--- # For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/datasets-cards {} --- # Dataset Card for Describable Textures Dataset (DTD) ## Dataset Details ### Dataset Description The Describable Textures Dataset (DTD) is a texture classification dataset consisting of 5,640 images categorized into 47 texture classes based on human perception. Each image is labeled with a primary texture category (key attribute) and may have additional joint attributes representing secondary textures. The dataset is divided into three equal splits (train, validation, test) with 40 images per class per split. ### Dataset Sources - **Homepage:** https://www.robots.ox.ac.uk/~vgg/data/dtd/ - **Paper:** Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. (2014). Describing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3606-3613). ## Dataset Structure Each sample in the dataset contains: - **image:** A variable-sized RGB image - **label:** A categorical label representing the texture class Total images: 5,640 Classes: 47 (e.g., banded, blotchy, chequered, cracked, dotted, grid, lined, marbled, porous, striped, etc.) Splits: - **Train:** 1,880 images (40 per class) - **Validation:** 1,880 images (40 per class) - **Test:** 1,880 images (40 per class) Image specs: Variable sizes (300×300 to 640×640 pixels), RGB ## Example Usage Below is a quick example of how to load this dataset via the Hugging Face Datasets library. ``` from datasets import load_dataset # Load the dataset dataset = load_dataset("../../aidatasets/images/dtd.py", split="train", trust_remote_code=True) # dataset = load_dataset("../../aidatasets/images/dtd.py", split="validation", trust_remote_code=True) # dataset = load_dataset("../../aidatasets/images/dtd.py", split="test", trust_remote_code=True) # Access a sample from the dataset example = dataset[0] image = example["image"] label = example["label"] image.show() # Display the image print(f"Label: {label}") ``` ## Citation **BibTeX:** @inproceedings{cimpoi2014describing, title={Describing textures in the wild}, author={Cimpoi, Mircea and Maji, Subhransu and Kokkinos, Iasonas and Mohamed, Sammy and Vedaldi, Andrea}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={3606--3613}, year={2014} }