--- tags: - docker - x86 - a100 - rtx4090 - semamba - cuda - pytorch - mamba license: mit library_name: docker datasets: [] --- # x86 SEMamba Docker Image This Docker image provides a pre-configured development environment for running [SEMamba](https://github.com/RoyChao19477/SEMamba) models on x86 systems such as NVIDIA A100, RTX 4090, and other CUDA-compatible GPUs. It contains Python 3.12 and PyTorch 2.2.2, built on top of Ubuntu 22.04 with CUDA 12.4. --- ## Contents - **OS**: Ubuntu 22.04 (x86_64) - **Python**: 3.12 (via Miniconda) - **CUDA**: 12.4 (base image) - **PyTorch**: 2.2.2 - **TorchVision**: 0.17.2 - **TorchAudio**: 2.2.2 - **Mamba-SSM**: 1.2.0 - **Essential packages**: git, vim, screen, htop, tmux, openssh, etc. --- ## Usage ### Download Docker Image ```bash wget https://huggingface.co/datasets/rc19477/x86-semamba-docker/resolve/main/x86_semamba_py312_pt222_cuda124.tar ``` ### Load Docker Image ```bash docker load < x86_semamba_py312_pt222_cuda124.tar ``` ### Run Container ```bash docker run --gpus all -it -v $(pwd):/workspace x86_semamba_py312_pt222_cuda124 ``` This will mount your current directory into `/workspace` inside the container. --- ## Purpose - Simplifies setup for SEMamba on x86 GPU systems - Provides reproducible environment with version-pinned core libraries --- ## License & Attribution - This Docker image is shared for **non-commercial research purposes**. - All included libraries retain their original licenses. - Based on [PyTorch](https://pytorch.org/), [Miniconda](https://docs.conda.io/en/latest/miniconda.html), and [Mamba](https://github.com/state-spaces/mamba). --- ## Maintainer For questions or issues, feel free to open a discussion or connect via GitHub.