--- # pretty_name: "" # Example: "MS MARCO Terrier Index" tags: - pyterrier - pyterrier-artifact - pyterrier-artifact.sparse_index - pyterrier-artifact.sparse_index.terrier task_categories: - text-retrieval viewer: false --- # ragwiki-terrier ## Description This is the sparse (Terrier) index for the Wikipedia 2018 corpus used by the Natural Questions and Textbook Question Answering datasets. By making this available as a Huggingface dataset, experiments can be performed using the existing index. ## Usage ```python # Load the artifact import pyterrier as pt artifact = pt.Artifact.from_hf('pyterrier/ragwiki-terrier') bm25 = artifact.bm25() bm25.search("what are chemical reactions") ``` ## Benchmarks *TODO: Provide benchmarks for the artifact.* ## Reproduction This index was created uing PyTerrier's sparse (Terrier) indexer. ```python import pyterrier as pt, pyterrier_rag ref = pt.IterDictIndexer( index_dir, text_attrs=['title', 'text'], meta={'docno' : 20, 'text' : 1750, 'title' : 125} ).index(pt.get_dataset('rag:nq_wiki').get_corpus_iter()) index = pt.terrier.TerrierIndex(ref) index.to_hf('pyterrier/ragwiki-terrier') ``` Full code to reproduce this index is included in [ragwiki_indexing-terrier.ipynb](https://huggingface.co/datasets/pyterrier/ragwiki-terrier/blob/main/ragwiki_indexing-terrier.ipynb) ## Metadata ``` { "type": "sparse_index", "format": "terrier", "package_hint": "python-terrier" } ```