "state_str": "case w\nα β : DistLat\ne : ↑α ≃o ↑β\nx✝ : (forget DistLat).obj β\n⊢ ({ toFun := ⇑e.symm, map_sup' := ⋯, map_inf' := ⋯ } ≫ { toFun := ⇑e, map_sup' := ⋯, map_inf' := ⋯ }) x✝ = (𝟙 β) x✝"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Preadditive C", "R : Type u_1", "inst✝¹ : Ring R", "inst✝ : Linear R C", "K L M : CochainComplex C ℤ", "n✝ : ℤ", "γ γ₁✝ γ₂✝ : Cochain K L n✝", "n' a : ℤ", "γ₁ γ₂ : Cochain ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj K) L n'", "n : ℤ", "hn : n + a = n'"], "goal": "(leftShiftAddEquiv K L n a n' hn).symm (γ₁ + γ₂) = γ₁.leftUnshift n hn + γ₂.leftUnshift n hn"}], "premise": [117079], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Preadditive C\nR : Type u_1\ninst✝¹ : Ring R\ninst✝ : Linear R C\nK L M : CochainComplex C ℤ\nn✝ : ℤ\nγ γ₁✝ γ₂✝ : Cochain K L n✝\nn' a : ℤ\nγ₁ γ₂ : Cochain ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj K) L n'\nn : ℤ\nhn : n + a = n'\n⊢ (leftShiftAddEquiv K L n a n' hn).symm (γ₁ + γ₂) = γ₁.leftUnshift n hn + γ₂.leftUnshift n hn"} +{"state": [{"context": ["J : Type u₁", "K : Type u₂", "inst✝⁴ : Category.{v₁, u₁} J", "inst✝³ : Category.{v₂, u₂} K", "inst✝² : Small.{v, u₂} K", "F : J × K ⥤ Type v", "inst✝¹ : IsFiltered K", "inst✝ : Finite J"], "goal": "Function.Injective (colimitLimitToLimitColimit F)"}], "premise": [17, 1111, 1674, 1793, 20003, 70165, 93131, 93158, 93162, 93422, 94646, 94927, 96557, 96915, 99924, 99925, 100753, 100754, 100755, 137413, 138858, 140822, 141384], "state_str": "J : Type u₁\nK : Type u₂\ninst✝⁴ : Category.{v₁, u₁} J\ninst✝³ : Category.{v₂, u₂} K\ninst✝² : Small.{v, u₂} K\nF : J × K ⥤ Type v\ninst✝¹ : IsFiltered K\ninst✝ : Finite J\n⊢ Function.Injective (colimitLimitToLimitColimit F)"} +{"state": [{"context": ["J : Type w", "C : Type u", "inst✝ : Category.{v, u} C", "X Y : C", "f : J → (X ⟶ Y)", "s : Cotrident f", "j : J"], "goal": "f j ≫ s.ι.app one = s.ι.app zero"}], "premise": [93450, 95538], "state_str": "J : Type w\nC : Type u\ninst✝ : Category.{v, u} C\nX Y : C\nf : J → (X ⟶ Y)\ns : Cotrident f\nj : J\n⊢ f j ≫ s.ι.app one = s.ι.app zero"} +{"state": [{"context": ["L : Language", "M : Type u_1", "inst✝¹ : L.Structure M", "N : Type u_2", "inst✝ : L.Structure N", "h : FG L M", "f : M →[L] N"], "goal": "f.range.FG"}], "premise": [25008], "state_str": "L : Language\nM : Type u_1\ninst✝¹ : L.Structure M\nN : Type u_2\ninst✝ : L.Structure N\nh : FG L M\nf : M →[L] N\n⊢ f.range.FG"} +{"state": [{"context": ["L : Language", "M : Type u_1", "inst✝¹ : L.Structure M", "N : Type u_2", "inst✝ : L.Structure N", "h : FG L M", "f : M →[L] N"], "goal": "(map f ⊤).FG"}], "premise": [1673, 24588, 24602], "state_str": "L : Language\nM : Type u_1\ninst✝¹ : L.Structure M\nN : Type u_2\ninst✝ : L.Structure N\nh : FG L M\nf : M →[L] N\n⊢ (map f ⊤).FG"} +{"state": [{"context": ["α : Type u_1", "a : α", "inst✝ : Preorder α", "x : ↑(Iic a)"], "goal": "x = ⊤ ↔ ↑x = a"}], "premise": [137128], "state_str": "α : Type u_1\na : α\ninst✝ : Preorder α\nx : ↑(Iic a)\n⊢ x = ⊤ ↔ ↑x = a"} +{"state": [{"context": ["α : Type u", "β✝ : Type v", "m : Type u → Type v", "inst✝¹ : Monad m", "β : Type u", "f : ℕ → α → β → m β", "b : β", "as : List α", "inst✝ : LawfulMonad m"], "goal": "foldrIdxM f b as = foldrM (uncurry f) b as.enum"}], "premise": [130877, 132586], "state_str": "α : Type u\nβ✝ : Type v\nm : Type u → Type v\ninst✝¹ : Monad m\nβ : Type u\nf : ℕ → α → β → m β\nb : β\nas : List α\ninst✝ : LawfulMonad m\n⊢ foldrIdxM f b as = foldrM (uncurry f) b as.enum"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝³ : CommRing R", "inst✝² : LocalRing R", "inst✝¹ : CommRing S", "inst✝ : Nontrivial S", "f : R →+* S", "hf : Function.Surjective ⇑f", "a : R"], "goal": "IsUnit (f a) ∨ IsUnit (1 - f a)"}], "premise": [1217, 76991, 121184], "state_str": "case intro\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : LocalRing R\ninst✝¹ : CommRing S\ninst✝ : Nontrivial S\nf : R →+* S\nhf : Function.Surjective ⇑f\na : R\n⊢ IsUnit (f a) ∨ IsUnit (1 - f a)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝³ : CommRing R", "inst✝² : LocalRing R", "inst✝¹ : CommRing S", "inst✝ : Nontrivial S", "f : R →+* S", "hf : Function.Surjective ⇑f", "a : R"], "goal": "IsUnit (1 - a) → IsUnit (1 - f a)"}], "premise": [121565, 121576], "state_str": "case intro\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : LocalRing R\ninst✝¹ : CommRing S\ninst✝ : Nontrivial S\nf : R →+* S\nhf : Function.Surjective ⇑f\na : R\n⊢ IsUnit (1 - a) → IsUnit (1 - f a)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝³ : CommRing R", "inst✝² : LocalRing R", "inst✝¹ : CommRing S", "inst✝ : Nontrivial S", "f : R →+* S", "hf : Function.Surjective ⇑f", "a : R"], "goal": "IsUnit (1 - a) → IsUnit (f (1 - a))"}], "premise": [121184], "state_str": "case intro\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : LocalRing R\ninst✝¹ : CommRing S\ninst✝ : Nontrivial S\nf : R →+* S\nhf : Function.Surjective ⇑f\na : R\n⊢ IsUnit (1 - a) → IsUnit (f (1 - a))"} +{"state": [{"context": ["M₀ : Type u_1", "G₀ : Type u_2", "inst✝ : GroupWithZero G₀", "s : Set G₀", "a b : G₀", "ha : a ∈ s.centralizer", "hb : b ∈ s.centralizer"], "goal": "a / b ∈ s.centralizer"}], "premise": [108548, 119325, 119790], "state_str": "M₀ : Type u_1\nG₀ : Type u_2\ninst✝ : GroupWithZero G₀\ns : Set G₀\na b : G₀\nha : a ∈ s.centralizer\nhb : b ∈ s.centralizer\n⊢ a / b ∈ s.centralizer"} +{"state": [{"context": ["a : Cardinal.{u_1}"], "goal": "↑(toENat a) = a ↔ a ≤ ℵ₀"}], "premise": [1717, 12787, 47752], "state_str": "a : Cardinal.{u_1}\n⊢ ↑(toENat a) = a ↔ a ≤ ℵ₀"} +{"state": [{"context": ["a : Cardinal.{u_1}"], "goal": "(∃ a_1, a = ↑a_1) ↔ a ≤ ℵ₀"}], "premise": [1673, 1717, 47743, 131595, 133307], "state_str": "a : Cardinal.{u_1}\n⊢ (∃ a_1, a = ↑a_1) ↔ a ≤ ℵ₀"} +{"state": [{"context": ["α : Type u", "β : Type v", "S T : WSeq (Computation α)", "a : α", "h1 : ∀ (s : Computation α), s ∈ S → s ~> a", "H : WSeq.LiftRel Equiv S T", "h2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1", "a' : α", "h : a' ∈ parallel S"], "goal": "a' ∈ parallel T"}], "premise": [148430], "state_str": "α : Type u\nβ : Type v\nS T : WSeq (Computation α)\na : α\nh1 : ∀ (s : Computation α), s ∈ S → s ~> a\nH : WSeq.LiftRel Equiv S T\nh2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1\na' : α\nh : a' ∈ parallel S\n⊢ a' ∈ parallel T"} +{"state": [{"context": ["α : Type u", "β : Type v", "S T : WSeq (Computation α)", "a : α", "h1 : ∀ (s : Computation α), s ∈ S → s ~> a", "H : WSeq.LiftRel Equiv S T", "h2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1", "a' : α", "h : a ∈ parallel S", "aa : a = a'"], "goal": "a ∈ parallel T"}], "premise": [1673, 148427, 148431, 148713], "state_str": "α : Type u\nβ : Type v\nS T : WSeq (Computation α)\na : α\nh1 : ∀ (s : Computation α), s ∈ S → s ~> a\nH : WSeq.LiftRel Equiv S T\nh2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1\na' : α\nh : a ∈ parallel S\naa : a = a'\n⊢ a ∈ parallel T"} +{"state": [{"context": ["α : Type u", "β : Type v", "S T : WSeq (Computation α)", "a : α", "h1 : ∀ (s : Computation α), s ∈ S → s ~> a", "H : WSeq.LiftRel Equiv S T", "h2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1", "a' : α", "h : a' ∈ parallel T"], "goal": "a' ∈ parallel S"}], "premise": [148430], "state_str": "α : Type u\nβ : Type v\nS T : WSeq (Computation α)\na : α\nh1 : ∀ (s : Computation α), s ∈ S → s ~> a\nH : WSeq.LiftRel Equiv S T\nh2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1\na' : α\nh : a' ∈ parallel T\n⊢ a' ∈ parallel S"} +{"state": [{"context": ["α : Type u", "β : Type v", "S T : WSeq (Computation α)", "a : α", "h1 : ∀ (s : Computation α), s ∈ S → s ~> a", "H : WSeq.LiftRel Equiv S T", "h2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1", "a' : α", "h : a ∈ parallel T", "aa : a = a'"], "goal": "a ∈ parallel S"}], "premise": [1674, 148427, 148431, 148714], "state_str": "α : Type u\nβ : Type v\nS T : WSeq (Computation α)\na : α\nh1 : ∀ (s : Computation α), s ∈ S → s ~> a\nH : WSeq.LiftRel Equiv S T\nh2 : ∀ (t : Computation α), t ∈ T → t ~> a := (parallel_congr_lem H).mp h1\na' : α\nh : a ∈ parallel T\naa : a = a'\n⊢ a ∈ parallel S"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "δ : Type u_3", "a : α", "b : β", "s : Multiset α", "t : Multiset β", "l₁ : List α", "l₂ : List β"], "goal": "(↑l₁).product ↑l₂ = ↑(l₁.product l₂)"}], "premise": [135613], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\nδ : Type u_3\na : α\nb : β\ns : Multiset α\nt : Multiset β\nl₁ : List α\nl₂ : List β\n⊢ (↑l₁).product ↑l₂ = ↑(l₁.product l₂)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Monoid α", "inst✝² : Monoid β", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "a b : α", "k : ℕ", "hk : a ^ k ∣ b", "hsucc : ¬a ^ (k + 1) ∣ b"], "goal": "k = (multiplicity a b).get ⋯"}], "premise": [79544, 144873, 144883], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Monoid α\ninst✝² : Monoid β\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nk : ℕ\nhk : a ^ k ∣ b\nhsucc : ¬a ^ (k + 1) ∣ b\n⊢ k = (multiplicity a b).get ⋯"} +{"state": [{"context": ["a : ℤ", "ha0 : 0 < a"], "goal": "↑(↑a)⁻¹.den = a"}], "premise": [708, 143125, 147935, 147976, 148012], "state_str": "a : ℤ\nha0 : 0 < a\n⊢ ↑(↑a)⁻¹.den = a"} +{"state": [{"context": ["a : ℤ", "ha0 : 0 < a"], "goal": "↑(↑1 / ↑a).den = a"}], "premise": [147909], "state_str": "a : ℤ\nha0 : 0 < a\n⊢ ↑(↑1 / ↑a).den = a"} +{"state": [{"context": ["a : ℤ", "ha0 : 0 < a"], "goal": "(Int.natAbs 1).Coprime a.natAbs"}], "premise": [3244], "state_str": "a : ℤ\nha0 : 0 < a\n⊢ (Int.natAbs 1).Coprime a.natAbs"} +{"state": [{"context": ["a : ℤ", "ha0 : 0 < a"], "goal": "Nat.Coprime 1 a.natAbs"}], "premise": [425], "state_str": "a : ℤ\nha0 : 0 < a\n⊢ Nat.Coprime 1 a.natAbs"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "A : Type u_3", "inst✝¹ : Mul M", "s✝ : Set M", "inst✝ : Add A", "t : Set A", "S : Subsemigroup M", "s : Set M", "p : (x : M) → x ∈ closure s → Prop", "mem : ∀ (x : M) (h : x ∈ s), p x ⋯", "mul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) ⋯", "x : M", "hx : x ∈ closure s"], "goal": "p x hx"}], "premise": [1727], "state_str": "M : Type u_1\nN : Type u_2\nA : Type u_3\ninst✝¹ : Mul M\ns✝ : Set M\ninst✝ : Add A\nt : Set A\nS : Subsemigroup M\ns : Set M\np : (x : M) → x ∈ closure s → Prop\nmem : ∀ (x : M) (h : x ∈ s), p x ⋯\nmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) ⋯\nx : M\nhx : x ∈ closure s\n⊢ p x hx"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "A : Type u_3", "inst✝¹ : Mul M", "s✝ : Set M", "inst✝ : Add A", "t : Set A", "S : Subsemigroup M", "s : Set M", "p : (x : M) → x ∈ closure s → Prop", "mem : ∀ (x : M) (h : x ∈ s), p x ⋯", "mul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) ⋯", "x : M", "hx : x ∈ closure s"], "goal": "∃ (x_1 : x ∈ closure s), p x x_1"}], "premise": [116288], "state_str": "M : Type u_1\nN : Type u_2\nA : Type u_3\ninst✝¹ : Mul M\ns✝ : Set M\ninst✝ : Add A\nt : Set A\nS : Subsemigroup M\ns : Set M\np : (x : M) → x ∈ closure s → Prop\nmem : ∀ (x : M) (h : x ∈ s), p x ⋯\nmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) ⋯\nx : M\nhx : x ∈ closure s\n⊢ ∃ (x_1 : x ∈ closure s), p x x_1"} +{"state": [{"context": ["μ : YoungDiagram", "j : ℕ"], "goal": "μ.colLen j = (μ.col j).card"}], "premise": [49887], "state_str": "μ : YoungDiagram\nj : ℕ\n⊢ μ.colLen j = (μ.col j).card"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f✝ f₀ f₁ g : E → F", "f'✝ f₀' f₁' g' e : E →L[𝕜] F", "x : E", "s✝ t : Set E", "L L₁ L₂ : Filter E", "f : E → F", "f' : E →L[𝕜] F", "x₀ : E", "hf : HasFDerivAt f f' x₀", "s : Set E", "hs : s ∈ 𝓝 x₀", "C : ℝ≥0", "hlip : LipschitzOnWith C f s"], "goal": "‖f'‖ ≤ ↑C"}], "premise": [46304, 146609], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g : E → F\nf'✝ f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns✝ t : Set E\nL L₁ L₂ : Filter E\nf : E → F\nf' : E →L[𝕜] F\nx₀ : E\nhf : HasFDerivAt f f' x₀\ns : Set E\nhs : s ∈ 𝓝 x₀\nC : ℝ≥0\nhlip : LipschitzOnWith C f s\n⊢ ‖f'‖ ≤ ↑C"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f✝ f₀ f₁ g : E → F", "f'✝ f₀' f₁' g' e : E →L[𝕜] F", "x : E", "s✝ t : Set E", "L L₁ L₂ : Filter E", "f : E → F", "f' : E →L[𝕜] F", "x₀ : E", "hf : HasFDerivAt f f' x₀", "s : Set E", "hs : s ∈ 𝓝 x₀", "C : ℝ≥0", "hlip : LipschitzOnWith C f s"], "goal": "∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ ↑C * ‖x - x₀‖"}], "premise": [15889, 55499, 131585], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g : E → F\nf'✝ f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns✝ t : Set E\nL L₁ L₂ : Filter E\nf : E → F\nf' : E →L[𝕜] F\nx₀ : E\nhf : HasFDerivAt f f' x₀\ns : Set E\nhs : s ∈ 𝓝 x₀\nC : ℝ≥0\nhlip : LipschitzOnWith C f s\n⊢ ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ ↑C * ‖x - x₀‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "xs : List α", "ys : List β", "x : α", "y : β"], "goal": "(x, y) ∈ xs.product ys ↔ x ∈ xs ∧ y ∈ ys"}], "premise": [1186, 1193, 2043, 5127, 5239], "state_str": "α : Type u_1\nβ : Type u_2\nxs : List α\nys : List β\nx : α\ny : β\n⊢ (x, y) ∈ xs.product ys ↔ x ∈ xs ∧ y ∈ ys"} +{"state": [{"context": ["a✝ b✝ m n p a b : ℕ", "hb : b ≠ 0"], "goal": "a.factorization ≤ (a * b).factorization"}], "premise": [70039], "state_str": "a✝ b✝ m n p a b : ℕ\nhb : b ≠ 0\n⊢ a.factorization ≤ (a * b).factorization"} +{"state": [{"context": ["a✝ b✝ m n p a b : ℕ", "hb : b ≠ 0", "ha : a ≠ 0"], "goal": "a.factorization ≤ (a * b).factorization"}], "premise": [108269, 144203], "state_str": "case inr\na✝ b✝ m n p a b : ℕ\nhb : b ≠ 0\nha : a ≠ 0\n⊢ a.factorization ≤ (a * b).factorization"} +{"state": [{"context": ["a✝ b✝ m n p a b : ℕ", "hb : b ≠ 0", "ha : a ≠ 0"], "goal": "a ∣ a * b"}], "premise": [108871], "state_str": "case inr\na✝ b✝ m n p a b : ℕ\nhb : b ≠ 0\nha : a ≠ 0\n⊢ a ∣ a * b"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "inst✝¹ : Group α", "inst✝ : AddGroup β", "f : Multiplicative ℤ →* α", "n : Multiplicative ℤ"], "goal": "f n = f (ofAdd 1) ^ toAdd n"}], "premise": [70751, 128948, 128949], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\ninst✝¹ : Group α\ninst✝ : AddGroup β\nf : Multiplicative ℤ →* α\nn : Multiplicative ℤ\n⊢ f n = f (ofAdd 1) ^ toAdd n"} +{"state": [{"context": ["F : Type u → Type u", "q : QPF F", "α β γ : Type u", "f : α → β", "g : β → γ", "x : F α"], "goal": "(g ∘ f) <$> x = g <$> f <$> x"}], "premise": [141121], "state_str": "F : Type u → Type u\nq : QPF F\nα β γ : Type u\nf : α → β\ng : β → γ\nx : F α\n⊢ (g ∘ f) <$> x = g <$> f <$> x"} +{"state": [{"context": ["F : Type u → Type u", "q : QPF F", "α β γ : Type u", "f✝ : α → β", "g : β → γ", "x : F α", "a : (P F).A", "f : (P F).B a → α"], "goal": "(g ∘ f✝) <$> abs ⟨a, f⟩ = g <$> f✝ <$> abs ⟨a, f⟩"}], "premise": [141120], "state_str": "case mk\nF : Type u → Type u\nq : QPF F\nα β γ : Type u\nf✝ : α → β\ng : β → γ\nx : F α\na : (P F).A\nf : (P F).B a → α\n⊢ (g ∘ f✝) <$> abs ⟨a, f⟩ = g <$> f✝ <$> abs ⟨a, f⟩"} +{"state": [{"context": ["n : ℕ", "R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R"], "goal": "(algebraMap R[X] (RatFunc R)) (cyclotomic n R) = ∏ i ∈ n.divisorsAntidiagonal, (algebraMap R[X] (RatFunc R)) (X ^ i.2 - 1) ^ μ i.1"}], "premise": [3735], "state_str": "n : ℕ\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\n⊢ (algebraMap R[X] (RatFunc R)) (cyclotomic n R) =\n ∏ i ∈ n.divisorsAntidiagonal, (algebraMap R[X] (RatFunc R)) (X ^ i.2 - 1) ^ μ i.1"} +{"state": [{"context": ["n : ℕ", "R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R", "hpos : n > 0"], "goal": "(algebraMap R[X] (RatFunc R)) (cyclotomic n R) = ∏ i ∈ n.divisorsAntidiagonal, (algebraMap R[X] (RatFunc R)) (X ^ i.2 - 1) ^ μ i.1"}], "premise": [75191, 126888], "state_str": "case inr\nn : ℕ\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nhpos : n > 0\n⊢ (algebraMap R[X] (RatFunc R)) (cyclotomic n R) =\n ∏ i ∈ n.divisorsAntidiagonal, (algebraMap R[X] (RatFunc R)) (X ^ i.2 - 1) ^ μ i.1"} +{"state": [{"context": ["n : ℕ", "R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R", "hpos : n > 0", "h : ∀ (n : ℕ), 0 < n → ∏ i ∈ n.divisors, (algebraMap R[X] (RatFunc R)) (cyclotomic i R) = (algebraMap R[X] (RatFunc R)) (X ^ n - 1)"], "goal": "(algebraMap R[X] (RatFunc R)) (cyclotomic n R) = ∏ i ∈ n.divisorsAntidiagonal, (algebraMap R[X] (RatFunc R)) (X ^ i.2 - 1) ^ μ i.1"}], "premise": [1673, 23969, 77057], "state_str": "case inr\nn : ℕ\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nhpos : n > 0\nh :\n ∀ (n : ℕ),\n 0 < n → ∏ i ∈ n.divisors, (algebraMap R[X] (RatFunc R)) (cyclotomic i R) = (algebraMap R[X] (RatFunc R)) (X ^ n - 1)\n⊢ (algebraMap R[X] (RatFunc R)) (cyclotomic n R) =\n ∏ i ∈ n.divisorsAntidiagonal, (algebraMap R[X] (RatFunc R)) (X ^ i.2 - 1) ^ μ i.1"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₀ : PositiveCompacts G", "U : Set G", "K : Compacts G", "hU : (interior U).Nonempty"], "goal": "↑(index (↑K) U) / ↑(index (↑K₀) U) ≤ ↑(index ↑K ↑K₀)"}], "premise": [106024], "state_str": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₀ : PositiveCompacts G\nU : Set G\nK : Compacts G\nhU : (interior U).Nonempty\n⊢ ↑(index (↑K) U) / ↑(index (↑K₀) U) ≤ ↑(index ↑K ↑K₀)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k N : ℕ", "x : Fin n✝ → ℕ", "n d : ℕ"], "goal": "∃ k, ↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"}], "premise": [53441], "state_str": "α : Type u_1\nβ : Type u_2\nn✝ d✝ k N : ℕ\nx : Fin n✝ → ℕ\nn d : ℕ\n⊢ ∃ k, ↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card"], "goal": "↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"}], "premise": [3735], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\n⊢ ↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card", "hn : n > 0"], "goal": "↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"}], "premise": [3735], "state_str": "case intro.intro.inr\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\nhn : n > 0\n⊢ ↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card", "hn : n > 0", "hd : d > 0"], "goal": "↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"}], "premise": [106071], "state_str": "case intro.intro.inr.inr\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\nhn : n > 0\nhd : d > 0\n⊢ ↑(d ^ n) / ↑(n * d ^ 2) ≤ ↑(sphere n d k).card"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card", "hn : n > 0", "hd : d > 0"], "goal": "↑(n * (d - 1) ^ 2) + 1 ≤ ↑(n * d ^ 2)"}], "premise": [105721, 117899, 118064, 119730, 119756, 122285, 128746, 142648, 142652, 143125], "state_str": "case intro.intro.inr.inr.refine_3\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\nhn : n > 0\nhd : d > 0\n⊢ ↑(n * (d - 1) ^ 2) + 1 ≤ ↑(n * d ^ 2)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card", "hn : n > 0", "hd : d > 0"], "goal": "1 ≤ ↑n * (2 * ↑d - 1)"}], "premise": [106807], "state_str": "case intro.intro.inr.inr.refine_3\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\nhn : n > 0\nhd : d > 0\n⊢ 1 ≤ ↑n * (2 * ↑d - 1)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card", "hn : n > 0", "hd : d > 0"], "goal": "1 ≤ 2 * ↑d - 1"}], "premise": [105711], "state_str": "case intro.intro.inr.inr.refine_3.hb\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\nhn : n > 0\nhd : d > 0\n⊢ 1 ≤ 2 * ↑d - 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n✝ d✝ k✝ N : ℕ", "x : Fin n✝ → ℕ", "n d k : ℕ", "hk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card", "hn : n > 0", "hd : d > 0"], "goal": "1 ≤ d"}], "premise": [1674, 142600], "state_str": "case intro.intro.inr.inr.refine_3.hb\nα : Type u_1\nβ : Type u_2\nn✝ d✝ k✝ N : ℕ\nx : Fin n✝ → ℕ\nn d k : ℕ\nhk : ↑(d ^ n) / (↑(n * (d - 1) ^ 2) + 1) ≤ ↑(sphere n d k).card\nhn : n > 0\nhd : d > 0\n⊢ 1 ≤ d"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝ : TopologicalSpace α", "s✝ t u v s : Set α", "H : ∀ x ∈ s, ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ IsPreconnected t"], "goal": "IsPreconnected s"}], "premise": [133383], "state_str": "α : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝ : TopologicalSpace α\ns✝ t u v s : Set α\nH : ∀ x ∈ s, ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ IsPreconnected t\n⊢ IsPreconnected s"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝ : TopologicalSpace α", "s t u v : Set α", "H : ∀ x ∈ ∅, ∀ y ∈ ∅, ∃ t ⊆ ∅, x ∈ t ∧ y ∈ t ∧ IsPreconnected t"], "goal": "IsPreconnected ∅"}, {"context": ["α : Type u", "β : Type v", "ι : Type u_1", "π : ι → Type u_2", "inst✝ : TopologicalSpace α", "s✝ t u v s : Set α", "H : ∀ x ∈ s, ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ IsPreconnected t", "x : α", "hx : x ∈ s"], "goal": "IsPreconnected s"}], "premise": [65850, 65854], "state_str": "case inl\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝ : TopologicalSpace α\ns t u v : Set α\nH : ∀ x ∈ ∅, ∀ y ∈ ∅, ∃ t ⊆ ∅, x ∈ t ∧ y ∈ t ∧ IsPreconnected t\n⊢ IsPreconnected ∅\n\ncase inr.intro\nα : Type u\nβ : Type v\nι : Type u_1\nπ : ι → Type u_2\ninst✝ : TopologicalSpace α\ns✝ t u v s : Set α\nH : ∀ x ∈ s, ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ IsPreconnected t\nx : α\nhx : x ∈ s\n⊢ IsPreconnected s"} +{"state": [{"context": ["u✝ : Lean.Level", "arg : Q(Type u✝)", "sα✝ : Q(CommSemiring «$arg»)", "u : Lean.Level", "α : Q(Type u)", "sα : Q(CommSemiring «$α»)", "R : Type u_1", "inst✝ : CommSemiring R", "a a' a₁ a₂ a₃ b' b₁ b₂ b₃ c₁ c₂ : R", "k : ℕ"], "goal": "a ^ Nat.mul 2 k = a ^ k * a ^ k"}], "premise": [3694, 119758], "state_str": "u✝ : Lean.Level\narg : Q(Type u✝)\nsα✝ : Q(CommSemiring «$arg»)\nu : Lean.Level\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\nR : Type u_1\ninst✝ : CommSemiring R\na a' a₁ a₂ a₃ b' b₁ b₂ b₃ c₁ c₂ : R\nk : ℕ\n⊢ a ^ Nat.mul 2 k = a ^ k * a ^ k"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "n : ℕ", "α : Type u_3", "inst✝¹ : Fintype α", "k : ℕ", "inst✝ : Fintype (Sym α k)"], "goal": "Fintype.card (Sym α k) = (Fintype.card α + k - 1).choose k"}], "premise": [127837, 143925], "state_str": "α✝ : Type u_1\nβ : Type u_2\nn : ℕ\nα : Type u_3\ninst✝¹ : Fintype α\nk : ℕ\ninst✝ : Fintype (Sym α k)\n⊢ Fintype.card (Sym α k) = (Fintype.card α + k - 1).choose k"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝ : SemilatticeSup α", "a : α", "f : α → β", "l : Filter β"], "goal": "Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l"}], "premise": [1671, 1713, 15717, 16361], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝ : SemilatticeSup α\na : α\nf : α → β\nl : Filter β\n⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "mγ : MeasurableSpace γ", "κ : Kernel α β", "η : Kernel (α × β) γ", "a : α", "inst✝¹ : IsSFiniteKernel κ", "inst✝ : IsSFiniteKernel η", "t : Set (α × β)", "ht : MeasurableSet t", "c : ℝ≥0∞"], "goal": "Measurable fun a => ∫⁻ (b : β), t.indicator (Function.const (α × β) c) (a, b) ∂κ a"}], "premise": [28863, 30372], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\nκ : Kernel α β\nη : Kernel (α × β) γ\na : α\ninst✝¹ : IsSFiniteKernel κ\ninst✝ : IsSFiniteKernel η\nt : Set (α × β)\nht : MeasurableSet t\nc : ℝ≥0∞\n⊢ Measurable fun a => ∫⁻ (b : β), t.indicator (Function.const (α × β) c) (a, b) ∂κ a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "mγ : MeasurableSpace γ", "κ : Kernel α β", "η : Kernel (α × β) γ", "a : α", "inst✝¹ : IsSFiniteKernel κ", "inst✝ : IsSFiniteKernel η", "t : Set (α × β)", "ht : MeasurableSet t", "c : ℝ≥0∞"], "goal": "Measurable fun x => c * (κ x) (Prod.mk x ⁻¹' t)"}], "premise": [31178, 73628], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\nκ : Kernel α β\nη : Kernel (α × β) γ\na : α\ninst✝¹ : IsSFiniteKernel κ\ninst✝ : IsSFiniteKernel η\nt : Set (α × β)\nht : MeasurableSet t\nc : ℝ≥0∞\n⊢ Measurable fun x => c * (κ x) (Prod.mk x ⁻¹' t)"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "E : Type u_3", "F : Type u_4", "ι : Type u_5", "ι' : Type u_6", "α : Type u_7", "inst✝⁸ : LinearOrderedField R", "inst✝⁷ : LinearOrderedField R'", "inst✝⁶ : AddCommGroup E", "inst✝⁵ : AddCommGroup F", "inst✝⁴ : LinearOrderedAddCommGroup α", "inst✝³ : Module R E", "inst✝² : Module R F", "inst✝¹ : Module R α", "inst✝ : OrderedSMul R α", "s : Set E", "i j : ι", "c : R", "t✝ : Finset ι", "w : ι → R", "z : ι → E", "t : Finset ι", "hw₀ : ∀ i ∈ t, w i ≤ 0", "hws : ∑ i ∈ t, w i < 0", "hz : ∀ i ∈ t, z i ∈ s"], "goal": "t.centerMass w z ∈ (convexHull R) s"}], "premise": [39909], "state_str": "R : Type u_1\nR' : Type u_2\nE : Type u_3\nF : Type u_4\nι : Type u_5\nι' : Type u_6\nα : Type u_7\ninst✝⁸ : LinearOrderedField R\ninst✝⁷ : LinearOrderedField R'\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt✝ : Finset ι\nw : ι → R\nz : ι → E\nt : Finset ι\nhw₀ : ∀ i ∈ t, w i ≤ 0\nhws : ∑ i ∈ t, w i < 0\nhz : ∀ i ∈ t, z i ∈ s\n⊢ t.centerMass w z ∈ (convexHull R) s"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "E : Type u_3", "F : Type u_4", "ι : Type u_5", "ι' : Type u_6", "α : Type u_7", "inst✝⁸ : LinearOrderedField R", "inst✝⁷ : LinearOrderedField R'", "inst✝⁶ : AddCommGroup E", "inst✝⁵ : AddCommGroup F", "inst✝⁴ : LinearOrderedAddCommGroup α", "inst✝³ : Module R E", "inst✝² : Module R F", "inst✝¹ : Module R α", "inst✝ : OrderedSMul R α", "s : Set E", "i j : ι", "c : R", "t✝ : Finset ι", "w : ι → R", "z : �� → E", "t : Finset ι", "hw₀ : ∀ i ∈ t, w i ≤ 0", "hws : ∑ i ∈ t, w i < 0", "hz : ∀ i ∈ t, z i ∈ s"], "goal": "t.centerMass (-w) z ∈ (convexHull R) s"}], "premise": [1674, 39925], "state_str": "R : Type u_1\nR' : Type u_2\nE : Type u_3\nF : Type u_4\nι : Type u_5\nι' : Type u_6\nα : Type u_7\ninst✝⁸ : LinearOrderedField R\ninst✝⁷ : LinearOrderedField R'\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt✝ : Finset ι\nw : ι → R\nz : ι → E\nt : Finset ι\nhw₀ : ∀ i ∈ t, w i ≤ 0\nhws : ∑ i ∈ t, w i < 0\nhz : ∀ i ∈ t, z i ∈ s\n⊢ t.centerMass (-w) z ∈ (convexHull R) s"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u_2", "β : Type u_3", "l : Filter α", "inst✝¹ : CountableInterFilter l", "g : Set (Set α)", "f : Filter α", "inst✝ : CountableInterFilter f", "h : g ⊆ f.sets", "s : Set α", "S : Set (Set α)", "Sct : S.Countable", "a✝ : ∀ s ∈ S, CountableGenerateSets g s", "ih : ∀ s ∈ S, s ∈ f"], "goal": "⋂₀ S ∈ f"}], "premise": [1674, 12107], "state_str": "case mpr.sInter\nι : Sort u_1\nα : Type u_2\nβ : Type u_3\nl : Filter α\ninst✝¹ : CountableInterFilter l\ng : Set (Set α)\nf : Filter α\ninst✝ : CountableInterFilter f\nh : g ⊆ f.sets\ns : Set α\nS : Set (Set α)\nSct : S.Countable\na✝ : ∀ s ∈ S, CountableGenerateSets g s\nih : ∀ s ∈ S, s ∈ f\n⊢ ⋂₀ S ∈ f"} +{"state": [{"context": ["α : Type u", "β : α → Type v", "inst✝ : DecidableEq α", "a : α", "s : AList β"], "goal": "⟦AList.erase a s⟧.keys = ⟦s⟧.keys.erase a"}], "premise": [131309], "state_str": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : AList β\n⊢ ⟦AList.erase a s⟧.keys = ⟦s⟧.keys.erase a"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝ : Category.{v₂, u₂} D", "L : C ⥤ D", "R : D ⥤ C", "h : L ⊣ R", "X : C"], "goal": "R.map (L.map (R.map (h.counit.app (L.obj X)))) ≫ R.map (h.counit.app (L.obj X)) = R.map (h.counit.app (L.obj (R.obj (L.obj X)))) ≫ R.map (h.counit.app (L.obj X))"}], "premise": [99919], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝ : Category.{v₂, u₂} D\nL : C ⥤ D\nR : D ⥤ C\nh : L ⊣ R\nX : C\n⊢ R.map (L.map (R.map (h.counit.app (L.obj X)))) ≫ R.map (h.counit.app (L.obj X)) =\n R.map (h.counit.app (L.obj (R.obj (L.obj X)))) ≫ R.map (h.counit.app (L.obj X))"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝ : Category.{v₂, u₂} D", "L : C ⥤ D", "R : D ⥤ C", "h : L ⊣ R", "X : C"], "goal": "R.map (L.map (h.unit.app X)) ≫ R.map (h.counit.app (L.obj X)) = 𝟙 (R.obj (L.obj X))"}], "premise": [99919], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝ : Category.{v₂, u₂} D\nL : C ⥤ D\nR : D ⥤ C\nh : L ⊣ R\nX : C\n⊢ R.map (L.map (h.unit.app X)) ≫ R.map (h.counit.app (L.obj X)) = 𝟙 (R.obj (L.obj X))"} +{"state": [{"context": ["p n✝ k n : ℕ"], "goal": "∏ p ∈ Finset.range (2 * n + 1), p ^ n.centralBinom.factorization p = n.centralBinom"}], "premise": [143660], "state_str": "p n✝ k n : ℕ\n⊢ ∏ p ∈ Finset.range (2 * n + 1), p ^ n.centralBinom.factorization p = n.centralBinom"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "E : Type u_3", "F : Type u_4", "ι : Type u_5", "ι' : Type u_6", "α : Type u_7", "inst✝⁸ : LinearOrderedField R", "inst✝⁷ : LinearOrderedField R'", "inst✝⁶ : AddCommGroup E", "inst✝⁵ : AddCommGroup F", "inst✝⁴ : LinearOrderedAddCommGroup α", "inst✝³ : Module R E", "inst✝² : Module R F", "inst✝¹ : Module R α", "inst✝ : OrderedSMul R α", "s : Set E", "i j : ι", "c : R", "t : Finset ι", "w : ι → R", "z : ι → E", "t' : Finset ι", "ht : t ⊆ t'", "h : ∀ i ∈ t', i ∉ t → w i = 0"], "goal": "t.centerMass w z = t'.centerMass w z"}], "premise": [7012, 126956], "state_str": "R : Type u_1\nR' : Type u_2\nE : Type u_3\nF : Type u_4\nι : Type u_5\nι' : Type u_6\nα : Type u_7\ninst✝⁸ : LinearOrderedField R\ninst✝⁷ : LinearOrderedField R'\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nt' : Finset ι\nht : t ⊆ t'\nh : ∀ i ∈ t', i ∉ t → w i = 0\n⊢ t.centerMass w z = t'.centerMass w z"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "E : Type u_3", "F : Type u_4", "ι : Type u_5", "ι' : Type u_6", "α : Type u_7", "inst✝⁸ : LinearOrderedField R", "inst✝⁷ : LinearOrderedField R'", "inst✝⁶ : AddCommGroup E", "inst✝⁵ : AddCommGroup F", "inst✝⁴ : LinearOrderedAddCommGroup α", "inst✝³ : Module R E", "inst✝² : Module R F", "inst✝¹ : Module R α", "inst✝ : OrderedSMul R α", "s : Set E", "i j : ι", "c : R", "t : Finset ι", "w : ι → R", "z : ι → E", "t' : Finset ι", "ht : t ⊆ t'", "h : ∀ i ∈ t', i ∉ t → w i = 0"], "goal": "∑ x ∈ t, (∑ x ∈ t', w x)⁻¹ • w x • z x = ∑ x ∈ t', (∑ i ∈ t', w i)⁻¹ • w x • z x"}], "premise": [126956], "state_str": "R : Type u_1\nR' : Type u_2\nE : Type u_3\nF : Type u_4\nι : Type u_5\nι' : Type u_6\nα : Type u_7\ninst✝⁸ : LinearOrderedField R\ninst✝⁷ : LinearOrderedField R'\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nt' : Finset ι\nht : t ⊆ t'\nh : ∀ i ∈ t', i ∉ t → w i = 0\n⊢ ∑ x ∈ t, (∑ x ∈ t', w x)⁻¹ • w x • z x = ∑ x ∈ t', (∑ i ∈ t', w i)⁻¹ • w x • z x"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "E : Type u_3", "F : Type u_4", "ι : Type u_5", "ι' : Type u_6", "α : Type u_7", "inst✝⁸ : LinearOrderedField R", "inst✝⁷ : LinearOrderedField R'", "inst✝⁶ : AddCommGroup E", "inst✝⁵ : AddCommGroup F", "inst✝⁴ : LinearOrderedAddCommGroup α", "inst✝³ : Module R E", "inst✝² : Module R F", "inst✝¹ : Module R α", "inst✝ : OrderedSMul R α", "s : Set E", "i✝ j : ι", "c : R", "t : Finset ι", "w : ι → R", "z : ι → E", "t' : Finset ι", "ht : t ⊆ t'", "h : ∀ i ∈ t', i ∉ t → w i = 0", "i : ι", "hit' : i ∈ t'", "hit : i ∉ t"], "goal": "(∑ x ∈ t', w x)⁻¹ • w i • z i = 0"}], "premise": [108328, 115738], "state_str": "R : Type u_1\nR' : Type u_2\nE : Type u_3\nF : Type u_4\nι : Type u_5\nι' : Type u_6\nα : Type u_7\ninst✝⁸ : LinearOrderedField R\ninst✝⁷ : LinearOrderedField R'\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nt' : Finset ι\nht : t ⊆ t'\nh : ∀ i ∈ t', i ∉ t → w i = 0\ni : ι\nhit' : i ∈ t'\nhit : i ∉ t\n⊢ (∑ x ∈ t', w x)⁻¹ • w i • z i = 0"} +{"state": [{"context": ["r : ℝ", "hr : Irrational r", "x✝ k : ℤ"], "goal": "k > 0 ∧ ⌈↑k * r⌉ - 1 = x✝ ↔ k > 0 ∧ ⌊↑k * r⌋ = x✝"}], "premise": [1209], "state_str": "case h.e'_2.h.h.e'_2.h.a\nr : ℝ\nhr : Irrational r\nx✝ k : ℤ\n⊢ k > 0 ∧ ⌈↑k * r⌉ - 1 = x✝ ↔ k > 0 ∧ ⌊↑k * r⌋ = x✝"} +{"state": [{"context": ["r : ℝ", "hr : Irrational r", "x✝ k : ℤ", "hk : k > 0"], "goal": "⌈↑k * r⌉ - 1 = ⌊↑k * r⌋"}], "premise": [105203, 117983, 118013, 128752, 128756], "state_str": "case h.e'_2.h.h.e'_2.h.a.a.h.e'_2\nr : ℝ\nhr : Irrational r\nx✝ k : ℤ\nhk : k > 0\n⊢ ⌈↑k * r⌉ - 1 = ⌊↑k * r⌋"} +{"state": [{"context": ["r : ℝ", "hr : Irrational r", "x✝ k : ℤ", "hk : k > 0"], "goal": "↑⌊↑k * r⌋ < ↑k * r ∧ ↑k * r ≤ ↑⌊↑k * r⌋ + 1"}], "premise": [105092, 105098], "state_str": "case h.e'_2.h.h.e'_2.h.a.a.h.e'_2\nr : ℝ\nhr : Irrational r\nx✝ k : ℤ\nhk : k > 0\n⊢ ↑⌊↑k * r⌋ < ↑k * r ∧ ↑k * r ≤ ↑⌊↑k * r⌋ + 1"} +{"state": [{"context": ["r : ℝ", "hr : Irrational r", "x✝ k : ℤ", "hk : k > 0", "h : ↑⌊↑k * r⌋ = ↑k * r"], "goal": "False"}], "premise": [2100, 11234, 145691, 145735], "state_str": "case h.e'_2.h.h.e'_2.h.a.a.h.e'_2\nr : ℝ\nhr : Irrational r\nx✝ k : ℤ\nhk : k > 0\nh : ↑⌊↑k * r⌋ = ↑k * r\n⊢ False"} +{"state": [{"context": ["R : Type u_1", "B : Type u_2", "F : Type u_3", "E : B → Type u_4", "inst✝⁷ : Semiring R", "inst✝⁶ : TopologicalSpace F", "inst✝⁵ : TopologicalSpace B", "e✝ : Pretrivialization F TotalSpace.proj", "x : TotalSpace F E", "b✝ : B", "y✝ : E b✝", "inst✝⁴ : AddCommMonoid F", "inst✝³ : Module R F", "inst✝² : (x : B) → AddCommMonoid (E x)", "inst✝¹ : (x : B) → Module R (E x)", "e : Pretrivialization F TotalSpace.proj", "inst✝ : Pretrivialization.IsLinear R e", "b : B", "y : E b"], "goal": "(Pretrivialization.linearMapAt R e b) y = if b ∈ e.baseSet then (↑e { proj := b, snd := y }).2 else 0"}], "premise": [60868], "state_str": "R : Type u_1\nB : Type u_2\nF : Type u_3\nE : B → Type u_4\ninst✝⁷ : Semiring R\ninst✝⁶ : TopologicalSpace F\ninst✝⁵ : TopologicalSpace B\ne✝ : Pretrivialization F TotalSpace.proj\nx : TotalSpace F E\nb✝ : B\ny✝ : E b✝\ninst✝⁴ : AddCommMonoid F\ninst✝³ : Module R F\ninst✝² : (x : B) → AddCommMonoid (E x)\ninst✝¹ : (x : B) → Module R (E x)\ne : Pretrivialization F TotalSpace.proj\ninst✝ : Pretrivialization.IsLinear R e\nb : B\ny : E b\n⊢ (Pretrivialization.linearMapAt R e b) y = if b ∈ e.baseSet then (↑e { proj := b, snd := y }).2 else 0"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "K : Type u_5", "M : Type u_6", "M₁ : Type u_7", "M₂ : Type u_8", "M₃ : Type u_9", "V : Type u_10", "V₂ : Type u_11", "inst✝¹¹ : Ring R", "inst✝¹⁰ : Ring R₂", "inst✝⁹ : Ring R₃", "inst✝⁸ : AddCommGroup M", "inst✝⁷ : AddCommGroup M₂", "inst✝⁶ : AddCommGroup M₃", "inst✝⁵ : Module R M", "inst✝⁴ : Module R₂ M₂", "inst✝³ : Module R₃ M₃", "τ₁₂ : R →+* R₂", "τ₂₃ : R₂ →+* R₃", "τ₁₃ : R →+* R₃", "inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃", "F : Type u_12", "inst✝¹ : FunLike F M M₂", "inst✝ : SemilinearMapClass F τ₁₂ M M₂", "f✝ : F", "p : Submodule R M", "f : M →ₗ[R] M", "hf : ∀ x ∈ p, f x ∈ p"], "goal": "Injective ⇑(f.restrict hf) ↔ Disjoint p (ker f)"}], "premise": [1713, 13483, 109991, 110002, 110003], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nK : Type u_5\nM : Type u_6\nM₁ : Type u_7\nM₂ : Type u_8\nM₃ : Type u_9\nV : Type u_10\nV₂ : Type u_11\ninst✝¹¹ : Ring R\ninst✝¹⁰ : Ring R₂\ninst✝⁹ : Ring R₃\ninst✝⁸ : AddCommGroup M\ninst✝⁷ : AddCommGroup M₂\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R M\ninst✝⁴ : Module R₂ M₂\ninst✝³ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type u_12\ninst✝¹ : FunLike F M M₂\ninst✝ : SemilinearMapClass F τ₁₂ M M₂\nf✝ : F\np : Submodule R M\nf : M →ₗ[R] M\nhf : ∀ x ∈ p, f x ∈ p\n⊢ Injective ⇑(f.restrict hf) ↔ Disjoint p (ker f)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "p : Set γ", "f f₁ f₂ f₃ : α → β", "g g₁ g₂ : β → γ", "f' f₁' f₂' : β → α", "g' : γ → β", "a : α", "b : β", "h : InjOn f s", "h₁ : s₁ ⊆ s", "h₂ : s₂ ⊆ s"], "goal": "f '' s₁ ⊆ f '' s₂ ↔ s₁ ⊆ s₂"}], "premise": [134105], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nh : InjOn f s\nh₁ : s₁ ⊆ s\nh₂ : s₂ ⊆ s\n⊢ f '' s₁ ⊆ f '' s₂ ↔ s₁ ⊆ s₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "p : Set γ", "f f₁ f₂ f₃ : α → β", "g g₁ g₂ : β → γ", "f' f₁' f₂' : β → α", "g' : γ → β", "a : α", "b : β", "h : InjOn f s", "h₁ : s₁ ⊆ s", "h₂ : s₂ ⊆ s", "h' : f '' s₁ ⊆ f '' s₂"], "goal": "s₁ ⊆ s₂"}], "premise": [135819], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nh : InjOn f s\nh₁ : s₁ ⊆ s\nh₂ : s₂ ⊆ s\nh' : f '' s₁ ⊆ f '' s₂\n⊢ s₁ ⊆ s₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "p : Set γ", "f f₁ f₂ f₃ : α → β", "g g₁ g₂ : β → γ", "f' f₁' f₂' : β → α", "g' : γ → β", "a : α", "b : β", "h : InjOn f s", "h₁ : s₁ ⊆ s", "h₂ : s₂ ⊆ s", "h' : f '' s₁ ⊆ f '' s₂"], "goal": "f ⁻¹' (f '' s₁) ∩ s ⊆ f ⁻¹' (f '' s₂) ∩ s"}], "premise": [133464, 134062], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nh : InjOn f s\nh₁ : s₁ ⊆ s\nh₂ : s₂ ⊆ s\nh' : f '' s₁ ⊆ f '' s₂\n⊢ f ⁻¹' (f '' s₁) ∩ s ⊆ f ⁻¹' (f '' s₂) ∩ s"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "inst✝⁵ : OrderedRing 𝕜", "inst✝⁴ : AddCommGroup E", "inst✝³ : AddCommGroup F", "inst✝² : AddCommGroup G", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "c x y : E", "h : LinearIndependent 𝕜 ![x - c, y - c]"], "goal": "[c-[𝕜]x] ∩ [c-[𝕜]y] = {c}"}], "premise": [133329], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\nπ : ι → Type u_6\ninst✝⁵ : OrderedRing 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : AddCommGroup G\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nc x y : E\nh : LinearIndependent 𝕜 ![x - c, y - c]\n⊢ [c-[𝕜]x] ∩ [c-[𝕜]y] = {c}"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "inst✝⁵ : OrderedRing 𝕜", "inst✝⁴ : AddCommGroup E", "inst✝³ : AddCommGroup F", "inst✝² : AddCommGroup G", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "c x y : E", "h : LinearIndependent 𝕜 ![x - c, y - c]", "z : E", "hzt : z ∈ [c-[𝕜]x]", "hzs : z ∈ [c-[𝕜]y]"], "goal": "z ∈ {c}"}], "premise": [35401, 131592], "state_str": "case h₁\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\nπ : ι → Type u_6\ninst✝⁵ : OrderedRing 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : AddCommGroup G\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nc x y : E\nh : LinearIndependent 𝕜 ![x - c, y - c]\nz : E\nhzt : z ∈ [c-[𝕜]x]\nhzs : z ∈ [c-[𝕜]y]\n⊢ z ∈ {c}"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "inst✝⁵ : OrderedRing 𝕜", "inst✝⁴ : AddCommGroup E", "inst✝³ : AddCommGroup F", "inst✝² : AddCommGroup G", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "c x y : E", "h : LinearIndependent 𝕜 ![x - c, y - c]", "p : 𝕜", "p0 : 0 ≤ p", "p1 : p ≤ 1", "q : 𝕜", "H : (1 - q) • c + q • y = (1 - p) • c + p • x", "q0 : 0 ≤ q", "q1 : q ≤ 1", "Hx : x = x - c + c", "Hy : y = y - c + c"], "goal": "(1 - p) • c + p • x ∈ {c}"}], "premise": [108334], "state_str": "case h₁.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\nπ : ι → Type u_6\ninst✝⁵ : OrderedRing 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : AddCommGroup G\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nc x y : E\nh : LinearIndependent 𝕜 ![x - c, y - c]\np : 𝕜\np0 : 0 ≤ p\np1 : p ≤ 1\nq : 𝕜\nH : (1 - q) • c + q • y = (1 - p) • c + p • x\nq0 : 0 ≤ q\nq1 : q ≤ 1\nHx : x = x - c + c\nHy : y = y - c + c\n⊢ (1 - p) • c + p • x ∈ {c}"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "inst✝⁵ : OrderedRing 𝕜", "inst✝⁴ : AddCommGroup E", "inst✝³ : AddCommGroup F", "inst✝² : AddCommGroup G", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "c x y : E", "h : LinearIndependent 𝕜 ![x - c, y - c]", "p : 𝕜", "p0 : 0 ≤ p", "p1 : p ≤ 1", "q : 𝕜", "H : (1 - q) • c + (q • (y - c) + q • c) = (1 - p) • c + (p • (x - c) + p • c)", "q0 : 0 ≤ q", "q1 : q ≤ 1", "Hx : x = x - c + c", "Hy : y = y - c + c"], "goal": "(1 - p) • c + p • x ∈ {c}"}], "premise": [110036], "state_str": "case h₁.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\nπ : ι → Type u_6\ninst✝⁵ : OrderedRing 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : AddCommGroup G\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nc x y : E\nh : LinearIndependent 𝕜 ![x - c, y - c]\np : 𝕜\np0 : 0 ≤ p\np1 : p ≤ 1\nq : 𝕜\nH : (1 - q) • c + (q • (y - c) + q • c) = (1 - p) • c + (p • (x - c) + p • c)\nq0 : 0 ≤ q\nq1 : q ≤ 1\nHx : x = x - c + c\nHy : y = y - c + c\n⊢ (1 - p) • c + p • x ∈ {c}"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "ι : Type u_5", "π : ι → Type u_6", "inst✝⁵ : OrderedRing 𝕜", "inst✝⁴ : AddCommGroup E", "inst✝³ : AddCommGroup F", "inst✝² : AddCommGroup G", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "c x y : E", "h : LinearIndependent 𝕜 ![x - c, y - c]", "p : 𝕜", "p0 : 0 ≤ p", "p1 : p ≤ 1", "q : 𝕜", "H : (1 - q) • c + (q • (y - c) + q • c) = (1 - p) • c + (p • (x - c) + p • c)", "q0 : 0 ≤ q", "q1 : q ≤ 1", "Hx : x = x - c + c", "Hy : y = y - c + c", "this : c + q • (y - c) = c + p • (x - c)"], "goal": "(1 - p) • c + p • x ∈ {c}"}], "premise": [1673, 2100, 83758, 117714], "state_str": "case h₁.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nι : Type u_5\nπ : ι → Type u_6\ninst✝⁵ : OrderedRing 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : AddCommGroup G\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nc x y : E\nh : LinearIndependent 𝕜 ![x - c, y - c]\np : 𝕜\np0 : 0 ≤ p\np1 : p ≤ 1\nq : 𝕜\nH : (1 - q) • c + (q • (y - c) + q • c) = (1 - p) • c + (p • (x - c) + p • c)\nq0 : 0 ≤ q\nq1 : q ≤ 1\nHx : x = x - c + c\nHy : y = y - c + c\nthis : c + q • (y - c) = c + p • (x - c)\n⊢ (1 - p) • c + p • x ∈ {c}"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁴ : RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace 𝕜 F", "T : E →ₗ.[𝕜] F", "S : F →ₗ.[𝕜] E", "h : T.IsFormalAdjoint S", "y : ↥S.domain", "x✝ : ↥T.domain"], "goal": "⟪↑S y, ↑x✝⟫_𝕜 = ⟪↑y, ↑T x✝⟫_𝕜"}], "premise": [36750], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁴ : RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace 𝕜 F\nT : E →ₗ.[𝕜] F\nS : F →ₗ.[𝕜] E\nh : T.IsFormalAdjoint S\ny : ↥S.domain\nx✝ : ↥T.domain\n⊢ ⟪↑S y, ↑x✝⟫_𝕜 = ⟪↑y, ↑T x✝⟫_𝕜"} +{"state": [{"context": ["H : Type u", "H' : Type u_1", "M : Type u_2", "M' : Type u_3", "M'' : Type u_4", "inst✝ : TopologicalSpace H", "c : ChartedSpaceCore H M", "e : PartialEquiv M H", "he : e ∈ c.atlas"], "goal": "IsOpen e.target"}], "premise": [71119, 133329, 133447], "state_str": "H : Type u\nH' : Type u_1\nM : Type u_2\nM' : Type u_3\nM'' : Type u_4\ninst✝ : TopologicalSpace H\nc : ChartedSpaceCore H M\ne : PartialEquiv M H\nhe : e ∈ c.atlas\n⊢ IsOpen e.target"} +{"state": [{"context": ["H : Type u", "H' : Type u_1", "M : Type u_2", "M' : Type u_3", "M'' : Type u_4", "inst✝ : TopologicalSpace H", "c : ChartedSpaceCore H M", "e : PartialEquiv M H", "he : e ∈ c.atlas", "E : e.target ∩ ↑e.symm ⁻¹' e.source = e.target"], "goal": "IsOpen e.target"}], "premise": [67312, 71145], "state_str": "H : Type u\nH' : Type u_1\nM : Type u_2\nM' : Type u_3\nM'' : Type u_4\ninst✝ : TopologicalSpace H\nc : ChartedSpaceCore H M\ne : PartialEquiv M H\nhe : e ∈ c.atlas\nE : e.target ∩ ↑e.symm ⁻¹' e.source = e.target\n⊢ IsOpen e.target"} +{"state": [{"context": ["E : Type u", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "R : ℝ≥0", "c : ℂ", "f : ℂ → E", "s : Set ℂ", "hs : s.Countable", "hc : ContinuousOn f (closedBall c ↑R)", "hd : ∀ z ∈ ball c ↑R \\ s, DifferentiableAt ℂ f z", "hR : 0 < R", "w : ℂ", "hw : w ∈ EMetric.ball 0 ↑R"], "goal": "HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) (f (c + w))"}], "premise": [42755, 42794, 42868, 143205, 146644], "state_str": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ≥0\nc : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : s.Countable\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ z ∈ ball c ↑R \\ s, DifferentiableAt ℂ f z\nhR : 0 < R\nw : ℂ\nhw : w ∈ EMetric.ball 0 ↑R\n⊢ HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) (f (c + w))"} +{"state": [{"context": ["E : Type u", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "R : ℝ≥0", "c : ℂ", "f : ℂ → E", "s : Set ℂ", "hs : s.Countable", "hc : ContinuousOn f (closedBall c ↑R)", "hd : ∀ z ∈ ball c ↑R \\ s, DifferentiableAt ℂ f z", "hR : 0 < R", "w : ℂ", "hw : w ∈ EMetric.ball 0 ↑R", "hw' : c + w ∈ ball c ↑R"], "goal": "HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) (f (c + w))"}], "premise": [47127], "state_str": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ≥0\nc : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : s.Countable\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ z ∈ ball c ↑R \\ s, DifferentiableAt ℂ f z\nhR : 0 < R\nw : ℂ\nhw : w ∈ EMetric.ball 0 ↑R\nhw' : c + w ∈ ball c ↑R\n⊢ HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) (f (c + w))"} +{"state": [{"context": ["E : Type u", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "R : ℝ≥0", "c : ℂ", "f : ℂ → E", "s : Set ℂ", "hs : s.Countable", "hc : ContinuousOn f (closedBall c ↑R)", "hd : ∀ z ∈ ball c ↑R \\ s, DifferentiableAt ℂ f z", "hR : 0 < R", "w : ℂ", "hw : w ∈ EMetric.ball 0 ↑R", "hw' : c + w ∈ ball c ↑R"], "goal": "HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - (c + w))⁻¹ • f z)"}], "premise": [2115, 25820, 25847, 35854, 57321, 61182], "state_str": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ≥0\nc : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : s.Countable\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ z ∈ ball c ↑R \\ s, DifferentiableAt ℂ f z\nhR : 0 < R\nw : ℂ\nhw : w ∈ EMetric.ball 0 ↑R\nhw' : c + w ∈ ball c ↑R\n⊢ HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w)\n ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - (c + w))⁻¹ • f z)"} +{"state": [{"context": ["R : Type u_1", "inst✝⁵ : CommRing R", "inst✝⁴ : TopologicalSpace R", "inst✝³ : TopologicalRing R", "A : Type u_2", "inst✝² : CommRing A", "inst✝¹ : TopologicalSpace A", "inst✝ : TopologicalRing A"], "goal": "IsAdic ⊥ ↔ DiscreteTopology A"}], "premise": [64461], "state_str": "R : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : TopologicalSpace R\ninst✝³ : TopologicalRing R\nA : Type u_2\ninst✝² : CommRing A\ninst✝¹ : TopologicalSpace A\ninst✝ : TopologicalRing A\n⊢ IsAdic ⊥ ↔ DiscreteTopology A"} +{"state": [{"context": ["x y : ℝ", "f : ℝ → ℝ", "hf : ContinuousOn f (Icc x y)", "hxy : x < y", "hf'_mono : StrictMonoOn (deriv f) (Ioo x y)", "h : ∀ w ∈ Ioo x y, deriv f w ≠ 0"], "goal": "∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a"}], "premise": [44343, 46351], "state_str": "x y : ℝ\nf : ℝ → ℝ\nhf : ContinuousOn f (Icc x y)\nhxy : x < y\nhf'_mono : StrictMonoOn (deriv f) (Ioo x y)\nh : ∀ w ∈ Ioo x y, deriv f w ≠ 0\n⊢ ∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a"} +{"state": [{"context": ["x y : ℝ", "f : ℝ → ℝ", "hf : ContinuousOn f (Icc x y)", "hxy : x < y", "hf'_mono : StrictMonoOn (deriv f) (Ioo x y)", "h : ∀ w ∈ Ioo x y, deriv f w ≠ 0", "A : DifferentiableOn ℝ f (Ioo x y)"], "goal": "∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a"}], "premise": [46667], "state_str": "x y : ℝ\nf : ℝ → ℝ\nhf : ContinuousOn f (Icc x y)\nhxy : x < y\nhf'_mono : StrictMonoOn (deriv f) (Ioo x y)\nh : ∀ w ∈ Ioo x y, deriv f w ≠ 0\nA : DifferentiableOn ℝ f (Ioo x y)\n⊢ ∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a"} +{"state": [{"context": ["x y : ℝ", "f : ℝ → ℝ", "hf : ContinuousOn f (Icc x y)", "hxy : x < y", "hf'_mono : StrictMonoOn (deriv f) (Ioo x y)", "h : ∀ w ∈ Ioo x y, deriv f w ≠ 0", "A : DifferentiableOn ℝ f (Ioo x y)", "a : ℝ", "ha : deriv f a = (f y - f x) / (y - x)", "hxa : x < a", "hay : a < y"], "goal": "∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a"}], "premise": [1674, 20188], "state_str": "case intro.intro.intro\nx y : ℝ\nf : ℝ → ℝ\nhf : ContinuousOn f (Icc x y)\nhxy : x < y\nhf'_mono : StrictMonoOn (deriv f) (Ioo x y)\nh : ∀ w ∈ Ioo x y, deriv f w ≠ 0\nA : DifferentiableOn ℝ f (Ioo x y)\na : ℝ\nha : deriv f a = (f y - f x) / (y - x)\nhxa : x < a\nhay : a < y\n⊢ ∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a"} +{"state": [{"context": [], "goal": "sin π = 0"}], "premise": [38509, 108574, 113025, 115817, 122222, 149221], "state_str": "⊢ sin π = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "e : Sym2 α", "f : α → β", "inst✝ : DecidableEq α", "s : Finset α", "x✝ y✝ : α"], "goal": "s(x✝, y✝) ∈ filter (fun a => ¬a.IsDiag) (image Sym2.mk (s ×ˢ s)) ↔ s(x✝, y✝) ∈ image Sym2.mk s.offDiag"}], "premise": [136829, 136870, 137297, 137413, 139089], "state_str": "case a.h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\ne : Sym2 α\nf : α → β\ninst✝ : DecidableEq α\ns : Finset α\nx✝ y✝ : α\n⊢ s(x✝, y✝) ∈ filter (fun a => ¬a.IsDiag) (image Sym2.mk (s ×ˢ s)) ↔ s(x✝, y✝) ∈ image Sym2.mk s.offDiag"} +{"state": [{"context": ["M : Type u", "inst✝ : Monoid M", "X x✝¹ x✝ : Discrete M", "f : x✝¹ ⟶ x✝"], "goal": "{ as := X.as * x✝¹.as } = { as := X.as * x✝.as }"}], "premise": [92500], "state_str": "M : Type u\ninst✝ : Monoid M\nX x✝¹ x✝ : Discrete M\nf : x✝¹ ⟶ x✝\n⊢ { as := X.as * x✝¹.as } = { as := X.as * x✝.as }"} +{"state": [{"context": ["M : Type u", "inst✝ : Monoid M", "X₁✝ X₂✝ : Discrete M", "f : X₁✝ ⟶ X₂✝", "X : Discrete M"], "goal": "{ as := X₁✝.as * X.as } = { as := X₂✝.as * X.as }"}], "premise": [92500], "state_str": "M : Type u\ninst✝ : Monoid M\nX₁✝ X₂✝ : Discrete M\nf : X₁✝ ⟶ X₂✝\nX : Discrete M\n⊢ { as := X₁✝.as * X.as } = { as := X₂✝.as * X.as }"} +{"state": [{"context": ["M : Type u", "inst✝ : Monoid M", "X₁✝ Y₁✝ X₂✝ Y₂✝ : Discrete M", "f : X₁✝ ⟶ Y₁✝", "g : X₂✝ ⟶ Y₂✝"], "goal": "{ as := X₁✝.as * X₂✝.as } = { as := Y₁✝.as * Y₂✝.as }"}], "premise": [92500], "state_str": "M : Type u\ninst✝ : Monoid M\nX₁✝ Y₁✝ X₂✝ Y₂✝ : Discrete M\nf : X₁✝ ⟶ Y₁✝\ng : X₂✝ ⟶ Y₂✝\n⊢ { as := X₁✝.as * X₂✝.as } = { as := Y₁✝.as * Y₂✝.as }"} +{"state": [{"context": ["A : Type u_1", "inst✝⁹ : NonUnitalNormedRing A", "inst✝⁸ : CompleteSpace A", "inst✝⁷ : PartialOrder A", "inst✝⁶ : StarRing A", "inst✝⁵ : StarOrderedRing A", "inst✝⁴ : CstarRing A", "inst✝³ : NormedSpace ℂ A", "inst✝² : StarModule ℂ A", "inst✝¹ : SMulCommClass ℂ A A", "inst✝ : IsScalarTower ℂ A A", "a b : A", "hb : autoParam (IsSelfAdjoint b) _auto✝", "h₁ : a * b * star a = star (star a) * b * star a", "h₂ : a * star a = star (star a) * star a"], "goal": "star (star a) * b * star a ≤ ‖b‖ • (star (star a) * star a)"}], "premise": [34937], "state_str": "A : Type u_1\ninst✝⁹ : NonUnitalNormedRing A\ninst✝⁸ : CompleteSpace A\ninst✝⁷ : PartialOrder A\ninst✝⁶ : StarRing A\ninst✝⁵ : StarOrderedRing A\ninst✝⁴ : CstarRing A\ninst✝³ : NormedSpace ℂ A\ninst✝² : StarModule ℂ A\ninst✝¹ : SMulCommClass ℂ A A\ninst✝ : IsScalarTower ℂ A A\na b : A\nhb : autoParam (IsSelfAdjoint b) _auto✝\nh₁ : a * b * star a = star (star a) * b * star a\nh₂ : a * star a = star (star a) * star a\n⊢ star (star a) * b * star a ≤ ‖b‖ • (star (star a) * star a)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCancelCommMonoid α", "s t : Set α", "a✝ : α", "x y : ↑(s.mulAntidiagonal t a✝)", "hs : s.IsPWO", "ht : t.IsPWO", "a : α"], "goal": "(s.mulAntidiagonal t a).Finite"}], "premise": [1673, 134999], "state_str": "α : Type u_1\ninst✝ : OrderedCancelCommMonoid α\ns t : Set α\na✝ : α\nx y : ↑(s.mulAntidiagonal t a✝)\nhs : s.IsPWO\nht : t.IsPWO\na : α\n⊢ (s.mulAntidiagonal t a).Finite"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCancelCommMonoid α", "s t : Set α", "a✝ : α", "x y : ↑(s.mulAntidiagonal t a✝)", "hs : s.IsPWO", "ht : t.IsPWO", "a : α", "h : (s.mulAntidiagonal t a).Infinite", "h1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)", "h2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)"], "goal": "False"}], "premise": [2115, 13079], "state_str": "α : Type u_1\ninst✝ : OrderedCancelCommMonoid α\ns t : Set α\na✝ : α\nx y : ↑(s.mulAntidiagonal t a✝)\nhs : s.IsPWO\nht : t.IsPWO\na : α\nh : (s.mulAntidiagonal t a).Infinite\nh1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)\nh2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCancelCommMonoid α", "s t : Set α", "a✝ : α", "x y : ↑(s.mulAntidiagonal t a✝)", "hs : s.IsPWO", "ht : t.IsPWO", "a : α", "h : (s.mulAntidiagonal t a).Infinite", "h1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)", "h2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)", "g : ℕ ↪o ℕ", "hg : ∀ (m n : ℕ), m ≤ n → (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m)) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))"], "goal": "False"}], "premise": [2115], "state_str": "case intro\nα : Type u_1\ninst✝ : OrderedCancelCommMonoid α\ns t : Set α\na✝ : α\nx y : ↑(s.mulAntidiagonal t a✝)\nhs : s.IsPWO\nht : t.IsPWO\na : α\nh : (s.mulAntidiagonal t a).Infinite\nh1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)\nh2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)\ng : ℕ ↪o ℕ\nhg :\n ∀ (m n : ℕ),\n m ≤ n →\n (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m))\n ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCancelCommMonoid α", "s t : Set α", "a✝ : α", "x y : ↑(s.mulAntidiagonal t a✝)", "hs : s.IsPWO", "ht : t.IsPWO", "a : α", "h : (s.mulAntidiagonal t a).Infinite", "h1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)", "h2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)", "g : ℕ ↪o ℕ", "hg : ∀ (m n : ℕ), m ≤ n → (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m)) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))", "m n : ℕ", "mn : m < n", "h2' : (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m)) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))"], "goal": "False"}], "premise": [14111, 70665], "state_str": "case intro.intro.intro.intro\nα : Type u_1\ninst✝ : OrderedCancelCommMonoid α\ns t : Set α\na✝ : α\nx y : ↑(s.mulAntidiagonal t a✝)\nhs : s.IsPWO\nht : t.IsPWO\na : α\nh : (s.mulAntidiagonal t a).Infinite\nh1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)\nh2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)\ng : ℕ ↪o ℕ\nhg :\n ∀ (m n : ℕ),\n m ≤ n →\n (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m))\n ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))\nm n : ℕ\nmn : m < n\nh2' :\n (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m))\n ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCancelCommMonoid α", "s t : Set α", "a✝ : α", "x y : ↑(s.mulAntidiagonal t a✝)", "hs : s.IsPWO", "ht : t.IsPWO", "a : α", "h : (s.mulAntidiagonal t a).Infinite", "h1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)", "h2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)", "g : ℕ ↪o ℕ", "hg : ∀ (m n : ℕ), m ≤ n → (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m)) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))", "m n : ℕ", "mn : m < n", "h2' : (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m)) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))"], "goal": "(Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m) = (Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n)"}], "premise": [131573], "state_str": "case intro.intro.intro.intro\nα : Type u_1\ninst✝ : OrderedCancelCommMonoid α\ns t : Set α\na✝ : α\nx y : ↑(s.mulAntidiagonal t a✝)\nhs : s.IsPWO\nht : t.IsPWO\na : α\nh : (s.mulAntidiagonal t a).Infinite\nh1 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1)\nh2 : (s.mulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1)\ng : ℕ ↪o ℕ\nhg :\n ∀ (m n : ℕ),\n m ≤ n →\n (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m))\n ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))\nm n : ℕ\nmn : m < n\nh2' :\n (Prod.snd ⁻¹'o fun x x_1 => x ≤ x_1) ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m))\n ↑((Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n))\n⊢ (Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g m) = (Infinite.natEmbedding (s.mulAntidiagonal t a) h) (g n)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "m0 : MeasurableSpace α", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : CompleteSpace E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedSpace ℝ F", "inst✝ : CompleteSpace F", "μ ν : Measure α", "s t : Set α", "ι : Type u_4", "a : ι → Set α", "l : Filter ι", "f : α → E", "c : E", "g : ι → α → ℝ", "K : ℝ", "hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)", "f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ", "hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)", "g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i", "g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal"], "goal": "Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"}], "premise": [1201, 1673, 2107, 11212, 15889, 33635, 53688, 55915, 101702, 131585], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ ν : Measure α\ns t : Set α\nι : Type u_4\na : ι → Set α\nl : Filter ι\nf : α → E\nc : E\ng : ι → α → ℝ\nK : ℝ\nhf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)\nf_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ\nhg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)\ng_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i\ng_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal\n⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "m0 : MeasurableSpace α", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : CompleteSpace E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedSpace ℝ F", "inst✝ : CompleteSpace F", "μ ν : Measure α", "s t : Set α", "ι : Type u_4", "a : ι → Set α", "l : Filter ι", "f : α → E", "c : E", "g : ι → α → ℝ", "K : ℝ", "hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)", "f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ", "hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)", "g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i", "g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal", "g_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ", "I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ", "L0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0)"], "goal": "Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"}], "premise": [62551, 65039], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ ν : Measure α\ns t : Set α\nι : Type u_4\na : ι → Set α\nl : Filter ι\nf : α → E\nc : E\ng : ι → α → ℝ\nK : ℝ\nhf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)\nf_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ\nhg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)\ng_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i\ng_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal\ng_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ\nI : ∀ᶠ (i : ι) in l, ∫ (y : ��), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ\nL0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0)\n⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "m0 : MeasurableSpace α", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : CompleteSpace E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedSpace ℝ F", "inst✝ : CompleteSpace F", "μ ν : Measure α", "s t : Set α", "ι : Type u_4", "a : ι → Set α", "l : Filter ι", "f : α → E", "c : E", "g : ι → α → ℝ", "K : ℝ", "hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)", "f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ", "hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)", "g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i", "g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal", "g_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ", "I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ", "L0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0)", "this : Tendsto (fun x => ∫ (y : α), g x y • (f y - c) ∂μ + (∫ (y : α), g x y ∂μ) • c) l (𝓝 (0 + 1 • c))"], "goal": "Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"}], "premise": [118910, 119727], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ ν : Measure α\ns t : Set α\nι : Type u_4\na : ι → Set α\nl : Filter ι\nf : α → E\nc : E\ng : ι → α → ℝ\nK : ℝ\nhf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)\nf_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ\nhg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)\ng_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i\ng_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal\ng_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ\nI : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ\nL0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0)\nthis : Tendsto (fun x => ∫ (y : α), g x y • (f y - c) ∂μ + (∫ (y : α), g x y ∂μ) • c) l (𝓝 (0 + 1 • c))\n⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "m0 : MeasurableSpace α", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : CompleteSpace E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedSpace ℝ F", "inst✝ : CompleteSpace F", "μ ν : Measure α", "s t : Set α", "ι : Type u_4", "a : ι → Set α", "l : Filter ι", "f : α → E", "c : E", "g : ι → α → ℝ", "K : ℝ", "hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)", "f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ", "hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)", "g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i", "g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal", "g_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ", "I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ", "L0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0)", "this : Tendsto (fun x => ∫ (y : α), g x y • (f y - c) ∂μ + (∫ (y : α), g x y ∂μ) • c) l (𝓝 c)"], "goal": "Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"}], "premise": [16350], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ ν : Measure α\ns t : Set α\nι : Type u_4\na : ι → Set α\nl : Filter ι\nf : α → E\nc : E\ng : ι → α → ℝ\nK : ℝ\nhf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0)\nf_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ\nhg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1)\ng_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i\ng_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal\ng_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ\nI : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ\nL0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0)\nthis : Tendsto (fun x => ∫ (y : α), g x y • (f y - c) ∂μ + (∫ (y : α), g x y ∂��) • c) l (𝓝 c)\n⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c)"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "D : Type u₂", "inst✝¹ : Category.{v₂, u₂} D", "L : C ⥤ D", "R : D ⥤ C", "h : L ⊣ R", "inst✝ : ∀ (X : D), Epi (h.counit.app X)", "X Y : D", "f g : X ⟶ Y", "hfg : R.map f = R.map g"], "goal": "f = g"}], "premise": [96188], "state_str": "C : Type u₁\ninst✝² : Category.{v₁, u₁} C\nD : Type u₂\ninst✝¹ : Category.{v₂, u₂} D\nL : C ⥤ D\nR : D ⥤ C\nh : L ⊣ R\ninst✝ : ∀ (X : D), Epi (h.counit.app X)\nX Y : D\nf g : X ⟶ Y\nhfg : R.map f = R.map g\n⊢ f = g"} +{"state": [{"context": ["C : Type u₁", "inst✝² : Category.{v₁, u₁} C", "D : Type u₂", "inst✝¹ : Category.{v₂, u₂} D", "L : C ⥤ D", "R : D ⥤ C", "h : L ⊣ R", "inst✝ : ∀ (X : D), Epi (h.counit.app X)", "X Y : D", "f g : X ⟶ Y", "hfg : R.map f = R.map g"], "goal": "h.counit.app X ≫ f = h.counit.app X ≫ g"}], "premise": [70736], "state_str": "case a\nC : Type u₁\ninst✝² : Category.{v₁, u₁} C\nD : Type u₂\ninst✝¹ : Category.{v₂, u₂} D\nL : C ⥤ D\nR : D ⥤ C\nh : L ⊣ R\ninst✝ : ∀ (X : D), Epi (h.counit.app X)\nX Y : D\nf g : X ⟶ Y\nhfg : R.map f = R.map g\n⊢ h.counit.app X ≫ f = h.counit.app X ≫ g"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f fa : α → α", "fb : β → β", "x y : α", "m n✝ : ℕ", "hm : IsPeriodicPt f m x", "n : ℕ"], "goal": "IsPeriodicPt f (n * m) x"}], "premise": [88938, 119707], "state_str": "α : Type u_1\nβ : Type u_2\nf fa : α → α\nfb : β → β\nx y : α\nm n✝ : ℕ\nhm : IsPeriodicPt f m x\nn : ℕ\n⊢ IsPeriodicPt f (n * m) x"} +{"state": [{"context": ["R : Type u_1", "α : Type u_2", "β : Type u_3", "δ : Type u_4", "γ : Type u_5", "ι : Type u_6", "m0 : MeasurableSpace α", "inst✝¹ : MeasurableSpace β", "inst✝ : MeasurableSpace γ", "μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s✝ s'✝ t✝ s s' t : Set α", "ht : MeasurableSet t"], "goal": "(μ.restrict (s ∪ s')) t ≤ (μ.restrict s + μ.restrict s') t"}], "premise": [27566, 133470], "state_str": "R : Type u_1\nα : Type u_2\nβ : Type u_3\nδ : Type u_4\nγ : Type u_5\nι : Type u_6\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s'✝ t✝ s s' t : Set α\nht : MeasurableSet t\n⊢ (μ.restrict (s ∪ s')) t ≤ (μ.restrict s + μ.restrict s') t"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x"], "goal": "HasSum (fun n => (↑n + a) * rexp (-π * (↑n + a) ^ 2 * x)) (oddKernel (↑a) x)"}], "premise": [22972, 46266], "state_str": "a x : ℝ\nhx : 0 < x\n⊢ HasSum (fun n => (↑n + a) * rexp (-π * (↑n + a) ^ 2 * x)) (oddKernel (↑a) x)"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x"], "goal": "HasSum (fun x_1 => ↑((↑x_1 + a) * rexp (-π * (↑x_1 + a) ^ 2 * x))) (cexp (-↑π * ↑a ^ 2 * ↑x) * (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂ (↑a * I * ↑x) (I * ↑x)))"}], "premise": [22216, 148280, 148320], "state_str": "a x : ℝ\nhx : 0 < x\n⊢ HasSum (fun x_1 => ↑((↑x_1 + a) * rexp (-π * (↑x_1 + a) ^ 2 * x)))\n (cexp (-↑π * ↑a ^ 2 * ↑x) *\n (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂ (↑a * I * ↑x) (I * ↑x)))"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x", "h1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))"], "goal": "HasSum (fun x_1 => ↑((↑x_1 + a) * rexp (-π * (↑x_1 + a) ^ 2 * x))) (cexp (-↑π * ↑a ^ 2 * ↑x) * (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂ (↑a * I * ↑x) (I * ↑x)))"}], "premise": [22218, 148280, 148320], "state_str": "a x : ℝ\nhx : 0 < x\nh1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))\n⊢ HasSum (fun x_1 => ↑((↑x_1 + a) * rexp (-π * (↑x_1 + a) ^ 2 * x)))\n (cexp (-↑π * ↑a ^ 2 * ↑x) *\n (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂ (↑a * I * ↑x) (I * ↑x)))"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x", "h1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))", "h2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))"], "goal": "HasSum (fun x_1 => ↑((↑x_1 + a) * rexp (-π * (↑x_1 + a) ^ 2 * x))) (cexp (-↑π * ↑a ^ 2 * ↑x) * (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂ (↑a * I * ↑x) (I * ↑x)))"}], "premise": [63042, 63050, 64063, 64125], "state_str": "a x : ℝ\nhx : 0 < x\nh1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))\nh2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))\n⊢ HasSum (fun x_1 => ↑((↑x_1 + a) * rexp (-π * (↑x_1 + a) ^ 2 * x)))\n (cexp (-↑π * ↑a ^ 2 * ↑x) *\n (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂ (↑a * I * ↑x) (I * ↑x)))"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x", "h1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))", "h2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))", "n : ℤ"], "goal": "↑((↑n + a) * rexp (-π * (↑n + a) ^ 2 * x)) = cexp (-↑π * ↑a ^ 2 * ↑x) * (jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x))"}], "premise": [39324, 108574, 117739, 119703, 149081], "state_str": "a x : ℝ\nhx : 0 < x\nh1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))\nh2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))\nn : ℤ\n⊢ ↑((↑n + a) * rexp (-π * (↑n + a) ^ 2 * x)) =\n cexp (-↑π * ↑a ^ 2 * ↑x) *\n (jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x) / (2 * ↑π * I) + ↑a * jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x))"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x", "h1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))", "h2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))", "n : ℤ"], "goal": "(↑n + ↑a) * cexp (-↑π * (↑n + ↑a) ^ 2 * ↑x) = (↑n + ↑a) * cexp (-↑π * ↑a ^ 2 * ↑x + (2 * ↑π * I * ↑n * (↑a * I * ↑x) + ↑π * I * ↑n ^ 2 * (I * ↑x)))"}], "premise": [119703], "state_str": "a x : ℝ\nhx : 0 < x\nh1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))\nh2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))\nn : ℤ\n⊢ (↑n + ↑a) * cexp (-↑π * (↑n + ↑a) ^ 2 * ↑x) =\n (↑n + ↑a) * cexp (-↑π * ↑a ^ 2 * ↑x + (2 * ↑π * I * ↑n * (↑a * I * ↑x) + ↑π * I * ↑n ^ 2 * (I * ↑x)))"} +{"state": [{"context": ["a x : ℝ", "hx : 0 < x", "h1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))", "h2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))", "n : ℤ"], "goal": "-↑π * (↑n + ↑a) ^ 2 = -↑π * ↑a ^ 2 + (2 * ↑π * I * ↑n * ↑a + ↑π * I * ↑n ^ 2) * I"}], "premise": [117740, 119703, 148312], "state_str": "a x : ℝ\nhx : 0 < x\nh1 : HasSum (fun n => jacobiTheta₂_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂ (↑a * I * ↑x) (I * ↑x))\nh2 : HasSum (fun n => jacobiTheta₂'_term n (↑a * I * ↑x) (I * ↑x)) (jacobiTheta₂' (↑a * I * ↑x) (I * ↑x))\nn : ℤ\n⊢ -↑π * (↑n + ↑a) ^ 2 = -↑π * ↑a ^ 2 + (2 * ↑π * I * ↑n * ↑a + ↑π * I * ↑n ^ 2) * I"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁴ : NormedLinearOrderedField 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : StrictConvexSpace ℝ E", "x y z : E", "a b r : ℝ", "h : ¬SameRay ℝ x y"], "goal": "‖x + y‖ < ‖x‖ + ‖y‖"}], "premise": [1999, 41483], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝⁴ : NormedLinearOrderedField 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : StrictConvexSpace ℝ E\nx y z : E\na b r : ℝ\nh : ¬SameRay ℝ x y\n⊢ ‖x + y‖ < ‖x‖ + ‖y‖"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁴ : NormedLinearOrderedField 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : StrictConvexSpace ℝ E", "x y z : E", "a b r : ℝ", "hx : x ≠ 0", "hy : y ≠ 0", "hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y"], "goal": "‖x + y‖ < ‖x‖ + ‖y‖"}], "premise": [42922], "state_str": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\ninst✝⁴ : NormedLinearOrderedField 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : StrictConvexSpace ℝ E\nx y z : E\na b r : ℝ\nhx : x ≠ 0\nhy : y ≠ 0\nhne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y\n⊢ ‖x + y‖ < ‖x‖ + ‖y‖"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁴ : NormedLinearOrderedField 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : StrictConvexSpace ℝ E", "x y z : E", "a b r : ℝ", "hx : 0 < ‖x‖", "hy : 0 < ‖y‖", "hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y", "hxy : 0 < ‖x‖ + ‖y‖"], "goal": "‖x + y‖ < ‖x‖ + ‖y‖"}], "premise": [11234, 36593, 40547, 104338, 108408, 115817], "state_str": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\ninst✝⁴ : NormedLinearOrderedField 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : StrictConvexSpace ℝ E\nx y z : E\na b r : ℝ\nhx : 0 < ‖x‖\nhy : 0 < ‖y‖\nhne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y\nhxy : 0 < ‖x‖ + ‖y‖\n⊢ ‖x + y‖ < ‖x‖ + ‖y‖"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝⁴ : NormedLinearOrderedField 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : StrictConvexSpace ℝ E", "x y z : E", "a b r : ℝ", "hx : 0 < ‖x‖", "hy : 0 < ‖y‖", "hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y", "hxy : 0 < ‖x‖ + ‖y‖", "this : (‖x‖ / (‖x‖ + ‖y‖)) • ‖x‖⁻¹ • x + (‖y‖ / (‖x‖ + ‖y‖)) • ‖y‖⁻¹ • y ∈ ball 0 1"], "goal": "‖x + y‖ < ‖x‖ + ‖y‖"}], "premise": [1674, 7383, 11234, 41371, 42718, 42904, 104330, 106089, 108334, 117883, 118866], "state_str": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\ninst✝⁴ : NormedLinearOrderedField 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : StrictConvexSpace ℝ E\nx y z : E\na b r : ℝ\nhx : 0 < ‖x‖\nhy : 0 < ‖y‖\nhne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y\nhxy : 0 < ‖x‖ + ‖y‖\nthis : (‖x‖ / (‖x‖ + ‖y‖)) • ‖x‖⁻¹ • x + (‖y‖ / (‖x‖ + ‖y‖)) • ‖y‖⁻¹ • y ∈ ball 0 1\n⊢ ‖x + y‖ < ‖x‖ + ‖y‖"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u", "S : Type v", "r : R", "e : ℕ", "n m : σ", "inst✝ : CommSemiring R", "p q : MvPolynomial σ R", "s t : Set σ"], "goal": "supported R Set.univ = ⊤"}], "premise": [110157, 122122], "state_str": "σ : Type u_1\nτ : Type u_2\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ supported R Set.univ = ⊤"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "ι : Type u_3", "ι' : Sort u_4", "inst✝ : TopologicalSpace X", "S : Set (Set X)", "h : ∀ s ∈ S, IsGδ s", "hS : S.Countable"], "goal": "IsGδ (⋂₀ S)"}], "premise": [55723, 135450], "state_str": "X : Type u_1\nY : Type u_2\nι : Type u_3\nι' : Sort u_4\ninst✝ : TopologicalSpace X\nS : Set (Set X)\nh : ∀ s ∈ S, IsGδ s\nhS : S.Countable\n⊢ IsGδ (⋂₀ S)"} +{"state": [{"context": ["x : ℝ", "n : ℕ∞"], "goal": "ContDiffOn ℝ n log {0}ᶜ"}], "premise": [18778, 48350], "state_str": "x : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ n log {0}ᶜ"} +{"state": [{"context": ["x : ℝ", "n : ℕ∞"], "goal": "ContDiffOn ℝ ⊤ log {0}ᶜ"}], "premise": [1674, 51758, 64692], "state_str": "x : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ ⊤ log {0}ᶜ"} +{"state": [{"context": ["x : ℝ", "n : ℕ∞"], "goal": "DifferentiableOn ℝ log {0}ᶜ ∧ ContDiffOn ℝ ⊤ (deriv log) {0}ᶜ"}], "premise": [38091, 51735], "state_str": "x : ℝ\nn : ℕ∞\n⊢ DifferentiableOn ℝ log {0}ᶜ ∧ ContDiffOn ℝ ⊤ (deriv log) {0}ᶜ"} +{"state": [{"context": ["R : Type u", "L : Type v", "L' : Type w₂", "M : Type w", "M' : Type w₁", "inst✝¹² : CommRing R", "inst✝¹¹ : LieRing L", "inst✝¹⁰ : LieAlgebra R L", "inst✝⁹ : LieRing L'", "inst✝⁸ : LieAlgebra R L'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M'", "inst✝² : Module R M'", "inst✝¹ : LieRingModule L M'", "inst✝ : LieModule R L M'", "f : L →ₗ⁅R⁆ L'", "I : LieIdeal R L", "J : LieIdeal R L'"], "goal": "I.incl.idealRange = I"}], "premise": [107978, 109255, 109267, 109329, 109375, 109404], "state_str": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\n⊢ I.incl.idealRange = I"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : NonUnitalRing α", "a b c : α", "h : a ∣ c"], "goal": "a ∣ b - c ↔ a ∣ b"}], "premise": [1674, 119789, 121990, 121993], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : NonUnitalRing α\na b c : α\nh : a ∣ c\n⊢ a ∣ b - c ↔ a ∣ b"} +{"state": [{"context": ["α : Type u", "inst✝ : Semiring α", "n : ℕ"], "goal": "∑ i ∈ range (n + 2), 0 ^ i = if n + 2 = 0 then 0 else 1"}], "premise": [112468], "state_str": "α : Type u\ninst✝ : Semiring α\nn : ℕ\n⊢ ∑ i ∈ range (n + 2), 0 ^ i = if n + 2 = 0 then 0 else 1"} +{"state": [{"context": [], "goal": "sin ↑π = 0"}], "premise": [38522, 149166], "state_str": "⊢ sin ↑π = 0"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L : Filter 𝕜", "hxs : UniqueDiffWithinAt 𝕜 s x", "c : F"], "goal": "derivWithin (fun y => c - f y) s x = -derivWithin f s x"}], "premise": [45887], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nhxs : UniqueDiffWithinAt 𝕜 s x\nc : F\n⊢ derivWithin (fun y => c - f y) s x = -derivWithin f s x"} +{"state": [{"context": ["R : Type u", "R' : Type u'", "M M₁ : Type v", "M' : Type v'", "inst✝⁹ : Ring R", "inst✝⁸ : Ring R'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : AddCommGroup M'", "inst✝⁵ : AddCommGroup M₁", "inst✝⁴ : Module R M", "inst✝³ : Module R M'", "inst✝² : Module R M₁", "inst✝¹ : Module R' M'", "inst✝ : Module R' M₁", "f : M →ₗ[R] M₁", "h : Surjective ⇑f"], "goal": "Module.rank R M₁ ≤ Module.rank R M"}], "premise": [85747], "state_str": "R : Type u\nR' : Type u'\nM M₁ : Type v\nM' : Type v'\ninst✝⁹ : Ring R\ninst✝⁸ : Ring R'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : AddCommGroup M'\ninst✝⁵ : AddCommGroup M₁\ninst✝⁴ : Module R M\ninst✝³ : Module R M'\ninst✝² : Module R M₁\ninst✝¹ : Module R' M'\ninst✝ : Module R' M₁\nf : M →ₗ[R] M₁\nh : Surjective ⇑f\n⊢ Module.rank R M₁ ≤ Module.rank R M"} +{"state": [{"context": ["R : Type u", "R' : Type u'", "M M₁ : Type v", "M' : Type v'", "inst✝⁹ : Ring R", "inst✝⁸ : Ring R'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : AddCommGroup M'", "inst✝⁵ : AddCommGroup M₁", "inst✝⁴ : Module R M", "inst✝³ : Module R M'", "inst✝² : Module R M₁", "inst✝¹ : Module R' M'", "inst✝ : Module R' M₁", "f : M →ₗ[R] M₁", "h : Surjective ⇑f"], "goal": "Module.rank R ↥(range f) ≤ Module.rank R M"}], "premise": [85736], "state_str": "R : Type u\nR' : Type u'\nM M₁ : Type v\nM' : Type v'\ninst✝⁹ : Ring R\ninst✝⁸ : Ring R'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : AddCommGroup M'\ninst✝⁵ : AddCommGroup M₁\ninst✝⁴ : Module R M\ninst✝³ : Module R M'\ninst✝² : Module R M₁\ninst✝¹ : Module R' M'\ninst✝ : Module R' M₁\nf : M →ₗ[R] M₁\nh : Surjective ⇑f\n⊢ Module.rank R ↥(range f) ≤ Module.rank R M"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "inst✝³ : Countable ι", "m : MeasurableSpace α", "μ ν : Measure α", "inst✝² : TopologicalSpace β", "inst✝¹ : TopologicalSpace γ", "f g : α → β", "s : Set α", "inst✝ : DecidablePred fun x => x ∈ s", "hs : MeasurableSet s", "hf : AEStronglyMeasurable f (μ.restrict s)", "hg : AEStronglyMeasurable g (μ.restrict sᶜ)"], "goal": "AEStronglyMeasurable (s.piecewise f g) μ"}], "premise": [29316, 29357], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\nf g : α → β\ns : Set α\ninst✝ : DecidablePred fun x => x ∈ s\nhs : MeasurableSet s\nhf : AEStronglyMeasurable f (μ.restrict s)\nhg : AEStronglyMeasurable g (μ.restrict sᶜ)\n⊢ AEStronglyMeasurable (s.piecewise f g) μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "inst✝³ : Countable ι", "m : MeasurableSpace α", "μ ν : Measure α", "inst✝² : TopologicalSpace β", "inst✝¹ : TopologicalSpace γ", "f g : α → β", "s : Set α", "inst✝ : DecidablePred fun x => x ∈ s", "hs : MeasurableSet s", "hf : AEStronglyMeasurable f (μ.restrict s)", "hg : AEStronglyMeasurable g (μ.restrict sᶜ)"], "goal": "s.piecewise f g =ᶠ[ae μ] s.piecewise (AEStronglyMeasurable.mk f hf) (AEStronglyMeasurable.mk g hg)"}], "premise": [32306], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\nf g : α → β\ns : Set α\ninst✝ : DecidablePred fun x => x ∈ s\nhs : MeasurableSet s\nhf : AEStronglyMeasurable f (μ.restrict s)\nhg : AEStronglyMeasurable g (μ.restrict sᶜ)\n⊢ s.piecewise f g =ᶠ[ae μ] s.piecewise (AEStronglyMeasurable.mk f hf) (AEStronglyMeasurable.mk g hg)"} +{"state": [{"context": ["𝓕 : Type u_1", "α : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝¹ : SeminormedCommGroup E", "inst✝ : SeminormedCommGroup F", "a✝ a₁ a₂ b✝ b₁ b₂ : E", "r r₁ r₂ : ℝ", "a b : E"], "goal": "dist a (a * b) = ‖b‖"}], "premise": [42663, 61420, 119730], "state_str": "𝓕 : Type u_1\nα : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ dist a (a * b) = ‖b‖"} +{"state": [{"context": ["θ : Angle"], "goal": "↑(↑θ.expMapCircle).arg = θ"}], "premise": [38265], "state_str": "θ : Angle\n⊢ ↑(↑θ.expMapCircle).arg = θ"} +{"state": [{"context": ["x✝ : ℝ"], "goal": "↑(↑(↑x✝).expMapCircle).arg = ↑x✝"}], "premise": [38302, 38304, 39438, 40369, 46547, 149166, 149171, 149201], "state_str": "case h\nx✝ : ℝ\n⊢ ↑(↑(↑x✝).expMapCircle).arg = ↑x✝"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝¹⁹ : CommRing R", "inst✝¹⁸ : CommRing S", "inst✝¹⁷ : CommRing T", "inst✝¹⁶ : Algebra R S", "inst✝¹⁵ : Algebra R T", "K : Type u_4", "L : Type u_5", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra K L", "ι κ : Type w", "inst✝¹¹ : Fintype ι", "F : Type u_6", "inst✝¹⁰ : Field F", "inst✝⁹ : Algebra R L", "inst✝⁸ : Algebra L F", "inst✝⁷ : Algebra R F", "inst✝⁶ : IsScalarTower R L F", "A₁ : Type u_7", "B₁ : Type u_8", "A₂ : Type u_9", "B₂ : Type u_10", "inst✝⁵ : CommRing A₁", "inst✝⁴ : CommRing B₁", "inst✝³ : CommRing A₂", "inst✝² : CommRing B₂", "inst✝¹ : Algebra A₁ B₁", "inst✝ : Algebra A₂ B₂", "e₁ : A₁ ≃+* A₂", "e₂ : B₁ ≃+* B₂", "he : (algebraMap A₂ B₂).comp ↑e₁ = (↑e₂).comp (algebraMap A₁ B₁)", "x : B₁", "this : Algebra A₁ B₂ := ((↑e₂).comp (algebraMap A₁ B₁)).toAlgebra", "e' : B₁ ≃ₐ[A₁] B₂ := { toEquiv := e₂.toEquiv, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }"], "goal": "(trace A₁ B₁) x = e₁.symm ((trace A₂ B₂) (e₂ x))"}], "premise": [77242, 77243, 123710], "state_str": "R : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝¹⁹ : CommRing R\ninst✝¹⁸ : CommRing S\ninst✝¹⁷ : CommRing T\ninst✝¹⁶ : Algebra R S\ninst✝¹⁵ : Algebra R T\nK : Type u_4\nL : Type u_5\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra K L\nι κ : Type w\ninst✝¹¹ : Fintype ι\nF : Type u_6\ninst✝¹⁰ : Field F\ninst✝⁹ : Algebra R L\ninst✝⁸ : Algebra L F\ninst✝⁷ : Algebra R F\ninst✝⁶ : IsScalarTower R L F\nA₁ : Type u_7\nB₁ : Type u_8\nA₂ : Type u_9\nB₂ : Type u_10\ninst✝⁵ : CommRing A₁\ninst✝⁴ : CommRing B₁\ninst✝³ : CommRing A₂\ninst✝² : CommRing B₂\ninst✝¹ : Algebra A₁ B₁\ninst✝ : Algebra A₂ B₂\ne₁ : A₁ ≃+* A₂\ne₂ : B₁ ≃+* B₂\nhe : (algebraMap A₂ B₂).comp ↑e₁ = (↑e₂).comp (algebraMap A₁ B₁)\nx : B₁\nthis : Algebra A₁ B₂ := ((↑e₂).comp (algebraMap A₁ B₁)).toAlgebra\ne' : B₁ ≃ₐ[A₁] B₂ := { toEquiv := e₂.toEquiv, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }\n⊢ (trace A₁ B₁) x = e₁.symm ((trace A₂ B₂) (e₂ x))"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p✝ q : ℝ≥0∞", "inst✝⁴ : (i : α) → NormedAddCommGroup (E i)", "𝕜 : Type u_3", "inst✝³ : NormedRing 𝕜", "inst✝² : (i : α) → Module 𝕜 (E i)", "inst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)", "inst✝ : DecidableEq α", "p : ℝ≥0∞", "i : α", "a : E i", "c : 𝕜"], "goal": "lp.single p i (c • a) = c • lp.single p i a"}], "premise": [1838, 45180], "state_str": "α : Type u_1\nE : α → Type u_2\np✝ q : ℝ≥0∞\ninst✝⁴ : (i : α) → NormedAddCommGroup (E i)\n𝕜 : Type u_3\ninst✝³ : NormedRing 𝕜\ninst✝² : (i : α) → Module 𝕜 (E i)\ninst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)\ninst✝ : DecidableEq α\np : ℝ≥0∞\ni : α\na : E i\nc : 𝕜\n⊢ lp.single p i (c • a) = c • lp.single p i a"} +{"state": [{"context": ["ι : Type uι", "E : Type uE", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedSpace ℝ E", "inst✝⁶ : FiniteDimensional ℝ E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "H : Type uH", "inst✝³ : TopologicalSpace H", "I : ModelWithCorners ℝ E H", "M : Type uM", "inst✝² : TopologicalSpace M", "inst✝¹ : ChartedSpace H M", "inst✝ : SmoothManifoldWithCorners I M", "s : Set M", "U : M → Set M", "fs : SmoothBumpCovering ι I M s", "i : ι", "x : M", "h : ↑(fs.toFun i) x = 1"], "goal": "x ∈ (extChartAt I (fs.c i)).source"}], "premise": [67848], "state_str": "ι : Type uι\nE : Type uE\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : FiniteDimensional ℝ E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\nH : Type uH\ninst✝³ : TopologicalSpace H\nI : ModelWithCorners ℝ E H\nM : Type uM\ninst✝² : TopologicalSpace M\ninst✝¹ : ChartedSpace H M\ninst✝ : SmoothManifoldWithCorners I M\ns : Set M\nU : M → Set M\nfs : SmoothBumpCovering ι I M s\ni : ι\nx : M\nh : ↑(fs.toFun i) x = 1\n⊢ x ∈ (extChartAt I (fs.c i)).source"} +{"state": [{"context": ["ι : Type uι", "E : Type uE", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedSpace ℝ E", "inst✝⁶ : FiniteDimensional ℝ E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace ℝ F", "H : Type uH", "inst✝³ : TopologicalSpace H", "I : ModelWithCorners ℝ E H", "M : Type uM", "inst✝² : TopologicalSpace M", "inst✝¹ : ChartedSpace H M", "inst✝ : SmoothManifoldWithCorners I M", "s : Set M", "U : M → Set M", "fs : SmoothBumpCovering ι I M s", "i : ι", "x : M", "h : ↑(fs.toFun i) x = 1"], "goal": "x ∈ (chartAt H (fs.c i)).source"}], "premise": [68315], "state_str": "ι : Type uι\nE : Type uE\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : FiniteDimensional ℝ E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\nH : Type uH\ninst✝³ : TopologicalSpace H\nI : ModelWithCorners ℝ E H\nM : Type uM\ninst✝² : TopologicalSpace M\ninst✝¹ : ChartedSpace H M\ninst✝ : SmoothManifoldWithCorners I M\ns : Set M\nU : M → Set M\nfs : SmoothBumpCovering ι I M s\ni : ι\nx : M\nh : ↑(fs.toFun i) x = 1\n⊢ x ∈ (chartAt H (fs.c i)).source"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f f₀ f₁ g : E → F", "f' f₀' f₁' g' e : E →L[𝕜] F", "x : E", "s t : Set E", "L L₁ L₂ : Filter E", "c : F", "h : Differentiable 𝕜 fun y => f y + c"], "goal": "Differentiable 𝕜 f"}], "premise": [45795], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nc : F\nh : Differentiable 𝕜 fun y => f y + c\n⊢ Differentiable 𝕜 f"} +{"state": [{"context": ["a : UnitAddCircle", "x : ℝ", "hx : x ≤ 0"], "goal": "sinKernel a x = 0"}], "premise": [6915], "state_str": "a : UnitAddCircle\nx : ℝ\nhx : x ≤ 0\n⊢ sinKernel a x = 0"} +{"state": [{"context": ["x : ℝ", "hx : x ≤ 0", "a' : ℝ"], "goal": "sinKernel (↑a') x = 0"}], "premise": [22221, 22974, 108302, 148280, 148289, 148320], "state_str": "case H\nx : ℝ\nhx : x ≤ 0\na' : ℝ\n⊢ sinKernel (↑a') x = 0"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "X : Type u_3", "X' : Type u_4", "Y : Type u_5", "Z : Type u_6", "α : Type u_7", "α' : Type u_8", "β : Type u_9", "β' : Type u_10", "γ : Type u_11", "𝓕 : Type u_12", "tX : TopologicalSpace X", "tY : TopologicalSpace Y", "tZ : TopologicalSpace Z", "uα : UniformSpace α", "uβ : UniformSpace β", "uγ : UniformSpace γ", "F : ι → X → α"], "goal": "Equicontinuous F ↔ Continuous (⇑UniformFun.ofFun ∘ swap F)"}], "premise": [55639, 60382], "state_str": "ι : Type u_1\nκ : Type u_2\nX : Type u_3\nX' : Type u_4\nY : Type u_5\nZ : Type u_6\nα : Type u_7\nα' : Type u_8\nβ : Type u_9\nβ' : Type u_10\nγ : Type u_11\n𝓕 : Type u_12\ntX : TopologicalSpace X\ntY : TopologicalSpace Y\ntZ : TopologicalSpace Z\nuα : UniformSpace α\nuβ : UniformSpace β\nuγ : UniformSpace γ\nF : ι → X → α\n⊢ Equicontinuous F ↔ Continuous (⇑UniformFun.ofFun ∘ swap F)"} +{"state": [{"context": ["α✝ β : Type u", "c : Cardinal.{?u.202561}", "α : Type u", "A : Set (Set α)"], "goal": "#↑(⋃₀ A) ≤ #↑A * ⨆ s, #↑↑s"}], "premise": [135451], "state_str": "α✝ β : Type u\nc : Cardinal.{?u.202561}\nα : Type u\nA : Set (Set α)\n⊢ #↑(⋃₀ A) ≤ #↑A * ⨆ s, #↑↑s"} +{"state": [{"context": ["α✝ β : Type u", "c : Cardinal.{?u.202561}", "α : Type u", "A : Set (Set α)"], "goal": "#↑(⋃ i, ↑i) ≤ #↑A * ⨆ s, #↑↑s"}], "premise": [48856], "state_str": "α✝ β : Type u\nc : Cardinal.{?u.202561}\nα : Type u\nA : Set (Set α)\n⊢ #↑(⋃ i, ↑i) ≤ #↑A * ⨆ s, #↑↑s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s t u : Set α", "inst✝¹ : MeasurableSpace α", "p✝ q : α → Prop", "inst✝ : Countable ι", "p : ι → α → Prop", "hp : ∀ (i : ι), Measurable (p i)"], "goal": "MeasurableSet {a | ∃ i, p i a}"}], "premise": [135245], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns t u : Set α\ninst✝¹ : MeasurableSpace α\np✝ q : α → Prop\ninst✝ : Countable ι\np : ι → α → Prop\nhp : ∀ (i : ι), Measurable (p i)\n⊢ MeasurableSet {a | ∃ i, p i a}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s t u : Set α", "inst✝¹ : MeasurableSpace α", "p✝ q : α → Prop", "inst✝ : Countable ι", "p : ι → α → Prop", "hp : ∀ (i : ι), Measurable (p i)"], "goal": "MeasurableSet (⋃ i, {x | p i x})"}], "premise": [27959], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns t u : Set α\ninst✝¹ : MeasurableSpace α\np✝ q : α → Prop\ninst✝ : Countable ι\np : ι → α → Prop\nhp : ∀ (i : ι), Measurable (p i)\n⊢ MeasurableSet (⋃ i, {x | p i x})"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝² : Category.{u_3, u_1} C", "inst✝¹ : Category.{?u.63018, u_2} D", "W : MorphismProperty C", "inst✝ : W.HasLeftCalculusOfFractions", "X Y Z : C", "z₁ : W.LeftFraction X Y", "z₂ : W.LeftFraction Y Z", "z₃ : W.LeftFraction z₁.Y' z₂.Y'", "h₃ : z₂.f ≫ z₃.s = z₁.s ≫ z₃.f"], "goal": "Hom.comp (homMk z₁) (homMk z₂) = homMk (z₁.comp₀ z₂ z₃)"}], "premise": [92930, 92931], "state_str": "C : Type u_1\nD : Type u_2\ninst✝² : Category.{u_3, u_1} C\ninst✝¹ : Category.{?u.63018, u_2} D\nW : MorphismProperty C\ninst✝ : W.HasLeftCalculusOfFractions\nX Y Z : C\nz₁ : W.LeftFraction X Y\nz₂ : W.LeftFraction Y Z\nz₃ : W.LeftFraction z₁.Y' z₂.Y'\nh₃ : z₂.f ≫ z₃.s = z₁.s ≫ z₃.f\n⊢ Hom.comp (homMk z₁) (homMk z₂) = homMk (z₁.comp₀ z₂ z₃)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁹ : NontriviallyNormedField 𝕜", "H : Type u_2", "inst✝¹⁸ : TopologicalSpace H", "E : Type u_3", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "I : ModelWithCorners 𝕜 E H", "F : Type u_4", "inst✝¹⁵ : NormedAddCommGroup F", "inst✝¹⁴ : NormedSpace 𝕜 F", "J : ModelWithCorners 𝕜 F F", "G : Type u_5", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : ChartedSpace H G", "inst✝¹¹ : Group G", "inst✝¹⁰ : LieGroup I G", "E' : Type u_6", "inst✝⁹ : NormedAddCommGroup E'", "inst✝⁸ : NormedSpace 𝕜 E'", "H' : Type u_7", "inst✝⁷ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M : Type u_8", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H' M", "E'' : Type u_9", "inst✝⁴ : NormedAddCommGroup E''", "inst✝³ : NormedSpace 𝕜 E''", "H'' : Type u_10", "inst✝² : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M' : Type u_11", "inst✝¹ : TopologicalSpace M'", "inst✝ : ChartedSpace H'' M'", "n : ℕ∞", "f g : M → G", "hf : ContMDiff I' I n f", "hg : ContMDiff I' I n g"], "goal": "ContMDiff I' I n fun x => f x / g x"}], "premise": [119790], "state_str": "𝕜 : Type u_1\ninst✝¹⁹ : NontriviallyNormedField 𝕜\nH : Type u_2\ninst✝¹⁸ : TopologicalSpace H\nE : Type u_3\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nI : ModelWithCorners 𝕜 E H\nF : Type u_4\ninst✝¹⁵ : NormedAddCommGroup F\ninst✝¹⁴ : NormedSpace 𝕜 F\nJ : ModelWithCorners 𝕜 F F\nG : Type u_5\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : ChartedSpace H G\ninst✝¹¹ : Group G\ninst✝¹⁰ : LieGroup I G\nE' : Type u_6\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : NormedSpace 𝕜 E'\nH' : Type u_7\ninst✝⁷ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM : Type u_8\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H' M\nE'' : Type u_9\ninst✝⁴ : NormedAddCommGroup E''\ninst✝³ : NormedSpace 𝕜 E''\nH'' : Type u_10\ninst✝² : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM' : Type u_11\ninst✝¹ : TopologicalSpace M'\ninst✝ : ChartedSpace H'' M'\nn : ℕ∞\nf g : M → G\nhf : ContMDiff I' I n f\nhg : ContMDiff I' I n g\n⊢ ContMDiff I' I n fun x => f x / g x"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁹ : NontriviallyNormedField 𝕜", "H : Type u_2", "inst✝¹⁸ : TopologicalSpace H", "E : Type u_3", "inst✝¹⁷ : NormedAddCommGroup E", "inst✝¹⁶ : NormedSpace 𝕜 E", "I : ModelWithCorners 𝕜 E H", "F : Type u_4", "inst✝¹⁵ : NormedAddCommGroup F", "inst✝¹⁴ : NormedSpace 𝕜 F", "J : ModelWithCorners 𝕜 F F", "G : Type u_5", "inst✝¹³ : TopologicalSpace G", "inst✝¹² : ChartedSpace H G", "inst✝¹¹ : Group G", "inst✝¹⁰ : LieGroup I G", "E' : Type u_6", "inst✝⁹ : NormedAddCommGroup E'", "inst✝⁸ : NormedSpace 𝕜 E'", "H' : Type u_7", "inst✝⁷ : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M : Type u_8", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H' M", "E'' : Type u_9", "inst✝⁴ : NormedAddCommGroup E''", "inst✝³ : NormedSpace 𝕜 E''", "H'' : Type u_10", "inst✝² : TopologicalSpace H''", "I'' : ModelWithCorners 𝕜 E'' H''", "M' : Type u_11", "inst✝¹ : TopologicalSpace M'", "inst✝ : ChartedSpace H'' M'", "n : ℕ∞", "f g : M → G", "hf : ContMDiff I' I n f", "hg : ContMDiff I' I n g"], "goal": "ContMDiff I' I n fun x => f x * (g x)⁻¹"}], "premise": [67359, 67597], "state_str": "𝕜 : Type u_1\ninst✝¹⁹ : NontriviallyNormedField 𝕜\nH : Type u_2\ninst✝¹⁸ : TopologicalSpace H\nE : Type u_3\ninst✝¹⁷ : NormedAddCommGroup E\ninst✝¹⁶ : NormedSpace 𝕜 E\nI : ModelWithCorners 𝕜 E H\nF : Type u_4\ninst✝¹⁵ : NormedAddCommGroup F\ninst✝¹⁴ : NormedSpace 𝕜 F\nJ : ModelWithCorners 𝕜 F F\nG : Type u_5\ninst✝¹³ : TopologicalSpace G\ninst✝¹² : ChartedSpace H G\ninst✝¹¹ : Group G\ninst✝¹⁰ : LieGroup I G\nE' : Type u_6\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : NormedSpace 𝕜 E'\nH' : Type u_7\ninst✝⁷ : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM : Type u_8\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H' M\nE'' : Type u_9\ninst✝⁴ : NormedAddCommGroup E''\ninst✝³ : NormedSpace 𝕜 E''\nH'' : Type u_10\ninst✝² : TopologicalSpace H''\nI'' : ModelWithCorners 𝕜 E'' H''\nM' : Type u_11\ninst✝¹ : TopologicalSpace M'\ninst✝ : ChartedSpace H'' M'\nn : ℕ∞\nf g : M → G\nhf : ContMDiff I' I n f\nhg : ContMDiff I' I n g\n⊢ ContMDiff I' I n fun x => f x * (g x)⁻¹"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "c : ComplexShape ι", "c' : ComplexShape ι'", "C : Type u_3", "inst✝³ : Category.{?u.313, u_3} C", "inst✝² : HasZeroMorphisms C", "inst✝¹ : HasZeroObject C", "K L M : HomologicalComplex C c'", "φ : K ⟶ L", "φ' : L ⟶ M", "e : c.Embedding c'", "inst✝ : e.IsRelIff", "i j : ι", "hij : ¬c.Rel i j"], "goal": "¬c'.Rel (e.f i) (e.f j)"}], "premise": [114001], "state_str": "ι : Type u_1\nι' : Type u_2\nc : ComplexShape ι\nc' : ComplexShape ι'\nC : Type u_3\ninst✝³ : Category.{?u.313, u_3} C\ninst✝² : HasZeroMorphisms C\ninst✝¹ : HasZeroObject C\nK L M : HomologicalComplex C c'\nφ : K ⟶ L\nφ' : L ⟶ M\ne : c.Embedding c'\ninst✝ : e.IsRelIff\ni j : ι\nhij : ¬c.Rel i j\n⊢ ¬c'.Rel (e.f i) (e.f j)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommSemiring R", "S : Type v", "inst✝ : CommSemiring S", "f g u v : R[X]", "h1 : u * v = 1", "h2 : v * u = 1", "ha : f * ↑{ val := u, inv := v, val_inv := h1, inv_val := h2 } = g", "a b : R[X]", "h : (a * f + b * derivative f) * (u * v) = 1 * 1", "h3 : derivative (u * v) = derivative 1"], "goal": "(a * v + b * derivative v) * g + b * v * derivative g = 1"}], "premise": [101487, 101508], "state_str": "case intro.mk.intro.intro\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\nf g u v : R[X]\nh1 : u * v = 1\nh2 : v * u = 1\nha : f * ↑{ val := u, inv := v, val_inv := h1, inv_val := h2 } = g\na b : R[X]\nh : (a * f + b * derivative f) * (u * v) = 1 * 1\nh3 : derivative (u * v) = derivative 1\n⊢ (a * v + b * derivative v) * g + b * v * derivative g = 1"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b c d : R", "n m : ℕ", "inst✝ : Semiring R", "p✝¹ p✝ q✝ : R[X]", "ι : Type u_1", "p q : R[X]"], "goal": "(p + q).degree ≤ max p.degree q.degree"}], "premise": [101204, 101223, 124089], "state_str": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝¹ p✝ q✝ : R[X]\nι : Type u_1\np q : R[X]\n⊢ (p + q).degree ≤ max p.degree q.degree"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "a : α", "b : β", "x✝ : α × β"], "goal": "x✝ ∈ ∅ ×ˢ t ↔ x✝ ∈ ∅"}], "premise": [20005], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nx✝ : α × β\n⊢ x✝ ∈ ∅ ×ˢ t ↔ x✝ ∈ ∅"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Preadditive C", "R : Type u_1", "inst✝¹ : Ring R", "inst✝ : Linear R C", "K L M : CochainComplex C ℤ", "n✝ : ℤ", "γ✝ γ₁ γ₂ : Cochain K L n✝", "a n' : ℤ", "γ : Cochain K ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj L) n'", "n : ℤ", "hn' : n' + a = n", "p q : ℤ", "hpq : p + n' = q"], "goal": "((γ.rightUnshift n hn').rightShift a n' hn').v p q hpq = γ.v p q hpq"}], "premise": [88743, 96173, 96174, 115391, 115393], "state_str": "case h\nC : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Preadditive C\nR : Type u_1\ninst✝¹ : Ring R\ninst✝ : Linear R C\nK L M : CochainComplex C ℤ\nn✝ : ℤ\nγ✝ γ₁ γ₂ : Cochain K L n✝\na n' : ℤ\nγ : Cochain K ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj L) n'\nn : ℤ\nhn' : n' + a = n\np q : ℤ\nhpq : p + n' = q\n⊢ ((γ.rightUnshift n hn').rightShift a n' hn').v p q hpq = γ.v p q hpq"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "s✝ : Set α", "inst✝ : Bornology α", "s : Set ι", "f : ι → Set α", "hs : s.Finite"], "goal": "IsBounded (⋃ i ∈ s, f i) ↔ ∀ i ∈ s, IsBounded (f i)"}], "premise": [54804, 54824, 135287], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ns✝ : Set α\ninst✝ : Bornology α\ns : Set ι\nf : ι → Set α\nhs : s.Finite\n⊢ IsBounded (⋃ i ∈ s, f i) ↔ ∀ i ∈ s, IsBounded (f i)"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : n = 0"], "goal": "‖↑{ num := n, den := d, den_nz := hn, reduced := hd }‖ ≤ 1"}], "premise": [1674, 148003], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : n = 0\n⊢ ‖↑{ num := n, den := d, den_nz := hn, reduced := hd }‖ ≤ 1"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : ¬n = 0"], "goal": "‖↑{ num := n, den := d, den_nz := hn, reduced := hd }‖ ≤ 1"}], "premise": [1673, 1681, 148003], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : ¬n = 0\n⊢ ‖↑{ num := n, den := d, den_nz := hn, reduced := hd }‖ ≤ 1"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : ¬n = 0", "hnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0"], "goal": "‖↑{ num := n, den := d, den_nz := hn, reduced := hd }‖ ≤ 1"}], "premise": [23654], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : ¬n = 0\nhnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0\n⊢ ‖↑{ num := n, den := d, den_nz := hn, reduced := hd }‖ ≤ 1"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : ¬n = 0", "hnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0"], "goal": "padicNorm p { num := n, den := d, den_nz := hn, reduced := hd } ≤ 1"}], "premise": [22557, 22862, 117811, 117837, 117849, 119784, 143121], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : ¬n = 0\nhnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0\n⊢ padicNorm p { num := n, den := d, den_nz := hn, reduced := hd } ≤ 1"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : ¬n = 0", "hnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0"], "goal": "(↑p ^ padicValInt p { num := n, den := d, den_nz := hn, reduced := hd }.num)⁻¹ ≤ 1"}], "premise": [106062], "state_str": "p : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : ¬n = 0\nhnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0\n⊢ (↑p ^ padicValInt p { num := n, den := d, den_nz := hn, reduced := hd }.num)⁻¹ ≤ 1"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : ¬n = 0", "hnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0"], "goal": "1 ≤ p ^ padicValInt p { num := n, den := d, den_nz := hn, reduced := hd }.num"}], "premise": [145171], "state_str": "case ha\np : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : ¬n = 0\nhnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0\n⊢ 1 ≤ p ^ padicValInt p { num := n, den := d, den_nz := hn, reduced := hd }.num"} +{"state": [{"context": ["p : ℕ", "hp : Fact (Nat.Prime p)", "n : ℤ", "d : ℕ", "hn : d ≠ 0", "hd : n.natAbs.Coprime d", "hq : ¬p ∣ d", "hnz : ¬n = 0", "hnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0"], "goal": "0 < p"}], "premise": [70028, 144292], "state_str": "case ha.h\np : ℕ\nhp : Fact (Nat.Prime p)\nn : ℤ\nd : ℕ\nhn : d ≠ 0\nhd : n.natAbs.Coprime d\nhq : ¬p ∣ d\nhnz : ¬n = 0\nhnz' : { num := n, den := d, den_nz := hn, reduced := hd } ≠ 0\n⊢ 0 < p"} +{"state": [{"context": ["R : Type u_1", "inst✝ : Semiring R", "f : R[X]", "f0 : 2 ≤ f.support.card"], "goal": "f.eraseLead ≠ 0"}], "premise": [101227, 102428], "state_str": "R : Type u_1\ninst✝ : Semiring R\nf : R[X]\nf0 : 2 ≤ f.support.card\n⊢ f.eraseLead ≠ 0"} +{"state": [{"context": ["R : Type u_1", "inst✝ : Semiring R", "f : R[X]", "f0 : 2 ≤ f.support.card"], "goal": "¬(f.support.erase f.natDegree).card = 0"}], "premise": [1690, 101702, 103362, 137640], "state_str": "R : Type u_1\ninst✝ : Semiring R\nf : R[X]\nf0 : 2 ≤ f.support.card\n⊢ ¬(f.support.erase f.natDegree).card = 0"} +{"state": [{"context": ["A : Type u_1", "A' : Type u_2", "B : Type u_3", "B' : Type u_4", "inst✝³ : Category.{u_6, u_1} A", "inst✝² : Category.{u_7, u_2} A'", "inst✝¹ : Category.{u_5, u_3} B", "inst✝ : Category.{u_8, u_4} B'", "eA : A ≌ A'", "eB : B ≌ B'", "e' : A' ≌ B'", "F : A ⥤ B'", "hF : eA.functor ⋙ e'.functor ≅ F", "G : B ⥤ A", "hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor", "Y' : B"], "goal": "eB.inverse.map ((equivalence₁ hF).counitIso.hom.app (eB.functor.obj Y')) ≫ eB.unitIso.inv.app Y' = (equivalence₂CounitIso eB hF).hom.app Y'"}], "premise": [47296, 47297, 47303, 96173, 99919], "state_str": "case w.w.h\nA : Type u_1\nA' : Type u_2\nB : Type u_3\nB' : Type u_4\ninst✝³ : Category.{u_6, u_1} A\ninst✝² : Category.{u_7, u_2} A'\ninst✝¹ : Category.{u_5, u_3} B\ninst✝ : Category.{u_8, u_4} B'\neA : A ≌ A'\neB : B ≌ B'\ne' : A' ≌ B'\nF : A ⥤ B'\nhF : eA.functor ⋙ e'.functor ≅ F\nG : B ⥤ A\nhG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor\nY' : B\n⊢ eB.inverse.map ((equivalence₁ hF).counitIso.hom.app (eB.functor.obj Y')) ≫ eB.unitIso.inv.app Y' =\n (equivalence₂CounitIso eB hF).hom.app Y'"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : HasZeroMorphisms C", "n : ℕ", "S✝ : ComposableArrows C n", "S : ComposableArrows C (n + 2)", "hS : S.Exact"], "goal": "S.δ₀.Exact"}], "premise": [115187], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : HasZeroMorphisms C\nn : ℕ\nS✝ : ComposableArrows C n\nS : ComposableArrows C (n + 2)\nhS : S.Exact\n⊢ S.δ₀.Exact"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : HasZeroMorphisms C", "n : ℕ", "S✝ : ComposableArrows C n", "S : ComposableArrows C (n + 2)", "hS : (mk₂ (S.map' 0 1 ⋯ ⋯) (S.map' 1 2 ⋯ ⋯)).Exact ∧ S.δ₀.Exact"], "goal": "S.δ₀.Exact"}], "premise": [2106], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : HasZeroMorphisms C\nn : ℕ\nS✝ : ComposableArrows C n\nS : ComposableArrows C (n + 2)\nhS : (mk₂ (S.map' 0 1 ⋯ ⋯) (S.map' 1 2 ⋯ ⋯)).Exact ∧ S.δ₀.Exact\n⊢ S.δ₀.Exact"} +{"state": [{"context": ["H : Type u_1", "M : Type u_2", "H' : Type u_3", "M' : Type u_4", "X : Type u_5", "inst✝⁷ : TopologicalSpace H", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H M", "inst✝⁴ : TopologicalSpace H'", "inst✝³ : TopologicalSpace M'", "inst✝² : ChartedSpace H' M'", "inst✝¹ : TopologicalSpace X", "G : StructureGroupoid H", "G' : StructureGroupoid H'", "e e' : PartialHomeomorph M H", "f f' : PartialHomeomorph M' H'", "P : (H → H') → Set H → H → Prop", "g g' : M → M'", "s t : Set M", "x : M", "Q : (H → H) → Set H → H → Prop", "hG : G.LocalInvariantProp G' P", "inst✝ : HasGroupoid M G", "he : e ∈ maximalAtlas M G", "xe : x ∈ e.source"], "goal": "LiftPropWithinAt P g s x ↔ LiftPropWithinAt P (g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x)"}], "premise": [66126, 66258, 68126, 68133], "state_str": "H : Type u_1\nM : Type u_2\nH' : Type u_3\nM' : Type u_4\nX : Type u_5\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : PartialHomeomorph M H\nf f' : PartialHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H → H) → Set H → H → Prop\nhG : G.LocalInvariantProp G' P\ninst✝ : HasGroupoid M G\nhe : e ∈ maximalAtlas M G\nxe : x ∈ e.source\n⊢ LiftPropWithinAt P g s x ↔ LiftPropWithinAt P (g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x)"} +{"state": [{"context": ["H : Type u_1", "M : Type u_2", "H' : Type u_3", "M' : Type u_4", "X : Type u_5", "inst✝⁷ : TopologicalSpace H", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H M", "inst✝⁴ : TopologicalSpace H'", "inst✝³ : TopologicalSpace M'", "inst✝² : ChartedSpace H' M'", "inst✝¹ : TopologicalSpace X", "G : StructureGroupoid H", "G' : StructureGroupoid H'", "e e' : PartialHomeomorph M H", "f f' : PartialHomeomorph M' H'", "P : (H → H') → Set H → H → Prop", "g g' : M → M'", "s t : Set M", "x : M", "Q : (H → H) → Set H → H → Prop", "hG : G.LocalInvariantProp G' P", "inst✝ : HasGroupoid M G", "he : e ∈ maximalAtlas M G", "xe : x ∈ e.source"], "goal": "ContinuousWithinAt (g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x) ∧ P (↑(chartAt H' (g x)) ∘ g ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ ContinuousWithinAt (g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x) ∧ P (↑(chartAt H' ((g ∘ ↑e.symm) (↑e x))) ∘ g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x)"}], "premise": [1713, 1963], "state_str": "H : Type u_1\nM : Type u_2\nH' : Type u_3\nM' : Type u_4\nX : Type u_5\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : PartialHomeomorph M H\nf f' : PartialHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H → H) → Set H → H → Prop\nhG : G.LocalInvariantProp G' P\ninst✝ : HasGroupoid M G\nhe : e ∈ maximalAtlas M G\nxe : x ∈ e.source\n⊢ ContinuousWithinAt (g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x) ∧\n P (↑(chartAt H' (g x)) ∘ g ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔\n ContinuousWithinAt (g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x) ∧\n P (↑(chartAt H' ((g ∘ ↑e.symm) (↑e x))) ∘ g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x)"} +{"state": [{"context": ["H : Type u_1", "M : Type u_2", "H' : Type u_3", "M' : Type u_4", "X : Type u_5", "inst✝⁷ : TopologicalSpace H", "inst✝⁶ : TopologicalSpace M", "inst✝⁵ : ChartedSpace H M", "inst✝⁴ : TopologicalSpace H'", "inst✝³ : TopologicalSpace M'", "inst✝² : ChartedSpace H' M'", "inst✝¹ : TopologicalSpace X", "G : StructureGroupoid H", "G' : StructureGroupoid H'", "e e' : PartialHomeomorph M H", "f f' : PartialHomeomorph M' H'", "P : (H → H') → Set H → H → Prop", "g g' : M → M'", "s t : Set M", "x : M", "Q : (H → H) → Set H → H → Prop", "hG : G.LocalInvariantProp G' P", "inst✝ : HasGroupoid M G", "he : e ∈ maximalAtlas M G", "xe : x ∈ e.source"], "goal": "P (↑(chartAt H' (g x)) ∘ g ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ P (↑(chartAt H' ((g ∘ ↑e.symm) (↑e x))) ∘ g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x)"}], "premise": [1670, 1713, 66081, 67287, 67323, 68136, 71022], "state_str": "H : Type u_1\nM : Type u_2\nH' : Type u_3\nM' : Type u_4\nX : Type u_5\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : PartialHomeomorph M H\nf f' : PartialHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H → H) → Set H → H → Prop\nhG : G.LocalInvariantProp G' P\ninst✝ : HasGroupoid M G\nhe : e ∈ maximalAtlas M G\nxe : x ∈ e.source\n⊢ P (↑(chartAt H' (g x)) ∘ g ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔\n P (↑(chartAt H' ((g ∘ ↑e.symm) (↑e x))) ∘ g ∘ ↑e.symm) (↑e.symm ⁻¹' s) (↑e x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "mγ : MeasurableSpace γ", "inst✝¹ : CountablyGenerated γ", "κ : Kernel α (γ × β)", "ν : Kernel α γ", "hκν : κ.fst ≤ ν", "a : α", "inst✝ : IsFiniteKernel ν", "s : Set β", "hs : MeasurableSet s"], "goal": "∀ᵐ (x : γ) ∂ν a, Tendsto (fun n => κ.densityProcess ν n a x s) atTop (𝓝 (κ.density ν a x s))"}], "premise": [15889, 74607, 74611, 131585], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ninst✝¹ : CountablyGenerated γ\nκ : Kernel α (γ × β)\nν : Kernel α γ\nhκν : κ.fst ≤ ν\na : α\ninst✝ : IsFiniteKernel ν\ns : Set β\nhs : MeasurableSet s\n⊢ ∀ᵐ (x : γ) ∂ν a, Tendsto (fun n => κ.densityProcess ν n a x s) atTop (𝓝 (κ.density ν a x s))"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X : Type u"], "goal": "{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (𝟙 X) = 𝟙 ({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj X)"}], "premise": [124477], "state_str": "R : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX : Type u\n⊢ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (𝟙 X) =\n 𝟙 ({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj X)"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X : Type u"], "goal": "⇑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (𝟙 X)) ∘ FreeAlgebra.ι R = ⇑(𝟙 ({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj X)) ∘ FreeAlgebra.ι R"}], "premise": [124473], "state_str": "case w\nR : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX : Type u\n⊢ ⇑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map\n (𝟙 X)) ∘\n FreeAlgebra.ι R =\n ⇑(𝟙\n ({ obj := fun S => mk (FreeAlgebra R S),\n map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj\n X)) ∘\n FreeAlgebra.ι R"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X✝ Y✝ Z✝ : Type u", "f✝ : X✝ ⟶ Y✝", "g✝ : Y✝ ⟶ Z✝"], "goal": "{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (f✝ ≫ g✝) = { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f✝ ≫ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g✝"}], "premise": [124477], "state_str": "R : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX✝ Y✝ Z✝ : Type u\nf✝ : X✝ ⟶ Y✝\ng✝ : Y✝ ⟶ Z✝\n⊢ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map\n (f✝ ≫ g✝) =\n { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f✝ ≫\n { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g✝"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X✝ Y✝ Z✝ : Type u", "f✝ : X✝ ⟶ Y✝", "g✝ : Y✝ ⟶ Z✝"], "goal": "⇑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R = ⇑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f✝ ≫ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g✝) ∘ FreeAlgebra.ι R"}], "premise": [124473], "state_str": "case w\nR : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX✝ Y✝ Z✝ : Type u\nf✝ : X✝ ⟶ Y✝\ng✝ : Y✝ ⟶ Z✝\n⊢ ⇑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map\n (f✝ ≫ g✝)) ∘\n FreeAlgebra.ι R =\n ⇑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map\n f✝ ≫\n { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map\n g✝) ∘\n FreeAlgebra.ι R"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X✝ Y✝ Z✝ : Type u", "f✝ : X✝ ⟶ Y✝", "g✝ : Y✝ ⟶ Z✝", "x✝ : X✝"], "goal": "(FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ = (⇑((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ FreeAlgebra.ι R) x✝"}], "premise": [99591], "state_str": "case w.h\nR : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX✝ Y✝ Z✝ : Type u\nf✝ : X✝ ⟶ Y✝\ng✝ : Y✝ ⟶ Z✝\nx✝ : X✝\n⊢ (FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ =\n (⇑((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ (FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ FreeAlgebra.ι R) x✝"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X✝ Y✝ Z✝ : Type u", "f✝ : X✝ ⟶ Y✝", "g✝ : Y✝ ⟶ Z✝", "x✝ : X✝"], "goal": "(FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ = ((⇑((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ ⇑((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝))) ∘ FreeAlgebra.ι R) x✝"}], "premise": [1670, 91291, 99591], "state_str": "case w.h\nR : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX✝ Y✝ Z✝ : Type u\nf✝ : X✝ ⟶ Y✝\ng✝ : Y✝ ⟶ Z✝\nx✝ : X✝\n⊢ (FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ =\n ((⇑((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ ⇑((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝))) ∘\n FreeAlgebra.ι R)\n x✝"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "M N U : ModuleCat R", "X✝ Y✝ Z✝ : Type u", "f✝ : X✝ ⟶ Y✝", "g✝ : Y✝ ⟶ Z✝", "x✝ : X✝"], "goal": "FreeAlgebra.ι R (g✝ (f✝ x✝)) = ((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) (((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝)) (FreeAlgebra.ι R x✝))"}], "premise": [124474], "state_str": "case w.h\nR : Type u\ninst✝ : CommRing R\nM N U : ModuleCat R\nX✝ Y✝ Z✝ : Type u\nf✝ : X✝ ⟶ Y✝\ng✝ : Y✝ ⟶ Z✝\nx✝ : X✝\n⊢ FreeAlgebra.ι R (g✝ (f✝ x✝)) =\n ((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) (((FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝)) (FreeAlgebra.ι R x✝))"} +{"state": [{"context": ["m n✝ n : ℤ"], "goal": "Even (n * (n + 1))"}], "premise": [117547, 121611], "state_str": "m n✝ n : ℤ\n⊢ Even (n * (n + 1))"} +{"state": [{"context": ["R : Type u", "X : Type v", "inst✝¹ : CommRing R", "inst✝ : Nontrivial R"], "goal": "Module.rank R (FreeAlgebra R X) = Cardinal.lift.{u, v} (Cardinal.mk (List X))"}], "premise": [2101, 48581, 48583, 85905], "state_str": "R : Type u\nX : Type v\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\n⊢ Module.rank R (FreeAlgebra R X) = Cardinal.lift.{u, v} (Cardinal.mk (List X))"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝² : PseudoEMetricSpace α", "inst✝¹ : PseudoEMetricSpace β", "inst✝ : PseudoEMetricSpace γ", "K : ℝ≥0", "f✝ : α → β", "x✝ y✝ : α", "r : ℝ≥0∞", "f : α → β", "Kf : ℝ≥0", "hf : LipschitzWith Kf f", "g : α → γ", "Kg : ℝ≥0", "hg : LipschitzWith Kg g", "x y : α"], "goal": "edist ((fun x => (f x, g x)) x) ((fun x => (f x, g x)) y) ≤ ↑(max Kf Kg) * edist x y"}], "premise": [13001, 58465, 143206, 143480], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nK : ℝ≥0\nf✝ : α → β\nx✝ y✝ : α\nr : ℝ≥0∞\nf : α → β\nKf : ℝ≥0\nhf : LipschitzWith Kf f\ng : α → γ\nKg : ℝ≥0\nhg : LipschitzWith Kg g\nx y : α\n⊢ edist ((fun x => (f x, g x)) x) ((fun x => (f x, g x)) y) ≤ ↑(max Kf Kg) * edist x y"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝² : PseudoEMetricSpace α", "inst✝¹ : PseudoEMetricSpace β", "inst✝ : PseudoEMetricSpace γ", "K : ℝ≥0", "f✝ : α → β", "x✝ y✝ : α", "r : ℝ≥0∞", "f : α → β", "Kf : ℝ≥0", "hf : LipschitzWith Kf f", "g : α → γ", "Kg : ℝ≥0", "hg : LipschitzWith Kg g", "x y : α"], "goal": "max (edist ((fun x => (f x, g x)) x).1 ((fun x => (f x, g x)) y).1) (edist ((fun x => (f x, g x)) x).2 ((fun x => (f x, g x)) y).2) ≤ max (↑Kf * edist x y) (↑Kg * edist x y)"}], "premise": [12960], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nK : ℝ≥0\nf✝ : α → β\nx✝ y✝ : α\nr : ℝ≥0∞\nf : α → β\nKf : ℝ≥0\nhf : LipschitzWith Kf f\ng : α → γ\nKg : ℝ≥0\nhg : LipschitzWith Kg g\nx y : α\n⊢ max (edist ((fun x => (f x, g x)) x).1 ((fun x => (f x, g x)) y).1)\n (edist ((fun x => (f x, g x)) x).2 ((fun x => (f x, g x)) y).2) ≤\n max (↑Kf * edist x y) (↑Kg * edist x y)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : Group α", "s : Subgroup α"], "goal": "∀ (a b : α), Setoid.r a b = (b * a⁻¹ ∈ s)"}], "premise": [1792], "state_str": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\n⊢ ∀ (a b : α), Setoid.r a b = (b * a⁻¹ ∈ s)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : Group α", "s : Subgroup α"], "goal": "∀ (a b : α), Setoid.r a b ↔ b * a⁻¹ ∈ s"}], "premise": [6901], "state_str": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\n⊢ ∀ (a b : α), Setoid.r a b ↔ b * a⁻¹ ∈ s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : PartialOrder α", "a b c x : α"], "goal": "x ∈ Icc a b \\ {b} ↔ x ∈ Ico a b"}], "premise": [1206, 11244], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : PartialOrder α\na b c x : α\n⊢ x ∈ Icc a b \\ {b} ↔ x ∈ Ico a b"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X Y : C", "α : X ≅ Y", "f : End X"], "goal": "(refl X).conj f = f"}], "premise": [88751, 88752, 91012, 96174, 96175], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX Y : C\nα : X ≅ Y\nf : End X\n⊢ (refl X).conj f = f"} +{"state": [{"context": ["ι : Type u_1", "G : ι → Type u_2", "H : Type u_3", "K : Type u_4", "inst✝² : Monoid K", "inst✝¹ : (i : ι) → Monoid (G i)", "inst✝ : Monoid H", "φ : (i : ι) → H →* G i", "f : PushoutI φ →* K", "i : ι"], "goal": "((fun i => f.comp (of i), f.comp (base φ)).1 i).comp (φ i) = (fun i => f.comp (of i), f.comp (base φ)).2"}], "premise": [9502, 117193], "state_str": "ι : Type u_1\nG : ι → Type u_2\nH : Type u_3\nK : Type u_4\ninst✝² : Monoid K\ninst✝¹ : (i : ι) → Monoid (G i)\ninst✝ : Monoid H\nφ : (i : ι) → H →* G i\nf : PushoutI φ →* K\ni : ι\n⊢ ((fun i => f.comp (of i), f.comp (base φ)).1 i).comp (φ i) = (fun i => f.comp (of i), f.comp (base φ)).2"} +{"state": [{"context": ["ι : Type u_1", "G : ι → Type u_2", "H : Type u_3", "K : Type u_4", "inst✝² : Monoid K", "inst✝¹ : (i : ι) → Monoid (G i)", "inst✝ : Monoid H", "φ : (i : ι) → H →* G i", "x✝ : PushoutI φ →* K"], "goal": "∀ (i : ι), ((fun f => lift (↑f).1 (↑f).2 ⋯) ((fun f => ⟨(fun i => f.comp (of i), f.comp (base φ)), ⋯⟩) x✝)).comp (of i) = x✝.comp (of i)"}], "premise": [128588], "state_str": "ι : Type u_1\nG : ι → Type u_2\nH : Type u_3\nK : Type u_4\ninst✝² : Monoid K\ninst✝¹ : (i : ι) → Monoid (G i)\ninst✝ : Monoid H\nφ : (i : ι) → H →* G i\nx✝ : PushoutI φ →* K\n⊢ ∀ (i : ι),\n ((fun f => lift (↑f).1 (↑f).2 ⋯) ((fun f => ⟨(fun i => f.comp (of i), f.comp (base φ)), ⋯⟩) x✝)).comp (of i) =\n x✝.comp (of i)"} +{"state": [{"context": ["ι : Type u_1", "G : ι → Type u_2", "H : Type u_3", "K : Type u_4", "inst✝² : Monoid K", "inst✝¹ : (i : ι) → Monoid (G i)", "inst✝ : Monoid H", "φ : (i : ι) → H →* G i", "x✝ : PushoutI φ →* K"], "goal": "((fun f => lift (↑f).1 (↑f).2 ⋯) ((fun f => ⟨(fun i => f.comp (of i), f.comp (base φ)), ⋯⟩) x✝)).comp (base φ) = x✝.comp (base φ)"}], "premise": [128588], "state_str": "ι : Type u_1\nG : ι → Type u_2\nH : Type u_3\nK : Type u_4\ninst✝² : Monoid K\ninst✝¹ : (i : ι) → Monoid (G i)\ninst✝ : Monoid H\nφ : (i : ι) → H →* G i\nx✝ : PushoutI φ →* K\n⊢ ((fun f => lift (↑f).1 (↑f).2 ⋯) ((fun f => ⟨(fun i => f.comp (of i), f.comp (base φ)), ⋯⟩) x✝)).comp (base φ) =\n x✝.comp (base φ)"} +{"state": [{"context": ["ι : Type u_1", "G : ι → Type u_2", "H : Type u_3", "K : Type u_4", "inst✝² : Monoid K", "inst✝¹ : (i : ι) → Monoid (G i)", "inst✝ : Monoid H", "φ : (i : ι) → H →* G i", "x✝ : { f // ∀ (i : ι), (f.1 i).comp (φ i) = f.2 }", "fst✝ : (i : ι) → G i →* K", "snd✝ : H →* K", "property✝ : ∀ (i : ι), ((fst✝, snd✝).1 i).comp (φ i) = (fst✝, snd✝).2"], "goal": "(fun f => ⟨(fun i => f.comp (of i), f.comp (base φ)), ⋯⟩) ((fun f => lift (↑f).1 (↑f).2 ⋯) ⟨(fst✝, snd✝), property✝⟩) = ⟨(fst✝, snd✝), property✝⟩"}], "premise": [24, 128588], "state_str": "ι : Type u_1\nG : ι → Type u_2\nH : Type u_3\nK : Type u_4\ninst✝² : Monoid K\ninst✝¹ : (i : ι) → Monoid (G i)\ninst✝ : Monoid H\nφ : (i : ι) → H →* G i\nx✝ : { f // ∀ (i : ι), (f.1 i).comp (φ i) = f.2 }\nfst✝ : (i : ι) → G i →* K\nsnd✝ : H →* K\nproperty✝ : ∀ (i : ι), ((fst✝, snd✝).1 i).comp (φ i) = (fst✝, snd✝).2\n⊢ (fun f => ⟨(fun i => f.comp (of i), f.comp (base φ)), ⋯⟩)\n ((fun f => lift (↑f).1 (↑f).2 ⋯) ⟨(fst✝, snd✝), property✝⟩) =\n ⟨(fst✝, snd✝), property✝⟩"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "a : α", "k n : ℕ"], "goal": "replicate k a ≤ replicate n a ↔ List.replicate k a <+ List.replicate n a"}], "premise": [1713, 137929, 137944], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\na : α\nk n : ℕ\n⊢ replicate k a ≤ replicate n a ↔ List.replicate k a <+ List.replicate n a"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N"], "goal": "∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [70039], "state_str": "n m N : ℕ\na : ZMod N\n⊢ ∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N"], "goal": "∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [3636], "state_str": "case inr\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\n⊢ ∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0"], "goal": "∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [3616], "state_str": "case inr\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\n⊢ ∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀"], "goal": "∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [3617], "state_str": "case inr.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\n⊢ ∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀"], "goal": "∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [1673, 1674, 1717, 2574, 74464, 111256, 119703, 119707, 128974, 138376, 142648], "state_str": "case inr.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\n⊢ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀", "hu₀ : IsUnit ↑a₀"], "goal": "∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [119707, 136229], "state_str": "case inr.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\nhu₀ : IsUnit ↑a₀\n⊢ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀", "hu₀ : IsUnit ↑a₀", "u : (ZMod N)ˣ", "hu : (unitsMap ⋯) u = hu₀.unit"], "goal": "∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [116758, 117086, 120376, 120521, 136225], "state_str": "case inr.intro.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\nhu₀ : IsUnit ↑a₀\nu : (ZMod N)ˣ\nhu : (unitsMap ⋯) u = hu₀.unit\n⊢ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀", "hu₀ : IsUnit ↑a₀", "u : (ZMod N)ˣ", "hu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀"], "goal": "∃ u, IsUnit u ∧ a = u * ↑d"}], "premise": [120487], "state_str": "case inr.intro.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\nhu₀ : IsUnit ↑a₀\nu : (ZMod N)ˣ\nhu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀\n⊢ ∃ u, IsUnit u ∧ a = u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀", "hu₀ : IsUnit ↑a₀", "u : (ZMod N)ˣ", "hu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀"], "goal": "a = ↑u * ↑d"}], "premise": [119707, 138292, 138333, 142648], "state_str": "case inr.intro.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\nhu₀ : IsUnit ↑a₀\nu : (ZMod N)ˣ\nhu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀\n⊢ a = ↑u * ↑d"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀", "hu₀ : IsUnit ↑a₀", "u : (ZMod N)ˣ", "hu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀"], "goal": "d * a₀ % N = d * (↑u).val % N"}], "premise": [4497, 145102], "state_str": "case inr.intro.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\nhu₀ : IsUnit ↑a₀\nu : (ZMod N)ˣ\nhu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀\n⊢ d * a₀ % N = d * (↑u).val % N"} +{"state": [{"context": ["n m N : ℕ", "a : ZMod N", "hN : N ≠ 0", "this : NeZero N", "d : ℕ := a.val.gcd N", "hd : d ≠ 0", "a₀ : ℕ", "ha₀ : a.val = d * a₀", "N₀ : ℕ", "hN₀ : N = d * N₀", "hu₀ : IsUnit ↑a₀", "u : (ZMod N)ˣ", "hu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀"], "goal": "a₀ % N₀ = (↑u).val % N₀"}], "premise": [138302, 138308, 138333], "state_str": "case inr.intro.intro.intro\nn m N : ℕ\na : ZMod N\nhN : N ≠ 0\nthis : NeZero N\nd : ℕ := a.val.gcd N\nhd : d ≠ 0\na₀ : ℕ\nha₀ : a.val = d * a₀\nN₀ : ℕ\nhN₀ : N = d * N₀\nhu₀ : IsUnit ↑a₀\nu : (ZMod N)ˣ\nhu : (castHom ⋯ (ZMod N₀)) ↑u = ↑a₀\n⊢ a₀ % N₀ = (↑u).val % N₀"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "inst✝⁴ : Star R", "inst✝³ : AddMonoid A", "inst✝² : StarAddMonoid A", "inst✝¹ : SMul R A", "inst✝ : StarModule R A", "r : R", "hr : IsSelfAdjoint r", "x : A", "hx : IsSelfAdjoint x"], "goal": "IsSelfAdjoint (r • x)"}], "premise": [111020, 111581, 111582], "state_str": "R : Type u_1\nA : Type u_2\ninst✝⁴ : Star R\ninst✝³ : AddMonoid A\ninst✝² : StarAddMonoid A\ninst✝¹ : SMul R A\ninst✝ : StarModule R A\nr : R\nhr : IsSelfAdjoint r\nx : A\nhx : IsSelfAdjoint x\n⊢ IsSelfAdjoint (r • x)"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "J : GrothendieckTopology C", "A : Type u'", "inst✝¹ : Category.{v', u'} A", "inst✝ : ConcreteCategory A", "F G : Cᵒᵖ ⥤ A", "f : F ⟶ G", "U : C", "s : (forget A).obj (F.obj (op U))", "V : C", "i : V ⟶ U"], "goal": "(imageSieve f ((f.app (op U)) s)).arrows i ↔ ⊤.arrows i"}], "premise": [20011, 90667, 91053], "state_str": "case h\nC : Type u\ninst✝² : Category.{v, u} C\nJ : GrothendieckTopology C\nA : Type u'\ninst✝¹ : Category.{v', u'} A\ninst✝ : ConcreteCategory A\nF G : Cᵒᵖ ⥤ A\nf : F ⟶ G\nU : C\ns : (forget A).obj (F.obj (op U))\nV : C\ni : V ⟶ U\n⊢ (imageSieve f ((f.app (op U)) s)).arrows i ↔ ⊤.arrows i"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "J : GrothendieckTopology C", "A : Type u'", "inst✝¹ : Category.{v', u'} A", "inst✝ : ConcreteCategory A", "F G : Cᵒᵖ ⥤ A", "f : F ⟶ G", "U : C", "s : (forget A).obj (F.obj (op U))", "V : C", "i : V ⟶ U"], "goal": "∃ t, (f.app (op V)) t = (G.map i.op) ((f.app (op U)) s)"}], "premise": [97888], "state_str": "case h\nC : Type u\ninst✝² : Category.{v, u} C\nJ : GrothendieckTopology C\nA : Type u'\ninst✝¹ : Category.{v', u'} A\ninst✝ : ConcreteCategory A\nF G : Cᵒᵖ ⥤ A\nf : F ⟶ G\nU : C\ns : (forget A).obj (F.obj (op U))\nV : C\ni : V ⟶ U\n⊢ ∃ t, (f.app (op V)) t = (G.map i.op) ((f.app (op U)) s)"} +{"state": [{"context": ["n m : ℕ", "p i : Fin n", "h : p < i", "hi : optParam (i.castSucc ≠ 0) ⋯"], "goal": "p.predAbove i.castSucc = i.castSucc.pred hi"}], "premise": [1674, 4096, 143061], "state_str": "n m : ℕ\np i : Fin n\nh : p < i\nhi : optParam (i.castSucc ≠ 0) ⋯\n⊢ p.predAbove i.castSucc = i.castSucc.pred hi"} +{"state": [{"context": ["A : Type u_1", "B : Type u_2", "C : Type u_3", "inst✝² : CommRing A", "inst✝¹ : CommRing B", "inst✝ : CommRing C", "g : B →+* C", "f : A →+* B", "hg : g.FinitePresentation", "hf : f.FinitePresentation", "ins1 : Algebra A B := f.toAlgebra", "ins2 : Algebra B C := g.toAlgebra", "ins3 : Algebra A C := (g.comp f).toAlgebra", "a : A", "b : B", "c : C"], "goal": "(a • b) • c = a • b • c"}], "premise": [119703, 121165], "state_str": "A : Type u_1\nB : Type u_2\nC : Type u_3\ninst✝² : CommRing A\ninst✝¹ : CommRing B\ninst✝ : CommRing C\ng : B →+* C\nf : A →+* B\nhg : g.FinitePresentation\nhf : f.FinitePresentation\nins1 : Algebra A B := f.toAlgebra\nins2 : Algebra B C := g.toAlgebra\nins3 : Algebra A C := (g.comp f).toAlgebra\na : A\nb : B\nc : C\n⊢ (a • b) • c = a • b • c"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝ : DivisionMonoid α", "s t : Set α"], "goal": "univ / univ = univ"}], "premise": [119790], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝ : DivisionMonoid α\ns t : Set α\n⊢ univ / univ = univ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "β₂ : Type u_3", "γ : Type u_4", "ι : Sort u_5", "ι' : Sort u_6", "κ : ι → Sort u_7", "κ' : ι' → Sort u_8", "inst✝ : CompleteLattice α", "f✝ g✝ s t : ι → α", "a b : α", "g : β → α", "f : ι → β"], "goal": "⨆ b ∈ range f, g b = ⨆ i, g (f i)"}], "premise": [19279, 19390], "state_str": "α : Type u_1\nβ : Type u_2\nβ₂ : Type u_3\nγ : Type u_4\nι : Sort u_5\nι' : Sort u_6\nκ : ι → Sort u_7\nκ' : ι' → Sort u_8\ninst✝ : CompleteLattice α\nf✝ g✝ s t : ι → α\na b : α\ng : β → α\nf : ι → β\n⊢ ⨆ b ∈ range f, g b = ⨆ i, g (f i)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "A : Type u_3", "K : Type u_4", "inst✝¹ : Semiring R", "inst✝ : Semiring S", "p : R[X]", "hp : p ≠ 0", "s : R", "h : p.scaleRoots s = 0"], "goal": "False"}], "premise": [1673, 1681, 102195], "state_str": "R : Type u_1\nS : Type u_2\nA : Type u_3\nK : Type u_4\ninst✝¹ : Semiring R\ninst✝ : Semiring S\np : R[X]\nhp : p ≠ 0\ns : R\nh : p.scaleRoots s = 0\n⊢ False"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "A : Type u_3", "K : Type u_4", "inst✝¹ : Semiring R", "inst✝ : Semiring S", "p : R[X]", "hp : p ≠ 0", "s : R", "h : p.scaleRoots s = 0", "this✝ : p.coeff p.natDegree ≠ 0", "this : (p.scaleRoots s).coeff p.natDegree = 0"], "goal": "False"}], "premise": [74553], "state_str": "R : Type u_1\nS : Type u_2\nA : Type u_3\nK : Type u_4\ninst✝¹ : Semiring R\ninst✝ : Semiring S\np : R[X]\nhp : p ≠ 0\ns : R\nh : p.scaleRoots s = 0\nthis✝ : p.coeff p.natDegree ≠ 0\nthis : (p.scaleRoots s).coeff p.natDegree = 0\n⊢ False"} +{"state": [{"context": ["C : Type u", "inst✝⁵ : Category.{v, u} C", "ι : Type u_1", "s : ι → C", "inst✝⁴ : Preadditive C", "inst✝³ : HasFiniteBiproducts C", "o : HomOrthogonal s", "α β γ : Type", "inst✝² : Finite α", "inst✝¹ : Fintype β", "inst✝ : Finite γ", "f : α → ι", "g : β → ι", "h : γ → ι", "z : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)", "w : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)", "c : γ", "a : α", "j_property : a ∈ f ⁻¹' {h c}"], "goal": "o.matrixDecomposition (z ≫ w) (h c) ⟨c, ⋯⟩ ⟨a, j_property⟩ = (o.matrixDecomposition w (h c) * o.matrixDecomposition z (h c)) ⟨c, ⋯⟩ ⟨a, j_property⟩"}], "premise": [131591, 133512], "state_str": "case a.mk.refl.mk\nC : Type u\ninst✝⁵ : Category.{v, u} C\nι : Type u_1\ns : ι → C\ninst✝⁴ : Preadditive C\ninst✝³ : HasFiniteBiproducts C\no : HomOrthogonal s\nα β γ : Type\ninst✝² : Finite α\ninst✝¹ : Fintype β\ninst✝ : Finite γ\nf : α → ι\ng : β → ι\nh : γ → ι\nz : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)\nw : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)\nc : γ\na : α\nj_property : a ∈ f ⁻¹' {h c}\n⊢ o.matrixDecomposition (z ≫ w) (h c) ⟨c, ⋯⟩ ⟨a, j_property⟩ =\n (o.matrixDecomposition w (h c) * o.matrixDecomposition z (h c)) ⟨c, ⋯⟩ ⟨a, j_property⟩"} +{"state": [{"context": ["C : Type u", "inst✝⁵ : Category.{v, u} C", "ι : Type u_1", "s : ι → C", "inst✝⁴ : Preadditive C", "inst✝³ : HasFiniteBiproducts C", "o : HomOrthogonal s", "α β γ : Type", "inst✝² : Finite α", "inst✝¹ : Fintype β", "inst✝ : Finite γ", "f : α → ι", "g : β → ι", "h : γ → ι", "z : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)", "w : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)", "c : γ", "a : α", "j_property✝ : a ∈ f ⁻¹' {h c}", "j_property : f a = h c"], "goal": "o.matrixDecomposition (z ≫ w) (h c) ⟨c, ⋯⟩ ⟨a, j_property✝⟩ = (o.matrixDecomposition w (h c) * o.matrixDecomposition z (h c)) ⟨c, ⋯⟩ ⟨a, j_property✝⟩"}], "premise": [91581, 96173, 96174, 96175, 97613, 97736, 126920, 142237], "state_str": "case a.mk.refl.mk\nC : Type u\ninst✝⁵ : Category.{v, u} C\nι : Type u_1\ns : ι → C\ninst✝⁴ : Preadditive C\ninst✝³ : HasFiniteBiproducts C\no : HomOrthogonal s\nα β γ : Type\ninst✝² : Finite α\ninst✝¹ : Fintype β\ninst✝ : Finite γ\nf : α → ι\ng : β → ι\nh : γ → ι\nz : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)\nw : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)\nc : γ\na : α\nj_property✝ : a ∈ f ⁻¹' {h c}\nj_property : f a = h c\n⊢ o.matrixDecomposition (z ≫ w) (h c) ⟨c, ⋯⟩ ⟨a, j_property✝⟩ =\n (o.matrixDecomposition w (h c) * o.matrixDecomposition z (h c)) ⟨c, ⋯⟩ ⟨a, j_property✝⟩"} +{"state": [{"context": ["C : Type u", "inst✝⁵ : Category.{v, u} C", "ι : Type u_1", "s : ι → C", "inst✝⁴ : Preadditive C", "inst✝³ : HasFiniteBiproducts C", "o : HomOrthogonal s", "α β γ : Type", "inst✝² : Finite α", "inst✝¹ : Fintype β", "inst✝ : Finite γ", "f : α → ι", "g : β → ι", "h : γ → ι", "z : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)", "w : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)", "c : γ", "a : α", "j_property✝ : a ∈ f ⁻¹' {h c}", "j_property : f a = h c"], "goal": "eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ w ≫ biproduct.π (fun b => s (h b)) c = ∑ x : ↑(g ⁻¹' {h c}), eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ biproduct.π (fun b => s (g b)) ↑x ≫ biproduct.ι (fun a => s (g a)) ↑x ≫ w ≫ biproduct.π (fun b => s (h b)) c"}], "premise": [92735, 96175], "state_str": "case a.mk.refl.mk\nC : Type u\ninst✝⁵ : Category.{v, u} C\nι : Type u_1\ns : ι → C\ninst✝⁴ : Preadditive C\ninst✝³ : HasFiniteBiproducts C\no : HomOrthogonal s\nα β γ : Type\ninst✝² : Finite α\ninst✝¹ : Fintype β\ninst✝ : Finite γ\nf : α → ι\ng : β → ι\nh : γ → ι\nz : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)\nw : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)\nc : γ\na : α\nj_property✝ : a ∈ f ⁻¹' {h c}\nj_property : f a = h c\n⊢ eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ w ≫ biproduct.π (fun b => s (h b)) c =\n ∑ x : ↑(g ⁻¹' {h c}),\n eqToHom ⋯ ≫\n biproduct.ι (fun a => s (f a)) a ≫\n z ≫\n biproduct.π (fun b => s (g b)) ↑x ≫ biproduct.ι (fun a => s (g a)) ↑x ≫ w ≫ biproduct.π (fun b => s (h b)) c"} +{"state": [{"context": ["C : Type u", "inst✝⁵ : Category.{v, u} C", "ι : Type u_1", "s : ι → C", "inst✝⁴ : Preadditive C", "inst✝³ : HasFiniteBiproducts C", "o : HomOrthogonal s", "α β γ : Type", "inst✝² : Finite α", "inst✝¹ : Fintype β", "inst✝ : Finite γ", "f : α → ι", "g : β → ι", "h : γ → ι", "z : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)", "w : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)", "c : γ", "a : α", "j_property✝ : a ∈ f ⁻¹' {h c}", "j_property : f a = h c"], "goal": "eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ ((∑ j : β, biproduct.π (fun b => s (g b)) j ≫ biproduct.ι (fun b => s (g b)) j) ≫ w) ≫ biproduct.π (fun b => s (h b)) c = ∑ x : ↑(g ⁻¹' {h c}), eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ biproduct.π (fun b => s (g b)) ↑x ≫ biproduct.ι (fun a => s (g a)) ↑x ≫ w ≫ biproduct.π (fun b => s (h b)) c"}], "premise": [91609, 91610], "state_str": "case a.mk.refl.mk\nC : Type u\ninst✝⁵ : Category.{v, u} C\nι : Type u_1\ns : ι → C\ninst✝⁴ : Preadditive C\ninst✝³ : HasFiniteBiproducts C\no : HomOrthogonal s\nα β γ : Type\ninst✝² : Finite α\ninst✝¹ : Fintype β\ninst✝ : Finite γ\nf : α → ι\ng : β → ι\nh : γ → ι\nz : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)\nw : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)\nc : γ\na : α\nj_property✝ : a ∈ f ⁻¹' {h c}\nj_property : f a = h c\n⊢ eqToHom ⋯ ≫\n biproduct.ι (fun a => s (f a)) a ≫\n z ≫\n ((∑ j : β, biproduct.π (fun b => s (g b)) j ≫ biproduct.ι (fun b => s (g b)) j) ≫ w) ≫\n biproduct.π (fun b => s (h b)) c =\n ∑ x : ↑(g ⁻¹' {h c}),\n eqToHom ⋯ ≫\n biproduct.ι (fun a => s (f a)) a ≫\n z ≫\n biproduct.π (fun b => s (g b)) ↑x ≫ biproduct.ι (fun a => s (g a)) ↑x ≫ w ≫ biproduct.π (fun b => s (h b)) c"} +{"state": [{"context": ["C : Type u", "inst✝⁵ : Category.{v, u} C", "ι : Type u_1", "s : ι → C", "inst✝⁴ : Preadditive C", "inst✝³ : HasFiniteBiproducts C", "o : HomOrthogonal s", "α β γ : Type", "inst✝² : Finite α", "inst✝¹ : Fintype β", "inst✝ : Finite γ", "f : α → ι", "g : β → ι", "h : γ → ι", "z : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)", "w : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)", "c : γ", "a : α", "j_property✝ : a ∈ f ⁻¹' {h c}", "j_property : f a = h c"], "goal": "∑ j : β, eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ ((biproduct.π (fun b => s (g b)) j ≫ biproduct.ι (fun b => s (g b)) j) ≫ w) ≫ biproduct.π (fun b => s (h b)) c = ∑ x : ↑(g ⁻¹' {h c}), eqToHom ⋯ ≫ biproduct.ι (fun a => s (f a)) a ≫ z ≫ biproduct.π (fun b => s (g b)) ↑x ≫ biproduct.ι (fun a => s (g a)) ↑x ≫ w ≫ biproduct.π (fun b => s (h b)) c"}], "premise": [127066], "state_str": "case a.mk.refl.mk\nC : Type u\ninst✝⁵ : Category.{v, u} C\nι : Type u_1\ns : ι → C\ninst✝⁴ : Preadditive C\ninst✝³ : HasFiniteBiproducts C\no : HomOrthogonal s\nα β γ : Type\ninst✝² : Finite α\ninst✝¹ : Fintype β\ninst✝ : Finite γ\nf : α → ι\ng : β → ι\nh : γ → ι\nz : (⨁ fun a => s (f a)) ⟶ ⨁ fun b => s (g b)\nw : (⨁ fun b => s (g b)) ⟶ ⨁ fun c => s (h c)\nc : γ\na : α\nj_property✝ : a ∈ f ⁻¹' {h c}\nj_property : f a = h c\n⊢ ∑ j : β,\n eqToHom ⋯ ≫\n biproduct.ι (fun a => s (f a)) a ≫\n z ≫\n ((biproduct.π (fun b => s (g b)) j ≫ biproduct.ι (fun b => s (g b)) j) ≫ w) ≫\n biproduct.π (fun b => s (h b)) c =\n ∑ x : ↑(g ⁻¹' {h c}),\n eqToHom ⋯ ≫\n biproduct.ι (fun a => s (f a)) a ≫\n z ≫\n biproduct.π (fun b => s (g b)) ↑x ≫ biproduct.ι (fun a => s (g a)) ↑x ≫ w ≫ biproduct.π (fun b => s (h b)) c"} +{"state": [{"context": ["G : Type u_1", "inst✝⁵ : MeasurableSpace G", "inst✝⁴ : Group G", "inst✝³ : MeasurableMul₂ G", "μ ν : Measure G", "inst✝² : SFinite ν", "inst✝¹ : SFinite μ", "s : Set G", "inst✝ : μ.IsMulRightInvariant"], "goal": "MeasurePreserving ?m.119417 ?m.119413 (?m.119343.prod ?m.119344)"}], "premise": [32010], "state_str": "G : Type u_1\ninst✝⁵ : MeasurableSpace G\ninst✝⁴ : Group G\ninst✝³ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝² : SFinite ν\ninst✝¹ : SFinite μ\ns : Set G\ninst✝ : μ.IsMulRightInvariant\n⊢ MeasurePreserving ?m.119417 ?m.119413 (?m.119343.prod ?m.119344)"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "κ : ι → Sort u_5", "r : α → β → Prop", "s s₁ s₂ : Set α", "t t₁ t₂ : Set β", "c d : Concept α β r"], "goal": "c.toProd.2 ⊂ d.toProd.2 ↔ d < c"}], "premise": [1713, 12387, 14274, 19976], "state_str": "ι : Sort u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nκ : ι → Sort u_5\nr : α → β → Prop\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nc d : Concept α β r\n⊢ c.toProd.2 ⊂ d.toProd.2 ↔ d < c"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "ι : Type u_5", "κ : Type u_6", "inst✝¹ : DistribLattice α", "inst✝ : OrderBot α", "s✝ : Finset ι", "t : Finset κ", "f✝ : ι → α", "g : κ → α", "a✝ : α", "s : Finset ι", "f : ι → α", "a : α"], "goal": "a ⊓ s.sup f = s.sup fun i => a ⊓ f i"}], "premise": [14615, 18841, 138844, 139650, 139651], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nι : Type u_5\nκ : Type u_6\ninst✝¹ : DistribLattice α\ninst✝ : OrderBot α\ns✝ : Finset ι\nt : Finset κ\nf✝ : ι → α\ng : κ → α\na✝ : α\ns : Finset ι\nf : ι → α\na : α\n⊢ a ⊓ s.sup f = s.sup fun i => a ⊓ f i"} +{"state": [{"context": ["A : Type u_1", "inst✝³ : AddCommGroup A", "inst✝² : Module ℂ A", "inst✝¹ : StarAddMonoid A", "inst✝ : StarModule ℂ A", "a : ↥(skewAdjoint A)"], "goal": "I • ↑(negISMul a) = ↑a"}], "premise": [108340, 110032, 118909, 118910, 119769, 148312, 148803], "state_str": "A : Type u_1\ninst✝³ : AddCommGroup A\ninst✝² : Module ℂ A\ninst✝¹ : StarAddMonoid A\ninst✝ : StarModule ℂ A\na : ↥(skewAdjoint A)\n⊢ I • ↑(negISMul a) = ↑a"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : Finite α", "s : Set α", "t : Set β", "h1 : lift.{max v w, u} #α = lift.{max u w, v} #β", "h2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t"], "goal": "lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"}], "premise": [141384], "state_str": "α : Type u\nβ : Type v\ninst✝ : Finite α\ns : Set α\nt : Set β\nh1 : lift.{max v w, u} #α = lift.{max u w, v} #β\nh2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t\n⊢ lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : Finite α", "s : Set α", "t : Set β", "h1 : lift.{max v w, u} #α = lift.{max u w, v} #β", "h2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t", "val✝ : Fintype α"], "goal": "lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"}], "premise": [1673, 48597], "state_str": "case intro\nα : Type u\nβ : Type v\ninst✝ : Finite α\ns : Set α\nt : Set β\nh1 : lift.{max v w, u} #α = lift.{max u w, v} #β\nh2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t\nval✝ : Fintype α\n⊢ lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : Finite α", "s : Set α", "t : Set β", "h1 : lift.{max v w, u} #α = lift.{max u w, v} #β", "h2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t", "val✝ : Fintype α", "e : α ≃ β", "this : Fintype β := Fintype.ofEquiv α e"], "goal": "lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"}], "premise": [2100, 141343], "state_str": "case intro.intro\nα : Type u\nβ : Type v\ninst✝ : Finite α\ns : Set α\nt : Set β\nh1 : lift.{max v w, u} #α = lift.{max u w, v} #β\nh2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t\nval✝ : Fintype α\ne : α ≃ β\nthis : Fintype β := Fintype.ofEquiv α e\n⊢ lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : Finite α", "s : Set α", "t : Set β", "h2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t", "val✝ : Fintype α", "e : α ≃ β", "this : Fintype β := Fintype.ofEquiv α e", "h1 : Fintype.card α = Fintype.card β"], "goal": "lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"}], "premise": [48619, 48725, 48746, 111254, 134992, 138678, 140846, 141359, 141428], "state_str": "case intro.intro\nα : Type u\nβ : Type v\ninst✝ : Finite α\ns : Set α\nt : Set β\nh2 : lift.{max v w, u} #↑s = lift.{max u w, v} #↑t\nval✝ : Fintype α\ne : α ≃ β\nthis : Fintype β := Fintype.ofEquiv α e\nh1 : Fintype.card α = Fintype.card β\n⊢ lift.{max v w, u} #↑sᶜ = lift.{max u w, v} #↑tᶜ"} +{"state": [{"context": ["i j : Fin 2"], "goal": "(LinearMap.toMatrix basisOneI basisOneI) conjAe.toLinearMap i j = !![1, 0; 0, -1] i j"}], "premise": [87070], "state_str": "case a\ni j : Fin 2\n⊢ (LinearMap.toMatrix basisOneI basisOneI) conjAe.toLinearMap i j = !![1, 0; 0, -1] i j"} +{"state": [{"context": [], "goal": "size ≤ 2 ^ 64"}], "premise": [302], "state_str": "⊢ size ≤ 2 ^ 64"} +{"state": [{"context": [], "goal": "2 ^ System.Platform.numBits ≤ 2 ^ 64"}], "premise": [3863], "state_str": "⊢ 2 ^ System.Platform.numBits ≤ 2 ^ 64"} +{"state": [{"context": [], "goal": "System.Platform.numBits ≤ 64"}], "premise": [2159], "state_str": "⊢ System.Platform.numBits ≤ 64"} +{"state": [{"context": [], "goal": "Tendsto (fun s => (s - 1) * riemannZeta s) (𝓝[≠] 1) (𝓝 1)"}], "premise": [23503], "state_str": "⊢ Tendsto (fun s => (s - 1) * riemannZeta s) (𝓝[≠] 1) (𝓝 1)"} +{"state": [{"context": ["n : Type u_1", "α : Type u_2", "inst✝² : DecidableEq n", "inst✝¹ : Fintype n", "inst✝ : CommRing α", "A B : Matrix n n α"], "goal": "(X • A.map ⇑C + B.map ⇑C).det.natDegree ≤ Fintype.card n"}], "premise": [86438], "state_str": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ (X • A.map ⇑C + B.map ⇑C).det.natDegree ≤ Fintype.card n"} +{"state": [{"context": ["n : Type u_1", "α : Type u_2", "inst✝² : DecidableEq n", "inst✝¹ : Fintype n", "inst✝ : CommRing α", "A B : Matrix n n α"], "goal": "(∑ σ : Equiv.Perm n, sign σ • ∏ i : n, (X • A.map ⇑C + B.map ⇑C) (σ i) i).natDegree ≤ Fintype.card n"}], "premise": [101021], "state_str": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ (∑ σ : Equiv.Perm n, sign σ • ∏ i : n, (X • A.map ⇑C + B.map ⇑C) (σ i) i).natDegree ≤ Fintype.card n"} +{"state": [{"context": ["n : Type u_1", "α : Type u_2", "inst✝² : DecidableEq n", "inst✝¹ : Fintype n", "inst✝ : CommRing α", "A B : Matrix n n α"], "goal": "Finset.fold max 0 (natDegree ∘ fun σ => sign σ • ∏ i : n, (X • A.map ⇑C + B.map ⇑C) (σ i) i) Finset.univ ≤ Fintype.card n"}], "premise": [106537], "state_str": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ Finset.fold max 0 (natDegree ∘ fun σ => sign σ • ∏ i : n, (X • A.map ⇑C + B.map ⇑C) (σ i) i) Finset.univ ≤\n Fintype.card n"} +{"state": [{"context": ["n : Type u_1", "α : Type u_2", "inst✝² : DecidableEq n", "inst✝¹ : Fintype n", "inst✝ : CommRing α", "A B : Matrix n n α"], "goal": "∀ x ∈ Multiset.map (natDegree ∘ fun σ => sign σ • ∏ i : n, (X • A.map ⇑C + B.map ⇑C) (σ i) i) Finset.univ.val, x ≤ Fintype.card n"}], "premise": [1670, 2013, 2050, 20003, 137990, 137997, 140823], "state_str": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ ∀ x ∈ Multiset.map (natDegree ∘ fun σ => sign σ • ∏ i : n, (X • A.map ⇑C + B.map ⇑C) (σ i) i) Finset.univ.val,\n x ≤ Fintype.card n"} +{"state": [{"context": ["n : Type u_1", "α : Type u_2", "inst✝² : DecidableEq n", "inst✝¹ : Fintype n", "inst✝ : CommRing α", "A B : Matrix n n α", "g : Equiv.Perm n", "i : n", "x✝ : i ∈ Finset.univ"], "goal": "((X • A.map ⇑C + B.map ⇑C) (g i) i).natDegree ≤ 1"}], "premise": [118863, 142132, 142139, 142140], "state_str": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\ni : n\nx✝ : i ∈ Finset.univ\n⊢ ((X • A.map ⇑C + B.map ⇑C) (g i) i).natDegree ≤ 1"} +{"state": [{"context": ["n : Type u_1", "α : Type u_2", "inst✝² : DecidableEq n", "inst✝¹ : Fintype n", "inst✝ : CommRing α", "A B : Matrix n n α", "g : Equiv.Perm n", "i : n", "x✝ : i ∈ Finset.univ"], "goal": "(X * C (A (g i) i) + C (B (g i) i)).natDegree ≤ 1"}], "premise": [142635], "state_str": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\ni : n\nx✝ : i ∈ Finset.univ\n⊢ (X * C (A (g i) i) + C (B (g i) i)).natDegree ≤ 1"} +{"state": [{"context": ["b : Bool", "m : ℕ", "h : m ≠ 0", "n : ℕ"], "goal": "shiftLeft' b m n ≠ 0"}], "premise": [144109], "state_str": "b : Bool\nm : ℕ\nh : m ≠ 0\nn : ℕ\n⊢ shiftLeft' b m n ≠ 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁴ : TopologicalSpace α", "ι : Type u_5", "π : ι → Type u_6", "inst✝³ : (i : ι) → TopologicalSpace (π i)", "inst✝² : TopologicalSpace β", "inst✝¹ : TopologicalSpace γ", "inst✝ : TopologicalSpace δ", "f : α → β", "g : β → γ", "hg : Inducing g", "s : Set α"], "goal": "ContinuousOn f s ↔ ContinuousOn (g ∘ f) s"}], "premise": [57356], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁴ : TopologicalSpace α\nι : Type u_5\nπ : ι → Type u_6\ninst✝³ : (i : ι) → TopologicalSpace (π i)\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → β\ng : β → γ\nhg : Inducing g\ns : Set α\n⊢ ContinuousOn f s ↔ ContinuousOn (g ∘ f) s"} +{"state": [{"context": ["α : Type u_1", "size✝ : ℕ", "l : Ordnode α", "x : α", "r : Ordnode α", "r' : List α"], "goal": "foldr List.cons (node size✝ l x r) r' = (node size✝ l x r).toList ++ r'"}], "premise": [2624, 2627], "state_str": "α : Type u_1\nsize✝ : ℕ\nl : Ordnode α\nx : α\nr : Ordnode α\nr' : List α\n⊢ foldr List.cons (node size✝ l x r) r' = (node size✝ l x r).toList ++ r'"} +{"state": [{"context": ["a b m n p : ℕ", "β : Type u_1", "inst✝ : CommMonoid β", "f : ℕ → β", "h_mult : ∀ (x y : ℕ), x.Coprime y → f (x * y) = f x * f y", "hf0 : f 0 = 1", "hf1 : f 1 = 1"], "goal": "f n = n.factorization.prod fun p k => f (p ^ k)"}], "premise": [70039], "state_str": "a b m n p : ℕ\nβ : Type u_1\ninst✝ : CommMonoid β\nf : ℕ → β\nh_mult : ∀ (x y : ℕ), x.Coprime y → f (x * y) = f x * f y\nhf0 : f 0 = 1\nhf1 : f 1 = 1\n⊢ f n = n.factorization.prod fun p k => f (p ^ k)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : TopologicalSpace α", "inst✝⁶ : BorelSpace α", "inst✝⁵ : SecondCountableTopologyEither α E", "inst✝⁴ : CompactSpace α", "inst✝³ : IsFiniteMeasure μ", "𝕜 : Type u_5", "inst✝² : Fact (1 ≤ p)", "inst✝¹ : NontriviallyNormedField 𝕜", "inst✝ : NormedSpace 𝕜 E"], "goal": "‖toLp p μ 𝕜‖ ≤ ↑(measureUnivNNReal μ) ^ p.toReal⁻¹"}], "premise": [31166], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : TopologicalSpace α\ninst✝⁶ : BorelSpace α\ninst✝⁵ : SecondCountableTopologyEither α E\ninst✝⁴ : CompactSpace α\ninst✝³ : IsFiniteMeasure μ\n𝕜 : Type u_5\ninst✝² : Fact (1 ≤ p)\ninst✝¹ : NontriviallyNormedField 𝕜\ninst✝ : NormedSpace 𝕜 E\n⊢ ‖toLp p μ 𝕜‖ ≤ ↑(measureUnivNNReal μ) ^ p.toReal⁻¹"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedAddCommGroup F", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : TopologicalSpace α", "inst✝⁶ : BorelSpace α", "inst✝⁵ : SecondCountableTopologyEither α E", "inst✝⁴ : CompactSpace α", "inst✝³ : IsFiniteMeasure μ", "𝕜 : Type u_5", "inst✝² : Fact (1 ≤ p)", "inst✝¹ : NontriviallyNormedField 𝕜", "inst✝ : NormedSpace 𝕜 E"], "goal": "‖BoundedContinuousFunction.toLp p μ 𝕜‖ ≤ ↑(measureUnivNNReal μ) ^ p.toReal⁻¹"}], "premise": [31155], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : TopologicalSpace α\ninst✝⁶ : BorelSpace α\ninst✝⁵ : SecondCountableTopologyEither α E\ninst✝⁴ : CompactSpace α\ninst✝³ : IsFiniteMeasure μ\n𝕜 : Type u_5\ninst✝² : Fact (1 ≤ p)\ninst✝¹ : NontriviallyNormedField 𝕜\ninst✝ : NormedSpace 𝕜 E\n⊢ ‖BoundedContinuousFunction.toLp p μ 𝕜‖ ≤ ↑(measureUnivNNReal μ) ^ p.toReal⁻¹"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖"], "goal": "Summable fun n => f n * z ^ n"}], "premise": [42680], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\n⊢ Summable fun n => f n * z ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖", "hw : 0 < ‖w‖"], "goal": "Summable fun n => f n * z ^ n"}], "premise": [34514], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\nhw : 0 < ‖w‖\n⊢ Summable fun n => f n * z ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖", "hw : 0 < ‖w‖", "C : ℝ", "hC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C"], "goal": "Summable fun n => f n * z ^ n"}], "premise": [64004], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\nhw : 0 < ‖w‖\nC : ℝ\nhC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C\n⊢ Summable fun n => f n * z ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖", "hw : 0 < ‖w‖", "C : ℝ", "hC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C"], "goal": "CauchySeq fun s => ∑ b ∈ s, f b * z ^ b"}], "premise": [1674, 34507, 106089], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\nhw : 0 < ‖w‖\nC : ℝ\nhC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C\n⊢ CauchySeq fun s => ∑ b ∈ s, f b * z ^ b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖", "hw : 0 < ‖w‖", "C : ℝ", "hC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C", "n : ℕ"], "goal": "‖f n * z ^ n‖ ≤ C * (‖z‖ / ‖w‖) ^ n"}], "premise": [43287, 43291, 117910, 117927], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\nhw : 0 < ‖w‖\nC : ℝ\nhC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C\nn : ℕ\n⊢ ‖f n * z ^ n‖ ≤ C * (‖z‖ / ‖w‖) ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖", "hw : 0 < ‖w‖", "C : ℝ", "hC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C", "n : ℕ"], "goal": "‖f n‖ * ‖z‖ ^ n ≤ C / ‖w‖ ^ n * ‖z‖ ^ n"}], "premise": [43287, 43291, 106022], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\nhw : 0 < ‖w‖\nC : ℝ\nhC : ∀ (n : ℕ), ‖f n * w ^ n‖ ≤ C\nn : ℕ\n⊢ ‖f n‖ * ‖z‖ ^ n �� C / ‖w‖ ^ n * ‖z‖ ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝¹ : NormedDivisionRing α", "inst✝ : CompleteSpace α", "f : ℕ → α", "w z : α", "h : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i", "hz : ‖z‖ < ‖w‖", "hw : 0 < ‖w‖", "C : ℝ", "hC : ∀ (n : ℕ), ‖f n‖ ≤ C / ‖w‖ ^ n", "n : ℕ"], "goal": "‖f n‖ * ‖z‖ ^ n ≤ C / ‖w‖ ^ n * ‖z‖ ^ n"}], "premise": [42680, 102622, 106802], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : NormedDivisionRing α\ninst✝ : CompleteSpace α\nf : ℕ → α\nw z : α\nh : CauchySeq fun n => ∑ i ∈ Finset.range n, f i * w ^ i\nhz : ‖z‖ < ‖w‖\nhw : 0 < ‖w‖\nC : ℝ\nhC : ∀ (n : ℕ), ‖f n‖ ≤ C / ‖w‖ ^ n\nn : ℕ\n⊢ ‖f n‖ * ‖z‖ ^ n ≤ C / ‖w‖ ^ n * ‖z‖ ^ n"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "h : eval {fun x => false} nil ∈ Submodule.span ℤ (eval {fun x => false} '' {m | m < nil})"], "goal": "False"}], "premise": [63542, 86713, 109877, 113018, 124819, 134108], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\nh : eval {fun x => false} nil ∈ Submodule.span ℤ (eval {fun x => false} '' {m | m < nil})\n⊢ False"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "δ : Type u_6", "inst✝⁵ : Lattice α", "inst✝⁴ : BoundedOrder α", "inst✝³ : Lattice β", "inst✝² : BoundedOrder β", "inst✝¹ : FunLike F α β", "inst✝ : BoundedLatticeHomClass F α β", "f : F", "a b : α", "h : Disjoint a b"], "goal": "Disjoint (f a) (f b)"}], "premise": [10482, 11638, 13483, 13485], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\nδ : Type u_6\ninst✝⁵ : Lattice α\ninst✝⁴ : BoundedOrder α\ninst✝³ : Lattice β\ninst✝² : BoundedOrder β\ninst✝¹ : FunLike F α β\ninst✝ : BoundedLatticeHomClass F α β\nf : F\na b : α\nh : Disjoint a b\n⊢ Disjoint (f a) (f b)"} +{"state": [{"context": ["α : Type u", "inst✝ : Ring α", "x : α", "n : ℕ"], "goal": "op ((x - 1) * ∑ i ∈ range n, x ^ i) = op (x ^ n - 1)"}], "premise": [112493], "state_str": "α : Type u\ninst✝ : Ring α\nx : α\nn : ℕ\n⊢ op ((x - 1) * ∑ i ∈ range n, x ^ i) = op (x ^ n - 1)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : CommMonoid α", "p : Finset β", "f : β → α"], "goal": "∏ i ∈ p, Associates.mk (f i) = Associates.mk (∏ i ∈ p, f i)"}], "premise": [1670, 1838], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : CommMonoid α\np : Finset β\nf : β → α\n⊢ ∏ i ∈ p, Associates.mk (f i) = Associates.mk (∏ i ∈ p, f i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : CommMonoid α", "p : Finset β", "f : β → α", "this : (fun i => Associates.mk (f i)) = Associates.mk ∘ f"], "goal": "∏ i ∈ p, Associates.mk (f i) = Associates.mk (∏ i ∈ p, f i)"}], "premise": [123922, 126882, 137997], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : CommMonoid α\np : Finset β\nf : β → α\nthis : (fun i => Associates.mk (f i)) = Associates.mk ∘ f\n⊢ ∏ i ∈ p, Associates.mk (f i) = Associates.mk (∏ i ∈ p, f i)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹³ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹² : NormedAddCommGroup E", "inst✝¹¹ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝¹⁰ : NormedAddCommGroup F", "inst✝⁹ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace 𝕜 G'", "f✝ f₀ f₁ g✝ : E → F", "f'✝ f₀' f₁' g'✝ e : E →L[𝕜] F", "x✝ : E", "s t : Set E", "L L₁ L₂ : Filter E", "ι : Type u_6", "𝔸 : Type u_7", "𝔸' : Type u_8", "inst✝⁴ : NormedRing 𝔸", "inst✝³ : NormedCommRing 𝔸'", "inst✝² : NormedAlgebra 𝕜 𝔸", "inst✝¹ : NormedAlgebra 𝕜 𝔸'", "u✝ : Finset ι", "f : ι → E → 𝔸", "f' : ι → E →L[𝕜] 𝔸", "g : ι → E → 𝔸'", "g' : ι → E →L[𝕜] 𝔸'", "inst✝ : DecidableEq ι", "u : Multiset ι", "x : E", "h : ∀ i ∈ u, HasStrictFDerivAt (fun x => g i x) (g' i) x"], "goal": "HasStrictFDerivAt (fun x => (Multiset.map (fun x_1 => g x_1 x) u).prod) (Multiset.map (fun i => (Multiset.map (fun x_1 => g x_1 x) (u.erase i)).prod • g' i) u).sum x"}], "premise": [137997, 138037], "state_str": "𝕜 : Type u_1\ninst✝¹³ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹² : NormedAddCommGroup E\ninst✝¹¹ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹⁰ : NormedAddCommGroup F\ninst✝⁹ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g✝ : E → F\nf'✝ f₀' f₁' g'✝ e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\nι : Type u_6\n𝔸 : Type u_7\n𝔸' : Type u_8\ninst✝⁴ : NormedRing 𝔸\ninst✝³ : NormedCommRing 𝔸'\ninst✝² : NormedAlgebra 𝕜 𝔸\ninst✝¹ : NormedAlgebra 𝕜 𝔸'\nu✝ : Finset ι\nf : ι → E → 𝔸\nf' : ι → E →L[𝕜] 𝔸\ng : ι → E → 𝔸'\ng' : ι → E →L[𝕜] 𝔸'\ninst✝ : DecidableEq ι\nu : Multiset ι\nx : E\nh : ∀ i ∈ u, HasStrictFDerivAt (fun x => g i x) (g' i) x\n⊢ HasStrictFDerivAt (fun x => (Multiset.map (fun x_1 => g x_1 x) u).prod)\n (Multiset.map (fun i => (Multiset.map (fun x_1 => g x_1 x) (u.erase i)).prod • g' i) u).sum x"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁶ : RCLike 𝕜", "μ : Measure ℝ", "E : Type u_2", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : CompleteSpace E", "H : Type u_3", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "a b ε : ℝ", "bound : ℝ → ℝ", "F : 𝕜 → ℝ → E", "F' : ℝ → E", "x₀ : 𝕜", "ε_pos : 0 < ε", "hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))", "hF_int : IntervalIntegrable (F x₀) μ a b", "hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))", "h_lipsch : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → LipschitzOnWith (Real.nnabs (bound t)) (fun x => F x t) (ball x₀ ε)", "bound_integrable : IntervalIntegrable bound μ a b", "h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasDerivAt (fun x => F x t) (F' t) x₀"], "goal": "IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀"}], "premise": [26474, 32300], "state_str": "𝕜 : Type u_1\ninst✝⁶ : RCLike 𝕜\nμ : Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type u_3\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF : 𝕜 → ℝ → E\nF' : ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))\nhF_int : IntervalIntegrable (F x₀) μ a b\nhF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))\nh_lipsch : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → LipschitzOnWith (Real.nnabs (bound t)) (fun x => F x t) (ball x₀ ε)\nbound_integrable : IntervalIntegrable bound μ a b\nh_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasDerivAt (fun x => F x t) (F' t) x₀\n⊢ IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁶ : RCLike 𝕜", "μ : Measure ℝ", "E : Type u_2", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : CompleteSpace E", "H : Type u_3", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "a b ε : ℝ", "bound : ℝ → ℝ", "F : 𝕜 → ℝ → E", "F' : ℝ → E", "x₀ : 𝕜", "ε_pos : 0 < ε", "hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))", "hF_int : IntervalIntegrable (F x₀) μ a b", "hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))", "h_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)", "bound_integrable : IntervalIntegrable bound μ a b", "h_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀"], "goal": "IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀"}], "premise": [26278], "state_str": "𝕜 : Type u_1\ninst✝⁶ : RCLike 𝕜\nμ : Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type u_3\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF : 𝕜 → ℝ → E\nF' : ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))\nhF_int : IntervalIntegrable (F x₀) μ a b\nhF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))\nh_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)\nbound_integrable : IntervalIntegrable bound μ a b\nh_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀\n⊢ IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁶ : RCLike 𝕜", "μ : Measure ℝ", "E : Type u_2", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : CompleteSpace E", "H : Type u_3", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "a b ε : ℝ", "bound : ℝ → ℝ", "F : 𝕜 → ℝ → E", "F' : ℝ → E", "x₀ : 𝕜", "ε_pos : 0 < ε", "hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))", "hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))", "h_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)", "h_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀", "hF_int : IntegrableOn (F x₀) (Ι a b) μ", "bound_integrable : IntegrableOn bound (Ι a b) μ"], "goal": "IntegrableOn F' (Ι a b) μ ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀"}], "premise": [26338], "state_str": "𝕜 : Type u_1\ninst✝⁶ : RCLike 𝕜\nμ : Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type u_3\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF : 𝕜 → ℝ → E\nF' : ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))\nhF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))\nh_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)\nh_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀\nhF_int : IntegrableOn (F x₀) (Ι a b) μ\nbound_integrable : IntegrableOn bound (Ι a b) μ\n⊢ IntegrableOn F' (Ι a b) μ ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁶ : RCLike 𝕜", "μ : Measure ℝ", "E : Type u_2", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : CompleteSpace E", "H : Type u_3", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "a b ε : ℝ", "bound : ℝ → ℝ", "F : 𝕜 → ℝ → E", "F' : ℝ → E", "x₀ : 𝕜", "ε_pos : 0 < ε", "hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))", "hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))", "h_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)", "h_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀", "hF_int : IntegrableOn (F x₀) (Ι a b) μ", "bound_integrable : IntegrableOn bound (Ι a b) μ"], "goal": "IntegrableOn F' (Ι a b) μ ∧ HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀"}], "premise": [45358], "state_str": "𝕜 : Type u_1\ninst✝⁶ : RCLike 𝕜\nμ : Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type u_3\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF : 𝕜 → ℝ → E\nF' : ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))\nhF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))\nh_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)\nh_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀\nhF_int : IntegrableOn (F x₀) (Ι a b) μ\nbound_integrable : IntegrableOn bound (Ι a b) μ\n⊢ IntegrableOn F' (Ι a b) μ ∧\n HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁶ : RCLike 𝕜", "μ : Measure ℝ", "E : Type u_2", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace ℝ E", "inst✝³ : NormedSpace 𝕜 E", "inst✝² : CompleteSpace E", "H : Type u_3", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "a b ε : ℝ", "bound : ℝ → ℝ", "F : 𝕜 → ℝ → E", "F' : ℝ → E", "x₀ : 𝕜", "ε_pos : 0 < ε", "hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))", "hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))", "h_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)", "h_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀", "hF_int : IntegrableOn (F x₀) (Ι a b) μ", "bound_integrable : IntegrableOn bound (Ι a b) μ", "this : Integrable F' (μ.restrict (Ι a b)) ∧ HasDerivAt (fun x => ∫ (a : ℝ) in Ι a b, F x a ∂μ) (∫ (a : ℝ) in Ι a b, F' a ∂μ) x₀"], "goal": "IntegrableOn F' (Ι a b) μ ∧ HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀"}], "premise": [2106, 2107, 45301], "state_str": "𝕜 : Type u_1\ninst✝⁶ : RCLike 𝕜\nμ : Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type u_3\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF : 𝕜 → ℝ → E\nF' : ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b))\nhF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b))\nh_lipsch : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)\nh_diff : ∀ᵐ (x : ℝ) ∂μ.restrict (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀\nhF_int : IntegrableOn (F x₀) (Ι a b) μ\nbound_integrable : IntegrableOn bound (Ι a b) μ\nthis :\n Integrable F' (μ.restrict (Ι a b)) ∧\n HasDerivAt (fun x => ∫ (a : ℝ) in Ι a b, F x a ∂μ) (∫ (a : ℝ) in Ι a b, F' a ∂μ) x₀\n⊢ IntegrableOn F' (Ι a b) μ ∧\n HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀"} +{"state": [{"context": ["ι : Sort uι", "R : Type u", "inst✝² : CommSemiring R", "A : Type v", "inst✝¹ : Semiring A", "inst✝ : Algebra R A", "S T : Set A", "M N P✝ Q✝ : Submodule R A", "m n : A", "P Q : Submodule R A", "x : A", "hx : x ∈ P * Q"], "goal": "x ∈ span R (↑P * ↑Q)"}], "premise": [86688, 122455], "state_str": "ι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P✝ Q✝ : Submodule R A\nm n : A\nP Q : Submodule R A\nx : A\nhx : x ∈ P * Q\n⊢ x ∈ span R (↑P * ↑Q)"} +{"state": [{"context": ["M : Type u_1", "G : Type u_2", "α : Type u_3", "inst✝⁵ : Monoid M", "inst✝⁴ : Group G", "inst✝³ : TopologicalSpace α", "inst✝² : MulAction M α", "inst✝¹ : MulAction G α", "inst✝ : ContinuousConstSMul M α"], "goal": "(∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ) → IsMinimal M α"}], "premise": [1674, 2111, 55448], "state_str": "case mpr\nM : Type u_1\nG : Type u_2\nα : Type u_3\ninst✝⁵ : Monoid M\ninst✝⁴ : Group G\ninst✝³ : TopologicalSpace α\ninst✝² : MulAction M α\ninst✝¹ : MulAction G α\ninst✝ : ContinuousConstSMul M α\n⊢ (∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ) → IsMinimal M α"} +{"state": [{"context": ["M : Type u_1", "G : Type u_2", "α : Type u_3", "inst✝⁵ : Monoid M", "inst✝⁴ : Group G", "inst✝³ : TopologicalSpace α", "inst✝² : MulAction M α", "inst✝¹ : MulAction G α", "inst✝ : ContinuousConstSMul M α", "H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ", "x✝ : α"], "goal": "IsClosed (closure (orbit M x✝))"}, {"context": ["M : Type u_1", "G : Type u_2", "α : Type u_3", "inst✝⁵ : Monoid M", "inst✝⁴ : Group G", "inst✝³ : TopologicalSpace α", "inst✝² : MulAction M α", "inst✝¹ : MulAction G α", "inst✝ : ContinuousConstSMul M α", "H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ", "x✝ : α"], "goal": "∀ (c : M), c • closure (orbit M x✝) ⊆ closure (orbit M x✝)"}, {"context": ["M : Type u_1", "G : Type u_2", "α : Type u_3", "inst✝⁵ : Monoid M", "inst✝⁴ : Group G", "inst✝³ : TopologicalSpace α", "inst✝² : MulAction M α", "inst✝¹ : MulAction G α", "inst✝ : ContinuousConstSMul M α", "H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ", "x✝ : α"], "goal": "¬closure (orbit M x✝) = ∅"}], "premise": [7648, 55409, 64959], "state_str": "case mpr.refine_1\nM : Type u_1\nG : Type u_2\nα : Type u_3\ninst✝⁵ : Monoid M\ninst✝⁴ : Group G\ninst✝³ : TopologicalSpace α\ninst✝² : MulAction M α\ninst✝¹ : MulAction G α\ninst✝ : ContinuousConstSMul M α\nH : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ\nx✝ : α\n⊢ IsClosed (closure (orbit M x✝))\n\ncase mpr.refine_2\nM : Type u_1\nG : Type u_2\nα : Type u_3\ninst✝⁵ : Monoid M\ninst✝⁴ : Group G\ninst✝³ : TopologicalSpace α\ninst✝² : MulAction M α\ninst✝¹ : MulAction G α\ninst✝ : ContinuousConstSMul M α\nH : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ\nx✝ : α\n⊢ ∀ (c : M), c • closure (orbit M x✝) ⊆ closure (orbit M x✝)\n\ncase mpr.refine_3\nM : Type u_1\nG : Type u_2\nα : Type u_3\ninst✝⁵ : Monoid M\ninst✝⁴ : Group G\ninst✝³ : TopologicalSpace α\ninst✝² : MulAction M α\ninst✝¹ : MulAction G α\ninst✝ : ContinuousConstSMul M α\nH : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ\nx✝ : α\n⊢ ¬closure (orbit M x✝) = ∅"} +{"state": [{"context": ["C : Type u₁", "inst✝ : Category.{v₁, u₁} C", "P X Y Z : C", "fst : P ⟶ X", "snd : P ⟶ Y", "f : X ⟶ Z", "g : Y ⟶ Z", "P' : C", "fst' : P' ⟶ X", "snd' : P' ⟶ Y", "h : IsPullback fst snd f g", "h' : IsPullback fst' snd' f g"], "goal": "(isoIsPullback X Y h h').inv ≫ snd = snd'"}], "premise": [88767, 94095], "state_str": "C : Type u₁\ninst✝ : Category.{v₁, u₁} C\nP X Y Z : C\nfst : P ⟶ X\nsnd : P ⟶ Y\nf : X ⟶ Z\ng : Y ⟶ Z\nP' : C\nfst' : P' ⟶ X\nsnd' : P' ⟶ Y\nh : IsPullback fst snd f g\nh' : IsPullback fst' snd' f g\n⊢ (isoIsPullback X Y h h').inv ≫ snd = snd'"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : CommMonoidWithZero α", "p : α", "hp : Prime p", "s : Multiset β", "f : β → α", "h : p ∣ (Multiset.map f s).prod"], "goal": "∃ a ∈ s, p ∣ f a"}], "premise": [2045, 70141, 123914, 137990], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : CommMonoidWithZero α\np : α\nhp : Prime p\ns : Multiset β\nf : β → α\nh : p ∣ (Multiset.map f s).prod\n⊢ ∃ a ∈ s, p ∣ f a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝⁹ : UniformSpace α", "inst✝⁸ : Group α", "inst✝⁷ : UniformGroup α", "inst✝⁶ : Group β", "γ : Type u_3", "inst✝⁵ : Group γ", "inst✝⁴ : UniformSpace γ", "inst✝³ : UniformGroup γ", "inst✝² : UniformSpace β", "F : Type u_4", "inst✝¹ : FunLike F β γ", "inst✝ : MonoidHomClass F β γ", "f : F", "hf : UniformInducing ⇑f"], "goal": "UniformContinuous fun p => p.1 / p.2"}], "premise": [1671, 59530, 117102], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝⁹ : UniformSpace α\ninst✝⁸ : Group α\ninst✝⁷ : UniformGroup α\ninst✝⁶ : Group β\nγ : Type u_3\ninst✝⁵ : Group γ\ninst✝⁴ : UniformSpace γ\ninst✝³ : UniformGroup γ\ninst✝² : UniformSpace β\nF : Type u_4\ninst✝¹ : FunLike F β γ\ninst✝ : MonoidHomClass F β γ\nf : F\nhf : UniformInducing ⇑f\n⊢ UniformContinuous fun p => p.1 / p.2"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝⁹ : UniformSpace α", "inst✝⁸ : Group α", "inst✝⁷ : UniformGroup α", "inst✝⁶ : Group β", "γ : Type u_3", "inst✝⁵ : Group γ", "inst✝⁴ : UniformSpace γ", "inst✝³ : UniformGroup γ", "inst✝² : UniformSpace β", "F : Type u_4", "inst✝¹ : FunLike F β γ", "inst✝ : MonoidHomClass F β γ", "f : F", "hf : UniformInducing ⇑f"], "goal": "UniformContinuous fun x => f x.1 / f x.2"}], "premise": [59529, 60579, 60653, 67116], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝⁹ : UniformSpace α\ninst✝⁸ : Group α\ninst✝⁷ : UniformGroup α\ninst✝⁶ : Group β\nγ : Type u_3\ninst✝⁵ : Group γ\ninst✝⁴ : UniformSpace γ\ninst✝³ : UniformGroup γ\ninst✝² : UniformSpace β\nF : Type u_4\ninst✝¹ : FunLike F β γ\ninst✝ : MonoidHomClass F β γ\nf : F\nhf : UniformInducing ⇑f\n⊢ UniformContinuous fun x => f x.1 / f x.2"} +{"state": [{"context": ["J : Type v'", "inst✝¹ : Category.{u', v'} J", "C : Type u", "inst✝ : Category.{v, u} C", "W X Y Z : C", "f : W ⟶ X", "g : W ⟶ Y", "h : X ⟶ Z", "i : Y ⟶ Z", "H : IsPushout f g h i", "H' : H.IsVanKampen", "W' X' Y' Z' : C", "f' : W' ⟶ X'", "g' : W' ⟶ Y'", "h' : X' ⟶ Z'", "i' : Y' ⟶ Z'", "αW : W' ⟶ W", "αX : X' ⟶ Y", "αY : Y' ⟶ X", "αZ : Z' ⟶ Z", "hf : IsPullback f' αW αX g", "hg : IsPullback g' αW αY f", "hh : CommSq h' αX αZ i", "hi : CommSq i' αY αZ h", "w : CommSq f' g' h' i'"], "goal": "IsPushout f' g' h' i' ↔ IsPullback h' αX αZ i ∧ IsPullback i' αY αZ h"}], "premise": [1723, 94128, 94157, 98983], "state_str": "J : Type v'\ninst✝¹ : Category.{u', v'} J\nC : Type u\ninst✝ : Category.{v, u} C\nW X Y Z : C\nf : W ⟶ X\ng : W ⟶ Y\nh : X ⟶ Z\ni : Y ⟶ Z\nH : IsPushout f g h i\nH' : H.IsVanKampen\nW' X' Y' Z' : C\nf' : W' ⟶ X'\ng' : W' ⟶ Y'\nh' : X' ⟶ Z'\ni' : Y' ⟶ Z'\nαW : W' ⟶ W\nαX : X' ⟶ Y\nαY : Y' ⟶ X\nαZ : Z' ⟶ Z\nhf : IsPullback f' αW αX g\nhg : IsPullback g' αW αY f\nhh : CommSq h' αX αZ i\nhi : CommSq i' αY αZ h\nw : CommSq f' g' h' i'\n⊢ IsPushout f' g' h' i' ↔ IsPullback h' αX αZ i ∧ IsPullback i' αY αZ h"} +{"state": [{"context": ["K : Type u", "A : Type v", "inst✝² : Field K", "inst✝¹ : Ring A", "inst✝ : Algebra K A"], "goal": "Algebra.IsAlgebraic K A ↔ Algebra.IsIntegral K A"}], "premise": [1713, 2015, 75554, 75581, 80627], "state_str": "K : Type u\nA : Type v\ninst✝² : Field K\ninst✝¹ : Ring A\ninst✝ : Algebra K A\n⊢ Algebra.IsAlgebraic K A ↔ Algebra.IsIntegral K A"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "H : Type u_4", "A : Type u_5", "B : Type u_6", "α : Type u_7", "β : Type u_8", "γ : Type u_9", "δ : Type u_10", "inst✝⁷ : Monoid M", "inst✝⁶ : MulAction M α", "inst✝⁵ : Group G", "inst✝⁴ : MulAction G α", "g✝ : G", "a✝ b✝ : α", "inst✝³ : Mul H", "inst✝² : MulAction G H", "inst✝¹ : SMulCommClass G H H", "inst✝ : IsScalarTower G H H", "g : G", "a b : H"], "goal": "Commute (g • a) b ↔ Commute a b"}], "premise": [1713, 118335, 118927], "state_str": "M : Type u_1\nN : Type u_2\nG : Type u_3\nH : Type u_4\nA : Type u_5\nB : Type u_6\nα : Type u_7\nβ : Type u_8\nγ : Type u_9\nδ : Type u_10\ninst✝⁷ : Monoid M\ninst✝⁶ : MulAction M α\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G α\ng✝ : G\na✝ b✝ : α\ninst✝³ : Mul H\ninst✝² : MulAction G H\ninst✝¹ : SMulCommClass G H H\ninst✝ : IsScalarTower G H H\ng : G\na b : H\n⊢ Commute (g • a) b ↔ Commute a b"} +{"state": [{"context": ["a b : ℕ"], "goal": "a ≤ pair a b"}], "premise": [142567], "state_str": "a b : ℕ\n⊢ a ≤ pair a b"} +{"state": [{"context": ["G✝ : Type u_1", "H : Type u_2", "inst✝¹ : Monoid G✝", "G : Type u_3", "inst✝ : CommGroup G"], "goal": "IsTorsionFree G ↔ CommGroup.torsion G = ⊥"}], "premise": [18818, 128384], "state_str": "G✝ : Type u_1\nH : Type u_2\ninst✝¹ : Monoid G✝\nG : Type u_3\ninst✝ : CommGroup G\n⊢ IsTorsionFree G ↔ CommGroup.torsion G = ⊥"} +{"state": [{"context": ["G✝ : Type u_1", "H : Type u_2", "inst✝¹ : Monoid G✝", "G : Type u_3", "inst✝ : CommGroup G"], "goal": "(∀ (g : G), g ≠ 1 → ¬IsOfFinOrder g) ↔ ∀ ⦃x : G⦄, x ∈ CommGroup.torsion G → x ∈ ⊥"}], "premise": [6219, 70072], "state_str": "G✝ : Type u_1\nH : Type u_2\ninst✝¹ : Monoid G✝\nG : Type u_3\ninst✝ : CommGroup G\n⊢ (∀ (g : G), g ≠ 1 → ¬IsOfFinOrder g) ↔ ∀ ⦃x : G⦄, x ∈ CommGroup.torsion G → x ∈ ⊥"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "n ν : ℕ", "h : ν ≤ n"], "goal": "(bernsteinPolynomial R n ν).comp (1 - X) = bernsteinPolynomial R n (n - ν)"}], "premise": [103621, 117740], "state_str": "R : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : ν ≤ n\n⊢ (bernsteinPolynomial R n ν).comp (1 - X) = bernsteinPolynomial R n (n - ν)"} +{"state": [{"context": [], "goal": "negMulLog = fun x => -(x * log x)"}], "premise": [37750], "state_str": "⊢ negMulLog = fun x => -(x * log x)"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "hf : f.IsSemisimple", "μ : R", "k : ℕ", "hk : 0 < k"], "goal": "(f.genEigenspace μ) k = f.eigenspace μ"}], "premise": [1674, 14296, 88218, 88234], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nhf : f.IsSemisimple\nμ : R\nk : ℕ\nhk : 0 < k\n⊢ (f.genEigenspace μ) k = f.eigenspace μ"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "hf : f.IsSemisimple", "μ : R", "k : ℕ", "hk : 0 < k", "m : M", "hm : m ∈ (f.genEigenspace μ) k"], "goal": "f m = μ • m"}], "premise": [86410], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nhf : f.IsSemisimple\nμ : R\nk : ℕ\nhk : 0 < k\nm : M\nhm : m ∈ (f.genEigenspace μ) k\n⊢ f m = μ • m"} +{"state": [{"context": ["X✝ X Y : LocallyRingedSpace", "e : X ≅ Y"], "goal": "e.hom.val.base ≫ e.inv.val.base = 𝟙 ↑X.toPresheafedSpace"}], "premise": [68194, 68441], "state_str": "X✝ X Y : LocallyRingedSpace\ne : X ≅ Y\n⊢ e.hom.val.base ≫ e.inv.val.base = 𝟙 ↑X.toPresheafedSpace"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "s : σ →₀ ℕ", "inst✝ : CommSemiring R", "f : R[X] →+* MvPolynomial PUnit.{?u.2149 + 1} R := eval₂RingHom C (X PUnit.unit)", "g : MvPolynomial PUnit.{?u.2149 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X"], "goal": "∀ (p : MvPolynomial PUnit.{?u.2149 + 1} R), (f.comp g) p = p"}], "premise": [112223], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\nf : R[X] →+* MvPolynomial PUnit.{?u.2149 + 1} R := eval₂RingHom C (X PUnit.unit)\ng : MvPolynomial PUnit.{?u.2149 + 1} R →+* R[X] := eval₂Hom Polynomial.C fun x => Polynomial.X\n⊢ ∀ (p : MvPolynomial PUnit.{?u.2149 + 1} R), (f.comp g) p = p"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a✝ a' a₁ a₂ : R", "e : ℕ", "s : σ →₀ ℕ", "inst✝ : CommSemiring R", "p : R[X]", "a : R"], "goal": "eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C a)) = Polynomial.C a"}], "premise": [102828, 112309], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np : R[X]\na : R\n⊢ eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C a)) = Polynomial.C a"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "s : σ →₀ ℕ", "inst✝ : CommSemiring R", "p✝ p q : R[X]", "hp : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) p) = p", "hq : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) q) = q"], "goal": "eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (p + q)) = p + q"}], "premise": [102832, 112307], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ p q : R[X]\nhp : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) p) = p\nhq : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) q) = q\n⊢ eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (p + q)) = p + q"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "s : σ →₀ ℕ", "inst✝ : CommSemiring R", "p✝ : R[X]", "p : ℕ", "n : R", "x✝ : eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C n * Polynomial.X ^ p)) = Polynomial.C n * Polynomial.X ^ p"], "goal": "eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C n * Polynomial.X ^ (p + 1))) = Polynomial.C n * Polynomial.X ^ (p + 1)"}], "premise": [102828, 102829, 102852, 102856, 112309, 112311, 112314, 112315], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ : R[X]\np : ℕ\nn : R\nx✝ :\n eval₂ Polynomial.C (fun x => Polynomial.X) (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C n * Polynomial.X ^ p)) =\n Polynomial.C n * Polynomial.X ^ p\n⊢ eval₂ Polynomial.C (fun x => Polynomial.X)\n (Polynomial.eval₂ C (X PUnit.unit) (Polynomial.C n * Polynomial.X ^ (p + 1))) =\n Polynomial.C n * Polynomial.X ^ (p + 1)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝ : AddCommMonoid M", "f : α → β", "hf : Injective f", "l : β →₀ M", "hl : ↑l.support ⊆ Set.range f"], "goal": "mapDomain f (comapDomain f l ⋯) = l"}], "premise": [148503, 148517], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝ : AddCommMonoid M\nf : α → β\nhf : Injective f\nl : β →₀ M\nhl : ↑l.support ⊆ Set.range f\n⊢ mapDomain f (comapDomain f l ⋯) = l"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : CommGroup α", "inst✝ : DecidableEq α", "A✝ B✝ C✝ A B C : Finset α"], "goal": "(A * C).card * B.card ≤ (A * B).card * (B / C).card"}], "premise": [117875, 119790], "state_str": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA✝ B✝ C✝ A B C : Finset α\n⊢ (A * C).card * B.card ≤ (A * B).card * (B / C).card"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : CommGroup α", "inst✝ : DecidableEq α", "A✝ B✝ C✝ A B C : Finset α"], "goal": "(A / C⁻¹).card * B.card ≤ (A * B).card * (B * C⁻¹).card"}], "premise": [53219], "state_str": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA✝ B✝ C✝ A B C : Finset α\n⊢ (A / C⁻¹).card * B.card ≤ (A * B).card * (B * C⁻¹).card"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n n' m : ℕ", "s✝ : Sym α n", "a✝ b : α", "s : Sym α (n + 1)", "a : α", "h : a ∈ s"], "goal": "∃ t, s = a ::ₛ t"}], "premise": [137833], "state_str": "α : Type u_1\nβ : Type u_2\nn n' m : ℕ\ns✝ : Sym α n\na✝ b : α\ns : Sym α (n + 1)\na : α\nh : a ∈ s\n⊢ ∃ t, s = a ::ₛ t"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n n' m✝ : ℕ", "s✝ : Sym α n", "a✝ b : α", "s : Sym α (n + 1)", "a : α", "h✝ : a ∈ s", "m : Multiset α", "h : ↑s = a ::ₘ m"], "goal": "∃ t, s = a ::ₛ t"}], "premise": [2100, 2115, 117720, 137910], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nn n' m✝ : ℕ\ns✝ : Sym α n\na✝ b : α\ns : Sym α (n + 1)\na : α\nh✝ : a ∈ s\nm : Multiset α\nh : ↑s = a ::ₘ m\n⊢ ∃ t, s = a ::ₛ t"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n n' m✝ : ℕ", "s✝ : Sym α n", "a✝ b : α", "s : Sym α (n + 1)", "a : α", "h✝ : a ∈ s", "m : Multiset α", "h : ↑s = a ::ₘ m", "this : Multiset.card m = n"], "goal": "∃ t, s = a ::ₛ t"}], "premise": [1674, 2045], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nn n' m✝ : ℕ\ns✝ : Sym α n\na✝ b : α\ns : Sym α (n + 1)\na : α\nh✝ : a ∈ s\nm : Multiset α\nh : ↑s = a ::ₘ m\nthis : Multiset.card m = n\n⊢ ∃ t, s = a ::ₛ t"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n n' m✝ : ℕ", "s✝ : Sym α n", "a✝ b : α", "s : Sym α (n + 1)", "a : α", "h✝ : a ∈ s", "m : Multiset α", "h : ↑s = a ::ₘ m", "this : Multiset.card m = n"], "goal": "s = a ::ₛ ⟨m, this⟩"}], "premise": [137127], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nn n' m✝ : ℕ\ns✝ : Sym α n\na✝ b : α\ns : Sym α (n + 1)\na : α\nh✝ : a ∈ s\nm : Multiset α\nh : ↑s = a ::ₘ m\nthis : Multiset.card m = n\n⊢ s = a ::ₛ ⟨m, this⟩"} +{"state": [{"context": ["α✝ : Type u", "β : Type v", "γ : Type w", "ι : Sort x", "a b : α✝", "s✝ s₁ s₂ t t₁ t₂ u : Set α✝", "α : Type u_1", "s : Set α"], "goal": "s ≠ univ ↔ ∃ a, a ∉ s"}], "premise": [1096, 1713, 133393], "state_str": "α✝ : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α✝\ns✝ s₁ s₂ t t₁ t₂ u : Set α✝\nα : Type u_1\ns : Set α\n⊢ s ≠ univ ↔ ∃ a, a ∉ s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "inst✝ : NormedDivisionRing α", "a✝ a : α", "ha : a ≠ 0", "x y : α"], "goal": "edist ((Equiv.mulLeft₀ a ha).toFun x) ((Equiv.mulLeft₀ a ha).toFun y) = ↑‖a‖₊ * edist x y"}], "premise": [61139], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ninst✝ : NormedDivisionRing α\na✝ a : α\nha : a ≠ 0\nx y : α\n⊢ edist ((Equiv.mulLeft₀ a ha).toFun x) ((Equiv.mulLeft₀ a ha).toFun y) = ↑‖a‖₊ * edist x y"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "f : α → β", "x : Part α"], "goal": "∀ (a : β), a ∈ x.bind (some ∘ f) ↔ a ∈ map f x"}], "premise": [1717], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : α → β\nx : Part α\n⊢ ∀ (a : β), a ∈ x.bind (some ∘ f) ↔ a ∈ map f x"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "α : Type u_4", "inst✝⁶ : Fintype l", "inst✝⁵ : Fintype m", "inst✝⁴ : Fintype n", "inst✝³ : DecidableEq l", "inst✝² : DecidableEq m", "inst✝¹ : DecidableEq n", "inst✝ : CommRing α", "A : Matrix m n α", "B : Matrix n m α"], "goal": "(1 - A * B).det = (1 - B * A).det"}], "premise": [86013, 119789, 142264, 142265], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nα : Type u_4\ninst✝⁶ : Fintype l\ninst✝⁵ : Fintype m\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq l\ninst✝² : DecidableEq m\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA : Matrix m n α\nB : Matrix n m α\n⊢ (1 - A * B).det = (1 - B * A).det"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DecidableEq α", "inst✝ : Mul α", "s✝ s₁ s₂ t✝ t₁ t₂ s t : Finset α"], "goal": "∀ (i : (α × α) × α × α), i ∈ filter (fun x => x.1.1 * x.2.1 = x.1.2 * x.2.2) ((s ×ˢ s) ×ˢ t ×ˢ t) ↔ (Equiv.prodProdProdComm α α α α) i ∈ filter (fun x => match x with | ((a, b), c, d) => a * b = c * d) ((s ×ˢ t) ×ˢ s ×ˢ t)"}], "premise": [1973], "state_str": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Mul α\ns✝ s₁ s₂ t✝ t₁ t₂ s t : Finset α\n⊢ ∀ (i : (α × α) × α × α),\n i ∈ filter (fun x => x.1.1 * x.2.1 = x.1.2 * x.2.2) ((s ×ˢ s) ×ˢ t ×ˢ t) ↔\n (Equiv.prodProdProdComm α α α α) i ∈\n filter\n (fun x =>\n match x with\n | ((a, b), c, d) => a * b = c * d)\n ((s ×ˢ t) ×ˢ s ×ˢ t)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "s✝ s' : Set α", "x : α", "p✝ : Filter ι", "g : ι → α", "inst✝ : UniformSpace β", "𝔖 : Set (Set α)", "p : ι → Prop", "s : ι → Set (β × β)", "hb : (𝓤 β).HasBasis p s", "S : Set α"], "goal": "(𝓤 (α →ᵤ[𝔖] β)).HasBasis p fun i => UniformOnFun.gen 𝔖 S (s i)"}], "premise": [60275, 60590], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ns✝ s' : Set α\nx : α\np✝ : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\np : ι → Prop\ns : ι → Set (β × β)\nhb : (𝓤 β).HasBasis p s\nS : Set α\n⊢ (𝓤 (α →ᵤ[𝔖] β)).HasBasis p fun i => UniformOnFun.gen 𝔖 S (s i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "s✝ s' : Set α", "x : α", "p✝ : Filter ι", "g : ι → α", "inst✝ : UniformSpace β", "𝔖 : Set (Set α)", "p : ι → Prop", "s : ι → Set (β × β)", "hb : (𝓤 β).HasBasis p s", "S : Set α"], "goal": "(comap (Prod.map S.restrict S.restrict) (𝓤 (↑S → β))).HasBasis p fun i => Prod.map (S.restrict ∘ ⇑UniformFun.toFun) (S.restrict ∘ ⇑UniformFun.toFun) ⁻¹' UniformFun.gen (↑S) β (s i)"}], "premise": [12603, 60257], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\ns✝ s' : Set α\nx : α\np✝ : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\np : ι → Prop\ns : ι → Set (β × β)\nhb : (𝓤 β).HasBasis p s\nS : Set α\n⊢ (comap (Prod.map S.restrict S.restrict) (𝓤 (↑S → β))).HasBasis p fun i =>\n Prod.map (S.restrict ∘ ⇑UniformFun.toFun) (S.restrict ∘ ⇑UniformFun.toFun) ⁻¹' UniformFun.gen (↑S) β (s i)"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "o : Type u_4", "m' : o → Type u_5", "n' : o → Type u_6", "R : Type u_7", "S : Type u_8", "α : Type v", "β : Type w", "γ : Type u_9", "inst✝² : Fintype m", "inst✝¹ : Fintype n", "inst✝ : NonUnitalNonAssocSemiring α", "u v w : m → α", "x y : n → α"], "goal": "u ⬝ᵥ (v + w) = u ⬝ᵥ v + u ⬝ᵥ w"}], "premise": [127008], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nm' : o → Type u_5\nn' : o → Type u_6\nR : Type u_7\nS : Type u_8\nα : Type v\nβ : Type w\nγ : Type u_9\ninst✝² : Fintype m\ninst✝¹ : Fintype n\ninst✝ : NonUnitalNonAssocSemiring α\nu v w : m → α\nx y : n → α\n⊢ u ⬝ᵥ (v + w) = u ⬝ᵥ v + u ⬝ᵥ w"} +{"state": [{"context": ["R : Type u", "S : Type v", "a b : R", "n✝ m : ℕ", "inst✝ : Semiring R", "p✝ q r p : R[X]", "n d : ℕ"], "goal": "(p * X ^ n).coeff (d + n) = p.coeff d"}], "premise": [1737, 101406, 101423, 119730, 127034], "state_str": "R : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\n⊢ (p * X ^ n).coeff (d + n) = p.coeff d"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "o : Ordinal.{u}", "hC : IsClosed C", "hsC : contained C (Order.succ o)", "ho : o < Ordinal.type fun x x_1 => x < x_1", "h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o)))", "m n : ↑(MaxProducts C ho)", "h : MaxToGood C hC hsC ho h₁ m = MaxToGood C hC hsC ho h₁ n"], "goal": "m = n"}], "premise": [137127], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\no : Ordinal.{u}\nhC : IsClosed C\nhsC : contained C (Order.succ o)\nho : o < Ordinal.type fun x x_1 => x < x_1\nh₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o)))\nm n : ↑(MaxProducts C ho)\nh : MaxToGood C hC hsC ho h₁ m = MaxToGood C hC hsC ho h₁ n\n⊢ m = n"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "o : Ordinal.{u}", "hC : IsClosed C", "hsC : contained C (Order.succ o)", "ho : o < Ordinal.type fun x x_1 => x < x_1", "h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o)))", "m n : ↑(MaxProducts C ho)", "h : MaxToGood C hC hsC ho h₁ m = MaxToGood C hC hsC ho h₁ n"], "goal": "↑↑m = ↑↑n"}], "premise": [137128], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\no : Ordinal.{u}\nhC : IsClosed C\nhsC : contained C (Order.succ o)\nho : o < Ordinal.type fun x x_1 => x < x_1\nh₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o)))\nm n : ↑(MaxProducts C ho)\nh : MaxToGood C hC hsC ho h₁ m = MaxToGood C hC hsC ho h₁ n\n⊢ ↑↑m = ↑↑n"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "o : Ordinal.{u}", "hC : IsClosed C", "hsC : contained C (Order.succ o)", "ho : o < Ordinal.type fun x x_1 => x < x_1", "h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o)))", "m n : ↑(MaxProducts C ho)", "h : (↑m).Tail = (↑n).Tail"], "goal": "↑↑m = ↑↑n"}], "premise": [63598], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\no : Ordinal.{u}\nhC : IsClosed C\nhsC : contained C (Order.succ o)\nho : o < Ordinal.type fun x x_1 => x < x_1\nh₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o)))\nm n : ↑(MaxProducts C ho)\nh : (↑m).Tail = (↑n).Tail\n⊢ ↑↑m = ↑↑n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Denumerable α", "inst✝ : Denumerable β"], "goal": "ofNat (List α) 0 = []"}], "premise": [70599, 70861], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\n⊢ ofNat (List α) 0 = []"} +{"state": [{"context": ["a b c d : ℝ≥0∞", "r p q : ℝ≥0", "hr : a ≠ ⊤", "hp : b ≠ ⊤", "h : a ≤ b"], "goal": "(max a b).toReal = max a.toReal b.toReal"}], "premise": [1674, 19709, 143356], "state_str": "a b c d : ℝ≥0∞\nr p q : ℝ≥0\nhr : a ≠ ⊤\nhp : b ≠ ⊤\nh : a ≤ b\n⊢ (max a b).toReal = max a.toReal b.toReal"} +{"state": [{"context": ["a b c d : ℝ≥0∞", "r p q : ℝ≥0", "hr : a ≠ ⊤", "hp : b ≠ ⊤", "h : b ≤ a"], "goal": "(max a b).toReal = max a.toReal b.toReal"}], "premise": [1674, 19708, 143356], "state_str": "a b c d : ℝ≥0∞\nr p q : ℝ≥0\nhr : a ≠ ⊤\nhp : b ≠ ⊤\nh : b ≤ a\n⊢ (max a b).toReal = max a.toReal b.toReal"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "f : R →+* S", "n : ℤ"], "goal": "map f (U R n) = U S n"}], "premise": [75211, 75224, 75227, 102917, 102922, 102926, 102996], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nf : R →+* S\nn : ℤ\n⊢ map f (U R n) = U S n"} +{"state": [{"context": ["E : Type u_1", "inst✝ : SeminormedCommGroup E", "ε δ : ℝ", "s t : Set E", "x y : E"], "goal": "(thickening δ s)⁻¹ = thickening δ s⁻¹"}], "premise": [42965], "state_str": "E : Type u_1\ninst✝ : SeminormedCommGroup E\nε δ : ℝ\ns t : Set E\nx y : E\n⊢ (thickening δ s)⁻¹ = thickening δ s⁻¹"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "α : Type u_4", "inst✝⁶ : Fintype l", "inst✝⁵ : Fintype m", "inst✝⁴ : Fintype n", "inst✝³ : DecidableEq l", "inst✝² : DecidableEq m", "inst✝¹ : DecidableEq n", "inst✝ : CommRing α", "A : Matrix m n α", "B : Matrix n m α"], "goal": "(1 + A * B).det = (fromBlocks 1 (-A) B 1).det"}], "premise": [86012, 117874, 142264], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nα : Type u_4\ninst✝⁶ : Fintype l\ninst✝⁵ : Fintype m\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq l\ninst✝² : DecidableEq m\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA : Matrix m n α\nB : Matrix n m α\n⊢ (1 + A * B).det = (fromBlocks 1 (-A) B 1).det"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "α : Type u_4", "inst✝⁶ : Fintype l", "inst✝⁵ : Fintype m", "inst✝⁴ : Fintype n", "inst✝³ : DecidableEq l", "inst✝² : DecidableEq m", "inst✝¹ : DecidableEq n", "inst✝ : CommRing α", "A : Matrix m n α", "B : Matrix n m α"], "goal": "(fromBlocks 1 (-A) B 1).det = (1 + B * A).det"}], "premise": [86010, 117874, 142265], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nα : Type u_4\ninst✝⁶ : Fintype l\ninst✝⁵ : Fintype m\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq l\ninst✝² : DecidableEq m\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA : Matrix m n α\nB : Matrix n m α\n⊢ (fromBlocks 1 (-A) B 1).det = (1 + B * A).det"} +{"state": [{"context": ["α : Type u_1", "β✝ : Type u_2", "inst✝⁴ : LinearOrderedField α", "inst✝³ : Ring β✝", "abv✝ : β✝ → α", "inst✝² : IsAbsoluteValue abv✝", "β : Type u_3", "inst✝¹ : DivisionRing β", "abv : β → α", "inst✝ : IsAbsoluteValue abv", "ε K : α", "ε0 : 0 < ε", "K0 : 0 < K", "a b : β", "ha : K ≤ abv a", "hb : K ≤ abv b", "h : abv (a - b) < K * ε * K", "a0 : 0 < abv a", "b0 : 0 < abv b"], "goal": "abv (a⁻¹ - b⁻¹) < ε"}], "premise": [1673, 104408, 104412, 104418, 104421, 115849], "state_str": "α : Type u_1\nβ✝ : Type u_2\ninst✝⁴ : LinearOrderedField α\ninst✝³ : Ring β✝\nabv✝ : β✝ → α\ninst✝² : IsAbsoluteValue abv✝\nβ : Type u_3\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nε K : α\nε0 : 0 < ε\nK0 : 0 < K\na b : β\nha : K ≤ abv a\nhb : K ≤ abv b\nh : abv (a - b) < K * ε * K\na0 : 0 < abv a\nb0 : 0 < abv b\n⊢ abv (a⁻¹ - b⁻¹) < ε"} +{"state": [{"context": ["α : Type u_1", "β✝ : Type u_2", "inst✝⁴ : LinearOrderedField α", "inst✝³ : Ring β✝", "abv✝ : β✝ → α", "inst✝² : IsAbsoluteValue abv✝", "β : Type u_3", "inst✝¹ : DivisionRing β", "abv : β → α", "inst✝ : IsAbsoluteValue abv", "ε K : α", "ε0 : 0 < ε", "K0 : 0 < K", "a b : β", "ha : K ≤ abv a", "hb : K ≤ abv b", "h : abv (a - b) < K * ε * K", "a0 : 0 < abv a", "b0 : 0 < abv b"], "goal": "(abv a)⁻¹ * abv (a - b) * (abv b)⁻¹ < ε"}], "premise": [102625, 102626], "state_str": "α : Type u_1\nβ✝ : Type u_2\ninst✝⁴ : LinearOrderedField α\ninst✝³ : Ring β✝\nabv✝ : β✝ → α\ninst✝² : IsAbsoluteValue abv✝\nβ : Type u_3\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nε K : α\nε0 : 0 < ε\nK0 : 0 < K\na b : β\nha : K ≤ abv a\nhb : K ≤ abv b\nh : abv (a - b) < K * ε * K\na0 : 0 < abv a\nb0 : 0 < abv b\n⊢ (abv a)⁻¹ * abv (a - b) * (abv b)⁻¹ < ε"} +{"state": [{"context": ["α : Type u_1", "β✝ : Type u_2", "inst✝⁴ : LinearOrderedField α", "inst✝³ : Ring β✝", "abv✝ : β✝ → α", "inst✝² : IsAbsoluteValue abv✝", "β : Type u_3", "inst✝¹ : DivisionRing β", "abv : β → α", "inst✝ : IsAbsoluteValue abv", "ε K : α", "ε0 : 0 < ε", "K0 : 0 < K", "a b : β", "ha : K ≤ abv a", "hb : K ≤ abv b", "h : abv (a - b) < K * ε * K", "a0 : 0 < abv a", "b0 : 0 < abv b"], "goal": "abv a * ((abv a)��¹ * abv (a - b) * (abv b)⁻¹) * abv b < abv a * ε * abv b"}], "premise": [11234, 108299, 108577, 119703, 119728], "state_str": "α : Type u_1\nβ✝ : Type u_2\ninst✝⁴ : LinearOrderedField α\ninst✝³ : Ring β✝\nabv✝ : β✝ → α\ninst✝² : IsAbsoluteValue abv✝\nβ : Type u_3\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nε K : α\nε0 : 0 < ε\nK0 : 0 < K\na b : β\nha : K ≤ abv a\nhb : K ≤ abv b\nh : abv (a - b) < K * ε * K\na0 : 0 < abv a\nb0 : 0 < abv b\n⊢ abv a * ((abv a)⁻¹ * abv (a - b) * (abv b)⁻¹) * abv b < abv a * ε * abv b"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f f₀ f₁ g : E → F", "f' f₀' f₁' g' e : E →L[𝕜] F", "x : E", "s t : Set E", "L L₁ L₂ : Filter E", "h₀ : f₀ =ᶠ[L] f₁", "hx : f₀ x = f₁ x", "h₁ : ∀ (x : E), f₀' x = f₁' x"], "goal": "HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L"}], "premise": [46289], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nh₀ : f₀ =ᶠ[L] f₁\nhx : f₀ x = f₁ x\nh₁ : ∀ (x : E), f₀' x = f₁' x\n⊢ HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f f₀ f₁ g : E → F", "f' f₀' f₁' g' e : E →L[𝕜] F", "x : E", "s t : Set E", "L L₁ L₂ : Filter E", "h₀ : f₀ =ᶠ[L] f₁", "hx : f₀ x = f₁ x", "h₁ : ∀ (x : E), f₀' x = f₁' x"], "goal": "((fun x' => f₀ x' - f₀ x - f₀' (x' - x)) =o[L] fun x' => x' - x) ↔ (fun x' => f₁ x' - f₁ x - f₁' (x' - x)) =o[L] fun x' => x' - x"}], "premise": [16027, 16091, 43392], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nh₀ : f₀ =ᶠ[L] f₁\nhx : f₀ x = f₁ x\nh₁ : ∀ (x : E), f₀' x = f₁' x\n⊢ ((fun x' => f₀ x' - f₀ x - f₀' (x' - x)) =o[L] fun x' => x' - x) ↔\n (fun x' => f₁ x' - f₁ x - f₁' (x' - x)) =o[L] fun x' => x' - x"} +{"state": [{"context": ["N : ℕ", "hN : ¬Prime N"], "goal": "N.succ.smoothNumbers = N.smoothNumbers"}], "premise": [21706, 21715, 139149], "state_str": "N : ℕ\nhN : ¬Prime N\n⊢ N.succ.smoothNumbers = N.smoothNumbers"} +{"state": [{"context": ["C : Type u₁", "inst✝³ : Category.{v₁, u₁} C", "inst✝² : Preadditive C", "D : Type u_1", "inst✝¹ : Category.{v₁, u_1} D", "inst✝ : Preadditive D", "ι✝¹ : Type", "fintype✝¹ : Fintype ι✝¹", "X✝¹ : ι✝¹ → C", "i✝ : ((𝟭 C).mapMat_.obj (Mat_.mk ι✝¹ X✝¹)).ι", "ι✝ : Type", "fintype✝ : Fintype ι✝", "X✝ : ι✝ → C", "j✝ : ((𝟭 (Mat_ C)).obj (Mat_.mk ι✝ X✝)).ι", "f : Mat_.mk ι✝¹ X✝¹ ⟶ Mat_.mk ι✝ X✝"], "goal": "((𝟭 C).mapMat_.map f ≫ ((fun M => eqToIso ⋯) (Mat_.mk ι✝ X✝)).hom) i✝ j✝ = (((fun M => eqToIso ⋯) (Mat_.mk ι✝¹ X✝¹)).hom ≫ (𝟭 (Mat_ C)).map f) i✝ j✝"}], "premise": [96186, 96187], "state_str": "case H.mk.mk\nC : Type u₁\ninst✝³ : Category.{v₁, u₁} C\ninst✝² : Preadditive C\nD : Type u_1\ninst✝¹ : Category.{v₁, u_1} D\ninst✝ : Preadditive D\nι✝¹ : Type\nfintype✝¹ : Fintype ι✝¹\nX✝¹ : ι✝¹ → C\ni✝ : ((𝟭 C).mapMat_.obj (Mat_.mk ι✝¹ X✝¹)).ι\nι✝ : Type\nfintype✝ : Fintype ι✝\nX✝ : ι✝ → C\nj✝ : ((𝟭 (Mat_ C)).obj (Mat_.mk ι✝ X✝)).ι\nf : Mat_.mk ι✝¹ X✝¹ ⟶ Mat_.mk ι✝ X✝\n⊢ ((𝟭 C).mapMat_.map f ≫ ((fun M => eqToIso ⋯) (Mat_.mk ι✝ X✝)).hom) i✝ j✝ =\n (((fun M => eqToIso ⋯) (Mat_.mk ι✝¹ X✝¹)).hom ≫ (𝟭 (Mat_ C)).map f) i✝ j✝"} +{"state": [{"context": ["R : Type u", "inst✝⁵ : CommRing R", "M : Type u", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "N : Type u", "inst✝² : AddCommGroup N", "inst✝¹ : Module R N", "ι : Type u", "inst✝ : Fintype ι", "m : ι → M", "n : ι → N", "κ : Type u", "w✝ : Fintype κ", "a : ι → κ → R", "y : κ → N", "h₁ : ∀ (i : ι), n i = ∑ j : κ, a i j • y j", "h₂ : ∀ (j : κ), ∑ i : ι, a i j • m i = 0"], "goal": "∑ i : ι, m i ⊗ₜ[R] n i = 0"}], "premise": [86849, 86855], "state_str": "case intro.intro.intro.intro.intro\nR : Type u\ninst✝⁵ : CommRing R\nM : Type u\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nN : Type u\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nι : Type u\ninst✝ : Fintype ι\nm : ι → M\nn : ι → N\nκ : Type u\nw✝ : Fintype κ\na : ι → κ → R\ny : κ → N\nh₁ : ∀ (i : ι), n i = ∑ j : κ, a i j • y j\nh₂ : ∀ (j : κ), ∑ i : ι, a i j • m i = 0\n⊢ ∑ i : ι, m i ⊗ₜ[R] n i = 0"} +{"state": [{"context": ["R : Type u", "inst✝⁵ : CommRing R", "M : Type u", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "N : Type u", "inst✝² : AddCommGroup N", "inst✝¹ : Module R N", "ι : Type u", "inst✝ : Fintype ι", "m : ι → M", "n : ι → N", "κ : Type u", "w✝ : Fintype κ", "a : ι → κ → R", "y : κ → N", "h₁ : ∀ (i : ι), n i = ∑ j : κ, a i j • y j", "h₂ : ∀ (j : κ), ∑ i : ι, a i j • m i = 0"], "goal": "∑ x : ι, ∑ x_1 : κ, a x x_1 • m x ⊗ₜ[R] y x_1 = 0"}], "premise": [127022], "state_str": "case intro.intro.intro.intro.intro\nR : Type u\ninst✝⁵ : CommRing R\nM : Type u\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nN : Type u\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nι : Type u\ninst✝ : Fintype ι\nm : ι → M\nn : ι → N\nκ : Type u\nw✝ : Fintype κ\na : ι → κ → R\ny : κ → N\nh₁ : ∀ (i : ι), n i = ∑ j : κ, a i j • y j\nh₂ : ∀ (j : κ), ∑ i : ι, a i j • m i = 0\n⊢ ∑ x : ι, ∑ x_1 : κ, a x x_1 • m x ⊗ₜ[R] y x_1 = 0"} +{"state": [{"context": ["R : Type u", "inst✝⁵ : CommRing R", "M : Type u", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "N : Type u", "inst✝² : AddCommGroup N", "inst✝¹ : Module R N", "ι : Type u", "inst✝ : Fintype ι", "m : ι → M", "n : ι → N", "κ : Type u", "w✝ : Fintype κ", "a : ι → κ → R", "y : κ → N", "h₁ : ∀ (i : ι), n i = ∑ j : κ, a i j • y j", "h₂ : ∀ (j : κ), ∑ i : ι, a i j • m i = 0"], "goal": "∑ y_1 : κ, ∑ x : ι, a x y_1 • m x ⊗ₜ[R] y y_1 = 0"}], "premise": [86836, 86841, 86849, 86854, 126913], "state_str": "case intro.intro.intro.intro.intro\nR : Type u\ninst✝⁵ : CommRing R\nM : Type u\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nN : Type u\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nι : Type u\ninst✝ : Fintype ι\nm : ι → M\nn : ι → N\nκ : Type u\nw✝ : Fintype κ\na : ι → κ → R\ny : κ → N\nh₁ : ∀ (i : ι), n i = ∑ j : κ, a i j • y j\nh₂ : ∀ (j : κ), ∑ i : ι, a i j • m i = 0\n⊢ ∑ y_1 : κ, ∑ x : ι, a x y_1 • m x ⊗ₜ[R] y y_1 = 0"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "inst✝⁷ : TopologicalSpace α", "inst✝⁶ : Preorder α", "inst✝⁵ : TopologicalSpace β", "inst✝⁴ : Preorder β", "inst✝³ : TopologicalSpace γ", "inst✝² : Preorder γ", "inst✝¹ : TopologicalSpace δ", "inst✝ : Preorder δ", "g : EsakiaHom β γ", "f₁ f₂ : EsakiaHom α β", "hg : Injective ⇑g", "h : g.comp f₁ = g.comp f₂", "a : α"], "goal": "g (f₁ a) = g (f₂ a)"}], "premise": [54346], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\ninst✝⁷ : TopologicalSpace α\ninst✝⁶ : Preorder α\ninst✝⁵ : TopologicalSpace β\ninst✝⁴ : Preorder β\ninst✝³ : TopologicalSpace γ\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : Preorder δ\ng : EsakiaHom β γ\nf₁ f₂ : EsakiaHom α β\nhg : Injective ⇑g\nh : g.comp f₁ = g.comp f₂\na : α\n⊢ g (f₁ a) = g (f₂ a)"} +{"state": [{"context": ["m n : ℕ", "x y : ZMod n"], "goal": "(x - y).cast = (x.cast - y.cast) % ↑n"}], "premise": [128757, 138295, 138339], "state_str": "m n : ℕ\nx y : ZMod n\n⊢ (x - y).cast = (x.cast - y.cast) % ↑n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : EMetricSpace α", "x y z : α", "s t : Set α", "C : ℝ≥0∞", "sC : Set ℝ≥0∞", "inst✝ : Finite ↑s"], "goal": "0 < s.einfsep"}], "premise": [141384], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : EMetricSpace α\nx y z : α\ns t : Set α\nC : ℝ≥0∞\nsC : Set ℝ≥0∞\ninst✝ : Finite ↑s\n⊢ 0 < s.einfsep"} +{"state": [{"context": ["K : Type u_1", "E : Type u_2", "inst✝ : RCLike K"], "goal": "‖reCLM‖ = 1"}], "premise": [14296, 40918, 101700], "state_str": "K : Type u_1\nE : Type u_2\ninst✝ : RCLike K\n⊢ ‖reCLM‖ = 1"} +{"state": [{"context": ["K : Type u_1", "E : Type u_2", "inst✝ : RCLike K"], "goal": "1 ≤ ‖reLm.mkContinuous 1 ⋯‖"}], "premise": [40899], "state_str": "K : Type u_1\nE : Type u_2\ninst✝ : RCLike K\n⊢ 1 ≤ ‖reLm.mkContinuous 1 ⋯‖"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : LinearOrderedCommMonoidWithZero α", "a b c d x y z : α", "n : ℕ", "inst✝ : NoZeroDivisors α", "hn : n ≠ 0"], "goal": "0 < a ^ n ↔ 0 < a"}], "premise": [102772, 108283], "state_str": "α : Type u_1\ninst✝¹ : LinearOrderedCommMonoidWithZero α\na b c d x y z : α\nn : ℕ\ninst✝ : NoZeroDivisors α\nhn : n ≠ 0\n⊢ 0 < a ^ n ↔ 0 < a"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Abelian C", "inst✝¹ : HasPullbacks C", "W X Y Z : C", "f : X ⟶ Z", "g : Y ⟶ Z", "inst✝ : Epi g", "s : PullbackCone f g", "hs : IsLimit s", "this : Epi ((limit.cone (cospan f g)).π.app WalkingCospan.left)"], "goal": "Epi s.fst"}], "premise": [94253, 96199], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Abelian C\ninst✝¹ : HasPullbacks C\nW X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\ninst✝ : Epi g\ns : PullbackCone f g\nhs : IsLimit s\nthis : Epi ((limit.cone (cospan f g)).π.app WalkingCospan.left)\n⊢ Epi s.fst"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝³ : DecidableEq β", "inst✝² : Group α", "inst✝¹ : MulAction α β", "s✝ t : Finset β", "a✝¹ : α", "b : β", "inst✝ : DecidableEq α", "a : α", "s : Finset α", "a✝ : α"], "goal": "a✝ ∈ (a • s)⁻¹ ↔ a✝ ∈ op a⁻¹ • s⁻¹"}], "premise": [141991], "state_str": "case a\nF : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝³ : DecidableEq β\ninst✝² : Group α\ninst✝¹ : MulAction α β\ns✝ t : Finset β\na✝¹ : α\nb : β\ninst✝ : DecidableEq α\na : α\ns : Finset α\na✝ : α\n⊢ a✝ ∈ (a • s)⁻¹ ↔ a✝ ∈ op a⁻¹ • s⁻¹"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : MeasurableSpace α", "s : SignedMeasure α", "μ ν : Measure α", "inst✝¹ : IsFiniteMeasure μ", "inst✝ : IsFiniteMeasure ν", "u v w : Set α", "hu : MeasurableSet u", "hv : MeasurableSet v", "hsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u", "hsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v", "hs : ↑s (u ∆ v) = 0"], "goal": "↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0"}], "premise": [32676], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : MeasurableSpace α", "s : SignedMeasure α", "μ ν : Measure α", "inst✝¹ : IsFiniteMeasure μ", "inst✝ : IsFiniteMeasure ν", "u v w : Set α", "hu : MeasurableSet u", "hv : MeasurableSet v", "hsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j", "hsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j", "hs : ↑s (u ∆ v) = 0"], "goal": "↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0"}, {"context": ["α : Type u_1", "β : Type u_2", "inst✝² : MeasurableSpace α", "s : SignedMeasure α", "μ ν : Measure α", "inst✝¹ : IsFiniteMeasure μ", "inst✝ : IsFiniteMeasure ν", "u v w : Set α", "hu : MeasurableSet u", "hv : MeasurableSet v", "hsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j", "hsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v", "hs : ↑s (u ∆ v) = 0"], "goal": "MeasurableSet v"}, {"context": ["α : Type u_1", "β : Type u_2", "inst✝² : MeasurableSpace α", "s : SignedMeasure α", "μ ν : Measure α", "inst✝¹ : IsFiniteMeasure μ", "inst✝ : IsFiniteMeasure ν", "u v w : Set α", "hu : MeasurableSet u", "hv : MeasurableSet v", "hsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u", "hsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v", "hs : ↑s (u ∆ v) = 0"], "goal": "MeasurableSet u"}], "premise": [12013, 27973, 32616, 32627, 133573, 133635], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u"} +{"state": [{"context": ["R : Type r", "S : Type s", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "W : WeierstrassCurve R"], "goal": "W.Φ 3 = X * W.Ψ₃ ^ 2 - W.preΨ₄ * W.Ψ₂Sq"}], "premise": [1737, 119730, 121779, 128650, 128651, 128652, 128683], "state_str": "R : Type r\nS : Type s\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nW : WeierstrassCurve R\n⊢ W.Φ 3 = X * W.Ψ₃ ^ 2 - W.preΨ₄ * W.Ψ₂Sq"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "w₁ w₂ : W"], "goal": "cs.length w₂ - cs.length w₁ ≤ cs.length (w₁ * w₂)"}], "premise": [3900, 8164, 119708], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nw₁ w₂ : W\n⊢ cs.length w₂ - cs.length w₁ ≤ cs.length (w₁ * w₂)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : DecidableEq β", "f g : α → β", "s : Finset α", "t : Finset β", "a : α", "b c : β"], "goal": "∀ (x : β), x ∈ ↑(image f s) ↔ x ∈ f '' ↑s"}], "premise": [1199, 131592, 137413, 138668], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : DecidableEq β\nf g : α → β\ns : Finset α\nt : Finset β\na : α\nb c : β\n⊢ ∀ (x : β), x ∈ ↑(image f s) ↔ x ∈ f '' ↑s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : Monoid M", "a✝ b c : M", "m n : ℕ", "hn : n ≠ 0", "a : M"], "goal": "a ^ (n - 1) * a = a ^ n"}], "premise": [1674, 3886, 119742, 145044], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : Monoid M\na✝ b c : M\nm n : ℕ\nhn : n ≠ 0\na : M\n⊢ a ^ (n - 1) * a = a ^ n"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "M : Type u_3", "inst✝⁶ : Field K", "inst✝⁵ : LieRing L", "inst✝⁴ : LieAlgebra K L", "inst✝³ : AddCommGroup M", "inst✝² : Module K M", "inst✝¹ : LieRingModule L M", "inst✝ : Module.Finite K L", "Φ : LinearMap.BilinForm K L", "hΦ_nondeg : Φ.Nondegenerate", "hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ", "hΦ_refl : Φ.IsRefl", "hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥↑I", "I : LieIdeal K L", "hI : IsAtom I"], "goal": "(Φ.restrict (lieIdealSubalgebra K L I).toSubmodule).Nondegenerate"}], "premise": [82979], "state_str": "K : Type u_1\nL : Type u_2\nM : Type u_3\ninst✝⁶ : Field K\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra K L\ninst✝³ : AddCommGroup M\ninst✝² : Module K M\ninst✝¹ : LieRingModule L M\ninst✝ : Module.Finite K L\nΦ : LinearMap.BilinForm K L\nhΦ_nondeg : Φ.Nondegenerate\nhΦ_inv : LinearMap.BilinForm.lieInvariant L Φ\nhΦ_refl : Φ.IsRefl\nhL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥↑I\nI : LieIdeal K L\nhI : IsAtom I\n⊢ (Φ.restrict (lieIdealSubalgebra K L I).toSubmodule).Nondegenerate"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "M : Type u_3", "inst✝⁶ : Field K", "inst✝⁵ : LieRing L", "inst✝⁴ : LieAlgebra K L", "inst✝³ : AddCommGroup M", "inst✝² : Module K M", "inst✝¹ : LieRingModule L M", "inst✝ : Module.Finite K L", "Φ : LinearMap.BilinForm K L", "hΦ_nondeg : Φ.Nondegenerate", "hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ", "hΦ_refl : Φ.IsRefl", "hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥↑I", "I : LieIdeal K L", "hI : IsAtom I"], "goal": "IsCompl (lieIdealSubalgebra K L I).toSubmodule (Φ.orthogonal (lieIdealSubalgebra K L I).toSubmodule)"}], "premise": [107331], "state_str": "K : Type u_1\nL : Type u_2\nM : Type u_3\ninst✝⁶ : Field K\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra K L\ninst✝³ : AddCommGroup M\ninst✝² : Module K M\ninst✝¹ : LieRingModule L M\ninst✝ : Module.Finite K L\nΦ : LinearMap.BilinForm K L\nhΦ_nondeg : Φ.Nondegenerate\nhΦ_inv : LinearMap.BilinForm.lieInvariant L Φ\nhΦ_refl : Φ.IsRefl\nhL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥↑I\nI : LieIdeal K L\nhI : IsAtom I\n⊢ IsCompl (lieIdealSubalgebra K L I).toSubmodule (Φ.orthogonal (lieIdealSubalgebra K L I).toSubmodule)"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "M : Type u_5", "M₁ : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "Mₗ₁ : Type u_9", "Mₗ₁' : Type u_10", "Mₗ₂ : Type u_11", "Mₗ₂' : Type u_12", "K : Type u_13", "K₁ : Type u_14", "K₂ : Type u_15", "V : Type u_16", "V₁ : Type u_17", "V₂ : Type u_18", "n : Type u_19", "inst✝⁵ : CommSemiring R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : CommSemiring R₁", "inst✝¹ : AddCommMonoid M₁", "inst✝ : Module R₁ M₁", "I₁ I₂ I : R₁ →+* R", "B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M", "H : B.IsAlt", "x y : M₁"], "goal": "-(B x) y = (B y) x"}], "premise": [87568], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nM : Type u_5\nM₁ : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nMₗ₁ : Type u_9\nMₗ₁' : Type u_10\nMₗ₂ : Type u_11\nMₗ₂' : Type u_12\nK : Type u_13\nK₁ : Type u_14\nK₂ : Type u_15\nV : Type u_16\nV₁ : Type u_17\nV₂ : Type u_18\nn : Type u_19\ninst✝⁵ : CommSemiring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : CommSemiring R₁\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M\nH : B.IsAlt\nx y : M₁\n⊢ -(B x) y = (B y) x"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "M : Type u_5", "M₁ : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "Mₗ₁ : Type u_9", "Mₗ₁' : Type u_10", "Mₗ₂ : Type u_11", "Mₗ₂' : Type u_12", "K : Type u_13", "K₁ : Type u_14", "K₂ : Type u_15", "V : Type u_16", "V₁ : Type u_17", "V₂ : Type u_18", "n : Type u_19", "inst✝⁵ : CommSemiring R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : CommSemiring R₁", "inst✝¹ : AddCommMonoid M₁", "inst✝ : Module R₁ M₁", "I₁ I₂ I : R₁ →+* R", "B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M", "H : B.IsAlt", "x y : M₁", "H1 : (B (y + x)) (y + x) = 0"], "goal": "-(B x) y = (B y) x"}], "premise": [87568, 109788, 117079, 119727, 119729], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nM : Type u_5\nM₁ : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nMₗ₁ : Type u_9\nMₗ₁' : Type u_10\nMₗ₂ : Type u_11\nMₗ₂' : Type u_12\nK : Type u_13\nK₁ : Type u_14\nK₂ : Type u_15\nV : Type u_16\nV₁ : Type u_17\nV₂ : Type u_18\nn : Type u_19\ninst✝⁵ : CommSemiring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : CommSemiring R₁\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M\nH : B.IsAlt\nx y : M₁\nH1 : (B (y + x)) (y + x) = 0\n⊢ -(B x) y = (B y) x"} +{"state": [{"context": ["R : Type u_1", "R₁ : Type u_2", "R₂ : Type u_3", "R₃ : Type u_4", "M : Type u_5", "M₁ : Type u_6", "M₂ : Type u_7", "M₃ : Type u_8", "Mₗ₁ : Type u_9", "Mₗ₁' : Type u_10", "Mₗ₂ : Type u_11", "Mₗ₂' : Type u_12", "K : Type u_13", "K₁ : Type u_14", "K₂ : Type u_15", "V : Type u_16", "V₁ : Type u_17", "V₂ : Type u_18", "n : Type u_19", "inst✝⁵ : CommSemiring R", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "inst✝² : CommSemiring R₁", "inst✝¹ : AddCommMonoid M₁", "inst✝ : Module R₁ M₁", "I₁ I₂ I : R₁ →+* R", "B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M", "H : B.IsAlt", "x y : M₁", "H1 : (B x) y + (B y) x = 0"], "goal": "-(B x) y = (B y) x"}], "premise": [117955], "state_str": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type u_3\nR₃ : Type u_4\nM : Type u_5\nM₁ : Type u_6\nM₂ : Type u_7\nM₃ : Type u_8\nMₗ₁ : Type u_9\nMₗ₁' : Type u_10\nMₗ₂ : Type u_11\nMₗ₂' : Type u_12\nK : Type u_13\nK₁ : Type u_14\nK₂ : Type u_15\nV : Type u_16\nV₁ : Type u_17\nV₂ : Type u_18\nn : Type u_19\ninst✝⁵ : CommSemiring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : CommSemiring R₁\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] M\nH : B.IsAlt\nx y : M₁\nH1 : (B x) y + (B y) x = 0\n⊢ -(B x) y = (B y) x"} +{"state": [{"context": ["α : Type u_1", "r : α → α → Prop", "o : Ordinal.{u}", "f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u}", "c : Cardinal.{u}", "hc : c.IsRegular", "ho : o.card < c", "hc' : c ≠ ℵ₀", "hf : ∀ (i : Ordinal.{u}) (hi : i < o), ∀ b < c.ord, f i hi b < c.ord", "a : Ordinal.{u}"], "goal": "lift.{u, u} o.card < c"}], "premise": [48583], "state_str": "α : Type u_1\nr : α → α → Prop\no : Ordinal.{u}\nf : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u}\nc : Cardinal.{u}\nhc : c.IsRegular\nho : o.card < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : Ordinal.{u}) (hi : i < o), ∀ b < c.ord, f i hi b < c.ord\na : Ordinal.{u}\n⊢ lift.{u, u} o.card < c"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : Preadditive C", "inst✝³ : MonoidalCategory C", "inst✝² : MonoidalPreadditive C", "inst✝¹ : HasFiniteBiproducts C", "J : Type", "inst✝ : Fintype J", "X Y : C", "f : J → C", "j✝ : J"], "goal": "((asIso (𝟙 X) ⊗ leftDistributor Y f) ≪≫ leftDistributor X fun j => Y ⊗ f j).hom ≫ biproduct.π (fun j => X ⊗ Y ⊗ f j) j✝ = ((α_ X Y (⨁ f)).symm ≪≫ leftDistributor (X ⊗ Y) f ≪≫ biproduct.mapIso fun j => α_ X Y (f j)).hom ≫ biproduct.π (fun j => X ⊗ Y ⊗ f j) j✝"}], "premise": [88745, 88756, 88788, 91609, 91610, 93604, 96173, 96174, 96186, 96251, 96266, 96270, 97736, 98550, 98552, 99250, 99307, 126913, 127094, 127104], "state_str": "case w.w\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : Preadditive C\ninst✝³ : MonoidalCategory C\ninst✝² : MonoidalPreadditive C\ninst✝¹ : HasFiniteBiproducts C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nf : J → C\nj✝ : J\n⊢ ((asIso (𝟙 X) ⊗ leftDistributor Y f) ≪≫ leftDistributor X fun j => Y ⊗ f j).hom ≫\n biproduct.π (fun j => X ⊗ Y ⊗ f j) j✝ =\n ((α_ X Y (⨁ f)).symm ≪≫ leftDistributor (X ⊗ Y) f ≪≫ biproduct.mapIso fun j => α_ X Y (f j)).hom ≫\n biproduct.π (fun j => X ⊗ Y ⊗ f j) j✝"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : Preadditive C", "inst✝³ : MonoidalCategory C", "inst✝² : MonoidalPreadditive C", "inst✝¹ : HasFiniteBiproducts C", "J : Type", "inst✝ : Fintype J", "X Y : C", "f : J → C", "j✝ : J"], "goal": "(if j✝ ∈ Finset.univ then ∑ x : J, (𝟙 X ⊗ Y ◁ biproduct.π f x) ≫ (𝟙 X ⊗ biproduct.ι (fun j => Y ⊗ f j) x) ≫ X ◁ biproduct.π (fun j => Y ⊗ f j) j✝ else 0) = if j✝ ∈ Finset.univ then (α_ X Y (⨁ f)).inv ≫ (X ⊗ Y) ◁ biproduct.π f j✝ ≫ (α_ X Y (f j✝)).hom else 0"}], "premise": [99217], "state_str": "case w.w\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : Preadditive C\ninst✝³ : MonoidalCategory C\ninst✝² : MonoidalPreadditive C\ninst✝¹ : HasFiniteBiproducts C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nf : J → C\nj✝ : J\n⊢ (if j✝ ∈ Finset.univ then\n ∑ x : J,\n (𝟙 X ⊗ Y ◁ biproduct.π f x) ≫ (𝟙 X ⊗ biproduct.ι (fun j => Y ⊗ f j) x) ≫ X ◁ biproduct.π (fun j => Y ⊗ f j) j✝\n else 0) =\n if j✝ ∈ Finset.univ then (α_ X Y (⨁ f)).inv ≫ (X ⊗ Y) ◁ biproduct.π f j✝ ≫ (α_ X Y (f j✝)).hom else 0"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : Preadditive C", "inst✝³ : MonoidalCategory C", "inst✝² : MonoidalPreadditive C", "inst✝¹ : HasFiniteBiproducts C", "J : Type", "inst✝ : Fintype J", "X Y : C", "f : J → C", "j✝ : J"], "goal": "(if j✝ ∈ Finset.univ then ∑ x : J, (𝟙 X ⊗ 𝟙 Y ⊗ biproduct.π f x) ≫ (𝟙 X ⊗ biproduct.ι (fun j => Y ⊗ f j) x) ≫ (𝟙 X ⊗ biproduct.π (fun j => Y ⊗ f j) j✝) else 0) = if j✝ ∈ Finset.univ then (α_ X Y (⨁ f)).inv ≫ (𝟙 (X ⊗ Y) ⊗ biproduct.π f j✝) ≫ (α_ X Y (f j✝)).hom else 0"}], "premise": [96251, 99307], "state_str": "case w.w\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : Preadditive C\ninst✝³ : MonoidalCategory C\ninst✝² : MonoidalPreadditive C\ninst✝¹ : HasFiniteBiproducts C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nf : J → C\nj✝ : J\n⊢ (if j✝ ∈ Finset.univ then\n ∑ x : J,\n (𝟙 X ⊗ 𝟙 Y ⊗ biproduct.π f x) ≫\n (𝟙 X ⊗ biproduct.ι (fun j => Y ⊗ f j) x) ≫ (𝟙 X ⊗ biproduct.π (fun j => Y ⊗ f j) j✝)\n else 0) =\n if j✝ ∈ Finset.univ then (α_ X Y (⨁ f)).inv ≫ (𝟙 (X ⊗ Y) ⊗ biproduct.π f j✝) ≫ (α_ X Y (f j✝)).hom else 0"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : Preadditive C", "inst✝³ : MonoidalCategory C", "inst✝² : MonoidalPreadditive C", "inst✝¹ : HasFiniteBiproducts C", "J : Type", "inst✝ : Fintype J", "X Y : C", "f : J → C", "j✝ : J"], "goal": "(if j✝ ∈ Finset.univ then ∑ x : J, 𝟙 X ⊗ (𝟙 Y ⊗ biproduct.π f x) ≫ if h : x = j✝ then eqToHom ⋯ else 0 else 0) = if j✝ ∈ Finset.univ then (α_ X Y (⨁ f)).inv ≫ (𝟙 (X ⊗ Y) ⊗ biproduct.π f j✝) ≫ (α_ X Y (f j✝)).hom else 0"}], "premise": [96186, 99254, 99307], "state_str": "case w.w\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : Preadditive C\ninst✝³ : MonoidalCategory C\ninst✝² : MonoidalPreadditive C\ninst✝¹ : HasFiniteBiproducts C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nf : J → C\nj✝ : J\n⊢ (if j✝ ∈ Finset.univ then ∑ x : J, 𝟙 X ⊗ (𝟙 Y ⊗ biproduct.π f x) ≫ if h : x = j✝ then eqToHom ⋯ else 0 else 0) =\n if j✝ ∈ Finset.univ then (α_ X Y (⨁ f)).inv ≫ (𝟙 (X ⊗ Y) ⊗ biproduct.π f j✝) ≫ (α_ X Y (f j✝)).hom else 0"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "h3 : 3 ≤ card α"], "goal": "Nontrivial ↥(alternatingGroup α)"}], "premise": [1673, 14281, 141406], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nh3 : 3 ≤ card α\n⊢ Nontrivial ↥(alternatingGroup α)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "h3 : 3 ≤ card α", "this : Nontrivial α"], "goal": "Nontrivial ↥(alternatingGroup α)"}], "premise": [141406], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nh3 : 3 ≤ card α\nthis : Nontrivial α\n⊢ Nontrivial ↥(alternatingGroup α)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "h3 : 3 ≤ card α", "this : Nontrivial α"], "goal": "1 < card ↥(alternatingGroup α)"}], "premise": [14286, 102625, 144292, 144303], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nh3 : 3 ≤ card α\nthis : Nontrivial α\n⊢ 1 < card ↥(alternatingGroup α)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "h3 : 3 ≤ card α", "this : Nontrivial α"], "goal": "2 * 1 < 2 * card ↥(alternatingGroup α)"}], "premise": [7189, 141052, 145037], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nh3 : 3 ≤ card α\nthis : Nontrivial α\n⊢ 2 * 1 < 2 * card ↥(alternatingGroup α)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "h3 : 3 ≤ card α", "this : Nontrivial α"], "goal": "(2 * 1).succ ≤ (card α).factorial"}], "premise": [14273, 144432], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nh3 : 3 ≤ card α\nthis : Nontrivial α\n⊢ (2 * 1).succ ≤ (card α).factorial"} +{"state": [{"context": ["P : EReal → EReal → Prop", "top_top : P ⊤ ⊤", "top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x", "top_zero : P ⊤ 0", "top_neg : ∀ x < 0, P ⊤ ↑x", "top_bot : P ⊤ ⊥", "pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤", "pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥", "zero_top : P 0 ⊤", "coe_coe : ∀ (x y : ℝ), P ↑x ↑y", "zero_bot : P 0 ⊥", "neg_top : ∀ x < 0, P ↑x ⊤", "neg_bot : ∀ x < 0, P ↑x ⊥", "bot_top : P ⊥ ⊤", "bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x", "bot_zero : P ⊥ 0", "bot_neg : ∀ x < 0, P ⊥ ↑x", "bot_bot : P ⊥ ⊥", "y : ℝ"], "goal": "P ⊥ ↑y"}], "premise": [14312], "state_str": "P : EReal → EReal → Prop\ntop_top : P ⊤ ⊤\ntop_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x\ntop_zero : P ⊤ 0\ntop_neg : ∀ x < 0, P ⊤ ↑x\ntop_bot : P ⊤ ⊥\npos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤\npos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥\nzero_top : P 0 ⊤\ncoe_coe : ∀ (x y : ℝ), P ↑x ↑y\nzero_bot : P 0 ⊥\nneg_top : ∀ x < 0, P ↑x ⊤\nneg_bot : ∀ x < 0, P ↑x ⊥\nbot_top : P ⊥ ⊤\nbot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x\nbot_zero : P ⊥ 0\nbot_neg : ∀ x < 0, P ⊥ ↑x\nbot_bot : P ⊥ ⊥\ny : ℝ\n⊢ P ⊥ ↑y"} +{"state": [{"context": ["P : EReal → EReal → Prop", "top_top : P ⊤ ⊤", "top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x", "top_zero : P ⊤ 0", "top_neg : ∀ x < 0, P ⊤ ↑x", "top_bot : P ⊤ ⊥", "pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤", "pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥", "zero_top : P 0 ⊤", "coe_coe : ∀ (x y : ℝ), P ↑x ↑y", "zero_bot : P 0 ⊥", "neg_top : ∀ x < 0, P ↑x ⊤", "neg_bot : ∀ x < 0, P ↑x ⊥", "bot_top : P ⊥ ⊤", "bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x", "bot_zero : P ⊥ 0", "bot_neg : ∀ x < 0, P ⊥ ↑x", "bot_bot : P ⊥ ⊥", "x : ℝ"], "goal": "P ↑x ⊥"}], "premise": [14312], "state_str": "P : EReal → EReal → Prop\ntop_top : P ⊤ ⊤\ntop_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x\ntop_zero : P ⊤ 0\ntop_neg : ∀ x < 0, P ⊤ ↑x\ntop_bot : P ⊤ ⊥\npos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤\npos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥\nzero_top : P 0 ⊤\ncoe_coe : ∀ (x y : ℝ), P ↑x ↑y\nzero_bot : P 0 ⊥\nneg_top : ∀ x < 0, P ↑x ⊤\nneg_bot : ∀ x < 0, P ↑x ⊥\nbot_top : P ⊥ ⊤\nbot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x\nbot_zero : P ⊥ 0\nbot_neg : ∀ x < 0, P ⊥ ↑x\nbot_bot : P ⊥ ⊥\nx : ℝ\n⊢ P ↑x ⊥"} +{"state": [{"context": ["P : EReal → EReal → Prop", "top_top : P ⊤ ⊤", "top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x", "top_zero : P ⊤ 0", "top_neg : ∀ x < 0, P ⊤ ↑x", "top_bot : P ⊤ ⊥", "pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤", "pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥", "zero_top : P 0 ⊤", "coe_coe : ∀ (x y : ℝ), P ↑x ↑y", "zero_bot : P 0 ⊥", "neg_top : ∀ x < 0, P ↑x ⊤", "neg_bot : ∀ x < 0, P ↑x ⊥", "bot_top : P ⊥ ⊤", "bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x", "bot_zero : P ⊥ 0", "bot_neg : ∀ x < 0, P ⊥ ↑x", "bot_bot : P ⊥ ⊥", "x : ℝ"], "goal": "P ↑x ⊤"}], "premise": [14312], "state_str": "P : EReal → EReal → Prop\ntop_top : P ⊤ ⊤\ntop_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x\ntop_zero : P ⊤ 0\ntop_neg : ∀ x < 0, P ⊤ ↑x\ntop_bot : P ⊤ ⊥\npos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤\npos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥\nzero_top : P 0 ⊤\ncoe_coe : ∀ (x y : ℝ), P ↑x ↑y\nzero_bot : P 0 ⊥\nneg_top : ∀ x < 0, P ↑x ⊤\nneg_bot : ∀ x < 0, P ↑x ⊥\nbot_top : P ⊥ ⊤\nbot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x\nbot_zero : P ⊥ 0\nbot_neg : ∀ x < 0, P ⊥ ↑x\nbot_bot : P ⊥ ⊥\nx : ℝ\n⊢ P ↑x ⊤"} +{"state": [{"context": ["P : EReal → EReal → Prop", "top_top : P ⊤ ⊤", "top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x", "top_zero : P ⊤ 0", "top_neg : ∀ x < 0, P ⊤ ↑x", "top_bot : P ⊤ ⊥", "pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤", "pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥", "zero_top : P 0 ⊤", "coe_coe : ∀ (x y : ℝ), P ↑x ↑y", "zero_bot : P 0 ⊥", "neg_top : ∀ x < 0, P ↑x ⊤", "neg_bot : ∀ x < 0, P ↑x ⊥", "bot_top : P ⊥ ⊤", "bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x", "bot_zero : P ⊥ 0", "bot_neg : ∀ x < 0, P ⊥ ↑x", "bot_bot : P ⊥ ⊥", "y : ℝ"], "goal": "P ⊤ ↑y"}], "premise": [14312], "state_str": "P : EReal → EReal → Prop\ntop_top : P ⊤ ⊤\ntop_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x\ntop_zero : P ⊤ 0\ntop_neg : ∀ x < 0, P ⊤ ↑x\ntop_bot : P ⊤ ⊥\npos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤\npos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥\nzero_top : P 0 ⊤\ncoe_coe : ∀ (x y : ℝ), P ↑x ↑y\nzero_bot : P 0 ⊥\nneg_top : ∀ x < 0, P ↑x ⊤\nneg_bot : ∀ x < 0, P ↑x ⊥\nbot_top : P ⊥ ⊤\nbot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x\nbot_zero : P ⊥ 0\nbot_neg : ∀ x < 0, P ⊥ ↑x\nbot_bot : P ⊥ ⊥\ny : ℝ\n⊢ P ⊤ ↑y"} +{"state": [{"context": ["q : ℚ", "x y : ℝ", "m : ℤ", "h : Irrational (↑m * x)"], "goal": "Irrational (↑↑m * x)"}], "premise": [148032], "state_str": "q : ℚ\nx y : ℝ\nm : ℤ\nh : Irrational (↑m * x)\n⊢ Irrational (↑↑m * x)"} +{"state": [{"context": ["p : ℝ"], "goal": "(Summable fun n => (↑n ^ p)⁻¹) ↔ 1 < p"}], "premise": [56440], "state_str": "p : ℝ\n⊢ (Summable fun n => (↑n ^ p)⁻¹) ↔ 1 < p"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "R : Type u_4", "inst✝³ : TopologicalSpace R", "inst✝² : LinearOrderedField R", "inst✝¹ : OrderTopology R", "inst✝ : FloorRing R", "n : ℕ", "hn : n ≠ 0"], "goal": "Tendsto (fun x => x / n) atTop atTop"}], "premise": [15738, 18824], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nR : Type u_4\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\nn : ℕ\nhn : n ≠ 0\n⊢ Tendsto (fun x => x / n) atTop atTop"} +{"state": [{"context": ["ι : Type u'", "ι' : Type u_1", "R : Type u_2", "K : Type u_3", "M : Type u_4", "M' : Type u_5", "M'' : Type u_6", "V : Type u", "V' : Type u_7", "v✝ : ι → M", "inst✝⁶ : Semiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : AddCommMonoid M'", "inst✝³ : AddCommMonoid M''", "inst✝² : Module R M", "inst✝¹ : Module R M'", "inst✝ : Module R M''", "a b : R", "x✝ y : M", "m : ℕ", "x : M", "v : Fin m → M", "hli : LinearIndependent R v", "x_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0"], "goal": "LinearIndependent R (Fin.cons x v)"}], "premise": [83708], "state_str": "ι : Type u'\nι' : Type u_1\nR : Type u_2\nK : Type u_3\nM : Type u_4\nM' : Type u_5\nM'' : Type u_6\nV : Type u\nV' : Type u_7\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli : LinearIndependent R v\nx_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0\n⊢ LinearIndependent R (Fin.cons x v)"} +{"state": [{"context": ["ι : Type u'", "ι' : Type u_1", "R : Type u_2", "K : Type u_3", "M : Type u_4", "M' : Type u_5", "M'' : Type u_6", "V : Type u", "V' : Type u_7", "v✝ : ι → M", "inst✝⁶ : Semiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : AddCommMonoid M'", "inst✝³ : AddCommMonoid M''", "inst✝² : Module R M", "inst✝¹ : Module R M'", "inst✝ : Module R M''", "a b : R", "x✝ y : M", "m : ℕ", "x : M", "v : Fin m → M", "hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0", "x_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0", "g : Fin (m + 1) → R", "total_eq : ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0", "j : Fin (m + 1)"], "goal": "g j = 0"}], "premise": [124542, 143929, 143930], "state_str": "ι : Type u'\nι' : Type u_1\nR : Type u_2\nK : Type u_3\nM : Type u_4\nM' : Type u_5\nM'' : Type u_6\nV : Type u\nV' : Type u_7\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\ntotal_eq : ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0\nj : Fin (m + 1)\n⊢ g j = 0"} +{"state": [{"context": ["ι : Type u'", "ι' : Type u_1", "R : Type u_2", "K : Type u_3", "M : Type u_4", "M' : Type u_5", "M'' : Type u_6", "V : Type u", "V' : Type u_7", "v✝ : ι → M", "inst✝⁶ : Semiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : AddCommMonoid M'", "inst✝³ : AddCommMonoid M''", "inst✝² : Module R M", "inst✝¹ : Module R M'", "inst✝ : Module R M''", "a b : R", "x✝ y : M", "m : ℕ", "x : M", "v : Fin m → M", "hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0", "x_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0", "g : Fin (m + 1) → R", "j : Fin (m + 1)", "total_eq : g 0 • x + ∑ x : Fin m, g x.succ • v x = 0"], "goal": "g j = 0"}], "premise": [86683, 109637, 119143], "state_str": "ι : Type u'\nι' : Type u_1\nR : Type u_2\nK : Type u_3\nM : Type u_4\nM' : Type u_5\nM'' : Type u_6\nV : Type u\nV' : Type u_7\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g x.succ • v x = 0\n⊢ g j = 0"} +{"state": [{"context": ["ι : Type u'", "ι' : Type u_1", "R : Type u_2", "K : Type u_3", "M : Type u_4", "M' : Type u_5", "M'' : Type u_6", "V : Type u", "V' : Type u_7", "v✝ : ι → M", "inst✝⁶ : Semiring R", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : AddCommMonoid M'", "inst✝³ : AddCommMonoid M''", "inst✝² : Module R M", "inst✝¹ : Module R M'", "inst✝ : Module R M''", "a b : R", "x✝ y : M", "m : ℕ", "x : M", "v : Fin m → M", "hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0", "x_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0", "g : Fin (m + 1) → R", "j : Fin (m + 1)", "total_eq : g 0 • x + ∑ x : Fin m, g x.succ • v x = 0", "this : g 0 = 0"], "goal": "g j = 0"}], "premise": [115738, 119727], "state_str": "ι : Type u'\nι' : Type u_1\nR : Type u_2\nK : Type u_3\nM : Type u_4\nM' : Type u_5\nM'' : Type u_6\nV : Type u\nV' : Type u_7\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : ↥(span R (range v))), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g x.succ • v x = 0\nthis : g 0 = 0\n⊢ g j = 0"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : DivisionRing k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "inst✝ : AffineSpace V P", "n : ℕ", "s : Simplex k P n", "fs : Finset (Fin (n + 1))", "m : ℕ", "h : fs.card = m + 1"], "goal": "centroid k univ (s.face h).points = centroid k fs s.points"}], "premise": [2100, 84252], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nn : ℕ\ns : Simplex k P n\nfs : Finset (Fin (n + 1))\nm : ℕ\nh : fs.card = m + 1\n⊢ centroid k univ (s.face h).points = centroid k fs s.points"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : DivisionRing k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "inst✝ : AffineSpace V P", "n : ℕ", "s : Simplex k P n", "fs : Finset (Fin (n + 1))", "m : ℕ", "h : fs.card = m + 1"], "goal": "fs = map (fs.orderEmbOfFin h).toEmbedding univ"}], "premise": [134174, 137372, 138674, 140826], "state_str": "case h.e'_3.h.e'_9\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nn : ℕ\ns : Simplex k P n\nfs : Finset (Fin (n + 1))\nm : ℕ\nh : fs.card = m + 1\n⊢ fs = map (fs.orderEmbOfFin h).toEmbedding univ"} +{"state": [{"context": ["K : Type u_1", "E : Type u_2", "inst✝ : RCLike K", "r : ℝ", "z : K"], "goal": "re (↑r * z) = r * re z"}], "premise": [33147, 33148, 33149, 108557, 117816], "state_str": "K : Type u_1\nE : Type u_2\ninst✝ : RCLike K\nr : ℝ\nz : K\n⊢ re (↑r * z) = r * re z"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝ : SemilatticeSup α"], "goal": "Tendsto (fun a => (a, a)) atTop atTop"}], "premise": [15697], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝ : SemilatticeSup α\n⊢ Tendsto (fun a => (a, a)) atTop atTop"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝ : SemilatticeSup α"], "goal": "Tendsto (fun a => (a, a)) atTop (atTop ×ˢ atTop)"}], "premise": [12176, 16354], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝ : SemilatticeSup α\n⊢ Tendsto (fun a => (a, a)) atTop (atTop ×ˢ atTop)"} +{"state": [{"context": ["α : Type u", "β : Type v", "X : Type u_1", "inst✝² : PseudoEMetricSpace α", "x y z : α", "ε ε₁ ε₂ : ℝ≥0∞", "s✝ t : Set α", "π : β → Type u_2", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoEMetricSpace (π b)", "s : (b : β) → Set (π b)", "c : ℝ≥0∞", "h : ∀ (b : β), diam (s b) ≤ c"], "goal": "diam (univ.pi s) ≤ c"}], "premise": [1674, 58468, 58527], "state_str": "α : Type u\nβ : Type v\nX : Type u_1\ninst✝² : PseudoEMetricSpace α\nx y z : α\nε ε₁ ε₂ : ℝ≥0∞\ns✝ t : Set α\nπ : β → Type u_2\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoEMetricSpace (π b)\ns : (b : β) → Set (π b)\nc : ℝ≥0∞\nh : ∀ (b : β), diam (s b) ≤ c\n⊢ diam (univ.pi s) ≤ c"} +{"state": [{"context": ["α : Type u", "β : Type v", "X : Type u_1", "inst✝² : PseudoEMetricSpace α", "x✝ y✝ z : α", "ε ε₁ ε₂ : ℝ≥0∞", "s✝ t : Set α", "π : β → Type u_2", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoEMetricSpace (π b)", "s : (b : β) → Set (π b)", "c : ℝ≥0∞", "h : ∀ (b : β), diam (s b) ≤ c", "x : (i : β) → π i", "hx : x ∈ univ.pi s", "y : (i : β) → π i", "hy : y ∈ univ.pi s"], "goal": "∀ (b : β), edist (x b) (y b) ≤ c"}], "premise": [131608], "state_str": "α : Type u\nβ : Type v\nX : Type u_1\ninst✝² : PseudoEMetricSpace α\nx✝ y✝ z : α\nε ε₁ ε₂ : ℝ≥0∞\ns✝ t : Set α\nπ : β → Type u_2\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoEMetricSpace (π b)\ns : (b : β) → Set (π b)\nc : ℝ≥0∞\nh : ∀ (b : β), diam (s b) ≤ c\nx : (i : β) → π i\nhx : x ∈ univ.pi s\ny : (i : β) → π i\nhy : y ∈ univ.pi s\n⊢ ∀ (b : β), edist (x b) (y b) ≤ c"} +{"state": [{"context": ["α : Type u", "β : Type v", "X : Type u_1", "inst✝² : PseudoEMetricSpace α", "x✝ y✝ z : α", "ε ε₁ ε₂ : ℝ≥0∞", "s✝ t : Set α", "π : β → Type u_2", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoEMetricSpace (π b)", "s : (b : β) → Set (π b)", "c : ℝ≥0∞", "h : ∀ (b : β), diam (s b) ≤ c", "x : (i : β) → π i", "hx : ∀ (i : β), x i ∈ s i", "y : (i : β) → π i", "hy : ∀ (i : β), y i ∈ s i"], "goal": "∀ (b : β), edist (x b) (y b) ≤ c"}], "premise": [1673, 58523], "state_str": "α : Type u\nβ : Type v\nX : Type u_1\ninst✝² : PseudoEMetricSpace α\nx✝ y✝ z : α\nε ε₁ ε₂ : ℝ≥0∞\ns✝ t : Set α\nπ : β → Type u_2\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoEMetricSpace (π b)\ns : (b : β) → Set (π b)\nc : ℝ≥0∞\nh : ∀ (b : β), diam (s b) ≤ c\nx : (i : β) → π i\nhx : ∀ (i : β), x i ∈ s i\ny : (i : β) → π i\nhy : ∀ (i : β), y i ∈ s i\n⊢ ∀ (b : β), edist (x b) (y b) ≤ c"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "inst✝³ : EMetricSpace X", "inst✝² : EMetricSpace Y", "inst✝¹ : MeasurableSpace X", "inst✝ : BorelSpace X", "m₁ m₂ : ℝ≥0∞ → ℝ≥0∞", "c : ℝ≥0∞", "hc : c ≠ ⊤", "h0 : c ≠ 0", "hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂", "s : Set X"], "goal": "(mkMetric m₁) s ≤ (c • mkMetric m₂) s"}], "premise": [30791, 31461], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\ninst✝³ : EMetricSpace X\ninst✝² : EMetricSpace Y\ninst✝¹ : MeasurableSpace X\ninst✝ : BorelSpace X\nm₁ m₂ : ℝ≥0∞ → ℝ≥0∞\nc : ℝ≥0∞\nhc : c ≠ ⊤\nh0 : c ≠ 0\nhle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂\ns : Set X\n⊢ (mkMetric m₁) s ≤ (c • mkMetric m₂) s"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "inst✝³ : EMetricSpace X", "inst✝² : EMetricSpace Y", "inst✝¹ : MeasurableSpace X", "inst✝ : BorelSpace X", "m₁ m₂ : ℝ≥0∞ → ℝ≥0∞", "c : ℝ≥0∞", "hc : c ≠ ⊤", "h0 : c ≠ 0", "hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂", "s : Set X"], "goal": "(OuterMeasure.mkMetric m₁) s ≤ (c • ⇑(OuterMeasure.mkMetric m₂)) s"}], "premise": [30778], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\ninst✝³ : EMetricSpace X\ninst✝² : EMetricSpace Y\ninst✝¹ : MeasurableSpace X\ninst✝ : BorelSpace X\nm₁ m₂ : ℝ≥0∞ → ℝ≥0∞\nc : ℝ≥0∞\nhc : c ≠ ⊤\nh0 : c ≠ 0\nhle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂\ns : Set X\n⊢ (OuterMeasure.mkMetric m₁) s ≤ (c • ⇑(OuterMeasure.mkMetric m₂)) s"} +{"state": [{"context": ["o : Ordinal.{u_1}"], "goal": "aleph o ≤ beth o"}], "premise": [2115, 16909, 17390, 48649, 48651, 48680, 49390, 49392, 49413, 49414, 113020], "state_str": "o : Ordinal.{u_1}\n⊢ aleph o ≤ beth o"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "X : PartialFun", "a : (partialFunToPointed ⋙ pointedToPartialFun).obj X"], "goal": "(fun a => ⟨some a, ⋯⟩) ((fun a => Option.get ↑a ⋯) a) = a"}], "premise": [3429, 137133], "state_str": "α : Type u_1\nβ : Type u_2\nX : PartialFun\na : (partialFunToPointed ⋙ pointedToPartialFun).obj X\n⊢ (fun a => ⟨some a, ⋯⟩) ((fun a => Option.get ↑a ⋯) a) = a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "X✝ Y✝ : PartialFun", "f : X✝ ⟶ Y✝", "a : (𝟭 PartialFun).obj X✝", "b : (partialFunToPointed ⋙ pointedToPartialFun).obj Y✝"], "goal": "(b ∈ (f a).bind fun x => Part.some ⟨some x, ⋯⟩) ↔ b ∈ (Part.some ⟨some a, ⋯⟩).bind (PFun.toSubtype (fun x => ¬x = none) (Option.elim' none fun a => (f a).toOption) ∘ Subtype.val)"}], "premise": [131112], "state_str": "α : Type u_1\nβ : Type u_2\nX✝ Y✝ : PartialFun\nf : X✝ ⟶ Y✝\na : (𝟭 PartialFun).obj X✝\nb : (partialFunToPointed ⋙ pointedToPartialFun).obj Y✝\n⊢ (b ∈ (f a).bind fun x => Part.some ⟨some x, ⋯⟩) ↔\n b ∈\n (Part.some ⟨some a, ⋯⟩).bind\n (PFun.toSubtype (fun x => ¬x = none) (Option.elim' none fun a => (f a).toOption) ∘ Subtype.val)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "X✝ Y✝ : PartialFun", "f : X✝ ⟶ Y✝", "a : (𝟭 PartialFun).obj X✝", "b : (partialFunToPointed ⋙ pointedToPartialFun).obj Y✝"], "goal": "(b ∈ (f a).bind fun x => Part.some ⟨some x, ⋯⟩) ↔ b ∈ (PFun.toSubtype (fun x => ¬x = none) (Option.elim' none fun a => (f a).toOption) ∘ Subtype.val) ⟨some a, ⋯⟩"}], "premise": [1715, 1718, 128214, 131108], "state_str": "α : Type u_1\nβ : Type u_2\nX✝ Y✝ : PartialFun\nf : X✝ ⟶ Y✝\na : (𝟭 PartialFun).obj X✝\nb : (partialFunToPointed ⋙ pointedToPartialFun).obj Y✝\n⊢ (b ∈ (f a).bind fun x => Part.some ⟨some x, ⋯⟩) ↔\n b ∈ (PFun.toSubtype (fun x => ¬x = none) (Option.elim' none fun a => (f a).toOption) ∘ Subtype.val) ⟨some a, ⋯⟩"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "X Y : Pointed", "f : X ⟶ Y", "a : X.X", "ha : a ≠ X.point"], "goal": "((pointedToPartialFun ⋙ partialFunToPointed).map f ≫ ((fun X => Pointed.Iso.mk (Equiv.optionSubtypeNe X.point) ⋯) Y).hom).toFun (some ⟨a, ha⟩) = (((fun X => Pointed.Iso.mk (Equiv.optionSubtypeNe X.point) ⋯) X).hom ≫ (𝟭 Pointed).map f).toFun (some ⟨a, ha⟩)"}], "premise": [131086, 141026], "state_str": "case some.mk\nα : Type u_1\nβ : Type u_2\nX Y : Pointed\nf : X ⟶ Y\na : X.X\nha : a ≠ X.point\n⊢ ((pointedToPartialFun ⋙ partialFunToPointed).map f ≫\n ((fun X => Pointed.Iso.mk (Equiv.optionSubtypeNe X.point) ⋯) Y).hom).toFun\n (some ⟨a, ha⟩) =\n (((fun X => Pointed.Iso.mk (Equiv.optionSubtypeNe X.point) ⋯) X).hom ≫ (𝟭 Pointed).map f).toFun (some ⟨a, ha⟩)"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m : MeasurableSpace Ω", "X✝ : Ω → ℝ", "p : ℕ", "μ : Measure Ω", "t : ℝ", "X Y : Ω → ℝ", "h_int_X : AEStronglyMeasurable (fun ω => rexp (t * X ω)) μ", "h_int_Y : AEStronglyMeasurable (fun ω => rexp (t * Y ω)) μ"], "goal": "AEStronglyMeasurable (fun ω => rexp (t * (X + Y) ω)) μ"}], "premise": [120650, 149210], "state_str": "Ω : Type u_1\nι : Type u_2\nm : MeasurableSpace Ω\nX✝ : Ω → ℝ\np : ℕ\nμ : Measure Ω\nt : ℝ\nX Y : Ω → ℝ\nh_int_X : AEStronglyMeasurable (fun ω => rexp (t * X ω)) μ\nh_int_Y : AEStronglyMeasurable (fun ω => rexp (t * Y ω)) μ\n⊢ AEStronglyMeasurable (fun ω => rexp (t * (X + Y) ω)) μ"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m : MeasurableSpace Ω", "X✝ : Ω → ℝ", "p : ℕ", "μ : Measure Ω", "t : ℝ", "X Y : Ω → ℝ", "h_int_X : AEStronglyMeasurable (fun ω => rexp (t * X ω)) μ", "h_int_Y : AEStronglyMeasurable (fun ω => rexp (t * Y ω)) μ"], "goal": "AEStronglyMeasurable (fun ω => rexp (t * X ω) * rexp (t * Y ω)) μ"}], "premise": [29373], "state_str": "Ω : Type u_1\nι : Type u_2\nm : MeasurableSpace Ω\nX✝ : Ω → ℝ\np : ℕ\nμ : Measure Ω\nt : ℝ\nX Y : Ω → ℝ\nh_int_X : AEStronglyMeasurable (fun ω => rexp (t * X ω)) μ\nh_int_Y : AEStronglyMeasurable (fun ω => rexp (t * Y ω)) μ\n⊢ AEStronglyMeasurable (fun ω => rexp (t * X ω) * rexp (t * Y ω)) μ"} +{"state": [{"context": ["ι : Type u_1", "V : Type u", "inst✝¹¹ : Category.{v, u} V", "inst✝¹⁰ : Preadditive V", "W : Type u_2", "inst✝⁹ : Category.{?u.135432, u_2} W", "inst✝⁸ : Preadditive W", "W₁ : Type u_3", "W₂ : Type u_4", "inst✝⁷ : Category.{u_6, u_3} W₁", "inst✝⁶ : Category.{u_5, u_4} W₂", "inst✝⁵ : HasZeroMorphisms W₁", "inst✝⁴ : HasZeroMorphisms W₂", "c✝ : ComplexShape ι", "C D E : HomologicalComplex V c✝", "f g : C ⟶ D", "h k : D ⟶ E", "i : ι", "inst✝³ : HasZeroObject W₁", "inst✝² : HasZeroObject W₂", "F : W₁ ⥤ W₂", "inst✝¹ : F.PreservesZeroMorphisms", "c : ComplexShape ι", "inst��� : DecidableEq ι", "j : ι", "X : W₁"], "goal": "((singleMapHomologicalComplex F c j).hom.app X).f j = F.map (singleObjXSelf c j X).hom ≫ (singleObjXSelf c j (F.obj X)).inv"}], "premise": [97767], "state_str": "ι : Type u_1\nV : Type u\ninst✝¹¹ : Category.{v, u} V\ninst✝¹⁰ : Preadditive V\nW : Type u_2\ninst✝⁹ : Category.{?u.135432, u_2} W\ninst✝⁸ : Preadditive W\nW₁ : Type u_3\nW₂ : Type u_4\ninst✝⁷ : Category.{u_6, u_3} W₁\ninst✝⁶ : Category.{u_5, u_4} W₂\ninst✝⁵ : HasZeroMorphisms W₁\ninst✝⁴ : HasZeroMorphisms W₂\nc✝ : ComplexShape ι\nC D E : HomologicalComplex V c✝\nf g : C ⟶ D\nh k : D ⟶ E\ni : ι\ninst✝³ : HasZeroObject W₁\ninst✝² : HasZeroObject W₂\nF : W₁ ⥤ W₂\ninst✝¹ : F.PreservesZeroMorphisms\nc : ComplexShape ι\ninst✝ : DecidableEq ι\nj : ι\nX : W₁\n⊢ ((singleMapHomologicalComplex F c j).hom.app X).f j =\n F.map (singleObjXSelf c j X).hom ≫ (singleObjXSelf c j (F.obj X)).inv"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α × β → ℚ → ℝ", "hf : IsRatCondKernelCDFAux f κ ν", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel ν", "a : α"], "goal": "∀ᵐ (t : β) ∂ν a, ∀ (q : ℚ), ⨅ r, f (a, t) ↑r = f (a, t) q"}], "premise": [27606], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α × β → ℚ → ℝ\nhf : IsRatCondKernelCDFAux f κ ν\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel ν\na : α\n⊢ ∀ᵐ (t : β) ∂ν a, ∀ (q : ℚ), ⨅ r, f (a, t) ↑r = f (a, t) q"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α × β → ℚ → ℝ", "hf : IsRatCondKernelCDFAux f κ ν", "inst✝¹ : IsFiniteKernel κ", "inst✝ : IsFiniteKernel ν", "a : α"], "goal": "∀ (i : ℚ), ∀ᵐ (a_1 : β) ∂ν a, ⨅ r, f (a, a_1) ↑r = f (a, a_1) i"}], "premise": [29021], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α × β → ℚ → ℝ\nhf : IsRatCondKernelCDFAux f κ ν\ninst✝¹ : IsFiniteKernel κ\ninst✝ : IsFiniteKernel ν\na : α\n⊢ ∀ (i : ℚ), ∀ᵐ (a_1 : β) ∂ν a, ⨅ r, f (a, a_1) ↑r = f (a, a_1) i"} +{"state": [{"context": ["S : Type u_1", "M : Type u_2", "G : Type u_3", "inst✝ : Group G", "a✝ x✝ y✝ a x y b : G"], "goal": "b * a * b⁻¹ * (b * x * b⁻¹) = b * y * b⁻¹ * (b * a * b⁻¹) ↔ a * x = y * a"}], "premise": [119703, 119833], "state_str": "S : Type u_1\nM : Type u_2\nG : Type u_3\ninst✝ : Group G\na✝ x✝ y✝ a x y b : G\n⊢ b * a * b⁻¹ * (b * x * b⁻¹) = b * y * b⁻¹ * (b * a * b⁻¹) ↔ a * x = y * a"} +{"state": [{"context": ["S : Type u_1", "M : Type u_2", "G : Type u_3", "inst✝ : Group G", "a✝ x✝ y✝ a x y b : G"], "goal": "b * a * x * b⁻¹ = b * y * a * b⁻¹ ↔ a * x = y * a"}], "premise": [119703], "state_str": "S : Type u_1\nM : Type u_2\nG : Type u_3\ninst✝ : Group G\na✝ x✝ y✝ a x y b : G\n⊢ b * a * x * b⁻¹ = b * y * a * b⁻¹ ↔ a * x = y * a"} +{"state": [{"context": ["S : Type u_1", "M : Type u_2", "G : Type u_3", "inst✝ : Group G", "a✝ x✝ y✝ a x y b : G"], "goal": "b * (a * (x * b⁻¹)) = b * (y * (a * b⁻¹)) ↔ a * x = y * a"}], "premise": [1713, 119695, 119700, 119703], "state_str": "S : Type u_1\nM : Type u_2\nG : Type u_3\ninst✝ : Group G\na✝ x✝ y✝ a x y b : G\n⊢ b * (a * (x * b⁻¹)) = b * (y * (a * b⁻¹)) ↔ a * x = y * a"} +{"state": [{"context": ["R : Type u", "inst✝¹⁰ : CommSemiring R", "A : Type u", "inst✝⁹ : CommSemiring A", "inst✝⁸ : Algebra R A", "B : Type u", "inst✝⁷ : Semiring B", "inst✝⁶ : Algebra R B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsScalarTower R A B", "inst✝³ : FormallySmooth R A", "inst✝² : FormallySmooth A B", "C : Type u", "inst✝¹ : CommRing C", "inst✝ : Algebra R C", "I : Ideal C", "hI : I ^ 2 = ⊥", "f : B →ₐ[R] C ⧸ I"], "goal": "∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"}], "premise": [76679], "state_str": "case comp_surjective\nR : Type u\ninst✝¹⁰ : CommSemiring R\nA : Type u\ninst✝⁹ : CommSemiring A\ninst✝⁸ : Algebra R A\nB : Type u\ninst✝⁷ : Semiring B\ninst✝⁶ : Algebra R B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsScalarTower R A B\ninst✝³ : FormallySmooth R A\ninst✝² : FormallySmooth A B\nC : Type u\ninst✝¹ : CommRing C\ninst✝ : Algebra R C\nI : Ideal C\nhI : I ^ 2 = ⊥\nf : B →ₐ[R] C ⧸ I\n⊢ ∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"} +{"state": [{"context": ["R : Type u", "inst✝¹⁰ : CommSemiring R", "A : Type u", "inst✝⁹ : CommSemiring A", "inst✝⁸ : Algebra R A", "B : Type u", "inst✝⁷ : Semiring B", "inst✝⁶ : Algebra R B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsScalarTower R A B", "inst✝³ : FormallySmooth R A", "inst✝² : FormallySmooth A B", "C : Type u", "inst✝¹ : CommRing C", "inst✝ : Algebra R C", "I : Ideal C", "hI : I ^ 2 = ⊥", "f : B →ₐ[R] C ⧸ I", "f' : A →ₐ[R] C", "e : (Ideal.Quotient.mkₐ R I).comp f' = f.comp (IsScalarTower.toAlgHom R A B)", "this : Algebra A C := f'.toAlgebra"], "goal": "∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"}], "premise": [2100, 76679, 121055], "state_str": "case comp_surjective.intro\nR : Type u\ninst✝¹⁰ : CommSemiring R\nA : Type u\ninst✝⁹ : CommSemiring A\ninst✝⁸ : Algebra R A\nB : Type u\ninst✝⁷ : Semiring B\ninst✝⁶ : Algebra R B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsScalarTower R A B\ninst✝³ : FormallySmooth R A\ninst✝² : FormallySmooth A B\nC : Type u\ninst✝¹ : CommRing C\ninst✝ : Algebra R C\nI : Ideal C\nhI : I ^ 2 = ⊥\nf : B →ₐ[R] C ⧸ I\nf' : A →ₐ[R] C\ne : (Ideal.Quotient.mkₐ R I).comp f' = f.comp (IsScalarTower.toAlgHom R A B)\nthis : Algebra A C := f'.toAlgebra\n⊢ ∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"} +{"state": [{"context": ["R : Type u", "inst✝¹⁰ : CommSemiring R", "A : Type u", "inst✝⁹ : CommSemiring A", "inst✝⁸ : Algebra R A", "B : Type u", "inst✝⁷ : Semiring B", "inst✝⁶ : Algebra R B", "inst✝⁵ : Algebra A B", "inst✝⁴ : IsScalarTower R A B", "inst✝³ : FormallySmooth R A", "inst✝² : FormallySmooth A B", "C : Type u", "inst✝¹ : CommRing C", "inst✝ : Algebra R C", "I : Ideal C", "hI : I ^ 2 = ⊥", "f : B →ₐ[R] C ⧸ I", "f' : A →ₐ[R] C", "e : (Ideal.Quotient.mkₐ R I).comp f' = f.comp (IsScalarTower.toAlgHom R A B)", "this : Algebra A C := f'.toAlgebra", "f'' : B →ₐ[A] C", "e' : AlgHom.restrictScalars R ((Ideal.Quotient.mkₐ A I).comp f'') = AlgHom.restrictScalars R (let __src := f.toRingHom; { toRingHom := __src, commutes' := ⋯ })"], "goal": "∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"}], "premise": [2101, 121057], "state_str": "case comp_surjective.intro.intro\nR : Type u\ninst✝¹⁰ : CommSemiring R\nA : Type u\ninst✝⁹ : CommSemiring A\ninst✝⁸ : Algebra R A\nB : Type u\ninst✝⁷ : Semiring B\ninst✝⁶ : Algebra R B\ninst✝⁵ : Algebra A B\ninst✝⁴ : IsScalarTower R A B\ninst✝³ : FormallySmooth R A\ninst✝² : FormallySmooth A B\nC : Type u\ninst✝¹ : CommRing C\ninst✝ : Algebra R C\nI : Ideal C\nhI : I ^ 2 = ⊥\nf : B →ₐ[R] C ⧸ I\nf' : A →ₐ[R] C\ne : (Ideal.Quotient.mkₐ R I).comp f' = f.comp (IsScalarTower.toAlgHom R A B)\nthis : Algebra A C := f'.toAlgebra\nf'' : B →ₐ[A] C\ne' :\n AlgHom.restrictScalars R ((Ideal.Quotient.mkₐ A I).comp f'') =\n AlgHom.restrictScalars R\n (let __src := f.toRingHom;\n { toRingHom := __src, commutes' := ⋯ })\n⊢ ∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"} +{"state": [{"context": ["w x✝ y✝ z y : ℝ", "hy : 0 < y", "x : ℝ≥0"], "goal": "(x ^ (1 / y)) ^ y = x"}], "premise": [1690, 39672, 39678, 108423], "state_str": "w x✝ y✝ z y : ℝ\nhy : 0 < y\nx : ℝ≥0\n⊢ (x ^ (1 / y)) ^ y = x"} +{"state": [{"context": ["E : Type u_1", "inst✝ : SeminormedCommGroup E", "ε δ : ℝ", "s t : Set E", "x y : E"], "goal": "s / ball x δ = x⁻¹ • thickening δ s"}], "premise": [119790], "state_str": "E : Type u_1\ninst✝ : SeminormedCommGroup E\nε δ : ℝ\ns t : Set E\nx y : E\n⊢ s / ball x δ = x⁻¹ • thickening δ s"} +{"state": [{"context": ["x y : ℝ≥0", "hy : 1 < y"], "goal": "∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y"}], "premise": [103648, 107253], "state_str": "x y : ℝ≥0\nhy : 1 < y\n⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y"} +{"state": [{"context": ["x y : ℝ≥0", "hy : 1 < y", "m : ℕ", "hm : x < (y - 1 + 1) ^ m"], "goal": "∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y"}], "premise": [103586], "state_str": "case intro\nx y : ℝ≥0\nhy : 1 < y\nm : ℕ\nhm : x < (y - 1 + 1) ^ m\n⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y"} +{"state": [{"context": ["x y : ℝ≥0", "hy : 1 < y", "m : ℕ", "hm : x < y ^ m"], "goal": "∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y"}], "premise": [1674, 15489], "state_str": "case intro\nx y : ℝ≥0\nhy : 1 < y\nm : ℕ\nhm : x < y ^ m\n⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y"} +{"state": [{"context": ["x y : ℝ≥0", "hy : 1 < y", "m : ℕ", "hm : x < y ^ m", "n : ℕ", "hn : n ≥ m + 1"], "goal": "x ^ (1 / ↑n) ≤ y"}], "premise": [117810], "state_str": "case intro\nx y : ℝ≥0\nhy : 1 < y\nm : ℕ\nhm : x < y ^ m\nn : ℕ\nhn : n ≥ m + 1\n⊢ x ^ (1 / ↑n) ≤ y"} +{"state": [{"context": ["x y : ℝ≥0", "hy : 1 < y", "m : ℕ", "hm : x < y ^ m", "n : ℕ", "hn : n ≥ m + 1"], "goal": "x ^ (↑n)⁻¹ ≤ y"}], "premise": [1674, 2140, 2143, 39688, 39707, 106246, 142640], "state_str": "case intro\nx y : ℝ≥0\nhy : 1 < y\nm : ℕ\nhm : x < y ^ m\nn : ℕ\nhn : n ≥ m + 1\n⊢ x ^ (↑n)⁻¹ ≤ y"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝¹⁴ : CommSemiring R", "inst✝¹³ : AddCommMonoid M", "inst✝¹² : Module R M", "R₁ : Type u_3", "M₁ : Type u_4", "inst✝¹¹ : CommRing R₁", "inst✝¹⁰ : AddCommGroup M₁", "inst✝⁹ : Module R₁ M₁", "V : Type u_5", "K : Type u_6", "inst✝⁸ : Field K", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : Module K V", "M'✝ : Type u_7", "M'' : Type u_8", "inst✝⁵ : AddCommMonoid M'✝", "inst✝⁴ : AddCommMonoid M''", "inst✝³ : Module R M'✝", "inst✝² : Module R M''", "B✝ : BilinForm R M", "B₁ : BilinForm R₁ M₁", "M' : Type u_9", "inst✝¹ : AddCommMonoid M'", "inst✝ : Module R M'", "B : BilinForm R₁ M₁", "b : B.Nondegenerate", "φ ψ : M₁ →ₗ[R₁] M₁", "h : B.compLeft φ = B.compLeft ψ", "w : M₁"], "goal": "φ w = ψ w"}], "premise": [117827], "state_str": "case h\nR : Type u_1\nM : Type u_2\ninst✝¹⁴ : CommSemiring R\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : Module R M\nR₁ : Type u_3\nM₁ : Type u_4\ninst✝¹¹ : CommRing R₁\ninst✝¹⁰ : AddCommGroup M₁\ninst✝⁹ : Module R₁ M₁\nV : Type u_5\nK : Type u_6\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\nM'✝ : Type u_7\nM'' : Type u_8\ninst✝⁵ : AddCommMonoid M'✝\ninst✝⁴ : AddCommMonoid M''\ninst✝³ : Module R M'✝\ninst✝² : Module R M''\nB✝ : BilinForm R M\nB₁ : BilinForm R₁ M₁\nM' : Type u_9\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nB : BilinForm R₁ M₁\nb : B.Nondegenerate\nφ ψ : M₁ →ₗ[R₁] M₁\nh : B.compLeft φ = B.compLeft ψ\nw : M₁\n⊢ φ w = ψ w"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝¹⁴ : CommSemiring R", "inst✝¹³ : AddCommMonoid M", "inst✝¹² : Module R M", "R₁ : Type u_3", "M₁ : Type u_4", "inst✝¹¹ : CommRing R₁", "inst✝¹⁰ : AddCommGroup M₁", "inst✝⁹ : Module R₁ M₁", "V : Type u_5", "K : Type u_6", "inst✝⁸ : Field K", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : Module K V", "M'✝ : Type u_7", "M'' : Type u_8", "inst✝⁵ : AddCommMonoid M'✝", "inst✝⁴ : AddCommMonoid M''", "inst✝³ : Module R M'✝", "inst✝² : Module R M''", "B✝ : BilinForm R M", "B₁ : BilinForm R₁ M₁", "M' : Type u_9", "inst✝¹ : AddCommMonoid M'", "inst✝ : Module R M'", "B : BilinForm R₁ M₁", "b : B.Nondegenerate", "φ ψ : M₁ →ₗ[R₁] M₁", "h : B.compLeft φ = B.compLeft ψ", "w v : M₁"], "goal": "(B (φ w - ψ w)) v = 0"}], "premise": [82450, 82671, 117981], "state_str": "case h\nR : Type u_1\nM : Type u_2\ninst✝¹⁴ : CommSemiring R\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : Module R M\nR₁ : Type u_3\nM₁ : Type u_4\ninst✝¹¹ : CommRing R₁\ninst✝¹⁰ : AddCommGroup M₁\ninst✝⁹ : Module R₁ M₁\nV : Type u_5\nK : Type u_6\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\nM'✝ : Type u_7\nM'' : Type u_8\ninst✝⁵ : AddCommMonoid M'✝\ninst✝⁴ : AddCommMonoid M''\ninst✝³ : Module R M'✝\ninst✝² : Module R M''\nB✝ : BilinForm R M\nB₁ : BilinForm R₁ M₁\nM' : Type u_9\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nB : BilinForm R₁ M₁\nb : B.Nondegenerate\nφ ψ : M₁ →ₗ[R₁] M₁\nh : B.compLeft φ = B.compLeft ψ\nw v : M₁\n⊢ (B (φ w - ψ w)) v = 0"} +{"state": [{"context": ["t : Type u → Type u → Type u", "inst✝⁵ : Bitraversable t", "β✝ : Type u", "F G : Type u → Type u", "inst✝⁴ : Applicative F", "inst✝³ : Applicative G", "inst✝² : LawfulBitraversable t", "inst✝¹ : LawfulApplicative F", "inst✝ : LawfulApplicative G", "α α' β : Type u", "f : α → α'", "x : t α β"], "goal": "tfst (pure ∘ f) x = pure (fst f x)"}], "premise": [9361], "state_str": "t : Type u → Type u → Type u\ninst✝⁵ : Bitraversable t\nβ✝ : Type u\nF G : Type u → Type u\ninst✝⁴ : Applicative F\ninst✝³ : Applicative G\ninst✝² : LawfulBitraversable t\ninst✝¹ : LawfulApplicative F\ninst✝ : LawfulApplicative G\nα α' β : Type u\nf : α → α'\nx : t α β\n⊢ tfst (pure ∘ f) x = pure (fst f x)"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : Mul α", "inst✝² : PartialOrder α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "inst✝ : CovariantClass α α (Function.swap HMul.hMul) LT.lt", "a b : α"], "goal": "Ici a * Ioi b ⊆ Ioi (a * b)"}], "premise": [103726], "state_str": "α : Type u_1\ninst✝³ : Mul α\ninst✝² : PartialOrder α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\ninst✝ : CovariantClass α α (Function.swap HMul.hMul) LT.lt\na b : α\n⊢ Ici a * Ioi b ⊆ Ioi (a * b)"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : Mul α", "inst✝² : PartialOrder α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "inst✝ : CovariantClass α α (Function.swap HMul.hMul) LT.lt", "a b : α", "this : ∀ (M : Type ?u.12705) (N : Type ?u.12704) (μ : M → N → N) [inst : PartialOrder N] [inst_1 : CovariantClass M N μ fun x x_1 => x < x_1], CovariantClass M N μ fun x x_1 => x ≤ x_1", "y : α", "hya : y ∈ Ici a", "z : α", "hzb : z ∈ Ioi b"], "goal": "(fun x x_1 => x * x_1) y z ∈ Ioi (a * b)"}], "premise": [103908], "state_str": "case intro.intro.intro.intro\nα : Type u_1\ninst✝³ : Mul α\ninst✝² : PartialOrder α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\ninst✝ : CovariantClass α α (Function.swap HMul.hMul) LT.lt\na b : α\nthis :\n ∀ (M : Type ?u.12705) (N : Type ?u.12704) (μ : M → N → N) [inst : PartialOrder N]\n [inst_1 : CovariantClass M N μ fun x x_1 => x < x_1], CovariantClass M N μ fun x x_1 => x ≤ x_1\ny : α\nhya : y ∈ Ici a\nz : α\nhzb : z ∈ Ioi b\n⊢ (fun x x_1 => x * x_1) y z ∈ Ioi (a * b)"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K : Set ℂ", "z : ℂ", "M r δ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [1673, 12516, 55501, 56660], "state_str": "E : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [46607], "state_str": "case intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [55381], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "h2 : interior K ⊆ U"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [15889, 46354, 131585], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ��) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\nh2 : interior K ⊆ U\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "h2 : interior K ⊆ U", "h3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [60207], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\nh2 : interior K ⊆ U\nh3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "h2 : interior K ⊆ U", "h3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)", "h4 : TendstoLocallyUniformlyOn F f φ (interior K)"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [55381, 60205, 60207], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\nh2 : interior K ⊆ U\nh3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)\nh4 : TendstoLocallyUniformlyOn F f φ (interior K)\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "h2 : interior K ⊆ U", "h3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)", "h4 : TendstoLocallyUniformlyOn F f φ (interior K)", "h5 : TendstoLocallyUniformlyOn (deriv ∘ F) (cderiv δ f) φ (interior K)"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [46880, 55380, 60222], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\nh2 : interior K ⊆ U\nh3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)\nh4 : TendstoLocallyUniformlyOn F f φ (interior K)\nh5 : TendstoLocallyUniformlyOn (deriv ∘ F) (cderiv δ f) φ (interior K)\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "h2 : interior K ⊆ U", "h3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)", "h4 : TendstoLocallyUniformlyOn F f φ (interior K)", "h5 : TendstoLocallyUniformlyOn (deriv ∘ F) (cderiv δ f) φ (interior K)", "h6 : ∀ x ∈ interior K, HasDerivAt f (cderiv δ f x) x"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [44367, 46351], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\nh2 : interior K ⊆ U\nh3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)\nh4 : TendstoLocallyUniformlyOn F f φ (interior K)\nh5 : TendstoLocallyUniformlyOn (deriv ∘ F) (cderiv δ f) φ (interior K)\nh6 : ∀ x ∈ interior K, HasDerivAt f (cderiv δ f x) x\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℂ E", "inst✝¹ : CompleteSpace E", "U K✝ : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "inst✝ : φ.NeBot", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "hU : IsOpen U", "x : ℂ", "hx : x ∈ U", "K : Set ℂ", "hKU : K ⊆ U", "hKx : K ∈ 𝓝 x", "hK : IsCompact K", "δ : ℝ", "left✝¹ : δ > 0", "left✝ : cthickening δ K ⊆ U", "h1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "h2 : interior K ⊆ U", "h3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)", "h4 : TendstoLocallyUniformlyOn F f φ (interior K)", "h5 : TendstoLocallyUniformlyOn (deriv ∘ F) (cderiv δ f) φ (interior K)", "h6 : ∀ x ∈ interior K, HasDerivAt f (cderiv δ f x) x", "h7 : DifferentiableOn ℂ f (interior K)"], "goal": "DifferentiableWithinAt ℂ f U x"}], "premise": [1674, 46338, 46351, 55558], "state_str": "case intro.intro.intro.intro.intro.intro\nE : Type u_1\nι : Type u_2\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\ninst✝¹ : CompleteSpace E\nU K✝ : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\ninst✝ : φ.NeBot\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhU : IsOpen U\nx : ℂ\nhx : x ∈ U\nK : Set ℂ\nhKU : K ⊆ U\nhKx : K ∈ 𝓝 x\nhK : IsCompact K\nδ : ℝ\nleft✝¹ : δ > 0\nleft✝ : cthickening δ K ⊆ U\nh1 : TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K\nh2 : interior K ⊆ U\nh3 : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) (interior K)\nh4 : TendstoLocallyUniformlyOn F f φ (interior K)\nh5 : TendstoLocallyUniformlyOn (deriv ∘ F) (cderiv δ f) φ (interior K)\nh6 : ∀ x ∈ interior K, HasDerivAt f (cderiv δ f x) x\nh7 : DifferentiableOn ℂ f (interior K)\n⊢ DifferentiableWithinAt ℂ f U x"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : IsFiniteMeasure μ", "c : E"], "goal": "indicatorConstLp p ⋯ ⋯ c = (Lp.const p μ) c"}], "premise": [31075], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : IsFiniteMeasure μ\nc : E\n⊢ indicatorConstLp p ⋯ ⋯ c = (Lp.const p μ) c"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : IsFiniteMeasure μ", "c : E"], "goal": "Memℒp.toLp (Set.univ.indicator fun x => c) ⋯ = Memℒp.toLp (fun x => c) ⋯"}], "premise": [120888], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : IsFiniteMeasure μ\nc : E\n⊢ Memℒp.toLp (Set.univ.indicator fun x => c) ⋯ = Memℒp.toLp (fun x => c) ⋯"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "A : ValuationSubring K", "a : K"], "goal": "a ∈ Subtype.val '' ↑(LocalRing.maximalIdeal ↥A) ↔ a ∈ ↑A.nonunits"}], "premise": [76030, 128379, 131592], "state_str": "case h\nK : Type u\ninst✝ : Field K\nA : ValuationSubring K\na : K\n⊢ a ∈ Subtype.val '' ↑(LocalRing.maximalIdeal ↥A) ↔ a ∈ ↑A.nonunits"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "A : ValuationSubring K", "a : K"], "goal": "(∃ x ∈ LocalRing.maximalIdeal ↥A, ↑x = a) ↔ ∃ (ha : a ∈ A), ⟨a, ha⟩ ∈ LocalRing.maximalIdeal ↥A"}], "premise": [137125], "state_str": "case h\nK : Type u\ninst✝ : Field K\nA : ValuationSubring K\na : K\n⊢ (∃ x ∈ LocalRing.maximalIdeal ↥A, ↑x = a) ↔ ∃ (ha : a ∈ A), ⟨a, ha⟩ ∈ LocalRing.maximalIdeal ↥A"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "A : ValuationSubring K", "a : K"], "goal": "(∃ a_1, ∃ (b : a_1 ∈ ↑A), ⟨a_1, b⟩ ∈ LocalRing.maximalIdeal ↥A ∧ ↑⟨a_1, b⟩ = a) ↔ ∃ (ha : a ∈ A), ⟨a, ha⟩ ∈ LocalRing.maximalIdeal ↥A"}], "premise": [2037, 2039], "state_str": "case h\nK : Type u\ninst✝ : Field K\nA : ValuationSubring K\na : K\n⊢ (∃ a_1, ∃ (b : a_1 ∈ ↑A), ⟨a_1, b⟩ ∈ LocalRing.maximalIdeal ↥A ∧ ↑⟨a_1, b⟩ = a) ↔\n ∃ (ha : a ∈ A), ⟨a, ha⟩ ∈ LocalRing.maximalIdeal ↥A"} +{"state": [{"context": ["α : Type u_1", "M : Type u_2", "N : Type u_3", "P : Type u_4", "R : Type u_5", "S : Type u_6", "inst✝⁷ : Semiring R", "inst✝⁶ : Semiring S", "inst✝⁵ : AddCommMonoid M", "inst✝⁴ : Module R M", "inst✝³ : AddCommMonoid N", "inst✝² : Module R N", "inst✝¹ : AddCommMonoid P", "inst✝ : Module R P", "p : α →₀ M"], "goal": "p ∈ supported M R ↑p.support"}], "premise": [85197], "state_str": "α : Type u_1\nM : Type u_2\nN : Type u_3\nP : Type u_4\nR : Type u_5\nS : Type u_6\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\np : α →₀ M\n⊢ p ∈ supported M R ↑p.support"} +{"state": [{"context": ["x y : ℝ"], "goal": "↑x ≤ ↑y ↔ x ≤ y"}], "premise": [147867], "state_str": "x y : ℝ\n⊢ ↑x ≤ ↑y ↔ x ≤ y"} +{"state": [{"context": ["i j k : ℤ", "hi : i ∣ k", "hj : j ∣ k"], "goal": "↑(i.natAbs.lcm j.natAbs) ∣ k"}], "premise": [1674, 3593, 4202, 130034], "state_str": "i j k : ℤ\nhi : i ∣ k\nhj : j ∣ k\n⊢ ↑(i.natAbs.lcm j.natAbs) ∣ k"} +{"state": [{"context": ["R : Type u_1", "n✝ x y : ℕ", "hxy : 2 ∣ x - y", "hx : ¬2 ∣ x", "n : ℕ", "hn : Even n"], "goal": "multiplicity 2 (x ^ n - y ^ n) + 1 = multiplicity 2 (x + y) + multiplicity 2 (x - y) + multiplicity 2 n"}], "premise": [14308], "state_str": "R : Type u_1\nn✝ x y : ℕ\nhxy : 2 ∣ x - y\nhx : ¬2 ∣ x\nn : ℕ\nhn : Even n\n⊢ multiplicity 2 (x ^ n - y ^ n) + 1 = multiplicity 2 (x + y) + multiplicity 2 (x - y) + multiplicity 2 n"} +{"state": [{"context": ["R : Type u", "M M₁ : Type v", "M' : Type v'", "ι : Type w", "inst✝⁸ : Ring R", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : AddCommGroup M'", "inst✝⁵ : AddCommGroup M₁", "inst✝⁴ : Module R M", "inst✝³ : Module R M'", "inst✝² : Module R M₁", "inst✝¹ : Nontrivial R", "inst✝ : NoZeroSMulDivisors R M", "n : ℕ", "hn : finrank R M = n.succ"], "goal": "0 < n.succ"}], "premise": [2143], "state_str": "R : Type u\nM M₁ : Type v\nM' : Type v'\nι : Type w\ninst✝⁸ : Ring R\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : AddCommGroup M'\ninst✝⁵ : AddCommGroup M₁\ninst✝⁴ : Module R M\ninst✝³ : Module R M'\ninst✝² : Module R M₁\ninst✝¹ : Nontrivial R\ninst✝ : NoZeroSMulDivisors R M\nn : ℕ\nhn : finrank R M = n.succ\n⊢ 0 < n.succ"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜"], "goal": "Tendsto (fun x => eval x P) atTop atBot ↔ 0 < P.degree ∧ P.leadingCoeff ≤ 0"}], "premise": [15610, 39219, 102168, 102174, 103002], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\n⊢ Tendsto (fun x => eval x P) atTop atBot ↔ 0 < P.degree ∧ P.leadingCoeff ≤ 0"} +{"state": [{"context": ["X✝ : LocallyRingedSpace", "r : ↑(Γ.obj (op X✝))", "X : LocallyRingedSpace", "R : CommRingCat", "f : R ⟶ Γ.obj (op X)", "β : X ⟶ Spec.locallyRingedSpaceObj R", "w : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base", "h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))"], "goal": "(X.toΓSpec ≫ Spec.locallyRingedSpaceMap f).val = β.val"}], "premise": [128409], "state_str": "case h\nX✝ : LocallyRingedSpace\nr : ↑(Γ.obj (op X✝))\nX : LocallyRingedSpace\nR : CommRingCat\nf : R ⟶ Γ.obj (op X)\nβ : X ⟶ Spec.locallyRingedSpaceObj R\nw : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base\nh : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))\n⊢ (X.toΓSpec ≫ Spec.locallyRingedSpaceMap f).val = β.val"} +{"state": [{"context": ["X✝ : LocallyRingedSpace", "r✝ : ↑(Γ.obj (op X✝))", "X : LocallyRingedSpace", "R : CommRingCat", "f : R ⟶ Γ.obj (op X)", "β : X ⟶ Spec.locallyRingedSpaceObj R", "w : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base", "h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))", "r : ↑R", "U : Opens (PrimeSpectrum ↑R) := basicOpen r"], "goal": "(toOpen (↑R) U ≫ (X.toΓSpec ≫ Spec.locallyRingedSpaceMap f).val.c.app (op U)) ≫ X.presheaf.map (eqToHom ⋯) = toOpen (↑R) U ≫ β.val.c.app (op U)"}], "premise": [68444], "state_str": "case h\nX✝ : LocallyRingedSpace\nr✝ : ↑(Γ.obj (op X✝))\nX : LocallyRingedSpace\nR : CommRingCat\nf : R ⟶ Γ.obj (op X)\nβ : X ⟶ Spec.locallyRingedSpaceObj R\nw : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base\nh : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))\nr : ↑R\nU : Opens (PrimeSpectrum ↑R) := basicOpen r\n⊢ (toOpen (↑R) U ≫ (X.toΓSpec ≫ Spec.locallyRingedSpaceMap f).val.c.app (op U)) ≫ X.presheaf.map (eqToHom ⋯) =\n toOpen (↑R) U ≫ β.val.c.app (op U)"} +{"state": [{"context": ["X✝ : LocallyRingedSpace", "r✝ : ↑(Γ.obj (op X✝))", "X : LocallyRingedSpace", "R : CommRingCat", "f : R ⟶ Γ.obj (op X)", "β : X ⟶ Spec.locallyRingedSpaceObj R", "w : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base", "h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))", "r : ↑R", "U : Opens (PrimeSpectrum ↑R) := basicOpen r"], "goal": "(CommRingCat.ofHom f ≫ toOpen (↑(Γ.obj (op X))) ((Opens.comap (PrimeSpectrum.comap f)) U) ≫ X.toΓSpec.val.c.app (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (unop (op U))))) ≫ X.presheaf.map (eqToHom ⋯) = toOpen (↑R) U ≫ β.val.c.app (op U)"}], "premise": [96173], "state_str": "case h\nX✝ : LocallyRingedSpace\nr✝ : ↑(Γ.obj (op X✝))\nX : LocallyRingedSpace\nR : CommRingCat\nf : R ⟶ Γ.obj (op X)\nβ : X ⟶ Spec.locallyRingedSpaceObj R\nw : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base\nh : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))\nr : ↑R\nU : Opens (PrimeSpectrum ↑R) := basicOpen r\n⊢ (CommRingCat.ofHom f ≫\n toOpen (↑(Γ.obj (op X))) ((Opens.comap (PrimeSpectrum.comap f)) U) ≫\n X.toΓSpec.val.c.app (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (unop (op U))))) ≫\n X.presheaf.map (eqToHom ⋯) =\n toOpen (↑R) U ≫ β.val.c.app (op U)"} +{"state": [{"context": ["X✝ : LocallyRingedSpace", "r✝ : ↑(Γ.obj (op X✝))", "X : LocallyRingedSpace", "R : CommRingCat", "f : R ⟶ Γ.obj (op X)", "β : X ⟶ Spec.locallyRingedSpaceObj R", "w : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base", "h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))", "r : ↑R", "U : Opens (PrimeSpectrum ↑R) := basicOpen r"], "goal": "CommRingCat.ofHom f ≫ (toOpen (↑(Γ.obj (op X))) ((Opens.comap (PrimeSpectrum.comap f)) U) ≫ X.toΓSpec.val.c.app (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (unop (op U))))) ≫ X.presheaf.map (eqToHom ⋯) = toOpen (↑R) U ≫ β.val.c.app (op U)"}], "premise": [99919, 129578], "state_str": "case h\nX✝ : LocallyRingedSpace\nr✝ : ↑(Γ.obj (op X✝))\nX : LocallyRingedSpace\nR : CommRingCat\nf : R ⟶ Γ.obj (op X)\nβ : X ⟶ Spec.locallyRingedSpaceObj R\nw : X.toΓSpec.val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base\nh : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE ⋯).op = toOpen (↑R) (basicOpen r) ≫ β.val.c.app (op (basicOpen r))\nr : ↑R\nU : Opens (PrimeSpectrum ↑R) := basicOpen r\n⊢ CommRingCat.ofHom f ≫\n (toOpen (↑(Γ.obj (op X))) ((Opens.comap (PrimeSpectrum.comap f)) U) ≫\n X.toΓSpec.val.c.app (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (unop (op U))))) ≫\n X.presheaf.map (eqToHom ⋯) =\n toOpen (↑R) U ≫ β.val.c.app (op U)"} +{"state": [{"context": ["X : Scheme"], "goal": "Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"}], "premise": [95803], "state_str": "X : Scheme\n⊢ Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"} +{"state": [{"context": ["X : Scheme", "this : (Scheme.Hom.app (adjunction.unit.app X) ⊤).op ≫ (Scheme.ΓSpecIso Γ(X, ⊤)).inv.op = 𝟙 (op Γ(X, ⊤))"], "goal": "Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"}], "premise": [88802], "state_str": "X : Scheme\nthis : (Scheme.Hom.app (adjunction.unit.app X) ⊤).op ≫ (Scheme.ΓSpecIso Γ(X, ⊤)).inv.op = 𝟙 (op Γ(X, ⊤))\n⊢ Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"} +{"state": [{"context": ["X : Scheme", "this : (Scheme.Hom.app (adjunction.unit.app X) ⊤).op = 𝟙 (op Γ(X, ⊤)) ≫ inv (Scheme.ΓSpecIso Γ(X, ⊤)).inv.op"], "goal": "Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"}], "premise": [89664, 96175, 99922, 99924, 126596, 129597], "state_str": "X : Scheme\nthis : (Scheme.Hom.app (adjunction.unit.app X) ⊤).op = 𝟙 (op Γ(X, ⊤)) ≫ inv (Scheme.ΓSpecIso Γ(X, ⊤)).inv.op\n⊢ Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"} +{"state": [{"context": ["X : Scheme", "this : (Scheme.Hom.app (adjunction.unit.app X) ⊤).op = inv (Scheme.ΓSpecIso Γ(X, ⊤)).inv.op"], "goal": "Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"}], "premise": [71387, 88797, 89625, 89648], "state_str": "X : Scheme\nthis : (Scheme.Hom.app (adjunction.unit.app X) ⊤).op = inv (Scheme.ΓSpecIso Γ(X, ⊤)).inv.op\n⊢ Scheme.Hom.app (adjunction.unit.app X) ⊤ = (Scheme.ΓSpecIso Γ(X, ⊤)).hom"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α β", "f : β → ℝ≥0∞", "μ : Measure β", "a : α", "s : Set β"], "goal": "∫⁻ (x : β) in s, f x ∂(const α μ) a = ∫⁻ (x : β) in s, f x ∂μ"}], "premise": [72658], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α β\nf : β → ℝ≥0∞\nμ : Measure β\na : α\ns : Set β\n⊢ ∫⁻ (x : β) in s, f x ∂(const α μ) a = ∫⁻ (x : β) in s, f x ∂μ"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "L : Type u_3", "inst✝¹⁰ : CommRing R", "inst✝⁹ : Field K", "inst✝⁸ : Field L", "inst✝⁷ : DecidableEq L", "inst✝⁶ : Algebra R K", "inst✝⁵ : IsFractionRing R K", "inst✝⁴ : Algebra K L", "inst✝³ : FiniteDimensional K L", "inst✝² : Algebra R L", "inst✝¹ : IsScalarTower R K L", "inst✝ : IsDomain R", "I : (FractionalIdeal R⁰ K)ˣ"], "goal": "mk I = 1 ↔ (↑↑I).IsPrincipal"}], "premise": [71387, 119870], "state_str": "R : Type u_1\nK : Type u_2\nL : Type u_3\ninst✝¹⁰ : CommRing R\ninst✝⁹ : Field K\ninst✝⁸ : Field L\ninst✝⁷ : DecidableEq L\ninst✝⁶ : Algebra R K\ninst✝⁵ : IsFractionRing R K\ninst✝⁴ : Algebra K L\ninst✝³ : FiniteDimensional K L\ninst✝² : Algebra R L\ninst✝¹ : IsScalarTower R K L\ninst✝ : IsDomain R\nI : (FractionalIdeal R⁰ K)ˣ\n⊢ mk I = 1 ↔ (↑↑I).IsPrincipal"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "L : Type u_3", "inst✝¹⁰ : CommRing R", "inst✝⁹ : Field K", "inst✝⁸ : Field L", "inst✝⁷ : DecidableEq L", "inst✝⁶ : Algebra R K", "inst✝⁵ : IsFractionRing R K", "inst✝⁴ : Algebra K L", "inst✝³ : FiniteDimensional K L", "inst✝² : Algebra R L", "inst✝¹ : IsScalarTower R K L", "inst✝ : IsDomain R", "I : (FractionalIdeal R⁰ K)ˣ"], "goal": "(equiv K) (mk I) = (equiv K) 1 ↔ (↑↑I).IsPrincipal"}], "premise": [10329, 10339, 76828, 80874, 80882, 116661, 117064, 119903, 120378, 122978, 123694], "state_str": "R : Type u_1\nK : Type u_2\nL : Type u_3\ninst✝¹⁰ : CommRing R\ninst✝⁹ : Field K\ninst✝⁸ : Field L\ninst✝⁷ : DecidableEq L\ninst✝⁶ : Algebra R K\ninst✝⁵ : IsFractionRing R K\ninst✝⁴ : Algebra K L\ninst✝³ : FiniteDimensional K L\ninst✝² : Algebra R L\ninst✝¹ : IsScalarTower R K L\ninst✝ : IsDomain R\nI : (FractionalIdeal R⁰ K)ˣ\n⊢ (equiv K) (mk I) = (equiv K) 1 ↔ (↑↑I).IsPrincipal"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "L : Type u_3", "inst✝¹⁰ : CommRing R", "inst✝⁹ : Field K", "inst✝⁸ : Field L", "inst✝⁷ : DecidableEq L", "inst✝⁶ : Algebra R K", "inst✝⁵ : IsFractionRing R K", "inst✝⁴ : Algebra K L", "inst✝³ : FiniteDimensional K L", "inst✝² : Algebra R L", "inst✝¹ : IsScalarTower R K L", "inst✝ : IsDomain R", "I : (FractionalIdeal R⁰ K)ˣ"], "goal": "(∃ x, spanSingleton R⁰ ↑x = ↑I) ↔ (↑↑I).IsPrincipal"}], "premise": [76862], "state_str": "R : Type u_1\nK : Type u_2\nL : Type u_3\ninst✝¹⁰ : CommRing R\ninst✝⁹ : Field K\ninst✝⁸ : Field L\ninst✝⁷ : DecidableEq L\ninst✝⁶ : Algebra R K\ninst✝⁵ : IsFractionRing R K\ninst✝⁴ : Algebra K L\ninst✝³ : FiniteDimensional K L\ninst✝² : Algebra R L\ninst✝¹ : IsScalarTower R K L\ninst✝ : IsDomain R\nI : (FractionalIdeal R⁰ K)ˣ\n⊢ (∃ x, spanSingleton R⁰ ↑x = ↑I) ↔ (↑↑I).IsPrincipal"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "L : Type u_3", "inst✝¹⁰ : CommRing R", "inst✝⁹ : Field K", "inst✝⁸ : Field L", "inst✝⁷ : DecidableEq L", "inst✝⁶ : Algebra R K", "inst✝⁵ : IsFractionRing R K", "inst✝⁴ : Algebra K L", "inst✝³ : FiniteDimensional K L", "inst✝² : Algebra R L", "inst✝¹ : IsScalarTower R K L", "inst✝ : IsDomain R", "I : (FractionalIdeal R⁰ K)ˣ", "hI : (↑↑I).IsPrincipal"], "goal": "∃ x, spanSingleton R⁰ ↑x = ↑I"}], "premise": [86681], "state_str": "R : Type u_1\nK : Type u_2\nL : Type u_3\ninst✝¹⁰ : CommRing R\ninst✝⁹ : Field K\ninst✝⁸ : Field L\ninst✝⁷ : DecidableEq L\ninst✝⁶ : Algebra R K\ninst✝⁵ : IsFractionRing R K\ninst✝⁴ : Algebra K L\ninst✝³ : FiniteDimensional K L\ninst✝² : Algebra R L\ninst✝¹ : IsScalarTower R K L\ninst✝ : IsDomain R\nI : (FractionalIdeal R⁰ K)ˣ\nhI : (↑↑I).IsPrincipal\n⊢ ∃ x, spanSingleton R⁰ ↑x = ↑I"} +{"state": [{"context": ["R : Type u_1", "K : Type u_2", "L : Type u_3", "inst✝¹⁰ : CommRing R", "inst✝⁹ : Field K", "inst✝⁸ : Field L", "inst✝⁷ : DecidableEq L", "inst✝⁶ : Algebra R K", "inst✝⁵ : IsFractionRing R K", "inst✝⁴ : Algebra K L", "inst✝³ : FiniteDimensional K L", "inst✝² : Algebra R L", "inst✝¹ : IsScalarTower R K L", "inst✝ : IsDomain R", "I : (FractionalIdeal R⁰ K)ˣ", "hI : (↑↑I).IsPrincipal", "x : K", "hx : ↑↑I = Submodule.span R {x}"], "goal": "∃ x, spanSingleton R⁰ ↑x = ↑I"}], "premise": [75639, 76862, 137138], "state_str": "case intro\nR : Type u_1\nK : Type u_2\nL : Type u_3\ninst✝¹⁰ : CommRing R\ninst✝⁹ : Field K\ninst✝⁸ : Field L\ninst✝⁷ : DecidableEq L\ninst✝⁶ : Algebra R K\ninst✝⁵ : IsFractionRing R K\ninst✝⁴ : Algebra K L\ninst✝³ : FiniteDimensional K L\ninst✝² : Algebra R L\ninst✝¹ : IsScalarTower R K L\ninst✝ : IsDomain R\nI : (FractionalIdeal R⁰ K)ˣ\nhI : (↑↑I).IsPrincipal\nx : K\nhx : ↑↑I = Submodule.span R {x}\n⊢ ∃ x, spanSingleton R⁰ ↑x = ↑I"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝¹ : Group α", "inst✝ : Group β", "f : α → β", "hf✝ hf : IsGroupHom f", "a : α"], "goal": "f a⁻¹ * f a = 1"}], "premise": [119820, 125433, 125473], "state_str": "α : Type u\nβ : Type v\ninst✝¹ : Group α\ninst✝ : Group β\nf : α → β\nhf✝ hf : IsGroupHom f\na : α\n⊢ f a⁻¹ * f a = 1"} +{"state": [{"context": ["ι : Type u_1", "I J : Box ι", "x y : ι → ℝ", "a✝¹ a✝ : Box ι"], "goal": "↑(mk' (a✝¹.lower ⊔ a✝.lower) (a✝¹.upper ⊓ a✝.upper)) = ↑↑a✝¹ ∩ ↑↑a✝"}], "premise": [14641, 14643, 20463, 34341, 34365, 34372, 134012], "state_str": "case coe.coe\nι : Type u_1\nI J : Box ι\nx y : ι → ℝ\na✝¹ a✝ : Box ι\n⊢ ↑(mk' (a✝¹.lower ⊔ a✝.lower) (a✝¹.upper ⊓ a✝.upper)) = ↑↑a✝¹ ∩ ↑↑a✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝³ : TopologicalSpace α", "inst✝² : TopologicalSpace β", "i✝ : α → β", "di : DenseInducing i✝", "inst✝¹ : TopologicalSpace δ", "f : γ → α", "g : γ → δ", "h : δ → β", "inst✝ : TopologicalSpace γ", "i : α → β", "c : Continuous i", "dense : ∀ (x : β), x ∈ closure (range i)", "H : ∀ (a : α), ∀ s ∈ 𝓝 a, ∃ t ∈ 𝓝 (i a), ∀ (b : α), i b ∈ t → b ∈ s", "a : α"], "goal": "comap i (𝓝 (i a)) ≤ 𝓝 a"}], "premise": [15904], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ni✝ : α → β\ndi : DenseInducing i✝\ninst✝¹ : TopologicalSpace δ\nf : γ → α\ng : γ → δ\nh : δ → β\ninst✝ : TopologicalSpace γ\ni : α → β\nc : Continuous i\ndense : ∀ (x : β), x ∈ closure (range i)\nH : ∀ (a : α), ∀ s ∈ 𝓝 a, ∃ t ∈ 𝓝 (i a), ∀ (b : α), i b ∈ t → b ∈ s\na : α\n⊢ comap i (𝓝 (i a)) ≤ 𝓝 a"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "J : Type u_4", "inst✝² : Category.{u_5, u_1} C", "inst✝¹ : Category.{?u.5761, u_2} D", "inst✝ : Category.{?u.5765, u_3} E", "X Y : GradedObject J C", "e : X ≅ Y", "j : J"], "goal": "e.hom j ≫ e.inv j = 𝟙 (X j)"}], "premise": [88743, 97567, 97568], "state_str": "C : Type u_1\nD : Type u_2\nE : Type u_3\nJ : Type u_4\ninst✝² : Category.{u_5, u_1} C\ninst✝¹ : Category.{?u.5761, u_2} D\ninst✝ : Category.{?u.5765, u_3} E\nX Y : GradedObject J C\ne : X ≅ Y\nj : J\n⊢ e.hom j ≫ e.inv j = 𝟙 (X j)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "inst✝ : DecidableEq α", "a b : α", "l : List α", "x✝ : b ≠ a", "h : b ≠ a := x✝"], "goal": "indexOf a (b :: l) = (indexOf a l).succ"}], "premise": [1171, 1397, 1769, 2854], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nx✝ : b ≠ a\nh : b ≠ a := x✝\n⊢ indexOf a (b :: l) = (indexOf a l).succ"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : HasColimits C", "X Y : PresheafedSpace C", "α : X ⟶ Y", "U : Opens ↑↑Y", "x : ↥((Opens.map α.base).obj U)"], "goal": "Y.presheaf.germ ⟨α.base ↑x, ⋯⟩ ≫ Hom.stalkMap α ↑x = α.c.app (op U) ≫ X.presheaf.germ x"}], "premise": [64381], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : HasColimits C\nX Y : PresheafedSpace C\nα : X ⟶ Y\nU : Opens ↑↑Y\nx : ↥((Opens.map α.base).obj U)\n⊢ Y.presheaf.germ ⟨α.base ↑x, ⋯⟩ ≫ Hom.stalkMap α ↑x = α.c.app (op U) ≫ X.presheaf.germ x"} +{"state": [{"context": ["a : UnitAddCircle", "r : ℝ"], "goal": "(fun x => (ofReal' ∘ oddKernel a) x - 0) =O[atTop] fun x => x ^ r"}], "premise": [22986], "state_str": "a : UnitAddCircle\nr : ℝ\n⊢ (fun x => (ofReal' ∘ oddKernel a) x - 0) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r v : ℝ", "hv : 0 < v", "hv' : oddKernel a =O[atTop] fun x => rexp (-v * x)"], "goal": "(fun x => (ofReal' ∘ oddKernel a) x - 0) =O[atTop] fun x => x ^ r"}], "premise": [43455], "state_str": "a : UnitAddCircle\nr v : ℝ\nhv : 0 < v\nhv' : oddKernel a =O[atTop] fun x => rexp (-v * x)\n⊢ (fun x => (ofReal' ∘ oddKernel a) x - 0) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r v : ℝ", "hv : 0 < v", "hv' : (fun x => ‖oddKernel a x‖) =O[atTop] fun x => rexp (-v * x)"], "goal": "(fun x => ‖(ofReal' ∘ oddKernel a) x - 0‖) =O[atTop] fun x => x ^ r"}], "premise": [1671, 46181, 117816], "state_str": "a : UnitAddCircle\nr v : ℝ\nhv : 0 < v\nhv' : (fun x => ‖oddKernel a x‖) =O[atTop] fun x => rexp (-v * x)\n⊢ (fun x => ‖(ofReal' ∘ oddKernel a) x - 0‖) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r v : ℝ", "hv : 0 < v", "hv' : (fun x => ‖oddKernel a x‖) =O[atTop] fun x => rexp (-v * x)"], "goal": "(fun x => ‖oddKernel a x‖) =O[atTop] fun x => x ^ r"}], "premise": [39208, 43365, 43411], "state_str": "a : UnitAddCircle\nr v : ℝ\nhv : 0 < v\nhv' : (fun x => ‖oddKernel a x‖) =O[atTop] fun x => rexp (-v * x)\n⊢ (fun x => ‖oddKernel a x‖) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r : ℝ"], "goal": "(fun x => (ofReal' ∘ sinKernel a) x - 0) =O[atTop] fun x => x ^ r"}], "premise": [22987], "state_str": "a : UnitAddCircle\nr : ℝ\n⊢ (fun x => (ofReal' ∘ sinKernel a) x - 0) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r v : ℝ", "hv : 0 < v", "hv' : sinKernel a =O[atTop] fun x => rexp (-v * x)"], "goal": "(fun x => (ofReal' ∘ sinKernel a) x - 0) =O[atTop] fun x => x ^ r"}], "premise": [43455], "state_str": "a : UnitAddCircle\nr v : ℝ\nhv : 0 < v\nhv' : sinKernel a =O[atTop] fun x => rexp (-v * x)\n⊢ (fun x => (ofReal' ∘ sinKernel a) x - 0) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r v : ℝ", "hv : 0 < v", "hv' : (fun x => ‖sinKernel a x‖) =O[atTop] fun x => rexp (-v * x)"], "goal": "(fun x => ‖(ofReal' ∘ sinKernel a) x - 0‖) =O[atTop] fun x => x ^ r"}], "premise": [1671, 46181, 117816], "state_str": "a : UnitAddCircle\nr v : ℝ\nhv : 0 < v\nhv' : (fun x => ‖sinKernel a x‖) =O[atTop] fun x => rexp (-v * x)\n⊢ (fun x => ‖(ofReal' ∘ sinKernel a) x - 0‖) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "r v : ℝ", "hv : 0 < v", "hv' : (fun x => ‖sinKernel a x‖) =O[atTop] fun x => rexp (-v * x)"], "goal": "(fun x => ‖sinKernel a x‖) =O[atTop] fun x => x ^ r"}], "premise": [39208, 43365, 43411], "state_str": "a : UnitAddCircle\nr v : ℝ\nhv : 0 < v\nhv' : (fun x => ‖sinKernel a x‖) =O[atTop] fun x => rexp (-v * x)\n⊢ (fun x => ‖sinKernel a x‖) =O[atTop] fun x => x ^ r"} +{"state": [{"context": ["a : UnitAddCircle", "x : ℝ", "hx : x ∈ Ioi 0"], "goal": "(ofReal' ∘ oddKernel a) (1 / x) = (1 * ↑(x ^ (3 / 2))) • (ofReal' ∘ sinKernel a) x"}], "premise": [1670, 14286, 22982, 40068, 117810, 118863, 119728, 119770, 148304], "state_str": "a : UnitAddCircle\nx : ℝ\nhx : x ∈ Ioi 0\n⊢ (ofReal' ∘ oddKernel a) (1 / x) = (1 * ↑(x ^ (3 / 2))) • (ofReal' ∘ sinKernel a) x"} +{"state": [{"context": ["m n : ℤ", "hn : n ≠ 0"], "goal": "(↑m / ↑n).den = 1 ↔ n ∣ m"}], "premise": [1673, 147952], "state_str": "m n : ℤ\nhn : n ≠ 0\n⊢ (↑m / ↑n).den = 1 ↔ n ∣ m"} +{"state": [{"context": ["d m n : Nat", "dgt1 : 1 < d", "Hm : d ∣ m", "Hn : d ∣ n", "co : m.Coprime n"], "goal": "d ∣ 1"}], "premise": [394], "state_str": "d m n : Nat\ndgt1 : 1 < d\nHm : d ∣ m\nHn : d ∣ n\nco : m.Coprime n\n⊢ d ∣ 1"} +{"state": [{"context": ["d m n : Nat", "dgt1 : 1 < d", "Hm : d ∣ m", "Hn : d ∣ n", "co : m.Coprime n"], "goal": "d ∣ m.gcd n"}], "premise": [3620], "state_str": "d m n : Nat\ndgt1 : 1 < d\nHm : d ∣ m\nHn : d ∣ n\nco : m.Coprime n\n⊢ d ∣ m.gcd n"} +{"state": [{"context": ["p : ℕ", "R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : DecidableEq R", "S : Type u_2", "inst✝ : CommRing S"], "goal": "W_ R 1 = C ↑p * X 1 + X 0 ^ p"}], "premise": [75745, 103416, 103643, 112181, 119728, 119739, 119743, 126908, 127132, 139148], "state_str": "p : ℕ\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : DecidableEq R\nS : Type u_2\ninst✝ : CommRing S\n⊢ W_ R 1 = C ↑p * X 1 + X 0 ^ p"} +{"state": [{"context": ["C : Type u", "inst✝⁷ : Category.{v, u} C", "X Y : C", "D : Type u₂", "inst✝⁶ : Category.{w, u₂} D", "F✝ : C ⥤ D", "A✝ A' B B' : C", "inst✝⁵ : HasBinaryCoproduct A✝ B", "inst✝⁴ : HasBinaryCoproduct A' B'", "inst✝³ : HasBinaryCoproduct (F✝.obj A✝) (F✝.obj B)", "inst✝² : HasBinaryCoproduct (F✝.obj A') (F✝.obj B')", "inst✝¹ : HasBinaryCoproducts C", "inst✝ : HasBinaryCoproducts D", "F : C ⥤ D", "A f : C"], "goal": "∀ ⦃Y : C⦄ (f_1 : f ⟶ Y), (F ⋙ coprod.functor.obj (F.obj A)).map f_1 ≫ (fun B => coprodComparison F A B) Y = (fun B => coprodComparison F A B) f ≫ (coprod.functor.obj A ⋙ F).map f_1"}], "premise": [94590], "state_str": "C : Type u\ninst✝⁷ : Category.{v, u} C\nX Y : C\nD : Type u₂\ninst✝⁶ : Category.{w, u₂} D\nF✝ : C ⥤ D\nA✝ A' B B' : C\ninst✝⁵ : HasBinaryCoproduct A✝ B\ninst✝⁴ : HasBinaryCoproduct A' B'\ninst✝³ : HasBinaryCoproduct (F✝.obj A✝) (F✝.obj B)\ninst✝² : HasBinaryCoproduct (F✝.obj A') (F✝.obj B')\ninst✝¹ : HasBinaryCoproducts C\ninst✝ : HasBinaryCoproducts D\nF : C ⥤ D\nA f : C\n⊢ ∀ ⦃Y : C⦄ (f_1 : f ⟶ Y),\n (F ⋙ coprod.functor.obj (F.obj A)).map f_1 ≫ (fun B => coprodComparison F A B) Y =\n (fun B => coprodComparison F A B) f ≫ (coprod.functor.obj A ⋙ F).map f_1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁵ : MeasurableSpace α", "μ ν : Measure α", "inst✝⁴ : TopologicalSpace β", "inst✝³ : TopologicalSpace γ", "inst✝² : TopologicalSpace δ", "inst✝¹ : SemilatticeInf β", "inst✝ : ContinuousInf β", "f g : α →ₘ[μ] β"], "goal": "f ⊓ g ≤ f"}], "premise": [27104], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\n⊢ f ⊓ g ≤ f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁵ : MeasurableSpace α", "μ ν : Measure α", "inst✝⁴ : TopologicalSpace β", "inst✝³ : TopologicalSpace γ", "inst✝² : TopologicalSpace δ", "inst✝¹ : SemilatticeInf β", "inst✝ : ContinuousInf β", "f g : α →ₘ[μ] β"], "goal": "↑(f ⊓ g) ≤ᶠ[ae μ] ↑f"}], "premise": [15889, 27109, 131585], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\n⊢ ↑(f ⊓ g) ≤ᶠ[ae μ] ↑f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁵ : MeasurableSpace α", "μ ν : Measure α", "inst✝⁴ : TopologicalSpace β", "inst✝³ : TopologicalSpace γ", "inst✝² : TopologicalSpace δ", "inst✝¹ : SemilatticeInf β", "inst✝ : ContinuousInf β", "f g : α →ₘ[μ] β", "a✝ : α", "ha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝"], "goal": "↑f a✝ ⊓ ↑g a✝ ≤ ↑f a✝"}], "premise": [14560], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\na✝ : α\nha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝\n⊢ ↑f a✝ ⊓ ↑g a✝ ≤ ↑f a✝"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : MapsTo (⇑e) Φ Φ"], "goal": "IsOfFinOrder e"}], "premise": [1673, 110557, 135080], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : MapsTo (⇑e) Φ Φ\n�� IsOfFinOrder e"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he"], "goal": "IsOfFinOrder e"}], "premise": [1674, 134991], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\n⊢ IsOfFinOrder e"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ"], "goal": "IsOfFinOrder e"}], "premise": [8479], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\n⊢ IsOfFinOrder e"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ", "k : ℕ", "hk₀ : k > 0", "hk : IsPeriodicPt (fun x => e' * x) k 1", "m : M"], "goal": "((fun x => e * x)^[k] 1) m = 1 m"}], "premise": [109891], "state_str": "case intro.intro.h\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\nk : ℕ\nhk₀ : k > 0\nhk : IsPeriodicPt (fun x => e' * x) k 1\nm : M\n⊢ ((fun x => e * x)^[k] 1) m = 1 m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ", "k : ℕ", "hk₀ : k > 0", "hk : IsPeriodicPt (fun x => e' * x) k 1", "m : M", "hm : m ∈ span R Φ"], "goal": "((fun x => e * x)^[k] 1) m = 1 m"}], "premise": [2098, 110186, 115684, 119730], "state_str": "case intro.intro.h\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\nk : ℕ\nhk₀ : k > 0\nhk : IsPeriodicPt (fun x => e' * x) k 1\nm : M\nhm : m ∈ span R Φ\n⊢ ((fun x => e * x)^[k] 1) m = 1 m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ", "k : ℕ", "hk₀ : k > 0", "hk : IsPeriodicPt (fun x => e' * x) k 1", "m : M", "hm : m ∈ span R Φ"], "goal": "(e ^ k) m = m"}], "premise": [86701, 110548, 117079], "state_str": "case intro.intro.h\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\nk : ℕ\nhk₀ : k > 0\nhk : IsPeriodicPt (fun x => e' * x) k 1\nm : M\nhm : m ∈ span R Φ\n⊢ (e ^ k) m = m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ", "k : ℕ", "hk₀ : k > 0", "hk : IsPeriodicPt (fun x => e' * x) k 1", "m : M", "hm : m ∈ span R Φ", "x : M", "hx : x ∈ Φ"], "goal": "(e ^ k) x = x"}], "premise": [2107, 110190, 135741], "state_str": "case intro.intro.h\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\nk : ℕ\nhk₀ : k > 0\nhk : IsPeriodicPt (fun x => e' * x) k 1\nm : M\nhm : m ∈ span R Φ\nx : M\nhx : x ∈ Φ\n⊢ (e ^ k) x = x"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ", "k : ℕ", "hk₀ : k > 0", "m : M", "hm : m ∈ span R Φ", "x : M", "hx : x ∈ Φ", "hk : e' ^ k = 1"], "goal": "↑((MapsTo.restrict (⇑e) Φ Φ ⋯)^[k] ⟨x, hx⟩) = x"}], "premise": [70725], "state_str": "case intro.intro.h\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\nk : ℕ\nhk₀ : k > 0\nm : M\nhm : m ∈ span R Φ\nx : M\nhx : x ∈ Φ\nhk : e' ^ k = 1\n⊢ ↑((MapsTo.restrict (⇑e) Φ Φ ⋯)^[k] ⟨x, hx⟩) = x"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommSemiring R", "inst✝¹ : AddCommMonoid M", "inst✝ : Module R M", "Φ : Set M", "hΦ₁ : Φ.Finite", "hΦ₂ : span R Φ = ⊤", "e : M ≃ₗ[R] M", "he : BijOn (⇑e) Φ Φ", "e' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he", "this : Finite ↑Φ", "k : ℕ", "hk₀ : k > 0", "m : M", "hm : m ∈ span R Φ", "x : M", "hx : x ∈ Φ", "hk : (e' ^ k) ⟨x, hx⟩ = 1 ⟨x, hx⟩"], "goal": "↑((MapsTo.restrict (⇑e) Φ Φ ⋯)^[k] ⟨x, hx⟩) = x"}], "premise": [2098, 7826, 7828, 137128], "state_str": "case intro.intro.h\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nΦ : Set M\nhΦ₁ : Φ.Finite\nhΦ₂ : span R Φ = ⊤\ne : M ≃ₗ[R] M\nhe : BijOn (⇑e) Φ Φ\ne' : ↑Φ ≃ ↑Φ := BijOn.equiv (⇑e) he\nthis : Finite ↑Φ\nk : ℕ\nhk₀ : k > 0\nm : M\nhm : m ∈ span R Φ\nx : M\nhx : x ∈ Φ\nhk : (e' ^ k) ⟨x, hx⟩ = 1 ⟨x, hx⟩\n⊢ ↑((MapsTo.restrict (⇑e) Φ Φ ⋯)^[k] ⟨x, hx⟩) = x"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝⁸ : CommRing R", "inst✝⁷ : Ring S", "inst✝⁶ : Algebra R S", "A : Type u_4", "B : Type u_5", "inst✝⁵ : CommRing A", "inst✝⁴ : CommRing B", "inst✝³ : IsDomain B", "inst✝² : Algebra A B", "K : Type u_6", "inst✝¹ : Field K", "inst✝ : Algebra A S", "pb : PowerBasis A S"], "goal": "(aeval pb.gen) pb.minpolyGen = 0"}], "premise": [100961, 100962, 117080, 117101, 117106, 121165, 126889], "state_str": "R : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝⁸ : CommRing R\ninst✝⁷ : Ring S\ninst✝⁶ : Algebra R S\nA : Type u_4\nB : Type u_5\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : IsDomain B\ninst✝² : Algebra A B\nK : Type u_6\ninst✝¹ : Field K\ninst✝ : Algebra A S\npb : PowerBasis A S\n⊢ (aeval pb.gen) pb.minpolyGen = 0"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝⁸ : CommRing R", "inst✝⁷ : Ring S", "inst✝⁶ : Algebra R S", "A : Type u_4", "B : Type u_5", "inst✝⁵ : CommRing A", "inst✝⁴ : CommRing B", "inst✝³ : IsDomain B", "inst✝² : Algebra A B", "K : Type u_6", "inst✝¹ : Field K", "inst✝ : Algebra A S", "pb : PowerBasis A S"], "goal": "pb.gen ^ pb.dim - ∑ x : Fin pb.dim, (pb.basis.repr (pb.gen ^ pb.dim)) x • pb.gen ^ ↑x = 0"}], "premise": [1674, 2100, 2101, 87284, 118004], "state_str": "R : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝⁸ : CommRing R\ninst✝⁷ : Ring S\ninst✝⁶ : Algebra R S\nA : Type u_4\nB : Type u_5\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : IsDomain B\ninst✝² : Algebra A B\nK : Type u_6\ninst✝¹ : Field K\ninst✝ : Algebra A S\npb : PowerBasis A S\n⊢ pb.gen ^ pb.dim - ∑ x : Fin pb.dim, (pb.basis.repr (pb.gen ^ pb.dim)) x • pb.gen ^ ↑x = 0"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝⁸ : CommRing R", "inst✝⁷ : Ring S", "inst✝⁶ : Algebra R S", "A : Type u_4", "B : Type u_5", "inst✝⁵ : CommRing A", "inst✝⁴ : CommRing B", "inst✝³ : IsDomain B", "inst✝² : Algebra A B", "K : Type u_6", "inst✝¹ : Field K", "inst✝ : Algebra A S", "pb : PowerBasis A S"], "goal": "(Finsupp.total (Fin pb.dim) S A ⇑pb.basis) (pb.basis.repr (pb.gen ^ pb.dim)) = ∑ x : Fin pb.dim, (pb.basis.repr (pb.gen ^ pb.dim)) x • pb.gen ^ ↑x"}], "premise": [1793, 1810, 79786, 85229, 115738, 125159], "state_str": "R : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝⁸ : CommRing R\ninst✝⁷ : Ring S\ninst✝⁶ : Algebra R S\nA : Type u_4\nB : Type u_5\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : IsDomain B\ninst✝² : Algebra A B\nK : Type u_6\ninst✝¹ : Field K\ninst✝ : Algebra A S\npb : PowerBasis A S\n⊢ (Finsupp.total (Fin pb.dim) S A ⇑pb.basis) (pb.basis.repr (pb.gen ^ pb.dim)) =\n ∑ x : Fin pb.dim, (pb.basis.repr (pb.gen ^ pb.dim)) x • pb.gen ^ ↑x"} +{"state": [{"context": ["p : Char → Bool", "s : String"], "goal": "s.revFind p = Option.map (fun x => { byteIdx := utf8Len x }) (List.dropWhile (fun x => !p x) s.data.reverse).tail?"}], "premise": [2282], "state_str": "p : Char → Bool\ns : String\n⊢ s.revFind p = Option.map (fun x => { byteIdx := utf8Len x }) (List.dropWhile (fun x => !p x) s.data.reverse).tail?"} +{"state": [{"context": ["α✝ : Type u_1", "l₁ : List α✝", "a : α✝", "l₂ : List α✝"], "goal": "(a :: l₂).Disjoint l₁ ↔ ¬a ∈ l₁ ∧ l₁.Disjoint l₂"}], "premise": [1438], "state_str": "α✝ : Type u_1\nl₁ : List α✝\na : α✝\nl₂ : List α✝\n⊢ (a :: l₂).Disjoint l₁ ↔ ¬a ∈ l₁ ∧ l₁.Disjoint l₂"} +{"state": [{"context": ["α✝ : Type u_1", "l₁ : List α✝", "a : α✝", "l₂ : List α✝"], "goal": "¬a ∈ l₁ ∧ l₂.Disjoint l₁ ↔ ¬a ∈ l₁ ∧ l₁.Disjoint l₂"}], "premise": [1424], "state_str": "α✝ : Type u_1\nl₁ : List α✝\na : α✝\nl₂ : List α✝\n⊢ ¬a ∈ l₁ ∧ l₂.Disjoint l₁ ↔ ¬a ∈ l₁ ∧ l₁.Disjoint l₂"} +{"state": [{"context": ["k : Type u_1", "V1 : Type u_2", "P1 : Type u_3", "V2 : Type u_4", "P2 : Type u_5", "V3 : Type u_6", "P3 : Type u_7", "V4 : Type u_8", "P4 : Type u_9", "inst✝¹² : Ring k", "inst✝¹¹ : AddCommGroup V1", "inst✝¹⁰ : Module k V1", "inst✝⁹ : AffineSpace V1 P1", "inst✝⁸ : AddCommGroup V2", "inst✝⁷ : Module k V2", "inst✝⁶ : AffineSpace V2 P2", "inst✝⁵ : AddCommGroup V3", "inst✝⁴ : Module k V3", "inst✝³ : AffineSpace V3 P3", "inst✝² : AddCommGroup V4", "inst✝¹ : Module k V4", "inst✝ : AffineSpace V4 P4", "p₀ p₁ : P1"], "goal": "lineMap p₀ p₁ = (lineMap p₁ p₀).comp (lineMap 1 0)"}], "premise": [84341], "state_str": "k : Type u_1\nV1 : Type u_2\nP1 : Type u_3\nV2 : Type u_4\nP2 : Type u_5\nV3 : Type u_6\nP3 : Type u_7\nV4 : Type u_8\nP4 : Type u_9\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np₀ p₁ : P1\n⊢ lineMap p₀ p₁ = (lineMap p₁ p₀).comp (lineMap 1 0)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "κ : ι → Sort u_5", "inst✝ : LE α", "S : Set (LowerSet α)", "s t : LowerSet α", "a : α", "f : (i : ι) → κ i → LowerSet α"], "goal": "a ∈ ⨆ i, ⨆ j, f i j ↔ ∃ i j, a ∈ f i j"}], "premise": [21055], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nκ : ι → Sort u_5\ninst✝ : LE α\nS : Set (LowerSet α)\ns t : LowerSet α\na : α\nf : (i : ι) → κ i → LowerSet α\n⊢ a ∈ ⨆ i, ⨆ j, f i j ↔ ∃ i j, a ∈ f i j"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "a b c d : ℝ≥0∞", "r p q : ℝ≥0", "x y z ε ε₁ ε₂ : ℝ≥0∞", "s : Set ℝ≥0∞", "f✝ g✝ : α → ℝ≥0∞", "f g : ℕ → ℝ≥0∞", "h₁ : ∑' (i : ℕ), g i ≠ ⊤", "h₂ : g ≤ f", "this : ∀ (i : ℕ), f i - g i + g i = f i"], "goal": "∑' (i : ℕ), (f i - g i) + ∑' (i : ℕ), g i = ∑' (i : ℕ), f i"}], "premise": [58999], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf✝ g✝ : α → ℝ≥0∞\nf g : ℕ → ℝ≥0∞\nh₁ : ∑' (i : ℕ), g i ≠ ⊤\nh₂ : g ≤ f\nthis : ∀ (i : ℕ), f i - g i + g i = f i\n⊢ ∑' (i : ℕ), (f i - g i) + ∑' (i : ℕ), g i = ∑' (i : ℕ), f i"} +{"state": [{"context": ["p : ℕ", "inst✝ : Fact (Nat.Prime p)", "z : ℤ"], "goal": "‖↑z‖ = ‖↑z‖"}], "premise": [23091], "state_str": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nz : ℤ\n⊢ ‖↑z‖ = ‖↑z‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : DecidableEq α", "s✝ t u v : Finset α", "a✝¹ b a : α", "s : Finset α", "a✝ : α"], "goal": "a✝ ∈ s \\ {a} ↔ a✝ ∈ s.erase a"}], "premise": [1713, 1723, 138737, 138958, 138998], "state_str": "case a\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na✝¹ b a : α\ns : Finset α\na✝ : α\n⊢ a✝ ∈ s \\ {a} ↔ a✝ ∈ s.erase a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLawson α"], "goal": "IsTopologicalBasis (lawsonBasis α)"}], "premise": [133633], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLawson α\n⊢ IsTopologicalBasis (lawsonBasis α)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLawson α", "lawsonBasis_image2 : lawsonBasis α = image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α)) {U | IsOpen U}"], "goal": "IsTopologicalBasis (image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α)) {U | IsOpen U})"}], "premise": [55117, 57726, 57730], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLawson α\nlawsonBasis_image2 :\n lawsonBasis α =\n image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α))\n {U | IsOpen U}\n⊢ IsTopologicalBasis\n (image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α))\n {U | IsOpen U})"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLawson α", "lawsonBasis_image2 : lawsonBasis α = image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α)) {U | IsOpen U}"], "goal": "inst✝¹ = induced (⇑WithLower.toLower) WithLower.instTopologicalSpace ⊓ induced (⇑WithScott.toScott) WithScott.instTopologicalSpace"}], "premise": [54654], "state_str": "case h.e'_2\nα : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLawson α\nlawsonBasis_image2 :\n lawsonBasis α =\n image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α))\n {U | IsOpen U}\n⊢ inst✝¹ =\n induced (⇑WithLower.toLower) WithLower.instTopologicalSpace ⊓\n induced (⇑WithScott.toScott) WithScott.instTopologicalSpace"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLawson α", "lawsonBasis_image2 : lawsonBasis α = image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α)) {U | IsOpen U}"], "goal": "lower α ⊓ scott α = induced (⇑WithLower.toLower) WithLower.instTopologicalSpace ⊓ induced (⇑WithScott.toScott) WithScott.instTopologicalSpace"}], "premise": [19], "state_str": "case h.e'_2\nα : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLawson α\nlawsonBasis_image2 :\n lawsonBasis α =\n image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α))\n {U | IsOpen U}\n⊢ lower α ⊓ scott α =\n induced (⇑WithLower.toLower) WithLower.instTopologicalSpace ⊓\n induced (⇑WithScott.toScott) WithScott.instTopologicalSpace"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLawson α", "lawsonBasis_image2 : lawsonBasis α = image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α)) {U | IsOpen U}", "x✝ : TopologicalSpace α := scott α"], "goal": "scott α = induced (⇑WithScott.toScott) WithScott.instTopologicalSpace"}], "premise": [54002, 65595], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLawson α\nlawsonBasis_image2 :\n lawsonBasis α =\n image2 (fun x x_1 => ⇑WithLower.toLower ⁻¹' x ∩ ⇑WithScott.toScott ⁻¹' x_1) (IsLower.lowerBasis (WithLower α))\n {U | IsOpen U}\nx✝ : TopologicalSpace α := scott α\n⊢ scott α = induced (⇑WithScott.toScott) WithScott.instTopologicalSpace"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.133780, u_1} C", "inst✝ : Preadditive C", "S₁ S₂ S₃ : ShortComplex C", "φ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂", "h : Homotopy φ₁ φ₂", "h' : Homotopy φ₃ φ₄"], "goal": "(φ₁ - φ₃).τ₁ = S₁.f ≫ (h.h₁ - h'.h₁) + (h.h₀ - h'.h₀) + (φ₂ - φ₄).τ₁"}], "premise": [91601, 114861, 114910], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.133780, u_1} C\ninst✝ : Preadditive C\nS₁ S₂ S₃ : ShortComplex C\nφ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂\nh : Homotopy φ₁ φ₂\nh' : Homotopy φ₃ φ₄\n⊢ (φ₁ - φ₃).τ₁ = S₁.f ≫ (h.h₁ - h'.h₁) + (h.h₀ - h'.h₀) + (φ₂ - φ₄).τ₁"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.133780, u_1} C", "inst✝ : Preadditive C", "S₁ S₂ S₃ : ShortComplex C", "φ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂", "h : Homotopy φ₁ φ₂", "h' : Homotopy φ₃ φ₄"], "goal": "(φ₁ - φ₃).τ₂ = S₁.g ≫ (h.h₂ - h'.h₂) + (h.h₁ - h'.h₁) ≫ S₂.f + (φ₂ - φ₄).τ₂"}], "premise": [91600, 91601, 114862, 114912], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.133780, u_1} C\ninst✝ : Preadditive C\nS₁ S₂ S₃ : ShortComplex C\nφ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂\nh : Homotopy φ₁ φ₂\nh' : Homotopy φ₃ φ₄\n⊢ (φ₁ - φ₃).τ₂ = S₁.g ≫ (h.h₂ - h'.h₂) + (h.h₁ - h'.h₁) ≫ S₂.f + (φ₂ - φ₄).τ₂"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.133780, u_1} C", "inst✝ : Preadditive C", "S₁ S₂ S₃ : ShortComplex C", "φ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂", "h : Homotopy φ₁ φ₂", "h' : Homotopy φ₃ φ₄"], "goal": "(φ₁ - φ₃).τ₃ = h.h₃ - h'.h₃ + (h.h₂ - h'.h₂) ≫ S₂.g + (φ₂ - φ₄).τ₃"}], "premise": [91600, 114863, 114911], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.133780, u_1} C\ninst✝ : Preadditive C\nS₁ S₂ S₃ : ShortComplex C\nφ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂\nh : Homotopy φ₁ φ₂\nh' : Homotopy φ₃ φ₄\n⊢ (φ₁ - φ₃).τ₃ = h.h₃ - h'.h₃ + (h.h₂ - h'.h₂) ≫ S₂.g + (φ₂ - φ₄).τ₃"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "f : R → ℝ", "c : ℝ", "f_ne_zero : f ≠ 0", "f_nonneg : 0 ≤ f", "h1 : f 1 = 0", "f_mul : ∀ (y : R), f (1 * y) ≤ c * f 1 * f y"], "goal": "False"}], "premise": [108557, 108558, 119728], "state_str": "R : Type u_1\ninst✝ : CommRing R\nf : R → ℝ\nc : ℝ\nf_ne_zero : f ≠ 0\nf_nonneg : 0 ≤ f\nh1 : f 1 = 0\nf_mul : ∀ (y : R), f (1 * y) ≤ c * f 1 * f y\n⊢ False"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "f : R → ℝ", "c : ℝ", "f_ne_zero : f ≠ 0", "f_nonneg : 0 ≤ f", "h1 : f 1 = 0", "f_mul : ∀ (y : R), f y ≤ 0"], "goal": "False"}], "premise": [1673, 71383], "state_str": "R : Type u_1\ninst✝ : CommRing R\nf : R → ℝ\nc : ℝ\nf_ne_zero : f ≠ 0\nf_nonneg : 0 ≤ f\nh1 : f 1 = 0\nf_mul : ∀ (y : R), f y ≤ 0\n⊢ False"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "inst✝⁹ : NormedAddCommGroup E", "inst✝⁸ : NormedSpace 𝕜 E", "inst✝⁷ : TopologicalSpace H", "inst✝⁶ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝⁵ : NormedAddCommGroup E'", "inst✝⁴ : NormedSpace 𝕜 E'", "inst✝³ : TopologicalSpace H'", "inst✝² : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "inst✝¹ : ChartedSpace H M", "inst✝ : ChartedSpace H' M'", "x : M"], "goal": "x ∈ (extChartAt I x).source"}], "premise": [67287, 67848], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝¹⁰ : NontriviallyNormedField 𝕜\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace 𝕜 E\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝⁵ : NormedAddCommGroup E'\ninst✝⁴ : NormedSpace 𝕜 E'\ninst✝³ : TopologicalSpace H'\ninst✝² : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\ninst✝¹ : ChartedSpace H M\ninst✝ : ChartedSpace H' M'\nx : M\n⊢ x ∈ (extChartAt I x).source"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n✝ p : R", "k n a b : ℕ", "hab : a.Coprime b", "hn : IsPrimePow n"], "goal": "n ∣ a * b ↔ n ∣ a ∨ n ∣ b"}], "premise": [70039], "state_str": "R : Type u_1\ninst✝ : CommMonoidWithZero R\nn✝ p : R\nk n a b : ℕ\nhab : a.Coprime b\nhn : IsPrimePow n\n⊢ n ∣ a * b ↔ n ∣ a ∨ n ∣ b"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n✝ p : R", "k n a b : ℕ", "hab : a.Coprime b", "hn : IsPrimePow n", "ha : a ≠ 0"], "goal": "n ∣ a * b ↔ n ∣ a ∨ n ∣ b"}], "premise": [70039], "state_str": "case inr\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn✝ p : R\nk n a b : ℕ\nhab : a.Coprime b\nhn : IsPrimePow n\nha : a ≠ 0\n⊢ n ∣ a * b ↔ n ∣ a ∨ n ∣ b"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n✝ p : R", "k n a b : ℕ", "hab : a.Coprime b", "hn : IsPrimePow n", "ha : a ≠ 0", "hb : b ≠ 0"], "goal": "n ∣ a * b ↔ n ∣ a ∨ n ∣ b"}], "premise": [395, 1674, 2110, 108885, 143611, 143612], "state_str": "case inr.inr\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn✝ p : R\nk n a b : ℕ\nhab : a.Coprime b\nhn : IsPrimePow n\nha : a ≠ 0\nhb : b ≠ 0\n⊢ n ∣ a * b ↔ n ∣ a ∨ n ∣ b"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n✝ p : R", "k n a b : ℕ", "hab : a.Coprime b", "hn : IsPrimePow n", "ha : a ≠ 0", "hb : b ≠ 0"], "goal": "n ∣ a * b → n ∣ a ∨ n ∣ b"}], "premise": [1673, 111243], "state_str": "case inr.inr\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn✝ p : R\nk n a b : ℕ\nhab : a.Coprime b\nhn : IsPrimePow n\nha : a ≠ 0\nhb : b ≠ 0\n⊢ n ∣ a * b → n ∣ a ∨ n ∣ b"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n p✝ : R", "k✝ a b : ℕ", "hab : a.Coprime b", "ha : a ≠ 0", "hb : b ≠ 0", "p k : ℕ", "hp : Prime p", "left✝ : 0 < k", "hn : IsPrimePow (p ^ k)"], "goal": "p ^ k ∣ a * b → p ^ k ∣ a ∨ p ^ k ∣ b"}], "premise": [108269, 120650, 144202, 144694, 148168], "state_str": "case inr.inr.intro.intro.intro.intro\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn p✝ : R\nk✝ a b : ℕ\nhab : a.Coprime b\nha : a ≠ 0\nhb : b ≠ 0\np k : ℕ\nhp : Prime p\nleft✝ : 0 < k\nhn : IsPrimePow (p ^ k)\n⊢ p ^ k ∣ a * b → p ^ k ∣ a ∨ p ^ k ∣ b"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n p✝ : R", "k✝ a b : ℕ", "hab : a.Coprime b", "ha : a ≠ 0", "hb : b ≠ 0", "p k : ℕ", "hp : Prime p", "left✝ : 0 < k", "hn : IsPrimePow (p ^ k)"], "goal": "k ≤ a.factorization p + b.factorization p → k ≤ a.factorization p ∨ k ≤ b.factorization p"}], "premise": [13484, 70089, 138900, 144182, 148065], "state_str": "case inr.inr.intro.intro.intro.intro\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn p✝ : R\nk✝ a b : ℕ\nhab : a.Coprime b\nha : a ≠ 0\nhb : b ≠ 0\np k : ℕ\nhp : Prime p\nleft✝ : 0 < k\nhn : IsPrimePow (p ^ k)\n⊢ k ≤ a.factorization p + b.factorization p → k ≤ a.factorization p ∨ k ≤ b.factorization p"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n p✝ : R", "k✝ a b : ℕ", "hab : a.Coprime b", "ha : a ≠ 0", "hb : b ≠ 0", "p k : ℕ", "hp : Prime p", "left✝ : 0 < k", "hn : IsPrimePow (p ^ k)", "this : a.factorization p = 0 ∨ b.factorization p = 0"], "goal": "k ≤ a.factorization p + b.factorization p → k ≤ a.factorization p ∨ k ≤ b.factorization p"}], "premise": [70078], "state_str": "case inr.inr.intro.intro.intro.intro\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn p✝ : R\nk✝ a b : ℕ\nhab : a.Coprime b\nha : a ≠ 0\nhb : b ≠ 0\np k : ℕ\nhp : Prime p\nleft✝ : 0 < k\nhn : IsPrimePow (p ^ k)\nthis : a.factorization p = 0 ∨ b.factorization p = 0\n⊢ k ≤ a.factorization p + b.factorization p → k ≤ a.factorization p ∨ k ≤ b.factorization p"} +{"state": [{"context": ["s : ℂ", "hs : 0 < s.re"], "goal": "Gamma s ≠ 0"}], "premise": [40597], "state_str": "s : ℂ\nhs : 0 < s.re\n⊢ Gamma s ≠ 0"} +{"state": [{"context": ["s : ℂ", "hs : 0 < s.re", "m : ℕ"], "goal": "s ≠ -↑m"}], "premise": [53688], "state_str": "s : ℂ\nhs : 0 < s.re\nm : ℕ\n⊢ s ≠ -↑m"} +{"state": [{"context": ["s : ℂ", "m : ℕ", "hs : s = -↑m"], "goal": "s.re ≤ 0"}], "premise": [142636, 148280, 148299, 148332], "state_str": "s : ℂ\nm : ℕ\nhs : s = -↑m\n⊢ s.re ≤ 0"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedSpace 𝕜 E", "inst✝⁶ : TopologicalSpace H", "inst✝⁵ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝⁴ : NormedAddCommGroup E'", "inst✝³ : NormedSpace 𝕜 E'", "inst✝² : TopologicalSpace H'", "inst✝¹ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "inst✝ : ChartedSpace H M", "hf : f ∈ maximalAtlas I M", "hf' : f' ∈ maximalAtlas I M", "x : M", "hxf : x ∈ f.source", "hxf' : x ∈ f'.source"], "goal": "ContDiffWithinAt 𝕜 ⊤ (↑(f.extend I) ∘ ↑(f'.extend I).symm) (range ↑I) (↑(f'.extend I) x)"}], "premise": [67844], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : TopologicalSpace H\ninst✝⁵ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝⁴ : NormedAddCommGroup E'\ninst✝³ : NormedSpace 𝕜 E'\ninst✝² : TopologicalSpace H'\ninst✝¹ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\ninst✝ : ChartedSpace H M\nhf : f ∈ maximalAtlas I M\nhf' : f' ∈ maximalAtlas I M\nx : M\nhxf : x ∈ f.source\nhxf' : x ∈ f'.source\n⊢ ContDiffWithinAt 𝕜 ⊤ (↑(f.extend I) ∘ ↑(f'.extend I).symm) (range ↑I) (↑(f'.extend I) x)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedSpace 𝕜 E", "inst✝⁶ : TopologicalSpace H", "inst✝⁵ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝⁴ : NormedAddCommGroup E'", "inst✝³ : NormedSpace 𝕜 E'", "inst✝² : TopologicalSpace H'", "inst✝¹ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "inst✝ : ChartedSpace H M", "hf : f ∈ maximalAtlas I M", "hf' : f' ∈ maximalAtlas I M", "x : M", "hxf : x ∈ f.source", "hxf' : x ∈ f'.source"], "goal": "↑(f'.extend I) x ∈ ((f'.extend I).symm ≫ f.extend I).source"}], "premise": [67840], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : TopologicalSpace H\ninst✝⁵ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝⁴ : NormedAddCommGroup E'\ninst✝³ : NormedSpace 𝕜 E'\ninst✝² : TopologicalSpace H'\ninst✝¹ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\ninst✝ : ChartedSpace H M\nhf : f ∈ maximalAtlas I M\nhf' : f' ∈ maximalAtlas I M\nx : M\nhxf : x ∈ f.source\nhxf' : x ∈ f'.source\n⊢ ↑(f'.extend I) x ∈ ((f'.extend I).symm ≫ f.extend I).source"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedSpace 𝕜 E", "inst✝⁶ : TopologicalSpace H", "inst✝⁵ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝⁴ : NormedAddCommGroup E'", "inst✝³ : NormedSpace 𝕜 E'", "inst✝² : TopologicalSpace H'", "inst✝¹ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s t : Set M", "inst✝ : ChartedSpace H M", "hf : f ∈ maximalAtlas I M", "hf' : f' ∈ maximalAtlas I M", "x : M", "hxf : x ∈ f.source", "hxf' : x ∈ f'.source"], "goal": "↑(f'.extend I) x ∈ ↑(f'.extend I) '' (f'.source ∩ f.source)"}], "premise": [131593], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : TopologicalSpace H\ninst✝⁵ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝⁴ : NormedAddCommGroup E'\ninst✝³ : NormedSpace 𝕜 E'\ninst✝² : TopologicalSpace H'\ninst✝¹ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns t : Set M\ninst✝ : ChartedSpace H M\nhf : f ∈ maximalAtlas I M\nhf' : f' ∈ maximalAtlas I M\nx : M\nhxf : x ∈ f.source\nhxf' : x ∈ f'.source\n⊢ ↑(f'.extend I) x ∈ ↑(f'.extend I) '' (f'.source ∩ f.source)"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : LinearOrderedRing α", "inst✝ : FloorRing α", "z : ℤ", "a x : α"], "goal": "fract (-x) = 0 ↔ fract x = 0"}], "premise": [14271, 20003, 101702, 103416, 105158], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na x : α\n⊢ fract (-x) = 0 ↔ fract x = 0"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : LinearOrderedRing α", "inst✝ : FloorRing α", "z : ℤ", "a x : α"], "goal": "(∃ z, -x = ↑z) ↔ ∃ z, x = ↑z"}], "premise": [1674, 2045], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na x : α\n⊢ (∃ z, -x = ↑z) ↔ ∃ z, x = ↑z"} +{"state": [{"context": ["R : Type u", "A : Type v", "B : Type w", "inst✝⁹ : CommSemiring R", "inst✝⁸ : NonUnitalNonAssocSemiring A", "inst✝⁷ : Module R A", "inst✝⁶ : IsScalarTower R A A", "inst✝⁵ : SMulCommClass R A A", "inst✝⁴ : NonUnitalNonAssocSemiring B", "inst✝³ : Module R B", "inst✝² : IsScalarTower R B B", "inst✝¹ : SMulCommClass R B B", "S : NonUnitalSubalgebra R A", "ι : Type u_1", "inst✝ : Nonempty ι", "K : ι → NonUnitalSubalgebra R A", "dir : Directed (fun x x_1 => x ≤ x_1) K", "f : (i : ι) → ↥(K i) →ₙₐ[R] B", "hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)", "i : ι", "x : ↥(K i)", "hx : ↑x ∈ iSup K"], "goal": "Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x) ⋯ ↑(iSup K) ⋯ ⟨↑x, hx⟩ = (f i) x"}], "premise": [133070], "state_str": "R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)\ni : ι\nx : ↥(K i)\nhx : ↑x ∈ iSup K\n⊢ Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x) ⋯ ↑(iSup K) ⋯ ⟨↑x, hx⟩ = (f i) x"} +{"state": [{"context": ["C : Type u₁", "inst✝⁷ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝⁶ : Category.{v₂, u₂} D", "G : C ⥤ D", "J : Type w", "inst✝⁵ : Category.{w', w} J", "F : J ⥤ C", "inst✝⁴ : PreservesColimit F G", "inst✝³ : HasColimit F", "inst✝² : PreservesColimitsOfShape J G", "inst✝¹ : HasColimitsOfShape J D", "inst✝ : HasColimitsOfShape J C", "X✝ Y✝ : J ⥤ C", "f : X✝ ⟶ Y✝"], "goal": "(colim ⋙ G).map f ≫ ((fun F => preservesColimitIso G F) Y✝).hom = ((fun F => preservesColimitIso G F) X✝).hom ≫ ((whiskeringRight J C D).obj G ⋙ colim).map f"}], "premise": [88767, 88770, 96173], "state_str": "C : Type u₁\ninst✝⁷ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝⁶ : Category.{v₂, u₂} D\nG : C ⥤ D\nJ : Type w\ninst✝⁵ : Category.{w', w} J\nF : J ⥤ C\ninst✝⁴ : PreservesColimit F G\ninst✝³ : HasColimit F\ninst✝² : PreservesColimitsOfShape J G\ninst✝¹ : HasColimitsOfShape J D\ninst✝ : HasColimitsOfShape J C\nX✝ Y✝ : J ⥤ C\nf : X✝ ⟶ Y✝\n⊢ (colim ⋙ G).map f ≫ ((fun F => preservesColimitIso G F) Y✝).hom =\n ((fun F => preservesColimitIso G F) X✝).hom ≫ ((whiskeringRight J C D).obj G ⋙ colim).map f"} +{"state": [{"context": ["C : Type u₁", "inst✝⁷ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝⁶ : Category.{v₂, u₂} D", "G : C ⥤ D", "J : Type w", "inst✝⁵ : Category.{w', w} J", "F : J ⥤ C", "inst✝⁴ : PreservesColimit F G", "inst✝³ : HasColimit F", "inst✝² : PreservesColimitsOfShape J G", "inst✝¹ : HasColimitsOfShape J D", "inst✝ : HasColimitsOfShape J C", "X✝ Y✝ : J ⥤ C", "f : X✝ ⟶ Y✝"], "goal": "((fun F => preservesColimitIso G F) X✝).inv ≫ (colim ⋙ G).map f = ((whiskeringRight J C D).obj G ⋙ colim).map f ≫ ((fun F => preservesColimitIso G F) Y✝).inv"}], "premise": [93401], "state_str": "C : Type u₁\ninst✝⁷ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝⁶ : Category.{v₂, u₂} D\nG : C ⥤ D\nJ : Type w\ninst✝⁵ : Category.{w', w} J\nF : J ⥤ C\ninst✝⁴ : PreservesColimit F G\ninst✝³ : HasColimit F\ninst✝² : PreservesColimitsOfShape J G\ninst✝¹ : HasColimitsOfShape J D\ninst✝ : HasColimitsOfShape J C\nX✝ Y✝ : J ⥤ C\nf : X✝ ⟶ Y✝\n⊢ ((fun F => preservesColimitIso G F) X✝).inv ≫ (colim ⋙ G).map f =\n ((whiskeringRight J C D).obj G ⋙ colim).map f ≫ ((fun F => preservesColimitIso G F) Y✝).inv"} +{"state": [{"context": ["C : Type u₁", "inst✝⁷ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝⁶ : Category.{v₂, u₂} D", "G : C ⥤ D", "J : Type w", "inst✝⁵ : Category.{w', w} J", "F : J ⥤ C", "inst✝⁴ : PreservesColimit F G", "inst✝³ : HasColimit F", "inst✝² : PreservesColimitsOfShape J G", "inst✝¹ : HasColimitsOfShape J D", "inst✝ : HasColimitsOfShape J C", "X✝ Y✝ : J ⥤ C", "f : X✝ ⟶ Y✝", "j : J"], "goal": "colimit.ι (X✝ ⋙ G) j ≫ (preservesColimitIso G X✝).inv ≫ G.map (colimMap f) = (whiskerRight f G).app j ≫ colimit.ι (Y✝ ⋙ G) j ≫ (preservesColimitIso G Y✝).inv"}], "premise": [94217, 96173, 97706, 99919], "state_str": "case w\nC : Type u₁\ninst✝⁷ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝⁶ : Category.{v₂, u₂} D\nG : C ⥤ D\nJ : Type w\ninst✝⁵ : Category.{w', w} J\nF : J ⥤ C\ninst✝⁴ : PreservesColimit F G\ninst✝³ : HasColimit F\ninst✝² : PreservesColimitsOfShape J G\ninst✝¹ : HasColimitsOfShape J D\ninst✝ : HasColimitsOfShape J C\nX✝ Y✝ : J ⥤ C\nf : X✝ ⟶ Y✝\nj : J\n⊢ colimit.ι (X✝ ⋙ G) j ≫ (preservesColimitIso G X✝).inv ≫ G.map (colimMap f) =\n (whiskerRight f G).app j ≫ colimit.ι (Y✝ ⋙ G) j ≫ (preservesColimitIso G Y✝).inv"} +{"state": [{"context": ["C : Type u₁", "inst✝⁷ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝⁶ : Category.{v₂, u₂} D", "G : C ⥤ D", "J : Type w", "inst✝⁵ : Category.{w', w} J", "F : J ⥤ C", "inst✝⁴ : PreservesColimit F G", "inst✝³ : HasColimit F", "inst✝² : PreservesColimitsOfShape J G", "inst✝¹ : HasColimitsOfShape J D", "inst✝ : HasColimitsOfShape J C", "X✝ Y✝ : J ⥤ C", "f : X✝ ⟶ Y✝", "j : J"], "goal": "G.map (colimit.ι X✝ j ≫ colimMap f) = G.map (f.app j ≫ colimit.ι Y✝ j)"}], "premise": [93393], "state_str": "case w\nC : Type u₁\ninst✝⁷ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝⁶ : Category.{v₂, u₂} D\nG : C ⥤ D\nJ : Type w\ninst✝⁵ : Category.{w', w} J\nF : J ⥤ C\ninst✝⁴ : PreservesColimit F G\ninst✝³ : HasColimit F\ninst✝² : PreservesColimitsOfShape J G\ninst✝¹ : HasColimitsOfShape J D\ninst✝ : HasColimitsOfShape J C\nX✝ Y✝ : J ⥤ C\nf : X✝ ⟶ Y✝\nj : J\n⊢ G.map (colimit.ι X✝ j ≫ colimMap f) = G.map (f.app j ≫ colimit.ι Y✝ j)"} +{"state": [{"context": ["x✝ : Game", "x : PGame", "y✝ : Game", "y : PGame"], "goal": "¬Quot.mk Setoid.r x ⧏ Quot.mk Setoid.r y ↔ Quot.mk Setoid.r y ≤ Quot.mk Setoid.r x"}], "premise": [50164], "state_str": "case mk.mk\nx✝ : Game\nx : PGame\ny✝ : Game\ny : PGame\n⊢ ¬Quot.mk Setoid.r x ⧏ Quot.mk Setoid.r y ↔ Quot.mk Setoid.r y ≤ Quot.mk Setoid.r x"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "p1 p2 p3 : P"], "goal": "dist p1 p3 * dist p1 p3 = dist p1 p2 * dist p1 p2 + dist p3 p2 * dist p3 p2 ↔ ∠ p1 p2 p3 = π / 2"}], "premise": [1713, 42504, 42667, 61121, 69410, 115880, 115883], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst�� : NormedAddTorsor V P\np1 p2 p3 : P\n⊢ dist p1 p3 * dist p1 p3 = dist p1 p2 * dist p1 p2 + dist p3 p2 * dist p3 p2 ↔ ∠ p1 p2 p3 = π / 2"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Mul α", "inst✝² : LinearOrder α", "a b c d : α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "h : a * b ≤ c * d"], "goal": "min a b ≤ max c d"}], "premise": [12953, 12954], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Mul α\ninst✝² : LinearOrder α\na b c d : α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nh : a * b ≤ c * d\n⊢ min a b ≤ max c d"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Mul α", "inst✝² : LinearOrder α", "a b c d : α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "h : a * b ≤ c * d"], "goal": "(a ≤ c ∨ a ≤ d) ∨ b ≤ c ∨ b ≤ d"}], "premise": [53688], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Mul α\ninst✝² : LinearOrder α\na b c d : α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nh : a * b ≤ c * d\n⊢ (a ≤ c ∨ a ≤ d) ∨ b ≤ c ∨ b ≤ d"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Mul α", "inst✝² : LinearOrder α", "a b c d : α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "h : (c < a ∧ d < a) ∧ c < b ∧ d < b"], "goal": "c * d < a * b"}], "premise": [2106, 2107, 103908], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Mul α\ninst✝² : LinearOrder α\na b c d : α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nh : (c < a ∧ d < a) ∧ c < b ∧ d < b\n⊢ c * d < a * b"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "inst✝ : DecidableEq α", "a : α", "l : List α", "h : a ∈ l"], "goal": "(l.erase a).length + 1 = l.length"}], "premise": [1381, 2125, 132672], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\nl : List α\nh : a ∈ l\n⊢ (l.erase a).length + 1 = l.length"} +{"state": [{"context": ["k : Type u_1", "G : Type u_2", "V : Type u_3", "W : Type u_4", "inst✝⁵ : CommSemiring k", "inst✝⁴ : Monoid G", "inst✝³ : AddCommMonoid V", "inst✝² : Module k V", "inst✝¹ : AddCommMonoid W", "inst✝ : Module k W", "ρV : Representation k G V", "ρW : Representation k G W", "r : MonoidAlgebra k G", "x : V", "y : W"], "goal": "((1 ⊗ ρW).asAlgebraHom r) (x ⊗ₜ[k] y) = x ⊗ₜ[k] (ρW.asAlgebraHom r) y"}], "premise": [23983, 24002, 85314, 86888, 109195, 109782, 117235, 126699], "state_str": "k : Type u_1\nG : Type u_2\nV : Type u_3\nW : Type u_4\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\ninst✝¹ : AddCommMonoid W\ninst✝ : Module k W\nρV : Representation k G V\nρW : Representation k G W\nr : MonoidAlgebra k G\nx : V\ny : W\n⊢ ((1 ⊗ ρW).asAlgebraHom r) (x ⊗ₜ[k] y) = x ⊗ₜ[k] (ρW.asAlgebraHom r) y"} +{"state": [{"context": ["k : Type u_1", "G : Type u_2", "V : Type u_3", "W : Type u_4", "inst✝⁵ : CommSemiring k", "inst✝⁴ : Monoid G", "inst✝³ : AddCommMonoid V", "inst✝² : Module k V", "inst✝¹ : AddCommMonoid W", "inst✝ : Module k W", "ρV : Representation k G V", "ρW : Representation k G W", "r : MonoidAlgebra k G", "x : V", "y : W"], "goal": "(Finsupp.sum r fun i d => d • x ⊗ₜ[k] (ρW i) y) = x ⊗ₜ[k] Finsupp.sum r fun i d => d • (ρW i) y"}], "premise": [86849, 86855], "state_str": "k : Type u_1\nG : Type u_2\nV : Type u_3\nW : Type u_4\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\ninst✝¹ : AddCommMonoid W\ninst✝ : Module k W\nρV : Representation k G V\nρW : Representation k G W\nr : MonoidAlgebra k G\nx : V\ny : W\n⊢ (Finsupp.sum r fun i d => d • x ⊗ₜ[k] (ρW i) y) = x ⊗ₜ[k] Finsupp.sum r fun i d => d • (ρW i) y"} +{"state": [{"context": ["R✝ : Type u_1", "S✝ : Type u_2", "T : Type u_3", "inst✝⁵ : Semiring R✝", "inst✝⁴ : Semiring S✝", "inst✝³ : Semiring T", "R : Type u_4", "S : Type u_5", "inst✝² : CommSemiring R", "inst✝¹ : CommSemiring S", "H : LocalRing S", "f : R →+* S", "inst✝ : IsLocalRingHom f"], "goal": "LocalRing R"}], "premise": [108554, 121564, 121565], "state_str": "R✝ : Type u_1\nS✝ : Type u_2\nT : Type u_3\ninst✝⁵ : Semiring R✝\ninst✝⁴ : Semiring S✝\ninst✝³ : Semiring T\nR : Type u_4\nS : Type u_5\ninst✝² : CommSemiring R\ninst✝¹ : CommSemiring S\nH : LocalRing S\nf : R →+* S\ninst✝ : IsLocalRingHom f\n⊢ LocalRing R"} +{"state": [{"context": ["R✝ : Type u_1", "S✝ : Type u_2", "T : Type u_3", "inst✝⁵ : Semiring R✝", "inst✝⁴ : Semiring S✝", "inst✝³ : Semiring T", "R : Type u_4", "S : Type u_5", "inst✝² : CommSemiring R", "inst✝¹ : CommSemiring S", "H : LocalRing S", "f : R →+* S", "inst✝ : IsLocalRingHom f", "this : Nontrivial R"], "goal": "LocalRing R"}], "premise": [76985], "state_str": "R✝ : Type u_1\nS✝ : Type u_2\nT : Type u_3\ninst✝⁵ : Semiring R✝\ninst✝⁴ : Semiring S✝\ninst✝³ : Semiring T\nR : Type u_4\nS : Type u_5\ninst✝² : CommSemiring R\ninst✝¹ : CommSemiring S\nH : LocalRing S\nf : R →+* S\ninst✝ : IsLocalRingHom f\nthis : Nontrivial R\n⊢ LocalRing R"} +{"state": [{"context": ["R✝ : Type u_1", "S✝ : Type u_2", "T : Type u_3", "inst✝⁵ : Semiring R✝", "inst✝⁴ : Semiring S✝", "inst✝³ : Semiring T", "R : Type u_4", "S : Type u_5", "inst✝² : CommSemiring R", "inst✝¹ : CommSemiring S", "H : LocalRing S", "f : R →+* S", "inst✝ : IsLocalRingHom f", "this : Nontrivial R", "a b : R"], "goal": "a ∈ nonunits R → b ∈ nonunits R → a + b ∈ nonunits R"}], "premise": [77097, 121566], "state_str": "case h\nR✝ : Type u_1\nS✝ : Type u_2\nT : Type u_3\ninst✝⁵ : Semiring R✝\ninst✝⁴ : Semiring S✝\ninst✝³ : Semiring T\nR : Type u_4\nS : Type u_5\ninst✝² : CommSemiring R\ninst✝¹ : CommSemiring S\nH : LocalRing S\nf : R →+* S\ninst✝ : IsLocalRingHom f\nthis : Nontrivial R\na b : R\n⊢ a ∈ nonunits R → b ∈ nonunits R → a + b ∈ nonunits R"} +{"state": [{"context": ["R✝ : Type u_1", "S✝ : Type u_2", "T : Type u_3", "inst✝⁵ : Semiring R✝", "inst✝⁴ : Semiring S✝", "inst✝³ : Semiring T", "R : Type u_4", "S : Type u_5", "inst✝² : CommSemiring R", "inst✝¹ : CommSemiring S", "H : LocalRing S", "f : R →+* S", "inst✝ : IsLocalRingHom f", "this : Nontrivial R", "a b : R"], "goal": "f a ∈ nonunits S → f b ∈ nonunits S → f a + f b ∈ nonunits S"}], "premise": [76989], "state_str": "case h\nR✝ : Type u_1\nS✝ : Type u_2\nT : Type u_3\ninst✝⁵ : Semiring R✝\ninst✝⁴ : Semiring S✝\ninst✝³ : Semiring T\nR : Type u_4\nS : Type u_5\ninst✝² : CommSemiring R\ninst✝¹ : CommSemiring S\nH : LocalRing S\nf : R →+* S\ninst✝ : IsLocalRingHom f\nthis : Nontrivial R\na b : R\n⊢ f a ∈ nonunits S → f b ∈ nonunits S → f a + f b ∈ nonunits S"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "𝕜 : Type u_3", "inst✝⁹ : _root_.RCLike 𝕜", "E : Type u_4", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : InnerProductSpace 𝕜 E", "E' : Type u_5", "inst✝⁶ : NormedAddCommGroup E'", "inst✝⁵ : InnerProductSpace 𝕜 E'", "F : Type u_6", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace ℝ F", "F' : Type u_7", "inst✝² : NormedAddCommGroup F'", "inst✝¹ : InnerProductSpace ℝ F'", "inst✝ : DecidableEq ι", "i : ι", "a : 𝕜", "j : ι"], "goal": "single i a j = if j = i then a else 0"}], "premise": [42303, 120695], "state_str": "ι : Type u_1\nι' : Type u_2\n𝕜 : Type u_3\ninst✝⁹ : _root_.RCLike 𝕜\nE : Type u_4\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type u_5\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type u_6\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type u_7\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : DecidableEq ι\ni : ι\na : 𝕜\nj : ι\n⊢ single i a j = if j = i then a else 0"} +{"state": [{"context": ["a : UnitAddCircle"], "goal": "Tendsto (fun s => (s - 1) * completedHurwitzZetaEven a s) (𝓝[≠] 1) (𝓝 1)"}], "premise": [23167], "state_str": "a : UnitAddCircle\n⊢ Tendsto (fun s => (s - 1) * completedHurwitzZetaEven a s) (𝓝[≠] 1) (𝓝 1)"} +{"state": [{"context": ["a : UnitAddCircle", "h1 : Tendsto (fun s => (s - ↑(1 / 2)) * (hurwitzEvenFEPair a).Λ s) (𝓝[≠] ↑(1 / 2)) (𝓝 (1 * 1))"], "goal": "Tendsto (fun s => (s - 1) * completedHurwitzZetaEven a s) (𝓝[≠] 1) (𝓝 1)"}], "premise": [119728], "state_str": "a : UnitAddCircle\nh1 : Tendsto (fun s => (s - ↑(1 / 2)) * (hurwitzEvenFEPair a).Λ s) (𝓝[≠] ↑(1 / 2)) (𝓝 (1 * 1))\n⊢ Tendsto (fun s => (s - 1) * completedHurwitzZetaEven a s) (𝓝[≠] 1) (𝓝 1)"} +{"state": [{"context": ["a : UnitAddCircle", "h1 : Tendsto (fun s => (s - 1 / 2) * (hurwitzEvenFEPair a).Λ s) (𝓝[≠] (1 / 2)) (𝓝 1)"], "goal": "Tendsto (fun s => (s - 1) * completedHurwitzZetaEven a s) (𝓝[≠] 1) (𝓝 1)"}], "premise": [16352, 16355, 23490], "state_str": "a : UnitAddCircle\nh1 : Tendsto (fun s => (s - 1 / 2) * (hurwitzEvenFEPair a).Λ s) (𝓝[≠] (1 / 2)) (𝓝 1)\n⊢ Tendsto (fun s => (s - 1) * completedHurwitzZetaEven a s) (𝓝[≠] 1) (𝓝 1)"} +{"state": [{"context": ["a : UnitAddCircle", "h1 : Tendsto (fun s => (s - 1 / 2) * (hurwitzEvenFEPair a).Λ s) (𝓝[≠] (1 / 2)) (𝓝 1)", "s : ℂ"], "goal": "((fun s => (s - 1 / 2) * (hurwitzEvenFEPair a).Λ s) ∘ fun s => s / 2) s = (s - 1) * completedHurwitzZetaEven a s"}], "premise": [1670, 115848, 117806, 117906], "state_str": "a : UnitAddCircle\nh1 : Tendsto (fun s => (s - 1 / 2) * (hurwitzEvenFEPair a).Λ s) (𝓝[≠] (1 / 2)) (𝓝 1)\ns : ℂ\n⊢ ((fun s => (s - 1 / 2) * (hurwitzEvenFEPair a).Λ s) ∘ fun s => s / 2) s = (s - 1) * completedHurwitzZetaEven a s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "f : α → β", "g : α → γ", "g' : β → γ"], "goal": "range (extend f g g') ⊆ range g ∪ g' '' (range f)ᶜ"}], "premise": [71489, 131593, 131596], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\nf : α → β\ng : α → γ\ng' : β → γ\n⊢ range (extend f g g') ⊆ range g ∪ g' '' (range f)ᶜ"} +{"state": [{"context": ["ι : Type uι", "inst✝⁹ : Fintype ι", "𝕜 : Type u𝕜", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : ι → Type uE", "inst✝⁷ : (i : ι) → SeminormedAddCommGroup (E i)", "inst✝⁶ : (i : ι) → NormedSpace 𝕜 (E i)", "F : Type uF", "inst✝⁵ : SeminormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "E' : ι → Type u_1", "E'' : ι → Type u_2", "inst✝³ : (i : ι) → SeminormedAddCommGroup (E' i)", "inst✝² : (i : ι) → NormedSpace 𝕜 (E' i)", "inst✝¹ : (i : ι) → SeminormedAddCommGroup (E'' i)", "inst✝ : (i : ι) → NormedSpace 𝕜 (E'' i)", "g : (i : ι) → E' i →L[𝕜] E'' i", "f : (i : ι) → E i →L[𝕜] E' i"], "goal": "(mapL fun i => ContinuousLinearMap.id 𝕜 (E i)) = ContinuousLinearMap.id 𝕜 (⨂[𝕜] (i : ι), E i)"}], "premise": [68747], "state_str": "ι : Type uι\ninst✝⁹ : Fintype ι\n𝕜 : Type u𝕜\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : ι → Type uE\ninst✝⁷ : (i : ι) → SeminormedAddCommGroup (E i)\ninst✝⁶ : (i : ι) → NormedSpace 𝕜 (E i)\nF : Type uF\ninst✝⁵ : SeminormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nE' : ι → Type u_1\nE'' : ι → Type u_2\ninst✝³ : (i : ι) → SeminormedAddCommGroup (E' i)\ninst✝² : (i : ι) → NormedSpace 𝕜 (E' i)\ninst✝¹ : (i : ι) → SeminormedAddCommGroup (E'' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (E'' i)\ng : (i : ι) → E' i →L[𝕜] E'' i\nf : (i : ι) → E i →L[𝕜] E' i\n⊢ (mapL fun i => ContinuousLinearMap.id 𝕜 (E i)) = ContinuousLinearMap.id 𝕜 (⨂[𝕜] (i : ι), E i)"} +{"state": [{"context": ["ι : Type uι", "inst✝⁹ : Fintype ι", "𝕜 : Type u𝕜", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : ι → Type uE", "inst✝⁷ : (i : ι) → SeminormedAddCommGroup (E i)", "inst✝⁶ : (i : ι) → NormedSpace 𝕜 (E i)", "F : Type uF", "inst✝⁵ : SeminormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "E' : ι → Type u_1", "E'' : ι → Type u_2", "inst✝³ : (i : ι) → SeminormedAddCommGroup (E' i)", "inst✝² : (i : ι) → NormedSpace 𝕜 (E' i)", "inst✝¹ : (i : ι) → SeminormedAddCommGroup (E'' i)", "inst✝ : (i : ι) → NormedSpace 𝕜 (E'' i)", "g : (i : ι) → E' i →L[𝕜] E'' i", "f : (i : ι) → E i →L[𝕜] E' i", "x✝ : (i : ι) → E i"], "goal": "((↑(mapL fun i => ContinuousLinearMap.id 𝕜 (E i))).compMultilinearMap (tprod 𝕜)) x✝ = ((↑(ContinuousLinearMap.id 𝕜 (⨂[𝕜] (i : ι), E i))).compMultilinearMap (tprod 𝕜)) x✝"}], "premise": [2098, 43168, 68781, 84062, 86151, 109729], "state_str": "case a.H.H\nι : Type uι\ninst✝⁹ : Fintype ι\n𝕜 : Type u𝕜\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : ι → Type uE\ninst✝⁷ : (i : ι) → SeminormedAddCommGroup (E i)\ninst✝⁶ : (i : ι) → NormedSpace 𝕜 (E i)\nF : Type uF\ninst✝⁵ : SeminormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nE' : ι → Type u_1\nE'' : ι → Type u_2\ninst✝³ : (i : ι) → SeminormedAddCommGroup (E' i)\ninst✝² : (i : ι) → NormedSpace 𝕜 (E' i)\ninst✝¹ : (i : ι) → SeminormedAddCommGroup (E'' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (E'' i)\ng : (i : ι) → E' i →L[𝕜] E'' i\nf : (i : ι) → E i →L[𝕜] E' i\nx✝ : (i : ι) → E i\n⊢ ((↑(mapL fun i => ContinuousLinearMap.id 𝕜 (E i))).compMultilinearMap (tprod 𝕜)) x✝ =\n ((↑(ContinuousLinearMap.id 𝕜 (⨂[𝕜] (i : ι), E i))).compMultilinearMap (tprod 𝕜)) x✝"} +{"state": [{"context": ["a k x y : ℕ", "x✝ : ∃ (a1 : 1 < a), xn a1 k = x ∧ yn a1 k = y", "a1 : 1 < a", "hx : xn a1 k = x", "hy : yn a1 k = y"], "goal": "1 < a ∧ k ≤ yn a1 k ∧ (xn a1 k = 1 ∧ yn a1 k = 0 ∨ ∃ u v s t b, xn a1 k * xn a1 k - (a * a - 1) * yn a1 k * yn a1 k = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 k] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 k * yn a1 k ∣ v ∧ s ≡ xn a1 k [MOD u] ∧ t ≡ k [MOD 4 * yn a1 k])"}], "premise": [2110, 3735, 14272], "state_str": "a k x y : ℕ\nx✝ : ∃ (a1 : 1 < a), xn a1 k = x ∧ yn a1 k = y\na1 : 1 < a\nhx : xn a1 k = x\nhy : yn a1 k = y\n⊢ 1 < a ∧\n k ≤ yn a1 k ∧\n (xn a1 k = 1 ∧ yn a1 k = 0 ∨\n ∃ u v s t b,\n xn a1 k * xn a1 k - (a * a - 1) * yn a1 k * yn a1 k = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 k] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 k * yn a1 k ∣ v ∧ s ≡ xn a1 k [MOD u] ∧ t ≡ k [MOD 4 * yn a1 k])"} +{"state": [{"context": ["a k x y : ℕ", "x✝ : ∃ (a1 : 1 < a), xn a1 k = x ∧ yn a1 k = y", "a1 : 1 < a", "hx : xn a1 k = x", "hy : yn a1 k = y", "kpos : k > 0"], "goal": "k ≤ yn a1 k ∧ (xn a1 k = 1 ∧ yn a1 k = 0 ∨ ∃ u v s t b, xn a1 k * xn a1 k - (a * a - 1) * yn a1 k * yn a1 k = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 k] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 k * yn a1 k ∣ v ∧ s ≡ xn a1 k [MOD u] ∧ t ≡ k [MOD 4 * yn a1 k])"}], "premise": [408, 410, 1673, 1674, 2107, 2528, 3850, 4467, 4470, 14281, 14286, 14287, 22497, 22511, 22512, 22513, 22514, 22516, 22518, 22526, 22527, 22543, 101702, 108876, 108897, 108900, 130033, 144515, 144516, 144518, 144519, 144524], "state_str": "a k x y : ℕ\nx✝ : ∃ (a1 : 1 < a), xn a1 k = x ∧ yn a1 k = y\na1 : 1 < a\nhx : xn a1 k = x\nhy : yn a1 k = y\nkpos : k > 0\n⊢ k ≤ yn a1 k ∧\n (xn a1 k = 1 ∧ yn a1 k = 0 ∨\n ∃ u v s t b,\n xn a1 k * xn a1 k - (a * a - 1) * yn a1 k * yn a1 k = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 k] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 k * yn a1 k ∣ v ∧ s ≡ xn a1 k [MOD u] ∧ t ≡ k [MOD 4 * yn a1 k])"} +{"state": [{"context": ["a k x y : ℕ", "x✝ : 1 < a ∧ k ≤ y ∧ (x = 1 ∧ y = 0 ∨ ∃ u v s t b, x * x - (a * a - 1) * y * y = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y])", "a1 : 1 < a", "ky : k ≤ 0", "o : x = 1 ∧ y = 0 ∨ ∃ u v s t b, x * x - (a * a - 1) * y * y = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y]", "x1 : x = 1", "y0 : y = 0"], "goal": "xn a1 k = x ∧ yn a1 k = y"}], "premise": [3741], "state_str": "a k x y : ℕ\nx✝ :\n 1 < a ∧\n k ≤ y ∧\n (x = 1 ∧ y = 0 ∨\n ∃ u v s t b,\n x * x - (a * a - 1) * y * y = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y])\na1 : 1 < a\nky : k ≤ 0\no :\n x = 1 ∧ y = 0 ∨\n ∃ u v s t b,\n x * x - (a * a - 1) * y * y = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y]\nx1 : x = 1\ny0 : y = 0\n⊢ xn a1 k = x ∧ yn a1 k = y"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0"], "goal": "i = k"}], "premise": [3523, 14292, 14314, 22512, 108900], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\n��� i = k"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0", "iln : i ≤ n"], "goal": "i = k"}], "premise": [22519, 108892], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\niln : i ≤ n\n⊢ i = k"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0", "iln : i ≤ n", "yd : 4 * yn a1 i ∣ 4 * n"], "goal": "i = k"}], "premise": [1673, 2528, 14286, 22526, 130033, 144515, 144516, 144524], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\niln : i ≤ n\nyd : 4 * yn a1 i ∣ 4 * n\n⊢ i = k"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0", "iln : i ≤ n", "yd : 4 * yn a1 i ∣ 4 * n", "jk : j ≡ k [MOD 4 * yn a1 i]"], "goal": "i = k"}], "premise": [3854, 14288, 22512, 22514, 103917, 122222], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\niln : i ≤ n\nyd : 4 * yn a1 i ∣ 4 * n\njk : j ≡ k [MOD 4 * yn a1 i]\n⊢ i = k"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0", "iln : i ≤ n", "yd : 4 * yn a1 i ∣ 4 * n", "jk : j ≡ k [MOD 4 * yn a1 i]", "ki : k + i < 4 * yn a1 i"], "goal": "i = k"}], "premise": [1673, 2107, 2112, 3523, 3748, 14287, 14291, 22542, 22543, 144515, 144516, 144518, 144524, 144533], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\niln : i ≤ n\nyd : 4 * yn a1 i ∣ 4 * n\njk : j ≡ k [MOD 4 * yn a1 i]\nki : k + i < 4 * yn a1 i\n⊢ i = k"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0", "iln : i ≤ n", "yd : 4 * yn a1 i ∣ 4 * n", "jk : j ≡ k [MOD 4 * yn a1 i]", "ki : k + i < 4 * yn a1 i", "ji : j ≡ i [MOD 4 * n]"], "goal": "i = k"}], "premise": [144515, 144516, 144524], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\niln : i ≤ n\nyd : 4 * yn a1 i ∣ 4 * n\njk : j ≡ k [MOD 4 * yn a1 i]\nki : k + i < 4 * yn a1 i\nji : j ≡ i [MOD 4 * n]\n⊢ i = k"} +{"state": [{"context": ["a k x y : ℕ", "a1 : 1 < a", "ky✝ : k ≤ y", "u v s t b : ℕ", "b1 : 1 < b", "i n j : ℕ", "bm1 : b ≡ 1 [MOD 4 * yn a1 i]", "ba : b ≡ a [MOD xn a1 n]", "vp : 0 < yn a1 n", "yv : yn a1 i * yn a1 i ∣ yn a1 n", "sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]", "tk : yn b1 j ≡ k [MOD 4 * yn a1 i]", "ky : k ≤ yn a1 i", "x✝ : 1 < a ∧ k ≤ yn a1 i ∧ (xn a1 i = 1 ∧ yn a1 i = 0 ∨ ∃ u v s t b, xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 i] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])", "ipos : i > 0", "iln : i ≤ n", "yd : 4 * yn a1 i ∣ 4 * n", "jk : j ≡ k [MOD 4 * yn a1 i]", "ki : k + i < 4 * yn a1 i", "ji : j ≡ i [MOD 4 * n]", "this : i % (4 * yn a1 i) = k % (4 * yn a1 i)"], "goal": "i = k"}], "premise": [3747, 3748, 4467, 14288], "state_str": "a k x y : ℕ\na1 : 1 < a\nky✝ : k ≤ y\nu v s t b : ℕ\nb1 : 1 < b\ni n j : ℕ\nbm1 : b ≡ 1 [MOD 4 * yn a1 i]\nba : b ≡ a [MOD xn a1 n]\nvp : 0 < yn a1 n\nyv : yn a1 i * yn a1 i ∣ yn a1 n\nsx : xn b1 j ≡ xn a1 i [MOD xn a1 n]\ntk : yn b1 j ≡ k [MOD 4 * yn a1 i]\nky : k ≤ yn a1 i\nx✝ :\n 1 < a ∧\n k ≤ yn a1 i ∧\n (xn a1 i = 1 ∧ yn a1 i = 0 ∨\n ∃ u v s t b,\n xn a1 i * xn a1 i - (a * a - 1) * yn a1 i * yn a1 i = 1 ∧\n u * u - (a * a - 1) * v * v = 1 ∧\n s * s - (b * b - 1) * t * t = 1 ∧\n 1 < b ∧\n b ≡ 1 [MOD 4 * yn a1 i] ∧\n b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 i * yn a1 i ∣ v ∧ s ≡ xn a1 i [MOD u] ∧ t ≡ k [MOD 4 * yn a1 i])\nipos : i > 0\niln : i ≤ n\nyd : 4 * yn a1 i ∣ 4 * n\njk : j ≡ k [MOD 4 * yn a1 i]\nki : k + i < 4 * yn a1 i\nji : j ≡ i [MOD 4 * n]\nthis : i % (4 * yn a1 i) = k % (4 * yn a1 i)\n⊢ i = k"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝ : Field F", "W : Jacobian F", "P Q : Fin 3 → F", "hP : W.Equation P", "hQ : W.Equation Q", "hPz : P z ≠ 0", "hQz : Q z ≠ 0", "hx : P x * Q z ^ 2 ≠ Q x * P z ^ 2"], "goal": "W.negAddY P Q / addZ P Q ^ 3 = W.toAffine.negAddY (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (W.toAffine.slope (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (Q y / Q z ^ 3))"}], "premise": [117764, 117896, 145550, 145552, 145554, 145565, 145571], "state_str": "R : Type u\ninst✝¹ : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝ : Field F\nW : Jacobian F\nP Q : Fin 3 → F\nhP : W.Equation P\nhQ : W.Equation Q\nhPz : P z ≠ 0\nhQz : Q z ≠ 0\nhx : P x * Q z ^ 2 ≠ Q x * P z ^ 2\n⊢ W.negAddY P Q / addZ P Q ^ 3 =\n W.toAffine.negAddY (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3)\n (W.toAffine.slope (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (Q y / Q z ^ 3))"} +{"state": [{"context": ["α : Type u_1", "r : α → α → Prop", "a o : Ordinal.{u}", "f : (b : Ordinal.{u}) → b < o → Ordinal.{u}"], "goal": "(succ o).IsFundamentalSequence 1 fun x x => o"}], "premise": [49684, 52489], "state_str": "α : Type u_1\nr : α → α → Prop\na o : Ordinal.{u}\nf : (b : Ordinal.{u}) → b < o → Ordinal.{u}\n⊢ (succ o).IsFundamentalSequence 1 fun x x => o"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝² : RCLike 𝕜", "E : Type u_2", "inst✝¹ : NormedAddCommGroup E", "inst✝ : InnerProductSpace 𝕜 E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "μ ν : 𝕜", "hμν : μ ≠ ν", "v : E", "hv : v ∈ eigenspace T μ", "w : E", "hw : w ∈ eigenspace T ν", "hv' : ¬v = 0"], "goal": "⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw⟩⟫_𝕜 = 0"}], "premise": [33386, 88217], "state_str": "case neg\n𝕜 : Type u_1\ninst✝² : RCLike 𝕜\nE : Type u_2\ninst✝¹ : NormedAddCommGroup E\ninst✝ : InnerProductSpace 𝕜 E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nμ ν : 𝕜\nhμν : μ ≠ ν\nv : E\nhv : v ∈ eigenspace T μ\nw : E\nhw : w ∈ eigenspace T ν\nhv' : ¬v = 0\n⊢ ⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw⟩⟫_𝕜 = 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝² : RCLike 𝕜", "E : Type u_2", "inst✝¹ : NormedAddCommGroup E", "inst✝ : InnerProductSpace 𝕜 E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "μ ν : 𝕜", "hμν : μ ≠ ν", "v : E", "hv : v ∈ eigenspace T μ", "w : E", "hw : w ∈ eigenspace T ν", "hv' : ¬v = 0", "H : (starRingEnd 𝕜) μ = μ"], "goal": "⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw⟩⟫_𝕜 = 0"}], "premise": [88218], "state_str": "case neg\n𝕜 : Type u_1\ninst✝² : RCLike 𝕜\nE : Type u_2\ninst✝¹ : NormedAddCommGroup E\ninst✝ : InnerProductSpace 𝕜 E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nμ ν : 𝕜\nhμν : μ ≠ ν\nv : E\nhv : v ∈ eigenspace T μ\nw : E\nhw : w ∈ eigenspace T ν\nhv' : ¬v = 0\nH : (starRingEnd 𝕜) μ = μ\n⊢ ⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw⟩⟫_𝕜 = 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝² : RCLike 𝕜", "E : Type u_2", "inst✝¹ : NormedAddCommGroup E", "inst✝ : InnerProductSpace 𝕜 E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "μ ν : 𝕜", "hμν : μ ≠ ν", "v : E", "hv✝ : v ∈ eigenspace T μ", "hv : T v = μ • v", "w : E", "hw✝ : w ∈ eigenspace T ν", "hw : T w = ν • w", "hv' : ¬v = 0", "H : (starRingEnd 𝕜) μ = μ"], "goal": "⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv✝⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw✝⟩⟫_𝕜 = 0"}], "premise": [1690, 2111], "state_str": "case neg\n𝕜 : Type u_1\ninst✝² : RCLike 𝕜\nE : Type u_2\ninst✝¹ : NormedAddCommGroup E\ninst✝ : InnerProductSpace 𝕜 E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nμ ν : 𝕜\nhμν : μ ≠ ν\nv : E\nhv✝ : v ∈ eigenspace T μ\nhv : T v = μ • v\nw : E\nhw✝ : w ∈ eigenspace T ν\nhw : T w = ν • w\nhv' : ¬v = 0\nH : (starRingEnd 𝕜) μ = μ\n⊢ ⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv✝⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw✝⟩⟫_𝕜 = 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝² : RCLike 𝕜", "E : Type u_2", "inst✝¹ : NormedAddCommGroup E", "inst✝ : InnerProductSpace 𝕜 E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "μ ν : 𝕜", "hμν : μ ≠ ν", "v : E", "hv✝ : v ∈ eigenspace T μ", "hv : T v = μ • v", "w : E", "hw✝ : w ∈ eigenspace T ν", "hw : T w = ν • w", "hv' : ¬v = 0", "H : (starRingEnd 𝕜) μ = μ"], "goal": "ν = μ ∨ ⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv✝⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw✝⟩⟫_𝕜 = 0"}], "premise": [2100, 36758, 36761], "state_str": "case neg\n𝕜 : Type u_1\ninst✝² : RCLike 𝕜\nE : Type u_2\ninst✝¹ : NormedAddCommGroup E\ninst✝ : InnerProductSpace 𝕜 E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nμ ν : 𝕜\nhμν : μ ≠ ν\nv : E\nhv✝ : v ∈ eigenspace T μ\nhv : T v = μ • v\nw : E\nhw✝ : w ∈ eigenspace T ν\nhw : T w = ν • w\nhv' : ¬v = 0\nH : (starRingEnd 𝕜) μ = μ\n⊢ ν = μ ∨ ⟪((fun μ => (eigenspace T μ).subtypeₗᵢ) μ) ⟨v, hv✝⟩, ((fun μ => (eigenspace T μ).subtypeₗᵢ) ν) ⟨w, hw✝⟩⟫_𝕜 = 0"} +{"state": [{"context": ["I : Type u", "inst✝⁵ : AddMonoid I", "C : Type u_1", "inst✝⁴ : Category.{u_2, u_1} C", "inst✝³ : MonoidalCategory C", "inst✝² : DecidableEq I", "inst✝¹ : HasInitial C", "inst✝ : (X₂ : C) → PreservesColimit (Functor.empty C) ((curriedTensor C).flip.obj X₂)", "X X' : GradedObject I C", "φ : X ⟶ X'"], "goal": "tensorHom (𝟙 tensorUnit) φ ≫ (leftUnitor X').hom = (leftUnitor X).hom ≫ φ"}], "premise": [98495], "state_str": "I : Type u\ninst✝⁵ : AddMonoid I\nC : Type u_1\ninst✝⁴ : Category.{u_2, u_1} C\ninst✝³ : MonoidalCategory C\ninst✝² : DecidableEq I\ninst✝¹ : HasInitial C\ninst✝ : (X₂ : C) → PreservesColimit (Functor.empty C) ((curriedTensor C).flip.obj X₂)\nX X' : GradedObject I C\nφ : X ⟶ X'\n⊢ tensorHom (𝟙 tensorUnit) φ ≫ (leftUnitor X').hom = (leftUnitor X).hom ≫ φ"} +{"state": [{"context": ["G : Type u_1", "inst✝ : Group G", "H K : Subgroup G", "S T : Set G", "hST : IsComplement S T", "hHT : IsComplement (↑H) T", "hSK : IsComplement S ↑K", "g₁ g₂ : G"], "goal": "(hHT.equiv g₁).2 = (hHT.equiv g₂).2 ↔ RightCosetEquivalence (↑H) g₁ g₂"}], "premise": [6894], "state_str": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\nS T : Set G\nhST : IsComplement S T\nhHT : IsComplement (↑H) T\nhSK : IsComplement S ↑K\ng₁ g₂ : G\n⊢ (hHT.equiv g₁).2 = (hHT.equiv g₂).2 ↔ RightCosetEquivalence (↑H) g₁ g₂"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_4, u_1} C", "J : GrothendieckTopology C", "A : Type u_2", "inst✝ : Category.{u_3, u_2} A", "G : (Cᵒᵖ ⥤ A) ⥤ Sheaf J A", "adj : G ⊣ sheafToPresheaf J A", "P : Cᵒᵖ ⥤ A"], "goal": "J.W (adj.unit.app P)"}], "premise": [90739], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_4, u_1} C\nJ : GrothendieckTopology C\nA : Type u_2\ninst✝ : Category.{u_3, u_2} A\nG : (Cᵒᵖ ⥤ A) ⥤ Sheaf J A\nadj : G ⊣ sheafToPresheaf J A\nP : Cᵒᵖ ⥤ A\n⊢ J.W (adj.unit.app P)"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_4, u_1} C", "J : GrothendieckTopology C", "A : Type u_2", "inst✝ : Category.{u_3, u_2} A", "G : (Cᵒᵖ ⥤ A) ⥤ Sheaf J A", "adj : G ⊣ sheafToPresheaf J A", "P : Cᵒᵖ ⥤ A"], "goal": "LeftBousfield.W (fun x => x ∈ Set.range (sheafToPresheaf J A).obj) (adj.unit.app P)"}], "premise": [91750], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_4, u_1} C\nJ : GrothendieckTopology C\nA : Type u_2\ninst✝ : Category.{u_3, u_2} A\nG : (Cᵒᵖ ⥤ A) ⥤ Sheaf J A\nadj : G ⊣ sheafToPresheaf J A\nP : Cᵒᵖ ⥤ A\n⊢ LeftBousfield.W (fun x => x ∈ Set.range (sheafToPresheaf J A).obj) (adj.unit.app P)"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "P : Type u_3", "inst✝² : Group M", "inst✝¹ : Group N", "inst✝ : Group P", "c : Con M", "n : ℕ", "w x : M", "h : c w x"], "goal": "c (w ^ Int.ofNat n) (x ^ Int.ofNat n)"}], "premise": [2199, 7332, 119784], "state_str": "M : Type u_1\nN : Type u_2\nP : Type u_3\ninst✝² : Group M\ninst✝¹ : Group N\ninst✝ : Group P\nc : Con M\nn : ℕ\nw x : M\nh : c w x\n⊢ c (w ^ Int.ofNat n) (x ^ Int.ofNat n)"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "P : Type u_3", "inst✝² : Group M", "inst✝¹ : Group N", "inst✝ : Group P", "c : Con M", "n : ℕ", "w x : M", "h : c w x"], "goal": "c (w ^ Int.negSucc n) (x ^ Int.negSucc n)"}], "premise": [7332, 7338, 119787], "state_str": "M : Type u_1\nN : Type u_2\nP : Type u_3\ninst✝² : Group M\ninst✝¹ : Group N\ninst✝ : Group P\nc : Con M\nn : ℕ\nw x : M\nh : c w x\n⊢ c (w ^ Int.negSucc n) (x ^ Int.negSucc n)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Sort u_3", "f : α → β", "hf : Surjective f", "s : Set β"], "goal": "∃ a, f '' a = s"}], "premise": [1674, 2045], "state_str": "α : Type u_1\nβ : Type u_2\nι : Sort u_3\nf : α → β\nhf : Surjective f\ns : Set β\n⊢ ∃ a, f '' a = s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Sort u_3", "f : α → β", "hf : Surjective f", "s : Set β"], "goal": "f '' (f ⁻¹' s) = s"}], "premise": [134276], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nι : Sort u_3\nf : α → β\nhf : Surjective f\ns : Set β\n⊢ f '' (f ⁻¹' s) = s"} +{"state": [{"context": ["a : ℍ"], "goal": "normSq a = ‖a‖ * ‖a‖"}], "premise": [36833, 43811], "state_str": "a : ℍ\n⊢ normSq a = ‖a‖ * ‖a‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : MeasurableSpace α", "p : PMF α", "s t : Set α", "hs : MeasurableSet s"], "goal": "p.toMeasure s = 0 ↔ Disjoint p.support s"}], "premise": [1713, 73711, 73718], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : MeasurableSpace α\np : PMF α\ns t : Set α\nhs : MeasurableSet s\n⊢ p.toMeasure s = 0 ↔ Disjoint p.support s"} +{"state": [{"context": ["R : Type u", "inst✝² : Ring R", "ι : Type v", "dec_ι : DecidableEq ι", "M : Type u_1", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "A : ι → Submodule R M", "i j : ι", "hij : i ≠ j", "h : Set.univ = {i, j}"], "goal": "IsInternal A ↔ IsCompl (A i) (A j)"}], "premise": [1673, 133307], "state_str": "R : Type u\ninst✝² : Ring R\nι : Type v\ndec_ι : DecidableEq ι\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nA : ι → Submodule R M\ni j : ι\nhij : i ≠ j\nh : Set.univ = {i, j}\n⊢ IsInternal A ↔ IsCompl (A i) (A j)"} +{"state": [{"context": ["R : Type u", "inst✝² : Ring R", "ι : Type v", "dec_ι : DecidableEq ι", "M : Type u_1", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "A : ι → Submodule R M", "i j : ι", "hij : i ≠ j", "h : Set.univ = {i, j}", "this : ∀ (k : ι), k = i ∨ k = j"], "goal": "IsInternal A ↔ IsCompl (A i) (A j)"}], "premise": [15813, 19252, 116972, 134113, 134123, 134174], "state_str": "R : Type u\ninst✝² : Ring R\nι : Type v\ndec_ι : DecidableEq ι\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nA : ι → Submodule R M\ni j : ι\nhij : i ≠ j\nh : Set.univ = {i, j}\nthis : ∀ (k : ι), k = i ∨ k = j\n⊢ IsInternal A ↔ IsCompl (A i) (A j)"} +{"state": [{"context": ["R : Type u", "inst✝² : Ring R", "ι : Type v", "dec_ι : DecidableEq ι", "M : Type u_1", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "A : ι → Submodule R M", "i j : ι", "hij : i ≠ j", "h : Set.univ = {i, j}", "this : ∀ (k : ι), k = i ∨ k = j"], "goal": "Disjoint (A i) (A j) ∧ A i ⊔ A j = ⊤ ↔ IsCompl (A i) (A j)"}], "premise": [1674, 13520, 13522], "state_str": "R : Type u\ninst✝² : Ring R\nι : Type v\ndec_ι : DecidableEq ι\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nA : ι → Submodule R M\ni j : ι\nhij : i ≠ j\nh : Set.univ = {i, j}\nthis : ∀ (k : ι), k = i ∨ k = j\n⊢ Disjoint (A i) (A j) ∧ A i ⊔ A j = ⊤ ↔ IsCompl (A i) (A j)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝⁶ : TopologicalSpace α", "inst✝⁵ : TopologicalSpace β", "inst✝⁴ : Group α", "inst✝³ : MulAction α β", "inst✝² : ContinuousInv α", "inst✝¹ : ContinuousSMul α β", "s : Set α", "t✝ : Set β", "inst✝ : CompactSpace α", "t : Set β", "ht : IsClosed t"], "goal": "IsClosed (Quotient.mk' '' t)"}], "premise": [7711, 56056, 66531], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝⁶ : TopologicalSpace α\ninst✝⁵ : TopologicalSpace β\ninst✝⁴ : Group α\ninst✝³ : MulAction α β\ninst✝² : ContinuousInv α\ninst✝¹ : ContinuousSMul α β\ns : Set α\nt✝ : Set β\ninst✝ : CompactSpace α\nt : Set β\nht : IsClosed t\n⊢ IsClosed (Quotient.mk' '' t)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝⁶ : TopologicalSpace α", "inst✝⁵ : TopologicalSpace β", "inst✝⁴ : Group α", "inst✝³ : MulAction α β", "inst✝² : ContinuousInv α", "inst✝¹ : ContinuousSMul α β", "s : Set α", "t✝ : Set β", "inst✝ : CompactSpace α", "t : Set β", "ht : IsClosed t"], "goal": "IsClosed (⋃ g, (fun x => g • x) '' t)"}], "premise": [58141, 66867], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝⁶ : TopologicalSpace α\ninst✝⁵ : TopologicalSpace β\ninst✝⁴ : Group α\ninst✝³ : MulAction α β\ninst✝² : ContinuousInv α\ninst✝¹ : ContinuousSMul α β\ns : Set α\nt✝ : Set β\ninst✝ : CompactSpace α\nt : Set β\nht : IsClosed t\n⊢ IsClosed (⋃ g, (fun x => g • x) '' t)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝⁶ : TopologicalSpace α", "inst✝⁵ : TopologicalSpace β", "inst✝⁴ : Group α", "inst✝³ : MulAction α β", "inst✝² : ContinuousInv α", "inst✝¹ : ContinuousSMul α β", "s : Set α", "t✝ : Set β", "inst✝ : CompactSpace α", "t : Set β", "ht : IsClosed t"], "goal": "⋃ g, (fun x => g • x) '' t = univ • t"}], "premise": [132836, 135377], "state_str": "case h.e'_3\nG : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝⁶ : TopologicalSpace α\ninst✝⁵ : TopologicalSpace β\ninst✝⁴ : Group α\ninst✝³ : MulAction α β\ninst✝² : ContinuousInv α\ninst✝¹ : ContinuousSMul α β\ns : Set α\nt✝ : Set β\ninst✝ : CompactSpace α\nt : Set β\nht : IsClosed t\n⊢ ⋃ g, (fun x => g • x) '' t = univ • t"} +{"state": [{"context": ["n : ℕ", "α : Type u_1", "inst✝ : CommMonoid α", "p : ℕ", "f : ℕ → α", "h : Prime p"], "goal": "∏ x ∈ p.divisors, f x = f p * f 1"}], "premise": [21779, 21831, 126898, 144291], "state_str": "n : ℕ\nα : Type u_1\ninst✝ : CommMonoid α\np : ℕ\nf : ℕ → α\nh : Prime p\n⊢ ∏ x ∈ p.divisors, f x = f p * f 1"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL"], "goal": "Tendsto f atBot (𝓝 0)"}], "premise": [44916, 45095], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\n⊢ Tendsto f atBot (𝓝 0)"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL", "Fderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x"], "goal": "Tendsto f atBot (𝓝 0)"}], "premise": [28597], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\nFderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x\n⊢ Tendsto f atBot (𝓝 0)"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL", "Fderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x", "Fint : IntegrableOn (⇑F ∘ f) (Iic a) volume"], "goal": "Tendsto f atBot (𝓝 0)"}], "premise": [28597], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\nFderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x\nFint : IntegrableOn (⇑F ∘ f) (Iic a) volume\n⊢ Tendsto f atBot (𝓝 0)"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL", "Fderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x", "Fint : IntegrableOn (⇑F ∘ f) (Iic a) volume", "F'int : IntegrableOn (⇑F ∘ f') (Iic a) volume"], "goal": "Tendsto f atBot (𝓝 0)"}], "premise": [26829], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\nFderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x\nFint : IntegrableOn (⇑F ∘ f) (Iic a) volume\nF'int : IntegrableOn (⇑F ∘ f') (Iic a) volume\n⊢ Tendsto f atBot (𝓝 0)"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL", "Fderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x", "Fint : IntegrableOn (⇑F ∘ f) (Iic a) volume", "F'int : IntegrableOn (⇑F ∘ f') (Iic a) volume", "A : Tendsto (⇑F ∘ f) atBot (𝓝 (limUnder atBot (⇑F ∘ f)))"], "goal": "Tendsto f atBot (𝓝 0)"}], "premise": [1673, 14296, 15467, 15488, 18778, 25641, 27559, 30100], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\nFderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x\nFint : IntegrableOn (⇑F ∘ f) (Iic a) volume\nF'int : IntegrableOn (⇑F ∘ f') (Iic a) volume\nA : Tendsto (⇑F ∘ f) atBot (𝓝 (limUnder atBot (⇑F ∘ f)))\n⊢ Tendsto f atBot (𝓝 0)"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL", "Fderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x", "Fint : IntegrableOn (⇑F ∘ f) (Iic a) volume", "F'int : IntegrableOn (⇑F ∘ f') (Iic a) volume", "A : Tendsto (⇑F ∘ f) atBot (𝓝 (limUnder atBot (⇑F ∘ f)))", "B : limUnder atBot (⇑F ∘ f) = F 0"], "goal": "Tendsto f atBot (𝓝 0)"}], "premise": [56040], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\nFderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x\nFint : IntegrableOn (⇑F ∘ f) (Iic a) volume\nF'int : IntegrableOn (⇑F ∘ f') (Iic a) volume\nA : Tendsto (⇑F ∘ f) atBot (𝓝 (limUnder atBot (⇑F ∘ f)))\nB : limUnder atBot (⇑F ∘ f) = F 0\n⊢ Tendsto f atBot (𝓝 0)"} +{"state": [{"context": ["E : Type u_1", "f f' : ℝ → E", "g g' : ℝ → ℝ", "a b l : ℝ", "m : E", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℝ E", "hderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x", "f'int : IntegrableOn f' (Iic a) volume", "fint : IntegrableOn f (Iic a) volume", "F : E →L[ℝ] Completion E := Completion.toComplL", "Fderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x", "Fint : IntegrableOn (⇑F ∘ f) (Iic a) volume", "F'int : IntegrableOn (⇑F ∘ f') (Iic a) volume", "A : Tendsto (⇑F ∘ f) atBot (𝓝 (F 0))", "B : limUnder atBot (⇑F ∘ f) = F 0"], "goal": "Embedding ⇑F"}], "premise": [59270, 59554], "state_str": "E : Type u_1\nf f' : ℝ → E\ng g' : ℝ → ℝ\na b l : ℝ\nm : E\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nhderiv : ∀ x ∈ Iic a, HasDerivAt f (f' x) x\nf'int : IntegrableOn f' (Iic a) volume\nfint : IntegrableOn f (Iic a) volume\nF : E →L[ℝ] Completion E := Completion.toComplL\nFderiv : ∀ x ∈ Iic a, HasDerivAt (⇑F ∘ f) (F (f' x)) x\nFint : IntegrableOn (⇑F ∘ f) (Iic a) volume\nF'int : IntegrableOn (⇑F ∘ f') (Iic a) volume\nA : Tendsto (⇑F ∘ f) atBot (𝓝 (F 0))\nB : limUnder atBot (⇑F ∘ f) = F 0\n⊢ Embedding ⇑F"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)"], "goal": "index (K₁.carrier ∪ K₂.carrier) V = index K₁.carrier V + index K₂.carrier V"}], "premise": [14296, 29543], "state_str": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\n⊢ index (K₁.carrier ∪ K₂.carrier) V = index K₁.carrier V + index K₂.carrier V"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)"], "goal": "index K₁.carrier V + index K₂.carrier V ≤ index (K₁.carrier ∪ K₂.carrier) V"}], "premise": [29535, 55281, 58110], "state_str": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\n⊢ index K₁.carrier V + index K₂.carrier V ≤ index (K₁.carrier ∪ K₂.carrier) V"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)", "s : Finset G", "h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V", "h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V", "this : ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card"], "goal": "index K₁.carrier V + index K₂.carrier V ≤ s.card"}], "premise": [14273, 103917, 133327, 133419, 133420], "state_str": "case intro.intro\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\ns : Finset G\nh1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V\nh2s : s.card = index (K₁.carrier ∪ K₂.carrier) V\nthis :\n ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V,\n index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card\n⊢ index K₁.carrier V + index K₂.carrier V ≤ s.card"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)", "s : Finset G", "h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V", "h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V", "this : ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card"], "goal": "(Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₁.carrier).Nonempty) s).card + (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₂.carrier).Nonempty) s).card ≤ s.card"}], "premise": [139121], "state_str": "case intro.intro\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\ns : Finset G\nh1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V\nh2s : s.card = index (K₁.carrier ∪ K₂.carrier) V\nthis :\n ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V,\n index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card\n⊢ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₁.carrier).Nonempty) s).card +\n (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₂.carrier).Nonempty) s).card ≤\n s.card"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)", "s : Finset G", "h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V", "h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V", "this : ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card"], "goal": "Disjoint (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₁.carrier).Nonempty) s) (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₂.carrier).Nonempty) s)"}], "premise": [1674, 139113], "state_str": "case intro.intro\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\ns : Finset G\nh1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V\nh2s : s.card = index (K₁.carrier ∪ K₂.carrier) V\nthis :\n ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V,\n index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card\n⊢ Disjoint (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₁.carrier).Nonempty) s)\n (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K₂.carrier).Nonempty) s)"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)", "s : Finset G", "h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V", "h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V", "this : ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card", "g₁ : G", "a✝ : g₁ ∈ s", "g₂ : G", "h1g₂ : g₂ ∈ (fun h => g₁ * h) ⁻¹' V", "h2g₂ : g₂ ∈ K₁.carrier", "g₃ : G", "h1g₃ : g₃ ∈ (fun h => g₁ * h) ⁻¹' V", "h2g₃ : g₃ ∈ K₂.carrier"], "goal": "False"}], "premise": [131591], "state_str": "case intro.intro.intro.intro.intro.intro\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\ns : Finset G\nh1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V\nh2s : s.card = index (K₁.carrier ∪ K₂.carrier) V\nthis :\n ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V,\n index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card\ng₁ : G\na✝ : g₁ ∈ s\ng₂ : G\nh1g₂ : g₂ ∈ (fun h => g₁ * h) ⁻¹' V\nh2g₂ : g₂ ∈ K₁.carrier\ng₃ : G\nh1g₃ : g₃ ∈ (fun h => g₁ * h) ⁻¹' V\nh2g₃ : g₃ ∈ K₂.carrier\n⊢ False"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)", "s : Finset G", "h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V", "h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V", "this : ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card", "g₁ : G", "a✝ : g₁ ∈ s", "g₂ : G", "h2g₂ : g₂ ∈ K₁.carrier", "g₃ : G", "h2g₃ : g₃ ∈ K₂.carrier", "h1g₃ : g₁ * g₃ ∈ V", "h1g₂ : g₁ * g₂ ∈ V"], "goal": "False"}], "premise": [13484], "state_str": "case intro.intro.intro.intro.intro.intro\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\ns : Finset G\nh1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V\nh2s : s.card = index (K₁.carrier ∪ K₂.carrier) V\nthis :\n ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V,\n index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card\ng₁ : G\na✝ : g₁ ∈ s\ng₂ : G\nh2g₂ : g₂ ∈ K₁.carrier\ng₃ : G\nh2g₃ : g₃ ∈ K₂.carrier\nh1g₃ : g₁ * g₃ ∈ V\nh1g₂ : g₁ * g₂ ∈ V\n⊢ False"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "inst✝¹ : TopologicalSpace G", "inst✝ : TopologicalGroup G", "K₁ K₂ : Compacts G", "V : Set G", "hV : (interior V).Nonempty", "h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)", "s : Finset G", "h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V", "h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V", "this : ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card", "g₁ : G", "a✝ : g₁ ∈ s", "g₂ : G", "h2g₂ : g₂ ∈ K₁.carrier", "g₃ : G", "h2g₃ : g₃ ∈ K₂.carrier", "h1g₃ : g₁ * g₃ ∈ V", "h1g₂ : g₁ * g₂ ∈ V"], "goal": "g₁⁻¹ ∈ K₁.carrier * V⁻¹ ⊓ K₂.carrier * V⁻¹"}], "premise": [2038, 70141, 131762, 131803], "state_str": "case intro.intro.intro.intro.intro.intro\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : TopologicalSpace G\ninst✝ : TopologicalGroup G\nK₁ K₂ : Compacts G\nV : Set G\nhV : (interior V).Nonempty\nh : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹)\ns : Finset G\nh1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V\nh2s : s.card = index (K₁.carrier ∪ K₂.carrier) V\nthis :\n ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V,\n index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card\ng₁ : G\na✝ : g₁ ∈ s\ng₂ : G\nh2g₂ : g₂ ∈ K₁.carrier\ng₃ : G\nh2g₃ : g₃ ∈ K₂.carrier\nh1g₃ : g₁ * g₃ ∈ V\nh1g₂ : g₁ * g₂ ∈ V\n⊢ g₁⁻¹ ∈ K₁.carrier * V⁻¹ ⊓ K₂.carrier * V⁻¹"} +{"state": [{"context": ["α : Type u", "n : ℕ"], "goal": "(finRange n).length = n"}], "premise": [1562, 132619], "state_str": "α : Type u\nn : ℕ\n⊢ (finRange n).length = n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : LinearOrder α", "inst✝ : LinearOrder β", "f : α → β", "a a₁ a₂ b b₁ b₂ c d : α", "h : b₁ ≤ b₂"], "goal": "Ioo a₁ b₁ ∩ Ioc a₂ b₂ = Ioo (max a₁ a₂) b₁"}], "premise": [19704, 20470, 133443], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : LinearOrder β\nf : α → β\na a₁ a₂ b b₁ b₂ c d : α\nh : b₁ ≤ b₂\n⊢ Ioo a₁ b₁ ∩ Ioc a₂ b₂ = Ioo (max a₁ a₂) b₁"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁷ : _root_.RCLike 𝕜", "inst✝⁶ : NormedAddCommGroup E", "inst✝⁵ : InnerProductSpace 𝕜 E", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace ℝ F", "ι : Type u_4", "inst✝² : DecidableEq ι", "α : ι → Type u_5", "inst✝¹ : (i : ι) → AddZeroClass (α i)", "inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)", "f : (i : ι) → α i → E", "l : Π₀ (i : ι), α i", "x : E"], "goal": "⟪l.sum f, x⟫_𝕜 = l.sum fun i a => ⟪f i a, x⟫_𝕜"}], "premise": [36766, 118863], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁷ : _root_.RCLike 𝕜\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nι : Type u_4\ninst✝² : DecidableEq ι\nα : ι → Type u_5\ninst✝¹ : (i : ι) → AddZeroClass (α i)\ninst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)\nf : (i : ι) → α i → E\nl : Π₀ (i : ι), α i\nx : E\n⊢ ⟪l.sum f, x⟫_𝕜 = l.sum fun i a => ⟪f i a, x⟫_𝕜"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝¹ : AddZeroClass M", "f : α →₀ M", "p : α → Prop", "inst✝ : DecidablePred p"], "goal": "(fun f => ⇑f) (filter p f + filter (fun a => ¬p a) f) = (fun f => ⇑f) f"}], "premise": [148168, 148533], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝¹ : AddZeroClass M\nf : α →₀ M\np : α → Prop\ninst✝ : DecidablePred p\n⊢ (fun f => ⇑f) (filter p f + filter (fun a => ¬p a) f) = (fun f => ⇑f) f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Type u_4", "M : Type u_5", "M' : Type u_6", "N : Type u_7", "P : Type u_8", "G : Type u_9", "H : Type u_10", "R : Type u_11", "S : Type u_12", "inst✝¹ : AddZeroClass M", "f : α →₀ M", "p : α → Prop", "inst✝ : DecidablePred p"], "goal": "{x | p x}.indicator ⇑f + {a | ¬p a}.indicator ⇑f = ⇑f"}], "premise": [120946], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type u_4\nM : Type u_5\nM' : Type u_6\nN : Type u_7\nP : Type u_8\nG : Type u_9\nH : Type u_10\nR : Type u_11\nS : Type u_12\ninst✝¹ : AddZeroClass M\nf : α →₀ M\np : α → Prop\ninst✝ : DecidablePred p\n⊢ {x | p x}.indicator ⇑f + {a | ¬p a}.indicator ⇑f = ⇑f"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "inst✝³ : EMetricSpace X", "inst✝² : EMetricSpace Y", "inst✝¹ : MeasurableSpace X", "inst✝ : BorelSpace X", "m₁ m₂ : ℝ≥0∞ → ℝ≥0∞", "hle : m₁ ≤ᶠ[𝓝[≥] 0] m₂"], "goal": "mkMetric m₁ ≤ mkMetric m₂"}], "premise": [30792, 113018, 143201], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\ninst✝³ : EMetricSpace X\ninst✝² : EMetricSpace Y\ninst✝¹ : MeasurableSpace X\ninst✝ : BorelSpace X\nm₁ m₂ : ℝ≥0∞ → ℝ≥0∞\nhle : m₁ ≤ᶠ[𝓝[≥] 0] m₂\n⊢ mkMetric m₁ ≤ mkMetric m₂"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "M' : Type u_3", "inst✝⁴ : CommRing R", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : AddCommGroup M'", "inst✝ : Module R M'", "W : Submodule R M", "φ : Dual R M"], "goal": "φ ∈ LinearMap.range W.mkQ.dualMap ↔ φ ∈ W.dualAnnihilator"}], "premise": [109931], "state_str": "case h\nR : Type u_1\nM : Type u_2\nM' : Type u_3\ninst✝⁴ : CommRing R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : AddCommGroup M'\ninst✝ : Module R M'\nW : Submodule R M\nφ : Dual R M\n⊢ φ ∈ LinearMap.range W.mkQ.dualMap ↔ φ ∈ W.dualAnnihilator"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "M₀ : PresheafOfModules R₀", "A : Sheaf J AddCommGrp", "φ : M₀.presheaf ⟶ A.val", "inst✝¹ : Presheaf.IsLocallyInjective J φ", "inst✝ : Presheaf.IsLocallySurjective J φ", "X Y : Cᵒᵖ", "π : X ⟶ Y", "r r' : ↑(R.val.obj X)", "m m' : ↑(A.val.obj X)", "S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve α r' ⊓ Presheaf.imageSieve φ m"], "goal": "smul α φ (r * r') m = smul α φ r (smul α φ r' m)"}], "premise": [89783, 90673], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\nM₀ : PresheafOfModules R₀\nA : Sheaf J AddCommGrp\nφ : M₀.presheaf ⟶ A.val\ninst✝¹ : Presheaf.IsLocallyInjective J φ\ninst✝ : Presheaf.IsLocallySurjective J φ\nX Y : Cᵒᵖ\nπ : X ⟶ Y\nr r' : ↑(R.val.obj X)\nm m' : ↑(A.val.obj X)\nS : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve α r' ⊓ Presheaf.imageSieve φ m\n⊢ smul α φ (r * r') m = smul α φ r (smul α φ r' m)"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "M₀ : PresheafOfModules R₀", "A : Sheaf J AddCommGrp", "φ : M₀.presheaf ⟶ A.val", "inst✝¹ : Presheaf.IsLocallyInjective J φ", "inst✝ : Presheaf.IsLocallySurjective J φ", "X Y : Cᵒᵖ", "π : X ⟶ Y", "r r' : ↑(R.val.obj X)", "m m' : ↑(A.val.obj X)", "S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve α r' ⊓ Presheaf.imageSieve φ m", "hS : S ∈ J.sieves (Opposite.unop X)"], "goal": "smul α φ (r * r') m = smul α φ r (smul α φ r' m)"}], "premise": [90737], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\nM₀ : PresheafOfModules R₀\nA : Sheaf J AddCommGrp\nφ : M₀.presheaf ⟶ A.val\ninst✝¹ : Presheaf.IsLocallyInjective J φ\ninst✝ : Presheaf.IsLocallySurjective J φ\nX Y : Cᵒᵖ\nπ : X ⟶ Y\nr r' : ↑(R.val.obj X)\nm m' : ↑(A.val.obj X)\nS : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve α r' ⊓ Presheaf.imageSieve φ m\nhS : S ∈ J.sieves (Opposite.unop X)\n⊢ smul α φ (r * r') m = smul α φ r (smul α φ r' m)"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "M₀ : PresheafOfModules R₀", "A : Sheaf J AddCommGrp", "φ : M₀.presheaf ⟶ A.val", "inst✝¹ : Presheaf.IsLocallyInjective J φ", "inst✝ : Presheaf.IsLocallySurjective J φ", "X Y✝ : Cᵒᵖ", "π : X ⟶ Y✝", "r r' : ↑(R.val.obj X)", "m m' : ↑(A.val.obj X)", "S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve α r' ⊓ Presheaf.imageSieve φ m", "hS : S ∈ J.sieves (Opposite.unop X)", "Y : C", "f : Y ⟶ Opposite.unop X", "r₀ : ↑(R₀.obj (Opposite.op Y))", "hr₀ : (α.app (Opposite.op Y)) r₀ = (R.val.map f.op) r", "r₀' : ↑(R₀.obj (Opposite.op Y))", "hr₀' : (α.app (Opposite.op Y)) r₀' = (R.val.map f.op) r'", "m₀ : ↑(M₀.presheaf.obj (Opposite.op Y))", "hm₀ : (φ.app (Opposite.op Y)) m₀ = (A.val.map f.op) m"], "goal": "(A.val.map f.op) (smul α φ (r * r') m) = (A.val.map f.op) (smul α φ r (smul α φ r' m))"}], "premise": [2100, 113676, 117080, 118866], "state_str": "case a.intro.intro.intro.intro.intro\nC : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\nM₀ : PresheafOfModules R₀\nA : Sheaf J AddCommGrp\nφ : M₀.presheaf ⟶ A.val\ninst✝¹ : Presheaf.IsLocallyInjective J φ\ninst✝ : Presheaf.IsLocallySurjective J φ\nX Y✝ : Cᵒᵖ\nπ : X ⟶ Y✝\nr r' : ↑(R.val.obj X)\nm m' : ↑(A.val.obj X)\nS : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve α r' ⊓ Presheaf.imageSieve φ m\nhS : S ∈ J.sieves (Opposite.unop X)\nY : C\nf : Y ⟶ Opposite.unop X\nr₀ : ↑(R₀.obj (Opposite.op Y))\nhr₀ : (α.app (Opposite.op Y)) r₀ = (R.val.map f.op) r\nr₀' : ↑(R₀.obj (Opposite.op Y))\nhr₀' : (α.app (Opposite.op Y)) r₀' = (R.val.map f.op) r'\nm₀ : ↑(M₀.presheaf.obj (Opposite.op Y))\nhm₀ : (φ.app (Opposite.op Y)) m₀ = (A.val.map f.op) m\n⊢ (A.val.map f.op) (smul α φ (r * r') m) = (A.val.map f.op) (smul α φ r (smul α φ r' m))"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝³ : TopologicalSpace β", "inst✝² : Group α", "inst✝¹ : MulAction α β", "inst✝ : ContinuousConstSMul α β", "s : Set α", "t : Set β", "a : α", "x : β", "ht : t ∈ 𝓝 x"], "goal": "a • t ∈ 𝓝 (a • x)"}], "premise": [1673, 55494], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝³ : TopologicalSpace β\ninst✝² : Group α\ninst✝¹ : MulAction α β\ninst✝ : ContinuousConstSMul α β\ns : Set α\nt : Set β\na : α\nx : β\nht : t ∈ 𝓝 x\n⊢ a • t ∈ 𝓝 (a • x)"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝³ : TopologicalSpace β", "inst✝² : Group α", "inst✝¹ : MulAction α β", "inst✝ : ContinuousConstSMul α β", "s : Set α", "t : Set β", "a : α", "x : β", "ht : t ∈ 𝓝 x", "u : Set β", "ut : u ⊆ t", "u_open : IsOpen u", "hu : x ∈ u"], "goal": "a • t ∈ 𝓝 (a • x)"}], "premise": [1674, 55494, 64975, 132865, 132875], "state_str": "case intro.intro.intro\nG : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝³ : TopologicalSpace β\ninst✝² : Group α\ninst✝¹ : MulAction α β\ninst✝ : ContinuousConstSMul α β\ns : Set α\nt : Set β\na : α\nx : β\nht : t ∈ 𝓝 x\nu : Set β\nut : u ⊆ t\nu_open : IsOpen u\nhu : x ∈ u\n⊢ a • t ∈ 𝓝 (a • x)"} +{"state": [{"context": ["ι : Type u_1", "c : ComplexShape ι", "hc : ∀ (j : ι), ∃ i, c.Rel i j", "C : Type u_2", "inst✝³ : Category.{u_3, u_2} C", "inst✝² : Preadditive C", "inst✝¹ : HasBinaryBiproducts C", "inst✝ : CategoryWithHomology C", "K L : HomologicalComplex C c", "f g : K ⟶ L", "h : Homotopy f g", "this : DecidableRel c.Rel"], "goal": "AreEqualizedByLocalization (HomologicalComplex.quasiIso C c) f g"}], "premise": [92274, 97516, 115554, 115595], "state_str": "ι : Type u_1\nc : ComplexShape ι\nhc : ∀ (j : ι), ∃ i, c.Rel i j\nC : Type u_2\ninst✝³ : Category.{u_3, u_2} C\ninst✝² : Preadditive C\ninst✝¹ : HasBinaryBiproducts C\ninst✝ : CategoryWithHomology C\nK L : HomologicalComplex C c\nf g : K ⟶ L\nh : Homotopy f g\nthis : DecidableRel c.Rel\n⊢ AreEqualizedByLocalization (HomologicalComplex.quasiIso C c) f g"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : Abelian C", "inst✝ : EnoughInjectives C", "X Y : C", "f : X ⟶ Y", "α : ShortComplex.mk f (cokernel.π f) ⋯ ⟶ ShortComplex.mk f (d f) ⋯ := { τ₁ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₁, τ₂ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₂, τ₃ := ι (ShortComplex.mk f (cokernel.π f) ⋯).X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }", "this✝¹ : Epi α.τ₁", "this✝ : IsIso α.τ₂", "this : Mono α.τ₃"], "goal": "(ShortComplex.mk f (d f) ⋯).Exact"}], "premise": [114550], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : Abelian C\ninst✝ : EnoughInjectives C\nX Y : C\nf : X ⟶ Y\nα : ShortComplex.mk f (cokernel.π f) ⋯ ⟶ ShortComplex.mk f (d f) ⋯ :=\n { τ₁ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₁, τ₂ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₂,\n τ₃ := ι (ShortComplex.mk f (cokernel.π f) ⋯).X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }\nthis✝¹ : Epi α.τ₁\nthis✝ : IsIso α.τ₂\nthis : Mono α.τ₃\n⊢ (ShortComplex.mk f (d f) ⋯).Exact"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : Abelian C", "inst✝ : EnoughInjectives C", "X Y : C", "f : X ⟶ Y", "α : ShortComplex.mk f (cokernel.π f) ⋯ ⟶ ShortComplex.mk f (d f) ⋯ := { τ₁ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₁, τ₂ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₂, τ₃ := ι (ShortComplex.mk f (cokernel.π f) ⋯).X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }", "this✝¹ : Epi α.τ₁", "this✝ : IsIso α.τ₂", "this : Mono α.τ₃"], "goal": "(ShortComplex.mk f (cokernel.π f) ⋯).Exact"}], "premise": [114589], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : Abelian C\ninst✝ : EnoughInjectives C\nX Y : C\nf : X ⟶ Y\nα : ShortComplex.mk f (cokernel.π f) ⋯ ⟶ ShortComplex.mk f (d f) ⋯ :=\n { τ₁ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₁, τ₂ := 𝟙 (ShortComplex.mk f (cokernel.π f) ⋯).X₂,\n τ₃ := ι (ShortComplex.mk f (cokernel.π f) ⋯).X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }\nthis✝¹ : Epi α.τ₁\nthis✝ : IsIso α.τ₂\nthis : Mono α.τ₃\n⊢ (ShortComplex.mk f (cokernel.π f) ⋯).Exact"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f✝ : ℕ → Ω → E", "ℱ✝ : Filtration ℕ m0", "n : ℕ", "R : ℝ≥0", "f : ℕ → Ω → ℝ", "ℱ : Filtration ℕ m0", "hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R"], "goal": "∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R"}], "premise": [123837, 124747], "state_str": "Ω : Type u_1\nE : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ : ℕ → Ω → E\nℱ✝ : Filtration ℕ m0\nn : ℕ\nR : ℝ≥0\nf : ℕ → Ω → ℝ\nℱ : Filtration ℕ m0\nhbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R\n⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f✝ : ℕ → Ω → E", "ℱ✝ : Filtration ℕ m0", "n : ℕ", "R : ℝ≥0", "f : ℕ → Ω → ℝ", "ℱ : Filtration ℕ m0", "hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R"], "goal": "∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(μ[f (i + 1) - f i|↑ℱ i]) ω| ≤ ↑R"}], "premise": [1673, 1674, 27606, 28088], "state_str": "Ω : Type u_1\nE : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst���² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ : ℕ → Ω → E\nℱ✝ : Filtration ℕ m0\nn : ℕ\nR : ℝ≥0\nf : ℕ → Ω → ℝ\nℱ : Filtration ℕ m0\nhbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R\n⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(μ[f (i + 1) - f i|↑ℱ i]) ω| ≤ ↑R"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝¹ : LinearOrderedField α", "l : Filter β", "f : β → α", "r : α", "inst✝ : l.NeBot"], "goal": "Tendsto (fun x => f x * r) l atBot ↔ 0 < r ∧ Tendsto f l atBot ∨ r < 0 ∧ Tendsto f l atTop"}], "premise": [15650, 119707], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝¹ : LinearOrderedField α\nl : Filter β\nf : β → α\nr : α\ninst✝ : l.NeBot\n⊢ Tendsto (fun x => f x * r) l atBot ↔ 0 < r ∧ Tendsto f l atBot ∨ r < 0 ∧ Tendsto f l atTop"} +{"state": [{"context": ["X Y B : CompHaus", "f : X ⟶ B", "g : Y ⟶ B"], "goal": "pullback.fst f g = ((pullback.isLimit f g).conePointUniqueUpToIso (limit.isLimit (cospan f g))).hom ≫ Limits.pullback.fst f g"}], "premise": [58650, 58651, 93344], "state_str": "X Y B : CompHaus\nf : X ⟶ B\ng : Y ⟶ B\n⊢ pullback.fst f g =\n ((pullback.isLimit f g).conePointUniqueUpToIso (limit.isLimit (cospan f g))).hom ≫ Limits.pullback.fst f g"} +{"state": [{"context": ["E : Type u_1", "inst✝⁶ : NormedAddCommGroup E", "inst✝⁵ : NormedSpace ℂ E", "V : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : FiniteDimensional ℝ V", "inst✝¹ : MeasurableSpace V", "inst✝ : BorelSpace V", "f : V → E", "hf : Integrable f volume", "h'f : Differentiable ℝ f", "hf' : Integrable (fderiv ℝ f) volume"], "goal": "𝓕 (fderiv ℝ f) = fourierSMulRight (-innerSL ℝ) (𝓕 f)"}], "premise": [36923], "state_str": "E : Type u_1\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℂ E\nV : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : FiniteDimensional ℝ V\ninst✝¹ : MeasurableSpace V\ninst✝ : BorelSpace V\nf : V → E\nhf : Integrable f volume\nh'f : Differentiable ℝ f\nhf' : Integrable (fderiv ℝ f) volume\n⊢ 𝓕 (fderiv ℝ f) = fourierSMulRight (-innerSL ℝ) (𝓕 f)"} +{"state": [{"context": ["E : Type u_1", "inst✝⁶ : NormedAddCommGroup E", "inst✝⁵ : NormedSpace ℂ E", "V : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : FiniteDimensional ℝ V", "inst✝¹ : MeasurableSpace V", "inst✝ : BorelSpace V", "f : V → E", "hf : Integrable f volume", "h'f : Differentiable ℝ f", "hf' : Integrable (fderiv ℝ f) volume"], "goal": "𝓕 (fderiv ℝ f) = fourierSMulRight (-(innerSL ℝ).flip) (𝓕 f)"}], "premise": [46507], "state_str": "E : Type u_1\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℂ E\nV : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : FiniteDimensional ℝ V\ninst✝¹ : MeasurableSpace V\ninst✝ : BorelSpace V\nf : V → E\nhf : Integrable f volume\nh'f : Differentiable ℝ f\nhf' : Integrable (fderiv ℝ f) volume\n⊢ 𝓕 (fderiv ℝ f) = fourierSMulRight (-(innerSL ℝ).flip) (𝓕 f)"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "f : Stream' (Option α)", "al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a"], "goal": "(think ⟨f, al⟩).tail = ⟨f, al⟩"}], "premise": [1751], "state_str": "case mk\nα : Type u\nβ : Type v\nγ : Type w\nf : Stream' (Option α)\nal : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a\n⊢ (think ⟨f, al⟩).tail = ⟨f, al⟩"} +{"state": [{"context": ["n a b : ℕ", "H : unpair n = (a, b)"], "goal": "pair a b = n"}], "premise": [142558], "state_str": "n a b : ℕ\nH : unpair n = (a, b)\n⊢ pair a b = n"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : MetricSpace P", "inst✝¹ : NormedAddTorsor V P", "hd2 : Fact (finrank ℝ V = 2)", "inst✝ : Module.Oriented ℝ V (Fin 2)", "s : Sphere P", "p₁ p₂ p₃ : P", "hp₁ : p₁ ∈ s", "hp₂ : p₂ ∈ s", "hp₃ : p₃ ∈ s", "hp₁p₂ : p₁ ≠ p₂", "hp₁p₃ : p₁ ≠ p₃", "hp₂p₃ : p₂ ≠ p₃"], "goal": "dist p₁ p₃ / |(∡ p₁ p₂ p₃).sin| / 2 = s.radius"}], "premise": [69366], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : MetricSpace P\ninst✝¹ : NormedAddTorsor V P\nhd2 : Fact (finrank ℝ V = 2)\ninst✝ : Module.Oriented ℝ V (Fin 2)\ns : Sphere P\np₁ p₂ p₃ : P\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : p₃ ∈ s\nhp₁p₂ : p₁ ≠ p₂\nhp₁p₃ : p₁ ≠ p₃\nhp₂p₃ : p₂ ≠ p₃\n⊢ dist p₁ p₃ / |(∡ p₁ p₂ p₃).sin| / 2 = s.radius"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : MetricSpace P", "inst✝¹ : NormedAddTorsor V P", "hd2 : Fact (finrank ℝ V = 2)", "inst✝ : Module.Oriented ℝ V (Fin 2)", "s : Sphere P", "p₁ p₂ p₃ : P", "hp₁ : p₁ ∈ s", "hp₂ : p₂ ∈ s", "hp₃ : p₃ ∈ s", "hp₁p₂ : p₁ ≠ p₂", "hp₁p₃ : p₁ ≠ p₃", "hp₂p₃ : p₂ ≠ p₃"], "goal": "|(∡ p₁ p₂ p₃).sin| = (∡ p₃ p₁ s.center).cos"}], "premise": [1674, 1690, 38377, 38381, 69361, 105283], "state_str": "case h.e'_2.h.e'_5.h.e'_6\nV : Type u_1\nP : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : MetricSpace P\ninst✝¹ : NormedAddTorsor V P\nhd2 : Fact (finrank ℝ V = 2)\ninst✝ : Module.Oriented ℝ V (Fin 2)\ns : Sphere P\np₁ p₂ p₃ : P\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : p₃ ∈ s\nhp₁p₂ : p₁ ≠ p₂\nhp₁p₃ : p₁ ≠ p₃\nhp₂p₃ : p₂ ≠ p₃\n⊢ |(∡ p₁ p₂ p₃).sin| = (∡ p₃ p₁ s.center).cos"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁴ : NormedAddCommGroup V", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : MetricSpace P", "inst✝¹ : NormedAddTorsor V P", "hd2 : Fact (finrank ℝ V = 2)", "inst✝ : Module.Oriented ℝ V (Fin 2)", "s : Sphere P", "p₁ p₂ p₃ : P", "hp₁ : p₁ ∈ s", "hp₂ : p₂ ∈ s", "hp₃ : p₃ ∈ s", "hp₁p₂ : p₁ ≠ p₂", "hp₁p₃ : p₁ ≠ p₃", "hp₂p₃ : p₂ ≠ p₃"], "goal": "|(∡ p₃ p₁ s.center).toReal| ≤ π / 2"}], "premise": [69363], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁴ : NormedAddCommGroup V\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : MetricSpace P\ninst✝¹ : NormedAddTorsor V P\nhd2 : Fact (finrank ℝ V = 2)\ninst✝ : Module.Oriented ℝ V (Fin 2)\ns : Sphere P\np₁ p₂ p₃ : P\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : p₃ ∈ s\nhp₁p₂ : p₁ ≠ p₂\nhp₁p₃ : p₁ ≠ p₃\nhp₂p₃ : p₂ ≠ p₃\n⊢ |(∡ p₃ p₁ s.center).toReal| ≤ π / 2"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : PseudoMetricSpace α", "π : β → Type u_3", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoMetricSpace (π b)", "f g : (b : β) → π b", "r : ℝ≥0", "hr : 0 < r"], "goal": "nndist f g = r ↔ (∃ i, nndist (f i) (g i) = r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r"}], "premise": [1096, 1723, 11247, 59791, 59792], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : PseudoMetricSpace α\nπ : β → Type u_3\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoMetricSpace (π b)\nf g : (b : β) → π b\nr : ℝ≥0\nhr : 0 < r\n⊢ nndist f g = r ↔ (∃ i, nndist (f i) (g i) = r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : PseudoMetricSpace α", "π : β → Type u_3", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoMetricSpace (π b)", "f g : (b : β) → π b", "r : ℝ≥0", "hr : 0 < r"], "goal": "((∃ x, ¬nndist (f x) (g x) < r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r) ↔ (∃ i, nndist (f i) (g i) = r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r"}], "premise": [1210, 14297, 14323], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : PseudoMetricSpace α\nπ : β → Type u_3\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoMetricSpace (π b)\nf g : (b : β) → π b\nr : ℝ≥0\nhr : 0 < r\n⊢ ((∃ x, ¬nndist (f x) (g x) < r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r) ↔\n (∃ i, nndist (f i) (g i) = r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : PseudoMetricSpace α", "π : β → Type u_3", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoMetricSpace (π b)", "f g : (b : β) → π b", "r : ℝ≥0", "hr : 0 < r", "h : ∀ (b : β), nndist (f b) (g b) ≤ r"], "goal": "(∃ x, r ≤ nndist (f x) (g x)) ↔ ∃ i, nndist (f i) (g i) ≤ r ∧ r ≤ nndist (f i) (g i)"}], "premise": [2016], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : PseudoMetricSpace α\nπ : β → Type u_3\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoMetricSpace (π b)\nf g : (b : β) → π b\nr : ℝ≥0\nhr : 0 < r\nh : ∀ (b : β), nndist (f b) (g b) ≤ r\n⊢ (∃ x, r ≤ nndist (f x) (g x)) ↔ ∃ i, nndist (f i) (g i) ≤ r ∧ r ≤ nndist (f i) (g i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : PseudoMetricSpace α", "π : β → Type u_3", "inst✝¹ : Fintype β", "inst✝ : (b : β) → PseudoMetricSpace (π b)", "f g : (b : β) → π b", "r : ℝ≥0", "hr : 0 < r", "h : ∀ (b : β), nndist (f b) (g b) ≤ r", "b : β"], "goal": "r ≤ nndist (f b) (g b) ↔ nndist (f b) (g b) ≤ r ∧ r ≤ nndist (f b) (g b)"}], "premise": [1718, 1977], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : PseudoMetricSpace α\nπ : β → Type u_3\ninst✝¹ : Fintype β\ninst✝ : (b : β) → PseudoMetricSpace (π b)\nf g : (b : β) → π b\nr : ℝ≥0\nhr : 0 < r\nh : ∀ (b : β), nndist (f b) (g b) ≤ r\nb : β\n⊢ r ≤ nndist (f b) (g b) ↔ nndist (f b) (g b) ≤ r ∧ r ≤ nndist (f b) (g b)"} +{"state": [{"context": ["α✝ : Type u_1", "R : α✝ → α✝ → Prop", "l : List α✝"], "goal": "Pairwise R l ↔ ∀ (i j : Nat) (_hi : i < l.length) (_hj : j < l.length), i < j → R l[i] l[j]"}], "premise": [534], "state_str": "α✝ : Type u_1\nR : α✝ → α✝ → Prop\nl : List α✝\n⊢ Pairwise R l ↔ ∀ (i j : Nat) (_hi : i < l.length) (_hj : j < l.length), i < j → R l[i] l[j]"} +{"state": [{"context": ["V : Type u_1", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup V", "inst✝⁶ : InnerProductSpace ℝ V", "inst✝⁵ : MeasurableSpace V", "inst✝⁴ : BorelSpace V", "inst✝³ : FiniteDimensional ℝ V", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "f : V → E", "inst✝ : CompleteSpace E", "h : Continuous f", "hf : Integrable f volume", "h'f : Integrable (𝓕 f) volume", "v : V"], "goal": "𝓕⁻ (𝓕 f) v = f v"}], "premise": [41319, 55638], "state_str": "case h\nV : Type u_1\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup V\ninst✝⁶ : InnerProductSpace ℝ V\ninst✝⁵ : MeasurableSpace V\ninst✝⁴ : BorelSpace V\ninst✝³ : FiniteDimensional ℝ V\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\nf : V → E\ninst✝ : CompleteSpace E\nh : Continuous f\nhf : Integrable f volume\nh'f : Integrable (𝓕 f) volume\nv : V\n⊢ 𝓕⁻ (𝓕 f) v = f v"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι : Sort w", "α : Type u_1", "β : Type u_2", "x : X", "s s₁ s₂ t : Set X", "p p₁ p₂ : X → Prop", "inst✝ : TopologicalSpace X"], "goal": "x ∈ closure s ↔ ∃ u, s ∈ u ∧ ↑u ≤ 𝓝 x"}], "premise": [1723, 11987, 55582], "state_str": "X : Type u\nY : Type v\nι : Sort w\nα : Type u_1\nβ : Type u_2\nx : X\ns s₁ s₂ t : Set X\np p₁ p₂ : X → Prop\ninst✝ : TopologicalSpace X\n⊢ x ∈ closure s ↔ ∃ u, s ∈ u ∧ ↑u ≤ 𝓝 x"} +{"state": [{"context": ["α : Type ua", "β : Type ub", "γ : Type uc", "δ : Type ud", "ι : Sort u_1", "s : Set (UniformSpace α)"], "goal": "toTopologicalSpace = ⨅ i ∈ s, toTopologicalSpace"}], "premise": [60607], "state_str": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ns : Set (UniformSpace α)\n⊢ toTopologicalSpace = ⨅ i ∈ s, toTopologicalSpace"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "ι' : Sort u_5", "ι₂ : Sort u_6", "κ : ι → Sort u_7", "κ₁ : ι → Sort u_8", "κ₂ : ι → Sort u_9", "κ' : ι' → Sort u_10", "s : ι → Set β"], "goal": "⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ"}], "premise": [12072, 135287], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nι' : Sort u_5\nι₂ : Sort u_6\nκ : ι → Sort u_7\nκ₁ : ι → Sort u_8\nκ₂ : ι → Sort u_9\nκ' : ι' → Sort u_10\ns : ι → Set β\n⊢ ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X✝ Y✝ X Y : C", "h : IsTerminal X", "c : BinaryFan X Y"], "goal": "Nonempty (IsLimit c) ↔ IsIso c.snd"}], "premise": [1715, 94494], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX✝ Y✝ X Y : C\nh : IsTerminal X\nc : BinaryFan X Y\n⊢ Nonempty (IsLimit c) ↔ IsIso c.snd"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "Ω : Type u_3", "F : Type u_4", "inst✝⁵ : MeasurableSpace Ω", "inst✝⁴ : StandardBorelSpace Ω", "inst✝³ : Nonempty Ω", "inst✝² : NormedAddCommGroup F", "mα : MeasurableSpace α", "μ : Measure α", "inst✝¹ : IsFiniteMeasure μ", "X : α → β", "Y : α → Ω", "mβ : MeasurableSpace β", "s✝ : Set Ω", "t : Set β", "f : β × Ω → F", "inst✝ : MeasurableSingletonClass β", "hY : Measurable Y", "x : β", "hX : (Measure.map X μ) {x} ≠ 0", "s : Set Ω"], "goal": "((condDistrib Y X μ) x) s = ((Measure.map X μ) {x})⁻¹ * (Measure.map (fun a => (X a, Y a)) μ) ({x} ×ˢ s)"}], "premise": [72983, 73227], "state_str": "α : Type u_1\nβ : Type u_2\nΩ : Type u_3\nF : Type u_4\ninst✝⁵ : MeasurableSpace Ω\ninst✝⁴ : StandardBorelSpace Ω\ninst✝³ : Nonempty Ω\ninst✝² : NormedAddCommGroup F\nmα : MeasurableSpace α\nμ : Measure α\ninst✝¹ : IsFiniteMeasure μ\nX : α → β\nY : α → Ω\nmβ : MeasurableSpace β\ns✝ : Set Ω\nt : Set β\nf : β × Ω → F\ninst✝ : MeasurableSingletonClass β\nhY : Measurable Y\nx : β\nhX : (Measure.map X μ) {x} ≠ 0\ns : Set Ω\n⊢ ((condDistrib Y X μ) x) s = ((Measure.map X μ) {x})⁻¹ * (Measure.map (fun a => (X a, Y a)) μ) ({x} ×ˢ s)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "f : Option α → β → γ", "a : α", "as : List α", "b : β", "bs : List β"], "goal": "map₂Right f as bs = (map₂Right' f as bs).1"}], "premise": [132697], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\nf : Option α → β → γ\na : α\nas : List α\nb : β\nbs : List β\n⊢ map₂Right f as bs = (map₂Right' f as bs).1"} +{"state": [{"context": ["𝕜 : Type u", "hnorm : NontriviallyNormedField 𝕜", "E : Type v", "inst✝¹⁷ : AddCommGroup E", "inst✝¹⁶ : Module 𝕜 E", "inst✝¹⁵ : TopologicalSpace E", "inst✝¹⁴ : TopologicalAddGroup E", "inst✝¹³ : ContinuousSMul 𝕜 E", "F : Type w", "inst✝¹² : AddCommGroup F", "inst✝¹¹ : Module 𝕜 F", "inst✝¹⁰ : TopologicalSpace F", "inst✝⁹ : TopologicalAddGroup F", "inst✝⁸ : ContinuousSMul 𝕜 F", "F' : Type x", "inst✝⁷ : AddCommGroup F'", "inst✝⁶ : Module 𝕜 F'", "inst✝⁵ : TopologicalSpace F'", "inst✝⁴ : TopologicalAddGroup F'", "inst✝³ : ContinuousSMul 𝕜 F'", "inst✝² : CompleteSpace 𝕜", "inst✝¹ : T2Space E", "inst✝ : FiniteDimensional 𝕜 E", "f : E →ₗ[𝕜] F'", "b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E"], "goal": "Continuous ⇑f"}], "premise": [65960], "state_str": "𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁷ : AddCommGroup E\ninst✝¹⁶ : Module 𝕜 E\ninst✝¹⁵ : TopologicalSpace E\ninst✝¹⁴ : TopologicalAddGroup E\ninst✝¹³ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹² : AddCommGroup F\ninst✝¹¹ : Module 𝕜 F\ninst✝¹⁰ : TopologicalSpace F\ninst✝⁹ : TopologicalAddGroup F\ninst✝⁸ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\ninst✝¹ : T2Space E\ninst✝ : FiniteDimensional 𝕜 E\nf : E →ₗ[𝕜] F'\nb : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E\n⊢ Continuous ⇑f"} +{"state": [{"context": ["𝕜 : Type u", "hnorm : NontriviallyNormedField 𝕜", "E : Type v", "inst✝¹⁷ : AddCommGroup E", "inst✝¹⁶ : Module 𝕜 E", "inst✝¹⁵ : TopologicalSpace E", "inst✝¹⁴ : TopologicalAddGroup E", "inst✝¹³ : ContinuousSMul 𝕜 E", "F : Type w", "inst✝¹² : AddCommGroup F", "inst✝¹¹ : Module 𝕜 F", "inst✝¹⁰ : TopologicalSpace F", "inst✝⁹ : TopologicalAddGroup F", "inst✝⁸ : ContinuousSMul 𝕜 F", "F' : Type x", "inst✝⁷ : AddCommGroup F'", "inst✝⁶ : Module 𝕜 F'", "inst✝⁵ : TopologicalSpace F'", "inst✝⁴ : TopologicalAddGroup F'", "inst✝³ : ContinuousSMul 𝕜 F'", "inst✝² : CompleteSpace 𝕜", "inst✝¹ : T2Space E", "inst✝ : FiniteDimensional 𝕜 E", "f : E →ₗ[𝕜] F'", "b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E", "A : Continuous ⇑b.equivFun"], "goal": "Continuous ⇑f"}], "premise": [68738], "state_str": "𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁷ : AddCommGroup E\ninst✝¹⁶ : Module 𝕜 E\ninst✝¹⁵ : TopologicalSpace E\ninst✝¹⁴ : TopologicalAddGroup E\ninst✝¹³ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹² : AddCommGroup F\ninst✝¹¹ : Module 𝕜 F\ninst✝¹⁰ : TopologicalSpace F\ninst✝⁹ : TopologicalAddGroup F\ninst✝⁸ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\ninst✝¹ : T2Space E\ninst✝ : FiniteDimensional 𝕜 E\nf : E →ₗ[𝕜] F'\nb : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E\nA : Continuous ⇑b.equivFun\n⊢ Continuous ⇑f"} +{"state": [{"context": ["𝕜 : Type u", "hnorm : NontriviallyNormedField 𝕜", "E : Type v", "inst✝¹⁷ : AddCommGroup E", "inst✝¹⁶ : Module 𝕜 E", "inst✝¹⁵ : TopologicalSpace E", "inst✝¹⁴ : TopologicalAddGroup E", "inst✝¹³ : ContinuousSMul 𝕜 E", "F : Type w", "inst✝¹² : AddCommGroup F", "inst✝¹¹ : Module 𝕜 F", "inst✝¹⁰ : TopologicalSpace F", "inst✝⁹ : TopologicalAddGroup F", "inst✝⁸ : ContinuousSMul 𝕜 F", "F' : Type x", "inst✝⁷ : AddCommGroup F'", "inst✝⁶ : Module 𝕜 F'", "inst✝⁵ : TopologicalSpace F'", "inst✝⁴ : TopologicalAddGroup F'", "inst✝³ : ContinuousSMul 𝕜 F'", "inst✝² : CompleteSpace 𝕜", "inst✝¹ : T2Space E", "inst✝ : FiniteDimensional 𝕜 E", "f : E →ₗ[𝕜] F'", "b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E", "A : Continuous ⇑b.equivFun", "B : Continuous ⇑(f ∘ₗ ↑b.equivFun.symm)"], "goal": "Continuous ⇑f"}], "premise": [55630], "state_str": "𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁷ : AddCommGroup E\ninst✝¹⁶ : Module 𝕜 E\ninst✝¹⁵ : TopologicalSpace E\ninst✝¹⁴ : TopologicalAddGroup E\ninst✝¹³ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹² : AddCommGroup F\ninst✝¹¹ : Module 𝕜 F\ninst✝¹⁰ : TopologicalSpace F\ninst✝⁹ : TopologicalAddGroup F\ninst✝⁸ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\ninst✝¹ : T2Space E\ninst✝ : FiniteDimensional 𝕜 E\nf : E →ₗ[𝕜] F'\nb : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E\nA : Continuous ⇑b.equivFun\nB : Continuous ⇑(f ∘ₗ ↑b.equivFun.symm)\n⊢ Continuous ⇑f"} +{"state": [{"context": ["𝕜 : Type u", "hnorm : NontriviallyNormedField 𝕜", "E : Type v", "inst✝¹⁷ : AddCommGroup E", "inst✝¹⁶ : Module 𝕜 E", "inst✝¹⁵ : TopologicalSpace E", "inst✝¹⁴ : TopologicalAddGroup E", "inst✝¹³ : ContinuousSMul 𝕜 E", "F : Type w", "inst✝¹² : AddCommGroup F", "inst✝¹¹ : Module 𝕜 F", "inst✝¹⁰ : TopologicalSpace F", "inst✝⁹ : TopologicalAddGroup F", "inst✝⁸ : ContinuousSMul 𝕜 F", "F' : Type x", "inst✝⁷ : AddCommGroup F'", "inst✝⁶ : Module 𝕜 F'", "inst✝⁵ : TopologicalSpace F'", "inst✝⁴ : TopologicalAddGroup F'", "inst✝³ : ContinuousSMul 𝕜 F'", "inst✝² : CompleteSpace 𝕜", "inst✝¹ : T2Space E", "inst✝ : FiniteDimensional 𝕜 E", "f : E →ₗ[𝕜] F'", "b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E", "A : Continuous ⇑b.equivFun", "B : Continuous ⇑(f ∘ₗ ↑b.equivFun.symm)", "this : Continuous (⇑(f ∘ₗ ↑b.equivFun.symm) ∘ ⇑b.equivFun)", "x : E"], "goal": "f x = f (b.equivFun.symm ⇑(b.repr x))"}], "premise": [87365, 87369], "state_str": "case h.e'_5.h\n𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁷ : AddCommGroup E\ninst✝¹⁶ : Module 𝕜 E\ninst✝¹⁵ : TopologicalSpace E\ninst✝¹⁴ : TopologicalAddGroup E\ninst✝¹³ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹² : AddCommGroup F\ninst✝¹¹ : Module 𝕜 F\ninst✝¹⁰ : TopologicalSpace F\ninst✝⁹ : TopologicalAddGroup F\ninst✝⁸ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\ninst✝¹ : T2Space E\ninst✝ : FiniteDimensional 𝕜 E\nf : E →ₗ[𝕜] F'\nb : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E\nA : Continuous ⇑b.equivFun\nB : Continuous ⇑(f ∘ₗ ↑b.equivFun.symm)\nthis : Continuous (⇑(f ∘ₗ ↑b.equivFun.symm) ∘ ⇑b.equivFun)\nx : E\n⊢ f x = f (b.equivFun.symm ⇑(b.repr x))"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝¹ : PseudoMetricSpace α", "inst✝ : PseudoMetricSpace β", "f : α → β", "x : α", "r : ℝ", "hr : 0 < r", "K : ℝ", "h : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x"], "goal": "ContinuousAt f x"}], "premise": [1674, 15884, 16021, 59429, 61135, 61259, 61315], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nf : α → β\nx : α\nr : ℝ\nhr : 0 < r\nK : ℝ\nh : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x\n⊢ ContinuousAt f x"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Type x", "inst✝¹ : PseudoMetricSpace α", "inst✝ : PseudoMetricSpace β", "f : α → β", "x : α", "r : ℝ", "hr : 0 < r", "K : ℝ", "h : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x"], "goal": "Tendsto (fun a => K * dist a x) (𝓝 x) (𝓝 0)"}], "premise": [55628, 55637, 55641, 59781, 65028], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nf : α → β\nx : α\nr : ℝ\nhr : 0 < r\nK : ℝ\nh : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x\n⊢ Tendsto (fun a => K * dist a x) (𝓝 x) (𝓝 0)"} +{"state": [{"context": ["a x y : ℂ", "hx : x ≠ 0"], "goal": "angle x 1 = |x.arg|"}], "premise": [46473], "state_str": "a x y : ℂ\nhx : x ≠ 0\n⊢ angle x 1 = |x.arg|"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α", "inst✝¹ : MeasurableSpace β", "inst✝ : MeasurableSpace γ", "μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α", "s s' t : Set α"], "goal": "ae μ = ⊥ ↔ μ = 0"}], "premise": [1713, 15958, 27599, 31491, 133601], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\n⊢ ae μ = ⊥ ↔ μ = 0"} +{"state": [{"context": ["α : Type u", "β : Type u_1", "inst✝⁵ : Ring α", "inst✝⁴ : LinearOrder α", "a b : α", "inst✝³ : PosMulStrictMono α", "inst✝² : MulPosStrictMono α", "inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1", "inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1"], "goal": "a * b ≤ 0 ↔ (0 < a → b ≤ 0) ∧ (b < 0 → 0 ≤ a)"}], "premise": [106909, 122241], "state_str": "α : Type u\nβ : Type u_1\ninst✝⁵ : Ring α\ninst✝⁴ : LinearOrder α\na b : α\ninst✝³ : PosMulStrictMono α\ninst✝² : MulPosStrictMono α\ninst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\n⊢ a * b ≤ 0 ↔ (0 < a → b ≤ 0) ∧ (b < 0 → 0 ≤ a)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : LinearOrderedSemifield α", "a b c d e : α", "m n : ℤ", "hb : 0 < b"], "goal": "a / b ≤ c ↔ a ≤ b * c"}], "premise": [1713, 106024, 119707], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nhb : 0 < b\n⊢ a / b ≤ c ↔ a ≤ b * c"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "α : Type u_4", "β : Type u_5", "inst✝⁴ : TopologicalSpace X", "inst✝³ : UniformSpace α", "inst✝² : UniformSpace β", "F : ι → X → α", "G : ι → β → α", "inst✝¹ : TopologicalSpace ι", "inst✝ : CompactSpace X", "F_eqcont : Equicontinuous F"], "goal": "Inducing (⇑UniformFun.ofFun ∘ F) ↔ Inducing F"}], "premise": [54003], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\nα : Type u_4\nβ : Type u_5\ninst✝⁴ : TopologicalSpace X\ninst✝³ : UniformSpace α\ninst✝² : UniformSpace β\nF : ι → X → α\nG : ι → β → α\ninst✝¹ : TopologicalSpace ι\ninst✝ : CompactSpace X\nF_eqcont : Equicontinuous F\n⊢ Inducing (⇑UniformFun.ofFun ∘ F) ↔ Inducing F"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "Y : Type u_3", "α : Type u_4", "β : Type u_5", "inst✝⁴ : TopologicalSpace X", "inst✝³ : UniformSpace α", "inst✝² : UniformSpace β", "F : ι → X → α", "G : ι → β → α", "inst✝¹ : TopologicalSpace ι", "inst✝ : CompactSpace X", "F_eqcont : Equicontinuous F"], "goal": "inst✝¹ = UniformSpace.toTopologicalSpace ↔ inst✝¹ = UniformSpace.toTopologicalSpace"}], "premise": [1713, 59633], "state_str": "ι : Type u_1\nX : Type u_2\nY : Type u_3\nα : Type u_4\nβ : Type u_5\ninst✝⁴ : TopologicalSpace X\ninst✝³ : UniformSpace α\ninst✝² : UniformSpace β\nF : ι → X → α\nG : ι → β → α\ninst✝¹ : TopologicalSpace ι\ninst✝ : CompactSpace X\nF_eqcont : Equicontinuous F\n⊢ inst✝¹ = UniformSpace.toTopologicalSpace ↔ inst✝¹ = UniformSpace.toTopologicalSpace"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "w : W"], "goal": "∃ ω, cs.IsReduced ω ∧ w = cs.wordProd ω"}], "premise": [8159], "state_str": "B : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nw : W\n⊢ ∃ ω, cs.IsReduced ω ∧ w = cs.wordProd ω"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "hω : ω.length = cs.length (cs.wordProd ω)"], "goal": "∃ ω_1, cs.IsReduced ω_1 ∧ cs.wordProd ω = cs.wordProd ω_1"}], "premise": [1674, 2045], "state_str": "case intro.intro\nB : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nhω : ω.length = cs.length (cs.wordProd ω)\n⊢ ∃ ω_1, cs.IsReduced ω_1 ∧ cs.wordProd ω = cs.wordProd ω_1"} +{"state": [{"context": ["B : Type u_1", "W : Type u_2", "inst✝ : Group W", "M : CoxeterMatrix B", "cs : CoxeterSystem M W", "ω : List B", "hω : ω.length = cs.length (cs.wordProd ω)"], "goal": "cs.IsReduced ω ∧ cs.wordProd ω = cs.wordProd ω"}], "premise": [1101, 1674, 1680, 2102, 2104], "state_str": "case h\nB : Type u_1\nW : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nω : List B\nhω : ω.length = cs.length (cs.wordProd ω)\n⊢ cs.IsReduced ω ∧ cs.wordProd ω = cs.wordProd ω"} +{"state": [{"context": ["R✝ : Type u_1", "R : Type u", "inst✝² : CommRing R", "inst✝¹ : IsDomain R", "inst✝ : UniqueFactorizationMonoid R", "h₁ : ∃ p, Irreducible p", "h₂ : ∀ ⦃p q : R⦄, Irreducible p → Irreducible q → Associated p q"], "goal": "DiscreteValuationRing R"}], "premise": [78845], "state_str": "R✝ : Type u_1\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : UniqueFactorizationMonoid R\nh₁ : ∃ p, Irreducible p\nh₂ : ∀ ⦃p q : R⦄, Irreducible p → Irreducible q → Associated p q\n⊢ DiscreteValuationRing R"} +{"state": [{"context": ["R✝ : Type u_1", "R : Type u", "inst✝² : CommRing R", "inst✝¹ : IsDomain R", "inst✝ : UniqueFactorizationMonoid R", "h₁ : ∃ p, Irreducible p", "h₂ : ∀ ⦃p q : R⦄, Irreducible p → Irreducible q → Associated p q"], "goal": "IsPrincipalIdealRing R ∧ ∃! P, P ≠ ⊥ ∧ P.IsPrime"}], "premise": [78850], "state_str": "R✝ : Type u_1\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : UniqueFactorizationMonoid R\nh₁ : ∃ p, Irreducible p\nh₂ : ∀ ⦃p q : R⦄, Irreducible p → Irreducible q → Associated p q\n⊢ IsPrincipalIdealRing R ∧ ∃! P, P ≠ ⊥ ∧ P.IsPrime"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasZeroObject C", "inst✝² : Preadditive C", "inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝ : Pretriangulated C", "X Y : Cᵒᵖ", "f : X ⟶ Y"], "goal": "∃ Z g h, Triangle.mk f g h ∈ distinguishedTriangles C"}], "premise": [99373], "state_str": "C : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasZeroObject C\ninst✝² : Preadditive C\ninst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝ : Pretriangulated C\nX Y : Cᵒᵖ\nf : X ⟶ Y\n⊢ ∃ Z g h, Triangle.mk f g h ∈ distinguishedTriangles C"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasZeroObject C", "inst✝² : Preadditive C", "inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝ : Pretriangulated C", "X Y : Cᵒᵖ", "f : X ⟶ Y", "Z : C", "g : Z ⟶ Opposite.unop Y", "h : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z", "H : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles"], "goal": "Triangle.mk f g.op ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op) ∈ distinguishedTriangles C"}], "premise": [99820], "state_str": "case intro.intro.intro\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasZeroObject C\ninst✝² : Preadditive C\ninst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝ : Pretriangulated C\nX Y : Cᵒᵖ\nf : X ⟶ Y\nZ : C\ng : Z ⟶ Opposite.unop Y\nh : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z\nH : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles\n⊢ Triangle.mk f g.op\n ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op) ∈\n distinguishedTriangles C"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasZeroObject C", "inst✝² : Preadditive C", "inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝ : Pretriangulated C", "X Y : Cᵒᵖ", "f : X ⟶ Y", "Z : C", "g : Z ⟶ Opposite.unop Y", "h : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z", "H : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles"], "goal": "Opposite.unop ((triangleOpEquivalence C).inverse.obj (Triangle.mk f g.op ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op))) ∈ Pretriangulated.distinguishedTriangles"}], "premise": [99351], "state_str": "case intro.intro.intro\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasZeroObject C\ninst✝² : Preadditive C\ninst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝ : Pretriangulated C\nX Y : Cᵒᵖ\nf : X ⟶ Y\nZ : C\ng : Z ⟶ Opposite.unop Y\nh : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z\nH : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles\n⊢ Opposite.unop\n ((triangleOpEquivalence C).inverse.obj\n (Triangle.mk f g.op\n ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op))) ∈\n Pretriangulated.distinguishedTriangles"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasZeroObject C", "inst✝² : Preadditive C", "inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝ : Pretriangulated C", "X Y : Cᵒᵖ", "f : X ⟶ Y", "Z : C", "g : Z ⟶ Opposite.unop Y", "h : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z", "H : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles"], "goal": "Opposite.unop ((triangleOpEquivalence C).inverse.obj (Triangle.mk f g.op ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op))) ≅ Triangle.mk g f.unop h"}], "premise": [89625, 99798], "state_str": "case intro.intro.intro\nC : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasZeroObject C\ninst✝² : Preadditive C\ninst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝ : Pretriangulated C\nX Y : Cᵒᵖ\nf : X ⟶ Y\nZ : C\ng : Z ⟶ Opposite.unop Y\nh : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z\nH : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles\n⊢ Opposite.unop\n ((triangleOpEquivalence C).inverse.obj\n (Triangle.mk f g.op\n ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op))) ≅\n Triangle.mk g f.unop h"} +{"state": [{"context": ["α : Type u", "σ σ' : Type v", "M : NFA α σ", "inst✝ : Fintype σ", "x : List α", "hx : x ∈ M.accepts", "hlen : Fintype.card (Set σ) ≤ x.length"], "goal": "∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ M.accepts"}], "premise": [69467], "state_str": "α : Type u\nσ σ' : Type v\nM : NFA α σ\ninst✝ : Fintype σ\nx : List α\nhx : x ∈ M.accepts\nhlen : Fintype.card (Set σ) ≤ x.length\n⊢ ∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ M.accepts"} +{"state": [{"context": ["α : Type u", "σ σ' : Type v", "M : NFA α σ", "inst✝ : Fintype σ", "x : List α", "hx : x ∈ M.toDFA.accepts", "hlen : Fintype.card (Set σ) ≤ x.length"], "goal": "∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ M.toDFA.accepts"}], "premise": [69391], "state_str": "α : Type u\nσ σ' : Type v\nM : NFA α σ\ninst✝ : Fintype σ\nx : List α\nhx : x ∈ M.toDFA.accepts\nhlen : Fintype.card (Set σ) ≤ x.length\n⊢ ∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ M.toDFA.accepts"} +{"state": [{"context": ["J : Type u₁", "inst✝³ : Category.{v₁, u₁} J", "K : Type u₂", "inst✝² : Category.{v₂, u₂} K", "C : Type u₃", "inst✝¹ : Category.{v₃, u₃} C", "D : Type u₄", "inst✝ : Category.{v₄, u₄} D", "F : J ⥤ C", "e : K ≌ J", "s : Cone (e.functor ⋙ F)", "k : K"], "goal": "(((whiskering e.inverse ⋙ postcompose (e.invFunIdAssoc F).hom) ⋙ whiskering e.functor).obj s).π.app k = (Iso.refl (((whiskering e.inverse ⋙ postcompose (e.invFunIdAssoc F).hom) ⋙ whiskering e.functor).obj s).pt).hom ≫ ((𝟭 (Cone (e.functor ⋙ F))).obj s).π.app k"}], "premise": [89843, 95537], "state_str": "J : Type u₁\ninst✝³ : Category.{v₁, u₁} J\nK : Type u₂\ninst✝² : Category.{v₂, u₂} K\nC : Type u₃\ninst✝¹ : Category.{v₃, u₃} C\nD : Type u₄\ninst✝ : Category.{v₄, u₄} D\nF : J ⥤ C\ne : K ≌ J\ns : Cone (e.functor ⋙ F)\nk : K\n⊢ (((whiskering e.inverse ⋙ postcompose (e.invFunIdAssoc F).hom) ⋙ whiskering e.functor).obj s).π.app k =\n (Iso.refl (((whiskering e.inverse ⋙ postcompose (e.invFunIdAssoc F).hom) ⋙ whiskering e.functor).obj s).pt).hom ≫\n ((𝟭 (Cone (e.functor ⋙ F))).obj s).π.app k"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : CompleteLattice α", "inst✝² : Group α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "s✝ t s : Set α"], "goal": "sInf s⁻¹ = (sSup s)⁻¹"}], "premise": [19427, 131786], "state_str": "α : Type u_1\ninst✝³ : CompleteLattice α\ninst✝² : Group α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ns✝ t s : Set α\n⊢ sInf s⁻¹ = (sSup s)⁻¹"} +{"state": [{"context": ["α : Type u_1", "inst✝³ : CompleteLattice α", "inst✝² : Group α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "s✝ t s : Set α"], "goal": "⨅ a ∈ s, a⁻¹ = (sSup s)⁻¹"}], "premise": [2100, 19344], "state_str": "α : Type u_1\ninst✝³ : CompleteLattice α\ninst✝² : Group α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ns✝ t s : Set α\n⊢ ⨅ a ∈ s, a⁻¹ = (sSup s)⁻¹"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L L₁ L₂ : Filter 𝕜", "hs : x ∉ s"], "goal": "HasDerivWithinAt f f' s x ↔ Tendsto (slope f x) (𝓝[s] x) (𝓝 f')"}], "premise": [1713, 44155, 133683], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nhs : x ∉ s\n⊢ HasDerivWithinAt f f' s x ↔ Tendsto (slope f x) (𝓝[s] x) (𝓝 f')"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝⁷ : NormedAddCommGroup F", "inst✝⁶ : NormedSpace 𝕜 F", "E : Type w", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L L₁ L₂ : Filter 𝕜", "𝕜' : Type u_1", "inst✝³ : NontriviallyNormedField 𝕜'", "inst✝² : NormedAlgebra 𝕜 𝕜'", "inst✝¹ : NormedSpace 𝕜' F", "inst✝ : IsScalarTower 𝕜 𝕜' F", "s' t' : Set 𝕜'", "h : 𝕜 → 𝕜'", "h₁ : 𝕜 → 𝕜", "h₂ : 𝕜' → 𝕜'", "h' h₂' : 𝕜'", "h₁' : 𝕜", "g₁ : 𝕜' → F", "g₁' : F", "L' : Filter 𝕜'", "y : 𝕜'", "hg : HasDerivAt g₁ g₁' (h x)", "hh : HasDerivWithinAt h h' s x", "hy : y = h x"], "goal": "HasDerivWithinAt (g₁ ∘ h) (h' • g₁') s x"}], "premise": [44878], "state_str": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace 𝕜 F\nE : Type w\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\n𝕜' : Type u_1\ninst✝³ : NontriviallyNormedField 𝕜'\ninst✝² : NormedAlgebra 𝕜 𝕜'\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\ns' t' : Set 𝕜'\nh : 𝕜 → 𝕜'\nh₁ : 𝕜 → 𝕜\nh₂ : 𝕜' → 𝕜'\nh' h₂' : 𝕜'\nh₁' : 𝕜\ng₁ : 𝕜' → F\ng₁' : F\nL' : Filter 𝕜'\ny : 𝕜'\nhg : HasDerivAt g₁ g₁' (h x)\nhh : HasDerivWithinAt h h' s x\nhy : y = h x\n⊢ HasDerivWithinAt (g₁ ∘ h) (h' • g₁') s x"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "inst✝³ : CommRing S", "K : Type u_3", "L : Type u_4", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Algebra K L", "A : Subalgebra K L", "x : ↥A", "p : K[X]", "aeval_eq : (aeval x) p = 0", "coeff_zero_ne : p.coeff 0 ≠ 0"], "goal": "(↑x)⁻¹ ∈ A"}], "premise": [2115, 122022], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_3\nL : Type u_4\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : ↥A\np : K[X]\naeval_eq : (aeval x) p = 0\ncoeff_zero_ne : p.coeff 0 ≠ 0\n⊢ (↑x)⁻¹ ∈ A"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "inst✝³ : CommRing S", "K : Type u_3", "L : Type u_4", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Algebra K L", "A : Subalgebra K L", "x : ↥A", "p : K[X]", "aeval_eq : (aeval x) p = 0", "coeff_zero_ne : p.coeff 0 ≠ 0"], "goal": "(↑x)⁻¹ = (-p.coeff 0)⁻¹ • ↑((aeval x) p.divX)"}], "premise": [74168, 122049], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_3\nL : Type u_4\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : ↥A\np : K[X]\naeval_eq : (aeval x) p = 0\ncoeff_zero_ne : p.coeff 0 ≠ 0\n⊢ (↑x)⁻¹ = (-p.coeff 0)⁻¹ • ↑((aeval x) p.divX)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "inst✝³ : CommRing S", "K : Type u_3", "L : Type u_4", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Algebra K L", "A : Subalgebra K L", "x : ↥A", "p : K[X]", "aeval_eq : (aeval x) p = 0", "coeff_zero_ne : p.coeff 0 ≠ 0", "this : (aeval ↑x) p = 0"], "goal": "(↑x)⁻¹ = (-p.coeff 0)⁻¹ • ↑((aeval x) p.divX)"}], "premise": [75599, 117883, 121165], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_3\nL : Type u_4\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : ↥A\np : K[X]\naeval_eq : (aeval x) p = 0\ncoeff_zero_ne : p.coeff 0 ≠ 0\nthis : (aeval ↑x) p = 0\n⊢ (↑x)⁻¹ = (-p.coeff 0)⁻¹ • ↑((aeval x) p.divX)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "inst✝³ : CommRing S", "K : Type u_3", "L : Type u_4", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Algebra K L", "A : Subalgebra K L", "x : ↥A", "p : K[X]", "aeval_eq : (aeval x) p = 0", "coeff_zero_ne : p.coeff 0 ≠ 0", "this : (aeval ↑x) p = 0"], "goal": "-(((algebraMap K L) (p.coeff 0))⁻¹ * (aeval ↑x) p.divX) = (algebraMap K L) (-p.coeff 0)⁻¹ * ↑((aeval x) p.divX)"}], "premise": [74168, 119464, 122012, 122054, 124155], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_3\nL : Type u_4\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : ↥A\np : K[X]\naeval_eq : (aeval x) p = 0\ncoeff_zero_ne : p.coeff 0 ≠ 0\nthis : (aeval ↑x) p = 0\n⊢ -(((algebraMap K L) (p.coeff 0))⁻¹ * (aeval ↑x) p.divX) = (algebraMap K L) (-p.coeff 0)⁻¹ * ↑((aeval x) p.divX)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "inst✝³ : CommRing S", "K : Type u_3", "L : Type u_4", "inst✝² : Field K", "inst✝¹ : Field L", "inst✝ : Algebra K L", "A : Subalgebra K L", "x : ↥A", "p : K[X]", "aeval_eq : (aeval x) p = 0", "coeff_zero_ne : p.coeff 0 ≠ 0", "this : (aeval ↑x) p = 0"], "goal": "-(((algebraMap K L) (p.coeff 0))⁻¹ * ↑((aeval x) p.divX)) = (algebraMap K L) (-p.coeff 0)⁻¹ * ↑((aeval x) p.divX)"}], "premise": [108199, 115839, 117094, 122240], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_3\nL : Type u_4\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : ↥A\np : K[X]\naeval_eq : (aeval x) p = 0\ncoeff_zero_ne : p.coeff 0 ≠ 0\nthis : (aeval ↑x) p = 0\n⊢ -(((algebraMap K L) (p.coeff 0))⁻¹ * ↑((aeval x) p.divX)) = (algebraMap K L) (-p.coeff 0)⁻¹ * ↑((aeval x) p.divX)"} +{"state": [{"context": ["G : Type w", "inst✝¹ : TopologicalSpace G", "μ : Content G", "inst✝ : R1Space G", "A : Set G"], "goal": "MeasurableSet A ↔ ∀ (U : Opens G), μ.outerMeasure (↑U ∩ A) + μ.outerMeasure (↑U \\ A) ≤ μ.outerMeasure ↑U"}], "premise": [55746], "state_str": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : R1Space G\nA : Set G\n⊢ MeasurableSet A ↔ ∀ (U : Opens G), μ.outerMeasure (↑U ∩ A) + μ.outerMeasure (↑U \\ A) ≤ μ.outerMeasure ↑U"} +{"state": [{"context": ["G : Type w", "inst✝¹ : TopologicalSpace G", "μ : Content G", "inst✝ : R1Space G", "A : Set G"], "goal": "MeasurableSet A ↔ ∀ (U : Set G) (hU : IsOpen U), μ.outerMeasure (↑{ carrier := U, is_open' := hU } ∩ A) + μ.outerMeasure (↑{ carrier := U, is_open' := hU } \\ A) ≤ μ.outerMeasure ↑{ carrier := U, is_open' := hU }"}], "premise": [28156], "state_str": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : R1Space G\nA : Set G\n⊢ MeasurableSet A ↔\n ∀ (U : Set G) (hU : IsOpen U),\n μ.outerMeasure (↑{ carrier := U, is_open' := hU } ∩ A) + μ.outerMeasure (↑{ carrier := U, is_open' := hU } \\ A) ≤\n μ.outerMeasure ↑{ carrier := U, is_open' := hU }"} +{"state": [{"context": ["α : Type u_2", "p✝ q : α → Bool", "β : Type u_1", "p : β → Bool", "f : α → β", "a : α", "l : List α"], "goal": "countP p (map f (a :: l)) = countP (p ∘ f) (a :: l)"}], "premise": [348, 2611], "state_str": "α : Type u_2\np✝ q : α → Bool\nβ : Type u_1\np : β → Bool\nf : α → β\na : α\nl : List α\n⊢ countP p (map f (a :: l)) = countP (p ∘ f) (a :: l)"} +{"state": [{"context": ["α : Type u_1", "N : Type u_2", "inst✝ : Zero N", "r : α → α → Prop", "s : N → N → Prop", "hbot : ∀ ⦃n : N⦄, ¬s n 0", "hs : WellFounded s", "x : α →₀ N", "h : ∀ a ∈ x.support, Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) a"], "goal": "Acc (Finsupp.Lex r s) x"}], "premise": [147479], "state_str": "α : Type u_1\nN : Type u_2\ninst✝ : Zero N\nr : α → α → Prop\ns : N → N → Prop\nhbot : ∀ ⦃n : N⦄, ¬s n 0\nhs : WellFounded s\nx : α →₀ N\nh : ∀ a ∈ x.support, Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) a\n⊢ Acc (Finsupp.Lex r s) x"} +{"state": [{"context": ["α : Type u_1", "N : Type u_2", "inst✝ : Zero N", "r : α → α → Prop", "s : N → N → Prop", "hbot : ∀ ⦃n : N⦄, ¬s n 0", "hs : WellFounded s", "x : α →₀ N", "h : ∀ a ∈ x.support, Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) a"], "goal": "Acc (InvImage (DFinsupp.Lex r fun x => s) toDFinsupp) x"}], "premise": [964, 147346, 147401], "state_str": "α : Type u_1\nN : Type u_2\ninst✝ : Zero N\nr : α → α → Prop\ns : N → N → Prop\nhbot : ∀ ⦃n : N⦄, ¬s n 0\nhs : WellFounded s\nx : α →₀ N\nh : ∀ a ∈ x.support, Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) a\n⊢ Acc (InvImage (DFinsupp.Lex r fun x => s) toDFinsupp) x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : PseudoMetricSpace α", "f✝ : ℕ → α", "a : α", "f : ℕ → ℝ", "c : ℝ", "hf : ∀ (n : ℕ), 0 ≤ f n", "h : ∀ (n : ℕ), ∑ i ∈ range n, f i ≤ c"], "goal": "Summable f"}], "premise": [1674, 63086], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : PseudoMetricSpace α\nf✝ : ℕ → α\na : α\nf : ℕ → ℝ\nc : ℝ\nhf : ∀ (n : ℕ), 0 ≤ f n\nh : ∀ (n : ℕ), ∑ i ∈ range n, f i ≤ c\n⊢ Summable f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : PseudoMetricSpace α", "f✝ : ℕ → α", "a : α", "f : ℕ → ℝ", "c : ℝ", "hf : ∀ (n : ℕ), 0 ≤ f n", "h : ∀ (n : ℕ), ∑ i ∈ range n, f i ≤ c", "H : Tendsto (fun n => ∑ i ∈ range n, f i) atTop atTop"], "goal": "False"}], "premise": [15559], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : PseudoMetricSpace α\nf✝ : ℕ → α\na : α\nf : ℕ → ℝ\nc : ℝ\nhf : ∀ (n : ℕ), 0 ≤ f n\nh : ∀ (n : ℕ), ∑ i ∈ range n, f i ≤ c\nH : Tendsto (fun n => ∑ i ∈ range n, f i) atTop atTop\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : PseudoMetricSpace α", "f✝ : ℕ → α", "a : α", "f : ℕ → ℝ", "c : ℝ", "hf : ∀ (n : ℕ), 0 ≤ f n", "h : ∀ (n : ℕ), ∑ i ∈ range n, f i ≤ c", "H : Tendsto (fun n => ∑ i ∈ range n, f i) atTop atTop", "n : ℕ", "hn : c < ∑ i ∈ range n, f i"], "goal": "False"}], "premise": [14279], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝ : PseudoMetricSpace α\nf✝ : ℕ → α\na : α\nf : ℕ → ℝ\nc : ℝ\nhf : ∀ (n : ℕ), 0 ≤ f n\nh : ∀ (n : ℕ), ∑ i ∈ range n, f i ≤ c\nH : Tendsto (fun n => ∑ i ∈ range n, f i) atTop atTop\nn : ℕ\nhn : c < ∑ i ∈ range n, f i\n⊢ False"} +{"state": [{"context": ["o : Ordinal.{u_1}", "h : o < ω"], "goal": "succ o < ω"}], "premise": [1673, 52558], "state_str": "o : Ordinal.{u_1}\nh : o < ω\n⊢ succ o < ω"} +{"state": [{"context": ["o : Ordinal.{u_1}", "h : o < ω", "n : ℕ", "e : o = ↑n"], "goal": "succ ↑n < ω"}], "premise": [52559], "state_str": "o : Ordinal.{u_1}\nh : o < ω\nn : ℕ\ne : o = ↑n\n⊢ succ ↑n < ω"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedAddCommGroup α", "a b c : α"], "goal": "(fun x => a - x) '' Iic b = Ici (a - b)"}], "premise": [134099], "state_str": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => a - x) '' Iic b = Ici (a - b)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedAddCommGroup α", "a b c : α", "this : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)"], "goal": "(fun x => a - x) '' Iic b = Ici (a - b)"}], "premise": [1671], "state_str": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Iic b = Ici (a - b)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedAddCommGroup α", "a b c : α", "this : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)"], "goal": "(fun x => a - x) '' Iic b = Ici (a - b)"}], "premise": [119708, 119789], "state_str": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Iic b = Ici (a - b)"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "U K : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "δ : ℝ", "hδ : 0 < δ", "hK : IsCompact K", "hU : IsOpen U", "hKU : cthickening δ K ⊆ U"], "goal": "TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"}], "premise": [15889, 46378, 57321, 131585], "state_str": "E : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nδ : ℝ\nhδ : 0 < δ\nhK : IsCompact K\nhU : IsOpen U\nhKU : cthickening δ K ⊆ U\n⊢ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "U K : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "δ : ℝ", "hδ : 0 < δ", "hK : IsCompact K", "hU : IsOpen U", "hKU : cthickening δ K ⊆ U", "h1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)"], "goal": "TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"}], "premise": [61058], "state_str": "E : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nδ : ℝ\nhδ : 0 < δ\nhK : IsCompact K\nhU : IsOpen U\nhKU : cthickening δ K ⊆ U\nh1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)\n⊢ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "U K : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "δ : ℝ", "hδ : 0 < δ", "hK : IsCompact K", "hU : IsOpen U", "hKU : cthickening δ K ⊆ U", "h1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)", "h2 : IsCompact (cthickening δ K)"], "goal": "TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"}], "premise": [1673, 60218], "state_str": "E : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nδ : ℝ\nhδ : 0 < δ\nhK : IsCompact K\nhU : IsOpen U\nhKU : cthickening δ K ⊆ U\nh1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)\nh2 : IsCompact (cthickening δ K)\n⊢ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "U K : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "δ : ℝ", "hδ : 0 < δ", "hK : IsCompact K", "hU : IsOpen U", "hKU : cthickening δ K ⊆ U", "h1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)", "h2 : IsCompact (cthickening δ K)", "h3 : TendstoUniformlyOn F f φ (cthickening δ K)"], "goal": "TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"}], "premise": [46605, 60154], "state_str": "E : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nδ : ℝ\nhδ : 0 < δ\nhK : IsCompact K\nhU : IsOpen U\nhKU : cthickening δ K ⊆ U\nh1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)\nh2 : IsCompact (cthickening δ K)\nh3 : TendstoUniformlyOn F f φ (cthickening δ K)\n⊢ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "U K : Set ℂ", "z : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "δ : ℝ", "hδ : 0 < δ", "hK : IsCompact K", "hU : IsOpen U", "hKU : cthickening δ K ⊆ U", "h1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)", "h2 : IsCompact (cthickening δ K)", "h3 : TendstoUniformlyOn F f φ (cthickening δ K)"], "goal": "∀ᶠ (n : ι) in φ, EqOn ((cderiv δ ∘ F) n) ((deriv ∘ F) n) K"}], "premise": [15889, 131585], "state_str": "E : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nδ : ℝ\nhδ : 0 < δ\nhK : IsCompact K\nhU : IsOpen U\nhKU : cthickening δ K ⊆ U\nh1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)\nh2 : IsCompact (cthickening δ K)\nh3 : TendstoUniformlyOn F f φ (cthickening δ K)\n⊢ ∀ᶠ (n : ι) in φ, EqOn ((cderiv δ ∘ F) n) ((deriv ∘ F) n) K"} +{"state": [{"context": ["E : Type u_1", "ι : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℂ E", "inst✝ : CompleteSpace E", "U K : Set ℂ", "z✝ : ℂ", "M r δ✝ : ℝ", "φ : Filter ι", "F : ι → ℂ → E", "f g : ℂ → E", "hf : TendstoLocallyUniformlyOn F f φ U", "hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U", "δ : ℝ", "hδ : 0 < δ", "hK : IsCompact K", "hU : IsOpen U", "hKU : cthickening δ K ⊆ U", "h1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)", "h2 : IsCompact (cthickening δ K)", "h3 : TendstoUniformlyOn F f φ (cthickening δ K)", "n : ι", "h : DifferentiableOn ℂ (F n) U", "z : ℂ", "hz : z ∈ K"], "goal": "(cderiv δ ∘ F) n z = (deriv ∘ F) n z"}], "premise": [46600, 61094], "state_str": "case h\nE : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz✝ : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nδ : ℝ\nhδ : 0 < δ\nhK : IsCompact K\nhU : IsOpen U\nhKU : cthickening δ K ⊆ U\nh1 : ∀ᶠ (n : ι) in φ, ContinuousOn (F n) (cthickening δ K)\nh2 : IsCompact (cthickening δ K)\nh3 : TendstoUniformlyOn F f φ (cthickening δ K)\nn : ι\nh : DifferentiableOn ℂ (F n) U\nz : ℂ\nhz : z ∈ K\n⊢ (cderiv δ ∘ F) n z = (deriv ∘ F) n z"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "inst✝³ : HasZeroObject C", "inst✝² : HasShift C ℤ", "inst✝¹ : Preadditive C", "inst✝ : ∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive", "hC : Pretriangulated C", "T : Triangle C", "hT : T ∈ distinguishedTriangles", "h₁ : IsZero T.obj₁", "h₂ : IsZero T.obj₂"], "goal": "IsZero ((CategoryTheory.shiftFunctor C 1).obj T.obj₁)"}], "premise": [93617], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\ninst✝³ : HasZeroObject C\ninst✝² : HasShift C ℤ\ninst✝¹ : Preadditive C\ninst✝ : ∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive\nhC : Pretriangulated C\nT : Triangle C\nhT : T ∈ distinguishedTriangles\nh₁ : IsZero T.obj₁\nh₂ : IsZero T.obj₂\n⊢ IsZero ((CategoryTheory.shiftFunctor C 1).obj T.obj₁)"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "inst✝³ : HasZeroObject C", "inst✝² : HasShift C ℤ", "inst✝¹ : Preadditive C", "inst✝ : ∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive", "hC : Pretriangulated C", "T : Triangle C", "hT : T ∈ distinguishedTriangles", "h₂ : IsZero T.obj₂", "h₁ : 𝟙 T.obj₁ = 0"], "goal": "𝟙 ((CategoryTheory.shiftFunctor C 1).obj T.obj₁) = 0"}], "premise": [94325, 99920], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\ninst✝³ : HasZeroObject C\ninst✝² : HasShift C ℤ\ninst✝¹ : Preadditive C\ninst✝ : ∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive\nhC : Pretriangulated C\nT : Triangle C\nhT : T ∈ distinguishedTriangles\nh₂ : IsZero T.obj₂\nh₁ : 𝟙 T.obj₁ = 0\n⊢ 𝟙 ((CategoryTheory.shiftFunctor C 1).obj T.obj₁) = 0"} +{"state": [{"context": ["F : Type u_1", "G : Type u_2", "H : Type u_3", "inst✝³ : FunLike F G H", "a : G", "b : H", "inst✝² : AddMonoidWithOne G", "inst✝¹ : AddMonoid H", "inst✝ : AddConstMapClass F G H 1 b", "f : F", "n : ℕ"], "goal": "f ↑n = f 0 + n • b"}], "premise": [109111], "state_str": "F : Type u_1\nG : Type u_2\nH : Type u_3\ninst✝³ : FunLike F G H\na : G\nb : H\ninst✝² : AddMonoidWithOne G\ninst✝¹ : AddMonoid H\ninst✝ : AddConstMapClass F G H 1 b\nf : F\nn : ℕ\n⊢ f ↑n = f 0 + n • b"} +{"state": [{"context": ["b e : Pos", "x✝ : Substring", "h₁ : x✝.Valid", "h₂ : { str := x✝.toString, startPos := b, stopPos := e }.Valid"], "goal": "(x✝.extract b e).toString = x✝.toString.extract b e"}], "premise": [2386], "state_str": "b e : Pos\nx✝ : Substring\nh₁ : x✝.Valid\nh₂ : { str := x✝.toString, startPos := b, stopPos := e }.Valid\n⊢ (x✝.extract b e).toString = x✝.toString.extract b e"} +{"state": [{"context": ["b e : Pos", "x✝ : Substring", "h₁✝ : x✝.Valid", "h₂ : { str := x✝.toString, startPos := b, stopPos := e }.Valid", "l m r : List Char", "h₁ : ValidFor l m r x✝"], "goal": "(x✝.extract b e).toString = x✝.toString.extract b e"}], "premise": [2365], "state_str": "b e : Pos\nx✝ : Substring\nh₁✝ : x✝.Valid\nh₂ : { str := x✝.toString, startPos := b, stopPos := e }.Valid\nl m r : List Char\nh₁ : ValidFor l m r x✝\n⊢ (x✝.extract b e).toString = x✝.toString.extract b e"} +{"state": [{"context": ["b e : Pos", "x✝ : Substring", "h₁✝ : x✝.Valid", "l m : List Char", "h₂ : { str := { data := m }, startPos := b, stopPos := e }.Valid", "r : List Char", "h₁ : ValidFor l m r x✝"], "goal": "(x✝.extract b e).toString = x✝.toString.extract b e"}], "premise": [2386], "state_str": "b e : Pos\nx✝ : Substring\nh₁✝ : x✝.Valid\nl m : List Char\nh₂ : { str := { data := m }, startPos := b, stopPos := e }.Valid\nr : List Char\nh₁ : ValidFor l m r x✝\n⊢ (x✝.extract b e).toString = x✝.toString.extract b e"} +{"state": [{"context": ["b e : Pos", "x✝ : Substring", "h₁✝ : x✝.Valid", "l m : List Char", "h₂✝ : { str := { data := m }, startPos := b, stopPos := e }.Valid", "r : List Char", "h₁ : ValidFor l m r x✝", "ml mm mr : List Char", "h₂ : ValidFor ml mm mr { str := { data := m }, startPos := b, stopPos := e }"], "goal": "(x✝.extract b e).toString = x✝.toString.extract b e"}], "premise": [2378], "state_str": "b e : Pos\nx✝ : Substring\nh₁✝ : x✝.Valid\nl m : List Char\nh₂✝ : { str := { data := m }, startPos := b, stopPos := e }.Valid\nr : List Char\nh₁ : ValidFor l m r x✝\nml mm mr : List Char\nh₂ : ValidFor ml mm mr { str := { data := m }, startPos := b, stopPos := e }\n⊢ (x✝.extract b e).toString = x✝.toString.extract b e"} +{"state": [{"context": ["b e : Pos", "x✝ : Substring", "h₁✝ : x✝.Valid", "l m : List Char", "h₂✝ : { str := { data := m }, startPos := b, stopPos := e }.Valid", "r : List Char", "h₁ : ValidFor l m r x✝", "ml mm mr : List Char", "h₂ : ValidFor ml mm mr { str := { data := m }, startPos := b, stopPos := e }", "l' r' : List Char", "h₃ : ValidFor l' mm r' (x✝.extract b e)"], "goal": "(x✝.extract b e).toString = x✝.toString.extract b e"}], "premise": [2365], "state_str": "b e : Pos\nx✝ : Substring\nh₁✝ : x✝.Valid\nl m : List Char\nh₂✝ : { str := { data := m }, startPos := b, stopPos := e }.Valid\nr : List Char\nh₁ : ValidFor l m r x✝\nml mm mr : List Char\nh₂ : ValidFor ml mm mr { str := { data := m }, startPos := b, stopPos := e }\nl' r' : List Char\nh₃ : ValidFor l' mm r' (x✝.extract b e)\n⊢ (x✝.extract b e).toString = x✝.toString.extract b e"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "p : A → Prop", "inst✝¹⁰ : CommSemiring R", "inst✝⁹ : StarRing R", "inst✝⁸ : MetricSpace R", "inst✝⁷ : TopologicalSemiring R", "inst✝⁶ : ContinuousStar R", "inst✝⁵ : TopologicalSpace A", "inst✝⁴ : Ring A", "inst✝³ : StarRing A", "inst✝² : Algebra R A", "inst✝¹ : ContinuousFunctionalCalculus R p", "f✝ g : R → R", "a✝ : A", "ha✝ : autoParam (p a✝) _auto✝", "hf✝ : autoParam (ContinuousOn f✝ (spectrum R a✝)) _auto✝", "hg : autoParam (ContinuousOn g (spectrum R a✝)) _auto✝", "inst✝ : UniqueContinuousFunctionalCalculus R A", "f : R → R", "a : A", "hf : autoParam (ContinuousOn f (star '' spectrum R a)) _auto✝", "ha : autoParam (p a) _auto✝"], "goal": "cfc (fun x => f (star x)) a = cfc f (star a)"}], "premise": [35649, 35655], "state_str": "R : Type u_1\nA : Type u_2\np : A → Prop\ninst✝¹⁰ : CommSemiring R\ninst✝⁹ : StarRing R\ninst✝⁸ : MetricSpace R\ninst✝⁷ : TopologicalSemiring R\ninst✝⁶ : ContinuousStar R\ninst✝⁵ : TopologicalSpace A\ninst✝⁴ : Ring A\ninst✝³ : StarRing A\ninst✝² : Algebra R A\ninst✝¹ : ContinuousFunctionalCalculus R p\nf✝ g : R → R\na✝ : A\nha✝ : autoParam (p a✝) _auto✝\nhf✝ : autoParam (ContinuousOn f✝ (spectrum R a✝)) _auto✝\nhg : autoParam (ContinuousOn g (spectrum R a✝)) _auto✝\ninst✝ : UniqueContinuousFunctionalCalculus R A\nf : R → R\na : A\nhf : autoParam (ContinuousOn f (star '' spectrum R a)) _auto✝\nha : autoParam (p a) _auto✝\n⊢ cfc (fun x => f (star x)) a = cfc f (star a)"} +{"state": [{"context": ["k : Type u_1", "inst✝³ : Field k", "K : Type u_2", "inst✝² : Field K", "F : Type u_3", "inst✝¹ : Field F", "inst✝ : NumberField K"], "goal": "NrRealPlaces K + 2 * NrComplexPlaces K = finrank ℚ K"}], "premise": [3884, 23289, 23345, 23347, 141446], "state_str": "k : Type u_1\ninst✝³ : Field k\nK : Type u_2\ninst✝² : Field K\nF : Type u_3\ninst✝¹ : Field F\ninst✝ : NumberField K\n⊢ NrRealPlaces K + 2 * NrComplexPlaces K = finrank ℚ K"} +{"state": [{"context": ["k : Type u_1", "inst✝³ : Field k", "K : Type u_2", "inst✝² : Field K", "F : Type u_3", "inst✝¹ : Field F", "inst✝ : NumberField K"], "goal": "card { φ // ComplexEmbedding.IsReal φ } ≤ card (K →+* ℂ)"}], "premise": [141443], "state_str": "k : Type u_1\ninst✝³ : Field k\nK : Type u_2\ninst✝² : Field K\nF : Type u_3\ninst✝¹ : Field F\ninst✝ : NumberField K\n⊢ card { φ // ComplexEmbedding.IsReal φ } ≤ card (K →+* ℂ)"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.111346, u_1} C", "inst✝ : Preadditive C", "S₁ S₂ S₃ : ShortComplex C", "φ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂", "h₁₂ : Homotopy φ₁ φ₂", "h₂₃ : Homotopy φ₂ φ₃"], "goal": "φ₁.τ₁ = S₁.f ≫ (h₁₂.h₁ + h₂₃.h₁) + (h₁₂.h₀ + h₂₃.h₀) + φ₃.τ₁"}], "premise": [91599, 114910], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.111346, u_1} C\ninst✝ : Preadditive C\nS₁ S₂ S₃ : ShortComplex C\nφ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂\nh₁₂ : Homotopy φ₁ φ₂\nh₂₃ : Homotopy φ₂ φ₃\n⊢ φ₁.τ₁ = S₁.f ≫ (h₁₂.h₁ + h₂₃.h₁) + (h₁₂.h₀ + h₂₃.h₀) + φ₃.τ₁"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.111346, u_1} C", "inst✝ : Preadditive C", "S₁ S₂ S₃ : ShortComplex C", "φ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂", "h₁₂ : Homotopy φ₁ φ₂", "h₂₃ : Homotopy φ₂ φ₃"], "goal": "φ₁.τ₂ = S₁.g ≫ (h₁₂.h₂ + h₂₃.h₂) + (h₁₂.h₁ + h₂₃.h₁) ≫ S₂.f + φ₃.τ₂"}], "premise": [91598, 91599, 114912], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.111346, u_1} C\ninst✝ : Preadditive C\nS₁ S₂ S₃ : ShortComplex C\nφ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂\nh₁₂ : Homotopy φ₁ φ₂\nh₂₃ : Homotopy φ₂ φ₃\n⊢ φ₁.τ₂ = S₁.g ≫ (h₁₂.h₂ + h₂₃.h₂) + (h₁₂.h₁ + h₂₃.h₁) ≫ S₂.f + φ₃.τ₂"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.111346, u_1} C", "inst✝ : Preadditive C", "S₁ S₂ S₃ : ShortComplex C", "φ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂", "h₁₂ : Homotopy φ₁ φ₂", "h₂₃ : Homotopy φ₂ φ₃"], "goal": "φ₁.τ₃ = h₁₂.h₃ + h₂₃.h₃ + (h₁₂.h₂ + h₂₃.h₂) ≫ S₂.g + φ₃.τ₃"}], "premise": [91598, 114911], "state_str": "C : Type u_1\ninst✝¹ : Category.{?u.111346, u_1} C\ninst✝ : Preadditive C\nS₁ S₂ S₃ : ShortComplex C\nφ₁ φ₂ φ₃ φ₄ : S₁ ⟶ S₂\nh₁₂ : Homotopy φ₁ φ₂\nh₂₃ : Homotopy φ₂ φ₃\n⊢ φ₁.τ₃ = h₁₂.h₃ + h₂₃.h₃ + (h₁₂.h₂ + h₂₃.h₂) ≫ S₂.g + φ₃.τ₃"} +{"state": [{"context": ["R✝ : Type u_1", "inst✝³¹ : CommSemiring R✝", "S✝ : Submonoid R✝", "M✝ : Type u_2", "M' : Type u_3", "M'' : Type u_4", "inst✝³⁰ : AddCommMonoid M✝", "inst✝²⁹ : AddCommMonoid M'", "inst✝²⁸ : AddCommMonoid M''", "A : Type u_5", "inst✝²⁷ : CommSemiring A", "inst✝²⁶ : Algebra R✝ A", "inst✝²⁵ : Module A M'", "inst✝²⁴ : IsLocalization S✝ A", "inst✝²³ : Module R✝ M✝", "inst✝²² : Module R✝ M'", "inst✝²¹ : Module R✝ M''", "inst✝²⁰ : IsScalarTower R✝ A M'", "f✝ : M✝ →ₗ[R✝] M'", "g : M✝ →ₗ[R✝] M''", "M₀ : Type ?u.1244734", "M₀' : Type ?u.1244737", "inst✝¹⁹ : AddCommGroup M₀", "inst✝¹⁸ : AddCommGroup M₀'", "inst✝¹⁷ : Module R✝ M₀", "inst✝¹⁶ : Module R✝ M₀'", "f₀ : M₀ →ₗ[R✝] M₀'", "inst✝¹⁵ : IsLocalizedModule S✝ f₀", "M₁ : Type ?u.1246805", "M₁' : Type ?u.1246808", "inst✝¹⁴ : AddCommGroup M₁", "inst✝¹³ : AddCommGroup M₁'", "inst✝¹² : Module R✝ M₁", "inst✝¹¹ : Module R✝ M₁'", "f₁ : M₁ →ₗ[R✝] M₁'", "inst✝¹⁰ : IsLocalizedModule S✝ f₁", "M₂ : Type ?u.1248876", "M₂' : Type ?u.1248879", "inst✝⁹ : AddCommGroup M₂", "inst✝⁸ : AddCommGroup M₂'", "inst✝⁷ : Module R✝ M₂", "inst✝⁶ : Module R✝ M₂'", "f₂ : M₂ →ₗ[R✝] M₂'", "inst✝⁵ : IsLocalizedModule S✝ f₂", "R : Type u_6", "S : Type u_7", "S' : Type u_8", "inst✝⁴ : CommRing R", "inst✝³ : CommRing S", "inst✝² : CommRing S'", "inst✝¹ : Algebra R S", "inst✝ : Algebra R S'", "M : Submonoid R", "f : S →ₐ[R] S'", "h₁ : ∀ x ∈ M, IsUnit ((algebraMap R S') x)", "h₂ : ∀ (y : S'), ∃ x, x.2 • y = f x.1", "h₃ : ∀ (x : S), f x = 0 → ∃ m, m • x = 0"], "goal": "IsLocalizedModule M f.toLinearMap"}], "premise": [119625, 120533, 121056, 121165], "state_str": "R✝ : Type u_1\ninst✝³¹ : CommSemiring R✝\nS✝ : Submonoid R✝\nM✝ : Type u_2\nM' : Type u_3\nM'' : Type u_4\ninst✝³⁰ : AddCommMonoid M✝\ninst✝²⁹ : AddCommMonoid M'\ninst✝²⁸ : AddCommMonoid M''\nA : Type u_5\ninst✝²⁷ : CommSemiring A\ninst✝²⁶ : Algebra R✝ A\ninst✝²⁵ : Module A M'\ninst✝²⁴ : IsLocalization S✝ A\ninst✝²³ : Module R✝ M✝\ninst✝²² : Module R✝ M'\ninst✝²¹ : Module R✝ M''\ninst✝²⁰ : IsScalarTower R✝ A M'\nf✝ : M✝ →ₗ[R✝] M'\ng : M✝ →ₗ[R✝] M''\nM₀ : Type ?u.1244734\nM₀' : Type ?u.1244737\ninst✝¹⁹ : AddCommGroup M₀\ninst✝¹⁸ : AddCommGroup M₀'\ninst✝¹⁷ : Module R✝ M₀\ninst✝¹⁶ : Module R✝ M₀'\nf₀ : M₀ →ₗ[R✝] M₀'\ninst✝¹⁵ : IsLocalizedModule S✝ f₀\nM₁ : Type ?u.1246805\nM₁' : Type ?u.1246808\ninst✝¹⁴ : AddCommGroup M₁\ninst✝¹³ : AddCommGroup M₁'\ninst✝¹² : Module R✝ M₁\ninst✝¹¹ : Module R✝ M₁'\nf₁ : M₁ →ₗ[R✝] M₁'\ninst✝¹⁰ : IsLocalizedModule S✝ f₁\nM₂ : Type ?u.1248876\nM₂' : Type ?u.1248879\ninst✝⁹ : AddCommGroup M₂\ninst✝⁸ : AddCommGroup M₂'\ninst✝⁷ : Module R✝ M₂\ninst✝⁶ : Module R✝ M₂'\nf₂ : M₂ →ₗ[R✝] M₂'\ninst✝⁵ : IsLocalizedModule S✝ f₂\nR : Type u_6\nS : Type u_7\nS' : Type u_8\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S\ninst✝² : CommRing S'\ninst✝¹ : Algebra R S\ninst✝ : Algebra R S'\nM : Submonoid R\nf : S →ₐ[R] S'\nh₁ : ∀ x ∈ M, IsUnit ((algebraMap R S') x)\nh₂ : ∀ (y : S'), ∃ x, x.2 • y = f x.1\nh₃ : ∀ (x : S), f x = 0 → ∃ m, m • x = 0\n⊢ IsLocalizedModule M f.toLinearMap"} +{"state": [{"context": ["C : Type u_1", "ι✝ : Type u_2", "inst✝² : Category.{u_3, u_1} C", "inst✝¹ : Preadditive C", "c : ComplexShape ι✝", "K : HomologicalComplex C c", "i j : ι✝", "hij : c.Rel i j", "inst✝ : CategoryWithHomology C", "S : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.opcyclesToCycles i j) ⋯", "S' : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.fromOpcycles i j) ⋯", "ι : S ⟶ S' := { τ₁ := 𝟙 S.X₁, τ₂ := 𝟙 S.X₂, τ₃ := K.iCycles j, comm₁₂ := ⋯, comm₂₃ := ⋯ }"], "goal": "(composableArrows₃ K i j).Exact"}], "premise": [113350, 114550, 114588], "state_str": "C : Type u_1\nι✝ : Type u_2\ninst✝² : Category.{u_3, u_1} C\ninst✝¹ : Preadditive C\nc : ComplexShape ι✝\nK : HomologicalComplex C c\ni j : ι✝\nhij : c.Rel i j\ninst✝ : CategoryWithHomology C\nS : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.opcyclesToCycles i j) ⋯\nS' : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.fromOpcycles i j) ⋯\nι : S ⟶ S' := { τ₁ := 𝟙 S.X₁, τ₂ := 𝟙 S.X₂, τ₃ := K.iCycles j, comm₁₂ := ⋯, comm₂₃ := ⋯ }\n⊢ (composableArrows₃ K i j).Exact"} +{"state": [{"context": ["C : Type u_1", "ι✝ : Type u_2", "inst✝² : Category.{u_3, u_1} C", "inst✝¹ : Preadditive C", "c : ComplexShape ι✝", "K : HomologicalComplex C c", "i j : ι✝", "hij : c.Rel i j", "inst✝ : CategoryWithHomology C", "S : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.opcyclesToCycles i j) ⋯", "S' : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.fromOpcycles i j) ⋯", "ι : S ⟶ S' := { τ₁ := 𝟙 S.X₁, τ₂ := 𝟙 S.X₂, τ₃ := K.iCycles j, comm₁₂ := ⋯, comm₂₃ := ⋯ }", "hS : S.Exact", "T : ShortComplex C := ShortComplex.mk (K.opcyclesToCycles i j) (K.homologyπ j) ⋯", "T' : ShortComplex C := ShortComplex.mk (K.toCycles i j) (K.homologyπ j) ⋯", "π : T' ⟶ T := { τ₁ := K.pOpcycles i, τ₂ := 𝟙 T'.X₂, τ₃ := 𝟙 T'.X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }"], "goal": "(composableArrows₃ K i j).Exact"}], "premise": [113351, 114550, 114589], "state_str": "C : Type u_1\nι✝ : Type u_2\ninst✝² : Category.{u_3, u_1} C\ninst✝¹ : Preadditive C\nc : ComplexShape ι✝\nK : HomologicalComplex C c\ni j : ι✝\nhij : c.Rel i j\ninst✝ : CategoryWithHomology C\nS : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.opcyclesToCycles i j) ⋯\nS' : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.fromOpcycles i j) ⋯\nι : S ⟶ S' := { τ₁ := 𝟙 S.X₁, τ₂ := 𝟙 S.X₂, τ₃ := K.iCycles j, comm₁₂ := ⋯, comm₂₃ := ⋯ }\nhS : S.Exact\nT : ShortComplex C := ShortComplex.mk (K.opcyclesToCycles i j) (K.homologyπ j) ⋯\nT' : ShortComplex C := ShortComplex.mk (K.toCycles i j) (K.homologyπ j) ⋯\nπ : T' ⟶ T := { τ₁ := K.pOpcycles i, τ₂ := 𝟙 T'.X₂, τ₃ := 𝟙 T'.X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }\n⊢ (composableArrows₃ K i j).Exact"} +{"state": [{"context": ["C : Type u_1", "ι✝ : Type u_2", "inst✝² : Category.{u_3, u_1} C", "inst✝¹ : Preadditive C", "c : ComplexShape ι✝", "K : HomologicalComplex C c", "i j : ι✝", "hij : c.Rel i j", "inst✝ : CategoryWithHomology C", "S : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.opcyclesToCycles i j) ⋯", "S' : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.fromOpcycles i j) ⋯", "ι : S ⟶ S' := { τ₁ := 𝟙 S.X₁, τ₂ := 𝟙 S.X₂, τ₃ := K.iCycles j, comm₁₂ := ⋯, comm₂₃ := ⋯ }", "hS : S.Exact", "T : ShortComplex C := ShortComplex.mk (K.opcyclesToCycles i j) (K.homologyπ j) ⋯", "T' : ShortComplex C := ShortComplex.mk (K.toCycles i j) (K.homologyπ j) ⋯", "π : T' ⟶ T := { τ₁ := K.pOpcycles i, τ₂ := 𝟙 T'.X₂, τ₃ := 𝟙 T'.X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }", "hT : T.Exact"], "goal": "(composableArrows₃ K i j).Exact"}], "premise": [115189], "state_str": "C : Type u_1\nι✝ : Type u_2\ninst✝² : Category.{u_3, u_1} C\ninst✝¹ : Preadditive C\nc : ComplexShape ι✝\nK : HomologicalComplex C c\ni j : ι✝\nhij : c.Rel i j\ninst✝ : CategoryWithHomology C\nS : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.opcyclesToCycles i j) ⋯\nS' : ShortComplex C := ShortComplex.mk (K.homologyι i) (K.fromOpcycles i j) ⋯\nι : S ⟶ S' := { τ₁ := 𝟙 S.X₁, τ₂ := 𝟙 S.X₂, τ₃ := K.iCycles j, comm₁₂ := ⋯, comm₂₃ := ⋯ }\nhS : S.Exact\nT : ShortComplex C := ShortComplex.mk (K.opcyclesToCycles i j) (K.homologyπ j) ⋯\nT' : ShortComplex C := ShortComplex.mk (K.toCycles i j) (K.homologyπ j) ⋯\nπ : T' ⟶ T := { τ₁ := K.pOpcycles i, τ₂ := 𝟙 T'.X₂, τ₃ := 𝟙 T'.X₃, comm₁₂ := ⋯, comm₂₃ := ⋯ }\nhT : T.Exact\n⊢ (composableArrows₃ K i j).Exact"} +{"state": [{"context": ["V : Type u", "V' : Type v", "G : SimpleGraph V", "G' : SimpleGraph V'", "u v w : V", "p : G.Walk u v"], "goal": "(p.toSubgraph.neighborSet w).Finite"}], "premise": [52795, 52845, 52852, 134992, 135040, 135041], "state_str": "V : Type u\nV' : Type v\nG : SimpleGraph V\nG' : SimpleGraph V'\nu v w : V\np : G.Walk u v\n⊢ (p.toSubgraph.neighborSet w).Finite"} +{"state": [{"context": ["α : Type", "d : ℕ", "ds ds₁ ds₂ ds₃ : List ℕ", "inst✝ : AddCommMonoid α", "β : Type", "i : ℕ", "hid : i < d", "s : Finset β", "f : β → Holor α (d :: ds)", "this : DecidableEq β := Classical.decEq β"], "goal": "∑ x ∈ s, (f x).slice i hid = (∑ x ∈ s, f x).slice i hid"}], "premise": [138847], "state_str": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝ : AddCommMonoid α\nβ : Type\ni : ℕ\nhid : i < d\ns : Finset β\nf : β → Holor α (d :: ds)\nthis : DecidableEq β := Classical.decEq β\n⊢ ∑ x ∈ s, (f x).slice i hid = (∑ x ∈ s, f x).slice i hid"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "J : Type u_4", "inst✝² : Category.{u_5, u_1} C", "inst✝¹ : Category.{u_7, u_2} D", "inst✝ : Category.{u_6, u_3} E", "X Y✝ : GradedObject J C", "e : X ≅ Y✝", "F : C ⥤ D ⥤ E", "j : J", "Y : D"], "goal": "(F.map (e.hom j)).app Y ≫ (F.map (e.inv j)).app Y = 𝟙 ((F.obj (X j)).obj Y)"}], "premise": [97575, 99919, 99920, 100030, 100031], "state_str": "C : Type u_1\nD : Type u_2\nE : Type u_3\nJ : Type u_4\ninst✝² : Category.{u_5, u_1} C\ninst✝¹ : Category.{u_7, u_2} D\ninst✝ : Category.{u_6, u_3} E\nX Y✝ : GradedObject J C\ne : X ≅ Y✝\nF : C ⥤ D ⥤ E\nj : J\nY : D\n⊢ (F.map (e.hom j)).app Y ≫ (F.map (e.inv j)).app Y = 𝟙 ((F.obj (X j)).obj Y)"} +{"state": [{"context": ["R : Type uR", "S : Type uS", "ι : Type uι", "n✝ : ℕ", "M : Fin n✝.succ → Type v", "M₁ : ι → Type v₁", "M₂ : Type v₂", "M₃ : Type v₃", "M' : Type v'", "inst✝⁶ : CommSemiring R", "inst✝⁵ : (i : Fin n✝.succ) → AddCommMonoid (M i)", "inst✝⁴ : AddCommMonoid M'", "inst✝³ : AddCommMonoid M₂", "inst✝² : (i : Fin n✝.succ) → Module R (M i)", "inst✝¹ : Module R M'", "inst✝ : Module R M₂", "ι' : Type u_1", "k l n : ℕ", "s : Finset (Fin n)", "hk : s.card = k", "hl : sᶜ.card = l", "f : MultilinearMap R (fun x => M') M₂", "x y : M'"], "goal": "((((curryFinFinset R M₂ M' hk hl) f) fun x_1 => x) fun x => y) = f (s.piecewise (fun x_1 => x) fun x => y)"}], "premise": [2100, 2101, 86202], "state_str": "R : Type uR\nS : Type uS\nι : Type uι\nn✝ : ℕ\nM : Fin n✝.succ → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : (i : Fin n✝.succ) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M₂\ninst✝² : (i : Fin n✝.succ) → Module R (M i)\ninst✝¹ : Module R M'\ninst✝ : Module R M₂\nι' : Type u_1\nk l n : ℕ\ns : Finset (Fin n)\nhk : s.card = k\nhl : sᶜ.card = l\nf : MultilinearMap R (fun x => M') M₂\nx y : M'\n⊢ ((((curryFinFinset R M₂ M' hk hl) f) fun x_1 => x) fun x => y) = f (s.piecewise (fun x_1 => x) fun x => y)"} +{"state": [{"context": ["R : Type uR", "S : Type uS", "ι : Type uι", "n✝ : ℕ", "M : Fin n✝.succ → Type v", "M₁ : ι → Type v₁", "M₂ : Type v₂", "M₃ : Type v₃", "M' : Type v'", "inst✝⁶ : CommSemiring R", "inst✝⁵ : (i : Fin n✝.succ) → AddCommMonoid (M i)", "inst✝⁴ : AddCommMonoid M'", "inst✝³ : AddCommMonoid M₂", "inst✝² : (i : Fin n✝.succ) → Module R (M i)", "inst✝¹ : Module R M'", "inst✝ : Module R M₂", "ι' : Type u_1", "k l n : ℕ", "s : Finset (Fin n)", "hk : s.card = k", "hl : sᶜ.card = l", "f : MultilinearMap R (fun x => M') M₂", "x y : M'"], "goal": "((curryFinFinset R M₂ M' hk hl).symm ((curryFinFinset R M₂ M' hk hl) f)) (s.piecewise (fun x_1 => x) fun x => y) = f (s.piecewise (fun x_1 => x) fun x => y)"}], "premise": [110524], "state_str": "R : Type uR\nS : Type uS\nι : Type uι\nn✝ : ℕ\nM : Fin n✝.succ → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : (i : Fin n✝.succ) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M₂\ninst✝² : (i : Fin n✝.succ) → Module R (M i)\ninst✝¹ : Module R M'\ninst✝ : Module R M₂\nι' : Type u_1\nk l n : ℕ\ns : Finset (Fin n)\nhk : s.card = k\nhl : sᶜ.card = l\nf : MultilinearMap R (fun x => M') M₂\nx y : M'\n⊢ ((curryFinFinset R M₂ M' hk hl).symm ((curryFinFinset R M₂ M' hk hl) f)) (s.piecewise (fun x_1 => x) fun x => y) =\n f (s.piecewise (fun x_1 => x) fun x => y)"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "inst✝¹ : Semigroup R", "inst✝ : StarMul R", "x : R", "hx : IsSelfAdjoint x", "z : R"], "goal": "IsSelfAdjoint (z * x * star z)"}], "premise": [110975, 110982, 111581, 111582, 119703], "state_str": "R : Type u_1\nA : Type u_2\ninst✝¹ : Semigroup R\ninst✝ : StarMul R\nx : R\nhx : IsSelfAdjoint x\nz : R\n⊢ IsSelfAdjoint (z * x * star z)"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "π : ι → Set (Set α)", "hpi : ∀ (x : ι), IsPiSystem (π x)", "S : Set ι", "t1 : Set α", "p1 : Finset ι", "hp1S : ↑p1 ⊆ S", "f1 : ι → Set α", "hf1m : ∀ x ∈ p1, f1 x ∈ π x", "ht1_eq : t1 = ⋂ x ∈ p1, f1 x", "t2 : Set α", "p2 : Finset ι", "hp2S : ↑p2 ⊆ S", "f2 : ι → Set α", "hf2m : ∀ x ∈ p2, f2 x ∈ π x", "ht2_eq : t2 = ⋂ x ∈ p2, f2 x", "h_nonempty : (t1 ∩ t2).Nonempty"], "goal": "t1 ∩ t2 ∈ piiUnionInter π S"}], "premise": [131585], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\nhpi : ∀ (x : ι), IsPiSystem (π x)\nS : Set ι\nt1 : Set α\np1 : Finset ι\nhp1S : ↑p1 ⊆ S\nf1 : ι → Set α\nhf1m : ∀ x ∈ p1, f1 x ∈ π x\nht1_eq : t1 = ⋂ x ∈ p1, f1 x\nt2 : Set α\np2 : Finset ι\nhp2S : ↑p2 ⊆ S\nf2 : ι → Set α\nhf2m : ∀ x ∈ p2, f2 x ∈ π x\nht2_eq : t2 = ⋂ x ∈ p2, f2 x\nh_nonempty : (t1 ∩ t2).Nonempty\n⊢ t1 ∩ t2 ∈ piiUnionInter π S"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "π : ι → Set (Set α)", "hpi : ∀ (x : ι), IsPiSystem (π x)", "S : Set ι", "t1 : Set α", "p1 : Finset ι", "hp1S : ↑p1 ⊆ S", "f1 : ι → Set α", "hf1m : ∀ x ∈ p1, f1 x ∈ π x", "ht1_eq : t1 = ⋂ x ∈ p1, f1 x", "t2 : Set α", "p2 : Finset ι", "hp2S : ↑p2 ⊆ S", "f2 : ι → Set α", "hf2m : ∀ x ∈ p2, f2 x ∈ π x", "ht2_eq : t2 = ⋂ x ∈ p2, f2 x", "h_nonempty : (t1 ∩ t2).Nonempty", "g : ι → Set α := fun n => (if n ∈ p1 then f1 n else univ) ∩ if n ∈ p2 then f2 n else univ"], "goal": "∃ t, ∃ (_ : ↑t ⊆ S), ∃ f, ∃ (_ : ∀ x ∈ t, f x ∈ π x), t1 ∩ t2 = ⋂ x ∈ t, f x"}], "premise": [1957, 133422, 138864], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\nhpi : ∀ (x : ι), IsPiSystem (π x)\nS : Set ι\nt1 : Set α\np1 : Finset ι\nhp1S : ↑p1 ⊆ S\nf1 : ι → Set α\nhf1m : ∀ x ∈ p1, f1 x ∈ π x\nht1_eq : t1 = ⋂ x ∈ p1, f1 x\nt2 : Set α\np2 : Finset ι\nhp2S : ↑p2 ⊆ S\nf2 : ι → Set α\nhf2m : ∀ x ∈ p2, f2 x ∈ π x\nht2_eq : t2 = ⋂ x ∈ p2, f2 x\nh_nonempty : (t1 ∩ t2).Nonempty\ng : ι → Set α := fun n => (if n ∈ p1 then f1 n else univ) ∩ if n ∈ p2 then f2 n else univ\n⊢ ∃ t, ∃ (_ : ↑t ⊆ S), ∃ f, ∃ (_ : ∀ x ∈ t, f x ∈ π x), t1 ∩ t2 = ⋂ x ∈ t, f x"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "π : ι → Set (Set α)", "hpi : ∀ (x : ι), IsPiSystem (π x)", "S : Set ι", "t1 : Set α", "p1 : Finset ι", "hp1S : ↑p1 ⊆ S", "f1 : ι → Set α", "hf1m : ∀ x ∈ p1, f1 x ∈ π x", "ht1_eq : t1 = ⋂ x ∈ p1, f1 x", "t2 : Set α", "p2 : Finset ι", "hp2S : ↑p2 ⊆ S", "f2 : ι → Set α", "hf2m : ∀ x ∈ p2, f2 x ∈ π x", "ht2_eq : t2 = ⋂ x ∈ p2, f2 x", "h_nonempty : (t1 ∩ t2).Nonempty", "g : ι → Set α := fun n => (if n ∈ p1 then f1 n else univ) ∩ if n ∈ p2 then f2 n else univ", "hp_union_ss : ↑(p1 ∪ p2) ⊆ S"], "goal": "∃ t, ∃ (_ : ↑t ⊆ S), ∃ f, ∃ (_ : ∀ x ∈ t, f x ∈ π x), t1 ∩ t2 = ⋂ x ∈ t, f x"}], "premise": [1674, 2045], "state_str": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\nhpi : ∀ (x : ι), IsPiSystem (π x)\nS : Set ι\nt1 : Set α\np1 : Finset ι\nhp1S : ↑p1 ⊆ S\nf1 : ι → Set α\nhf1m : ∀ x ∈ p1, f1 x ∈ π x\nht1_eq : t1 = ⋂ x ∈ p1, f1 x\nt2 : Set α\np2 : Finset ι\nhp2S : ↑p2 ⊆ S\nf2 : ι → Set α\nhf2m : ∀ x ∈ p2, f2 x ∈ π x\nht2_eq : t2 = ⋂ x ∈ p2, f2 x\nh_nonempty : (t1 ∩ t2).Nonempty\ng : ι → Set α := fun n => (if n ∈ p1 then f1 n else univ) ∩ if n ∈ p2 then f2 n else univ\nhp_union_ss : ↑(p1 ∪ p2) ⊆ S\n⊢ ∃ t, ∃ (_ : ↑t ⊆ S), ∃ f, ∃ (_ : ∀ x ∈ t, f x ∈ π x), t1 ∩ t2 = ⋂ x ∈ t, f x"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Sort x", "κ : ι → Sort u_1", "a a₁ a₂ : α", "b b₁ b₂ : β", "inst✝¹ : CompleteLattice α", "inst✝ : CompleteLattice β", "l : α → β", "u : β → α", "gc : GaloisConnection l u", "f : ι → α"], "goal": "IsLUB (range (l ∘ f)) (l (iSup f))"}], "premise": [19267, 134180], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\nκ : ι → Sort u_1\na a₁ a₂ : α\nb b₁ b₂ : β\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nl : α → β\nu : β → α\ngc : GaloisConnection l u\nf : ι → α\n⊢ IsLUB (range (l ∘ f)) (l (iSup f))"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "ι : Sort x", "κ : ι → Sort u_1", "a a₁ a₂ : α", "b b₁ b₂ : β", "inst✝¹ : CompleteLattice α", "inst✝ : CompleteLattice β", "l : α → β", "u : β → α", "gc : GaloisConnection l u", "f : ι → α"], "goal": "IsLUB (l '' range f) (l (sSup (range f)))"}], "premise": [12771, 19204], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\nκ : ι → Sort u_1\na a₁ a₂ : α\nb b₁ b₂ : β\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nl : α → β\nu : β → α\ngc : GaloisConnection l u\nf : ι → α\n⊢ IsLUB (l '' range f) (l (sSup (range f)))"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "inst✝⁵ : TopologicalSpace X", "inst✝⁴ : TopologicalSpace Y", "inst✝³ : TopologicalSpace Z", "inst✝² : TopologicalSpace W", "inst✝¹ : TopologicalSpace ε", "inst✝ : TopologicalSpace ζ", "t : Set X", "ht : t ∈ inst✝⁵.1"], "goal": "IsOpen t ∧ IsOpen univ ∧ Prod.fst ⁻¹' t = t ×ˢ univ"}], "premise": [131599], "state_str": "X : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\ninst✝⁵ : TopologicalSpace X\ninst✝⁴ : TopologicalSpace Y\ninst✝³ : TopologicalSpace Z\ninst✝² : TopologicalSpace W\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\nt : Set X\nht : t ∈ inst✝⁵.1\n⊢ IsOpen t ∧ IsOpen univ ∧ Prod.fst ⁻¹' t = t ×ˢ univ"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type u_1", "W : Type u_2", "ε : Type u_3", "ζ : Type u_4", "inst✝⁵ : TopologicalSpace X", "inst✝⁴ : TopologicalSpace Y", "inst✝³ : TopologicalSpace Z", "inst✝² : TopologicalSpace W", "inst✝¹ : TopologicalSpace ε", "inst✝ : TopologicalSpace ζ", "t : Set Y", "ht : t ∈ inst✝⁴.1"], "goal": "IsOpen univ ∧ IsOpen t ∧ Prod.snd ⁻¹' t = univ ×ˢ t"}], "premise": [131599], "state_str": "X : Type u\nY : Type v\nZ : Type u_1\nW : Type u_2\nε : Type u_3\nζ : Type u_4\ninst✝⁵ : TopologicalSpace X\ninst✝⁴ : TopologicalSpace Y\ninst✝³ : TopologicalSpace Z\ninst✝² : TopologicalSpace W\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\nt : Set Y\nht : t ∈ inst✝⁴.1\n⊢ IsOpen univ ∧ IsOpen t ∧ Prod.snd ⁻¹' t = univ ×ˢ t"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "r : ℝ", "h₁ : 0 ≤ r", "h₂ : r < 1", "this✝ : r ≠ 1", "this : Tendsto (fun n => (r ^ n - 1) * (r - 1)⁻¹) atTop (𝓝 ((0 - 1) * (r - 1)⁻¹))"], "goal": "Tendsto (fun n => ∑ i ∈ Finset.range n, r ^ i) atTop (𝓝 (1 - r)⁻¹)"}], "premise": [112501, 115837, 119790], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nr : ℝ\nh₁ : 0 ≤ r\nh₂ : r < 1\nthis✝ : r ≠ 1\nthis : Tendsto (fun n => (r ^ n - 1) * (r - 1)⁻¹) atTop (𝓝 ((0 - 1) * (r - 1)⁻¹))\n⊢ Tendsto (fun n => ∑ i ∈ Finset.range n, r ^ i) atTop (𝓝 (1 - r)⁻¹)"} +{"state": [{"context": ["a : ℕ", "a1 : 1 < a", "n : ℕ", "h : 2 * xn a1 n = xn a1 (n + 1)"], "goal": "a = 2 ∧ n = 0"}], "premise": [22482, 119707], "state_str": "a : ℕ\na1 : 1 < a\nn : ℕ\nh : 2 * xn a1 n = xn a1 (n + 1)\n⊢ a = 2 ∧ n = 0"} +{"state": [{"context": ["a : ℕ", "a1 : 1 < a", "n : ℕ", "h : xn a1 n * 2 = xn a1 n * a + Pell.d a1 * yn a1 n"], "goal": "a = 2 ∧ n = 0"}], "premise": [2112, 3735, 3785, 3850, 14283, 14288, 22478, 22512], "state_str": "a : ℕ\na1 : 1 < a\nn : ℕ\nh : xn a1 n * 2 = xn a1 n * a + Pell.d a1 * yn a1 n\n⊢ a = 2 ∧ n = 0"} +{"state": [{"context": ["a : ℕ", "a1 : 1 < a", "h : 2 = a"], "goal": "a = 2 ∧ 0 = 0"}], "premise": [2100], "state_str": "case refl\na : ℕ\na1 : 1 < a\nh : 2 = a\n⊢ a = 2 ∧ 0 = 0"} +{"state": [{"context": ["a : ℝ", "s : ℂ", "hs : 1 < s.re"], "goal": "HasSum (fun n => ↑(Real.cos (2 * π * a * ↑n)) / ↑n ^ s) (cosZeta (↑a) s)"}], "premise": [23515, 63937], "state_str": "a : ℝ\ns : ℂ\nhs : 1 < s.re\n⊢ HasSum (fun n => ↑(Real.cos (2 * π * a * ↑n)) / ↑n ^ s) (cosZeta (↑a) s)"} +{"state": [{"context": ["a : ℝ", "s : ℂ", "hs : 1 < s.re", "this : HasSum (fun n => cexp (2 * ↑π * I * ↑a * ↑↑n) / ↑|↑n| ^ s / 2 + cexp (2 * ↑π * I * ↑a * ↑(-↑n)) / ↑|(-↑n)| ^ s / 2) (cosZeta (↑a) s + cexp (2 * ↑π * I * ↑a * ↑0) / ↑|0| ^ s / 2)"], "goal": "HasSum (fun n => ↑(Real.cos (2 * π * a * ↑n)) / ↑n ^ s) (cosZeta (↑a) s)"}], "premise": [39263, 105279, 105293, 108302, 108303, 115817, 117895, 119729, 122241, 128749, 128750, 128753, 142644, 148270], "state_str": "a : ℝ\ns : ℂ\nhs : 1 < s.re\nthis :\n HasSum (fun n => cexp (2 * ↑π * I * ↑a * ↑↑n) / ↑|↑n| ^ s / 2 + cexp (2 * ↑π * I * ↑a * ↑(-↑n)) / ↑|(-↑n)| ^ s / 2)\n (cosZeta (↑a) s + cexp (2 * ↑π * I * ↑a * ↑0) / ↑|0| ^ s / 2)\n⊢ HasSum (fun n => ↑(Real.cos (2 * π * a * ↑n)) / ↑n ^ s) (cosZeta (↑a) s)"} +{"state": [{"context": ["a : ℝ", "s : ℂ", "hs : 1 < s.re", "this : HasSum (fun n => (cexp (2 * ↑π * I * ↑a * ↑n) + cexp (-(2 * ↑π * I * ↑a * ↑n))) / 2 / ↑n ^ s) (cosZeta (↑a) s)"], "goal": "HasSum (fun n => ↑(Real.cos (2 * π * a * ↑n)) / ↑n ^ s) (cosZeta (↑a) s)"}], "premise": [122240], "state_str": "a : ℝ\ns : ℂ\nhs : 1 < s.re\nthis : HasSum (fun n => (cexp (2 * ↑π * I * ↑a * ↑n) + cexp (-(2 * ↑π * I * ↑a * ↑n))) / 2 / ↑n ^ s) (cosZeta (↑a) s)\n⊢ HasSum (fun n => ↑(Real.cos (2 * π * a * ↑n)) / ↑n ^ s) (cosZeta (↑a) s)"} +{"state": [{"context": ["a : ℝ", "s : ℂ", "hs : 1 < s.re", "this : HasSum (fun n => (cexp (2 * ↑π * I * ↑a * ↑n) + cexp (-(2 * ↑π * I * ↑a * ↑n))) / 2 / ↑n ^ s) (cosZeta (↑a) s)"], "goal": "HasSum (fun n => (cexp (2 * ↑π * ↑a * ↑n * I) + cexp (-(2 * ↑π * ↑a * ↑n * I))) / 2 / ↑n ^ s) (cosZeta (↑a) s)"}], "premise": [64063], "state_str": "a : ℝ\ns : ℂ\nhs : 1 < s.re\nthis : HasSum (fun n => (cexp (2 * ↑π * I * ↑a * ↑n) + cexp (-(2 * ↑π * I * ↑a * ↑n))) / 2 / ↑n ^ s) (cosZeta (↑a) s)\n⊢ HasSum (fun n => (cexp (2 * ↑π * ↑a * ↑n * I) + cexp (-(2 * ↑π * ↑a * ↑n * I))) / 2 / ↑n ^ s) (cosZeta (↑a) s)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Monoid α", "inst✝² : Monoid β", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "a b : α"], "goal": "(∀ (n : ℕ), ¬¬a ^ (n + 1) ∣ b) ↔ ∀ (n : ℕ), a ^ n ∣ b"}], "premise": [1095], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Monoid α\ninst✝² : Monoid β\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\n⊢ (∀ (n : ℕ), ¬¬a ^ (n + 1) ∣ b) ↔ ∀ (n : ℕ), a ^ n ∣ b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Monoid α", "inst✝² : Monoid β", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "a b : α"], "goal": "(∀ (n : ℕ), a ^ (n + 1) ∣ b) ↔ ∀ (n : ℕ), a ^ n ∣ b"}], "premise": [108887, 119739], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Monoid α\ninst✝² : Monoid β\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\n⊢ (∀ (n : ℕ), a ^ (n + 1) ∣ b) ↔ ∀ (n : ℕ), a ^ n ∣ b"} +{"state": [{"context": ["a b✝ c b x : ℕ"], "goal": "x ∈ Iio b ↔ x ∈ range b"}], "premise": [1713, 19603, 139145], "state_str": "case h.a\na b✝ c b x : ℕ\n⊢ x ∈ Iio b ↔ x ∈ range b"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁶ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "E : Type w", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x✝ : 𝕜", "s t : Set 𝕜", "L L₁ L₂ : Filter 𝕜", "R : Type u_1", "inst✝¹ : CommSemiring R", "inst✝ : Algebra R 𝕜", "p : 𝕜[X]", "q : R[X]", "x : 𝕜"], "goal": "HasStrictDerivAt (fun x => eval x p) (eval x (derivative p)) x"}], "premise": [44055, 44450, 45320, 101102, 119703], "state_str": "𝕜 : Type u\ninst✝⁶ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nE : Type w\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Algebra R 𝕜\np : 𝕜[X]\nq : R[X]\nx : 𝕜\n⊢ HasStrictDerivAt (fun x => eval x p) (eval x (derivative p)) x"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "α : Type u_4", "inst✝⁷ : Fintype l", "inst✝⁶ : Fintype m", "inst✝⁵ : Fintype n", "inst✝⁴ : DecidableEq l", "inst✝³ : DecidableEq m", "inst✝² : DecidableEq n", "inst✝¹ : CommRing α", "ι : Type u_5", "inst✝ : Unique ι", "u v : m → α"], "goal": "(1 + col ι u * row ι v).det = 1 + v ⬝ᵥ u"}], "premise": [86013, 86446, 120650, 137767, 142183], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nα : Type u_4\ninst✝⁷ : Fintype l\ninst✝⁶ : Fintype m\ninst✝⁵ : Fintype n\ninst✝⁴ : DecidableEq l\ninst✝³ : DecidableEq m\ninst✝² : DecidableEq n\ninst✝¹ : CommRing α\nι : Type u_5\ninst✝ : Unique ι\nu v : m → α\n⊢ (1 + col ι u * row ι v).det = 1 + v ⬝ᵥ u"} +{"state": [{"context": ["Ω : Type u_1", "inst✝¹ : MeasurableSpace Ω", "inst✝ : MeasurableSingletonClass Ω", "s t u : Set Ω", "hs : s.Finite"], "goal": "(condCount s) (s ∩ t) = (condCount s) t"}], "premise": [27992, 73025], "state_str": "Ω : Type u_1\ninst✝¹ : MeasurableSpace Ω\ninst✝ : MeasurableSingletonClass Ω\ns t u : Set Ω\nhs : s.Finite\n⊢ (condCount s) (s ∩ t) = (condCount s) t"} +{"state": [{"context": ["a : UnitAddCircle", "x : ℝ", "hx : x ≤ 0"], "goal": "oddKernel a x = 0"}], "premise": [6915], "state_str": "a : UnitAddCircle\nx : ℝ\nhx : x ≤ 0\n⊢ oddKernel a x = 0"} +{"state": [{"context": ["x : ℝ", "hx : x ≤ 0", "a' : ℝ"], "goal": "oddKernel (↑a') x = 0"}], "premise": [22219, 22221, 22972, 108302, 108558, 119727, 148280, 148289, 148320], "state_str": "case H\nx : ℝ\nhx : x ≤ 0\na' : ℝ\n⊢ oddKernel (↑a') x = 0"} +{"state": [{"context": ["k : ℕ", "h : k ≠ 0", "hn : ℕ"], "goal": "(hn + 1).primeFactorsList <+ ((hn + 1) * k).primeFactorsList"}], "premise": [130810, 143719], "state_str": "case succ\nk : ℕ\nh : k ≠ 0\nhn : ℕ\n⊢ (hn + 1).primeFactorsList <+ ((hn + 1) * k).primeFactorsList"} +{"state": [{"context": ["k : ℕ", "h : k ≠ 0", "hn : ℕ"], "goal": "(hn + 1).primeFactorsList <+~ ((hn + 1) * k).primeFactorsList"}], "premise": [802, 3849, 143731], "state_str": "k : ℕ\nh : k ≠ 0\nhn : ℕ\n⊢ (hn + 1).primeFactorsList <+~ ((hn + 1) * k).primeFactorsList"} +{"state": [{"context": ["k : ℕ", "h : k ≠ 0", "hn : ℕ"], "goal": "(hn + 1).primeFactorsList <+~ hn.succ.primeFactorsList ++ k.primeFactorsList"}], "premise": [804, 1294], "state_str": "k : ℕ\nh : k ≠ 0\nhn : ℕ\n⊢ (hn + 1).primeFactorsList <+~ hn.succ.primeFactorsList ++ k.primeFactorsList"} +{"state": [{"context": ["T : ℝ", "n : ℤ", "x : AddCircle T"], "goal": "↑(-(n • x)).toCircle = (starRingEnd ℂ) ((fourier n) x)"}], "premise": [41724, 110032], "state_str": "T : ℝ\nn : ℤ\nx : AddCircle T\n⊢ ↑(-(n • x)).toCircle = (starRingEnd ℂ) ((fourier n) x)"} +{"state": [{"context": ["T : ℝ", "n : ℤ", "x : AddCircle T"], "goal": "(fourier (-n)) x = (starRingEnd ℂ) ((fourier n) x)"}], "premise": [41731], "state_str": "T : ℝ\nn : ℤ\nx : AddCircle T\n⊢ (fourier (-n)) x = (starRingEnd ℂ) ((fourier n) x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s t u : Set α", "mα : MeasurableSpace α", "inst✝¹ : MeasurableSpace β", "inst✝ : MeasurableSpace γ", "f : α → β", "g✝ : β → γ", "hf : MeasurableEmbedding f", "g : α → γ", "g' : β → γ", "hg : Measurable g", "hg' : Measurable g'"], "goal": "Measurable (extend f g g')"}], "premise": [28192, 28847], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns t u : Set α\nmα : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nf : α → β\ng✝ : β → γ\nhf : MeasurableEmbedding f\ng : α → γ\ng' : β → γ\nhg : Measurable g\nhg' : Measurable g'\n⊢ Measurable (extend f g g')"} +{"state": [{"context": ["s : Finset ℕ", "n✝ : ℕ", "hsub : s ⊆ (n✝ + 1).properDivisors"], "goal": "∑ x ∈ s, x = ∑ x ∈ (n✝ + 1).properDivisors, x → s = (n✝ + 1).properDivisors"}], "premise": [3744, 21800, 53688, 103903, 107019, 119704, 119727, 119729, 126913, 126952, 138688, 138727, 139024, 139035], "state_str": "case succ\ns : Finset ℕ\nn✝ : ℕ\nhsub : s ⊆ (n✝ + 1).properDivisors\n⊢ ∑ x ∈ s, x = ∑ x ∈ (n✝ + 1).properDivisors, x → s = (n✝ + 1).properDivisors"} +{"state": [{"context": ["a b : ℝ", "n : ℕ"], "goal": "(∫ (x : ℝ) in a..b, cos x ^ (n + 2)) * (↑n + 2) = cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n"}], "premise": [1673, 40794, 118010], "state_str": "a b : ℝ\nn : ℕ\n⊢ (∫ (x : ℝ) in a..b, cos x ^ (n + 2)) * (↑n + 2) =\n cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n"} +{"state": [{"context": ["F : Type u_1", "X : Type u", "Y : Type v", "Z : Type w", "Z' : Type x", "ι : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "inst✝¹ : TopologicalSpace Z", "inst✝ : TopologicalSpace Z'", "S : Set X"], "goal": "∀ {x y : C(X, Y)}, x.HomotopicRel y S → y.HomotopicRel x S"}], "premise": [56782], "state_str": "F : Type u_1\nX : Type u\nY : Type v\nZ : Type w\nZ' : Type x\nι : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\ninst✝¹ : TopologicalSpace Z\ninst✝ : TopologicalSpace Z'\nS : Set X\n⊢ ∀ {x y : C(X, Y)}, x.HomotopicRel y S → y.HomotopicRel x S"} +{"state": [{"context": ["F : Type u_1", "X : Type u", "Y : Type v", "Z : Type w", "Z' : Type x", "ι : Type u_2", "inst✝³ : TopologicalSpace X", "inst✝² : TopologicalSpace Y", "inst✝¹ : TopologicalSpace Z", "inst✝ : TopologicalSpace Z'", "S : Set X"], "goal": "∀ {x y z : C(X, Y)}, x.HomotopicRel y S → y.HomotopicRel z S → x.HomotopicRel z S"}], "premise": [56783], "state_str": "F : Type u_1\nX : Type u\nY : Type v\nZ : Type w\nZ' : Type x\nι : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\ninst✝¹ : TopologicalSpace Z\ninst✝ : TopologicalSpace Z'\nS : Set X\n⊢ ∀ {x y z : C(X, Y)}, x.HomotopicRel y S → y.HomotopicRel z S → x.HomotopicRel z S"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝² : NormedDivisionRing 𝕜", "α : Type u_2", "E : Type u_3", "inst✝¹ : AddCommGroup E", "inst✝ : Module 𝕜 E", "c : 𝕜", "s t : Set E", "x y : E", "r : ℝ≥0∞", "hs : s.Nonempty"], "goal": "egauge 𝕜 s 0 = 0"}], "premise": [132957], "state_str": "𝕜 : Type u_1\ninst✝² : NormedDivisionRing 𝕜\nα : Type u_2\nE : Type u_3\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nc : 𝕜\ns t : Set E\nx y : E\nr : ℝ≥0∞\nhs : s.Nonempty\n⊢ egauge 𝕜 s 0 = 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝² : NormedDivisionRing 𝕜", "α : Type u_2", "E : Type u_3", "inst✝¹ : AddCommGroup E", "inst✝ : Module 𝕜 E", "c : 𝕜", "s t : Set E", "x y : E", "r : ℝ≥0∞", "hs : s.Nonempty", "this : 0 ∈ 0 • s"], "goal": "egauge 𝕜 s 0 = 0"}], "premise": [35024], "state_str": "𝕜 : Type u_1\ninst✝² : NormedDivisionRing 𝕜\nα : Type u_2\nE : Type u_3\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nc : 𝕜\ns t : Set E\nx y : E\nr : ℝ≥0∞\nhs : s.Nonempty\nthis : 0 ∈ 0 • s\n⊢ egauge 𝕜 s 0 = 0"} +{"state": [{"context": ["α : Type u", "a : α", "s t : Set α", "x : α", "H : {x}.Nontrivial"], "goal": "False"}], "premise": [132293, 133516], "state_str": "α : Type u\na : α\ns t : Set α\nx : α\nH : {x}.Nontrivial\n⊢ False"} +{"state": [{"context": ["α : Type u", "a : α", "s t : Set α", "x : α", "H : ∃ y ∈ {x}, y ≠ x", "y : α", "hy : y ∈ {x}", "hya : y ≠ x"], "goal": "False"}], "premise": [1673, 133512], "state_str": "α : Type u\na : α\ns t : Set α\nx : α\nH : ∃ y ∈ {x}, y ≠ x\ny : α\nhy : y ∈ {x}\nhya : y ≠ x\n⊢ False"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "N : Type u_3", "inst✝⁴ : CommRing R", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : AddCommGroup N", "inst✝ : Module R N", "p : PerfectPairing R M N", "x : M"], "goal": "(↑p.toDualRight.symm.dualMap ∘ₗ ↑p.toDualLeft) x = (Dual.eval R M) x"}], "premise": [85596], "state_str": "case h\nR : Type u_1\nM : Type u_2\nN : Type u_3\ninst✝⁴ : CommRing R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : AddCommGroup N\ninst✝ : Module R N\np : PerfectPairing R M N\nx : M\n⊢ (↑p.toDualRight.symm.dualMap ∘ₗ ↑p.toDualLeft) x = (Dual.eval R M) x"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "κ : ι → Sort w'", "inst✝ : Frame α", "s t : Set α", "a✝ b : α", "f : (i : ι) → κ i → α", "a : α"], "goal": "a ⊓ ⨆ i, ⨆ j, f i j = ⨆ i, ⨆ j, a ⊓ f i j"}], "premise": [14969], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nκ : ι → Sort w'\ninst✝ : Frame α\ns t : Set α\na✝ b : α\nf : (i : ι) → κ i → α\na : α\n⊢ a ⊓ ⨆ i, ⨆ j, f i j = ⨆ i, ⨆ j, a ⊓ f i j"} +{"state": [{"context": ["α : Type u_1", "N : α → Type u_2", "inst✝² : DecidableEq α", "inst✝¹ : (a : α) → DecidableEq (N a)", "inst✝ : (a : α) → Zero (N a)", "f✝ g✝ f g : Π₀ (a : α), N a", "a : α"], "goal": "a ∈ f.neLocus g ↔ f a ≠ g a"}], "premise": [1214, 70132, 138858, 139089, 148948], "state_str": "α : Type u_1\nN : α → Type u_2\ninst✝² : DecidableEq α\ninst✝¹ : (a : α) → DecidableEq (N a)\ninst✝ : (a : α) → Zero (N a)\nf✝ g✝ f g : Π₀ (a : α), N a\na : α\n⊢ a ∈ f.neLocus g ↔ f a ≠ g a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α × β → ℚ → ℝ", "inst✝ : IsFiniteKernel κ", "hf : IsRatCondKernelCDF f κ ν", "a : α", "x : ℝ", "s : Set β", "hs : MeasurableSet s"], "goal": "∫ (b : β) in s, ↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x ∂ν a = ((κ a) (s ×ˢ Iic x)).toReal"}], "premise": [143160, 143382], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α × β → ℚ → ℝ\ninst✝ : IsFiniteKernel κ\nhf : IsRatCondKernelCDF f κ ν\na : α\nx : ℝ\ns : Set β\nhs : MeasurableSet s\n⊢ ∫ (b : β) in s, ↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x ∂ν a = ((κ a) (s ×ˢ Iic x)).toReal"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α × β → ℚ → ℝ", "inst✝ : IsFiniteKernel κ", "hf : IsRatCondKernelCDF f κ ν", "a : α", "x : ℝ", "s : Set β", "hs : MeasurableSet s"], "goal": "ENNReal.ofReal (∫ (b : β) in s, ↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x ∂ν a) = (κ a) (s ×ˢ Iic x)"}], "premise": [33675, 73864], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α × β → ℚ → ℝ\ninst✝ : IsFiniteKernel κ\nhf : IsRatCondKernelCDF f κ ν\na : α\nx : ℝ\ns : Set β\nhs : MeasurableSet s\n⊢ ENNReal.ofReal (∫ (b : β) in s, ↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x ∂ν a) = (κ a) (s ×ˢ Iic x)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : HeytingAlgebra α", "a b c : α"], "goal": "Disjoint a bᶜᶜ ↔ Disjoint a b"}], "premise": [15127, 15150], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : HeytingAlgebra α\na b c : α\n⊢ Disjoint a bᶜᶜ ↔ Disjoint a b"} +{"state": [{"context": ["G : Type u_1", "inst✝¹ : Group G", "X : Type u_2", "inst✝ : MulAction G X", "hGX : IsPretransitive G X", "B : Set X", "hB : IsBlock G B", "hBe : B.Nonempty"], "goal": "∅ ∉ Set.range fun g => g • B"}, {"context": ["G : Type u_1", "inst✝¹ : Group G", "X : Type u_2", "inst✝ : MulAction G X", "hGX : IsPretransitive G X", "B : Set X", "hB : IsBlock G B", "hBe : B.Nonempty"], "goal": "∀ (a : X), ∃! b, (b ∈ Set.range fun g => g • B) ∧ a ∈ b"}, {"context": ["G : Type u_1", "inst✝¹ : Group G", "X : Type u_2", "inst✝ : MulAction G X", "hGX : IsPretransitive G X", "B : Set X", "hB : IsBlock G B", "hBe : B.Nonempty"], "goal": "∀ b ∈ Set.range fun g => g • B, IsBlock G b"}], "premise": [7803], "state_str": "case nonempty\nG : Type u_1\ninst✝¹ : Group G\nX : Type u_2\ninst✝ : MulAction G X\nhGX : IsPretransitive G X\nB : Set X\nhB : IsBlock G B\nhBe : B.Nonempty\n⊢ ∅ ∉ Set.range fun g => g • B\n\ncase cover\nG : Type u_1\ninst✝¹ : Group G\nX : Type u_2\ninst✝ : MulAction G X\nhGX : IsPretransitive G X\nB : Set X\nhB : IsBlock G B\nhBe : B.Nonempty\n⊢ ∀ (a : X), ∃! b, (b ∈ Set.range fun g => g • B) ∧ a ∈ b\n\ncase mem_blocks\nG : Type u_1\ninst✝¹ : Group G\nX : Type u_2\ninst✝ : MulAction G X\nhGX : IsPretransitive G X\nB : Set X\nhB : IsBlock G B\nhBe : B.Nonempty\n⊢ ∀ b ∈ Set.range fun g => g • B, IsBlock G b"} +{"state": [{"context": ["n✝ b n : ℕ", "n0 : 0 < n", "nb : n < b"], "goal": "b.digits n = [n] ∧ 1 < b ∧ 0 < n"}], "premise": [1673, 1674, 14273, 103886, 145041], "state_str": "n✝ b n : ℕ\nn0 : 0 < n\nnb : n < b\n⊢ b.digits n = [n] ∧ 1 < b ∧ 0 < n"} +{"state": [{"context": ["n✝ b n : ℕ", "n0 : 0 < n", "nb : n < b", "b2 : 1 < b"], "goal": "b.digits n = [n]"}], "premise": [1674, 2134, 4467, 145214, 145889, 145897], "state_str": "n✝ b n : ℕ\nn0 : 0 < n\nnb : n < b\nb2 : 1 < b\n⊢ b.digits n = [n]"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "s : Simplex ℝ P 1"], "goal": "s.circumcenter = centroid ℝ univ s.points"}], "premise": [42504, 84251, 110036, 115882, 118910], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns : Simplex ℝ P 1\n⊢ s.circumcenter = centroid ℝ univ s.points"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "s : Simplex ℝ P 1", "hr : Set.univ.Pairwise fun i j => dist (s.points i) (centroid ℝ univ s.points) = dist (s.points j) (centroid ℝ univ s.points)"], "goal": "s.circumcenter = centroid ℝ univ s.points"}], "premise": [133095], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns : Simplex ℝ P 1\nhr :\n Set.univ.Pairwise fun i j =>\n dist (s.points i) (centroid ℝ univ s.points) = dist (s.points j) (centroid ℝ univ s.points)\n⊢ s.circumcenter = centroid ℝ univ s.points"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "s : Simplex ℝ P 1", "r : ℝ", "hr : ∀ x ∈ Set.univ, dist (s.points x) (centroid ℝ univ s.points) = r"], "goal": "s.circumcenter = centroid ℝ univ s.points"}], "premise": [2100, 72787, 84272, 131586, 141365], "state_str": "case intro\nV : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns : Simplex ℝ P 1\nr : ℝ\nhr : ∀ x ∈ Set.univ, dist (s.points x) (centroid ℝ univ s.points) = r\n⊢ s.circumcenter = centroid ℝ univ s.points"} +{"state": [{"context": ["n : ℕ", "F : TypeVec.{u} (n + 1) → Type u", "q : MvQPF F", "α : TypeVec.{u} n", "β : Type u", "g : F (α ::: β) → β", "x : F (α ::: Fix F α)"], "goal": "rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)"}], "premise": [1829, 1838, 140807, 140812], "state_str": "n : ℕ\nF : TypeVec.{u} (n + 1) → Type u\nq : MvQPF F\nα : TypeVec.{u} n\nβ : Type u\ng : F (α ::: β) → β\nx : F (α ::: Fix F α)\n⊢ rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)"} +{"state": [{"context": ["n : ℕ", "F : TypeVec.{u} (n + 1) → Type u", "q : MvQPF F", "α : TypeVec.{u} n", "β : Type u", "g : F (α ::: β) → β", "x : F (α ::: Fix F α)", "this : recF g ∘ fixToW = rec g", "a : (P F).A", "f : (P F).B a ⟹ α ::: Fix F α", "h : repr x = ⟨a, f⟩"], "goal": "recF g ((P F).wMk' ((TypeVec.id ::: fixToW) <$$> ⟨a, f⟩)) = g ((TypeVec.id ::: rec g) <$$> x)"}], "premise": [128094, 128367, 140806], "state_str": "case mk\nn : ℕ\nF : TypeVec.{u} (n + 1) → Type u\nq : MvQPF F\nα : TypeVec.{u} n\nβ : Type u\ng : F (α ::: β) → β\nx : F (α ::: Fix F α)\nthis : recF g ∘ fixToW = rec g\na : (P F).A\nf : (P F).B a ⟹ α ::: Fix F α\nh : repr x = ⟨a, f⟩\n⊢ recF g ((P F).wMk' ((TypeVec.id ::: fixToW) <$$> ⟨a, f⟩)) = g ((TypeVec.id ::: rec g) <$$> x)"} +{"state": [{"context": ["n : ℕ", "F : TypeVec.{u} (n + 1) → Type u", "q : MvQPF F", "α : TypeVec.{u} n", "β : Type u", "g : F (α ::: β) → β", "x : F (α ::: Fix F α)", "this : recF g ∘ fixToW = rec g", "a : (P F).A", "f : (P F).B a ⟹ α ::: Fix F α", "h : repr x = ⟨a, f⟩"], "goal": "g (abs ((TypeVec.id ::: recF g) <$$> (TypeVec.id ::: fixToW) <$$> ⟨a, f⟩)) = g ((TypeVec.id ::: rec g) <$$> x)"}], "premise": [128096, 137028, 137046, 140325, 140326], "state_str": "case mk\nn : ℕ\nF : TypeVec.{u} (n + 1) → Type u\nq : MvQPF F\nα : TypeVec.{u} n\nβ : Type u\ng : F (α ::: β) → β\nx : F (α ::: Fix F α)\nthis : recF g ∘ fixToW = rec g\na : (P F).A\nf : (P F).B a ⟹ α ::: Fix F α\nh : repr x = ⟨a, f⟩\n⊢ g (abs ((TypeVec.id ::: recF g) <$$> (TypeVec.id ::: fixToW) <$$> ⟨a, f⟩)) = g ((TypeVec.id ::: rec g) <$$> x)"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m' mΩ : MeasurableSpace Ω", "inst✝² : StandardBorelSpace Ω", "inst✝¹ : Nonempty Ω", "hm' : m' ≤ mΩ", "π : ι → Set (Set Ω)", "hπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s", "μ : Measure Ω", "inst✝ : IsFiniteMeasure μ"], "goal": "(∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (a : Ω) ∂μ.trim hm', ((condexpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condexpKernel μ m') a) (f i)) ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']"}], "premise": [72771], "state_str": "Ω : Type u_1\nι : Type u_2\nm' mΩ : MeasurableSpace Ω\ninst✝² : StandardBorelSpace Ω\ninst✝¹ : Nonempty Ω\nhm' : m' ≤ mΩ\nπ : ι → Set (Set Ω)\nhπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\n⊢ (∀ (s : Finset ι) {f : ι → Set Ω},\n (∀ i ∈ s, f i ∈ π i) →\n ∀ᵐ (a : Ω) ∂μ.trim hm', ((condexpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condexpKernel μ m') a) (f i)) ↔\n ∀ (s : Finset ι) {f : ι → Set Ω},\n (∀ i ∈ s, f i ∈ π i) →\n μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m' mΩ : MeasurableSpace Ω", "inst✝² : StandardBorelSpace Ω", "inst✝¹ : Nonempty Ω", "hm' : m' ≤ mΩ", "π : ι → Set (Set Ω)", "hπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s", "μ : Measure Ω", "inst✝ : IsFiniteMeasure μ", "h_eq' : ∀ (s : Finset ι) (f : ι → Set Ω), (∀ i ∈ s, f i ∈ π i) → ∀ i ∈ s, (fun ω => (((condexpKernel μ m') ω) (f i)).toReal) =ᶠ[ae μ] μ[(f i).indicator fun ω => 1|m']"], "goal": "(∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (a : Ω) ∂μ.trim hm', ((condexpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condexpKernel μ m') a) (f i)) ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']"}], "premise": [27609, 132775, 138668], "state_str": "Ω : Type u_1\nι : Type u_2\nm' mΩ : MeasurableSpace Ω\ninst✝² : StandardBorelSpace Ω\ninst✝¹ : Nonempty Ω\nhm' : m' ≤ mΩ\nπ : ι → Set (Set Ω)\nhπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nh_eq' :\n ∀ (s : Finset ι) (f : ι → Set Ω),\n (∀ i ∈ s, f i ∈ π i) →\n ∀ i ∈ s, (fun ω => (((condexpKernel μ m') ω) (f i)).toReal) =ᶠ[ae μ] μ[(f i).indicator fun ω => 1|m']\n⊢ (∀ (s : Finset ι) {f : ι → Set Ω},\n (∀ i ∈ s, f i ∈ π i) →\n ∀ᵐ (a : Ω) ∂μ.trim hm', ((condexpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condexpKernel μ m') a) (f i)) ↔\n ∀ (s : Finset ι) {f : ι → Set Ω},\n (∀ i ∈ s, f i ∈ π i) →\n μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m' mΩ : MeasurableSpace Ω", "inst✝² : StandardBorelSpace Ω", "inst✝¹ : Nonempty Ω", "hm' : m' ≤ mΩ", "π : ι → Set (Set Ω)", "hπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s", "μ : Measure Ω", "inst✝ : IsFiniteMeasure μ", "h_eq' : ∀ (s : Finset ι) (f : ι → Set Ω), (∀ i ∈ s, f i ∈ π i) → ∀ i ∈ s, (fun ω => (((condexpKernel μ m') ω) (f i)).toReal) =ᶠ[ae μ] μ[(f i).indicator fun ω => 1|m']", "h_eq : ∀ (s : Finset ι) (f : ι → Set Ω), (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (ω : Ω) ∂μ, ∀ i ∈ s, (((condexpKernel μ m') ω) (f i)).toReal = (μ[(f i).indicator fun ω => 1|m']) ω"], "goal": "(∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (a : Ω) ∂μ.trim hm', ((condexpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condexpKernel μ m') a) (f i)) ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']"}], "premise": [27966, 72771, 132775], "state_str": "Ω : Type u_1\nι : Type u_2\nm' mΩ : MeasurableSpace Ω\ninst✝² : StandardBorelSpace Ω\ninst✝¹ : Nonempty Ω\nhm' : m' ≤ mΩ\nπ : ι → Set (Set Ω)\nhπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nh_eq' :\n ∀ (s : Finset ι) (f : ι → Set Ω),\n (∀ i ∈ s, f i ∈ π i) →\n ∀ i ∈ s, (fun ω => (((condexpKernel μ m') ω) (f i)).toReal) =ᶠ[ae μ] μ[(f i).indicator fun ω => 1|m']\nh_eq :\n ∀ (s : Finset ι) (f : ι → Set Ω),\n (∀ i ∈ s, f i ∈ π i) →\n ∀ᵐ (ω : Ω) ∂μ, ∀ i ∈ s, (((condexpKernel μ m') ω) (f i)).toReal = (μ[(f i).indicator fun ω => 1|m']) ω\n⊢ (∀ (s : Finset ι) {f : ι → Set Ω},\n (∀ i ∈ s, f i ∈ π i) →\n ∀ᵐ (a : Ω) ∂μ.trim hm', ((condexpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condexpKernel μ m') a) (f i)) ↔\n ∀ (s : Finset ι) {f : ι → Set Ω},\n (∀ i ∈ s, f i ∈ π i) →\n μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "δ : Type u_1", "ι : Sort x", "l f : Filter α", "m : α → β", "m' : β → γ", "s : Set α", "t : Set β"], "goal": "range m ∈ map m f"}], "premise": [134174], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type u_1\nι : Sort x\nl f : Filter α\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\n⊢ range m ∈ map m f"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "δ : Type u_1", "ι : Sort x", "l f : Filter α", "m : α → β", "m' : β → γ", "s : Set α", "t : Set β"], "goal": "m '' univ ∈ map m f"}], "premise": [15883, 16168], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type u_1\nι : Sort x\nl f : Filter α\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\n⊢ m '' univ ∈ map m f"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝² : CommRing K", "inst✝¹ : Field L", "inst✝ : Field F", "i : K →+* L", "f : K[X]"], "goal": "Splits (RingHom.id L) (map i f) ↔ Splits i f"}], "premise": [1713, 101116, 121584], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\n⊢ Splits (RingHom.id L) (map i f) ↔ Splits i f"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : NonPreadditiveAbelian C", "X Y : C", "a : X ⟶ Y"], "goal": "a + -a = 0"}], "premise": [95333, 95339], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na : X ⟶ Y\n⊢ a + -a = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "a✝ b✝ c✝ a b c d : α"], "goal": "|min a b - min c d| ≤ max |a - c| |b - d|"}], "premise": [104508, 104518, 105280, 117888], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\na✝ b✝ c✝ a b c d : α\n⊢ |min a b - min c d| ≤ max |a - c| |b - d|"} +{"state": [{"context": ["α✝ : Type u_1", "inst✝ : TopologicalSpace α✝", "α : Type u_2", "f : Filter α", "u v : α → EReal", "a b : EReal", "ha : limsup u f < a", "hb : limsup v f < b"], "goal": "limsup (u + v) f ≤ a + b"}], "premise": [15928], "state_str": "α✝ : Type u_1\ninst✝ : TopologicalSpace α✝\nα : Type u_2\nf : Filter α\nu v : α → EReal\na b : EReal\nha : limsup u f < a\nhb : limsup v f < b\n⊢ limsup (u + v) f ≤ a + b"} +{"state": [{"context": ["α✝ : Type u_1", "inst✝ : TopologicalSpace α✝", "α : Type u_2", "f : Filter α", "u v : α → EReal", "a b : EReal", "ha : limsup u f < a", "hb : limsup v f < b", "h✝ : f.NeBot"], "goal": "limsup (u + v) f ≤ a + b"}], "premise": [14797], "state_str": "case inr\nα✝ : Type u_1\ninst✝ : TopologicalSpace α✝\nα : Type u_2\nf : Filter α\nu v : α → EReal\na b : EReal\nha : limsup u f < a\nhb : limsup v f < b\nh✝ : f.NeBot\n⊢ limsup (u + v) f ≤ a + b"} +{"state": [{"context": ["α✝ : Type u_1", "inst✝ : TopologicalSpace α✝", "α : Type u_2", "f : Filter α", "u v : α → EReal", "a b : EReal", "ha : limsup u f < a", "hb : limsup v f < b", "h✝ : f.NeBot"], "goal": "limsup (u + v) f ≤ limsup (fun x => a + b) f"}], "premise": [14897, 16019, 16021, 16026, 57005], "state_str": "case inr\nα✝ : Type u_1\ninst✝ : TopologicalSpace α✝\nα : Type u_2\nf : Filter α\nu v : α → EReal\na b : EReal\nha : limsup u f < a\nhb : limsup v f < b\nh✝ : f.NeBot\n⊢ limsup (u + v) f ≤ limsup (fun x => a + b) f"} +{"state": [{"context": ["α✝ : Type u_1", "inst✝ : TopologicalSpace α✝", "α : Type u_2", "f : Filter α", "u v : α → EReal", "a b : EReal", "ha : limsup u f < a", "hb : limsup v f < b", "h✝ : f.NeBot"], "goal": "∀ (x : α), u x < a ∧ v x < b → (u + v) x ≤ a + b"}], "premise": [1186, 120650], "state_str": "α✝ : Type u_1\ninst✝ : TopologicalSpace α✝\nα : Type u_2\nf : Filter α\nu v : α → EReal\na b : EReal\nha : limsup u f < a\nhb : limsup v f < b\nh✝ : f.NeBot\n⊢ ∀ (x : α), u x < a ∧ v x < b → (u + v) x ≤ a + b"} +{"state": [{"context": ["α✝ : Type u_1", "inst✝ : TopologicalSpace α✝", "α : Type u_2", "f : Filter α", "u v : α → EReal", "a b : EReal", "ha : limsup u f < a", "hb : limsup v f < b", "h✝ : f.NeBot", "x : α"], "goal": "u x < a → v x < b → u x + v x ≤ a + b"}], "premise": [14286, 103917], "state_str": "α✝ : Type u_1\ninst✝ : TopologicalSpace α✝\nα : Type u_2\nf : Filter α\nu v : α → EReal\na b : EReal\nha : limsup u f < a\nhb : limsup v f < b\nh✝ : f.NeBot\nx : α\n⊢ u x < a → v x < b → u x + v x ≤ a + b"} +{"state": [{"context": ["G : Type u", "H : Type v", "inst✝² : Mul G", "inst✝¹ : Mul H", "f : H →ₙ* G", "hf : ∀ ⦃a b c d : H⦄, a * b = c * d → f a = f c ∧ f b = f d → a = c ∧ b = d", "inst✝ : UniqueProds G", "A B : Finset H", "A0 : A.Nonempty", "B0 : B.Nonempty"], "goal": "∃ a0 ∈ A, ∃ b0 ∈ B, UniqueMul A B a0 b0"}], "premise": [1673, 122367, 122382, 137413, 137425], "state_str": "G : Type u\nH : Type v\ninst✝² : Mul G\ninst✝¹ : Mul H\nf : H →ₙ* G\nhf : ∀ ⦃a b c d : H⦄, a * b = c * d → f a = f c ∧ f b = f d → a = c ∧ b = d\ninst✝ : UniqueProds G\nA B : Finset H\nA0 : A.Nonempty\nB0 : B.Nonempty\n⊢ ∃ a0 ∈ A, ∃ b0 ∈ B, UniqueMul A B a0 b0"} +{"state": [{"context": ["c : ℝ", "f g : ℕ → Bool", "n : ℕ"], "goal": "#ℝ = 𝔠"}], "premise": [14296], "state_str": "c : ℝ\nf g : ℕ → Bool\nn : ℕ\n⊢ #ℝ = 𝔠"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : TopologicalSpace α", "β : Type u_2", "inst✝ : Preorder β", "f g : α → β", "x : α", "s t : Set α", "y z : β"], "goal": "LowerSemicontinuousWithinAt f univ x ↔ LowerSemicontinuousAt f x"}], "premise": [57165], "state_str": "α : Type u_1\ninst✝¹ : TopologicalSpace α\nβ : Type u_2\ninst✝ : Preorder β\nf g : α → β\nx : α\ns t : Set α\ny z : β\n⊢ LowerSemicontinuousWithinAt f univ x ↔ LowerSemicontinuousAt f x"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P"], "goal": "((Quotient.mk P).comp C).IsIntegral"}], "premise": [80663], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\n⊢ ((Quotient.mk P).comp C).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')"], "goal": "((Quotient.mk P).comp C).IsIntegral"}], "premise": [80150, 102935], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\n⊢ ((Quotient.mk P).comp C).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f"], "goal": "((Quotient.mk P).comp C).IsIntegral"}], "premise": [1673, 14272, 14296, 14519, 14523, 75808, 80142, 80689, 101298, 102924, 102928], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\n⊢ ((Quotient.mk P).comp C).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)"], "goal": "((Quotient.mk P).comp C).IsIntegral"}], "premise": [80924, 81945], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\n⊢ ((Quotient.mk P).comp C).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)"], "goal": "((quotientMap (map (mapRingHom (Quotient.mk (comap C P))) P) (mapRingHom (Quotient.mk (comap C P))) ⋯).comp ((Quotient.mk P).comp C)).IsIntegral"}], "premise": [80925], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\n⊢ ((quotientMap (map (mapRingHom (Quotient.mk (comap C P))) P) (mapRingHom (Quotient.mk (comap C P))) ⋯).comp\n ((Quotient.mk P).comp C)).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)"], "goal": "(((Quotient.mk (map (mapRingHom (Quotient.mk (comap C P))) P)).comp C).comp (Quotient.mk (comap C P))).IsIntegral"}], "premise": [80150, 81940, 81942], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\n⊢ (((Quotient.mk (map (mapRingHom (Quotient.mk (comap C P))) P)).comp C).comp (Quotient.mk (comap C P))).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)"], "goal": "((Quotient.mk (map (mapRingHom (Quotient.mk (comap C P))) P)).comp C).IsIntegral"}], "premise": [20067, 80382, 80651, 80690], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\n⊢ ((Quotient.mk (map (mapRingHom (Quotient.mk (comap C P))) P)).comp C).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this✝ : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)", "this : (map (mapRingHom (Quotient.mk (comap C P))) P).IsMaximal"], "goal": "((Quotient.mk (map (mapRingHom (Quotient.mk (comap C P))) P)).comp C).IsIntegral"}], "premise": [77559], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis✝ : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\nthis : (map (mapRingHom (Quotient.mk (comap C P))) P).IsMaximal\n⊢ ((Quotient.mk (map (mapRingHom (Quotient.mk (comap C P))) P)).comp C).IsIntegral"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this✝ : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)", "this : (map (mapRingHom (Quotient.mk (comap C P))) P).IsMaximal", "x : R ⧸ P'", "hx : C x ∈ map (mapRingHom (Quotient.mk (comap C P))) P"], "goal": "x = 0"}], "premise": [80150], "state_str": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis✝ : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\nthis : (map (mapRingHom (Quotient.mk (comap C P))) P).IsMaximal\nx : R ⧸ P'\nhx : C x ∈ map (mapRingHom (Quotient.mk (comap C P))) P\n⊢ x = 0"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsJacobson R", "P : Ideal R[X]", "hP : P.IsMaximal", "P' : Ideal R := comap C P", "this✝ : P'.IsPrime", "f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')", "hf : Function.Surjective ⇑f", "hPJ : P = comap f (map f P)", "this : (map (mapRingHom (Quotient.mk (comap C P))) P).IsMaximal", "z : R", "hx : C ((Quotient.mk P') z) ∈ map (mapRingHom (Quotient.mk (comap C P))) P"], "goal": "(Quotient.mk P') z = 0"}], "premise": [80142, 80633, 102916, 102924], "state_str": "case intro\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsJacobson R\nP : Ideal R[X]\nhP : P.IsMaximal\nP' : Ideal R := comap C P\nthis✝ : P'.IsPrime\nf : R[X] →+* (R ⧸ P')[X] := mapRingHom (Quotient.mk P')\nhf : Function.Surjective ⇑f\nhPJ : P = comap f (map f P)\nthis : (map (mapRingHom (Quotient.mk (comap C P))) P).IsMaximal\nz : R\nhx : C ((Quotient.mk P') z) ∈ map (mapRingHom (Quotient.mk (comap C P))) P\n⊢ (Quotient.mk P') z = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "m : MeasurableSpace α", "μ✝ ν✝¹ μ ν✝ : Measure α", "f : α → ℝ≥0∞", "ν : Measure α", "inst✝¹ : SigmaFinite μ", "inst✝ : SigmaFinite ν", "hμν : μ ≪ ν", "hf : AEMeasurable f ν"], "goal": "(μ.withDensity f).rnDeriv ν =ᶠ[ae ν] fun x => f x * μ.rnDeriv ν x"}], "premise": [16092, 30047, 34860], "state_str": "α : Type u_1\nβ : Type u_2\nm : MeasurableSpace α\nμ✝ ν✝¹ μ ν✝ : Measure α\nf : α → ℝ≥0∞\nν : Measure α\ninst✝¹ : SigmaFinite μ\ninst✝ : SigmaFinite ν\nhμν : μ ≪ ν\nhf : AEMeasurable f ν\n⊢ (μ.withDensity f).rnDeriv ν =ᶠ[ae ν] fun x => f x * μ.rnDeriv ν x"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "M : Type u_3", "X : Type u_4", "inst✝¹² : Monoid M", "S : Submonoid M", "inst✝¹¹ : OreSet S", "inst✝¹⁰ : MulAction M X", "inst✝⁹ : SMul R X", "inst✝⁸ : SMul R M", "inst✝⁷ : IsScalarTower R M M", "inst✝⁶ : IsScalarTower R M X", "inst✝⁵ : SMul R' X", "inst✝⁴ : SMul R' M", "inst✝³ : IsScalarTower R' M M", "inst✝² : IsScalarTower R' M X", "inst✝¹ : SMul R R'", "inst✝ : IsScalarTower R R' M", "r : R", "x : OreLocalization S X"], "goal": "(r • 1) • x = r • x"}], "premise": [81621], "state_str": "R : Type u_1\nR' : Type u_2\nM : Type u_3\nX : Type u_4\ninst✝¹² : Monoid M\nS : Submonoid M\ninst✝¹¹ : OreSet S\ninst✝¹⁰ : MulAction M X\ninst✝⁹ : SMul R X\ninst✝⁸ : SMul R M\ninst✝⁷ : IsScalarTower R M M\ninst✝⁶ : IsScalarTower R M X\ninst✝⁵ : SMul R' X\ninst✝⁴ : SMul R' M\ninst✝³ : IsScalarTower R' M M\ninst✝² : IsScalarTower R' M X\ninst✝¹ : SMul R R'\ninst✝ : IsScalarTower R R' M\nr : R\nx : OreLocalization S X\n⊢ (r • 1) • x = r • x"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "M : Type u_3", "X : Type u_4", "inst✝¹² : Monoid M", "S : Submonoid M", "inst✝¹¹ : OreSet S", "inst✝¹⁰ : MulAction M X", "inst✝⁹ : SMul R X", "inst✝⁸ : SMul R M", "inst✝⁷ : IsScalarTower R M M", "inst✝⁶ : IsScalarTower R M X", "inst✝⁵ : SMul R' X", "inst✝⁴ : SMul R' M", "inst✝³ : IsScalarTower R' M M", "inst✝² : IsScalarTower R' M X", "inst✝¹ : SMul R R'", "inst✝ : IsScalarTower R R' M", "r : R", "r' : X", "s : ↥S"], "goal": "(r • 1) • (r' /ₒ s) = r • (r' /ₒ s)"}], "premise": [81690, 118863, 119730], "state_str": "case c\nR : Type u_1\nR' : Type u_2\nM : Type u_3\nX : Type u_4\ninst✝¹² : Monoid M\nS : Submonoid M\ninst✝¹¹ : OreSet S\ninst✝¹⁰ : MulAction M X\ninst✝⁹ : SMul R X\ninst✝⁸ : SMul R M\ninst✝⁷ : IsScalarTower R M M\ninst✝⁶ : IsScalarTower R M X\ninst✝⁵ : SMul R' X\ninst✝⁴ : SMul R' M\ninst✝³ : IsScalarTower R' M M\ninst✝² : IsScalarTower R' M X\ninst✝¹ : SMul R R'\ninst✝ : IsScalarTower R R' M\nr : R\nr' : X\ns : ↥S\n⊢ (r • 1) • (r' /ₒ s) = r • (r' /ₒ s)"} +{"state": [{"context": ["α : Type u_1", "G : Type u_2", "inst✝³ : Group G", "inst✝² : MulAction G α", "M : Type u_3", "inst✝¹ : Monoid M", "inst✝ : MulAction M α", "a : α", "g : G"], "goal": "g • a ∈ fixedBy α g ↔ a ∈ fixedBy α g"}], "premise": [7671, 118484], "state_str": "α : Type u_1\nG : Type u_2\ninst✝³ : Group G\ninst✝² : MulAction G α\nM : Type u_3\ninst✝¹ : Monoid M\ninst✝ : MulAction M α\na : α\ng : G\n⊢ g • a ∈ fixedBy α g ↔ a ∈ fixedBy α g"} +{"state": [{"context": ["α : Type u_1", "G : Type u_2", "inst✝³ : Group G", "inst✝² : MulAction G α", "M : Type u_3", "inst✝¹ : Monoid M", "inst✝ : MulAction M α", "a : α", "g : G"], "goal": "g • a = a ↔ a ∈ fixedBy α g"}], "premise": [1713], "state_str": "α : Type u_1\nG : Type u_2\ninst✝³ : Group G\ninst✝² : MulAction G α\nM : Type u_3\ninst✝¹ : Monoid M\ninst✝ : MulAction M α\na : α\ng : G\n⊢ g • a = a ↔ a ∈ fixedBy α g"} +{"state": [{"context": ["α : Type u_1", "β : ?m.5263", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLower α", "s : Set α", "h : s.Finite"], "goal": "IsClosed ↑(upperClosure s)"}], "premise": [21020, 21154], "state_str": "α : Type u_1\nβ : ?m.5263\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLower α\ns : Set α\nh : s.Finite\n⊢ IsClosed ↑(upperClosure s)"} +{"state": [{"context": ["α : Type u_1", "β : ?m.5263", "inst✝² : Preorder α", "inst✝¹ : TopologicalSpace α", "inst✝ : IsLower α", "s : Set α", "h : s.Finite"], "goal": "IsClosed (⋃ i ∈ s, ↑(UpperSet.Ici i))"}], "premise": [54920, 55374], "state_str": "α : Type u_1\nβ : ?m.5263\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : IsLower α\ns : Set α\nh : s.Finite\n⊢ IsClosed (⋃ i ∈ s, ↑(UpperSet.Ici i))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "op : α → α → α", "hc : Std.Commutative op", "ha : Std.Associative op", "inst✝ : DecidableEq α", "s₁ s₂ : Multiset α", "b₁ b₂ : α"], "goal": "op (fold op b₁ (s₁ ∪ s₂)) (fold op b₂ (s₁ ∩ s₂)) = op (fold op b₁ s₁) (fold op b₂ s₂)"}], "premise": [134357, 138084], "state_str": "α : Type u_1\nβ : Type u_2\nop : α → α → α\nhc : Std.Commutative op\nha : Std.Associative op\ninst✝ : DecidableEq α\ns₁ s₂ : Multiset α\nb₁ b₂ : α\n⊢ op (fold op b₁ (s₁ ∪ s₂)) (fold op b₂ (s₁ ∩ s₂)) = op (fold op b₁ s₁) (fold op b₂ s₂)"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L : Filter 𝕜"], "goal": "deriv (fun x => x⁻¹) x = -(x ^ 2)⁻¹"}], "premise": [70039], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\n⊢ deriv (fun x => x⁻¹) x = -(x ^ 2)⁻¹"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "inst✝ : AffineSpace V P", "ι : Type u_4", "p : P", "ps : Set P", "h : p ∈ affineSpan k ps"], "goal": "affineSpan k (insert p ps) = affineSpan k ps"}], "premise": [84401], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : P\nps : Set P\nh : p ∈ affineSpan k ps\n⊢ affineSpan k (insert p ps) = affineSpan k ps"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝³ : Ring k", "inst✝² : AddCommGroup V", "inst✝¹ : Module k V", "inst✝ : AffineSpace V P", "ι : Type u_4", "p : P", "ps : Set P", "h : p ∈ ↑(affineSpan k ps)"], "goal": "affineSpan k (insert p ps) = affineSpan k ps"}], "premise": [84490, 84529, 133488], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : P\nps : Set P\nh : p ∈ ↑(affineSpan k ps)\n⊢ affineSpan k (insert p ps) = affineSpan k ps"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁵ : NormedAddCommGroup V", "inst✝⁴ : InnerProductSpace ℝ V", "inst✝³ : MetricSpace P", "inst✝² : NormedAddTorsor V P", "s : AffineSubspace ℝ P", "inst✝¹ : Nonempty ↥s", "inst✝ : HasOrthogonalProjection s.direction", "p : P"], "goal": "(_root_.orthogonalProjection s.direction) (p -ᵥ ↑((orthogonalProjection s) p)) = 0"}], "premise": [37017], "state_str": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty ↥s\ninst✝ : HasOrthogonalProjection s.direction\np : P\n⊢ (_root_.orthogonalProjection s.direction) (p -ᵥ ↑((orthogonalProjection s) p)) = 0"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝⁵ : NormedAddCommGroup V", "inst✝⁴ : InnerProductSpace ℝ V", "inst✝³ : MetricSpace P", "inst✝² : NormedAddTorsor V P", "s : AffineSubspace ℝ P", "inst✝¹ : Nonempty ↥s", "inst✝ : HasOrthogonalProjection s.direction", "p : P", "c : V", "hc : c ∈ s.direction"], "goal": "⟪c, p -ᵥ ↑((orthogonalProjection s) p)⟫_ℝ = 0"}], "premise": [36789, 69902, 115880, 119802], "state_str": "case hv\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty ↥s\ninst✝ : HasOrthogonalProjection s.direction\np : P\nc : V\nhc : c ∈ s.direction\n⊢ ⟪c, p -ᵥ ↑((orthogonalProjection s) p)⟫_ℝ = 0"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "f✝ : α → β → β", "op : α → α → α", "inst✝¹ : Monoid β", "inst✝ : Monoid γ", "s : Finset α", "f : α → β", "comm : (↑s).Pairwise fun a b => Commute (f a) (f b)"], "goal": "{x | x ∈ Multiset.map f s.val}.Pairwise Commute"}], "premise": [137990], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\nf✝ : α → β → β\nop : α → α → α\ninst✝¹ : Monoid β\ninst✝ : Monoid γ\ns : Finset α\nf : α → β\ncomm : (↑s).Pairwise fun a b => Commute (f a) (f b)\n⊢ {x | x ∈ Multiset.map f s.val}.Pairwise Commute"} +{"state": [{"context": ["s : Finset ℕ", "m n p : ℕ", "hs : ∀ p ∈ s, Prime p"], "goal": "(∏ p ∈ s, p).primeFactors = s"}], "premise": [1674, 123871, 144291], "state_str": "s : Finset ℕ\nm n p : ℕ\nhs : ∀ p ∈ s, Prime p\n⊢ (∏ p ∈ s, p).primeFactors = s"} +{"state": [{"context": ["s : Finset ℕ", "m n p✝ : ℕ", "hs : ∀ p ∈ s, Prime p", "hn : ∏ p ∈ s, p ≠ 0", "p : ℕ"], "goal": "p ∈ (∏ p ∈ s, p).primeFactors ↔ p ∈ s"}], "premise": [1204, 123929, 144166], "state_str": "case a\ns : Finset ℕ\nm n p✝ : ℕ\nhs : ∀ p ∈ s, Prime p\nhn : ∏ p ∈ s, p ≠ 0\np : ℕ\n⊢ p ∈ (∏ p ∈ s, p).primeFactors ↔ p ∈ s"} +{"state": [{"context": ["s : Finset ℕ", "m n p✝ : ℕ", "hs : ∀ p ∈ s, Prime p", "hn : ∏ p ∈ s, p ≠ 0", "p : ℕ"], "goal": "(Prime p ∧ ∃ a ∈ s, p ∣ a) ↔ p ∈ s"}], "premise": [108886], "state_str": "case a\ns : Finset ℕ\nm n p✝ : ℕ\nhs : ∀ p ∈ s, Prime p\nhn : ∏ p ∈ s, p ≠ 0\np : ℕ\n⊢ (Prime p ∧ ∃ a ∈ s, p ∣ a) ↔ p ∈ s"} +{"state": [{"context": ["s : Finset ℕ", "m n p✝ : ℕ", "hs : ∀ p ∈ s, Prime p", "hn : ∏ p ∈ s, p ≠ 0", "p : ℕ", "hp : Prime p", "q : ℕ", "hq : q ∈ s", "hpq : p ∣ q"], "goal": "p ∈ s"}], "premise": [1673, 144296, 144313], "state_str": "case a.intro.intro.intro\ns : Finset ℕ\nm n p✝ : ℕ\nhs : ∀ p ∈ s, Prime p\nhn : ∏ p ∈ s, p ≠ 0\np : ℕ\nhp : Prime p\nq : ℕ\nhq : q ∈ s\nhpq : p ∣ q\n⊢ p ∈ s"} +{"state": [{"context": ["R : Type u_1", "inst✝¹⁶ : CommSemiring R", "S : Submonoid R", "M : Type u_2", "M' : Type u_3", "M'' : Type u_4", "inst✝¹⁵ : AddCommMonoid M", "inst✝¹⁴ : AddCommMonoid M'", "inst✝¹³ : AddCommMonoid M''", "A : Type u_5", "inst✝¹² : CommSemiring A", "inst✝¹¹ : Algebra R A", "inst✝¹⁰ : Module A M'", "inst✝⁹ : IsLocalization S A", "inst✝⁸ : Module R M", "inst✝⁷ : Module R M'", "inst✝⁶ : Module R M''", "inst✝⁵ : IsScalarTower R A M'", "f : M →ₗ[R] M'", "g : M →ₗ[R] M''", "R' : Type u_6", "inst✝⁴ : CommSemiring R'", "inst✝³ : Algebra R R'", "inst✝² : IsLocalization S R'", "inst✝¹ : Module R' M", "inst✝ : IsScalarTower R R' M", "s : ↥S"], "goal": "IsUnit ((algebraMap R (Module.End R M)) ↑s)"}], "premise": [121060], "state_str": "R : Type u_1\ninst✝¹⁶ : CommSemiring R\nS : Submonoid R\nM : Type u_2\nM' : Type u_3\nM'' : Type u_4\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : AddCommMonoid M'\ninst✝¹³ : AddCommMonoid M''\nA : Type u_5\ninst✝¹² : CommSemiring A\ninst✝¹¹ : Algebra R A\ninst✝¹⁰ : Module A M'\ninst✝⁹ : IsLocalization S A\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M'\ninst✝⁶ : Module R M''\ninst✝⁵ : IsScalarTower R A M'\nf : M →ₗ[R] M'\ng : M →ₗ[R] M''\nR' : Type u_6\ninst✝⁴ : CommSemiring R'\ninst✝³ : Algebra R R'\ninst✝² : IsLocalization S R'\ninst✝¹ : Module R' M\ninst✝ : IsScalarTower R R' M\ns : ↥S\n⊢ IsUnit ((algebraMap R (Module.End R M)) ↑s)"} +{"state": [{"context": ["R : Type u_1", "inst✝¹⁶ : CommSemiring R", "S : Submonoid R", "M : Type u_2", "M' : Type u_3", "M'' : Type u_4", "inst✝¹⁵ : AddCommMonoid M", "inst✝¹⁴ : AddCommMonoid M'", "inst✝¹³ : AddCommMonoid M''", "A : Type u_5", "inst✝¹² : CommSemiring A", "inst✝¹¹ : Algebra R A", "inst✝¹⁰ : Module A M'", "inst✝⁹ : IsLocalization S A", "inst✝⁸ : Module R M", "inst✝⁷ : Module R M'", "inst✝⁶ : Module R M''", "inst✝⁵ : IsScalarTower R A M'", "f : M →ₗ[R] M'", "g : M →ₗ[R] M''", "R' : Type u_6", "inst✝⁴ : CommSemiring R'", "inst✝³ : Algebra R R'", "inst✝² : IsLocalization S R'", "inst✝¹ : Module R' M", "inst✝ : IsScalarTower R R' M", "s : ↥S"], "goal": "IsUnit ((Algebra.lsmul R R M) ((algebraMap R R') ↑s))"}], "premise": [77573, 116782], "state_str": "R : Type u_1\ninst✝¹⁶ : CommSemiring R\nS : Submonoid R\nM : Type u_2\nM' : Type u_3\nM'' : Type u_4\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : AddCommMonoid M'\ninst✝¹³ : AddCommMonoid M''\nA : Type u_5\ninst✝¹² : CommSemiring A\ninst✝¹¹ : Algebra R A\ninst✝¹⁰ : Module A M'\ninst✝⁹ : IsLocalization S A\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M'\ninst✝⁶ : Module R M''\ninst✝⁵ : IsScalarTower R A M'\nf : M →ₗ[R] M'\ng : M →ₗ[R] M''\nR' : Type u_6\ninst✝⁴ : CommSemiring R'\ninst✝³ : Algebra R R'\ninst✝² : IsLocalization S R'\ninst✝¹ : Module R' M\ninst✝ : IsScalarTower R R' M\ns : ↥S\n⊢ IsUnit ((Algebra.lsmul R R M) ((algebraMap R R') ↑s))"} +{"state": [{"context": ["α : Type u_1", "M : Matroid α", "I B✝ X B : Set α"], "goal": "B ∈ {B | M✶.Base B} ↔ B ∈ (fun X => M.E \\ X) '' {B | M.Base B}"}], "premise": [131585, 131592, 138632], "state_str": "case h\nα : Type u_1\nM : Matroid α\nI B✝ X B : Set α\n⊢ B ∈ {B | M✶.Base B} ↔ B ∈ (fun X => M.E \\ X) '' {B | M.Base B}"} +{"state": [{"context": ["α : Type u_1", "M : Matroid α", "I B✝ X B : Set α"], "goal": "M.Base (M.E \\ B) ∧ B ⊆ M.E ↔ ∃ x, M.Base x ∧ M.E \\ x = B"}], "premise": [2100, 2106, 2107, 133635, 133689], "state_str": "case h\nα : Type u_1\nM : Matroid α\nI B✝ X B : Set α\n⊢ M.Base (M.E \\ B) ∧ B ⊆ M.E ↔ ∃ x, M.Base x ∧ M.E \\ x = B"} +{"state": [{"context": ["α : Type u_1", "M : Matroid α", "I B✝ X B : Set α", "x✝ : ∃ x, M.Base x ∧ M.E \\ x = B", "B' : Set α", "hB' : M.Base B'", "h : M.E \\ B' = B"], "goal": "M.Base (M.E \\ B)"}], "premise": [133689, 139490], "state_str": "case h\nα : Type u_1\nM : Matroid α\nI B✝ X B : Set α\nx✝ : ∃ x, M.Base x ∧ M.E \\ x = B\nB' : Set α\nhB' : M.Base B'\nh : M.E \\ B' = B\n⊢ M.Base (M.E \\ B)"} +{"state": [{"context": ["Γ : Type u_1", "R : Type u_2", "inst✝² : PartialOrder Γ", "inst✝¹ : Zero R", "a b : Γ", "r : R", "Γ' : Type u_3", "inst✝ : PartialOrder Γ'", "f : Γ ↪o Γ'", "x : HahnSeries Γ R", "g : Γ'", "hg : g ∈ (embDomain f x).support"], "goal": "g ∈ ⇑f '' x.support"}], "premise": [53688], "state_str": "Γ : Type u_1\nR : Type u_2\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_3\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx : HahnSeries Γ R\ng : Γ'\nhg : g ∈ (embDomain f x).support\n⊢ g ∈ ⇑f '' x.support"} +{"state": [{"context": ["Γ : Type u_1", "R : Type u_2", "inst✝² : PartialOrder Γ", "inst✝¹ : Zero R", "a b : Γ", "r : R", "Γ' : Type u_3", "inst✝ : PartialOrder Γ'", "f : Γ ↪o Γ'", "x : HahnSeries Γ R", "g : Γ'", "hg : g ∉ ⇑f '' x.support"], "goal": "g ∉ (embDomain f x).support"}], "premise": [1095, 79284, 79333], "state_str": "Γ : Type u_1\nR : Type u_2\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_3\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx : HahnSeries Γ R\ng : Γ'\nhg : g ∉ ⇑f '' x.support\n⊢ g ∉ (embDomain f x).support"} +{"state": [{"context": ["α : Type u_1", "inst✝ : DecidableEq α", "𝒜 : Finset (Finset α)", "u v a : Finset α", "r : ℕ", "huv : u.card = v.card", "h𝒜 : Set.Sized r ↑𝒜"], "goal": "Set.Sized r ↑(𝓒 u v 𝒜)"}], "premise": [50786, 138668], "state_str": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu v a : Finset α\nr : ℕ\nhuv : u.card = v.card\nh𝒜 : Set.Sized r ↑𝒜\n⊢ Set.Sized r ↑(𝓒 u v 𝒜)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "K : Type u_3", "L : Type u_4", "inst✝¹⁷ : EuclideanDomain R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : IsDomain S", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra R K", "inst✝¹¹ : IsFractionRing R K", "inst✝¹⁰ : Algebra K L", "inst✝⁹ : FiniteDimensional K L", "inst✝⁸ : Algebra.IsSeparable K L", "algRL : Algebra R L", "inst✝⁷ : IsScalarTower R K L", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra S L", "ist : IsScalarTower R S L", "iic : IsIntegralClosure S R L", "abv : AbsoluteValue R ℤ", "ι : Type u_5", "inst✝⁴ : DecidableEq ι", "inst✝³ : Fintype ι", "bS : Basis ι R S", "adm : abv.IsAdmissible", "inst✝² : Infinite R", "inst✝¹ : DecidableEq R", "inst✝ : Algebra.IsAlgebraic R L", "a b : S", "hb : b ≠ 0"], "goal": "∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"}], "premise": [71025, 76628, 81926, 121201], "state_str": "R : Type u_1\nS : Type u_2\nK : Type u_3\nL : Type u_4\ninst✝¹⁷ : EuclideanDomain R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : IsDomain S\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra R K\ninst✝¹¹ : IsFractionRing R K\ninst✝¹⁰ : Algebra K L\ninst✝⁹ : FiniteDimensional K L\ninst✝⁸ : Algebra.IsSeparable K L\nalgRL : Algebra R L\ninst✝⁷ : IsScalarTower R K L\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra S L\nist : IsScalarTower R S L\niic : IsIntegralClosure S R L\nabv : AbsoluteValue R ℤ\nι : Type u_5\ninst✝⁴ : DecidableEq ι\ninst✝³ : Fintype ι\nbS : Basis ι R S\nadm : abv.IsAdmissible\ninst✝² : Infinite R\ninst✝¹ : DecidableEq R\ninst✝ : Algebra.IsAlgebraic R L\na b : S\nhb : b ≠ 0\n⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "K : Type u_3", "L : Type u_4", "inst✝¹⁷ : EuclideanDomain R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : IsDomain S", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra R K", "inst✝¹¹ : IsFractionRing R K", "inst✝¹⁰ : Algebra K L", "inst✝⁹ : FiniteDimensional K L", "inst✝⁸ : Algebra.IsSeparable K L", "algRL : Algebra R L", "inst✝⁷ : IsScalarTower R K L", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra S L", "ist : IsScalarTower R S L", "iic : IsIntegralClosure S R L", "abv : AbsoluteValue R ℤ", "ι : Type u_5", "inst✝⁴ : DecidableEq ι", "inst✝³ : Fintype ι", "bS : Basis ι R S", "adm : abv.IsAdmissible", "inst✝² : Infinite R", "inst✝¹ : DecidableEq R", "inst✝ : Algebra.IsAlgebraic R L", "a b : S", "hb : b ≠ 0", "inj : Function.Injective ⇑(algebraMap R L)"], "goal": "∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"}], "premise": [75597], "state_str": "R : Type u_1\nS : Type u_2\nK : Type u_3\nL : Type u_4\ninst✝¹⁷ : EuclideanDomain R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : IsDomain S\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra R K\ninst✝¹¹ : IsFractionRing R K\ninst✝¹⁰ : Algebra K L\ninst✝⁹ : FiniteDimensional K L\ninst✝⁸ : Algebra.IsSeparable K L\nalgRL : Algebra R L\ninst✝⁷ : IsScalarTower R K L\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra S L\nist : IsScalarTower R S L\niic : IsIntegralClosure S R L\nabv : AbsoluteValue R ℤ\nι : Type u_5\ninst✝⁴ : DecidableEq ι\ninst✝³ : Fintype ι\nbS : Basis ι R S\nadm : abv.IsAdmissible\ninst✝² : Infinite R\ninst✝¹ : DecidableEq R\ninst✝ : Algebra.IsAlgebraic R L\na b : S\nhb : b ≠ 0\ninj : Function.Injective ⇑(algebraMap R L)\n⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "K : Type u_3", "L : Type u_4", "inst✝¹⁷ : EuclideanDomain R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : IsDomain S", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra R K", "inst✝¹¹ : IsFractionRing R K", "inst✝¹⁰ : Algebra K L", "inst✝⁹ : FiniteDimensional K L", "inst✝⁸ : Algebra.IsSeparable K L", "algRL : Algebra R L", "inst✝⁷ : IsScalarTower R K L", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra S L", "ist : IsScalarTower R S L", "iic : IsIntegralClosure S R L", "abv : AbsoluteValue R ℤ", "ι : Type u_5", "inst✝⁴ : DecidableEq ι", "inst✝³ : Fintype ι", "bS : Basis ι R S", "adm : abv.IsAdmissible", "inst✝² : Infinite R", "inst✝¹ : DecidableEq R", "inst✝ : Algebra.IsAlgebraic R L", "a b : S", "hb : b ≠ 0", "inj : Function.Injective ⇑(algebraMap R L)", "a' : S", "b' : R", "hb' : b' ≠ 0", "h : b' • a = b * a'"], "goal": "∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"}], "premise": [24793], "state_str": "case intro.intro.intro\nR : Type u_1\nS : Type u_2\nK : Type u_3\nL : Type u_4\ninst✝¹⁷ : EuclideanDomain R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : IsDomain S\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra R K\ninst✝¹¹ : IsFractionRing R K\ninst✝¹⁰ : Algebra K L\ninst✝⁹ : FiniteDimensional K L\ninst✝⁸ : Algebra.IsSeparable K L\nalgRL : Algebra R L\ninst✝⁷ : IsScalarTower R K L\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra S L\nist : IsScalarTower R S L\niic : IsIntegralClosure S R L\nabv : AbsoluteValue R ℤ\nι : Type u_5\ninst✝⁴ : DecidableEq ι\ninst✝³ : Fintype ι\nbS : Basis ι R S\nadm : abv.IsAdmissible\ninst✝² : Infinite R\ninst✝¹ : DecidableEq R\ninst✝ : Algebra.IsAlgebraic R L\na b : S\nhb : b ≠ 0\ninj : Function.Injective ⇑(algebraMap R L)\na' : S\nb' : R\nhb' : b' ≠ 0\nh : b' • a = b * a'\n⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "K : Type u_3", "L : Type u_4", "inst✝¹⁷ : EuclideanDomain R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : IsDomain S", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra R K", "inst✝¹¹ : IsFractionRing R K", "inst✝¹⁰ : Algebra K L", "inst✝⁹ : FiniteDimensional K L", "inst✝⁸ : Algebra.IsSeparable K L", "algRL : Algebra R L", "inst✝⁷ : IsScalarTower R K L", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra S L", "ist : IsScalarTower R S L", "iic : IsIntegralClosure S R L", "abv : AbsoluteValue R ℤ", "ι : Type u_5", "inst✝⁴ : DecidableEq ι", "inst✝³ : Fintype ι", "bS : Basis ι R S", "adm : abv.IsAdmissible", "inst✝² : Infinite R", "inst✝¹ : DecidableEq R", "inst✝ : Algebra.IsAlgebraic R L", "a b : S", "hb : b ≠ 0", "inj : Function.Injective ⇑(algebraMap R L)", "a' : S", "b' : R", "hb' : b' ≠ 0", "h : b' • a = b * a'", "q : S", "r : R", "hr : r ∈ finsetApprox bS adm", "hqr : abv ((Algebra.norm R) (r • a' - b' • q)) < abv ((Algebra.norm R) ((algebraMap R S) b'))"], "goal": "abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"}], "premise": [102625, 104377], "state_str": "case intro.intro.intro.intro.intro.intro\nR : Type u_1\nS : Type u_2\nK : Type u_3\nL : Type u_4\ninst✝¹⁷ : EuclideanDomain R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : IsDomain S\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra R K\ninst✝¹¹ : IsFractionRing R K\ninst✝¹⁰ : Algebra K L\ninst✝⁹ : FiniteDimensional K L\ninst✝⁸ : Algebra.IsSeparable K L\nalgRL : Algebra R L\ninst✝⁷ : IsScalarTower R K L\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra S L\nist : IsScalarTower R S L\niic : IsIntegralClosure S R L\nabv : AbsoluteValue R ℤ\nι : Type u_5\ninst✝⁴ : DecidableEq ι\ninst✝³ : Fintype ι\nbS : Basis ι R S\nadm : abv.IsAdmissible\ninst✝² : Infinite R\ninst✝¹ : DecidableEq R\ninst✝ : Algebra.IsAlgebraic R L\na b : S\nhb : b ≠ 0\ninj : Function.Injective ⇑(algebraMap R L)\na' : S\nb' : R\nhb' : b' ≠ 0\nh : b' • a = b * a'\nq : S\nr : R\nhr : r ∈ finsetApprox bS adm\nhqr : abv ((Algebra.norm R) (r • a' - b' • q)) < abv ((Algebra.norm R) ((algebraMap R S) b'))\n⊢ abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) b)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "K : Type u_3", "L : Type u_4", "inst✝¹⁷ : EuclideanDomain R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : IsDomain S", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra R K", "inst✝¹¹ : IsFractionRing R K", "inst✝¹⁰ : Algebra K L", "inst✝⁹ : FiniteDimensional K L", "inst✝⁸ : Algebra.IsSeparable K L", "algRL : Algebra R L", "inst✝⁷ : IsScalarTower R K L", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra S L", "ist : IsScalarTower R S L", "iic : IsIntegralClosure S R L", "abv : AbsoluteValue R ℤ", "ι : Type u_5", "inst✝⁴ : DecidableEq ι", "inst✝³ : Fintype ι", "bS : Basis ι R S", "adm : abv.IsAdmissible", "inst✝² : Infinite R", "inst✝¹ : DecidableEq R", "inst✝ : Algebra.IsAlgebraic R L", "a b : S", "hb : b ≠ 0", "inj : Function.Injective ⇑(algebraMap R L)", "a' : S", "b' : R", "hb' : b' ≠ 0", "h : b' • a = b * a'", "q : S", "r : R", "hr : r ∈ finsetApprox bS adm", "hqr : abv ((Algebra.norm R) (r • a' - b' • q)) < abv ((Algebra.norm R) ((algebraMap R S) b'))"], "goal": "abv ((Algebra.norm R) ((algebraMap R S) b')) * abv ((Algebra.norm R) (r • a - q * b)) < abv ((Algebra.norm R) ((algebraMap R S) b')) * abv ((Algebra.norm R) b)"}], "premise": [1674, 14272, 14277, 14288, 78560, 104377, 104382], "state_str": "case intro.intro.intro.intro.intro.intro\nR : Type u_1\nS : Type u_2\nK : Type u_3\nL : Type u_4\ninst✝¹⁷ : EuclideanDomain R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : IsDomain S\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra R K\ninst✝¹¹ : IsFractionRing R K\ninst✝¹⁰ : Algebra K L\ninst✝⁹ : FiniteDimensional K L\ninst✝⁸ : Algebra.IsSeparable K L\nalgRL : Algebra R L\ninst✝⁷ : IsScalarTower R K L\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra S L\nist : IsScalarTower R S L\niic : IsIntegralClosure S R L\nabv : AbsoluteValue R ℤ\nι : Type u_5\ninst✝⁴ : DecidableEq ι\ninst✝³ : Fintype ι\nbS : Basis ι R S\nadm : abv.IsAdmissible\ninst✝² : Infinite R\ninst✝¹ : DecidableEq R\ninst✝ : Algebra.IsAlgebraic R L\na b : S\nhb : b ≠ 0\ninj : Function.Injective ⇑(algebraMap R L)\na' : S\nb' : R\nhb' : b' ≠ 0\nh : b' • a = b * a'\nq : S\nr : R\nhr : r ∈ finsetApprox bS adm\nhqr : abv ((Algebra.norm R) (r • a' - b' • q)) < abv ((Algebra.norm R) ((algebraMap R S) b'))\n⊢ abv ((Algebra.norm R) ((algebraMap R S) b')) * abv ((Algebra.norm R) (r • a - q * b)) <\n abv ((Algebra.norm R) ((algebraMap R S) b')) * abv ((Algebra.norm R) b)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "K : Type u_3", "L : Type u_4", "inst✝¹⁷ : EuclideanDomain R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : IsDomain S", "inst✝¹⁴ : Field K", "inst✝¹³ : Field L", "inst✝¹² : Algebra R K", "inst✝¹¹ : IsFractionRing R K", "inst✝¹⁰ : Algebra K L", "inst✝⁹ : FiniteDimensional K L", "inst✝⁸ : Algebra.IsSeparable K L", "algRL : Algebra R L", "inst✝⁷ : IsScalarTower R K L", "inst✝⁶ : Algebra R S", "inst✝⁵ : Algebra S L", "ist : IsScalarTower R S L", "iic : IsIntegralClosure S R L", "abv : AbsoluteValue R ℤ", "ι : Type u_5", "inst✝⁴ : DecidableEq ι", "inst✝³ : Fintype ι", "bS : Basis ι R S", "adm : abv.IsAdmissible", "inst✝² : Infinite R", "inst✝¹ : DecidableEq R", "inst✝ : Algebra.IsAlgebraic R L", "a b : S", "hb : b ≠ 0", "inj : Function.Injective ⇑(algebraMap R L)", "a' : S", "b' : R", "hb' : b' ≠ 0", "h : b' • a = b * a'", "q : S", "r : R", "hr : r ∈ finsetApprox bS adm", "hqr : abv ((Algebra.norm R) (r • a' - b' • q)) < abv ((Algebra.norm R) ((algebraMap R S) b'))"], "goal": "abv ((Algebra.norm R) ((algebraMap R S) b')) * abv ((Algebra.norm R) (r • a - q * b)) = abv ((Algebra.norm R) (r • a' - b' • q)) * abv ((Algebra.norm R) b)"}], "premise": [104380, 108341, 117166, 118875, 119707, 121165, 121175], "state_str": "case intro.intro.intro.intro.intro.intro\nR : Type u_1\nS : Type u_2\nK : Type u_3\nL : Type u_4\ninst✝¹⁷ : EuclideanDomain R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : IsDomain S\ninst✝¹⁴ : Field K\ninst✝¹³ : Field L\ninst✝¹² : Algebra R K\ninst✝¹¹ : IsFractionRing R K\ninst✝¹⁰ : Algebra K L\ninst✝⁹ : FiniteDimensional K L\ninst✝⁸ : Algebra.IsSeparable K L\nalgRL : Algebra R L\ninst✝⁷ : IsScalarTower R K L\ninst✝⁶ : Algebra R S\ninst✝⁵ : Algebra S L\nist : IsScalarTower R S L\niic : IsIntegralClosure S R L\nabv : AbsoluteValue R ℤ\nι : Type u_5\ninst✝⁴ : DecidableEq ι\ninst✝³ : Fintype ι\nbS : Basis ι R S\nadm : abv.IsAdmissible\ninst✝² : Infinite R\ninst✝¹ : DecidableEq R\ninst✝ : Algebra.IsAlgebraic R L\na b : S\nhb : b ≠ 0\ninj : Function.Injective ⇑(algebraMap R L)\na' : S\nb' : R\nhb' : b' ≠ 0\nh : b' • a = b * a'\nq : S\nr : R\nhr : r ∈ finsetApprox bS adm\nhqr : abv ((Algebra.norm R) (r • a' - b' • q)) < abv ((Algebra.norm R) ((algebraMap R S) b'))\n⊢ abv ((Algebra.norm R) ((algebraMap R S) b')) * abv ((Algebra.norm R) (r • a - q * b)) =\n abv ((Algebra.norm R) (r • a' - b' • q)) * abv ((Algebra.norm R) b)"} +{"state": [{"context": ["R : Type u", "L : Type v", "M : Type w", "M₂ : Type w₁", "inst✝¹⁰ : CommRing R", "inst✝⁹ : LieRing L", "inst✝⁸ : LieAlgebra R L", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M₂", "inst✝² : Module R M₂", "inst✝¹ : LieRingModule L M₂", "inst✝ : LieModule R L M₂", "N N' : LieSubmodule R L M", "I J : LieIdeal R L", "N₂ : LieSubmodule R L M₂"], "goal": "⁅I, N⁆ ≤ N' ↔ ∀ x ∈ I, ∀ m ∈ N, ⁅x, m⁆ ∈ N'"}], "premise": [108476, 109326], "state_str": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ ⁅I, N⁆ ≤ N' ↔ ∀ x ∈ I, ∀ m ∈ N, ⁅x, m⁆ ∈ N'"} +{"state": [{"context": ["x y : ℂ", "h : cexp x = 0"], "goal": "0 = 1"}], "premise": [119826, 149080, 149081], "state_str": "x y : ℂ\nh : cexp x = 0\n⊢ 0 = 1"} +{"state": [{"context": ["R✝ : Type u", "S : Type v", "T : Type w", "a b : R✝", "n : ℕ", "inst✝² : CommRing R✝", "inst✝¹ : IsDomain R✝", "p✝ q✝ : R✝[X]", "R : Type u_1", "inst✝ : CommRing R", "p q : R[X]", "hp : p.Monic", "hdeg : q.natDegree ≤ p.natDegree", "r : R[X]", "hr : q = p * r"], "goal": "q = C q.leadingCoeff * p"}], "premise": [70039], "state_str": "case intro\nR✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u_1\ninst✝ : CommRing R\np q : R[X]\nhp : p.Monic\nhdeg : q.natDegree ≤ p.natDegree\nr : R[X]\nhr : q = p * r\n⊢ q = C q.leadingCoeff * p"} +{"state": [{"context": ["R✝ : Type u", "S : Type v", "T : Type w", "a b : R✝", "n : ℕ", "inst✝² : CommRing R✝", "inst✝¹ : IsDomain R✝", "p✝ q✝ : R✝[X]", "R : Type u_1", "inst✝ : CommRing R", "p q : R[X]", "hp : p.Monic", "hdeg : q.natDegree ≤ p.natDegree", "r : R[X]", "hr : q = p * r", "hq : q ≠ 0", "rzero : r ≠ 0"], "goal": "q = C q.leadingCoeff * p"}], "premise": [102242], "state_str": "case intro.inr\nR✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u_1\ninst✝ : CommRing R\np q : R[X]\nhp : p.Monic\nhdeg : q.natDegree ≤ p.natDegree\nr : R[X]\nhr : q = p * r\nhq : q ≠ 0\nrzero : r ≠ 0\n⊢ q = C q.leadingCoeff * p"} +{"state": [{"context": ["R✝ : Type u", "S : Type v", "T : Type w", "a b : R✝", "n : ℕ", "inst✝² : CommRing R✝", "inst✝¹ : IsDomain R✝", "p✝ q✝ : R✝[X]", "R : Type u_1", "inst✝ : CommRing R", "p q : R[X]", "hp : p.Monic", "r : R[X]", "hdeg : p.natDegree + r.natDegree ≤ p.natDegree", "hr : q = p * r", "hq : q ≠ 0", "rzero : r ≠ 0"], "goal": "q = C q.leadingCoeff * p"}], "premise": [102269, 119707], "state_str": "case intro.inr\nR✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u_1\ninst✝ : CommRing R\np q : R[X]\nhp : p.Monic\nr : R[X]\nhdeg : p.natDegree + r.natDegree ≤ p.natDegree\nhr : q = p * r\nhq : q ≠ 0\nrzero : r ≠ 0\n⊢ q = C q.leadingCoeff * p"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s t : Set α"], "goal": "s.encard ≤ 1 ↔ s = ∅ ∨ ∃ x, s = {x}"}], "premise": [1095, 1713, 11260, 14303, 136129, 136322, 136370], "state_str": "α : Type u_1\nβ : Type u_2\ns t : Set α\n⊢ s.encard ≤ 1 ↔ s = ∅ ∨ ∃ x, s = {x}"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "A : Type u_3", "a a₁ a₂ b c : G", "inst✝ : Group G", "s : Set G", "hs : IsSubgroup s", "h : a⁻¹ ∈ s"], "goal": "a ∈ s"}], "premise": [126021], "state_str": "G : Type u_1\nH : Type u_2\nA : Type u_3\na a₁ a₂ b c : G\ninst✝ : Group G\ns : Set G\nhs : IsSubgroup s\nh : a⁻¹ ∈ s\n⊢ a ∈ s"} +{"state": [{"context": ["J : Type v'", "inst✝⁴ : Category.{u', v'} J", "C : Type u", "inst✝³ : Category.{v, u} C", "D : Type u''", "inst✝² : Category.{v'', u''} D", "X✝ Y✝ : C", "inst✝¹ : FinitaryPreExtensive C", "α : Type", "inst✝ : Finite α", "X : C", "Z : α → C", "π : (a : α) → Z a ⟶ X", "Y : C", "f : Y ⟶ X", "hπ : IsIso (Sigma.desc π)", "this : IsColimit (Cofan.mk X π) := (coproductIsCoproduct Z).ofPointIso"], "goal": "IsColimit (Cofan.mk Y fun x => pullback.fst f (π x))"}], "premise": [90445, 98752], "state_str": "J : Type v'\ninst✝⁴ : Category.{u', v'} J\nC : Type u\ninst✝³ : Category.{v, u} C\nD : Type u''\ninst✝² : Category.{v'', u''} D\nX✝ Y✝ : C\ninst✝¹ : FinitaryPreExtensive C\nα : Type\ninst✝ : Finite α\nX : C\nZ : α → C\nπ : (a : α) → Z a ⟶ X\nY : C\nf : Y ⟶ X\nhπ : IsIso (Sigma.desc π)\nthis : IsColimit (Cofan.mk X π) := (coproductIsCoproduct Z).ofPointIso\n⊢ IsColimit (Cofan.mk Y fun x => pullback.fst f (π x))"} +{"state": [{"context": ["G : Type u_1", "inst✝⁹ : TopologicalSpace G", "inst✝⁸ : Group G", "inst✝⁷ : TopologicalGroup G", "inst✝⁶ : MeasurableSpace G", "inst✝⁵ : BorelSpace G", "inst✝⁴ : LocallyCompactSpace G", "μ' μ : Measure G", "inst✝³ : IsProbabilityMeasure μ", "inst✝² : IsProbabilityMeasure μ'", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure"], "goal": "μ' = μ"}], "premise": [1094, 32458, 58154], "state_str": "G : Type u_1\ninst✝⁹ : TopologicalSpace G\ninst✝⁸ : Group G\ninst✝⁷ : TopologicalGroup G\ninst✝⁶ : MeasurableSpace G\ninst✝⁵ : BorelSpace G\ninst✝⁴ : LocallyCompactSpace G\nμ' μ : Measure G\ninst✝³ : IsProbabilityMeasure μ\ninst✝² : IsProbabilityMeasure μ'\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\n⊢ μ' = μ"} +{"state": [{"context": ["G : Type u_1", "inst✝⁹ : TopologicalSpace G", "inst✝⁸ : Group G", "inst✝⁷ : TopologicalGroup G", "inst✝⁶ : MeasurableSpace G", "inst✝⁵ : BorelSpace G", "inst✝⁴ : LocallyCompactSpace G", "μ' μ : Measure G", "inst✝³ : IsProbabilityMeasure μ", "inst✝² : IsProbabilityMeasure μ'", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure", "this : CompactSpace G"], "goal": "μ' = μ"}], "premise": [31683, 55409, 58146], "state_str": "G : Type u_1\ninst✝⁹ : TopologicalSpace G\ninst✝⁸ : Group G\ninst✝⁷ : TopologicalGroup G\ninst✝⁶ : MeasurableSpace G\ninst✝⁵ : BorelSpace G\ninst✝⁴ : LocallyCompactSpace G\nμ' μ : Measure G\ninst✝³ : IsProbabilityMeasure μ\ninst✝² : IsProbabilityMeasure μ'\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\nthis : CompactSpace G\n⊢ μ' = μ"} +{"state": [{"context": ["G : Type u_1", "inst✝⁹ : TopologicalSpace G", "inst✝⁸ : Group G", "inst✝⁷ : TopologicalGroup G", "inst✝⁶ : MeasurableSpace G", "inst✝⁵ : BorelSpace G", "inst✝�� : LocallyCompactSpace G", "μ' μ : Measure G", "inst✝³ : IsProbabilityMeasure μ", "inst✝² : IsProbabilityMeasure μ'", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure", "this : CompactSpace G", "A : ∀ (s : Set G), μ' s = μ'.haarScalarFactor μ • μ s", "Z : μ' univ = μ'.haarScalarFactor μ • μ univ"], "goal": "μ' = μ"}], "premise": [31727, 118863, 119730, 143211, 143579], "state_str": "G : Type u_1\ninst✝⁹ : TopologicalSpace G\ninst✝⁸ : Group G\ninst✝⁷ : TopologicalGroup G\ninst✝⁶ : MeasurableSpace G\ninst✝⁵ : BorelSpace G\ninst✝⁴ : LocallyCompactSpace G\nμ' μ : Measure G\ninst✝³ : IsProbabilityMeasure μ\ninst✝² : IsProbabilityMeasure μ'\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\nthis : CompactSpace G\nA : ∀ (s : Set G), μ' s = μ'.haarScalarFactor μ • μ s\nZ : μ' univ = μ'.haarScalarFactor μ • μ univ\n⊢ μ' = μ"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : AffineSpace V P", "inst✝³ : CommRing k", "inst✝² : Module k V", "inst✝¹ : DecidableEq ι", "inst✝ : Fintype ι", "b b₂ : AffineBasis ι k P", "x : P"], "goal": "(b.toMatrix ⇑b₂).det • b₂.coords x = (b.toMatrix ⇑b₂)ᵀ.cramer (b.coords x)"}], "premise": [82850], "state_str": "ι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : CommRing k\ninst✝² : Module k V\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nb b₂ : AffineBasis ι k P\nx : P\n⊢ (b.toMatrix ⇑b₂).det • b₂.coords x = (b.toMatrix ⇑b₂)ᵀ.cramer (b.coords x)"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : AffineSpace V P", "inst✝³ : CommRing k", "inst✝² : Module k V", "inst✝¹ : DecidableEq ι", "inst✝ : Fintype ι", "b b₂ : AffineBasis ι k P", "x : P", "hu : IsUnit (b.toMatrix ⇑b₂)"], "goal": "(b.toMatrix ⇑b₂).det • b₂.coords x = (b.toMatrix ⇑b₂)ᵀ.cramer (b.coords x)"}], "premise": [85371], "state_str": "ι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : CommRing k\ninst✝² : Module k V\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nb b₂ : AffineBasis ι k P\nx : P\nhu : IsUnit (b.toMatrix ⇑b₂)\n⊢ (b.toMatrix ⇑b₂).det • b₂.coords x = (b.toMatrix ⇑b₂)ᵀ.cramer (b.coords x)"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁵ : AddCommGroup V", "inst✝⁴ : AffineSpace V P", "inst✝³ : CommRing k", "inst✝² : Module k V", "inst✝¹ : DecidableEq ι", "inst✝ : Fintype ι", "b b₂ : AffineBasis ι k P", "x : P", "hu : IsUnit (b.toMatrix ⇑b₂).det"], "goal": "(b.toMatrix ⇑b₂).det • b₂.coords x = (b.toMatrix ⇑b₂)ᵀ.cramer (b.coords x)"}], "premise": [82852, 85455], "state_str": "ι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : CommRing k\ninst✝² : Module k V\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nb b₂ : AffineBasis ι k P\nx : P\nhu : IsUnit (b.toMatrix ⇑b₂).det\n⊢ (b.toMatrix ⇑b₂).det • b₂.coords x = (b.toMatrix ⇑b₂)ᵀ.cramer (b.coords x)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "α : Type u_4", "β : Type u_5", "ι : Type u_6", "inst✝⁶ : OrderedSemiring 𝕜", "inst✝⁵ : AddCommMonoid E", "inst✝⁴ : AddCommMonoid F", "inst✝³ : LinearOrderedAddCommMonoid β", "inst✝² : SMul 𝕜 E", "inst✝¹ : Module 𝕜 β", "inst✝ : OrderedSMul 𝕜 β", "s : Set E", "f g : E → β", "hf : ConvexOn 𝕜 s f", "hg : ConvexOn 𝕜 s g"], "goal": "ConvexOn 𝕜 s (f ⊔ g)"}], "premise": [2107, 14523], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nα : Type u_4\nβ : Type u_5\nι : Type u_6\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nhg : ConvexOn 𝕜 s g\n⊢ ConvexOn 𝕜 s (f ⊔ g)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Monoid α", "inst✝ : AddMonoid β", "f : Multiplicative ℕ →* α", "n : Multiplicative ℕ"], "goal": "f n = f (ofAdd 1) ^ toAdd n"}], "premise": [70751, 142671, 142673], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Monoid α\ninst✝ : AddMonoid β\nf : Multiplicative ℕ →* α\nn : Multiplicative ℕ\n⊢ f n = f (ofAdd 1) ^ toAdd n"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝¹¹ : Category.{u_3, u_1} C", "inst✝¹⁰ : Category.{u_4, u_2} D", "inst✝⁹ : HasZeroMorphisms C", "inst✝⁸ : HasZeroMorphisms D", "S : ShortComplex C", "h₁ : S.LeftHomologyData", "h₂ : S.RightHomologyData", "F : C ��� D", "inst✝⁷ : F.PreservesZeroMorphisms", "S₁ S₂ : ShortComplex C", "φ : S₁ ⟶ S₂", "hl₁ : S₁.LeftHomologyData", "hr₁ : S₁.RightHomologyData", "hl₂ : S₂.LeftHomologyData", "hr₂ : S₂.RightHomologyData", "ψl : LeftHomologyMapData φ hl₁ hl₂", "ψr : RightHomologyMapData φ hr₁ hr₂", "inst✝⁶ : S₁.HasHomology", "inst✝⁵ : S₂.HasHomology", "inst✝⁴ : (F.mapShortComplex.obj S₁).HasHomology", "inst✝³ : (F.mapShortComplex.obj S₂).HasHomology", "inst✝² : F.PreservesLeftHomologyOf S₁", "inst✝¹ : F.PreservesLeftHomologyOf S₂", "inst✝ : F.ReflectsIsomorphisms", "γ : LeftHomologyMapData φ S₁.leftHomologyData S₂.leftHomologyData"], "goal": "QuasiIso (F.mapShortComplex.map φ) ↔ QuasiIso φ"}], "premise": [113980, 115457], "state_str": "C : Type u_1\nD : Type u_2\ninst✝¹¹ : Category.{u_3, u_1} C\ninst✝¹⁰ : Category.{u_4, u_2} D\ninst✝⁹ : HasZeroMorphisms C\ninst✝⁸ : HasZeroMorphisms D\nS : ShortComplex C\nh₁ : S.LeftHomologyData\nh₂ : S.RightHomologyData\nF : C ⥤ D\ninst✝⁷ : F.PreservesZeroMorphisms\nS₁ S₂ : ShortComplex C\nφ : S₁ ⟶ S₂\nhl₁ : S₁.LeftHomologyData\nhr₁ : S₁.RightHomologyData\nhl₂ : S₂.LeftHomologyData\nhr₂ : S₂.RightHomologyData\nψl : LeftHomologyMapData φ hl₁ hl₂\nψr : RightHomologyMapData φ hr₁ hr₂\ninst✝⁶ : S₁.HasHomology\ninst✝⁵ : S₂.HasHomology\ninst✝⁴ : (F.mapShortComplex.obj S₁).HasHomology\ninst✝³ : (F.mapShortComplex.obj S₂).HasHomology\ninst✝² : F.PreservesLeftHomologyOf S₁\ninst✝¹ : F.PreservesLeftHomologyOf S₂\ninst✝ : F.ReflectsIsomorphisms\nγ : LeftHomologyMapData φ S₁.leftHomologyData S₂.leftHomologyData\n⊢ QuasiIso (F.mapShortComplex.map φ) ↔ QuasiIso φ"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "E : Type u_3", "F : Type u_4", "ι : Type u_5", "ι' : Type u_6", "α : Type u_7", "inst✝⁸ : LinearOrderedField R", "inst✝⁷ : LinearOrderedField R'", "inst✝⁶ : AddCommGroup E", "inst✝⁵ : AddCommGroup F", "inst✝⁴ : LinearOrderedAddCommGroup α", "inst✝³ : Module R E", "inst✝² : Module R F", "inst✝¹ : Module R α", "inst✝ : OrderedSMul R α", "s✝ : Set E", "i j : ι", "c : R", "t : Finset ι", "w : ι → R", "z : ι → E", "s : Finset E"], "goal": "(convexHull R) ↑s = {x | ∃ w, (∀ y ∈ s, 0 ≤ w y) ∧ ∑ y ∈ s, w y = 1 ∧ s.centerMass w id = x}"}], "premise": [34903, 133329], "state_str": "R : Type u_1\nR' : Type u_2\nE : Type u_3\nF : Type u_4\nι : Type u_5\nι' : Type u_6\nα : Type u_7\ninst✝⁸ : LinearOrderedField R\ninst✝⁷ : LinearOrderedField R'\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns✝ : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\ns : Finset E\n⊢ (convexHull R) ↑s = {x | ∃ w, (∀ y ∈ s, 0 ≤ w y) ∧ ∑ y ∈ s, w y = 1 ∧ s.centerMass w id = x}"} +{"state": [{"context": ["ι : Type u_1", "inst✝³ : LinearOrder ι", "inst✝² : SuccOrder ι", "inst✝¹ : IsSuccArchimedean ι", "inst✝ : PredOrder ι", "i0 i : ι", "n : ℕ", "hn : ¬IsMin (pred^[n + 1] i0)"], "goal": "toZ i0 (pred^[n + 1] i0) = -↑(n + 1)"}], "premise": [3849, 14298, 17445, 17447, 71248], "state_str": "case succ\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nn : ℕ\nhn : ¬IsMin (pred^[n + 1] i0)\n⊢ toZ i0 (pred^[n + 1] i0) = -↑(n + 1)"} +{"state": [{"context": ["ι : Type u_1", "inst✝³ : LinearOrder ι", "inst✝² : SuccOrder ι", "inst✝¹ : IsSuccArchimedean ι", "inst✝ : PredOrder ι", "i0 i : ι", "n : ℕ", "hn : ¬IsMin (pred^[n + 1] i0)", "this : pred^[n.succ] i0 < i0", "m : ℕ := (-toZ i0 (pred^[n.succ] i0)).toNat"], "goal": "toZ i0 (pred^[n + 1] i0) = -↑(n + 1)"}], "premise": [17644], "state_str": "case succ\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nn : ℕ\nhn : ¬IsMin (pred^[n + 1] i0)\nthis : pred^[n.succ] i0 < i0\nm : ℕ := (-toZ i0 (pred^[n.succ] i0)).toNat\n⊢ toZ i0 (pred^[n + 1] i0) = -↑(n + 1)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "inst✝⁷ : Category.{?u.284, u_1} C", "inst✝⁶ : Category.{?u.288, u_2} D", "inst✝⁵ : Category.{?u.292, u_3} E", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasShift D ℤ", "inst✝² : HasShift E ℤ", "F : C ⥤ D", "inst✝¹ : F.CommShift ℤ", "G : D ⥤ E", "inst✝ : G.CommShift ℤ", "X✝ Y✝ : Triangle C", "f : X✝ ⟶ Y✝"], "goal": "F.map X✝.mor₁ ≫ F.map f.hom₂ = F.map f.hom₁ ≫ F.map Y✝.mor₁"}], "premise": [98128, 99919], "state_str": "C : Type u_1\nD : Type u_2\nE : Type u_3\ninst✝⁷ : Category.{?u.284, u_1} C\ninst✝⁶ : Category.{?u.288, u_2} D\ninst✝⁵ : Category.{?u.292, u_3} E\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasShift D ℤ\ninst✝² : HasShift E ℤ\nF : C ⥤ D\ninst✝¹ : F.CommShift ℤ\nG : D ⥤ E\ninst✝ : G.CommShift ℤ\nX✝ Y✝ : Triangle C\nf : X✝ ⟶ Y✝\n⊢ F.map X✝.mor₁ ≫ F.map f.hom₂ = F.map f.hom₁ ≫ F.map Y✝.mor₁"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "inst✝⁷ : Category.{?u.284, u_1} C", "inst✝⁶ : Category.{?u.288, u_2} D", "inst✝⁵ : Category.{?u.292, u_3} E", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasShift D ℤ", "inst✝² : HasShift E ℤ", "F : C ⥤ D", "inst✝¹ : F.CommShift ℤ", "G : D ⥤ E", "inst✝ : G.CommShift ℤ", "X✝ Y✝ : Triangle C", "f : X✝ ⟶ Y✝"], "goal": "F.map X✝.mor₂ ≫ F.map f.hom₃ = F.map f.hom₂ ≫ F.map Y✝.mor₂"}], "premise": [98129, 99919], "state_str": "C : Type u_1\nD : Type u_2\nE : Type u_3\ninst✝⁷ : Category.{?u.284, u_1} C\ninst✝⁶ : Category.{?u.288, u_2} D\ninst✝⁵ : Category.{?u.292, u_3} E\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasShift D ℤ\ninst✝² : HasShift E ℤ\nF : C ⥤ D\ninst✝¹ : F.CommShift ℤ\nG : D ⥤ E\ninst✝ : G.CommShift ℤ\nX✝ Y✝ : Triangle C\nf : X✝ ⟶ Y✝\n⊢ F.map X✝.mor₂ ≫ F.map f.hom₃ = F.map f.hom₂ ≫ F.map Y✝.mor₂"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "E : Type u_3", "inst✝⁷ : Category.{?u.284, u_1} C", "inst✝⁶ : Category.{?u.288, u_2} D", "inst✝⁵ : Category.{?u.292, u_3} E", "inst✝⁴ : HasShift C ℤ", "inst✝³ : HasShift D ℤ", "inst✝² : HasShift E ℤ", "F : C ⥤ D", "inst✝¹ : F.CommShift ℤ", "G : D ⥤ E", "inst✝ : G.CommShift ℤ", "X✝ Y✝ : Triangle C", "f : X✝ ⟶ Y✝"], "goal": "(F.map X✝.mor₃ ≫ (F.commShiftIso 1).hom.app X✝.obj₁) ≫ (shiftFunctor D 1).map (F.map f.hom₁) = F.map f.hom₃ ≫ F.map Y✝.mor₃ ≫ (F.commShiftIso 1).hom.app Y✝.obj₁"}], "premise": [96173, 97888, 98130, 99921], "state_str": "C : Type u_1\nD : Type u_2\nE : Type u_3\ninst✝⁷ : Category.{?u.284, u_1} C\ninst✝⁶ : Category.{?u.288, u_2} D\ninst✝⁵ : Category.{?u.292, u_3} E\ninst✝⁴ : HasShift C ℤ\ninst✝³ : HasShift D ℤ\ninst✝² : HasShift E ℤ\nF : C ⥤ D\ninst✝¹ : F.CommShift ℤ\nG : D ⥤ E\ninst✝ : G.CommShift ℤ\nX✝ Y✝ : Triangle C\nf : X✝ ⟶ Y✝\n⊢ (F.map X✝.mor₃ ≫ (F.commShiftIso 1).hom.app X✝.obj₁) ≫ (shiftFunctor D 1).map (F.map f.hom₁) =\n F.map f.hom₃ ≫ F.map Y✝.mor₃ ≫ (F.commShiftIso 1).hom.app Y✝.obj₁"} +{"state": [{"context": ["α : Type u", "inst✝¹ : LinearOrderedCommGroup α", "a b c : α", "inst✝ : Nontrivial α"], "goal": "∃ a, 1 < a"}], "premise": [71950], "state_str": "α : Type u\ninst✝¹ : LinearOrderedCommGroup α\na b c : α\ninst✝ : Nontrivial α\n⊢ ∃ a, 1 < a"} +{"state": [{"context": ["α : Type u", "inst✝¹ : LinearOrderedCommGroup α", "a b c : α", "inst✝ : Nontrivial α", "y : α", "hy : y ≠ 1"], "goal": "∃ a, 1 < a"}], "premise": [11261], "state_str": "case intro\nα : Type u\ninst✝¹ : LinearOrderedCommGroup α\na b c : α\ninst✝ : Nontrivial α\ny : α\nhy : y ≠ 1\n⊢ ∃ a, 1 < a"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedAddCommGroup E'", "inst✝⁹ : NormedAddCommGroup E''", "inst✝⁸ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x✝ x' : G", "y y' : E", "inst✝⁷ : NontriviallyNormedField 𝕜", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedSpace 𝕜 E'", "inst✝⁴ : NormedSpace 𝕜 E''", "inst✝³ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝² : MeasurableSpace G", "μ ν : Measure G", "inst✝¹ : NormedSpace ℝ F", "inst✝ : AddGroup G", "x : G", "h2x : x ∈ support (f ⋆[L, μ] g)"], "goal": "x ∈ support g + support f"}], "premise": [1094], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup E'\ninst✝⁹ : NormedAddCommGroup E''\ninst✝⁸ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx✝ x' : G\ny y' : E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 E'\ninst✝⁴ : NormedSpace 𝕜 E''\ninst✝³ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝² : MeasurableSpace G\nμ ν : Measure G\ninst✝¹ : NormedSpace ℝ F\ninst✝ : AddGroup G\nx : G\nh2x : x ∈ support (f ⋆[L, μ] g)\n⊢ x ∈ support g + support f"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedAddCommGroup E'", "inst✝⁹ : NormedAddCommGroup E''", "inst✝⁸ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x✝ x' : G", "y y' : E", "inst✝�� : NontriviallyNormedField 𝕜", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedSpace 𝕜 E'", "inst✝⁴ : NormedSpace 𝕜 E''", "inst✝³ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝² : MeasurableSpace G", "μ ν : Measure G", "inst✝¹ : NormedSpace ℝ F", "inst✝ : AddGroup G", "x : G", "h2x : x ∈ support (f ⋆[L, μ] g)", "hx : x ∉ support g + support f"], "goal": "(f ⋆[L, μ] g) x = 0"}], "premise": [2025, 2038, 70089, 117256, 131804], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup E'\ninst✝⁹ : NormedAddCommGroup E''\ninst✝⁸ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx✝ x' : G\ny y' : E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 E'\ninst✝⁴ : NormedSpace 𝕜 E''\ninst✝³ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝² : MeasurableSpace G\nμ ν : Measure G\ninst✝¹ : NormedSpace ℝ F\ninst✝ : AddGroup G\nx : G\nh2x : x ∈ support (f ⋆[L, μ] g)\nhx : x ∉ support g + support f\n⊢ (f ⋆[L, μ] g) x = 0"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedAddCommGroup E'", "inst✝⁹ : NormedAddCommGroup E''", "inst✝⁸ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x✝ x' : G", "y y' : E", "inst✝⁷ : NontriviallyNormedField 𝕜", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedSpace 𝕜 E'", "inst✝⁴ : NormedSpace 𝕜 E''", "inst✝³ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝² : MeasurableSpace G", "μ ν : Measure G", "inst✝¹ : NormedSpace ℝ F", "inst✝ : AddGroup G", "x : G", "h2x : x ∈ support (f ⋆[L, μ] g)", "hx : ∀ (x_1 x_2 : G), g x_1 = 0 ∨ f x_2 = 0 ∨ ¬x_1 + x_2 = x"], "goal": "(f ⋆[L, μ] g) x = 0"}], "premise": [43953], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup E'\ninst✝⁹ : NormedAddCommGroup E''\ninst✝⁸ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx✝ x' : G\ny y' : E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 E'\ninst✝⁴ : NormedSpace 𝕜 E''\ninst✝³ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝² : MeasurableSpace G\nμ ν : Measure G\ninst✝¹ : NormedSpace ℝ F\ninst✝ : AddGroup G\nx : G\nh2x : x ∈ support (f ⋆[L, μ] g)\nhx : ∀ (x_1 x_2 : G), g x_1 = 0 ∨ f x_2 = 0 ∨ ¬x_1 + x_2 = x\n⊢ (f ⋆[L, μ] g) x = 0"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedAddCommGroup E'", "inst✝⁹ : NormedAddCommGroup E''", "inst✝⁸ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x✝ x' : G", "y y' : E", "inst✝⁷ : NontriviallyNormedField 𝕜", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedSpace 𝕜 E'", "inst✝⁴ : NormedSpace 𝕜 E''", "inst✝³ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝² : MeasurableSpace G", "μ ν : Measure G", "inst✝¹ : NormedSpace ℝ F", "inst✝ : AddGroup G", "x : G", "h2x : x ∈ support (f ⋆[L, μ] g)", "hx : ∀ (x_1 x_2 : G), g x_1 = 0 ∨ f x_2 = 0 ∨ ¬x_1 + x_2 = x"], "goal": "∫ (t : G), (L (f t)) (g (x - t)) ∂μ = 0"}], "premise": [33638], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup E'\ninst✝⁹ : NormedAddCommGroup E''\ninst✝⁸ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx✝ x' : G\ny y' : E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 E'\ninst✝⁴ : NormedSpace 𝕜 E''\ninst✝³ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝² : MeasurableSpace G\nμ ν : Measure G\ninst✝¹ : NormedSpace ℝ F\ninst✝ : AddGroup G\nx : G\nh2x : x ∈ support (f ⋆[L, μ] g)\nhx : ∀ (x_1 x_2 : G), g x_1 = 0 ∨ f x_2 = 0 ∨ ¬x_1 + x_2 = x\n⊢ ∫ (t : G), (L (f t)) (g (x - t)) ∂μ = 0"} +{"state": [{"context": ["ι : Type u_1", "V : Type u_2", "inst✝¹ : Category.{?u.20862, u_2} V", "c : ComplexShape ι", "inst✝ : HasZeroMorphisms V", "X : HomologicalComplex Vᵒᵖ c", "i j : ι", "hij : ¬c.symm.Rel i j"], "goal": "(X.d j i).unop = 0"}], "premise": [93609, 113829], "state_str": "ι : Type u_1\nV : Type u_2\ninst✝¹ : Category.{?u.20862, u_2} V\nc : ComplexShape ι\ninst✝ : HasZeroMorphisms V\nX : HomologicalComplex Vᵒᵖ c\ni j : ι\nhij : ¬c.symm.Rel i j\n⊢ (X.d j i).unop = 0"} +{"state": [{"context": ["ι : Type u_1", "V : Type u_2", "inst✝¹ : Category.{?u.20862, u_2} V", "c : ComplexShape ι", "inst✝ : HasZeroMorphisms V", "X : HomologicalComplex Vᵒᵖ c", "x✝⁴ x✝³ x✝² : ι", "x✝¹ : c.symm.Rel x✝⁴ x✝³", "x✝ : c.symm.Rel x✝³ x✝²"], "goal": "(fun i j => (X.d j i).unop) x✝⁴ x✝³ ≫ (fun i j => (X.d j i).unop) x✝³ x✝² = 0"}], "premise": [89633, 93609, 113830], "state_str": "ι : Type u_1\nV : Type u_2\ninst✝¹ : Category.{?u.20862, u_2} V\nc : ComplexShape ι\ninst✝ : HasZeroMorphisms V\nX : HomologicalComplex Vᵒᵖ c\nx✝⁴ x✝³ x✝² : ι\nx✝¹ : c.symm.Rel x✝⁴ x✝³\nx✝ : c.symm.Rel x✝³ x✝²\n⊢ (fun i j => (X.d j i).unop) x✝⁴ x✝³ ≫ (fun i j => (X.d j i).unop) x✝³ x✝² = 0"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝ : SemilatticeInf α"], "goal": "Tendsto (fun a => (a, a)) atBot atBot"}], "premise": [15698], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝ : SemilatticeInf α\n⊢ Tendsto (fun a => (a, a)) atBot atBot"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝ : SemilatticeInf α"], "goal": "Tendsto (fun a => (a, a)) atBot (atBot ×ˢ atBot)"}], "premise": [12176, 16354], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝ : SemilatticeInf α\n⊢ Tendsto (fun a => (a, a)) atBot (atBot ×ˢ atBot)"} +{"state": [{"context": ["α : Type u", "t : TopologicalSpace α", "inst✝ : SecondCountableTopology α"], "goal": "∃ b, b.Countable ∧ ∅ ∉ b ∧ IsTopologicalBasis b"}], "premise": [57778], "state_str": "α : Type u\nt : TopologicalSpace α\ninst✝ : SecondCountableTopology α\n⊢ ∃ b, b.Countable ∧ ∅ ∉ b ∧ IsTopologicalBasis b"} +{"state": [{"context": ["α : Type u", "t : TopologicalSpace α", "inst✝ : SecondCountableTopology α", "b : Set (Set α)", "hb₁ : b.Countable", "hb₂ : t = generateFrom b"], "goal": "∃ b, b.Countable ∧ ∅ ∉ b ∧ IsTopologicalBasis b"}], "premise": [57704, 57705, 133630], "state_str": "case intro.intro\nα : Type u\nt : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nb : Set (Set α)\nhb₁ : b.Countable\nhb₂ : t = generateFrom b\n⊢ ∃ b, b.Countable ∧ ∅ ∉ b ∧ IsTopologicalBasis b"} +{"state": [{"context": ["α : Type u", "t : TopologicalSpace α", "inst✝ : SecondCountableTopology α", "b : Set (Set α)", "hb₁ : b.Countable", "hb₂ : t = generateFrom b"], "goal": "((fun f => ⋂₀ f) '' {f | f.Finite ∧ f ⊆ b} \\ {∅}).Countable"}, {"context": ["α : Type u", "t : TopologicalSpace α", "inst✝ : SecondCountableTopology α", "b : Set (Set α)", "hb₁ : b.Countable", "hb₂ : t = generateFrom b"], "goal": "∅ ∈ {∅}"}], "premise": [132739, 132748, 132769, 133635], "state_str": "case intro.intro.refine_1\nα : Type u\nt : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nb : Set (Set α)\nhb₁ : b.Countable\nhb₂ : t = generateFrom b\n⊢ ((fun f => ⋂₀ f) '' {f | f.Finite ∧ f ⊆ b} \\ {∅}).Countable\n\ncase intro.intro.refine_2\nα : Type u\nt : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nb : Set (Set α)\nhb₁ : b.Countable\nhb₂ : t = generateFrom b\n⊢ ∅ ∈ {∅}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : LinearOrder α", "a a₁ a₂ b b₁ b₂ c d : α", "h₁ : c ≤ b", "h₂ : a ≤ d", "x : α"], "goal": "x ∈ Icc a b ∪ Icc c d ↔ x ∈ Icc (min a c) (max b d)"}], "premise": [12953, 12954, 20160, 133407], "state_str": "case h\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nh₂ : a ≤ d\nx : α\n⊢ x ∈ Icc a b ∪ Icc c d ↔ x ∈ Icc (min a c) (max b d)"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type w", "inst✝¹ : MetricSpace X", "inst✝ : MetricSpace Y", "Φ✝ : Z → X", "Ψ✝ : Z → Y", "ε✝ : ℝ", "Φ : Z → X", "Ψ : Z → Y", "ε : ℝ", "x : Y", "y : X"], "goal": "ε ≤ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y)"}], "premise": [61937], "state_str": "X : Type u\nY : Type v\nZ : Type w\ninst✝¹ : MetricSpace X\ninst✝ : MetricSpace Y\nΦ✝ : Z → X\nΨ✝ : Z → Y\nε✝ : ℝ\nΦ : Z → X\nΨ : Z → Y\nε : ℝ\nx : Y\ny : X\n⊢ ε ≤ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y)"} +{"state": [{"context": ["X : Type u", "Y : Type v", "Z : Type w", "inst✝¹ : MetricSpace X", "inst✝ : MetricSpace Y", "Φ✝ : Z → X", "Ψ✝ : Z → Y", "ε✝ : ℝ", "Φ : Z → X", "Ψ : Z → Y", "ε : ℝ", "x : Y", "y : X"], "goal": "ε ≤ glueDist Φ Ψ ε (Sum.inl y) (Sum.inr x)"}], "premise": [61939], "state_str": "X : Type u\nY : Type v\nZ : Type w\ninst✝¹ : MetricSpace X\ninst✝ : MetricSpace Y\nΦ✝ : Z → X\nΨ✝ : Z → Y\nε✝ : ℝ\nΦ : Z �� X\nΨ : Z → Y\nε : ℝ\nx : Y\ny : X\n⊢ ε ≤ glueDist Φ Ψ ε (Sum.inl y) (Sum.inr x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝⁴ : Finite α", "p q : α → Prop", "inst✝³ : Fintype { x // p x }", "inst✝² : Fintype { x // ¬p x }", "inst✝¹ : Fintype { x // q x }", "inst✝ : Fintype { x // ¬q x }", "h : card { x // p x } = card { x // q x }"], "goal": "card { x // ¬p x } = card { x // ¬q x }"}], "premise": [141384], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝⁴ : Finite α\np q : α → Prop\ninst✝³ : Fintype { x // p x }\ninst✝² : Fintype { x // ¬p x }\ninst✝¹ : Fintype { x // q x }\ninst✝ : Fintype { x // ¬q x }\nh : card { x // p x } = card { x // q x }\n⊢ card { x // ¬p x } = card { x // ¬q x }"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝⁴ : Finite α", "p q : α → Prop", "inst✝³ : Fintype { x // p x }", "inst✝² : Fintype { x // ¬p x }", "inst✝¹ : Fintype { x // q x }", "inst✝ : Fintype { x // ¬q x }", "h : card { x // p x } = card { x // q x }", "val✝ : Fintype α"], "goal": "card { x // ¬p x } = card { x // ¬q x }"}], "premise": [141446], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝⁴ : Finite α\np q : α → Prop\ninst✝³ : Fintype { x // p x }\ninst✝² : Fintype { x // ¬p x }\ninst✝¹ : Fintype { x // q x }\ninst✝ : Fintype { x // ¬q x }\nh : card { x // p x } = card { x // q x }\nval✝ : Fintype α\n⊢ card { x // ¬p x } = card { x // ¬q x }"} +{"state": [{"context": ["α : Type u", "inst✝ : Monoid α", "a✝ b c u : αˣ", "a : α", "h : ↑u * a = 1"], "goal": "↑u⁻¹ = ↑u⁻¹ * 1"}], "premise": [119730], "state_str": "α : Type u\ninst✝ : Monoid α\na✝ b c u : αˣ\na : α\nh : ↑u * a = 1\n⊢ ↑u⁻¹ = ↑u⁻¹ * 1"} +{"state": [{"context": ["α : Type u", "inst✝ : Monoid α", "a✝ b c u : αˣ", "a : α", "h : ↑u * a = 1"], "goal": "↑u⁻¹ * 1 = a"}], "premise": [120412], "state_str": "α : Type u\ninst✝ : Monoid α\na✝ b c u : αˣ\na : α\nh : ↑u * a = 1\n⊢ ↑u⁻¹ * 1 = a"} +{"state": [{"context": ["α : Type u", "β✝ : Type u_1", "t✝ : TopologicalSpace α", "B : Set (Set α)", "s✝ : Set α", "β : Type u_2", "inst✝ : TopologicalSpace β", "s : Set α", "t : Set β", "cs : Set α", "cs_count : cs.Countable", "hcs : s ⊆ closure cs", "ct : Set β", "ct_count : ct.Countable", "hct : t ⊆ closure ct"], "goal": "IsSeparable (s ×ˢ t)"}], "premise": [132772], "state_str": "case intro.intro.intro.intro\nα : Type u\nβ✝ : Type u_1\nt✝ : TopologicalSpace α\nB : Set (Set α)\ns✝ : Set α\nβ : Type u_2\ninst✝ : TopologicalSpace β\ns : Set α\nt : Set β\ncs : Set α\ncs_count : cs.Countable\nhcs : s ⊆ closure cs\nct : Set β\nct_count : ct.Countable\nhct : t ⊆ closure ct\n⊢ IsSeparable (s ×ˢ t)"} +{"state": [{"context": ["α : Type u", "β✝ : Type u_1", "t✝ : TopologicalSpace α", "B : Set (Set α)", "s✝ : Set α", "β : Type u_2", "inst✝ : TopologicalSpace β", "s : Set α", "t : Set β", "cs : Set α", "cs_count : cs.Countable", "hcs : s ⊆ closure cs", "ct : Set β", "ct_count : ct.Countable", "hct : t ⊆ closure ct"], "goal": "s ×ˢ t ⊆ closure (cs ×ˢ ct)"}], "premise": [66447], "state_str": "case intro.intro.intro.intro\nα : Type u\nβ✝ : Type u_1\nt✝ : TopologicalSpace α\nB : Set (Set α)\ns✝ : Set α\nβ : Type u_2\ninst✝ : TopologicalSpace β\ns : Set α\nt : Set β\ncs : Set α\ncs_count : cs.Countable\nhcs : s ⊆ closure cs\nct : Set β\nct_count : ct.Countable\nhct : t ⊆ closure ct\n⊢ s ×ˢ t ⊆ closure (cs ×ˢ ct)"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "H : Type u_4", "A : Type u_5", "B : Type u_6", "α : Type u_7", "β : Type u_8", "γ : Type u_9", "δ : Type u_10", "inst✝⁴ : Monoid M", "inst✝³ : MulAction M α", "inst✝² : Mul α", "r s : M", "x y : α", "inst✝¹ : IsScalarTower M α α", "inst✝ : SMulCommClass M α α"], "goal": "r • x * s • y = (r * s) • (x * y)"}], "premise": [118863, 118884, 118897, 118899], "state_str": "M : Type u_1\nN : Type u_2\nG : Type u_3\nH : Type u_4\nA : Type u_5\nB : Type u_6\nα : Type u_7\nβ : Type u_8\nγ : Type u_9\nδ : Type u_10\ninst✝⁴ : Monoid M\ninst✝³ : MulAction M α\ninst✝² : Mul α\nr s : M\nx y : α\ninst✝¹ : IsScalarTower M α α\ninst✝ : SMulCommClass M α α\n⊢ r • x * s • y = (r * s) • (x * y)"} +{"state": [{"context": ["ι : Type v", "β : ι → Type w", "inst✝¹ : (i : ι) → AddCommMonoid (β i)", "inst✝ : DecidableEq ι", "s : Finset ι", "f : (i : ↑↑s) → β ↑i", "n : ι", "hn : n ∉ s"], "goal": "((mk β s) f) n = 0"}], "premise": [117117, 117126, 138678, 148879], "state_str": "ι : Type v\nβ : ι → Type w\ninst✝¹ : (i : ι) → AddCommMonoid (β i)\ninst✝ : DecidableEq ι\ns : Finset ι\nf : (i : ↑↑s) → β ↑i\nn : ι\nhn : n ∉ s\n⊢ ((mk β s) f) n = 0"} +{"state": [{"context": ["ι : Type v", "β : ι → Type w", "inst��¹ : (i : ι) → AddCommMonoid (β i)", "inst✝ : DecidableEq ι", "s : Finset ι", "f : (i : ↑↑s) → β ↑i", "n : ι", "hn : n ∉ s"], "goal": "(if H : n ∈ s then f ⟨n, H⟩ else 0) = 0"}], "premise": [1740], "state_str": "ι : Type v\nβ : ι → Type w\ninst✝¹ : (i : ι) → AddCommMonoid (β i)\ninst✝ : DecidableEq ι\ns : Finset ι\nf : (i : ↑↑s) → β ↑i\nn : ι\nhn : n ∉ s\n⊢ (if H : n ∈ s then f ⟨n, H⟩ else 0) = 0"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝⁷ : CommRing A", "inst✝⁶ : Field K", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "M : Submonoid A", "inst✝³ : Algebra A S", "inst✝² : IsLocalization M S", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "p : A[X]", "r : A", "s : ↥M", "hr : (aeval (mk' S r s)) p = 0"], "goal": "(aeval ((algebraMap A S) r)) (p.scaleRoots ↑s) = 0"}], "premise": [74568], "state_str": "A : Type u_1\nK : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝⁷ : CommRing A\ninst✝⁶ : Field K\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\nM : Submonoid A\ninst✝³ : Algebra A S\ninst✝² : IsLocalization M S\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\np : A[X]\nr : A\ns : ↥M\nhr : (aeval (mk' S r s)) p = 0\n⊢ (aeval ((algebraMap A S) r)) (p.scaleRoots ↑s) = 0"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝⁷ : CommRing A", "inst✝⁶ : Field K", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "M : Submonoid A", "inst✝³ : Algebra A S", "inst✝² : IsLocalization M S", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "p : A[X]", "r : A", "s : ↥M", "hr : (aeval (mk' S r s)) p = 0"], "goal": "⇑(aeval ((algebraMap A S) r)) = eval₂ (algebraMap A S) ((algebraMap A S) ↑s * mk' S r s)"}], "premise": [1838], "state_str": "case h.e'_2.h.e\nA : Type u_1\nK : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝⁷ : CommRing A\ninst✝⁶ : Field K\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\nM : Submonoid A\ninst✝³ : Algebra A S\ninst✝² : IsLocalization M S\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\np : A[X]\nr : A\ns : ↥M\nhr : (aeval (mk' S r s)) p = 0\n⊢ ⇑(aeval ((algebraMap A S) r)) = eval₂ (algebraMap A S) ((algebraMap A S) ↑s * mk' S r s)"} +{"state": [{"context": ["A : Type u_1", "K : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝⁷ : CommRing A", "inst✝⁶ : Field K", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing S", "M : Submonoid A", "inst✝³ : Algebra A S", "inst✝² : IsLocalization M S", "inst✝¹ : Algebra A K", "inst✝ : IsFractionRing A K", "p : A[X]", "r : A", "s : ↥M", "hr : (aeval (mk' S r s)) p = 0", "x✝ : A[X]"], "goal": "(aeval ((algebraMap A S) r)) x✝ = eval₂ (algebraMap A S) ((algebraMap A S) ↑s * mk' S r s) x✝"}], "premise": [77593, 100959], "state_str": "case h.e'_2.h.e.h\nA : Type u_1\nK : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝⁷ : CommRing A\ninst✝⁶ : Field K\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing S\nM : Submonoid A\ninst✝³ : Algebra A S\ninst✝² : IsLocalization M S\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\np : A[X]\nr : A\ns : ↥M\nhr : (aeval (mk' S r s)) p = 0\nx✝ : A[X]\n⊢ (aeval ((algebraMap A S) r)) x✝ = eval₂ (algebraMap A S) ((algebraMap A S) ↑s * mk' S r s) x✝"} +{"state": [{"context": ["E : Type u_1", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace ℂ E", "V : Type u_2", "W : Type u_3", "inst✝⁸ : NormedAddCommGroup V", "inst✝⁷ : NormedSpace ℝ V", "inst✝⁶ : NormedAddCommGroup W", "inst✝⁵ : NormedSpace ℝ W", "L : V →L[ℝ] W →L[ℝ] ℝ", "f : V → E", "inst✝⁴ : SecondCountableTopology V", "inst✝³ : MeasurableSpace V", "inst✝² : BorelSpace V", "μ✝ : Measure V", "inst✝¹ : FiniteDimensional ℝ V", "μ : Measure V", "inst✝ : μ.IsAddHaarMeasure", "K N : ℕ∞", "hf : ContDiff ℝ N f", "h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ", "k n : ℕ", "hk : ↑k ≤ K", "hn : ↑n ≤ N", "w : W"], "goal": "fourierPowSMulRight (-L.flip) (iteratedFDeriv ℝ k (fourierIntegral 𝐞 μ L.toLinearMap₂ f)) w n = fourierIntegral 𝐞 μ L.toLinearMap₂ (iteratedFDeriv ℝ n fun v => fourierPowSMulRight L f v k) w"}], "premise": [46511, 46519], "state_str": "E : Type u_1\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℂ E\nV : Type u_2\nW : Type u_3\ninst✝⁸ : NormedAddCommGroup V\ninst✝⁷ : NormedSpace ℝ V\ninst✝⁶ : NormedAddCommGroup W\ninst✝⁵ : NormedSpace ℝ W\nL : V →L[ℝ] W →L[ℝ] ℝ\nf : V → E\ninst✝⁴ : SecondCountableTopology V\ninst✝³ : MeasurableSpace V\ninst✝² : BorelSpace V\nμ✝ : Measure V\ninst✝¹ : FiniteDimensional ℝ V\nμ : Measure V\ninst✝ : μ.IsAddHaarMeasure\nK N : ℕ∞\nhf : ContDiff ℝ N f\nh'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ\nk n : ℕ\nhk : ↑k ≤ K\nhn : ↑n ≤ N\nw : W\n⊢ fourierPowSMulRight (-L.flip) (iteratedFDeriv ℝ k (fourierIntegral 𝐞 μ L.toLinearMap₂ f)) w n =\n fourierIntegral 𝐞 μ L.toLinearMap₂ (iteratedFDeriv ℝ n fun v => fourierPowSMulRight L f v k) w"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s✝ t u : Set α", "inst✝³ : MeasurableSpace α", "inst✝² : MeasurableSpace β", "inst✝¹ : MeasurableSpace γ", "inst✝ : MeasurableSpace δ", "e : α ≃ᵐ β", "s : Set α"], "goal": "⇑e ⁻¹' (⇑e '' s) = s"}], "premise": [28202, 71307], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns✝ t u : Set α\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\ne : α ≃ᵐ β\ns : Set α\n⊢ ⇑e ⁻¹' (⇑e '' s) = s"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι : Sort w", "α : Type u_1", "β : Type u_2", "x : X", "s s₁ s₂ t : Set X", "p p₁ p₂ : X → Prop", "inst✝ : TopologicalSpace X"], "goal": "Disjoint (interior s) (frontier s)"}], "premise": [55461, 131588, 133442, 133443, 133444, 133565, 133600], "state_str": "X : Type u\nY : Type v\nι : Sort w\nα : Type u_1\nβ : Type u_2\nx : X\ns s₁ s₂ t : Set X\np p₁ p₂ : X → Prop\ninst✝ : TopologicalSpace X\n⊢ Disjoint (interior s) (frontier s)"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝⁴ : CommRing R", "inst✝³ : Field K", "inst✝² : Field L", "inst✝¹ : Field F", "i : K →+* L", "inst✝ : Algebra R K", "f : K[X]", "hs : Splits (RingHom.id K) f", "hm : f.Monic", "hr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range"], "goal": "f ∈ lifts (algebraMap R K)"}], "premise": [101150, 101392], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝⁴ : CommRing R\ninst✝³ : Field K\ninst✝² : Field L\ninst✝¹ : Field F\ni : K →+* L\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : f.Monic\nhr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range\n⊢ f ∈ lifts (algebraMap R K)"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝⁴ : CommRing R", "inst✝³ : Field K", "inst✝² : Field L", "inst✝¹ : Field F", "i : K →+* L", "inst✝ : Algebra R K", "f : K[X]", "hs : Splits (RingHom.id K) f", "hm : f.Monic", "hr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range"], "goal": "(Multiset.map (fun a => X - C a) f.roots).prod ∈ liftsRing (algebraMap R K)"}], "premise": [123491], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝⁴ : CommRing R\ninst✝³ : Field K\ninst✝² : Field L\ninst✝¹ : Field F\ni : K →+* L\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : f.Monic\nhr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range\n⊢ (Multiset.map (fun a => X - C a) f.roots).prod ∈ liftsRing (algebraMap R K)"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝⁴ : CommRing R", "inst✝³ : Field K", "inst✝² : Field L", "inst✝¹ : Field F", "i : K →+* L", "inst✝ : Algebra R K", "f : K[X]", "hs : Splits (RingHom.id K) f", "hm : f.Monic", "hr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range", "P : K[X]", "hP : P ∈ Multiset.map (fun a => X - C a) f.roots"], "goal": "P ∈ liftsRing (algebraMap R K)"}], "premise": [1673, 137990], "state_str": "R : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝⁴ : CommRing R\ninst✝³ : Field K\ninst✝² : Field L\ninst✝¹ : Field F\ni : K →+* L\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : f.Monic\nhr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range\nP : K[X]\nhP : P ∈ Multiset.map (fun a => X - C a) f.roots\n⊢ P ∈ liftsRing (algebraMap R K)"} +{"state": [{"context": ["R : Type u_1", "F : Type u", "K : Type v", "L : Type w", "inst✝⁴ : CommRing R", "inst✝³ : Field K", "inst✝² : Field L", "inst✝¹ : Field F", "i : K →+* L", "inst✝ : Algebra R K", "f : K[X]", "hs : Splits (RingHom.id K) f", "hm : f.Monic", "hr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range", "b : K", "hb : b ∈ f.roots", "hP : X - C b ∈ Multiset.map (fun a => X - C a) f.roots"], "goal": "X - C b ∈ liftsRing (algebraMap R K)"}], "premise": [101382, 101383, 123488], "state_str": "case intro.intro\nR : Type u_1\nF : Type u\nK : Type v\nL : Type w\ninst✝⁴ : CommRing R\ninst✝³ : Field K\ninst✝² : Field L\ninst✝¹ : Field F\ni : K →+* L\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : f.Monic\nhr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range\nb : K\nhb : b ∈ f.roots\nhP : X - C b ∈ Multiset.map (fun a => X - C a) f.roots\n⊢ X - C b ∈ liftsRing (algebraMap R K)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : SeminormedCommGroup α", "n : ℤ", "a : α"], "goal": "‖a ^ n‖ ≤ ‖n‖ * ‖a‖"}], "premise": [3407, 42878], "state_str": "α : Type u_1\ninst✝ : SeminormedCommGroup α\nn : ℤ\na : α\n⊢ ‖a ^ n‖ ≤ ‖n‖ * ‖a‖"} +{"state": [{"context": ["R : Type u", "L : Type v", "L' : Type w₂", "M : Type w", "M' : Type w₁", "inst✝¹² : CommRing R", "inst✝¹¹ : LieRing L", "inst✝¹⁰ : LieAlgebra R L", "inst✝⁹ : LieRing L'", "inst✝⁸ : LieAlgebra R L'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M'", "inst✝² : Module R M'", "inst✝¹ : LieRingModule L M'", "inst✝ : LieModule R L M'", "f : L →ₗ⁅R⁆ L'", "I : LieIdeal R L", "J : LieIdeal R L'", "h : f.IsIdealMorphism", "y : L'"], "goal": "y ∈ f.idealRange ↔ ∃ x, f x = y"}], "premise": [109377], "state_str": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nh : f.IsIdealMorphism\ny : L'\n⊢ y ∈ f.idealRange ↔ ∃ x, f x = y"} +{"state": [{"context": ["R : Type u", "L : Type v", "L' : Type w₂", "M : Type w", "M' : Type w₁", "inst✝¹² : CommRing R", "inst✝¹¹ : LieRing L", "inst✝¹⁰ : LieAlgebra R L", "inst✝⁹ : LieRing L'", "inst✝⁸ : LieAlgebra R L'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M'", "inst✝² : Module R M'", "inst✝¹ : LieRingModule L M'", "inst✝ : LieModule R L M'", "f : L →ₗ⁅R⁆ L'", "I : LieIdeal R L", "J : LieIdeal R L'", "h : lieIdealSubalgebra R L' f.idealRange = f.range", "y : L'"], "goal": "y ∈ f.idealRange ↔ ∃ x, f x = y"}], "premise": [1713, 107983, 109248, 109266, 131595], "state_str": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nh : lieIdealSubalgebra R L' f.idealRange = f.range\ny : L'\n⊢ y ∈ f.idealRange ↔ ∃ x, f x = y"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "S : Type v", "inst✝ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "n : ℕ", "hn : n ≤ ramificationIdx f p P"], "goal": "map f p ≤ P ^ n"}], "premise": [53688], "state_str": "R : Type u\ninst✝¹ : CommRing R\nS : Type v\ninst✝ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\nn : ℕ\nhn : n ≤ ramificationIdx f p P\n⊢ map f p ≤ P ^ n"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "S : Type v", "inst✝ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "n : ℕ", "hn : ¬map f p ≤ P ^ n"], "goal": "ramificationIdx f p P < n"}], "premise": [24049], "state_str": "R : Type u\ninst✝¹ : CommRing R\nS : Type v\ninst✝ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\nn : ℕ\nhn : ¬map f p ≤ P ^ n\n⊢ ramificationIdx f p P < n"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "p : A → Prop", "inst✝⁹ : CommSemiring R", "inst✝⁸ : StarRing R", "inst✝⁷ : MetricSpace R", "inst✝⁶ : TopologicalSemiring R", "inst✝⁵ : ContinuousStar R", "inst✝⁴ : TopologicalSpace A", "inst✝³ : Ring A", "inst✝² : StarRing A", "inst✝¹ : Algebra R A", "inst✝ : ContinuousFunctionalCalculus R p", "f g : R → R", "a✝ : A", "ha✝ : autoParam (p a✝) _auto✝", "hf : autoParam (ContinuousOn f (spectrum R a✝)) _auto✝", "hg : autoParam (ContinuousOn g (spectrum R a✝)) _auto✝", "a : A", "n : ℕ", "ha : autoParam (p a) _auto✝"], "goal": "cfc (fun x => x ^ n) a = a ^ n"}], "premise": [35622, 35637], "state_str": "R : Type u_1\nA : Type u_2\np : A → Prop\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : MetricSpace R\ninst✝⁶ : TopologicalSemiring R\ninst✝⁵ : ContinuousStar R\ninst✝⁴ : TopologicalSpace A\ninst✝³ : Ring A\ninst✝² : StarRing A\ninst✝¹ : Algebra R A\ninst✝ : ContinuousFunctionalCalculus R p\nf g : R → R\na✝ : A\nha✝ : autoParam (p a✝) _auto✝\nhf : autoParam (ContinuousOn f (spectrum R a✝)) _auto✝\nhg : autoParam (ContinuousOn g (spectrum R a✝)) _auto✝\na : A\nn : ℕ\nha : autoParam (p a) _auto✝\n⊢ cfc (fun x => x ^ n) a = a ^ n"} +{"state": [{"context": ["Γ : Subgroup SL(2, ℤ)", "k : ℤ", "f✝ : ℍ → ℂ", "k1 k2 : ℤ", "A : SL(2, ℤ)", "f g : ℍ → ℂ"], "goal": "(f * g) ∣[k1 + k2] ↑A = (↑↑↑A).det • f ∣[k1] A * g ∣[k2] A"}], "premise": [21954], "state_str": "Γ : Subgroup SL(2, ℤ)\nk : ℤ\nf✝ : ℍ → ℂ\nk1 k2 : ℤ\nA : SL(2, ℤ)\nf g : ℍ → ℂ\n⊢ (f * g) ∣[k1 + k2] ↑A = (↑↑↑A).det • f ∣[k1] A * g ∣[k2] A"} +{"state": [{"context": ["Γ : Subgroup SL(2, ℤ)", "k : ℤ", "f✝ : ℍ → ℂ", "k1 k2 : ℤ", "A : SL(2, ℤ)", "f g : ℍ → ℂ"], "goal": "(↑↑↑A).det • f ∣[k1] A * g ∣[k2] A = 1 • f ∣[k1] A * g ∣[k2] A"}], "premise": [46727], "state_str": "Γ : Subgroup SL(2, ℤ)\nk : ℤ\nf✝ : ℍ → ℂ\nk1 k2 : ℤ\nA : SL(2, ℤ)\nf g : ℍ → ℂ\n⊢ (↑↑↑A).det • f ∣[k1] A * g ∣[k2] A = 1 • f ∣[k1] A * g ∣[k2] A"} +{"state": [{"context": ["Γ : Subgroup SL(2, ℤ)", "k : ℤ", "f✝ : ℍ → ℂ", "k1 k2 : ℤ", "A : SL(2, ℤ)", "f g : ℍ → ℂ"], "goal": "1 • f ∣[k1] A * g ∣[k2] A = f ∣[k1] A * g ∣[k2] A"}], "premise": [118910], "state_str": "Γ : Subgroup SL(2, ℤ)\nk : ℤ\nf✝ : ℍ → ℂ\nk1 k2 : ℤ\nA : SL(2, ℤ)\nf g : ℍ → ℂ\n⊢ 1 • f ∣[k1] A * g ∣[k2] A = f ∣[k1] A * g ∣[k2] A"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝³ : CancelCommMonoidWithZero α", "inst✝² : NormalizedGCDMonoid α", "s✝ s₁ s₂ : Finset β", "f✝ : β → α", "inst✝¹ : Div α", "inst✝ : MulDivCancelClass α", "f : ι → α", "s : Finset ι", "i : ι", "his : i ∈ s", "hfi : f i ≠ 0"], "goal": "(s.gcd fun j => f j / s.gcd f) = 1"}], "premise": [125061], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : NormalizedGCDMonoid α\ns✝ s₁ s₂ : Finset β\nf✝ : β → α\ninst✝¹ : Div α\ninst✝ : MulDivCancelClass α\nf : ι → α\ns : Finset ι\ni : ι\nhis : i ∈ s\nhfi : f i ≠ 0\n⊢ (s.gcd fun j => f j / s.gcd f) = 1"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝³ : CancelCommMonoidWithZero α", "inst✝² : NormalizedGCDMonoid α", "s✝ s₁ s₂ : Finset β", "f✝ : β → α", "inst✝¹ : Div α", "inst✝ : MulDivCancelClass α", "f : ι → α", "s : Finset ι", "i : ι", "his : i ∈ s", "hfi : f i ≠ 0", "g : ι → α", "he : ∀ b ∈ s, f b = s.gcd f * g b", "hg : s.gcd g = 1"], "goal": "(s.gcd fun j => f j / s.gcd f) = 1"}], "premise": [2101, 125051], "state_str": "case intro.intro\nι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : NormalizedGCDMonoid α\ns✝ s₁ s₂ : Finset β\nf✝ : β → α\ninst✝¹ : Div α\ninst✝ : MulDivCancelClass α\nf : ι → α\ns : Finset ι\ni : ι\nhis : i ∈ s\nhfi : f i ≠ 0\ng : ι → α\nhe : ∀ b ∈ s, f b = s.gcd f * g b\nhg : s.gcd g = 1\n⊢ (s.gcd fun j => f j / s.gcd f) = 1"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝³ : CancelCommMonoidWithZero α", "inst✝² : NormalizedGCDMonoid α", "s✝ s₁ s₂ : Finset β", "f✝ : β → α", "inst✝¹ : Div α", "inst✝ : MulDivCancelClass α", "f : ι → α", "s : Finset ι", "i : ι", "his : i ∈ s", "hfi : f i ≠ 0", "g : ι → α", "he : ∀ b ∈ s, f b = s.gcd f * g b", "hg : s.gcd g = 1", "a : ι", "ha : a ∈ s"], "goal": "f a / s.gcd f = g a"}], "premise": [108574], "state_str": "case intro.intro\nι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : NormalizedGCDMonoid α\ns✝ s₁ s₂ : Finset β\nf✝ : β → α\ninst✝¹ : Div α\ninst✝ : MulDivCancelClass α\nf : ι → α\ns : Finset ι\ni : ι\nhis : i ∈ s\nhfi : f i ≠ 0\ng : ι → α\nhe : ∀ b ∈ s, f b = s.gcd f * g b\nhg : s.gcd g = 1\na : ι\nha : a ∈ s\n⊢ f a / s.gcd f = g a"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝³ : CancelCommMonoidWithZero α", "inst✝² : NormalizedGCDMonoid α", "s✝ s₁ s₂ : Finset β", "f✝ : β → α", "inst✝¹ : Div α", "inst✝ : MulDivCancelClass α", "f : ι → α", "s : Finset ι", "i : ι", "his : i ∈ s", "hfi : f i ≠ 0", "g : ι → α", "he : ∀ b ∈ s, f b = s.gcd f * g b", "hg : s.gcd g = 1", "a : ι", "ha : a ∈ s"], "goal": "s.gcd f ≠ 0"}], "premise": [1673, 1681, 125056], "state_str": "case intro.intro.ha\nι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : NormalizedGCDMonoid α\ns✝ s₁ s₂ : Finset β\nf✝ : β → α\ninst✝¹ : Div α\ninst✝ : MulDivCancelClass α\nf : ι → α\ns : Finset ι\ni : ι\nhis : i ∈ s\nhfi : f i ≠ 0\ng : ι → α\nhe : ∀ b ∈ s, f b = s.gcd f * g b\nhg : s.gcd g = 1\na : ι\nha : a ∈ s\n⊢ s.gcd f ≠ 0"} +{"state": [{"context": ["R S : Type u", "M✝ : Type v", "M' : Type v'", "M₁ : Type v", "ι✝ : Type w", "ι' : Type w'", "η : Type u₁'", "φ : η → Type u_1", "inst✝¹⁷ : Ring R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : AddCommGroup M✝", "inst✝¹⁴ : AddCommGroup M'", "inst✝¹³ : AddCommGroup M₁", "inst✝¹² : Module R M✝", "inst✝¹¹ : Module R M'", "inst✝¹⁰ : Module R M₁", "inst✝⁹ : StrongRankCondition R", "inst✝⁸ : Module.Free R M✝", "inst✝⁷ : Module.Free R M'", "inst✝⁶ : Module.Finite R M✝", "inst✝⁵ : Module.Finite R M'", "ι : Type v", "inst✝⁴ : Fintype ι", "M : ι → Type w", "inst✝³ : (i : ι) → AddCommGroup (M i)", "inst✝² : (i : ι) → Module R (M i)", "inst✝¹ : ∀ (i : ι), Module.Free R (M i)", "inst✝ : ∀ (i : ι), Module.Finite R (M i)"], "goal": "finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i)"}], "premise": [82557], "state_str": "R S : Type u\nM✝ : Type v\nM' : Type v'\nM₁ : Type v\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type u_1\ninst✝¹⁷ : Ring R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : AddCommGroup M✝\ninst✝¹⁴ : AddCommGroup M'\ninst✝¹³ : AddCommGroup M₁\ninst✝¹² : Module R M✝\ninst✝¹¹ : Module R M'\ninst✝¹⁰ : Module R M₁\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : Module.Free R M✝\ninst✝⁷ : Module.Free R M'\ninst✝⁶ : Module.Finite R M✝\ninst✝⁵ : Module.Finite R M'\nι : Type v\ninst✝⁴ : Fintype ι\nM : ι → Type w\ninst✝³ : (i : ι) → AddCommGroup (M i)\ninst✝² : (i : ι) → Module R (M i)\ninst✝¹ : ∀ (i : ι), Module.Free R (M i)\ninst✝ : ∀ (i : ι), Module.Finite R (M i)\n⊢ finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i)"} +{"state": [{"context": ["R S : Type u", "M✝ : Type v", "M' : Type v'", "M₁ : Type v", "ι✝ : Type w", "ι' : Type w'", "η : Type u₁'", "φ : η → Type u_1", "inst✝¹⁷ : Ring R", "inst✝¹⁶ : CommRing S", "inst✝¹⁵ : AddCommGroup M✝", "inst✝¹⁴ : AddCommGroup M'", "inst✝¹³ : AddCommGroup M₁", "inst✝¹² : Module R M✝", "inst✝¹¹ : Module R M'", "inst✝¹⁰ : Module R M₁", "inst✝⁹ : StrongRankCondition R", "inst✝⁸ : Module.Free R M✝", "inst✝⁷ : Module.Free R M'", "inst✝⁶ : Module.Finite R M✝", "inst✝⁵ : Module.Finite R M'", "ι : Type v", "inst✝⁴ : Fintype ι", "M : ι → Type w", "inst✝³ : (i : ι) → AddCommGroup (M i)", "inst✝² : (i : ι) → Module R (M i)", "inst✝¹ : ∀ (i : ι), Module.Free R (M i)", "inst✝ : ∀ (i : ι), Module.Finite R (M i)", "this : Nontrivial R := nontrivial_of_invariantBasisNumber R"], "goal": "finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i)"}], "premise": [47650, 48669, 85824, 86349, 140596], "state_str": "R S : Type u\nM✝ : Type v\nM' : Type v'\nM₁ : Type v\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type u_1\ninst✝¹⁷ : Ring R\ninst✝¹⁶ : CommRing S\ninst✝¹⁵ : AddCommGroup M✝\ninst✝¹⁴ : AddCommGroup M'\ninst✝¹³ : AddCommGroup M₁\ninst✝¹² : Module R M✝\ninst✝¹¹ : Module R M'\ninst✝¹⁰ : Module R M₁\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : Module.Free R M✝\ninst✝⁷ : Module.Free R M'\ninst✝⁶ : Module.Finite R M✝\ninst✝⁵ : Module.Finite R M'\nι : Type v\ninst✝⁴ : Fintype ι\nM : ι → Type w\ninst✝³ : (i : ι) → AddCommGroup (M i)\ninst✝² : (i : ι) → Module R (M i)\ninst✝¹ : ∀ (i : ι), Module.Free R (M i)\ninst✝ : ∀ (i : ι), Module.Finite R (M i)\nthis : Nontrivial R := nontrivial_of_invariantBasisNumber R\n⊢ finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i)"} +{"state": [{"context": ["a✝¹ a✝ : ℝ"], "goal": "↑a✝¹ * ↑a✝ = ↑a✝ * ↑a✝¹"}], "premise": [119707, 147090], "state_str": "case h_real.h_real\na✝¹ a✝ : ℝ\n⊢ ↑a✝¹ * ↑a✝ = ↑a✝ * ↑a✝¹"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝¹¹ : CommRing R", "inst✝¹⁰ : Ring S", "inst✝⁹ : Algebra R S", "K : Type u_4", "L : Type u_5", "F : Type u_6", "inst✝⁸ : Field K", "inst✝⁷ : Field L", "inst✝⁶ : Field F", "inst✝⁵ : Algebra K L", "inst✝⁴ : Algebra K F", "ι : Type w", "E : Type u_7", "inst✝³ : Field E", "inst✝² : Algebra K E", "inst✝¹ : Algebra.IsSeparable K L", "inst✝ : FiniteDimensional K L", "x : L", "hF : Splits (algebraMap K F) (minpoly K x)"], "goal": "(algebraMap K F) ((norm K) x) = ((minpoly K x).aroots F).prod ^ finrank (↥K⟮x⟯) L"}], "premise": [78561, 78563, 117106], "state_str": "R : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝¹¹ : CommRing R\ninst✝¹⁰ : Ring S\ninst✝⁹ : Algebra R S\nK : Type u_4\nL : Type u_5\nF : Type u_6\ninst✝⁸ : Field K\ninst✝⁷ : Field L\ninst✝⁶ : Field F\ninst✝⁵ : Algebra K L\ninst✝⁴ : Algebra K F\nι : Type w\nE : Type u_7\ninst✝³ : Field E\ninst✝² : Algebra K E\ninst✝¹ : Algebra.IsSeparable K L\ninst✝ : FiniteDimensional K L\nx : L\nhF : Splits (algebraMap K F) (minpoly K x)\n⊢ (algebraMap K F) ((norm K) x) = ((minpoly K x).aroots F).prod ^ finrank (↥K⟮x⟯) L"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "α : Type u_4", "inst✝⁷ : Fintype l", "inst✝⁶ : Fintype m", "inst✝⁵ : Fintype n", "inst✝⁴ : DecidableEq l", "inst✝³ : DecidableEq m", "inst✝² : DecidableEq n", "inst✝¹ : CommRing α", "A : Matrix m m α", "B : Matrix m n α", "C : Matrix n m α", "D : Matrix n n α", "inst✝ : Invertible A"], "goal": "(fromBlocks A B C D).det = A.det * (D - C * ⅟A * B).det"}], "premise": [85997, 86442, 86450, 86501, 86502, 119728, 119730], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nα : Type u_4\ninst✝⁷ : Fintype l\ninst✝⁶ : Fintype m\ninst✝⁵ : Fintype n\ninst✝⁴ : DecidableEq l\ninst✝³ : DecidableEq m\ninst✝² : DecidableEq n\ninst✝¹ : CommRing α\nA : Matrix m m α\nB : Matrix m n α\nC : Matrix n m α\nD : Matrix n n α\ninst✝ : Invertible A\n⊢ (fromBlocks A B C D).det = A.det * (D - C * ⅟A * B).det"} +{"state": [{"context": ["R S : Type u", "M : Type v", "M' : Type v'", "M₁ : Type v", "ι✝ : Type w", "ι' : Type w'", "η : Type u₁'", "φ : η → Type u_1", "inst✝¹⁰ : Ring R", "inst✝⁹ : CommRing S", "inst✝⁸ : AddCommGroup M", "inst✝⁷ : AddCommGroup M'", "inst✝⁶ : AddCommGroup M₁", "inst✝⁵ : Module R M", "inst✝⁴ : Module R M'", "inst✝³ : Module R M₁", "inst✝² : StrongRankCondition R", "inst✝¹ : Module.Free R M", "inst✝ : Module.Free R M'", "ι : Type w"], "goal": "Module.rank R (ι →₀ M) = lift.{v, w} #ι * lift.{w, v} (Module.rank R M)"}], "premise": [81108], "state_str": "R S : Type u\nM : Type v\nM' : Type v'\nM₁ : Type v\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type u_1\ninst✝¹⁰ : Ring R\ninst✝⁹ : CommRing S\ninst✝⁸ : AddCommGroup M\ninst✝⁷ : AddCommGroup M'\ninst✝⁶ : AddCommGroup M₁\ninst✝⁵ : Module R M\ninst✝⁴ : Module R M'\ninst✝³ : Module R M₁\ninst✝² : StrongRankCondition R\ninst✝¹ : Module.Free R M\ninst✝ : Module.Free R M'\nι : Type w\n⊢ Module.rank R (ι →₀ M) = lift.{v, w} #ι * lift.{w, v} (Module.rank R M)"} +{"state": [{"context": ["R S : Type u", "M : Type v", "M' : Type v'", "M₁ : Type v", "ι✝ : Type w", "ι' : Type w'", "η : Type u₁'", "φ : η → Type u_1", "inst✝¹⁰ : Ring R", "inst✝⁹ : CommRing S", "inst✝⁸ : AddCommGroup M", "inst✝⁷ : AddCommGroup M'", "inst✝⁶ : AddCommGroup M₁", "inst✝⁵ : Module R M", "inst✝⁴ : Module R M'", "inst✝³ : Module R M₁", "inst✝² : StrongRankCondition R", "inst✝¹ : Module.Free R M", "inst✝ : Module.Free R M'", "ι : Type w", "fst✝ : Type v", "bs : Basis fst✝ R M"], "goal": "Module.rank R (ι →₀ M) = lift.{v, w} #ι * lift.{w, v} (Module.rank R M)"}], "premise": [48669, 48670, 85898], "state_str": "case intro.mk\nR S : Type u\nM : Type v\nM' : Type v'\nM₁ : Type v\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type u_1\ninst✝¹⁰ : Ring R\ninst✝⁹ : CommRing S\ninst✝⁸ : AddCommGroup M\ninst✝⁷ : AddCommGroup M'\ninst✝⁶ : AddCommGroup M₁\ninst✝⁵ : Module R M\ninst✝⁴ : Module R M'\ninst✝³ : Module R M₁\ninst✝² : StrongRankCondition R\ninst✝¹ : Module.Free R M\ninst✝ : Module.Free R M'\nι : Type w\nfst✝ : Type v\nbs : Basis fst✝ R M\n⊢ Module.rank R (ι →₀ M) = lift.{v, w} #ι * lift.{w, v} (Module.rank R M)"} +{"state": [{"context": ["ι✝ : Type u_1", "κ✝ : Type u_2", "α✝ : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α✝", "a : α✝", "f✝ g✝ : α✝ → β", "inst✝¹ : CommMonoid β", "ι : Type u_6", "κ : Type u_7", "α : Type u_8", "inst✝ : CommMonoid α", "s : Finset ι", "t : Finset κ", "f : ι → α", "g : κ → α", "e : ι → κ", "he : Set.InjOn e ↑s", "hest : Set.MapsTo e ↑s ↑t", "h' : ∀ i ∈ t, i ∉ e '' ↑s → g i = 1", "h : ∀ i ∈ s, f i = g (e i)"], "goal": "∏ i ∈ s, f i = ∏ j ∈ t, g j"}], "premise": [1674, 2101, 126957, 126973, 135844, 137414, 137436], "state_str": "ι✝ : Type u_1\nκ✝ : Type u_2\nα✝ : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α✝\na : α✝\nf✝ g✝ : α✝ → β\ninst✝¹ : CommMonoid β\nι : Type u_6\nκ : Type u_7\nα : Type u_8\ninst✝ : CommMonoid α\ns : Finset ι\nt : Finset κ\nf : ι → α\ng : κ → α\ne : ι → κ\nhe : Set.InjOn e ↑s\nhest : Set.MapsTo e ↑s ↑t\nh' : ∀ i ∈ t, i ∉ e '' ↑s → g i = 1\nh : ∀ i ∈ s, f i = g (e i)\n⊢ ∏ i ∈ s, f i = ∏ j ∈ t, g j"} +{"state": [{"context": ["α β : NonemptyFinLinOrd", "e : ↑α ≃o ↑β", "x : (forget NonemptyFinLinOrd).obj α"], "goal": "(↑e ≫ ↑e.symm) x = (𝟙 α) x"}], "premise": [11076], "state_str": "case w\nα β : NonemptyFinLinOrd\ne : ↑α ≃o ↑β\nx : (forget NonemptyFinLinOrd).obj α\n⊢ (↑e ≫ ↑e.symm) x = (𝟙 α) x"} +{"state": [{"context": ["α β : NonemptyFinLinOrd", "e : ↑α ≃o ↑β", "x : (forget NonemptyFinLinOrd).obj β"], "goal": "(↑e.symm ≫ ↑e) x = (𝟙 β) x"}], "premise": [11075], "state_str": "case w\nα β : NonemptyFinLinOrd\ne : ↑α ≃o ↑β\nx : (forget NonemptyFinLinOrd).obj β\n⊢ (↑e.symm ≫ ↑e) x = (𝟙 β) x"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "M : Type u_4", "N : Type u_5", "P : Type u_6", "G : Type u_7", "inst✝² : Monoid M", "inst✝¹ : Monoid N", "inst✝ : Monoid P", "l✝ l₁ l₂ : List M", "a : M", "l : List M", "m : M", "h : ∀ x ∈ l, x = m"], "goal": "l.prod = m ^ l.length"}], "premise": [1674, 5260, 124839], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nM : Type u_4\nN : Type u_5\nP : Type u_6\nG : Type u_7\ninst✝² : Monoid M\ninst✝¹ : Monoid N\ninst✝ : Monoid P\nl✝ l₁ l₂ : List M\na : M\nl : List M\nm : M\nh : ∀ x ∈ l, x = m\n⊢ l.prod = m ^ l.length"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "inst✝² : ConditionallyCompleteLattice α", "inst✝¹ : Fintype ι", "inst✝ : Nonempty ι", "f : ι → α"], "goal": "univ.sup' ⋯ f = ⨆ i, f i"}], "premise": [14207], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\ninst✝² : ConditionallyCompleteLattice α\ninst✝¹ : Fintype ι\ninst✝ : Nonempty ι\nf : ι → α\n⊢ univ.sup' ⋯ f = ⨆ i, f i"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x y : V", "h : ⟪x, y⟫_ℝ = 0", "h0 : x ≠ 0"], "goal": "angle x (x + y) = Real.arctan (‖y‖ / ‖x‖)"}], "premise": [1674, 36885, 37967, 69413, 117904], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : ⟪x, y⟫_ℝ = 0\nh0 : x ≠ 0\n⊢ angle x (x + y) = Real.arctan (‖y‖ / ‖x‖)"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x y : V", "h : ⟪x, y⟫_ℝ = 0", "h0 : x ≠ 0"], "goal": "Real.arcsin (‖y‖ / √(‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)) = Real.arcsin (‖y‖ / (‖x‖ * √(1 + (‖y‖ / ‖x‖) ^ 2)))"}], "premise": [42680, 146005], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : ⟪x, y⟫_ℝ = 0\nh0 : x ≠ 0\n⊢ Real.arcsin (‖y‖ / √(‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)) = Real.arcsin (‖y‖ / (‖x‖ * √(1 + (‖y‖ / ‖x‖) ^ 2)))"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x y : V", "h : ⟪x, y⟫_ℝ = 0", "h0 : x ≠ 0"], "goal": "Real.arcsin (‖y‖ / √(‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)) = Real.arcsin (‖y‖ / (√(‖x‖ ^ 2) * √(1 + (‖y‖ / ‖x‖) ^ 2)))"}], "premise": [1674, 11234, 42921, 106918, 106925, 108408, 117812, 117927, 119707, 119730, 119750, 146035], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : ⟪x, y⟫_ℝ = 0\nh0 : x ≠ 0\n⊢ Real.arcsin (‖y‖ / √(‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)) = Real.arcsin (‖y‖ / (√(‖x‖ ^ 2) * √(1 + (‖y‖ / ‖x‖) ^ 2)))"} +{"state": [{"context": ["α : Type u_1", "M : Type u_2", "inst✝ : CommMonoid M", "f : α → M", "s : Finset (Option α)"], "goal": "∏ x ∈ eraseNone s, f x = ∏ x ∈ s, Option.elim' 1 f x"}], "premise": [2100, 126917, 127228, 136789], "state_str": "α : Type u_1\nM : Type u_2\ninst✝ : CommMonoid M\nf : α → M\ns : Finset (Option α)\n⊢ ∏ x ∈ eraseNone s, f x = ∏ x ∈ s, Option.elim' 1 f x"} +{"state": [{"context": ["G : Type w", "inst✝ : TopologicalSpace G", "μ : Content G"], "goal": "μ.innerContent ⊥ = 0"}], "premise": [14296, 103545], "state_str": "G : Type w\ninst✝ : TopologicalSpace G\nμ : Content G\n⊢ μ.innerContent ⊥ = 0"} +{"state": [{"context": ["G : Type w", "inst✝ : TopologicalSpace G", "μ : Content G"], "goal": "μ.innerContent ⊥ ≤ 0"}], "premise": [29954], "state_str": "G : Type w\ninst✝ : TopologicalSpace G\nμ : Content G\n⊢ μ.innerContent ⊥ ≤ 0"} +{"state": [{"context": ["G : Type w", "inst✝ : TopologicalSpace G", "μ : Content G"], "goal": "μ.innerContent ⊥ ≤ (fun s => ↑(μ.toFun s)) ⊥"}], "premise": [19311], "state_str": "G : Type w\ninst✝ : TopologicalSpace G\nμ : Content G\n⊢ μ.innerContent ⊥ ≤ (fun s => ↑(μ.toFun s)) ⊥"} +{"state": [{"context": ["G : Type w", "inst✝ : TopologicalSpace G", "μ : Content G", "K : Compacts G", "hK : ↑K ⊆ ↑⊥"], "goal": "(fun s => ↑(μ.toFun s)) K ≤ (fun s => ↑(μ.toFun s)) ⊥"}], "premise": [1673, 55289, 133372], "state_str": "G : Type w\ninst✝ : TopologicalSpace G\nμ : Content G\nK : Compacts G\nhK : ↑K ⊆ ↑⊥\n⊢ (fun s => ↑(μ.toFun s)) K ≤ (fun s => ↑(μ.toFun s)) ⊥"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "ι : Type u_3", "inst✝⁴ : Preorder ι", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ g : ι → Ω → E", "ℱ : Filtration ι m0", "𝒢 : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "f : ℕ → Ω → ℝ", "hadp : Adapted 𝒢 f", "hint : ∀ (i : ℕ), Integrable (f i) μ", "hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0"], "goal": "Martingale f 𝒢 μ"}], "premise": [1674, 16092, 16126, 73966, 74004, 74005], "state_str": "Ω : Type u_1\nE : Type u_2\nι : Type u_3\ninst✝⁴ : Preorder ι\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ g : ι → Ω → E\nℱ : Filtration ι m0\n𝒢 : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nf : ℕ → Ω → ℝ\nhadp : Adapted 𝒢 f\nhint : ∀ (i : ℕ), Integrable (f i) μ\nhf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0\n⊢ Martingale f 𝒢 μ"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "ι : Type u_3", "inst✝⁴ : Preorder ι", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ g : ι → Ω → E", "ℱ : Filtration ι m0", "𝒢 : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "f : ℕ → Ω → ℝ", "hadp : Adapted 𝒢 f", "hint : ∀ (i : ℕ), Integrable (f i) μ", "hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0", "i : ℕ"], "goal": "0 ≤ᶠ[ae μ] μ[f i - f (i + 1)|↑𝒢 i]"}], "premise": [117837], "state_str": "Ω : Type u_1\nE : Type u_2\nι : Type u_3\ninst✝⁴ : Preorder ι\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ g : ι → Ω → E\nℱ : Filtration ι m0\n𝒢 : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nf : ℕ → Ω → ℝ\nhadp : Adapted 𝒢 f\nhint : ∀ (i : ℕ), Integrable (f i) μ\nhf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0\ni : ℕ\n⊢ 0 ≤ᶠ[ae μ] μ[f i - f (i + 1)|↑𝒢 i]"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "ι : Type u_3", "inst✝⁴ : Preorder ι", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ g : ι → Ω → E", "ℱ : Filtration ι m0", "𝒢 : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "f : ℕ → Ω → ℝ", "hadp : Adapted 𝒢 f", "hint : ∀ (i : ℕ), Integrable (f i) μ", "hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0", "i : ℕ"], "goal": "0 ≤ᶠ[ae μ] μ[-(f (i + 1) - f i)|↑𝒢 i]"}], "premise": [16092, 16093, 16126, 27941], "state_str": "Ω : Type u_1\nE : Type u_2\nι : Type u_3\ninst✝⁴ : Preorder ι\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ g : ι → Ω → E\nℱ : Filtration ι m0\n𝒢 : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nf : ℕ → Ω → ℝ\nhadp : Adapted 𝒢 f\nhint : ∀ (i : ℕ), Integrable (f i) μ\nhf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0\ni : ℕ\n⊢ 0 ≤ᶠ[ae μ] μ[-(f (i + 1) - f i)|↑𝒢 i]"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "ι : Type u_3", "inst✝⁴ : Preorder ι", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ g : ι → Ω → E", "ℱ : Filtration ι m0", "𝒢 : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "f : ℕ → Ω → ℝ", "hadp : Adapted 𝒢 f", "hint : ∀ (i : ℕ), Integrable (f i) μ", "hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0", "i : ℕ"], "goal": "0 =ᶠ[ae μ] -μ[f (i + 1) - f i|↑𝒢 i]"}], "premise": [15889, 131585], "state_str": "Ω : Type u_1\nE : Type u_2\nι : Type u_3\ninst✝⁴ : Preorder ι\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ g : ι → Ω → E\nℱ : Filtration ι m0\n𝒢 : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nf : ℕ → Ω → ℝ\nhadp : Adapted 𝒢 f\nhint : ∀ (i : ℕ), Integrable (f i) μ\nhf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0\ni : ℕ\n⊢ 0 =ᶠ[ae μ] -μ[f (i + 1) - f i|↑𝒢 i]"} +{"state": [{"context": ["Ω : Type u_1", "E : Type u_2", "ι : Type u_3", "inst✝⁴ : Preorder ι", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : CompleteSpace E", "f✝ g : ι → Ω → E", "ℱ : Filtration ι m0", "𝒢 : Filtration ℕ m0", "inst✝ : IsFiniteMeasure μ", "f : ℕ → Ω → ℝ", "hadp : Adapted 𝒢 f", "hint : ∀ (i : ℕ), Integrable (f i) μ", "hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0", "i : ℕ", "x : Ω", "hx : (μ[f (i + 1) - f i|↑𝒢 i]) x = 0 x"], "goal": "0 x = (-μ[f (i + 1) - f i|↑𝒢 i]) x"}], "premise": [117863, 120640, 120670], "state_str": "case h\nΩ : Type u_1\nE : Type u_2\nι : Type u_3\ninst✝⁴ : Preorder ι\nm0 : MeasurableSpace Ω\nμ : Measure Ω\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : CompleteSpace E\nf✝ g : ι → Ω → E\nℱ : Filtration ι m0\n𝒢 : Filtration ℕ m0\ninst✝ : IsFiniteMeasure μ\nf : ℕ → Ω → ℝ\nhadp : Adapted 𝒢 f\nhint : ∀ (i : ℕ), Integrable (f i) μ\nhf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᶠ[ae μ] 0\ni : ℕ\nx : Ω\nhx : (μ[f (i + 1) - f i|↑𝒢 i]) x = 0 x\n⊢ 0 x = (-μ[f (i + 1) - f i|↑𝒢 i]) x"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "M₀ : PresheafOfModules R₀", "A : Sheaf J AddCommGrp", "φ : M₀.presheaf ⟶ A.val", "inst✝¹ : Presheaf.IsLocallyInjective J φ", "inst✝ : Presheaf.IsLocallySurjective J φ", "X Y : Cᵒᵖ", "π : X ⟶ Y", "r r' : ↑(R.val.obj X)", "m m' : ↑(A.val.obj X)"], "goal": "smul α φ 0 m = 0"}], "premise": [90673, 90737], "state_str": "C : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\nM₀ : PresheafOfModules R₀\nA : Sheaf J AddCommGrp\nφ : M₀.presheaf ⟶ A.val\ninst✝¹ : Presheaf.IsLocallyInjective J φ\ninst✝ : Presheaf.IsLocallySurjective J φ\nX Y : Cᵒᵖ\nπ : X ⟶ Y\nr r' : ↑(R.val.obj X)\nm m' : ↑(A.val.obj X)\n⊢ smul α φ 0 m = 0"} +{"state": [{"context": ["C : Type u₁", "inst✝⁴ : Category.{v₁, u₁} C", "J : GrothendieckTopology C", "R₀ : Cᵒᵖ ⥤ RingCat", "R : Sheaf J RingCat", "α : R₀ ⟶ R.val", "inst✝³ : Presheaf.IsLocallyInjective J α", "inst✝² : Presheaf.IsLocallySurjective J α", "M₀ : PresheafOfModules R₀", "A : Sheaf J AddCommGrp", "φ : M₀.presheaf ⟶ A.val", "inst✝¹ : Presheaf.IsLocallyInjective J φ", "inst✝ : Presheaf.IsLocallySurjective J φ", "X Y✝ : Cᵒᵖ", "π : X ⟶ Y✝", "r r' : ↑(R.val.obj X)", "m m' : ↑(A.val.obj X)", "Y : C", "f : Y ⟶ Opposite.unop X", "m₀ : (forget AddCommGrp).obj (M₀.presheaf.obj (Opposite.op Y))", "hm₀ : (φ.app (Opposite.op Y)) m₀ = (A.val.map f.op) m"], "goal": "(A.val.map f.op) (smul α φ 0 m) = (A.val.map f.op) 0"}], "premise": [113676, 115738, 117063, 117162], "state_str": "case a.intro\nC : Type u₁\ninst✝⁴ : Category.{v₁, u₁} C\nJ : GrothendieckTopology C\nR₀ : Cᵒᵖ ⥤ RingCat\nR : Sheaf J RingCat\nα : R₀ ⟶ R.val\ninst✝³ : Presheaf.IsLocallyInjective J α\ninst✝² : Presheaf.IsLocallySurjective J α\nM₀ : PresheafOfModules R₀\nA : Sheaf J AddCommGrp\nφ : M₀.presheaf ⟶ A.val\ninst✝¹ : Presheaf.IsLocallyInjective J φ\ninst✝ : Presheaf.IsLocallySurjective J φ\nX Y✝ : Cᵒᵖ\nπ : X ⟶ Y✝\nr r' : ↑(R.val.obj X)\nm m' : ↑(A.val.obj X)\nY : C\nf : Y ⟶ Opposite.unop X\nm₀ : (forget AddCommGrp).obj (M₀.presheaf.obj (Opposite.op Y))\nhm₀ : (φ.app (Opposite.op Y)) m₀ = (A.val.map f.op) m\n⊢ (A.val.map f.op) (smul α φ 0 m) = (A.val.map f.op) 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n d k N : ℕ", "x : Fin n → ℕ"], "goal": "↑N * rexp (-4 * √(log ↑N)) ≤ ↑(rothNumberNat N)"}], "premise": [3735], "state_str": "α : Type u_1\nβ : Type u_2\nn d k N : ℕ\nx : Fin n → ℕ\n⊢ ↑N * rexp (-4 * √(log ↑N)) ≤ ↑(rothNumberNat N)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n d k N : ℕ", "x : Fin n → ℕ", "hN : N > 0"], "goal": "↑N * rexp (-4 * √(log ↑N)) ≤ ↑(rothNumberNat N)"}], "premise": [14317], "state_str": "case inr\nα : Type u_1\nβ : Type u_2\nn d k N : ℕ\nx : Fin n → ℕ\nhN : N > 0\n⊢ ↑N * rexp (-4 * √(log ↑N)) ≤ ↑(rothNumberNat N)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : BEq α", "inst✝ : LawfulBEq α", "a : α", "l₁ l₂ : List α", "h : ¬a ∈ l₁"], "goal": "(l₁ ++ l₂).erase a = l₁ ++ l₂.erase a"}], "premise": [1371, 1381], "state_str": "α : Type u_1\ninst✝¹ : BEq α\ninst✝ : LawfulBEq α\na : α\nl₁ l₂ : List α\nh : ¬a ∈ l₁\n⊢ (l₁ ++ l₂).erase a = l₁ ++ l₂.erase a"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : BEq α", "inst✝ : LawfulBEq α", "a : α", "l₁ l₂ : List α", "h : ¬a ∈ l₁", "b : α", "h' : b ∈ l₁", "h'' : (a == b) = true"], "goal": "False"}], "premise": [1679], "state_str": "case a\nα : Type u_1\ninst✝¹ : BEq α\ninst✝ : LawfulBEq α\na : α\nl₁ l₂ : List α\nh : ¬a ∈ l₁\nb : α\nh' : b ∈ l₁\nh'' : (a == b) = true\n⊢ False"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "G'' : Type u_3", "inst✝⁵ : Group G", "inst✝⁴ : Group G'", "inst✝³ : Group G''", "A : Type u_4", "inst✝² : AddGroup A", "H K✝ : Subgroup G", "k : Set G", "N : Type u_5", "inst✝¹ : Group N", "P : Type u_6", "inst✝ : Group P", "K : Subgroup N", "x✝ : N"], "goal": "x✝ ∈ comap (MonoidHom.id N) K ↔ x✝ ∈ K"}], "premise": [1713], "state_str": "case h\nG : Type u_1\nG' : Type u_2\nG'' : Type u_3\ninst✝⁵ : Group G\ninst✝⁴ : Group G'\ninst✝³ : Group G''\nA : Type u_4\ninst✝² : AddGroup A\nH K✝ : Subgroup G\nk : Set G\nN : Type u_5\ninst✝¹ : Group N\nP : Type u_6\ninst✝ : Group P\nK : Subgroup N\nx✝ : N\n⊢ x✝ ∈ comap (MonoidHom.id N) K ↔ x✝ ∈ K"} +{"state": [{"context": ["L : Language", "M : Type w", "N : Type u_1", "P : Type u_2", "inst✝² : L.Structure M", "inst✝¹ : L.Structure N", "inst✝ : L.Structure P", "α : Type u'", "β : Type v'", "t : L.Term α"], "goal": "(fun l => (do let a ← (listDecode l).head? pure (some a)).join) t.listEncode = some t"}], "premise": [25390], "state_str": "L : Language\nM : Type w\nN : Type u_1\nP : Type u_2\ninst✝² : L.Structure M\ninst✝¹ : L.Structure N\ninst✝ : L.Structure P\nα : Type u'\nβ : Type v'\nt : L.Term α\n⊢ (fun l =>\n (do\n let a ← (listDecode l).head?\n pure (some a)).join)\n t.listEncode =\n some t"} +{"state": [{"context": ["L : Language", "M : Type w", "N : Type u_1", "P : Type u_2", "inst✝² : L.Structure M", "inst✝¹ : L.Structure N", "inst✝ : L.Structure P", "α : Type u'", "β : Type v'", "t : L.Term α", "h : listDecode ([t].bind listEncode) = [t]"], "goal": "(fun l => (do let a ← (listDecode l).head? pure (some a)).join) t.listEncode = some t"}], "premise": [5242], "state_str": "L : Language\nM : Type w\nN : Type u_1\nP : Type u_2\ninst✝² : L.Structure M\ninst✝¹ : L.Structure N\ninst✝ : L.Structure P\nα : Type u'\nβ : Type v'\nt : L.Term α\nh : listDecode ([t].bind listEncode) = [t]\n⊢ (fun l =>\n (do\n let a ← (listDecode l).head?\n pure (some a)).join)\n t.listEncode =\n some t"} +{"state": [{"context": ["L : Language", "M : Type w", "N : Type u_1", "P : Type u_2", "inst✝² : L.Structure M", "inst✝¹ : L.Structure N", "inst✝ : L.Structure P", "α : Type u'", "β : Type v'", "t : L.Term α", "h : listDecode t.listEncode = [t]"], "goal": "(fun l => (do let a ← (listDecode l).head? pure (some a)).join) t.listEncode = some t"}], "premise": [2098, 2603, 3129, 3450, 3451], "state_str": "L : Language\nM : Type w\nN : Type u_1\nP : Type u_2\ninst✝² : L.Structure M\ninst✝¹ : L.Structure N\ninst✝ : L.Structure P\nα : Type u'\nβ : Type v'\nt : L.Term α\nh : listDecode t.listEncode = [t]\n⊢ (fun l =>\n (do\n let a ← (listDecode l).head?\n pure (some a)).join)\n t.listEncode =\n some t"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "R : Type u_3", "R₂ : Type u_4", "K : Type u_5", "M : Type u_6", "M' : Type u_7", "M'' : Type u_8", "V : Type u", "V' : Type u_9", "inst✝⁹ : Semiring R", "inst✝⁸ : AddCommMonoid M", "inst✝⁷ : Module R M", "inst✝⁶ : AddCommMonoid M'", "inst✝⁵ : Module R M'", "b b₁ : Basis ι R M", "i : ι", "c : R", "x✝ : M", "R₁ : Type u_10", "inst✝⁴ : Semiring R₁", "σ : R →+* R₁", "σ' : R₁ →+* R", "inst✝³ : RingHomInvPair σ σ'", "inst✝² : RingHomInvPair σ' σ", "M₁ : Type u_11", "inst✝¹ : AddCommMonoid M₁", "inst✝ : Module R₁ M₁", "x y : M"], "goal": "x = y ↔ ∀ (i : ι), (b.repr x) i = (b.repr y) i"}], "premise": [128588, 128619], "state_str": "ι : Type u_1\nι' : Type u_2\nR : Type u_3\nR₂ : Type u_4\nK : Type u_5\nM : Type u_6\nM' : Type u_7\nM'' : Type u_8\nV : Type u\nV' : Type u_9\ninst✝⁹ : Semiring R\ninst✝⁸ : AddCommMonoid M\ninst✝⁷ : Module R M\ninst✝⁶ : AddCommMonoid M'\ninst✝⁵ : Module R M'\nb b₁ : Basis ι R M\ni : ι\nc : R\nx✝ : M\nR₁ : Type u_10\ninst✝⁴ : Semiring R₁\nσ : R →+* R₁\nσ' : R₁ →+* R\ninst✝³ : RingHomInvPair σ σ'\ninst✝² : RingHomInvPair σ' σ\nM₁ : Type u_11\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nx y : M\n⊢ x = y ↔ ∀ (i : ι), (b.repr x) i = (b.repr y) i"} +{"state": [{"context": ["α : Type u", "inst✝ : DivisionRing α", "x : α", "hx : x ≠ 1", "m n : ℕ", "hmn : m ≤ n"], "goal": "∑ i ∈ Ico m n, x ^ i = (x ^ n - x ^ m) / (x - 1)"}], "premise": [112501, 115843, 118002, 124729], "state_str": "α : Type u\ninst✝ : DivisionRing α\nx : α\nhx : x ≠ 1\nm n : ℕ\nhmn : m ≤ n\n⊢ ∑ i ∈ Ico m n, x ^ i = (x ^ n - x ^ m) / (x - 1)"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "A : Cᵒᵖ ⥤ Type v", "Y : C", "η : yoneda.obj Y ⟶ A", "X : C", "s : yoneda.obj X ⟶ A", "f : X ⟶ Y", "hf : yoneda.map f ≫ η = s"], "goal": "MakesOverArrow η s f"}], "premise": [92468, 96829], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nA : Cᵒᵖ ⥤ Type v\nY : C\nη : yoneda.obj Y ⟶ A\nX : C\ns : yoneda.obj X ⟶ A\nf : X ⟶ Y\nhf : yoneda.map f ≫ η = s\n⊢ MakesOverArrow η s f"} +{"state": [{"context": ["ι : Type u_1", "inst✝ : LinearOrder ι", "i j k : ι", "hij_lt : i < j", "h : IsGLB (Set.Ioi i) k"], "goal": "IsGLB (Set.Ioc i j) k"}], "premise": [17770, 17771], "state_str": "ι : Type u_1\ninst✝ : LinearOrder ι\ni j k : ι\nhij_lt : i < j\nh : IsGLB (Set.Ioi i) k\n⊢ IsGLB (Set.Ioc i j) k"} +{"state": [{"context": ["ι : Type u_1", "inst✝ : LinearOrder ι", "i j k : ι", "hij_lt : i < j", "h : (∀ x ∈ Set.Ioi i, k ≤ x) ∧ ∀ (x : ι), (∀ x_1 ∈ Set.Ioi i, x ≤ x_1) → x ≤ k"], "goal": "(∀ x ∈ Set.Ioc i j, k ≤ x) ∧ ∀ (x : ι), (∀ x_1 ∈ Set.Ioc i j, x ≤ x_1) → x ≤ k"}], "premise": [2106, 2107], "state_str": "ι : Type u_1\ninst✝ : LinearOrder ι\ni j k : ι\nhij_lt : i < j\nh : (∀ x ∈ Set.Ioi i, k ≤ x) ∧ ∀ (x : ι), (∀ x_1 ∈ Set.Ioi i, x ≤ x_1) → x ≤ k\n⊢ (∀ x ∈ Set.Ioc i j, k ≤ x) ∧ ∀ (x : ι), (∀ x_1 ∈ Set.Ioc i j, x ≤ x_1) → x ≤ k"} +{"state": [{"context": ["ι : Type u_1", "inst✝ : LinearOrder ι", "i j k : ι", "hij_lt : i < j", "h : (∀ x ∈ Set.Ioi i, k ≤ x) ∧ ∀ (x : ι), (∀ x_1 ∈ Set.Ioi i, x ≤ x_1) → x ≤ k", "x : ι", "hx : ∀ x_1 ∈ Set.Ioc i j, x ≤ x_1", "y : ι", "hy : y ∈ Set.Ioi i"], "goal": "x ≤ y"}], "premise": [14317], "state_str": "ι : Type u_1\ninst✝ : LinearOrder ι\ni j k : ι\nhij_lt : i < j\nh : (∀ x ∈ Set.Ioi i, k ≤ x) ∧ ∀ (x : ι), (∀ x_1 ∈ Set.Ioi i, x ≤ x_1) → x ≤ k\nx : ι\nhx : ∀ x_1 ∈ Set.Ioc i j, x ≤ x_1\ny : ι\nhy : y ∈ Set.Ioi i\n⊢ x ≤ y"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝³ : TopologicalSpace α", "inst✝² : LinearOrder α", "inst✝¹ : OrderTopology α", "inst✝ : DenselyOrdered α", "a b : α", "s : Set α", "l : Filter β", "f : α → β", "h : a < b"], "goal": "Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f (𝓝[<] b) l"}], "premise": [16361, 56400], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : DenselyOrdered α\na b : α\ns : Set α\nl : Filter β\nf : α → β\nh : a < b\n⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f (𝓝[<] b) l"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝³ : TopologicalSpace α", "inst✝² : LinearOrder α", "inst✝¹ : OrderTopology α", "inst✝ : DenselyOrdered α", "a b : α", "s : Set α", "l : Filter β", "f : α → β", "h : a < b"], "goal": "Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l"}], "premise": [1713], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : DenselyOrdered α\na b : α\ns : Set α\nl : Filter β\nf : α → β\nh : a < b\n⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : NormalSpace X", "u : ι → Set X", "s : Set X", "hs : IsClosed s", "uo : ∀ (i : ι), IsOpen (u i)", "uf : ∀ x ∈ s, {i | x ∈ u i}.Finite", "us : s ⊆ ⋃ i, u i", "this✝ : Nonempty (PartialRefinement u s)", "this : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub"], "goal": "∃ v, s ⊆ iUnion v ∧ (∀ (i : ι), IsOpen (v i)) ∧ ∀ (i : ι), closure (v i) ⊆ u i"}], "premise": [13230], "state_str": "ι : Type u_1\nX : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nu : ι → Set X\ns : Set X\nhs : IsClosed s\nuo : ∀ (i : ι), IsOpen (u i)\nuf : ∀ x ∈ s, {i | x ∈ u i}.Finite\nus : s ⊆ ⋃ i, u i\nthis✝ : Nonempty (PartialRefinement u s)\nthis : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub\n⊢ ∃ v, s ⊆ iUnion v ∧ (∀ (i : ι), IsOpen (v i)) ∧ ∀ (i : ι), closure (v i) ⊆ u i"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : NormalSpace X", "u : ι → Set X", "s : Set X", "hs : IsClosed s", "uo : ∀ (i : ι), IsOpen (u i)", "uf : ∀ x ∈ s, {i | x ∈ u i}.Finite", "us : s ⊆ ⋃ i, u i", "this✝ : Nonempty (PartialRefinement u s)", "this : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub", "v : PartialRefinement u s", "hv : ∀ (a : PartialRefinement u s), v ≤ a → a = v"], "goal": "∃ v, s ⊆ iUnion v ∧ (∀ (i : ι), IsOpen (v i)) ∧ ∀ (i : ι), closure (v i) ⊆ u i"}], "premise": [54494, 54495, 54496], "state_str": "case intro\nι : Type u_1\nX : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nu : ι → Set X\ns : Set X\nhs : IsClosed s\nuo : ∀ (i : ι), IsOpen (u i)\nuf : ∀ x ∈ s, {i | x ∈ u i}.Finite\nus : s ⊆ ⋃ i, u i\nthis✝ : Nonempty (PartialRefinement u s)\nthis : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub\nv : PartialRefinement u s\nhv : ∀ (a : PartialRefinement u s), v ≤ a → a = v\n⊢ ∃ v, s ⊆ iUnion v ∧ (∀ (i : ι), IsOpen (v i)) ∧ ∀ (i : ι), closure (v i) ⊆ u i"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : NormalSpace X", "u : ι → Set X", "s : Set X", "hs : IsClosed s", "uo : ∀ (i : ι), IsOpen (u i)", "uf : ∀ x ∈ s, {i | x ∈ u i}.Finite", "us : s ⊆ ⋃ i, u i", "this✝ : Nonempty (PartialRefinement u s)", "this : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub", "v : PartialRefinement u s", "hv : ∀ (a : PartialRefinement u s), v ≤ a → a = v"], "goal": "∀ (i : ι), i ∈ v.carrier"}], "premise": [53688], "state_str": "case intro\nι : Type u_1\nX : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nu : ι → Set X\ns : Set X\nhs : IsClosed s\nuo : ∀ (i : ι), IsOpen (u i)\nuf : ∀ x ∈ s, {i | x ∈ u i}.Finite\nus : s ⊆ ⋃ i, u i\nthis✝ : Nonempty (PartialRefinement u s)\nthis : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub\nv : PartialRefinement u s\nhv : ∀ (a : PartialRefinement u s), v ≤ a → a = v\n⊢ ∀ (i : ι), i ∈ v.carrier"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : NormalSpace X", "u : ι → Set X", "s : Set X", "hs : IsClosed s", "uo : ∀ (i : ι), IsOpen (u i)", "uf : ∀ x ∈ s, {i | x ∈ u i}.Finite", "us : s ⊆ ⋃ i, u i", "this✝ : Nonempty (PartialRefinement u s)", "this : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub", "v : PartialRefinement u s", "i : ι", "hi : i ∉ v.carrier"], "goal": "∃ a, v ≤ a ∧ a ≠ v"}], "premise": [54504], "state_str": "case intro.intro\nι : Type u_1\nX : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nu : ι → Set X\ns : Set X\nhs : IsClosed s\nuo : ∀ (i : ι), IsOpen (u i)\nuf : ∀ x ∈ s, {i | x ∈ u i}.Finite\nus : s ⊆ ⋃ i, u i\nthis✝ : Nonempty (PartialRefinement u s)\nthis : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub\nv : PartialRefinement u s\ni : ι\nhi : i ∉ v.carrier\n⊢ ∃ a, v ≤ a ∧ a ≠ v"} +{"state": [{"context": ["ι : Type u_1", "X : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : NormalSpace X", "u : ι → Set X", "s : Set X", "hs : IsClosed s", "uo : ∀ (i : ι), IsOpen (u i)", "uf : ∀ x ∈ s, {i | x ∈ u i}.Finite", "us : s ⊆ ⋃ i, u i", "this✝ : Nonempty (PartialRefinement u s)", "this : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub", "v : PartialRefinement u s", "i : ι", "hi : i ∉ v.carrier", "v' : PartialRefinement u s", "hlt : v < v'"], "goal": "∃ a, v ≤ a ∧ a ≠ v"}], "premise": [11234], "state_str": "case intro.intro.intro\nι : Type u_1\nX : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nu : ι → Set X\ns : Set X\nhs : IsClosed s\nuo : ∀ (i : ι), IsOpen (u i)\nuf : ∀ x ∈ s, {i | x ∈ u i}.Finite\nus : s ⊆ ⋃ i, u i\nthis✝ : Nonempty (PartialRefinement u s)\nthis : ∀ (c : Set (PartialRefinement u s)), IsChain (fun x x_1 => x ≤ x_1) c → c.Nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub\nv : PartialRefinement u s\ni : ι\nhi : i ∉ v.carrier\nv' : PartialRefinement u s\nhlt : v < v'\n⊢ ∃ a, v ≤ a ∧ a ≠ v"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "π : ι → Type u_4", "inst✝ : GeneralizedCoheytingAlgebra α", "a b c d : α"], "goal": "a ∆ c ≤ a ∆ b ⊔ b ∆ c"}], "premise": [14533, 15112], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nπ : ι → Type u_4\ninst✝ : GeneralizedCoheytingAlgebra α\na b c d : α\n⊢ a ∆ c ≤ a ∆ b ⊔ b ∆ c"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "π : ι → Type u_4", "inst✝ : GeneralizedCoheytingAlgebra α", "a b c d : α"], "goal": "a \\ b ⊔ b \\ c ⊔ (c \\ b ⊔ b \\ a) = a ∆ b ⊔ b ∆ c"}], "premise": [14537, 14544], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nπ : ι → Type u_4\ninst✝ : GeneralizedCoheytingAlgebra α\na b c d : α\n⊢ a \\ b ⊔ b \\ c ⊔ (c \\ b ⊔ b \\ a) = a ∆ b ⊔ b ∆ c"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁴ : RCLike 𝕜", "inst✝¹³ : NormedAddCommGroup F", "inst✝¹² : NormedSpace 𝕜 F", "inst✝¹¹ : NormedAddCommGroup F'", "inst✝¹⁰ : NormedSpace 𝕜 F'", "inst✝⁹ : NormedSpace ℝ F'", "inst✝⁸ : CompleteSpace F'", "inst✝⁷ : NormedAddCommGroup G", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace ℝ G'", "inst✝⁴ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "s t : Set α", "inst✝³ : NormedSpace ℝ G", "hm : m ≤ m0", "inst✝² : SigmaFinite (μ.trim hm)", "inst✝¹ : NormedSpace ℝ F", "inst✝ : SMulCommClass ℝ 𝕜 F", "hs : MeasurableSet s", "hμs : μ s ≠ ⊤", "c : 𝕜", "x : F"], "goal": "↑↑(condexpIndL1Fin hm hs hμs (c • x)) =ᶠ[ae μ] ↑↑(c • condexpIndL1Fin hm hs hμs x)"}], "premise": [16093, 29744, 30973], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁴ : RCLike 𝕜\ninst✝¹³ : NormedAddCommGroup F\ninst✝¹² : NormedSpace 𝕜 F\ninst✝¹¹ : NormedAddCommGroup F'\ninst✝¹⁰ : NormedSpace 𝕜 F'\ninst✝⁹ : NormedSpace ℝ F'\ninst✝⁸ : CompleteSpace F'\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace ℝ G'\ninst✝⁴ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝³ : NormedSpace ℝ G\nhm : m ≤ m0\ninst✝² : SigmaFinite (μ.trim hm)\ninst✝¹ : NormedSpace ℝ F\ninst✝ : SMulCommClass ℝ 𝕜 F\nhs : MeasurableSet s\nhμs : μ s ≠ ⊤\nc : 𝕜\nx : F\n⊢ ↑↑(condexpIndL1Fin hm hs hμs (c • x)) =ᶠ[ae μ] ↑↑(c • condexpIndL1Fin hm hs hμs x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁴ : RCLike 𝕜", "inst✝¹³ : NormedAddCommGroup F", "inst✝¹² : NormedSpace 𝕜 F", "inst✝¹¹ : NormedAddCommGroup F'", "inst✝¹⁰ : NormedSpace 𝕜 F'", "inst✝⁹ : NormedSpace ℝ F'", "inst✝⁸ : CompleteSpace F'", "inst✝⁷ : NormedAddCommGroup G", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace ℝ G'", "inst✝⁴ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "s t : Set α", "inst✝³ : NormedSpace ℝ G", "hm : m ≤ m0", "inst✝² : SigmaFinite (μ.trim hm)", "inst✝¹ : NormedSpace ℝ F", "inst✝ : SMulCommClass ℝ 𝕜 F", "hs : MeasurableSet s", "hμs : μ s ≠ ⊤", "c : 𝕜", "x : F"], "goal": "↑↑(condexpIndSMul hm hs hμs (c • x)) =ᶠ[ae μ] ↑↑(c • condexpIndL1Fin hm hs hμs x)"}], "premise": [16092, 16093, 31034], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁴ : RCLike 𝕜\ninst✝¹³ : NormedAddCommGroup F\ninst✝¹² : NormedSpace 𝕜 F\ninst✝¹¹ : NormedAddCommGroup F'\ninst✝¹⁰ : NormedSpace 𝕜 F'\ninst✝⁹ : NormedSpace ℝ F'\ninst✝⁸ : CompleteSpace F'\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace ℝ G'\ninst✝⁴ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝³ : NormedSpace ℝ G\nhm : m ≤ m0\ninst✝² : SigmaFinite (μ.trim hm)\ninst✝¹ : NormedSpace ℝ F\ninst✝ : SMulCommClass ℝ 𝕜 F\nhs : MeasurableSet s\nhμs : μ s ≠ ⊤\nc : 𝕜\nx : F\n⊢ ↑↑(condexpIndSMul hm hs hμs (c • x)) =ᶠ[ae μ] ↑↑(c • condexpIndL1Fin hm hs hμs x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁴ : RCLike 𝕜", "inst✝¹³ : NormedAddCommGroup F", "inst✝¹² : NormedSpace 𝕜 F", "inst✝¹¹ : NormedAddCommGroup F'", "inst✝¹⁰ : NormedSpace 𝕜 F'", "inst✝⁹ : NormedSpace ℝ F'", "inst✝⁸ : CompleteSpace F'", "inst✝⁷ : NormedAddCommGroup G", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace ℝ G'", "inst✝⁴ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "s t : Set α", "inst✝³ : NormedSpace ℝ G", "hm : m ≤ m0", "inst✝² : SigmaFinite (μ.trim hm)", "inst✝¹ : NormedSpace ℝ F", "inst✝ : SMulCommClass ℝ 𝕜 F", "hs : MeasurableSet s", "hμs : μ s ≠ ⊤", "c : 𝕜", "x : F"], "goal": "↑↑(condexpIndSMul hm hs hμs (c • x)) =ᶠ[ae μ] c • ↑↑(condexpIndL1Fin hm hs hμs x)"}], "premise": [29818], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁴ : RCLike 𝕜\ninst✝¹³ : NormedAddCommGroup F\ninst✝¹² : NormedSpace 𝕜 F\ninst✝¹¹ : NormedAddCommGroup F'\ninst✝¹⁰ : NormedSpace 𝕜 F'\ninst✝⁹ : NormedSpace ℝ F'\ninst✝⁸ : CompleteSpace F'\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace ℝ G'\ninst✝⁴ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝³ : NormedSpace ℝ G\nhm : m ≤ m0\ninst✝² : SigmaFinite (μ.trim hm)\ninst✝¹ : NormedSpace ℝ F\ninst✝ : SMulCommClass ℝ 𝕜 F\nhs : MeasurableSet s\nhμs : μ s ≠ ⊤\nc : 𝕜\nx : F\n⊢ ↑↑(condexpIndSMul hm hs hμs (c • x)) =ᶠ[ae μ] c • ↑↑(condexpIndL1Fin hm hs hμs x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁴ : RCLike 𝕜", "inst✝¹³ : NormedAddCommGroup F", "inst✝¹² : NormedSpace 𝕜 F", "inst✝¹¹ : NormedAddCommGroup F'", "inst✝¹⁰ : NormedSpace 𝕜 F'", "inst✝⁹ : NormedSpace ℝ F'", "inst✝⁸ : CompleteSpace F'", "inst✝⁷ : NormedAddCommGroup G", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace ℝ G'", "inst✝⁴ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "s t : Set α", "inst✝³ : NormedSpace ℝ G", "hm : m ≤ m0", "inst✝² : SigmaFinite (μ.trim hm)", "inst✝¹ : NormedSpace ℝ F", "inst✝ : SMulCommClass ℝ 𝕜 F", "hs : MeasurableSet s", "hμs : μ s ≠ ⊤", "c : 𝕜", "x : F"], "goal": "↑↑(c • condexpIndSMul hm hs hμs x) =ᶠ[ae μ] c • ↑↑(condexpIndL1Fin hm hs hμs x)"}], "premise": [16093, 31034], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁴ : RCLike 𝕜\ninst✝¹³ : NormedAddCommGroup F\ninst✝¹² : NormedSpace 𝕜 F\ninst✝¹¹ : NormedAddCommGroup F'\ninst✝¹⁰ : NormedSpace 𝕜 F'\ninst✝⁹ : NormedSpace ℝ F'\ninst✝⁸ : CompleteSpace F'\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace ℝ G'\ninst✝⁴ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝³ : NormedSpace ℝ G\nhm : m ≤ m0\ninst✝² : SigmaFinite (μ.trim hm)\ninst✝¹ : NormedSpace ℝ F\ninst✝ : SMulCommClass ℝ 𝕜 F\nhs : MeasurableSet s\nhμs : μ s ≠ ⊤\nc : 𝕜\nx : F\n⊢ ↑↑(c • condexpIndSMul hm hs hμs x) =ᶠ[ae μ] c • ↑↑(condexpIndL1Fin hm hs hμs x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁴ : RCLike 𝕜", "inst✝¹³ : NormedAddCommGroup F", "inst✝¹² : NormedSpace 𝕜 F", "inst✝¹¹ : NormedAddCommGroup F'", "inst✝¹⁰ : NormedSpace 𝕜 F'", "inst✝⁹ : NormedSpace ℝ F'", "inst✝⁸ : CompleteSpace F'", "inst✝⁷ : NormedAddCommGroup G", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace ℝ G'", "inst✝⁴ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "s t : Set α", "inst✝³ : NormedSpace ℝ G", "hm : m ≤ m0", "inst✝² : SigmaFinite (μ.trim hm)", "inst✝¹ : NormedSpace ℝ F", "inst✝ : SMulCommClass ℝ 𝕜 F", "hs : MeasurableSet s", "hμs : μ s ≠ ⊤", "c : 𝕜", "x : F"], "goal": "c • ↑↑(condexpIndSMul hm hs hμs x) =ᶠ[ae μ] c • ↑↑(condexpIndL1Fin hm hs hμs x)"}], "premise": [16027, 29743], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁴ : RCLike 𝕜\ninst✝¹³ : NormedAddCommGroup F\ninst✝¹² : NormedSpace 𝕜 F\ninst✝¹¹ : NormedAddCommGroup F'\ninst✝¹⁰ : NormedSpace 𝕜 F'\ninst✝⁹ : NormedSpace ℝ F'\ninst✝⁸ : CompleteSpace F'\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace ℝ G'\ninst✝⁴ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝³ : NormedSpace ℝ G\nhm : m ≤ m0\ninst✝² : SigmaFinite (μ.trim hm)\ninst✝¹ : NormedSpace ℝ F\ninst✝ : SMulCommClass ℝ 𝕜 F\nhs : MeasurableSet s\nhμs : μ s ≠ ⊤\nc : 𝕜\nx : F\n⊢ c • ↑↑(condexpIndSMul hm hs hμs x) =ᶠ[ae μ] c • ↑↑(condexpIndL1Fin hm hs hμs x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "F' : Type u_4", "G : Type u_5", "G' : Type u_6", "𝕜 : Type u_7", "p : ℝ≥0∞", "inst✝¹⁴ : RCLike 𝕜", "inst✝¹³ : NormedAddCommGroup F", "inst✝¹² : NormedSpace 𝕜 F", "inst✝¹¹ : NormedAddCommGroup F'", "inst✝¹⁰ : NormedSpace 𝕜 F'", "inst✝⁹ : NormedSpace ℝ F'", "inst✝⁸ : CompleteSpace F'", "inst✝⁷ : NormedAddCommGroup G", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace ℝ G'", "inst✝⁴ : CompleteSpace G'", "m m0 : MeasurableSpace α", "μ : Measure α", "s t : Set α", "inst✝³ : NormedSpace ℝ G", "hm : m ≤ m0", "inst✝² : SigmaFinite (μ.trim hm)", "inst✝¹ : NormedSpace ℝ F", "inst✝ : SMulCommClass ℝ 𝕜 F", "hs : MeasurableSet s", "hμs : μ s ≠ ⊤", "c : 𝕜", "x : F", "y : α", "hy : ↑↑(condexpIndL1Fin hm hs hμs x) y = ↑↑(condexpIndSMul hm hs hμs x) y"], "goal": "(c • ↑↑(condexpIndSMul hm hs hμs x)) y = (c • ↑↑(condexpIndL1Fin hm hs hμs x)) y"}], "premise": [120658], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nF : Type u_3\nF' : Type u_4\nG : Type u_5\nG' : Type u_6\n𝕜 : Type u_7\np : ℝ≥0∞\ninst✝¹⁴ : RCLike 𝕜\ninst✝¹³ : NormedAddCommGroup F\ninst✝¹² : NormedSpace 𝕜 F\ninst✝¹¹ : NormedAddCommGroup F'\ninst✝¹⁰ : NormedSpace 𝕜 F'\ninst✝⁹ : NormedSpace ℝ F'\ninst✝⁸ : CompleteSpace F'\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace ℝ G'\ninst✝⁴ : CompleteSpace G'\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝³ : NormedSpace ℝ G\nhm : m ≤ m0\ninst✝² : SigmaFinite (μ.trim hm)\ninst✝¹ : NormedSpace ℝ F\ninst✝ : SMulCommClass ℝ 𝕜 F\nhs : MeasurableSet s\nhμs : μ s ≠ ⊤\nc : 𝕜\nx : F\ny : α\nhy : ↑↑(condexpIndL1Fin hm hs hμs x) y = ↑↑(condexpIndSMul hm hs hμs x) y\n⊢ (c • ↑↑(condexpIndSMul hm hs hμs x)) y = (c • ↑↑(condexpIndL1Fin hm hs hμs x)) y"} +{"state": [{"context": ["C : Type u_1", "C' : Type ?u.80223", "D : Type u_5", "D' : Type ?u.80229", "H : Type u_2", "H' : Type ?u.80235", "inst✝⁶ : Category.{u_3, u_1} C", "inst✝⁵ : Category.{?u.80243, ?u.80223} C'", "inst✝⁴ : Category.{u_6, u_5} D", "inst✝³ : Category.{?u.80251, ?u.80229} D'", "inst✝² : Category.{u_4, u_2} H", "inst✝¹ : Category.{?u.80259, ?u.80235} H'", "RF RF' RF'' : D ⥤ H", "F F' F'' : C ⥤ H", "e : F ≅ F'", "L : C ⥤ D", "α : F ⟶ L ⋙ RF", "α' : F' ⟶ L ⋙ RF'", "α'' : F'' ⟶ L ⋙ RF''", "α'₂ : F ⟶ L ⋙ RF'", "W : MorphismProperty C", "inst✝ : L.IsLocalization W"], "goal": "F.HasRightDerivedFunctor W ↔ L.HasLeftKanExtension F"}], "premise": [100228], "state_str": "C : Type u_1\nC' : Type ?u.80223\nD : Type u_5\nD' : Type ?u.80229\nH : Type u_2\nH' : Type ?u.80235\ninst✝⁶ : Category.{u_3, u_1} C\ninst✝⁵ : Category.{?u.80243, ?u.80223} C'\ninst✝⁴ : Category.{u_6, u_5} D\ninst✝³ : Category.{?u.80251, ?u.80229} D'\ninst✝² : Category.{u_4, u_2} H\ninst✝¹ : Category.{?u.80259, ?u.80235} H'\nRF RF' RF'' : D ⥤ H\nF F' F'' : C ⥤ H\ne : F ≅ F'\nL : C ⥤ D\nα : F ⟶ L ⋙ RF\nα' : F' ⟶ L ⋙ RF'\nα'' : F'' ⟶ L ⋙ RF''\nα'₂ : F ⟶ L ⋙ RF'\nW : MorphismProperty C\ninst✝ : L.IsLocalization W\n⊢ F.HasRightDerivedFunctor W ↔ L.HasLeftKanExtension F"} +{"state": [{"context": ["C : Type u_1", "C' : Type ?u.80223", "D : Type u_5", "D' : Type ?u.80229", "H : Type u_2", "H' : Type ?u.80235", "inst✝⁶ : Category.{u_3, u_1} C", "inst✝⁵ : Category.{?u.80243, ?u.80223} C'", "inst✝⁴ : Category.{u_6, u_5} D", "inst✝³ : Category.{?u.80251, ?u.80229} D'", "inst✝² : Category.{u_4, u_2} H", "inst✝¹ : Category.{?u.80259, ?u.80235} H'", "RF RF' RF'' : D ⥤ H", "F F' F'' : C ⥤ H", "e : F ≅ F'", "L : C ⥤ D", "α : F ⟶ L ⋙ RF", "α' : F' ⟶ L ⋙ RF'", "α'' : F'' ⟶ L ⋙ RF''", "α'₂ : F ⟶ L ⋙ RF'", "W : MorphismProperty C", "inst✝ : L.IsLocalization W", "this : F.HasRightDerivedFunctor W ↔ W.Q.HasLeftKanExtension F"], "goal": "F.HasRightDerivedFunctor W ↔ L.HasLeftKanExtension F"}], "premise": [1713, 101642], "state_str": "C : Type u_1\nC' : Type ?u.80223\nD : Type u_5\nD' : Type ?u.80229\nH : Type u_2\nH' : Type ?u.80235\ninst✝⁶ : Category.{u_3, u_1} C\ninst✝⁵ : Category.{?u.80243, ?u.80223} C'\ninst✝⁴ : Category.{u_6, u_5} D\ninst✝³ : Category.{?u.80251, ?u.80229} D'\ninst✝² : Category.{u_4, u_2} H\ninst✝¹ : Category.{?u.80259, ?u.80235} H'\nRF RF' RF'' : D ⥤ H\nF F' F'' : C ⥤ H\ne : F ≅ F'\nL : C ⥤ D\nα : F ⟶ L ⋙ RF\nα' : F' ⟶ L ⋙ RF'\nα'' : F'' ⟶ L ⋙ RF''\nα'₂ : F ⟶ L ⋙ RF'\nW : MorphismProperty C\ninst✝ : L.IsLocalization W\nthis : F.HasRightDerivedFunctor W ↔ W.Q.HasLeftKanExtension F\n⊢ F.HasRightDerivedFunctor W ↔ L.HasLeftKanExtension F"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝² : Preorder α", "inst✝¹ : LocallyFiniteOrder α", "a a₁ a₂ b b₁ b₂ c x : α", "inst✝ : LocallyFiniteOrderTop α"], "goal": "Icc a b ⊆ Ici a"}], "premise": [20220, 138690], "state_str": "ι : Type u_1\nα : Type u_2\ninst✝² : Preorder α\ninst✝¹ : LocallyFiniteOrder α\na a₁ a₂ b b₁ b₂ c x : α\ninst✝ : LocallyFiniteOrderTop α\n⊢ Icc a b ⊆ Ici a"} +{"state": [{"context": ["𝕜 : Type u", "inst✝² : NontriviallyNormedField 𝕜", "E : Type v", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "x✝ : 𝕜", "s : Set 𝕜", "m : ℤ", "k : ℕ", "x : 𝕜"], "goal": "deriv^[k] Inv.inv x = (∏ i ∈ Finset.range k, (-1 - ↑i)) * x ^ (-1 - ↑k)"}], "premise": [44024, 119795, 128752, 128753], "state_str": "𝕜 : Type u\ninst✝² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nx✝ : 𝕜\ns : Set 𝕜\nm : ℤ\nk : ℕ\nx : 𝕜\n⊢ deriv^[k] Inv.inv x = (∏ i ∈ Finset.range k, (-1 - ↑i)) * x ^ (-1 - ↑k)"} +{"state": [{"context": ["f : Natβ Natα.succ → WType Natβ"], "goal": "ofNat (mk Natα.succ f).toNat = mk Natα.succ f"}], "premise": [1180, 1257], "state_str": "f : Natβ Natα.succ → WType Natβ\n⊢ ofNat (mk Natα.succ f).toNat = mk Natα.succ f"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "Z : Type u_3", "inst✝² : TopologicalSpace X", "inst✝¹ : TopologicalSpace Y", "inst✝ : TopologicalSpace Z", "g : Y → Z", "f✝ : X → Y", "s : Set X", "t : Set Y", "f : X → Y"], "goal": "IsLocalHomeomorph f ↔ ∀ (x : X), ∃ U ∈ 𝓝 x, OpenEmbedding (U.restrict f)"}], "premise": [1809, 57034, 57045, 131586], "state_str": "X : Type u_1\nY : Type u_2\nZ : Type u_3\ninst✝² : TopologicalSpace X\ninst✝¹ : TopologicalSpace Y\ninst✝ : TopologicalSpace Z\ng : Y → Z\nf✝ : X → Y\ns : Set X\nt : Set Y\nf : X → Y\n⊢ IsLocalHomeomorph f ↔ ∀ (x : X), ∃ U ∈ 𝓝 x, OpenEmbedding (U.restrict f)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝² : _root_.RCLike 𝕜", "inst✝¹ : AddCommGroup F", "inst✝ : Module 𝕜 F", "c : Core 𝕜 F", "x y : F", "r : 𝕜"], "goal": "⟪x, r • y⟫_𝕜 = r * ⟪x, y⟫_𝕜"}], "premise": [36720, 36728], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝² : _root_.RCLike 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\nr : 𝕜\n⊢ ⟪x, r • y⟫_𝕜 = r * ⟪x, y⟫_𝕜"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝² : _root_.RCLike 𝕜", "inst✝¹ : AddCommGroup F", "inst✝ : Module 𝕜 F", "c : Core 𝕜 F", "x y : F", "r : 𝕜"], "goal": "(starRingEnd 𝕜) ((starRingEnd 𝕜) r * ⟪y, x⟫_𝕜) = r * ⟪x, y⟫_𝕜"}], "premise": [36720, 121567], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝² : _root_.RCLike 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\nr : 𝕜\n⊢ (starRingEnd 𝕜) ((starRingEnd 𝕜) r * ⟪y, x⟫_𝕜) = r * ⟪x, y⟫_𝕜"} +{"state": [{"context": ["α : Type u", "inst✝³ : Group α", "inst✝² : LE α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "a✝ b✝ c d a b : α"], "goal": "a / b ≤ a ↔ 1 ≤ b"}], "premise": [119790], "state_str": "α : Type u\ninst✝³ : Group α\ninst✝² : LE α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na✝ b✝ c d a b : α\n⊢ a / b ≤ a ↔ 1 ≤ b"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝ : Field F", "W : Jacobian F", "Q : Fin 3 → R", "u : Rˣ"], "goal": "W'.Equation ((fun m => m • Q) u) ↔ W'.Equation Q"}], "premise": [120487, 145465], "state_str": "case intro\nR : Type u\ninst✝¹ : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝ : Field F\nW : Jacobian F\nQ : Fin 3 → R\nu : Rˣ\n⊢ W'.Equation ((fun m => m • Q) u) ↔ W'.Equation Q"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "G : SimpleGraph V", "a b c u v w : V", "e : Sym2 V", "h : ¬G.Adj a b", "hn : a ≠ b"], "goal": "G.incidenceSet a ∩ G.incidenceSet b = ∅"}], "premise": [1187, 133373, 133436], "state_str": "ι : Sort u_1\nV : Type u\nG : SimpleGraph V\na b c u v w : V\ne : Sym2 V\nh : ¬G.Adj a b\nhn : a ≠ b\n⊢ G.incidenceSet a ∩ G.incidenceSet b = ∅"} +{"state": [{"context": ["ι : Sort u_1", "V : Type u", "G : SimpleGraph V", "a b c u✝ v w : V", "e : Sym2 V", "h : ¬G.Adj a b", "hn : a ≠ b", "u : Sym2 V", "ha : u ∈ G.incidenceSet a", "hb : u ∈ G.incidenceSet b"], "goal": "False"}], "premise": [50460], "state_str": "ι : Sort u_1\nV : Type u\nG : SimpleGraph V\na b c u✝ v w : V\ne : Sym2 V\nh : ¬G.Adj a b\nhn : a ≠ b\nu : Sym2 V\nha : u ∈ G.incidenceSet a\nhb : u ∈ G.incidenceSet b\n⊢ False"} +{"state": [{"context": ["ι✝ : Type u_1", "κ✝ : Type u_2", "α✝¹ : Type u_3", "β✝ : Type u_4", "γ : Type u_5", "s s₁ s₂ : Finset α✝¹", "a : α✝¹", "f✝ g : α✝¹ → β✝", "ι : Type u_6", "κ : Type u_7", "α✝ : Type u_8", "inst✝⁵ : Fintype ι", "inst✝⁴ : Fintype κ", "inst✝³ : CommMonoid α✝", "α : Type u_9", "β : Type u_10", "inst✝² : CommMonoid β", "inst✝¹ : Unique α", "inst✝ : Fintype α", "f : α → β"], "goal": "∏ x : α, f x = f default"}], "premise": [126909, 140835], "state_str": "ι✝ : Type u_1\nκ✝ : Type u_2\nα✝¹ : Type u_3\nβ✝ : Type u_4\nγ : Type u_5\ns s₁ s₂ : Finset α✝¹\na : α✝¹\nf✝ g : α✝¹ → β✝\nι : Type u_6\nκ : Type u_7\nα✝ : Type u_8\ninst✝⁵ : Fintype ι\ninst✝⁴ : Fintype κ\ninst✝³ : CommMonoid α✝\nα : Type u_9\nβ : Type u_10\ninst✝² : CommMonoid β\ninst✝¹ : Unique α\ninst✝ : Fintype α\nf : α → β\n⊢ ∏ x : α, f x = f default"} +{"state": [{"context": ["J : Type u", "inst✝² : Category.{u_1, u} J", "F : J ⥤ Type v", "i j✝ k : J", "s : Set (F.obj i)", "inst✝¹ : IsCofilteredOrEmpty J", "h : F.IsMittagLeffler", "inst✝ : ∀ (j : J), Nonempty (F.obj j)", "j : J"], "goal": "Nonempty (F.toEventualRanges.obj j)"}], "premise": [1673, 99565], "state_str": "J : Type u\ninst✝² : Category.{u_1, u} J\nF : J ⥤ Type v\ni j✝ k : J\ns : Set (F.obj i)\ninst✝¹ : IsCofilteredOrEmpty J\nh : F.IsMittagLeffler\ninst✝ : ∀ (j : J), Nonempty (F.obj j)\nj : J\n⊢ Nonempty (F.toEventualRanges.obj j)"} +{"state": [{"context": ["J : Type u", "inst✝² : Category.{u_1, u} J", "F : J ⥤ Type v", "i✝ j✝ k : J", "s : Set (F.obj i✝)", "inst✝¹ : IsCofilteredOrEmpty J", "h✝ : F.IsMittagLeffler", "inst✝ : ∀ (j : J), Nonempty (F.obj j)", "j i : J", "f : i ⟶ j", "h : F.eventualRange j = range (F.map f)"], "goal": "Nonempty (F.toEventualRanges.obj j)"}], "premise": [99577], "state_str": "J : Type u\ninst✝² : Category.{u_1, u} J\nF : J ⥤ Type v\ni✝ j✝ k : J\ns : Set (F.obj i✝)\ninst✝¹ : IsCofilteredOrEmpty J\nh✝ : F.IsMittagLeffler\ninst✝ : ∀ (j : J), Nonempty (F.obj j)\nj i : J\nf : i ⟶ j\nh : F.eventualRange j = range (F.map f)\n⊢ Nonempty (F.toEventualRanges.obj j)"} +{"state": [{"context": ["α : Type u_1", "P : Set α → Prop", "m : (s : Set α) → P s → ℝ≥0∞", "P0 : P ∅", "m0 : m ∅ P0 = 0", "PU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ i, f i)", "mU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), Pairwise (Disjoint on f) → m (⋃ i, f i) ⋯ = ∑' (i : ℕ), m (f i) ⋯", "msU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), m (⋃ i, f i) ⋯ ≤ ∑' (i : ℕ), m (f i) ⋯", "m_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂", "s₁ s₂ : Set α", "h₁ : P s₁", "hs : s₁ ⊆ s₂"], "goal": "extend m s₁ ≤ extend m s₂"}], "premise": [19310], "state_str": "α : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ i, f i)\nmU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), Pairwise (Disjoint on f) → m (⋃ i, f i) ⋯ = ∑' (i : ℕ), m (f i) ⋯\nmsU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), m (⋃ i, f i) ⋯ ≤ ∑' (i : ℕ), m (f i) ⋯\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns₁ s₂ : Set α\nh₁ : P s₁\nhs : s₁ ⊆ s₂\n⊢ extend m s₁ ≤ extend m s₂"} +{"state": [{"context": ["α : Type u_1", "P : Set α → Prop", "m : (s : Set α) → P s → ℝ≥0∞", "P0 : P ∅", "m0 : m ∅ P0 = 0", "PU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ i, f i)", "mU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), Pairwise (Disjoint on f) → m (⋃ i, f i) ⋯ = ∑' (i : ℕ), m (f i) ⋯", "msU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), m (⋃ i, f i) ⋯ ≤ ∑' (i : ℕ), m (f i) ⋯", "m_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂", "s₁ s₂ : Set α", "h₁ : P s₁", "hs : s₁ ⊆ s₂", "h₂ : P s₂"], "goal": "extend m s₁ ≤ m s₂ h₂"}], "premise": [28137], "state_str": "α : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ i, f i)\nmU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), Pairwise (Disjoint on f) → m (⋃ i, f i) ⋯ = ∑' (i : ℕ), m (f i) ⋯\nmsU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)), m (⋃ i, f i) ⋯ ≤ ∑' (i : ℕ), m (f i) ⋯\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns₁ s₂ : Set α\nh₁ : P s₁\nhs : s₁ ⊆ s₂\nh₂ : P s₂\n⊢ extend m s₁ ≤ m s₂ h₂"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type uX", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "m n : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "h : HasFTaylorSeriesUpToOn n f p s"], "goal": "ContinuousOn f s"}], "premise": [2100, 18803, 48303, 48305, 57308], "state_str": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nh : HasFTaylorSeriesUpToOn n f p s\n⊢ ContinuousOn f s"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type uX", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "m n : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "h : HasFTaylorSeriesUpToOn n f p s", "this : ContinuousOn (fun x => (continuousMultilinearCurryFin0 𝕜 E F).symm (f x)) s"], "goal": "ContinuousOn f s"}], "premise": [44759], "state_str": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nh : HasFTaylorSeriesUpToOn n f p s\nthis : ContinuousOn (fun x => (continuousMultilinearCurryFin0 𝕜 E F).symm (f x)) s\n⊢ ContinuousOn f s"} +{"state": [{"context": ["α : Type u_1", "inst✝ : DecidableEq α", "l l' : List α", "hl : l.Nodup", "x : α", "hx : x ∈ l"], "goal": "l.formPerm x = l.next x hx"}], "premise": [5046], "state_str": "α : Type u_1\ninst✝ : DecidableEq α\nl l' : List α\nhl : l.Nodup\nx : α\nhx : x ∈ l\n⊢ l.formPerm x = l.next x hx"} +{"state": [{"context": ["α : Type u_1", "inst✝ : DecidableEq α", "l l' : List α", "hl : l.Nodup", "k : Fin l.length", "hx : l.get k ∈ l"], "goal": "l.formPerm (l.get k) = l.next (l.get k) hx"}], "premise": [8825, 132065], "state_str": "case intro\nα : Type u_1\ninst✝ : DecidableEq α\nl l' : List α\nhl : l.Nodup\nk : Fin l.length\nhx : l.get k ∈ l\n⊢ l.formPerm (l.get k) = l.next (l.get k) hx"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g : α → β", "inst✝² : CommMonoid β", "inst✝¹ : DecidableEq α", "s : Multiset α", "M : Type u_6", "inst✝ : CommMonoid M", "f : α → M"], "goal": "(Multiset.map f s).prod = ∏ m ∈ s.toFinset, f m ^ Multiset.count m s"}], "premise": [127768], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝² : CommMonoid β\ninst✝¹ : DecidableEq α\ns : Multiset α\nM : Type u_6\ninst✝ : CommMonoid M\nf : α → M\n⊢ (Multiset.map f s).prod = ∏ m ∈ s.toFinset, f m ^ Multiset.count m s"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g : α → β", "inst✝² : CommMonoid β", "inst✝¹ : DecidableEq α", "s : Multiset α", "M : Type u_6", "inst✝ : CommMonoid M", "f : α → M", "l : List α"], "goal": "(Multiset.map f (Quot.mk Setoid.r l)).prod = ∏ m ∈ Multiset.toFinset (Quot.mk Setoid.r l), f m ^ Multiset.count m (Quot.mk Setoid.r l)"}], "premise": [127148], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝² : CommMonoid β\ninst✝¹ : DecidableEq α\ns : Multiset α\nM : Type u_6\ninst✝ : CommMonoid M\nf : α → M\nl : List α\n⊢ (Multiset.map f (Quot.mk Setoid.r l)).prod =\n ∏ m ∈ Multiset.toFinset (Quot.mk Setoid.r l), f m ^ Multiset.count m (Quot.mk Setoid.r l)"} +{"state": [{"context": ["C : Type u", "A : Type u_1", "inst✝² : Category.{v, u} C", "inst✝¹ : AddMonoid A", "inst✝ : HasShift C A", "a₁ a₂ a₃ : A", "X : C"], "goal": "(shiftFunctor C a₃).map ((shiftFunctorAdd C a₁ a₂).inv.app X) ≫ (shiftFunctorAdd C (a₁ + a₂) a₃).inv.app X = (shiftFunctorAdd C a₂ a₃).inv.app ((shiftFunctor C a₁).obj X) ≫ (shiftFunctorAdd' C a₁ (a₂ + a₃) (a₁ + a₂ + a₃) ⋯).inv.app X"}], "premise": [92840, 100029], "state_str": "C : Type u\nA : Type u_1\ninst✝² : Category.{v, u} C\ninst✝¹ : AddMonoid A\ninst✝ : HasShift C A\na₁ a₂ a₃ : A\nX : C\n⊢ (shiftFunctor C a₃).map ((shiftFunctorAdd C a₁ a₂).inv.app X) ≫ (shiftFunctorAdd C (a₁ + a₂) a₃).inv.app X =\n (shiftFunctorAdd C a₂ a₃).inv.app ((shiftFunctor C a₁).obj X) ≫\n (shiftFunctorAdd' C a₁ (a₂ + a₃) (a₁ + a₂ + a₃) ⋯).inv.app X"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "γ : Type x", "s : Set α", "f : α → α", "hs : s.Finite", "hm : MapsTo f s s"], "goal": "InjOn f s ↔ BijOn f s s"}], "premise": [135873], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns : Set α\nf : α → α\nhs : s.Finite\nhm : MapsTo f s s\n⊢ InjOn f s ↔ BijOn f s s"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "γ : Type x", "s : Set α", "f : α → α", "hs : s.Finite", "hm : MapsTo f s s", "h : InjOn f s"], "goal": "SurjOn f s s"}], "premise": [1674, 134991], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns : Set α\nf : α → α\nhs : s.Finite\nhm : MapsTo f s s\nh : InjOn f s\n⊢ SurjOn f s s"} +{"state": [{"context": ["α : Type u", "β : Type v", "ι : Sort w", "γ : Type x", "s : Set α", "f : α → α", "hs : s.Finite", "hm : MapsTo f s s", "h : InjOn f s", "this : Finite ↑s"], "goal": "SurjOn f s s"}], "premise": [1673, 1674, 135814, 135862, 141416], "state_str": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns : Set α\nf : α → α\nhs : s.Finite\nhm : MapsTo f s s\nh : InjOn f s\nthis : Finite ↑s\n⊢ SurjOn f s s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "e : PartialEquiv α β", "e'✝ : PartialEquiv β γ", "s : Set α", "t : Set β", "x : α", "y : β", "e' : PartialEquiv α β", "h : e.IsImage s t", "hs : e.source ∩ s = e'.source ∩ s", "heq : EqOn (↑e) (↑e') (e.source ∩ s)"], "goal": "EqOn (↑e.symm) (↑e'.symm) (e.target ∩ t)"}], "premise": [71091], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ne : PartialEquiv α β\ne'✝ : PartialEquiv β γ\ns : Set α\nt : Set β\nx : α\ny : β\ne' : PartialEquiv α β\nh : e.IsImage s t\nhs : e.source ∩ s = e'.source ∩ s\nheq : EqOn (↑e) (↑e') (e.source ∩ s)\n⊢ EqOn (↑e.symm) (↑e'.symm) (e.target ∩ t)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "e : PartialEquiv α β", "e'✝ : PartialEquiv β γ", "s : Set α", "t : Set β", "x✝ : α", "y : β", "e' : PartialEquiv α β", "h : e.IsImage s t", "hs : e.source ∩ s = e'.source ∩ s", "heq : EqOn (↑e) (↑e') (e.source ∩ s)", "x : α", "hx : x ∈ e.source ∩ s", "hx' : x ∈ e'.source ∩ s"], "goal": "↑e.symm (↑e x) = ↑e'.symm (↑e x)"}], "premise": [2107, 71050], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ne : PartialEquiv α β\ne'✝ : PartialEquiv β γ\ns : Set α\nt : Set β\nx✝ : α\ny : β\ne' : PartialEquiv α β\nh : e.IsImage s t\nhs : e.source ∩ s = e'.source ∩ s\nheq : EqOn (↑e) (↑e') (e.source ∩ s)\nx : α\nhx : x ∈ e.source ∩ s\nhx' : x ∈ e'.source ∩ s\n⊢ ↑e.symm (↑e x) = ↑e'.symm (↑e x)"} +{"state": [{"context": ["U : Type u_1", "inst✝² : Quiver U", "V : Type u_2", "inst✝¹ : Quiver V", "φ : U ⥤q V", "W : Type ?u.1952", "inst✝ : Quiver W", "ψ : V ⥤q W", "hφ : φ.IsCovering", "u v : U", "f g : u ⟶ v", "he : (fun f => φ.map f) f = (fun f => φ.map f) g", "this : φ.star u (Star.mk f) = φ.star u (Star.mk g)"], "goal": "f = g"}], "premise": [2107, 49202], "state_str": "U : Type u_1\ninst✝² : Quiver U\nV : Type u_2\ninst✝¹ : Quiver V\nφ : U ⥤q V\nW : Type ?u.1952\ninst✝ : Quiver W\nψ : V ⥤q W\nhφ : φ.IsCovering\nu v : U\nf g : u ⟶ v\nhe : (fun f => φ.map f) f = (fun f => φ.map f) g\nthis : φ.star u (Star.mk f) = φ.star u (Star.mk g)\n⊢ f = g"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f g : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))"], "goal": "CompleteLattice.Independent fun i => (ϕ i).range"}], "premise": [141384], "state_str": "G : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf g : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\n⊢ CompleteLattice.Independent fun i => (ϕ i).range"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f g : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι"], "goal": "Disjoint ((fun i => (ϕ i).range) i) (⨆ j, ⨆ (_ : j ≠ i), (fun i => (ϕ i).range) j)"}], "premise": [13482], "state_str": "case intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf g : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\n⊢ Disjoint ((fun i => (ϕ i).range) i) (⨆ j, ⨆ (_ : j ≠ i), (fun i => (ϕ i).range) j)"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxi : f ∈ Set.range ⇑(ϕ i)", "hxp : f ∈ ↑(⨆ j, ⨆ (_ : ¬j = i), (ϕ j).range)"], "goal": "f ∈ ⊥"}], "premise": [6988, 19388], "state_str": "case intro.intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxi : f ∈ Set.range ⇑(ϕ i)\nhxp : f ∈ ↑(⨆ j, ⨆ (_ : ¬j = i), (ϕ j).range)\n⊢ f ∈ ⊥"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g✝ : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxp : f ∈ ↑(⨆ x, (ϕ ↑x).range)", "g : (i_1 : { j // ¬j = i }) → H ↑i_1", "hgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f", "g' : H i", "hg'f : (ϕ i) g' = f"], "goal": "f ∈ ⊥"}], "premise": [8367, 8510], "state_str": "case intro.intro.intro.intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g✝ : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxp : f ∈ ↑(⨆ x, (ϕ ↑x).range)\ng : (i_1 : { j // ¬j = i }) → H ↑i_1\nhgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f\ng' : H i\nhg'f : (ϕ i) g' = f\n⊢ f ∈ ⊥"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g✝ : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxp : f ∈ ↑(⨆ x, (ϕ ↑x).range)", "g : (i_1 : { j // ¬j = i }) → H ↑i_1", "hgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f", "g' : H i", "hg'f : (ϕ i) g' = f", "hxi : orderOf f ∣ Fintype.card (H i)"], "goal": "f ∈ ⊥"}], "premise": [8367, 8510, 140594], "state_str": "case intro.intro.intro.intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g✝ : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxp : f ∈ ↑(⨆ x, (ϕ ↑x).range)\ng : (i_1 : { j // ¬j = i }) → H ↑i_1\nhgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f\ng' : H i\nhg'f : (ϕ i) g' = f\nhxi : orderOf f ∣ Fintype.card (H i)\n⊢ f ∈ ⊥"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g✝ : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)", "g : (i_1 : { j // ¬j = i }) → H ↑i_1", "hgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f", "g' : H i", "hg'f : (ϕ i) g' = f", "hxi : orderOf f ∣ Fintype.card (H i)", "hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)"], "goal": "f = 1"}], "premise": [8356, 119743], "state_str": "case intro.intro.intro.intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g✝ : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)\ng : (i_1 : { j // ¬j = i }) → H ↑i_1\nhgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f\ng' : H i\nhg'f : (ϕ i) g' = f\nhxi : orderOf f ∣ Fintype.card (H i)\nhxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)\n⊢ f = 1"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g✝ : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)", "g : (i_1 : { j // ¬j = i }) → H ↑i_1", "hgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f", "g' : H i", "hg'f : (ϕ i) g' = f", "hxi : orderOf f ∣ Fintype.card (H i)", "hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)"], "goal": "orderOf f ∣ 1"}], "premise": [3620], "state_str": "case intro.intro.intro.intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g✝ : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)\ng : (i_1 : { j // ¬j = i }) → H ↑i_1\nhgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f\ng' : H i\nhg'f : (ϕ i) g' = f\nhxi : orderOf f ∣ Fintype.card (H i)\nhxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)\n⊢ orderOf f ∣ 1"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g✝ : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)", "g : (i_1 : { j // ¬j = i }) → H ↑i_1", "hgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f", "g' : H i", "hg'f : (ϕ i) g' = f", "hxi : orderOf f ∣ Fintype.card (H i)", "hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)", "c : ℕ", "hc : (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)).gcd (Fintype.card (H i)) = orderOf f * c"], "goal": "orderOf f ∣ 1"}], "premise": [1674, 2045], "state_str": "case intro.intro.intro.intro.intro\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g✝ : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)\ng : (i_1 : { j // ¬j = i }) → H ↑i_1\nhgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f\ng' : H i\nhg'f : (ϕ i) g' = f\nhxi : orderOf f ∣ Fintype.card (H i)\nhxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)\nc : ℕ\nhc : (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)).gcd (Fintype.card (H i)) = orderOf f * c\n⊢ orderOf f ∣ 1"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Type u_3", "inst✝² : (i : ι) → Group (H i)", "ϕ : (i : ι) → H i →* G", "f✝ g✝ : (i : ι) → H i", "hcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)", "inst✝¹ : Finite ι", "inst✝ : (i : ι) → Fintype (H i)", "hcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))", "val✝ : Fintype ι", "this : DecidableEq ι := Classical.decEq ι", "i : ι", "f : G", "hxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)", "g : (i_1 : { j // ¬j = i }) → H ↑i_1", "hgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f", "g' : H i", "hg'f : (ϕ i) g' = f", "hxi : orderOf f ∣ Fintype.card (H i)", "hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)", "c : ℕ", "hc : (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)).gcd (Fintype.card (H i)) = orderOf f * c"], "goal": "(∏ j : { j // j ≠ i }, Fintype.card (H ↑j)).gcd (Fintype.card (H i)) = 1"}], "premise": [393, 137123, 143470], "state_str": "case h\nG : Type u_1\ninst✝³ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Type u_3\ninst✝² : (i : ι) → Group (H i)\nϕ : (i : ι) → H i →* G\nf✝ g✝ : (i : ι) → H i\nhcomm : Pairwise fun i j => ∀ (x : H i) (y : H j), Commute ((ϕ i) x) ((ϕ j) y)\ninst✝¹ : Finite ι\ninst✝ : (i : ι) → Fintype (H i)\nhcoprime : Pairwise fun i j => (Fintype.card (H i)).Coprime (Fintype.card (H j))\nval✝ : Fintype ι\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\nf : G\nhxp✝ : f ∈ ↑(⨆ x, (ϕ ↑x).range)\ng : (i_1 : { j // ¬j = i }) → H ↑i_1\nhgf : (noncommPiCoprod (fun x => ϕ ↑x) ⋯) g = f\ng' : H i\nhg'f : (ϕ i) g' = f\nhxi : orderOf f ∣ Fintype.card (H i)\nhxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)\nc : ℕ\nhc : (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)).gcd (Fintype.card (H i)) = orderOf f * c\n⊢ (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)).gcd (Fintype.card (H i)) = 1"} +{"state": [{"context": ["a b c d m n k : ℕ", "p q : ℕ → Prop", "h : m % k = n % k"], "goal": "(m - n) % k = 0"}], "premise": [3890, 3908, 4476, 4492], "state_str": "a b c d m n k : ℕ\np q : ℕ → Prop\nh : m % k = n % k\n⊢ (m - n) % k = 0"} +{"state": [{"context": ["R : Type u_1", "inst✝ : NonUnitalNonAssocRing R", "ι : Type u_2", "I : ι → TwoSidedIdeal R"], "goal": "(⨅ i, I i).ringCon = ⨅ i, (I i).ringCon"}], "premise": [77522], "state_str": "R : Type u_1\ninst✝ : NonUnitalNonAssocRing R\nι : Type u_2\nI : ι → TwoSidedIdeal R\n⊢ (⨅ i, I i).ringCon = ⨅ i, (I i).ringCon"} +{"state": [{"context": ["α : Type ua", "β : Type ub", "γ : Type uc", "δ : Type ud", "ι : Sort u_1", "inst✝ : UniformSpace α", "g : Set (α × α) → Filter β", "f : Filter β", "hg : Monotone g", "h : ((𝓤 α).lift fun s => g (Prod.swap ⁻¹' s)) ≤ f"], "goal": "(map Prod.swap (𝓤 α)).lift g ≤ f"}], "premise": [12695, 134234], "state_str": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\ng : Set (α × α) → Filter β\nf : Filter β\nhg : Monotone g\nh : ((𝓤 α).lift fun s => g (Prod.swap ⁻¹' s)) ≤ f\n⊢ (map Prod.swap (𝓤 α)).lift g ≤ f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "G : Type u_4", "M : Type u_5", "N : Type u_6", "inst✝¹ : CommMonoid M", "inst✝ : CommMonoid N", "f : α → M", "s : Set α"], "goal": "∏ᶠ (i : α) (_ : i ∈ s ∩ mulSupport f), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i"}], "premise": [120900, 125615], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nG : Type u_4\nM : Type u_5\nN : Type u_6\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf : α → M\ns : Set α\n⊢ ∏ᶠ (i : α) (_ : i ∈ s ∩ mulSupport f), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i"} +{"state": [{"context": ["α : Type u_1", "l : Ordnode α", "x : α", "r : Ordnode α"], "goal": "(l.rotateR x r).dual = r.dual.rotateL x l.dual"}], "premise": [146350, 146366], "state_str": "α : Type u_1\nl : Ordnode α\nx : α\nr : Ordnode α\n⊢ (l.rotateR x r).dual = r.dual.rotateL x l.dual"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "r : Rel α β"], "goal": "∀ (x : α), x ∈ r.core Set.univ ↔ x ∈ Set.univ"}], "premise": [146931], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nr : Rel α β\n⊢ ∀ (x : α), x ∈ r.core Set.univ ↔ x ∈ Set.univ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f : α → ℝ"], "goal": "∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ (x : α), ↑‖f x‖₊ ∂μ"}], "premise": [42784], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ\n⊢ ∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ (x : α), ↑‖f x‖₊ ∂μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f : α → ℝ"], "goal": "∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ (x : α), ENNReal.ofReal ‖f x‖ ∂μ"}], "premise": [30232, 143377], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ\n⊢ ∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ (x : α), ENNReal.ofReal ‖f x‖ ∂μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f : α → ℝ", "x : α"], "goal": "f x ≤ ‖f x‖"}], "premise": [42903], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ\nx : α\n⊢ f x ≤ ‖f x‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f : α → ℝ", "x : α"], "goal": "f x ≤ |f x|"}], "premise": [105272], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ\nx : α\n⊢ f x ≤ |f x|"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : FiniteDimensional 𝕜 E", "_i : Nontrivial E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric"], "goal": "HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"}], "premise": [31650], "state_str": "𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : FiniteDimensional 𝕜 E\n_i : Nontrivial E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\n⊢ HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : FiniteDimensional 𝕜 E", "_i : Nontrivial E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "this : ProperSpace E", "T' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint"], "goal": "HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"}], "premise": [71951], "state_str": "𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : FiniteDimensional 𝕜 E\n_i : Nontrivial E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nthis : ProperSpace E\nT' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint\n⊢ HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : FiniteDimensional 𝕜 E", "_i : Nontrivial E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "this : ProperSpace E", "T' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint", "x : E", "hx : x ≠ 0"], "goal": "HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"}], "premise": [59923], "state_str": "case intro\n𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : FiniteDimensional 𝕜 E\n_i : Nontrivial E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nthis : ProperSpace E\nT' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint\nx : E\nhx : x ≠ 0\n⊢ HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : FiniteDimensional 𝕜 E", "_i : Nontrivial E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "this : ProperSpace E", "T' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint", "x : E", "hx : x ≠ 0", "H₁ : IsCompact (sphere 0 ‖x‖)", "H₂ : (sphere 0 ‖x‖).Nonempty"], "goal": "HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"}], "premise": [36957, 57324, 63111], "state_str": "case intro\n𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : FiniteDimensional 𝕜 E\n_i : Nontrivial E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nthis : ProperSpace E\nT' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint\nx : E\nhx : x ≠ 0\nH₁ : IsCompact (sphere 0 ‖x‖)\nH₂ : (sphere 0 ‖x‖).Nonempty\n⊢ HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : FiniteDimensional 𝕜 E", "_i : Nontrivial E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "this✝ : ProperSpace E", "T' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint", "x : E", "hx : x ≠ 0", "H₁ : IsCompact (sphere 0 ‖x‖)", "H₂ : (sphere 0 ‖x‖).Nonempty", "x₀ : E", "hx₀' : x₀ ∈ sphere 0 ‖x‖", "hTx₀ : IsMinOn (���T').reApplyInnerSelf (sphere 0 ‖x‖) x₀", "hx₀ : ‖x₀‖ = ‖x‖", "this : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x₀‖) x₀"], "goal": "HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"}], "premise": [1787, 42918], "state_str": "case intro.intro.intro\n𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : FiniteDimensional 𝕜 E\n_i : Nontrivial E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nthis✝ : ProperSpace E\nT' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint\nx : E\nhx : x ≠ 0\nH₁ : IsCompact (sphere 0 ‖x‖)\nH₂ : (sphere 0 ‖x‖).Nonempty\nx₀ : E\nhx₀' : x₀ ∈ sphere 0 ‖x‖\nhTx₀ : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x‖) x₀\nhx₀ : ‖x₀‖ = ‖x‖\nthis : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x₀‖) x₀\n⊢ HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝³ : RCLike 𝕜", "E : Type u_2", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace 𝕜 E", "inst✝ : FiniteDimensional 𝕜 E", "_i : Nontrivial E", "T : E →ₗ[𝕜] E", "hT : T.IsSymmetric", "this✝ : ProperSpace E", "T' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint", "x : E", "hx : x ≠ 0", "H₁ : IsCompact (sphere 0 ‖x‖)", "H₂ : (sphere 0 ‖x‖).Nonempty", "x₀ : E", "hx₀' : x₀ ∈ sphere 0 ‖x‖", "hTx₀ : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x‖) x₀", "hx₀ : ‖x₀‖ = ‖x‖", "this : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x₀‖) x₀", "hx₀_ne : x₀ ≠ 0"], "goal": "HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"}], "premise": [33834, 88217, 137122], "state_str": "case intro.intro.intro\n𝕜 : Type u_1\ninst✝³ : RCLike 𝕜\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : FiniteDimensional 𝕜 E\n_i : Nontrivial E\nT : E →ₗ[𝕜] E\nhT : T.IsSymmetric\nthis✝ : ProperSpace E\nT' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint\nx : E\nhx : x ≠ 0\nH₁ : IsCompact (sphere 0 ‖x‖)\nH₂ : (sphere 0 ‖x‖).Nonempty\nx₀ : E\nhx₀' : x₀ ∈ sphere 0 ‖x‖\nhTx₀ : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x‖) x₀\nhx₀ : ‖x₀‖ = ‖x‖\nthis : IsMinOn (↑T').reApplyInnerSelf (sphere 0 ‖x₀‖) x₀\nhx₀_ne : x₀ ≠ 0\n⊢ HasEigenvalue T ↑(⨅ x, RCLike.re ⟪T ↑x, ↑x⟫_𝕜 / ‖↑x‖ ^ 2)"} +{"state": [{"context": ["l : Type u_1", "R : Type u_2", "inst✝² : DecidableEq l", "inst✝¹ : Fintype l", "inst✝ : CommRing R", "A : Matrix (l ⊕ l) (l ⊕ l) R", "hA : Aᵀ ∈ symplecticGroup l R"], "goal": "A ∈ symplecticGroup l R"}], "premise": [81389], "state_str": "l : Type u_1\nR : Type u_2\ninst✝² : DecidableEq l\ninst✝¹ : Fintype l\ninst✝ : CommRing R\nA : Matrix (l ⊕ l) (l ⊕ l) R\nhA : Aᵀ ∈ symplecticGroup l R\n⊢ A ∈ symplecticGroup l R"} +{"state": [{"context": ["Ω : Type u_1", "inst✝¹ : MeasurableSpace Ω", "inst✝ : MeasurableSingletonClass Ω", "s t u : Set Ω", "hs : s.Finite", "hs' : s.Nonempty"], "goal": "(condCount s) s = 1"}], "premise": [27992, 73023, 133440, 143757], "state_str": "Ω : Type u_1\ninst✝¹ : MeasurableSpace Ω\ninst✝ : MeasurableSingletonClass Ω\ns t u : Set Ω\nhs : s.Finite\nhs' : s.Nonempty\n⊢ (condCount s) s = 1"} +{"state": [{"context": ["α : Type u_1", "inst✝⁸ : TopologicalSpace α", "inst✝⁷ : NormalSpace α", "inst✝⁶ : R1Space α", "inst✝⁵ : MeasurableSpace α", "inst✝⁴ : BorelSpace α", "E : Type u_2", "inst✝³ : NormedAddCommGroup E", "μ : Measure α", "p✝ : ℝ≥0∞", "inst✝² : NormedSpace ℝ E", "inst✝¹ : WeaklyLocallyCompactSpace α", "inst✝ : μ.Regular", "p : ℝ", "hp : 0 < p", "f : α → E", "hf : Memℒp f (ENNReal.ofReal p) μ", "ε : ℝ", "hε : 0 < ε"], "goal": "∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"}], "premise": [40008], "state_str": "α : Type u_1\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : NormalSpace α\ninst✝⁶ : R1Space α\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : BorelSpace α\nE : Type u_2\ninst✝³ : NormedAddCommGroup E\nμ : Measure α\np✝ : ℝ≥0∞\ninst✝² : NormedSpace ℝ E\ninst✝¹ : WeaklyLocallyCompactSpace α\ninst✝ : μ.Regular\np : ℝ\nhp : 0 < p\nf : α → E\nhf : Memℒp f (ENNReal.ofReal p) μ\nε : ℝ\nhε : 0 < ε\n⊢ ∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"} +{"state": [{"context": ["α : Type u_1", "inst✝⁸ : TopologicalSpace α", "inst✝⁷ : NormalSpace α", "inst✝⁶ : R1Space α", "inst✝⁵ : MeasurableSpace α", "inst✝⁴ : BorelSpace α", "E : Type u_2", "inst✝³ : NormedAddCommGroup E", "μ : Measure α", "p✝ : ℝ≥0∞", "inst✝² : NormedSpace ℝ E", "inst✝¹ : WeaklyLocallyCompactSpace α", "inst✝ : μ.Regular", "p : ℝ", "hp : 0 < p", "f : α → E", "hf : Memℒp f (ENNReal.ofReal p) μ", "ε : ℝ", "hε : 0 < ε", "I : 0 < ε ^ (1 / p)"], "goal": "∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"}], "premise": [14324, 143386], "state_str": "α : Type u_1\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : NormalSpace α\ninst✝⁶ : R1Space α\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : BorelSpace α\nE : Type u_2\ninst✝³ : NormedAddCommGroup E\nμ : Measure α\np✝ : ℝ≥0∞\ninst✝² : NormedSpace ℝ E\ninst✝¹ : WeaklyLocallyCompactSpace α\ninst✝ : μ.Regular\np : ℝ\nhp : 0 < p\nf : α → E\nhf : Memℒp f (ENNReal.ofReal p) μ\nε : ℝ\nhε : 0 < ε\nI : 0 < ε ^ (1 / p)\n⊢ ∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"} +{"state": [{"context": ["α : Type u_1", "inst✝⁸ : TopologicalSpace α", "inst✝⁷ : NormalSpace α", "inst✝⁶ : R1Space α", "inst✝⁵ : MeasurableSpace α", "inst✝⁴ : BorelSpace α", "E : Type u_2", "inst✝³ : NormedAddCommGroup E", "μ : Measure α", "p✝ : ℝ≥0∞", "inst✝² : NormedSpace ℝ E", "inst✝¹ : WeaklyLocallyCompactSpace α", "inst✝ : μ.Regular", "p : ℝ", "hp : 0 < p", "f : α → E", "hf : Memℒp f (ENNReal.ofReal p) μ", "ε : ℝ", "hε : 0 < ε", "I : 0 < ε ^ (1 / p)", "A : ENNReal.ofReal (ε ^ (1 / p)) ≠ 0"], "goal": "∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"}], "premise": [14324, 143386], "state_str": "α : Type u_1\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : NormalSpace α\ninst✝⁶ : R1Space α\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : BorelSpace α\nE : Type u_2\ninst✝³ : NormedAddCommGroup E\nμ : Measure α\np✝ : ℝ≥0∞\ninst✝² : NormedSpace ℝ E\ninst✝¹ : WeaklyLocallyCompactSpace α\ninst✝ : μ.Regular\np : ℝ\nhp : 0 < p\nf : α → E\nhf : Memℒp f (ENNReal.ofReal p) μ\nε : ℝ\nhε : 0 < ε\nI : 0 < ε ^ (1 / p)\nA : ENNReal.ofReal (ε ^ (1 / p)) ≠ 0\n⊢ ∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"} +{"state": [{"context": ["α : Type u_1", "inst✝⁸ : TopologicalSpace α", "inst✝⁷ : NormalSpace α", "inst✝⁶ : R1Space α", "inst✝⁵ : MeasurableSpace α", "inst✝⁴ : BorelSpace α", "E : Type u_2", "inst✝³ : NormedAddCommGroup E", "μ : Measure α", "p✝ : ℝ≥0∞", "inst✝² : NormedSpace ℝ E", "inst✝¹ : WeaklyLocallyCompactSpace α", "inst✝ : μ.Regular", "p : ℝ", "hp : 0 < p", "f : α → E", "hf : Memℒp f (ENNReal.ofReal p) μ", "ε : ℝ", "hε : 0 < ε", "I : 0 < ε ^ (1 / p)", "A : ENNReal.ofReal (ε ^ (1 / p)) ≠ 0", "B : ENNReal.ofReal p ≠ 0"], "goal": "∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"}], "premise": [27499, 143191], "state_str": "α : Type u_1\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : NormalSpace α\ninst✝⁶ : R1Space α\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : BorelSpace α\nE : Type u_2\ninst✝³ : NormedAddCommGroup E\nμ : Measure α\np✝ : ℝ≥0∞\ninst✝² : NormedSpace ℝ E\ninst✝¹ : WeaklyLocallyCompactSpace α\ninst✝ : μ.Regular\np : ℝ\nhp : 0 < p\nf : α → E\nhf : Memℒp f (ENNReal.ofReal p) μ\nε : ℝ\nhε : 0 < ε\nI : 0 < ε ^ (1 / p)\nA : ENNReal.ofReal (ε ^ (1 / p)) ≠ 0\nB : ENNReal.ofReal p ≠ 0\n⊢ ∃ g, HasCompactSupport g ∧ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε ∧ Continuous g ∧ Memℒp g (ENNReal.ofReal p) μ"} +{"state": [{"context": ["α : Type u_1", "inst✝⁸ : TopologicalSpace α", "inst✝⁷ : NormalSpace α", "inst✝⁶ : R1Space α", "inst✝⁵ : MeasurableSpace α", "inst✝⁴ : BorelSpace α", "E : Type u_2", "inst✝³ : NormedAddCommGroup E", "μ : Measure α", "p✝ : ℝ≥0∞", "inst✝² : NormedSpace ℝ E", "inst✝¹ : WeaklyLocallyCompactSpace α", "inst✝ : μ.Regular", "p : ℝ", "hp : 0 < p", "f : α → E", "hf : Memℒp f (ENNReal.ofReal p) μ", "ε : ℝ", "hε : 0 < ε", "I : 0 < ε ^ (1 / p)", "A : ENNReal.ofReal (ε ^ (1 / p)) ≠ 0", "B : ENNReal.ofReal p ≠ 0", "g : α → E", "g_support : HasCompactSupport g", "g_cont : Continuous g", "g_mem : Memℒp g (↑p.toNNReal) μ", "hg : eLpNorm (f - g) (ENNReal.ofReal p) μ ≤ ENNReal.ofReal (ε ^ (1 / p))"], "goal": "∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε"}], "premise": [1674, 27230, 33695, 40087, 104330, 117810, 143161, 143191, 143379], "state_str": "case intro.intro.intro.intro\nα : Type u_1\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : NormalSpace α\ninst✝⁶ : R1Space α\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : BorelSpace α\nE : Type u_2\ninst✝³ : NormedAddCommGroup E\nμ : Measure α\np✝ : ℝ≥0∞\ninst✝² : NormedSpace ℝ E\ninst✝¹ : WeaklyLocallyCompactSpace α\ninst��� : μ.Regular\np : ℝ\nhp : 0 < p\nf : α → E\nhf : Memℒp f (ENNReal.ofReal p) μ\nε : ℝ\nhε : 0 < ε\nI : 0 < ε ^ (1 / p)\nA : ENNReal.ofReal (ε ^ (1 / p)) ≠ 0\nB : ENNReal.ofReal p ≠ 0\ng : α → E\ng_support : HasCompactSupport g\ng_cont : Continuous g\ng_mem : Memℒp g (↑p.toNNReal) μ\nhg : eLpNorm (f - g) (ENNReal.ofReal p) μ ≤ ENNReal.ofReal (ε ^ (1 / p))\n⊢ ∫ (x : α), ‖f x - g x‖ ^ p ∂μ ≤ ε"} +{"state": [{"context": ["R✝ : Type u", "S : Type v", "T : Type w", "a b : R✝", "n✝ : ℕ", "inst✝³ : CommRing R✝", "inst✝² : IsDomain R✝", "p q : R✝[X]", "R : Type u_1", "inst✝¹ : CommRing R", "inst✝ : IsDomain R", "n : ℕ"], "goal": "nthRoots n 0 = replicate n 0"}], "premise": [102540, 102549, 117816, 121564, 137946], "state_str": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn✝ : ℕ\ninst✝³ : CommRing R✝\ninst✝² : IsDomain R✝\np q : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nn : ℕ\n⊢ nthRoots n 0 = replicate n 0"} +{"state": [{"context": ["α : Type u_1", "inst✝ : Preorder α", "ls : ℕ", "ll : Ordnode α", "lx : α", "lr : Ordnode α", "l_ih✝ : ∀ {r : Ordnode α} {o₁ : WithBot α} {o₂ : WithTop α}, Valid' o₁ ll o₂ → Valid' o₁ r o₂ → All (fun x => All (fun y => x < y) r) ll → Valid' o₁ (ll.merge r) o₂ ∧ (ll.merge r).size = ll.size + r.size", "IHlr : ∀ {r : Ordnode α} {o₁ : WithBot α} {o₂ : WithTop α}, Valid' o₁ lr o₂ → Valid' o₁ r o₂ → All (fun x => All (fun y => x < y) r) lr → Valid' o₁ (lr.merge r) o₂ ∧ (lr.merge r).size = lr.size + r.size", "rs : ℕ", "rl : Ordnode α", "rx : α", "rr : Ordnode α", "IHrl : ∀ {o₁ : WithBot α} {o₂ : WithTop α}, Valid' o₁ (Ordnode.node ls ll lx lr) o₂ → Valid' o₁ rl o₂ → All (fun x => All (fun y => x < y) rl) (Ordnode.node ls ll lx lr) → Valid' o₁ ((Ordnode.node ls ll lx lr).merge rl) o₂ ∧ ((Ordnode.node ls ll lx lr).merge rl).size = (Ordnode.node ls ll lx lr).size + rl.size", "r_ih✝ : ∀ {o₁ : WithBot α} {o₂ : WithTop α}, Valid' o₁ (Ordnode.node ls ll lx lr) o₂ → Valid' o₁ rr o₂ → All (fun x => All (fun y => x < y) rr) (Ordnode.node ls ll lx lr) → Valid' o₁ ((Ordnode.node ls ll lx lr).merge rr) o₂ ∧ ((Ordnode.node ls ll lx lr).merge rr).size = (Ordnode.node ls ll lx lr).size + rr.size", "o₁ : WithBot α", "o₂ : WithTop α", "hl : Valid' o₁ (Ordnode.node ls ll lx lr) o₂", "hr : Valid' o₁ (Ordnode.node rs rl rx rr) o₂", "sep : All (fun x => All (fun y => x < y) (Ordnode.node rs rl rx rr)) (Ordnode.node ls ll lx lr)"], "goal": "Valid' o₁ ((Ordnode.node ls ll lx lr).merge (Ordnode.node rs rl rx rr)) o₂ ∧ ((Ordnode.node ls ll lx lr).merge (Ordnode.node rs rl rx rr)).size = (Ordnode.node ls ll lx lr).size + (Ordnode.node rs rl rx rr).size"}], "premise": [146421], "state_str": "case node.node\nα : Type u_1\ninst✝ : Preorder α\nls : ℕ\nll : Ordnode α\nlx : α\nlr : Ordnode α\nl_ih✝ :\n ∀ {r : Ordnode α} {o₁ : WithBot α} {o₂ : WithTop α},\n Valid' o₁ ll o₂ →\n Valid' o₁ r o₂ →\n All (fun x => All (fun y => x < y) r) ll → Valid' o₁ (ll.merge r) o₂ ∧ (ll.merge r).size = ll.size + r.size\nIHlr :\n ∀ {r : Ordnode α} {o₁ : WithBot α} {o₂ : WithTop α},\n Valid' o₁ lr o₂ →\n Valid' o₁ r o₂ →\n All (fun x => All (fun y => x < y) r) lr → Valid' o₁ (lr.merge r) o₂ ∧ (lr.merge r).size = lr.size + r.size\nrs : ℕ\nrl : Ordnode α\nrx : α\nrr : Ordnode α\nIHrl :\n ∀ {o₁ : WithBot α} {o₂ : WithTop α},\n Valid' o₁ (Ordnode.node ls ll lx lr) o₂ →\n Valid' o₁ rl o₂ →\n All (fun x => All (fun y => x < y) rl) (Ordnode.node ls ll lx lr) →\n Valid' o₁ ((Ordnode.node ls ll lx lr).merge rl) o₂ ∧\n ((Ordnode.node ls ll lx lr).merge rl).size = (Ordnode.node ls ll lx lr).size + rl.size\nr_ih✝ :\n ∀ {o₁ : WithBot α} {o₂ : WithTop α},\n Valid' o₁ (Ordnode.node ls ll lx lr) o₂ →\n Valid' o₁ rr o₂ →\n All (fun x => All (fun y => x < y) rr) (Ordnode.node ls ll lx lr) →\n Valid' o₁ ((Ordnode.node ls ll lx lr).merge rr) o₂ ∧\n ((Ordnode.node ls ll lx lr).merge rr).size = (Ordnode.node ls ll lx lr).size + rr.size\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ (Ordnode.node ls ll lx lr) o₂\nhr : Valid' o₁ (Ordnode.node rs rl rx rr) o₂\nsep : All (fun x => All (fun y => x < y) (Ordnode.node rs rl rx rr)) (Ordnode.node ls ll lx lr)\n⊢ Valid' o₁ ((Ordnode.node ls ll lx lr).merge (Ordnode.node rs rl rx rr)) o₂ ∧\n ((Ordnode.node ls ll lx lr).merge (Ordnode.node rs rl rx rr)).size =\n (Ordnode.node ls ll lx lr).size + (Ordnode.node rs rl rx rr).size"} +{"state": [{"context": ["α✝ : Type u_1", "β✝ : Type v", "γ : Type u_2", "inst✝¹ : DecidableEq α✝", "s✝ : Multiset α✝", "α : Type u_3", "β : Type u_4", "f : α → β", "s : Multiset α", "inst✝ : DecidableEq β", "b : β"], "goal": "count b (map f s) = card (filter (fun a => b = f a) s)"}], "premise": [1717, 2785, 138150], "state_str": "α✝ : Type u_1\nβ✝ : Type v\nγ : Type u_2\ninst✝¹ : DecidableEq α✝\ns✝ : Multiset α✝\nα : Type u_3\nβ : Type u_4\nf : α → β\ns : Multiset α\ninst✝ : DecidableEq β\nb : β\n⊢ count b (map f s) = card (filter (fun a => b = f a) s)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "f g : Perm α", "p : α → Prop", "x y z : α", "inst✝ : Finite α"], "goal": "f.SameCycle x y → ∃ i < orderOf f, (f ^ i) x = y"}], "premise": [1674, 2045, 3160, 3252, 4275, 4276, 8451, 8480, 11234, 119784, 129970], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nf g : Perm α\np : α → Prop\nx y z : α\ninst✝ : Finite α\n⊢ f.SameCycle x y → ∃ i < orderOf f, (f ^ i) x = y"} +{"state": [{"context": ["α : Type u_1", "p : α → Bool", "l₁ l₂ : List α", "s : l₁ <+ l₂"], "goal": "List.filter p l₁ <+ List.filter p l₂"}], "premise": [5170], "state_str": "α : Type u_1\np : α → Bool\nl₁ l₂ : List α\ns : l₁ <+ l₂\n⊢ List.filter p l₁ <+ List.filter p l₂"} +{"state": [{"context": ["α : Type u_1", "p : α → Bool", "l₁ l₂ : List α", "s : l₁ <+ l₂"], "goal": "filterMap (Option.guard fun x => p x = true) l₁ <+ filterMap (Option.guard fun x => p x = true) l₂"}], "premise": [1393], "state_str": "α : Type u_1\np : α → Bool\nl₁ l₂ : List α\ns : l₁ <+ l₂\n⊢ filterMap (Option.guard fun x => p x = true) l₁ <+ filterMap (Option.guard fun x => p x = true) l₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝¹ : Fintype α", "s✝ t : Finset α", "inst✝ : DecidableEq α", "a : α", "s : Finset α"], "goal": "sᶜ ≠ univ ↔ s.Nonempty"}], "premise": [140824], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝¹ : Fintype α\ns✝ t : Finset α\ninst✝ : DecidableEq α\na : α\ns : Finset α\n⊢ sᶜ ≠ univ ↔ s.Nonempty"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : MonoidalCategory C", "W X Y Z : C"], "goal": "(α_ W X (Y ⊗ Z)).hom ≫ (𝟙 W ⊗ (α_ X Y Z).inv) = (α_ (W ⊗ X) Y Z).inv ≫ ((α_ W X Y).hom ⊗ 𝟙 Z) ≫ (α_ W (X ⊗ Y) Z).hom"}], "premise": [96173, 99211, 99212, 99216, 99217, 99218, 99219, 99220, 99221, 99222, 99223, 99224, 99225, 99601, 99602, 99603, 99604, 99605, 99606, 99607, 99611, 99612], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : MonoidalCategory C\nW X Y Z : C\n⊢ (α_ W X (Y ⊗ Z)).hom ≫ (𝟙 W ⊗ (α_ X Y Z).inv) = (α_ (W ⊗ X) Y Z).inv ≫ ((α_ W X Y).hom ⊗ 𝟙 Z) ≫ (α_ W (X ⊗ Y) Z).hom"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "D : Type u₂", "inst✝ : Category.{v₂, u₂} D", "F G : (Cᵒᵖ ⥤ D)ᵒᵖ", "η : F ⟶ G"], "goal": "η ≫ (unop G).rightOpLeftOpIso.hom.op = (unop F).rightOpLeftOpIso.hom.op ≫ (NatTrans.leftOp (NatTrans.rightOp η.unop)).op"}], "premise": [89631], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nD : Type u₂\ninst✝ : Category.{v₂, u₂} D\nF G : (Cᵒᵖ ⥤ D)ᵒᵖ\nη : F ⟶ G\n⊢ η ≫ (unop G).rightOpLeftOpIso.hom.op =\n (unop F).rightOpLeftOpIso.hom.op ≫ (NatTrans.leftOp (NatTrans.rightOp η.unop)).op"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : IsDomain R", "inst✝ : NormalizedGCDMonoid R", "r : R", "p : R[X]", "h0 : ¬r = 0"], "goal": "(C r * p).support.gcd (C r * p).coeff = normalize r * p.support.gcd p.coeff"}], "premise": [125058], "state_str": "case neg\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : NormalizedGCDMonoid R\nr : R\np : R[X]\nh0 : ¬r = 0\n⊢ (C r * p).support.gcd (C r * p).coeff = normalize r * p.support.gcd p.coeff"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommRing R", "inst✝¹ : IsDomain R", "inst✝ : NormalizedGCDMonoid R", "r : R", "p : R[X]", "h0 : ¬r = 0"], "goal": "(C r * p).support.gcd (C r * p).coeff = p.support.gcd fun x => r * p.coeff x"}], "premise": [2103, 101278], "state_str": "case neg\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : NormalizedGCDMonoid R\nr : R\np : R[X]\nh0 : ¬r = 0\n⊢ (C r * p).support.gcd (C r * p).coeff = p.support.gcd fun x => r * p.coeff x"} +{"state": [{"context": ["g : SL(2, ℤ)", "z : ℍ", "h : 1 < normSq ↑z"], "goal": "normSq ↑(S • z) < 1"}], "premise": [1674, 46716, 85129, 101702, 106055], "state_str": "g : SL(2, ℤ)\nz : ℍ\nh : 1 < normSq ↑z\n⊢ normSq ↑(S • z) < 1"} +{"state": [{"context": ["R : Type u_2", "K : Type ?u.30406", "L : Type ?u.30409", "S : Type u_1", "inst✝⁶ : CommRing R", "inst✝⁵ : Field K", "inst✝⁴ : Field L", "inst✝³ : CommRing S", "inst✝² : Algebra R S", "inst✝¹ : Algebra K L", "x : S", "hx : IsIntegral R x", "inst✝ : IsDomain S", "y : S", "hxy : y ≠ x", "hy : (aeval y) (minpoly R x) = 0"], "goal": "eval y (minpolyDiv R x) = 0"}], "premise": [87831, 100959, 102952], "state_str": "R : Type u_2\nK : Type ?u.30406\nL : Type ?u.30409\nS : Type u_1\ninst✝⁶ : CommRing R\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : CommRing S\ninst✝² : Algebra R S\ninst✝¹ : Algebra K L\nx : S\nhx : IsIntegral R x\ninst✝ : IsDomain S\ny : S\nhxy : y ≠ x\nhy : (aeval y) (minpoly R x) = 0\n⊢ eval y (minpolyDiv R x) = 0"} +{"state": [{"context": ["R : Type u_2", "K : Type ?u.30406", "L : Type ?u.30409", "S : Type u_1", "inst✝⁶ : CommRing R", "inst✝⁵ : Field K", "inst✝⁴ : Field L", "inst✝³ : CommRing S", "inst✝² : Algebra R S", "inst✝¹ : Algebra K L", "x : S", "hx : IsIntegral R x", "inst✝ : IsDomain S", "y : S", "hxy : y ≠ x", "hy : eval y (minpolyDiv R x * (X - C x)) = 0"], "goal": "eval y (minpolyDiv R x) = 0"}], "premise": [102867, 102870, 102966, 103003, 108583], "state_str": "R : Type u_2\nK : Type ?u.30406\nL : Type ?u.30409\nS : Type u_1\ninst✝⁶ : CommRing R\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : CommRing S\ninst✝² : Algebra R S\ninst✝¹ : Algebra K L\nx : S\nhx : IsIntegral R x\ninst✝ : IsDomain S\ny : S\nhxy : y ≠ x\nhy : eval y (minpolyDiv R x * (X - C x)) = 0\n⊢ eval y (minpolyDiv R x) = 0"} +{"state": [{"context": ["R : Type u_2", "K : Type ?u.30406", "L : Type ?u.30409", "S : Type u_1", "inst✝⁶ : CommRing R", "inst✝⁵ : Field K", "inst✝⁴ : Field L", "inst✝³ : CommRing S", "inst✝² : Algebra R S", "inst✝¹ : Algebra K L", "x : S", "hx : IsIntegral R x", "inst✝ : IsDomain S", "y : S", "hxy : y ≠ x", "hy : eval y (minpolyDiv R x) = 0 ∨ y - x = 0"], "goal": "eval y (minpolyDiv R x) = 0"}], "premise": [2112, 118004], "state_str": "R : Type u_2\nK : Type ?u.30406\nL : Type ?u.30409\nS : Type u_1\ninst✝⁶ : CommRing R\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : CommRing S\ninst✝² : Algebra R S\ninst✝¹ : Algebra K L\nx : S\nhx : IsIntegral R x\ninst✝ : IsDomain S\ny : S\nhxy : y ≠ x\nhy : eval y (minpolyDiv R x) = 0 ∨ y - x = 0\n⊢ eval y (minpolyDiv R x) = 0"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝⁵ : LinearOrderedRing α", "inst✝⁴ : LinearOrderedRing β", "inst✝³ : FloorRing α", "inst✝² : FloorRing β", "inst✝¹ : FunLike F α β", "inst✝ : RingHomClass F α β", "a✝ : α", "b : β", "f : F", "hf : StrictMono ⇑f", "a : α", "n : ℤ"], "goal": "↑n ≤ f a ↔ ↑n ≤ a"}], "premise": [1713, 19830, 128957], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝⁵ : LinearOrderedRing α\ninst✝⁴ : LinearOrderedRing β\ninst✝³ : FloorRing α\ninst✝² : FloorRing β\ninst✝¹ : FunLike F α β\ninst✝ : RingHomClass F α β\na✝ : α\nb : β\nf : F\nhf : StrictMono ⇑f\na : α\nn : ℤ\n⊢ ↑n ≤ f a ↔ ↑n ≤ a"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M"], "goal": "(-f).IsSemisimple ↔ f.IsSemisimple"}], "premise": [82423], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\n⊢ (-f).IsSemisimple ↔ f.IsSemisimple"} +{"state": [{"context": ["F : Type u", "E : Type v", "inst✝⁴ : Field F", "inst✝³ : Field E", "inst✝² : Algebra F E", "K : Type w", "inst✝¹ : Field K", "inst✝ : Algebra F K", "q : ℕ", "hF : ExpChar F q"], "goal": "IsPurelyInseparable F E ↔ ∀ (x : E), ∃ n, Polynomial.map (algebraMap F E) (minpoly F x) = (X - C x) ^ q ^ n"}], "premise": [90361, 90588], "state_str": "F : Type u\nE : Type v\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Algebra F E\nK : Type w\ninst✝¹ : Field K\ninst✝ : Algebra F K\nq : ℕ\nhF : ExpChar F q\n⊢ IsPurelyInseparable F E ↔ ∀ (x : E), ∃ n, Polynomial.map (algebraMap F E) (minpoly F x) = (X - C x) ^ q ^ n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Sort u_5", "inst✝ : MeasurableSpace α", "μ✝ μ₁ μ₂ : Measure α", "s✝ s₁ s₂ t : Set α", "μ : Measure α", "s : Set α"], "goal": "μ s = ⨅ t, μ ↑t"}], "premise": [19387, 19415, 29073], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Sort u_5\ninst✝ : MeasurableSpace α\nμ✝ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t : Set α\nμ : Measure α\ns : Set α\n⊢ μ s = ⨅ t, μ ↑t"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{?u.12556, u_1} C", "inst✝ : HasZeroMorphisms C", "I₁ : Type u_2", "I₂ : Type u_3", "c₁ : ComplexShape I₁", "c₂ : ComplexShape I₂", "K : HomologicalComplex₂ C c₁ c₂", "i i' : I₂", "w : ¬c₂.Rel i i'", "j : I₁"], "goal": "((fun i i' => { f := fun j => (K.X j).d i i', comm' := ⋯ }) i i').f j = Hom.f 0 j"}], "premise": [113829], "state_str": "case h\nC : Type u_1\ninst✝¹ : Category.{?u.12556, u_1} C\ninst✝ : HasZeroMorphisms C\nI₁ : Type u_2\nI₂ : Type u_3\nc₁ : ComplexShape I₁\nc₂ : ComplexShape I₂\nK : HomologicalComplex₂ C c₁ c₂\ni i' : I₂\nw : ¬c₂.Rel i i'\nj : I₁\n⊢ ((fun i i' => { f := fun j => (K.X j).d i i', comm' := ⋯ }) i i').f j = Hom.f 0 j"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1"], "goal": "(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1"}], "premise": [1734], "state_str": "m n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\n⊢ (m ^ 2 - n ^ 2).gcd (2 * m * n) = 1"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1"], "goal": "False"}], "premise": [1673, 144231], "state_str": "m n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\n⊢ False"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : p ∣ (m ^ 2 - n ^ 2).natAbs", "hp2 : p ∣ (2 * m * n).natAbs"], "goal": "False"}], "premise": [130034], "state_str": "case intro.intro.intro\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : p ∣ (m ^ 2 - n ^ 2).natAbs\nhp2 : p ∣ (2 * m * n).natAbs\n⊢ False"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n"], "goal": "False"}], "premise": [1673, 1681, 3541, 144296], "state_str": "case intro.intro.intro\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\n⊢ False"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(m.gcd n)"], "goal": "False"}], "premise": [75111], "state_str": "case intro.intro.intro\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(m.gcd n)\n⊢ False"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(m.gcd n)", "hpn : p ∣ n.natAbs"], "goal": "False"}], "premise": [128984], "state_str": "case intro.intro.intro.inr\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(m.gcd n)\nhpn : p ∣ n.natAbs\n⊢ False"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(n.gcd m)", "hpn : p ∣ n.natAbs"], "goal": "False"}], "premise": [1674, 1681, 128982, 130034], "state_str": "case intro.intro.intro.inr\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(n.gcd m)\nhpn : p ∣ n.natAbs\n⊢ False"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(n.gcd m)", "hpn : p ∣ n.natAbs"], "goal": "↑p ∣ m"}], "premise": [1673, 1978], "state_str": "case intro.intro.intro.inr\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(n.gcd m)\nhpn : p ∣ n.natAbs\n⊢ ↑p ∣ m"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(n.gcd m)", "hpn : p ∣ n.natAbs"], "goal": "↑p ∣ m ∨ ↑p ∣ m"}], "premise": [75112], "state_str": "case intro.intro.intro.inr\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(n.gcd m)\nhpn : p ∣ n.natAbs\n⊢ ↑p ∣ m ∨ ↑p ∣ m"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(n.gcd m)", "hpn : p ∣ n.natAbs"], "goal": "↑p ∣ m ^ 2 - n ^ 2 + n * n"}], "premise": [121987], "state_str": "case intro.intro.intro.inr\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(n.gcd m)\nhpn : p ∣ n.natAbs\n⊢ ↑p ∣ m ^ 2 - n ^ 2 + n * n"} +{"state": [{"context": ["m n : ℤ", "h : m.gcd n = 1", "hm : m % 2 = 0", "hn : n % 2 = 1", "H : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1", "p : ℕ", "hp : Nat.Prime p", "hp1 : ↑p ∣ m ^ 2 - n ^ 2", "hp2 : ↑p ∣ 2 * m * n", "hnp : ¬↑p ∣ ↑(n.gcd m)", "hpn : p ∣ n.natAbs"], "goal": "↑p ∣ n * n"}], "premise": [1674, 130034], "state_str": "case intro.intro.intro.inr\nm n : ℤ\nh : m.gcd n = 1\nhm : m % 2 = 0\nhn : n % 2 = 1\nH : ¬(m ^ 2 - n ^ 2).gcd (2 * m * n) = 1\np : ℕ\nhp : Nat.Prime p\nhp1 : ↑p ∣ m ^ 2 - n ^ 2\nhp2 : ↑p ∣ 2 * m * n\nhnp : ¬↑p ∣ ↑(n.gcd m)\nhpn : p ∣ n.natAbs\n⊢ ↑p ∣ n * n"} +{"state": [{"context": ["R : Type u", "inst✝⁷ : CommSemiring R", "A B : Type u", "inst✝⁶ : Semiring A", "inst✝⁵ : Algebra R A", "inst✝⁴ : Semiring B", "inst✝³ : Algebra R B", "inst✝² : FormallySmooth R A", "e : A ≃ₐ[R] B", "C : Type u", "inst✝¹ : CommRing C", "inst✝ : Algebra R C", "I : Ideal C", "hI : I ^ 2 = ⊥", "f : B →ₐ[R] C ⧸ I"], "goal": "∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"}], "premise": [1674, 2045], "state_str": "case comp_surjective\nR : Type u\ninst✝⁷ : CommSemiring R\nA B : Type u\ninst✝⁶ : Semiring A\ninst✝⁵ : Algebra R A\ninst✝⁴ : Semiring B\ninst✝³ : Algebra R B\ninst✝² : FormallySmooth R A\ne : A ≃ₐ[R] B\nC : Type u\ninst✝¹ : CommRing C\ninst✝ : Algebra R C\nI : Ideal C\nhI : I ^ 2 = ⊥\nf : B →ₐ[R] C ⧸ I\n⊢ ∃ a, (Ideal.Quotient.mkₐ R I).comp a = f"} +{"state": [{"context": ["R : Type u", "inst✝⁷ : CommSemiring R", "A B : Type u", "inst✝⁶ : Semiring A", "inst✝⁵ : Algebra R A", "inst✝⁴ : Semiring B", "inst✝³ : Algebra R B", "inst✝² : FormallySmooth R A", "e : A ≃ₐ[R] B", "C : Type u", "inst✝¹ : CommRing C", "inst✝ : Algebra R C", "I : Ideal C", "hI : I ^ 2 = ⊥", "f : B →ₐ[R] C ⧸ I"], "goal": "(Ideal.Quotient.mkₐ R I).comp ((lift I ⋯ (f.comp ↑e)).comp ↑e.symm) = f"}], "premise": [76681, 121077, 121079, 121705], "state_str": "case h\nR : Type u\ninst✝⁷ : CommSemiring R\nA B : Type u\ninst✝⁶ : Semiring A\ninst✝⁵ : Algebra R A\ninst✝⁴ : Semiring B\ninst✝³ : Algebra R B\ninst✝² : FormallySmooth R A\ne : A ≃ₐ[R] B\nC : Type u\ninst✝¹ : CommRing C\ninst✝ : Algebra R C\nI : Ideal C\nhI : I ^ 2 = ⊥\nf : B →ₐ[R] C ⧸ I\n⊢ (Ideal.Quotient.mkₐ R I).comp ((lift I ⋯ (f.comp ↑e)).comp ↑e.symm) = f"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "n : ℕ", "a : K", "H : Irreducible (X ^ n - C a)"], "goal": "root (X ^ n - C a) = 0 ↔ a = 0"}], "premise": [1674, 3787, 89138], "state_str": "K : Type u\ninst✝ : Field K\nn : ℕ\na : K\nH : Irreducible (X ^ n - C a)\n⊢ root (X ^ n - C a) = 0 ↔ a = 0"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "n : ℕ", "a : K", "H : Irreducible (X ^ n - C a)", "hn : 0 < n"], "goal": "root (X ^ n - C a) = 0 ↔ a = 0"}], "premise": [1673, 70072, 89134], "state_str": "K : Type u\ninst✝ : Field K\nn : ℕ\na : K\nH : Irreducible (X ^ n - C a)\nhn : 0 < n\n⊢ root (X ^ n - C a) = 0 ↔ a = 0"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "n : ℕ", "hn : 0 < n", "H : Irreducible (X ^ n - C 0)"], "goal": "root (X ^ n - C 0) = 0"}], "premise": [1673, 70072, 89139], "state_str": "K : Type u\ninst✝ : Field K\nn : ℕ\nhn : 0 < n\nH : Irreducible (X ^ n - C 0)\n⊢ root (X ^ n - C 0) = 0"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "n : ℕ", "hn : 0 < n", "H : Irreducible (X ^ n - C 0)", "this : n = 1"], "goal": "root (X ^ n - C 0) = 0"}], "premise": [80205, 80207, 117063, 117816, 119743], "state_str": "K : Type u\ninst✝ : Field K\nn : ℕ\nhn : 0 < n\nH : Irreducible (X ^ n - C 0)\nthis : n = 1\n⊢ root (X ^ n - C 0) = 0"} +{"state": [{"context": ["R✝ : Type u_1", "F : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝⁶ : Monoid R", "inst✝⁵ : StarMul R", "inst✝⁴ : Monoid S", "inst✝³ : StarMul S", "inst✝² : FunLike F R S", "inst✝¹ : StarHomClass F R S", "inst✝ : MonoidHomClass F R S", "f : F", "r : R", "hr : r ∈ unitary R"], "goal": "f r ∈ unitary S"}], "premise": [111072], "state_str": "R✝ : Type u_1\nF : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝⁶ : Monoid R\ninst✝⁵ : StarMul R\ninst✝⁴ : Monoid S\ninst✝³ : StarMul S\ninst✝² : FunLike F R S\ninst✝¹ : StarHomClass F R S\ninst✝ : MonoidHomClass F R S\nf : F\nr : R\nhr : r ∈ unitary R\n⊢ f r ∈ unitary S"} +{"state": [{"context": ["R✝ : Type u_1", "F : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝⁶ : Monoid R", "inst✝⁵ : StarMul R", "inst✝⁴ : Monoid S", "inst✝³ : StarMul S", "inst✝² : FunLike F R S", "inst✝¹ : StarHomClass F R S", "inst✝ : MonoidHomClass F R S", "f : F", "r : R", "hr : star r * r = 1 ∧ r * star r = 1"], "goal": "f r ∈ unitary S"}], "premise": [2106, 2107, 111021, 117080], "state_str": "R✝ : Type u_1\nF : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝⁶ : Monoid R\ninst✝⁵ : StarMul R\ninst✝⁴ : Monoid S\ninst✝³ : StarMul S\ninst✝² : FunLike F R S\ninst✝¹ : StarHomClass F R S\ninst✝ : MonoidHomClass F R S\nf : F\nr : R\nhr : star r * r = 1 ∧ r * star r = 1\n⊢ f r ∈ unitary S"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x y : V", "h : ⟪x, y⟫_ℝ = 0", "h0 : x = 0 ∨ y ≠ 0"], "goal": "‖y‖ / Real.tan (angle x (x + y)) = ‖x‖"}], "premise": [69420], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : ⟪x, y⟫_ℝ = 0\nh0 : x = 0 ∨ y ≠ 0\n⊢ ‖y‖ / Real.tan (angle x (x + y)) = ‖x‖"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "δ : Type u_3", "ι : Type u_4", "m0 : MeasurableSpace α", "inst✝¹ : MeasurableSpace β", "μ ν ν₁ ν₂ : Measure α", "s t : Set α", "inst✝ : IsProbabilityMeasure μ", "p✝ : α → Prop", "f : β → α", "p : ℝ≥0∞", "hμs : p ≤ μ s", "s_mble : MeasurableSet s"], "goal": "μ sᶜ ≤ 1 - p"}], "premise": [31736, 103365], "state_str": "α : Type u_1\nβ : Type u_2\nδ : Type u_3\nι : Type u_4\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\nμ ν ν₁ ν₂ : Measure α\ns t : Set α\ninst✝ : IsProbabilityMeasure μ\np✝ : α → Prop\nf : β → α\np : ℝ≥0∞\nhμs : p ≤ μ s\ns_mble : MeasurableSet s\n⊢ μ sᶜ ≤ 1 - p"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x y : V", "h : ⟪x, y⟫_ℝ = 0", "h0 : x = 0 ∨ y ≠ 0"], "goal": "0 < angle x (x + y)"}], "premise": [1674, 36885, 37311, 69412], "state_str": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : ⟪x, y⟫_ℝ = 0\nh0 : x = 0 ∨ y ≠ 0\n⊢ 0 < angle x (x + y)"} +{"state": [{"context": ["V : Type u_1", "inst✝¹ : NormedAddCommGroup V", "inst✝ : InnerProductSpace ℝ V", "x y : V", "h : ⟪x, y⟫_ℝ = 0", "h0 : x = 0 ∨ y ≠ 0", "hx : ¬x = 0"], "goal": "‖x‖ / √(‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) < 1"}], "premise": [1674, 42680, 42921, 104038, 106089, 106918, 106926, 119750, 146031, 146043], "state_str": "case neg\nV : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : ⟪x, y⟫_ℝ = 0\nh0 : x = 0 ∨ y ≠ 0\nhx : ¬x = 0\n⊢ ‖x‖ / √(‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) < 1"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁴ : CommRing R", "inst✝³ : CommRing S", "inst✝² : IsDomain S", "Rₘ : Type u_3", "Sₘ : Type u_4", "inst✝¹ : CommRing Rₘ", "inst✝ : CommRing Sₘ"], "goal": "IsJacobson R[X] ↔ IsJacobson R"}], "premise": [77556], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S\ninst✝² : IsDomain S\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝¹ : CommRing Rₘ\ninst✝ : CommRing Sₘ\n⊢ IsJacobson R[X] ↔ IsJacobson R"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝⁴ : CommRing R", "inst✝³ : CommRing S", "inst✝² : IsDomain S", "Rₘ : Type u_3", "Sₘ : Type u_4", "inst✝¹ : CommRing Rₘ", "inst✝ : CommRing Sₘ", "H : IsJacobson R[X]"], "goal": "IsJacobson R"}], "premise": [77544, 102828, 102855, 121577], "state_str": "R : Type u_1\nS : Type u_2\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S\ninst✝² : IsDomain S\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝¹ : CommRing Rₘ\ninst✝ : CommRing Sₘ\nH : IsJacobson R[X]\n⊢ IsJacobson R"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : AddCommMonoid M", "inst✝⁹ : Module R M", "R₁ : Type u_3", "M₁ : Type u_4", "inst✝⁸ : CommRing R₁", "inst✝⁷ : AddCommGroup M₁", "inst✝⁶ : Module R₁ M₁", "V : Type u_5", "K : Type u_6", "inst✝⁵ : Field K", "inst✝⁴ : AddCommGroup V", "inst✝³ : Module K V", "B✝ : BilinForm R M", "B₁ : BilinForm R₁ M₁", "M₂' : Type u_7", "inst✝² : AddCommMonoid M₂'", "inst✝¹ : Module R M₂'", "inst✝ : FiniteDimensional K V", "B : BilinForm K V", "hB : B.Nondegenerate", "hB₀ : B.IsRefl", "W : Submodule K V"], "goal": "B.orthogonal (B.orthogonal W) = W"}], "premise": [2100, 82962, 87639], "state_str": "R : Type u_1\nM : Type u_2\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\nR₁ : Type u_3\nM₁ : Type u_4\ninst✝⁸ : CommRing R₁\ninst✝⁷ : AddCommGroup M₁\ninst✝⁶ : Module R₁ M₁\nV : Type u_5\nK : Type u_6\ninst✝⁵ : Field K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nB✝ : BilinForm R M\nB₁ : BilinForm R₁ M₁\nM₂' : Type u_7\ninst✝² : AddCommMonoid M₂'\ninst✝¹ : Module R M₂'\ninst✝ : FiniteDimensional K V\nB : BilinForm K V\nhB : B.Nondegenerate\nhB₀ : B.IsRefl\nW : Submodule K V\n⊢ B.orthogonal (B.orthogonal W) = W"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : AddCommMonoid M", "inst✝⁹ : Module R M", "R₁ : Type u_3", "M₁ : Type u_4", "inst✝⁸ : CommRing R₁", "inst✝⁷ : AddCommGroup M₁", "inst✝⁶ : Module R₁ M₁", "V : Type u_5", "K : Type u_6", "inst✝⁵ : Field K", "inst✝⁴ : AddCommGroup V", "inst✝³ : Module K V", "B✝ : BilinForm R M", "B₁ : BilinForm R₁ M₁", "M₂' : Type u_7", "inst✝² : AddCommMonoid M₂'", "inst✝¹ : Module R M₂'", "inst✝ : FiniteDimensional K V", "B : BilinForm K V", "hB : B.Nondegenerate", "hB₀ : B.IsRefl", "W : Submodule K V"], "goal": "finrank K ↥(B.orthogonal (B.orthogonal W)) ≤ finrank K ↥W"}], "premise": [82975], "state_str": "R : Type u_1\nM : Type u_2\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\nR₁ : Type u_3\nM₁ : Type u_4\ninst✝⁸ : CommRing R₁\ninst✝⁷ : AddCommGroup M₁\ninst✝⁶ : Module R₁ M₁\nV : Type u_5\nK : Type u_6\ninst✝⁵ : Field K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nB✝ : BilinForm R M\nB₁ : BilinForm R₁ M₁\nM₂' : Type u_7\ninst✝² : AddCommMonoid M₂'\ninst✝¹ : Module R M₂'\ninst✝ : FiniteDimensional K V\nB : BilinForm K V\nhB : B.Nondegenerate\nhB₀ : B.IsRefl\nW : Submodule K V\n⊢ finrank K ↥(B.orthogonal (B.orthogonal W)) ≤ finrank K ↥W"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝¹¹ : CommSemiring R", "inst✝¹⁰ : AddCommMonoid M", "inst✝⁹ : Module R M", "R₁ : Type u_3", "M₁ : Type u_4", "inst✝⁸ : CommRing R₁", "inst✝⁷ : AddCommGroup M₁", "inst✝⁶ : Module R₁ M₁", "V : Type u_5", "K : Type u_6", "inst✝⁵ : Field K", "inst✝⁴ : AddCommGroup V", "inst✝³ : Module K V", "B✝ : BilinForm R M", "B₁ : BilinForm R₁ M₁", "M₂' : Type u_7", "inst✝² : AddCommMonoid M₂'", "inst✝¹ : Module R M₂'", "inst✝ : FiniteDimensional K V", "B : BilinForm K V", "hB : B.Nondegenerate", "hB₀ : B.IsRefl", "W : Submodule K V"], "goal": "finrank K V - (finrank K V - finrank K ↥W) ≤ finrank K ↥W"}], "premise": [86371], "state_str": "R : Type u_1\nM : Type u_2\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\nR₁ : Type u_3\nM₁ : Type u_4\ninst✝⁸ : CommRing R₁\ninst✝⁷ : AddCommGroup M₁\ninst✝⁶ : Module R₁ M₁\nV : Type u_5\nK : Type u_6\ninst✝⁵ : Field K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nB✝ : BilinForm R M\nB₁ : BilinForm R₁ M₁\nM₂' : Type u_7\ninst✝² : AddCommMonoid M₂'\ninst✝¹ : Module R M₂'\ninst✝ : FiniteDimensional K V\nB : BilinForm K V\nhB : B.Nondegenerate\nhB₀ : B.IsRefl\nW : Submodule K V\n⊢ finrank K V - (finrank K V - finrank K ↥W) ≤ finrank K ↥W"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "M₁ : Type u_3", "M₂ : Type u_4", "N₁ : Type u_5", "N₂ : Type u_6", "P : Type u_7", "Mᵢ : ι → Type u_8", "Nᵢ : ι → Type u_9", "inst✝¹⁰ : CommSemiring R", "inst✝⁹ : AddCommMonoid M₁", "inst✝⁸ : AddCommMonoid M₂", "inst✝⁷ : AddCommMonoid N₁", "inst✝⁶ : AddCommMonoid N₂", "inst✝⁵ : AddCommMonoid P", "inst✝⁴ : Module R M₁", "inst✝³ : Module R M₂", "inst✝² : Module R N₁", "inst✝¹ : Module R N₂", "inst✝ : Module R P", "Q₁ : QuadraticMap R M₁ P", "Q₂ : QuadraticMap R M₂ P", "h : (Q₁.prod Q₂).Anisotropic"], "goal": "Q₁.Anisotropic ∧ Q₂.Anisotropic"}], "premise": [82474, 120192, 137296], "state_str": "ι : Type u_1\nR : Type u_2\nM₁ : Type u_3\nM₂ : Type u_4\nN₁ : Type u_5\nN₂ : Type u_6\nP : Type u_7\nMᵢ : ι → Type u_8\nNᵢ : ι → Type u_9\ninst✝¹⁰ : CommSemiring R\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid N₁\ninst✝⁶ : AddCommMonoid N₂\ninst✝⁵ : AddCommMonoid P\ninst✝⁴ : Module R M₁\ninst✝³ : Module R M₂\ninst✝² : Module R N₁\ninst✝¹ : Module R N₂\ninst✝ : Module R P\nQ₁ : QuadraticMap R M₁ P\nQ₂ : QuadraticMap R M₂ P\nh : (Q₁.prod Q₂).Anisotropic\n⊢ Q₁.Anisotropic ∧ Q₂.Anisotropic"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "a : α", "z : Sym2 α", "h : a ∈ z"], "goal": "s(a, Mem.other h) = z"}], "premise": [1084], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\na : α\nz : Sym2 α\nh : a ∈ z\n⊢ s(a, Mem.other h) = z"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CanonicallyLinearOrderedAddCommMonoid α", "inst✝ : DecidableEq ι", "f g : ι →₀ α", "a✝ : ι"], "goal": "a✝ ∈ (f ⊔ g).support ↔ a✝ ∈ f.support ∪ g.support"}], "premise": [103547, 138858, 147441, 148063], "state_str": "case a\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CanonicallyLinearOrderedAddCommMonoid α\ninst✝ : DecidableEq ι\nf g : ι →₀ α\na✝ : ι\n⊢ a✝ ∈ (f ⊔ g).support ↔ a✝ ∈ f.support ∪ g.support"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : CanonicallyLinearOrderedAddCommMonoid α", "inst✝ : DecidableEq ι", "f g : ι →₀ α", "a✝ : ι"], "goal": "¬f a✝ ⊔ g a✝ = ⊥ ↔ ¬f a✝ = ⊥ ∨ ¬g a✝ = ⊥"}], "premise": [1713, 18836, 70089], "state_str": "case a\nι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : CanonicallyLinearOrderedAddCommMonoid α\ninst✝ : DecidableEq ι\nf g : ι →₀ α\na✝ : ι\n⊢ ¬f a✝ ⊔ g a✝ = ⊥ ↔ ¬f a✝ = ⊥ ∨ ¬g a✝ = ⊥"} +{"state": [{"context": ["R : Type u_1", "inst✝ : Semiring R", "f : R[X]", "c : ℕ", "fc : f.support.card = c + 1"], "goal": "f.eraseLead.support.card = c"}], "premise": [102443, 103403], "state_str": "R : Type u_1\ninst✝ : Semiring R\nf : R[X]\nc : ℕ\nfc : f.support.card = c + 1\n⊢ f.eraseLead.support.card = c"} +{"state": [{"context": ["ι : Type u_1", "ι₂ : Type u_2", "ι₃ : Type u_3", "R : Type u_4", "inst✝⁷ : CommSemiring R", "R₁ : Type u_5", "R₂ : Type u_6", "s : ι → Type u_7", "inst✝⁶ : (i : ι) → AddCommMonoid (s i)", "inst✝⁵ : (i : ι) → Module R (s i)", "M : Type u_8", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R M", "E : Type u_9", "inst✝² : AddCommMonoid E", "inst✝¹ : Module R E", "F : Type u_10", "inst✝ : AddCommMonoid F", "x : ⨂[R] (i : ι), s i"], "goal": "Quotient.out x ∈ x.lifts"}], "premise": [131585], "state_str": "ι : Type u_1\nι₂ : Type u_2\nι₃ : Type u_3\nR : Type u_4\ninst✝⁷ : CommSemiring R\nR₁ : Type u_5\nR₂ : Type u_6\ns : ι → Type u_7\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type u_8\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_9\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type u_10\ninst✝ : AddCommMonoid F\nx : ⨂[R] (i : ι), s i\n⊢ Quotient.out x ∈ x.lifts"} +{"state": [{"context": ["ι : Type u_1", "ι₂ : Type u_2", "ι₃ : Type u_3", "R : Type u_4", "inst✝⁷ : CommSemiring R", "R₁ : Type u_5", "R₂ : Type u_6", "s : ι → Type u_7", "inst✝⁶ : (i : ι) → AddCommMonoid (s i)", "inst✝⁵ : (i : ι) → Module R (s i)", "M : Type u_8", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R M", "E : Type u_9", "inst✝² : AddCommMonoid E", "inst✝¹ : Module R E", "F : Type u_10", "inst✝ : AddCommMonoid F", "x : ⨂[R] (i : ι), s i"], "goal": "↑(Quotient.out x) = x"}], "premise": [7229], "state_str": "ι : Type u_1\nι₂ : Type u_2\nι₃ : Type u_3\nR : Type u_4\ninst✝⁷ : CommSemiring R\nR₁ : Type u_5\nR₂ : Type u_6\ns : ι → Type u_7\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type u_8\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_9\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type u_10\ninst✝ : AddCommMonoid F\nx : ⨂[R] (i : ι), s i\n⊢ ↑(Quotient.out x) = x"} +{"state": [{"context": ["ι : Type u_1", "ι₂ : Type u_2", "ι₃ : Type u_3", "R : Type u_4", "inst✝⁷ : CommSemiring R", "R₁ : Type u_5", "R₂ : Type u_6", "s : ι → Type u_7", "inst✝⁶ : (i : ι) → AddCommMonoid (s i)", "inst✝⁵ : (i : ι) → Module R (s i)", "M : Type u_8", "inst✝⁴ : AddCommMonoid M", "inst✝³ : Module R M", "E : Type u_9", "inst✝² : AddCommMonoid E", "inst✝¹ : Module R E", "F : Type u_10", "inst✝ : AddCommMonoid F", "x : ⨂[R] (i : ι), s i"], "goal": "Quot.mk (⇑(addConGen (Eqv R s))) (Quotient.out x) = x"}], "premise": [127792], "state_str": "ι : Type u_1\nι₂ : Type u_2\nι₃ : Type u_3\nR : Type u_4\ninst✝⁷ : CommSemiring R\nR₁ : Type u_5\nR₂ : Type u_6\ns : ι → Type u_7\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type u_8\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_9\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type u_10\ninst✝ : AddCommMonoid F\nx : ⨂[R] (i : ι), s i\n⊢ Quot.mk (⇑(addConGen (Eqv R s))) (Quotient.out x) = x"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedRing A", "f g : ℝ → E", "a✝ b✝ : ℝ", "μ : Measure ℝ", "c a b : ℝ", "hf : IntervalIntegrable f volume a b", "h : a ≤ b"], "goal": "IntervalIntegrable (fun x => f (x + c)) volume (a - c) (b - c)"}], "premise": [26281], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedRing A\nf g : ℝ → E\na✝ b✝ : ℝ\nμ : Measure ℝ\nc a b : ℝ\nhf : IntervalIntegrable f volume a b\nh : a ≤ b\n⊢ IntervalIntegrable (fun x => f (x + c)) volume (a - c) (b - c)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedRing A", "f g : ℝ → E", "a✝ b✝ : ℝ", "μ : Measure ℝ", "c a b : ℝ", "hf : IntegrableOn f [[a, b]] volume", "h : a ≤ b"], "goal": "IntegrableOn (fun x => f (x + c)) [[a - c, b - c]] volume"}], "premise": [25901, 65625], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedRing A\nf g : ℝ → E\na✝ b✝ : ℝ\nμ : Measure ℝ\nc a b : ℝ\nhf : IntegrableOn f [[a, b]] volume\nh : a ≤ b\n⊢ IntegrableOn (fun x => f (x + c)) [[a - c, b - c]] volume"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedRing A✝", "f g : ℝ → E", "a✝ b✝ : ℝ", "μ : Measure ℝ", "c a b : ℝ", "hf : IntegrableOn f [[a, b]] volume", "h : a ≤ b", "A : MeasurableEmbedding fun x => x + c"], "goal": "IntegrableOn (fun x => f (x + c)) [[a - c, b - c]] volume"}], "premise": [32370], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedRing A✝\nf g : ℝ → E\na✝ b✝ : ℝ\nμ : Measure ℝ\nc a b : ℝ\nhf : IntegrableOn f [[a, b]] volume\nh : a ≤ b\nA : MeasurableEmbedding fun x => x + c\n⊢ IntegrableOn (fun x => f (x + c)) [[a - c, b - c]] volume"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedRing A✝", "f g : ℝ → E", "a✝ b✝ : ℝ", "μ : Measure ℝ", "c a b : ℝ", "hf : IntegrableOn f [[a, b]] (Measure.map (fun x => x + c) volume)", "h : a ≤ b", "A : MeasurableEmbedding fun x => x + c"], "goal": "IntegrableOn (fun x => f (x + c)) [[a - c, b - c]] volume"}], "premise": [1673, 25602], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedRing A✝\nf g : ℝ → E\na✝ b✝ : ℝ\nμ : Measure ℝ\nc a b : ℝ\nhf : IntegrableOn f [[a, b]] (Measure.map (fun x => x + c) volume)\nh : a ≤ b\nA : MeasurableEmbedding fun x => x + c\n⊢ IntegrableOn (fun x => f (x + c)) [[a - c, b - c]] volume"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A✝ : Type u_5", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedRing A✝", "f g : ℝ → E", "a✝ b✝ : ℝ", "μ : Measure ℝ", "c a b : ℝ", "hf : IntegrableOn f [[a, b]] (Measure.map (fun x => x + c) volume)", "h : a ≤ b", "A : MeasurableEmbedding fun x => x + c"], "goal": "[[a - c, b - c]] = (fun x => x + c) ⁻¹' [[a, b]]"}], "premise": [134543], "state_str": "case h.e'_6\nι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA✝ : Type u_5\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedRing A✝\nf g : ℝ → E\na✝ b✝ : ℝ\nμ : Measure ℝ\nc a b : ℝ\nhf : IntegrableOn f [[a, b]] (Measure.map (fun x => x + c) volume)\nh : a ≤ b\nA : MeasurableEmbedding fun x => x + c\n⊢ [[a - c, b - c]] = (fun x => x + c) ⁻¹' [[a, b]]"} +{"state": [{"context": ["x : ℂ"], "goal": "cos x = 1 ↔ ∃ k, ↑k * (2 * ↑π) = x"}], "premise": [1717, 37407, 149150], "state_str": "x : ℂ\n⊢ cos x = 1 ↔ ∃ k, ↑k * (2 * ↑π) = x"} +{"state": [{"context": ["x : ℂ"], "goal": "(∃ k, x = 2 * ↑k * ↑π + 0 ∨ x = 2 * ↑k * ↑π - 0) ↔ ∃ k, ↑k * (2 * ↑π) = x"}], "premise": [1717, 117739, 119703], "state_str": "x : ℂ\n⊢ (∃ k, x = 2 * ↑k * ↑π + 0 ∨ x = 2 * ↑k * ↑π - 0) ↔ ∃ k, ↑k * (2 * ↑π) = x"} +{"state": [{"context": ["m : ℕ", "hm : NeZero m", "f : ℕ → ℝ", "hf : Antitone f", "n : ℕ", "hn : f n < 0", "k : ZMod m"], "goal": "¬Summable ({n | ↑n = k}.indicator f)"}], "premise": [40724, 138292], "state_str": "m : ℕ\nhm : NeZero m\nf : ℕ → ℝ\nhf : Antitone f\nn : ℕ\nhn : f n < 0\nk : ZMod m\n⊢ ¬Summable ({n | ↑n = k}.indicator f)"} +{"state": [{"context": ["m : ℕ", "hm : NeZero m", "f : ℕ → ℝ", "hf : Antitone f", "n : ℕ", "hn : f n < 0", "k : ZMod m"], "goal": "¬Summable fun n => f (m * n + k.val)"}], "premise": [3747, 3971, 4674, 19801, 40725, 103720, 104120], "state_str": "m : ℕ\nhm : NeZero m\nf : ℕ → ℝ\nhf : Antitone f\nn : ℕ\nhn : f n < 0\nk : ZMod m\n⊢ ¬Summable fun n => f (m * n + k.val)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝⁴ : TopologicalSpace α", "ι : Type u_5", "π : ι → Type u_6", "inst✝³ : (i : ι) → TopologicalSpace (π i)", "inst✝² : TopologicalSpace β", "inst✝¹ : TopologicalSpace γ", "inst✝ : TopologicalSpace δ", "f : α → β", "s : Set α", "x : α", "h : s ∈ 𝓝 x"], "goal": "ContinuousWithinAt f s x ↔ ContinuousAt f x"}], "premise": [1713, 57251, 57289, 133462], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝⁴ : TopologicalSpace α\nι : Type u_5\nπ : ι → Type u_6\ninst✝³ : (i : ι) → TopologicalSpace (π i)\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → β\ns : Set α\nx : α\nh : s ∈ 𝓝 x\n⊢ ContinuousWithinAt f s x ↔ ContinuousAt f x"} +{"state": [{"context": ["K : Type u", "V : Type v", "inst✝³ : Field K", "inst✝² : AddCommGroup V", "inst✝¹ : Module K V", "W✝ : Subspace K V", "inst✝ : FiniteDimensional K V", "W : Subspace K V"], "goal": "(dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W"}], "premise": [88113], "state_str": "K : Type u\nV : Type v\ninst✝³ : Field K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\nW✝ : Subspace K V\ninst✝ : FiniteDimensional K V\nW : Subspace K V\n⊢ (dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W"} +{"state": [{"context": ["K : Type u", "V : Type v", "inst✝³ : Field K", "inst✝² : AddCommGroup V", "inst✝¹ : Module K V", "W✝ : Subspace K V", "inst✝ : FiniteDimensional K V", "W : Subspace K V", "this : (dualAnnihilator W).dualCoannihilator = W"], "goal": "(dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W"}], "premise": [88071], "state_str": "K : Type u\nV : Type v\ninst✝³ : Field K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\nW✝ : Subspace K V\ninst✝ : FiniteDimensional K V\nW : Subspace K V\nthis : (dualAnnihilator W).dualCoannihilator = W\n⊢ (dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W"} +{"state": [{"context": ["K : Type u", "V : Type v", "inst✝³ : Field K", "inst✝² : AddCommGroup V", "inst✝¹ : Module K V", "W✝ : Subspace K V", "inst✝ : FiniteDimensional K V", "W : Subspace K V", "this : (Module.mapEvalEquiv K V).symm (dualAnnihilator W).dualAnnihilator = W"], "goal": "(dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W"}], "premise": [11079], "state_str": "K : Type u\nV : Type v\ninst✝³ : Field K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\nW✝ : Subspace K V\ninst✝ : FiniteDimensional K V\nW : Subspace K V\nthis : (Module.mapEvalEquiv K V).symm (dualAnnihilator W).dualAnnihilator = W\n⊢ (dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "a b : R", "n : ℕ", "inst✝¹ : Semiring R", "inst✝ : NoZeroDivisors R", "p✝ q✝ p q : R[X]", "h₁ : p ∣ q", "h₂ : q.degree < p.degree"], "goal": "q = 0"}], "premise": [1094], "state_str": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝¹ : Semiring R\ninst✝ : NoZeroDivisors R\np✝ q✝ p q : R[X]\nh₁ : p ∣ q\nh₂ : q.degree < p.degree\n⊢ q = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "a b : R", "n : ℕ", "inst✝¹ : Semiring R", "inst✝ : NoZeroDivisors R", "p✝ q✝ p q : R[X]", "h₁ : p ∣ q", "h₂ : q.degree < p.degree", "hc : ¬q = 0"], "goal": "False"}], "premise": [1673, 14322, 103441], "state_str": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝¹ : Semiring R\ninst✝ : NoZeroDivisors R\np✝ q✝ p q : R[X]\nh₁ : p ∣ q\nh₂ : q.degree < p.degree\nhc : ¬q = 0\n⊢ False"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁶ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "E : Type w", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "G : Type u_1", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L L₁ L₂ : Filter 𝕜", "B : E →L[𝕜] F →L[𝕜] G", "u : 𝕜 → E", "v : 𝕜 → F", "u' : E", "v' : F", "hu : HasStrictDerivAt u u' x", "hv : HasStrictDerivAt v v' x"], "goal": "HasStrictDerivAt (fun x => (B (u x)) (v x)) ((B (u x)) v' + (B u') (v x)) x"}], "premise": [44335, 45388], "state_str": "𝕜 : Type u\ninst✝⁶ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nE : Type w\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nG : Type u_1\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nB : E →L[𝕜] F →L[𝕜] G\nu : 𝕜 → E\nv : 𝕜 → F\nu' : E\nv' : F\nhu : HasStrictDerivAt u u' x\nhv : HasStrictDerivAt v v' x\n⊢ HasStrictDerivAt (fun x => (B (u x)) (v x)) ((B (u x)) v' + (B u') (v x)) x"} +{"state": [{"context": ["K : Type u_1", "inst✝¹ : LinearOrderedField K", "inst✝ : FloorRing K", "v : K", "q : ℚ", "v_eq_q : v = ↑q", "n : ℕ"], "goal": "↑(match (IntFractPair.of q, Stream'.Seq.tail ⟨IntFractPair.stream q, ⋯⟩) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h = (match (IntFractPair.of v, Stream'.Seq.tail ⟨IntFractPair.stream v, ⋯⟩) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h"}], "premise": [116193], "state_str": "K : Type u_1\ninst✝¹ : LinearOrderedField K\ninst✝ : FloorRing K\nv : K\nq : ℚ\nv_eq_q : v = ↑q\nn : ℕ\n⊢ ↑(match (IntFractPair.of q, Stream'.Seq.tail ⟨IntFractPair.stream q, ⋯⟩) with\n | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h =\n (match (IntFractPair.of v, Stream'.Seq.tail ⟨IntFractPair.stream v, ⋯⟩) with\n | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "J : GrothendieckTopology C", "A : Type u'", "inst✝³ : Category.{v', u'} A", "inst✝² : ConcreteCategory A", "F₁ F₂ F₃ : Cᵒᵖ ⥤ A", "f₁ : F₁ ⟶ F₂", "f₂ : F₂ ⟶ F₃", "inst✝¹ : IsLocallyInjective J (f₁ ≫ f₂)", "inst✝ : IsLocallySurjective J f₁", "X : Cᵒᵖ", "x₁ x₂ : (forget A).obj (F₂.obj X)", "h : (f₂.app X) x₁ = (f₂.app X) x₂", "S : Sieve (unop X) := imageSieve f₁ x₁ ⊓ imageSieve f₁ x₂"], "goal": "equalizerSieve x₁ x₂ ∈ J.sieves (unop X)"}], "premise": [89783, 90673], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\nJ : GrothendieckTopology C\nA : Type u'\ninst✝³ : Category.{v', u'} A\ninst✝² : ConcreteCategory A\nF₁ F₂ F₃ : Cᵒᵖ ⥤ A\nf₁ : F₁ ⟶ F₂\nf₂ : F₂ ⟶ F₃\ninst✝¹ : IsLocallyInjective J (f₁ ≫ f₂)\ninst✝ : IsLocallySurjective J f₁\nX : Cᵒᵖ\nx₁ x₂ : (forget A).obj (F₂.obj X)\nh : (f₂.app X) x₁ = (f₂.app X) x₂\nS : Sieve (unop X) := imageSieve f₁ x₁ ⊓ imageSieve f₁ x₂\n⊢ equalizerSieve x₁ x₂ ∈ J.sieves (unop X)"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "J : GrothendieckTopology C", "A : Type u'", "inst✝³ : Category.{v', u'} A", "inst✝² : ConcreteCategory A", "F₁ F₂ F₃ : Cᵒᵖ ⥤ A", "f₁ : F₁ ⟶ F₂", "f₂ : F₂ ⟶ F₃", "inst✝¹ : IsLocallyInjective J (f₁ ≫ f₂)", "inst✝ : IsLocallySurjective J f₁", "X : Cᵒᵖ", "x₁ x₂ : (forget A).obj (F₂.obj X)", "h : (f₂.app X) x₁ = (f₂.app X) x₂", "S : Sieve (unop X) := imageSieve f₁ x₁ ⊓ imageSieve f₁ x₂", "hS : S ∈ J.sieves (unop X)"], "goal": "equalizerSieve x₁ x₂ ∈ J.sieves (unop X)"}], "premise": [2106, 2107], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\nJ : GrothendieckTopology C\nA : Type u'\ninst✝³ : Category.{v', u'} A\ninst✝² : ConcreteCategory A\nF₁ F₂ F₃ : Cᵒᵖ ⥤ A\nf₁ : F₁ ⟶ F₂\nf₂ : F₂ ⟶ F₃\ninst✝¹ : IsLocallyInjective J (f₁ ≫ f₂)\ninst✝ : IsLocallySurjective J f₁\nX : Cᵒᵖ\nx₁ x₂ : (forget A).obj (F₂.obj X)\nh : (f₂.app X) x₁ = (f₂.app X) x₂\nS : Sieve (unop X) := imageSieve f₁ x₁ ⊓ imageSieve f₁ x₂\nhS : S ∈ J.sieves (unop X)\n⊢ equalizerSieve x₁ x₂ ∈ J.sieves (unop X)"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "J : GrothendieckTopology C", "A : Type u'", "inst✝³ : Category.{v', u'} A", "inst✝² : ConcreteCategory A", "F₁ F₂ F₃ : Cᵒᵖ ⥤ A", "f₁ : F₁ ⟶ F₂", "f₂ : F₂ ⟶ F₃", "inst✝¹ : IsLocallyInjective J (f₁ ≫ f₂)", "inst✝ : IsLocallySurjective J f₁", "X : Cᵒᵖ", "x₁ x₂ : (forget A).obj (F₂.obj X)", "h : (f₂.app X) x₁ = (f₂.app X) x₂", "S : Sieve (unop X) := imageSieve f₁ x₁ ⊓ imageSieve f₁ x₂", "hS : S ∈ J.sieves (unop X)", "T : ⦃Y : C⦄ → (f : Y ⟶ unop X) → S.arrows f → Sieve Y := fun Y f hf => equalizerSieve (localPreimage f₁ x₁ f ⋯) (localPreimage f₁ x₂ f ⋯)"], "goal": "equalizerSieve x₁ x₂ ∈ J.sieves (unop X)"}], "premise": [89780, 89782], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\nJ : GrothendieckTopology C\nA : Type u'\ninst✝³ : Category.{v', u'} A\ninst✝² : ConcreteCategory A\nF₁ F₂ F₃ : Cᵒᵖ ⥤ A\nf₁ : F₁ ⟶ F₂\nf₂ : F₂ ⟶ F₃\ninst✝¹ : IsLocallyInjective J (f₁ ≫ f₂)\ninst✝ : IsLocallySurjective J f₁\nX : Cᵒᵖ\nx₁ x₂ : (forget A).obj (F₂.obj X)\nh : (f₂.app X) x₁ = (f₂.app X) x₂\nS : Sieve (unop X) := imageSieve f₁ x₁ ⊓ imageSieve f₁ x₂\nhS : S ∈ J.sieves (unop X)\nT : ⦃Y : C⦄ → (f : Y ⟶ unop X) → S.arrows f → Sieve Y :=\n fun Y f hf => equalizerSieve (localPreimage f₁ x₁ f ⋯) (localPreimage f₁ x₂ f ⋯)\n⊢ equalizerSieve x₁ x₂ ∈ J.sieves (unop X)"} +{"state": [{"context": [], "goal": "ConvexOn ℝ (Ioi 0) Gamma"}], "premise": [19753, 34998, 37865, 38137, 38141, 38145, 39595, 39891, 133391, 149301], "state_str": "⊢ ConvexOn ℝ (Ioi 0) Gamma"} +{"state": [{"context": [], "goal": "Convex ℝ (log ∘ Gamma '' Ioi 0)"}], "premise": [35981], "state_str": "⊢ Convex ℝ (log ∘ Gamma '' Ioi 0)"} +{"state": [{"context": [], "goal": "IsPreconnected (log ∘ Gamma '' Ioi 0)"}], "premise": [56501, 57310, 65874], "state_str": "⊢ IsPreconnected (log ∘ Gamma '' Ioi 0)"} +{"state": [{"context": ["x : ℝ", "hx : x ∈ Ioi 0"], "goal": "ContinuousAt (log ∘ Gamma) x"}], "premise": [11234, 37934, 39891, 39896, 46377], "state_str": "x : ℝ\nhx : x ∈ Ioi 0\n⊢ ContinuousAt (log ∘ Gamma) x"} +{"state": [{"context": ["x : ℝ", "hx : x ∈ Ioi 0", "m : ℕ"], "goal": "x ≠ -↑m"}], "premise": [1673, 1674, 11234, 20164, 105642, 142636], "state_str": "x : ℝ\nhx : x ∈ Ioi 0\nm : ℕ\n⊢ x ≠ -↑m"} +{"state": [{"context": ["R : Type u_1", "B : Type u_2", "F : Type u_3", "E : B → Type u_4", "inst✝⁷ : Semiring R", "inst✝⁶ : TopologicalSpace F", "inst✝⁵ : TopologicalSpace B", "e✝ : Pretrivialization F TotalSpace.proj", "x : TotalSpace F E", "b✝ : B", "y : E b✝", "inst✝⁴ : AddCommMonoid F", "inst✝³ : Module R F", "inst✝² : (x : B) → AddCommMonoid (E x)", "inst✝¹ : (x : B) → Module R (E x)", "e : Pretrivialization F TotalSpace.proj", "inst✝ : Pretrivialization.IsLinear R e", "b : B", "hb : b ∈ e.baseSet", "v : F"], "goal": "{ toFun := fun y => (↑e { proj := b, snd := y }).2, map_add' := ⋯, map_smul' := ⋯ }.toFun (e.symm b v) = v"}], "premise": [59353], "state_str": "R : Type u_1\nB : Type u_2\nF : Type u_3\nE : B → Type u_4\ninst✝⁷ : Semiring R\ninst✝⁶ : TopologicalSpace F\ninst✝⁵ : TopologicalSpace B\ne✝ : Pretrivialization F TotalSpace.proj\nx : TotalSpace F E\nb✝ : B\ny : E b✝\ninst✝⁴ : AddCommMonoid F\ninst✝³ : Module R F\ninst✝² : (x : B) → AddCommMonoid (E x)\ninst✝¹ : (x : B) → Module R (E x)\ne : Pretrivialization F TotalSpace.proj\ninst✝ : Pretrivialization.IsLinear R e\nb : B\nhb : b ∈ e.baseSet\nv : F\n⊢ { toFun := fun y => (↑e { proj := b, snd := y }).2, map_add' := ⋯, map_smul' := ⋯ }.toFun (e.symm b v) = v"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s t : Set α", "h : s.encard ≠ 0"], "goal": "s.Nonempty"}], "premise": [133378, 136322], "state_str": "α : Type u_1\nβ : Type u_2\ns t : Set α\nh : s.encard ≠ 0\n⊢ s.Nonempty"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "X : SimplicialObject C", "s : Splitting X", "inst✝ : Preadditive C", "Δ : SimplexCategoryᵒᵖ"], "goal": "𝟙 (X.obj Δ) = ∑ A : IndexSet Δ, s.πSummand A ≫ (s.cofan Δ).inj A"}], "premise": [46993], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\nX : SimplicialObject C\ns : Splitting X\ninst✝ : Preadditive C\nΔ : SimplexCategoryᵒᵖ\n⊢ 𝟙 (X.obj Δ) = ∑ A : IndexSet Δ, s.πSummand A ≫ (s.cofan Δ).inj A"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "X : SimplicialObject C", "s : Splitting X", "inst✝ : Preadditive C", "Δ : SimplexCategoryᵒᵖ", "A : IndexSet Δ"], "goal": "(s.cofan Δ).inj A ≫ 𝟙 (X.obj Δ) = (s.cofan Δ).inj A ≫ ∑ A : IndexSet Δ, s.πSummand A ≫ (s.cofan Δ).inj A"}], "premise": [91609, 96174, 127034], "state_str": "case h\nC : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\nX : SimplicialObject C\ns : Splitting X\ninst✝ : Preadditive C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ (s.cofan Δ).inj A ≫ 𝟙 (X.obj Δ) = (s.cofan Δ).inj A ≫ ∑ A : IndexSet Δ, s.πSummand A ≫ (s.cofan Δ).inj A"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type u_1", "δ : Type u_2", "p : α → Prop", "inst✝² : PartialOrder α", "inst✝¹ : OrderTop α", "inst✝ : OrderTop (Subtype p)", "htop : p ⊤", "x : { x // p x }"], "goal": "↑x = ⊤ ↔ x = ⊤"}], "premise": [1713, 18870, 137128], "state_str": "α : Type u\nβ : Type v\nγ : Type u_1\nδ : Type u_2\np : α → Prop\ninst✝² : PartialOrder α\ninst✝¹ : OrderTop α\ninst✝ : OrderTop (Subtype p)\nhtop : p ⊤\nx : { x // p x }\n⊢ ↑x = ⊤ ↔ x = ⊤"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p q : ℝ≥0∞", "inst✝⁴ : (i : α) → NormedAddCommGroup (E i)", "𝕜 : Type u_3", "inst✝³ : NormedRing 𝕜", "inst✝² : (i : α) → Module 𝕜 (E i)", "inst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)", "inst✝ : DecidableEq α", "hp : 0 < p.toReal", "f : (i : α) → E i", "s : Finset α"], "goal": "‖∑ i ∈ s, lp.single p i (f i)‖ ^ p.toReal = ∑ i ∈ s, ‖f i‖ ^ p.toReal"}], "premise": [45195, 63037], "state_str": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝⁴ : (i : α) → NormedAddCommGroup (E i)\n𝕜 : Type u_3\ninst✝³ : NormedRing 𝕜\ninst✝² : (i : α) → Module 𝕜 (E i)\ninst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)\ninst✝ : DecidableEq α\nhp : 0 < p.toReal\nf : (i : α) → E i\ns : Finset α\n⊢ ‖∑ i ∈ s, lp.single p i (f i)‖ ^ p.toReal = ∑ i ∈ s, ‖f i‖ ^ p.toReal"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p q : ℝ≥0∞", "inst✝⁴ : (i : α) → NormedAddCommGroup (E i)", "𝕜 : Type u_3", "inst✝³ : NormedRing 𝕜", "inst✝² : (i : α) → Module 𝕜 (E i)", "inst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)", "inst✝ : DecidableEq α", "hp : 0 < p.toReal", "f : (i : α) → E i", "s : Finset α"], "goal": "HasSum (fun i => ‖↑(∑ i ∈ s, lp.single p i (f i)) i‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"}], "premise": [45188, 45230, 123837, 127093], "state_str": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝⁴ : (i : α) → NormedAddCommGroup (E i)\n𝕜 : Type u_3\ninst✝³ : NormedRing 𝕜\ninst✝² : (i : α) → Module 𝕜 (E i)\ninst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)\ninst✝ : DecidableEq α\nhp : 0 < p.toReal\nf : (i : α) → E i\ns : Finset α\n⊢ HasSum (fun i => ‖↑(∑ i ∈ s, lp.single p i (f i)) i‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p q : ℝ≥0∞", "inst✝⁴ : (i : α) → NormedAddCommGroup (E i)", "𝕜 : Type u_3", "inst✝³ : NormedRing 𝕜", "inst✝² : (i : α) → Module 𝕜 (E i)", "inst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)", "inst✝ : DecidableEq α", "hp : 0 < p.toReal", "f : (i : α) → E i", "s : Finset α"], "goal": "HasSum (fun i => ‖if i ∈ s then f i else 0‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"}], "premise": [1738, 11234, 40011], "state_str": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝⁴ : (i : α) → NormedAddCommGroup (E i)\n𝕜 : Type u_3\ninst✝³ : NormedRing 𝕜\ninst✝² : (i : α) → Module 𝕜 (E i)\ninst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)\ninst✝ : DecidableEq α\nhp : 0 < p.toReal\nf : (i : α) → E i\ns : Finset α\n⊢ HasSum (fun i => ‖if i ∈ s then f i else 0‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p q : ℝ≥0∞", "inst✝⁴ : (i : α) → NormedAddCommGroup (E i)", "𝕜 : Type u_3", "inst✝³ : NormedRing 𝕜", "inst✝² : (i : α) → Module 𝕜 (E i)", "inst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)", "inst✝ : DecidableEq α", "hp : 0 < p.toReal", "f : (i : α) → E i", "s : Finset α", "h : ∀ i ∉ s, ‖if i ∈ s then f i else 0‖ ^ p.toReal = 0"], "goal": "HasSum (fun i => ‖if i ∈ s then f i else 0‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"}], "premise": [1737], "state_str": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝⁴ : (i : α) → NormedAddCommGroup (E i)\n𝕜 : Type u_3\ninst✝³ : NormedRing 𝕜\ninst✝² : (i : α) → Module 𝕜 (E i)\ninst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)\ninst✝ : DecidableEq α\nhp : 0 < p.toReal\nf : (i : α) → E i\ns : Finset α\nh : ∀ i ∉ s, ‖if i ∈ s then f i else 0‖ ^ p.toReal = 0\n⊢ HasSum (fun i => ‖if i ∈ s then f i else 0‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"} +{"state": [{"context": ["α : Type u_1", "E : α → Type u_2", "p q : ℝ≥0∞", "inst✝⁴ : (i : α) → NormedAddCommGroup (E i)", "𝕜 : Type u_3", "inst✝³ : NormedRing 𝕜", "inst✝² : (i : α) → Module 𝕜 (E i)", "inst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)", "inst✝ : DecidableEq α", "hp : 0 < p.toReal", "f : (i : α) → E i", "s : Finset α", "h : ∀ i ∉ s, ‖if i ∈ s then f i else 0‖ ^ p.toReal = 0", "h' : ∀ i ∈ s, ‖f i‖ ^ p.toReal = ‖if i ∈ s then f i else 0‖ ^ p.toReal"], "goal": "HasSum (fun i => ‖if i ∈ s then f i else 0‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"}], "premise": [63030, 126920], "state_str": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝⁴ : (i : α) → NormedAddCommGroup (E i)\n𝕜 : Type u_3\ninst✝³ : NormedRing 𝕜\ninst✝² : (i : α) → Module 𝕜 (E i)\ninst✝¹ : ∀ (i : α), BoundedSMul 𝕜 (E i)\ninst✝ : DecidableEq α\nhp : 0 < p.toReal\nf : (i : α) → E i\ns : Finset α\nh : ∀ i ∉ s, ‖if i ∈ s then f i else 0‖ ^ p.toReal = 0\nh' : ∀ i ∈ s, ‖f i‖ ^ p.toReal = ‖if i ∈ s then f i else 0‖ ^ p.toReal\n⊢ HasSum (fun i => ‖if i ∈ s then f i else 0‖ ^ p.toReal) (∑ i ∈ s, ‖f i‖ ^ p.toReal)"} +{"state": [{"context": ["α : Type u_1", "inst✝² : Zero α", "inst✝¹ : Preorder α", "inst✝ : DecidableRel fun x x_1 => x < x_1", "a : α", "ha : 0 < a"], "goal": "sign a = 1"}], "premise": [1737, 146315], "state_str": "α : Type u_1\ninst✝² : Zero α\ninst✝¹ : Preorder α\ninst✝ : DecidableRel fun x x_1 => x < x_1\na : α\nha : 0 < a\n⊢ sign a = 1"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : CommGroup α", "inst✝ : DecidableEq α", "A B✝ C : Finset α", "hA : A.Nonempty", "B : Finset α", "m n : ℕ"], "goal": "↑(B ^ m / B ^ n).card ≤ (↑(A / B).card / ↑A.card) ^ (m + n) * ↑A.card"}], "premise": [117845, 117881, 119790, 141598], "state_str": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA B✝ C : Finset α\nhA : A.Nonempty\nB : Finset α\nm n : ℕ\n⊢ ↑(B ^ m / B ^ n).card ≤ (↑(A / B).card / ↑A.card) ^ (m + n) * ↑A.card"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : CommGroup α", "inst✝ : DecidableEq α", "A B✝ C : Finset α", "hA : A.Nonempty", "B : Finset α", "m n : ℕ"], "goal": "↑(B⁻¹ ^ m / B⁻¹ ^ n).card ≤ (↑(A * B⁻¹).card / ↑A.card) ^ (m + n) * ↑A.card"}], "premise": [53240], "state_str": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA B✝ C : Finset α\nhA : A.Nonempty\nB : Finset α\nm n : ℕ\n⊢ ↑(B⁻¹ ^ m / B⁻¹ ^ n).card ≤ (↑(A * B⁻¹).card / ↑A.card) ^ (m + n) * ↑A.card"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "a✝ a b : α", "n : ℕ", "a' : α", "as : List α", "h : n + 1 ≤ (a' :: as).length"], "goal": "a ∈ insertNth (n + 1) b (a' :: as) ↔ a = b ∨ a ∈ a' :: as"}], "premise": [1220, 1713, 1726, 2145, 5021, 130625], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\na✝ a b : α\nn : ℕ\na' : α\nas : List α\nh : n + 1 ≤ (a' :: as).length\n⊢ a ∈ insertNth (n + 1) b (a' :: as) ↔ a = b ∨ a ∈ a' :: as"} +{"state": [{"context": ["α : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "m m0 : MeasurableSpace α", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "μ : Measure α", "f : α → E", "s : Set α", "hf_int : Integrable f μ", "hs : MeasurableSet s", "hm : m ≤ m0", "hμm this : SigmaFinite (μ.trim hm)"], "goal": "μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])"}], "premise": [120946], "state_str": "case pos\nα : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nm m0 : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nμ : Measure α\nf : α → E\ns : Set α\nhf_int : Integrable f μ\nhs : MeasurableSet s\nhm : m ≤ m0\nhμm this : SigmaFinite (μ.trim hm)\n⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])"} +{"state": [{"context": ["α : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "m m0 : MeasurableSpace α", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "μ : Measure α", "f : α → E", "s : Set α", "hf_int : Integrable f μ", "hs : MeasurableSet s", "hm : m ≤ m0", "hμm this✝ : SigmaFinite (μ.trim hm)", "this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])"], "goal": "μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])"}], "premise": [16092, 16093], "state_str": "case pos\nα : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nm m0 : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nμ : Measure α\nf : α → E\ns : Set α\nhf_int : Integrable f μ\nhs : MeasurableSet s\nhm : m ≤ m0\nhμm this✝ : SigmaFinite (μ.trim hm)\nthis : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])\n⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])"} +{"state": [{"context": ["V : Type u_1", "P : Type u_2", "inst✝³ : NormedAddCommGroup V", "inst✝² : InnerProductSpace ℝ V", "inst✝¹ : MetricSpace P", "inst✝ : NormedAddTorsor V P", "p p₀ p₁✝ p₂✝ p₁ p₂ p₃ : P"], "goal": "Collinear ℝ {p₁, p₂, p₃} ↔ p₁ = p₂ ∨ p₃ = p₂ ∨ sin (∠ p₁ p₂ p₃) = 0"}], "premise": [1713, 69168, 69178], "state_str": "V : Type u_1\nP : Type u_2\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np p₀ p₁✝ p₂✝ p₁ p₂ p₃ : P\n⊢ Collinear ℝ {p₁, p₂, p₃} ↔ p₁ = p₂ ∨ p₃ = p₂ ∨ sin (∠ p₁ p₂ p₃) = 0"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "f : Option α → β → γ", "a : α", "as : List α", "b : β", "bs : List β", "h : bs.length ≤ as.length", "this : (fun a b => flip f a (some b)) = flip fun a b => f (some a) b"], "goal": "map₂Right f as bs = zipWith (fun a b => f (some a) b) as bs"}], "premise": [132531, 132698], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\nf : Option α → β → γ\na : α\nas : List α\nb : β\nbs : List β\nh : bs.length ≤ as.length\nthis : (fun a b => flip f a (some b)) = flip fun a b => f (some a) b\n⊢ map₂Right f as bs = zipWith (fun a b => f (some a) b) as bs"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0"], "goal": "x = 0"}], "premise": [77574], "state_str": "case eq_zero.intro.succ\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (fun x => x ^ n.succ) (x * (algebraMap R S) ↑m) = (fun x => x ^ n.succ) ((algebraMap R S) y) := congr_arg (fun x => x ^ n.succ) hx"], "goal": "x = 0"}], "premise": [108557, 117764, 121592], "state_str": "case eq_zero.intro.succ.intro.mk\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (fun x => x ^ n.succ) (x * (algebraMap R S) ↑m) = (fun x => x ^ n.succ) ((algebraMap R S) y) :=\n congr_arg (fun x => x ^ n.succ) hx\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : 0 = (algebraMap R S) (y ^ n.succ)"], "goal": "x = 0"}], "premise": [121564], "state_str": "case eq_zero.intro.succ.intro.mk\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : 0 = (algebraMap R S) (y ^ n.succ)\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)"], "goal": "x = 0"}], "premise": [1673, 77575], "state_str": "case eq_zero.intro.succ.intro.mk\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)", "m' : ↥M", "hm' : ↑m' * 0 * ↑m' ^ n = ↑m' * y ^ n.succ * ↑m' ^ n"], "goal": "x = 0"}], "premise": [108557, 108558, 119703], "state_str": "case eq_zero.intro.succ.intro.mk.intro\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)\nm' : ↥M\nhm' : ↑m' * 0 * ↑m' ^ n = ↑m' * y ^ n.succ * ↑m' ^ n\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)", "m' : ↥M", "hm' : 0 = ↑m' * (y ^ n.succ * ↑m' ^ n)"], "goal": "x = 0"}], "premise": [117739, 117764, 119745], "state_str": "case eq_zero.intro.succ.intro.mk.intro\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)\nm' : ↥M\nhm' : 0 = ↑m' * (y ^ n.succ * ↑m' ^ n)\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)", "m' : ↥M", "hm' : 0 = (y * ↑m') ^ n.succ"], "goal": "x = 0"}], "premise": [2100, 79663], "state_str": "case eq_zero.intro.succ.intro.mk.intro\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)\nm' : ↥M\nhm' : 0 = (y * ↑m') ^ n.succ\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)", "m' : ↥M", "hm' : y * ↑m' = 0"], "goal": "x = 0"}], "premise": [77573, 77588, 108557, 120529], "state_str": "case eq_zero.intro.succ.intro.mk.intro\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)\nm' : ↥M\nhm' : y * ↑m' = 0\n⊢ x = 0"} +{"state": [{"context": ["R✝ S✝ : Type u", "inst✝⁷ : CommRing R✝", "inst✝⁶ : CommRing S✝", "M✝ : Submonoid R✝", "N : Submonoid S✝", "R' S' : Type u", "inst✝⁵ : CommRing R'", "inst✝⁴ : CommRing S'", "f : R✝ →+* S✝", "inst✝³ : Algebra R✝ R'", "inst✝² : Algebra S✝ S'", "R : Type u_1", "hR : CommRing R", "M : Submonoid R", "S : Type u_1", "hS : CommRing S", "inst✝¹ : Algebra R S", "inst✝ : IsLocalization M S", "a✝ : IsReduced R", "x : S", "n : ℕ", "e : x ^ (n + 1) = 0", "y : R", "m : ↥M", "hx : x * (algebraMap R S) ↑m = (algebraMap R S) y", "hx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)", "m' : ↥M", "hm' : y * ↑m' = 0"], "goal": "∃ m, ↑m * y = 0"}], "premise": [119707], "state_str": "case eq_zero.intro.succ.intro.mk.intro\nR✝ S✝ : Type u\ninst✝⁷ : CommRing R✝\ninst✝⁶ : CommRing S✝\nM✝ : Submonoid R✝\nN : Submonoid S✝\nR' S' : Type u\ninst✝⁵ : CommRing R'\ninst✝⁴ : CommRing S'\nf : R✝ →+* S✝\ninst✝³ : Algebra R✝ R'\ninst✝² : Algebra S✝ S'\nR : Type u_1\nhR : CommRing R\nM : Submonoid R\nS : Type u_1\nhS : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\na✝ : IsReduced R\nx : S\nn : ℕ\ne : x ^ (n + 1) = 0\ny : R\nm : ↥M\nhx : x * (algebraMap R S) ↑m = (algebraMap R S) y\nhx' : (algebraMap R S) 0 = (algebraMap R S) (y ^ n.succ)\nm' : ↥M\nhm' : y * ↑m' = 0\n⊢ ∃ m, ↑m * y = 0"} +{"state": [{"context": ["G : Type u", "inst✝ : Group G", "x y : G", "hx : orderOf x = 2", "hy : orderOf y = 2", "hxy : x ≠ y"], "goal": "x * y ∉ {x, y, 1}"}], "premise": [1999, 7133, 117766, 117774, 117953, 133487, 133512], "state_str": "G : Type u\ninst✝ : Group G\nx y : G\nhx : orderOf x = 2\nhy : orderOf y = 2\nhxy : x ≠ y\n⊢ x * y ∉ {x, y, 1}"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : CosimplicialObject C", "n : ℕ", "i : Fin (n + 1)"], "goal": "X.δ i.succ ≫ X.σ i = 𝟙 (X.obj [n])"}], "premise": [50575], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX : CosimplicialObject C\nn : ℕ\ni : Fin (n + 1)\n⊢ X.δ i.succ ≫ X.σ i = 𝟙 (X.obj [n])"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝² : TopologicalSpace G", "inst✝¹ : Group G", "inst✝ : TopologicalGroup G", "s✝ t : Set G", "ht : IsOpen t", "s : Set G"], "goal": "closure s / t = s / t"}], "premise": [66686, 66903, 119790], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\ns✝ t : Set G\nht : IsOpen t\ns : Set G\n⊢ closure s / t = s / t"} +{"state": [{"context": ["x : ℝ", "hl : 0 ≤ x", "hu : x ≤ π"], "goal": "sin x = √(1 - cos x ^ 2)"}], "premise": [38577, 105283, 149253], "state_str": "x : ℝ\nhl : 0 ≤ x\nhu : x ≤ π\n⊢ sin x = √(1 - cos x ^ 2)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "D : Type uD", "inst✝⁹ : NormedAddCommGroup D", "inst✝⁸ : NormedSpace 𝕜 D", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type u_2", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "b : E × F → G", "m n : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "e : F ≃L[𝕜] G"], "goal": "ContDiffAt 𝕜 n (⇑e ∘ f) x ↔ ContDiffAt 𝕜 n f x"}], "premise": [48421, 51569], "state_str": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type u_2\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\ne : F ≃L[𝕜] G\n⊢ ContDiffAt 𝕜 n (⇑e ∘ f) x ↔ ContDiffAt 𝕜 n f x"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁶ : NontriviallyNormedField 𝕜", "D : Type uD", "inst✝¹⁵ : NormedAddCommGroup D", "inst✝¹⁴ : NormedSpace 𝕜 D", "E : Type uE", "inst✝¹³ : NormedAddCommGroup E", "inst✝¹² : NormedSpace 𝕜 E", "F : Type uF", "inst✝¹¹ : NormedAddCommGroup F", "inst✝¹⁰ : NormedSpace 𝕜 F", "G : Type uG", "inst✝⁹ : NormedAddCommGroup G", "inst✝⁸ : NormedSpace 𝕜 G", "X : Type u_2", "inst✝⁷ : NormedAddCommGroup X", "inst✝⁶ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f✝ f₁ : E → F", "g : F → G", "x x₀ : E", "c✝ : F", "b : E × F → G", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "𝔸 : Type u_3", "𝔸' : Type u_4", "ι : Type u_5", "𝕜' : Type u_6", "inst✝⁵ : NormedRing 𝔸", "inst✝⁴ : NormedAlgebra 𝕜 𝔸", "inst✝³ : NormedCommRing 𝔸'", "inst✝² : NormedAlgebra 𝕜 𝔸'", "inst✝¹ : NormedField 𝕜'", "inst✝ : NormedAlgebra 𝕜 𝕜'", "f : E → 𝕜'", "n : ℕ∞", "hf : ContDiffWithinAt 𝕜 n f s x", "c : 𝕜'"], "goal": "ContDiffWithinAt 𝕜 n (fun x => f x / c) s x"}], "premise": [51538, 51692, 119790], "state_str": "𝕜 : Type u_1\ninst✝¹⁶ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹⁵ : NormedAddCommGroup D\ninst✝¹⁴ : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹³ : NormedAddCommGroup E\ninst✝¹² : NormedSpace 𝕜 E\nF : Type uF\ninst✝¹¹ : NormedAddCommGroup F\ninst✝¹⁰ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁹ : NormedAddCommGroup G\ninst✝⁸ : NormedSpace 𝕜 G\nX : Type u_2\ninst✝⁷ : NormedAddCommGroup X\ninst✝⁶ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf✝ f₁ : E → F\ng : F → G\nx x₀ : E\nc✝ : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\n𝔸 : Type u_3\n𝔸' : Type u_4\nι : Type u_5\n𝕜' : Type u_6\ninst✝⁵ : NormedRing 𝔸\ninst✝⁴ : NormedAlgebra 𝕜 𝔸\ninst✝³ : NormedCommRing 𝔸'\ninst✝² : NormedAlgebra 𝕜 𝔸'\ninst✝¹ : NormedField 𝕜'\ninst✝ : NormedAlgebra 𝕜 𝕜'\nf : E → 𝕜'\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n f s x\nc : 𝕜'\n⊢ ContDiffWithinAt 𝕜 n (fun x => f x / c) s x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s✝ t : Set M", "s : Set E", "hs : IsOpen s"], "goal": "IsOpen (f.source ∩ ↑(f.extend I) ⁻¹' s)"}], "premise": [67800], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns✝ t : Set M\ns : Set E\nhs : IsOpen s\n⊢ IsOpen (f.source ∩ ↑(f.extend I) ⁻¹' s)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "M : Type u_3", "H : Type u_4", "E' : Type u_5", "M' : Type u_6", "H' : Type u_7", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : TopologicalSpace H", "inst✝⁴ : TopologicalSpace M", "f f' : PartialHomeomorph M H", "I : ModelWithCorners 𝕜 E H", "inst✝³ : NormedAddCommGroup E'", "inst✝² : NormedSpace 𝕜 E'", "inst✝¹ : TopologicalSpace H'", "inst✝ : TopologicalSpace M'", "I' : ModelWithCorners 𝕜 E' H'", "s✝ t : Set M", "s : Set E", "hs : IsOpen s"], "goal": "IsOpen ((f.extend I).source ∩ ↑(f.extend I) ⁻¹' s)"}], "premise": [67824], "state_str": "𝕜 : Type u_1\nE : Type u_2\nM : Type u_3\nH : Type u_4\nE' : Type u_5\nM' : Type u_6\nH' : Type u_7\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : PartialHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\ns✝ t : Set M\ns : Set E\nhs : IsOpen s\n⊢ IsOpen ((f.extend I).source ∩ ↑(f.extend I) ⁻¹' s)"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x✝ : 𝕜", "s t : Set 𝕜", "L✝ L₁ L₂ : Filter 𝕜", "x : 𝕜", "L : Filter 𝕜"], "goal": "HasDerivAtFilter f f' x L ↔ Tendsto (fun y => slope f x y - (y - x)⁻¹ • (y - x) • f') L (𝓝 0)"}], "premise": [41371, 42797, 43297, 44346, 82744, 108341], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL✝ L₁ L₂ : Filter 𝕜\nx : 𝕜\nL : Filter 𝕜\n⊢ HasDerivAtFilter f f' x L ↔ Tendsto (fun y => slope f x y - (y - x)⁻¹ • (y - x) • f') L (𝓝 0)"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f�� f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x✝ : 𝕜", "s t : Set 𝕜", "L✝ L₁ L₂ : Filter 𝕜", "x : 𝕜", "L : Filter 𝕜"], "goal": "(fun y => slope f x y - (y - x)⁻¹ • (y - x) • f') =ᶠ[L ⊓ 𝓟 {x}ᶜ] fun y => slope f x y - f'"}], "premise": [14561, 16089, 16392], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL✝ L₁ L₂ : Filter 𝕜\nx : 𝕜\nL : Filter 𝕜\n⊢ (fun y => slope f x y - (y - x)⁻¹ • (y - x) • f') =ᶠ[L ⊓ 𝓟 {x}ᶜ] fun y => slope f x y - f'"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x✝ : 𝕜", "s t : Set 𝕜", "L✝ L₁ L₂ : Filter 𝕜", "x : 𝕜", "L : Filter 𝕜", "y : 𝕜", "hy : y ∈ {x}ᶜ"], "goal": "slope f x y - (y - x)⁻¹ • (y - x) • f' = slope f x y - f'"}], "premise": [1674, 7382, 118007], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL✝ L₁ L₂ : Filter 𝕜\nx : 𝕜\nL : Filter 𝕜\ny : 𝕜\nhy : y ∈ {x}ᶜ\n⊢ slope f x y - (y - x)⁻¹ • (y - x) • f' = slope f x y - f'"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x✝ : 𝕜", "s t : Set 𝕜", "L✝ L₁ L₂ : Filter 𝕜", "x : 𝕜", "L : Filter 𝕜"], "goal": "Tendsto (fun y => slope f x y - f') (L ⊓ 𝓟 {x}ᶜ) (𝓝 0) ↔ Tendsto (slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 f')"}], "premise": [16363, 66857], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL✝ L₁ L₂ : Filter 𝕜\nx : 𝕜\nL : Filter 𝕜\n⊢ Tendsto (fun y => slope f x y - f') (L ⊓ 𝓟 {x}ᶜ) (𝓝 0) ↔ Tendsto (slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 f')"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x✝ : 𝕜", "s t : Set 𝕜", "L✝ L₁ L₂ : Filter 𝕜", "x : 𝕜", "L : Filter 𝕜"], "goal": "Tendsto (fun y => slope f x y - f') (L ⊓ 𝓟 {x}ᶜ) (𝓝 0) ↔ Tendsto ((fun x => x - f') ∘ slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 0)"}], "premise": [1713], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL✝ L₁ L₂ : Filter 𝕜\nx : 𝕜\nL : Filter 𝕜\n⊢ Tendsto (fun y => slope f x y - f') (L ⊓ 𝓟 {x}ᶜ) (𝓝 0) ↔ Tendsto ((fun x => x - f') ∘ slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 0)"} +{"state": [{"context": ["R : Type u", "inst✝⁶ : Ring R", "Q : Type v", "inst✝⁵ : AddCommGroup Q", "inst✝⁴ : Module R Q", "M : Type u_1", "N : Type u_2", "inst✝³ : AddCommGroup M", "inst✝² : AddCommGroup N", "inst✝¹ : Module R M", "inst✝ : Module R N", "i : M →ₗ[R] N", "f : M →ₗ[R] Q", "a : N →ₗ.[R] Q", "a_le : LinearMap.range i ≤ a.domain", "e1 : ∀ (m : M), f m = ↑a ⟨i m, ⋯⟩", "b : N →ₗ.[R] Q", "b_le : LinearMap.range i ≤ b.domain", "e2 : ∀ (m : M), f m = ↑b ⟨i m, ⋯⟩", "domain_eq : { toLinearPMap := a, le := a_le, is_extension := e1 }.domain = { toLinearPMap := b, le := b_le, is_extension := e2 }.domain", "to_fun_eq : ∀ ⦃x : ↥{ toLinearPMap := a, le := a_le, is_extension := e1 }.domain⦄ ⦃y : ↥{ toLinearPMap := b, le := b_le, is_extension := e2 }.domain⦄, ↑x = ↑y → ↑{ toLinearPMap := a, le := a_le, is_extension := e1 }.toLinearPMap x = ↑{ toLinearPMap := b, le := b_le, is_extension := e2 }.toLinearPMap y"], "goal": "a = b"}], "premise": [87714], "state_str": "case mk.mk.e_toLinearPMap\nR : Type u\ninst✝⁶ : Ring R\nQ : Type v\ninst✝⁵ : AddCommGroup Q\ninst✝⁴ : Module R Q\nM : Type u_1\nN : Type u_2\ninst✝³ : AddCommGroup M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R M\ninst✝ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\na : N →ₗ.[R] Q\na_le : LinearMap.range i ≤ a.domain\ne1 : ∀ (m : M), f m = ↑a ⟨i m, ⋯⟩\nb : N →ₗ.[R] Q\nb_le : LinearMap.range i ≤ b.domain\ne2 : ∀ (m : M), f m = ↑b ⟨i m, ⋯⟩\ndomain_eq :\n { toLinearPMap := a, le := a_le, is_extension := e1 }.domain =\n { toLinearPMap := b, le := b_le, is_extension := e2 }.domain\nto_fun_eq :\n ∀ ⦃x : ↥{ toLinearPMap := a, le := a_le, is_extension := e1 }.domain⦄\n ⦃y : ↥{ toLinearPMap := b, le := b_le, is_extension := e2 }.domain⦄,\n ↑x = ↑y →\n ↑{ toLinearPMap := a, le := a_le, is_extension := e1 }.toLinearPMap x =\n ↑{ toLinearPMap := b, le := b_le, is_extension := e2 }.toLinearPMap y\n⊢ a = b"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "inst✝¹ : CommRing R", "inst✝ : CommRing S", "n : ℤ"], "goal": "derivative (T R n) = ↑n * U R (n - 1)"}], "premise": [53890, 53893, 53894, 53896, 53903, 75211, 75212, 75215, 75220, 75226, 75227, 75230, 75238, 101482, 101486, 101487, 101501, 101508, 101536], "state_str": "R : Type u_1\nS : Type u_2\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℤ\n⊢ derivative (T R n) = ↑n * U R (n - 1)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : DecidableEq α", "s t u : Finset α", "P : Finpartition s", "a : α"], "goal": "∑ i ∈ P.parts, i.card = s.card"}], "premise": [11896], "state_str": "α : Type u_1\ninst✝ : DecidableEq α\ns t u : Finset α\nP : Finpartition s\na : α\n⊢ ∑ i ∈ P.parts, i.card = s.card"} +{"state": [{"context": ["α : Type u_1", "inst✝ : DecidableEq α", "s t u : Finset α", "P : Finpartition s", "a : α"], "goal": "∑ i ∈ P.parts, i.card = (P.parts.biUnion id).card"}], "premise": [11865, 15777, 127267], "state_str": "case h.e'_2\nα : Type u_1\ninst✝ : DecidableEq α\ns t u : Finset α\nP : Finpartition s\na : α\n⊢ ∑ i ∈ P.parts, i.card = (P.parts.biUnion id).card"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace ℝ E", "ι : Type u_2", "inst✝¹ : Fintype ι", "inst✝ : DecidableEq ι", "ne : Nonempty ι", "e f : OrthonormalBasis ι ℝ E", "x : Orientation ℝ E ι", "h : e.toBasis.orientation ≠ f.toBasis.orientation"], "goal": "e.toBasis.det = -f.toBasis.det"}], "premise": [83484], "state_str": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nι : Type u_2\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\nne : Nonempty ι\ne f : OrthonormalBasis ι ℝ E\nx : Orientation ℝ E ι\nh : e.toBasis.orientation ≠ f.toBasis.orientation\n⊢ e.toBasis.det = -f.toBasis.det"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace ℝ E", "ι : Type u_2", "inst✝¹ : Fintype ι", "inst✝ : DecidableEq ι", "ne : Nonempty ι", "e f : OrthonormalBasis ι ℝ E", "x : Orientation ℝ E ι", "h : e.toBasis.orientation ≠ f.toBasis.orientation"], "goal": "e.toBasis.det ⇑f.toBasis • f.toBasis.det = -f.toBasis.det"}], "premise": [33407, 110035], "state_str": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nι : Type u_2\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\nne : Nonempty ι\ne f : OrthonormalBasis ι ℝ E\nx : Orientation ℝ E ι\nh : e.toBasis.orientation ≠ f.toBasis.orientation\n⊢ e.toBasis.det ⇑f.toBasis • f.toBasis.det = -f.toBasis.det"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : CancelCommMonoidWithZero α", "p₁ p₂ : α", "k₁ k₂ : ℕ", "hp₁ : Prime p₁", "hp₂ : Prime p₂", "hk₁ : 0 < k₁", "h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂"], "goal": "p₁ ~ᵤ p₂"}], "premise": [11234, 108891, 125878], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : CancelCommMonoidWithZero α\np₁ p₂ : α\nk₁ k₂ : ℕ\nhp₁ : Prime p₁\nhp₂ : Prime p₂\nhk₁ : 0 < k₁\nh : p₁ ^ k₁ ~ᵤ p₂ ^ k₂\n⊢ p₁ ~ᵤ p₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : CancelCommMonoidWithZero α", "p₁ p₂ : α", "k₁ k₂ : ℕ", "hp₁ : Prime p₁", "hp₂ : Prime p₂", "hk₁ : 0 < k₁", "h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂", "this : p₁ ∣ p₂ ^ k₂"], "goal": "p₁ ~ᵤ p₂"}], "premise": [125891], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : CancelCommMonoidWithZero α\np₁ p₂ : α\nk₁ k₂ : ℕ\nhp₁ : Prime p₁\nhp₂ : Prime p₂\nhk₁ : 0 < k₁\nh : p₁ ^ k₁ ~ᵤ p₂ ^ k₂\nthis : p₁ ∣ p₂ ^ k₂\n⊢ p₁ ~ᵤ p₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝ : CancelCommMonoidWithZero α", "p₁ p₂ : α", "k₁ k₂ : ℕ", "hp₁ : Prime p₁", "hp₂ : Prime p₂", "hk₁ : 0 < k₁", "h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂", "this : p₁ ∣ p₂ ^ k₂"], "goal": "p₁ ∣ p₂"}], "premise": [125805], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝ : CancelCommMonoidWithZero α\np₁ p₂ : α\nk₁ k₂ : ℕ\nhp₁ : Prime p₁\nhp₂ : Prime p₂\nhk₁ : 0 < k₁\nh : p₁ ^ k₁ ~ᵤ p₂ ^ k₂\nthis : p₁ ∣ p₂ ^ k₂\n⊢ p₁ ∣ p₂"} +{"state": [{"context": ["m n : ℕ", "a : ZMod 2"], "goal": "-a = a"}], "premise": [3975, 143096], "state_str": "m n : ℕ\na : ZMod 2\n⊢ -a = a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G H : SimpleGraph α", "m n : ℕ", "s : Finset α", "f : α ↪ β", "inst✝ : Nonempty α"], "goal": "(SimpleGraph.map f G).CliqueFree n ↔ G.CliqueFree n"}], "premise": [14317], "state_str": "α : Type u_1\nβ : Type u_2\nG H : SimpleGraph α\nm n : ℕ\ns : Finset α\nf : α ↪ β\ninst✝ : Nonempty α\n⊢ (SimpleGraph.map f G).CliqueFree n ↔ G.CliqueFree n"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G H : SimpleGraph α", "m n : ℕ", "s : Finset α", "f : α ↪ β", "inst✝ : Nonempty α", "hlt : 1 < n"], "goal": "(SimpleGraph.map f G).CliqueFree n ↔ G.CliqueFree n"}], "premise": [51315], "state_str": "case inr\nα : Type u_1\nβ : Type u_2\nG H : SimpleGraph α\nm n : ℕ\ns : Finset α\nf : α ↪ β\ninst✝ : Nonempty α\nhlt : 1 < n\n⊢ (SimpleGraph.map f G).CliqueFree n ↔ G.CliqueFree n"} +{"state": [{"context": ["a b : Ordinal.{u_1}"], "goal": "a * b = b ↔ a ^ ω ∣ b"}], "premise": [49699], "state_str": "a b : Ordinal.{u_1}\n⊢ a * b = b ↔ a ^ ω ∣ b"} +{"state": [{"context": ["a b : Ordinal.{u_1}", "ha : 0 < a", "c : Ordinal.{u_1}", "hc : b = a ^ ω * c"], "goal": "a * b = b"}], "premise": [48200, 52313, 119703], "state_str": "case inr.refine_2.intro\na b : Ordinal.{u_1}\nha : 0 < a\nc : Ordinal.{u_1}\nhc : b = a ^ ω * c\n⊢ a * b = b"} +{"state": [{"context": ["α : Type u_1", "inst✝² : PartialOrder α", "inst✝¹ : SuccOrder α", "inst✝ : IsSuccArchimedean α", "r : α → α → Prop", "n m : α", "h : ∀ i ∈ Ico m n, r (succ i) i", "hmn : m ≤ n"], "goal": "ReflTransGen r n m"}], "premise": [70496], "state_str": "α : Type u_1\ninst✝² : PartialOrder α\ninst✝¹ : SuccOrder α\ninst✝ : IsSuccArchimedean α\nr : α → α → Prop\nn m : α\nh : ∀ i ∈ Ico m n, r (succ i) i\nhmn : m ≤ n\n⊢ ReflTransGen r n m"} +{"state": [{"context": ["α : Type u_1", "inst✝² : PartialOrder α", "inst✝¹ : SuccOrder α", "inst✝ : IsSuccArchimedean α", "r : α → α → Prop", "n m : α", "h : ∀ i ∈ Ico m n, r (succ i) i", "hmn : m ≤ n"], "goal": "ReflTransGen (swap r) m n"}], "premise": [16404], "state_str": "α : Type u_1\ninst✝² : PartialOrder α\ninst✝¹ : SuccOrder α\ninst✝ : IsSuccArchimedean α\nr : α → α → Prop\nn m : α\nh : ∀ i ∈ Ico m n, r (succ i) i\nhmn : m ≤ n\n⊢ ReflTransGen (swap r) m n"} +{"state": [{"context": ["z : ℍ", "k : ℝ", "hk : 0 ≤ k", "x : Fin 2 → ℤ", "A B : ℝ", "hB : 0 < B", "hz : z ∈ verticalStrip A B"], "goal": "Complex.abs (↑(x 0) * ↑z + ↑(x 1)) ^ (-k) ≤ r ⟨{ re := A, im := B }, hB⟩ ^ (-k) * ‖x‖ ^ (-k)"}], "premise": [21426, 102622], "state_str": "z : ℍ\nk : ℝ\nhk : 0 ≤ k\nx : Fin 2 → ℤ\nA B : ℝ\nhB : 0 < B\nhz : z ∈ verticalStrip A B\n⊢ Complex.abs (↑(x 0) * ↑z + ↑(x 1)) ^ (-k) ≤ r ⟨{ re := A, im := B }, hB⟩ ^ (-k) * ‖x‖ ^ (-k)"} +{"state": [{"context": ["z : ℍ", "k : ℝ", "hk : 0 ≤ k", "x : Fin 2 → ℤ", "A B : ℝ", "hB : 0 < B", "hz : z ∈ verticalStrip A B"], "goal": "r z ^ (-k) ≤ r ⟨{ re := A, im := B }, hB⟩ ^ (-k)"}], "premise": [1674, 21420, 21421, 40085], "state_str": "z : ℍ\nk : ℝ\nhk : 0 ≤ k\nx : Fin 2 → ℤ\nA B : ℝ\nhB : 0 < B\nhz : z ∈ verticalStrip A B\n⊢ r z ^ (-k) ≤ r ⟨{ re := A, im := B }, hB⟩ ^ (-k)"} +{"state": [{"context": ["α : Type u", "inst✝³ : Group α", "inst✝² : LT α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1", "a b c d : α"], "goal": "a < b⁻¹ ↔ b < a⁻¹"}], "premise": [1713, 105665, 119770], "state_str": "α : Type u\ninst✝³ : Group α\ninst✝² : LT α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1\na b c d : α\n⊢ a < b⁻¹ ↔ b < a⁻¹"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : MeasurableSpace G", "μ : Measure G", "g✝ : G", "inst✝² : Group G", "inst✝¹ : MeasurableMul G", "inst✝ : μ.IsMulLeftInvariant", "f : G → ℝ≥0∞", "g : G"], "goal": "∫⁻ (x : G), f (g * x) ∂μ = ∫⁻ (x : G), f x ∂μ"}], "premise": [2100, 30374], "state_str": "G : Type u_1\ninst✝³ : MeasurableSpace G\nμ : Measure G\ng✝ : G\ninst✝² : Group G\ninst✝¹ : MeasurableMul G\ninst✝ : μ.IsMulLeftInvariant\nf : G → ℝ≥0∞\ng : G\n⊢ ∫⁻ (x : G), f (g * x) ∂μ = ∫⁻ (x : G), f x ∂μ"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : MeasurableSpace G", "μ : Measure G", "g✝ : G", "inst✝² : Group G", "inst✝¹ : MeasurableMul G", "inst✝ : μ.IsMulLeftInvariant", "f : G → ℝ≥0∞", "g : G"], "goal": "μ = map (⇑(MeasurableEquiv.mulLeft g)) μ"}], "premise": [32369], "state_str": "case h.e'_3.h.e'_3\nG : Type u_1\ninst✝³ : MeasurableSpace G\nμ : Measure G\ng✝ : G\ninst✝² : Group G\ninst✝¹ : MeasurableMul G\ninst✝ : μ.IsMulLeftInvariant\nf : G → ℝ≥0∞\ng : G\n⊢ μ = map (⇑(MeasurableEquiv.mulLeft g)) μ"} +{"state": [{"context": ["p : ℝ≥0∞", "𝕜 : Type u_1", "α : Type u_2", "β : Type u_3", "hp : Fact (1 ≤ p)", "inst✝¹ : PseudoEMetricSpace α", "inst✝ : PseudoEMetricSpace β"], "goal": "𝓤 (WithLp p (α × β)) = 𝓤 (α × β)"}], "premise": [41871, 41872, 57418, 60848], "state_str": "p : ℝ≥0∞\n𝕜 : Type u_1\nα : Type u_2\nβ : Type u_3\nhp : Fact (1 ≤ p)\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\n⊢ 𝓤 (WithLp p (α × β)) = 𝓤 (α × β)"} +{"state": [{"context": ["p : ℝ≥0∞", "𝕜 : Type u_1", "α : Type u_2", "β : Type u_3", "hp : Fact (1 ≤ p)", "inst✝¹ : PseudoEMetricSpace α", "inst✝ : PseudoEMetricSpace β", "A : UniformInducing ⇑(WithLp.equiv p (α × β))", "this : (fun x => ((WithLp.equiv p (α × β)) x.1, (WithLp.equiv p (α × β)) x.2)) = id"], "goal": "𝓤 (WithLp p (α × β)) = 𝓤 (α × β)"}], "premise": [16203, 59517], "state_str": "p : ℝ≥0∞\n𝕜 : Type u_1\nα : Type u_2\nβ : Type u_3\nhp : Fact (1 ≤ p)\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nA : UniformInducing ⇑(WithLp.equiv p (α × β))\nthis : (fun x => ((WithLp.equiv p (α × β)) x.1, (WithLp.equiv p (α × β)) x.2)) = id\n⊢ 𝓤 (WithLp p (α × β)) = 𝓤 (α × β)"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hfg : Commute f g", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p"], "goal": "g m = μ • m"}], "premise": [88241], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhfg : Commute f g\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\n⊢ g m = μ • m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hfg : Commute f g", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p", "h₁ : MapsTo ⇑g ↑p ↑p"], "goal": "g m = μ • m"}], "premise": [88241, 121170, 122266], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhfg : Commute f g\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\nh₁ : MapsTo ⇑g ↑p ↑p\n⊢ g m = μ • m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hfg : Commute f g", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p", "h₁ : MapsTo ⇑g ↑p ↑p", "h₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p"], "goal": "g m = μ • m"}], "premise": [88241, 122266], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhfg : Commute f g\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\nh₁ : MapsTo ⇑g ↑p ↑p\nh₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p\n⊢ g m = μ • m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hfg : Commute f g", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p", "h₁ : MapsTo ⇑g ↑p ↑p", "h₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p", "h₃ : MapsTo ⇑(f - g) ↑p ↑p"], "goal": "g m = μ • m"}], "premise": [88241, 121260], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhfg : Commute f g\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\nh₁ : MapsTo ⇑g ↑p ↑p\nh₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p\nh₃ : MapsTo ⇑(f - g) ↑p ↑p\n⊢ g m = μ • m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hfg : Commute f g", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p", "h₁ : MapsTo ⇑g ↑p ↑p", "h₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p", "h₃ : MapsTo ⇑(f - g) ↑p ↑p", "h₄ : MapsTo ⇑(f - (algebraMap R (End R M)) μ) ↑p ↑p"], "goal": "g m = μ • m"}], "premise": [121169, 122266, 122267], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhfg : Commute f g\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\nh₁ : MapsTo ⇑g ↑p ↑p\nh₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p\nh₃ : MapsTo ⇑(f - g) ↑p ↑p\nh₄ : MapsTo ⇑(f - (algebraMap R (End R M)) μ) ↑p ↑p\n⊢ g m = μ • m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p", "h₁ : MapsTo ⇑g ↑p ↑p", "h₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p", "h₃ : MapsTo ⇑(f - g) ↑p ↑p", "h₄ : MapsTo ⇑(f - (algebraMap R (End R M)) μ) ↑p ↑p", "hfg : Commute (f - (algebraMap R (End R M)) μ) (f - g)"], "goal": "g m = μ • m"}], "premise": [82427, 82429, 109735, 109857, 118004], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\nh₁ : MapsTo ⇑g ↑p ↑p\nh₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p\nh₃ : MapsTo ⇑(f - g) ↑p ↑p\nh₄ : MapsTo ⇑(f - (algebraMap R (End R M)) μ) ↑p ↑p\nhfg : Commute (f - (algebraMap R (End R M)) μ) (f - g)\n⊢ g m = μ • m"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝² : CommRing R", "inst✝¹ : AddCommGroup M", "inst✝ : Module R M", "f g : End R M", "μ : R", "k : ℕ", "m : M", "hss : g.IsSemisimple", "hnil : IsNilpotent (f - g)", "p : Submodule R M := (f.genEigenspace μ) k", "hm : m ∈ p", "h₁ : MapsTo ⇑g ↑p ↑p", "h₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p", "h₃ : MapsTo ⇑(f - g) ↑p ↑p", "h₄ : MapsTo ⇑(f - (algebraMap R (End R M)) μ) ↑p ↑p", "hfg : Commute (f - (algebraMap R (End R M)) μ) (f - g)"], "goal": "IsNilpotent (LinearMap.restrict (g - (algebraMap R (End R M)) μ) h₂)"}], "premise": [79679, 79709, 88243, 109858, 109860], "state_str": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf g : End R M\nμ : R\nk : ℕ\nm : M\nhss : g.IsSemisimple\nhnil : IsNilpotent (f - g)\np : Submodule R M := (f.genEigenspace μ) k\nhm : m ∈ p\nh₁ : MapsTo ⇑g ↑p ↑p\nh₂ : MapsTo ⇑(g - (algebraMap R (End R M)) μ) ↑p ↑p\nh₃ : MapsTo ⇑(f - g) ↑p ↑p\nh₄ : MapsTo ⇑(f - (algebraMap R (End R M)) μ) ↑p ↑p\nhfg : Commute (f - (algebraMap R (End R M)) μ) (f - g)\n⊢ IsNilpotent (LinearMap.restrict (g - (algebraMap R (End R M)) μ) h₂)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f✝ : α → β", "E I s : Set α", "M : Matroid α", "N : Matroid β", "f : α ↪ β", "B : Set β"], "goal": "(M.mapEmbedding f).Base B ↔ M.Base (⇑f ⁻¹' B) ∧ B ⊆ range ⇑f"}], "premise": [140021], "state_str": "α : Type u_1\nβ : Type u_2\nf✝ : α → β\nE I s : Set α\nM : Matroid α\nN : Matroid β\nf : α ↪ β\nB : Set β\n⊢ (M.mapEmbedding f).Base B ↔ M.Base (⇑f ⁻¹' B) ∧ B ⊆ range ⇑f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f✝ : α → β", "E I s : Set α", "M : Matroid α", "N : Matroid β", "f : α ↪ β", "B : Set β"], "goal": "(∃ B₀, M.Base B₀ ∧ B = ⇑f '' B₀) ↔ M.Base (⇑f ⁻¹' B) ∧ B ⊆ range ⇑f"}], "premise": [1717, 134194], "state_str": "α : Type u_1\nβ : Type u_2\nf✝ : α → β\nE I s : Set α\nM : Matroid α\nN : Matroid β\nf : α ↪ β\nB : Set β\n⊢ (∃ B₀, M.Base B₀ ∧ B = ⇑f '' B₀) ↔ M.Base (⇑f ⁻¹' B) ∧ B ⊆ range ⇑f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f✝ : α → β", "E I s : Set α", "M : Matroid α", "N : Matroid β", "f : α ↪ β", "B : Set α", "hB : M.Base B"], "goal": "M.Base (⇑f ⁻¹' (⇑f '' B)) ∧ ⇑f '' B ⊆ range ⇑f"}], "premise": [70665, 134143], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nf✝ : α → β\nE I s : Set α\nM : Matroid α\nN : Matroid β\nf : α ↪ β\nB : Set α\nhB : M.Base B\n⊢ M.Base (⇑f ⁻¹' (⇑f '' B)) ∧ ⇑f '' B ⊆ range ⇑f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f✝ : α → β", "E I s : Set α", "M : Matroid α", "N : Matroid β", "f : α ↪ β", "B : Set α", "hB : M.Base B"], "goal": "M.Base B ∧ ⇑f '' B ⊆ range ⇑f"}], "premise": [134176], "state_str": "case intro.intro\nα : Type u_1\nβ : Type u_2\nf✝ : α → β\nE I s : Set α\nM : Matroid α\nN : Matroid β\nf : α ↪ β\nB : Set α\nhB : M.Base B\n⊢ M.Base B ∧ ⇑f '' B ⊆ range ⇑f"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type u_2", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type u_3", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f✝ f₀ f₁ : E → F", "f' : F", "s✝ t : Set E", "x v : E", "L : E →L[𝕜] F", "f : E → F", "x₀ : E", "s : Set E", "hs : s ∈ 𝓝 x₀", "C : ℝ≥0", "hlip : LipschitzOnWith C f s"], "goal": "‖lineDeriv 𝕜 f x₀ v‖ ≤ ↑C * ‖v‖"}], "premise": [45072, 146609], "state_str": "𝕜 : Type u_1\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type u_2\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type u_3\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf✝ f₀ f₁ : E → F\nf' : F\ns✝ t : Set E\nx v : E\nL : E →L[𝕜] F\nf : E → F\nx₀ : E\ns : Set E\nhs : s ∈ 𝓝 x₀\nC : ℝ≥0\nhlip : LipschitzOnWith C f s\n⊢ ‖lineDeriv 𝕜 f x₀ v‖ ≤ ↑C * ‖v‖"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type u_2", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type u_3", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f✝ f₀ f₁ : E → F", "f' : F", "s✝ t : Set E", "x v : E", "L : E →L[𝕜] F", "f : E → F", "x₀ : E", "s : Set E", "hs : s ∈ 𝓝 x₀", "C : ℝ≥0", "hlip : LipschitzOnWith C f s"], "goal": "∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ ↑C * ‖x - x₀‖"}], "premise": [15889, 55499, 131585], "state_str": "𝕜 : Type u_1\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type u_2\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type u_3\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf✝ f₀ f₁ : E → F\nf' : F\ns✝ t : Set E\nx v : E\nL : E →L[𝕜] F\nf : E → F\nx₀ : E\ns : Set E\nhs : s ∈ 𝓝 x₀\nC : ℝ≥0\nhlip : LipschitzOnWith C f s\n⊢ ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ ↑C * ‖x - x₀‖"} +{"state": [{"context": ["n : ℕ"], "goal": "eval 0 (bernoulli n) = _root_.bernoulli n"}], "premise": [102883, 127135], "state_str": "n : ℕ\n⊢ eval 0 (bernoulli n) = _root_.bernoulli n"} +{"state": [{"context": ["n : ℕ"], "goal": "∑ x ∈ range n, eval 0 ((monomial (n - x)) (_root_.bernoulli x * ↑(n.choose x))) + eval 0 ((monomial (n - n)) (_root_.bernoulli n * ↑(n.choose n))) = _root_.bernoulli n"}], "premise": [1673, 103642, 126923, 139145], "state_str": "n : ℕ\n⊢ ∑ x ∈ range n, eval 0 ((monomial (n - x)) (_root_.bernoulli x * ↑(n.choose x))) +\n eval 0 ((monomial (n - n)) (_root_.bernoulli n * ↑(n.choose n))) =\n _root_.bernoulli n"} +{"state": [{"context": ["α : Type u", "α' : Type w", "β : Type v", "β' : Type x", "γ : Type u_1", "δ : Type u_2", "x y : α ⊕ β", "h₁ : x.isLeft = true", "h₂ : x.getLeft?.isSome = true"], "goal": "x.getLeft h₁ = x.getLeft?.get h₂"}], "premise": [174], "state_str": "α : Type u\nα' : Type w\nβ : Type v\nβ' : Type x\nγ : Type u_1\nδ : Type u_2\nx y : α ⊕ β\nh₁ : x.isLeft = true\nh₂ : x.getLeft?.isSome = true\n⊢ x.getLeft h₁ = x.getLeft?.get h₂"} +{"state": [{"context": ["α : Type u_1", "inst✝ : NonUnitalNonAssocRing α", "k : α", "h : ∀ (x : α), x * k = 0 → x = 0"], "goal": "IsRightRegular k"}], "premise": [1673, 118004], "state_str": "α : Type u_1\ninst✝ : NonUnitalNonAssocRing α\nk : α\nh : ∀ (x : α), x * k = 0 → x = 0\n⊢ IsRightRegular k"} +{"state": [{"context": ["α : Type u_1", "inst✝ : NonUnitalNonAssocRing α", "k : α", "h : ∀ (x : α), x * k = 0 → x = 0", "x y : α", "h' : x * k = y * k"], "goal": "(x - y) * k = 0"}], "premise": [118004], "state_str": "α : Type u_1\ninst✝ : NonUnitalNonAssocRing α\nk : α\nh : ∀ (x : α), x * k = 0 → x = 0\nx y : α\nh' : x * k = y * k\n⊢ (x - y) * k = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "δ : Type u_3", "ι : Type u_4", "inst✝¹ : TopologicalSpace α", "inst✝ : MeasurableSpace α", "μ : Measure α", "s : Set α", "h : IsCompact s", "hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)"], "goal": "∃ U ⊇ s, IsOpen U ∧ μ U < ⊤"}], "premise": [58058], "state_str": "α : Type u_1\nβ : Type u_2\nδ : Type u_3\nι : Type u_4\ninst✝¹ : TopologicalSpace α\ninst✝ : MeasurableSpace α\nμ : Measure α\ns : Set α\nh : IsCompact s\nhμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)\n⊢ ∃ U ⊇ s, IsOpen U ∧ μ U < ⊤"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "ι : Type y", "a b : R", "m n : ℕ", "inst✝ : Semiring R", "p✝ q r : R[X]", "x : R", "p : R[X]", "hp : p.coeff 0 = 0"], "goal": "p.IsRoot 0"}], "premise": [102886], "state_str": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝ : Semiring R\np✝ q r : R[X]\nx : R\np : R[X]\nhp : p.coeff 0 = 0\n⊢ p.IsRoot 0"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝ : Field F", "W : Jacobian F", "P Q : Fin 3 → F", "hP : W.Equation P", "hQ : W.Equation Q", "hPz : P z ≠ 0", "hQz : Q z ≠ 0", "hx : P x * Q z ^ 2 = Q x * P z ^ 2", "hy : P y * Q z ^ 3 ≠ W.negY Q * P z ^ 3"], "goal": "W.add P Q = W.dblZ P • ![W.toAffine.addX (P x / P z ^ 2) (Q x / Q z ^ 2) (W.toAffine.slope (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (Q y / Q z ^ 3)), W.toAffine.addY (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (W.toAffine.slope (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (Q y / Q z ^ 3)), 1]"}], "premise": [1737, 145458, 145501, 145539], "state_str": "R : Type u\ninst✝¹ : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝ : Field F\nW : Jacobian F\nP Q : Fin 3 → F\nhP : W.Equation P\nhQ : W.Equation Q\nhPz : P z ≠ 0\nhQz : Q z ≠ 0\nhx : P x * Q z ^ 2 = Q x * P z ^ 2\nhy : P y * Q z ^ 3 ≠ W.negY Q * P z ^ 3\n⊢ W.add P Q =\n W.dblZ P •\n ![W.toAffine.addX (P x / P z ^ 2) (Q x / Q z ^ 2)\n (W.toAffine.slope (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (Q y / Q z ^ 3)),\n W.toAffine.addY (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3)\n (W.toAffine.slope (P x / P z ^ 2) (Q x / Q z ^ 2) (P y / P z ^ 3) (Q y / Q z ^ 3)),\n 1]"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Sort u_5", "s : Set α", "t : Set β", "f : Filter α", "g : Filter β"], "goal": "(f ×ˢ g).NeBot ↔ f.NeBot ∧ g.NeBot"}], "premise": [1999, 12226, 15920], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Sort u_5\ns : Set α\nt : Set β\nf : Filter α\ng : Filter β\n⊢ (f ×ˢ g).NeBot ↔ f.NeBot ∧ g.NeBot"} +{"state": [{"context": ["a x z✝ z : ℂ"], "goal": "z.arg < π / 2 ↔ 0 < z.re ∨ z.im < 0 ∨ z = 0"}], "premise": [11244, 40338, 40351], "state_str": "a x z✝ z : ℂ\n⊢ z.arg < π / 2 ↔ 0 < z.re ∨ z.im < 0 ∨ z = 0"} +{"state": [{"context": ["a x z✝ z : ℂ"], "goal": "(0 ≤ z.re ∨ z.im < 0) ∧ ¬(z.re = 0 ∧ 0 < z.im) ↔ 0 < z.re ∨ z.im < 0 ∨ z = 0"}], "premise": [14312], "state_str": "a x z✝ z : ℂ\n⊢ (0 ≤ z.re ∨ z.im < 0) ∧ ¬(z.re = 0 ∧ 0 < z.im) ↔ 0 < z.re ∨ z.im < 0 ∨ z = 0"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCommGroup α", "s t : Set α", "a : α", "hs : IsUpperSet s"], "goal": "IsUpperSet (s / t)"}], "premise": [119790], "state_str": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns t : Set α\na : α\nhs : IsUpperSet s\n⊢ IsUpperSet (s / t)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCommGroup α", "s t : Set α", "a : α", "hs : IsUpperSet s"], "goal": "IsUpperSet (s * t⁻¹)"}], "premise": [103023], "state_str": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns t : Set α\na : α\nhs : IsUpperSet s\n⊢ IsUpperSet (s * t⁻¹)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : Group G", "a✝ b c d : G", "n✝ : ℤ", "a : G", "n : ℤ"], "goal": "a ^ (1 + n) = a * a ^ n"}], "premise": [118036, 119792], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : Group G\na✝ b c d : G\nn✝ : ℤ\na : G\nn : ℤ\n⊢ a ^ (1 + n) = a * a ^ n"} +{"state": [{"context": ["a b c d m n k : ℕ", "p q : ℕ → Prop"], "goal": "m.sqrt < n ↔ m < n * n"}], "premise": [14324, 145285], "state_str": "a b c d m n k : ℕ\np q : ℕ → Prop\n⊢ m.sqrt < n ↔ m < n * n"} +{"state": [{"context": ["V : Type u_1", "R : Type u_2", "inst✝³ : Fintype V", "inst✝² : DecidableEq V", "G : SimpleGraph V", "inst✝¹ : DecidableRel G.Adj", "inst✝ : NonAssocSemiring R", "v : V", "vec : V → R"], "goal": "(degMatrix R G *ᵥ vec) v = ↑(G.degree v) * vec v"}], "premise": [142316], "state_str": "V : Type u_1\nR : Type u_2\ninst✝³ : Fintype V\ninst✝² : DecidableEq V\nG : SimpleGraph V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : NonAssocSemiring R\nv : V\nvec : V → R\n⊢ (degMatrix R G *ᵥ vec) v = ↑(G.degree v) * vec v"} +{"state": [{"context": ["α : Type u_1", "r : α → α → Prop", "inst✝¹ : DecidableEq α", "inst✝ : IsIrrefl α r", "s t u : Multiset α", "a : α", "hr : ∀ a' ∈ u, r a' a", "he : s + {a} = t + u"], "goal": "InvImage (Finsupp.Lex (rᶜ ⊓ fun x x_1 => x ≠ x_1) fun x x_1 => x < x_1) (⇑toFinsupp) s t"}], "premise": [1681], "state_str": "case intro.intro.intro\nα : Type u_1\nr : α → α → Prop\ninst✝¹ : DecidableEq α\ninst✝ : IsIrrefl α r\ns t u : Multiset α\na : α\nhr : ∀ a' ∈ u, r a' a\nhe : s + {a} = t + u\n⊢ InvImage (Finsupp.Lex (rᶜ ⊓ fun x x_1 => x ≠ x_1) fun x x_1 => x < x_1) (⇑toFinsupp) s t"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "D : Type uD", "inst✝⁹ : NormedAddCommGroup D", "inst✝⁸ : NormedSpace 𝕜 D", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type u_2", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "b : E × F → G", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "f₂ : 𝕜 → F", "s₂ : Set 𝕜", "n : ℕ", "hs : IsOpen s₂"], "goal": "ContDiffOn 𝕜 (↑(n + 1)) f₂ s₂ ↔ DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 (↑n) (deriv f₂) s₂"}], "premise": [45692, 51755], "state_str": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type u_2\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nn : ℕ\nhs : IsOpen s₂\n⊢ ContDiffOn 𝕜 (↑(n + 1)) f₂ s₂ ↔ DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 (↑n) (deriv f₂) s₂"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "D : Type uD", "inst✝⁹ : NormedAddCommGroup D", "inst✝⁸ : NormedSpace 𝕜 D", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type u_2", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "b : E × F → G", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "f₂ : 𝕜 → F", "s₂ : Set 𝕜", "n : ℕ", "hs : IsOpen s₂"], "goal": "DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 (↑n) (derivWithin f₂ s₂) s₂ ↔ DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 (↑n) (deriv f₂) s₂"}], "premise": [1713, 44399, 48358], "state_str": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type u_2\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nn : ℕ\nhs : IsOpen s₂\n⊢ DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 (↑n) (derivWithin f₂ s₂) s₂ ↔\n DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 (↑n) (deriv f₂) s₂"} +{"state": [{"context": ["R : Type u", "a b : R", "m n✝ : ℕ", "inst✝ : Semiring R", "p q : R[X]", "n : ℕ", "c : R", "h : c ≠ 0"], "goal": "(C c * X ^ n).support = {n}"}], "premise": [101287, 101305], "state_str": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nc : R\nh : c ≠ 0\n⊢ (C c * X ^ n).support = {n}"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "E : Type v", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : LocallyCompactSpace 𝕜", "inst✝ : FiniteDimensional 𝕜 E"], "goal": "ProperSpace E"}], "premise": [43783], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type v\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : LocallyCompactSpace 𝕜\ninst✝ : FiniteDimensional 𝕜 E\n⊢ ProperSpace E"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "E : Type v", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝¹ : LocallyCompactSpace 𝕜", "inst✝ : FiniteDimensional 𝕜 E", "this : ProperSpace 𝕜"], "goal": "ProperSpace E"}], "premise": [2100, 86365], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type v\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : LocallyCompactSpace 𝕜\ninst✝ : FiniteDimensional 𝕜 E\nthis : ProperSpace 𝕜\n⊢ ProperSpace E"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "E : Type v", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace 𝕜 E", "inst✝�� : LocallyCompactSpace 𝕜", "inst✝ : FiniteDimensional 𝕜 E", "this : ProperSpace 𝕜", "e : E ≃L[𝕜] Fin (finrank 𝕜 E) → 𝕜 := ContinuousLinearEquiv.ofFinrankEq ⋯"], "goal": "ProperSpace E"}], "premise": [40711, 60858, 68917, 68938], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type v\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : LocallyCompactSpace 𝕜\ninst✝ : FiniteDimensional 𝕜 E\nthis : ProperSpace 𝕜\ne : E ≃L[𝕜] Fin (finrank 𝕜 E) → 𝕜 := ContinuousLinearEquiv.ofFinrankEq ⋯\n⊢ ProperSpace E"} +{"state": [{"context": ["n : ℕ", "x : ℝ"], "goal": "(aeval x) (hermite n) = (-1) ^ n * deriv^[n] (fun y => Real.exp (-(y ^ 2 / 2))) x * Real.exp (x ^ 2 / 2)"}], "premise": [74637, 149217], "state_str": "n : ℕ\nx : ℝ\n⊢ (aeval x) (hermite n) = (-1) ^ n * deriv^[n] (fun y => Real.exp (-(y ^ 2 / 2))) x * Real.exp (x ^ 2 / 2)"} +{"state": [{"context": ["n : ℕ", "x : ℝ"], "goal": "(-1) ^ n * deriv^[n] (fun y => Real.exp (-(y ^ 2 / 2))) x / (Real.exp (x ^ 2 / 2))⁻¹ = (-1) ^ n * deriv^[n] (fun y => Real.exp (-(y ^ 2 / 2))) x * Real.exp (x ^ 2 / 2)"}], "premise": [149216], "state_str": "n : ℕ\nx : ℝ\n⊢ (-1) ^ n * deriv^[n] (fun y => Real.exp (-(y ^ 2 / 2))) x / (Real.exp (x ^ 2 / 2))⁻¹ =\n (-1) ^ n * deriv^[n] (fun y => Real.exp (-(y ^ 2 / 2))) x * Real.exp (x ^ 2 / 2)"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "S : Type u_3", "inst✝⁴ : Ring R", "inst✝³ : Ring S", "M : Type u_4", "inst✝² : AddCommGroup M", "inst✝¹ : Module R M", "inst✝ : IsSimpleModule R M"], "goal": "∃ y, 0 ≠ y"}], "premise": [18895], "state_str": "ι : Type u_1\nR : Type u_2\nS : Type u_3\ninst✝⁴ : Ring R\ninst✝³ : Ring S\nM : Type u_4\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsSimpleModule R M\n⊢ ∃ y, 0 ≠ y"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "S : Type u_3", "inst✝⁴ : Ring R", "inst✝³ : Ring S", "M : Type u_4", "inst✝² : AddCommGroup M", "inst✝¹ : Module R M", "inst✝ : IsSimpleModule R M", "h : ⊥ ≠ ⊤"], "goal": "∃ y, 0 ≠ y"}], "premise": [53688], "state_str": "ι : Type u_1\nR : Type u_2\nS : Type u_3\ninst✝⁴ : Ring R\ninst✝³ : Ring S\nM : Type u_4\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsSimpleModule R M\nh : ⊥ ≠ ⊤\n⊢ ∃ y, 0 ≠ y"} +{"state": [{"context": ["ι : Type u_1", "R : Type u_2", "S : Type u_3", "inst✝⁴ : Ring R", "inst✝³ : Ring S", "M : Type u_4", "inst✝² : AddCommGroup M", "inst✝¹ : Module R M", "inst✝ : IsSimpleModule R M", "h : ∀ (y : M), 0 = y", "x : M"], "goal": "x ∈ ⊥ ↔ x ∈ ⊤"}], "premise": [109877, 109891], "state_str": "case h\nι : Type u_1\nR : Type u_2\nS : Type u_3\ninst✝⁴ : Ring R\ninst✝³ : Ring S\nM : Type u_4\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsSimpleModule R M\nh : ∀ (y : M), 0 = y\nx : M\n⊢ x ∈ ⊥ ↔ x ∈ ⊤"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "inst✝³ : Preadditive C", "β γ : Type", "inst✝² : Finite β", "ε : β ≃ γ", "f : γ → C", "inst✝¹ : HasBiproduct f", "inst✝ : HasBiproduct (f ∘ ⇑ε)"], "goal": "((lift fun b => π f (ε b)) ≫ desc fun b => ι f (ε b)) = 𝟙 (⨁ f)"}], "premise": [141384], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\ninst✝³ : Preadditive C\nβ γ : Type\ninst✝² : Finite β\nε : β ≃ γ\nf : γ → C\ninst✝¹ : HasBiproduct f\ninst✝ : HasBiproduct (f ∘ ⇑ε)\n⊢ ((lift fun b => π f (ε b)) ≫ desc fun b => ι f (ε b)) = 𝟙 (⨁ f)"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "inst✝³ : Preadditive C", "β γ : Type", "inst✝² : Finite β", "ε : β ≃ γ", "f : γ → C", "inst✝¹ : HasBiproduct f", "inst✝ : HasBiproduct (f ∘ ⇑ε)", "val✝ : Fintype β", "g g' : γ"], "goal": "ι f g' ≫ ((lift fun b => π f (ε b)) ≫ desc fun b => ι f (ε b)) ≫ π f g = ι f g' ≫ 𝟙 (⨁ f) ≫ π f g"}], "premise": [70762, 91609, 91610, 92738, 96186, 96251, 127094], "state_str": "case intro.w.w\nC : Type u\ninst✝⁴ : Category.{v, u} C\ninst✝³ : Preadditive C\nβ γ : Type\ninst✝² : Finite β\nε : β ≃ γ\nf : γ → C\ninst✝¹ : HasBiproduct f\ninst✝ : HasBiproduct (f ∘ ⇑ε)\nval✝ : Fintype β\ng g' : γ\n⊢ ι f g' ≫ ((lift fun b => π f (ε b)) ≫ desc fun b => ι f (ε b)) ≫ π f g = ι f g' ≫ 𝟙 (⨁ f) ≫ π f g"} +{"state": [{"context": ["C : Type u", "inst✝⁴ : Category.{v, u} C", "D : Type u'", "inst✝³ : Category.{v', u'} D", "J : Type u₁", "inst✝² : Category.{v₁, u₁} J", "K : Type u₂", "inst✝¹ : Category.{v₂, u₂} K", "inst✝ : HasLimitsOfShape J C", "F : J ⥤ K ⥤ C", "j : J", "k : K"], "goal": "(preservesLimitIso ((evaluation K C).obj k) F).inv ≫ (limit.π F j).app k = limit.π (F ⋙ (evaluation K C).obj k) j"}], "premise": [88767], "state_str": "C : Type u\ninst✝⁴ : Category.{v, u} C\nD : Type u'\ninst✝³ : Category.{v', u'} D\nJ : Type u₁\ninst✝² : Category.{v₁, u₁} J\nK : Type u₂\ninst✝¹ : Category.{v₂, u₂} K\ninst✝ : HasLimitsOfShape J C\nF : J ⥤ K ⥤ C\nj : J\nk : K\n⊢ (preservesLimitIso ((evaluation K C).obj k) F).inv ≫ (limit.π F j).app k = limit.π (F ⋙ (evaluation K C).obj k) j"} +{"state": [{"context": ["V : Type u", "V' : Type v", "V'' : Type w", "G : SimpleGraph V", "G' : SimpleGraph V'", "G'' : SimpleGraph V''", "u✝ v✝ w✝ u v w : V", "p : G.Walk u v", "q : G.Walk v w", "h : (p.append q).IsTrail"], "goal": "q.IsTrail"}], "premise": [50950, 52057, 129744], "state_str": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu✝ v✝ w✝ u v w : V\np : G.Walk u v\nq : G.Walk v w\nh : (p.append q).IsTrail\n⊢ q.IsTrail"} +{"state": [{"context": ["V : Type u", "V' : Type v", "V'' : Type w", "G : SimpleGraph V", "G' : SimpleGraph V'", "G'' : SimpleGraph V''", "u✝ v✝ w✝ u v w : V", "p : G.Walk u v", "q : G.Walk v w", "h : p.edges.Nodup ∧ q.edges.Nodup ∧ p.edges.Disjoint q.edges"], "goal": "q.IsTrail"}], "premise": [2106, 2107], "state_str": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu✝ v✝ w✝ u v w : V\np : G.Walk u v\nq : G.Walk v w\nh : p.edges.Nodup ∧ q.edges.Nodup ∧ p.edges.Disjoint q.edges\n⊢ q.IsTrail"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "Z : Type u_3", "inst✝¹ : PseudoMetricSpace X", "inst✝ : PseudoMetricSpace Y", "C r : ℝ≥0", "f : X → Y", "hf : HolderWith C r f", "x y : X", "d : ℝ≥0", "hd : nndist x y ≤ d"], "goal": "nndist (f x) (f y) ≤ C * d ^ ↑r"}], "premise": [39753, 61139, 143204, 143216, 146609], "state_str": "X : Type u_1\nY : Type u_2\nZ : Type u_3\ninst✝¹ : PseudoMetricSpace X\ninst✝ : PseudoMetricSpace Y\nC r : ℝ≥0\nf : X → Y\nhf : HolderWith C r f\nx y : X\nd : ℝ≥0\nhd : nndist x y ≤ d\n⊢ nndist (f x) (f y) ≤ C * d ^ ↑r"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "Z : Type u_3", "inst✝¹ : PseudoMetricSpace X", "inst✝ : PseudoMetricSpace Y", "C r : ℝ≥0", "f : X → Y", "hf : HolderWith C r f", "x y : X", "d : ℝ≥0", "hd : nndist x y ≤ d"], "goal": "edist (f x) (f y) ≤ ↑C * ↑d ^ ↑r"}], "premise": [60745], "state_str": "X : Type u_1\nY : Type u_2\nZ : Type u_3\ninst✝¹ : PseudoMetricSpace X\ninst✝ : PseudoMetricSpace Y\nC r : ℝ≥0\nf : X → Y\nhf : HolderWith C r f\nx y : X\nd : ℝ≥0\nhd : nndist x y ≤ d\n⊢ edist (f x) (f y) ≤ ↑C * ↑d ^ ↑r"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "Z : Type u_3", "inst✝¹ : PseudoMetricSpace X", "inst✝ : PseudoMetricSpace Y", "C r : ℝ≥0", "f : X → Y", "hf : HolderWith C r f", "x y : X", "d : ℝ≥0", "hd : nndist x y ≤ d"], "goal": "edist x y ≤ ↑d"}], "premise": [61139, 143204], "state_str": "X : Type u_1\nY : Type u_2\nZ : Type u_3\ninst✝¹ : PseudoMetricSpace X\ninst✝ : PseudoMetricSpace Y\nC r : ℝ≥0\nf : X → Y\nhf : HolderWith C r f\nx y : X\nd : ℝ≥0\nhd : nndist x y ≤ d\n⊢ edist x y ≤ ↑d"} +{"state": [{"context": ["α : Type u_1", "M : Matroid α", "B B₁ B₂ : Set α", "hB₁ : M.Base B₁", "hB₂ : M.Base B₂"], "goal": "B₁.encard = B₂.encard"}], "premise": [139463, 139480], "state_str": "α : Type u_1\nM : Matroid α\nB B₁ B₂ : Set α\nhB₁ : M.Base B₁\nhB₂ : M.Base B₂\n⊢ B₁.encard = B₂.encard"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasStrictInitialObjects C", "I X : C", "inst✝ : HasBinaryProduct X I", "hI : IsInitial I"], "goal": "X ⨯ I ≅ I"}], "premise": [93088], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasStrictInitialObjects C\nI X : C\ninst✝ : HasBinaryProduct X I\nhI : IsInitial I\n⊢ X ⨯ I ≅ I"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝³ : SemilatticeInf α", "inst✝² : SemilatticeInf β", "ι : Sort u_4", "S : Set (Set α)", "f✝ : ι → Set α", "s t : Set α", "a✝ : α", "inst✝¹ : FunLike F α β", "inst✝ : InfHomClass F α β", "hs : InfClosed s", "f : F", "a : α", "ha : a ∈ s", "b : α", "hb : b ∈ s"], "goal": "f a ⊓ f b ∈ ⇑f '' s"}], "premise": [11638], "state_str": "case intro.intro.intro.intro\nF : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝³ : SemilatticeInf α\ninst✝² : SemilatticeInf β\nι : Sort u_4\nS : Set (Set α)\nf✝ : ι → Set α\ns t : Set α\na✝ : α\ninst✝¹ : FunLike F α β\ninst✝ : InfHomClass F α β\nhs : InfClosed s\nf : F\na : α\nha : a ∈ s\nb : α\nhb : b ∈ s\n⊢ f a ⊓ f b ∈ ⇑f '' s"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝³ : SemilatticeInf α", "inst✝² : SemilatticeInf β", "ι : Sort u_4", "S : Set (Set α)", "f✝ : ι → Set α", "s t : Set α", "a✝ : α", "inst✝¹ : FunLike F α β", "inst✝ : InfHomClass F α β", "hs : InfClosed s", "f : F", "a : α", "ha : a ∈ s", "b : α", "hb : b ∈ s"], "goal": "f (a ⊓ b) ∈ ⇑f '' s"}], "premise": [131593], "state_str": "case intro.intro.intro.intro\nF : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝³ : SemilatticeInf α\ninst✝² : SemilatticeInf β\nι : Sort u_4\nS : Set (Set α)\nf✝ : ι → Set α\ns t : Set α\na✝ : α\ninst✝¹ : FunLike F α β\ninst✝ : InfHomClass F α β\nhs : InfClosed s\nf : F\na : α\nha : a ∈ s\nb : α\nhb : b ∈ s\n⊢ f (a ⊓ b) ∈ ⇑f '' s"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : InnerProductSpace ℝ E", "n : ℕ", "inst✝ : Fact (finrank ℝ E = n + 1)", "v : ↑(sphere 0 1)", "x : EuclideanSpace ℝ (Fin n)"], "goal": "↑(↑(stereographic' n v).symm x) = let U := (OrthonormalBasis.fromOrthogonalSpanSingleton n ⋯).repr; (‖↑(U.symm x)‖ ^ 2 + 4)⁻¹ • 4 • ↑(U.symm x) + (‖↑(U.symm x)‖ ^ 2 + 4)⁻¹ • (‖↑(U.symm x)‖ ^ 2 - 4) • ↑v"}], "premise": [36751, 42168], "state_str": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace ℝ E\nn : ℕ\ninst✝ : Fact (finrank ℝ E = n + 1)\nv : ↑(sphere 0 1)\nx : EuclideanSpace ℝ (Fin n)\n⊢ ↑(↑(stereographic' n v).symm x) =\n let U := (OrthonormalBasis.fromOrthogonalSpanSingleton n ⋯).repr;\n (‖↑(U.symm x)‖ ^ 2 + 4)⁻¹ • 4 • ↑(U.symm x) + (‖↑(U.symm x)‖ ^ 2 + 4)⁻¹ • (‖↑(U.symm x)‖ ^ 2 - 4) • ↑v"} +{"state": [{"context": ["α : Type u_1", "P : α → Prop", "size✝ : ℕ", "l : Ordnode α", "x : α", "r : Ordnode α"], "goal": "All P (node size✝ l x r) ↔ ∀ (x_1 : α), Emem x_1 (node size✝ l x r) → P x_1"}], "premise": [1998, 2026], "state_str": "α : Type u_1\nP : α → Prop\nsize✝ : ℕ\nl : Ordnode α\nx : α\nr : Ordnode α\n⊢ All P (node size✝ l x r) ↔ ∀ (x_1 : α), Emem x_1 (node size✝ l x r) → P x_1"} +{"state": [{"context": ["K : Type u_1", "v : K", "n : ℕ", "inst✝¹ : LinearOrderedField K", "inst✝ : FloorRing K", "b : K", "nth_partDenom_eq : (of v).partDens.get? n = some b"], "goal": "b * (of v).dens n ≤ (of v).dens (n + 1)"}], "premise": [116137, 116139], "state_str": "K : Type u_1\nv : K\nn : ℕ\ninst✝¹ : LinearOrderedField K\ninst✝ : FloorRing K\nb : K\nnth_partDenom_eq : (of v).partDens.get? n = some b\n⊢ b * (of v).dens n ≤ (of v).dens (n + 1)"} +{"state": [{"context": ["K : Type u_1", "v : K", "n : ℕ", "inst✝¹ : LinearOrderedField K", "inst✝ : FloorRing K", "b : K", "nth_partDenom_eq : (of v).partDens.get? n = some b"], "goal": "b * ((of v).contsAux (n + 1)).b ≤ (of v).dens (n + 1)"}], "premise": [118585], "state_str": "K : Type u_1\nv : K\nn : ℕ\ninst✝¹ : LinearOrderedField K\ninst✝ : FloorRing K\nb : K\nnth_partDenom_eq : (of v).partDens.get? n = some b\n⊢ b * ((of v).contsAux (n + 1)).b ≤ (of v).dens (n + 1)"} +{"state": [{"context": ["R : Type u_1", "inst✝² : CommMonoid R", "R' : Type u_2", "inst✝¹ : CommRing R'", "R'' : Type u_3", "inst✝ : CommRing R''", "f : R' →+* R''", "hf : Function.Injective ⇑f"], "goal": "Function.Injective fun x => x.ringHomComp f"}], "premise": [23020, 23024, 117118, 117125], "state_str": "R : Type u_1\ninst✝² : CommMonoid R\nR' : Type u_2\ninst✝¹ : CommRing R'\nR'' : Type u_3\ninst✝ : CommRing R''\nf : R' →+* R''\nhf : Function.Injective ⇑f\n⊢ Function.Injective fun x => x.ringHomComp f"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : LinearOrderedRing α", "inst✝ : FloorRing α", "z : ℤ", "a : α", "ha : fract a ≠ 0"], "goal": "↑⌈a⌉ - a = 1 - fract a"}], "premise": [1673, 1990, 105210], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na : α\nha : fract a ≠ 0\n⊢ ↑⌈a⌉ - a = 1 - fract a"} +{"state": [{"context": ["K : Type u_1", "L : Type u_2", "L' : Type u_3", "inst✝⁴ : Field K", "inst✝³ : Field L", "inst✝² : Field L'", "inst✝¹ : Algebra K L", "inst✝ : Algebra K L'", "S✝ S S' : IntermediateField K L", "h : S.toSubalgebra = S'.toSubalgebra", "x✝ : L"], "goal": "x✝ ∈ S ↔ x✝ ∈ S'"}], "premise": [1713, 88419], "state_str": "case h\nK : Type u_1\nL : Type u_2\nL' : Type u_3\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field L'\ninst✝¹ : Algebra K L\ninst✝ : Algebra K L'\nS✝ S S' : IntermediateField K L\nh : S.toSubalgebra = S'.toSubalgebra\nx✝ : L\n⊢ x✝ ∈ S ↔ x✝ ∈ S'"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g : α → β", "f : α → Multiset β", "s : Finset α", "b : β"], "goal": "b ∈ ∑ x ∈ s, f x ↔ ∃ a ∈ s, b ∈ f a"}], "premise": [1995, 2027, 126901, 138847], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\nf : α → Multiset β\ns : Finset α\nb : β\n⊢ b ∈ ∑ x ∈ s, f x ↔ ∃ a ∈ s, b ∈ f a"} +{"state": [{"context": ["m n : ℕ+"], "goal": "m.gcd n = 1 → n.gcd m = 1"}], "premise": [141185], "state_str": "m n : ℕ+\n⊢ m.gcd n = 1 → n.gcd m = 1"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝ : LinearOrderedField 𝕜", "s : Set 𝕜", "f : 𝕜 → 𝕜", "hf : ConvexOn 𝕜 s f", "a x y : 𝕜", "ha : a ∈ s", "hx : x ∈ s", "hy : y ∈ s", "hxa : x ≠ a", "hya : y ≠ a", "hxy : x ≤ y"], "goal": "(f x - f a) / (x - a) ≤ (f y - f a) / (y - a)"}], "premise": [11248], "state_str": "𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa : x ≠ a\nhya : y ≠ a\nhxy : x ≤ y\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝ : LinearOrderedField 𝕜", "s : Set 𝕜", "f : 𝕜 → 𝕜", "hf : ConvexOn 𝕜 s f", "a x y : 𝕜", "ha : a ∈ s", "hx : x ∈ s", "hy : y ∈ s", "hxa : x ≠ a", "hya : y ≠ a", "hxy✝ : x ≤ y", "hxy : x < y"], "goal": "(f x - f a) / (x - a) ≤ (f y - f a) / (y - a)"}], "premise": [14320], "state_str": "case inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)"} +{"state": [{"context": ["M : Type u_1", "inst✝⁵ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁴ : CancelCommMonoidWithZero N", "inst✝³ : UniqueFactorizationMonoid N", "inst✝² : UniqueFactorizationMonoid M", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : Associates M", "n : Associates N", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : ↑(Set.Iic m) ≃o ↑(Set.Iic n)"], "goal": "multiplicity p m = multiplicity (↑(d ⟨p, ⋯⟩)) n"}], "premise": [14296, 77032], "state_str": "M : Type u_1\ninst✝⁵ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁴ : CancelCommMonoidWithZero N\ninst✝³ : UniqueFactorizationMonoid N\ninst✝² : UniqueFactorizationMonoid M\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ multiplicity p m = multiplicity (↑(d ⟨p, ⋯⟩)) n"} +{"state": [{"context": ["M : Type u_1", "inst✝⁵ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁴ : CancelCommMonoidWithZero N", "inst✝³ : UniqueFactorizationMonoid N", "inst✝² : UniqueFactorizationMonoid M", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : Associates M", "n : Associates N", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : ↑(Set.Iic m) ≃o ↑(Set.Iic n)"], "goal": "multiplicity (↑(d ⟨p, ⋯⟩)) n ≤ multiplicity p m"}], "premise": [11076, 76126, 137134], "state_str": "M : Type u_1\ninst✝⁵ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁴ : CancelCommMonoidWithZero N\ninst✝³ : UniqueFactorizationMonoid N\ninst✝² : UniqueFactorizationMonoid M\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ multiplicity (↑(d ⟨p, ⋯⟩)) n ≤ multiplicity p m"} +{"state": [{"context": ["M : Type u_1", "inst✝⁵ : CancelCommMonoidWithZero M", "N : Type u_2", "inst✝⁴ : CancelCommMonoidWithZero N", "inst✝³ : UniqueFactorizationMonoid N", "inst✝² : UniqueFactorizationMonoid M", "inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "m p : Associates M", "n : Associates N", "hn : n ≠ 0", "hp : p ∈ normalizedFactors m", "d : ↑(Set.Iic m) ≃o ↑(Set.Iic n)", "this : DecidableEq (Associates N) := Classical.decEq (Associates N)"], "goal": "multiplicity (↑(d ⟨p, ⋯⟩)) n ≤ multiplicity (↑(d.symm (d ⟨p, ⋯⟩))) m"}], "premise": [77031, 77032, 137133], "state_str": "M : Type u_1\ninst✝⁵ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝⁴ : CancelCommMonoidWithZero N\ninst✝³ : UniqueFactorizationMonoid N\ninst✝² : UniqueFactorizationMonoid M\ninst✝¹ : DecidableRel fun x x_1 => x ∣ x_1\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nthis : DecidableEq (Associates N) := Classical.decEq (Associates N)\n⊢ multiplicity (↑(d ⟨p, ⋯⟩)) n ≤ multiplicity (↑(d.symm (d ⟨p, ⋯⟩))) m"} +{"state": [{"context": ["S : Set ℝ", "f : ℝ → ℝ", "x y f' : ℝ", "hfc : ConcaveOn ℝ S f", "hx : x ∈ S", "hy : y ∈ S", "hxy : x < y", "hf' : HasDerivWithinAt f f' (Iio y) y"], "goal": "f' ≤ slope f x y"}], "premise": [35087, 44476, 82753, 104741, 119769, 120673], "state_str": "S : Set ℝ\nf : ℝ → ℝ\nx y f' : ℝ\nhfc : ConcaveOn ℝ S f\nhx : x ∈ S\nhy : y ∈ S\nhxy : x < y\nhf' : HasDerivWithinAt f f' (Iio y) y\n⊢ f' ≤ slope f x y"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "T : Type w", "ι : Type y", "a b : R", "m n : ℕ", "inst✝¹ : Semiring R", "p q r✝ : R[X]", "x : R", "S : Type u_1", "inst✝ : Semiring S", "f : R →+* S", "r : R"], "goal": "eval₂ f (f r) p = f (eval r p)"}], "premise": [102824, 102860, 126889], "state_str": "R : Type u\nS✝ : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q r✝ : R[X]\nx : R\nS : Type u_1\ninst✝ : Semiring S\nf : R →+* S\nr : R\n⊢ eval₂ f (f r) p = f (eval r p)"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "T : Type w", "ι : Type y", "a b : R", "m n : ℕ", "inst✝¹ : Semiring R", "p q r✝ : R[X]", "x : R", "S : Type u_1", "inst✝ : Semiring S", "f : R →+* S", "r : R"], "goal": "∑ n ∈ p.support, f (p.coeff n) * f r ^ n = ∑ x ∈ p.support, f (p.coeff x * r ^ x)"}], "premise": [121567, 121592], "state_str": "R : Type u\nS✝ : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q r✝ : R[X]\nx : R\nS : Type u_1\ninst✝ : Semiring S\nf : R →+* S\nr : R\n⊢ ∑ n ∈ p.support, f (p.coeff n) * f r ^ n = ∑ x ∈ p.support, f (p.coeff x * r ^ x)"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "inst✝¹² : NontriviallyNormedField 𝕜", "H : Type u_3", "inst✝¹¹ : TopologicalSpace H", "E : Type u_4", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace 𝕜 E", "I : ModelWithCorners 𝕜 E H", "G : Type u_5", "inst✝⁸ : CommMonoid G", "inst✝⁷ : TopologicalSpace G", "inst✝⁶ : ChartedSpace H G", "inst✝⁵ : SmoothMul I G", "E' : Type u_6", "inst✝⁴ : NormedAddCommGroup E'", "inst✝³ : NormedSpace 𝕜 E'", "H' : Type u_7", "inst✝² : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M : Type u_8", "inst✝¹ : TopologicalSpace M", "inst✝ : ChartedSpace H' M", "s : Set M", "x x₀ : M", "t : Finset ι", "f : ι → M → G", "n : ℕ∞", "p : ι → Prop", "h : ∀ i ∈ t, ContMDiffAt I' I n (f i) x₀"], "goal": "ContMDiffAt I' I n (fun x => ∏ i ∈ t, f i x) x₀"}], "premise": [69543], "state_str": "ι : Type u_1\n𝕜 : Type u_2\ninst✝¹² : NontriviallyNormedField 𝕜\nH : Type u_3\ninst✝¹¹ : TopologicalSpace H\nE : Type u_4\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace 𝕜 E\nI : ModelWithCorners 𝕜 E H\nG : Type u_5\ninst✝⁸ : CommMonoid G\ninst✝⁷ : TopologicalSpace G\ninst✝⁶ : ChartedSpace H G\ninst✝⁵ : SmoothMul I G\nE' : Type u_6\ninst✝⁴ : NormedAddCommGroup E'\ninst✝³ : NormedSpace 𝕜 E'\nH' : Type u_7\ninst✝² : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM : Type u_8\ninst✝¹ : TopologicalSpace M\ninst✝ : ChartedSpace H' M\ns : Set M\nx x₀ : M\nt : Finset ι\nf : ι → M → G\nn : ℕ∞\np : ι → Prop\nh : ∀ i ∈ t, ContMDiffAt I' I n (f i) x₀\n⊢ ContMDiffAt I' I n (fun x => ∏ i ∈ t, f i x) x₀"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "inst✝¹² : NontriviallyNormedField 𝕜", "H : Type u_3", "inst✝¹¹ : TopologicalSpace H", "E : Type u_4", "inst✝¹⁰ : NormedAddCommGroup E", "inst✝⁹ : NormedSpace 𝕜 E", "I : ModelWithCorners 𝕜 E H", "G : Type u_5", "inst✝⁸ : CommMonoid G", "inst✝⁷ : TopologicalSpace G", "inst✝⁶ : ChartedSpace H G", "inst✝⁵ : SmoothMul I G", "E' : Type u_6", "inst✝⁴ : NormedAddCommGroup E'", "inst✝³ : NormedSpace 𝕜 E'", "H' : Type u_7", "inst✝² : TopologicalSpace H'", "I' : ModelWithCorners 𝕜 E' H'", "M : Type u_8", "inst✝¹ : TopologicalSpace M", "inst✝ : ChartedSpace H' M", "s : Set M", "x x₀ : M", "t : Finset ι", "f : ι → M → G", "n : ℕ∞", "p : ι → Prop", "h : ∀ i ∈ t, ContMDiffWithinAt I' I n (f i) Set.univ x₀"], "goal": "ContMDiffWithinAt I' I n (fun x => ∏ i ∈ t, f i x) Set.univ x₀"}], "premise": [67621], "state_str": "ι : Type u_1\n𝕜 : Type u_2\ninst✝¹² : NontriviallyNormedField 𝕜\nH : Type u_3\ninst✝¹¹ : TopologicalSpace H\nE : Type u_4\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace 𝕜 E\nI : ModelWithCorners 𝕜 E H\nG : Type u_5\ninst✝⁸ : CommMonoid G\ninst✝⁷ : TopologicalSpace G\ninst✝⁶ : ChartedSpace H G\ninst✝⁵ : SmoothMul I G\nE' : Type u_6\ninst✝⁴ : NormedAddCommGroup E'\ninst✝³ : NormedSpace 𝕜 E'\nH' : Type u_7\ninst✝² : TopologicalSpace H'\nI' : ModelWithCorners 𝕜 E' H'\nM : Type u_8\ninst✝¹ : TopologicalSpace M\ninst✝ : ChartedSpace H' M\ns : Set M\nx x₀ : M\nt : Finset ι\nf : ι → M → G\nn : ℕ∞\np : ι → Prop\nh : ∀ i ∈ t, ContMDiffWithinAt I' I n (f i) Set.univ x₀\n⊢ ContMDiffWithinAt I' I n (fun x => ∏ i ∈ t, f i x) Set.univ x₀"} +{"state": [{"context": ["G : Type u_1", "inst✝⁷ : TopologicalSpace G", "inst✝⁶ : Group G", "inst✝⁵ : TopologicalGroup G", "inst✝⁴ : MeasurableSpace G", "inst✝³ : BorelSpace G", "inst✝² : LocallyCompactSpace G", "μ' μ : Measure G", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure", "s : Set G", "hs : MeasurableSet s", "h's : μ.IsEverywherePos s", "ν : Measure G := μ'.haarScalarFactor μ • μ"], "goal": "μ' s = ν s"}], "premise": [15884, 54090, 55409, 55410, 64785], "state_str": "G : Type u_1\ninst✝⁷ : TopologicalSpace G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : MeasurableSpace G\ninst✝³ : BorelSpace G\ninst✝² : LocallyCompactSpace G\nμ' μ : Measure G\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\ns : Set G\nhs : MeasurableSet s\nh's : μ.IsEverywherePos s\nν : Measure G := μ'.haarScalarFactor μ • μ\n⊢ μ' s = ν s"} +{"state": [{"context": ["G : Type u_1", "inst✝⁷ : TopologicalSpace G", "inst✝⁶ : Group G", "inst✝⁵ : TopologicalGroup G", "inst✝⁴ : MeasurableSpace G", "inst✝³ : BorelSpace G", "inst✝² : LocallyCompactSpace G", "μ' μ : Measure G", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure", "s : Set G", "hs : MeasurableSet s", "h's : μ.IsEverywherePos s", "ν : Measure G := μ'.haarScalarFactor μ • μ", "k : Set G", "k_comp : IsCompact k", "k_closed : IsClosed k", "k_mem : k ∈ 𝓝 1"], "goal": "μ' s = ν s"}], "premise": [55499], "state_str": "case intro.intro.intro\nG : Type u_1\ninst✝⁷ : TopologicalSpace G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : MeasurableSpace G\ninst✝³ : BorelSpace G\ninst✝² : LocallyCompactSpace G\nμ' μ : Measure G\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\ns : Set G\nhs : MeasurableSet s\nh's : μ.IsEverywherePos s\nν : Measure G := μ'.haarScalarFactor μ • μ\nk : Set G\nk_comp : IsCompact k\nk_closed : IsClosed k\nk_mem : k ∈ 𝓝 1\n⊢ μ' s = ν s"} +{"state": [{"context": ["G : Type u_1", "inst✝⁷ : TopologicalSpace G", "inst✝⁶ : Group G", "inst✝⁵ : TopologicalGroup G", "inst✝⁴ : MeasurableSpace G", "inst✝³ : BorelSpace G", "inst✝² : LocallyCompactSpace G", "μ' μ : Measure G", "inst✝¹ : μ.IsHaarMeasure", "inst✝ : μ'.IsHaarMeasure", "s : Set G", "hs : MeasurableSet s", "h's : μ.IsEverywherePos s", "ν : Measure G := μ'.haarScalarFactor μ • μ", "k : Set G", "k_comp : IsCompact k", "k_closed : IsClosed k", "k_mem : k ∈ 𝓝 1", "one_k : 1 ∈ k", "A : Set (Set G) := {t | t ⊆ s ∧ t.PairwiseDisjoint fun x => x • k}", "m : Set G", "m_max : ∀ a ∈ A, m ⊆ a → a = m", "mA : m ⊆ s ∧ m.PairwiseDisjoint fun x => x • k", "sm : s ⊆ ⋃ x ∈ m, x • (k * k⁻¹)"], "goal": "μ' s = ν s"}], "premise": [133383], "state_str": "case intro.intro.intro.intro.intro\nG : Type u_1\ninst✝⁷ : TopologicalSpace G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : MeasurableSpace G\ninst✝³ : BorelSpace G\ninst✝² : LocallyCompactSpace G\nμ' μ : Measure G\ninst✝¹ : μ.IsHaarMeasure\ninst✝ : μ'.IsHaarMeasure\ns : Set G\nhs : MeasurableSet s\nh's : μ.IsEverywherePos s\nν : Measure G := μ'.haarScalarFactor μ • μ\nk : Set G\nk_comp : IsCompact k\nk_closed : IsClosed k\nk_mem : k ∈ 𝓝 1\none_k : 1 ∈ k\nA : Set (Set G) := {t | t ⊆ s ∧ t.PairwiseDisjoint fun x => x • k}\nm : Set G\nm_max : ∀ a ∈ A, m ⊆ a → a = m\nmA : m ⊆ s ∧ m.PairwiseDisjoint fun x => x • k\nsm : s ⊆ ⋃ x ∈ m, x • (k * k⁻¹)\n⊢ μ' s = ν s"} +{"state": [{"context": ["𝕜 : Type u_1", "B : Type u_2", "inst✝¹⁷ : NontriviallyNormedField 𝕜", "inst✝¹⁶ : TopologicalSpace B", "F₁ : Type u_3", "inst✝¹⁵ : NormedAddCommGroup F₁", "inst✝¹⁴ : NormedSpace 𝕜 F₁", "E₁ : B → Type u_4", "inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁)", "F₂ : Type u_5", "inst✝¹² : NormedAddCommGroup F₂", "inst✝¹¹ : NormedSpace 𝕜 F₂", "E₂ : B → Type u_6", "inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂)", "inst✝⁹ : (x : B) → AddCommMonoid (E₁ x)", "inst✝⁸ : (x : B) → Module 𝕜 (E₁ x)", "inst✝⁷ : (x : B) → AddCommMonoid (E₂ x)", "inst✝⁶ : (x : B) → Module 𝕜 (E₂ x)", "inst✝⁵ : (x : B) → TopologicalSpace (E₁ x)", "inst✝⁴ : (x : B) → TopologicalSpace (E₂ x)", "inst✝³ : FiberBundle F₁ E₁", "inst✝² : FiberBundle F₂ E₂", "e₁ : Trivialization F₁ TotalSpace.proj", "e₂ : Trivialization F₂ TotalSpace.proj", "inst✝¹ : Trivialization.IsLinear 𝕜 e₁", "inst✝ : Trivialization.IsLinear 𝕜 e₂", "x : B", "hx : x ∈ (e₁.prod e₂).baseSet", "v₁ : E₁ x", "v₂ : E₂ x"], "goal": "(continuousLinearEquivAt 𝕜 (e₁.prod e₂) x hx) (v₁, v₂) = ((continuousLinearEquivAt 𝕜 e₁ x ⋯).prod (continuousLinearEquivAt 𝕜 e₂ x ⋯)) (v₁, v₂)"}], "premise": [60905], "state_str": "case h.h.mk\n𝕜 : Type u_1\nB : Type u_2\ninst✝¹⁷ : NontriviallyNormedField 𝕜\ninst✝¹⁶ : TopologicalSpace B\nF₁ : Type u_3\ninst✝¹⁵ : NormedAddCommGroup F₁\ninst✝¹⁴ : NormedSpace 𝕜 F₁\nE₁ : B → Type u_4\ninst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁)\nF₂ : Type u_5\ninst✝¹² : NormedAddCommGroup F₂\ninst✝¹¹ : NormedSpace 𝕜 F₂\nE₂ : B → Type u_6\ninst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E���)\ninst✝⁹ : (x : B) → AddCommMonoid (E₁ x)\ninst✝⁸ : (x : B) → Module 𝕜 (E₁ x)\ninst✝⁷ : (x : B) → AddCommMonoid (E₂ x)\ninst✝⁶ : (x : B) → Module 𝕜 (E₂ x)\ninst✝⁵ : (x : B) → TopologicalSpace (E₁ x)\ninst✝⁴ : (x : B) → TopologicalSpace (E₂ x)\ninst✝³ : FiberBundle F₁ E₁\ninst✝² : FiberBundle F₂ E₂\ne₁ : Trivialization F₁ TotalSpace.proj\ne₂ : Trivialization F₂ TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear 𝕜 e₁\ninst✝ : Trivialization.IsLinear 𝕜 e₂\nx : B\nhx : x ∈ (e₁.prod e₂).baseSet\nv₁ : E₁ x\nv₂ : E₂ x\n⊢ (continuousLinearEquivAt 𝕜 (e₁.prod e₂) x hx) (v₁, v₂) =\n ((continuousLinearEquivAt 𝕜 e₁ x ⋯).prod (continuousLinearEquivAt 𝕜 e₂ x ⋯)) (v₁, v₂)"} +{"state": [{"context": ["𝕜 : Type u_1", "B : Type u_2", "inst✝¹⁷ : NontriviallyNormedField 𝕜", "inst✝¹⁶ : TopologicalSpace B", "F₁ : Type u_3", "inst✝¹⁵ : NormedAddCommGroup F₁", "inst✝¹⁴ : NormedSpace 𝕜 F₁", "E₁ : B → Type u_4", "inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁)", "F₂ : Type u_5", "inst✝¹² : NormedAddCommGroup F₂", "inst✝¹¹ : NormedSpace 𝕜 F₂", "E₂ : B → Type u_6", "inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂)", "inst✝⁹ : (x : B) → AddCommMonoid (E₁ x)", "inst✝⁸ : (x : B) → Module 𝕜 (E₁ x)", "inst✝⁷ : (x : B) → AddCommMonoid (E₂ x)", "inst✝⁶ : (x : B) → Module 𝕜 (E₂ x)", "inst✝⁵ : (x : B) → TopologicalSpace (E₁ x)", "inst✝⁴ : (x : B) → TopologicalSpace (E₂ x)", "inst✝³ : FiberBundle F₁ E₁", "inst✝² : FiberBundle F₂ E₂", "e₁ : Trivialization F₁ TotalSpace.proj", "e₂ : Trivialization F₂ TotalSpace.proj", "inst✝¹ : Trivialization.IsLinear 𝕜 e₁", "inst✝ : Trivialization.IsLinear 𝕜 e₂", "x : B", "hx : x ∈ (e₁.prod e₂).baseSet", "v₁ : E₁ x", "v₂ : E₂ x"], "goal": "(fun y => (↑{ toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := ⋯, map_target' := ⋯, left_inv' := ⋯, right_inv' := ⋯, open_source := ⋯, open_target := ⋯, continuousOn_toFun := ⋯, continuousOn_invFun := ⋯, baseSet := e₁.baseSet ∩ e₂.baseSet, open_baseSet := ⋯, source_eq := ⋯, target_eq := ⋯, proj_toFun := ⋯ } { proj := x, snd := y }).2) (v₁, v₂) = ((continuousLinearEquivAt 𝕜 e₁ x ⋯).prod (continuousLinearEquivAt 𝕜 e₂ x ⋯)) (v₁, v₂)"}], "premise": [2106, 2107, 59747], "state_str": "case h.h.mk\n𝕜 : Type u_1\nB : Type u_2\ninst✝¹⁷ : NontriviallyNormedField 𝕜\ninst✝¹⁶ : TopologicalSpace B\nF₁ : Type u_3\ninst✝¹⁵ : NormedAddCommGroup F₁\ninst✝¹⁴ : NormedSpace 𝕜 F₁\nE₁ : B → Type u_4\ninst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁)\nF₂ : Type u_5\ninst✝¹² : NormedAddCommGroup F₂\ninst✝¹¹ : NormedSpace 𝕜 F₂\nE₂ : B → Type u_6\ninst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂)\ninst✝⁹ : (x : B) → AddCommMonoid (E₁ x)\ninst✝⁸ : (x : B) → Module 𝕜 (E₁ x)\ninst✝⁷ : (x : B) → AddCommMonoid (E₂ x)\ninst✝⁶ : (x : B) → Module 𝕜 (E₂ x)\ninst✝⁵ : (x : B) → TopologicalSpace (E₁ x)\ninst✝⁴ : (x : B) → TopologicalSpace (E₂ x)\ninst✝³ : FiberBundle F₁ E₁\ninst✝² : FiberBundle F₂ E₂\ne₁ : Trivialization F₁ TotalSpace.proj\ne₂ : Trivialization F₂ TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear 𝕜 e₁\ninst✝ : Trivialization.IsLinear 𝕜 e₂\nx : B\nhx : x ∈ (e₁.prod e₂).baseSet\nv₁ : E₁ x\nv₂ : E₂ x\n⊢ (fun y =>\n (↑{ toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂,\n source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ,\n map_source' := ⋯, map_target' := ⋯, left_inv' := ⋯, right_inv' := ⋯, open_source := ⋯, open_target := ⋯,\n continuousOn_toFun := ⋯, continuousOn_invFun := ⋯, baseSet := e₁.baseSet ∩ e₂.baseSet,\n open_baseSet := ⋯, source_eq := ⋯, target_eq := ⋯, proj_toFun := ⋯ }\n { proj := x, snd := y }).2)\n (v₁, v₂) =\n ((continuousLinearEquivAt 𝕜 e₁ x ⋯).prod (continuousLinearEquivAt 𝕜 e₂ x ⋯)) (v₁, v₂)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "e : Sym2 α", "f : α → β", "x y : α", "h : diag x = diag y"], "goal": "x = y"}], "premise": [128242], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ne : Sym2 α\nf : α → β\nx y : α\nh : diag x = diag y\n⊢ x = y"} +{"state": [{"context": ["a b c p q✝ q : ℚ"], "goal": "q < 1 ↔ q.num < ↑q.den"}], "premise": [105559], "state_str": "a b c p q✝ q : ℚ\n⊢ q < 1 ↔ q.num < ↑q.den"} +{"state": [{"context": ["L : Language", "M : Type w", "N : Type u_1", "P : Type u_2", "inst✝² : L.Structure M", "inst���¹ : L.Structure N", "inst✝ : L.Structure P", "S : L.Substructure M", "s : Set M", "α : Type u_3", "n : ℕ", "φ : L.BoundedFormula α n", "v : α → ↥⊤", "xs : Fin n → ↥⊤"], "goal": "φ.Realize v xs ↔ φ.Realize (Subtype.val ∘ v) (Subtype.val ∘ xs)"}], "premise": [25344], "state_str": "L : Language\nM : Type w\nN : Type u_1\nP : Type u_2\ninst✝² : L.Structure M\ninst✝¹ : L.Structure N\ninst✝ : L.Structure P\nS : L.Substructure M\ns : Set M\nα : Type u_3\nn : ℕ\nφ : L.BoundedFormula α n\nv : α → ↥⊤\nxs : Fin n → ↥⊤\n⊢ φ.Realize v xs ↔ φ.Realize (Subtype.val ∘ v) (Subtype.val ∘ xs)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "p : Perm α", "x : α", "n : ℕ"], "goal": "(p ^ n) x ∈ p.toList x ↔ x ∈ p.support"}], "premise": [1214, 8871], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\np : Perm α\nx : α\nn : ℕ\n⊢ (p ^ n) x ∈ p.toList x ↔ x ∈ p.support"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "p : Perm α", "x : α", "n : ℕ"], "goal": "x ∈ p.support → p.SameCycle x ((p ^ n) x)"}], "premise": [9935], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\np : Perm α\nx : α\nn : ℕ\n⊢ x ∈ p.support → p.SameCycle x ((p ^ n) x)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "p : Perm α", "x : α", "n : ℕ", "x✝ : x ∈ p.support"], "goal": "p.SameCycle ((p ^ n) x) x"}], "premise": [9952], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\np : Perm α\nx : α\nn : ℕ\nx✝ : x ∈ p.support\n⊢ p.SameCycle ((p ^ n) x) x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))"], "goal": "((r.comp q).comp p n) v = (r.comp (q.comp p) n) v"}], "premise": [34716, 64554, 64579, 126967], "state_str": "case h.H\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\n⊢ ((r.comp q).comp p n) v = (r.comp (q.comp p) n) v"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))"], "goal": "∑ c : (a : Composition n) × Composition a.length, f c = ∑ c : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)), g c"}], "premise": [127284], "state_str": "case h.H\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\n⊢ ∑ c : (a : Composition n) × Composition a.length, f c =\n ∑ c : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)), g c"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))"], "goal": "∑ c : (a : Composition n) × Composition a.length, f c = ∑ i : (a : Composition n) × Composition a.length, g ((sigmaEquivSigmaPi n) i)"}], "premise": [126920], "state_str": "case h.H\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\n⊢ ∑ c : (a : Composition n) × Composition a.length, f c =\n ∑ i : (a : Composition n) × Composition a.length, g ((sigmaEquivSigmaPi n) i)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))", "a : Composition n", "b : Composition a.length", "a✝ : ⟨a, b⟩ ∈ Finset.univ"], "goal": "f ⟨a, b⟩ = g ⟨a.gather b, a.sigmaCompositionAux b⟩"}], "premise": [2100, 34748, 46130], "state_str": "case h.H.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\na : Composition n\nb : Composition a.length\na✝ : ⟨a, b⟩ ∈ Finset.univ\n⊢ f ��a, b⟩ = g ⟨a.gather b, a.sigmaCompositionAux b⟩"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))", "a : Composition n", "b : Composition a.length", "a✝ : ⟨a, b⟩ ∈ Finset.univ", "i : ℕ", "hi1 : i < b.length", "hi2 : i < (a.gather b).length"], "goal": "q.applyComposition ⟨a, b⟩.snd (p.applyComposition ⟨a, b⟩.fst v) ⟨i, hi1⟩ = (q (⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩).length) (p.applyComposition (⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩) (v ∘ ⇑(⟨a.gather b, a.sigmaCompositionAux b⟩.fst.embedding ⟨i, hi2⟩)))"}], "premise": [2100, 34749, 46130], "state_str": "case h.H.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\na : Composition n\nb : Composition a.length\na✝ : ⟨a, b⟩ ∈ Finset.univ\ni : ℕ\nhi1 : i < b.length\nhi2 : i < (a.gather b).length\n⊢ q.applyComposition ⟨a, b⟩.snd (p.applyComposition ⟨a, b⟩.fst v) ⟨i, hi1⟩ =\n (q (⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩).length)\n (p.applyComposition (⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩)\n (v ∘ ⇑(⟨a.gather b, a.sigmaCompositionAux b⟩.fst.embedding ⟨i, hi2⟩)))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))", "a : Composition n", "b : Composition a.length", "a✝ : ⟨a, b⟩ ∈ Finset.univ", "i : ℕ", "hi1 : i < b.length", "hi2 : i < (a.gather b).length", "j : ℕ", "hj1 : j < b.blocksFun ⟨i, hi1⟩", "hj2 : j < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).length"], "goal": "(p.applyComposition ⟨a, b⟩.fst v ∘ ⇑(⟨a, b⟩.snd.embedding ⟨i, hi1⟩)) ⟨j, hj1⟩ = p.applyComposition (⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩) (v ∘ ⇑(⟨a.gather b, a.sigmaCompositionAux b⟩.fst.embedding ⟨i, hi2⟩)) ⟨j, hj2⟩"}], "premise": [2100, 34750, 46130], "state_str": "case h.H.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\na : Composition n\nb : Composition a.length\na✝ : ⟨a, b⟩ ∈ Finset.univ\ni : ℕ\nhi1 : i < b.length\nhi2 : i < (a.gather b).length\nj : ℕ\nhj1 : j < b.blocksFun ⟨i, hi1⟩\nhj2 : j < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).length\n⊢ (p.applyComposition ⟨a, b⟩.fst v ∘ ⇑(⟨a, b⟩.snd.embedding ⟨i, hi1⟩)) ⟨j, hj1⟩ =\n p.applyComposition (⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩)\n (v ∘ ⇑(⟨a.gather b, a.sigmaCompositionAux b⟩.fst.embedding ⟨i, hi2⟩)) ⟨j, hj2⟩"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))", "a : Composition n", "b : Composition a.length", "a✝ : ⟨a, b⟩ ∈ Finset.univ", "i : ℕ", "hi1 : i < b.length", "hi2 : i < (a.gather b).length", "j : ℕ", "hj1 : j < b.blocksFun ⟨i, hi1⟩", "hj2 : j < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).length", "k : ℕ", "hk1 : k < a.blocksFun ((b.embedding ⟨i, hi1⟩) ⟨j, hj1⟩)", "hk2 : k < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).blocksFun ⟨↑⟨j, hj1⟩, ⋯⟩"], "goal": "(v ∘ ⇑(⟨a, b⟩.fst.embedding ((⟨a, b⟩.snd.embedding ⟨i, hi1⟩) ⟨j, hj1⟩))) ⟨k, hk1⟩ = ((v ∘ ⇑(⟨a.gather b, a.sigmaCompositionAux b⟩.fst.embedding ⟨i, hi2⟩)) ∘ ⇑((⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩).embedding ⟨j, hj2⟩)) ⟨k, hk2⟩"}], "premise": [3975], "state_str": "case h.H.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\na : Composition n\nb : Composition a.length\na✝ : ⟨a, b⟩ ∈ Finset.univ\ni : ℕ\nhi1 : i < b.length\nhi2 : i < (a.gather b).length\nj : ℕ\nhj1 : j < b.blocksFun ⟨i, hi1⟩\nhj2 : j < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).length\nk : ℕ\nhk1 : k < a.blocksFun ((b.embedding ⟨i, hi1⟩) ⟨j, hj1⟩)\nhk2 : k < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).blocksFun ⟨↑⟨j, hj1⟩, ⋯⟩\n⊢ (v ∘ ⇑(⟨a, b⟩.fst.embedding ((⟨a, b⟩.snd.embedding ⟨i, hi1⟩) ⟨j, hj1⟩))) ⟨k, hk1⟩ =\n ((v ∘ ⇑(⟨a.gather b, a.sigmaCompositionAux b⟩.fst.embedding ⟨i, hi2⟩)) ∘\n ⇑((⟨a.gather b, a.sigmaCompositionAux b⟩.snd ⟨i, hi2⟩).embedding ⟨j, hj2⟩))\n ⟨k, hk2⟩"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "r : FormalMultilinearSeries 𝕜 G H", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "n : ℕ", "v : Fin n → E", "f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))", "g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))", "a : Composition n", "b : Composition a.length", "a✝ : ⟨a, b⟩ ∈ Finset.univ", "i : ℕ", "hi1 : i < b.length", "hi2 : i < (a.gather b).length", "j : ℕ", "hj1 : j < b.blocksFun ⟨i, hi1⟩", "hj2 : j < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).length", "k : ℕ", "hk1 : k < a.blocksFun ((b.embedding ⟨i, hi1⟩) ⟨j, hj1⟩)", "hk2 : k < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).blocksFun ⟨↑⟨j, hj1⟩, ⋯⟩"], "goal": "a.sizeUpTo (b.sizeUpTo i + j) + k = (a.gather b).sizeUpTo i + ((a.sigmaCompositionAux b ⟨i, hi2⟩).sizeUpTo j + k)"}], "premise": [34751, 119704], "state_str": "case h.H.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nr : FormalMultilinearSeries 𝕜 G H\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nn : ℕ\nv : Fin n → E\nf : (a : Composition n) × Composition a.length → H :=\n fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v))\ng : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H :=\n fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i)))\na : Composition n\nb : Composition a.length\na✝ : ⟨a, b⟩ ∈ Finset.univ\ni : ℕ\nhi1 : i < b.length\nhi2 : i < (a.gather b).length\nj : ℕ\nhj1 : j < b.blocksFun ⟨i, hi1⟩\nhj2 : j < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).length\nk : ℕ\nhk1 : k < a.blocksFun ((b.embedding ⟨i, hi1⟩) ⟨j, hj1⟩)\nhk2 : k < (a.sigmaCompositionAux b ⟨↑⟨i, hi1⟩, ⋯⟩).blocksFun ⟨↑⟨j, hj1⟩, ⋯⟩\n⊢ a.sizeUpTo (b.sizeUpTo i + j) + k = (a.gather b).sizeUpTo i + ((a.sigmaCompositionAux b ⟨i, hi2⟩).sizeUpTo j + k)"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "G'' : Type u_3", "inst✝⁴ : Group G", "inst✝³ : Group G'", "inst✝² : Group G''", "A : Type u_4", "inst✝¹ : AddGroup A", "N : Type u_5", "inst✝ : Group N", "s : Set G", "f : G →* N", "hf : Surjective ⇑f"], "goal": "map f (normalClosure s) = normalClosure (⇑f '' s)"}], "premise": [123071], "state_str": "G : Type u_1\nG' : Type u_2\nG'' : Type u_3\ninst✝⁴ : Group G\ninst✝³ : Group G'\ninst✝² : Group G''\nA : Type u_4\ninst✝¹ : AddGroup A\nN : Type u_5\ninst✝ : Group N\ns : Set G\nf : G →* N\nhf : Surjective ⇑f\n⊢ map f (normalClosure s) = normalClosure (⇑f '' s)"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "G'' : Type u_3", "inst✝⁴ : Group G", "inst✝³ : Group G'", "inst✝² : Group G''", "A : Type u_4", "inst✝¹ : AddGroup A", "N : Type u_5", "inst✝ : Group N", "s : Set G", "f : G →* N", "hf : Surjective ⇑f", "this : (map f (normalClosure s)).Normal"], "goal": "map f (normalClosure s) = normalClosure (⇑f '' s)"}], "premise": [14296], "state_str": "G : Type u_1\nG' : Type u_2\nG'' : Type u_3\ninst✝⁴ : Group G\ninst✝³ : Group G'\ninst✝² : Group G''\nA : Type u_4\ninst✝¹ : AddGroup A\nN : Type u_5\ninst✝ : Group N\ns : Set G\nf : G →* N\nhf : Surjective ⇑f\nthis : (map f (normalClosure s)).Normal\n⊢ map f (normalClosure s) = normalClosure (⇑f '' s)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : LinearOrder α", "E : Type u_2", "inst✝ : PseudoEMetricSpace E", "f : ℝ → E", "s : Set ℝ", "l : ℝ≥0"], "goal": "(∀ ⦃x : ℝ⦄, x ∈ s → ∀ ⦃y : ℝ⦄, y ∈ s → eVariationOn f (s ∩ Icc x y) = ENNReal.ofReal (0 * (y - x))) ↔ ∀ x ∈ s, ∀ y ∈ s, edist (f x) (f y) = 0"}], "premise": [42108, 108557, 143177], "state_str": "α : Type u_1\ninst✝¹ : LinearOrder α\nE : Type u_2\ninst✝ : PseudoEMetricSpace E\nf : ℝ → E\ns : Set ℝ\nl : ℝ≥0\n⊢ (∀ ⦃x : ℝ⦄, x ∈ s → ∀ ⦃y : ℝ⦄, y ∈ s → eVariationOn f (s ∩ Icc x y) = ENNReal.ofReal (0 * (y - x))) ↔\n ∀ x ∈ s, ∀ y ∈ s, edist (f x) (f y) = 0"} +{"state": [{"context": ["α β : Type u", "c : Cardinal.{u_1}", "h : ∀ (n : ℕ), ↑n ≤ c", "hn : c < ℵ₀"], "goal": "False"}], "premise": [1673, 48770], "state_str": "α β : Type u\nc : Cardinal.{u_1}\nh : ∀ (n : ℕ), ↑n ≤ c\nhn : c < ℵ₀\n⊢ False"} +{"state": [{"context": ["α β : Type u", "n : ℕ", "h : ∀ (n_1 : ℕ), ↑n_1 ≤ ↑n", "hn : ↑n < ℵ₀"], "goal": "False"}], "premise": [1673, 3738, 48752], "state_str": "case intro\nα β : Type u\nn : ℕ\nh : ∀ (n_1 : ℕ), ↑n_1 ≤ ↑n\nhn : ↑n < ℵ₀\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "M : Matroid α", "E B I X R J : Set α", "hIE : I ⊆ E"], "goal": "(uniqueBaseOn I E).Base B ↔ B = I"}], "premise": [1713, 133456, 137592, 139363], "state_str": "α : Type u_1\nM : Matroid α\nE B I X R J : Set α\nhIE : I ⊆ E\n⊢ (uniqueBaseOn I E).Base B ↔ B = I"} +{"state": [{"context": ["M : Type u_1", "inst✝² : CommMonoid M", "S : Submonoid M", "N : Type u_2", "inst✝¹ : CommMonoid N", "P : Type u_3", "inst✝ : CommMonoid P", "f : S.LocalizationMap N", "g : M →* P", "hg : ∀ (y : ↥S), IsUnit (g ↑y)", "x✝ : M"], "goal": "((f.lift hg).comp f.toMap) x✝ = g x✝"}], "premise": [9220], "state_str": "case h\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type u_3\ninst✝ : CommMonoid P\nf : S.LocalizationMap N\ng : M →* P\nhg : ∀ (y : ↥S), IsUnit (g ↑y)\nx✝ : M\n⊢ ((f.lift hg).comp f.toMap) x✝ = g x✝"} +{"state": [{"context": [], "goal": "3.141592 < π"}], "premise": [146588, 146589], "state_str": "⊢ 3.141592 < π"} +{"state": [{"context": ["R : Type u_1", "inst✝¹² : CommRing R", "M✝ : Type u_2", "inst✝¹¹ : AddCommGroup M✝", "inst✝¹⁰ : Module R M✝", "M' : Type u_3", "inst✝⁹ : AddCommGroup M'", "inst✝⁸ : Module R M'", "ι : Type u_4", "inst✝⁷ : DecidableEq ι", "inst✝⁶ : Fintype ι", "e : Basis ι R M✝", "A : Type u_5", "inst✝⁵ : CommRing A", "inst✝⁴ : Module A M✝", "κ : Type u_6", "inst✝³ : Fintype κ", "𝕜 : Type u_7", "inst✝² : Field 𝕜", "M : Type u_8", "inst✝¹ : AddCommGroup M", "inst✝ : Module 𝕜 M"], "goal": "LinearMap.det 0 = 0 ^ FiniteDimensional.finrank 𝕜 M"}], "premise": [83451, 115738, 117161, 119730], "state_str": "R : Type u_1\ninst✝¹² : CommRing R\nM✝ : Type u_2\ninst✝¹¹ : AddCommGroup M✝\ninst✝¹⁰ : Module R M✝\nM' : Type u_3\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nι : Type u_4\ninst✝⁷ : DecidableEq ι\ninst✝⁶ : Fintype ι\ne : Basis ι R M✝\nA : Type u_5\ninst✝⁵ : CommRing A\ninst✝⁴ : Module A M✝\nκ : Type u_6\ninst✝³ : Fintype κ\n𝕜 : Type u_7\ninst✝² : Field 𝕜\nM : Type u_8\ninst✝¹ : AddCommGroup M\ninst✝ : Module 𝕜 M\n⊢ LinearMap.det 0 = 0 ^ FiniteDimensional.finrank 𝕜 M"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁴ : RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace 𝕜 F", "K : Submodule 𝕜 E"], "goal": "Kᗮ = ⨅ v, LinearMap.ker ((innerSL 𝕜) ↑v)"}], "premise": [14296], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁴ : RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace 𝕜 F\nK : Submodule 𝕜 E\n⊢ Kᗮ = ⨅ v, LinearMap.ker ((innerSL 𝕜) ↑v)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "f g : α → β", "c c₁ c₂ x✝ : α", "inst✝¹ : AddSemigroup α", "inst✝ : Neg β", "h : Antiperiodic f c", "a x : α"], "goal": "(fun x => f (a + x)) (x + c) = -(fun x => f (a + x)) x"}], "premise": [119704], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf g : α → β\nc c₁ c₂ x✝ : α\ninst✝¹ : AddSemigroup α\ninst✝ : Neg β\nh : Antiperiodic f c\na x : α\n⊢ (fun x => f (a + x)) (x + c) = -(fun x => f (a + x)) x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "o : Part α", "inst✝ : Decidable o.Dom", "a : α"], "goal": "o.toOption = Option.some a ↔ a ∈ o"}], "premise": [1713, 3120, 131082], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\no : Part α\ninst✝ : Decidable o.Dom\na : α\n⊢ o.toOption = Option.some a ↔ a ∈ o"} +{"state": [{"context": ["n : ℕ", "v : Vector ℕ n.succ"], "goal": "v.get 0 = v.head"}], "premise": [134773], "state_str": "n : ℕ\nv : Vector ℕ n.succ\n⊢ v.get 0 = v.head"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "κ : Kernel α (β × ℝ)", "ν : Kernel α β", "f : α × β → ℚ → ℝ", "inst✝ : IsFiniteKernel κ", "hf : IsRatCondKernelCDF f κ ν", "a : α", "x : ℝ"], "goal": "∫⁻ (b : β), ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = (κ a) (univ ×ˢ Iic x)"}], "premise": [27956, 30288, 73864], "state_str": "α : Type u_1\nβ : Type u_2\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : Kernel α (β × ℝ)\nν : Kernel α β\nf : α × β → ℚ → ℝ\ninst✝ : IsFiniteKernel κ\nhf : IsRatCondKernelCDF f κ ν\na : α\nx : ℝ\n⊢ ∫⁻ (b : β), ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = (κ a) (univ ×ˢ Iic x)"} +{"state": [{"context": ["R : Type u_1", "A✝ : Type u_2", "B : Type u_3", "A : Type u_4", "inst✝⁴ : CommSemiring R", "inst✝³ : Semiring A", "inst✝² : Semiring B", "inst✝¹ : Algebra R A", "inst✝ : Algebra R B", "f g : R[ε] →ₐ[R] A", "hε : f ε = g ε"], "goal": "f (1 • ε) = g (1 • ε)"}], "premise": [118910], "state_str": "case hinr.h\nR : Type u_1\nA✝ : Type u_2\nB : Type u_3\nA : Type u_4\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf g : R[ε] →ₐ[R] A\nhε : f ε = g ��\n⊢ f (1 • ε) = g (1 • ε)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α"], "goal": "toIcoDiv hp a (-b) = -(toIocDiv hp (-a) b + 1)"}], "premise": [105865, 105878, 117878, 119789], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIcoDiv hp a (-b) = -(toIocDiv hp (-a) b + 1)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α"], "goal": "toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b"}], "premise": [1717, 117795], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α"], "goal": "toIocDiv hp (-(a + p)) b = -toIcoDiv hp a (-b)"}], "premise": [105823], "state_str": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIocDiv hp (-(a + p)) b = -toIcoDiv hp a (-b)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α"], "goal": "b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)"}], "premise": [105820], "state_str": "case h\nα : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α", "hc : a ≤ -b - toIcoDiv hp a (-b) • p", "ho : -b - toIcoDiv hp a (-b) • p < a + p"], "goal": "b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)"}], "premise": [105664, 110032, 117880, 119769], "state_str": "case h.intro\nα : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nhc : a ≤ -b - toIcoDiv hp a (-b) • p\nho : -b - toIcoDiv hp a (-b) • p < a + p\n⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α", "hc : a ≤ -b - toIcoDiv hp a (-b) • p", "ho : -(a + p) < b - -toIcoDiv hp a (-b) • p"], "goal": "b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)"}], "premise": [105657, 110032, 117880, 119769], "state_str": "case h.intro\nα : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nhc : a ≤ -b - toIcoDiv hp a (-b) • p\nho : -(a + p) < b - -toIcoDiv hp a (-b) • p\n⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)"} +{"state": [{"context": ["α : Type u_1", "inst✝ : LinearOrderedAddCommGroup α", "hα : Archimedean α", "p : α", "hp : 0 < p", "a✝ b✝ c : α", "n : ℤ", "a b : α", "hc : b - -toIcoDiv hp a (-b) • p ≤ -a", "ho : -(a + p) < b - -toIcoDiv hp a (-b) • p"], "goal": "-a = -(a + p) + p"}], "premise": [117878, 119834], "state_str": "case h.intro\nα : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nhc : b - -toIcoDiv hp a (-b) • p ≤ -a\nho : -(a + p) < b - -toIcoDiv hp a (-b) • p\n⊢ -a = -(a + p) + p"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : GeneralizedCoheytingAlgebra α", "a b✝ c d b : α"], "goal": "a \\ ⊥ ≤ b ↔ a ≤ b"}], "premise": [1713, 15060, 18834], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : GeneralizedCoheytingAlgebra α\na b✝ c d b : α\n⊢ a \\ ⊥ ≤ b ↔ a ≤ b"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝² : PartialOrder α", "inst✝¹ : LocallyFiniteOrder α", "a✝ b✝ c : α", "inst✝ : DecidableEq α", "a b : α"], "goal": "Icc a b \\ {a, b} = Ioo a b"}], "premise": [138674], "state_str": "ι : Type u_1\nα : Type u_2\ninst✝² : PartialOrder α\ninst✝¹ : LocallyFiniteOrder α\na✝ b✝ c : α\ninst✝ : DecidableEq α\na b : α\n⊢ Icc a b \\ {a, b} = Ioo a b"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f✝ g✝ : α → β", "inst✝¹ : CommMonoid β", "inst✝ : DecidableEq α", "s t : Finset α", "f g : α → β"], "goal": "∏ x ∈ s, t.piecewise f g x = (∏ x ∈ s ∩ t, f x) * ∏ x ∈ s \\ t, g x"}], "premise": [127075, 139122, 139132], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g✝ : α → β\ninst✝¹ : CommMonoid β\ninst✝ : DecidableEq α\ns t : Finset α\nf g : α → β\n⊢ ∏ x ∈ s, t.piecewise f g x = (∏ x ∈ s ∩ t, f x) * ∏ x ∈ s \\ t, g x"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "A : Cᵒᵖ ⥤ Type v", "F : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v", "X : C", "G : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v", "η : F ⟶ G", "p : YonedaCollection F X"], "goal": "(map₁ η p).yonedaEquivFst = p.yonedaEquivFst"}], "premise": [96845, 96849], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nA : Cᵒᵖ ⥤ Type v\nF : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v\nX : C\nG : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v\nη : F ⟶ G\np : YonedaCollection F X\n⊢ (map₁ η p).yonedaEquivFst = p.yonedaEquivFst"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "R : Type u_4", "m n✝ n : ℕ"], "goal": "∃ k, n = 2 * k ∨ n = 2 * k + 1"}], "premise": [2027, 121817, 122222], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nR : Type u_4\nm n✝ n : ℕ\n⊢ ∃ k, n = 2 * k ∨ n = 2 * k + 1"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : HasColimits C", "X Y : PresheafedSpace C", "f : X ⟶ Y", "x y : ↑↑X", "h : x ⤳ y"], "goal": "colimit.desc ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf), ι := { app := fun U => colimit.ι ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf) (op { obj := (unop U).obj, property := ⋯ }), naturality := ⋯ } } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = (colimMap (whiskerLeft (OpenNhds.inclusion (f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := { app := fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (unop U).obj, property := ⋯ }), naturality := ⋯ } }"}], "premise": [93401], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : HasColimits C\nX Y : PresheafedSpace C\nf : X ⟶ Y\nx y : ↑↑X\nh : x ⤳ y\n⊢ colimit.desc ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf)\n { pt := colimit ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf),\n ι :=\n {\n app := fun U =>\n colimit.ι ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf) (op { obj := (unop U).obj, property := ⋯ }),\n naturality := ⋯ } } ≫\n colimMap (whiskerLeft (OpenNhds.inclusion (f.base x)).op f.c) ≫\n colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫\n colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =\n (colimMap (whiskerLeft (OpenNhds.inclusion (f.base y)).op f.c) ≫\n colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫\n colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫\n colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)\n { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),\n ι :=\n {\n app := fun U =>\n colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (unop U).obj, property := ⋯ }),\n naturality := ⋯ } }"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : HasColimits C", "X Y : PresheafedSpace C", "f : X ⟶ Y", "x y : ↑↑X", "h : x ⤳ y", "j : OpenNhds (f.base y)"], "goal": "colimit.ι ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf) (op j) ≫ colimit.desc ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf), ι := { app := fun U => colimit.ι ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf) (op { obj := (unop U).obj, property := ⋯ }), naturality := ⋯ } } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = colimit.ι ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf) (op j) ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := { app := fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (unop U).obj, property := ⋯ }), naturality := ⋯ } }"}], "premise": [93392, 93413, 93414, 93425, 95551, 95617, 96173, 96175, 97705, 97706, 99920, 100030, 100031], "state_str": "case h\nC : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : HasColimits C\nX Y : PresheafedSpace C\nf : X ⟶ Y\nx y : ↑↑X\nh : x ⤳ y\nj : OpenNhds (f.base y)\n⊢ colimit.ι ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf) (op j) ≫\n colimit.desc ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf)\n { pt := colimit ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf),\n ι :=\n {\n app := fun U =>\n colimit.ι ((OpenNhds.inclusion (f.base x)).op ⋙ Y.presheaf)\n (op { obj := (unop U).obj, property := ⋯ }),\n naturality := ⋯ } } ≫\n colimMap (whiskerLeft (OpenNhds.inclusion (f.base x)).op f.c) ≫\n colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫\n colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =\n colimit.ι ((OpenNhds.inclusion (f.base y)).op ⋙ Y.presheaf) (op j) ≫\n (colimMap (whiskerLeft (OpenNhds.inclusion (f.base y)).op f.c) ≫\n colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫\n colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫\n colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)\n { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),\n ι :=\n {\n app := fun U =>\n colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (unop U).obj, property := ⋯ }),\n naturality := ⋯ } }"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : HasColimits C", "X Y : PresheafedSpace C", "f : X ⟶ Y", "x y : ↑↑X", "h : x ⤳ y", "j : OpenNhds (f.base y)"], "goal": "f.c.app ((OpenNhds.inclusion (f.base x)).op.obj (op { obj := j.obj, property := ⋯ })) ≫ X.presheaf.map (𝟙 ((OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op.obj (op { obj := j.obj, property := ⋯ }))) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) ((OpenNhds.map f.base x).op.obj (op { obj := j.obj, property := ⋯ })) = f.c.app ((OpenNhds.inclusion (f.base y)).op.obj (op j)) ≫ X.presheaf.map (𝟙 ((OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op.obj (op j))) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (unop ((OpenNhds.map f.base y).op.obj (op j))).obj, property := ⋯ })"}], "premise": [96175, 99920], "state_str": "case h\nC : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : HasColimits C\nX Y : PresheafedSpace C\nf : X ⟶ Y\nx y : ↑↑X\nh : x ⤳ y\nj : OpenNhds (f.base y)\n⊢ f.c.app ((OpenNhds.inclusion (f.base x)).op.obj (op { obj := j.obj, property := ⋯ })) ≫\n X.presheaf.map (𝟙 ((OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op.obj (op { obj := j.obj, property := ⋯ }))) ≫\n colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)\n ((OpenNhds.map f.base x).op.obj (op { obj := j.obj, property := ⋯ })) =\n f.c.app ((OpenNhds.inclusion (f.base y)).op.obj (op j)) ≫\n X.presheaf.map (𝟙 ((OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op.obj (op j))) ≫\n colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)\n (op { obj := (unop ((OpenNhds.map f.base y).op.obj (op j))).obj, property := ⋯ })"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "δ : Type u_3", "ι : Type u_4", "m0 : MeasurableSpace α", "inst✝² : MeasurableSpace β", "μ✝ ν✝ ν₁ ν₂ : Measure α", "s t : Set α", "μ ν : Measure α", "inst✝¹ : SigmaFinite μ", "inst✝ : SigmaFinite ν", "P : α → Prop", "h : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ν s < ⊤ → ∀ᵐ (x : α) ∂μ.restrict s, P x"], "goal": "∀ᵐ (x : α) ∂μ, P x"}], "premise": [1673, 31792, 31793, 32300, 103529, 103530], "state_str": "α : Type u_1\nβ : Type u_2\nδ : Type u_3\nι : Type u_4\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\nμ✝ ν✝ ν₁ ν₂ : Measure α\ns t : Set α\nμ ν : Measure α\ninst✝¹ : SigmaFinite μ\ninst✝ : SigmaFinite ν\nP : α → Prop\nh : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ν s < ⊤ → ∀ᵐ (x : α) ∂μ.restrict s, P x\n⊢ ∀ᵐ (x : α) ∂μ, P x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "δ : Type u_3", "ι : Type u_4", "m0 : MeasurableSpace α", "inst✝² : MeasurableSpace β", "μ✝ ν✝ ν₁ ν₂ : Measure α", "s t : Set α", "μ ν : Measure α", "inst✝¹ : SigmaFinite μ", "inst✝ : SigmaFinite ν", "P : α → Prop", "h : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ν s < ⊤ → ∀ᵐ (x : α) ∂μ.restrict s, P x", "this : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, x ∈ spanningSets (μ + ν) n → P x"], "goal": "∀ᵐ (x : α) ∂μ, P x"}], "premise": [1674, 15889, 27606, 31800, 131585], "state_str": "α : Type u_1\nβ : Type u_2\nδ : Type u_3\nι : Type u_4\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\nμ✝ ν✝ ν₁ ν₂ : Measure α\ns t : Set α\nμ ν : Measure α\ninst✝¹ : SigmaFinite μ\ninst✝ : SigmaFinite ν\nP : α → Prop\nh : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ν s < ⊤ → ∀ᵐ (x : α) ∂μ.restrict s, P x\nthis : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, x ∈ spanningSets (μ + ν) n → P x\n⊢ ∀ᵐ (x : α) ∂μ, P x"} +{"state": [{"context": ["a✝ b✝ c d : ℝ≥0∞", "r p q : ℝ≥0", "a b : ℝ≥0∞", "h : b ≤ a", "ha : a ≠ ⊤"], "goal": "(a - b).toReal = a.toReal - b.toReal"}], "premise": [18796], "state_str": "a✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nh : b ≤ a\nha : a ≠ ⊤\n⊢ (a - b).toReal = a.toReal - b.toReal"} +{"state": [{"context": ["a✝ b✝ c d : ℝ≥0∞", "r p q b a : ℝ≥0", "h : ↑b ≤ ↑a"], "goal": "(↑a - ↑b).toReal = (↑a).toReal - (↑b).toReal"}], "premise": [1673, 143174, 143204, 143540, 146620], "state_str": "case intro.intro\na✝ b✝ c d : ℝ≥0∞\nr p q b a : ℝ≥0\nh : ↑b ≤ ↑a\n⊢ (↑a - ↑b).toReal = (↑a).toReal - (↑b).toReal"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "f : α → Option β", "l₁ l₂ : List α", "p : l₁ ~ l₂"], "goal": "List.filterMap f l₁ ~ List.filterMap f l₂"}], "premise": [2614], "state_str": "α : Type u_1\nβ : Type u_2\nf : α → Option β\nl₁ l₂ : List α\np : l₁ ~ l₂\n⊢ List.filterMap f l₁ ~ List.filterMap f l₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "f g : α → β", "c c₁ c₂ x : α", "inst✝¹ : AddGroup α", "inst✝ : InvolutiveNeg β", "h1 : Periodic f c₁", "h2 : Antiperiodic f c₂"], "goal": "Antiperiodic f (c₁ - c₂)"}], "premise": [109515, 109548, 119789], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf g : α → β\nc c₁ c₂ x : α\ninst✝¹ : AddGroup α\ninst✝ : InvolutiveNeg β\nh1 : Periodic f c₁\nh2 : Antiperiodic f c₂\n⊢ Antiperiodic f (c₁ - c₂)"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f : ℝ → E", "T : ℝ", "hf : Periodic f T", "hT : 0 < T", "t s : ℝ"], "goal": "∫ (x : ℝ) in t..t + T, f x = ∫ (x : ℝ) in s..s + T, f x"}], "premise": [26334, 103972], "state_str": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : ℝ → E\nT : ℝ\nhf : Periodic f T\nhT : 0 < T\nt s : ℝ\n⊢ ∫ (x : ℝ) in t..t + T, f x = ∫ (x : ℝ) in s..s + T, f x"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f : ℝ → E", "T : ℝ", "hf : Periodic f T", "hT : 0 < T", "t s : ℝ"], "goal": "∫ (x : ℝ) in Ioc t (t + T), f x ∂volume = ∫ (x : ℝ) in Ioc s (s + T), f x ∂volume"}], "premise": [32394], "state_str": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : ℝ → E\nT : ℝ\nhf : Periodic f T\nhT : 0 < T\nt s : ℝ\n⊢ ∫ (x : ℝ) in Ioc t (t + T), f x ∂volume = ∫ (x : ℝ) in Ioc s (s + T), f x ∂volume"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f : ℝ → E", "T : ℝ", "hf : Periodic f T", "hT : 0 < T", "t s : ℝ", "this : VAddInvariantMeasure ↥(zmultiples T) ℝ volume"], "goal": "∫ (x : ℝ) in Ioc t (t + T), f x ∂volume = ∫ (x : ℝ) in Ioc s (s + T), f x ∂volume"}], "premise": [33057], "state_str": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : ℝ → E\nT : ℝ\nhf : Periodic f T\nhT : 0 < T\nt s : ℝ\nthis : VAddInvariantMeasure ↥(zmultiples T) ℝ volume\n⊢ ∫ (x : ℝ) in Ioc t (t + T), f x ∂volume = ∫ (x : ℝ) in Ioc s (s + T), f x ∂volume"} +{"state": [{"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f : ℝ → E", "T : ℝ", "hf : Periodic f T", "hT : 0 < T", "t s : ℝ", "this : VAddInvariantMeasure ↥(zmultiples T) ℝ volume"], "goal": "IsAddFundamentalDomain (↥(zmultiples T)) (Ioc t (t + T)) volume"}, {"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f : ℝ → E", "T : ℝ", "hf : Periodic f T", "hT : 0 < T", "t s : ℝ", "this : VAddInvariantMeasure ↥(zmultiples T) ℝ volume"], "goal": "IsAddFundamentalDomain (↥(zmultiples T)) (Ioc s (s + T)) volume"}, {"context": ["E : Type u_1", "inst✝² : NormedAddCommGroup E", "inst✝¹ : NormedSpace ℝ E", "inst✝ : CompleteSpace E", "f : ℝ → E", "T : ℝ", "hf : Periodic f T", "hT : 0 < T", "t s : ℝ", "this : VAddInvariantMeasure ↥(zmultiples T) ℝ volume"], "goal": "∀ (g : ↥(zmultiples T)) (x : ℝ), f (g +ᵥ x) = f x"}], "premise": [25523, 109496], "state_str": "case hs\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : ℝ → E\nT : ℝ\nhf : Periodic f T\nhT : 0 < T\nt s : ℝ\nthis : VAddInvariantMeasure ↥(zmultiples T) ℝ volume\n⊢ IsAddFundamentalDomain (↥(zmultiples T)) (Ioc t (t + T)) volume\n\ncase ht\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : ℝ → E\nT : ℝ\nhf : Periodic f T\nhT : 0 < T\nt s : ℝ\nthis : VAddInvariantMeasure ↥(zmultiples T) ℝ volume\n⊢ IsAddFundamentalDomain (↥(zmultiples T)) (Ioc s (s + T)) volume\n\ncase hf\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : ℝ → E\nT : ℝ\nhf : Periodic f T\nhT : 0 < T\nt s : ℝ\nthis : VAddInvariantMeasure ↥(zmultiples T) ℝ volume\n⊢ ∀ (g : ↥(zmultiples T)) (x : ℝ), f (g +ᵥ x) = f x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s✝ t u : Set α", "inst✝ : MeasurableSpace α", "s : ℕ → Set α", "p : ℕ → Prop", "h : ∀ (n : ℕ), p n → MeasurableSet (s n)"], "goal": "MeasurableSet (bliminf s atTop p)"}], "premise": [14835, 16577, 16578], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns✝ t u : Set α\ninst✝ : MeasurableSpace α\ns : ℕ → Set α\np : ℕ → Prop\nh : ∀ (n : ℕ), p n → MeasurableSet (s n)\n⊢ MeasurableSet (bliminf s atTop p)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "δ' : Type u_5", "ι : Sort uι", "s✝ t u : Set α", "inst✝ : MeasurableSpace α", "s : ℕ → Set α", "p : ℕ → Prop", "h : ∀ (n : ℕ), p n → MeasurableSet (s n)"], "goal": "MeasurableSet (⋃ i, ⋂ j, ⋂ (_ : p j ∧ i ≤ j), s j)"}], "premise": [2107, 27959, 27965], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nδ' : Type u_5\nι : Sort uι\ns✝ t u : Set α\ninst✝ : MeasurableSpace α\ns : ℕ → Set α\np : ℕ → Prop\nh : ∀ (n : ℕ), p n → MeasurableSet (s n)\n⊢ MeasurableSet (⋃ i, ⋂ j, ⋂ (_ : p j ∧ i ≤ j), s j)"} +{"state": [{"context": ["p : ℝ≥0∞", "𝕜 : Type u_1", "ι : Type u_2", "α : ι → Type u_3", "β : ι → Type u_4", "inst✝² : Fact (1 ≤ p)", "inst✝¹ : Fintype ι", "inst✝ : (i : ι) → SeminormedAddCommGroup (β i)", "f : PiLp ⊤ β"], "goal": "↑‖f‖₊ = ↑(⨆ i, ‖f i‖₊)"}], "premise": [42313, 146662], "state_str": "case a\np : ℝ≥0∞\n𝕜 : Type u_1\nι : Type u_2\nα : ι → Type u_3\nβ : ι → Type u_4\ninst✝² : Fact (1 ≤ p)\ninst✝¹ : Fintype ι\ninst✝ : (i : ι) → SeminormedAddCommGroup (β i)\nf : PiLp ⊤ β\n⊢ ↑‖f‖₊ = ↑(⨆ i, ‖f i‖₊)"} +{"state": [{"context": ["R : Type u_1", "ι : Type u_2", "inst✝³ : Semiring R", "φ : ι → Type u_3", "inst✝² : (i : ι) → AddCommMonoid (φ i)", "inst✝¹ : (i : ι) → Module R (φ i)", "inst✝ : DecidableEq ι", "i i' : ι"], "goal": "(stdBasis R (fun _x => R) i) 1 i' = if i = i' then 1 else 0"}], "premise": [71466, 83525, 120640], "state_str": "R : Type u_1\nι : Type u_2\ninst✝³ : Semiring R\nφ : ι → Type u_3\ninst✝² : (i : ι) → AddCommMonoid (φ i)\ninst✝¹ : (i : ι) → Module R (φ i)\ninst✝ : DecidableEq ι\ni i' : ι\n⊢ (stdBasis R (fun _x => R) i) 1 i' = if i = i' then 1 else 0"} +{"state": [{"context": ["R : Type u_1", "ι : Type u_2", "inst✝³ : Semiring R", "φ : ι → Type u_3", "inst✝² : (i : ι) → AddCommMonoid (φ i)", "inst✝¹ : (i : ι) → Module R (φ i)", "inst✝ : DecidableEq ι", "i i' : ι"], "goal": "(i' = i) = (i = i')"}], "premise": [1713, 1717, 1792], "state_str": "case e_c\nR : Type u_1\nι : Type u_2\ninst✝³ : Semiring R\nφ : ι → Type u_3\ninst✝² : (i : ι) → AddCommMonoid (φ i)\ninst✝¹ : (i : ι) → Module R (φ i)\ninst✝ : DecidableEq ι\ni i' : ι\n⊢ (i' = i) = (i = i')"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "𝕜 : Type u_3", "𝕜₂ : Type u_4", "𝕜₃ : Type u_5", "𝕝 : Type u_6", "E : Type u_7", "E₂ : Type u_8", "E₃ : Type u_9", "F : Type u_10", "G : Type u_11", "ι : Type u_12", "inst✝² : NormedField 𝕜", "inst✝¹ : AddCommGroup E", "inst✝ : Module 𝕜 E", "p : Seminorm 𝕜 E", "c : 𝕜", "hc : 1 < ‖c‖", "ε : ℝ", "εpos : 0 < ε", "x : E", "hx : p x ≠ 0", "xεpos : 0 < p x / ε"], "goal": "∃ n, c ^ n ≠ 0 ∧ p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * p x"}], "premise": [107259], "state_str": "R : Type u_1\nR' : Type u_2\n𝕜 : Type u_3\n𝕜₂ : Type u_4\n𝕜₃ : Type u_5\n𝕝 : Type u_6\nE : Type u_7\nE₂ : Type u_8\nE₃ : Type u_9\nF : Type u_10\nG : Type u_11\nι : Type u_12\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\np : Seminorm 𝕜 E\nc : 𝕜\nhc : 1 < ‖c‖\nε : ℝ\nεpos : 0 < ε\nx : E\nhx : p x ≠ 0\nxεpos : 0 < p x / ε\n⊢ ∃ n, c ^ n ≠ 0 ∧ p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * p x"} +{"state": [{"context": ["R : Type u_1", "R' : Type u_2", "𝕜 : Type u_3", "𝕜₂ : Type u_4", "𝕜₃ : Type u_5", "𝕝 : Type u_6", "E : Type u_7", "E₂ : Type u_8", "E₃ : Type u_9", "F : Type u_10", "G : Type u_11", "ι : Type u_12", "inst✝² : NormedField 𝕜", "inst✝¹ : AddCommGroup E", "inst✝ : Module 𝕜 E", "p : Seminorm 𝕜 E", "c : 𝕜", "hc : 1 < ‖c‖", "ε : ℝ", "εpos : 0 < ε", "x : E", "hx : p x ≠ 0", "xεpos : 0 < p x / ε", "n : ℤ", "hn : p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))", "cpos : 0 < ‖c‖"], "goal": "∃ n, c ^ n ≠ 0 ∧ p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * p x"}], "premise": [2106, 43299], "state_str": "case intro\nR : Type u_1\nR' : Type u_2\n𝕜 : Type u_3\n𝕜₂ : Type u_4\n𝕜₃ : Type u_5\n𝕝 : Type u_6\nE : Type u_7\nE₂ : Type u_8\nE₃ : Type u_9\nF : Type u_10\nG : Type u_11\nι : Type u_12\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\np : Seminorm 𝕜 E\nc : 𝕜\nhc : 1 < ‖c‖\nε : ℝ\nεpos : 0 < ε\nx : E\nhx : p x ≠ 0\nxεpos : 0 < p x / ε\nn : ℤ\nhn : p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))\ncpos : 0 < ‖c‖\n⊢ ∃ n, c ^ n ≠ 0 ∧ p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * p x"} +{"state": [{"context": ["K : Type uK", "inst✝⁴ : Field K", "V₁ : Type uV₁", "V₂ : Type uV₂", "inst✝³ : AddCommGroup V₁", "inst✝² : Module K V₁", "inst✝¹ : AddCommGroup V₂", "inst✝ : Module K V₂", "f : V₁ →ₗ[K] V₂"], "goal": "finrank K ↥(range f.dualMap) = finrank K ↥(range f)"}], "premise": [1674, 85537, 88018, 88129, 88155, 109850, 109935, 109937, 109958], "state_str": "K : Type uK\ninst✝⁴ : Field K\nV₁ : Type uV₁\nV₂ : Type uV₂\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nf : V₁ →ₗ[K] V₂\n⊢ finrank K ↥(range f.dualMap) = finrank K ↥(range f)"} +{"state": [{"context": ["K : Type uK", "inst✝⁴ : Field K", "V₁ : Type uV₁", "V₂ : Type uV₂", "inst✝³ : AddCommGroup V₁", "inst✝² : Module K V₁", "inst✝¹ : AddCommGroup V₂", "inst✝ : Module K V₂", "f : V₁ →ₗ[K] V₂"], "goal": "Function.Injective ⇑f.rangeRestrict.dualMap"}], "premise": [1673, 88019, 109937, 109973], "state_str": "K : Type uK\ninst✝⁴ : Field K\nV₁ : Type uV₁\nV₂ : Type uV₂\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nf : V₁ →ₗ[K] V₂\n⊢ Function.Injective ⇑f.rangeRestrict.dualMap"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "γ : Type u_4", "δ : Type u_5", "ι : Sort u_6", "κ : ι → Sort u_7", "inst✝⁴ : FunLike F α β", "inst✝³ : CompleteLattice α", "inst✝² : CompleteLattice β", "inst✝¹ : CompleteLattice γ", "inst✝ : CompleteLattice δ", "g : FrameHom β γ", "f₁ f₂ : FrameHom α β", "hg : Injective ⇑g", "h : g.comp f₁ = g.comp f₂", "a : α"], "goal": "g (f₁ a) = g (f₂ a)"}], "premise": [10817], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\nγ : Type u_4\nδ : Type u_5\nι : Sort u_6\nκ : ι → Sort u_7\ninst✝⁴ : FunLike F α β\ninst✝³ : CompleteLattice α\ninst✝² : CompleteLattice β\ninst✝¹ : CompleteLattice γ\ninst✝ : CompleteLattice δ\ng : FrameHom β γ\nf₁ f₂ : FrameHom α β\nhg : Injective ⇑g\nh : g.comp f₁ = g.comp f₂\na : α\n⊢ g (f₁ a) = g (f₂ a)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DecidableEq α", "inst✝ : Fintype α", "t : Finset α", "a : α", "r k : ℕ", "ih : ∀ {𝒜 : Finset (Finset α)} {s : Finset α}, s ∈ ∂⁺ ^[k] 𝒜 ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + k = s.card", "𝒜 : Finset (Finset α)", "s : Finset α"], "goal": "s ∈ ∂⁺ ^[k + 1] 𝒜 ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + (k + 1) = s.card"}], "premise": [1670, 2045, 71250], "state_str": "case succ\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nt : Finset α\na : α\nr k : ℕ\nih : ∀ {𝒜 : Finset (Finset α)} {s : Finset α}, s ∈ ∂⁺ ^[k] 𝒜 ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + k = s.card\n𝒜 : Finset (Finset α)\ns : Finset α\n⊢ s ∈ ∂⁺ ^[k + 1] 𝒜 ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + (k + 1) = s.card"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DecidableEq α", "inst✝ : Fintype α", "t : Finset α", "a : α", "r k : ℕ", "ih : ∀ {𝒜 : Finset (Finset α)} {s : Finset α}, s ∈ ∂⁺ ^[k] 𝒜 ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + k = s.card", "𝒜 : Finset (Finset α)", "s : Finset α"], "goal": "s ∈ ∂⁺ ^[k] (∂⁺ 𝒜) ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + (k + 1) = s.card"}], "premise": [1715], "state_str": "case succ\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nt : Finset α\na : α\nr k : ℕ\nih : ∀ {𝒜 : Finset (Finset α)} {s : Finset α}, s ∈ ∂⁺ ^[k] 𝒜 ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + k = s.card\n𝒜 : Finset (Finset α)\ns : Finset α\n⊢ s ∈ ∂⁺ ^[k] (∂⁺ 𝒜) ↔ ∃ t ∈ 𝒜, t ⊆ s ∧ t.card + (k + 1) = s.card"} +{"state": [{"context": ["α : Type u_1", "inst✝² : TopologicalSpace α", "inst✝¹ : SeparableSpace α", "inst✝ : PartialOrder α"], "goal": "∃ s, s.Countable ∧ Dense s ∧ (∀ (x : α), IsBot x → x ∈ s) ∧ ∀ (x : α), IsTop x → x ∈ s"}], "premise": [55452, 57771], "state_str": "α : Type u_1\ninst✝² : TopologicalSpace α\ninst✝¹ : SeparableSpace α\ninst✝ : PartialOrder α\n⊢ ∃ s, s.Countable ∧ Dense s ∧ (∀ (x : α), IsBot x → x ∈ s) ∧ ∀ (x : α), IsTop x → x ∈ s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : DecidableEq α", "s✝ t u v : Finset α", "a b : α", "ha : a ∈ t", "s : Finset α"], "goal": "s.erase a ∪ t = s ∪ t"}], "premise": [138861, 138885, 138974, 139052], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na b : α\nha : a ∈ t\ns : Finset α\n⊢ s.erase a ∪ t = s ∪ t"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "I : MultispanIndex C", "inst✝¹ : HasCoproduct I.left", "inst✝ : HasCoproduct I.right", "K : Cofork I.fstSigmaMap I.sndSigmaMap"], "goal": "((I.ofSigmaCoforkFunctor ⋙ I.toSigmaCoforkFunctor).obj K).π ≫ (Iso.refl ((I.ofSigmaCoforkFunctor ⋙ I.toSigmaCoforkFunctor).obj K).pt).hom = ((𝟭 (Cofork I.fstSigmaMap I.sndSigmaMap)).obj K).π"}], "premise": [93401], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\nI : MultispanIndex C\ninst✝¹ : HasCoproduct I.left\ninst✝ : HasCoproduct I.right\nK : Cofork I.fstSigmaMap I.sndSigmaMap\n⊢ ((I.ofSigmaCoforkFunctor ⋙ I.toSigmaCoforkFunctor).obj K).π ≫\n (Iso.refl ((I.ofSigmaCoforkFunctor ⋙ I.toSigmaCoforkFunctor).obj K).pt).hom =\n ((𝟭 (Cofork I.fstSigmaMap I.sndSigmaMap)).obj K).π"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "I : MultispanIndex C", "inst✝¹ : HasCoproduct I.left", "inst✝ : HasCoproduct I.right", "K : Cofork I.fstSigmaMap I.sndSigmaMap", "j : I.R"], "goal": "colimit.ι (Discrete.functor I.right) { as := j } ≫ Sigma.desc (Multicofork.ofSigmaCofork I K).π ≫ 𝟙 K.pt = colimit.ι (Discrete.functor I.right) { as := j } ≫ K.π"}], "premise": [93392, 93679, 96174], "state_str": "case w.mk\nC : Type u\ninst✝² : Category.{v, u} C\nI : MultispanIndex C\ninst✝¹ : HasCoproduct I.left\ninst✝ : HasCoproduct I.right\nK : Cofork I.fstSigmaMap I.sndSigmaMap\nj : I.R\n⊢ colimit.ι (Discrete.functor I.right) { as := j } ≫ Sigma.desc (Multicofork.ofSigmaCofork I K).π ≫ 𝟙 K.pt =\n colimit.ι (Discrete.functor I.right) { as := j } ≫ K.π"} +{"state": [{"context": ["J : Type u₁", "inst✝⁵ : Category.{v₁, u₁} J", "K : Type u₂", "inst✝⁴ : Category.{v₂, u₂} K", "C : Type u", "inst✝³ : Category.{v, u} C", "F : J ⥤ C", "inst✝² : HasLimit F", "E : K ⥤ J", "inst✝¹ : HasLimit (E ⋙ F)", "L : Type u₃", "inst✝ : Category.{v₃, u₃} L", "D : L ⥤ K", "h : HasLimit (D ⋙ E ⋙ F)", "this : HasLimit ((D ⋙ E) ⋙ F)", "j : L"], "goal": "(pre F E ≫ pre (E ⋙ F) D) ≫ π (D ⋙ E ⋙ F) j = pre F (D ⋙ E) ≫ π (D ⋙ E ⋙ F) j"}], "premise": [93362, 96173], "state_str": "case w\nJ : Type u₁\ninst✝⁵ : Category.{v₁, u₁} J\nK : Type u₂\ninst✝⁴ : Category.{v₂, u₂} K\nC : Type u\ninst✝³ : Category.{v, u} C\nF : J ⥤ C\ninst✝² : HasLimit F\nE : K ⥤ J\ninst✝¹ : HasLimit (E ⋙ F)\nL : Type u₃\ninst✝ : Category.{v₃, u₃} L\nD : L ⥤ K\nh : HasLimit (D ⋙ E ⋙ F)\nthis : HasLimit ((D ⋙ E) ⋙ F)\nj : L\n⊢ (pre F E ≫ pre (E ⋙ F) D) ≫ π (D ⋙ E ⋙ F) j = pre F (D ⋙ E) ≫ π (D ⋙ E ⋙ F) j"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "R : Type u_3", "𝕜 : Type u_4", "inst✝⁷ : Fintype m", "inst✝⁶ : Fintype n", "inst✝⁵ : CommRing R", "inst✝⁴ : PartialOrder R", "inst✝³ : StarRing R", "inst✝² : StarOrderedRing R", "inst✝¹ : RCLike 𝕜", "inst✝ : DecidableEq n", "A : Matrix n n 𝕜", "hA : A.PosSemidef"], "goal": "hA.sqrt ^ 2 = A"}], "premise": [2107], "state_str": "m : Type u_1\nn : Type u_2\nR : Type u_3\n𝕜 : Type u_4\ninst✝⁷ : Fintype m\ninst✝⁶ : Fintype n\ninst✝⁵ : CommRing R\ninst✝⁴ : PartialOrder R\ninst✝³ : StarRing R\ninst✝² : StarOrderedRing R\ninst✝¹ : RCLike 𝕜\ninst✝ : DecidableEq n\nA : Matrix n n 𝕜\nhA : A.PosSemidef\n⊢ hA.sqrt ^ 2 = A"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "R : Type u_3", "𝕜 : Type u_4", "inst✝⁷ : Fintype m", "inst✝⁶ : Fintype n", "inst✝⁵ : CommRing R", "inst✝⁴ : PartialOrder R", "inst✝³ : StarRing R", "inst✝² : StarOrderedRing R", "inst✝¹ : RCLike 𝕜", "inst✝ : DecidableEq n", "A : Matrix n n 𝕜", "hA : A.PosSemidef", "C : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary"], "goal": "hA.sqrt ^ 2 = A"}], "premise": [2107], "state_str": "m : Type u_1\nn : Type u_2\nR : Type u_3\n𝕜 : Type u_4\ninst✝⁷ : Fintype m\ninst✝⁶ : Fintype n\ninst✝⁵ : CommRing R\ninst✝⁴ : PartialOrder R\ninst✝³ : StarRing R\ninst✝² : StarOrderedRing R\ninst✝¹ : RCLike 𝕜\ninst✝ : DecidableEq n\nA : Matrix n n 𝕜\nhA : A.PosSemidef\nC : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary\n⊢ hA.sqrt ^ 2 = A"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "R : Type u_3", "𝕜 : Type u_4", "inst✝⁷ : Fintype m", "inst✝⁶ : Fintype n", "inst✝⁵ : CommRing R", "inst✝⁴ : PartialOrder R", "inst✝³ : StarRing R", "inst✝² : StarOrderedRing R", "inst✝¹ : RCLike 𝕜", "inst✝ : DecidableEq n", "A : Matrix n n 𝕜", "hA : A.PosSemidef", "C : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary", "E : Matrix n n 𝕜 := diagonal (RCLike.ofReal ∘ Real.sqrt ∘ ⋯.eigenvalues)"], "goal": "hA.sqrt ^ 2 = A"}], "premise": [119703, 119750], "state_str": "m : Type u_1\nn : Type u_2\nR : Type u_3\n𝕜 : Type u_4\ninst✝⁷ : Fintype m\ninst✝⁶ : Fintype n\ninst✝⁵ : CommRing R\ninst✝⁴ : PartialOrder R\ninst✝³ : StarRing R\ninst✝² : StarOrderedRing R\ninst✝¹ : RCLike 𝕜\ninst✝ : DecidableEq n\nA : Matrix n n 𝕜\nhA : A.PosSemidef\nC : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary\nE : Matrix n n 𝕜 := diagonal (RCLike.ofReal ∘ Real.sqrt ∘ ⋯.eigenvalues)\n⊢ hA.sqrt ^ 2 = A"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "R : Type u_3", "𝕜 : Type u_4", "inst✝⁷ : Fintype m", "inst✝⁶ : Fintype n", "inst✝⁵ : CommRing R", "inst✝⁴ : PartialOrder R", "inst✝³ : StarRing R", "inst✝² : StarOrderedRing R", "inst✝¹ : RCLike 𝕜", "inst✝ : DecidableEq n", "A : Matrix n n 𝕜", "hA : A.PosSemidef", "C : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary", "E : Matrix n n 𝕜 := diagonal (RCLike.ofReal ∘ Real.sqrt ∘ ⋯.eigenvalues)"], "goal": "C * (E * (star C * C) * E) * star C = A"}], "premise": [2107, 33168, 85768, 119750, 142249, 146004], "state_str": "m : Type u_1\nn : Type u_2\nR : Type u_3\n𝕜 : Type u_4\ninst✝⁷ : Fintype m\ninst✝⁶ : Fintype n\ninst✝⁵ : CommRing R\ninst✝⁴ : PartialOrder R\ninst✝³ : StarRing R\ninst✝² : StarOrderedRing R\ninst✝¹ : RCLike 𝕜\ninst✝ : DecidableEq n\nA : Matrix n n 𝕜\nhA : A.PosSemidef\nC : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary\nE : Matrix n n 𝕜 := diagonal (RCLike.ofReal ∘ Real.sqrt ∘ ⋯.eigenvalues)\n⊢ C * (E * (star C * C) * E) * star C = A"} +{"state": [{"context": ["m : Type u_1", "n : Type u_2", "R : Type u_3", "𝕜 : Type u_4", "inst✝⁷ : Fintype m", "inst✝⁶ : Fintype n", "inst✝⁵ : CommRing R", "inst✝⁴ : PartialOrder R", "inst✝³ : StarRing R", "inst✝² : StarOrderedRing R", "inst✝¹ : RCLike 𝕜", "inst✝ : DecidableEq n", "A : Matrix n n 𝕜", "hA : A.PosSemidef", "C : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary", "E : Matrix n n 𝕜 := diagonal (RCLike.ofReal ∘ Real.sqrt ∘ ⋯.eigenvalues)", "this : E * E = diagonal (RCLike.ofReal ∘ ⋯.eigenvalues)"], "goal": "C * (E * (star C * C) * E) * star C = A"}], "premise": [2100, 2107, 84153], "state_str": "m : Type u_1\nn : Type u_2\nR : Type u_3\n𝕜 : Type u_4\ninst✝⁷ : Fintype m\ninst✝⁶ : Fintype n\ninst✝⁵ : CommRing R\ninst✝⁴ : PartialOrder R\ninst✝³ : StarRing R\ninst✝² : StarOrderedRing R\ninst✝¹ : RCLike 𝕜\ninst✝ : DecidableEq n\nA : Matrix n n 𝕜\nhA : A.PosSemidef\nC : Matrix n n 𝕜 := ↑⋯.eigenvectorUnitary\nE : Matrix n n 𝕜 := diagonal (RCLike.ofReal ∘ Real.sqrt ∘ ⋯.eigenvalues)\nthis : E * E = diagonal (RCLike.ofReal ∘ ⋯.eigenvalues)\n⊢ C * (E * (star C * C) * E) * star C = A"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "s : Finset I"], "goal": "⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => x ∈ s)))"}], "premise": [63524], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\ns : Finset I\n⊢ ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => x ∈ s)))"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "s : Finset I"], "goal": "⊤ ≤ Submodule.span ℤ (Set.range (Products.eval (π C fun x => x ∈ s)))"}], "premise": [14273, 63526], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\ns : Finset I\n⊢ ⊤ ≤ Submodule.span ℤ (Set.range (Products.eval (π C fun x => x ∈ s)))"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "s : Finset I"], "goal": "Submodule.span ℤ (Set.range (spanFinBasis C s)) ≤ Submodule.span ℤ (Set.range (Products.eval (π C fun x => x ∈ s)))"}], "premise": [86684], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\ns : Finset I\n⊢ Submodule.span ℤ (Set.range (spanFinBasis C s)) ≤ Submodule.span ℤ (Set.range (Products.eval (π C fun x => x ∈ s)))"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "s : Finset I", "x : ↑(π C fun x => x ∈ s)"], "goal": "spanFinBasis C s x ∈ ↑(Submodule.span ℤ (Set.range (Products.eval (π C fun x => x ∈ s))))"}], "premise": [63532], "state_str": "case intro\nI : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\ns : Finset I\nx : ↑(π C fun x => x ∈ s)\n⊢ spanFinBasis C s x ∈ ↑(Submodule.span ℤ (Set.range (Products.eval (π C fun x => x ∈ s))))"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s s₁ s₂ : Finset α", "a : α", "f g : α → β", "inst✝¹ : CommMonoid β", "inst✝ : DecidableEq α", "h : s₁ ⊆ s₂"], "goal": "(∏ x ∈ s₂ \\ s₁, f x) * ∏ x ∈ s₁, f x = ∏ x ∈ s₂, f x"}], "premise": [126931, 139003, 139072], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝¹ : CommMonoid β\ninst✝ : DecidableEq α\nh : s₁ ⊆ s₂\n⊢ (∏ x ∈ s₂ \\ s₁, f x) * ∏ x ∈ s₁, f x = ∏ x ∈ s₂, f x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "ι' : Sort u_5", "ι₂ : Sort u_6", "κ : ι → Sort u_7", "κ₁ : ι → Sort u_8", "κ₂ : ι → Sort u_9", "κ' : ι' → Sort u_10", "s : Set α", "t : (i : ι) → κ i → Set α"], "goal": "s ∪ ⋂ i, ⋂ j, t i j = ⋂ i, ⋂ j, s ∪ t i j"}], "premise": [135301], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nι' : Sort u_5\nι₂ : Sort u_6\nκ : ι → Sort u_7\nκ₁ : ι → Sort u_8\nκ₂ : ι → Sort u_9\nκ' : ι' → Sort u_10\ns : Set α\nt : (i : ι) → κ i → Set α\n⊢ s ∪ ⋂ i, ⋂ j, t i j = ⋂ i, ⋂ j, s ∪ t i j"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "𝕜 : Type u_3", "inst✝¹⁰ : _root_.RCLike 𝕜", "E : Type u_4", "inst✝⁹ : NormedAddCommGroup E", "inst✝⁸ : InnerProductSpace 𝕜 E", "E' : Type u_5", "inst✝⁷ : NormedAddCommGroup E'", "inst✝⁶ : InnerProductSpace 𝕜 E'", "F : Type u_6", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : InnerProductSpace ℝ F", "F' : Type u_7", "inst✝³ : NormedAddCommGroup F'", "inst✝² : InnerProductSpace ℝ F'", "inst✝¹ : DecidableEq ι", "inst✝ : Fintype ι", "i : ι", "a : 𝕜", "v : EuclideanSpace 𝕜 ι"], "goal": "⟪v, single i a⟫_𝕜 = a * (starRingEnd ((fun x => 𝕜) i)) (v i)"}], "premise": [1911, 119707], "state_str": "ι : Type u_1\nι' : Type u_2\n𝕜 : Type u_3\ninst✝¹⁰ : _root_.RCLike 𝕜\nE : Type u_4\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : InnerProductSpace 𝕜 E\nE' : Type u_5\ninst✝⁷ : NormedAddCommGroup E'\ninst✝⁶ : InnerProductSpace 𝕜 E'\nF : Type u_6\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : InnerProductSpace ℝ F\nF' : Type u_7\ninst✝³ : NormedAddCommGroup F'\ninst✝² : InnerProductSpace ℝ F'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ni : ι\na : 𝕜\nv : EuclideanSpace 𝕜 ι\n⊢ ⟪v, single i a⟫_𝕜 = a * (starRingEnd ((fun x => 𝕜) i)) (v i)"} +{"state": [{"context": ["n✝ : ℤ"], "goal": "↑n✝ / ↑0 = ↑0"}], "premise": [4220], "state_str": "n✝ : ℤ\n⊢ ↑n✝ / ↑0 = ↑0"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "P : Type u_3", "N : Type w", "inst✝⁸ : Ring R", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "inst✝³ : AddCommGroup P", "inst✝² : Module R P", "inst✝¹ : IsNoetherian R M", "inst✝ : Nontrivial R", "ι : Type u_4", "v : ι → M", "hv : LinearIndependent R v"], "goal": "Finite ι"}], "premise": [1673, 78618], "state_str": "R : Type u_1\nM : Type u_2\nP : Type u_3\nN : Type w\ninst✝⁸ : Ring R\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ninst✝¹ : IsNoetherian R M\ninst✝ : Nontrivial R\nι : Type u_4\nv : ι → M\nhv : LinearIndependent R v\n⊢ Finite ι"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "P : Type u_3", "N : Type w", "inst✝⁸ : Ring R", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "inst✝³ : AddCommGroup P", "inst✝² : Module R P", "inst✝¹ : IsNoetherian R M", "inst✝ : Nontrivial R", "ι : Type u_4", "v : ι → M", "hv : LinearIndependent R v", "hwf : WellFounded fun x x_1 => x > x_1"], "goal": "Finite ι"}], "premise": [17149, 83780], "state_str": "R : Type u_1\nM : Type u_2\nP : Type u_3\nN : Type w\ninst✝⁸ : Ring R\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ninst✝¹ : IsNoetherian R M\ninst✝ : Nontrivial R\nι : Type u_4\nv : ι → M\nhv : LinearIndependent R v\nhwf : WellFounded fun x x_1 => x > x_1\n⊢ Finite ι"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "P : Type u_3", "N : Type w", "inst✝⁸ : Ring R", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "inst✝³ : AddCommGroup P", "inst✝² : Module R P", "inst✝¹ : IsNoetherian R M", "inst✝ : Nontrivial R", "ι : Type u_4", "v : ι → M", "hv : LinearIndependent R v", "hwf : WellFounded fun x x_1 => x > x_1", "i : ι", "contra : span R {v i} = ⊥"], "goal": "False"}], "premise": [83712], "state_str": "R : Type u_1\nM : Type u_2\nP : Type u_3\nN : Type w\ninst✝⁸ : Ring R\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ninst✝¹ : IsNoetherian R M\ninst✝ : Nontrivial R\nι : Type u_4\nv : ι → M\nhv : LinearIndependent R v\nhwf : WellFounded fun x x_1 => x > x_1\ni : ι\ncontra : span R {v i} = ⊥\n⊢ False"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "P : Type u_3", "N : Type w", "inst✝⁸ : Ring R", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "inst✝³ : AddCommGroup P", "inst✝² : Module R P", "inst✝¹ : IsNoetherian R M", "inst✝ : Nontrivial R", "ι : Type u_4", "v : ι → M", "hv : LinearIndependent R v", "hwf : WellFounded fun x x_1 => x > x_1", "i : ι", "contra : span R {v i} = ⊥"], "goal": "v i = 0"}], "premise": [86738], "state_str": "R : Type u_1\nM : Type u_2\nP : Type u_3\nN : Type w\ninst✝⁸ : Ring R\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ninst✝¹ : IsNoetherian R M\ninst✝ : Nontrivial R\nι : Type u_4\nv : ι → M\nhv : LinearIndependent R v\nhwf : WellFounded fun x x_1 => x > x_1\ni : ι\ncontra : span R {v i} = ⊥\n⊢ v i = 0"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "P : Type u_3", "N : Type w", "inst✝⁸ : Ring R", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : AddCommGroup N", "inst✝⁴ : Module R N", "inst✝³ : AddCommGroup P", "inst✝² : Module R P", "inst✝¹ : IsNoetherian R M", "inst✝ : Nontrivial R", "ι : Type u_4", "v : ι → M", "hv : LinearIndependent R v", "hwf : WellFounded fun x x_1 => x > x_1", "i : ι", "contra : span R {v i} = ⊥", "this : v i ∈ span R {v i}"], "goal": "v i = 0"}], "premise": [109877], "state_str": "R : Type u_1\nM : Type u_2\nP : Type u_3\nN : Type w\ninst✝⁸ : Ring R\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ninst✝¹ : IsNoetherian R M\ninst✝ : Nontrivial R\nι : Type u_4\nv : ι → M\nhv : LinearIndependent R v\nhwf : WellFounded fun x x_1 => x > x_1\ni : ι\ncontra : span R {v i} = ⊥\nthis : v i ∈ span R {v i}\n⊢ v i = 0"} +{"state": [{"context": ["R : Type u", "M : Type v", "N : Type w", "inst✝⁴ : Ring R", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : AddCommGroup N", "inst✝ : Module R N"], "goal": "toNat (Module.rank R ↥⊤) = toNat (Module.rank R M)"}], "premise": [85746], "state_str": "R : Type u\nM : Type v\nN : Type w\ninst✝⁴ : Ring R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : AddCommGroup N\ninst✝ : Module R N\n⊢ toNat (Module.rank R ↥⊤) = toNat (Module.rank R M)"} +{"state": [{"context": ["τ : Type u_1", "α : Type u_2", "β : Type u_3", "ι : Type u_4", "inst✝ : TopologicalSpace β", "f : Filter τ", "ϕ : τ → α → β", "s s₁ s₂ : Set α", "y : β"], "goal": "y ∈ ω f ϕ s ↔ ∀ n ∈ 𝓝 y, ∃ᶠ (t : τ) in f, (ϕ t '' s ∩ n).Nonempty"}], "premise": [88856, 134149], "state_str": "τ : Type u_1\nα : Type u_2\nβ : Type u_3\nι : Type u_4\ninst✝ : TopologicalSpace β\nf : Filter τ\nϕ : τ → α → β\ns s₁ s₂ : Set α\ny : β\n⊢ y ∈ ω f ϕ s ↔ ∀ n ∈ 𝓝 y, ∃ᶠ (t : τ) in f, (ϕ t '' s ∩ n).Nonempty"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝⁵ : OrderedSemiring α", "inst✝⁴ : OrderedAddCommMonoid β", "inst✝³ : MulActionWithZero α β", "inst✝² : FloorDiv α β", "a : α", "inst✝¹ : PosSMulMono α β", "inst✝ : PosSMulReflectLE α β", "ha : 0 < a", "b : β"], "goal": "∀ (c : β), c ≤ a • b ⌊/⌋ a ��� c ≤ b"}], "premise": [104875], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝⁵ : OrderedSemiring α\ninst✝⁴ : OrderedAddCommMonoid β\ninst✝³ : MulActionWithZero α β\ninst✝² : FloorDiv α β\na : α\ninst✝¹ : PosSMulMono α β\ninst✝ : PosSMulReflectLE α β\nha : 0 < a\nb : β\n⊢ ∀ (c : β), c ≤ a • b ⌊/⌋ a ↔ c ≤ b"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "a b : R", "n : ℕ", "inst✝⁵ : CommRing R", "inst✝⁴ : IsDomain R", "p q : R[X]", "inst✝³ : CommRing T", "inst✝² : CommRing S", "inst✝¹ : IsDomain S", "inst✝ : Algebra T S", "r : T"], "goal": "(X - C r).aroots S = {(algebraMap T S) r}"}], "premise": [102539, 102569, 102916, 102917, 102996], "state_str": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\np q : R[X]\ninst✝³ : CommRing T\ninst✝² : CommRing S\ninst✝¹ : IsDomain S\ninst✝ : Algebra T S\nr : T\n⊢ (X - C r).aroots S = {(algebraMap T S) r}"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "X : Type u_3", "Y : Type u_4", "Z : Type u_5", "β : Type u_6", "inst✝⁸ : MeasurableSpace X", "inst✝⁷ : StandardBorelSpace X", "inst✝⁶ : TopologicalSpace Y", "inst✝⁵ : T0Space Y", "inst✝⁴ : MeasurableSpace Y", "inst✝³ : OpensMeasurableSpace Y", "inst✝² : MeasurableSpace β", "inst✝¹ : MeasurableSpace Z", "inst✝ : SecondCountableTopology Y", "f : X → Y", "hf : Measurable f", "hsurj : Surjective f"], "goal": "MeasurableSpace.map f inst✝⁸ = borel Y"}], "premise": [14272, 25859, 28787], "state_str": "α : Type u_1\nι : Type u_2\nX : Type u_3\nY : Type u_4\nZ : Type u_5\nβ : Type u_6\ninst✝⁸ : MeasurableSpace X\ninst✝⁷ : StandardBorelSpace X\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : T0Space Y\ninst✝⁴ : MeasurableSpace Y\ninst✝³ : OpensMeasurableSpace Y\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace Z\ninst✝ : SecondCountableTopology Y\nf : X → Y\nhf : Measurable f\nhsurj : Surjective f\n⊢ MeasurableSpace.map f inst✝⁸ = borel Y"} +{"state": [{"context": ["α : Type u_1", "ι : Type u_2", "X : Type u_3", "Y : Type u_4", "Z : Type u_5", "β : Type u_6", "inst✝⁸ : MeasurableSpace X", "inst✝⁷ : StandardBorelSpace X", "inst✝⁶ : TopologicalSpace Y", "inst✝⁵ : T0Space Y", "inst✝⁴ : MeasurableSpace Y", "inst✝³ : OpensMeasurableSpace Y", "inst✝² : MeasurableSpace β", "inst✝¹ : MeasurableSpace Z", "inst✝ : SecondCountableTopology Y", "f : X → Y", "hf : Measurable f", "hsurj : Surjective f", "d : Measurable f", "this✝ : MeasurableSpace Y := borel Y", "this : BorelSpace Y"], "goal": "MeasurableSpace.map f inst✝⁸ = borel Y"}], "premise": [26628], "state_str": "α : Type u_1\nι : Type u_2\nX : Type u_3\nY : Type u_4\nZ : Type u_5\nβ : Type u_6\ninst✝⁸ : MeasurableSpace X\ninst✝⁷ : StandardBorelSpace X\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : T0Space Y\ninst✝⁴ : MeasurableSpace Y\ninst✝³ : OpensMeasurableSpace Y\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace Z\ninst✝ : SecondCountableTopology Y\nf : X → Y\nhf : Measurable f\nhsurj : Surjective f\nd : Measurable f\nthis✝ : MeasurableSpace Y := borel Y\nthis : BorelSpace Y\n⊢ MeasurableSpace.map f inst✝⁸ = borel Y"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : F → E", "hf : Differentiable ℝ f", "x : F", "p : ℝ", "hp : 1 < p"], "goal": "‖fderiv ℝ (fun x => ‖f x‖ ^ p) x‖ ≤ p * ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"}], "premise": [33457, 41371, 43287], "state_str": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : F → E\nhf : Differentiable ℝ f\nx : F\np : ℝ\nhp : 1 < p\n⊢ ‖fderiv ℝ (fun x => ‖f x‖ ^ p) x‖ ≤ p * ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : F → E", "hf : Differentiable ℝ f", "x : F", "p : ℝ", "hp : 1 < p"], "goal": "‖p‖ * ‖‖f x‖ ^ (p - 2)‖ * ‖((innerSL ℝ) (f x)).comp (fderiv ℝ f x)‖ ≤ p * ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"}], "premise": [1674, 40022, 42680, 42903, 43341, 101700, 105406, 119703], "state_str": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : F → E\nhf : Differentiable ℝ f\nx : F\np : ℝ\nhp : 1 < p\n⊢ ‖p‖ * ‖‖f x‖ ^ (p - 2)‖ * ‖((innerSL ℝ) (f x)).comp (fderiv ℝ f x)‖ ≤ p * ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : F → E", "hf : Differentiable ℝ f", "x : F", "p : ℝ", "hp : 1 < p"], "goal": "‖f x‖ ^ (p - 2) * ‖((innerSL ℝ) (f x)).comp (fderiv ℝ f x)‖ ≤ ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"}], "premise": [40910, 102621], "state_str": "case h\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : F → E\nhf : Differentiable ℝ f\nx : F\np : ℝ\nhp : 1 < p\n⊢ ‖f x‖ ^ (p - 2) * ‖((innerSL ℝ) (f x)).comp (fderiv ℝ f x)‖ ≤ ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"} +{"state": [{"context": ["E : Type u_1", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace ℝ E", "F : Type u_2", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "f : F → E", "hf : Differentiable ℝ f", "x : F", "p : ℝ", "hp : 1 < p"], "goal": "‖f x‖ ^ (p - 2) * (‖(innerSL ℝ) (f x)‖ * ‖fderiv ℝ f x‖) = ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"}], "premise": [36920, 40061, 119703], "state_str": "case h\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nF : Type u_2\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : F → E\nhf : Differentiable ℝ f\nx : F\np : ℝ\nhp : 1 < p\n⊢ ‖f x‖ ^ (p - 2) * (‖(innerSL ℝ) (f x)‖ * ‖fderiv ℝ f x‖) = ‖f x‖ ^ (p - 1) * ‖fderiv ℝ f x‖"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "I✝ : Ideal R", "a✝¹ b : R", "S : Type v", "x y : R", "I : Ideal R", "hI : I.IsMaximal", "a✝ : R ⧸ I", "a : R", "h : Quot.mk Setoid.r a ≠ 0"], "goal": "∃ b, Quot.mk Setoid.r a * b = 1"}], "premise": [1674, 1681, 80142, 80393], "state_str": "case mk\nR : Type u\ninst✝ : CommRing R\nI✝ : Ideal R\na✝¹ b : R\nS : Type v\nx y : R\nI : Ideal R\nhI : I.IsMaximal\na✝ : R ⧸ I\na : R\nh : Quot.mk Setoid.r a ≠ 0\n⊢ ∃ b, Quot.mk Setoid.r a * b = 1"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "I✝ : Ideal R", "a✝¹ b✝ : R", "S : Type v", "x y : R", "I : Ideal R", "hI : I.IsMaximal", "a✝ : R ⧸ I", "a : R", "h : Quot.mk Setoid.r a ≠ 0", "b c : R", "hc : c ∈ I", "abc : b * a + c = 1"], "goal": "∃ b, Quot.mk Setoid.r a * b = 1"}], "premise": [119707], "state_str": "case mk.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nI✝ : Ideal R\na✝¹ b✝ : R\nS : Type v\nx y : R\nI : Ideal R\nhI : I.IsMaximal\na✝ : R ⧸ I\na : R\nh : Quot.mk Setoid.r a ≠ 0\nb c : R\nhc : c ∈ I\nabc : b * a + c = 1\n⊢ ∃ b, Quot.mk Setoid.r a * b = 1"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "I✝ : Ideal R", "a✝¹ b✝ : R", "S : Type v", "x y : R", "I : Ideal R", "hI : I.IsMaximal", "a✝ : R ⧸ I", "a : R", "h : Quot.mk Setoid.r a ≠ 0", "b c : R", "hc : c ∈ I", "abc : a * b + c = 1"], "goal": "Setoid.r ((fun x x_1 => x * x_1) a b) 1"}], "premise": [82365], "state_str": "case mk.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nI✝ : Ideal R\na✝¹ b✝ : R\nS : Type v\nx y : R\nI : Ideal R\nhI : I.IsMaximal\na✝ : R ⧸ I\na : R\nh : Quot.mk Setoid.r a ≠ 0\nb c : R\nhc : c ∈ I\nabc : a * b + c = 1\n⊢ Setoid.r ((fun x x_1 => x * x_1) a b) 1"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "I✝ : Ideal R", "a✝¹ b✝ : R", "S : Type v", "x y : R", "I : Ideal R", "hI : I.IsMaximal", "a✝ : R ⧸ I", "a : R", "h : Quot.mk Setoid.r a ≠ 0", "b c : R", "hc : c ∈ I", "abc : a * b + c = 1"], "goal": "a * b - 1 ∈ I"}], "premise": [118073], "state_str": "case mk.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nI✝ : Ideal R\na✝¹ b✝ : R\nS : Type v\nx y : R\nI : Ideal R\nhI : I.IsMaximal\na✝ : R ⧸ I\na : R\nh : Quot.mk Setoid.r a ≠ 0\nb c : R\nhc : c ∈ I\nabc : a * b + c = 1\n⊢ a * b - 1 ∈ I"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "I✝ : Ideal R", "a✝¹ b✝ : R", "S : Type v", "x y : R", "I : Ideal R", "hI : I.IsMaximal", "a✝ : R ⧸ I", "a : R", "h : Quot.mk Setoid.r a ≠ 0", "b c : R", "hc : c ∈ I", "abc : c = 1 - a * b"], "goal": "a * b - 1 ∈ I"}], "premise": [117837, 122529], "state_str": "case mk.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nI✝ : Ideal R\na✝¹ b✝ : R\nS : Type v\nx y : R\nI : Ideal R\nhI : I.IsMaximal\na✝ : R ⧸ I\na : R\nh : Quot.mk Setoid.r a ≠ 0\nb c : R\nhc : c ∈ I\nabc : c = 1 - a * b\n⊢ a * b - 1 ∈ I"} +{"state": [{"context": ["α : Type u_1", "V : Type u_2", "P : Type u_3", "W : Type u_4", "Q : Type u_5", "inst✝⁵ : SeminormedAddCommGroup V", "inst✝⁴ : PseudoMetricSpace P", "inst✝³ : NormedAddTorsor V P", "inst✝² : NormedAddCommGroup W", "inst✝¹ : MetricSpace Q", "inst✝ : NormedAddTorsor W Q", "v : V", "x : P"], "goal": "dist (v +ᵥ x) x = ‖v‖"}], "premise": [42504, 115870], "state_str": "α : Type u_1\nV : Type u_2\nP : Type u_3\nW : Type u_4\nQ : Type u_5\ninst✝⁵ : SeminormedAddCommGroup V\ninst✝⁴ : PseudoMetricSpace P\ninst✝³ : NormedAddTorsor V P\ninst✝² : NormedAddCommGroup W\ninst✝¹ : MetricSpace Q\ninst✝ : NormedAddTorsor W Q\nv : V\nx : P\n⊢ dist (v +ᵥ x) x = ‖v‖"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : Semiring α", "I : Ideal α", "a b : α", "s : Set α"], "goal": "span s = ⊤ ↔ ∃ s', ↑s' ⊆ s ∧ span ↑s' = ⊤"}], "premise": [80343], "state_str": "α : Type u\nβ : Type v\ninst✝ : Semiring α\nI : Ideal α\na b : α\ns : Set α\n⊢ span s = ⊤ ↔ ∃ s', ↑s' ⊆ s ∧ span ↑s' = ⊤"} +{"state": [{"context": ["α : Type u", "β : Type v", "inst✝ : Semiring α", "I : Ideal α", "a b : α", "s : Set α"], "goal": "1 ∈ span s ↔ ∃ s', ↑s' ⊆ s ∧ 1 ∈ span ↑s'"}], "premise": [80354, 86782], "state_str": "α : Type u\nβ : Type v\ninst✝ : Semiring α\nI : Ideal α\na b : α\ns : Set α\n⊢ 1 ∈ span s ↔ ∃ s', ↑s' ⊆ s ∧ 1 ∈ span ↑s'"} +{"state": [{"context": ["u v : Level", "n : ℕ", "pn : NormNum.IsNat n 0"], "goal": "List.range n = []"}], "premise": [2700, 53527, 143121], "state_str": "u v : Level\nn : ℕ\npn : NormNum.IsNat n 0\n⊢ List.range n = []"} +{"state": [{"context": ["a b c : ℕ", "r : ℤ", "ha : a % 2 = 0", "hb : b % 8 = 1", "hc : a / 2 = c", "hr : jacobiSymNat c b = r"], "goal": "jacobiSymNat a b = r"}], "premise": [2209, 143117], "state_str": "a b c : ℕ\nr : ℤ\nha : a % 2 = 0\nhb : b % 8 = 1\nhc : a / 2 = c\nhr : jacobiSymNat c b = r\n⊢ jacobiSymNat a b = r"} +{"state": [{"context": ["a b c : ℕ", "r : ℤ", "ha : a % 2 = 0", "hb : b % 8 = 1", "hc : a / 2 = c", "hr : jacobiSymNat c b = r"], "goal": "jacobiSym (↑a) b = jacobiSym (↑a / 2) b"}], "premise": [1738, 21989], "state_str": "a b c : ℕ\nr : ℤ\nha : a % 2 = 0\nhb : b % 8 = 1\nhc : a / 2 = c\nhr : jacobiSymNat c b = r\n⊢ jacobiSym (↑a) b = jacobiSym (↑a / 2) b"} +{"state": [{"context": ["a b c : ℕ", "r : ℤ", "ha : a % 2 = 0", "hb : b % 8 = 1", "hc : a / 2 = c", "hr : jacobiSymNat c b = r"], "goal": "b % 2 = 1"}], "premise": [3534], "state_str": "a b c : ℕ\nr : ℤ\nha : a % 2 = 0\nhb : b % 8 = 1\nhc : a / 2 = c\nhr : jacobiSymNat c b = r\n⊢ b % 2 = 1"} +{"state": [{"context": ["R : Type u", "a b : R", "m n✝ : ℕ", "inst✝ : Ring R", "n : ℕ"], "goal": "(monomial n) (a - b) = (monomial n) a - (monomial n) b"}], "premise": [101232, 101357, 119789], "state_str": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nn : ℕ\n⊢ (monomial n) (a - b) = (monomial n) a - (monomial n) b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝¹ : CommMonoid α", "inst✝ : TopologicalSpace α", "f✝ g : β → α", "a b : α", "s✝ : Finset β", "s : Set β", "hs : s.Finite", "f : β → α"], "goal": "Multipliable (f ∘ Subtype.val)"}], "premise": [64082], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝¹ : CommMonoid α\ninst✝ : TopologicalSpace α\nf✝ g : β → α\na b : α\ns✝ : Finset β\ns : Set β\nhs : s.Finite\nf : β → α\n⊢ Multipliable (f ∘ Subtype.val)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝¹ : CommMonoid α", "inst✝ : TopologicalSpace α", "f✝ g : β → α", "a b : α", "s✝ : Finset β", "s : Set β", "hs : s.Finite", "f : β → α", "this : Multipliable (f ∘ Subtype.val)"], "goal": "Multipliable (f ∘ Subtype.val)"}], "premise": [135003], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝¹ : CommMonoid α\ninst✝ : TopologicalSpace α\nf✝ g : β → α\na b : α\ns✝ : Finset β\ns : Set β\nhs : s.Finite\nf : β → α\nthis : Multipliable (f ∘ Subtype.val)\n⊢ Multipliable (f ∘ Subtype.val)"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : NonPreadditiveAbelian C", "X Y : C", "a b c : X ⟶ Y"], "goal": "a + b + c = a + (b + c)"}], "premise": [95330], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na b c : X ⟶ Y\n⊢ a + b + c = a + (b + c)"} +{"state": [{"context": ["C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : NonPreadditiveAbelian C", "X Y : C", "a b c : X ⟶ Y"], "goal": "a - -b + c = a + (b + c)"}], "premise": [95337, 95339, 95342, 95344], "state_str": "C : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na b c : X ⟶ Y\n⊢ a - -b + c = a + (b + c)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "R✝ : Type u_3", "S✝ : Type u_4", "F✝ : Type u_5", "inst✝⁵ : NonAssocSemiring R✝", "inst✝⁴ : NonAssocSemiring S✝", "R : Type u_6", "S : Type u_7", "inst✝³ : Semiring R", "inst✝² : Semiring S", "F : Type u_8", "inst✝¹ : FunLike F R S", "inst✝ : RingHomClass F R S", "f : F", "n : ℕ", "hn : NeZero ↑n"], "goal": "NeZero (f ↑n)"}], "premise": [142663], "state_str": "α : Type u_1\nβ : Type u_2\nR✝ : Type u_3\nS✝ : Type u_4\nF✝ : Type u_5\ninst✝⁵ : NonAssocSemiring R✝\ninst✝⁴ : NonAssocSemiring S✝\nR : Type u_6\nS : Type u_7\ninst✝³ : Semiring R\ninst✝² : Semiring S\nF : Type u_8\ninst✝¹ : FunLike F R S\ninst✝ : RingHomClass F R S\nf : F\nn : ℕ\nhn : NeZero ↑n\n⊢ NeZero (f ↑n)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Monoid α", "n : ℕ", "G : Type u_3", "inst✝ : Group G", "f : Fin n → G", "i : ℕ", "hn : i < n"], "goal": "(partialProd f ⟨i, hn⟩.castSucc)⁻¹ * partialProd f ⟨i, hn⟩.succ = f ⟨i, hn⟩"}], "premise": [3738, 4052, 4087, 14281, 117774, 119703, 119808, 119818, 124585, 142951], "state_str": "case mk\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Monoid α\nn : ℕ\nG : Type u_3\ninst✝ : Group G\nf : Fin n → G\ni : ℕ\nhn : i < n\n⊢ (partialProd f ⟨i, hn⟩.castSucc)⁻¹ * partialProd f ⟨i, hn⟩.succ = f ⟨i, hn⟩"} +{"state": [{"context": ["α : Type u_1", "M₀ : Type u_2", "G₀ : Type u_3", "M₀' : Type u_4", "G₀' : Type u_5", "F : Type u_6", "F' : Type u_7", "inst✝ : CancelMonoidWithZero M₀", "a b c : M₀", "hb : b ≠ 0"], "goal": "b = a * b ↔ a = 1"}], "premise": [1713, 1717, 108292], "state_str": "α : Type u_1\nM₀ : Type u_2\nG₀ : Type u_3\nM₀' : Type u_4\nG₀' : Type u_5\nF : Type u_6\nF' : Type u_7\ninst✝ : CancelMonoidWithZero M₀\na b c : M₀\nhb : b ≠ 0\n⊢ b = a * b ↔ a = 1"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'"], "goal": "((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom = (μ R X X').hom ≫ (free R).map (f ⊗ g)"}], "premise": [86868], "state_str": "R : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\n⊢ ((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom = (μ R X X').hom ≫ (free R).map (f ⊗ g)"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'"], "goal": "(TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) = (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g))"}], "premise": [85184], "state_str": "case H\nR : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\n⊢ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂\n (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) =\n (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g))"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'", "x : X"], "goal": "(TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ Finsupp.lsingle x = (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ Finsupp.lsingle x"}], "premise": [109754], "state_str": "case H.h\nR : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\nx : X\n⊢ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂\n (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ\n Finsupp.lsingle x =\n (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ\n Finsupp.lsingle x"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'", "x : X"], "goal": "((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ Finsupp.lsingle x) 1 = ((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ Finsupp.lsingle x) 1"}], "premise": [85184], "state_str": "case H.h.h\nR : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\nx : X\n⊢ ((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂\n (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ\n Finsupp.lsingle x)\n 1 =\n ((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ\n Finsupp.lsingle x)\n 1"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'", "x : X", "x' : X'"], "goal": "((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ Finsupp.lsingle x) 1 ∘ₗ Finsupp.lsingle x' = ((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ Finsupp.lsingle x) 1 ∘ₗ Finsupp.lsingle x'"}], "premise": [109754], "state_str": "case H.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\nx : X\nx' : X'\n⊢ ((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂\n (((free R).map f �� (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ\n Finsupp.lsingle x)\n 1 ∘ₗ\n Finsupp.lsingle x' =\n ((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ\n Finsupp.lsingle x)\n 1 ∘ₗ\n Finsupp.lsingle x'"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'", "x : X", "x' : X'"], "goal": "(((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ Finsupp.lsingle x) 1 ∘ₗ Finsupp.lsingle x') 1 = (((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ Finsupp.lsingle x) 1 ∘ₗ Finsupp.lsingle x') 1"}], "premise": [148057], "state_str": "case H.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\nx : X\nx' : X'\n⊢ (((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂\n (((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom) ∘ₗ\n Finsupp.lsingle x)\n 1 ∘ₗ\n Finsupp.lsingle x')\n 1 =\n (((TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj X')).compr₂ ((μ R X X').hom ≫ (free R).map (f ⊗ g)) ∘ₗ\n Finsupp.lsingle x)\n 1 ∘ₗ\n Finsupp.lsingle x')\n 1"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "X Y X' Y' : Type u", "f : X ⟶ Y", "g : X' ⟶ Y'", "x : X", "x' : X'", "y : Y", "y' : Y'"], "goal": "((finsuppTensorFinsupp' R Y Y') (Finsupp.mapDomain f (Finsupp.single x 1) ⊗ₜ[R] Finsupp.mapDomain g (Finsupp.single x' 1))) (y, y') = (Finsupp.mapDomain (f ⊗ g) ((finsuppTensorFinsupp' R X X') (Finsupp.single x 1 ⊗ₜ[R] Finsupp.single x' 1))) (y, y')"}], "premise": [86269, 98510, 119730, 148486], "state_str": "case H.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y X' Y' : Type u\nf : X ⟶ Y\ng : X' ⟶ Y'\nx : X\nx' : X'\ny : Y\ny' : Y'\n⊢ ((finsuppTensorFinsupp' R Y Y')\n (Finsupp.mapDomain f (Finsupp.single x 1) ⊗ₜ[R] Finsupp.mapDomain g (Finsupp.single x' 1)))\n (y, y') =\n (Finsupp.mapDomain (f ⊗ g) ((finsuppTensorFinsupp' R X X') (Finsupp.single x 1 ⊗ₜ[R] Finsupp.single x' 1))) (y, y')"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : LinearOrderedSemifield α", "a b c d e : α", "m n : ℤ", "h : a / b ≤ c / d", "he : 0 ≤ e"], "goal": "a / (b * e) ≤ c / (d * e)"}], "premise": [117915], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nh : a / b ≤ c / d\nhe : 0 ≤ e\n⊢ a / (b * e) ≤ c / (d * e)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : LinearOrderedSemifield α", "a b c d e : α", "m n : ℤ", "h : a / b ≤ c / d", "he : 0 ≤ e"], "goal": "a / b * (1 / e) ≤ c / d * (1 / e)"}], "premise": [1674, 102622, 104336], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nh : a / b ≤ c / d\nhe : 0 ≤ e\n⊢ a / b * (1 / e) ≤ c / d * (1 / e)"} +{"state": [{"context": ["x✝ y x : ℝ", "hx : 0 < cos x"], "goal": "tan x / √(1 + tan x ^ 2) = sin x"}], "premise": [11234, 119790, 149233, 149257], "state_str": "x✝ y x : ℝ\nhx : 0 < cos x\n⊢ tan x / √(1 + tan x ^ 2) = sin x"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CancelCommMonoidWithZero R", "α : Type u_2", "inst✝ : DecidableEq α", "x y a : R", "s : Finset α", "p : α → R", "hp : ∀ i ∈ s, Prime (p i)", "hx : x * y = a * ∏ i ∈ s, p i"], "goal": "∃ t u b c, t ∪ u = s ∧ Disjoint t u ∧ a = b * c ∧ x = b * ∏ i ∈ t, p i ∧ y = c * ∏ i ∈ u, p i"}], "premise": [138846], "state_str": "R : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\nα : Type u_2\ninst✝ : DecidableEq α\nx y a : R\ns : Finset α\np : α → R\nhp : ∀ i ∈ s, Prime (p i)\nhx : x * y = a * ∏ i ∈ s, p i\n⊢ ∃ t u b c, t ∪ u = s ∧ Disjoint t u ∧ a = b * c ∧ x = b * ∏ i ∈ t, p i ∧ y = c * ∏ i ∈ u, p i"} +{"state": [{"context": ["α : Type u_1", "𝕜 : Type u_2", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_3", "F : Type u_4", "G : Type u_5", "H : Type u_6", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "f : E → F", "p : FormalMultilinearSeries 𝕜 E F", "x : E"], "goal": "HasFPowerSeriesWithinAt f p univ x ↔ HasFPowerSeriesAt f p x"}], "premise": [32792], "state_str": "α : Type u_1\n𝕜 : Type u_2\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_3\nF : Type u_4\nG : Type u_5\nH : Type u_6\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\nf : E → F\np : FormalMultilinearSeries 𝕜 E F\nx : E\n⊢ HasFPowerSeriesWithinAt f p univ x ↔ HasFPowerSeriesAt f p x"} +{"state": [{"context": ["R : Type u_1", "inst✝⁴ : CommSemiring R", "M : Submonoid R", "S : Type u_2", "inst✝³ : CommSemiring S", "inst✝² : Algebra R S", "P : Type u_3", "inst✝¹ : CommSemiring P", "inst✝ : IsLocalization M S", "z : S"], "goal": "(algebraMap R S) (sec M z).1 = (algebraMap R S) ↑(sec M z).2 * z"}], "premise": [77582, 119707], "state_str": "R : Type u_1\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type u_3\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nz : S\n⊢ (algebraMap R S) (sec M z).1 = (algebraMap R S) ↑(sec M z).2 * z"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : Nonempty α", "T : ℕ → ℝ", "g : ℝ → ℝ", "a b : α → ℝ", "r : α → ℕ → ℕ", "R : AkraBazziRecurrence T g a b r"], "goal": "∀ᶠ (n : ℕ) in atTop, ∀ (i : α), ‖↑(r i n) - b i * ↑n‖ ≤ ↑n / log ↑n ^ 2"}], "premise": [16032], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : Nonempty α\nT : ℕ → ℝ\ng : ℝ → ℝ\na b : α → ℝ\nr : α → ℕ → ℕ\nR : AkraBazziRecurrence T g a b r\n⊢ ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), ‖↑(r i n) - b i * ↑n‖ ≤ ↑n / log ↑n ^ 2"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : Nonempty α", "T : ℕ → ℝ", "g : ℝ → ℝ", "a b : α → ℝ", "r : α → ℕ → ℕ", "R : AkraBazziRecurrence T g a b r", "i : α"], "goal": "∀ᶠ (x : ℕ) in atTop, ‖↑(r i x) - b i * ↑x‖ ≤ ↑x / log ↑x ^ 2"}], "premise": [43362, 76697], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : Nonempty α\nT : ℕ → ℝ\ng : ℝ → ℝ\na b : α → ℝ\nr : α → ℕ → ℕ\nR : AkraBazziRecurrence T g a b r\ni : α\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖↑(r i x) - b i * ↑x‖ ≤ ↑x / log ↑x ^ 2"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n"], "goal": "∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"}], "premise": [22072], "state_str": "ξ : ℝ\nn : ℕ\nn_pos : 0 < n\n⊢ ∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n", "j k : ℤ", "hk₀ : 0 < k", "hk₁ : k ≤ ↑n", "h : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)"], "goal": "∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"}], "premise": [1674, 105573], "state_str": "case intro.intro.intro.intro\nξ : ℝ\nn : ℕ\nn_pos : 0 < n\nj k : ℤ\nhk₀ : 0 < k\nhk₁ : k ≤ ↑n\nh : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)\n⊢ ∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n", "j k : ℤ", "hk₀ : 0 < k", "hk₁ : k ≤ ↑n", "h : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)", "hk₀' : 0 < ↑k"], "goal": "∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"}], "premise": [4210, 147888, 148013], "state_str": "case intro.intro.intro.intro\nξ : ℝ\nn : ℕ\nn_pos : 0 < n\nj k : ℤ\nhk₀ : 0 < k\nhk₁ : k ≤ ↑n\nh : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)\nhk₀' : 0 < ↑k\n⊢ ∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n", "j k : ℤ", "hk₀ : 0 < k", "hk₁ : k ≤ ↑n", "h : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)", "hk₀' : 0 < ↑k", "hden : ↑(↑j / ↑k).den ≤ k"], "goal": "∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"}], "premise": [1673, 142597], "state_str": "case intro.intro.intro.intro\nξ : ℝ\nn : ℕ\nn_pos : 0 < n\nj k : ℤ\nhk₀ : 0 < k\nhk₁ : k ≤ ↑n\nh : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)\nhk₀' : 0 < ↑k\nhden : ↑(↑j / ↑k).den ≤ k\n⊢ ∃ q, |ξ - ↑q| ≤ 1 / ((↑n + 1) * ↑q.den) ∧ q.den ≤ n"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n", "j k : ℤ", "hk₀ : 0 < k", "hk₁ : k ≤ ↑n", "h : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)", "hk₀' : 0 < ↑k", "hden : ↑(↑j / ↑k).den ≤ k"], "goal": "|ξ - ↑(↑j / ↑k)| ≤ 1 / ((↑n + 1) * ↑(↑j / ↑k).den)"}], "premise": [1674, 106022, 117896, 142640, 147933], "state_str": "case intro.intro.intro.intro\nξ : ℝ\nn : ℕ\nn_pos : 0 < n\nj k : ℤ\nhk₀ : 0 < k\nhk₁ : k ≤ ↑n\nh : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)\nhk₀' : 0 < ↑k\nhden : ↑(↑j / ↑k).den ≤ k\n⊢ |ξ - ↑(↑j / ↑k)| ≤ 1 / ((↑n + 1) * ↑(↑j / ↑k).den)"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n", "j k : ℤ", "hk₀ : 0 < k", "hk₁ : k ≤ ↑n", "h : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)", "hk₀' : 0 < ↑k", "hden : ↑(↑j / ↑k).den ≤ k"], "goal": "|ξ - ↑(↑j / ↑k)| * ↑(↑j / ↑k).den ≤ 1 / (↑n + 1)"}], "premise": [1674, 102621, 105294, 105569], "state_str": "case intro.intro.intro.intro\nξ : ℝ\nn : ℕ\nn_pos : 0 < n\nj k : ℤ\nhk₀ : 0 < k\nhk₁ : k ≤ ↑n\nh : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)\nhk₀' : 0 < ↑k\nhden : ↑(↑j / ↑k).den ≤ k\n⊢ |ξ - ↑(↑j / ↑k)| * ↑(↑j / ↑k).den ≤ 1 / (↑n + 1)"} +{"state": [{"context": ["ξ : ℝ", "n : ℕ", "n_pos : 0 < n", "j k : ℤ", "hk₀ : 0 < k", "hk₁ : k ≤ ↑n", "h : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)", "hk₀' : 0 < ↑k", "hden : ↑(↑j / ↑k).den ≤ k"], "goal": "|ξ - ↑(↑j / ↑k)| * ↑k ≤ 1 / (↑n + 1)"}], "premise": [11234, 105284, 106300, 108421, 119707, 147512, 148032], "state_str": "case intro.intro.intro.intro\nξ : ℝ\nn : ℕ\nn_pos : 0 < n\nj k : ℤ\nhk₀ : 0 < k\nhk₁ : k ≤ ↑n\nh : |↑k * ξ - ↑j| ≤ 1 / (↑n + 1)\nhk₀' : 0 < ↑k\nhden : ↑(↑j / ↑k).den ≤ k\n⊢ |ξ - ↑(↑j / ↑k)| * ↑k ≤ 1 / (↑n + 1)"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "π : ι → Type u_4", "inst✝ : GeneralizedHeytingAlgebra α", "a✝ b✝ c d a b : α", "h : b ≤ a"], "goal": "a ⇔ b = a ⇨ b"}], "premise": [1674, 15035, 18837], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\nπ : ι → Type u_4\ninst✝ : GeneralizedHeytingAlgebra α\na✝ b✝ c d a b : α\nh : b ≤ a\n⊢ a ⇔ b = a ⇨ b"} +{"state": [{"context": ["R : Type u_1", "inst✝ : NonAssocSemiring R"], "goal": "↑(ringChar R) = 0"}], "premise": [124637], "state_str": "R : Type u_1\ninst✝ : NonAssocSemiring R\n⊢ ↑(ringChar R) = 0"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝ : GeneralizedCoheytingAlgebra α", "a b c d : α", "h : b ≤ a"], "goal": "a \\ b ⊔ b = a"}], "premise": [14537, 15078], "state_str": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝ : GeneralizedCoheytingAlgebra α\na b c d : α\nh : b ≤ a\n⊢ a \\ b ⊔ b = a"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "W : Affine R", "x y : R"], "goal": "W.Nonsingular x (W.negY x y) ↔ W.Nonsingular x y"}], "premise": [1691, 132179, 132186, 132190], "state_str": "R : Type u\ninst✝ : CommRing R\nW : Affine R\nx y : R\n⊢ W.Nonsingular x (W.negY x y) ↔ W.Nonsingular x y"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "W : Affine R", "x y : R"], "goal": "W.Equation x y ∧ (W.a₁ * W.negY x y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ W.negY x y) ↔ W.Equation x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ -y - W.a₁ * x - W.a₃)"}], "premise": [1157, 1205, 1674, 1713, 1718, 1773, 1965, 70089], "state_str": "R : Type u\ninst✝ : CommRing R\nW : Affine R\nx y : R\n⊢ W.Equation x y ∧ (W.a₁ * W.negY x y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ W.negY x y) ↔\n W.Equation x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ -y - W.a₁ * x - W.a₃)"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι : Type u_1", "inst✝¹ : TopologicalSpace X", "inst✝ : TopologicalSpace Y", "s t U : Set X"], "goal": "Continuous U.boolIndicator ↔ IsClopen U"}], "premise": [1713, 66464, 131687], "state_str": "X : Type u\nY : Type v\nι : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\ns t U : Set X\n⊢ Continuous U.boolIndicator ↔ IsClopen U"} +{"state": [{"context": ["F : PFunctor.{u}", "X : Type u_1", "f✝ : X → ↑F X", "inst✝¹ : DecidableEq F.A", "inst✝ : Inhabited F.M", "ps : Path F", "a : F.A", "f : F.B a → F.M", "i : F.B a"], "goal": "isubtree (⟨a, i⟩ :: ps) (M.mk ⟨a, f⟩) = isubtree ps (f i)"}], "premise": [1739, 128876, 128882], "state_str": "F : PFunctor.{u}\nX : Type u_1\nf✝ : X → ↑F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited F.M\nps : Path F\na : F.A\nf : F.B a → F.M\ni : F.B a\n⊢ isubtree (⟨a, i⟩ :: ps) (M.mk ⟨a, f⟩) = isubtree ps (f i)"} +{"state": [{"context": ["m c : ℤ"], "goal": "2 * ((2 * c + 1) / 2) + 1 = 2 * c + 1"}], "premise": [119707], "state_str": "case intro\nm c : ℤ\n⊢ 2 * ((2 * c + 1) / 2) + 1 = 2 * c + 1"} +{"state": [{"context": ["m c : ℤ"], "goal": "(2 * c + 1) / 2 * 2 + 1 = 2 * c + 1"}], "premise": [4239], "state_str": "case intro\nm c : ℤ\n⊢ (2 * c + 1) / 2 * 2 + 1 = 2 * c + 1"} +{"state": [{"context": ["m c : ℤ"], "goal": "1 = (2 * c + 1) % 2"}], "premise": [4287], "state_str": "case h.e'_2.h.e'_6\nm c : ℤ\n⊢ 1 = (2 * c + 1) % 2"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "A : Type u_3", "inst✝¹ : Mul M", "s✝ : Set M", "inst✝ : Add A", "t : Set A", "S : Subsemigroup M", "p : M → Prop", "x : M", "s : Set M", "hs : closure s = ⊤", "mem : ∀ x ∈ s, p x", "mul : ∀ (x y : M), p x → p y → p (x * y)"], "goal": "p x"}], "premise": [116288], "state_str": "M : Type u_1\nN : Type u_2\nA : Type u_3\ninst✝¹ : Mul M\ns✝ : Set M\ninst✝ : Add A\nt : Set A\nS : Subsemigroup M\np : M → Prop\nx : M\ns : Set M\nhs : closure s = ⊤\nmem : ∀ x ∈ s, p x\nmul : ∀ (x y : M), p x → p y → p (x * y)\n⊢ p x"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hFn : ((finSuccEquiv R N) F).coeff n ≠ 0"], "goal": "∃ r, (eval r) F ≠ 0"}], "premise": [53688], "state_str": "σ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhFn : ((finSuccEquiv R N) F).coeff n ≠ 0\n⊢ ∃ r, (eval r) F ≠ 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hFn : ((finSuccEquiv R N) F).coeff n ≠ 0", "hF₀ : F ≠ 0"], "goal": "∃ r, (eval r) F ≠ 0"}], "premise": [78204, 111161, 111315], "state_str": "σ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhFn : ((finSuccEquiv R N) F).coeff n ≠ 0\nhF₀ : F ≠ 0\n⊢ ∃ r, (eval r) F ≠ 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hFn : ((finSuccEquiv R N) F).coeff n ≠ 0", "hF₀ : F ≠ 0", "hdeg : ((finSuccEquiv R N) F).natDegree < n + 1"], "goal": "∃ r, (eval r) F ≠ 0"}], "premise": [1674, 2045], "state_str": "σ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhFn : ((finSuccEquiv R N) F).coeff n ≠ 0\nhF₀ : F ≠ 0\nhdeg : ((finSuccEquiv R N) F).natDegree < n + 1\n⊢ ∃ r, (eval r) F ≠ 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hFn : ((finSuccEquiv R N) F).coeff n ≠ 0", "hF₀ : F ≠ 0", "hdeg : ((finSuccEquiv R N) F).natDegree < n + 1"], "goal": "(eval (Fin.cons 1 0)) F ≠ 0"}], "premise": [1690, 3913, 78187, 78207, 139145, 147079], "state_str": "case h\nσ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhFn : ((finSuccEquiv R N) F).coeff n ≠ 0\nhF₀ : F ≠ 0\nhdeg : ((finSuccEquiv R N) F).natDegree < n + 1\n⊢ (eval (Fin.cons 1 0)) F ≠ 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hFn : ((finSuccEquiv R N) F).coeff n ≠ 0", "hF₀ : F ≠ 0", "hdeg : ((finSuccEquiv R N) F).natDegree < n + 1", "aux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0"], "goal": "(eval (Fin.cons 1 0)) F ≠ 0"}], "premise": [102862, 102956, 111307, 112387, 119727, 119730, 119756, 126889, 126923, 127135], "state_str": "case h\nσ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhFn : ((finSuccEquiv R N) F).coeff n ≠ 0\nhF₀ : F ≠ 0\nhdeg : ((finSuccEquiv R N) F).natDegree < n + 1\naux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0\n⊢ (eval (Fin.cons 1 0)) F ≠ 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hFn : ((finSuccEquiv R N) F).coeff n ≠ 0", "hF₀ : F ≠ 0", "hdeg : ((finSuccEquiv R N) F).natDegree < n + 1", "aux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0"], "goal": "constantCoeff (((finSuccEquiv R N) F).coeff n) ≠ 0"}], "premise": [53688], "state_str": "case h\nσ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhFn : ((finSuccEquiv R N) F).coeff n ≠ 0\nhF₀ : F ≠ 0\nhdeg : ((finSuccEquiv R N) F).natDegree < n + 1\naux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0\n⊢ constantCoeff (((finSuccEquiv R N) F).coeff n) ≠ 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hF₀ : F ≠ 0", "hdeg : ((finSuccEquiv R N) F).natDegree < n + 1", "aux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0", "hFn : constantCoeff (((finSuccEquiv R N) F).coeff n) = 0", "d : Fin N →₀ ℕ"], "goal": "coeff d (((finSuccEquiv R N) F).coeff n) = coeff d 0"}], "premise": [112246], "state_str": "case h.a\nσ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhF₀ : F ≠ 0\nhdeg : ((finSuccEquiv R N) F).natDegree < n + 1\naux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0\nhFn : constantCoeff (((finSuccEquiv R N) F).coeff n) = 0\nd : Fin N →₀ ℕ\n⊢ coeff d (((finSuccEquiv R N) F).coeff n) = coeff d 0"} +{"state": [{"context": ["σ : Type u_1", "τ : Type u_2", "R : Type u_3", "S : Type u_4", "inst✝² inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S", "φ ψ : MvPolynomial σ R", "m n✝ N : ℕ", "F : MvPolynomial (Fin N.succ) R", "n : ℕ", "hF : F.IsHomogeneous n", "hF₀ : F ≠ 0", "hdeg : ((finSuccEquiv R N) F).natDegree < n + 1", "aux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0", "hFn : constantCoeff (((finSuccEquiv R N) F).coeff n) = 0", "d : Fin N →₀ ℕ"], "goal": "coeff d (((finSuccEquiv R N) F).coeff n) = 0"}], "premise": [70039], "state_str": "case h.a\nσ : Type u_1\nτ : Type u_2\nR : Type u_3\nS : Type u_4\ninst✝² inst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nφ ψ : MvPolynomial σ R\nm n✝ N : ℕ\nF : MvPolynomial (Fin N.succ) R\nn : ℕ\nhF : F.IsHomogeneous n\nhF₀ : F ≠ 0\nhdeg : ((finSuccEquiv R N) F).natDegree < n + 1\naux : ∀ i ∈ Finset.range n, constantCoeff (((finSuccEquiv R N) F).coeff i) = 0\nhFn : constantCoeff (((finSuccEquiv R N) F).coeff n) = 0\nd : Fin N →₀ ℕ\n⊢ coeff d (((finSuccEquiv R N) F).coeff n) = 0"} +{"state": [{"context": ["V : Type u_1", "V' : Type u_2", "inst✝⁵ : NormedAddCommGroup V", "inst✝⁴ : NormedAddCommGroup V'", "inst✝³ : InnerProductSpace ℝ V", "inst✝² : InnerProductSpace ℝ V'", "inst✝¹ : Fact (finrank ℝ V = 2)", "inst✝ : Fact (finrank ℝ V' = 2)", "o : Orientation ℝ V (Fin 2)", "x y : V"], "goal": "o.oangle x (-y) + o.oangle y (-x) = 0"}], "premise": [71590, 71597, 119826], "state_str": "V : Type u_1\nV' : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : NormedAddCommGroup V'\ninst✝³ : InnerProductSpace ℝ V\ninst✝² : InnerProductSpace ℝ V'\ninst✝¹ : Fact (finrank ℝ V = 2)\ninst✝ : Fact (finrank ℝ V' = 2)\no : Orientation ℝ V (Fin 2)\nx y : V\n⊢ o.oangle x (-y) + o.oangle y (-x) = 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Sort u_3", "l✝ l' la : Filter α", "lb : Filter β", "L : Filter (Set α)", "l : Filter α"], "goal": "(fun L => L.bind 𝓟) L ≤ l ↔ L ≤ l.smallSets"}], "premise": [12135, 15907, 134140], "state_str": "α : Type u_1\nβ : Type u_2\nι : Sort u_3\nl✝ l' la : Filter α\nlb : Filter β\nL : Filter (Set α)\nl : Filter α\n⊢ (fun L => L.bind 𝓟) L ≤ l ↔ L ≤ l.smallSets"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Sort u_3", "l✝ l' la : Filter α", "lb : Filter β", "L : Filter (Set α)", "l : Filter α"], "goal": "L.bind 𝓟 ≤ l ↔ l.sets ⊆ powerset ⁻¹' L.sets"}], "premise": [1713], "state_str": "α : Type u_1\nβ : Type u_2\nι : Sort u_3\nl✝ l' la : Filter α\nlb : Filter β\nL : Filter (Set α)\nl : Filter α\n⊢ L.bind 𝓟 ≤ l ↔ l.sets ⊆ powerset ⁻¹' L.sets"} +{"state": [{"context": ["G₀ : Type u_1", "α : Type u_2", "E : Type u_3", "inst✝² : GroupWithZero G₀", "inst✝¹ : Bornology G₀", "inst✝ : MulAction G₀ α", "s : Set α", "x : α"], "goal": "Absorbs G₀ s {x} ↔ ∀ᶠ (c : G₀) in cobounded G₀, c⁻¹ • x ∈ s"}], "premise": [55148, 135750], "state_str": "G₀ : Type u_1\nα : Type u_2\nE : Type u_3\ninst✝² : GroupWithZero G₀\ninst✝¹ : Bornology G₀\ninst✝ : MulAction G₀ α\ns : Set α\nx : α\n⊢ Absorbs G₀ s {x} ↔ ∀ᶠ (c : G₀) in cobounded G₀, c⁻¹ • x ∈ s"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝¹ : LinearOrderedRing α", "inst✝ : FloorRing α", "z : ℤ", "a✝ a : α"], "goal": "⌈a + 1⌉ = ⌈a⌉ + 1"}], "premise": [105188, 128752], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a : α\n⊢ ⌈a + 1⌉ = ⌈a⌉ + 1"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : LinearOrder α", "E : Type u_2", "inst✝⁴ : PseudoEMetricSpace E", "V : Type u_3", "inst✝³ : NormedAddCommGroup V", "inst✝² : NormedSpace ℝ V", "inst✝¹ : FiniteDimensional ℝ V", "ι : Type u_4", "inst✝ : Fintype ι", "f : ℝ → ι → ℝ", "s : Set ℝ", "h : LocallyBoundedVariationOn f s"], "goal": "∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"}], "premise": [57425], "state_str": "α : Type u_1\ninst✝⁵ : LinearOrder α\nE : Type u_2\ninst✝⁴ : PseudoEMetricSpace E\nV : Type u_3\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : FiniteDimensional ℝ V\nι : Type u_4\ninst✝ : Fintype ι\nf : ℝ → ι → ℝ\ns : Set ℝ\nh : LocallyBoundedVariationOn f s\n⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : LinearOrder α", "E : Type u_2", "inst✝⁴ : PseudoEMetricSpace E", "V : Type u_3", "inst✝³ : NormedAddCommGroup V", "inst✝² : NormedSpace ℝ V", "inst✝¹ : FiniteDimensional ℝ V", "ι : Type u_4", "inst✝ : Fintype ι", "f : ℝ → ι → ℝ", "s : Set ℝ", "h : LocallyBoundedVariationOn f s", "A : ∀ (i : ι), LipschitzWith 1 fun x => x i"], "goal": "∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"}], "premise": [42149, 42152], "state_str": "α : Type u_1\ninst✝⁵ : LinearOrder α\nE : Type u_2\ninst✝⁴ : PseudoEMetricSpace E\nV : Type u_3\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : FiniteDimensional ℝ V\nι : Type u_4\ninst✝ : Fintype ι\nf : ℝ → ι → ℝ\ns : Set ℝ\nh : LocallyBoundedVariationOn f s\nA : ∀ (i : ι), LipschitzWith 1 fun x => x i\n⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : LinearOrder α", "E : Type u_2", "inst✝⁴ : PseudoEMetricSpace E", "V : Type u_3", "inst✝³ : NormedAddCommGroup V", "inst✝² : NormedSpace ℝ V", "inst✝¹ : FiniteDimensional ℝ V", "ι : Type u_4", "inst✝ : Fintype ι", "f : ℝ → ι → ℝ", "s : Set ℝ", "h : LocallyBoundedVariationOn f s", "A : ∀ (i : ι), LipschitzWith 1 fun x => x i", "this : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x"], "goal": "∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"}], "premise": [1674, 15889, 27606, 131585], "state_str": "α : Type u_1\ninst✝⁵ : LinearOrder α\nE : Type u_2\ninst✝⁴ : PseudoEMetricSpace E\nV : Type u_3\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : FiniteDimensional ℝ V\nι : Type u_4\ninst✝ : Fintype ι\nf : ℝ → ι → ℝ\ns : Set ℝ\nh : LocallyBoundedVariationOn f s\nA : ∀ (i : ι), LipschitzWith 1 fun x => x i\nthis : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x\n⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x"} +{"state": [{"context": ["α : Type u_1", "inst✝⁵ : LinearOrder α", "E : Type u_2", "inst✝⁴ : PseudoEMetricSpace E", "V : Type u_3", "inst✝³ : NormedAddCommGroup V", "inst✝² : NormedSpace ℝ V", "inst✝¹ : FiniteDimensional ℝ V", "ι : Type u_4", "inst✝ : Fintype ι", "f : ℝ → ι → ℝ", "s : Set ℝ", "h : LocallyBoundedVariationOn f s", "A : ∀ (i : ι), LipschitzWith 1 fun x => x i", "this : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x", "x : ℝ", "hx : ∀ (i : ι), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x", "xs : x ∈ s"], "goal": "DifferentiableWithinAt ℝ f s x"}], "premise": [1674, 45586], "state_str": "case h\nα : Type u_1\ninst✝⁵ : LinearOrder α\nE : Type u_2\ninst✝⁴ : PseudoEMetricSpace E\nV : Type u_3\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : FiniteDimensional ℝ V\nι : Type u_4\ninst✝ : Fintype ι\nf : ℝ → ι → ℝ\ns : Set ℝ\nh : LocallyBoundedVariationOn f s\nA : ∀ (i : ι), LipschitzWith 1 fun x => x i\nthis : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x\nx : ℝ\nhx : ∀ (i : ι), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x\nxs : x ∈ s\n⊢ DifferentiableWithinAt ℝ f s x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "ι' : Sort u_5", "ι₂ : Sort u_6", "κ : ι → Sort u_7", "κ₁ : ι → Sort u_8", "κ₂ : ι → Sort u_9", "κ' : ι' → Sort u_10", "s : Set β", "t : ι → Set β"], "goal": "s \\ ⋂ i, t i = ⋃ i, s \\ t i"}], "premise": [131588, 135289, 135293], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nι' : Sort u_5\nι₂ : Sort u_6\nκ : ι → Sort u_7\nκ₁ : ι → Sort u_8\nκ₂ : ι → Sort u_9\nκ' : ι' → Sort u_10\ns : Set β\nt : ι → Set β\n⊢ s \\ ⋂ i, t i = ⋃ i, s \\ t i"} +{"state": [{"context": ["a b c : ℤ", "habc : a ∣ b * c", "hab : a.gcd c = 1"], "goal": "a ∣ b"}], "premise": [128979], "state_str": "a b c : ℤ\nhabc : a ∣ b * c\nhab : a.gcd c = 1\n⊢ a ∣ b"} +{"state": [{"context": ["a b c : ℤ", "habc : a ∣ b * c", "hab : a.gcd c = 1", "this : ↑(a.gcd c) = a * a.gcdA c + c * a.gcdB c"], "goal": "a ∣ b"}], "premise": [2200, 2453, 119727], "state_str": "a b c : ℤ\nhabc : a ∣ b * c\nhab : a.gcd c = 1\nthis : ↑(a.gcd c) = a * a.gcdA c + c * a.gcdB c\n⊢ a ∣ b"} +{"state": [{"context": ["a b c : ℤ", "habc : a ∣ b * c", "hab : a.gcd c = 1", "this : 1 = a * a.gcdA c + c * a.gcdB c"], "goal": "a ∣ b"}], "premise": [2553, 119703], "state_str": "a b c : ℤ\nhabc : a ∣ b * c\nhab : a.gcd c = 1\nthis : 1 = a * a.gcdA c + c * a.gcdB c\n⊢ a ∣ b"} +{"state": [{"context": ["a b c : ℤ", "habc : a ∣ b * c", "hab : a.gcd c = 1", "this✝ : 1 = a * a.gcdA c + c * a.gcdB c", "this : b * a * a.gcdA c + b * c * a.gcdB c = b"], "goal": "a ∣ b * a * a.gcdA c + b * c * a.gcdB c"}], "premise": [4204, 108877, 108897], "state_str": "a b c : ℤ\nhabc : a ∣ b * c\nhab : a.gcd c = 1\nthis✝ : 1 = a * a.gcdA c + c * a.gcdB c\nthis : b * a * a.gcdA c + b * c * a.gcdB c = b\n⊢ a ∣ b * a * a.gcdA c + b * c * a.gcdB c"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : Scheme", "x : ↑↑X.toPresheafedSpace", "U : X.Opens", "hxU : x ∈ U"], "goal": "∃ R f, IsOpenImmersion f ∧ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"}], "premise": [126546], "state_str": "C : Type u\ninst✝ : Category.{v, u} C\nX : Scheme\nx : ↑↑X.toPresheafedSpace\nU : X.Opens\nhxU : x ∈ U\n⊢ ∃ R f, IsOpenImmersion f ∧ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : Scheme", "x : ↑↑X.toPresheafedSpace", "U : X.Opens", "hxU : x ∈ U", "V : TopologicalSpace.Opens ↑X.toTopCat", "hxV : x ∈ V", "R : CommRingCat", "e : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)"], "goal": "∃ R f, IsOpenImmersion f ∧ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"}], "premise": [88743], "state_str": "case intro.mk.intro.intro\nC : Type u\ninst✝ : Category.{v, u} C\nX : Scheme\nx : ↑↑X.toPresheafedSpace\nU : X.Opens\nhxU : x ∈ U\nV : TopologicalSpace.Opens ↑X.toTopCat\nhxV : x ∈ V\nR : CommRingCat\ne : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)\n⊢ ∃ R f, IsOpenImmersion f ∧ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : Scheme", "x : ↑↑X.toPresheafedSpace", "U : X.Opens", "hxU : x ∈ U", "V : TopologicalSpace.Opens ↑X.toTopCat", "hxV : x ∈ V", "R : CommRingCat", "e : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)", "this : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U"], "goal": "∃ R f, IsOpenImmersion f ∧ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"}], "premise": [55745, 57715, 126857], "state_str": "case intro.mk.intro.intro\nC : Type u\ninst✝ : Category.{v, u} C\nX : Scheme\nx : ↑↑X.toPresheafedSpace\nU : X.Opens\nhxU : x ∈ U\nV : TopologicalSpace.Opens ↑X.toTopCat\nhxV : x ∈ V\nR : CommRingCat\ne : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)\nthis : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U\n⊢ ∃ R f, IsOpenImmersion f ∧ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : Scheme", "x : ↑↑X.toPresheafedSpace", "U : X.Opens", "hxU : x ∈ U", "V : TopologicalSpace.Opens ↑X.toTopCat", "hxV : x ∈ V", "R : CommRingCat", "e : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)", "this : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U", "r : ↑R", "hr : e.hom.val.base ⟨x, hxV⟩ ∈ ↑(PrimeSpectrum.basicOpen r)", "hr' : ↑(PrimeSpectrum.basicOpen r) ⊆ ↑((Opens.map (e.inv.val.base ≫ V.inclusion)).obj U)", "f : Spec (CommRingCat.of (Localization.Away r)) ⟶ X := Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r))) ≫ e.inv ≫ X.ofRestrict ⋯"], "goal": "x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"}], "premise": [57808, 68194, 68441, 126569, 134180], "state_str": "case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category.{v, u} C\nX : Scheme\nx : ↑↑X.toPresheafedSpace\nU : X.Opens\nhxU : x ∈ U\nV : TopologicalSpace.Opens ↑X.toTopCat\nhxV : x ∈ V\nR : CommRingCat\ne : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)\nthis : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U\nr : ↑R\nhr : e.hom.val.base ⟨x, hxV⟩ ∈ ↑(PrimeSpectrum.basicOpen r)\nhr' : ↑(PrimeSpectrum.basicOpen r) ⊆ ↑((Opens.map (e.inv.val.base ≫ V.inclusion)).obj U)\nf : Spec (CommRingCat.of (Localization.Away r)) ⟶ X :=\n Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r))) ≫ e.inv ≫ X.ofRestrict ⋯\n⊢ x ∈ Set.range ⇑f.val.base ∧ Set.range ⇑f.val.base ⊆ ↑U"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : Scheme", "x : ↑↑X.toPresheafedSpace", "U : X.Opens", "hxU : x ∈ U", "V : TopologicalSpace.Opens ↑X.toTopCat", "hxV : x ∈ V", "R : CommRingCat", "e : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)", "this : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U", "r : ↑R", "hr : e.hom.val.base ⟨x, hxV⟩ ∈ ↑(PrimeSpectrum.basicOpen r)", "hr' : ↑(PrimeSpectrum.basicOpen r) ⊆ ↑((Opens.map (e.inv.val.base ≫ V.inclusion)).obj U)", "f : Spec (CommRingCat.of (Localization.Away r)) ⟶ X := Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r))) ≫ e.inv ≫ X.ofRestrict ⋯"], "goal": "x ∈ ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) '' Set.range ⇑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r)))).val.base ∧ ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) '' Set.range ⇑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r)))).val.base ⊆ ↑U"}], "premise": [126859], "state_str": "case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category.{v, u} C\nX : Scheme\nx : ↑↑X.toPresheafedSpace\nU : X.Opens\nhxU : x ∈ U\nV : TopologicalSpace.Opens ↑X.toTopCat\nhxV : x ∈ V\nR : CommRingCat\ne : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)\nthis : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U\nr : ↑R\nhr : e.hom.val.base ⟨x, hxV⟩ ∈ ↑(PrimeSpectrum.basicOpen r)\nhr' : ↑(PrimeSpectrum.basicOpen r) ⊆ ↑((Opens.map (e.inv.val.base ≫ V.inclusion)).obj U)\nf : Spec (CommRingCat.of (Localization.Away r)) ⟶ X :=\n Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r))) ≫ e.inv ≫ X.ofRestrict ⋯\n⊢ x ∈\n ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) ''\n Set.range ⇑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r)))).val.base ∧\n ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) ''\n Set.range ⇑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r)))).val.base ⊆\n ↑U"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "X : Scheme", "x : ↑↑X.toPresheafedSpace", "U : X.Opens", "hxU : x ∈ U", "V : TopologicalSpace.Opens ↑X.toTopCat", "hxV : x ∈ V", "R : CommRingCat", "e : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)", "this : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U", "r : ↑R", "hr : e.hom.val.base ⟨x, hxV⟩ ∈ ↑(PrimeSpectrum.basicOpen r)", "hr' : ↑(PrimeSpectrum.basicOpen r) ⊆ ↑((Opens.map (e.inv.val.base ≫ V.inclusion)).obj U)", "f : Spec (CommRingCat.of (Localization.Away r)) ⟶ X := Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r))) ≫ e.inv ≫ X.ofRestrict ⋯"], "goal": "x ∈ ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) '' ↑(PrimeSpectrum.basicOpen r) ∧ ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) '' ↑(PrimeSpectrum.basicOpen r) ⊆ ↑U"}], "premise": [1674, 88743, 134140], "state_str": "case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category.{v, u} C\nX : Scheme\nx : ↑↑X.toPresheafedSpace\nU : X.Opens\nhxU : x ∈ U\nV : TopologicalSpace.Opens ↑X.toTopCat\nhxV : x ∈ V\nR : CommRingCat\ne : X.restrict ⋯ ≅ Spec.toLocallyRingedSpace.obj (op R)\nthis : e.hom.val.base ⟨x, hxV⟩ ∈ (Opens.map (e.inv.val.base ≫ V.inclusion)).obj U\nr : ↑R\nhr : e.hom.val.base ⟨x, hxV⟩ ∈ ↑(PrimeSpectrum.basicOpen r)\nhr' : ↑(PrimeSpectrum.basicOpen r) ⊆ ↑((Opens.map (e.inv.val.base ≫ V.inclusion)).obj U)\nf : Spec (CommRingCat.of (Localization.Away r)) ⟶ X :=\n Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away r))) ≫ e.inv ≫ X.ofRestrict ⋯\n⊢ x ∈ ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) '' ↑(PrimeSpectrum.basicOpen r) ∧\n ⇑(e.inv.val.base ≫ (X.ofRestrict ⋯).val.base) '' ↑(PrimeSpectrum.basicOpen r) ⊆ ↑U"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "p q : ℚ", "K : Type u_5", "inst✝ : LinearOrderedField K"], "goal": "↑q < 0 ↔ q < 0"}], "premise": [1713], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\np q : ℚ\nK : Type u_5\ninst✝ : LinearOrderedField K\n⊢ ↑q < 0 ↔ q < 0"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "γ : Type u_4", "mγ : MeasurableSpace γ", "s✝ : Set (β × γ)", "μ : Kernel α β", "κ η : Kernel (α × β) γ", "inst✝² : IsSFiniteKernel μ", "inst✝¹ : IsSFiniteKernel κ", "inst✝ : IsSFiniteKernel η", "a : α", "s : Set (β × γ)", "hs : MeasurableSet s"], "goal": "((μ ⊗ₖ (κ + η)) a) s = ((μ ⊗ₖ κ + μ ⊗ₖ η) a) s"}], "premise": [31458, 72613, 74222, 120650], "state_str": "case h.h\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nγ : Type u_4\nmγ : MeasurableSpace γ\ns✝ : Set (β × γ)\nμ : Kernel α β\nκ η : Kernel (α × β) γ\ninst✝² : IsSFiniteKernel μ\ninst✝¹ : IsSFiniteKernel κ\ninst✝ : IsSFiniteKernel η\na : α\ns : Set (β × γ)\nhs : MeasurableSet s\n⊢ ((μ ⊗ₖ (κ + η)) a) s = ((μ ⊗ₖ κ + μ ⊗ₖ η) a) s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "γ : Type u_4", "mγ : MeasurableSpace γ", "s✝ : Set (β × γ)", "μ : Kernel α β", "κ η : Kernel (α × β) γ", "inst✝² : IsSFiniteKernel μ", "inst✝¹ : IsSFiniteKernel κ", "inst✝ : IsSFiniteKernel η", "a : α", "s : Set (β × γ)", "hs : MeasurableSet s"], "goal": "∫⁻ (b : β), (κ (a, b)) {c | (b, c) ∈ s} + (η (a, b)) {c | (b, c) ∈ s} ∂μ a = ∫⁻ (b : β), (κ (a, b)) {c | (b, c) ∈ s} ∂μ a + ∫⁻ (b : β), (η (a, b)) {c | (b, c) ∈ s} ∂μ a"}], "premise": [30275], "state_str": "case h.h\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nγ : Type u_4\nmγ : MeasurableSpace γ\ns✝ : Set (β × γ)\nμ : Kernel α β\nκ η : Kernel (α × β) γ\ninst✝² : IsSFiniteKernel μ\ninst✝¹ : IsSFiniteKernel κ\ninst✝ : IsSFiniteKernel η\na : α\ns : Set (β × γ)\nhs : MeasurableSet s\n⊢ ∫⁻ (b : β), (κ (a, b)) {c | (b, c) ∈ s} + (η (a, b)) {c | (b, c) ∈ s} ∂μ a =\n ∫⁻ (b : β), (κ (a, b)) {c | (b, c) ∈ s} ∂μ a + ∫⁻ (b : β), (η (a, b)) {c | (b, c) ∈ s} ∂μ a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "mα : MeasurableSpace α", "mβ : MeasurableSpace β", "γ : Type u_4", "mγ : MeasurableSpace γ", "s✝ : Set (β × γ)", "μ : Kernel α β", "κ η : Kernel (α × β) γ", "inst✝² : IsSFiniteKernel μ", "inst✝¹ : IsSFiniteKernel κ", "inst✝ : IsSFiniteKernel η", "a : α", "s : Set (β × γ)", "hs : MeasurableSet s"], "goal": "Measurable fun b => (κ (a, b)) {c | (b, c) ∈ s}"}], "premise": [73629], "state_str": "case h.h.hf\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nγ : Type u_4\nmγ : MeasurableSpace γ\ns✝ : Set (β × γ)\nμ : Kernel α β\nκ η : Kernel (α × β) γ\ninst✝² : IsSFiniteKernel μ\ninst✝¹ : IsSFiniteKernel κ\ninst✝ : IsSFiniteKernel η\na : α\ns : Set (β × γ)\nhs : MeasurableSet s\n⊢ Measurable fun b => (κ (a, b)) {c | (b, c) ∈ s}"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "a b : ℝ", "f : ℕ → Ω → ℝ", "N n m : ℕ", "ω : Ω", "ℱ : Filtration ℕ m0", "hab : a < b"], "goal": "upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n"}], "premise": [1674, 105739], "state_str": "Ω : Type u_1\nι : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\na b : ℝ\nf : ℕ → Ω → ℝ\nN n m : ℕ\nω : Ω\nℱ : Filtration ℕ m0\nhab : a < b\n⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧\n lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m0 : MeasurableSpace Ω", "μ : Measure Ω", "a b : ℝ", "f : ℕ → Ω → ℝ", "N n m : ℕ", "ω : Ω", "ℱ : Filtration ℕ m0", "hab : a < b", "hab' : 0 < b - a", "hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω"], "goal": "upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n"}], "premise": [1713, 105484, 105709], "state_str": "Ω : Type u_1\nι : Type u_2\nm0 : MeasurableSpace Ω\nμ : Measure Ω\na b : ℝ\nf : ℕ → Ω → ℝ\nN n m : ℕ\nω : Ω\nℱ : Filtration ℕ m0\nhab : a < b\nhab' : 0 < b - a\nhf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω\n⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧\n lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n"} +{"state": [{"context": ["M : Type u", "N : Type v", "inst✝¹ : Monoid M", "inst✝ : Monoid N", "e : M ≃* N"], "goal": "𝟭 (SingleObj M) = e.toMonoidHom.toFunctor ⋙ e.symm.toMonoidHom.toFunctor"}], "premise": [99131, 99132], "state_str": "M : Type u\nN : Type v\ninst✝¹ : Monoid M\ninst✝ : Monoid N\ne : M ≃* N\n⊢ 𝟭 (SingleObj M) = e.toMonoidHom.toFunctor ⋙ e.symm.toMonoidHom.toFunctor"} +{"state": [{"context": ["M : Type u", "N : Type v", "inst✝¹ : Monoid M", "inst✝ : Monoid N", "e : M ≃* N"], "goal": "e.symm.toMonoidHom.toFunctor ⋙ e.toMonoidHom.toFunctor = 𝟭 (SingleObj N)"}], "premise": [99131, 99132], "state_str": "M : Type u\nN : Type v\ninst✝¹ : Monoid M\ninst✝ : Monoid N\ne : M ≃* N\n⊢ e.symm.toMonoidHom.toFunctor ⋙ e.toMonoidHom.toFunctor = 𝟭 (SingleObj N)"} +{"state": [{"context": ["α : Type u_1", "β : Type v", "γ : Type u_2", "a b : α"], "goal": "card {a, b} = 2"}], "premise": [137819, 137910, 137911], "state_str": "α : Type u_1\nβ : Type v\nγ : Type u_2\na b : α\n⊢ card {a, b} = 2"} +{"state": [{"context": ["Γ : Type u_1", "inst✝¹ : Inhabited Γ", "inst✝ : Finite Γ"], "goal": "∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a"}], "premise": [141498], "state_str": "Γ : Type u_1\ninst✝¹ : Inhabited Γ\ninst✝ : Finite Γ\n⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a"} +{"state": [{"context": ["Γ : Type u_1", "inst✝¹ : Inhabited Γ", "inst✝ : Finite Γ", "n : ℕ", "e : Γ ≃ Fin n", "this : DecidableEq Γ := e.decidableEq"], "goal": "∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a"}], "premise": [2101, 140170, 140171], "state_str": "case intro.intro\nΓ : Type u_1\ninst✝¹ : Inhabited Γ\ninst✝ : Finite Γ\nn : ℕ\ne : Γ ≃ Fin n\nthis : DecidableEq Γ := e.decidableEq\n⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a"} +{"state": [{"context": ["Γ : Type u_1", "inst✝¹ : Inhabited Γ", "inst✝ : Finite Γ", "n : ℕ", "e : Γ ≃ Fin n", "this : DecidableEq Γ := e.decidableEq", "G : Fin n ↪ Fin n → Bool := { toFun := fun a b => decide (a = b), inj' := ⋯ }", "H : Γ ↪ Vector Bool n := (e.toEmbedding.trans G).trans (Equiv.vectorEquivFin Bool n).symm.toEmbedding", "enc : Γ ↪ Vector Bool n := H.setValue default (Vector.replicate n false)"], "goal": "∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a"}], "premise": [70654, 70672, 71449], "state_str": "case intro.intro\nΓ : Type u_1\ninst✝¹ : Inhabited Γ\ninst✝ : Finite Γ\nn : ℕ\ne : Γ ≃ Fin n\nthis : DecidableEq Γ := e.decidableEq\nG : Fin n ↪ Fin n → Bool := { toFun := fun a b => decide (a = b), inj' := ⋯ }\nH : Γ ↪ Vector Bool n := (e.toEmbedding.trans G).trans (Equiv.vectorEquivFin Bool n).symm.toEmbedding\nenc : Γ ↪ Vector Bool n := H.setValue default (Vector.replicate n false)\n⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a"} +{"state": [{"context": ["a✝ b✝ m n p✝ a b : ℕ", "hb0 : b ≠ 0", "hab : a ∣ b", "p : ℕ"], "goal": "p ^ a.factorization p ∣ p ^ b.factorization p"}], "premise": [70035], "state_str": "a✝ b✝ m n p✝ a b : ℕ\nhb0 : b ≠ 0\nhab : a ∣ b\np : ℕ\n⊢ p ^ a.factorization p ∣ p ^ b.factorization p"} +{"state": [{"context": ["a✝ b✝ m n p✝ a b : ℕ", "hb0 : b ≠ 0", "hab : a ∣ b", "p : ℕ", "pp : Prime p"], "goal": "p ^ a.factorization p ∣ p ^ b.factorization p"}], "premise": [70039], "state_str": "case inr\na✝ b✝ m n p✝ a b : ℕ\nhb0 : b ≠ 0\nhab : a ∣ b\np : ℕ\npp : Prime p\n⊢ p ^ a.factorization p ∣ p ^ b.factorization p"} +{"state": [{"context": ["a✝ b✝ m n p✝ a b : ℕ", "hb0 : b ≠ 0", "hab : a ∣ b", "p : ℕ", "pp : Prime p", "ha0 : a ≠ 0"], "goal": "p ^ a.factorization p ∣ p ^ b.factorization p"}], "premise": [4731, 144294], "state_str": "case inr.inr\na✝ b✝ m n p✝ a b : ℕ\nhb0 : b ≠ 0\nhab : a ∣ b\np : ℕ\npp : Prime p\nha0 : a ≠ 0\n⊢ p ^ a.factorization p ∣ p ^ b.factorization p"} +{"state": [{"context": ["a✝ b✝ m n p✝ a b : ℕ", "hb0 : b ≠ 0", "hab : a ∣ b", "p : ℕ", "pp : Prime p", "ha0 : a ≠ 0"], "goal": "a.factorization p ≤ b.factorization p"}], "premise": [1674, 144203], "state_str": "case inr.inr\na✝ b✝ m n p✝ a b : ℕ\nhb0 : b ≠ 0\nhab : a ∣ b\np : ℕ\npp : Prime p\nha0 : a ≠ 0\n⊢ a.factorization p ≤ b.factorization p"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "𝕜 : Type u_4", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedSpace ℝ E", "hE : CompleteSpace E", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedSpace 𝕜 E", "inst✝⁷ : SMulCommClass ℝ 𝕜 E", "inst✝⁶ : NormedAddCommGroup F", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : CompleteSpace F", "G : Type u_5", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace ℝ G", "f✝ g : α → E", "m : MeasurableSpace α", "μ✝ : Measure α", "X : Type u_6", "inst✝¹ : TopologicalSpace X", "inst✝ : FirstCountableTopology X", "μ : Measure α", "f : α → ℝ", "hμ : NeZero μ", "hf : Integrable (fun x => Real.exp (f x)) μ"], "goal": "0 < ∫ (x : α), Real.exp (f x) ∂μ"}], "premise": [33686, 149295], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\n𝕜 : Type u_4\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\nhE : CompleteSpace E\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedSpace 𝕜 E\ninst✝⁷ : SMulCommClass ℝ 𝕜 E\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : CompleteSpace F\nG : Type u_5\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace ℝ G\nf✝ g : α → E\nm : MeasurableSpace α\nμ✝ : Measure α\nX : Type u_6\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nμ : Measure α\nf : α → ℝ\nhμ : NeZero μ\nhf : Integrable (fun x => Real.exp (f x)) μ\n⊢ 0 < ∫ (x : α), Real.exp (f x) ∂μ"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "𝕜 : Type u_4", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedSpace ℝ E", "hE : CompleteSpace E", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedSpace 𝕜 E", "inst✝⁷ : SMulCommClass ℝ 𝕜 E", "inst✝⁶ : NormedAddCommGroup F", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : CompleteSpace F", "G : Type u_5", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace ℝ G", "f✝ g : α → E", "m : MeasurableSpace α", "μ✝ : Measure α", "X : Type u_6", "inst✝¹ : TopologicalSpace X", "inst✝ : FirstCountableTopology X", "μ : Measure α", "f : α → ℝ", "hμ : NeZero μ", "hf : Integrable (fun x => Real.exp (f x)) μ"], "goal": "0 < μ (Function.support fun x => Real.exp (f x))"}], "premise": [113010], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\n𝕜 : Type u_4\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\nhE : CompleteSpace E\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedSpace 𝕜 E\ninst✝⁷ : SMulCommClass ℝ 𝕜 E\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : CompleteSpace F\nG : Type u_5\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace ℝ G\nf✝ g : α → E\nm : MeasurableSpace α\nμ✝ : Measure α\nX : Type u_6\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nμ : Measure α\nf : α → ℝ\nhμ : NeZero μ\nhf : Integrable (fun x => Real.exp (f x)) μ\n⊢ 0 < μ (Function.support fun x => Real.exp (f x))"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "𝕜 : Type u_4", "inst✝¹¹ : NormedAddCommGroup E", "inst✝¹⁰ : NormedSpace ℝ E", "hE : CompleteSpace E", "inst✝⁹ : NontriviallyNormedField 𝕜", "inst✝⁸ : NormedSpace 𝕜 E", "inst✝⁷ : SMulCommClass ℝ 𝕜 E", "inst✝⁶ : NormedAddCommGroup F", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : CompleteSpace F", "G : Type u_5", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace ℝ G", "f✝ g : α → E", "m : MeasurableSpace α", "μ✝ : Measure α", "X : Type u_6", "inst✝¹ : TopologicalSpace X", "inst✝ : FirstCountableTopology X", "μ : Measure α", "f : α → ℝ", "hμ : NeZero μ", "hf : Integrable (fun x => Real.exp (f x)) μ", "x : α"], "goal": "(x ∈ Function.support fun x => Real.exp (f x)) ↔ x ∈ univ"}], "premise": [1169, 1201, 11234, 117260, 131586, 149295], "state_str": "case h\nα : Type u_1\nE : Type u_2\nF : Type u_3\n𝕜 : Type u_4\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\nhE : CompleteSpace E\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NormedSpace 𝕜 E\ninst✝⁷ : SMulCommClass ℝ 𝕜 E\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : CompleteSpace F\nG : Type u_5\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace ℝ G\nf✝ g : α → E\nm : MeasurableSpace α\nμ✝ : Measure α\nX : Type u_6\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nμ : Measure α\nf : α → ℝ\nhμ : NeZero μ\nhf : Integrable (fun x => Real.exp (f x)) μ\nx : α\n⊢ (x ∈ Function.support fun x => Real.exp (f x)) ↔ x ∈ univ"} +{"state": [{"context": ["ι : Type u", "γ : Type w", "β : ι → Type v", "β₁ : ι → Type v₁", "β₂ : ι → Type v₂", "inst✝² : DecidableEq ι", "inst✝¹ : (i : ι) → Zero (β i)", "inst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0)", "s : Finset ι", "f : (i : { x // x ∈ s }) → { x // x ≠ 0 }", "i : ι"], "goal": "i ∈ (mk s fun i => ↑(f i)).support ↔ i ∈ s"}], "premise": [1194, 2016, 2115], "state_str": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ninst✝² : DecidableEq ι\ninst✝¹ : (i : ι) → Zero (β i)\ninst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\ns : Finset ι\nf : (i : { x // x ∈ s }) → { x // x ≠ 0 }\ni : ι\n⊢ i ∈ (mk s fun i => ↑(f i)).support ↔ i ∈ s"} +{"state": [{"context": ["ι : Type u", "γ : Type w", "β : ι → Type v", "β₁ : ι → Type v₁", "β₂ : ι → Type v₂", "inst✝² : DecidableEq ι", "inst✝¹ : (i : ι) → Zero (β i)", "inst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0)", "f : Π₀ (i : ι), β i", "i : ι"], "goal": "↑((fun f_1 => ⟨mk f.support fun i => ↑(f_1 i), ⋯⟩) ((fun x => match (motive := { f_1 // f_1.support = f.support } → (i : { x // x ∈ f.support }) → { x // x ≠ 0 }) x with | ⟨f_1, hf⟩ => fun x => match x with | ⟨i, hi⟩ => ⟨f_1 i, ⋯⟩) ⟨f, ⋯⟩)) i = ↑⟨f, ⋯⟩ i"}], "premise": [2100], "state_str": "case mk.a.h\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ninst✝² : DecidableEq ι\ninst✝¹ : (i : ι) → Zero (β i)\ninst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\nf : Π₀ (i : ι), β i\ni : ι\n⊢ ↑((fun f_1 => ⟨mk f.support fun i => ↑(f_1 i), ⋯⟩)\n ((fun x =>\n match (motive := { f_1 // f_1.support = f.support } → (i : { x // x ∈ f.support }) → { x // x ≠ 0 })\n x with\n | ⟨f_1, hf⟩ => fun x =>\n match x with\n | ⟨i, hi⟩ => ⟨f_1 i, ⋯⟩)\n ⟨f, ⋯⟩))\n i =\n ↑⟨f, ⋯⟩ i"} +{"state": [{"context": ["ι : Type u", "γ : Type w", "β : ι → Type v", "β₁ : ι → Type v₁", "β₂ : ι → Type v₂", "inst✝² : DecidableEq ι", "inst✝¹ : (i : ι) → Zero (β i)", "inst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0)", "s : Finset ι", "f : (i : { x // x ∈ s }) → { x // x ≠ 0 }", "x✝ : { x // x ∈ s }"], "goal": "(fun x => match (motive := { f // f.support = s } → (i : { x // x ∈ s }) → { x // x ≠ 0 }) x with | ⟨f, hf⟩ => fun x => match x with | ⟨i, hi⟩ => ⟨f i, ⋯⟩) ((fun f => ⟨mk s fun i => ↑(f i), ⋯⟩) f) x✝ = f x✝"}], "premise": [1752], "state_str": "case h\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ninst✝² : DecidableEq ι\ninst✝¹ : (i : ι) → Zero (β i)\ninst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\ns : Finset ι\nf : (i : { x // x ∈ s }) → { x // x ≠ 0 }\nx✝ : { x // x ∈ s }\n⊢ (fun x =>\n match (motive := { f // f.support = s } → (i : { x // x ∈ s }) → { x // x ≠ 0 }) x with\n | ⟨f, hf⟩ => fun x =>\n match x with\n | ⟨i, hi⟩ => ⟨f i, ⋯⟩)\n ((fun f => ⟨mk s fun i => ↑(f i), ⋯⟩) f) x✝ =\n f x✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : PseudoMetricSpace α", "x y z : α", "s t : Set α", "inst✝ : Finite ↑s", "hs : s.Nontrivial"], "goal": "∃ x ∈ s, ∃ y ∈ s, x ≠ y ∧ s.infsep = dist x y"}], "premise": [2106, 2107, 61527, 139848, 140896, 141384], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : s.Nontrivial\n⊢ ∃ x ∈ s, ∃ y ∈ s, x ≠ y ∧ s.infsep = dist x y"} +{"state": [{"context": ["G : Type w", "H : Type x", "α : Type u", "β : Type v", "inst✝² : TopologicalSpace G", "inst✝¹ : Group G", "inst✝ : ContinuousMul G", "h : IsClosed {1}", "x : G"], "goal": "IsClosed {x}"}], "premise": [66639], "state_str": "G : Type w\nH : Type x\nα : Type u\nβ : Type v\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : ContinuousMul G\nh : IsClosed {1}\nx : G\n⊢ IsClosed {x}"} +{"state": [{"context": ["𝓕 : Type u_1", "𝕜 : Type u_2", "α : Type u_3", "ι : Type u_4", "κ : Type u_5", "E : Type u_6", "F : Type u_7", "G : Type u_8", "inst✝² : SeminormedGroup E", "inst✝¹ : SeminormedGroup F", "inst✝ : SeminormedGroup G", "s : Set E", "a✝ a₁ a₂ b✝ b₁ b₂ : E", "r r₁ r₂ : ℝ", "a b c : E"], "goal": "‖a / c‖ ≤ ‖a / b‖ + ‖b / c‖"}], "premise": [42654, 61123], "state_str": "𝓕 : Type u_1\n𝕜 : Type u_2\nα : Type u_3\nι : Type u_4\nκ : Type u_5\nE : Type u_6\nF : Type u_7\nG : Type u_8\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b c : E\n⊢ ‖a / c‖ ≤ ‖a / b‖ + ‖b / c‖"} +{"state": [{"context": ["R : Type u_1", "Γ₀ : Type u_2", "inst✝¹ : CommRing R", "inst✝ : LinearOrderedCommMonoidWithZero Γ₀", "v : Valuation R Γ₀", "J : Ideal R", "hJ : J ≤ v.supp"], "goal": "(v.onQuot hJ).supp = Ideal.map (Ideal.Quotient.mk J) v.supp"}], "premise": [14296], "state_str": "R : Type u_1\nΓ₀ : Type u_2\ninst✝¹ : CommRing R\ninst✝ : LinearOrderedCommMonoidWithZero Γ₀\nv : Valuation R Γ₀\nJ : Ideal R\nhJ : J ≤ v.supp\n⊢ (v.onQuot hJ).supp = Ideal.map (Ideal.Quotient.mk J) v.supp"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "s s₁ s₂ : Set α", "t✝ t₁ t₂ : Set β", "p : Set γ", "f f₁ f₂ f₃ : α → β", "g g₁ g₂ : β → γ", "f' f₁' f₂' : β → α", "g' : γ → β", "a : α", "b : β", "t : Set α", "h : InjOn f s"], "goal": "f '' (s \\ t) = f '' s \\ f '' (s ∩ t)"}], "premise": [1674, 19964, 133590, 133635, 133646, 133659, 134105, 134107], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\ns s₁ s₂ : Set α\nt✝ t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nt : Set α\nh : InjOn f s\n⊢ f '' (s \\ t) = f '' s \\ f '' (s ∩ t)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "π : α → Type u_5", "s s₁ s₂ : Set α", "t✝ t₁ t₂ : Set β", "p : Set γ", "f f₁ f₂ f₃ : α → β", "g g₁ g₂ : β → γ", "f' f₁' f₂' : β → α", "g' : γ → β", "a : α", "b : β", "t : Set α", "h : InjOn f s"], "goal": "Disjoint (f '' (s \\ t)) (f '' (s ∩ t))"}], "premise": [133447, 133584, 133635, 135827], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nπ : α → Type u_5\ns s₁ s₂ : Set α\nt✝ t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nt : Set α\nh : InjOn f s\n⊢ Disjoint (f '' (s \\ t)) (f '' (s ∩ t))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝ : Inter α", "a b : Part α", "ma mb : α", "ha : ma ∈ a", "hb : mb ∈ b"], "goal": "ma ∩ mb ∈ a ∩ b"}], "premise": [131137], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : Inter α\na b : Part α\nma mb : α\nha : ma ∈ a\nhb : mb ∈ b\n⊢ ma ∩ mb ∈ a ∩ b"} +{"state": [{"context": ["α : Type u_1", "inst✝ : OrderedCancelCommMonoid α", "s : Submonoid α", "a₁ b₁ : α", "a₂ b₂ b✝ : ↥s", "a b : α"], "goal": "{ toFun := fun a => mk a b✝, inj' := ⋯ } a ≤ { toFun := fun a => mk a b✝, inj' := ⋯ } b ↔ a ≤ b"}], "premise": [6268, 9324], "state_str": "α : Type u_1\ninst✝ : OrderedCancelCommMonoid α\ns : Submonoid α\na₁ b₁ : α\na₂ b₂ b✝ : ↥s\na b : α\n⊢ { toFun := fun a => mk a b✝, inj' := ⋯ } a ≤ { toFun := fun a => mk a b✝, inj' := ⋯ } b ↔ a ≤ b"} +{"state": [{"context": ["ι✝ : Type u_1", "α : Type u_2", "M : Matroid α", "F X Y : Set α", "e : α", "ι : Sort u_3", "I J B : Set α", "f x y : α", "hI : M.Indep (I \\ {e})", "heI : e ∈ I"], "goal": "M.Indep (insert f I \\ {e}) ↔ f ∈ M.E \\ M.closure (I \\ {e}) ∨ f ∈ I"}], "premise": [70039], "state_str": "ι✝ : Type u_1\nα : Type u_2\nM : Matroid α\nF X Y : Set α\ne : α\nι : Sort u_3\nI J B : Set α\nf x y : α\nhI : M.Indep (I \\ {e})\nheI : e ∈ I\n⊢ M.Indep (insert f I \\ {e}) ↔ f ∈ M.E \\ M.closure (I \\ {e}) ∨ f ∈ I"} +{"state": [{"context": ["ι✝ : Type u_1", "α : Type u_2", "M : Matroid α", "F X Y : Set α", "e : α", "ι : Sort u_3", "I J B : Set α", "f x y : α", "hI : M.Indep (I \\ {e})", "heI : e ∈ I", "hne : e ≠ f"], "goal": "M.Indep (insert f I \\ {e}) ↔ f ∈ M.E \\ M.closure (I \\ {e}) ∨ f ∈ I"}], "premise": [1690, 1713, 1976, 133686, 133690, 140124], "state_str": "case inr\nι✝ : Type u_1\nα : Type u_2\nM : Matroid α\nF X Y : Set α\ne : α\nι : Sort u_3\nI J B : Set α\nf x y : α\nhI : M.Indep (I \\ {e})\nheI : e ∈ I\nhne : e ≠ f\n⊢ M.Indep (insert f I \\ {e}) ↔ f ∈ M.E \\ M.closure (I \\ {e}) ∨ f ∈ I"} +{"state": [{"context": ["R : Type u_1", "inst✝³ : Semiring R", "p q : R[X]", "S : Type u_2", "inst✝² : AddCommMonoid S", "inst✝¹ : Pow S ℕ", "inst✝ : Module R S", "x : S", "r : R"], "goal": "(r • p).smeval x = r • p.smeval x"}], "premise": [101068, 101075, 101102, 101235, 108334, 118884], "state_str": "R : Type u_1\ninst✝³ : Semiring R\np q : R[X]\nS : Type u_2\ninst✝² : AddCommMonoid S\ninst✝¹ : Pow S ℕ\ninst✝ : Module R S\nx : S\nr : R\n⊢ (r • p).smeval x = r • p.smeval x"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_3, u_1} C", "inst✝³ : Category.{u_4, u_2} D", "G : C ⥤ D", "A : Type w", "inst✝² : Category.{w', w} A", "J : GrothendieckTopology C", "K : GrothendieckTopology D", "inst✝¹ : G.IsCocontinuous J K", "inst✝ : ∀ (F : Cᵒᵖ ⥤ A), G.op.HasPointwiseRightKanExtension F", "ℱ : Sheaf J A"], "goal": "Presheaf.IsSheaf K (G.op.ran.obj ℱ.val)"}], "premise": [91192], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_3, u_1} C\ninst✝³ : Category.{u_4, u_2} D\nG : C ⥤ D\nA : Type w\ninst✝² : Category.{w', w} A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\ninst✝¹ : G.IsCocontinuous J K\ninst✝ : ∀ (F : Cᵒᵖ ⥤ A), G.op.HasPointwiseRightKanExtension F\nℱ : Sheaf J A\n⊢ Presheaf.IsSheaf K (G.op.ran.obj ℱ.val)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝⁴ : Category.{u_3, u_1} C", "inst✝³ : Category.{u_4, u_2} D", "G : C ⥤ D", "A : Type w", "inst✝² : Category.{w', w} A", "J : GrothendieckTopology C", "K : GrothendieckTopology D", "inst✝¹ : G.IsCocontinuous J K", "inst✝ : ∀ (F : Cᵒᵖ ⥤ A), G.op.HasPointwiseRightKanExtension F", "ℱ : Sheaf J A", "X : D", "S : K.Cover X"], "goal": "Nonempty (IsLimit (S.multifork (G.op.ran.obj ℱ.val)))"}], "premise": [91174], "state_str": "C : Type u_1\nD : Type u_2\ninst✝⁴ : Category.{u_3, u_1} C\ninst✝³ : Category.{u_4, u_2} D\nG : C ⥤ D\nA : Type w\ninst✝² : Category.{w', w} A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\ninst✝¹ : G.IsCocontinuous J K\ninst✝ : ∀ (F : Cᵒᵖ ⥤ A), G.op.HasPointwiseRightKanExtension F\nℱ : Sheaf J A\nX : D\nS : K.Cover X\n⊢ Nonempty (IsLimit (S.multifork (G.op.ran.obj ℱ.val)))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁴ : RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace 𝕜 F", "f : E →ₗᵢ[𝕜] F", "U V : Submodule 𝕜 E", "h : U ⟂ V"], "goal": "Submodule.map f U ⟂ Submodule.map f V"}], "premise": [33527], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁴ : RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace 𝕜 F\nf : E →ₗᵢ[𝕜] F\nU V : Submodule 𝕜 E\nh : U ⟂ V\n⊢ Submodule.map f U ⟂ Submodule.map f V"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁴ : RCLike 𝕜", "inst✝³ : NormedAddCommGroup E", "inst✝² : InnerProductSpace 𝕜 E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : InnerProductSpace 𝕜 F", "f : E →ₗᵢ[𝕜] F", "U V : Submodule 𝕜 E", "h : ∀ u ∈ U, ∀ v ∈ V, ⟪u, v⟫_𝕜 = 0"], "goal": "∀ u ∈ Submodule.map f U, ∀ v ∈ Submodule.map f V, ⟪u, v⟫_𝕜 = 0"}], "premise": [1186, 2010, 2052, 36860, 110262], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁴ : RCLike 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace 𝕜 F\nf : E →ₗᵢ[𝕜] F\nU V : Submodule 𝕜 E\nh : ∀ u ∈ U, ∀ v ∈ V, ⟪u, v⟫_𝕜 = 0\n⊢ ∀ u ∈ Submodule.map f U, ∀ v ∈ Submodule.map f V, ⟪u, v⟫_𝕜 = 0"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "f : α → Option α", "l : List α"], "goal": "(lookmap f l).length = l.length"}], "premise": [5122, 132639], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\nf : α → Option α\nl : List α\n⊢ (lookmap f l).length = l.length"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "R : Type u_4", "α : Type u_5", "inst✝⁵ : DecidableEq l", "inst✝⁴ : DecidableEq m", "inst✝³ : DecidableEq n", "inst✝² : Semiring α", "inst✝¹ : Finite m", "inst✝ : Finite n", "P : Matrix m n α → Prop", "M : Matrix m n α", "h_zero : P 0", "h_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)", "h_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)"], "goal": "P M"}], "premise": [141384], "state_str": "l : Type u_1\nm : Type u_2\nn : Type u_3\nR : Type u_4\nα : Type u_5\ninst✝⁵ : DecidableEq l\ninst✝⁴ : DecidableEq m\ninst✝³ : DecidableEq n\ninst✝² : Semiring α\ninst✝¹ : Finite m\ninst✝ : Finite n\nP : Matrix m n α → Prop\nM : Matrix m n α\nh_zero : P 0\nh_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)\nh_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)\n⊢ P M"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "R : Type u_4", "α : Type u_5", "inst✝⁵ : DecidableEq l", "inst✝⁴ : DecidableEq m", "inst✝³ : DecidableEq n", "inst✝² : Semiring α", "inst✝¹ : Finite m", "inst✝ : Finite n", "P : Matrix m n α → Prop", "M : Matrix m n α", "h_zero : P 0", "h_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)", "h_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)", "val✝ : Fintype m"], "goal": "P M"}], "premise": [141384], "state_str": "case intro\nl : Type u_1\nm : Type u_2\nn : Type u_3\nR : Type u_4\nα : Type u_5\ninst✝⁵ : DecidableEq l\ninst✝⁴ : DecidableEq m\ninst✝³ : DecidableEq n\ninst✝² : Semiring α\ninst✝¹ : Finite m\ninst✝ : Finite n\nP : Matrix m n α → Prop\nM : Matrix m n α\nh_zero : P 0\nh_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)\nh_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)\nval✝ : Fintype m\n⊢ P M"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "R : Type u_4", "α : Type u_5", "inst✝⁵ : DecidableEq l", "inst✝⁴ : DecidableEq m", "inst✝³ : DecidableEq n", "inst✝² : Semiring α", "inst✝¹ : Finite m", "inst✝ : Finite n", "P : Matrix m n α → Prop", "M : Matrix m n α", "h_zero : P 0", "h_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)", "h_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)", "val✝¹ : Fintype m", "val✝ : Fintype n"], "goal": "P M"}], "premise": [127015, 139285], "state_str": "case intro.intro\nl : Type u_1\nm : Type u_2\nn : Type u_3\nR : Type u_4\nα : Type u_5\ninst✝⁵ : DecidableEq l\ninst✝⁴ : DecidableEq m\ninst✝³ : DecidableEq n\ninst✝² : Semiring α\ninst✝¹ : Finite m\ninst✝ : Finite n\nP : Matrix m n α → Prop\nM : Matrix m n α\nh_zero : P 0\nh_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)\nh_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)\nval✝¹ : Fintype m\nval✝ : Fintype n\n⊢ P M"} +{"state": [{"context": ["l : Type u_1", "m : Type u_2", "n : Type u_3", "R : Type u_4", "α : Type u_5", "inst✝⁵ : DecidableEq l", "inst✝⁴ : DecidableEq m", "inst✝³ : DecidableEq n", "inst✝² : Semiring α", "inst✝¹ : Finite m", "inst✝ : Finite n", "P : Matrix m n α → Prop", "M : Matrix m n α", "h_zero : P 0", "h_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)", "h_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)", "val✝¹ : Fintype m", "val✝ : Fintype n"], "goal": "P (∑ x ∈ Finset.univ ×ˢ Finset.univ, stdBasisMatrix x.1 x.2 (M x.1 x.2))"}], "premise": [127164], "state_str": "case intro.intro\nl : Type u_1\nm : Type u_2\nn : Type u_3\nR : Type u_4\nα : Type u_5\ninst✝⁵ : DecidableEq l\ninst✝⁴ : DecidableEq m\ninst✝³ : DecidableEq n\ninst✝² : Semiring α\ninst✝¹ : Finite m\ninst✝ : Finite n\nP : Matrix m n α → Prop\nM : Matrix m n α\nh_zero : P 0\nh_add : ∀ (p q : Matrix m n α), P p → P q → P (p + q)\nh_std_basis : ∀ (i : m) (j : n) (x : α), P (stdBasisMatrix i j x)\nval✝¹ : Fintype m\nval✝ : Fintype n\n⊢ P (∑ x ∈ Finset.univ ×ˢ Finset.univ, stdBasisMatrix x.1 x.2 (M x.1 x.2))"} +{"state": [{"context": ["m n : ℕ"], "goal": "(m + n)# = m# * ∏ p ∈ filter Nat.Prime (Ico (m + 1) (m + n + 1)), p"}], "premise": [19112, 20654, 126931, 139120], "state_str": "m n : ℕ\n⊢ (m + n)# = m# * ∏ p ∈ filter Nat.Prime (Ico (m + 1) (m + n + 1)), p"} +{"state": [{"context": ["m n : ℕ"], "goal": "0 ≤ m + 1"}, {"context": ["m n : ℕ"], "goal": "m + 1 ≤ m + n + 1"}, {"context": ["m n : ℕ"], "goal": "Disjoint (filter Nat.Prime (Ico 0 (m + 1))) (filter Nat.Prime (Ico (m + 1) (m + n + 1)))"}], "premise": [2134, 3747, 20613, 103886, 139114], "state_str": "case hab\nm n : ℕ\n⊢ 0 ≤ m + 1\n\ncase hbc\nm n : ℕ\n⊢ m + 1 ≤ m + n + 1\n\nm n : ℕ\n⊢ Disjoint (filter Nat.Prime (Ico 0 (m + 1))) (filter Nat.Prime (Ico (m + 1) (m + n + 1)))"} +{"state": [{"context": ["n : Type u", "inst✝⁴ : DecidableEq n", "inst✝³ : Fintype n", "R✝ : Type v", "inst✝² : CommRing R✝", "S : Type u_1", "inst✝¹ : CommRing S", "R : Type u_2", "inst✝ : Field R", "g : SL(2, R)", "hg : ↑g 1 0 = 0"], "goal": "∃ a b, ∃ (h : a ≠ 0), g = ⟨!![a, b; 0, a⁻¹], ⋯⟩"}], "premise": [85121], "state_str": "n : Type u\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\nR✝ : Type v\ninst✝² : CommRing R✝\nS : Type u_1\ninst✝¹ : CommRing S\nR : Type u_2\ninst✝ : Field R\ng : SL(2, R)\nhg : ↑g 1 0 = 0\n⊢ ∃ a b, ∃ (h : a ≠ 0), g = ⟨!![a, b; 0, a⁻¹], ⋯⟩"} +{"state": [{"context": ["n : Type u", "inst✝⁴ : DecidableEq n", "inst✝³ : Fintype n", "R✝ : Type v", "inst✝² : CommRing R✝", "S : Type u_1", "inst✝¹ : CommRing S", "R : Type u_2", "inst✝ : Field R", "a b c d : R", "h_det : a * d - b * c = 1", "hg : c = 0"], "goal": "∃ a_1 b_1, ∃ (h : a_1 ≠ 0), ⟨!![a, b; c, d], ⋯⟩ = ⟨!![a_1, b_1; 0, a_1⁻¹], ⋯⟩"}], "premise": [108558, 117816], "state_str": "case h\nn : Type u\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\nR✝ : Type v\ninst✝² : CommRing R✝\nS : Type u_1\ninst✝¹ : CommRing S\nR : Type u_2\ninst✝ : Field R\na b c d : R\nh_det : a * d - b * c = 1\nhg : c = 0\n⊢ ∃ a_1 b_1, ∃ (h : a_1 ≠ 0), ⟨!![a, b; c, d], ⋯⟩ = ⟨!![a_1, b_1; 0, a_1⁻¹], ⋯⟩"} +{"state": [{"context": ["n : Type u", "inst✝⁴ : DecidableEq n", "inst✝³ : Fintype n", "R✝ : Type v", "inst✝² : CommRing R✝", "S : Type u_1", "inst✝¹ : CommRing S", "R : Type u_2", "inst✝ : Field R", "a b c d : R", "h_det : a * d - b * c = 1", "hg : c = 0", "had : a * d = 1"], "goal": "∃ a_1 b_1, ∃ (h : a_1 ≠ 0), ⟨!![a, b; c, d], ⋯⟩ = ⟨!![a_1, b_1; 0, a_1⁻¹], ⋯⟩"}], "premise": [108274], "state_str": "case h\nn : Type u\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\nR✝ : Type v\ninst✝² : CommRing R✝\nS : Type u_1\ninst✝¹ : CommRing S\nR : Type u_2\ninst✝ : Field R\na b c d : R\nh_det : a * d - b * c = 1\nhg : c = 0\nhad : a * d = 1\n⊢ ∃ a_1 b_1, ∃ (h : a_1 ≠ 0), ⟨!![a, b; c, d], ⋯⟩ = ⟨!![a_1, b_1; 0, a_1⁻¹], ⋯⟩"} +{"state": [{"context": ["n : Type u", "inst✝⁴ : DecidableEq n", "inst✝³ : Fintype n", "R✝ : Type v", "inst✝² : CommRing R✝", "S : Type u_1", "inst✝¹ : CommRing S", "R : Type u_2", "inst✝ : Field R", "a b c d : R", "h_det : a * d - b * c = 1", "hg : c = 0", "had : a * d = 1"], "goal": "⟨!![a, b; c, d], ⋯⟩ = ⟨!![a, b; 0, a⁻¹], ⋯⟩"}], "premise": [117820], "state_str": "case h\nn : Type u\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\nR✝ : Type v\ninst✝² : CommRing R✝\nS : Type u_1\ninst✝¹ : CommRing S\nR : Type u_2\ninst✝ : Field R\na b c d : R\nh_det : a * d - b * c = 1\nhg : c = 0\nhad : a * d = 1\n⊢ ⟨!![a, b; c, d], ⋯⟩ = ⟨!![a, b; 0, a⁻¹], ⋯⟩"} +{"state": [{"context": ["α β : Type", "n : ℕ", "f g : (α → ℕ) → ℕ", "df : DiophFn f", "dg : DiophFn g"], "goal": "DiophFn fun v => f v ^ g v"}], "premise": [22658, 22660, 22661, 22672, 22678, 22679, 22682, 22683, 22684, 22685, 22686, 22688, 22691, 22693], "state_str": "α β : Type\nn : ℕ\nf g : (α → ℕ) → ℕ\ndf : DiophFn f\ndg : DiophFn g\n⊢ DiophFn fun v => f v ^ g v"} +{"state": [{"context": ["α β : Type", "n : ℕ", "f g : (α → ℕ) → ℕ", "df : DiophFn f", "dg : DiophFn g", "proof : Dioph (((fun v => v &2 = const (Fin2 3 → ℕ) 0 v) ∩ fun v => v &0 = const (Fin2 3 → ℕ) 1 v) ∪ {v | const (Fin2 3 → ℕ) 0 v < v &2} ∩ (((fun v => v &1 = const (Fin2 3 → ℕ) 0 v) ∩ fun v => v &0 = const (Fin2 3 → ℕ) 0 v) ∪ {v | const (Fin2 3 → ℕ) 0 v < v &1} ∩ {v | ∃ x, (x :: v) ∈ {v | ∃ x, (x :: v) ∈ {v | ∃ x, (x :: v) ∈ {v | ∃ x, (x :: v) ∈ {v | ∃ x, (x :: v) ∈ {v | ∃ x, (x :: v) ∈ {v | (v ∘ &4 :: &8 :: &1 :: &0 :: []) ∈ fun v => ∃ (h : 1 < v &0), xn h (v &1) = v &2 ∧ yn h (v &1) = v &3} ∩ ((fun v => v &1 ≡ v &0 * (v &4 - v &7) + v &6 [MOD v &3]) ∩ ((fun v => const (Fin2 (succ 8) → ℕ) 2 v * v &4 * v &7 = v &3 + (v &7 * v &7 + const (Fin2 (succ 8) → ℕ) 1 v)) ∩ ({v | v &6 < v &3} ∩ ({v | v &7 ≤ v &5} ∩ ({v | v &8 ≤ v &5} ∩ fun v => v &4 * v &4 - ((v &5 + const (Fin2 (succ 8) → ℕ) 1 v) * (v &5 + const (Fin2 (succ 8) → ℕ) 1 v) - const (Fin2 (succ 8) → ℕ) 1 v) * (v &5 * v &2) * (v &5 * v &2) = const (Fin2 (succ 8) → ℕ) 1 v)))))}}}}}}))", "this : Dioph {v | v &2 = 0 ∧ v &0 = 1 ∨ 0 < v &2 ∧ (v &1 = 0 ∧ v &0 = 0 ∨ 0 < v &1 ∧ ∃ w a t z x y, (∃ (a1 : 1 < a), xn a1 (v &2) = x ∧ yn a1 (v &2) = y) ∧ x ≡ y * (a - v &1) + v &0 [MOD t] ∧ 2 * a * v &1 = t + (v &1 * v &1 + 1) ∧ v &0 < t ∧ v &1 ≤ w ∧ v &2 ≤ w ∧ a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)}"], "goal": "DiophFn fun v => f v ^ g v"}], "premise": [1674, 1713, 1715, 1718, 1963, 1980, 22546, 22654, 22673, 22681], "state_str": "α β : Type\nn : ℕ\nf g : (α → ℕ) → ℕ\ndf : DiophFn f\ndg : DiophFn g\nproof :\n Dioph\n (((fun v => v &2 = const (Fin2 3 → ℕ) 0 v) ∩ fun v => v &0 = const (Fin2 3 → ℕ) 1 v) ∪\n {v | const (Fin2 3 → ℕ) 0 v < v &2} ∩\n (((fun v => v &1 = const (Fin2 3 → ℕ) 0 v) ∩ fun v => v &0 = const (Fin2 3 → ℕ) 0 v) ∪\n {v | const (Fin2 3 → ℕ) 0 v < v &1} ∩\n {v |\n ∃ x,\n (x :: v) ∈\n {v |\n ∃ x,\n (x :: v) ∈\n {v |\n ∃ x,\n (x :: v) ∈\n {v |\n ∃ x,\n (x :: v) ∈\n {v |\n ∃ x,\n (x :: v) ∈\n {v |\n ∃ x,\n (x :: v) ∈\n {v |\n (v ∘ &4 :: &8 :: &1 :: &0 :: []) ∈ fun v =>\n ∃ (h : 1 < v &0), xn h (v &1) = v &2 ∧ yn h (v &1) = v &3} ∩\n ((fun v => v &1 ≡ v &0 * (v &4 - v &7) + v &6 [MOD v &3]) ∩\n ((fun v =>\n const (Fin2 (succ 8) → ℕ) 2 v * v &4 * v &7 =\n v &3 + (v &7 * v &7 + const (Fin2 (succ 8) → ℕ) 1 v)) ∩\n ({v | v &6 < v &3} ∩\n ({v | v &7 ≤ v &5} ∩\n ({v | v &8 ≤ v &5} ∩ fun v =>\n v &4 * v &4 -\n ((v &5 + const (Fin2 (succ 8) → ℕ) 1 v) *\n (v &5 + const (Fin2 (succ 8) → ℕ) 1 v) -\n const (Fin2 (succ 8) → ℕ) 1 v) *\n (v &5 * v &2) *\n (v &5 * v &2) =\n const (Fin2 (succ 8) → ℕ) 1 v)))))}}}}}}))\nthis :\n Dioph\n {v |\n v &2 = 0 ∧ v &0 = 1 ∨\n 0 < v &2 ∧\n (v &1 = 0 ∧ v &0 = 0 ∨\n 0 < v &1 ∧\n ∃ w a t z x y,\n (∃ (a1 : 1 < a), xn a1 (v &2) = x ∧ yn a1 (v &2) = y) ∧\n x ≡ y * (a - v &1) + v &0 [MOD t] ∧\n 2 * a * v &1 = t + (v &1 * v &1 + 1) ∧\n v &0 < t ∧ v &1 ≤ w ∧ v &2 ≤ w ∧ a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)}\n⊢ DiophFn fun v => f v ^ g v"} +{"state": [{"context": ["α : Type u_1", "l : Filter α", "f : α → ℝ"], "goal": "Tendsto (fun x => (f x).toNNReal) l atTop ↔ Tendsto f l atTop"}], "premise": [1671, 1713, 16363, 56432], "state_str": "α : Type u_1\nl : Filter α\nf : α → ℝ\n⊢ Tendsto (fun x => (f x).toNNReal) l atTop ↔ Tendsto f l atTop"} +{"state": [{"context": ["z : ↥circle"], "goal": "normSq ↑z = 1"}], "premise": [148258], "state_str": "z : ↥circle\n⊢ normSq ↑z = 1"} +{"state": [{"context": ["X Y Z : Scheme", "𝒰✝ : X.OpenCover", "f✝ : X ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f✝) g", "f : X ⟶ Y", "𝒰 : Y.OpenCover", "i : (𝒰.affineRefinement.openCover.pullbackCover f).J"], "goal": "(pullbackCoverAffineRefinementObjIso f 𝒰 i).inv ≫ 𝒰.affineRefinement.openCover.pullbackHom f i = (𝒰.obj i.fst).affineCover.pullbackHom (𝒰.pullbackHom f i.fst) i.snd"}], "premise": [2098, 88746, 88755, 88789, 88799, 93340, 93753, 93754, 93898, 96173, 96174, 128130, 128141, 128142], "state_str": "X Y Z : Scheme\n𝒰✝ : X.OpenCover\nf✝ : X ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f✝) g\nf : X ⟶ Y\n𝒰 : Y.OpenCover\ni : (𝒰.affineRefinement.openCover.pullbackCover f).J\n⊢ (pullbackCoverAffineRefinementObjIso f 𝒰 i).inv ≫ 𝒰.affineRefinement.openCover.pullbackHom f i =\n (𝒰.obj i.fst).affineCover.pullbackHom (𝒰.pullbackHom f i.fst) i.snd"} +{"state": [{"context": ["X Y Z : Scheme", "𝒰✝ : X.OpenCover", "f✝ : X ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f✝) g", "f : X ⟶ Y", "𝒰 : Y.OpenCover", "i : (𝒰.affineRefinement.openCover.pullbackCover f).J"], "goal": "(pullbackSymmetry ((𝒰.obj i.fst).affineCover.map i.snd) (pullback.fst (𝒰.map i.fst) f)).inv ≫ (pullbackRightPullbackFstIso (𝒰.map i.fst) f ((𝒰.obj i.fst).affineCover.map i.snd)).hom ≫ pullback.fst (𝒰.affineRefinement.map i) f = pullback.snd (pullback.fst (𝒰.map i.fst) f) ((𝒰.obj i.fst).affineCover.map i.snd)"}], "premise": [93897], "state_str": "X Y Z : Scheme\n𝒰✝ : X.OpenCover\nf✝ : X ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f✝) g\nf : X ⟶ Y\n𝒰 : Y.OpenCover\ni : (𝒰.affineRefinement.openCover.pullbackCover f).J\n⊢ (pullbackSymmetry ((𝒰.obj i.fst).affineCover.map i.snd) (pullback.fst (𝒰.map i.fst) f)).inv ≫\n (pullbackRightPullbackFstIso (𝒰.map i.fst) f ((𝒰.obj i.fst).affineCover.map i.snd)).hom ≫\n pullback.fst (𝒰.affineRefinement.map i) f =\n pullback.snd (pullback.fst (𝒰.map i.fst) f) ((𝒰.obj i.fst).affineCover.map i.snd)"} +{"state": [{"context": ["X Y Z : Scheme", "𝒰✝ : X.OpenCover", "f✝ : X ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f✝) g", "f : X ⟶ Y", "𝒰 : Y.OpenCover", "i : (𝒰.affineRefinement.openCover.pullbackCover f).J", "e_1✝ : (pullback (pullback.fst (𝒰.map i.fst) f) ((𝒰.obj i.fst).affineCover.map i.snd) ⟶ Spec (𝒰.affineRefinement.obj i)) = (pullback (pullback.fst (𝒰.map i.fst) f) ((𝒰.obj i.fst).affineCover.map i.snd) ⟶ (𝒰.obj i.fst).affineCover.obj i.snd)", "e_5✝ : Spec (𝒰.affineRefinement.obj i) = (𝒰.obj i.fst).affineCover.obj i.snd"], "goal": "(pullbackRightPullbackFstIso (𝒰.map i.fst) f ((𝒰.obj i.fst).affineCover.map i.snd)).hom ≫ pullback.fst (𝒰.affineRefinement.map i) f = pullback.fst ((𝒰.obj i.fst).affineCover.map i.snd) (pullback.fst (𝒰.map i.fst) f)"}], "premise": [94200], "state_str": "case h.e'_2.h.h.e'_7.h\nX Y Z : Scheme\n𝒰✝ : X.OpenCover\nf✝ : X ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f✝) g\nf : X ⟶ Y\n𝒰 : Y.OpenCover\ni : (𝒰.affineRefinement.openCover.pullbackCover f).J\ne_1✝ :\n (pullback (pullback.fst (𝒰.map i.fst) f) ((𝒰.obj i.fst).affineCover.map i.snd) ⟶ Spec (𝒰.affineRefinement.obj i)) =\n (pullback (pullback.fst (𝒰.map i.fst) f) ((𝒰.obj i.fst).affineCover.map i.snd) ⟶\n (𝒰.obj i.fst).affineCover.obj i.snd)\ne_5✝ : Spec (𝒰.affineRefinement.obj i) = (𝒰.obj i.fst).affineCover.obj i.snd\n⊢ (pullbackRightPullbackFstIso (𝒰.map i.fst) f ((𝒰.obj i.fst).affineCover.map i.snd)).hom ≫\n pullback.fst (𝒰.affineRefinement.map i) f =\n pullback.fst ((𝒰.obj i.fst).affineCover.map i.snd) (pullback.fst (𝒰.map i.fst) f)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : Fintype α", "inst✝² : Fintype β", "inst✝¹ : DecidableEq α", "inst✝ : DecidableEq β", "G : SimpleGraph α", "a b : α", "p : G.Walk a b", "hp : p.IsHamiltonian", "c : α"], "goal": "c ∈ p.support"}], "premise": [375, 3786], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : Fintype α\ninst✝² : Fintype β\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nG : SimpleGraph α\na b : α\np : G.Walk a b\nhp : p.IsHamiltonian\nc : α\n⊢ c ∈ p.support"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Preadditive C", "R : Type u_1", "inst✝¹ : Ring R", "inst✝ : Linear R C", "K L M : CochainComplex C ℤ", "n : ℤ", "γ γ₁ γ₂ : Cochain K L n", "a n' : ℤ", "hn' : n + a = n'", "m t t' : ℤ", "γ' : Cochain L M m", "h : n + m = t", "ht' : t + a = t'"], "goal": "n' + m = t'"}], "premise": [119704, 119708], "state_str": "C : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Preadditive C\nR : Type u_1\ninst✝¹ : Ring R\ninst✝ : Linear R C\nK L M : CochainComplex C ℤ\nn : ℤ\nγ γ₁ γ₂ : Cochain K L n\na n' : ℤ\nhn' : n + a = n'\nm t t' : ℤ\nγ' : Cochain L M m\nh : n + m = t\nht' : t + a = t'\n⊢ n' + m = t'"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Preadditive C", "R : Type u_1", "inst✝¹ : Ring R", "inst✝ : Linear R C", "K L M : CochainComplex C ℤ", "n : ℤ", "γ γ₁ γ₂ : Cochain K L n", "a n' : ℤ", "hn' : n + a = n'", "m t t' : ℤ", "γ' : Cochain L M m", "h : n + m = t", "ht' : t + a = t'", "p q : ℤ", "hpq : p + t' = q", "h' : n' + m = t'"], "goal": "((γ.comp γ' h).leftShift a t' ht').v p q hpq = (a * m).negOnePow • ((γ.leftShift a n' hn').comp γ' ⋯).v p q hpq"}], "premise": [96173, 97903, 114452, 115392, 118909, 119703, 122189], "state_str": "case h\nC : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Preadditive C\nR : Type u_1\ninst✝¹ : Ring R\ninst✝ : Linear R C\nK L M : CochainComplex C ℤ\nn : ℤ\nγ γ₁ γ₂ : Cochain K L n\na n' : ℤ\nhn' : n + a = n'\nm t t' : ℤ\nγ' : Cochain L M m\nh : n + m = t\nht' : t + a = t'\np q : ℤ\nhpq : p + t' = q\nh' : n' + m = t'\n⊢ ((γ.comp γ' h).leftShift a t' ht').v p q hpq = (a * m).negOnePow • ((γ.leftShift a n' hn').comp γ' ⋯).v p q hpq"} +{"state": [{"context": ["C : Type u", "inst✝³ : Category.{v, u} C", "inst✝² : Preadditive C", "R : Type u_1", "inst✝¹ : Ring R", "inst✝ : Linear R C", "K L M : CochainComplex C ℤ", "n : ℤ", "γ γ₁ γ₂ : Cochain K L n", "a n' : ℤ", "hn' : n + a = n'", "m t t' : ℤ", "γ' : Cochain L M m", "h : n + m = t", "ht' : t + a = t'", "p q : ℤ", "hpq : p + t' = q", "h' : n' + m = t'"], "goal": "(a * (n' + m)).negOnePow = (a * m).negOnePow * (a * n').negOnePow"}], "premise": [119708, 122189], "state_str": "case h.e_a.e_a\nC : Type u\ninst✝³ : Category.{v, u} C\ninst✝² : Preadditive C\nR : Type u_1\ninst✝¹ : Ring R\ninst✝ : Linear R C\nK L M : CochainComplex C ℤ\nn : ℤ\nγ γ₁ γ₂ : Cochain K L n\na n' : ℤ\nhn' : n + a = n'\nm t t' : ℤ\nγ' : Cochain L M m\nh : n + m = t\nht' : t + a = t'\np q : ℤ\nhpq : p + t' = q\nh' : n' + m = t'\n⊢ (a * (n' + m)).negOnePow = (a * m).negOnePow * (a * n').negOnePow"} +{"state": [{"context": ["R : Type u_1", "inst✝⁸ : CommRing R", "M : Type u_2", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "M' : Type u_3", "inst✝⁵ : AddCommGroup M'", "inst✝⁴ : Module R M'", "ι : Type u_4", "inst✝³ : DecidableEq ι", "inst✝² : Fintype ι", "e : Basis ι R M", "𝕜 : Type u_5", "inst✝¹ : Field 𝕜", "inst✝ : Module 𝕜 M", "f : M ≃ₗ[𝕜] M"], "goal": "LinearMap.det ↑f.symm = (LinearMap.det ↑f)⁻¹"}], "premise": [83470, 108373], "state_str": "R : Type u_1\ninst✝⁸ : CommRing R\nM : Type u_2\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\nM' : Type u_3\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : Module R M'\nι : Type u_4\ninst✝³ : DecidableEq ι\ninst✝² : Fintype ι\ne : Basis ι R M\n𝕜 : Type u_5\ninst✝¹ : Field 𝕜\ninst✝ : Module 𝕜 M\nf : M ≃ₗ[𝕜] M\n⊢ LinearMap.det ↑f.symm = (LinearMap.det ↑f)⁻¹"} +{"state": [{"context": ["G : Type u_1", "M : Type u_2", "inst✝ : Monoid M", "a✝ b c : M", "m n✝ : ℕ", "a : M", "n : ℕ"], "goal": "a ^ n * a = a * a ^ n"}], "premise": [119742, 119745], "state_str": "G : Type u_1\nM : Type u_2\ninst✝ : Monoid M\na✝ b c : M\nm n✝ : ℕ\na : M\nn : ℕ\n⊢ a ^ n * a = a * a ^ n"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "M : Type u_3", "inst✝⁶ : CommSemiring R", "inst✝⁵ : CommSemiring A", "inst✝⁴ : Algebra R A", "inst✝³ : AddCommMonoid M", "inst✝² : Module A M", "inst✝¹ : Module R M", "inst✝ : IsScalarTower R A M", "d : Derivation R A M", "a : A"], "goal": "∀ (a_1 b : R[X]), { toFun := fun f => (AEval.of R M a) (d ((aeval a) f)), map_add' := ⋯, map_smul' := ⋯ } (a_1 * b) = a_1 • { toFun := fun f => (AEval.of R M a) (d ((aeval a) f)), map_add' := ⋯, map_smul' := ⋯ } b + b • { toFun := fun f => (AEval.of R M a) (d ((aeval a) f)), map_add' := ⋯, map_smul' := ⋯ } a_1"}], "premise": [79729, 101165], "state_str": "R : Type u_1\nA : Type u_2\nM : Type u_3\ninst✝⁶ : CommSemiring R\ninst✝⁵ : CommSemiring A\ninst✝⁴ : Algebra R A\ninst✝³ : AddCommMonoid M\ninst✝² : Module A M\ninst✝¹ : Module R M\ninst✝ : IsScalarTower R A M\nd : Derivation R A M\na : A\n⊢ ∀ (a_1 b : R[X]),\n { toFun := fun f => (AEval.of R M a) (d ((aeval a) f)), map_add' := ⋯, map_smul' := ⋯ } (a_1 * b) =\n a_1 • { toFun := fun f => (AEval.of R M a) (d ((aeval a) f)), map_add' := ⋯, map_smul' := ⋯ } b +\n b • { toFun := fun f => (AEval.of R M a) (d ((aeval a) f)), map_add' := ⋯, map_smul' := ⋯ } a_1"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommRing R", "n : ℕ", "P : Ideal R", "q : R[X]", "c : (R ⧸ P)[X]", "hq : map (mk P) q = c * X ^ n", "hn0 : n ≠ 0"], "goal": "eval 0 q ∈ P"}], "premise": [80142, 102870, 102886, 102928, 102966, 102969, 108276, 108558], "state_str": "R : Type u_1\ninst✝ : CommRing R\nn : ℕ\nP : Ideal R\nq : R[X]\nc : (R ⧸ P)[X]\nhq : map (mk P) q = c * X ^ n\nhn0 : n ≠ 0\n⊢ eval 0 q ∈ P"} +{"state": [{"context": ["G : Type u", "M : Type v", "α : Type w", "s✝ : Set α", "m : MeasurableSpace α", "inst✝³ : MeasurableSpace G", "inst✝² : Group G", "inst✝¹ : MulAction G α", "μ : Measure α", "inst✝ : SMulInvariantMeasure G α μ", "c : G", "s : Set α"], "goal": "EventuallyConst (c • s) (ae μ) ↔ EventuallyConst s (ae μ)"}], "premise": [1713, 11602, 13833, 30524, 132973], "state_str": "G : Type u\nM : Type v\nα : Type w\ns✝ : Set α\nm : MeasurableSpace α\ninst✝³ : MeasurableSpace G\ninst✝² : Group G\ninst✝¹ : MulAction G α\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nc : G\ns : Set α\n⊢ EventuallyConst (c • s) (ae μ) ↔ EventuallyConst s (ae μ)"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "X Y : C", "f : X ⟶ Y", "inst✝ : IsIso f"], "goal": "(inv f).op = inv f.op"}], "premise": [88792], "state_str": "C : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsIso f\n⊢ (inv f).op = inv f.op"} +{"state": [{"context": ["C : Type u₁", "inst✝¹ : Category.{v₁, u₁} C", "X Y : C", "f : X ⟶ Y", "inst✝ : IsIso f"], "goal": "f.op ≫ (inv f).op = 𝟙 (op Y)"}], "premise": [88783, 89631, 89632], "state_str": "case hom_inv_id\nC : Type u₁\ninst✝¹ : Category.{v₁, u₁} C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsIso f\n⊢ f.op ≫ (inv f).op = 𝟙 (op Y)"} +{"state": [{"context": ["α : Type u", "β : Type v", "X : Type u_1", "ι : Type u_2", "inst✝ : PseudoMetricSpace α", "x : α", "s t : Set α", "r : ℝ", "c : α", "f : β → α", "l : Filter β"], "goal": "Tendsto (fun x => dist (f x) c) l atTop ↔ Tendsto f l (cobounded α)"}], "premise": [1671, 1713, 16363, 59667], "state_str": "α : Type u\nβ : Type v\nX : Type u_1\nι : Type u_2\ninst✝ : PseudoMetricSpace α\nx : α\ns t : Set α\nr : ℝ\nc : α\nf : β → α\nl : Filter β\n⊢ Tendsto (fun x => dist (f x) c) l atTop ↔ Tendsto f l (cobounded α)"} +{"state": [{"context": ["α β : Type u", "f : Type u → Type v", "inst✝¹ : Functor f", "inst✝ : LawfulFunctor f", "x : f α"], "goal": "(mapEquiv f (Equiv.refl α)) x = (Equiv.refl (f α)) x"}], "premise": [70748, 70952], "state_str": "case H\nα β : Type u\nf : Type u → Type v\ninst✝¹ : Functor f\ninst✝ : LawfulFunctor f\nx : f α\n⊢ (mapEquiv f (Equiv.refl α)) x = (Equiv.refl (f α)) x"} +{"state": [{"context": ["α β : Type u", "f : Type u → Type v", "inst✝¹ : Functor f", "inst✝ : LawfulFunctor f", "x : f α"], "goal": "⇑(Equiv.refl α) <$> x = x"}], "premise": [976], "state_str": "case H\nα β : Type u\nf : Type u → Type v\ninst✝¹ : Functor f\ninst✝ : LawfulFunctor f\nx : f α\n⊢ ⇑(Equiv.refl α) <$> x = x"} +{"state": [{"context": ["α : Type u_1", "inst✝² : MeasurableSpace α", "A : Set α", "ι : Type u_2", "L : Filter ι", "inst✝¹ : L.IsCountablyGenerated", "As : ι → Set α", "inst✝ : L.NeBot", "μ : Measure α", "As_mble : ∀ (i : ι), MeasurableSet (As i)", "B : Set α", "B_mble : MeasurableSet B", "B_finmeas : μ B ≠ ⊤", "As_le_B : ∀ᶠ (i : ι) in L, As i ⊆ B", "h_lim : ∀ (x : α), ∀ᶠ (i : ι) in L, x ∈ As i ↔ x ∈ A"], "goal": "Tendsto (fun i => μ (As i)) L (𝓝 (μ A))"}], "premise": [27605, 30420], "state_str": "α : Type u_1\ninst✝² : MeasurableSpace α\nA : Set α\nι : Type u_2\nL : Filter ι\ninst✝¹ : L.IsCountablyGenerated\nAs : ι → Set α\ninst✝ : L.NeBot\nμ : Measure α\nAs_mble : ∀ (i : ι), MeasurableSet (As i)\nB : Set α\nB_mble : MeasurableSet B\nB_finmeas : μ B ≠ ⊤\nAs_le_B : ∀ᶠ (i : ι) in L, As i ⊆ B\nh_lim : ∀ (x : α), ∀ᶠ (i : ι) in L, x ∈ As i ↔ x ∈ A\n⊢ Tendsto (fun i => μ (As i)) L (𝓝 (μ A))"} +{"state": [{"context": ["α : Type u_1", "inst✝² : MeasurableSpace α", "A : Set α", "ι : Type u_2", "L : Filter ι", "inst✝¹ : L.IsCountablyGenerated", "As : ι → Set α", "inst✝ : L.NeBot", "μ : Measure α", "As_mble : ∀ (i : ι), MeasurableSet (As i)", "B : Set α", "B_mble : MeasurableSet B", "B_finmeas : μ B ≠ ⊤", "As_le_B : ∀ᶠ (i : ι) in L, As i ⊆ B", "h_lim : ∀ (x : α), ∀ᶠ (i : ι) in L, x ∈ As i ↔ x ∈ A"], "goal": "MeasurableSet A"}], "premise": [25746], "state_str": "α : Type u_1\ninst✝² : MeasurableSpace α\nA : Set α\nι : Type u_2\nL : Filter ι\ninst✝¹ : L.IsCountablyGenerated\nAs : ι → Set α\ninst✝ : L.NeBot\nμ : Measure α\nAs_mble : ∀ (i : ι), MeasurableSet (As i)\nB : Set α\nB_mble : MeasurableSet B\nB_finmeas : μ B ≠ ⊤\nAs_le_B : ∀ᶠ (i : ι) in L, As i ⊆ B\nh_lim : ∀ (x : α), ∀ᶠ (i : ι) in L, x ∈ As i ↔ x ∈ A\n⊢ MeasurableSet A"} +{"state": [{"context": ["t : Type u → Type u", "inst✝⁵ : Traversable t", "inst✝⁴ : LawfulTraversable t", "F G : Type u → Type u", "inst✝³ : Applicative F", "inst✝² : LawfulApplicative F", "inst✝¹ : Applicative G", "inst✝ : LawfulApplicative G", "α β γ : Type u", "g : α → F β", "h : β → G γ", "f : β → γ", "x : t β", "x✝ : t α"], "goal": "traverse pure x✝ = pure x✝"}], "premise": [9734], "state_str": "case h\nt : Type u → Type u\ninst✝⁵ : Traversable t\ninst✝⁴ : LawfulTraversable t\nF G : Type u → Type u\ninst✝³ : Applicative F\ninst✝² : LawfulApplicative F\ninst✝¹ : Applicative G\ninst✝ : LawfulApplicative G\nα β γ : Type u\ng : α → F β\nh : β → G γ\nf : β → γ\nx : t β\nx✝ : t α\n⊢ traverse pure x✝ = pure x✝"} +{"state": [{"context": ["C : Type u_1", "inst✝⁶ : Category.{?u.130934, u_1} C", "inst✝⁵ : Preadditive C", "I₁ : Type u_2", "I₂ : Type u_3", "I₁₂ : Type u_4", "c₁ : ComplexShape I₁", "c₂ : ComplexShape I₂", "K L M : HomologicalComplex₂ C c₁ c₂", "φ : K ⟶ L", "e : K ≅ L", "ψ : L ⟶ M", "c₁₂ : ComplexShape I₁₂", "inst✝⁴ : DecidableEq I₁₂", "inst✝³ : TotalComplexShape c₁ c₂ c₁₂", "inst✝² : K.HasTotal c₁₂", "inst✝¹ : L.HasTotal c₁₂", "inst✝ : M.HasTotal c₁₂"], "goal": "map e.hom c₁₂ ≫ map e.inv c₁₂ = 𝟙 (K.total c₁₂)"}], "premise": [88743, 115958, 115959], "state_str": "C : Type u_1\ninst✝⁶ : Category.{?u.130934, u_1} C\ninst✝⁵ : Preadditive C\nI₁ : Type u_2\nI₂ : Type u_3\nI₁₂ : Type u_4\nc₁ : ComplexShape I₁\nc₂ : ComplexShape I₂\nK L M : HomologicalComplex₂ C c₁ c₂\nφ : K ⟶ L\ne : K ≅ L\nψ : L ⟶ M\nc₁₂ : ComplexShape I₁₂\ninst✝⁴ : DecidableEq I₁₂\ninst✝³ : TotalComplexShape c₁ c₂ c₁₂\ninst✝² : K.HasTotal c₁₂\ninst✝¹ : L.HasTotal c₁₂\ninst✝ : M.HasTotal c₁₂\n⊢ map e.hom c₁₂ ≫ map e.inv c₁₂ = 𝟙 (K.total c₁₂)"} +{"state": [{"context": ["C : Type u_1", "inst✝⁶ : Category.{?u.130934, u_1} C", "inst✝⁵ : Preadditive C", "I₁ : Type u_2", "I₂ : Type u_3", "I₁₂ : Type u_4", "c₁ : ComplexShape I₁", "c₂ : ComplexShape I₂", "K L M : HomologicalComplex₂ C c₁ c₂", "φ : K ⟶ L", "e : K ≅ L", "ψ : L ⟶ M", "c₁₂ : ComplexShape I₁₂", "inst✝⁴ : DecidableEq I₁₂", "inst✝³ : TotalComplexShape c₁ c₂ c₁₂", "inst✝² : K.HasTotal c₁₂", "inst✝¹ : L.HasTotal c₁₂", "inst✝ : M.HasTotal c₁₂"], "goal": "map e.inv c₁₂ ≫ map e.hom c₁₂ = 𝟙 (L.total c₁₂)"}], "premise": [88742, 115958, 115959], "state_str": "C : Type u_1\ninst✝⁶ : Category.{?u.130934, u_1} C\ninst✝⁵ : Preadditive C\nI₁ : Type u_2\nI₂ : Type u_3\nI₁₂ : Type u_4\nc₁ : ComplexShape I₁\nc₂ : ComplexShape I₂\nK L M : HomologicalComplex₂ C c₁ c₂\nφ : K ⟶ L\ne : K ≅ L\nψ : L ⟶ M\nc₁₂ : ComplexShape I₁₂\ninst✝⁴ : DecidableEq I₁₂\ninst✝³ : TotalComplexShape c₁ c₂ c₁₂\ninst✝² : K.HasTotal c₁₂\ninst✝¹ : L.HasTotal c₁₂\ninst✝ : M.HasTotal c₁₂\n⊢ map e.inv c₁₂ ≫ map e.hom c₁₂ = 𝟙 (L.total c₁₂)"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : LinearOrderedSemifield R", "inst✝ : FloorSemiring R", "b : ℕ"], "goal": "log b 1 = 0"}], "premise": [2200, 14272, 105015, 129044, 142694], "state_str": "R : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\n⊢ log b 1 = 0"} +{"state": [{"context": ["C✝ : Type u", "𝒞 : Category.{v, u} C✝", "inst✝² : MonoidalCategory C✝", "C : Type u", "inst✝¹ : Category.{v, u} C", "inst✝ : MonoidalCategory C", "U V W X Y Z : C", "f : W ⟶ X", "g : Y ⟶ Z"], "goal": "(𝟙 Y ⊗ f) ≫ (g ⊗ 𝟙 X) = g ⊗ f"}], "premise": [99215], "state_str": "C✝ : Type u\n𝒞 : Category.{v, u} C✝\ninst✝² : MonoidalCategory C✝\nC : Type u\ninst✝¹ : Category.{v, u} C\ninst✝ : MonoidalCategory C\nU V W X Y Z : C\nf : W ⟶ X\ng : Y ⟶ Z\n⊢ (𝟙 Y ⊗ f) ≫ (g ⊗ 𝟙 X) = g ⊗ f"} +{"state": [{"context": ["α : Type u_1", "m : Set α → ℝ≥0∞", "β : Type u_2", "f : β → α", "h : (Monotone fun s => m ↑s) ∨ Surjective f"], "goal": "(comap f) (boundedBy m) = boundedBy fun s => m (f '' s)"}], "premise": [2101, 28102], "state_str": "α : Type u_1\nm : Set α → ℝ≥0∞\nβ : Type u_2\nf : β → α\nh : (Monotone fun s => m ↑s) ∨ Surjective f\n⊢ (comap f) (boundedBy m) = boundedBy fun s => m (f '' s)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "F : Type u_3", "inst✝¹ : FunLike F (Set α) ℝ≥0∞", "inst✝ : OuterMeasureClass F α", "μ : F", "s✝ t✝ s t : Set α"], "goal": "μ (s ∆ t) = 0 ↔ s =ᶠ[ae μ] t"}], "premise": [17200, 27622], "state_str": "α : Type u_1\nβ : Type u_2\nF : Type u_3\ninst✝¹ : FunLike F (Set α) ℝ≥0∞\ninst✝ : OuterMeasureClass F α\nμ : F\ns✝ t✝ s t : Set α\n⊢ μ (s ∆ t) = 0 ↔ s =ᶠ[ae μ] t"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "J : GrothendieckTopology C", "F F' F'' : Cᵒᵖ ⥤ Type w", "G G' : Subpresheaf F", "h : Presieve.IsSheaf J F'", "l₁ l₂ : (sheafify J G).toPresheaf ⟶ F'", "e : homOfLe ⋯ ≫ l₁ = homOfLe ⋯ ≫ l₂", "U : Cᵒᵖ", "s : F.obj U", "hs : s ∈ (sheafify J G).obj U"], "goal": "l₁.app U ⟨s, hs⟩ = l₂.app U ⟨s, hs⟩"}], "premise": [90222, 90232], "state_str": "case w.h.h.mk\nC : Type u\ninst✝ : Category.{v, u} C\nJ : GrothendieckTopology C\nF F' F'' : Cᵒᵖ ⥤ Type w\nG G' : Subpresheaf F\nh : Presieve.IsSheaf J F'\nl₁ l₂ : (sheafify J G).toPresheaf ⟶ F'\ne : homOfLe ⋯ ≫ l₁ = homOfLe ⋯ ≫ l₂\nU : Cᵒᵖ\ns : F.obj U\nhs : s ∈ (sheafify J G).obj U\n⊢ l₁.app U ⟨s, hs⟩ = l₂.app U ⟨s, hs⟩"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "J : GrothendieckTopology C", "F F' F'' : Cᵒᵖ ⥤ Type w", "G G' : Subpresheaf F", "h : Presieve.IsSheaf J F'", "l₁ l₂ : (sheafify J G).toPresheaf ⟶ F'", "e : homOfLe ⋯ ≫ l₁ = homOfLe ⋯ ≫ l₂", "U : Cᵒᵖ", "s : F.obj U", "hs : s ∈ (sheafify J G).obj U", "V : C", "i : V ⟶ unop U", "hi : F.map i.op s ∈ G.obj (op V)"], "goal": "F'.map i.op (l₁.app U ⟨s, hs⟩) = F'.map i.op (l₂.app U ⟨s, hs⟩)"}], "premise": [91300], "state_str": "case w.h.h.mk\nC : Type u\ninst✝ : Category.{v, u} C\nJ : GrothendieckTopology C\nF F' F'' : Cᵒᵖ ⥤ Type w\nG G' : Subpresheaf F\nh : Presieve.IsSheaf J F'\nl₁ l₂ : (sheafify J G).toPresheaf ⟶ F'\ne : homOfLe ⋯ ≫ l₁ = homOfLe ⋯ ≫ l₂\nU : Cᵒᵖ\ns : F.obj U\nhs : s ∈ (sheafify J G).obj U\nV : C\ni : V ⟶ unop U\nhi : F.map i.op s ∈ G.obj (op V)\n⊢ F'.map i.op (l₁.app U ⟨s, hs⟩) = F'.map i.op (l₂.app U ⟨s, hs⟩)"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "J : GrothendieckTopology C", "F F' F'' : Cᵒᵖ ⥤ Type w", "G G' : Subpresheaf F", "h : Presieve.IsSheaf J F'", "l₁ l₂ : (sheafify J G).toPresheaf ⟶ F'", "e : homOfLe ⋯ ≫ l₁ = homOfLe ⋯ ≫ l₂", "U : Cᵒᵖ", "s : F.obj U", "hs : s ∈ (sheafify J G).obj U", "V : C", "i : V ⟶ unop U", "hi : F.map i.op s ∈ G.obj (op V)"], "goal": "l₁.app (op V) ((sheafify J G).toPresheaf.map i.op ⟨s, hs⟩) = l₂.app (op V) ((sheafify J G).toPresheaf.map i.op ⟨s, hs⟩)"}], "premise": [97889], "state_str": "case w.h.h.mk\nC : Type u\ninst✝ : Category.{v, u} C\nJ : GrothendieckTopology C\nF F' F'' : Cᵒᵖ ⥤ Type w\nG G' : Subpresheaf F\nh : Presieve.IsSheaf J F'\nl₁ l₂ : (sheafify J G).toPresheaf ⟶ F'\ne : homOfLe ⋯ ≫ l₁ = homOfLe ⋯ ≫ l₂\nU : Cᵒᵖ\ns : F.obj U\nhs : s ∈ (sheafify J G).obj U\nV : C\ni : V ⟶ unop U\nhi : F.map i.op s ∈ G.obj (op V)\n⊢ l₁.app (op V) ((sheafify J G).toPresheaf.map i.op ⟨s, hs⟩) =\n l₂.app (op V) ((sheafify J G).toPresheaf.map i.op ⟨s, hs⟩)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "l✝ m : Language α", "a b x : List α", "l : Language α"], "goal": "1 + l * l∗ = l∗"}], "premise": [69669, 69673, 119739, 119745], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nl✝ m : Language α\na b x : List α\nl : Language α\n⊢ 1 + l * l∗ = l∗"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "l✝ m : Language α", "a b x : List α", "l : Language α"], "goal": "l ^ 0 + ⨆ i, l ^ (i + 1) = ⨆ i, l ^ i"}], "premise": [19488], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nl✝ m : Language α\na b x : List α\nl : Language α\n⊢ l ^ 0 + ⨆ i, l ^ (i + 1) = ⨆ i, l ^ i"} +{"state": [{"context": ["k G : Type u", "inst✝¹ : CommRing k", "n : ℕ", "inst✝ : Monoid G"], "goal": "((HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom ≫ (extraDegeneracyCompForgetAugmentedToModule k G).homotopyEquiv.hom ≫ (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u)).toModuleIso)).hom).f 0 = (forget₂ (Rep k G) (ModuleCat k)).map (ε k G)"}], "premise": [113853], "state_str": "k G : Type u\ninst✝¹ : CommRing k\nn : ℕ\ninst✝ : Monoid G\n⊢ ((HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom ≫\n (extraDegeneracyCompForgetAugmentedToModule k G).homotopyEquiv.hom ≫\n (HomotopyEquiv.ofIso\n ((ChainComplex.single₀ (ModuleCat k)).mapIso\n (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u)).toModuleIso)).hom).f\n 0 =\n (forget₂ (Rep k G) (ModuleCat k)).map (ε k G)"} +{"state": [{"context": ["k G : Type u", "inst✝¹ : CommRing k", "n : ℕ", "inst✝ : Monoid G"], "goal": "(HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom.f 0 ≫ (extraDegeneracyCompForgetAugmentedToModule k G).homotopyEquiv.hom.f 0 ≫ (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u)).toModuleIso)).hom.f 0 = (forget₂ (Rep k G) (ModuleCat k)).map (ε k G)"}], "premise": [96175], "state_str": "k G : Type u\ninst✝¹ : CommRing k\nn : ℕ\ninst✝ : Monoid G\n⊢ (HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom.f 0 ≫\n (extraDegeneracyCompForgetAugmentedToModule k G).homotopyEquiv.hom.f 0 ≫\n (HomotopyEquiv.ofIso\n ((ChainComplex.single₀ (ModuleCat k)).mapIso\n (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u)).toModuleIso)).hom.f\n 0 =\n (forget₂ (Rep k G) (ModuleCat k)).map (ε k G)"} +{"state": [{"context": ["d : ℤ", "a b : Solution₁ d"], "goal": "(a * b).x = a.x * b.x + d * (a.y * b.y)"}], "premise": [119703], "state_str": "d : ℤ\na b : Solution₁ d\n⊢ (a * b).x = a.x * b.x + d * (a.y * b.y)"} +{"state": [{"context": ["α : Sort u_1", "inst✝ : DecidableEq α", "a b x : α", "hab : ¬a = b", "hax : ¬x = a", "hbx : ¬x = b"], "goal": "(swap a b) x ≠ x ↔ a ≠ b ∧ (x = a ∨ x = b)"}], "premise": [71878], "state_str": "case neg\nα : Sort u_1\ninst✝ : DecidableEq α\na b x : α\nhab : ¬a = b\nhax : ¬x = a\nhbx : ¬x = b\n⊢ (swap a b) x ≠ x ↔ a ≠ b ∧ (x = a ∨ x = b)"} +{"state": [{"context": ["R : Type u", "L : Type v", "L' : Type w₂", "M : Type w", "M' : Type w₁", "inst✝¹² : CommRing R", "inst✝¹¹ : LieRing L", "inst✝¹⁰ : LieAlgebra R L", "inst✝⁹ : LieRing L'", "inst✝⁸ : LieAlgebra R L'", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup M'", "inst✝² : Module R M'", "inst✝¹ : LieRingModule L M'", "inst✝ : LieModule R L M'", "f : L →ₗ⁅R⁆ L'", "I : LieIdeal R L", "J : LieIdeal R L'", "I₁ I₂ : LieIdeal R L", "h : I₁ ≤ I₂", "x y : ↥↑I₁"], "goal": "(inclusion h) x = (inclusion h) y → x = y"}], "premise": [1813, 109398, 128380, 137135], "state_str": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nI₁ I₂ : LieIdeal R L\nh : I₁ ≤ I₂\nx y : ↥↑I₁\n⊢ (inclusion h) x = (inclusion h) y → x = y"} +{"state": [{"context": ["n✝ b n : ℕ"], "goal": "(b.digits n).length ≤ (b.digits (n + 1)).length"}], "premise": [70037], "state_str": "n✝ b n : ℕ\n⊢ (b.digits n).length ≤ (b.digits (n + 1)).length"} +{"state": [{"context": ["n✝ b n : ℕ", "hn : n ≠ 0"], "goal": "(b.digits n).length ≤ (b.digits (n + 1)).length"}], "premise": [14317], "state_str": "case inr\nn✝ b n : ℕ\nhn : n ≠ 0\n⊢ (b.digits n).length ≤ (b.digits (n + 1)).length"} +{"state": [{"context": ["n✝ b n : ℕ", "hn : n ≠ 0", "hb : 1 < b"], "goal": "(b.digits n).length ≤ (b.digits (n + 1)).length"}], "premise": [2140, 142711, 145920], "state_str": "case inr.inr\nn✝ b n : ℕ\nhn : n ≠ 0\nhb : 1 < b\n⊢ (b.digits n).length ≤ (b.digits (n + 1)).length"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommSemiring R", "p : R[X]", "hp : p.Monic", "r : R", "q : R[X]", "h : p = C r * q"], "goal": "IsUnit r"}], "premise": [101414, 120490], "state_str": "case intro\nR : Type u_1\ninst✝ : CommSemiring R\np : R[X]\nhp : p.Monic\nr : R\nq : R[X]\nh : p = C r * q\n⊢ IsUnit r"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι✝ : Sort w", "α : Type u_1", "β : Type u_2", "x✝ : X", "s s₁ s₂ t : Set X", "p p₁ p₂ : X → Prop", "inst✝ : TopologicalSpace X", "ι : Type u_3", "x : X", "F : Filter ι", "u : ι → X"], "goal": "MapClusterPt x F u ↔ ∃ U, ↑U ≤ F ∧ Tendsto u (↑U) (𝓝 x)"}], "premise": [11987, 14567, 14579, 16287, 16307, 16347], "state_str": "X : Type u\nY : Type v\nι✝ : Sort w\nα : Type u_1\nβ : Type u_2\nx✝ : X\ns s₁ s₂ t : Set X\np p₁ p₂ : X → Prop\ninst✝ : TopologicalSpace X\nι : Type u_3\nx : X\nF : Filter ι\nu : ι → X\n⊢ MapClusterPt x F u ↔ ∃ U, ↑U ≤ F ∧ Tendsto u (↑U) (𝓝 x)"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Lattice α", "inst✝ : IsModularLattice α", "x y z a b : α", "c : ↑(Ioo (a ⊓ b) a)"], "goal": "a ⊓ (↑c ⊔ b) = ↑c"}], "premise": [1674, 2106, 2107, 14526, 14537, 17614, 137122], "state_str": "α : Type u_1\ninst✝¹ : Lattice α\ninst✝ : IsModularLattice α\nx y z a b : α\nc : ↑(Ioo (a ⊓ b) a)\n⊢ a ⊓ (↑c ⊔ b) = ↑c"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Lattice α", "inst✝ : IsModularLattice α", "x y z a b : α", "c : ↑(Ioo b (a ⊔ b))"], "goal": "a ⊓ ↑c ⊔ b = ↑c"}], "premise": [1674, 2106, 2107, 14568, 14579, 17614, 137122], "state_str": "α : Type u_1\ninst✝¹ : Lattice α\ninst✝ : IsModularLattice α\nx y z a b : α\nc : ↑(Ioo b (a ⊔ b))\n⊢ a ⊓ ↑c ⊔ b = ↑c"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "hC : IsClosed C"], "goal": "⊤ ≤ Submodule.span ℤ (Set.range (eval C))"}], "premise": [63524], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\nhC : IsClosed C\n⊢ ⊤ ≤ Submodule.span ℤ (Set.range (eval C))"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "hC : IsClosed C", "f : LocallyConstant ↑C ℤ", "a✝ : f ∈ ⊤"], "goal": "f ∈ Submodule.span ℤ (Set.range (Products.eval C))"}], "premise": [63535], "state_str": "I : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\nhC : IsClosed C\nf : LocallyConstant ↑C ℤ\na✝ : f ∈ ⊤\n⊢ f ∈ Submodule.span ℤ (Set.range (Products.eval C))"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "hC : IsClosed C", "K : Finset I", "f' : LocallyConstant ↑(π C fun x => x ∈ K) ℤ", "a✝ : (πJ C K) f' ∈ ⊤"], "goal": "(πJ C K) f' ∈ Submodule.span ℤ (Set.range (Products.eval C))"}], "premise": [63534, 86685, 86766, 109891], "state_str": "case intro.intro\nI : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\nhC : IsClosed C\nK : Finset I\nf' : LocallyConstant ↑(π C fun x => x ∈ K) ℤ\na✝ : (πJ C K) f' ∈ ⊤\n⊢ (πJ C K) f' ∈ Submodule.span ℤ (Set.range (Products.eval C))"} +{"state": [{"context": ["I : Type u", "inst✝¹ : LinearOrder I", "inst✝ : IsWellOrder I fun x x_1 => x < x_1", "C : Set (I → Bool)", "hC : IsClosed C", "K : Finset I", "f' : LocallyConstant ↑(π C fun x => x ∈ K) ℤ", "a✝ : (πJ C K) f' ∈ ⊤", "m : { l // Products.isGood (π C fun x => x ∈ K) l }"], "goal": "(πJ C K) (eval (π C fun x => x ∈ K) m) ∈ Set.range (Products.eval C)"}], "premise": [63525, 137122], "state_str": "case intro.intro.intro.intro.intro\nI : Type u\ninst✝¹ : LinearOrder I\ninst✝ : IsWellOrder I fun x x_1 => x < x_1\nC : Set (I → Bool)\nhC : IsClosed C\nK : Finset I\nf' : LocallyConstant ↑(π C fun x => x ∈ K) ℤ\na✝ : (πJ C K) f' ∈ ⊤\nm : { l // Products.isGood (π C fun x => x ∈ K) l }\n⊢ (πJ C K) (eval (π C fun x => x ∈ K) m) ∈ Set.range (Products.eval C)"} +{"state": [{"context": ["R : Type u_1", "inst✝² : Semiring R", "S : Type u_2", "T : Type u_3", "inst✝¹ : Semiring S", "inst✝ : Semiring T", "f : R →+* S", "g : S →+* T", "n✝ : ℕ"], "goal": "(coeff S n✝) ((map f) X) = (coeff S n✝) X"}], "premise": [1911, 79109], "state_str": "case h\nR : Type u_1\ninst✝² : Semiring R\nS : Type u_2\nT : Type u_3\ninst✝¹ : Semiring S\ninst✝ : Semiring T\nf : R →+* S\ng : S →+* T\nn✝ : ℕ\n⊢ (coeff S n✝) ((map f) X) = (coeff S n✝) X"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "R : Type u_3", "R₂ : Type u_4", "K : Type u_5", "M : Type u_6", "M' : Type u_7", "M'' : Type u_8", "V : Type u", "V' : Type u_9", "inst✝⁴ : Semiring R", "inst✝³ : AddCommMonoid M", "inst✝² : Module R M", "inst✝¹ : AddCommMonoid M'", "inst✝ : Module R M'", "b b₁ : Basis ι R M", "i✝ : ι", "c : R", "x : M", "b' : Basis ι' R M'", "i j : ι"], "goal": "(b.repr ((b.prod b') (Sum.inl i)).1) j = (b.repr (b i)) j"}], "premise": [70734, 84887, 84888, 85279, 87275, 87279, 110523, 110526, 110551], "state_str": "case h\nι : Type u_1\nι' : Type u_2\nR : Type u_3\nR₂ : Type u_4\nK : Type u_5\nM : Type u_6\nM' : Type u_7\nM'' : Type u_8\nV : Type u\nV' : Type u_9\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni j : ι\n⊢ (b.repr ((b.prod b') (Sum.inl i)).1) j = (b.repr (b i)) j"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "R : Type u_3", "R₂ : Type u_4", "K : Type u_5", "M : Type u_6", "M' : Type u_7", "M'' : Type u_8", "V : Type u", "V' : Type u_9", "inst✝⁴ : Semiring R", "inst✝³ : AddCommMonoid M", "inst✝² : Module R M", "inst✝¹ : AddCommMonoid M'", "inst✝ : Module R M'", "b b₁ : Basis ι R M", "i✝ : ι", "c : R", "x : M", "b' : Basis ι' R M'", "i j : ι"], "goal": "(Finsupp.single (Sum.inl i) 1) (Sum.inl j) = (Finsupp.single i 1) j"}], "premise": [128541, 148083], "state_str": "case h\nι : Type u_1\nι' : Type u_2\nR : Type u_3\nR₂ : Type u_4\nK : Type u_5\nM : Type u_6\nM' : Type u_7\nM'' : Type u_8\nV : Type u\nV' : Type u_9\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni j : ι\n⊢ (Finsupp.single (Sum.inl i) 1) (Sum.inl j) = (Finsupp.single i 1) j"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s s₁ s₂ : Finset α", "a : α", "f✝ g : α → β", "inst✝¹ : CommMonoid β", "M : Type u_6", "inst✝ : CommGroup M", "f : ℕ → M", "n : ℕ"], "goal": "f n = ∏ i ∈ range (n + 1), if i = 0 then f 0 else f i / f (i - 1)"}], "premise": [127173], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nM : Type u_6\ninst✝ : CommGroup M\nf : ℕ → M\nn : ℕ\n⊢ f n = ∏ i ∈ range (n + 1), if i = 0 then f 0 else f i / f (i - 1)"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s s₁ s₂ : Finset α", "a : α", "f✝ g : α → β", "inst✝¹ : CommMonoid β", "M : Type u_6", "inst✝ : CommGroup M", "f : ℕ → M", "n : ℕ"], "goal": "f 0 * ∏ i ∈ range n, f (i + 1) / f i = ∏ i ∈ range (n + 1), if i = 0 then f 0 else f i / f (i - 1)"}], "premise": [119707, 127136], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nM : Type u_6\ninst✝ : CommGroup M\nf : ℕ → M\nn : ℕ\n⊢ f 0 * ∏ i ∈ range n, f (i + 1) / f i = ∏ i ∈ range (n + 1), if i = 0 then f 0 else f i / f (i - 1)"} +{"state": [{"context": ["𝕜 : Type u_1", "R : Type u_2", "V : Type u_3", "W : Type u_4", "W₂ : Type u_5", "P : Type u_6", "Q : Type u_7", "Q₂ : Type u_8", "inst✝¹⁶ : NormedAddCommGroup V", "inst✝¹⁵ : MetricSpace P", "inst✝¹⁴ : NormedAddTorsor V P", "inst✝¹³ : NormedAddCommGroup W", "inst✝¹² : MetricSpace Q", "inst✝¹¹ : NormedAddTorsor W Q", "inst✝¹⁰ : NormedAddCommGroup W₂", "inst✝⁹ : MetricSpace Q₂", "inst✝⁸ : NormedAddTorsor W₂ Q₂", "inst✝⁷ : NormedField R", "inst✝⁶ : NormedSpace R V", "inst✝⁵ : NormedSpace R W", "inst✝⁴ : NormedSpace R W₂", "inst✝³ : NontriviallyNormedField 𝕜", "inst✝² : NormedSpace 𝕜 V", "inst✝¹ : NormedSpace 𝕜 W", "inst✝ : NormedSpace 𝕜 W₂", "f : V →ᴬ[𝕜] W", "h : f 0 = 0"], "goal": "‖f‖ = max ‖f 0‖ ‖f.contLinear‖"}], "premise": [40832], "state_str": "𝕜 : Type u_1\nR : Type u_2\nV : Type u_3\nW : Type u_4\nW₂ : Type u_5\nP : Type u_6\nQ : Type u_7\nQ₂ : Type u_8\ninst✝¹⁶ : NormedAddCommGroup V\ninst✝¹⁵ : MetricSpace P\ninst✝¹⁴ : NormedAddTorsor V P\ninst✝¹³ : NormedAddCommGroup W\ninst✝¹² : MetricSpace Q\ninst✝¹¹ : NormedAddTorsor W Q\ninst✝¹⁰ : NormedAddCommGroup W₂\ninst✝⁹ : MetricSpace Q₂\ninst✝⁸ : NormedAddTorsor W₂ Q₂\ninst✝⁷ : NormedField R\ninst✝⁶ : NormedSpace R V\ninst✝⁵ : NormedSpace R W\ninst✝⁴ : NormedSpace R W₂\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 V\ninst✝¹ : NormedSpace 𝕜 W\ninst✝ : NormedSpace 𝕜 W₂\nf : V →ᴬ[𝕜] W\nh : f 0 = 0\n⊢ ‖f‖ = max ‖f 0‖ ‖f.contLinear‖"} +{"state": [{"context": ["𝕜 : Type u_1", "R : Type u_2", "V : Type u_3", "W : Type u_4", "W₂ : Type u_5", "P : Type u_6", "Q : Type u_7", "Q₂ : Type u_8", "inst✝¹⁶ : NormedAddCommGroup V", "inst✝¹⁵ : MetricSpace P", "inst✝¹⁴ : NormedAddTorsor V P", "inst✝¹³ : NormedAddCommGroup W", "inst✝¹² : MetricSpace Q", "inst✝¹¹ : NormedAddTorsor W Q", "inst✝¹⁰ : NormedAddCommGroup W₂", "inst✝⁹ : MetricSpace Q₂", "inst✝⁸ : NormedAddTorsor W₂ Q₂", "inst✝⁷ : NormedField R", "inst✝⁶ : NormedSpace R V", "inst✝⁵ : NormedSpace R W", "inst✝⁴ : NormedSpace R W₂", "inst✝³ : NontriviallyNormedField 𝕜", "inst✝² : NormedSpace 𝕜 V", "inst✝¹ : NormedSpace 𝕜 W", "inst✝ : NormedSpace 𝕜 W₂", "f : V →ᴬ[𝕜] W", "h : f 0 = 0"], "goal": "max ‖f 0‖ ‖f.contLinear‖ = max 0 ‖f.contLinear‖"}], "premise": [42684], "state_str": "𝕜 : Type u_1\nR : Type u_2\nV : Type u_3\nW : Type u_4\nW₂ : Type u_5\nP : Type u_6\nQ : Type u_7\nQ₂ : Type u_8\ninst✝¹⁶ : NormedAddCommGroup V\ninst✝¹⁵ : MetricSpace P\ninst✝¹⁴ : NormedAddTorsor V P\ninst✝¹³ : NormedAddCommGroup W\ninst✝¹² : MetricSpace Q\ninst✝¹¹ : NormedAddTorsor W Q\ninst✝¹⁰ : NormedAddCommGroup W₂\ninst✝⁹ : MetricSpace Q₂\ninst✝⁸ : NormedAddTorsor W₂ Q₂\ninst✝⁷ : NormedField R\ninst✝⁶ : NormedSpace R V\ninst✝⁵ : NormedSpace R W\ninst✝⁴ : NormedSpace R W₂\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 V\ninst✝¹ : NormedSpace 𝕜 W\ninst✝ : NormedSpace 𝕜 W₂\nf : V →ᴬ[𝕜] W\nh : f 0 = 0\n⊢ max ‖f 0‖ ‖f.contLinear‖ = max 0 ‖f.contLinear‖"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι : Sort w", "α : Type u_1", "β : Type u_2", "x✝ : X", "s s₁ s₂ t✝ : Set X", "p p₁ p₂ : X → Prop", "inst✝ : TopologicalSpace X", "x : X", "t : Set X"], "goal": "(∃ x_1, (x ∈ x_1ᶜ ∧ IsOpen x_1ᶜ) ∧ x_1ᶜ ⊆ t) ↔ ∃ i, (x ∉ i ∧ IsClosed i) ∧ iᶜ ⊆ t"}], "premise": [55361, 131587], "state_str": "X : Type u\nY : Type v\nι : Sort w\nα : Type u_1\nβ : Type u_2\nx✝ : X\ns s₁ s₂ t✝ : Set X\np p₁ p₂ : X → Prop\ninst✝ : TopologicalSpace X\nx : X\nt : Set X\n⊢ (∃ x_1, (x ∈ x_1ᶜ ∧ IsOpen x_1ᶜ) ∧ x_1ᶜ ⊆ t) ↔ ∃ i, (x ∉ i ∧ IsClosed i) ∧ iᶜ ⊆ t"} +{"state": [{"context": ["R : Type u", "L : Type v", "M : Type w", "N : Type w₁", "inst✝¹⁰ : CommRing R", "inst✝⁹ : LieRing L", "inst✝⁸ : LieAlgebra R L", "inst✝⁷ : AddCommGroup M", "inst✝⁶ : Module R M", "inst✝⁵ : LieRingModule L M", "inst✝⁴ : LieModule R L M", "inst✝³ : AddCommGroup N", "inst✝² : Module R N", "inst✝¹ : LieRingModule L N", "inst✝ : LieModule R L N", "f : M →ₗ⁅R,L⁆ N", "m : M", "hm : m ∈ ↑f.ker"], "goal": "(f.comp f.ker.incl) ⟨m, hm⟩ = 0 ⟨m, hm⟩"}], "premise": [1673, 109414], "state_str": "case h.mk\nR : Type u\nL : Type v\nM : Type w\nN : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup N\ninst✝² : Module R N\ninst✝¹ : LieRingModule L N\ninst✝ : LieModule R L N\nf : M →ₗ⁅R,L⁆ N\nm : M\nhm : m ∈ ↑f.ker\n⊢ (f.comp f.ker.incl) ⟨m, hm⟩ = 0 ⟨m, hm⟩"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "Z : Type u_3", "inst✝⁴ : TopologicalSpace X", "inst✝³ : TopologicalSpace Y", "inst✝² : TopologicalSpace Z", "X' : Type u_4", "Y' : Type u_5", "inst✝¹ : TopologicalSpace X'", "inst✝ : TopologicalSpace Y'", "h : X ≃ₜ Y", "s : Set X"], "goal": "⇑h '' frontier s = frontier (⇑h '' s)"}], "premise": [65591, 65632], "state_str": "X : Type u_1\nY : Type u_2\nZ : Type u_3\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace Y\ninst✝² : TopologicalSpace Z\nX' : Type u_4\nY' : Type u_5\ninst✝¹ : TopologicalSpace X'\ninst✝ : TopologicalSpace Y'\nh : X ≃ₜ Y\ns : Set X\n⊢ ⇑h '' frontier s = frontier (⇑h '' s)"} +{"state": [{"context": ["R : Type u", "a b : R", "m n✝ : ℕ", "inst✝ : Semiring R", "p q : R[X]", "n : ℕ", "c : R"], "goal": "(C c * X ^ n).support ⊆ {n}"}], "premise": [101287, 101306], "state_str": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nc : R\n⊢ (C c * X ^ n).support ⊆ {n}"} +{"state": [{"context": ["x y : ℝ", "h : 0 ≤ x"], "goal": "√x = 0 ↔ x = 0"}], "premise": [14272, 146026], "state_str": "x y : ℝ\nh : 0 ≤ x\n⊢ √x = 0 ↔ x = 0"} +{"state": [{"context": ["f g : ℝ → ℝ", "f' g' x y p : ℝ", "s : Set ℝ", "hf : HasDerivAt f f' x", "hx : f x ≠ 0 ∨ 1 ≤ p"], "goal": "HasDerivAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) x"}], "premise": [44368], "state_str": "f g : ℝ → ℝ\nf' g' x y p : ℝ\ns : Set ℝ\nhf : HasDerivAt f f' x\nhx : f x ≠ 0 ∨ 1 ≤ p\n⊢ HasDerivAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) x"} +{"state": [{"context": ["f g : ℝ → ℝ", "f' g' x y p : ℝ", "s : Set ℝ", "hf : HasDerivWithinAt f f' Set.univ x", "hx : f x ≠ 0 ∨ 1 ≤ p"], "goal": "HasDerivWithinAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) Set.univ x"}], "premise": [40497], "state_str": "f g : ℝ → ℝ\nf' g' x y p : ℝ\ns : Set ℝ\nhf : HasDerivWithinAt f f' Set.univ x\nhx : f x ≠ 0 ∨ 1 ≤ p\n⊢ HasDerivWithinAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) Set.univ x"} +{"state": [{"context": ["k : Type u", "inst✝ : Field k", "z : AdjoinMonic k"], "goal": "IsIntegral k z"}], "premise": [80150], "state_str": "k : Type u\ninst✝ : Field k\nz : AdjoinMonic k\n⊢ IsIntegral k z"} +{"state": [{"context": ["k : Type u", "inst✝ : Field k", "z : AdjoinMonic k", "p : MvPolynomial (MonicIrreducible k) k", "hp : (Ideal.Quotient.mk (maxIdeal k)) p = z"], "goal": "IsIntegral k ((Ideal.Quotient.mk (maxIdeal k)) p)"}], "premise": [2107, 2115, 80142, 80352, 80555, 80744, 80750, 87518, 87519, 102959, 112219], "state_str": "k : Type u\ninst✝ : Field k\nz : AdjoinMonic k\np : MvPolynomial (MonicIrreducible k) k\nhp : (Ideal.Quotient.mk (maxIdeal k)) p = z\n⊢ IsIntegral k ((Ideal.Quotient.mk (maxIdeal k)) p)"} +{"state": [{"context": ["R : Type r", "S : Type s", "inst✝¹⁰ : CommRing R", "inst✝⁹ : CommRing S", "W : WeierstrassCurve R", "inst✝⁸ : Algebra R S", "A : Type u", "inst✝⁷ : CommRing A", "inst✝⁶ : Algebra R A", "inst✝⁵ : Algebra S A", "inst✝⁴ : IsScalarTower R S A", "B : Type v", "inst✝³ : CommRing B", "inst✝² : Algebra R B", "inst✝¹ : Algebra S B", "inst✝ : IsScalarTower R S B", "f : A →ₐ[S] B", "n : ℤ"], "goal": "(W.baseChange B).preΨ n = Polynomial.map (↑f) ((W.baseChange A).preΨ n)"}], "premise": [128711, 129507], "state_str": "R : Type r\nS : Type s\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\nW : WeierstrassCurve R\ninst✝⁸ : Algebra R S\nA : Type u\ninst✝⁷ : CommRing A\ninst✝⁶ : Algebra R A\ninst✝⁵ : Algebra S A\ninst✝⁴ : IsScalarTower R S A\nB : Type v\ninst✝³ : CommRing B\ninst✝² : Algebra R B\ninst✝¹ : Algebra S B\ninst✝ : IsScalarTower R S B\nf : A →ₐ[S] B\nn : ℤ\n⊢ (W.baseChange B).preΨ n = Polynomial.map (↑f) ((W.baseChange A).preΨ n)"} +{"state": [{"context": ["C : Type u₁", "inst✝³ : Category.{u₂, u₁} C", "inst✝² : GaloisCategory C", "F : C ⥤ FintypeCat", "inst✝¹ : FiberFunctor F", "x : AutGalois F", "A : C", "inst✝ : IsGalois A", "a : ↑(F.obj A)"], "goal": "((autMulEquivAutGalois F).symm { unop' := x }).hom.app A a = F.map ((AutGalois.π F { obj := A, pt := a, isGalois := ⋯ }) x).hom a"}], "premise": [96445, 119894], "state_str": "C : Type u₁\ninst✝³ : Category.{u₂, u₁} C\ninst✝² : GaloisCategory C\nF : C ⥤ FintypeCat\ninst✝¹ : FiberFunctor F\nx : AutGalois F\nA : C\ninst✝ : IsGalois A\na : ↑(F.obj A)\n⊢ ((autMulEquivAutGalois F).symm { unop' := x }).hom.app A a =\n F.map ((AutGalois.π F { obj := A, pt := a, isGalois := ⋯ }) x).hom a"} +{"state": [{"context": ["z w : ℂ"], "goal": "(abs z * w) = (abs z) * abs w"}], "premise": [146035, 148371, 148376], "state_str": "z w : ℂ\n⊢ (abs z * w) = (abs z) * abs w"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝² : RCLike 𝕜", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f : E →ₗ[𝕜] E", "hf : LipschitzWith 1 ⇑f", "g : E →L[𝕜] ↥(eqLocus f 1)", "hg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x", "hg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))", "x : E"], "goal": "Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 ↑(g x))"}], "premise": [2115], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝² : RCLike 𝕜\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : E →ₗ[𝕜] E\nhf : LipschitzWith 1 ⇑f\ng : E →L[𝕜] ↥(eqLocus f 1)\nhg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x\nhg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))\nx : E\n⊢ Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 ↑(g x))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝² : RCLike 𝕜", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f : E →ₗ[𝕜] E", "hf : LipschitzWith 1 ⇑f", "g : E →L[𝕜] ↥(eqLocus f 1)", "hg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x", "hg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))", "y : E", "hy : g y = 0", "z : E", "hz : IsFixedPt (⇑f) z", "this : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}"], "goal": "Tendsto (fun x => birkhoffAverage 𝕜 (⇑f) _root_.id x y) atTop (𝓝 0)"}], "premise": [1674, 55412, 134168], "state_str": "case intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : RCLike 𝕜\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : E →ₗ[𝕜] E\nhf : LipschitzWith 1 ⇑f\ng : E →L[𝕜] ↥(eqLocus f 1)\nhg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x\nhg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))\ny : E\nhy : g y = 0\nz : E\nhz : IsFixedPt (⇑f) z\nthis : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}\n⊢ Tendsto (fun x => birkhoffAverage 𝕜 (⇑f) _root_.id x y) atTop (𝓝 0)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝² : RCLike 𝕜", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f : E →ₗ[𝕜] E", "hf : LipschitzWith 1 ⇑f", "g : E →L[𝕜] ↥(eqLocus f 1)", "hg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x", "hg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))", "y : E", "hy : g y = 0", "z : E", "hz : IsFixedPt (⇑f) z", "this✝ : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}", "x : E", "this : Bornology.IsBounded (Set.range fun x_1 => _root_.id ((⇑f)^[x_1] x))"], "goal": "(f - 1) x ∈ {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}"}], "premise": [115674], "state_str": "case intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : RCLike 𝕜\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : E →ₗ[𝕜] E\nhf : LipschitzWith 1 ⇑f\ng : E →L[𝕜] ↥(eqLocus f 1)\nhg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x\nhg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))\ny : E\nhy : g y = 0\nz : E\nhz : IsFixedPt (⇑f) z\nthis✝ : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}\nx : E\nthis : Bornology.IsBounded (Set.range fun x_1 => _root_.id ((⇑f)^[x_1] x))\n⊢ (f - 1) x ∈ {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝² : RCLike 𝕜", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f : E →ₗ[𝕜] E", "hf : LipschitzWith 1 ⇑f", "g : E →L[𝕜] ↥(eqLocus f 1)", "hg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x", "hg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))", "y : E", "hy : g y = 0", "z : E", "hz : IsFixedPt (⇑f) z", "this✝ : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}", "x : E", "this : Bornology.IsBounded (Set.range fun x_1 => _root_.id ((⇑f)^[x_1] x))", "H : ∀ (n : ℕ) (x y : E), (⇑f)^[n] (x - y) = (⇑f)^[n] x - (⇑f)^[n] y"], "goal": "(f - 1) x ∈ {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}"}], "premise": [88406, 108341, 127255], "state_str": "case intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : RCLike 𝕜\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : E →ₗ[𝕜] E\nhf : LipschitzWith 1 ⇑f\ng : E →L[𝕜] ↥(eqLocus f 1)\nhg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x\nhg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1))\ny : E\nhy : g y = 0\nz : E\nhz : IsFixedPt (⇑f) z\nthis✝ : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}\nx : E\nthis : Bornology.IsBounded (Set.range fun x_1 => _root_.id ((⇑f)^[x_1] x))\nH : ∀ (n : ℕ) (x y : E), (⇑f)^[n] (x - y) = (⇑f)^[n] x - (⇑f)^[n] y\n⊢ (f - 1) x ∈ {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Finite α", "p q : α → Prop", "inst✝¹ : DecidablePred p", "inst✝ : DecidablePred q", "e : { x // p x } ≃ { x // q x }", "x : α", "hx : p x"], "goal": "(e.subtypeCongr e.toCompl) x = ↑(e ⟨x, hx⟩)"}], "premise": [70750, 71740], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Finite α\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\ne : { x // p x } ≃ { x // q x }\nx : α\nhx : p x\n⊢ (e.subtypeCongr e.toCompl) x = ↑(e ⟨x, hx⟩)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : Finite α", "p q : α → Prop", "inst✝¹ : DecidablePred p", "inst✝ : DecidablePred q", "e : { x // p x } ≃ { x // q x }", "x : α", "hx : p x"], "goal": "(sumCompl q) (Sum.map (⇑e) (⇑e.toCompl) ((sumCompl p).symm x)) = ↑(e ⟨x, hx⟩)"}], "premise": [138, 71772, 71774], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : Finite α\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\ne : { x // p x } ≃ { x // q x }\nx : α\nhx : p x\n⊢ (sumCompl q) (Sum.map (⇑e) (⇑e.toCompl) ((sumCompl p).symm x)) = ↑(e ⟨x, hx⟩)"} +{"state": [{"context": ["M : Type u_1", "inst✝² : CommMonoid M", "S : Submonoid M", "N : Type u_2", "inst✝¹ : CommMonoid N", "P : Type u_3", "inst✝ : CommMonoid P", "f : S.LocalizationMap N", "g : M →* P", "hg : ∀ (y : ↥S), IsUnit (g ↑y)", "j : N →* P", "x✝ : N"], "goal": "(f.lift ⋯) x✝ = j x✝"}], "premise": [9211], "state_str": "case h\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type u_3\ninst✝ : CommMonoid P\nf : S.LocalizationMap N\ng : M →* P\nhg : ∀ (y : ↥S), IsUnit (g ↑y)\nj : N →* P\nx✝ : N\n⊢ (f.lift ⋯) x✝ = j x✝"} +{"state": [{"context": ["M : Type u_1", "inst✝² : CommMonoid M", "S : Submonoid M", "N : Type u_2", "inst✝¹ : CommMonoid N", "P : Type u_3", "inst✝ : CommMonoid P", "f : S.LocalizationMap N", "g : M →* P", "hg : ∀ (y : ↥S), IsUnit (g ↑y)", "j : N →* P", "x✝ : N"], "goal": "j (f.toMap (f.sec x✝).1) = j (f.toMap ↑(f.sec x✝).2) * j x✝"}], "premise": [9134, 117166], "state_str": "case h\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type u_3\ninst✝ : CommMonoid P\nf : S.LocalizationMap N\ng : M →* P\nhg : ∀ (y : ↥S), IsUnit (g ↑y)\nj : N →* P\nx✝ : N\n⊢ j (f.toMap (f.sec x✝).1) = j (f.toMap ↑(f.sec x✝).2) * j x✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : CommMonoid β", "n : ℕ", "f : Fin n → β"], "goal": "(List.ofFn f).prod = ∏ i : Fin n, f i"}], "premise": [126882], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : CommMonoid β\nn : ℕ\nf : Fin n → β\n⊢ (List.ofFn f).prod = ∏ i : Fin n, f i"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁴ : NormedAddCommGroup E", "inst✝¹³ : NormedAddCommGroup E'", "inst✝¹² : NormedAddCommGroup E''", "inst✝¹¹ : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹⁰ : NontriviallyNormedField 𝕜", "inst✝⁹ : NormedSpace 𝕜 E", "inst✝⁸ : NormedSpace 𝕜 E'", "inst✝⁷ : NormedSpace 𝕜 E''", "inst✝⁶ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁵ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁴ : AddCommGroup G", "inst✝³ : MeasurableNeg G", "inst✝² : μ.IsAddLeftInvariant", "inst✝¹ : MeasurableAdd G", "inst✝ : μ.IsNegInvariant"], "goal": "ConvolutionExistsAt g f x L.flip μ ↔ ConvolutionExistsAt f g x L μ"}], "premise": [30929, 41389, 118068], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁴ : NormedAddCommGroup E\ninst✝¹³ : NormedAddCommGroup E'\ninst✝¹² : NormedAddCommGroup E''\ninst✝¹¹ : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹⁰ : NontriviallyNormedField 𝕜\ninst✝⁹ : NormedSpace 𝕜 E\ninst✝⁸ : NormedSpace 𝕜 E'\ninst✝⁷ : NormedSpace 𝕜 E''\ninst✝⁶ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁵ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁴ : AddCommGroup G\ninst✝³ : MeasurableNeg G\ninst✝² : μ.IsAddLeftInvariant\ninst✝¹ : MeasurableAdd G\ninst✝ : μ.IsNegInvariant\n⊢ ConvolutionExistsAt g f x L.flip μ ↔ ConvolutionExistsAt f g x L μ"} +{"state": [{"context": ["α : Type u", "a : α", "inst✝¹ : Group α", "G : Type u_1", "inst✝ : Group G", "x✝ : Fintype G", "p : ℕ", "hp : Fact (Nat.Prime p)", "h : Fintype.card G = p", "g g' : G", "hg : g ≠ 1"], "goal": "g' ∈ zpowers g"}], "premise": [7941, 122655], "state_str": "α : Type u\na : α\ninst✝¹ : Group α\nG : Type u_1\ninst✝ : Group G\nx✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nh : Fintype.card G = p\ng g' : G\nhg : g ≠ 1\n⊢ g' ∈ zpowers g"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁷ : _root_.RCLike 𝕜", "inst✝⁶ : NormedAddCommGroup E", "inst✝⁵ : InnerProductSpace 𝕜 E", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace ℝ F", "inst✝² : NormedSpace ℝ E", "G : Type u_4", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace ℝ G", "f g : G → E", "f' g' : G →L[ℝ] E", "s : Set G", "x✝ : G", "n : ℕ∞", "x : E", "hx : x ≠ 0"], "goal": "ContDiffAt ℝ n Norm.norm x"}], "premise": [1674, 11234, 42922, 108284], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁷ : _root_.RCLike 𝕜\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : NormedSpace ℝ E\nG : Type u_4\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace ℝ G\nf g : G → E\nf' g' : G →L[ℝ] E\ns : Set G\nx✝ : G\nn : ℕ∞\nx : E\nhx : x ≠ 0\n⊢ ContDiffAt ℝ n Norm.norm x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "inst✝⁷ : _root_.RCLike 𝕜", "inst✝⁶ : NormedAddCommGroup E", "inst✝⁵ : InnerProductSpace 𝕜 E", "inst✝⁴ : NormedAddCommGroup F", "inst✝³ : InnerProductSpace ℝ F", "inst✝² : NormedSpace ℝ E", "G : Type u_4", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace ℝ G", "f g : G → E", "f' g' : G →L[ℝ] E", "s : Set G", "x✝ : G", "n : ℕ∞", "x : E", "hx : x ≠ 0", "this : ‖id x‖ ^ 2 ≠ 0"], "goal": "ContDiffAt ℝ n Norm.norm x"}], "premise": [34289, 39254, 42680, 51554, 146005], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁷ : _root_.RCLike 𝕜\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : NormedSpace ℝ E\nG : Type u_4\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace ℝ G\nf g : G → E\nf' g' : G →L[ℝ] E\ns : Set G\nx✝ : G\nn : ℕ∞\nx : E\nhx : x ≠ 0\nthis : ‖id x‖ ^ 2 ≠ 0\n⊢ ContDiffAt ℝ n Norm.norm x"} +{"state": [{"context": ["X : Type u", "Y : Type v", "inst✝⁵ : MetricSpace X", "inst✝⁴ : CompactSpace X", "inst✝³ : Nonempty X", "inst✝² : MetricSpace Y", "inst✝¹ : CompactSpace Y", "inst✝ : Nonempty Y"], "goal": "GromovHausdorff.optimalGHDist X Y ∈ GromovHausdorff.candidatesB X Y"}], "premise": [1084, 62416], "state_str": "X : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\n⊢ GromovHausdorff.optimalGHDist X Y ∈ GromovHausdorff.candidatesB X Y"} +{"state": [{"context": ["V : Type u_1", "inst✝² : Fintype V", "inst✝¹ : DecidableEq V", "G : SimpleGraph V", "inst✝ : DecidableRel G.Adj", "n r : ℕ", "s t u : V", "h : G.IsTuranMaximal r"], "goal": "∀ {x y : V}, ¬G.Adj x y → ¬G.Adj y x"}], "premise": [50396], "state_str": "V : Type u_1\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn r : ℕ\ns t u : V\nh : G.IsTuranMaximal r\n⊢ ∀ {x y : V}, ¬G.Adj x y → ¬G.Adj y x"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜"], "goal": "(IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|) ↔ P.degree ≤ 0"}], "premise": [1674, 2009, 14277, 16021, 16164, 20067, 102185, 102867], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\n⊢ (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|) ↔ P.degree ≤ 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "h : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|"], "goal": "P.degree ≤ 0"}], "premise": [53688], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nh : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|\n⊢ P.degree ≤ 0"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹ : NormedLinearOrderedField 𝕜", "P Q : 𝕜[X]", "inst✝ : OrderTopology 𝕜", "h : 0 < P.degree"], "goal": "¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|"}], "premise": [14714, 39222], "state_str": "𝕜 : Type u_1\ninst✝¹ : NormedLinearOrderedField 𝕜\nP Q : 𝕜[X]\ninst✝ : OrderTopology 𝕜\nh : 0 < P.degree\n⊢ ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α✝", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace γ", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α✝", "s✝ s' t : Set α✝", "f : α✝ → β", "G : Type u_8", "α : Type u_9", "inst✝² : Group G", "inst✝¹ : MulAction G α", "inst✝ : MeasurableSpace α", "μ : Measure α", "s : Set α", "h_ae_disjoint : ∀ (g : G), g ≠ 1 → AEDisjoint μ (g • s) s", "h_qmp : ∀ (g : G), QuasiMeasurePreserving (fun x => g • x) μ μ", "g₁ g₂ : G", "hg : g₁ ≠ g₂", "g : G := g₂⁻¹ * g₁"], "goal": "(AEDisjoint μ on fun g => g • s) g₁ g₂"}], "premise": [1690, 117971], "state_str": "α✝ : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α✝\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α✝\ns✝ s' t : Set α✝\nf : α✝ → β\nG : Type u_8\nα : Type u_9\ninst✝² : Group G\ninst✝¹ : MulAction G α\ninst✝ : MeasurableSpace α\nμ : Measure α\ns : Set α\nh_ae_disjoint : ∀ (g : G), g ≠ 1 → AEDisjoint μ (g • s) s\nh_qmp : ∀ (g : G), QuasiMeasurePreserving (fun x => g • x) μ μ\ng₁ g₂ : G\nhg : g₁ ≠ g₂\ng : G := g₂⁻¹ * g₁\n⊢ (AEDisjoint μ on fun g => g • s) g₁ g₂"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m0 : MeasurableSpace α✝", "inst✝⁴ : MeasurableSpace β", "inst✝³ : MeasurableSpace γ", "μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α✝", "s✝ s' t : Set α✝", "f : α✝ → β", "G : Type u_8", "α : Type u_9", "inst✝² : Group G", "inst✝¹ : MulAction G α", "inst✝ : MeasurableSpace α", "μ : Measure α", "s : Set α", "h_ae_disjoint : ∀ (g : G), g ≠ 1 → AEDisjoint μ (g • s) s", "h_qmp : ∀ (g : G), QuasiMeasurePreserving (fun x => g • x) μ μ", "g₁ g₂ : G", "g : G := g₂⁻¹ * g₁", "hg : g ≠ 1", "this : (fun x => g₂⁻¹ • x) ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s"], "goal": "μ (g₁ • s ∩ g₂ • s) = 0"}], "premise": [31593], "state_str": "α✝ : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm0 : MeasurableSpace α✝\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α✝\ns✝ s' t : Set α✝\nf : α✝ → β\nG : Type u_8\nα : Type u_9\ninst✝² : Group G\ninst✝¹ : MulAction G α\ninst✝ : MeasurableSpace α\nμ : Measure α\ns : Set α\nh_ae_disjoint : ∀ (g : G), g ≠ 1 → AEDisjoint μ (g • s) s\nh_qmp : ∀ (g : G), QuasiMeasurePreserving (fun x => g • x) μ μ\ng₁ g₂ : G\ng : G := g₂⁻¹ * g₁\nhg : g ≠ 1\nthis : (fun x => g₂⁻¹ • x) ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s\n⊢ μ (g₁ • s ∩ g₂ • s) = 0"} +{"state": [{"context": ["α : Type u_1", "m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SFinite μ", "f : α → ℝ≥0∞", "s : Set α"], "goal": "(μ.withDensity f) s = ∫⁻ (a : α) in s, f a ∂μ"}], "premise": [14296, 31315], "state_str": "α : Type u_1\nm0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SFinite μ\nf : α → ℝ≥0∞\ns : Set α\n⊢ (μ.withDensity f) s = ∫⁻ (a : α) in s, f a ∂μ"} +{"state": [{"context": ["α : Type u_1", "m0 : MeasurableSpace α", "μ : Measure α", "inst✝ : SFinite μ", "f : α → ℝ≥0∞", "s : Set α", "t : Set α := toMeasurable μ s"], "goal": "(μ.withDensity f) s ≤ ∫⁻ (a : α) in s, f a ∂μ"}], "premise": [27559, 29102, 29104, 31314, 31819], "state_str": "α : Type u_1\nm0 : MeasurableSpace α\nμ : Measure α\ninst✝ : SFinite μ\nf : α → ℝ≥0∞\ns : Set α\nt : Set α := toMeasurable μ s\n⊢ (μ.withDensity f) s ≤ ∫⁻ (a : α) in s, f a ∂μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f g : α → ℝ≥0∞", "hg : AEMeasurable g μ", "hg_fin : ∫⁻ (a : α), g a ∂μ ≠ ⊤", "h_le : g ≤ᶠ[ae μ] f"], "goal": "∫⁻ (a : α), f a - g a ∂μ = ∫⁻ (a : α), f a ∂μ - ∫⁻ (a : α), g a ∂μ"}], "premise": [143547], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhg : AEMeasurable g μ\nhg_fin : ∫⁻ (a : α), g a ∂μ ≠ ⊤\nh_le : g ≤ᶠ[ae μ] f\n⊢ ∫⁻ (a : α), f a - g a ∂μ = ∫⁻ (a : α), f a ∂μ - ∫⁻ (a : α), g a ∂μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f g : α → ℝ≥0∞", "hg : AEMeasurable g μ", "hg_fin : ∫⁻ (a : α), g a ∂μ ≠ ⊤", "h_le : g ≤ᶠ[ae μ] f"], "goal": "∫⁻ (a : α), f a - g a ∂μ + ∫⁻ (a : α), g a ∂μ = ∫⁻ (a : α), f a ∂μ"}], "premise": [30277], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhg : AEMeasurable g μ\nhg_fin : ∫⁻ (a : α), g a ∂μ ≠ ⊤\nh_le : g ≤ᶠ[ae μ] f\n⊢ ∫⁻ (a : α), f a - g a ∂μ + ∫⁻ (a : α), g a ∂μ = ∫⁻ (a : α), f a ∂μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "f g : α → ℝ≥0∞", "hg : AEMeasurable g μ", "hg_fin : ∫⁻ (a : α), g a ∂μ ≠ ⊤", "h_le : g ≤ᶠ[ae μ] f"], "goal": "∫⁻ (a : α), f a - g a + g a ∂μ = ∫⁻ (a : α), f a ∂μ"}], "premise": [16027, 30260, 103586], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhg : AEMeasurable g μ\nhg_fin : ∫⁻ (a : α), g a ∂μ ≠ ⊤\nh_le : g ≤ᶠ[ae μ] f\n⊢ ∫⁻ (a : α), f a - g a + g a ∂μ = ∫⁻ (a : α), f a ∂μ"} +{"state": [{"context": ["a b c d m n k : ℕ", "p q : ℕ → Prop"], "goal": "m ^ 2 < n → n < (m + 1) ^ 2 → ¬∃ t, t ^ 2 = n"}], "premise": [4706, 145310], "state_str": "a b c d m n k : ℕ\np q : ℕ → Prop\n⊢ m ^ 2 < n → n < (m + 1) ^ 2 → ¬∃ t, t ^ 2 = n"} +{"state": [{"context": ["ι : Type u", "E : Type v", "F : Type w", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "I J : Box ι", "π✝ : TaggedPrepartition I", "f : (ι → ℝ) → E", "vol : ι →ᵇᵃ[⊤] E →L[ℝ] F", "π : Prepartition I", "πi : (J : Box ι) → TaggedPrepartition J"], "goal": "integralSum f vol (π.biUnionTagged πi) = ∑ J ∈ π.boxes, integralSum f vol (πi J)"}], "premise": [2101, 34209, 126920], "state_str": "ι : Type u\nE : Type v\nF : Type w\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nI J : Box ι\nπ✝ : TaggedPrepartition I\nf : (ι → ℝ) → E\nvol : ι →ᵇᵃ[⊤] E →L[ℝ] F\nπ : Prepartition I\nπi : (J : Box ι) → TaggedPrepartition J\n⊢ integralSum f vol (π.biUnionTagged πi) = ∑ J ∈ π.boxes, integralSum f vol (πi J)"} +{"state": [{"context": ["ι : Type u", "E : Type v", "F : Type w", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedSpace ℝ E", "inst✝¹ : NormedAddCommGroup F", "inst✝ : NormedSpace ℝ F", "I J✝ : Box ι", "π✝ : TaggedPrepartition I", "f : (ι → ℝ) → E", "vol : ι →ᵇᵃ[⊤] E →L[ℝ] F", "π : Prepartition I", "πi : (J : Box ι) → TaggedPrepartition J", "J : Box ι", "hJ : J ∈ π.boxes", "J' : Box ι", "hJ' : J' ∈ (πi J).boxes"], "goal": "(vol J') (f ((π.biUnionTagged πi).tag J')) = (vol J') (f ((πi J).tag J'))"}], "premise": [33782], "state_str": "ι : Type u\nE : Type v\nF : Type w\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nI J✝ : Box ι\nπ✝ : TaggedPrepartition I\nf : (ι → ℝ) → E\nvol : ι →ᵇᵃ[⊤] E →L[ℝ] F\nπ : Prepartition I\nπi : (J : Box ι) → TaggedPrepartition J\nJ : Box ι\nhJ : J ∈ π.boxes\nJ' : Box ι\nhJ' : J' ∈ (πi J).boxes\n⊢ (vol J') (f ((π.biUnionTagged πi).tag J')) = (vol J') (f ((πi J).tag J'))"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "G : Type u_4", "M : Type u_5", "N : Type u_6", "inst✝¹ : CommMonoid M", "inst✝ : CommMonoid N", "f✝ g : α → M", "a b : α", "s✝ t : Set α", "s : Finset (α × β)", "f : α × β → M"], "goal": "∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b)"}], "premise": [125781], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nG : Type u_4\nM : Type u_5\nN : Type u_6\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf✝ g : α → M\na b : α\ns✝ t : Set α\ns : Finset (α × β)\nf : α × β → M\n⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b)"} +{"state": [{"context": ["a b c : Ordinal.{u_1}", "hb : 0 < b", "h : ∀ d < b, a + d < c"], "goal": "a + b ≤ c"}], "premise": [52303, 119729], "state_str": "a b c : Ordinal.{u_1}\nhb : 0 < b\nh : ∀ d < b, a + d < c\n⊢ a + b ≤ c"} +{"state": [{"context": ["a b c : Ordinal.{u_1}", "hb : 0 < b", "h : ∀ d < b, a + d < c", "H : a + (c - a) = c"], "goal": "a + b ≤ a + (c - a)"}], "premise": [103882], "state_str": "a b c : Ordinal.{u_1}\nhb : 0 < b\nh : ∀ d < b, a + d < c\nH : a + (c - a) = c\n⊢ a + b ≤ a + (c - a)"} +{"state": [{"context": ["a b c : Ordinal.{u_1}", "hb : 0 < b", "h : ∀ d < b, a + d < c", "H : a + (c - a) = c"], "goal": "b ≤ c - a"}], "premise": [1734], "state_str": "a b c : Ordinal.{u_1}\nhb : 0 < b\nh : ∀ d < b, a + d < c\nH : a + (c - a) = c\n⊢ b ≤ c - a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : Encodable β", "f : β → Set α", "hd : Pairwise (Disjoint on f)", "i j : ℕ", "ij : i ≠ j"], "goal": "(Disjoint on fun i => ⋃ b ∈ decode₂ β i, f b) i j"}], "premise": [1674, 133567], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : Encodable β\nf : β → Set α\nhd : Pairwise (Disjoint on f)\ni j : ℕ\nij : i ≠ j\n⊢ (Disjoint on fun i => ⋃ b ∈ decode₂ β i, f b) i j"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : Encodable β", "f : β → Set α", "hd : Pairwise (Disjoint on f)", "i j : ℕ", "ij : i ≠ j", "x : α"], "goal": "x ∈ (fun i => ⋃ b ∈ decode₂ β i, f b) i → x ∉ (fun i => ⋃ b ∈ decode₂ β i, f b) j"}], "premise": [72029], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : Encodable β\nf : β → Set α\nhd : Pairwise (Disjoint on f)\ni j : ℕ\nij : i ≠ j\nx : α\n⊢ x ∈ (fun i => ⋃ b ∈ decode₂ β i, f b) i → x ∉ (fun i => ⋃ b ∈ decode₂ β i, f b) j"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : Encodable β", "f : β → Set α", "hd : Pairwise (Disjoint on f)", "x : α", "a : β", "ha : x ∈ f a", "b : β", "ij : encode a ≠ encode b", "hb : x ∈ f b"], "goal": "False"}], "premise": [1681, 13484], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : Encodable β\nf : β → Set α\nhd : Pairwise (Disjoint on f)\nx : α\na : β\nha : x ∈ f a\nb : β\nij : encode a ≠ encode b\nhb : x ∈ f b\n⊢ False"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝¹ : MeasurableSpace α✝", "α : Type u_5", "f : α →ₛ β", "inst✝ : Nonempty β"], "goal": "∃ c, ∀ (x : α), ↑f x = c"}], "premise": [27730], "state_str": "α✝ : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝¹ : MeasurableSpace α✝\nα : Type u_5\nf : α →ₛ β\ninst✝ : Nonempty β\n⊢ ∃ c, ∀ (x : α), ↑f x = c"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝¹ : MeasurableSpace α✝", "α : Type u_5", "f : α →ₛ β", "inst✝ : Nonempty β", "hf_meas : ∀ (x : β), MeasurableSet (↑f ⁻¹' {x})"], "goal": "∃ c, ∀ (x : α), ↑f x = c"}], "premise": [28013], "state_str": "α✝ : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝¹ : MeasurableSpace α✝\nα : Type u_5\nf : α →ₛ β\ninst✝ : Nonempty β\nhf_meas : ∀ (x : β), MeasurableSet (↑f ⁻¹' {x})\n⊢ ∃ c, ∀ (x : α), ↑f x = c"} +{"state": [{"context": ["α✝ : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "inst✝¹ : MeasurableSpace α✝", "α : Type u_5", "f : α →ₛ β", "inst✝ : Nonempty β", "hf_meas : ∀ (x : β), ↑f ⁻¹' {x} = ∅ ∨ ↑f ⁻¹' {x} = univ"], "goal": "∃ c, ∀ (x : α), ↑f x = c"}], "premise": [2011, 134078], "state_str": "α✝ : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝¹ : MeasurableSpace α✝\nα : Type u_5\nf : α →ₛ β\ninst✝ : Nonempty β\nhf_meas : ∀ (x : β), ↑f ⁻¹' {x} = ∅ ∨ ↑f ⁻¹' {x} = univ\n⊢ ∃ c, ∀ (x : α), ↑f x = c"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : CommGroup G", "a✝ b✝ c✝ d a b c : G", "h : a = b * c"], "goal": "a / b = c"}], "premise": [119707, 119790, 119828], "state_str": "α : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : CommGroup G\na✝ b✝ c✝ d a b c : G\nh : a = b * c\n⊢ a / b = c"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "s : WSeq α"], "goal": "flatten (Computation.pure s) = s"}], "premise": [147598], "state_str": "α : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\n⊢ flatten (Computation.pure s) = s"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "s✝ : WSeq α", "s' s : Seq (Option α)", "h : flatten (Computation.pure s) = s'"], "goal": "Seq.BisimO (fun s1 s2 => flatten (Computation.pure s2) = s1) (Seq.destruct (flatten (Computation.pure s))) s.destruct"}], "premise": [147597, 147691, 147769], "state_str": "α : Type u\nβ : Type v\nγ : Type w\ns✝ : WSeq α\ns' s : Seq (Option α)\nh : flatten (Computation.pure s) = s'\n⊢ Seq.BisimO (fun s1 s2 => flatten (Computation.pure s2) = s1) (Seq.destruct (flatten (Computation.pure s))) s.destruct"} +{"state": [{"context": ["α✝ : Sort u", "β✝ : α✝ → Sort v", "α' : Sort w", "inst✝² : DecidableEq α✝", "inst✝¹ : DecidableEq α'", "f✝ g : (a : α✝) → β✝ a", "a✝ : α✝", "b✝ : β✝ a✝", "α : Sort u_2", "inst✝ : DecidableEq α", "β : α → Sort u_1", "a b : α", "h : a ≠ b", "v : β a", "w : β b", "f : (a : α) → β a"], "goal": "update (update f a v) b w = update (update f b w) a v"}], "premise": [1838], "state_str": "α✝ : Sort u\nβ✝ : α✝ → Sort v\nα' : Sort w\ninst✝² : DecidableEq α✝\ninst✝¹ : DecidableEq α'\nf✝ g : (a : α✝) → β✝ a\na✝ : α✝\nb✝ : β✝ a✝\nα : Sort u_2\ninst✝ : DecidableEq α\nβ : α → Sort u_1\na b : α\nh : a ≠ b\nv : β a\nw : β b\nf : (a : α) → β a\n⊢ update (update f a v) b w = update (update f b w) a v"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "f g✝ : E → F", "p pf pg : FormalMultilinearSeries 𝕜 E F", "x : E", "r r' : ℝ≥0∞", "n m✝ : ℕ", "g : F →L[𝕜] G", "h : HasFiniteFPowerSeriesOnBall f p x n r", "m : ℕ", "hm : n ≤ m"], "goal": "g.compFormalMultilinearSeries p m = 0"}], "premise": [33902, 46132], "state_str": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g✝ : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nn m✝ : ℕ\ng : F →L[𝕜] G\nh : HasFiniteFPowerSeriesOnBall f p x n r\nm : ℕ\nhm : n ≤ m\n⊢ g.compFormalMultilinearSeries p m = 0"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "inst✝⁶ : NontriviallyNormedField 𝕜", "inst✝⁵ : NormedAddCommGroup E", "inst✝⁴ : NormedSpace 𝕜 E", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : NormedSpace 𝕜 G", "f g✝ : E → F", "p pf pg : FormalMultilinearSeries 𝕜 E F", "x : E", "r r' : ℝ≥0∞", "n m✝ : ℕ", "g : F →L[𝕜] G", "h : HasFiniteFPowerSeriesOnBall f p x n r", "m : ℕ", "hm : n ≤ m", "x✝ : Fin m → E"], "goal": "(g.compContinuousMultilinearMap 0) x✝ = 0 x✝"}], "premise": [117063], "state_str": "case H\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g✝ : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nn m✝ : ℕ\ng : F →L[𝕜] G\nh : HasFiniteFPowerSeriesOnBall f p x n r\nm : ℕ\nhm : n ≤ m\nx✝ : Fin m → E\n⊢ (g.compContinuousMultilinearMap 0) x✝ = 0 x✝"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : ι → Type u_3", "inst✝ : Fintype ι", "m : (i : ι) → OuterMeasure (α i)", "s : (i : ι) → Set (α i)"], "goal": "piPremeasure m (univ.pi s) = ∏ i : ι, (m i) (s i)"}], "premise": [70316], "state_str": "ι : Type u_1\nι' : Type u_2\nα : ι → Type u_3\ninst✝ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ns : (i : ι) → Set (α i)\n⊢ piPremeasure m (univ.pi s) = ∏ i : ι, (m i) (s i)"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : ι → Type u_3", "inst✝ : Fintype ι", "m : (i : ι) → OuterMeasure (α i)", "s : (i : ι) → Set (α i)", "h✝ : Nonempty ι"], "goal": "piPremeasure m (univ.pi s) = ∏ i : ι, (m i) (s i)"}], "premise": [133383], "state_str": "case inr\nι : Type u_1\nι' : Type u_2\nα : ι → Type u_3\ninst✝ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ns : (i : ι) → Set (α i)\nh✝ : Nonempty ι\n⊢ piPremeasure m (univ.pi s) = ∏ i : ι, (m i) (s i)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f✝ f₀ f₁ g : E → F", "f'✝ f₀' f₁' g' e : E →L[𝕜] F", "x✝ : E", "s t : Set E", "L L₁ L₂ : Filter E", "iso : E ≃L[𝕜] F", "f : G → E", "x : G", "f' : G →L[𝕜] E"], "goal": "HasStrictFDerivAt (⇑iso ∘ f) ((↑iso).comp f') x ↔ HasStrictFDerivAt f f' x"}], "premise": [45128, 45896], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g : E → F\nf'✝ f₀' f₁' g' e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\niso : E ≃L[𝕜] F\nf : G → E\nx : G\nf' : G →L[𝕜] E\n⊢ HasStrictFDerivAt (⇑iso ∘ f) ((↑iso).comp f') x ↔ HasStrictFDerivAt f f' x"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝¹ : NormedAddCommGroup G'", "inst✝ : NormedSpace 𝕜 G'", "f✝ f₀ f₁ g : E → F", "f'✝ f₀' f₁' g' e : E →L[𝕜] F", "x✝ : E", "s t : Set E", "L L₁ L₂ : Filter E", "iso : E ≃L[𝕜] F", "f : G → E", "x : G", "f' : G →L[𝕜] E", "H : HasStrictFDerivAt (⇑iso ∘ f) ((↑iso).comp f') x"], "goal": "HasStrictFDerivAt f f' x"}], "premise": [2100, 45128, 45896, 68941], "state_str": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g : E → F\nf'✝ f₀' f₁' g' e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\niso : E ≃L[𝕜] F\nf : G → E\nx : G\nf' : G →L[𝕜] E\nH : HasStrictFDerivAt (⇑iso ∘ f) ((↑iso).comp f') x\n⊢ HasStrictFDerivAt f f' x"} +{"state": [{"context": ["α : Type u₁", "β : Type u₂", "inst✝¹ : TopologicalSpace α", "inst✝ : UniformSpace β", "K : Set α", "V : Set (β × β)", "f : C(α, β)", "ι : Type u_1", "pi : ι → Prop", "s : ι → Set (β × β)", "h : (𝓤 β).HasBasis pi s"], "goal": "(𝓤 C(α, β)).HasBasis (fun p => IsCompact p.1 ∧ pi p.2) fun p => {fg | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2}"}], "premise": [59117, 59517], "state_str": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nι : Type u_1\npi : ι → Prop\ns : ι → Set (β × β)\nh : (𝓤 β).HasBasis pi s\n⊢ (𝓤 C(α, β)).HasBasis (fun p => IsCompact p.1 ∧ pi p.2) fun p => {fg | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2}"} +{"state": [{"context": ["α : Type u₁", "β : Type u₂", "inst✝¹ : TopologicalSpace α", "inst✝ : UniformSpace β", "K : Set α", "V : Set (β × β)", "f : C(α, β)", "ι : Type u_1", "pi : ι → Prop", "s : ι → Set (β × β)", "h : (𝓤 β).HasBasis pi s"], "goal": "(Filter.comap (fun x => (x.1.toUniformOnFunIsCompact, x.2.toUniformOnFunIsCompact)) (𝓤 (α →ᵤ[{K | IsCompact K}] β))).HasBasis (fun p => IsCompact p.1 ∧ pi p.2) fun p => {fg | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2}"}], "premise": [12603, 16470, 58099, 58110, 60281], "state_str": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nι : Type u_1\npi : ι → Prop\ns : ι → Set (β × β)\nh : (𝓤 β).HasBasis pi s\n⊢ (Filter.comap (fun x => (x.1.toUniformOnFunIsCompact, x.2.toUniformOnFunIsCompact))\n (𝓤 (α →ᵤ[{K | IsCompact K}] β))).HasBasis\n (fun p => IsCompact p.1 ∧ pi p.2) fun p => {fg | ∀ x ∈ p.1, (fg.1 x, fg.2 x) ∈ s p.2}"} +{"state": [{"context": ["num : Int", "den g : Nat", "den_nz : den ≠ 0", "e : g = num.natAbs.gcd den"], "goal": "(num / ↑g).natAbs.Coprime (den / g)"}], "premise": [1674, 3616, 4203, 4414], "state_str": "num : Int\nden g : Nat\nden_nz : den ≠ 0\ne : g = num.natAbs.gcd den\n⊢ (num / ↑g).natAbs.Coprime (den / g)"} +{"state": [{"context": ["num : Int", "den g : Nat", "den_nz : den ≠ 0", "e : g = num.natAbs.gcd den"], "goal": "(num.div ↑g).natAbs.Coprime (den / g)"}], "premise": [590], "state_str": "num : Int\nden g : Nat\nden_nz : den ≠ 0\ne : g = num.natAbs.gcd den\n⊢ (num.div ↑g).natAbs.Coprime (den / g)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝⁷ : CommRing R", "inst✝⁶ : Ring S", "inst✝⁵ : Algebra R S", "K : Type u_4", "L : Type u_5", "F : Type u_6", "inst✝⁴ : Field K", "inst✝³ : Field L", "inst✝² : Field F", "inst✝¹ : Algebra K L", "inst✝ : Algebra K F", "ι : Type w", "x : L", "hx : ¬IsIntegral K x"], "goal": "(norm K) (AdjoinSimple.gen K x) = 1"}], "premise": [77906], "state_str": "R : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nK : Type u_4\nL : Type u_5\nF : Type u_6\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ninst✝¹ : Algebra K L\ninst✝ : Algebra K F\nι : Type w\nx : L\nhx : ¬IsIntegral K x\n⊢ (norm K) (AdjoinSimple.gen K x) = 1"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝⁷ : CommRing R", "inst✝⁶ : Ring S", "inst✝⁵ : Algebra R S", "K : Type u_4", "L : Type u_5", "F : Type u_6", "inst✝⁴ : Field K", "inst✝³ : Field L", "inst✝² : Field F", "inst✝¹ : Algebra K L", "inst✝ : Algebra K F", "ι : Type w", "x : L", "hx : ¬IsIntegral K x"], "goal": "¬∃ s, Nonempty (Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯)"}], "premise": [53688], "state_str": "case h\nR : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nK : Type u_4\nL : Type u_5\nF : Type u_6\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ninst✝¹ : Algebra K L\ninst✝ : Algebra K F\nι : Type w\nx : L\nhx : ¬IsIntegral K x\n⊢ ¬∃ s, Nonempty (Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯)"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "T : Type u_3", "inst✝⁷ : CommRing R", "inst✝⁶ : Ring S", "inst✝⁵ : Algebra R S", "K : Type u_4", "L : Type u_5", "F : Type u_6", "inst✝⁴ : Field K", "inst✝³ : Field L", "inst✝² : Field F", "inst✝¹ : Algebra K L", "inst✝ : Algebra K F", "ι : Type w", "x : L", "s : Finset ↥K⟮x⟯", "b : Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯"], "goal": "IsIntegral K x"}], "premise": [80740], "state_str": "case h.intro.intro\nR : Type u_1\nS : Type u_2\nT : Type u_3\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nK : Type u_4\nL : Type u_5\nF : Type u_6\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ninst✝¹ : Algebra K L\ninst✝ : Algebra K F\nι : Type w\nx : L\ns : Finset ↥K⟮x⟯\nb : Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯\n⊢ IsIntegral K x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "n : ℕ", "a a' : α", "b : β", "v : Vector α (n + 1)", "f : α → β"], "goal": "b ∈ (map f v).toList ↔ f v.head = b ∨ ∃ a ∈ v.tail.toList, f a = b"}], "premise": [1713, 1717, 133194, 133199, 134749, 134750], "state_str": "α : Type u_1\nβ : Type u_2\nn : ℕ\na a' : α\nb : β\nv : Vector α (n + 1)\nf : α → β\n⊢ b ∈ (map f v).toList ↔ f v.head = b ∨ ∃ a ∈ v.tail.toList, f a = b"} +{"state": [{"context": ["R : Type uR", "A : Type uA", "M₁ : Type uM₁", "M₂ : Type uM₂", "inst✝¹² : CommRing R", "inst✝¹¹ : CommRing A", "inst✝¹⁰ : AddCommGroup M₁", "inst✝⁹ : AddCommGroup M₂", "inst✝⁸ : Algebra R A", "inst✝⁷ : Module R M₁", "inst✝⁶ : Module A M₁", "inst✝⁵ : SMulCommClass R A M₁", "inst✝⁴ : SMulCommClass A R M₁", "inst✝³ : IsScalarTower R A M₁", "inst✝² : Module R M₂", "inst✝¹ : Invertible 2", "inst✝ : Invertible 2", "Q : QuadraticForm R M₂"], "goal": "associated (QuadraticForm.tmul QuadraticMap.sq Q) = BilinMap.baseChange A (associated Q)"}], "premise": [82829, 83943], "state_str": "R : Type uR\nA : Type uA\nM₁ : Type uM₁\nM₂ : Type uM₂\ninst✝¹² : CommRing R\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : AddCommGroup M₁\ninst✝⁹ : AddCommGroup M₂\ninst✝⁸ : Algebra R A\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module A M₁\ninst✝⁵ : SMulCommClass R A M₁\ninst✝⁴ : SMulCommClass A R M₁\ninst✝³ : IsScalarTower R A M₁\ninst✝² : Module R M₂\ninst✝¹ : Invertible 2\ninst✝ : Invertible 2\nQ : QuadraticForm R M₂\n⊢ associated (QuadraticForm.tmul QuadraticMap.sq Q) = BilinMap.baseChange A (associated Q)"} +{"state": [{"context": ["R : Type u_1", "A✝ : Type u_2", "B : Type u_3", "A : Type u_4", "inst✝⁴ : CommSemiring R", "inst✝³ : Semiring A", "inst✝² : Semiring B", "inst✝¹ : Algebra R A", "inst✝ : Algebra R B", "fe : { fe // fe.2 * fe.2 = 0 ∧ ∀ (a : A), Commute fe.2 (fe.1 a) }"], "goal": "(lift fe) ε = (↑fe).2"}], "premise": [116359, 116360, 116369, 117063, 117064, 119727, 119728], "state_str": "R : Type u_1\nA✝ : Type u_2\nB : Type u_3\nA : Type u_4\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nfe : { fe // fe.2 * fe.2 = 0 ∧ ∀ (a : A), Commute fe.2 (fe.1 a) }\n⊢ (lift fe) ε = (↑fe).2"} +{"state": [{"context": ["C : Type u_1", "inst✝⁵ : Category.{u_2, u_1} C", "inst✝⁴ : Preadditive C", "inst✝³ : HasZeroObject C", "inst✝² : HasShift C ℤ", "inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive", "inst✝ : Pretriangulated C", "A : Cᵒᵖ", "T : Triangle C", "n₀ n₁ : ℤ", "h : n₀ + 1 = n₁", "x : Opposite.unop A ⟶ (shiftFunctor C n₀).obj T.obj₃"], "goal": "((preadditiveCoyoneda.obj A).homologySequenceδ T n₀ n₁ h) x = x ≫ (shiftFunctor C n₀).map T.mor₃ ≫ (shiftFunctorAdd' C 1 n₀ n₁ ⋯).inv.app T.obj₁"}], "premise": [96173], "state_str": "C : Type u_1\ninst✝⁵ : Category.{u_2, u_1} C\ninst✝⁴ : Preadditive C\ninst✝³ : HasZeroObject C\ninst✝² : HasShift C ℤ\ninst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive\ninst✝ : Pretriangulated C\nA : Cᵒᵖ\nT : Triangle C\nn₀ n₁ : ℤ\nh : n₀ + 1 = n₁\nx : Opposite.unop A ⟶ (shiftFunctor C n₀).obj T.obj₃\n⊢ ((preadditiveCoyoneda.obj A).homologySequenceδ T n₀ n₁ h) x =\n x ≫ (shiftFunctor C n₀).map T.mor₃ ≫ (shiftFunctorAdd' C 1 n₀ n₁ ⋯).inv.app T.obj₁"} +{"state": [{"context": ["p : ℕ+", "k : ℕ", "K : Type u", "inst✝¹ : Field K", "inst✝ : CharZero K", "ζ : K", "hp : Fact (Nat.Prime ↑p)", "hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))"], "goal": "Finite (𝓞 K ⧸ Ideal.span {hζ.toInteger - 1})"}], "premise": [24218], "state_str": "p : ℕ+\nk : ℕ\nK : Type u\ninst✝¹ : Field K\ninst✝ : CharZero K\nζ : K\nhp : Fact (Nat.Prime ↑p)\nhcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\n⊢ Finite (𝓞 K ⧸ Ideal.span {hζ.toInteger - 1})"} +{"state": [{"context": ["p : ℕ+", "k : ℕ", "K : Type u", "inst✝¹ : Field K", "inst✝ : CharZero K", "ζ : K", "hp : Fact (Nat.Prime ↑p)", "hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "this : NumberField K"], "goal": "Finite (𝓞 K ⧸ Ideal.span {hζ.toInteger - 1})"}], "premise": [141382], "state_str": "p : ℕ+\nk : ℕ\nK : Type u\ninst✝¹ : Field K\ninst✝ : CharZero K\nζ : K\nhp : Fact (Nat.Prime ↑p)\nhcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nthis : NumberField K\n⊢ Finite (𝓞 K ⧸ Ideal.span {hζ.toInteger - 1})"} +{"state": [{"context": ["p : ℕ+", "k : ℕ", "K : Type u", "inst✝¹ : Field K", "inst✝ : CharZero K", "ζ : K", "hp : Fact (Nat.Prime ↑p)", "hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "this : NumberField K", "h : Ideal.span {hζ.toInteger - 1} = ⊥"], "goal": "False"}], "premise": [80364, 118004, 137140], "state_str": "p : ℕ+\nk : ℕ\nK : Type u\ninst✝¹ : Field K\ninst✝ : CharZero K\nζ : K\nhp : Fact (Nat.Prime ↑p)\nhcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nthis : NumberField K\nh : Ideal.span {hζ.toInteger - 1} = ⊥\n⊢ False"} +{"state": [{"context": ["p : ℕ+", "k : ℕ", "K : Type u", "inst✝¹ : Field K", "inst✝ : CharZero K", "ζ : K", "hp : Fact (Nat.Prime ↑p)", "hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K", "hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))", "this : NumberField K", "h : hζ.toInteger = 1"], "goal": "False"}], "premise": [1673, 1690, 3681, 22016, 70028, 78737, 106249, 144294], "state_str": "p : ℕ+\nk : ℕ\nK : Type u\ninst✝¹ : Field K\ninst✝ : CharZero K\nζ : K\nhp : Fact (Nat.Prime ↑p)\nhcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K\nhζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))\nthis : NumberField K\nh : hζ.toInteger = 1\n⊢ False"} +{"state": [{"context": ["α : Type u_1", "s t : Set α", "x y : α"], "goal": "((x, y) ∈ range fun x => (x, x)) ↔ (x, y) ∈ diagonal α"}], "premise": [1717], "state_str": "case h.mk\nα : Type u_1\ns t : Set α\nx y : α\n⊢ ((x, y) ∈ range fun x => (x, x)) ↔ (x, y) ∈ diagonal α"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "m : MeasurableSpace α", "μ ν : Measure α", "inst✝² : MeasurableSpace δ", "inst✝¹ : NormedAddCommGroup β", "inst✝ : NormedAddCommGroup γ", "f : α → β"], "goal": "∫⁻ (a : α), ↑‖f a‖₊ ∂μ = ∫⁻ (a : α), edist (f a) 0 ∂μ"}], "premise": [42789], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\n⊢ ∫⁻ (a : α), ↑‖f a‖₊ ∂μ = ∫⁻ (a : α), edist (f a) 0 ∂μ"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CancelCommMonoidWithZero R", "x y p d : R", "inst✝ : DecompositionMonoid R", "hx : Squarefree x", "h : d * d ∣ x * y", "a✝ : Nontrivial R"], "goal": "d ∣ y"}], "premise": [108884], "state_str": "R : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\nx y p d : R\ninst✝ : DecompositionMonoid R\nhx : Squarefree x\nh : d * d ∣ x * y\na✝ : Nontrivial R\n⊢ d ∣ y"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CancelCommMonoidWithZero R", "x y p d : R", "inst✝ : DecompositionMonoid R", "hx : Squarefree x", "h : d * d ∣ x * y", "a✝ : Nontrivial R", "a b : R", "ha : a ∣ x", "hb : b ∣ y", "eq : d * d = a * b"], "goal": "d ∣ y"}], "premise": [124279], "state_str": "case intro.intro.intro.intro\nR : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\nx y p d : R\ninst✝ : DecompositionMonoid R\nhx : Squarefree x\nh : d * d ∣ x * y\na✝ : Nontrivial R\na b : R\nha : a ∣ x\nhb : b ∣ y\neq : d * d = a * b\n⊢ d ∣ y"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CancelCommMonoidWithZero R", "x y p d : R", "inst✝ : DecompositionMonoid R", "hx : Squarefree x", "h : d * d ∣ x * y", "a✝ : Nontrivial R", "a b : R", "hb : b ∣ y", "eq : d * d = a * b", "ha : Squarefree a"], "goal": "d ∣ y"}], "premise": [124289], "state_str": "case intro.intro.intro.intro\nR : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\nx y p d : R\ninst✝ : DecompositionMonoid R\nhx : Squarefree x\nh : d * d ∣ x * y\na✝ : Nontrivial R\na b : R\nhb : b ∣ y\neq : d * d = a * b\nha : Squarefree a\n⊢ d ∣ y"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CancelCommMonoidWithZero R", "x y p d : R", "inst✝ : DecompositionMonoid R", "hx : Squarefree x", "h : d * d ∣ x * y", "a✝ : Nontrivial R", "a b : R", "hb : b ∣ y", "eq : d * d = a * b", "ha : Squarefree a", "c : R", "hc : d = a * c"], "goal": "d ∣ y"}], "premise": [71387, 108561, 119703, 124274], "state_str": "case intro.intro.intro.intro.intro\nR : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\nx y p d : R\ninst✝ : DecompositionMonoid R\nhx : Squarefree x\nh : d * d ∣ x * y\na✝ : Nontrivial R\na b : R\nhb : b ∣ y\neq : d * d = a * b\nha : Squarefree a\nc : R\nhc : d = a * c\n⊢ d ∣ y"} +{"state": [{"context": ["R : Type u_1", "inst✝¹ : CancelCommMonoidWithZero R", "x y p d : R", "inst✝ : DecompositionMonoid R", "hx : Squarefree x", "h : d * d ∣ x * y", "a✝ : Nontrivial R", "a b : R", "hb : b ∣ y", "ha : Squarefree a", "c : R", "eq : c * (a * c) = b", "hc : d = a * c"], "goal": "d ∣ y"}], "premise": [108875, 119707], "state_str": "case intro.intro.intro.intro.intro\nR : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\nx y p d : R\ninst✝ : DecompositionMonoid R\nhx : Squarefree x\nh : d * d ∣ x * y\na✝ : Nontrivial R\na b : R\nhb : b ∣ y\nha : Squarefree a\nc : R\neq : c * (a * c) = b\nhc : d = a * c\n⊢ d ∣ y"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "β : Type u_3", "M : Type u_4", "N : Type u_5", "P : Type u_6", "G : Type u_7", "H : Type u_8", "F : Type u_9", "inst✝⁶ : MulOneClass M", "inst✝⁵ : MulOneClass N", "inst✝⁴ : FunLike F M N", "inst✝³ : FunLike F G H", "inst✝² : DivInvMonoid G", "inst✝¹ : DivInvMonoid H", "inst✝ : MonoidHomClass F G H", "f : F", "hf : ∀ (a : G), f a⁻¹ = (f a)⁻¹", "g h : ι → G", "x✝ : ι"], "goal": "(⇑f ∘ (g / h)) x✝ = (⇑f ∘ g / ⇑f ∘ h) x✝"}], "premise": [117090], "state_str": "case h\nι : Type u_1\nα : Type u_2\nβ : Type u_3\nM : Type u_4\nN : Type u_5\nP : Type u_6\nG : Type u_7\nH : Type u_8\nF : Type u_9\ninst✝⁶ : MulOneClass M\ninst✝⁵ : MulOneClass N\ninst✝⁴ : FunLike F M N\ninst✝³ : FunLike F G H\ninst✝² : DivInvMonoid G\ninst✝¹ : DivInvMonoid H\ninst✝ : MonoidHomClass F G H\nf : F\nhf : ∀ (a : G), f a⁻¹ = (f a)⁻¹\ng h : ι → G\nx✝ : ι\n⊢ (⇑f ∘ (g / h)) x✝ = (⇑f ∘ g / ⇑f ∘ h) x✝"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : DivisionRing α", "K : Type u_2", "inst✝ : DivisionRing K", "m : ℕ", "s : Bool", "e : ℕ"], "goal": "↑(OfScientific.ofScientific m s e) = OfScientific.ofScientific m s e"}], "premise": [105551, 147486], "state_str": "α : Type u_1\ninst✝¹ : DivisionRing α\nK : Type u_2\ninst✝ : DivisionRing K\nm : ℕ\ns : Bool\ne : ℕ\n⊢ ↑(OfScientific.ofScientific m s e) = OfScientific.ofScientific m s e"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : AffineSpace V P", "inst✝⁵ : Ring k", "inst✝⁴ : Module k V", "b : AffineBasis ι k P", "ι' : Type u_1", "inst✝³ : Finite ι", "inst✝² : Fintype ι'", "inst✝¹ : DecidableEq ι", "inst✝ : Nontrivial k", "p : ι' → P", "A : Matrix ι ι' k", "hA : A * b.toMatrix p = 1"], "goal": "affineSpan k (range p) = ⊤"}], "premise": [141384], "state_str": "ι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : AffineSpace V P\ninst✝⁵ : Ring k\ninst✝⁴ : Module k V\nb : AffineBasis ι k P\nι' : Type u_1\ninst✝³ : Finite ι\ninst✝² : Fintype ι'\ninst✝¹ : DecidableEq ι\ninst✝ : Nontrivial k\np : ι' → P\nA : Matrix ι ι' k\nhA : A * b.toMatrix p = 1\n⊢ affineSpan k (range p) = ⊤"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : AffineSpace V P", "inst✝⁵ : Ring k", "inst✝⁴ : Module k V", "b : AffineBasis ι k P", "ι' : Type u_1", "inst✝³ : Finite ι", "inst✝² : Fintype ι'", "inst✝¹ : DecidableEq ι", "inst✝ : Nontrivial k", "p : ι' → P", "A : Matrix ι ι' k", "hA : A * b.toMatrix p = 1", "val✝ : Fintype ι"], "goal": "affineSpan k (range p) = ⊤"}], "premise": [18789, 83163, 84451], "state_str": "case intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : AffineSpace V P\ninst✝⁵ : Ring k\ninst✝⁴ : Module k V\nb : AffineBasis ι k P\nι' : Type u_1\ninst✝³ : Finite ι\ninst✝² : Fintype ι'\ninst✝¹ : DecidableEq ι\ninst✝ : Nontrivial k\np : ι' → P\nA : Matrix ι ι' k\nhA : A * b.toMatrix p = 1\nval✝ : Fintype ι\n⊢ affineSpan k (range p) = ⊤"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : AffineSpace V P", "inst✝⁵ : Ring k", "inst✝⁴ : Module k V", "b : AffineBasis ι k P", "ι' : Type u_1", "inst✝³ : Finite ι", "inst✝² : Fintype ι'", "inst✝¹ : DecidableEq ι", "inst✝ : Nontrivial k", "p : ι' → P", "A : Matrix ι ι' k", "hA : A * b.toMatrix p = 1", "val✝ : Fintype ι", "i : ι"], "goal": "b i ∈ affineSpan k (range p)"}], "premise": [125068, 127022, 139135, 142182], "state_str": "case intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : AffineSpace V P\ninst✝⁵ : Ring k\ninst✝⁴ : Module k V\nb : AffineBasis ι k P\nι' : Type u_1\ninst✝³ : Finite ι\ninst✝² : Fintype ι'\ninst✝¹ : DecidableEq ι\ninst✝ : Nontrivial k\np : ι' → P\nA : Matrix ι ι' k\nhA : A * b.toMatrix p = 1\nval✝ : Fintype ι\ni : ι\n⊢ b i ∈ affineSpan k (range p)"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : AffineSpace V P", "inst✝⁵ : Ring k", "inst✝⁴ : Module k V", "b : AffineBasis ι k P", "ι' : Type u_1", "inst✝³ : Finite ι", "inst✝² : Fintype ι'", "inst✝¹ : DecidableEq ι", "inst✝ : Nontrivial k", "p : ι' → P", "A : Matrix ι ι' k", "hA : A * b.toMatrix p = 1", "val✝ : Fintype ι", "i : ι", "hAi : ∑ j : ι', A i j = 1"], "goal": "b i ∈ affineSpan k (range p)"}], "premise": [1717, 83174, 83180, 84210, 84224, 142182], "state_str": "case intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : AffineSpace V P\ninst✝⁵ : Ring k\ninst✝⁴ : Module k V\nb : AffineBasis ι k P\nι' : Type u_1\ninst✝³ : Finite ι\ninst✝² : Fintype ι'\ninst✝¹ : DecidableEq ι\ninst✝ : Nontrivial k\np : ι' → P\nA : Matrix ι ι' k\nhA : A * b.toMatrix p = 1\nval✝ : Fintype ι\ni : ι\nhAi : ∑ j : ι', A i j = 1\n⊢ b i ∈ affineSpan k (range p)"} +{"state": [{"context": ["ι : Type u₁", "k : Type u₂", "V : Type u₃", "P : Type u₄", "inst✝⁷ : AddCommGroup V", "inst✝⁶ : AffineSpace V P", "inst✝⁵ : Ring k", "inst✝⁴ : Module k V", "b : AffineBasis ι k P", "ι' : Type u_1", "inst✝³ : Finite ι", "inst✝² : Fintype ι'", "inst✝¹ : DecidableEq ι", "inst✝ : Nontrivial k", "p : ι' → P", "A : Matrix ι ι' k", "hA : A * b.toMatrix p = 1", "val✝ : Fintype ι", "i : ι", "hAi : ∑ j : ι', A i j = 1", "hbi : b i = (Finset.affineCombination k Finset.univ p) (A i)"], "goal": "(Finset.affineCombination k Finset.univ p) (A i) ∈ affineSpan k (range p)"}], "premise": [84262], "state_str": "case intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : AffineSpace V P\ninst✝⁵ : Ring k\ninst✝⁴ : Module k V\nb : AffineBasis ι k P\nι' : Type u_1\ninst✝³ : Finite ι\ninst✝² : Fintype ι'\ninst✝¹ : DecidableEq ι\ninst✝ : Nontrivial k\np : ι' → P\nA : Matrix ι ι' k\nhA : A * b.toMatrix p = 1\nval✝ : Fintype ι\ni : ι\nhAi : ∑ j : ι', A i j = 1\nhbi : b i = (Finset.affineCombination k Finset.univ p) (A i)\n⊢ (Finset.affineCombination k Finset.univ p) (A i) ∈ affineSpan k (range p)"} +{"state": [{"context": ["𝕜 : Type u_1", "inst✝¹³ : NontriviallyNormedField 𝕜", "E : Type u_2", "inst✝¹² : NormedAddCommGroup E", "inst✝¹¹ : NormedSpace 𝕜 E", "F : Type u_3", "inst✝¹⁰ : NormedAddCommGroup F", "inst✝⁹ : NormedSpace 𝕜 F", "G : Type u_4", "inst✝⁸ : NormedAddCommGroup G", "inst✝⁷ : NormedSpace 𝕜 G", "G' : Type u_5", "inst✝⁶ : NormedAddCommGroup G'", "inst✝⁵ : NormedSpace 𝕜 G'", "f✝ f₀ f₁ g✝ : E → F", "f'✝ f₀' f₁' g'✝ e : E →L[𝕜] F", "x✝ : E", "s t : Set E", "L L₁ L₂ : Filter E", "ι : Type u_6", "𝔸 : Type u_7", "𝔸' : Type u_8", "inst✝⁴ : NormedRing 𝔸", "inst✝³ : NormedCommRing 𝔸'", "inst✝² : NormedAlgebra 𝕜 𝔸", "inst✝¹ : NormedAlgebra 𝕜 𝔸'", "u✝ : Finset ι", "f : ι → E → 𝔸", "f' : ι → E →L[𝕜] 𝔸", "g : ι → E → 𝔸'", "g' : ι → E →L[𝕜] 𝔸'", "inst✝ : DecidableEq ι", "u : Multiset ι", "x : E", "h : ∀ i ∈ u, HasFDerivAt (fun x => g i x) (g' i) x"], "goal": "HasFDerivAt (fun x => (Multiset.map (fun x_1 => g x_1 x) u).prod) (Multiset.map (fun i => (Multiset.map (fun x_1 => g x_1 x) (u.erase i)).prod • g' i) u).sum x"}], "premise": [137997, 138037], "state_str": "𝕜 : Type u_1\ninst✝¹³ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝¹² : NormedAddCommGroup E\ninst✝¹¹ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹⁰ : NormedAddCommGroup F\ninst✝⁹ : NormedSpace 𝕜 F\nG : Type u_4\ninst✝⁸ : NormedAddCommGroup G\ninst✝⁷ : NormedSpace 𝕜 G\nG' : Type u_5\ninst✝⁶ : NormedAddCommGroup G'\ninst✝⁵ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g✝ : E → F\nf'✝ f₀' f₁' g'✝ e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\nι : Type u_6\n𝔸 : Type u_7\n𝔸' : Type u_8\ninst✝⁴ : NormedRing 𝔸\ninst✝³ : NormedCommRing 𝔸'\ninst✝² : NormedAlgebra 𝕜 𝔸\ninst✝¹ : NormedAlgebra 𝕜 𝔸'\nu✝ : Finset ι\nf : ι → E → 𝔸\nf' : ι → E →L[𝕜] 𝔸\ng : ι → E → 𝔸'\ng' : ι → E →L[𝕜] 𝔸'\ninst✝ : DecidableEq ι\nu : Multiset ι\nx : E\nh : ∀ i ∈ u, HasFDerivAt (fun x => g i x) (g' i) x\n⊢ HasFDerivAt (fun x => (Multiset.map (fun x_1 => g x_1 x) u).prod)\n (Multiset.map (fun i => (Multiset.map (fun x_1 => g x_1 x) (u.erase i)).prod • g' i) u).sum x"} +{"state": [{"context": ["p : ℕ+", "k : ℕ", "K : Type u", "inst✝¹ : Field K", "inst✝ : CharZero K", "ζ : K", "hp : Fact (Nat.Prime ↑p)", "hcycl : IsCyclotomicExtension {p} ℚ K", "hζ✝ : IsPrimitiveRoot ζ ↑p", "hodd : p ≠ 2", "this : IsCyclotomicExtension {p ^ (0 + 1)} ℚ K", "hζ : IsPrimitiveRoot ζ (↑p ^ (0 + 1))"], "goal": "Prime ((Algebra.norm ℤ) (hζ✝.toInteger - 1))"}], "premise": [24774], "state_str": "p : ℕ+\nk : ℕ\nK : Type u\ninst✝¹ : Field K\ninst✝ : CharZero K\nζ : K\nhp : Fact (Nat.Prime ↑p)\nhcycl : IsCyclotomicExtension {p} ℚ K\nhζ✝ : IsPrimitiveRoot ζ ↑p\nhodd : p ≠ 2\nthis : IsCyclotomicExtension {p ^ (0 + 1)} ℚ K\nhζ : IsPrimitiveRoot ζ (↑p ^ (0 + 1))\n⊢ Prime ((Algebra.norm ℤ) (hζ✝.toInteger - 1))"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s s₁ s₂ : Finset α", "a✝ : α", "f✝ g : α → β", "M : Type u_6", "inst✝¹ : DecidableEq α", "inst✝ : CommMonoid M", "f : α → M", "a : α", "l : List α", "hl : (a :: l).Nodup"], "goal": "(a :: l).toFinset.prod f = (map f (a :: l)).prod"}], "premise": [1673, 129714], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\nM : Type u_6\ninst✝¹ : DecidableEq α\ninst✝ : CommMonoid M\nf : α → M\na : α\nl : List α\nhl : (a :: l).Nodup\n⊢ (a :: l).toFinset.prod f = (map f (a :: l)).prod"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s s₁ s₂ : Finset α", "a✝ : α", "f✝ g : α → β", "M : Type u_6", "inst✝¹ : DecidableEq α", "inst✝ : CommMonoid M", "f : α → M", "a : α", "l : List α", "hl✝ : (a :: l).Nodup", "not_mem : a ∉ l", "hl : l.Nodup"], "goal": "(a :: l).toFinset.prod f = (map f (a :: l)).prod"}], "premise": [1673, 1681, 126900, 139193], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\nM : Type u_6\ninst✝¹ : DecidableEq α\ninst✝ : CommMonoid M\nf : α → M\na : α\nl : List α\nhl✝ : (a :: l).Nodup\nnot_mem : a ∉ l\nhl : l.Nodup\n⊢ (a :: l).toFinset.prod f = (map f (a :: l)).prod"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ : P"], "goal": "⊤.direction = ⊤"}], "premise": [115867], "state_str": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\n⊢ ⊤.direction = ⊤"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ p : P", "v : V"], "goal": "v ∈ ⊤.direction ↔ v ∈ ⊤"}], "premise": [1807, 109891], "state_str": "case intro.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ p : P\nv : V\n⊢ v ∈ ⊤.direction ↔ v ∈ ⊤"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ p : P", "v : V", "_hv : v ∈ ⊤"], "goal": "v ∈ ⊤.direction"}], "premise": [84407, 84458], "state_str": "case intro.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ p : P\nv : V\n_hv : v ∈ ⊤\n⊢ v ∈ ⊤.direction"} +{"state": [{"context": ["k : Type u_1", "V : Type u_2", "P : Type u_3", "inst✝² : Ring k", "inst✝¹ : AddCommGroup V", "inst✝ : Module k V", "S : AffineSpace V P", "p₁ p₂ p : P", "v : V", "_hv : v ∈ ⊤", "hpv : v +ᵥ p -ᵥ p ∈ ⊤.direction"], "goal": "v ∈ ⊤.direction"}], "premise": [115870], "state_str": "case intro.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ p : P\nv : V\n_hv : v ∈ ⊤\nhpv : v +ᵥ p -ᵥ p ∈ ⊤.direction\n⊢ v ∈ ⊤.direction"} +{"state": [{"context": ["R : Type u_1", "L : Type u_2", "inst✝⁹ : CommRing R", "inst✝⁸ : LieRing L", "inst✝⁷ : LieAlgebra R L", "H : LieSubalgebra R L", "inst✝⁶ : IsNilpotent R ↥H", "M : Type u_3", "inst✝⁵ : AddCommGroup M", "inst✝⁴ : Module R M", "inst✝³ : LieRingModule L M", "inst✝² : LieModule R L M", "inst✝¹ : H.IsCartanSubalgebra", "inst✝ : IsNoetherian R L", "α : ↥H → R", "x : ↥H"], "goal": "x ∈ corootSpace α ↔ ↑x ∈ Submodule.span R {x | ∃ y ∈ rootSpace H α, ∃ z ∈ rootSpace H (-α), ⁅y, z⁆ = x}"}], "premise": [1718, 2016, 71387, 109319], "state_str": "R : Type u_1\nL : Type u_2\ninst✝⁹ : CommRing R\ninst✝⁸ : LieRing L\ninst✝⁷ : LieAlgebra R L\nH : LieSubalgebra R L\ninst✝⁶ : IsNilpotent R ↥H\nM : Type u_3\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\ninst✝³ : LieRingModule L M\ninst✝² : LieModule R L M\ninst✝¹ : H.IsCartanSubalgebra\ninst✝ : IsNoetherian R L\nα : ↥H → R\nx : ↥H\n⊢ x ∈ corootSpace α ↔ ↑x ∈ Submodule.span R {x | ∃ y ∈ rootSpace H α, ∃ z ∈ rootSpace H (-α), ⁅y, z⁆ = x}"} +{"state": [{"context": ["R : Type u_1", "L : Type u_2", "inst✝⁹ : CommRing R", "inst✝⁸ : LieRing L", "inst✝⁷ : LieAlgebra R L", "H : LieSubalgebra R L", "inst✝⁶ : IsNilpotent R ↥H", "M : Type u_3", "inst✝⁵ : AddCommGroup M", "inst✝⁴ : Module R M", "inst✝³ : LieRingModule L M", "inst✝² : LieModule R L M", "inst✝¹ : H.IsCartanSubalgebra", "inst✝ : IsNoetherian R L", "α : ↥H → R", "x : ↥H", "this : x ∈ corootSpace α ↔ ↑x ∈ LieSubmodule.map H.toLieSubmodule.incl (corootSpace α)"], "goal": "x ∈ corootSpace α ↔ ↑x ∈ Submodule.span R {x | ∃ y ∈ rootSpace H α, ∃ z ∈ rootSpace H (-α), ⁅y, z⁆ = x}"}], "premise": [70144, 86856, 109247, 109282, 109338, 109421, 131585], "state_str": "R : Type u_1\nL : Type u_2\ninst✝⁹ : CommRing R\ninst✝⁸ : LieRing L\ninst✝⁷ : LieAlgebra R L\nH : LieSubalgebra R L\ninst✝⁶ : IsNilpotent R ↥H\nM : Type u_3\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\ninst✝³ : LieRingModule L M\ninst✝² : LieModule R L M\ninst✝¹ : H.IsCartanSubalgebra\ninst✝ : IsNoetherian R L\nα : ↥H → R\nx : ↥H\nthis : x ∈ corootSpace α ↔ ↑x ∈ LieSubmodule.map H.toLieSubmodule.incl (corootSpace α)\n⊢ x ∈ corootSpace α ↔ ↑x ∈ Submodule.span R {x | ∃ y ∈ rootSpace H α, ∃ z ∈ rootSpace H (-α), ⁅y, z⁆ = x}"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "K : Type u_4", "inst✝ : NormedDivisionRing K", "ξ : K", "h : ‖ξ‖ < 1"], "goal": "HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹"}], "premise": [53688], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nK : Type u_4\ninst✝ : NormedDivisionRing K\nξ : K\nh : ‖ξ‖ < 1\n⊢ HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "K : Type u_4", "inst✝ : NormedDivisionRing K", "ξ : K", "h : ‖ξ‖ < 1", "xi_ne_one : ξ ≠ 1"], "goal": "HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹"}], "premise": [34492, 55522, 65038, 66817], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nK : Type u_4\ninst✝ : NormedDivisionRing K\nξ : K\nh : ‖ξ‖ < 1\nxi_ne_one : ξ ≠ 1\n⊢ HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "K : Type u_4", "inst✝ : NormedDivisionRing K", "ξ : K", "h : ‖ξ‖ < 1", "xi_ne_one : ξ ≠ 1", "A : Tendsto (fun n => (ξ ^ n - 1) * (ξ - 1)⁻¹) atTop (𝓝 ((0 - 1) * (ξ - 1)⁻¹))"], "goal": "HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹"}], "premise": [42177], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nK : Type u_4\ninst✝ : NormedDivisionRing K\nξ : K\nh : ‖ξ‖ < 1\nxi_ne_one : ξ ≠ 1\nA : Tendsto (fun n => (ξ ^ n - 1) * (ξ - 1)⁻¹) atTop (𝓝 ((0 - 1) * (ξ - 1)⁻¹))\n⊢ HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "a : α", "r₁ r₂ : List (List α)"], "goal": "sublists'Aux a r₁ r₂ = (Array.foldl (fun r l => r.push (a :: l)) (toArray r₂) (toArray r₁) 0).toList"}], "premise": [5818], "state_str": "α : Type u\nβ : Type v\nγ : Type w\na : α\nr₁ r₂ : List (List α)\n⊢ sublists'Aux a r₁ r₂ = (Array.foldl (fun r l => r.push (a :: l)) (toArray r₂) (toArray r₁) 0).toList"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "a : α", "r₁ r₂ : List (List α)"], "goal": "foldl (fun r l => r ++ [a :: l]) r₂ r₁ = (foldl (fun r l => r.push (a :: l)) (toArray r₂) (toArray r₁).data).toList"}], "premise": [1444], "state_str": "α : Type u\nβ : Type v\nγ : Type w\na : α\nr₁ r₂ : List (List α)\n⊢ foldl (fun r l => r ++ [a :: l]) r₂ r₁ = (foldl (fun r l => r.push (a :: l)) (toArray r��) (toArray r₁).data).toList"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "s✝ s₁ s₂ : Finset α", "a : α", "f g : α → β", "p : α → Prop", "inst✝ : DecidablePred p", "s : Finset α"], "goal": "(filter p s).card = ∑ a ∈ s, if p a then 1 else 0"}], "premise": [127074], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\np : α → Prop\ninst✝ : DecidablePred p\ns : Finset α\n⊢ (filter p s).card = ∑ a ∈ s, if p a then 1 else 0"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "S : Type v", "inst✝ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "hfp : NeZero e", "i : ℕ"], "goal": "Function.Injective ⇑(powQuotSuccInclusion f p P i)"}], "premise": [109987, 110002], "state_str": "R : Type u\ninst✝¹ : CommRing R\nS : Type v\ninst✝ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\nhfp : NeZero e\ni : ℕ\n⊢ Function.Injective ⇑(powQuotSuccInclusion f p P i)"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "S : Type v", "inst✝ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "hfp : NeZero e", "i : ℕ", "x : S ⧸ P ^ e", "hx : x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))", "hx0 : (powQuotSuccInclusion f p P i) ⟨x, hx⟩ = 0"], "goal": "⟨x, hx⟩ = 0"}], "premise": [137128], "state_str": "case mk\nR : Type u\ninst✝¹ : CommRing R\nS : Type v\ninst✝ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\nhfp : NeZero e\ni : ℕ\nx : S ⧸ P ^ e\nhx : x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))\nhx0 : (powQuotSuccInclusion f p P i) ⟨x, hx⟩ = 0\n⊢ ⟨x, hx⟩ = 0"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "S : Type v", "inst✝ : CommRing S", "f : R →+* S", "p : Ideal R", "P : Ideal S", "hfp : NeZero e", "i : ℕ", "x : S ⧸ P ^ e", "hx : x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))", "hx0 : ↑((powQuotSuccInclusion f p P i) ⟨x, hx⟩) = ↑0"], "goal": "↑⟨x, hx⟩ = ↑0"}], "premise": [24067], "state_str": "case mk\nR : Type u\ninst✝¹ : CommRing R\nS : Type v\ninst✝ : CommRing S\nf : R →+* S\np : Ideal R\nP : Ideal S\nhfp : NeZero e\ni : ℕ\nx : S ⧸ P ^ e\nhx : x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))\nhx0 : ↑((powQuotSuccInclusion f p P i) ⟨x, hx⟩) = ↑0\n⊢ ↑⟨x, hx⟩ = ↑0"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : IsFiniteMeasure μ", "c : E", "hp_zero : p ≠ 0", "hp_top : p ≠ ⊤"], "goal": "‖(Lp.const p μ) c‖ = ‖c‖ * (μ Set.univ).toReal ^ (1 / p.toReal)"}], "premise": [28654, 31002, 31075], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : IsFiniteMeasure μ\nc : E\nhp_zero : p ≠ 0\nhp_top : p ≠ ⊤\n⊢ ‖(Lp.const p μ) c‖ = ‖c‖ * (μ Set.univ).toReal ^ (1 / p.toReal)"} +{"state": [{"context": ["α : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "m m0 : MeasurableSpace α", "p : ℝ≥0∞", "q : ℝ", "μ ν : Measure α", "inst✝³ : NormedAddCommGroup E", "inst✝² : NormedAddCommGroup F", "inst✝¹ : NormedAddCommGroup G", "inst✝ : IsFiniteMeasure μ", "c : E", "hp_zero : p ≠ 0", "hp_top : p ≠ ⊤"], "goal": "(↑‖c‖₊ * μ Set.univ ^ (1 / p.toReal)).toReal = ‖c‖ * (μ Set.univ).toReal ^ (1 / p.toReal)"}], "premise": [39817, 42755, 143174, 143423], "state_str": "α : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : IsFiniteMeasure μ\nc : E\nhp_zero : p ≠ 0\nhp_top : p ≠ ⊤\n⊢ (↑‖c‖₊ * μ Set.univ ^ (1 / p.toReal)).toReal = ‖c‖ * (μ Set.univ).toReal ^ (1 / p.toReal)"} +{"state": [{"context": ["s : ℝ", "hs : 0 < s"], "goal": "∃ M, 𝓝[stolzCone s] 1 ≤ 𝓝[stolzSet M] 1"}], "premise": [47085], "state_str": "s : ℝ\nhs : 0 < s\n⊢ ∃ M, 𝓝[stolzCone s] 1 ≤ 𝓝[stolzSet M] 1"} +{"state": [{"context": ["s : ℝ", "hs : 0 < s", "M ε : ℝ", "left✝ : 0 < M", "hε : 0 < ε", "H : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M"], "goal": "∃ M, 𝓝[stolzCone s] 1 ≤ 𝓝[stolzSet M] 1"}], "premise": [1674, 2045], "state_str": "case intro.intro.intro.intro\ns : ℝ\nhs : 0 < s\nM ε : ℝ\nleft✝ : 0 < M\nhε : 0 < ε\nH : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M\n⊢ ∃ M, 𝓝[stolzCone s] 1 ≤ 𝓝[stolzSet M] 1"} +{"state": [{"context": ["s : ℝ", "hs : 0 < s", "M ε : ℝ", "left✝ : 0 < M", "hε : 0 < ε", "H : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M"], "goal": "𝓝[stolzCone s] 1 ≤ 𝓝[stolzSet M] 1"}], "premise": [57168, 57176], "state_str": "case h\ns : ℝ\nhs : 0 < s\nM ε : ℝ\nleft✝ : 0 < M\nhε : 0 < ε\nH : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M\n⊢ 𝓝[stolzCone s] 1 ≤ 𝓝[stolzSet M] 1"} +{"state": [{"context": ["s : ℝ", "hs : 0 < s", "M ε : ℝ", "left✝ : 0 < M", "hε : 0 < ε", "H : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M"], "goal": "∃ u, IsOpen u ∧ 1 ∈ u ∧ u ∩ stolzCone s ⊆ stolzSet M"}], "premise": [46206, 54980, 55641], "state_str": "case h\ns : ℝ\nhs : 0 < s\nM ε : ℝ\nleft✝ : 0 < M\nhε : 0 < ε\nH : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M\n⊢ ∃ u, IsOpen u ∧ 1 ∈ u ∧ u ∩ stolzCone s ⊆ stolzSet M"} +{"state": [{"context": ["s : ℝ", "hs : 0 < s", "M ε : ℝ", "left✝ : 0 < M", "hε : 0 < ε", "H : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M"], "goal": "1 ∈ {w | 1 - ε < w.re}"}], "premise": [105672, 131585, 148291], "state_str": "case h\ns : ℝ\nhs : 0 < s\nM ε : ℝ\nleft✝ : 0 < M\nhε : 0 < ε\nH : {z | 1 - ε < z.re} ∩ stolzCone s ⊆ stolzSet M\n⊢ 1 ∈ {w | 1 - ε < w.re}"} +{"state": [{"context": ["α : Type u_1", "M₀ : Type u_2", "G₀ : Type u_3", "M₀' : Type u_4", "G₀' : Type u_5", "F : Type u_6", "F' : Type u_7", "inst✝¹ : MonoidWithZero M₀", "inst✝ : GroupWithZero G₀", "a b c d : G₀", "m✝ n✝ : ℕ", "ha : a ≠ 0", "m n : ℤ"], "goal": "a ^ (m - n) = a ^ m / a ^ n"}], "premise": [2481, 108322, 117849, 119790], "state_str": "α : Type u_1\nM₀ : Type u_2\nG₀ : Type u_3\nM₀' : Type u_4\nG₀' : Type u_5\nF : Type u_6\nF' : Type u_7\ninst✝¹ : MonoidWithZero M₀\ninst✝ : GroupWithZero G₀\na b c d : G₀\nm✝ n✝ : ℕ\nha : a ≠ 0\nm n : ℤ\n⊢ a ^ (m - n) = a ^ m / a ^ n"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝¹⁰ : Fintype ι", "inst✝⁹ : Fintype ι'", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedAddCommGroup F", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : MeasurableSpace E", "inst✝³ : BorelSpace E", "inst✝² : SecondCountableTopology E", "b : Basis ι ℝ E", "μ : Measure E", "inst✝¹ : SigmaFinite μ", "inst✝ : μ.IsAddLeftInvariant"], "goal": "b.addHaar = μ ↔ μ ↑b.parallelepiped = 1"}], "premise": [29516], "state_str": "ι : Type u_1\nι' : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝¹⁰ : Fintype ι\ninst✝⁹ : Fintype ι'\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : MeasurableSpace E\ninst✝³ : BorelSpace E\ninst✝² : SecondCountableTopology E\nb : Basis ι ℝ E\nμ : Measure E\ninst✝¹ : SigmaFinite μ\ninst✝ : μ.IsAddLeftInvariant\n⊢ b.addHaar = μ ↔ μ ↑b.parallelepiped = 1"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "E : Type u_3", "F : Type u_4", "inst✝¹⁰ : Fintype ι", "inst✝⁹ : Fintype ι'", "inst✝⁸ : NormedAddCommGroup E", "inst✝⁷ : NormedAddCommGroup F", "inst✝⁶ : NormedSpace ℝ E", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : MeasurableSpace E", "inst✝³ : BorelSpace E", "inst✝² : SecondCountableTopology E", "b : Basis ι ℝ E", "μ : Measure E", "inst✝¹ : SigmaFinite μ", "inst✝ : μ.IsAddLeftInvariant"], "goal": "addHaarMeasure b.parallelepiped = μ ↔ μ ↑b.parallelepiped = 1"}], "premise": [29606], "state_str": "ι : Type u_1\nι' : Type u_2\nE : Type u_3\nF : Type u_4\ninst✝¹⁰ : Fintype ι\ninst✝⁹ : Fintype ι'\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : MeasurableSpace E\ninst✝³ : BorelSpace E\ninst✝² : SecondCountableTopology E\nb : Basis ι ℝ E\nμ : Measure E\ninst✝¹ : SigmaFinite μ\ninst✝ : μ.IsAddLeftInvariant\n⊢ addHaarMeasure b.parallelepiped = μ ↔ μ ↑b.parallelepiped = 1"} +{"state": [{"context": ["R : Type u", "L : Type v", "M : Type w", "inst✝⁶ : CommRing R", "inst✝⁵ : LieRing L", "inst✝⁴ : LieAlgebra R L", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : LieRingModule L M", "inst✝ : LieModule R L M", "g : Module.End R M", "m : M"], "goal": "((toEnd R (Module.End R M) M) g) m = (LieHom.id g) m"}], "premise": [107556], "state_str": "case h.h\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\ng : Module.End R M\nm : M\n⊢ ((toEnd R (Module.End R M) M) g) m = (LieHom.id g) m"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "P : Type u_5", "M₀ : Type u_6", "G : Type u_7", "R : Type u_8", "inst✝ : CanonicallyOrderedCommMonoid M", "l L : List M"], "goal": "Monotone fun i => (take i L).prod"}], "premise": [19858], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nP : Type u_5\nM₀ : Type u_6\nG : Type u_7\nR : Type u_8\ninst✝ : CanonicallyOrderedCommMonoid M\nl L : List M\n⊢ Monotone fun i => (take i L).prod"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "M : Type u_3", "N : Type u_4", "P : Type u_5", "M₀ : Type u_6", "G : Type u_7", "R : Type u_8", "inst✝ : CanonicallyOrderedCommMonoid M", "l L : List M", "n : ℕ"], "goal": "(take n L).prod ≤ (take (n + 1) L).prod"}], "premise": [14316], "state_str": "ι : Type u_1\nα : Type u_2\nM : Type u_3\nN : Type u_4\nP : Type u_5\nM₀ : Type u_6\nG : Type u_7\nR : Type u_8\ninst✝ : CanonicallyOrderedCommMonoid M\nl L : List M\nn : ℕ\n⊢ (take n L).prod ≤ (take (n + 1) L).prod"} +{"state": [{"context": ["P : Type u_1", "inst✝¹ : SemilatticeInf P", "x y : P", "I : Ideal P", "inst✝ : I.IsProper", "hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I"], "goal": "I.IsPrime"}], "premise": [14256], "state_str": "P : Type u_1\ninst✝¹ : SemilatticeInf P\nx y : P\nI : Ideal P\ninst✝ : I.IsProper\nhI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I\n⊢ I.IsPrime"} +{"state": [{"context": ["P : Type u_1", "inst✝¹ : SemilatticeInf P", "x y : P", "I : Ideal P", "inst✝ : I.IsProper", "hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I"], "goal": "I.IsProper ∧ IsPFilter (↑I)ᶜ"}], "premise": [1674, 2045], "state_str": "P : Type u_1\ninst✝¹ : SemilatticeInf P\nx y : P\nI : Ideal P\ninst✝ : I.IsProper\nhI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I\n⊢ I.IsProper ∧ IsPFilter (↑I)ᶜ"} +{"state": [{"context": ["P : Type u_1", "inst✝¹ : SemilatticeInf P", "x y : P", "I : Ideal P", "inst✝ : I.IsProper", "hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I"], "goal": "IsPFilter (↑I)ᶜ"}], "premise": [14017], "state_str": "case right\nP : Type u_1\ninst✝¹ : SemilatticeInf P\nx y : P\nI : Ideal P\ninst✝ : I.IsProper\nhI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I\n⊢ IsPFilter (↑I)ᶜ"} +{"state": [{"context": ["R : Type u_1", "inst✝⁵ : CommRing R", "I : Ideal R", "M : Type u_2", "inst✝⁴ : AddCommGroup M", "inst✝³ : Module R M", "N : Type u_3", "inst✝² : AddCommGroup N", "inst✝¹ : Module R N", "ι : Type u_4", "inst✝ : Finite ι"], "goal": "Function.Bijective ⇑(ofTensorProduct I (ι → R))"}], "premise": [128633, 141384], "state_str": "R : Type u_1\ninst✝⁵ : CommRing R\nI : Ideal R\nM : Type u_2\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nN : Type u_3\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nι : Type u_4\ninst✝ : Finite ι\n⊢ Function.Bijective ⇑(ofTensorProduct I (ι → R))"} +{"state": [{"context": ["R : Type u", "inst✝ : CommRing R", "W : Affine R", "x y : R"], "goal": "W.Equation x (W.negY x y) ↔ W.Equation x y"}], "premise": [132171], "state_str": "R : Type u\ninst✝ : CommRing R\nW : Affine R\nx y : R\n⊢ W.Equation x (W.negY x y) ↔ W.Equation x y"} +{"state": [{"context": ["p q r : ℕ+", "hpq : p ≤ q", "hqr : q ≤ r", "H : 1 < sumInv {p, q, r}"], "goal": "Admissible {p, q, r}"}], "premise": [21754], "state_str": "p q r : ℕ+\nhpq : p ≤ q\nhqr : q ≤ r\nH : 1 < sumInv {p, q, r}\n⊢ Admissible {p, q, r}"} +{"state": [{"context": ["p q r : ℕ+", "hpq : p ≤ q", "hqr : q ≤ r", "H : 1 < sumInv {p, q, r}", "hp3 : p < 3"], "goal": "Admissible {p, q, r}"}], "premise": [1674, 19603], "state_str": "p q r : ℕ+\nhpq : p ≤ q\nhqr : q ≤ r\nH : 1 < sumInv {p, q, r}\nhp3 : p < 3\n⊢ Admissible {p, q, r}"} +{"state": [{"context": ["q r : ℕ+", "hqr : q ≤ r", "hpq : 2 ≤ q", "H : 1 < sumInv {2, q, r}"], "goal": "Admissible {2, q, r}"}], "premise": [21755], "state_str": "case tail.head\nq r : ℕ+\nhqr : q ≤ r\nhpq : 2 ≤ q\nH : 1 < sumInv {2, q, r}\n⊢ Admissible {2, q, r}"} +{"state": [{"context": ["q r : ℕ+", "hqr : q ≤ r", "hpq : 2 ≤ q", "H : 1 < sumInv {2, q, r}", "hq4 : q < 4"], "goal": "Admissible {2, q, r}"}], "premise": [1674, 19591], "state_str": "case tail.head\nq r : ℕ+\nhqr : q ≤ r\nhpq : 2 ≤ q\nH : 1 < sumInv {2, q, r}\nhq4 : q < 4\n⊢ Admissible {2, q, r}"} +{"state": [{"context": ["r : ℕ+", "hqr : 3 ≤ r", "H : 1 < sumInv {2, 3, r}"], "goal": "Admissible {2, 3, r}"}], "premise": [21756], "state_str": "case tail.head.tail.head\nr : ℕ+\nhqr : 3 ≤ r\nH : 1 < sumInv {2, 3, r}\n⊢ Admissible {2, 3, r}"} +{"state": [{"context": ["r : ℕ+", "hqr : 3 ≤ r", "H : 1 < sumInv {2, 3, r}", "hr6 : r < 6"], "goal": "Admissible {2, 3, r}"}], "premise": [1674, 19591], "state_str": "case tail.head.tail.head\nr : ℕ+\nhqr : 3 ≤ r\nH : 1 < sumInv {2, 3, r}\nhr6 : r < 6\n⊢ Admissible {2, 3, r}"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i : ℕ"], "goal": "IsPrimitiveRoot (ζ ^ i) k ↔ i.Coprime k"}], "premise": [78745], "state_str": "M : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\n⊢ IsPrimitiveRoot (ζ ^ i) k ↔ i.Coprime k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i : ℕ", "hi : IsPrimitiveRoot (ζ ^ i) k"], "goal": "i.Coprime k"}], "premise": [3616], "state_str": "M : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\n⊢ i.Coprime k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i : ℕ", "hi : IsPrimitiveRoot (ζ ^ i) k", "a : ℕ", "ha : i = i.gcd k * a"], "goal": "i.Coprime k"}], "premise": [3617], "state_str": "case intro\nM : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = i.gcd k * a\n⊢ i.Coprime k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i : ℕ", "hi : IsPrimitiveRoot (ζ ^ i) k", "a : ℕ", "ha : i = i.gcd k * a", "b : ℕ", "hb : k = i.gcd k * b"], "goal": "i.Coprime k"}], "premise": [1717, 145108], "state_str": "case intro.intro\nM : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = i.gcd k * a\nb : ℕ\nhb : k = i.gcd k * b\n⊢ i.Coprime k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i a : ℕ", "hi : IsPrimitiveRoot (ζ ^ (i.gcd k * a)) k", "ha : i = i.gcd k * a", "b : ℕ", "hb : k = i.gcd k * b"], "goal": "b = k"}], "premise": [119707], "state_str": "case intro.intro\nM : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (i.gcd k * a)) k\nha : i = i.gcd k * a\nb : ℕ\nhb : k = i.gcd k * b\n⊢ b = k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i a : ℕ", "hi : IsPrimitiveRoot (ζ ^ (i.gcd k * a)) k", "ha : i = i.gcd k * a", "b : ℕ", "hb : k = b * i.gcd k"], "goal": "b = k"}], "premise": [3524, 78725], "state_str": "case intro.intro\nM : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (i.gcd k * a)) k\nha : i = i.gcd k * a\nb : ℕ\nhb : k = b * i.gcd k\n⊢ b = k"} +{"state": [{"context": ["M : Type u_1", "N : Type u_2", "G : Type u_3", "R : Type u_4", "S : Type u_5", "F : Type u_6", "inst✝² : CommMonoid M", "inst✝¹ : CommMonoid N", "inst✝ : DivisionCommMonoid G", "k l : ℕ", "ζ : M", "f : F", "h✝ h : IsPrimitiveRoot ζ k", "h0 : 0 < k", "i a : ℕ", "hi : IsPrimitiveRoot (ζ ^ (i.gcd k * a)) k", "ha : i = i.gcd k * a", "b : ℕ", "hb : k = b * i.gcd k"], "goal": "(ζ ^ (i.gcd k * a)) ^ b = 1"}], "premise": [78726, 119703, 119756, 119761, 119764], "state_str": "M : Type u_1\nN : Type u_2\nG : Type u_3\nR : Type u_4\nS : Type u_5\nF : Type u_6\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (i.gcd k * a)) k\nha : i = i.gcd k * a\nb : ℕ\nhb : k = b * i.gcd k\n⊢ (ζ ^ (i.gcd k * a)) ^ b = 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝⁵ : TopologicalSpace α", "inst✝⁴ : LinearOrder α", "inst✝³ : OrderTopology α", "inst✝² : DenselyOrdered α", "a b : α", "s✝ : Set α", "l : Filter β", "f : α → β", "inst✝¹ : Nontrivial α", "s : Set α", "inst✝ : SeparableSpace ↑s", "hs : Dense s"], "goal": "∃ t ⊆ s, t.Countable ∧ Dense t ∧ (∀ (x : α), IsBot x → x ∉ t) ∧ ∀ (x : α), IsTop x → x ∉ t"}], "premise": [57770], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : LinearOrder α\ninst✝³ : OrderTopology α\ninst✝² : DenselyOrdered α\na b : α\ns✝ : Set α\nl : Filter β\nf : α → β\ninst✝¹ : Nontrivial α\ns : Set α\ninst✝ : SeparableSpace ↑s\nhs : Dense s\n⊢ ∃ t ⊆ s, t.Countable ∧ Dense t ∧ (∀ (x : α), IsBot x → x ∉ t) ∧ ∀ (x : α), IsTop x → x ∉ t"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R"], "goal": "eval r (p * (X - C r)) = 0"}], "premise": [102824, 121577], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\n⊢ eval r (p * (X - C r)) = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R"], "goal": "((p * (X - C r)).sum fun e a => a * r ^ e) = 0"}], "premise": [102253, 102319, 103758, 103882], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\n⊢ ((p * (X - C r)).sum fun e a => a * r ^ e) = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R", "bound : (p * (X - C r)).natDegree < p.natDegree + 2"], "goal": "((p * (X - C r)).sum fun e a => a * r ^ e) = 0"}], "premise": [102144], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\nbound : (p * (X - C r)).natDegree < p.natDegree + 2\n⊢ ((p * (X - C r)).sum fun e a => a * r ^ e) = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R", "bound : (p * (X - C r)).natDegree < p.natDegree + 2"], "goal": "∑ a ∈ range (p.natDegree + 2), (p * (X - C r)).coeff a * r ^ a = 0"}], "premise": [127137], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\nbound : (p * (X - C r)).natDegree < p.natDegree + 2\n⊢ ∑ a ∈ range (p.natDegree + 2), (p * (X - C r)).coeff a * r ^ a = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R", "bound : (p * (X - C r)).natDegree < p.natDegree + 2"], "goal": "∑ k ∈ range (p.natDegree + 1), (p * (X - C r)).coeff (k + 1) * r ^ (k + 1) + (p * (X - C r)).coeff 0 * r ^ 0 = 0"}], "premise": [102167, 119703, 119745], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\nbound : (p * (X - C r)).natDegree < p.natDegree + 2\n⊢ ∑ k ∈ range (p.natDegree + 1), (p * (X - C r)).coeff (k + 1) * r ^ (k + 1) + (p * (X - C r)).coeff 0 * r ^ 0 = 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R", "bound : (p * (X - C r)).natDegree < p.natDegree + 2"], "goal": "∑ k ∈ range (p.natDegree + 1), (p.coeff k * r ^ (k + 1) - p.coeff (k + 1) * r ^ (k + 1 + 1)) + (p * (X - C r)).coeff 0 * r ^ 0 = 0"}], "premise": [127171], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\nbound : (p * (X - C r)).natDegree < p.natDegree + 2\n⊢ ∑ k ∈ range (p.natDegree + 1), (p.coeff k * r ^ (k + 1) - p.coeff (k + 1) * r ^ (k + 1 + 1)) +\n (p * (X - C r)).coeff 0 * r ^ 0 =\n 0"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "A : Type z", "A' : Type u_1", "B : Type u_2", "a b : R", "n : ℕ", "inst✝ : Ring R", "p : R[X]", "r : R", "bound : (p * (X - C r)).natDegree < p.natDegree + 2"], "goal": "p.coeff 0 * r ^ (0 + 1) - p.coeff (p.natDegree + 1) * r ^ (p.natDegree + 1 + 1) + (p * (X - C r)).coeff 0 * r ^ 0 = 0"}], "premise": [101269], "state_str": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type u_1\nB : Type u_2\na b : R\nn : ℕ\ninst✝ : Ring R\np : R[X]\nr : R\nbound : (p * (X - C r)).natDegree < p.natDegree + 2\n⊢ p.coeff 0 * r ^ (0 + 1) - p.coeff (p.natDegree + 1) * r ^ (p.natDegree + 1 + 1) + (p * (X - C r)).coeff 0 * r ^ 0 = 0"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "F : Type u_3", "K : Type u_4", "P✝ Q : Cubic R", "a b c d a' b' c' d' : R", "inst✝ : Semiring R", "P : Cubic R"], "goal": "(fun f => { a := (↑f).coeff 3, b := (↑f).coeff 2, c := (↑f).coeff 1, d := (↑f).coeff 0 }) ((fun P => ⟨P.toPoly, ⋯⟩) P) = P"}], "premise": [112033, 137134], "state_str": "R : Type u_1\nS : Type u_2\nF : Type u_3\nK : Type u_4\nP✝ Q : Cubic R\na b c d a' b' c' d' : R\ninst✝ : Semiring R\nP : Cubic R\n⊢ (fun f => { a := (↑f).coeff 3, b := (↑f).coeff 2, c := (↑f).coeff 1, d := (↑f).coeff 0 })\n ((fun P => ⟨P.toPoly, ⋯⟩) P) =\n P"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "F : Type u_3", "K : Type u_4", "P Q : Cubic R", "a b c d a' b' c' d' : R", "inst✝ : Semiring R", "f : { p // p.degree ≤ 3 }"], "goal": "(fun P => ⟨P.toPoly, ⋯⟩) ((fun f => { a := (↑f).coeff 3, b := (↑f).coeff 2, c := (↑f).coeff 1, d := (↑f).coeff 0 }) f) = f"}], "premise": [3663, 3679, 112033], "state_str": "R : Type u_1\nS : Type u_2\nF : Type u_3\nK : Type u_4\nP Q : Cubic R\na b c d a' b' c' d' : R\ninst✝ : Semiring R\nf : { p // p.degree ≤ 3 }\n⊢ (fun P => ⟨P.toPoly, ⋯⟩)\n ((fun f => { a := (↑f).coeff 3, b := (↑f).coeff 2, c := (↑f).coeff 1, d := (↑f).coeff 0 }) f) =\n f"} +{"state": [{"context": ["R : Type u_1", "S : Type u_2", "F : Type u_3", "K : Type u_4", "P Q : Cubic R", "a b c d a' b' c' d' : R", "inst✝ : Semiring R", "f : { p // p.degree ≤ 3 }", "n : ℕ", "h3 : 3 < 4 + n"], "goal": "{ a := (↑f).coeff 3, b := (↑f).coeff 2, c := (↑f).coeff 1, d := (↑f).coeff 0 }.toPoly.coeff (4 + n) = (↑f).coeff (4 + n)"}], "premise": [1673, 1674, 2115, 20767, 102262, 112034], "state_str": "case a.a.succ.succ.succ.succ\nR : Type u_1\nS : Type u_2\nF : Type u_3\nK : Type u_4\nP Q : Cubic R\na b c d a' b' c' d' : R\ninst✝ : Semiring R\nf : { p // p.degree ≤ 3 }\nn : ℕ\nh3 : 3 < 4 + n\n⊢ { a := (↑f).coeff 3, b := (↑f).coeff 2, c := (↑f).coeff 1, d := (↑f).coeff 0 }.toPoly.coeff (4 + n) =\n (↑f).coeff (4 + n)"} +{"state": [{"context": ["J : Type w", "inst✝³ : SmallCategory J", "C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasLimitsOfShape J C", "inst✝ : MonoidalCategory C", "F : J ⥤ Mon_ C", "s : Cone F", "j✝ : J"], "goal": "(s.pt.mul ≫ limit.lift (F ⋙ forget C) ((forget C).mapCone s)) ≫ limit.π (F ⋙ forget C) j✝ = (MonoidalCategory.tensorHom (limit.lift (F ⋙ forget C) ((forget C).mapCone s)) (limit.lift (F ⋙ forget C) ((forget C).mapCone s)) ≫ (limit F).mul) ≫ limit.π (F ⋙ forget C) j✝"}], "premise": [93340, 95569, 95570, 95638, 95639, 96173, 98895, 98916, 99924, 99936, 100031, 100060, 100067, 100068], "state_str": "case w\nJ : Type w\ninst✝³ : SmallCategory J\nC : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasLimitsOfShape J C\ninst✝ : MonoidalCategory C\nF : J ⥤ Mon_ C\ns : Cone F\nj✝ : J\n⊢ (s.pt.mul ≫ limit.lift (F ⋙ forget C) ((forget C).mapCone s)) ≫ limit.π (F ⋙ forget C) j✝ =\n (MonoidalCategory.tensorHom (limit.lift (F ⋙ forget C) ((forget C).mapCone s))\n (limit.lift (F ⋙ forget C) ((forget C).mapCone s)) ≫\n (limit F).mul) ≫\n limit.π (F ⋙ forget C) j✝"} +{"state": [{"context": ["J : Type w", "inst✝³ : SmallCategory J", "C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasLimitsOfShape J C", "inst✝ : MonoidalCategory C", "F : J ⥤ Mon_ C", "s : Cone F", "j✝ : J"], "goal": "MonoidalCategory.tensorHom (s.π.app j✝).hom (s.π.app j✝).hom ≫ (F.obj j✝).mul = MonoidalCategory.tensorHom (limit.lift (F ⋙ forget C) ((forget C).mapCone s)) (limit.lift (F ⋙ forget C) ((forget C).mapCone s)) ≫ MonoidalCategory.tensorHom (limit.π (F ⋙ forget C) j✝) (limit.π (F ⋙ forget C) j✝) ≫ (MonFunctorCategoryEquivalence.inverseObj F).mul.app j✝"}], "premise": [93340, 96173, 99215], "state_str": "case w\nJ : Type w\ninst✝³ : SmallCategory J\nC : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasLimitsOfShape J C\ninst✝ : MonoidalCategory C\nF : J ⥤ Mon_ C\ns : Cone F\nj✝ : J\n⊢ MonoidalCategory.tensorHom (s.π.app j✝).hom (s.π.app j✝).hom ≫ (F.obj j✝).mul =\n MonoidalCategory.tensorHom (limit.lift (F ⋙ forget C) ((forget C).mapCone s))\n (limit.lift (F ⋙ forget C) ((forget C).mapCone s)) ≫\n MonoidalCategory.tensorHom (limit.π (F ⋙ forget C) j✝) (limit.π (F ⋙ forget C) j✝) ≫\n (MonFunctorCategoryEquivalence.inverseObj F).mul.app j✝"} +{"state": [{"context": ["J : Type w", "inst✝³ : SmallCategory J", "C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasLimitsOfShape J C", "inst✝ : MonoidalCategory C", "F : J ⥤ Mon_ C", "s : Cone F", "m : s.pt ⟶ (limitCone F).pt", "w : ∀ (j : J), m ≫ (limitCone F).π.app j = s.π.app j"], "goal": "m.hom = ((fun s => { hom := limit.lift (F ⋙ forget C) ((forget C).mapCone s), one_hom := ⋯, mul_hom := ⋯ }) s).hom"}], "premise": [93349], "state_str": "case w\nJ : Type w\ninst✝³ : SmallCategory J\nC : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasLimitsOfShape J C\ninst✝ : MonoidalCategory C\nF : J ⥤ Mon_ C\ns : Cone F\nm : s.pt ⟶ (limitCone F).pt\nw : ∀ (j : J), m ≫ (limitCone F).π.app j = s.π.app j\n⊢ m.hom = ((fun s => { hom := limit.lift (F ⋙ forget C) ((forget C).mapCone s), one_hom := ⋯, mul_hom := ⋯ }) s).hom"} +{"state": [{"context": ["J : Type w", "inst✝³ : SmallCategory J", "C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasLimitsOfShape J C", "inst✝ : MonoidalCategory C", "F : J ⥤ Mon_ C", "s : Cone F", "m : s.pt ⟶ (limitCone F).pt", "w : ∀ (j : J), m ≫ (limitCone F).π.app j = s.π.app j", "j : J"], "goal": "m.hom ≫ limit.π (F ⋙ forget C) j = limit.lift (F ⋙ forget C) ((forget C).mapCone s) ≫ limit.π (F ⋙ forget C) j"}], "premise": [93340, 95639, 100068], "state_str": "case w\nJ : Type w\ninst✝³ : SmallCategory J\nC : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasLimitsOfShape J C\ninst✝ : MonoidalCategory C\nF : J ⥤ Mon_ C\ns : Cone F\nm : s.pt ⟶ (limitCone F).pt\nw : ∀ (j : J), m ≫ (limitCone F).π.app j = s.π.app j\nj : J\n⊢ m.hom ≫ limit.π (F ⋙ forget C) j = limit.lift (F ⋙ forget C) ((forget C).mapCone s) ≫ limit.π (F ⋙ forget C) j"} +{"state": [{"context": ["R : Type u", "inst✝⁶ : CommRing R", "L : Type v", "M : Type w", "inst✝⁵ : LieRing L", "inst✝⁴ : LieAlgebra R L", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : LieRingModule L M", "inst✝ : LieModule R L M", "x : L", "m : M"], "goal": "(toModuleHom R L M) (x ⊗ₜ[R] m) = ⁅x, m⁆"}], "premise": [107564, 107727, 107797, 108095, 109719, 109724], "state_str": "R : Type u\ninst✝⁶ : CommRing R\nL : Type v\nM : Type w\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nx : L\nm : M\n⊢ (toModuleHom R L M) (x ⊗ₜ[R] m) = ⁅x, m⁆"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "n m✝ : σ", "s✝ : σ →₀ ℕ", "inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S₁", "p✝ q : MvPolynomial σ R", "m s : σ →₀ ℕ", "r : R", "p : MvPolynomial σ R"], "goal": "coeff m ((monomial s) r * p) = if s ≤ m then r * coeff (m - s) p else 0"}], "premise": [119707], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn m✝ : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nm s : σ →₀ ℕ\nr : R\np : MvPolynomial σ R\n⊢ coeff m ((monomial s) r * p) = if s ≤ m then r * coeff (m - s) p else 0"} +{"state": [{"context": ["R : Type u", "S₁ : Type v", "S₂ : Type w", "S₃ : Type x", "σ : Type u_1", "a a' a₁ a₂ : R", "e : ℕ", "n m✝ : σ", "s✝ : σ →₀ ℕ", "inst✝¹ : CommSemiring R", "inst✝ : CommSemiring S₁", "p✝ q : MvPolynomial σ R", "m s : σ →₀ ℕ", "r : R", "p : MvPolynomial σ R"], "goal": "coeff m (p * (monomial s) r) = if s ≤ m then coeff (m - s) p * r else 0"}], "premise": [112274], "state_str": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn m✝ : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nm s : σ →₀ ℕ\nr : R\np : MvPolynomial σ R\n⊢ coeff m (p * (monomial s) r) = if s ≤ m then coeff (m - s) p * r else 0"} +{"state": [{"context": ["G : Type u_1", "G' : Type u_2", "G'' : Type u_3", "inst✝⁴ : Group G", "inst✝³ : Group G'", "inst✝² : Group G''", "A : Type u_4", "inst✝¹ : AddGroup A", "N : Type u_5", "inst✝ : Group N", "H₁ H₂ : Subgroup G"], "goal": "H₁ ⊓ H₂ ≤ ⊥ ↔ ∀ {x : G}, x ∈ H₁ → x ∈ H₂ → x = 1"}], "premise": [1186, 122653, 122688, 128384], "state_str": "G : Type u_1\nG' : Type u_2\nG'' : Type u_3\ninst✝⁴ : Group G\ninst✝³ : Group G'\ninst✝² : Group G''\nA : Type u_4\ninst✝¹ : AddGroup A\nN : Type u_5\ninst✝ : Group N\nH₁ H₂ : Subgroup G\n⊢ H₁ ⊓ H₂ ≤ ⊥ ↔ ∀ {x : G}, x ∈ H₁ → x ∈ H₂ → x = 1"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : LinearOrder α", "inst✝² : Mul α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1", "a₁ a₂ b₁ b₂ : α"], "goal": "a₁ * b₁ ≤ a₂ * b₂ → a₁ ≤ a₂ ∨ b₁ < b₂"}], "premise": [53688], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : LinearOrder α\ninst✝² : Mul α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1\na₁ a₂ b₁ b₂ : α\n⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ ≤ a₂ ∨ b₁ < b₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝³ : LinearOrder α", "inst✝² : Mul α", "inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1", "inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1", "a₁ a₂ b₁ b₂ : α"], "goal": "a₂ < a₁ ∧ b₂ ≤ b₁ → a₂ * b₂ < a₁ * b₁"}], "premise": [2106, 2107, 103911], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝³ : LinearOrder α\ninst✝² : Mul α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1\na₁ a₂ b₁ b₂ : α\n⊢ a₂ < a₁ ∧ b₂ ≤ b₁ → a₂ * b₂ < a₁ * b₁"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : LinearOrder α", "inst✝ : Lattice β", "e : α ↪o β", "x y : α"], "goal": "⇑e ⁻¹' uIcc (e x) (e y) = uIcc x y"}], "premise": [14308], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Lattice β\ne : α ↪o β\nx y : α\n⊢ ⇑e ⁻¹' uIcc (e x) (e y) = uIcc x y"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "B : Type u_3", "S : Type u_4", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Ring B", "inst✝² : CommRing S", "inst✝¹ : Algebra R A", "inst✝ : Algebra R B", "f : R →+* S", "x y z : S", "hx : f.IsIntegralElem x", "hy : f.IsIntegralElem y", "hz : z ∈ Subring.closure {x, y}", "this : Algebra R S := f.toAlgebra"], "goal": "f.IsIntegralElem z"}], "premise": [79060, 80559], "state_str": "R : Type u_1\nA : Type u_2\nB : Type u_3\nS : Type u_4\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nx y z : S\nhx : f.IsIntegralElem x\nhy : f.IsIntegralElem y\nhz : z ∈ Subring.closure {x, y}\nthis : Algebra R S := f.toAlgebra\n⊢ f.IsIntegralElem z"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "B : Type u_3", "S : Type u_4", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Ring B", "inst✝² : CommRing S", "inst✝¹ : Algebra R A", "inst✝ : Algebra R B", "f : R →+* S", "x y z : S", "hx : f.IsIntegralElem x", "hy : f.IsIntegralElem y", "hz : z ∈ Subring.closure {x, y}", "this✝ : Algebra R S := f.toAlgebra", "this : (Subalgebra.toSubmodule (Algebra.adjoin R {x}) * Subalgebra.toSubmodule (Algebra.adjoin R {y})).FG"], "goal": "f.IsIntegralElem z"}], "premise": [78343, 133528], "state_str": "R : Type u_1\nA : Type u_2\nB : Type u_3\nS : Type u_4\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nx y z : S\nhx : f.IsIntegralElem x\nhy : f.IsIntegralElem y\nhz : z ∈ Subring.closure {x, y}\nthis✝ : Algebra R S := f.toAlgebra\nthis : (Subalgebra.toSubmodule (Algebra.adjoin R {x}) * Subalgebra.toSubmodule (Algebra.adjoin R {y})).FG\n⊢ f.IsIntegralElem z"} +{"state": [{"context": ["R : Type u_1", "A : Type u_2", "B : Type u_3", "S : Type u_4", "inst✝⁵ : CommRing R", "inst✝⁴ : CommRing A", "inst✝³ : Ring B", "inst✝² : CommRing S", "inst✝¹ : Algebra R A", "inst✝ : Algebra R B", "f : R →+* S", "x y z : S", "hx : f.IsIntegralElem x", "hy : f.IsIntegralElem y", "hz : z ∈ Subring.closure {x, y}", "this✝ : Algebra R S := f.toAlgebra", "this : (Subalgebra.toSubmodule (Algebra.adjoin R {x, y})).FG"], "goal": "f.IsIntegralElem z"}], "premise": [1674, 78346, 80740, 123561, 133420], "state_str": "R : Type u_1\nA : Type u_2\nB : Type u_3\nS : Type u_4\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nx y z : S\nhx : f.IsIntegralElem x\nhy : f.IsIntegralElem y\nhz : z ∈ Subring.closure {x, y}\nthis✝ : Algebra R S := f.toAlgebra\nthis : (Subalgebra.toSubmodule (Algebra.adjoin R {x, y})).FG\n⊢ f.IsIntegralElem z"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "inst✝¹ : CommSemiring R", "inst✝ : Semiring S", "f : R →+* S", "x✝ : R[X]"], "goal": "x✝ ∈ LinearMap.ker (mapRingHom f).toSemilinearMap ↔ x✝ ∈ map C (RingHom.ker f)"}], "premise": [102924, 109757, 109977], "state_str": "case h\nR : Type u\nS : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nf : R →+* S\nx✝ : R[X]\n⊢ x✝ ∈ LinearMap.ker (mapRingHom f).toSemilinearMap ↔ x✝ ∈ map C (RingHom.ker f)"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "inst✝¹ : CommSemiring R", "inst✝ : Semiring S", "f : R →+* S", "x✝ : R[X]"], "goal": "(↑↑(mapRingHom f)).toFun x✝ = 0 ↔ x✝ ∈ map C (RingHom.ker f)"}], "premise": [75809, 101298], "state_str": "case h\nR : Type u\nS : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nf : R →+* S\nx✝ : R[X]\n⊢ (↑↑(mapRingHom f)).toFun x✝ = 0 ↔ x✝ ∈ map C (RingHom.ker f)"} +{"state": [{"context": ["R : Type u", "S : Type u_1", "inst✝¹ : CommSemiring R", "inst✝ : Semiring S", "f : R →+* S", "x✝ : R[X]"], "goal": "(∀ (n : ℕ), ((↑↑(mapRingHom f)).toFun x✝).coeff n = coeff 0 n) ↔ ∀ (n : ℕ), x✝.coeff n ∈ RingHom.ker f"}], "premise": [80704], "state_str": "case h\nR : Type u\nS : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nf : R →+* S\nx✝ : R[X]\n⊢ (∀ (n : ℕ), ((↑↑(mapRingHom f)).toFun x✝).coeff n = coeff 0 n) ↔ ∀ (n : ℕ), x✝.coeff n ∈ RingHom.ker f"} +{"state": [{"context": ["R : Type u", "S✝ : Type v", "T : Type w", "ι : Type y", "a b : R", "m n : ℕ", "inst✝¹ : Semiring R", "p q r : R[X]", "x : R", "S : Type u_1", "inst✝ : Semiring S", "f : R →+* S"], "goal": "eval₂ f 1 p = f (eval 1 p)"}], "premise": [102863], "state_str": "R : Type u\nS✝ : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q r : R[X]\nx : R\nS : Type u_1\ninst✝ : Semiring S\nf : R →+* S\n⊢ eval₂ f 1 p = f (eval 1 p)"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β✝ : Type u_4", "γ : Type u_5", "f✝ : α → β✝ → β✝", "op : α → α → α", "inst✝³ : Monoid β✝", "inst✝² : Monoid γ", "inst✝¹ : FunLike F β✝ γ", "β : Type u_6", "inst✝ : CommMonoid β", "s : Finset α", "f : α → β"], "goal": "s.noncommProd f ⋯ = s.prod f"}], "premise": [138845], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ✝ : Type u_4\nγ : Type u_5\nf✝ : α → β✝ → β✝\nop : α → α → α\ninst✝³ : Monoid β✝\ninst✝² : Monoid γ\ninst✝¹ : FunLike F β✝ γ\nβ : Type u_6\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\n⊢ s.noncommProd f ⋯ = s.prod f"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L : Filter 𝕜", "hx : x ≠ 0"], "goal": "HasStrictDerivAt Inv.inv (-(x ^ 2)⁻¹) x"}], "premise": [16021, 16027, 43393, 55501, 64693, 66412, 119730, 131585], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nhx : x ≠ 0\n⊢ HasStrictDerivAt Inv.inv (-(x ^ 2)⁻¹) x"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L : Filter 𝕜", "hx : x ≠ 0"], "goal": "(fun p => (p.1 - p.2) * ((x * x)⁻¹ - (p.1 * p.2)⁻¹)) =o[𝓝 (x, x)] fun p => (p.1 - p.2) * 1"}], "premise": [1674, 43424, 43543, 43588], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nhx : x ≠ 0\n⊢ (fun p => (p.1 - p.2) * ((x * x)⁻¹ - (p.1 * p.2)⁻¹)) =o[𝓝 (x, x)] fun p => (p.1 - p.2) * 1"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L : Filter 𝕜", "hx : x ≠ 0"], "goal": "Tendsto (fun p => (x * x)⁻¹ - (p.1 * p.2)⁻¹) (𝓝 (x, x)) (𝓝 0)"}], "premise": [117981], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nhx : x ≠ 0\n⊢ Tendsto (fun p => (x * x)⁻¹ - (p.1 * p.2)⁻¹) (𝓝 (x, x)) (𝓝 0)"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁴ : NontriviallyNormedField 𝕜", "F : Type v", "inst✝³ : NormedAddCommGroup F", "inst✝² : NormedSpace 𝕜 F", "E : Type w", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace 𝕜 E", "f f₀ f₁ g : 𝕜 → F", "f' f₀' f₁' g' : F", "x : 𝕜", "s t : Set 𝕜", "L : Filter 𝕜", "hx : x ≠ 0"], "goal": "Tendsto (fun p => (x * x)⁻¹ - (p.1 * p.2)⁻¹) (𝓝 (x, x)) (𝓝 ((x * x)⁻¹ - (x * x)⁻¹))"}], "premise": [55522, 55636, 65024, 65329, 66817, 108269], "state_str": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nhx : x ≠ 0\n⊢ Tendsto (fun p => (x * x)⁻¹ - (p.1 * p.2)⁻¹) (𝓝 (x, x)) (𝓝 ((x * x)⁻¹ - (x * x)⁻¹))"} +{"state": [{"context": ["σ K : Type u", "inst✝² : Fintype K", "inst✝¹ : Field K", "inst✝ : Finite σ"], "goal": "range (evalᵢ σ K) = ⊤"}], "premise": [109935, 109959], "state_str": "σ K : Type u\ninst✝² : Fintype K\ninst✝¹ : Field K\ninst✝ : Finite σ\n⊢ range (evalᵢ σ K) = ⊤"} +{"state": [{"context": ["σ K : Type u", "inst✝² : Fintype K", "inst✝¹ : Field K", "inst✝ : Finite σ"], "goal": "Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤"}], "premise": [88394], "state_str": "σ K : Type u\ninst✝² : Fintype K\ninst✝¹ : Field K\ninst✝ : Finite σ\n⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤"} +{"state": [{"context": ["A : Type u", "B : Type v", "C : Type z", "ι : Type w", "inst✝⁶ : DecidableEq ι", "inst✝⁵ : CommRing A", "inst✝⁴ : CommRing B", "inst✝³ : Algebra A B", "inst✝² : CommRing C", "inst✝¹ : Algebra A C", "inst✝ : Fintype ι", "b : ι → B", "f : B ≃ₐ[A] C"], "goal": "discr A b = discr A (⇑f ∘ b)"}], "premise": [78228], "state_str": "A : Type u\nB : Type v\nC : Type z\nι : Type w\ninst✝⁶ : DecidableEq ι\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : Algebra A B\ninst✝² : CommRing C\ninst✝¹ : Algebra A C\ninst✝ : Fintype ι\nb : ι → B\nf : B ≃ₐ[A] C\n⊢ discr A b = discr A (⇑f ∘ b)"} +{"state": [{"context": ["A : Type u", "B : Type v", "C : Type z", "ι : Type w", "inst✝⁶ : DecidableEq ι", "inst✝⁵ : CommRing A", "inst✝⁴ : CommRing B", "inst✝³ : Algebra A B", "inst✝² : CommRing C", "inst✝¹ : Algebra A C", "inst✝ : Fintype ι", "b : ι → B", "f : B ≃ₐ[A] C", "i✝ j✝ : ι"], "goal": "traceMatrix A b i✝ j✝ = traceMatrix A (⇑f ∘ b) i✝ j✝"}], "premise": [75910, 77242, 77249, 117080], "state_str": "case e_M.a\nA : Type u\nB : Type v\nC : Type z\nι : Type w\ninst✝⁶ : DecidableEq ι\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : Algebra A B\ninst✝² : CommRing C\ninst✝¹ : Algebra A C\ninst✝ : Fintype ι\nb : ι → B\nf : B ≃ₐ[A] C\ni✝ j✝ : ι\n⊢ traceMatrix A b i✝ j✝ = traceMatrix A (⇑f ∘ b) i✝ j✝"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝³ : Preorder α", "inst✝² : Preorder β", "t₁ t₂ : TopologicalSpace α", "inst✝¹ : Topology.IsUpperSet α", "inst✝ : IsUpper α", "s : Set α", "hs : IsOpen s"], "goal": "IsOpen s"}], "premise": [54164], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝³ : Preorder α\ninst✝² : Preorder β\nt₁ t₂ : TopologicalSpace α\ninst✝¹ : Topology.IsUpperSet α\ninst✝ : IsUpper α\ns : Set α\nhs : IsOpen s\n⊢ IsOpen s"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "inst✝³ : Preorder α", "inst✝² : Preorder β", "t₁ t₂ : TopologicalSpace α", "inst✝¹ : Topology.IsUpperSet α", "inst✝ : IsUpper α", "s : Set α", "hs : IsOpen s"], "goal": "IsUpperSet s"}], "premise": [55122], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝³ : Preorder α\ninst✝² : Preorder β\nt₁ t₂ : TopologicalSpace α\ninst✝¹ : Topology.IsUpperSet α\ninst✝ : IsUpper α\ns : Set α\nhs : IsOpen s\n⊢ IsUpperSet s"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "A B : Subgroup G", "φ : ↥A ≃* ↥B", "H : Type u_2", "inst✝² : Group H", "M : Type u_3", "inst✝¹ : Monoid M", "d : TransversalPair G A B", "inst✝ : DecidableEq G", "x✝ : NormalWord d"], "goal": "unitsSMul φ (-1) (unitsSMul φ 1 x✝) = x✝"}], "premise": [10714], "state_str": "G : Type u_1\ninst✝³ : Group G\nA B : Subgroup G\nφ : ↥A ≃* ↥B\nH : Type u_2\ninst✝² : Group H\nM : Type u_3\ninst✝¹ : Monoid M\nd : TransversalPair G A B\ninst✝ : DecidableEq G\nx✝ : NormalWord d\n⊢ unitsSMul φ (-1) (unitsSMul φ 1 x✝) = x✝"} +{"state": [{"context": ["G : Type u_1", "inst✝³ : Group G", "A B : Subgroup G", "φ : ↥A ≃* ↥B", "H : Type u_2", "inst✝² : Group H", "M : Type u_3", "inst✝¹ : Monoid M", "d : TransversalPair G A B", "inst✝ : DecidableEq G", "w : NormalWord d"], "goal": "unitsSMul φ 1 (unitsSMul φ (-1) w) = w"}], "premise": [10714], "state_str": "G : Type u_1\ninst✝³ : Group G\nA B : Subgroup G\nφ : ↥A ≃* ↥B\nH : Type u_2\ninst✝² : Group H\nM : Type u_3\ninst✝¹ : Monoid M\nd : TransversalPair G A B\ninst✝ : DecidableEq G\nw : NormalWord d\n⊢ unitsSMul φ 1 (unitsSMul φ (-1) w) = w"} +{"state": [{"context": ["R : Type u_1", "inst✝¹⁶ : CommSemiring R", "R' : Type u_2", "inst✝¹⁵ : Monoid R'", "R'' : Type u_3", "inst✝¹⁴ : Semiring R''", "M : Type u_4", "N : Type u_5", "P : Type u_6", "Q : Type u_7", "S : Type u_8", "T : Type u_9", "inst✝¹³ : AddCommMonoid M", "inst✝¹² : AddCommMonoid N", "inst✝¹¹ : AddCommMonoid P", "inst✝¹⁰ : AddCommMonoid Q", "inst✝⁹ : AddCommMonoid S", "inst✝⁸ : AddCommMonoid T", "inst✝⁷ : Module R M", "inst✝⁶ : Module R N", "inst✝⁵ : Module R P", "inst✝⁴ : Module R Q", "inst✝³ : Module R S", "inst✝² : Module R T", "inst✝¹ : DistribMulAction R' M", "inst✝ : Module R'' M", "g✝ : P →ₗ[R] Q", "f✝ : N →ₗ[R] P", "f' : P →ₗ[R] S", "f : M →ₗ[R] P", "g : N →ₗ[R] Q"], "goal": "rTensor Q f' ∘ₗ map f g = map (f' ∘ₗ f) g"}], "premise": [86898, 109760, 109761], "state_str": "R : Type u_1\ninst✝¹⁶ : CommSemiring R\nR' : Type u_2\ninst✝¹⁵ : Monoid R'\nR'' : Type u_3\ninst✝¹⁴ : Semiring R''\nM : Type u_4\nN : Type u_5\nP : Type u_6\nQ : Type u_7\nS : Type u_8\nT : Type u_9\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid N\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : AddCommMonoid Q\ninst✝⁹ : AddCommMonoid S\ninst✝⁸ : AddCommMonoid T\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module R P\ninst✝⁴ : Module R Q\ninst✝³ : Module R S\ninst✝² : Module R T\ninst✝¹ : DistribMulAction R' M\ninst✝ : Module R'' M\ng✝ : P →ₗ[R] Q\nf✝ : N →ₗ[R] P\nf' : P →ₗ[R] S\nf : M →ₗ[R] P\ng : N →ₗ[R] Q\n⊢ rTensor Q f' ∘ₗ map f g = map (f' ∘ₗ f) g"} +{"state": [{"context": ["m n✝ n : ℕ", "p : Fin (n + 1) → Prop", "I : DecidablePred p", "i : Fin (n + 1)", "hi : i ∈ Option.casesOn (find fun i => p (i.castLT ⋯)) (if x : p (last n) then some (last n) else none) fun i => some (i.castLT ⋯)"], "goal": "p i"}], "premise": [2160, 3817], "state_str": "m n✝ n : ℕ\np : Fin (n + 1) → Prop\nI : DecidablePred p\ni : Fin (n + 1)\nhi :\n i ∈\n Option.casesOn (find fun i => p (i.castLT ⋯)) (if x : p (last n) then some (last n) else none) fun i =>\n some (i.castLT ⋯)\n⊢ p i"} +{"state": [{"context": ["C : Type u", "A : Type u_1", "inst✝² : Category.{v, u} C", "inst✝¹ : AddCommMonoid A", "inst✝ : HasShift C A", "X Y : C", "f : X ⟶ Y", "n : A"], "goal": "(shiftFunctorZero C A).hom.app ((shiftFunctor C n).obj X) = (shiftFunctorComm C n 0).hom.app X ≫ (shiftFunctor C n).map ((shiftFunctorZero C A).hom.app X)"}], "premise": [92843, 92870, 119729], "state_str": "C : Type u\nA : Type u_1\ninst✝² : Category.{v, u} C\ninst✝¹ : AddCommMonoid A\ninst✝ : HasShift C A\nX Y : C\nf : X ⟶ Y\nn : A\n⊢ (shiftFunctorZero C A).hom.app ((shiftFunctor C n).obj X) =\n (shiftFunctorComm C n 0).hom.app X ≫ (shiftFunctor C n).map ((shiftFunctorZero C A).hom.app X)"} +{"state": [{"context": ["C : Type u", "A : Type u_1", "inst✝² : Category.{v, u} C", "inst✝¹ : AddCommMonoid A", "inst✝ : HasShift C A", "X Y : C", "f : X ⟶ Y", "n : A"], "goal": "(shiftFunctorZero C A).hom.app ((shiftFunctor C n).obj X) = ((shiftFunctorAdd' C n 0 n ⋯).inv.app X ≫ (shiftFunctorAdd' C 0 n n ⋯).hom.app X) ≫ (shiftFunctorAdd' C 0 n n ⋯).inv.app X"}], "premise": [92847, 96098, 96173, 96174], "state_str": "C : Type u\nA : Type u_1\ninst✝² : Category.{v, u} C\ninst✝¹ : AddCommMonoid A\ninst✝ : HasShift C A\nX Y : C\nf : X ⟶ Y\nn : A\n⊢ (shiftFunctorZero C A).hom.app ((shiftFunctor C n).obj X) =\n ((shiftFunctorAdd' C n 0 n ⋯).inv.app X ≫ (shiftFunctorAdd' C 0 n n ⋯).hom.app X) ≫\n (shiftFunctorAdd' C 0 n n ⋯).inv.app X"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type uX", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "n : ℕ", "h : ContDiffWithinAt 𝕜 (↑n) f s x"], "goal": "∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 (↑n) f s y"}], "premise": [14272, 48348], "state_str": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nh : ContDiffWithinAt 𝕜 (↑n) f s x\n⊢ ∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 (↑n) f s y"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝�� : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type uX", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u✝ : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "n : ℕ", "h : ContDiffWithinAt 𝕜 (↑n) f s x", "u : Set E", "hu : u ∈ 𝓝[insert x s] x", "left✝ : u ⊆ insert x s", "hd : ContDiffOn 𝕜 (↑n) f u"], "goal": "∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 (↑n) f s y"}], "premise": [1674, 16019, 57163], "state_str": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nh : ContDiffWithinAt 𝕜 (↑n) f s x\nu : Set E\nhu : u ∈ 𝓝[insert x s] x\nleft✝ : u ⊆ insert x s\nhd : ContDiffOn 𝕜 (↑n) f u\n⊢ ∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 (↑n) f s y"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type uX", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u✝ : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "n : ℕ", "h : ContDiffWithinAt 𝕜 (↑n) f s x", "u : Set E", "hu : u ∈ 𝓝[insert x s] x", "left✝ : u ⊆ insert x s", "hd : ContDiffOn 𝕜 (↑n) f u", "this : ∀ᶠ (y : E) in 𝓝[insert x s] x, u ∈ 𝓝[insert x s] y ∧ y ∈ u"], "goal": "∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 (↑n) f s y"}], "premise": [2106, 16027, 48332], "state_str": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nh : ContDiffWithinAt 𝕜 (↑n) f s x\nu : Set E\nhu : u ∈ 𝓝[insert x s] x\nleft✝ : u ⊆ insert x s\nhd : ContDiffOn 𝕜 (↑n) f u\nthis : ∀ᶠ (y : E) in 𝓝[insert x s] x, u ∈ 𝓝[insert x s] y ∧ y ∈ u\n⊢ ∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 (↑n) f s y"} +{"state": [{"context": ["𝕜 : Type u", "inst✝⁸ : NontriviallyNormedField 𝕜", "E : Type uE", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "F : Type uF", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "G : Type uG", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "X : Type uX", "inst✝¹ : NormedAddCommGroup X", "inst✝ : NormedSpace 𝕜 X", "s s₁ t u✝ : Set E", "f f₁ : E → F", "g : F → G", "x x₀ : E", "c : F", "m n✝ : ℕ∞", "p : E → FormalMultilinearSeries 𝕜 E F", "n : ℕ", "h : ContDiffWithinAt 𝕜 (↑n) f s x", "u : Set E", "hu : u ∈ 𝓝[insert x s] x", "left✝ : u ⊆ insert x s", "hd : ContDiffOn 𝕜 (↑n) f u", "this : ∀ᶠ (y : E) in 𝓝[insert x s] x, u ∈ 𝓝[insert x s] y ∧ y ∈ u", "y : E", "hy : u ∈ 𝓝[insert x s] y ∧ y ∈ u"], "goal": "u ∈ 𝓝[s] y"}], "premise": [2107, 55576, 133481], "state_str": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nh : ContDiffWithinAt 𝕜 (↑n) f s x\nu : Set E\nhu : u ∈ 𝓝[insert x s] x\nleft✝ : u ⊆ insert x s\nhd : ContDiffOn 𝕜 (↑n) f u\nthis : ∀ᶠ (y : E) in 𝓝[insert x s] x, u ∈ 𝓝[insert x s] y ∧ y ∈ u\ny : E\nhy : u ∈ 𝓝[insert x s] y ∧ y ∈ u\n⊢ u ∈ 𝓝[s] y"} +{"state": [{"context": ["T : ℝ", "hT : 0 < T", "t : ℝ", "μ : autoParam (Measure ℝ) _auto✝"], "goal": "IsAddFundamentalDomain (↥(zmultiples T).op) (Ioc t (t + T)) μ"}], "premise": [26449, 29169, 32981], "state_str": "T : ℝ\nhT : 0 < T\nt : ℝ\nμ : autoParam (Measure ℝ) _auto✝\n⊢ IsAddFundamentalDomain (↥(zmultiples T).op) (Ioc t (t + T)) μ"} +{"state": [{"context": ["T : ℝ", "hT : 0 < T", "t : ℝ", "μ : autoParam (Measure ℝ) _auto✝", "x : ℝ"], "goal": "∃! g, g +ᵥ x ∈ Ioc t (t + T)"}], "premise": [19838, 70738, 104450], "state_str": "T : ℝ\nhT : 0 < T\nt : ℝ\nμ : autoParam (Measure ℝ) _auto✝\nx : ℝ\n⊢ ∃! g, g +ᵥ x ∈ Ioc t (t + T)"} +{"state": [{"context": ["T : ℝ", "hT : 0 < T", "t : ℝ", "μ : autoParam (Measure ℝ) _auto✝", "x : ℝ", "this : Bijective (codRestrict (fun n => n • T) ↑(zmultiples T) ⋯)"], "goal": "∃! g, g +ᵥ x ∈ Ioc t (t + T)"}], "premise": [1674, 70738, 71027, 71418], "state_str": "T : ℝ\nhT : 0 < T\nt : ℝ\nμ : autoParam (Measure ℝ) _auto✝\nx : ℝ\nthis : Bijective (codRestrict (fun n => n • T) ↑(zmultiples T) ⋯)\n⊢ ∃! g, g +ᵥ x ∈ Ioc t (t + T)"} +{"state": [{"context": ["T : ℝ", "hT : 0 < T", "t : ℝ", "μ : autoParam (Measure ℝ) _auto✝", "x : ℝ", "this : Bijective (codRestrict (fun n => n • T) ↑(zmultiples T) ⋯)"], "goal": "∃! x_1, (⇑(zmultiples T).equivOp ∘ codRestrict (fun n => n • T) ↑(zmultiples T) ⋯) x_1 +ᵥ x ∈ Ioc t (t + T)"}], "premise": [107249], "state_str": "T : ℝ\nhT : 0 < T\nt : ℝ\nμ : autoParam (Measure ℝ) _auto✝\nx : ℝ\nthis : Bijective (codRestrict (fun n => n • T) ↑(zmultiples T) ⋯)\n⊢ ∃! x_1, (⇑(zmultiples T).equivOp ∘ codRestrict (fun n => n • T) ↑(zmultiples T) ⋯) x_1 +ᵥ x ∈ Ioc t (t + T)"} +{"state": [{"context": ["τ : ℂ"], "goal": "jacobiTheta (2 + τ) = jacobiTheta τ"}], "premise": [21377, 22228, 119708], "state_str": "τ : ℂ\n⊢ jacobiTheta (2 + τ) = jacobiTheta τ"} +{"state": [{"context": ["K : Type u", "inst✝¹ : CommRing K", "inst✝ : IsDomain K", "r : K", "x : RatFunc K"], "goal": "r • x = C r * x"}], "premise": [87245, 121165], "state_str": "K : Type u\ninst✝¹ : CommRing K\ninst✝ : IsDomain K\nr : K\nx : RatFunc K\n⊢ r • x = C r * x"} +{"state": [{"context": ["𝓕 : Type u_1", "𝕜 : Type u_2", "α : Type u_3", "ι : Type u_4", "κ : Type u_5", "E : Type u_6", "F : Type u_7", "G : Type u_8", "inst✝³ : SeminormedGroup E", "inst✝² : SeminormedGroup F", "inst✝¹ : SeminormedGroup G", "s : Set E", "a a₁ a₂ b b₁ b₂ : E", "r r₁ r₂ : ℝ", "inst✝ : FunLike 𝓕 E F"], "goal": "Tendsto (fun a => ‖a‖) (𝓝 1) (𝓝 0)"}], "premise": [42805], "state_str": "𝓕 : Type u_1\n𝕜 : Type u_2\nα : Type u_3\nι : Type u_4\nκ : Type u_5\nE : Type u_6\nF : Type u_7\nG : Type u_8\ninst✝³ : SeminormedGroup E\ninst✝² : SeminormedGroup F\ninst✝¹ : SeminormedGroup G\ns : Set E\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : FunLike 𝓕 E F\n⊢ Tendsto (fun a => ‖a‖) (𝓝 1) (𝓝 0)"} +{"state": [{"context": ["R : Type u_1", "inst✝¹⁰ : CommSemiring R", "M : Type u_2", "N : Type u_3", "P : Type u_4", "Q : Type u_5", "S : Type u_6", "inst✝⁹ : AddCommGroup M", "inst✝⁸ : AddCommGroup N", "inst✝⁷ : AddCommGroup P", "inst✝⁶ : AddCommGroup Q", "inst✝⁵ : AddCommGroup S", "inst✝⁴ : Module R M", "inst✝³ : Module R N", "inst✝² : Module R P", "inst✝¹ : Module R Q", "inst✝ : Module R S", "f : N →ₗ[R] P"], "goal": "lTensor M (-f) = -lTensor M f"}], "premise": [86939], "state_str": "R : Type u_1\ninst✝¹⁰ : CommSemiring R\nM : Type u_2\nN : Type u_3\nP : Type u_4\nQ : Type u_5\nS : Type u_6\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup N\ninst✝⁷ : AddCommGroup P\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : AddCommGroup S\ninst✝⁴ : Module R M\ninst✝³ : Module R N\ninst✝² : Module R P\ninst✝¹ : Module R Q\ninst✝ : Module R S\nf : N →ₗ[R] P\n⊢ lTensor M (-f) = -lTensor M f"} +{"state": [{"context": ["R : Type u_1", "inst✝¹⁰ : CommSemiring R", "M : Type u_2", "N : Type u_3", "P : Type u_4", "Q : Type u_5", "S : Type u_6", "inst✝⁹ : AddCommGroup M", "inst✝⁸ : AddCommGroup N", "inst✝⁷ : AddCommGroup P", "inst✝⁶ : AddCommGroup Q", "inst✝⁵ : AddCommGroup S", "inst✝⁴ : Module R M", "inst✝³ : Module R N", "inst✝² : Module R P", "inst✝¹ : Module R Q", "inst✝ : Module R S", "f : N →ₗ[R] P"], "goal": "(lTensorHom M) (-f) = -(lTensorHom M) f"}], "premise": [109767], "state_str": "R : Type u_1\ninst✝¹⁰ : CommSemiring R\nM : Type u_2\nN : Type u_3\nP : Type u_4\nQ : Type u_5\nS : Type u_6\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup N\ninst✝⁷ : AddCommGroup P\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : AddCommGroup S\ninst✝⁴ : Module R M\ninst✝³ : Module R N\ninst✝² : Module R P\ninst✝¹ : Module R Q\ninst✝ : Module R S\nf : N →ₗ[R] P\n⊢ (lTensorHom M) (-f) = -(lTensorHom M) f"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝ : DecidableEq α", "x : α", "n : ℕ", "x✝ : n + 2 ≠ 0"], "goal": "(replicate (n + 2) x).dedup = [x]"}], "premise": [1674, 2637, 3849, 5251, 130543], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝ : DecidableEq α\nx : α\nn : ℕ\nx✝ : n + 2 ≠ 0\n⊢ (replicate (n + 2) x).dedup = [x]"} +{"state": [{"context": ["R : Type u", "S : Type v", "σ : Type u_1", "τ : Type u_2", "r : R", "e : ℕ", "n m : σ", "s : σ →₀ ℕ", "inst✝² : CommSemiring R", "p q : MvPolynomial σ R", "inst✝¹ : CommSemiring S", "inst✝ : DecidableEq τ", "f : σ → τ", "φ : MvPolynomial σ R"], "goal": "((rename f) φ).vars ⊆ Finset.image f φ.vars"}], "premise": [2045, 110670, 111121, 137413, 137990, 139173], "state_str": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type u_2\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\ninst✝¹ : CommSemiring S\ninst✝ : DecidableEq τ\nf : σ → τ\nφ : MvPolynomial σ R\n⊢ ((rename f) φ).vars ⊆ Finset.image f φ.vars"} +{"state": [{"context": ["Γ : Type u_1", "R : Type u_2", "inst✝¹ : PartialOrder Γ", "inst✝ : AddMonoid R", "x : HahnSeries Γ Rᵃᵒᵖ", "x✝ : Γ"], "goal": "x✝ ∈ (AddOpposite.unop (addOppositeEquiv x)).support ↔ x✝ ∈ x.support"}], "premise": [79384], "state_str": "case h\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : PartialOrder Γ\ninst✝ : AddMonoid R\nx : HahnSeries Γ Rᵃᵒᵖ\nx✝ : Γ\n⊢ x✝ ∈ (AddOpposite.unop (addOppositeEquiv x)).support ↔ x✝ ∈ x.support"} +{"state": [{"context": ["R : Type u_1", "M : Type u_2", "inst✝³ : CommRing R", "inst✝² : AddCommGroup M", "inst✝¹ : Module R M", "f g : End R M", "inst✝ : IsSemisimpleModule R M"], "goal": "IsSemisimple LinearMap.id"}], "premise": [13586, 82423], "state_str": "R : Type u_1\nM : Type u_2\ninst✝³ : CommRing R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nf g : End R M\ninst✝ : IsSemisimpleModule R M\n⊢ IsSemisimple LinearMap.id"} +{"state": [{"context": ["R : Type u_1", "inst✝ : Monoid R", "b : R", "a : Rˣ"], "goal": "IsRegular ↑a"}], "premise": [107644], "state_str": "case intro\nR : Type u_1\ninst✝ : Monoid R\nb : R\na : Rˣ\n⊢ IsRegular ↑a"} +{"state": [{"context": ["ι : Type u", "γ : Type w", "β : ι → Type v", "β₁ : ι → Type v₁", "β₂ : ι → Type v₂", "inst✝¹ : DecidableEq ι", "inst✝ : (i : ι) → AddGroup (β i)", "s : Finset ι", "x : (i : ↑↑s) → β ↑i", "i : ι"], "goal": "(mk s (-x)) i = (-mk s x) i"}], "premise": [148851, 148879], "state_str": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ninst✝¹ : DecidableEq ι\ninst✝ : (i : ι) → AddGroup (β i)\ns : Finset ι\nx : (i : ↑↑s) → β ↑i\ni : ι\n⊢ (mk s (-x)) i = (-mk s x) i"} +{"state": [{"context": ["ι : Type u", "γ : Type w", "β : ι → Type v", "β₁ : ι → Type v₁", "β₂ : ι → Type v₂", "inst✝¹ : DecidableEq ι", "inst✝ : (i : ι) → AddGroup (β i)", "s : Finset ι", "x : (i : ↑↑s) → β ↑i", "i : ι"], "goal": "(if H : i ∈ s then (-x) ⟨i, H⟩ else 0) = -if H : i ∈ s then x ⟨i, H⟩ else 0"}], "premise": [119802], "state_str": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ninst✝¹ : DecidableEq ι\ninst✝ : (i : ι) → AddGroup (β i)\ns : Finset ι\nx : (i : ↑↑s) → β ↑i\ni : ι\n⊢ (if H : i ∈ s then (-x) ⟨i, H⟩ else 0) = -if H : i ∈ s then x ⟨i, H⟩ else 0"} +{"state": [{"context": ["C₁ : Type u_1", "C₂ : Type u_2", "C₃ : Type u_3", "D₁ : Type u_4", "D₂ : Type u_5", "D₃ : Type u_6", "inst✝⁶ : Category.{u_7, u_1} C₁", "inst✝⁵ : Category.{u_9, u_2} C₂", "inst✝⁴ : Category.{?u.3150, u_3} C₃", "inst✝³ : Category.{u_8, u_4} D₁", "inst✝² : Category.{u_10, u_5} D₂", "inst✝¹ : Category.{?u.3162, u_6} D₃", "T : C₁ ⥤ D₁", "L : C₁ ⥤ C₂", "R : D₁ ⥤ D₂", "B : C₂ ⥤ D₂", "w : TwoSquare T L R B", "L' : C₁ ⥤ C₂", "R' : D₁ ⥤ D₂", "inst✝ : w.GuitartExact", "α : L ≅ L'", "β : R ≅ R'"], "goal": "(w.whiskerVertical α.hom β.inv).GuitartExact"}], "premise": [90311], "state_str": "C₁ : Type u_1\nC₂ : Type u_2\nC₃ : Type u_3\nD₁ : Type u_4\nD₂ : Type u_5\nD₃ : Type u_6\ninst✝⁶ : Category.{u_7, u_1} C₁\ninst✝⁵ : Category.{u_9, u_2} C₂\ninst✝⁴ : Category.{?u.3150, u_3} C₃\ninst✝³ : Category.{u_8, u_4} D₁\ninst✝² : Category.{u_10, u_5} D₂\ninst✝¹ : Category.{?u.3162, u_6} D₃\nT : C₁ ⥤ D₁\nL : C₁ ⥤ C₂\nR : D₁ ⥤ D₂\nB : C₂ ⥤ D₂\nw : TwoSquare T L R B\nL' : C₁ ⥤ C₂\nR' : D₁ ⥤ D₂\ninst✝ : w.GuitartExact\nα : L ≅ L'\nβ : R ≅ R'\n⊢ (w.whiskerVertical α.hom β.inv).GuitartExact"} +{"state": [{"context": ["C₁ : Type u_1", "C₂ : Type u_2", "C₃ : Type u_3", "D₁ : Type u_4", "D₂ : Type u_5", "D₃ : Type u_6", "inst✝⁶ : Category.{u_7, u_1} C₁", "inst✝⁵ : Category.{u_9, u_2} C₂", "inst✝⁴ : Category.{?u.3150, u_3} C₃", "inst✝³ : Category.{u_8, u_4} D₁", "inst✝² : Category.{u_10, u_5} D₂", "inst✝¹ : Category.{?u.3162, u_6} D₃", "T : C₁ ⥤ D₁", "L : C₁ ⥤ C₂", "R : D₁ ⥤ D₂", "B : C₂ ⥤ D₂", "w : TwoSquare T L R B", "L' : C₁ ⥤ C₂", "R' : D₁ ⥤ D₂", "inst✝ : w.GuitartExact", "α : L ≅ L'", "β : R ≅ R'", "X₂ : D₁"], "goal": "((w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂).Initial"}], "premise": [96098, 96104, 96173, 96174, 99919, 99920], "state_str": "C₁ : Type u_1\nC₂ : Type u_2\nC₃ : Type u_3\nD₁ : Type u_4\nD₂ : Type u_5\nD₃ : Type u_6\ninst✝⁶ : Category.{u_7, u_1} C₁\ninst✝⁵ : Category.{u_9, u_2} C₂\ninst✝⁴ : Category.{?u.3150, u_3} C₃\ninst✝³ : Category.{u_8, u_4} D₁\ninst✝² : Category.{u_10, u_5} D₂\ninst✝¹ : Category.{?u.3162, u_6} D₃\nT : C₁ ⥤ D₁\nL : C₁ ⥤ C₂\nR : D₁ ⥤ D₂\nB : C₂ ⥤ D₂\nw : TwoSquare T L R B\nL' : C₁ ⥤ C₂\nR' : D₁ ⥤ D₂\ninst✝ : w.GuitartExact\nα : L ≅ L'\nβ : R ≅ R'\nX₂ : D₁\n⊢ ((w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂).Initial"} +{"state": [{"context": ["C₁ : Type u_1", "C₂ : Type u_2", "C₃ : Type u_3", "D₁ : Type u_4", "D₂ : Type u_5", "D₃ : Type u_6", "inst✝⁶ : Category.{u_7, u_1} C₁", "inst✝⁵ : Category.{u_9, u_2} C₂", "inst✝⁴ : Category.{?u.3150, u_3} C₃", "inst✝³ : Category.{u_8, u_4} D₁", "inst✝² : Category.{u_10, u_5} D₂", "inst✝¹ : Category.{?u.3162, u_6} D₃", "T : C₁ ⥤ D₁", "L : C₁ ⥤ C₂", "R : D₁ ⥤ D₂", "B : C₂ ⥤ D₂", "w : TwoSquare T L R B", "L' : C₁ ⥤ C₂", "R' : D₁ ⥤ D₂", "inst✝ : w.GuitartExact", "α : L ≅ L'", "β : R ≅ R'", "X₂ : D₁", "e : (w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂ ≅ w.structuredArrowDownwards X₂ ⋙ (StructuredArrow.mapIso (β.app X₂)).functor := NatIso.ofComponents (fun f => StructuredArrow.isoMk (α.symm.app f.right) ⋯) ⋯"], "goal": "((w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂).Initial"}], "premise": [95955], "state_str": "C₁ : Type u_1\nC₂ : Type u_2\nC₃ : Type u_3\nD₁ : Type u_4\nD₂ : Type u_5\nD₃ : Type u_6\ninst✝⁶ : Category.{u_7, u_1} C₁\ninst✝⁵ : Category.{u_9, u_2} C₂\ninst✝⁴ : Category.{?u.3150, u_3} C₃\ninst✝³ : Category.{u_8, u_4} D₁\ninst✝² : Category.{u_10, u_5} D₂\ninst✝¹ : Category.{?u.3162, u_6} D₃\nT : C₁ ⥤ D₁\nL : C₁ ⥤ C₂\nR : D₁ ⥤ D₂\nB : C₂ ⥤ D₂\nw : TwoSquare T L R B\nL' : C₁ ⥤ C₂\nR' : D₁ ⥤ D₂\ninst✝ : w.GuitartExact\nα : L ≅ L'\nβ : R ≅ R'\nX₂ : D₁\ne : (w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂ ≅\n w.structuredArrowDownwards X₂ ⋙ (StructuredArrow.mapIso (β.app X₂)).functor :=\n NatIso.ofComponents (fun f => StructuredArrow.isoMk (α.symm.app f.right) ⋯) ⋯\n⊢ ((w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂).Initial"} +{"state": [{"context": ["G : Type u_1", "H : Type u_2", "inst✝¹ : AddCommMonoid G", "inst✝ : AddCommMonoid H", "A B : Set (G × G)", "s : Set G", "t : Set H", "f : G → H", "a b c x₁ y₁ x₂ y₂ : G", "hf : IsAddFreimanHom 2 s t f", "hAs : A ⊆ s ×ˢ s", "hx₁y₁ : (x₁, y₁) ∈ A", "hx₁y₂ : (x₁, y₂) ∈ A", "hx₂y₁ : (x₂, y₁) ∈ A", "hxy : x₁ + y₂ = x₂ + y₁"], "goal": "IsCorner (Prod.map f f '' A) (f x₁) (f y₁) (f x₂) (f y₂)"}], "premise": [2106, 2107, 53300, 131593], "state_str": "case mk\nG : Type u_1\nH : Type u_2\ninst✝¹ : AddCommMonoid G\ninst✝ : AddCommMonoid H\nA B : Set (G × G)\ns : Set G\nt : Set H\nf : G → H\na b c x₁ y₁ x₂ y₂ : G\nhf : IsAddFreimanHom 2 s t f\nhAs : A ⊆ s ×ˢ s\nhx₁y₁ : (x₁, y₁) ∈ A\nhx₁y₂ : (x₁, y₂) ∈ A\nhx₂y₁ : (x₂, y₁) ∈ A\nhxy : x₁ + y₂ = x₂ + y₁\n⊢ IsCorner (Prod.map f f '' A) (f x₁) (f y₁) (f x₂) (f y₂)"} +{"state": [{"context": ["ι : Type u", "s : Finset ι", "f g : ι → ℝ≥0", "p q : ℝ", "hpq : p.IsConjExponent q", "hF_zero : ¬∑ i ∈ s, f i ^ p = 0", "hG_zero : ¬∑ i ∈ s, g i ^ q = 0", "f' : ι → ℝ≥0 := fun i => f i / (∑ i ∈ s, f i ^ p) ^ (1 / p)", "g' : ι → ℝ≥0 := fun i => g i / (∑ i ∈ s, g i ^ q) ^ (1 / q)"], "goal": "∑ i ∈ s, f' i * g' i ≤ 1"}], "premise": [14277, 39507], "state_str": "case neg\nι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : p.IsConjExponent q\nhF_zero : ¬∑ i ∈ s, f i ^ p = 0\nhG_zero : ¬∑ i ∈ s, g i ^ q = 0\nf' : ι → ℝ≥0 := fun i => f i / (∑ i ∈ s, f i ^ p) ^ (1 / p)\ng' : ι → ℝ≥0 := fun i => g i / (∑ i ∈ s, g i ^ q) ^ (1 / q)\n⊢ ∑ i ∈ s, f' i * g' i ≤ 1"} +{"state": [{"context": ["z : ℍ"], "goal": "r1 z = 1 / ((z.re / z.im) ^ 2 + 1)"}], "premise": [115822, 117838, 117927], "state_str": "z : ℍ\n⊢ r1 z = 1 / ((z.re / z.im) ^ 2 + 1)"} +{"state": [{"context": ["S : Type u_1", "inst✝³ : AddMonoidWithOne S", "C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : HasZeroMorphisms C", "inst✝ : HasShift C S", "X : DifferentialObject S C"], "goal": "(eqToHom ⋯).f = eqToHom ⋯"}], "premise": [97736], "state_str": "S : Type u_1\ninst✝³ : AddMonoidWithOne S\nC : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasShift C S\nX : DifferentialObject S C\n⊢ (eqToHom ⋯).f = eqToHom ⋯"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "x : RatFunc K", "h : x.num = 0"], "goal": "x = 0"}], "premise": [90080, 108302, 121564], "state_str": "K : Type u\ninst✝ : Field K\nx : RatFunc K\nh : x.num = 0\n⊢ x = 0"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n : ℕ", "χ : DirichletCharacter R n", "hn : n ≠ 0"], "goal": "χ = 1 ↔ χ.conductor = 1"}], "premise": [21345], "state_str": "R : Type u_1\ninst✝ : CommMonoidWithZero R\nn : ℕ\nχ : DirichletCharacter R n\nhn : n ≠ 0\n⊢ χ = 1 ↔ χ.conductor = 1"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n : ℕ", "χ : DirichletCharacter R n", "hn : n ≠ 0", "hχ : χ.conductor = 1"], "goal": "χ = 1"}], "premise": [21343], "state_str": "R : Type u_1\ninst✝ : CommMonoidWithZero R\nn : ℕ\nχ : DirichletCharacter R n\nhn : n ≠ 0\nhχ : χ.conductor = 1\n⊢ χ = 1"} +{"state": [{"context": ["R : Type u_1", "inst✝ : CommMonoidWithZero R", "n : ℕ", "χ : DirichletCharacter R n", "hn : n ≠ 0", "hχ : χ.conductor = 1", "h' : χ.conductor ∣ n", "χ₀ : DirichletCharacter R χ.conductor", "h : χ = (changeLevel h') χ₀"], "goal": "χ = 1"}], "premise": [2101, 21335, 21336], "state_str": "case intro.intro\nR : Type u_1\ninst✝ : CommMonoidWithZero R\nn : ℕ\nχ : DirichletCharacter R n\nhn : n ≠ 0\nhχ : χ.conductor = 1\nh' : χ.conductor ∣ n\nχ₀ : DirichletCharacter R χ.conductor\nh : χ = (changeLevel h') χ₀\n⊢ χ = 1"} +{"state": [{"context": ["G : Type u_1", "inst✝ : Group G", "ι : Type u_2", "hdec : DecidableEq ι", "hfin : Fintype ι", "H : ι → Subgroup G", "f g : (i : ι) → ↥(H i)", "hcomm : Pairwise fun i j => ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y", "i : ι", "y : ↥(H i)"], "goal": "(noncommPiCoprod hcomm) (Pi.mulSingle i y) = ↑y"}], "premise": [6983], "state_str": "G : Type u_1\ninst✝ : Group G\nι : Type u_2\nhdec : DecidableEq ι\nhfin : Fintype ι\nH : ι → Subgroup G\nf g : (i : ι) → ↥(H i)\nhcomm : Pairwise fun i j => ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y\ni : ι\ny : ↥(H i)\n⊢ (noncommPiCoprod hcomm) (Pi.mulSingle i y) = ↑y"} +{"state": [{"context": ["R : Type u", "inst✝ : CommSemiring R", "x y z : R", "h : IsCoprime x (y + x * z)"], "goal": "IsCoprime x y"}], "premise": [74060], "state_str": "R : Type u\ninst✝ : CommSemiring R\nx y z : R\nh : IsCoprime x (y + x * z)\n⊢ IsCoprime x y"} +{"state": [{"context": ["R : Type u", "inst✝ : CommSemiring R", "x y z : R", "h : IsCoprime (y + x * z) x"], "goal": "IsCoprime y x"}], "premise": [74087], "state_str": "R : Type u\ninst✝ : CommSemiring R\nx y z : R\nh : IsCoprime (y + x * z) x\n⊢ IsCoprime y x"} +{"state": [{"context": ["F : Type u", "E : Type v", "inst✝⁵ : Field F", "inst✝⁴ : Field E", "inst✝³ : Algebra F E", "K : Type w", "inst✝² : Field K", "inst✝¹ : Algebra F K", "inst✝ : Algebra.IsAlgebraic F E", "x : E", "L : IntermediateField F E := separableClosure F E"], "goal": "IsIntegral (↥L) x ∧ (IsSeparable (↥L) x → x ∈ (algebraMap (↥L) E).range)"}], "premise": [75552, 75585], "state_str": "F : Type u\nE : Type v\ninst✝⁵ : Field F\ninst✝⁴ : Field E\ninst✝³ : Algebra F E\nK : Type w\ninst✝² : Field K\ninst✝¹ : Algebra F K\ninst✝ : Algebra.IsAlgebraic F E\nx : E\nL : IntermediateField F E := separableClosure F E\n⊢ IsIntegral (↥L) x ∧ (IsSeparable (↥L) x → x ∈ (algebraMap (↥L) E).range)"} +{"state": [{"context": ["F : Type u", "E : Type v", "inst✝⁵ : Field F", "inst✝⁴ : Field E", "inst✝³ : Algebra F E", "K : Type w", "inst✝² : Field K", "inst✝¹ : Algebra F K", "inst✝ : Algebra.IsAlgebraic F E", "x : E", "L : IntermediateField F E := separableClosure F E", "h : IsSeparable (↥L) x"], "goal": "x ∈ (algebraMap (↥L) E).range"}], "premise": [1674, 90371], "state_str": "F : Type u\nE : Type v\ninst✝⁵ : Field F\ninst✝⁴ : Field E\ninst✝³ : Algebra F E\nK : Type w\ninst✝² : Field K\ninst✝¹ : Algebra F K\ninst✝ : Algebra.IsAlgebraic F E\nx : E\nL : IntermediateField F E := separableClosure F E\nh : IsSeparable (↥L) x\n⊢ x ∈ (algebraMap (↥L) E).range"} +{"state": [{"context": ["F : Type u", "E : Type v", "inst✝⁵ : Field F", "inst✝⁴ : Field E", "inst✝³ : Algebra F E", "K : Type w", "inst✝² : Field K", "inst✝¹ : Algebra F K", "inst✝ : Algebra.IsAlgebraic F E", "x : E", "L : IntermediateField F E := separableClosure F E", "h : IsSeparable (↥L) x", "this : Algebra.IsSeparable ↥L ↥(↥L)⟮x⟯"], "goal": "x ∈ (algebraMap (↥L) E).range"}], "premise": [90373], "state_str": "F : Type u\nE : Type v\ninst✝⁵ : Field F\ninst✝⁴ : Field E\ninst✝³ : Algebra F E\nK : Type w\ninst✝² : Field K\ninst✝¹ : Algebra F K\ninst✝ : Algebra.IsAlgebraic F E\nx : E\nL : IntermediateField F E := separableClosure F E\nh : IsSeparable (↥L) x\nthis : Algebra.IsSeparable ↥L ↥(↥L)⟮x⟯\n⊢ x ∈ (algebraMap (↥L) E).range"} +{"state": [{"context": ["F : Type u", "E : Type v", "inst✝⁵ : Field F", "inst✝⁴ : Field E", "inst✝³ : Algebra F E", "K : Type w", "inst✝² : Field K", "inst✝¹ : Algebra F K", "inst✝ : Algebra.IsAlgebraic F E", "x : E", "L : IntermediateField F E := separableClosure F E", "h : IsSeparable (↥L) x", "this✝ : Algebra.IsSeparable ↥L ↥(↥L)⟮x⟯", "this : Algebra.IsSeparable F ↥(restrictScalars F (↥L)⟮x⟯)"], "goal": "x ∈ (algebraMap (↥L) E).range"}], "premise": [90824], "state_str": "F : Type u\nE : Type v\ninst✝⁵ : Field F\ninst✝⁴ : Field E\ninst✝³ : Algebra F E\nK : Type w\ninst✝² : Field K\ninst✝¹ : Algebra F K\ninst✝ : Algebra.IsAlgebraic F E\nx : E\nL : IntermediateField F E := separableClosure F E\nh : IsSeparable (↥L) x\nthis✝ : Algebra.IsSeparable ↥L ↥(↥L)⟮x⟯\nthis : Algebra.IsSeparable F ↥(restrictScalars F (↥L)⟮x⟯)\n⊢ x ∈ (algebraMap (↥L) E).range"} +{"state": [{"context": ["F : Type u", "E : Type v", "inst✝⁵ : Field F", "inst✝⁴ : Field E", "inst✝³ : Algebra F E", "K : Type w", "inst✝² : Field K", "inst✝¹ : Algebra F K", "inst✝ : Algebra.IsAlgebraic F E", "x : E", "L : IntermediateField F E := separableClosure F E", "h : IsSeparable (↥L) x", "this✝ : Algebra.IsSeparable ↥L ↥(↥L)⟮x⟯", "this : Algebra.IsSeparable F ↥(restrictScalars F (↥L)⟮x⟯)", "hx : x ∈ restrictScalars F (↥L)⟮x⟯"], "goal": "x ∈ (algebraMap (↥L) E).range"}], "premise": [1674, 89039, 90370], "state_str": "F : Type u\nE : Type v\ninst✝⁵ : Field F\ninst✝⁴ : Field E\ninst✝³ : Algebra F E\nK : Type w\ninst✝² : Field K\ninst✝¹ : Algebra F K\ninst✝ : Algebra.IsAlgebraic F E\nx : E\nL : IntermediateField F E := separableClosure F E\nh : IsSeparable (↥L) x\nthis✝ : Algebra.IsSeparable ↥L ↥(↥L)⟮x⟯\nthis : Algebra.IsSeparable F ↥(restrictScalars F (↥L)⟮x⟯)\nhx : x ∈ restrictScalars F (↥L)⟮x⟯\n⊢ x ∈ (algebraMap (↥L) E).range"} +{"state": [{"context": ["C : Type u", "inst✝ : Groupoid C", "S : Subgroupoid C", "s : Set (Subgroupoid C)", "sn : ∀ S ∈ s, S.IsNormal"], "goal": "∀ (c : C), 𝟙 c ∈ (sInf s).arrows c c"}], "premise": [135216], "state_str": "C : Type u\ninst✝ : Groupoid C\nS : Subgroupoid C\ns : Set (Subgroupoid C)\nsn : ∀ S ∈ s, S.IsNormal\n⊢ ∀ (c : C), 𝟙 c ∈ (sInf s).arrows c c"} +{"state": [{"context": ["C : Type u", "inst✝ : Groupoid C", "S : Subgroupoid C", "s : Set (Subgroupoid C)", "sn : ∀ S ∈ s, S.IsNormal"], "goal": "∀ (c : C), ∀ i ∈ s, 𝟙 c ∈ i.arrows c c"}], "premise": [91486], "state_str": "C : Type u\ninst✝ : Groupoid C\nS : Subgroupoid C\ns : Set (Subgroupoid C)\nsn : ∀ S ∈ s, S.IsNormal\n⊢ ∀ (c : C), ∀ i ∈ s, 𝟙 c ∈ i.arrows c c"} +{"state": [{"context": ["C : Type u", "inst✝ : Groupoid C", "S : Subgroupoid C", "s : Set (Subgroupoid C)", "sn : ∀ S ∈ s, S.IsNormal"], "goal": "∀ {c d : C} (p : c ⟶ d) {γ : c ⟶ c}, γ ∈ (sInf s).arrows c c → Groupoid.inv p ≫ γ ≫ p ∈ (sInf s).arrows d d"}], "premise": [135216], "state_str": "C : Type u\ninst✝ : Groupoid C\nS : Subgroupoid C\ns : Set (Subgroupoid C)\nsn : ∀ S ∈ s, S.IsNormal\n⊢ ∀ {c d : C} (p : c ⟶ d) {γ : c ⟶ c}, γ ∈ (sInf s).arrows c c → Groupoid.inv p ≫ γ ≫ p ∈ (sInf s).arrows d d"} +{"state": [{"context": ["C : Type u", "inst✝ : Groupoid C", "S : Subgroupoid C", "s : Set (Subgroupoid C)", "sn : ∀ S ∈ s, S.IsNormal"], "goal": "∀ {c d : C} (p : c ⟶ d) {γ : c ⟶ c}, (∀ i ∈ s, γ ∈ i.arrows c c) → ∀ i ∈ s, Groupoid.inv p ≫ γ ≫ p ∈ i.arrows d d"}], "premise": [91490], "state_str": "C : Type u\ninst✝ : Groupoid C\nS : Subgroupoid C\ns : Set (Subgroupoid C)\nsn : ∀ S ∈ s, S.IsNormal\n⊢ ∀ {c d : C} (p : c ⟶ d) {γ : c ⟶ c}, (∀ i ∈ s, γ ∈ i.arrows c c) → ∀ i ∈ s, Groupoid.inv p ≫ γ ≫ p ∈ i.arrows d d"} +{"state": [{"context": ["T : ℝ", "hT : Fact (0 < T)", "n : ℤ", "hn : 1 < |n|", "s : Set (AddCircle T)", "hs : MeasurableSet s", "hs' : (fun y => n • y) ⁻¹' s = s", "u : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)"], "goal": "s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"}], "premise": [104481, 142599], "state_str": "T : ℝ\nhT : Fact (0 < T)\nn : ℤ\nhn : 1 < |n|\ns : Set (AddCircle T)\nhs : MeasurableSet s\nhs' : (fun y => n • y) ⁻¹' s = s\nu : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)\n⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"} +{"state": [{"context": ["T : ℝ", "hT : Fact (0 < T)", "n : ℤ", "hn✝ : 1 < |n|", "s : Set (AddCircle T)", "hs : MeasurableSet s", "hs' : (fun y => n • y) ⁻¹' s = s", "u : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)", "hn : 1 < n.natAbs"], "goal": "s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"}], "premise": [58022, 103566, 106843, 126228], "state_str": "T : ℝ\nhT : Fact (0 < T)\nn : ℤ\nhn✝ : 1 < |n|\ns : Set (AddCircle T)\nhs : MeasurableSet s\nhs' : (fun y => n • y) ⁻¹' s = s\nu : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)\nhn : 1 < n.natAbs\n⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"} +{"state": [{"context": ["T : ℝ", "hT : Fact (0 < T)", "n : ℤ", "hn✝ : 1 < |n|", "s : Set (AddCircle T)", "hs : MeasurableSet s", "hs' : (fun y => n • y) ⁻¹' s = s", "u : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)", "hn : 1 < n.natAbs", "hu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j"], "goal": "s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"}], "premise": [2218, 8442, 104482, 106301, 106329], "state_str": "T : ℝ\nhT : Fact (0 < T)\nn : ℤ\nhn✝ : 1 < |n|\ns : Set (AddCircle T)\nhs : MeasurableSet s\nhs' : (fun y => n • y) ⁻¹' s = s\nu : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)\nhn : 1 < n.natAbs\nhu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j\n⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"} +{"state": [{"context": ["T : ℝ", "hT : Fact (0 < T)", "n : ℤ", "hn✝ : 1 < |n|", "s : Set (AddCircle T)", "hs : MeasurableSet s", "hs' : (fun y => n • y) ⁻¹' s = s", "u : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)", "hn : 1 < n.natAbs", "hu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j", "hnu : ∀ (j : ℕ), n ^ j • u j = 0"], "goal": "s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"}], "premise": [131030], "state_str": "T : ℝ\nhT : Fact (0 < T)\nn : ℤ\nhn✝ : 1 < |n|\ns : Set (AddCircle T)\nhs : MeasurableSet s\nhs' : (fun y => n • y) ⁻¹' s = s\nu : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)\nhn : 1 < n.natAbs\nhu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j\nhnu : ∀ (j : ℕ), n ^ j • u j = 0\n⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"} +{"state": [{"context": ["T : ℝ", "hT : Fact (0 < T)", "n : ℤ", "hn✝ : 1 < |n|", "s : Set (AddCircle T)", "hs : MeasurableSet s", "hs' : (fun y => n • y) ⁻¹' s = s", "u : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)", "hn : 1 < n.natAbs", "hu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j", "hnu : ∀ (j : ℕ), n ^ j • u j = 0", "hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s"], "goal": "s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"}], "premise": [34064], "state_str": "T : ℝ\nhT : Fact (0 < T)\nn : ℤ\nhn✝ : 1 < |n|\ns : Set (AddCircle T)\nhs : MeasurableSet s\nhs' : (fun y => n • y) ⁻¹' s = s\nu : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)\nhn : 1 < n.natAbs\nhu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j\nhnu : ∀ (j : ℕ), n ^ j • u j = 0\nhu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s\n⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"} +{"state": [{"context": ["T : ℝ", "hT : Fact (0 < T)", "n : ℤ", "hn✝ : 1 < |n|", "s : Set (AddCircle T)", "hs : MeasurableSet s", "hs' : (fun y => n • y) ⁻¹' s = s", "u : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)", "hn : 1 < n.natAbs", "hu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j", "hnu : ∀ (j : ℕ), n ^ j • u j = 0", "hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s", "hu₂ : Tendsto (fun j => addOrderOf (u j)) atTop atTop"], "goal": "s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"}], "premise": [29169, 89127], "state_str": "T : ℝ\nhT : Fact (0 < T)\nn : ℤ\nhn✝ : 1 < |n|\ns : Set (AddCircle T)\nhs : MeasurableSet s\nhs' : (fun y => n • y) ⁻¹' s = s\nu : ℕ → AddCircle T := fun j => ↑(1 / ↑(n.natAbs ^ j) * T)\nhn : 1 < n.natAbs\nhu₀ : ∀ (j : ℕ), addOrderOf (u j) = n.natAbs ^ j\nhnu : ∀ (j : ℕ), n ^ j • u j = 0\nhu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s\nhu₂ : Tendsto (fun j => addOrderOf (u j)) atTop atTop\n⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ"} +{"state": [{"context": ["R : Type u", "inst✝¹ : CommRing R", "W' : Jacobian R", "F : Type v", "inst✝ : Field F", "W : Jacobian F", "P : Fin 3 → F", "hP : W.Nonsingular P", "hPz : P z = 0"], "goal": "W.negMap ⟦P⟧ = ⟦![1, 1, 0]⟧"}], "premise": [120589, 121978, 145448, 145488, 145490, 145590, 145599], "state_str": "R : Type u\ninst✝¹ : CommRing R\nW' : Jacobian R\nF : Type v\ninst✝ : Field F\nW : Jacobian F\nP : Fin 3 → F\nhP : W.Nonsingular P\nhPz : P z = 0\n⊢ W.negMap ⟦P⟧ = ⟦![1, 1, 0]⟧"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕝 : Type u_2", "E : Type u_3", "F : Type u_4", "β : Type u_5", "inst✝⁶ : OrderedRing 𝕜", "inst✝⁵ : TopologicalSpace E", "inst✝⁴ : TopologicalSpace F", "inst✝³ : AddCommGroup E", "inst✝² : AddCommGroup F", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "s✝ t : Set E", "x✝ y✝ : E", "s : Set F", "hs : StrictConvex 𝕜 s", "f : E →ᵃ[𝕜] F", "hf : Continuous ⇑f", "hfinj : Injective ⇑f", "x : E", "hx : x ∈ ⇑f ⁻¹' s", "y : E", "hy : y ∈ ⇑f ⁻¹' s", "hxy : x ≠ y", "a b : 𝕜", "ha : 0 < a", "hb : 0 < b", "hab : a + b = 1"], "goal": "a • x + b • y ∈ interior (⇑f ⁻¹' s)"}], "premise": [55627], "state_str": "𝕜 : Type u_1\n𝕝 : Type u_2\nE : Type u_3\nF : Type u_4\nβ : Type u_5\ninst✝⁶ : OrderedRing 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommGroup E\ninst✝² : AddCommGroup F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns✝ t : Set E\nx✝ y✝ : E\ns : Set F\nhs : StrictConvex 𝕜 s\nf : E →ᵃ[𝕜] F\nhf : Continuous ⇑f\nhfinj : Injective ⇑f\nx : E\nhx : x ∈ ⇑f ⁻¹' s\ny : E\nhy : y ∈ ⇑f ⁻¹' s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • x + b • y ∈ interior (⇑f ⁻¹' s)"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕝 : Type u_2", "E : Type u_3", "F : Type u_4", "β : Type u_5", "inst✝⁶ : OrderedRing 𝕜", "inst✝⁵ : TopologicalSpace E", "inst✝⁴ : TopologicalSpace F", "inst✝³ : AddCommGroup E", "inst✝² : AddCommGroup F", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "s✝ t : Set E", "x✝ y✝ : E", "s : Set F", "hs : StrictConvex 𝕜 s", "f : E →ᵃ[𝕜] F", "hf : Continuous ⇑f", "hfinj : Injective ⇑f", "x : E", "hx : x ∈ ⇑f ⁻¹' s", "y : E", "hy : y ∈ ⇑f ⁻¹' s", "hxy : x ≠ y", "a b : 𝕜", "ha : 0 < a", "hb : 0 < b", "hab : a + b = 1"], "goal": "a • x + b • y ∈ ⇑f ⁻¹' interior s"}], "premise": [84379, 131591], "state_str": "𝕜 : Type u_1\n𝕝 : Type u_2\nE : Type u_3\nF : Type u_4\nβ : Type u_5\ninst✝⁶ : OrderedRing 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommGroup E\ninst✝² : AddCommGroup F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns✝ t : Set E\nx✝ y✝ : E\ns : Set F\nhs : StrictConvex 𝕜 s\nf : E →ᵃ[𝕜] F\nhf : Continuous ⇑f\nhfinj : Injective ⇑f\nx : E\nhx : x ∈ ⇑f ⁻¹' s\ny : E\nhy : y ∈ ⇑f ⁻¹' s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • x + b • y ∈ ⇑f ⁻¹' interior s"} +{"state": [{"context": ["𝕜 : Type u_1", "𝕝 : Type u_2", "E : Type u_3", "F : Type u_4", "β : Type u_5", "inst✝⁶ : OrderedRing 𝕜", "inst✝⁵ : TopologicalSpace E", "inst✝⁴ : TopologicalSpace F", "inst✝³ : AddCommGroup E", "inst✝² : AddCommGroup F", "inst✝¹ : Module 𝕜 E", "inst✝ : Module 𝕜 F", "s✝ t : Set E", "x✝ y✝ : E", "s : Set F", "hs : StrictConvex 𝕜 s", "f : E →ᵃ[𝕜] F", "hf : Continuous ⇑f", "hfinj : Injective ⇑f", "x : E", "hx : x ∈ ⇑f ⁻¹' s", "y : E", "hy : y ∈ ⇑f ⁻¹' s", "hxy : x ≠ y", "a b : 𝕜", "ha : 0 < a", "hb : 0 < b", "hab : a + b = 1"], "goal": "a • f x + b • f y ∈ interior s"}], "premise": [71390], "state_str": "𝕜 : Type u_1\n𝕝 : Type u_2\nE : Type u_3\nF : Type u_4\nβ : Type u_5\ninst✝⁶ : OrderedRing 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommGroup E\ninst✝² : AddCommGroup F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns✝ t : Set E\nx✝ y✝ : E\ns : Set F\nhs : StrictConvex 𝕜 s\nf : E →ᵃ[𝕜] F\nhf : Continuous ⇑f\nhfinj : Injective ⇑f\nx : E\nhx : x ∈ ⇑f ⁻¹' s\ny : E\nhy : y ∈ ⇑f ⁻¹' s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • f x + b • f y ∈ interior s"} +{"state": [{"context": ["X✝ Y Z : Scheme", "𝒰✝ : X✝.OpenCover", "f : X✝ ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f) g", "X : Scheme", "𝒰 : X.OpenCover", "H : CompactSpace ↑↑X.toPresheafedSpace"], "goal": "X.OpenCover"}], "premise": [55501, 58144, 127354, 128108], "state_str": "X✝ Y Z : Scheme\n𝒰✝ : X✝.OpenCover\nf : X✝ ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f) g\nX : Scheme\n𝒰 : X.OpenCover\nH : CompactSpace ↑↑X.toPresheafedSpace\n⊢ X.OpenCover"} +{"state": [{"context": ["X✝ Y Z : Scheme", "𝒰✝ : X✝.OpenCover", "f : X✝ ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f) g", "X : Scheme", "𝒰 : X.OpenCover", "H : CompactSpace ↑↑X.toPresheafedSpace", "this : ∃ t, ⋃ x ∈ t, (fun x => Set.range ⇑(𝒰.map (𝒰.f x)).val.base) x = ⊤", "t : Finset ↑↑X.toPresheafedSpace := this.choose"], "goal": "X.OpenCover"}], "premise": [1084, 1680, 16573], "state_str": "X✝ Y Z : Scheme\n𝒰✝ : X✝.OpenCover\nf : X✝ ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f) g\nX : Scheme\n𝒰 : X.OpenCover\nH : CompactSpace ↑↑X.toPresheafedSpace\nthis : ∃ t, ⋃ x ∈ t, (fun x => Set.range ⇑(𝒰.map (𝒰.f x)).val.base) x = ⊤\nt : Finset ↑↑X.toPresheafedSpace := this.choose\n⊢ X.OpenCover"} +{"state": [{"context": ["X✝ Y Z : Scheme", "𝒰✝ : X✝.OpenCover", "f : X✝ ⟶ Z", "g : Y ⟶ Z", "inst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f) g", "X : Scheme", "𝒰 : X.OpenCover", "H : CompactSpace ↑↑X.toPresheafedSpace", "this : ∃ t, ⋃ x ∈ t, (fun x => Set.range ⇑(𝒰.map (𝒰.f x)).val.base) x = ⊤", "t : Finset ↑↑X.toPresheafedSpace := this.choose", "h : ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ⇑(𝒰.map (𝒰.f ↑y)).val.base"], "goal": "X.OpenCover"}], "premise": [1111], "state_str": "X✝ Y Z : Scheme\n𝒰✝ : X✝.OpenCover\nf : X✝ ⟶ Z\ng : Y ⟶ Z\ninst✝ : ∀ (x : 𝒰✝.J), HasPullback (𝒰✝.map x ≫ f) g\nX : Scheme\n𝒰 : X.OpenCover\nH : CompactSpace ↑↑X.toPresheafedSpace\nthis : ∃ t, ⋃ x ∈ t, (fun x => Set.range ⇑(𝒰.map (𝒰.f x)).val.base) x = ⊤\nt : Finset ↑↑X.toPresheafedSpace := this.choose\nh : ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ⇑(𝒰.map (𝒰.f ↑y)).val.base\n⊢ X.OpenCover"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝² : NormedAddCommGroup E", "inst✝¹ : CompleteSpace E", "inst✝ : NormedSpace ℝ E", "a✝ b✝ : ℝ", "f✝ g : ℝ → E", "μ : Measure ℝ", "a b C : ℝ", "f : ℝ → E", "h : ∀ᵐ (x : ℝ), x ∈ Ι a b → ‖f x‖ ≤ C"], "goal": "‖∫ (x : ℝ) in a..b, f x‖ ≤ C * |b - a|"}], "premise": [26347], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ : Measure ℝ\na b C : ℝ\nf : ℝ → E\nh : ∀ᵐ (x : ℝ), x ∈ Ι a b → ‖f x‖ ≤ C\n⊢ ‖∫ (x : ℝ) in a..b, f x‖ ≤ C * |b - a|"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝² : NormedAddCommGroup E", "inst✝¹ : CompleteSpace E", "inst✝ : NormedSpace ℝ E", "a✝ b✝ : ℝ", "f✝ g : ℝ → E", "μ : Measure ℝ", "a b C : ℝ", "f : ℝ → E", "h : ∀ᵐ (x : ℝ), x ∈ Ι a b → ‖f x‖ ≤ C"], "goal": "‖∫ (x : ℝ) in Ι a b, f x ∂volume‖ ≤ C * |b - a|"}], "premise": [26449, 28314], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ : Measure ℝ\na b C : ℝ\nf : ℝ → E\nh : ∀ᵐ (x : ℝ), x ∈ Ι a b → ‖f x‖ ≤ C\n⊢ ‖∫ (x : ℝ) in Ι a b, f x ∂volume‖ ≤ C * |b - a|"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "ι : Type u_3", "inst✝² : TopologicalSpace X", "inst✝¹ : TopologicalSpace Y", "s t : Set X", "inst✝ : LocallyCompactSpace Y", "f : X → Y", "hf : ClosedEmbedding f", "x : X"], "goal": "(𝓝 x).HasBasis (fun s => s ∈ 𝓝 (f x) ∧ IsCompact s) fun x => f ⁻¹' x"}], "premise": [56011], "state_str": "X : Type u_1\nY : Type u_2\nι : Type u_3\ninst✝² : TopologicalSpace X\ninst✝¹ : TopologicalSpace Y\ns t : Set X\ninst✝ : LocallyCompactSpace Y\nf : X → Y\nhf : ClosedEmbedding f\nx : X\n⊢ (𝓝 x).HasBasis (fun s => s ∈ 𝓝 (f x) ∧ IsCompact s) fun x => f ⁻¹' x"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "ι : Type u_3", "inst✝² : TopologicalSpace X", "inst✝¹ : TopologicalSpace Y", "s t : Set X", "inst✝ : LocallyCompactSpace Y", "f : X → Y", "hf : ClosedEmbedding f", "x : X"], "goal": "(comap f (𝓝 (f x))).HasBasis (fun s => s ∈ 𝓝 (f x) ∧ IsCompact s) fun x => f ⁻¹' x"}], "premise": [12603, 56660], "state_str": "X : Type u_1\nY : Type u_2\nι : Type u_3\ninst✝² : TopologicalSpace X\ninst✝¹ : TopologicalSpace Y\ns t : Set X\ninst✝ : LocallyCompactSpace Y\nf : X → Y\nhf : ClosedEmbedding f\nx : X\n⊢ (comap f (𝓝 (f x))).HasBasis (fun s => s ∈ 𝓝 (f x) ∧ IsCompact s) fun x => f ⁻¹' x"} +{"state": [{"context": ["s : Set ℕ", "h : 0 < sInf s"], "goal": "s.Nonempty"}], "premise": [1734], "state_str": "s : Set ℕ\nh : 0 < sInf s\n⊢ s.Nonempty"} +{"state": [{"context": ["s : Set ℕ", "h : 0 < sInf s", "contra : ¬s.Nonempty"], "goal": "False"}], "premise": [133377], "state_str": "s : Set ℕ\nh : 0 < sInf s\ncontra : ¬s.Nonempty\n⊢ False"} +{"state": [{"context": ["s : Set ℕ", "h : 0 < sInf s", "contra : s = ∅"], "goal": "False"}], "premise": [3770], "state_str": "s : Set ℕ\nh : 0 < sInf s\ncontra : s = ∅\n⊢ False"} +{"state": [{"context": ["s : Set ℕ", "h : 0 < sInf s", "contra : s = ∅", "h' : sInf s ≠ 0"], "goal": "sInf s = 0"}], "premise": [143667], "state_str": "s : Set ℕ\nh : 0 < sInf s\ncontra : s = ∅\nh' : sInf s ≠ 0\n⊢ sInf s = 0"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "inst✝³ : LinearOrderedAddCommGroup α", "inst✝² : TopologicalSpace α", "inst✝¹ : Archimedean α", "inst✝ : OrderClosedTopology α", "b : α", "hb : 0 < b", "hf : Summable fun x => b"], "goal": "Finite ι"}], "premise": [63034, 63264], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝³ : LinearOrderedAddCommGroup α\ninst✝² : TopologicalSpace α\ninst✝¹ : Archimedean α\ninst✝ : OrderClosedTopology α\nb : α\nhb : 0 < b\nhf : Summable fun x => b\n⊢ Finite ι"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "inst✝³ : LinearOrderedAddCommGroup α", "inst✝² : TopologicalSpace α", "inst✝¹ : Archimedean α", "inst✝ : OrderClosedTopology α", "b : α", "hb : 0 < b", "hf : Summable fun x => b", "H : ∀ (s : Finset ι), s.card • b ≤ ∑' (x : ι), b"], "goal": "Finite ι"}], "premise": [107243], "state_str": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝³ : LinearOrderedAddCommGroup α\ninst✝² : TopologicalSpace α\ninst✝¹ : Archimedean α\ninst✝ : OrderClosedTopology α\nb : α\nhb : 0 < b\nhf : Summable fun x => b\nH : ∀ (s : Finset ι), s.card • b ≤ ∑' (x : ι), b\n⊢ Finite ι"} +{"state": [{"context": ["ι : Type u_1", "κ : Type u_2", "α : Type u_3", "inst✝³ : LinearOrderedAddCommGroup α", "inst✝² : TopologicalSpace α", "inst✝¹ : Archimedean α", "inst✝ : OrderClosedTopology α", "b : α", "hb : 0 < b", "hf : Summable fun x => b", "H : ∀ (s : Finset ι), s.card • b ≤ ∑' (x : ι), b", "n : ℕ", "hn : ∑' (x : ι), b ≤ n • b"], "goal": "Finite ι"}], "premise": [103822], "state_str": "case intro\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝³ : LinearOrderedAddCommGroup α\ninst✝² : TopologicalSpace α\ninst✝¹ : Archimedean α\ninst✝ : OrderClosedTopology α\nb : α\nhb : 0 < b\nhf : Summable fun x => b\nH : ∀ (s : Finset ι), s.card • b ≤ ∑' (x : ι), b\nn : ℕ\nhn : ∑' (x : ι), b ≤ n • b\n⊢ Finite ι"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "A : ValuationSubring K", "a : ↥A", "h : A.valuation ↑a = 1"], "goal": "IsUnit a"}], "premise": [75406, 113017], "state_str": "K : Type u\ninst✝ : Field K\nA : ValuationSubring K\na : ↥A\nh : A.valuation ↑a = 1\n⊢ IsUnit a"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "A : ValuationSubring K", "a : ↥A", "h : A.valuation ↑a = 1", "ha : ↑a ≠ 0"], "goal": "IsUnit a"}], "premise": [75990, 108199, 119801], "state_str": "K : Type u\ninst✝ : Field K\nA : ValuationSubring K\na : ↥A\nh : A.valuation ↑a = 1\nha : ↑a ≠ 0\n⊢ IsUnit a"} +{"state": [{"context": ["K : Type u", "inst✝ : Field K", "A : ValuationSubring K", "a : ↥A", "h : A.valuation ↑a = 1", "ha : ↑a ≠ 0", "ha' : (↑a)⁻¹ ∈ A"], "goal": "IsUnit a"}], "premise": [120490], "state_str": "K : Type u\ninst✝ : Field K\nA : ValuationSubring K\na : ↥A\nh : A.valuation ↑a = 1\nha : ↑a ≠ 0\nha' : (↑a)⁻¹ ∈ A\n⊢ IsUnit a"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ε : Type u_5", "ι : Type u_6", "f✝ : α →. β", "f : γ →. δ", "g : β →. γ", "h : α →. β", "x✝¹ : α", "x✝ : δ"], "goal": "x✝ ∈ (f.comp g).comp h x✝¹ ↔ x✝ ∈ f.comp (g.comp h) x✝¹"}], "premise": [128217, 128222], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nε : Type u_5\nι : Type u_6\nf✝ : α →. β\nf : γ →. δ\ng : β →. γ\nh : α →. β\nx✝¹ : α\nx✝ : δ\n⊢ x✝ ∈ (f.comp g).comp h x✝¹ ↔ x✝ ∈ f.comp (g.comp h) x✝¹"} +{"state": [{"context": ["m n : ℕ", "α : Fin (n + 1) → Type u", "x : α (last n)", "q : (i : Fin (n + 1)) → α i", "p : (i : Fin n) → α i.castSucc", "i✝ : Fin n", "y : α i✝.castSucc", "z : α (last n)", "i : Fin n"], "goal": "init (snoc p x) i = p i"}], "premise": [1172, 1686, 3972, 4086], "state_str": "case h\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α i.castSucc\ni✝ : Fin n\ny : α i✝.castSucc\nz : α (last n)\ni : Fin n\n⊢ init (snoc p x) i = p i"} +{"state": [{"context": ["m n : ℕ", "α : Fin (n + 1) → Type u", "x : α (last n)", "q : (i : Fin (n + 1)) → α i", "p : (i : Fin n) → α i.castSucc", "i✝ : Fin n", "y : α i✝.castSucc", "z : α (last n)", "i : Fin n"], "goal": "p (i.castSucc.castLT ⋯) = p i"}], "premise": [1686], "state_str": "case h\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α i.castSucc\ni✝ : Fin n\ny : α i✝.castSucc\nz : α (last n)\ni : Fin n\n⊢ p (i.castSucc.castLT ⋯) = p i"} +{"state": [{"context": ["R : Type u", "S : Type v", "T : Type w", "ι : Type y", "A : Type z", "a b : R", "n : ℕ", "inst✝ : CommRing R", "p : R[X]"], "goal": "derivative (p.comp (1 - X)) = -(derivative p).comp (1 - X)"}], "premise": [101531], "state_str": "R : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np : R[X]\n⊢ derivative (p.comp (1 - X)) = -(derivative p).comp (1 - X)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "l✝ m : Language α", "a b x : List α", "g : β → γ", "f : α → β", "l : Language α"], "goal": "(map g) ((map f) l) = (map (g ∘ f)) l"}], "premise": [134101], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nl✝ m : Language α\na b x : List α\ng : β → γ\nf : α → β\nl : Language α\n⊢ (map g) ((map f) l) = (map (g ∘ f)) l"} +{"state": [{"context": ["X : Type u_1", "Y : Type u_2", "inst✝¹ : TopologicalSpace X", "inst✝ : TopologicalSpace Y", "f : Filter X", "s✝ t s₁ s₂ t₁ t₂ : Set X", "x : X", "ι : Sort u_3", "p : ι → Prop", "s : ι → Set X", "P : X → Prop"], "goal": "(∀ᶠ (x : X) in 𝓝ˢ (⋃ i, ⋃ (_ : p i), s i), P x) ↔ ∀ (i : ι), p i → ∀ᶠ (x : X) in 𝓝ˢ (s i), P x"}], "premise": [16042, 56958], "state_str": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nf : Filter X\ns✝ t s₁ s₂ t₁ t₂ : Set X\nx : X\nι : Sort u_3\np : ι → Prop\ns : ι → Set X\nP : X → Prop\n⊢ (∀ᶠ (x : X) in 𝓝ˢ (⋃ i, ⋃ (_ : p i), s i), P x) ↔ ∀ (i : ι), p i → ∀ᶠ (x : X) in 𝓝ˢ (s i), P x"} +{"state": [{"context": ["C : Type u_1", "inst✝¹ : Category.{u_2, u_1} C", "inst✝ : Abelian C", "S S₁ S₂ S₃ : SnakeInput C", "f : S₁ ⟶ S₂"], "goal": "S₁.δ ≫ f.f₃.τ₁ = f.f₀.τ₃ ≫ S₂.δ"}], "premise": [96173, 96190, 113569, 114349, 114372, 114397], "state_str": "C : Type u_1\ninst✝¹ : Category.{u_2, u_1} C\ninst✝ : Abelian C\nS S₁ S₂ S₃ : SnakeInput C\nf : S₁ ⟶ S₂\n⊢ S₁.δ ≫ f.f₃.τ₁ = f.f₀.τ₃ ≫ S₂.δ"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "δ : Type u_1", "ι : Sort x", "f : Filter α", "p q : α → Prop"], "goal": "(∃ᶠ (x : α) in f, p x ∨ q x) ↔ (∃ᶠ (x : α) in f, p x) ∨ ∃ᶠ (x : α) in f, q x"}], "premise": [1999, 16029, 70089], "state_str": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type u_1\nι : Sort x\nf : Filter α\np q : α → Prop\n⊢ (∃ᶠ (x : α) in f, p x ∨ q x) ↔ (∃ᶠ (x : α) in f, p x) ∨ ∃ᶠ (x : α) in f, q x"} +{"state": [{"context": ["α : Type u", "L L₁ L₂ L₃ L₄ : List (α × Bool)", "β : Type v", "inst✝ : Group β", "f : α → β", "x y : FreeGroup α"], "goal": "(lift f).range = Subgroup.closure (Set.range f)"}], "premise": [10180, 14296, 122716], "state_str": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\nβ : Type v\ninst✝ : Group β\nf : α → β\nx y : FreeGroup α\n⊢ (lift f).range = Subgroup.closure (Set.range f)"} +{"state": [{"context": ["α : Type u", "L L₁ L₂ L₃ L₄ : List (α × Bool)", "β : Type v", "inst✝ : Group β", "f : α → β", "x y : FreeGroup α"], "goal": "Subgroup.closure (Set.range f) ≤ (lift f).range"}], "premise": [122719], "state_str": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\nβ : Type v\ninst✝ : Group β\nf : α → β\nx y : FreeGroup α\n⊢ Subgroup.closure (Set.range f) ≤ (lift f).range"} +{"state": [{"context": ["α : Type u", "L L₁ L₂ L₃ L₄ : List (α × Bool)", "β : Type v", "inst✝ : Group β", "f : α → β", "x y : FreeGroup α", "a : α"], "goal": "f a ∈ ↑(lift f).range"}], "premise": [10170], "state_str": "case intro\nα : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\nβ : Type v\ninst✝ : Group β\nf : α → β\nx y : FreeGroup α\na : α\n⊢ f a ∈ ↑(lift f).range"} +{"state": [{"context": ["q✝ q : ℕ+"], "goal": "ωb * ω = 1"}], "premise": [22810, 119707], "state_str": "q✝ q : ℕ+\n⊢ ωb * ω = 1"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "inst✝⁴ : DecidableEq α", "inst✝³ : DecidableEq β", "inst✝² : SemilatticeSup α", "inst✝¹ : OrderBot α", "inst✝ : DecidableRel Disjoint", "s s₁ s₂ t t₁ t₂ u : Finset α", "a b c : α"], "goal": "(s₁ ∪ s₂) ○ t = s₁ ○ t ∪ s₂ ○ t"}], "premise": [137444, 139120], "state_str": "F : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝⁴ : DecidableEq α\ninst✝³ : DecidableEq β\ninst✝² : SemilatticeSup α\ninst✝¹ : OrderBot α\ninst✝ : DecidableRel Disjoint\ns s₁ s₂ t t₁ t₂ u : Finset α\na b c : α\n⊢ (s₁ ∪ s₂) ○ t = s₁ ○ t ∪ s₂ ○ t"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : CommGroup α", "inst✝ : DecidableEq α", "A✝ B✝ C✝ A B C : Finset α"], "goal": "(A * C).card * B.card ≤ (A / B).card * (B * C).card"}], "premise": [117875], "state_str": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA✝ B✝ C✝ A B C : Finset α\n⊢ (A * C).card * B.card ≤ (A / B).card * (B * C).card"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : CommGroup α", "inst✝ : DecidableEq α", "A✝ B✝ C✝ A B C : Finset α"], "goal": "(A / C⁻¹).card * B.card ≤ (A / B).card * (B / C⁻¹).card"}], "premise": [53218], "state_str": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA✝ B✝ C✝ A B C : Finset α\n⊢ (A / C⁻¹).card * B.card ≤ (A / B).card * (B / C⁻¹).card"} +{"state": [{"context": ["w x✝ y✝ z y : ℝ", "hy : y ≠ 0", "x : ℝ≥0"], "goal": "(x ^ (1 / y)) ^ y = x"}], "premise": [39678], "state_str": "w x✝ y✝ z y : ℝ\nhy : y ≠ 0\nx : ℝ≥0\n⊢ (x ^ (1 / y)) ^ y = x"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "σ g : Perm α", "ht : g.IsThreeCycle"], "goal": "(g * g).IsThreeCycle"}], "premise": [9418, 9419, 9653, 119750], "state_str": "α : Type u_1\ninst��¹ : Fintype α\ninst✝ : DecidableEq α\nσ g : Perm α\nht : g.IsThreeCycle\n⊢ (g * g).IsThreeCycle"} +{"state": [{"context": ["α : Type u_1", "inst✝¹ : Fintype α", "inst✝ : DecidableEq α", "σ g : Perm α", "ht : g.IsThreeCycle"], "goal": "Nat.Coprime 2 (_root_.orderOf g)"}], "premise": [9424], "state_str": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ g : Perm α\nht : g.IsThreeCycle\n⊢ Nat.Coprime 2 (_root_.orderOf g)"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝³ : Category.{?u.59011, u_1} C", "inst✝² : Category.{?u.59015, u_2} D", "inst✝¹ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "inst✝ : HasZeroMorphisms D", "φ : S₁ ⟶ S₂"], "goal": "φ.τ₃.op ≫ S₁.g.op = S₂.g.op ≫ φ.τ₂.op"}], "premise": [89631, 113555], "state_str": "C : Type u_1\nD : Type u_2\ninst✝³ : Category.{?u.59011, u_1} C\ninst✝² : Category.{?u.59015, u_2} D\ninst✝¹ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\ninst✝ : HasZeroMorphisms D\nφ : S₁ ⟶ S₂\n⊢ φ.τ₃.op ≫ S₁.g.op = S₂.g.op ≫ φ.τ₂.op"} +{"state": [{"context": ["C : Type u_1", "D : Type u_2", "inst✝³ : Category.{?u.59011, u_1} C", "inst✝² : Category.{?u.59015, u_2} D", "inst✝¹ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "inst✝ : HasZeroMorphisms D", "φ : S₁ ⟶ S₂"], "goal": "φ.τ₂.op ≫ S₁.f.op = S₂.f.op ≫ φ.τ₁.op"}], "premise": [89631, 113554], "state_str": "C : Type u_1\nD : Type u_2\ninst✝³ : Category.{?u.59011, u_1} C\ninst✝² : Category.{?u.59015, u_2} D\ninst✝¹ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\ninst✝ : HasZeroMorphisms D\nφ : S₁ ⟶ S₂\n⊢ φ.τ₂.op ≫ S₁.f.op = S₂.f.op ≫ φ.τ₁.op"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "inst✝³ : NormedDivisionRing 𝕜", "inst✝² : SeminormedAddCommGroup E", "inst✝¹ : Module 𝕜 E", "inst✝ : BoundedSMul 𝕜 E", "c : 𝕜", "hc : c ≠ 0", "s : Set E", "x : E"], "goal": "infDist (c • x) (c • s) = ‖c‖ * infDist x s"}], "premise": [41114, 42755, 118863, 143431, 146626], "state_str": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\nhc : c ≠ 0\ns : Set E\nx : E\n⊢ infDist (c • x) (c • s) = ‖c‖ * infDist x s"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddCommGroup G", "inst✝³ : μ.IsAddLeftInvariant", "inst✝² : μ.IsNegInvariant", "inst✝¹ : MeasurableNeg G", "inst✝ : MeasurableAdd G", "h1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x", "h2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x"], "goal": "∫ (t : G), (L (f t)) (g (-x - t)) ∂μ = ∫ (t : G), (L (f (-t))) (g (x + t)) ∂μ"}], "premise": [33652], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddCommGroup G\ninst✝³ : μ.IsAddLeftInvariant\ninst✝² : μ.IsNegInvariant\ninst✝¹ : MeasurableNeg G\ninst✝ : MeasurableAdd G\nh1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x\nh2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x\n⊢ ∫ (t : G), (L (f t)) (g (-x - t)) ∂μ = ∫ (t : G), (L (f (-t))) (g (x + t)) ∂μ"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddCommGroup G", "inst✝³ : μ.IsAddLeftInvariant", "inst✝² : μ.IsNegInvariant", "inst✝¹ : MeasurableNeg G", "inst✝ : MeasurableAdd G", "h1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x", "h2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x"], "goal": "(fun a => (L (f a)) (g (-x - a))) =ᶠ[ae μ] fun a => (L (f (-a))) (g (x + a))"}], "premise": [1674, 15889, 32404, 131585], "state_str": "case h\n𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddCommGroup G\ninst✝³ : μ.IsAddLeftInvariant\ninst✝² : μ.IsNegInvariant\ninst✝¹ : MeasurableNeg G\ninst✝ : MeasurableAdd G\nh1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x\nh2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x\n⊢ (fun a => (L (f a)) (g (-x - a))) =ᶠ[ae μ] fun a => (L (f (-a))) (g (x + a))"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddCommGroup G", "inst✝³ : μ.IsAddLeftInvariant", "inst✝² : μ.IsNegInvariant", "inst✝¹ : MeasurableNeg G", "inst✝ : MeasurableAdd G", "h1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x", "h2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x", "t : G", "ht : f (-t) = f t", "h't : g (-(x + t)) = g (x + t)"], "goal": "(L (f t)) (g (-x - t)) = (L (f (-t))) (g (x + t))"}], "premise": [117887], "state_str": "case h\n𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddCommGroup G\ninst✝³ : μ.IsAddLeftInvariant\ninst✝² : μ.IsNegInvariant\ninst✝¹ : MeasurableNeg G\ninst✝ : MeasurableAdd G\nh1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x\nh2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x\nt : G\nht : f (-t) = f t\nh't : g (-(x + t)) = g (x + t)\n⊢ (L (f t)) (g (-x - t)) = (L (f (-t))) (g (x + t))"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddCommGroup G", "inst✝³ : μ.IsAddLeftInvariant", "inst✝² : μ.IsNegInvariant", "inst✝¹ : MeasurableNeg G", "inst✝ : MeasurableAdd G", "h1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x", "h2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x"], "goal": "∫ (t : G), (L (f (-t))) (g (x + t)) ∂μ = ∫ (t : G), (L (f t)) (g (x - t)) ∂μ"}], "premise": [30910], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddCommGroup G\ninst✝³ : μ.IsAddLeftInvariant\ninst✝² : μ.IsNegInvariant\ninst✝¹ : MeasurableNeg G\ninst✝ : MeasurableAdd G\nh1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x\nh2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x\n⊢ ∫ (t : G), (L (f (-t))) (g (x + t)) ∂μ = ∫ (t : G), (L (f t)) (g (x - t)) ∂μ"} +{"state": [{"context": ["𝕜 : Type u𝕜", "G : Type uG", "E : Type uE", "E' : Type uE'", "E'' : Type uE''", "F : Type uF", "F' : Type uF'", "F'' : Type uF''", "P : Type uP", "inst✝¹⁵ : NormedAddCommGroup E", "inst✝¹⁴ : NormedAddCommGroup E'", "inst✝¹³ : NormedAddCommGroup E''", "inst✝¹² : NormedAddCommGroup F", "f f' : G → E", "g g' : G → E'", "x x' : G", "y y' : E", "inst✝¹¹ : NontriviallyNormedField 𝕜", "inst✝¹⁰ : NormedSpace 𝕜 E", "inst✝⁹ : NormedSpace 𝕜 E'", "inst✝⁸ : NormedSpace 𝕜 E''", "inst✝⁷ : NormedSpace 𝕜 F", "L : E →L[𝕜] E' →L[𝕜] F", "inst✝⁶ : MeasurableSpace G", "μ ν : Measure G", "inst✝⁵ : NormedSpace ℝ F", "inst✝⁴ : AddCommGroup G", "inst✝³ : μ.IsAddLeftInvariant", "inst✝² : μ.IsNegInvariant", "inst✝¹ : MeasurableNeg G", "inst✝ : MeasurableAdd G", "h1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x", "h2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x"], "goal": "∫ (x_1 : G), (L (f (- -x_1))) (g (x + -x_1)) ∂μ = ∫ (t : G), (L (f t)) (g (x - t)) ∂μ"}], "premise": [119769, 119789], "state_str": "𝕜 : Type u𝕜\nG : Type uG\nE : Type uE\nE' : Type uE'\nE'' : Type uE''\nF : Type uF\nF' : Type uF'\nF'' : Type uF''\nP : Type uP\ninst✝¹⁵ : NormedAddCommGroup E\ninst✝¹⁴ : NormedAddCommGroup E'\ninst✝¹³ : NormedAddCommGroup E''\ninst✝¹² : NormedAddCommGroup F\nf f' : G → E\ng g' : G → E'\nx x' : G\ny y' : E\ninst✝¹¹ : NontriviallyNormedField 𝕜\ninst✝¹⁰ : NormedSpace 𝕜 E\ninst✝⁹ : NormedSpace 𝕜 E'\ninst✝⁸ : NormedSpace 𝕜 E''\ninst✝⁷ : NormedSpace 𝕜 F\nL : E →L[𝕜] E' →L[𝕜] F\ninst✝⁶ : MeasurableSpace G\nμ ν : Measure G\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : AddCommGroup G\ninst✝³ : μ.IsAddLeftInvariant\ninst✝² : μ.IsNegInvariant\ninst✝¹ : MeasurableNeg G\ninst✝ : MeasurableAdd G\nh1 : ∀ᵐ (x : G) ∂μ, f (-x) = f x\nh2 : ∀ᵐ (x : G) ∂μ, g (-x) = g x\n⊢ ∫ (x_1 : G), (L (f (- -x_1))) (g (x + -x_1)) ∂μ = ∫ (t : G), (L (f t)) (g (x - t)) ∂μ"} +{"state": [{"context": ["α : Type u_1", "M : Type u_2", "R : Type u_3", "inst✝ : OrderedCommGroup α", "m✝ n✝ : ℤ", "a b : α", "ha : 1 < a", "m n : ℤ", "h : m < n"], "goal": "a ^ m * a ^ (n - m) = a ^ n"}], "premise": [2489, 118036], "state_str": "α : Type u_1\nM : Type u_2\nR : Type u_3\ninst✝ : OrderedCommGroup α\nm✝ n✝ : ℤ\na b : α\nha : 1 < a\nm n : ℤ\nh : m < n\n⊢ a ^ m * a ^ (n - m) = a ^ n"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "inst✝ : DivisionSemiring α", "q r : ℚ≥0", "hq : ↑q.den ≠ 0", "hr : ↑r.den ≠ 0"], "goal": "↑(q * r) = ↑q * ↑r"}], "premise": [115612, 118228, 134447, 142804, 148027], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\ninst✝ : DivisionSemiring α\nq r : ℚ≥0\nhq : ↑q.den ≠ 0\nhr : ↑r.den ≠ 0\n⊢ ↑(q * r) = ↑q * ↑r"} +{"state": [{"context": ["F : Type u_1", "α : Type u_2", "β : Type u_3", "R : Type u_4", "inst✝ : DivisionMonoid α", "n : ℤ", "a : α"], "goal": "IsSquare ((a * a) ^ n)"}], "premise": [118330, 118372], "state_str": "case intro\nF : Type u_1\nα : Type u_2\nβ : Type u_3\nR : Type u_4\ninst✝ : DivisionMonoid α\nn : ℤ\na : α\n⊢ IsSquare ((a * a) ^ n)"} +{"state": [{"context": ["R : Type u_1", "inst✝²⁰ : CommSemiring R", "R' : Type u_2", "inst✝¹⁹ : Monoid R'", "R'' : Type u_3", "inst✝¹⁸ : Semiring R''", "M : Type u_4", "N : Type u_5", "P : Type u_6", "Q : Type u_7", "S : Type u_8", "T : Type u_9", "inst✝¹⁷ : AddCommMonoid M", "inst✝¹⁶ : AddCommMonoid N", "inst✝¹⁵ : AddCommMonoid P", "inst✝¹⁴ : AddCommMonoid Q", "inst✝¹³ : AddCommMonoid S", "inst✝¹² : AddCommMonoid T", "inst✝¹¹ : Module R M", "inst✝¹⁰ : Module R N", "inst✝⁹ : Module R P", "inst✝⁸ : Module R Q", "inst✝⁷ : Module R S", "inst✝⁶ : Module R T", "inst✝⁵ : DistribMulAction R' M", "inst✝⁴ : Module R'' M", "P' : Type u_10", "Q' : Type u_11", "inst✝³ : AddCommMonoid P'", "inst✝² : Module R P'", "inst✝¹ : AddCommMonoid Q'", "inst✝ : Module R Q'", "x✝¹ : M", "x✝ : N"], "goal": "(((mk R M N).compr₂ (map LinearMap.id LinearMap.id)) x✝¹) x✝ = (((mk R M N).compr₂ LinearMap.id) x✝¹) x✝"}], "premise": [81838, 86851, 86888, 109729], "state_str": "case H.h.h\nR : Type u_1\ninst✝²⁰ : CommSemiring R\nR' : Type u_2\ninst✝¹⁹ : Monoid R'\nR'' : Type u_3\ninst✝¹⁸ : Semiring R''\nM : Type u_4\nN : Type u_5\nP : Type u_6\nQ : Type u_7\nS : Type u_8\nT : Type u_9\ninst✝¹⁷ : AddCommMonoid M\ninst✝¹⁶ : AddCommMonoid N\ninst✝¹⁵ : AddCommMonoid P\ninst✝¹⁴ : AddCommMonoid Q\ninst✝¹³ : AddCommMonoid S\ninst✝¹² : AddCommMonoid T\ninst✝¹¹ : Module R M\ninst✝¹⁰ : Module R N\ninst✝⁹ : Module R P\ninst✝⁸ : Module R Q\ninst✝⁷ : Module R S\ninst✝⁶ : Module R T\ninst✝⁵ : DistribMulAction R' M\ninst✝⁴ : Module R'' M\nP' : Type u_10\nQ' : Type u_11\ninst✝³ : AddCommMonoid P'\ninst✝² : Module R P'\ninst✝¹ : AddCommMonoid Q'\ninst✝ : Module R Q'\nx✝¹ : M\nx✝ : N\n⊢ (((mk R M N).compr₂ (map LinearMap.id LinearMap.id)) x✝¹) x✝ = (((mk R M N).compr₂ LinearMap.id) x✝¹) x✝"} +{"state": [{"context": ["C : Type u", "inst✝² : Category.{v, u} C", "inst✝¹ : IsCofilteredOrEmpty C", "D : Type u₁", "inst✝ : Category.{v₁, u₁} D", "L : C ⥤ D", "R : D ⥤ C", "h : L ⊣ R", "X Y : D", "f g : X ⟶ Y"], "goal": "(h.homEquiv (eq (R.map f) (R.map g)) X).symm (eqHom (R.map f) (R.map g)) ≫ f = (h.homEquiv (eq (R.map f) (R.map g)) X).symm (eqHom (R.map f) (R.map g)) ≫ g"}], "premise": [95796, 96576], "state_str": "C : Type u\ninst✝² : Category.{v, u} C\ninst✝¹ : IsCofilteredOrEmpty C\nD : Type u₁\ninst✝ : Category.{v₁, u₁} D\nL : C ⥤ D\nR : D ⥤ C\nh : L ⊣ R\nX Y : D\nf g : X ⟶ Y\n⊢ (h.homEquiv (eq (R.map f) (R.map g)) X).symm (eqHom (R.map f) (R.map g)) ≫ f =\n (h.homEquiv (eq (R.map f) (R.map g)) X).symm (eqHom (R.map f) (R.map g)) ≫ g"} +{"state": [{"context": ["x✝ y x : ℝ"], "goal": "arccos x ≤ π / 4 ↔ √2 / 2 ≤ x"}], "premise": [37302], "state_str": "x✝ y x : ℝ\n⊢ arccos x ≤ π / 4 ↔ √2 / 2 ≤ x"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "ι : Sort u_4", "ι' : Sort u_5", "ι₂ : Sort u_6", "κ : ι → Sort u_7", "κ₁ : ι → Sort u_8", "κ₂ : ι → Sort u_9", "κ' : ι' → Sort u_10", "f : α → β", "s : Set β"], "goal": "⋃ y ∈ s, f ⁻¹' {y} = f ⁻¹' s"}], "premise": [135379, 135514], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Sort u_4\nι' : Sort u_5\nι₂ : Sort u_6\nκ : ι → Sort u_7\nκ₁ : ι → Sort u_8\nκ₂ : ι → Sort u_9\nκ' : ι' → Sort u_10\nf : α → β\ns : Set β\n⊢ ⋃ y ∈ s, f ⁻¹' {y} = f ⁻¹' s"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "G : Cᵒᵖ ⥤ Grp", "X : C", "I : Type w'", "U : I → C", "γ₁ γ₂ : OneCocycle G U", "α : ZeroCochain G U", "h : OneCohomologyRelation γ₁.toOneCochain γ₂.toOneCochain α"], "goal": "γ₂.IsCohomologous γ₁"}], "premise": [90424], "state_str": "case intro\nC : Type u\ninst✝ : Category.{v, u} C\nG : Cᵒᵖ ⥤ Grp\nX : C\nI : Type w'\nU : I → C\nγ₁ γ₂ : OneCocycle G U\nα : ZeroCochain G U\nh : OneCohomologyRelation γ₁.toOneCochain γ₂.toOneCochain α\n⊢ γ₂.IsCohomologous γ₁"} +{"state": [{"context": ["C : Type u", "inst✝ : Category.{v, u} C", "G : Cᵒᵖ ⥤ Grp", "X : C", "I : Type w'", "U : I → C", "γ₁ γ₂✝ γ₂ : OneCocycle G U", "α : ZeroCochain G U", "h : OneCohomologyRelation γ₁.toOneCochain γ₂✝.toOneCochain α", "β : ZeroCochain G U", "h' : OneCohomologyRelation γ₂✝.toOneCochain γ₂.toOneCochain β"], "goal": "γ₁.IsCohomologous γ₂"}], "premise": [90425], "state_str": "case intro.intro\nC : Type u\ninst✝ : Category.{v, u} C\nG : Cᵒᵖ ⥤ Grp\nX : C\nI : Type w'\nU : I → C\nγ₁ γ₂✝ γ₂ : OneCocycle G U\nα : ZeroCochain G U\nh : OneCohomologyRelation γ₁.toOneCochain γ₂✝.toOneCochain α\nβ : ZeroCochain G U\nh' : OneCohomologyRelation γ₂✝.toOneCochain γ₂.toOneCochain β\n⊢ γ₁.IsCohomologous γ₂"} +{"state": [{"context": ["K : Subfield ℂ", "hc : IsClosed ↑K"], "goal": "K = ofReal.fieldRange ∨ K = ⊤"}], "premise": [18969, 81534, 88416, 128373, 134181, 147856, 148781], "state_str": "K : Subfield ℂ\nhc : IsClosed ↑K\n⊢ K = ofReal.fieldRange ∨ K = ⊤"} +{"state": [{"context": ["K : Subfield ℂ", "hc : IsClosed ↑K"], "goal": "range ofReal' ⊆ ↑K"}], "premise": [1670, 19963, 55415, 55419, 116794, 128379, 148335], "state_str": "K : Subfield ℂ\nhc : IsClosed ↑K\n⊢ range ofReal' ⊆ ↑K"} +{"state": [{"context": ["K : Subfield ℂ", "hc : IsClosed ↑K"], "goal": "range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast))"}], "premise": [134180], "state_str": "K : Subfield ℂ\nhc : IsClosed ↑K\n⊢ range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast))"} +{"state": [{"context": ["K : Subfield ℂ", "hc : IsClosed ↑K"], "goal": "range ofReal' ⊆ closure (ofReal' '' range Rat.cast)"}], "premise": [19963, 46226, 55655], "state_str": "K : Subfield ℂ\nhc : IsClosed ↑K\n⊢ range ofReal' ⊆ closure (ofReal' '' range Rat.cast)"} +{"state": [{"context": ["K : Subfield ℂ", "hc : IsClosed ↑K"], "goal": "range ofReal' ⊆ ofReal' '' closure (range Rat.cast)"}], "premise": [54388, 55665, 56331], "state_str": "K : Subfield ℂ\nhc : IsClosed ↑K\n⊢ range ofReal' ⊆ ofReal' '' closure (range Rat.cast)"} +{"state": [{"context": ["K : Subfield ℂ", "hc : IsClosed ↑K"], "goal": "range ofReal' ⊆ ofReal' '' univ"}], "premise": [134174], "state_str": "K : Subfield ℂ\nhc : IsClosed ↑K\n⊢ range ofReal' ⊆ ofReal' '' univ"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "l₁ l₂ : List α", "p : α → Bool", "xs ys : List α", "ls : List (List α)", "f : List α → List α", "x : α", "inst✝ : DecidableEq α", "hd : α", "tl hd' : List α", "tl' : List (List α)", "ih : (intersperse [x] (hd' :: tl')).join = tl", "h' : splitOnP (fun x_1 => x_1 == x) tl = hd' :: tl'"], "goal": "(intersperse [x] (splitOnP (fun x_1 => x_1 == x) (hd :: tl))).join = hd :: tl"}], "premise": [132597], "state_str": "case cons.cons\nι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\nl₁ l₂ : List α\np : α → Bool\nxs ys : List α\nls : List (List α)\nf : List α → List α\nx : α\ninst✝ : DecidableEq α\nhd : α\ntl hd' : List α\ntl' : List (List α)\nih : (intersperse [x] (hd' :: tl')).join = tl\nh' : splitOnP (fun x_1 => x_1 == x) tl = hd' :: tl'\n⊢ (intersperse [x] (splitOnP (fun x_1 => x_1 == x) (hd :: tl))).join = hd :: tl"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : UniformSpace α", "inst✝¹ : Group α", "inst✝ : UniformGroup α"], "goal": "𝓤 α = comap (fun x => x.2 / x.1) (𝓝 1)"}], "premise": [16208, 60481], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\n⊢ 𝓤 α = comap (fun x => x.2 / x.1) (𝓝 1)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝² : UniformSpace α", "inst✝¹ : Group α", "inst✝ : UniformGroup α"], "goal": "𝓤 α = comap (Prod.mk 1 ∘ fun x => x.2 / x.1) (𝓤 α)"}], "premise": [1673, 14296, 16224], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\n⊢ 𝓤 α = comap (Prod.mk 1 ∘ fun x => x.2 / x.1) (𝓤 α)"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u_2", "β : Type u_3", "X : Type u_4", "Y : Type u_5", "f : ι → Filter α"], "goal": "𝓝 (⨅ i, f i) = ⨅ i, 𝓝 (f i)"}], "premise": [55683], "state_str": "ι : Sort u_1\nα : Type u_2\nβ : Type u_3\nX : Type u_4\nY : Type u_5\nf : ι → Filter α\n⊢ 𝓝 (⨅ i, f i) = ⨅ i, 𝓝 (f i)"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u_2", "β : Type u_3", "X : Type u_4", "Y : Type u_5", "f : ι → Filter α"], "goal": "(⨅ i, f i).lift' (Iic ∘ 𝓟) = ⨅ i, (f i).lift' (Iic ∘ 𝓟)"}], "premise": [12741], "state_str": "ι : Sort u_1\nα : Type u_2\nβ : Type u_3\nX : Type u_4\nY : Type u_5\nf : ι → Filter α\n⊢ (⨅ i, f i).lift' (Iic ∘ 𝓟) = ⨅ i, (f i).lift' (Iic ∘ 𝓟)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Sort y", "s t u : Set α", "inst✝ : MeasurableSpace α", "f : α → ℝ≥0", "μ : Measure α", "h : AEMeasurable (fun x => ↑(f x)) μ"], "goal": "AEMeasurable f μ"}], "premise": [25964, 146652], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Sort y\ns t u : Set α\ninst✝ : MeasurableSpace α\nf : α → ℝ≥0\nμ : Measure α\nh : AEMeasurable (fun x => ↑(f x)) μ\n⊢ AEMeasurable f μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "σ : α → Type u_3", "head✝ : α", "l : List α"], "goal": "((head✝ :: l).sigma fun a => []) = []"}], "premise": [130484], "state_str": "α : Type u_1\nβ : Type u_2\nσ : α → Type u_3\nhead✝ : α\nl : List α\n⊢ ((head✝ :: l).sigma fun a => []) = []"} +{"state": [{"context": ["ι : Type u_1", "α : Type u", "β : Type v", "γ : Type w", "inst✝¹ : PseudoMetricSpace α", "inst✝ : PseudoMetricSpace β", "h✝ h : α ≃ᵢ β", "x : α", "r : ℝ"], "goal": "⇑h '' Metric.closedBall x r = Metric.closedBall (h x) r"}], "premise": [59867, 59877, 59911], "state_str": "ι : Type u_1\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nh✝ h : α ≃ᵢ β\nx : α\nr : ℝ\n⊢ ⇑h '' Metric.closedBall x r = Metric.closedBall (h x) r"} +{"state": [{"context": ["A : Type u_1", "inst✝⁸ : NormedRing A", "inst✝⁷ : StarRing A", "inst✝⁶ : CstarRing A", "inst✝⁵ : CompleteSpace A", "inst✝⁴ : NormedAlgebra ℂ A", "inst✝³ : StarModule ℂ A", "inst✝² : PartialOrder A", "inst✝¹ : StarOrderedRing A", "inst✝ : Nontrivial A", "a : A", "ha : autoParam (0 ≤ a) _auto✝"], "goal": "‖a‖ ∈ spectrum ℝ a"}], "premise": [34934], "state_str": "A : Type u_1\ninst✝⁸ : NormedRing A\ninst✝⁷ : StarRing A\ninst✝⁶ : CstarRing A\ninst✝⁵ : CompleteSpace A\ninst✝⁴ : NormedAlgebra ℂ A\ninst✝³ : StarModule ℂ A\ninst✝² : PartialOrder A\ninst✝¹ : StarOrderedRing A\ninst✝ : Nontrivial A\na : A\nha : autoParam (0 ≤ a) _auto✝\n⊢ ‖a‖ ∈ spectrum ℝ a"} +{"state": [{"context": ["this : eulerMascheroniSeq 6 = 49 / 20 - log 7"], "goal": "1 / 2 < eulerMascheroniSeq 6"}], "premise": [37887, 105742, 105755], "state_str": "this : eulerMascheroniSeq 6 = 49 / 20 - log 7\n⊢ 1 / 2 < eulerMascheroniSeq 6"} +{"state": [{"context": ["this : eulerMascheroniSeq 6 = 49 / 20 - log 7"], "goal": "7 < rexp (49 / 20 - 1 / 2)"}], "premise": [14287, 149289], "state_str": "this : eulerMascheroniSeq 6 = 49 / 20 - log 7\n⊢ 7 < rexp (49 / 20 - 1 / 2)"} +{"state": [{"context": ["this : eulerMascheroniSeq 6 = 49 / 20 - log 7"], "goal": "7 < ∑ i ∈ Finset.range 7, (49 / 20 - 1 / 2) ^ i / ↑i.factorial"}], "premise": [127135, 144416], "state_str": "this : eulerMascheroniSeq 6 = 49 / 20 - log 7\n⊢ 7 < ∑ i ∈ Finset.range 7, (49 / 20 - 1 / 2) ^ i / ↑i.factorial"} +{"state": [{"context": ["α : Type u", "β : Type v", "R✝ r : α → α → Prop", "l l₁ l₂ : List α", "a✝ b✝ : α", "R : α → α → Prop", "a b : α", "t : List α"], "goal": "Chain R a (b :: t) ↔ (∀ (h : 0 < (b :: t).length), R a ((b :: t).get ⟨0, h⟩)) ∧ ∀ (i : ℕ) (h : i < (b :: t).length - 1), R ((b :: t).get ⟨i, ⋯⟩) ((b :: t).get ⟨i + 1, ⋯⟩)"}], "premise": [1532], "state_str": "α : Type u\nβ : Type v\nR✝ r : α → α → Prop\nl l₁ l₂ : List α\na✝ b✝ : α\nR : α → α → Prop\na b : α\nt : List α\n⊢ Chain R a (b :: t) ↔\n (∀ (h : 0 < (b :: t).length), R a ((b :: t).get ⟨0, h⟩)) ∧\n ∀ (i : ℕ) (h : i < (b :: t).length - 1), R ((b :: t).get ⟨i, ⋯⟩) ((b :: t).get ⟨i + 1, ⋯⟩)"} +{"state": [{"context": ["α : Type u", "β : Type v", "R✝ r : α → α → Prop", "l l₁ l₂ : List α", "a✝ b✝ : α", "R : α → α → Prop", "a b : α", "t : List α", "h0 : ∀ (h : 0 < (b :: t).length), R a ((b :: t).get ⟨0, h⟩)", "h : ∀ (i : ℕ) (h : i < (b :: t).length - 1), R ((b :: t).get ⟨i, ⋯⟩) ((b :: t).get ⟨i + 1, ⋯⟩)", "i : ℕ", "w : i < t.length - 1"], "goal": "R (t.get ⟨i, ⋯⟩) (t.get ⟨i + 1, ⋯⟩)"}], "premise": [2581], "state_str": "case mpr.intro.right.right\nα : Type u\nβ : Type v\nR✝ r : α → α → Prop\nl l₁ l₂ : List α\na✝ b✝ : α\nR : α → α → Prop\na b : α\nt : List α\nh0 : ∀ (h : 0 < (b :: t).length), R a ((b :: t).get ⟨0, h⟩)\nh : ∀ (i : ℕ) (h : i < (b :: t).length - 1), R ((b :: t).get ⟨i, ⋯⟩) ((b :: t).get ⟨i + 1, ⋯⟩)\ni : ℕ\nw : i < t.length - 1\n⊢ R (t.get ⟨i, ⋯⟩) (t.get ⟨i + 1, ⋯⟩)"} +{"state": [{"context": ["C : Type uC", "inst✝¹ : Category.{uC', uC} C", "W : MorphismProperty C", "D : Type uD", "inst✝ : Category.{uD', uD} D", "G : C ⥤ D", "hG : W.IsInvertedBy G"], "goal": "𝟭 (W.Localization ⥤ D) = functor W D ⋙ inverse W D"}], "premise": [97754], "state_str": "C : Type uC\ninst✝¹ : Category.{uC', uC} C\nW : MorphismProperty C\nD : Type uD\ninst✝ : Category.{uD', uD} D\nG : C ⥤ D\nhG : W.IsInvertedBy G\n⊢ 𝟭 (W.Localization ⥤ D) = functor W D ⋙ inverse W D"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Semiring α", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "p a b : α", "h : multiplicity p a ≤ multiplicity p b"], "goal": "min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b)"}], "premise": [19701, 79561], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Semiring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\np a b : α\nh : multiplicity p a ≤ multiplicity p b\n⊢ min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Semiring α", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "p a b : α", "h : multiplicity p a ≤ multiplicity p b"], "goal": "∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ a + b"}], "premise": [1673, 79561, 121987], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Semiring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\np a b : α\nh : multiplicity p a ≤ multiplicity p b\n⊢ ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ a + b"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Semiring α", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "p a b : α", "h : multiplicity p b ≤ multiplicity p a"], "goal": "min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b)"}], "premise": [19702, 79561], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Semiring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\np a b : α\nh : multiplicity p b ≤ multiplicity p a\n⊢ min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "inst✝¹ : Semiring α", "inst✝ : DecidableRel fun x x_1 => x ∣ x_1", "p a b : α", "h : multiplicity p b ≤ multiplicity p a"], "goal": "∀ (n : ℕ), p ^ n ∣ b → p ^ n ∣ a + b"}], "premise": [1673, 79561, 121987], "state_str": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Semiring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\np a b : α\nh : multiplicity p b ≤ multiplicity p a\n⊢ ∀ (n : ℕ), p ^ n ∣ b → p ^ n ∣ a + b"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝ : LinearOrderedField α", "l : Filter β", "f : β → α", "r : α", "hr : r < 0"], "goal": "Tendsto (fun x => f x / r) l atTop ↔ Tendsto f l atBot"}], "premise": [15642, 119790], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝ : LinearOrderedField α\nl : Filter β\nf : β → α\nr : α\nhr : r < 0\n⊢ Tendsto (fun x => f x / r) l atTop ↔ Tendsto f l atBot"} +{"state": [{"context": ["C : Type u_1", "inst✝² : Category.{u_2, u_1} C", "inst✝¹ : HasZeroMorphisms C", "S S₁ S₂ S₃ : ShortComplex C", "h : S.RightHomologyData", "inst✝ : S.HasRightHomology"], "goal": "h.p ≫ opcyclesMap' (𝟙 S) h S.rightHomologyData = S.rightHomologyData.p"}], "premise": [96175, 113567, 115290], "state_str": "C : Type u_1\ninst✝² : Category.{u_2, u_1} C\ninst✝¹ : HasZeroMorphisms C\nS S₁ S₂ S₃ : ShortComplex C\nh : S.RightHomologyData\ninst✝ : S.HasRightHomology\n⊢ h.p ≫ opcyclesMap' (𝟙 S) h S.rightHomologyData = S.rightHomologyData.p"} +{"state": [{"context": ["R : Type u", "inst✝⁷ : Ring R", "Q : Type v", "inst✝⁶ : AddCommGroup Q", "inst✝⁵ : Module R Q", "M : Type u_1", "N : Type u_2", "inst✝⁴ : AddCommGroup M", "inst✝³ : AddCommGroup N", "inst✝² : Module R M", "inst✝¹ : Module R N", "i : M →ₗ[R] N", "f : M →ₗ[R] Q", "inst✝ : Fact (Function.Injective ⇑i)", "h : Baer R Q", "y : N", "r : R", "hr : r • y ∈ (extensionOfMax i f).domain"], "goal": "(extendIdealTo i f h y) r = ↑(extensionOfMax i f).toLinearPMap ⟨r • y, hr⟩"}], "premise": [109724, 110951, 117122, 137134], "state_str": "R : Type u\ninst✝⁷ : Ring R\nQ : Type v\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM : Type u_1\nN : Type u_2\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ⇑i)\nh : Baer R Q\ny : N\nr : R\nhr : r • y ∈ (extensionOfMax i f).domain\n⊢ (extendIdealTo i f h y) r = ↑(extensionOfMax i f).toLinearPMap ⟨r • y, hr⟩"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝² : Preorder α", "inst✝¹ : LocallyFiniteOrder α", "a✝ a₁ a₂ b✝ b₁ b₂ c✝ x✝ a b c : α", "inst✝ : DecidablePred fun x => c ≤ x", "hac : a ≤ c", "x : α"], "goal": "x ∈ filter (fun x => c ≤ x) (Ico a b) ↔ x ∈ Ico c b"}], "premise": [1723, 1970, 19591, 139089], "state_str": "case a\nι : Type u_1\nα : Type u_2\ninst✝² : Preorder α\ninst✝¹ : LocallyFiniteOrder α\na✝ a₁ a₂ b✝ b₁ b₂ c✝ x✝ a b c : α\ninst✝ : DecidablePred fun x => c ≤ x\nhac : a ≤ c\nx : α\n⊢ x ∈ filter (fun x => c ≤ x) (Ico a b) ↔ x ∈ Ico c b"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝² : Preorder α", "inst✝¹ : LocallyFiniteOrder α", "a✝ a₁ a₂ b✝ b₁ b₂ c✝ x✝ a b c : α", "inst✝ : DecidablePred fun x => c ≤ x", "hac : a ≤ c", "x : α"], "goal": "a ≤ x ∧ c ≤ x ∧ x < b ↔ c ≤ x ∧ x < b"}], "premise": [1212, 2107], "state_str": "case a\nι : Type u_1\nα : Type u_2\ninst✝² : Preorder α\ninst✝¹ : LocallyFiniteOrder α\na✝ a₁ a₂ b✝ b₁ b₂ c✝ x✝ a b c : α\ninst✝ : DecidablePred fun x => c ≤ x\nhac : a ≤ c\nx : α\n⊢ a ≤ x ∧ c ≤ x ∧ x < b ↔ c ≤ x ∧ x < b"} +{"state": [{"context": ["n : ℕ", "hn : Odd n"], "goal": "Nat.card (ConjClasses (DihedralGroup n)) = (n + 3) / 2"}], "premise": [4503, 4507, 6379, 6389, 7595, 105992, 119707], "state_str": "n : ℕ\nhn : Odd n\n⊢ Nat.card (ConjClasses (DihedralGroup n)) = (n + 3) / 2"} +{"state": [{"context": ["n : ℕ", "c : Composition n", "i : ℕ", "h : c.length ≤ i"], "goal": "(take i c.blocks).sum = n"}], "premise": [50687], "state_str": "n : ℕ\nc : Composition n\ni : ℕ\nh : c.length ≤ i\n⊢ (take i c.blocks).sum = n"} +{"state": [{"context": ["n : ℕ", "c : Composition n", "i : ℕ", "h : c.length ≤ i"], "goal": "take i c.blocks = c.blocks"}], "premise": [5309], "state_str": "case h.e'_2.h.e'_4\nn : ℕ\nc : Composition n\ni : ℕ\nh : c.length ≤ i\n⊢ take i c.blocks = c.blocks"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "G : Type u_3", "M : Type u_4", "inst✝ : Semigroup α", "x y z : α"], "goal": "((fun x_1 => x_1 * x) ∘ fun x => x * y) z = z * (y * x)"}], "premise": [119703], "state_str": "case h\nα : Type u_1\nβ : Type u_2\nG : Type u_3\nM : Type u_4\ninst✝ : Semigroup α\nx y z : α\n⊢ ((fun x_1 => x_1 * x) ∘ fun x => x * y) z = z * (y * x)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Sort u_5", "inst✝ : MeasurableSpace α", "μ✝ μ₁ μ₂ : Measure α", "s✝ s₁ s₂ t : Set α", "μ : Measure α", "s : Set α"], "goal": "∃ t, s ⊆ t ∧ MeasurableSet t ∧ μ t = μ s"}], "premise": [28175, 29072], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Sort u_5\ninst✝ : MeasurableSpace α\nμ✝ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t : Set α\nμ : Measure α\ns : Set α\n⊢ ∃ t, s ⊆ t ∧ MeasurableSet t ∧ μ t = μ s"} +{"state": [{"context": ["ι : Type u_1", "𝕜 : Type u_2", "E : Type u_3", "F : Type u_4", "A : Type u_5", "inst✝ : NormedAddCommGroup E", "f : ℝ → E", "a✝ b c d : ℝ", "μ ν : Measure ℝ", "a : ℕ → ℝ", "m n : ℕ", "hmn : m ≤ n"], "goal": "(∀ k ∈ Ico m n, IntervalIntegrable f μ (a k) (a (k + 1))) → IntervalIntegrable f μ (a m) (a n)"}], "premise": [145198], "state_str": "ι : Type u_1\n𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nA : Type u_5\ninst✝ : NormedAddCommGroup E\nf : ℝ → E\na✝ b c d : ℝ\nμ ν : Measure ℝ\na : ℕ → ℝ\nm n : ℕ\nhmn : m ≤ n\n⊢ (∀ k ∈ Ico m n, IntervalIntegrable f μ (a k) (a (k + 1))) → IntervalIntegrable f μ (a m) (a n)"} +{"state": [{"context": ["α : Type u_1", "m n : ZNum", "x✝ : ↑m ∣ ↑n", "k : ℤ", "e : ↑n = ↑m * k"], "goal": "n = m * ↑k"}], "premise": [149527], "state_str": "α : Type u_1\nm n : ZNum\nx✝ : ↑m ∣ ↑n\nk : ℤ\ne : ↑n = ↑m * k\n⊢ n = m * ↑k"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "f : α → β", "g : β → α", "b' : β", "hf : Monotone f", "gc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b", "hgi : ∀ b ≥ b', b ≤ f (g b)"], "goal": "map f atTop = atTop"}], "premise": [14296, 14517, 14518], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\nf : α → β\ng : β → α\nb' : β\nhf : Monotone f\ngc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b\nhgi : ∀ b ≥ b', b ≤ f (g b)\n⊢ map f atTop = atTop"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "f : α → β", "g : β → α", "b' : β", "hf : Monotone f", "gc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b", "hgi : ∀ b ≥ b', b ≤ f (g b)"], "goal": "atTop ≤ map f atTop"}], "premise": [15530], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\nf : α → β\ng : β → α\nb' : β\nhf : Monotone f\ngc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b\nhgi : ∀ b ≥ b', b ≤ f (g b)\n⊢ atTop ≤ map f atTop"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "f : α → β", "g : β → α", "b' : β", "hf : Monotone f", "gc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b", "hgi : ∀ b ≥ b', b ≤ f (g b)"], "goal": "atTop ≤ ⨅ a, 𝓟 (f '' {a' | a ≤ a'})"}], "premise": [1674, 15951, 19304, 19310], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\nf : α → β\ng : β → α\nb' : β\nhf : Monotone f\ngc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b\nhgi : ∀ b ≥ b', b ≤ f (g b)\n⊢ atTop ≤ ⨅ a, 𝓟 (f '' {a' | a ≤ a'})"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "f : α → β", "g : β → α", "b' : β", "hf : Monotone f", "gc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b", "hgi : ∀ b ≥ b', b ≤ f (g b)", "a : α", "b : β", "hb : b ∈ Ici (f a ⊔ b')"], "goal": "b ∈ f '' {a' | a ≤ a'}"}], "premise": [14524, 20163], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\nf : α → β\ng : β → α\nb' : β\nhf : Monotone f\ngc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b\nhgi : ∀ b ≥ b', b ≤ f (g b)\na : α\nb : β\nhb : b ∈ Ici (f a ⊔ b')\n⊢ b ∈ f '' {a' | a ≤ a'}"} +{"state": [{"context": ["ι : Type u_1", "ι' : Type u_2", "α : Type u_3", "β : Type u_4", "γ : Type u_5", "inst✝¹ : SemilatticeSup α", "inst✝ : SemilatticeSup β", "f : α → β", "g : β → α", "b' : β", "hf : Monotone f", "gc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b", "hgi : ∀ b ≥ b', b ≤ f (g b)", "a : α", "b : β", "hb : f a ≤ b ∧ b' ≤ b"], "goal": "b ∈ f '' {a' | a ≤ a'}"}], "premise": [1673, 1674, 2106, 2107, 14272, 14296], "state_str": "ι : Type u_1\nι' : Type u_2\nα : Type u_3\nβ : Type u_4\nγ : Type u_5\ninst✝¹ : SemilatticeSup α\ninst✝ : SemilatticeSup β\nf : α → β\ng : β → α\nb' : β\nhf : Monotone f\ngc : ∀ (a : α), ∀ b ≥ b', f a ≤ b ↔ a ≤ g b\nhgi : ∀ b ≥ b', b ≤ f (g b)\na : α\nb : β\nhb : f a ≤ b ∧ b' ≤ b\n⊢ b ∈ f '' {a' | a ≤ a'}"} +{"state": [{"context": ["F : Type u_1", "ι : Type u_2", "α : Type u_3", "β : Type u_4", "inst✝¹ : AddGroupWithOne α", "inst��� : CharZero α", "m n : ℤ"], "goal": "↑m = ↑n ↔ m = n"}], "premise": [1713, 118004, 128757, 128912], "state_str": "F : Type u_1\nι : Type u_2\nα : Type u_3\nβ : Type u_4\ninst✝¹ : AddGroupWithOne α\ninst✝ : CharZero α\nm n : ℤ\n⊢ ↑m = ↑n ↔ m = n"} +{"state": [{"context": ["C : Type u_4", "D : Type u_2", "inst✝⁵ : Category.{u_5, u_4} C", "inst✝⁴ : Category.{u_1, u_2} D", "F : C ⥤ D", "A : Type u_3", "inst✝³ : AddMonoid A", "inst✝² : HasShift C A", "s : A → D ⥤ D", "i : (a : A) → F ⋙ s a ≅ shiftFunctor C a ⋙ F", "inst✝¹ : ((whiskeringLeft C D D).obj F).Full", "inst✝ : ((whiskeringLeft C D D).obj F).Faithful", "a b : A", "X : C", "this : HasShift D A := HasShift.induced F A s i"], "goal": "(shiftFunctorAdd D a b).inv.app (F.obj X) = (s b).map ((i a).hom.app X) ≫ (i b).hom.app ((shiftFunctor C a).obj X) ≫ F.map ((shiftFunctorAdd C a b).inv.app X) ≫ (i (a + b)).inv.app X"}], "premise": [92639, 92836], "state_str": "C : Type u_4\nD : Type u_2\ninst✝⁵ : Category.{u_5, u_4} C\ninst✝⁴ : Category.{u_1, u_2} D\nF : C ⥤ D\nA : Type u_3\ninst✝³ : AddMonoid A\ninst✝² : HasShift C A\ns : A → D ⥤ D\ni : (a : A) → F ⋙ s a ≅ shiftFunctor C a ⋙ F\ninst✝¹ : ((whiskeringLeft C D D).obj F).Full\ninst✝ : ((whiskeringLeft C D D).obj F).Faithful\na b : A\nX : C\nthis : HasShift D A := HasShift.induced F A s i\n⊢ (shiftFunctorAdd D a b).inv.app (F.obj X) =\n (s b).map ((i a).hom.app X) ≫\n (i b).hom.app ((shiftFunctor C a).obj X) ≫ F.map ((shiftFunctorAdd C a b).inv.app X) ≫ (i (a + b)).inv.app X"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf"], "goal": "HasFPowerSeriesAt (g ∘ f) (q.comp p) x"}], "premise": [34731, 35865], "state_str": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\n⊢ HasFPowerSeriesAt (g ∘ f) (q.comp p) x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst"], "goal": "HasFPowerSeriesAt (g ∘ f) (q.comp p) x"}], "premise": [1673, 35853, 35861, 35915, 58496, 58504], "state_str": "case intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\n⊢ HasFPowerSeriesAt (g ∘ f) (q.comp p) x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ"], "goal": "HasFPowerSeriesAt (g ∘ f) (q.comp p) x"}], "premise": [1957, 12956, 35853, 143212], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\n⊢ HasFPowerSeriesAt (g ∘ f) (q.comp p) x"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r"], "goal": "HasFPowerSeriesOnBall (g ∘ f) (q.comp p) x (min rf' ↑r)"}], "premise": [14273, 19691, 34732], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\n⊢ HasFPowerSeriesOnBall (g ∘ f) (q.comp p) x (min rf' ↑r)"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [14273, 19690, 58482], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [14273, 19690, 19691, 42787, 42789, 58482], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf", "fy_mem : f (x + y) ∈ EMetric.ball (f x) rg"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [15489, 16350, 19114, 35854, 35899, 55522, 63868, 66817, 118073, 124715], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\nfy_mem : f (x + y) ∈ EMetric.ball (f x) rg\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf", "fy_mem : f (x + y) ∈ EMetric.ball (f x) rg", "A : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [35910, 35913, 42787, 42789, 55501, 55628, 55633, 55638, 55641, 57194, 57310, 57314, 58502, 60238, 65029, 118079], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\nfy_mem : f (x + y) ∈ EMetric.ball (f x) rg\nA : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf", "fy_mem : f (x + y) ∈ EMetric.ball (f x) rg", "A : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))", "B : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [34740], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\nfy_mem : f (x + y) ∈ EMetric.ball (f x) rg\nA : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))\nB : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf", "fy_mem : f (x + y) ∈ EMetric.ball (f x) rg", "A : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))", "B : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))", "C : Tendsto (fun n => ∑ i ∈ compPartialSumTarget 0 n n, (q.compAlongComposition p i.snd) fun _j => y) atTop (𝓝 (g (f (x + y))))"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [1674, 14273, 14286, 19691, 34739, 42173, 42680, 42755, 42789, 44188, 56440, 58471, 60018, 102621, 106248, 127178, 141365, 143204, 146616, 146628, 146643], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\nfy_mem : f (x + y) ∈ EMetric.ball (f x) rg\nA : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))\nB : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))\nC :\n Tendsto (fun n => ∑ i ∈ compPartialSumTarget 0 n n, (q.compAlongComposition p i.snd) fun _j => y) atTop\n (𝓝 (g (f (x + y))))\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E", "inst✝⁶ : NormedSpace 𝕜 E", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E F", "x : E", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf", "fy_mem : f (x + y) ∈ EMetric.ball (f x) rg", "A : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))", "B : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))", "C : Tendsto (fun n => ∑ i ∈ compPartialSumTarget 0 n n, (q.compAlongComposition p i.snd) fun _j => y) atTop (𝓝 (g (f (x + y))))", "D : HasSum (fun i => (q.compAlongComposition p i.snd) fun _j => y) (g (f (x + y)))"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [63026, 63387, 64554], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E F\nx : E\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\nfy_mem : f (x + y) ∈ EMetric.ball (f x) rg\nA : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))\nB : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))\nC :\n Tendsto (fun n => ∑ i ∈ compPartialSumTarget 0 n n, (q.compAlongComposition p i.snd) fun _j => y) atTop\n (𝓝 (g (f (x + y))))\nD : HasSum (fun i => (q.compAlongComposition p i.snd) fun _j => y) (g (f (x + y)))\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["𝕜 : Type u_1", "E✝ : Type u_2", "F : Type u_3", "G : Type u_4", "H : Type u_5", "inst✝⁸ : NontriviallyNormedField 𝕜", "inst✝⁷ : NormedAddCommGroup E✝", "inst✝⁶ : NormedSpace 𝕜 E✝", "inst✝⁵ : NormedAddCommGroup F", "inst✝⁴ : NormedSpace 𝕜 F", "inst✝³ : NormedAddCommGroup G", "inst✝² : NormedSpace 𝕜 G", "inst✝¹ : NormedAddCommGroup H", "inst✝ : NormedSpace 𝕜 H", "g : F → G", "f : E✝ → F", "q : FormalMultilinearSeries 𝕜 F G", "p : FormalMultilinearSeries 𝕜 E✝ F", "x : E✝", "rg : ℝ≥0∞", "Hg : HasFPowerSeriesOnBall g q (f x) rg", "rf : ℝ≥0∞", "Hf : HasFPowerSeriesOnBall f p x rf", "r : ℝ≥0", "r_pos : 0 < r", "hr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst", "δ : ℝ≥0∞", "δpos : 0 < δ", "hδ : ∀ {z : E✝}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg", "rf' : ℝ≥0∞ := min rf δ", "min_pos : 0 < min rf' ↑r", "y : E✝", "hy : y ∈ EMetric.ball 0 (min rf' ↑r)", "y_mem : y ∈ EMetric.ball 0 rf", "fy_mem : f (x + y) ∈ EMetric.ball (f x) rg", "A : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))", "B : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))", "C : Tendsto (fun n => ∑ i ∈ compPartialSumTarget 0 n n, (q.compAlongComposition p i.snd) fun _j => y) atTop (𝓝 (g (f (x + y))))", "D : HasSum (fun i => (q.compAlongComposition p i.snd) fun _j => y) (g (f (x + y)))", "E : HasSum (fun n => (q.comp p n) fun _j => y) (g (f (x + y)))"], "goal": "HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"}], "premise": [1670], "state_str": "case intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE✝ : Type u_2\nF : Type u_3\nG : Type u_4\nH : Type u_5\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E✝\ninst✝⁶ : NormedSpace 𝕜 E✝\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\ng : F → G\nf : E✝ → F\nq : FormalMultilinearSeries 𝕜 F G\np : FormalMultilinearSeries 𝕜 E✝ F\nx : E✝\nrg : ℝ≥0∞\nHg : HasFPowerSeriesOnBall g q (f x) rg\nrf : ℝ≥0∞\nHf : HasFPowerSeriesOnBall f p x rf\nr : ℝ≥0\nr_pos : 0 < r\nhr : Summable fun i => ‖q.compAlongComposition p i.snd‖₊ * r ^ i.fst\nδ : ℝ≥0∞\nδpos : 0 < δ\nhδ : ∀ {z : E✝}, z ∈ EMetric.ball x δ → f z ∈ EMetric.ball (f x) rg\nrf' : ℝ≥0∞ := min rf δ\nmin_pos : 0 < min rf' ↑r\ny : E✝\nhy : y ∈ EMetric.ball 0 (min rf' ↑r)\ny_mem : y ∈ EMetric.ball 0 rf\nfy_mem : f (x + y) ∈ EMetric.ball (f x) rg\nA : Tendsto (fun n => ∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y) atTop (𝓝 (f (x + y) - f x))\nB : Tendsto (fun n => q.partialSum n (∑ a ∈ Finset.Ico 1 n, (p a) fun _b => y)) atTop (𝓝 (g (f (x + y))))\nC :\n Tendsto (fun n => ∑ i ∈ compPartialSumTarget 0 n n, (q.compAlongComposition p i.snd) fun _j => y) atTop\n (𝓝 (g (f (x + y))))\nD : HasSum (fun i => (q.compAlongComposition p i.snd) fun _j => y) (g (f (x + y)))\nE : HasSum (fun n => (q.comp p n) fun _j => y) (g (f (x + y)))\n⊢ HasSum (fun n => (q.comp p n) fun x => y) ((g ∘ f) (x + y))"} +{"state": [{"context": ["n : ℕ", "P : MvPFunctor.{u} (n + 1)", "α : TypeVec.{u} n", "β : Type u", "g : β → ↑P (α ::: β)", "x : β", "a : P.A", "f : P.B a ⟹ α ::: β"], "goal": "⟨a, splitFun (dropFun f) ((corec' P (fun b => (g b).fst) (fun b => dropFun (g b).snd) fun b => lastFun (g b).snd) ∘ lastFun f)⟩ = (TypeVec.id ::: corec P g) <$$> ⟨a, f⟩"}], "premise": [128094], "state_str": "case mk\nn : ℕ\nP : MvPFunctor.{u} (n + 1)\nα : TypeVec.{u} n\nβ : Type u\ng : β → ↑P (α ::: β)\nx : β\na : P.A\nf : P.B a ⟹ α ::: β\n⊢ ⟨a,\n splitFun (dropFun f)\n ((corec' P (fun b => (g b).fst) (fun b => dropFun (g b).snd) fun b => lastFun (g b).snd) ∘ lastFun f)⟩ =\n (TypeVec.id ::: corec P g) <$$> ⟨a, f⟩"} +{"state": [{"context": ["n : ℕ", "P : MvPFunctor.{u} (n + 1)", "α : TypeVec.{u} n", "β : Type u", "g : β → ↑P (α ::: β)", "x : β", "a : P.A", "f : P.B a ⟹ α ::: β"], "goal": "splitFun (dropFun f) ((corec' P (fun b => (g b).fst) (fun b => dropFun (g b).snd) fun b => lastFun (g b).snd) ∘ lastFun f) = (TypeVec.id ::: corec P g) ⊚ f"}], "premise": [137041, 137045], "state_str": "case mk.e_snd\nn : ℕ\nP : MvPFunctor.{u} (n + 1)\nα : TypeVec.{u} n\nβ : Type u\ng : β → ↑P (α ::: β)\nx : β\na : P.A\nf : P.B a ⟹ α ::: β\n⊢ splitFun (dropFun f)\n ((corec' P (fun b => (g b).fst) (fun b => dropFun (g b).snd) fun b => lastFun (g b).snd) ∘ lastFun f) =\n (TypeVec.id ::: corec P g) ⊚ f"} +{"state": [{"context": ["E : Type u_1", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℂ E", "a b : ℝ", "f : ℝ → E", "s : ℂ", "hfc : LocallyIntegrableOn f (Ioi 0) volume", "hf_top : f =O[atTop] fun x => x ^ (-a)", "hs_top : s.re < a", "hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b)", "hs_bot : b < s.re"], "goal": "MellinConvergent f s"}], "premise": [26447, 27429, 34454, 133326], "state_str": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\na b : ℝ\nf : ℝ → E\ns : ℂ\nhfc : LocallyIntegrableOn f (Ioi 0) volume\nhf_top : f =O[atTop] fun x => x ^ (-a)\nhs_top : s.re < a\nhf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b)\nhs_bot : b < s.re\n⊢ MellinConvergent f s"} +{"state": [{"context": ["E : Type u_1", "inst✝¹ : NormedAddCommGroup E", "inst✝ : NormedSpace ℂ E", "a b : ℝ", "f : ℝ → E", "s : ℂ", "hfc : LocallyIntegrableOn f (Ioi 0) volume", "hf_top : f =O[atTop] fun x => x ^ (-a)", "hs_top : s.re < a", "hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b)", "hs_bot : b < s.re"], "goal": "IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) (Ioi 0) volume"}], "premise": [27422, 34457], "state_str": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\na b : ℝ\nf : ℝ → E\ns : ℂ\nhfc : LocallyIntegrableOn f (Ioi 0) volume\nhf_top : f =O[atTop] fun x => x ^ (-a)\nhs_top : s.re < a\nhf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b)\nhs_bot : b < s.re\n⊢ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) (Ioi 0) volume"} +{"state": [{"context": ["ι : Sort u_1", "α : Type u_2", "β : Type u_3", "l : Filter α", "inst✝ : CountableInterFilter l", "g : Set (Set α)", "s : Set α", "S : Set (Set α)", "Sg : S ⊆ g", "Sct : S.Countable", "hS : ⋂₀ S ⊆ s"], "goal": "s ∈ countableGenerate g"}], "premise": [1674, 12107, 15884], "state_str": "case mpr.intro.intro.intro\nι : Sort u_1\nα : Type u_2\nβ : Type u_3\nl : Filter α\ninst✝ : CountableInterFilter l\ng : Set (Set α)\ns : Set α\nS : Set (Set α)\nSg : S ⊆ g\nSct : S.Countable\nhS : ⋂₀ S ⊆ s\n⊢ s ∈ countableGenerate g"} +{"state": [{"context": ["K : Type u", "V : Type v", "inst✝³ : DivisionRing K", "inst✝² : AddCommGroup V", "inst✝¹ : Module K V", "inst✝ : FiniteDimensional K V", "f : V →ₗ[K] V"], "goal": "IsUnit f ↔ range f = ⊤"}], "premise": [1713, 87647, 87657], "state_str": "K : Type u\nV : Type v\ninst✝³ : DivisionRing K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nf : V →ₗ[K] V\n⊢ IsUnit f ↔ range f = ⊤"} +{"state": [{"context": ["α : Type u_1", "σ : Type u_2", "inst✝¹ : Primcodable α", "inst✝ : Primcodable σ", "p : α → Prop"], "goal": "ComputablePred p ↔ RePred p ∧ RePred fun a => ¬p a"}], "premise": [69856], "state_str": "α : Type u_1\nσ : Type u_2\ninst✝¹ : Primcodable α\ninst✝ : Primcodable σ\np : α → Prop\n⊢ ComputablePred p ↔ RePred p ∧ RePred fun a => ¬p a"} +{"state": [{"context": ["l : Type u_1", "m : Type u", "n : Type u'", "α : Type v", "inst✝² : Fintype n", "inst✝¹ : DecidableEq n", "inst✝ : CommRing α", "A✝ B A : Matrix n n α", "b : n → α", "h : IsUnit A.det"], "goal": "A.det • b ᵥ* A⁻¹ = Aᵀ.cramer b"}], "premise": [85382, 85389, 85454, 86457, 142362, 142368], "state_str": "l : Type u_1\nm : Type u\nn : Type u'\nα : Type v\ninst✝² : Fintype n\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA✝ B A : Matrix n n α\nb : n → α\nh : IsUnit A.det\n⊢ A.det • b ᵥ* A⁻¹ = Aᵀ.cramer b"} +{"state": [{"context": ["G : Type u_1", "inst✝² : Group G", "A : Type u_2", "inst✝¹ : AddGroup A", "H K : Subgroup G", "inst✝ : Finite ↥H", "h : H = ⊤"], "goal": "Nat.card ↥H = Nat.card G"}], "premise": [118543], "state_str": "G : Type u_1\ninst✝² : Group G\nA : Type u_2\ninst✝¹ : AddGroup A\nH K : Subgroup G\ninst✝ : Finite ↥H\nh : H = ⊤\n⊢ Nat.card ↥H = Nat.card G"} +{"state": [{"context": ["L : Language", "T : L.Theory", "α : Type w", "n : ℕ", "T' : L.Theory", "h : ∀ φ ∈ T', T ⊨ᵇ φ", "φ : L.Formula α", "hφ : T' ⊨ᵇ φ"], "goal": "T ⊨ᵇ φ"}], "premise": [24831], "state_str": "L : Language\nT : L.Theory\nα : Type w\nn : ℕ\nT' : L.Theory\nh : ∀ φ ∈ T', T ⊨ᵇ φ\nφ : L.Formula α\nhφ : T' ⊨ᵇ φ\n⊢ T ⊨ᵇ φ"} +{"state": [{"context": ["L : Language", "T : L.Theory", "α : Type w", "n : ℕ", "T' : L.Theory", "φ : L.Formula α", "hφ : T' ⊨ᵇ φ", "h : ∀ φ ∈ T', ∀ (M : T.ModelType), ↑M ⊨ φ", "M : T.ModelType"], "goal": "∀ (v : α → ↑M) (xs : Fin 0 → ↑M), BoundedFormula.Realize φ v xs"}], "premise": [1674, 25325], "state_str": "L : Language\nT : L.Theory\nα : Type w\nn : ℕ\nT' : L.Theory\nφ : L.Formula α\nhφ : T' ⊨ᵇ φ\nh : ∀ φ ∈ T', ∀ (M : T.ModelType), ↑M ⊨ φ\nM : T.ModelType\n⊢ ∀ (v : α → ↑M) (xs : Fin 0 → ↑M), BoundedFormula.Realize φ v xs"} +{"state": [{"context": ["E : Type u_1", "inst✝¹ : NormedAddCommGroup E", "f g : ℂ → E", "c : ℂ", "R : ℝ", "inst✝ : NormedSpace ℂ E", "hf : CircleIntegrable f c R"], "goal": "IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)"}], "premise": [25808, 26278], "state_str": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\nf g : ℂ → E\nc : ℂ\nR : ℝ\ninst✝ : NormedSpace ℂ E\nhf : CircleIntegrable f c R\n⊢ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)"} +{"state": [{"context": ["E : Type u_1", "inst✝¹ : NormedAddCommGroup E", "f g : ℂ → E", "c : ℂ", "R : ℝ", "inst✝ : NormedSpace ℂ E", "hf : IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π)) volume"], "goal": "IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) volume"}], "premise": [28454, 28502, 28544], "state_str": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\nf g : ℂ → E\nc : ℂ\nR : ℝ\ninst✝ : NormedSpace ℂ E\nhf : IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π)) volume\n⊢ IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) volume"} +{"state": [{"context": ["X : Type u_1", "inst✝⁴ : MeasurableSpace X", "inst✝³ : TopologicalSpace X", "inst✝² : OpensMeasurableSpace X", "inst✝¹ : T0Space X", "inst✝ : CompletelyRegularSpace X"], "goal": "Continuous ⇑diracProbaEquiv.symm"}], "premise": [1674, 55639], "state_str": "X : Type u_1\ninst✝⁴ : MeasurableSpace X\ninst✝³ : TopologicalSpace X\ninst✝² : OpensMeasurableSpace X\ninst✝¹ : T0Space X\ninst✝ : CompletelyRegularSpace X\n⊢ Continuous ⇑diracProbaEquiv.symm"} +{"state": [{"context": ["X : Type u_1", "inst✝⁴ : MeasurableSpace X", "inst✝³ : TopologicalSpace X", "inst✝² : OpensMeasurableSpace X", "inst✝¹ : T0Space X", "inst✝ : CompletelyRegularSpace X", "μ : ↑(range diracProba)"], "goal": "ContinuousAt (⇑diracProbaEquiv.symm) μ"}], "premise": [64747], "state_str": "X : Type u_1\ninst✝⁴ : MeasurableSpace X\ninst✝³ : TopologicalSpace X\ninst✝² : OpensMeasurableSpace X\ninst✝¹ : T0Space X\ninst✝ : CompletelyRegularSpace X\nμ : ↑(range diracProba)\n⊢ ContinuousAt (⇑diracProbaEquiv.symm) μ"} +{"state": [{"context": ["X : Type u_1", "inst✝⁴ : MeasurableSpace X", "inst✝³ : TopologicalSpace X", "inst✝² : OpensMeasurableSpace X", "inst✝¹ : T0Space X", "inst✝ : CompletelyRegularSpace X", "μ : ↑(range diracProba)"], "goal": "Tendsto (⇑diracProbaEquiv.symm) (𝓝 μ) (𝓝 (diracProbaInverse μ))"}], "premise": [1674, 29165], "state_str": "X : Type u_1\ninst✝⁴ : MeasurableSpace X\ninst✝³ : TopologicalSpace X\ninst✝² : OpensMeasurableSpace X\ninst✝¹ : T0Space X\ninst✝ : CompletelyRegularSpace X\nμ : ↑(range diracProba)\n⊢ Tendsto (⇑diracProbaEquiv.symm) (𝓝 μ) (𝓝 (diracProbaInverse μ))"} +{"state": [{"context": ["n m : ℕ", "inst✝ : NeZero n", "i : Fin n", "h : 0 < i"], "goal": "0 < i.castSucc"}], "premise": [3992], "state_str": "n m : ℕ\ninst✝ : NeZero n\ni : Fin n\nh : 0 < i\n⊢ 0 < i.castSucc"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝¹ : Preorder α", "inst✝ : LocallyFiniteOrder α", "a a₁ a₂ b b₁ b₂ c x : α", "h : b₁ < b₂"], "goal": "Icc a b₁ ⊆ Ico a b₂"}], "premise": [19594, 19595, 138690], "state_str": "ι : Type u_1\nα : Type u_2\ninst✝¹ : Preorder α\ninst✝ : LocallyFiniteOrder α\na a₁ a₂ b b₁ b₂ c x : α\nh : b₁ < b₂\n⊢ Icc a b₁ ⊆ Ico a b₂"} +{"state": [{"context": ["ι : Type u_1", "α : Type u_2", "inst✝¹ : Preorder α", "inst✝ : LocallyFiniteOrder α", "a a₁ a₂ b b₁ b₂ c x : α", "h : b₁ < b₂"], "goal": "Set.Icc a b₁ ⊆ Set.Ico a b₂"}], "premise": [20228], "state_str": "ι : Type u_1\nα : Type u_2\ninst✝¹ : Preorder α\ninst✝ : LocallyFiniteOrder α\na a₁ a₂ b b₁ b₂ c x : α\nh : b₁ < b₂\n⊢ Set.Icc a b₁ ⊆ Set.Ico a b₂"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m : MeasurableSpace Ω", "X✝ : Ω → ℝ", "p : ℕ", "μ : Measure Ω", "t : ℝ", "X Y : Ω → ℝ", "h_indep : IndepFun X Y μ", "h_int_X : Integrable (fun ω => rexp (t * X ω)) μ", "h_int_Y : Integrable (fun ω => rexp (t * Y ω)) μ"], "goal": "Integrable (fun ω => rexp (t * (X + Y) ω)) μ"}], "premise": [120650, 149210], "state_str": "Ω : Type u_1\nι : Type u_2\nm : MeasurableSpace Ω\nX✝ : Ω → ℝ\np : ℕ\nμ : Measure Ω\nt : ℝ\nX Y : Ω → ℝ\nh_indep : IndepFun X Y μ\nh_int_X : Integrable (fun ω => rexp (t * X ω)) μ\nh_int_Y : Integrable (fun ω => rexp (t * Y ω)) μ\n⊢ Integrable (fun ω => rexp (t * (X + Y) ω)) μ"} +{"state": [{"context": ["Ω : Type u_1", "ι : Type u_2", "m : MeasurableSpace Ω", "X✝ : Ω → ℝ", "p : ℕ", "μ : Measure Ω", "t : ℝ", "X Y : Ω → ℝ", "h_indep : IndepFun X Y μ", "h_int_X : Integrable (fun ω => rexp (t * X ω)) μ", "h_int_Y : Integrable (fun ω => rexp (t * Y ω)) μ"], "goal": "Integrable (fun ω => rexp (t * X ω) * rexp (t * Y ω)) μ"}], "premise": [73761, 74030], "state_str": "Ω : Type u_1\nι : Type u_2\nm : MeasurableSpace Ω\nX✝ : Ω → ℝ\np : ℕ\nμ : Measure Ω\nt : ℝ\nX Y : Ω → ℝ\nh_indep : IndepFun X Y μ\nh_int_X : Integrable (fun ω => rexp (t * X ω)) μ\nh_int_Y : Integrable (fun ω => rexp (t * Y ω)) μ\n⊢ Integrable (fun ω => rexp (t * X ω) * rexp (t * Y ω)) μ"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "ι : Type u_5", "R : Type u_6", "R' : Type u_7", "m : MeasurableSpace α", "μ μ₁ μ₂ : Measure α", "s✝ s₁ s₂ t : Set α", "inst✝ : Countable ι", "s : ι → Set α", "hd : Directed (fun x x_1 => x ⊆ x_1) s"], "goal": "μ (⋃ i, s i) = ⨆ i, μ (s i)"}], "premise": [72049], "state_str": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nι : Type u_5\nR : Type u_6\nR' : Type u_7\nm : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t : Set α\ninst✝ : Countable ι\ns : ι → Set α\nhd : Directed (fun x x_1 => x ⊆ x_1) s\n⊢ μ (⋃ i, s i) = ⨆ i, μ (s i)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "R : Type u_6", "R' : Type u_7", "m : MeasurableSpace α", "μ μ₁ μ₂ : Measure α", "s s₁ s₂ t✝ : Set α", "t : ℕ → Set α", "hd : Directed (fun x x_1 => x ⊆ x_1) t"], "goal": "μ (⋃ n, t n) = ⨆ n, μ (t n)"}], "premise": [14296, 19309, 27559, 135255], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nR : Type u_6\nR' : Type u_7\nm : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns s₁ s₂ t✝ : Set α\nt : ℕ → Set α\nhd : Directed (fun x x_1 => x ⊆ x_1) t\n⊢ μ (⋃ n, t n) = ⨆ n, μ (t n)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "R : Type u_6", "R' : Type u_7", "m : MeasurableSpace α", "μ μ₁ μ₂ : Measure α", "s s₁ s₂ t✝ : Set α", "t : ℕ → Set α", "hd : Directed (fun x x_1 => x ⊆ x_1) t", "T : ℕ → Set α := fun n => toMeasurable μ (t n)", "Td : ℕ → Set α := disjointed T"], "goal": "μ (⋃ n, t n) ≤ ⨆ n, μ (t n)"}], "premise": [27980, 29104], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nR : Type u_6\nR' : Type u_7\nm : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns s₁ s₂ t✝ : Set α\nt : ℕ → Set α\nhd : Directed (fun x x_1 => x ⊆ x_1) t\nT : ℕ → Set α := fun n => toMeasurable μ (t n)\nTd : ℕ → Set α := disjointed T\n⊢ μ (⋃ n, t n) ≤ ⨆ n, μ (t n)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "γ : Type u_3", "δ : Type u_4", "R : Type u_6", "R' : Type u_7", "m : MeasurableSpace α", "μ μ₁ μ₂ : Measure α", "s s₁ s₂ t✝ : Set α", "t : ℕ → Set α", "hd : Directed (fun x x_1 => x ⊆ x_1) t", "T : ℕ → Set α := fun n => toMeasurable μ (t n)", "Td : ℕ → Set α := disjointed T", "hm : ∀ (n : ℕ), MeasurableSet (Td n)"], "goal": "μ (⋃ n, t n) ≤ ⨆ n, μ (t n)"}], "premise": [2100, 12871, 12879, 12880, 19295, 19309, 27559, 27562, 29102, 31390, 31420, 58992, 71985, 132775, 135248, 135263, 135265, 136516], "state_str": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\nR : Type u_6\nR' : Type u_7\nm : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns s₁ s₂ t✝ : Set α\nt : ℕ → Set α\nhd : Directed (fun x x_1 => x ⊆ x_1) t\nT : ℕ → Set α := fun n => toMeasurable μ (t n)\nTd : ℕ → Set α := disjointed T\nhm : ∀ (n : ℕ), MeasurableSet (Td n)\n⊢ μ (⋃ n, t n) ≤ ⨆ n, μ (t n)"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "ι : Type u_3", "inst✝ : MeasurableSpace α", "f : α → ℚ → ℝ", "a : α"], "goal": "(if IsRatStieltjesPoint (fun p => f p.2) ((), a) then (fun p => f p.2) ((), a) else defaultRatCDF) = if IsRatStieltjesPoint f a then f a else defaultRatCDF"}], "premise": [72890], "state_str": "α : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝ : MeasurableSpace α\nf : α → ℚ → ℝ\na : α\n⊢ (if IsRatStieltjesPoint (fun p => f p.2) ((), a) then (fun p => f p.2) ((), a) else defaultRatCDF) =\n if IsRatStieltjesPoint f a then f a else defaultRatCDF"} +{"state": [{"context": ["R : Type u", "L : Type v", "M : Type w", "inst✝⁶ : CommRing R", "inst✝⁵ : LieRing L", "inst✝⁴ : LieAlgebra R L", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : LieRingModule L M", "inst✝ : LieModule R L M", "N : LieSubmodule R L M", "N' : LieSubmodule R L ↥↑N"], "goal": "map N.incl N' ≤ N"}], "premise": [109427], "state_str": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN : LieSubmodule R L M\nN' : LieSubmodule R L ↥↑N\n⊢ map N.incl N' ≤ N"} +{"state": [{"context": ["R : Type u", "L : Type v", "M : Type w", "inst✝⁶ : CommRing R", "inst✝⁵ : LieRing L", "inst✝⁴ : LieAlgebra R L", "inst✝³ : AddCommGroup M", "inst✝² : Module R M", "inst✝¹ : LieRingModule L M", "inst✝ : LieModule R L M", "N : LieSubmodule R L M", "N' : LieSubmodule R L ↥↑N"], "goal": "map N.incl N' ≤ map N.incl ⊤"}], "premise": [18778, 109352], "state_str": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN : LieSubmodule R L M\nN' : LieSubmodule R L ↥↑N\n⊢ map N.incl N' ≤ map N.incl ⊤"} +{"state": [{"context": ["K : Type u_1", "E : Type u_2", "inst✝ : RCLike K", "z : K"], "goal": "(∃ r, ↑r = z) ↔ ∃ r, z = ↑r"}], "premise": [1717], "state_str": "K : Type u_1\nE : Type u_2\ninst✝ : RCLike K\nz : K\n⊢ (∃ r, ↑r = z) ↔ ∃ r, z = ↑r"} +{"state": [{"context": ["α : Type u", "β : Type v", "γ : Type w", "inst✝² : TopologicalSpace α", "inst✝¹ : Preorder α", "inst✝ : ClosedIciTopology α", "f : β → α", "a b : α", "s : Set α"], "goal": "BddBelow (closure s) ↔ BddBelow s"}], "premise": [54926], "state_str": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : Preorder α\ninst✝ : ClosedIciTopology α\nf : β → α\na b : α\ns : Set α\n⊢ BddBelow (closure s) ↔ BddBelow s"} +{"state": [{"context": ["Γ : Type u_1", "Γ' : Type u_2", "inst✝¹ : Inhabited Γ", "inst✝ : Inhabited Γ'", "f : PointedMap Γ Γ'", "d : Dir", "head✝ : Γ", "left✝ right✝ : ListBlank Γ"], "goal": "map f (move d { head := head✝, left := left✝, right := right✝ }) = move d (map f { head := head✝, left := left✝, right := right✝ })"}], "premise": [1793, 1957, 73491, 73492, 73493], "state_str": "case mk\nΓ : Type u_1\nΓ' : Type u_2\ninst✝¹ : Inhabited Γ\ninst✝ : Inhabited Γ'\nf : PointedMap Γ Γ'\nd : Dir\nhead✝ : Γ\nleft✝ right✝ : ListBlank Γ\n⊢ map f (move d { head := head✝, left := left✝, right := right✝ }) =\n move d (map f { head := head✝, left := left✝, right := right✝ })"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "s₁ s₂ : Finset ι", "S₁ : Set ((i : { x // x ∈ s₁ }) → α ↑i)", "S₂ : Set ((i : { x // x ∈ s₂ }) → α ↑i)", "inst✝ : DecidableEq ι", "f : (i : ι) → α i"], "goal": "f ∈ cylinder s₁ S₁ ∪ cylinder s₂ S₂ ↔ f ∈ cylinder (s₁ ∪ s₂) ((fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₁ ∪ (fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₂)"}], "premise": [26016, 131585, 133407], "state_str": "case h\nι : Type u_1\nα : ι → Type u_2\ns₁ s₂ : Finset ι\nS₁ : Set ((i : { x // x ∈ s₁ }) → α ↑i)\nS₂ : Set ((i : { x // x ∈ s₂ }) → α ↑i)\ninst✝ : DecidableEq ι\nf : (i : ι) → α i\n⊢ f ∈ cylinder s₁ S₁ ∪ cylinder s₂ S₂ ↔\n f ∈ cylinder (s₁ ∪ s₂) ((fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₁ ∪ (fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₂)"} +{"state": [{"context": ["ι : Type u_1", "α : ι → Type u_2", "s₁ s₂ : Finset ι", "S₁ : Set ((i : { x // x ∈ s₁ }) → α ↑i)", "S₂ : Set ((i : { x // x ∈ s₂ }) → α ↑i)", "inst✝ : DecidableEq ι", "f : (i : ι) → α i"], "goal": "(fun i => f ↑i) ∈ S₁ ∨ (fun i => f ↑i) ∈ S₂ ↔ (fun i => f ↑i) ∈ (fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₁ ∨ (fun i => f ↑i) ∈ (fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₂"}], "premise": [1713], "state_str": "case h\nι : Type u_1\nα : ι → Type u_2\ns₁ s₂ : Finset ι\nS₁ : Set ((i : { x // x ∈ s₁ }) → α ↑i)\nS₂ : Set ((i : { x // x �� s₂ }) → α ↑i)\ninst✝ : DecidableEq ι\nf : (i : ι) → α i\n⊢ (fun i => f ↑i) ∈ S₁ ∨ (fun i => f ↑i) ∈ S₂ ↔\n (fun i => f ↑i) ∈ (fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₁ ∨ (fun i => f ↑i) ∈ (fun f j => f ⟨↑j, ⋯⟩) ⁻¹' S₂"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "m : MeasurableSpace α", "μ ν ν' : Measure α", "inst✝² : SigmaFinite μ", "inst✝¹ : SigmaFinite ν", "inst✝ : SigmaFinite ν'", "hμν : μ ≪ ν", "hνν' : ν ⟂ₘ ν'", "t : Set α := hνν'.nullSet"], "goal": "μ.rnDeriv (ν + ν') =ᶠ[ae ν] μ.rnDeriv ν"}], "premise": [30039], "state_str": "α : Type u_1\nβ : Type u_2\nm : MeasurableSpace α\nμ ν ν' : Measure α\ninst✝² : SigmaFinite μ\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite ν'\nhμν : μ ≪ ν\nhνν' : ν ⟂ₘ ν'\nt : Set α := hνν'.nullSet\n⊢ μ.rnDeriv (ν + ν') =ᶠ[ae ν] μ.rnDeriv ν"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "m : MeasurableSpace α", "μ ν ν' : Measure α", "inst✝² : SigmaFinite μ", "inst✝¹ : SigmaFinite ν", "inst✝ : SigmaFinite ν'", "hμν : μ ≪ ν", "hνν' : ν ⟂ₘ ν'", "t : Set α := hνν'.nullSet", "ht : MeasurableSet t"], "goal": "μ.rnDeriv (ν + ν') =ᶠ[ae ν] μ.rnDeriv ν"}], "premise": [32306], "state_str": "α : Type u_1\nβ : Type u_2\nm : MeasurableSpace α\nμ ν ν' : Measure α\ninst✝² : SigmaFinite μ\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite ν'\nhμν : μ ≪ ν\nhνν' : ν ⟂ₘ ν'\nt : Set α := hνν'.nullSet\nht : MeasurableSet t\n⊢ μ.rnDeriv (ν + ν') =ᶠ[ae ν] μ.rnDeriv ν"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "m : MeasurableSpace α", "μ ν ν' : Measure α", "inst✝² : SigmaFinite μ", "inst✝¹ : SigmaFinite ν", "inst✝ : SigmaFinite ν'", "hμν : μ ≪ ν", "hνν' : ν ⟂ₘ ν'", "t : Set α := hνν'.nullSet", "ht : MeasurableSet t"], "goal": "μ.rnDeriv (ν + ν') =ᶠ[ae (ν.restrict tᶜ)] μ.rnDeriv ν"}], "premise": [29033, 29106, 34822], "state_str": "α : Type u_1\nβ : Type u_2\nm : MeasurableSpace α\nμ ν ν' : Measure α\ninst✝² : SigmaFinite μ\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite ν'\nhμν : μ ≪ ν\nhνν' : ν ⟂ₘ ν'\nt : Set α := hνν'.nullSet\nht : MeasurableSet t\n⊢ μ.rnDeriv (ν + ν') =ᶠ[ae (ν.restrict tᶜ)] μ.rnDeriv ν"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "m : MeasurableSpace α", "μ ν ν' : Measure α", "inst✝² : SigmaFinite μ", "inst✝¹ : SigmaFinite ν", "inst✝ : SigmaFinite ν'", "hμν : μ ≪ ν", "hνν' : ν ⟂ₘ ν'", "t : Set α := hνν'.nullSet", "ht : MeasurableSet t", "this : (ν.restrict tᶜ).withDensity (μ.rnDeriv (ν + ν')) = ((ν + ν').restrict tᶜ).withDensity (μ.rnDeriv (ν + ν'))"], "goal": "(ν.restrict tᶜ).withDensity (μ.rnDeriv (ν + ν')) = (ν.restrict tᶜ).withDensity (μ.rnDeriv ν)"}], "premise": [27953, 31336, 31568, 32750], "state_str": "α : Type u_1\nβ : Type u_2\nm : MeasurableSpace α\nμ ν ν' : Measure α\ninst✝² : SigmaFinite μ\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite ν'\nhμν : μ ≪ ν\nhνν' : ν ⟂ₘ ν'\nt : Set α := hνν'.nullSet\nht : MeasurableSet t\nthis : (ν.restrict tᶜ).withDensity (μ.rnDeriv (ν + ν')) = ((ν + ν').restrict tᶜ).withDensity (μ.rnDeriv (ν + ν'))\n⊢ (ν.restrict tᶜ).withDensity (μ.rnDeriv (ν + ν')) = (ν.restrict tᶜ).withDensity (μ.rnDeriv ν)"} +{"state": [{"context": ["α : Type u_1", "n : ℕ", "s t : Multiset α", "l : List α"], "goal": "s ∈ powersetCard n ⟦l⟧ ↔ s ≤ ⟦l⟧ ∧ card s = n"}], "premise": [134949], "state_str": "α : Type u_1\nn : ℕ\ns t : Multiset α\nl : List α\n⊢ s ∈ powersetCard n ⟦l⟧ ↔ s ≤ ⟦l⟧ ∧ card s = n"} +{"state": [{"context": ["α : Type u_1", "G : Type u_2", "M : Type u_3", "R : Type u_4", "A : Type u_5", "inst✝⁴ : Monoid M", "inst✝³ : AddMonoid A", "s✝ t u : Set M", "N : Type u_6", "inst✝² : CommMonoid N", "inst✝¹ : MulAction M N", "inst✝ : IsScalarTower M N N", "r : M", "s : Set N", "x : N", "hx : x ∈ closure s"], "goal": "∃ n, r ^ n • x ∈ closure (r • s)"}], "premise": [117660], "state_str": "α : Type u_1\nG : Type u_2\nM : Type u_3\nR : Type u_4\nA : Type u_5\ninst✝⁴ : Monoid M\ninst✝³ : AddMonoid A\ns✝ t u : Set M\nN : Type u_6\ninst✝² : CommMonoid N\ninst✝¹ : MulAction M N\ninst✝ : IsScalarTower M N N\nr : M\ns : Set N\nx : N\nhx : x ∈ closure s\n⊢ ∃ n, r ^ n • x ∈ closure (r • s)"} +{"state": [{"context": ["X : Type u", "Y : Type v", "ι : Sort w", "α : Type u_1", "β : Type u_2", "x : X", "s s₁ s₂ t : Set X", "p p₁ p₂ : X → Prop", "inst✝ : TopologicalSpace X"], "goal": "x ∉ closure s ↔ 𝓝[s] x = ⊥"}], "premise": [1713, 15922, 55574], "state_str": "X : Type u\nY : Type v\nι : Sort w\nα : Type u_1\nβ : Type u_2\nx : X\ns s₁ s₂ t : Set X\np p₁ p₂ : X → Prop\ninst✝ : TopologicalSpace X\n⊢ x ∉ closure s ↔ 𝓝[s] x = ⊥"} +{"state": [{"context": ["α : Type u_1", "β : Type u_2", "s t : Set α"], "goal": "s.encard = 0 ↔ s = ∅"}], "premise": [1713, 47622, 70308, 70736, 70752, 71387, 133373, 144972], "state_str": "α : Type u_1\nβ : Type u_2\ns t : Set α\n⊢ s.encard = 0 ↔ s = ∅"} +{"state": [{"context": ["a✝ b✝ c p q : ℚ", "a : ℤ", "ha : 0 ≤ a", "b : ℕ"], "goal": "0 ≤ mkRat a b"}], "premise": [105548, 129973], "state_str": "a✝ b✝ c p q : ℚ\na : ℤ\nha : 0 ≤ a\nb : ℕ\n⊢ 0 ≤ mkRat a b"}