speech_commands_enriched / data /create_enriched_annotated_speechcommands.py
soeren
build script
fb12e65
raw
history blame
5.25 kB
#!/usr/bin/env python
# coding: utf-8
# # Create embeddings with the transformer library
#
# We use the Huggingface transformers library to create an embedding for a an audio dataset
#
#
#
# ## tldr; Play as callable functions
import datasets
from transformers import AutoFeatureExtractor, AutoModel, ASTForAudioClassification
import torch
from renumics import spotlight
import pandas as pd
import umap
import numpy as np
_SPLIT = "train"
def __set_device():
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.cuda.empty_cache()
return device
def extract_embeddings(model, feature_extractor):
"""Utility to compute embeddings."""
device = model.device
def pp(batch):
audios = [element["array"] for element in batch["audio"]]
inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True).to(device)
embeddings = model(**inputs).last_hidden_state[:, 0].cpu()
return {"embedding": embeddings}
return pp
def huggingface_embedding(dataset, modelname, batched=True, batch_size=8):
# initialize huggingface model
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True)
model = AutoModel.from_pretrained(modelname, output_hidden_states=True)
#compute embedding
device = __set_device()
extract_fn = extract_embeddings(model.to(device), feature_extractor)
updated_dataset = dataset.map(extract_fn, batched=batched, batch_size=batch_size)
return updated_dataset
def batch_probabilities(model, feature_extractor):
device = model.device
def processing(batch):
audios = [element["array"] for element in batch["audio"]]
inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True, sampling_rate=16000).to(device)
outputs = model(**inputs)
return {"logits": outputs.logits}
return processing
def annotate_probabilities(dataset, modelname, batched=True, batch_size= 8):
model = ASTForAudioClassification.from_pretrained(modelname)
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True)
device = __set_device()
calc_outputs = batch_probabilities (model.to(device), feature_extractor)
output_dataset = dataset.map(calc_outputs, batched = batched, batch_size = batch_size)
return output_dataset
def annotate_batch(model, dataset):
device = model.device
def batch_annotation(batch):
logits = [torch.tensor(element) for element in batch["logits"]]
probabilities_per_class = [torch.nn.functional.softmax(logit, dim=-1) for logit in logits]
predicted_class_ids = [torch.argmax(logit).item() for logit in logits]
predicted_labels = [model.config.id2label[predicted_class_id] for predicted_class_id in predicted_class_ids]
# pre-trained model to different amount of classes
# -> id2label only reflects "internal label", not actual dataset label
annotated_labels = [labels[element] for element in batch["label"]]
probabilities = []
for index, prob_per_class in enumerate(probabilities_per_class):
probabilities.append(prob_per_class[predicted_class_ids[index]].item())
return {"Probability": probabilities, "Predicted Label": predicted_labels,
"Annotated Labels": annotated_labels, "Probability Vector": probabilities_per_class}
return batch_annotation
def annotate_dataset(dataset, modelname, batched=True, batch_size=8):
model = ASTForAudioClassification.from_pretrained(modelname)
device = __set_device()
annotate = annotate_batch(model.to(device), dataset)
annotated_dataset = dataset.map(annotate, batched=batched, batch_size=batch_size)
return annotated_dataset
# ## Step-by-step example on speech-commands
#
# ### Load speech-commands from Huggingface hub
# Use validation split to evaluate model's performance on unseen data
dataset = datasets.load_dataset('speech_commands', 'v0.01', split=_SPLIT)
labels = dataset.features["label"].names
# Let's have a look at all of the labels that we want to predict
print(labels)
# ### Compute probabilities and annotate dataset
# First, calculate logits per sample
# calculate logits for each sample and annotate
dataset_annotated = annotate_probabilities(dataset, "MIT/ast-finetuned-speech-commands-v2")
# Now annotate labels and probabilities
dataset_annotated_complete = annotate_dataset(dataset_annotated, "MIT/ast-finetuned-speech-commands-v2")
# ### Compute embedding with vision transformer from Huggingface
dataset_enriched = huggingface_embedding(dataset_annotated_complete, "MIT/ast-finetuned-speech-commands-v2")
# ### Reduce embeddings for faster visualization
embeddings = np.stack(np.array(dataset_enriched['embedding']))
reducer = umap.UMAP()
reduced_embedding = reducer.fit_transform(embeddings)
dataset_enriched = dataset_enriched.add_column("embedding_reduced", list(reduced_embedding))
print(dataset_enriched.features)
df = dataset_enriched.to_pandas()
df.to_parquet("data/dataset_audio_" + _SPLIT + ".parquet.gzip", compression='gzip')