File size: 18,779 Bytes
d5ac9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import datetime
import gc
import itertools
import multiprocessing
import pathlib
import random
from typing import Generator, Optional
from urllib.parse import urlparse
import natural.number
import orjson
import peewee
import tqdm
import typer
from loguru import logger
from loguru._logger import Logger
from playhouse.sqlite_ext import JSONField, SqliteExtDatabase
app = typer.Typer()
GB = 2**30
logger.add("RedditThreader_{time}.log",rotation="10 MB",enqueue=True)
def read_lines_jsonl(file_name, chunk_size=GB // 2):
with open(file_name, "rb") as file_handle:
buffer = b""
while True:
chunk = file_handle.read(chunk_size)
if not chunk:
break
lines = (buffer + chunk).split(b"\n")
for line in lines[:-1]:
yield line.strip()
buffer = lines[-1]
def grouper(n, iterable: Generator):
"""
>>> list(grouper(3, 'ABCDEFG'))
[['A', 'B', 'C'], ['D', 'E', 'F'], ['G']]
"""
return iter(lambda: list(itertools.islice(iterable, n)), [])
def base36encode(number):
if not isinstance(number, (int)):
raise TypeError("number must be an integer")
is_negative = number < 0
number = abs(number)
alphabet, base36 = ["0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", ""]
while number:
number, i = divmod(number, 36)
base36 = alphabet[i] + base36
if is_negative:
base36 = "-" + base36
return base36 or alphabet[0]
# Sometimes pushshift might send int ids. Fix for those.
def transform_ids(post_id: str | int):
if isinstance(post_id, int):
return base36encode(post_id).lower()
return post_id
SHN_NETLOC_REWRITE = {
"x.com": "twitter.com",
"v.redd.it": "video.reddit.com",
"i.redd.it": "image.reddit.com",
}
# Default Reddit filter for comment threads with < -4 upvotes
RDT_SCORE = -4
# RES: Custom Comment Depth
# 50 Comments: Minimum to activate this feature.
# 6: Any comment more than depth 6 is purged
RES_DEPTH = [50, 6]
# Minimum No. of Comments to consider adding a thread:
# - We have at least 5 comments OR
# - The root submission's text is more than 2500 characters. (Probably worth fetching)
SHN_MIN_REPLIES = 5
SINGLE_COMMENT_MIN = 2500
# fuzzy selection to prune stuff arund this range.
FUZZY_SUBREDDIT = (5, 20)
def flatten_thread(reply_thread: dict, working_list: list[dict]):
# Add the current reply to the list
working_list.append({k: v for k, v in reply_thread.items() if k != "children"})
if reply_thread["children"]:
for sub_reply in reply_thread["children"]:
working_list = flatten_thread(sub_reply, working_list)
return working_list
def try_get_netloc(url:str):
try:
return urlparse(url).netloc
except Exception:
return url
def rethread_subreddit(
db_path: pathlib.Path,
submissions: pathlib.Path,
comments: pathlib.Path,
subreddit_file: pathlib.Path,
global_logger: Optional[Logger] = None,
hide_pbars: bool = False,
wipe_db_afterdone: bool = True,
):
if global_logger:
globals()["logger"] = global_logger
if db_path.is_file():
db_path.unlink()
db_sqlite = SqliteExtDatabase(
str(db_path.resolve()),
pragmas={"journal_mode": "off", "locking_mode": "exclusive", "synchronous": 0},
)
class BaseModel(peewee.Model):
class Meta:
database = db_sqlite
class SubComment(BaseModel):
id = peewee.CharField(unique=True)
thread_id = peewee.CharField(index=True)
parent_id = peewee.CharField(
index=True,
)
subreddit = peewee.CharField()
is_sub = peewee.BooleanField()
data = JSONField()
SubComment.create_table()
def jsonl_generator(file: pathlib.Path):
for line in read_lines_jsonl(file, chunk_size=GB):
yield orjson.loads(line)
for batch in tqdm.tqdm(
grouper(30_000, jsonl_generator(submissions)),
desc="Submission Batches",
disable=hide_pbars,
):
# fixup for ids
for sub in batch:
sub["id"] = transform_ids(sub["id"])
batch = [
dict(
id=f't3_{sub["id"]}',
thread_id=f't3_{sub["id"]}',
parent_id="",
subreddit=sub["sub"]["name"],
data=sub,
is_sub=True,
)
for sub in batch
]
# print(len(batch))
with db_sqlite.transaction():
SubComment.insert_many(batch).execute()
# print(r)
del batch
gc.collect()
for batch in tqdm.tqdm(
grouper(30_000, jsonl_generator(comments)),
desc="Comment Batches",
disable=hide_pbars,
):
# fixup for ids
for sub in batch:
sub["id"] = transform_ids(sub["id"])
batch = [
dict(
id=f't1_{sub["id"]}',
thread_id=sub["thread_id"],
parent_id=sub["parent_id"] if sub["parent_id"] else "",
subreddit=sub["sub"]["name"],
data=sub,
is_sub=False,
)
for sub in batch
]
# print(batch)
SubComment.insert_many(batch).on_conflict_replace().execute()
del batch
gc.collect()
thread_query = (
SubComment.select(SubComment.thread_id, SubComment.data, SubComment.subreddit)
.where(SubComment.is_sub == True)
.distinct()
)
# Default Reddit filter for comment threads with < -4 upvotes
depth_defaults = [0, 0, 0, "", "", {}]
thread_count = thread_query.count()
logger.debug(
f"Making Threads for /r/{db_path.stem} {thread_count} Threads found. Init pass for potential threads"
)
# Inital pass
usable_threads = 0
for _, prethread_row in enumerate(db_sqlite.execute(thread_query)):
# Get comment counts
comment_query = SubComment.select(
SubComment.id, SubComment.parent_id, SubComment.data
).where(SubComment.thread_id == prethread_row[0], SubComment.is_sub == False, SubComment.parent_id != "")
# Count number of comments.
pretotal_comments = comment_query.count()
preroot_submission = orjson.loads(prethread_row[1])
if pretotal_comments >= SHN_MIN_REPLIES or (
preroot_submission["text"]
and len(preroot_submission["text"]) > SINGLE_COMMENT_MIN
):
usable_threads += 1
# Check for subreddit inclusion
fuzz_threads = random.randrange(FUZZY_SUBREDDIT[0], FUZZY_SUBREDDIT[1])
if usable_threads <= fuzz_threads:
logger.debug(
f"/r/{db_path.stem} has {usable_threads}, which is less than {fuzz_threads} (fuzzy {FUZZY_SUBREDDIT}) to be worth including. Skipping subreddit entirely..."
)
db_sqlite.close()
if db_path.is_file():
db_path.unlink()
return
logger.debug(
f"Init Search Done. Found {usable_threads} for /r/{db_path.stem}. Making threads..."
)
with open(subreddit_file, "wb") as subreddit_fp:
for thread_idx, thread_row in enumerate(db_sqlite.execute(thread_query)):
# Get comment counts
comment_query = SubComment.select(
SubComment.id, SubComment.parent_id, SubComment.data
).where(SubComment.thread_id == thread_row[0], SubComment.is_sub == False)
# Count number of comments.
total_comments = comment_query.count()
root_submission = orjson.loads(thread_row[1])
# logger.debug("Compute Depth Stats")
depth_counter = {}
if total_comments >= SHN_MIN_REPLIES or (
root_submission["text"]
and len(root_submission["text"]) > SINGLE_COMMENT_MIN
):
pass
else:
continue
# Compute depth mapping
for comment_id, _, comment_data in db_sqlite.execute(comment_query):
comment_data = orjson.loads(comment_data)
parent_depth_data = depth_counter.get(
comment_data["parent_id"], depth_defaults
)
# There is probably a better way to do this, but whatever lol.
depth_data = [
parent_depth_data[0] + 1,
parent_depth_data[1] + comment_data["score"],
comment_data["score"],
parent_depth_data[3],
comment_data["parent_id"],
comment_data,
]
if not depth_data[3]:
if depth_data[2] <= RDT_SCORE:
depth_data[3] = f"[Rdt] <{RDT_SCORE} Votes"
elif total_comments > RES_DEPTH[0] and depth_data[0] > RES_DEPTH[1]:
depth_data[3] = "[RES] TComment Thr"
elif depth_data[1] < 0 and depth_data[2] != depth_data[3]:
depth_data[3] = "[Shn] Accumulated Score"
else:
depth_data[3] = "Purged from Parent"
depth_counter.setdefault(
comment_id,
depth_data,
)
# thread_file.write_bytes(orjson.dumps(depth_counter, option=orjson.OPT_INDENT_2))
comments_lookup = {}
all_comments_data = []
for comment_id, parent_id, comment_data in tqdm.tqdm(
db_sqlite.execute(comment_query),
desc="Rewire query...",
disable=hide_pbars,
):
# Yes we do a 2nd json load but it's fast.
comment_data = orjson.loads(comment_data)
if depth_counter.get(comment_id, depth_defaults)[3]:
continue
comments_lookup[comment_id] = comment_data
all_comments_data.append(comment_data)
# Mark as "Purgable". We don't use it anymore here
del depth_counter
gc.collect()
# A bit of code was from chatgpt but I have to rewrite a bunch of it anyway
# As all comments should have have a reply to "Something", it's a safe assumption to sort it by creation time.
comments_lookup = {
k: v
for k, v in sorted(
comments_lookup.items(), key=lambda item: int(item[1]["created"])
)
}
for comment in all_comments_data:
comment["children"] = []
root_comments = []
for post in tqdm.tqdm(
all_comments_data, desc="Make sorted", disable=hide_pbars
):
# parent_id or id's can be int's.
# We drop all int's since we now do resolve all int's before hand.
parent_id = post["parent_id"]
if isinstance(parent_id, int) or isinstance(post["id"], int):
continue
subdebug = f"<https://reddit.com/r/{post['sub']['name']}/comments/{post['thread_id'][3:]}/a/{post['id']}>"
if not isinstance(parent_id, str):
# logger.warning(f"{parent_id} is not a valid string. {subdebug}")
continue
if parent_id.startswith("t3_"):
root_comments.append(post)
else:
if parent_id not in comments_lookup:
if len(comments_lookup) < 10:
logger.warning(comments_lookup)
# This *Should* not happen but if it does then we just warn and skip it.
# In practice, it does happen but it's kinda uncommon.
logger.warning(
f"{parent_id} doesn't seem to exist for {subdebug}"
)
continue
parent_post = comments_lookup[parent_id]
# I still have no idea how does this work.
# It *works* though. Though internally probably some pointer magic.
parent_post["children"].append(post)
# Again, we clear up 2 unused variables.
del comments_lookup, all_comments_data
gc.collect()
# After depth sorting, we reflatten it into a list.
# Sort roots by parent main score.
# This sorts it based on "Top".
# Reddit stopped exposing downvotes to public so we can't replicate "Best"
# Else I would have just used "Best"
root_comments = sorted(root_comments, key=lambda comment: comment["score"])
flatten_comments = []
for root_comment in root_comments:
flatten_comments.extend(flatten_thread(root_comment, []))
flatten_comments.insert(0, root_submission)
# Conversion to namedconversation.
def to_namedconversation():
conversation = []
for comment in flatten_comments:
time = datetime.datetime.fromtimestamp(
int(comment["created"]), tz=datetime.UTC
).strftime("%d %b %Y, %H:%m:%S")
comment_fmt = {
"sender": comment["author"]["name"]
if comment["author"]
else "[deleted]",
"message": "",
}
if "title" in comment:
text = f"[{time}] {comment['title']}\n\n"
if "M" in comment["flags"]:
text = "[R-18] " + text
if "url" in comment and comment["url"]:
netloc = try_get_netloc(comment["url"])
if not netloc.endswith(("www.reddit.com", "reddit.com")):
netloc = SHN_NETLOC_REWRITE.get(netloc.lower(), netloc)
text += f"Link: {netloc}\n\n"
text = text.rstrip("\n")
else:
text = f"[{time}] "
if "url" in comment and comment["url"]:
netloc = try_get_netloc(comment["url"])
text += f"Link: {netloc}\n\n"
added_text = False
if "text" in comment and comment["text"]:
text += f"{comment['text']}\n\n"
added_text = True
elif (
"text" in comment
and not comment["text"]
and comment_fmt["sender"].lower()
in ["[removed]", "[deleted]"]
):
text += "[Deleted]\n\n"
added_text = True
else:
text += "[No Comment]"
logger.warning(f"Empty Text: {comment}")
added_text = True
if not added_text:
logger.warning(f"Invalid comment data? {comment}")
text = text.rstrip("\n")
comment_fmt["message"] = text
conversation.append(comment_fmt)
return conversation
thread_data = {
"thread_id": thread_row[0],
"subreddit": thread_row[2],
"namedconversation": to_namedconversation(),
"submission": root_submission,
"comments": root_comments,
}
usable_threads += 1
subreddit_fp.write(
orjson.dumps(thread_data, option=orjson.OPT_APPEND_NEWLINE)
)
if thread_idx % 1000 == 0 and thread_idx > 0:
logger.debug(
f"/r/{db_path.stem} Threading: {round((thread_idx/thread_count)*100,ndigits=2)}% ({natural.number.number(thread_count-thread_idx)} to go...) done."
)
logger.debug(f"/r/{db_path.stem} Threads: {100}% done.")
if wipe_db_afterdone:
try:
db_sqlite.close()
db_path.unlink()
except Exception as e:
logger.error(e)
@app.command()
def file(
db_file: pathlib.Path,
submission: pathlib.Path,
comments: pathlib.Path,
thread_output: pathlib.Path,
):
rethread_subreddit(
db_file, submission, comments, thread_output, wipe_db_afterdone=False
)
def main_err_cb(err):
logger.exception(err)
@app.command()
def folder(
m700_folder: pathlib.Path, export_folder: pathlib.Path, subfilter_file: pathlib.Path
):
reddit_db_tmp = pathlib.Path(".reddit_tmp")
if not reddit_db_tmp.is_dir():
reddit_db_tmp.mkdir(exist_ok=True, parents=True)
with multiprocessing.Pool(processes=96) as pool:
futures = []
selected_subs = set()
with open(subfilter_file, "rb") as f:
for line in f:
selected_subs.add("_".join(orjson.loads(line)["file"].split("_")[:-1]))
for sub in [i for i in m700_folder.iterdir() if i.stem.endswith("_Submission")]:
root_sub = sub.with_stem(sub.stem[: -len("_Submission")])
comments = root_sub.with_stem(root_sub.stem + "_Comments")
if sub.exists() and comments.exists():
if root_sub.stem in selected_subs:
# logger.debug(f"Subreddit: /r/{root_sub} was selected.")
futures.append(
pool.apply_async(
rethread_subreddit,
args=(
reddit_db_tmp / f"{root_sub.stem}.sqlite.db",
sub,
comments,
export_folder / f"{root_sub.stem}.jsonl",
None,
True,
True,
),
error_callback=main_err_cb,
)
)
else:
pass
# logger.warning(f"Mismatched: {sub} {comments}")
# sub.unlink() if sub.exists() else None
# comments.unlink() if comments.exists() else None
logger.debug(f"Waiting for {len(futures)}")
[i.wait() for i in futures]
if __name__ == "__main__":
app()
|