soerenray commited on
Commit
5fec0f3
·
1 Parent(s): 93ee014

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +23 -124
README.md CHANGED
@@ -30,127 +30,6 @@ tags:
30
  - audio
31
  - classification
32
  - extended
33
- dataset_info:
34
- - config_name: enrichment_only
35
- features:
36
- - name: label_string
37
- dtype: string
38
- - name: probability
39
- dtype: float64
40
- - name: probability_vector
41
- sequence: float32
42
- - name: prediction
43
- dtype: int64
44
- - name: prediction_string
45
- dtype: string
46
- - name: embedding_reduced
47
- sequence: float32
48
- splits:
49
- - name: train
50
- num_bytes: 8763867
51
- num_examples: 51093
52
- - name: validation
53
- num_bytes: 1165942
54
- num_examples: 6799
55
- - name: test
56
- num_bytes: 528408
57
- num_examples: 3081
58
- download_size: 12246039
59
- dataset_size: 10458217
60
- - config_name: raw_and_enrichment_combined
61
- features:
62
- - name: file
63
- dtype: string
64
- - name: audio
65
- dtype:
66
- audio:
67
- sampling_rate: 16000
68
- - name: label
69
- dtype:
70
- class_label:
71
- names:
72
- '0': 'yes'
73
- '1': 'no'
74
- '2': up
75
- '3': down
76
- '4': left
77
- '5': right
78
- '6': 'on'
79
- '7': 'off'
80
- '8': stop
81
- '9': go
82
- '10': zero
83
- '11': one
84
- '12': two
85
- '13': three
86
- '14': four
87
- '15': five
88
- '16': six
89
- '17': seven
90
- '18': eight
91
- '19': nine
92
- '20': bed
93
- '21': bird
94
- '22': cat
95
- '23': dog
96
- '24': happy
97
- '25': house
98
- '26': marvin
99
- '27': sheila
100
- '28': tree
101
- '29': wow
102
- '30': _silence_
103
- - name: is_unknown
104
- dtype: bool
105
- - name: speaker_id
106
- dtype: string
107
- - name: utterance_id
108
- dtype: int8
109
- - name: logits
110
- sequence: float64
111
- - name: embedding
112
- sequence: float32
113
- - name: label_string
114
- dtype: string
115
- - name: probability
116
- dtype: float64
117
- - name: probability_vector
118
- sequence: float32
119
- - name: prediction
120
- dtype: int64
121
- - name: prediction_string
122
- dtype: string
123
- - name: embedding_reduced
124
- sequence: float32
125
- splits:
126
- - name: train
127
- num_bytes: 1803565876.375
128
- num_examples: 51093
129
- - name: validation
130
- num_bytes: 240795605.125
131
- num_examples: 6799
132
- - name: test
133
- num_bytes: 109673146.875
134
- num_examples: 3081
135
- download_size: 2107299942
136
- dataset_size: 2154034628.375
137
- configs:
138
- - config_name: enrichment_only
139
- data_files:
140
- - split: train
141
- path: enrichment_only/train-*
142
- - split: validation
143
- path: enrichment_only/validation-*
144
- - split: test
145
- path: enrichment_only/test-*
146
- - config_name: raw_and_enrichment_combined
147
- data_files:
148
- - split: train
149
- path: raw_and_enrichment_combined/train-*
150
- - split: validation
151
- path: raw_and_enrichment_combined/validation-*
152
- - split: test
153
- path: raw_and_enrichment_combined/test-*
154
  ---
155
 
156
  # Dataset Card for SpeechCommands
@@ -178,6 +57,8 @@ At [Renumics](https://renumics.com/?hf-dataset-card=speech-commands-enriched) we
178
 
179
  ### Explore the Dataset
180
 
 
 
181
  The enrichments allow you to quickly gain insights into the dataset. The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) enables that with just a few lines of code:
182
 
183
  Install datasets and Spotlight via [pip](https://packaging.python.org/en/latest/key_projects/#pip):
@@ -190,14 +71,32 @@ Install datasets and Spotlight via [pip](https://packaging.python.org/en/latest/
190
  Load the dataset from huggingface in your notebook and start exploring with a simple view:
191
 
192
  ```python
193
- from renumics import spotlight
194
  import datasets
 
 
 
195
 
196
- dataset = datasets.load_dataset("renumics/speech_commands_enriched", "v0.01")
197
- spotlight.show(dataset, port=8000, dtype={"file": spotlight.Audio})
 
 
 
 
 
 
 
 
 
 
 
198
  ```
199
  You can use the UI to interactively configure the view on the data. Depending on the concrete tasks (e.g. model comparison, debugging, outlier detection) you might want to leverage different enrichments and metadata.
200
 
 
 
 
 
 
201
 
202
  ### SpeechCommands Dataset
203
 
 
30
  - audio
31
  - classification
32
  - extended
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ---
34
 
35
  # Dataset Card for SpeechCommands
 
57
 
58
  ### Explore the Dataset
59
 
60
+ There are two configurations of the dataset: **Enrichment only** provides the enrichments calculated by Renumics using the MIT AST transformer, while **raw_and_enrichment_combined** provides a concatenated dataset of the original speech commands and the enrichment.
61
+
62
  The enrichments allow you to quickly gain insights into the dataset. The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) enables that with just a few lines of code:
63
 
64
  Install datasets and Spotlight via [pip](https://packaging.python.org/en/latest/key_projects/#pip):
 
71
  Load the dataset from huggingface in your notebook and start exploring with a simple view:
72
 
73
  ```python
 
74
  import datasets
75
+ from renumics import spotlight
76
+
77
+ from renumics.spotlight.layouts import debug_classification
78
 
79
+ dataset = datasets.load_dataset("renumics/speech_commands_enrichment_only", "raw_and_enrichment_combined")
80
+ joined_dataset = datasets.concatenate_datasets([dataset["train"], dataset["validation"], dataset["test"]])
81
+ layout = debug_classification(label='label_string', prediction='prediction', embedding='embedding_reduced',
82
+ features=["label", "prediction", "probability"], inspect={'audio': spotlight.Audio})
83
+ dtypes = {
84
+ "audio": spotlight.Audio,
85
+ "embedding_reduced": spotlight.Embedding
86
+ }
87
+ spotlight.show(
88
+ joined_dataset,
89
+ dtype=dtypes,
90
+ layout= layout
91
+ )
92
  ```
93
  You can use the UI to interactively configure the view on the data. Depending on the concrete tasks (e.g. model comparison, debugging, outlier detection) you might want to leverage different enrichments and metadata.
94
 
95
+ As a plug and play option, you can check out the Huggingface space: [Huggingface Space for speech enrichment](https://huggingface.co/spaces/renumics/speech_commands_enrichment_space)
96
+
97
+ Alternatively, you can run the notebook exploration.ipynb locally.
98
+
99
+
100
 
101
  ### SpeechCommands Dataset
102