File size: 4,578 Bytes
959866c 8086b3a b035b09 0a3916b 459dabf 362d32e 459dabf 959866c a2ba1af 959866c a2ba1af 959866c a2ba1af 959866c a2ba1af 959866c a2ba1af 959866c 4cc6ab0 959866c 6bbcc40 959866c 0a3916b 959866c 0a3916b 959866c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import json
import datasets
import pandas as pd
from huggingface_hub.file_download import hf_hub_url
try:
import lzma as xz
except ImportError:
import pylzma as xz
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION ="""\
"""
_HOMEPAGE = ""
_LICENSE = ""
_CITATION = ""
_URL = {
'data/'
}
_LANGUAGES = [
"german", "french", "italian", "swiss", "english"
]
_ENGLISH = [
"sherlock", "bioscope", "sfu"
]
_SHERLOCKS = [
"dev", "test_cardboard_GOLD", "test_circle_GOLD", "training"
]
_BIOSCOPES = [
"abstracts", "full_papers"
]
class MultiLegalNegConfig(datasets.BuilderConfig):
def __init__(self, name:str, **kwargs):
super( MultiLegalNegConfig, self).__init__(**kwargs)
self.name = name
self.language = name.split("_")[0]
class MultiLegalNeg(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = MultiLegalNegConfig
BUILDER_CONFIGS = [
MultiLegalNegConfig(f"{language}")
for language in _LANGUAGES + ['all']
]
DEFAULT_CONFIG_NAME = 'all_all'
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"spans": [
{
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"token_start": datasets.Value("int64"),
"token_end": datasets.Value("int64"),
"label": datasets.Value("string")
}
],
"tokens": [
{
"text": datasets.Value("string"),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"id": datasets.Value("int64"),
"ws": datasets.Value("bool")
}
]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features = features,
homepage = _HOMEPAGE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
data_files = {
"train": [
"data/train/it_train.jsonl.xz",
"data/train/fr_train.jsonl.xz",
"data/train/de_train.jsonl.xz",
"data/train/swiss_train.jsonl.xz",
"data/train/en_sherlock_train.jsonl.xz",
"data/train/en_sfu_train.jsonl.xz",
"data/train/en_bioscope_train.jsonl.xz"
],
"test": [
"data/test/it_test.jsonl.xz",
"data/test/fr_test.jsonl.xz",
"data/test/de_test.jsonl.xz",
"data/test/swiss_test.jsonl.xz",
"data/test/en_sherlock_test.jsonl.xz",
"data/test/en_sfu_test.jsonl.xz",
"data/test/en_bioscope_test.jsonl.xz"
],
"validation": [
"data/validation/it_validation.jsonl.xz",
"data/validation/fr_validation.jsonl.xz",
"data/validation/de_validation.jsonl.xz",
"data/validation/swiss_validation.jsonl.xz",
"data/validation/en_sherlock_validation.jsonl.xz",
"data/validation/en_sfu_validation.jsonl.xz",
"data/validation/en_bioscope_validation.jsonl.xz"
]
}
train_data = [{"text": line.strip(), "language": lang} for lang, files in data_files.items() for file in files for line in xz.open(file, "rt", encoding="utf-8")]
test_data = [{"text": line.strip(), "language": lang} for lang, files in data_files.items() for file in files for line in xz.open(file, "rt", encoding="utf-8")]
validation_data = [{"text": line.strip(), "language": lang} for lang, files in data_files.items() for file in files for line in xz.open(file, "rt", encoding="utf-8")]
return [
self._split_generate("train", data=train_data),
self._split_generate("test", data=test_data),
self._split_generate("validation", data=validation_data)
]
def _split_generate(self, split, data):
return self.DatasetSplitGenerator(
name=split,
gen_kwargs={"data": data},
)
def _generate_examples(self, data):
for i, example in enumerate(data):
yield i, example
|