File size: 5,845 Bytes
5aa458f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sparse Index for RAG Wikipedia Corpus\n",
"\n",
"This creates a sparse Terrier index using PyTerrier for the Wikipedia corpus used by Natural Questions and TextbookQuestionAnswering.\n",
"\n",
"The corpus is downloaded from https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets/resolve/main/retrieval-corpus/wiki18_100w.zip by `\n",
"pt.get_dataset('rag:nq_wiki').get_corpus_iter()`.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pyterrier as pt\n",
"import pyterrier_rag"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook requires PyTerrier 0.13 or higher."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'0.13.0'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pt.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets prepare the index. We're going to store the title and text of the documents in the Terrier index, so we can use them for reranking. A study of title and text length distributions found that very few were cutoff with for max lengths of 1750 and 125, respectively.\n"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"13:45:49.361 [ForkJoinPool-2-worker-3] WARN org.terrier.structures.BaseCompressingMetaIndex -- Structure meta reading lookup file directly from disk (SLOW) - try index.meta.index-source=fileinmem in the index properties file. 137.3 MiB of memory would be required.\n",
"13:45:49.366 [ForkJoinPool-2-worker-3] WARN org.terrier.structures.BaseCompressingMetaIndex -- Structure meta reading data file directly from disk (SLOW) - try index.meta.data-source=fileinmem in the index properties file. 7 GiB of memory would be required.\n",
"13:56:25.302 [ForkJoinPool-2-worker-3] WARN org.terrier.structures.BaseCompressingMetaIndex -- Structure meta reading data file directly from disk (SLOW) - try index.meta.data-source=fileinmem in the index properties file. 1.2 GiB of memory would be required.\n"
]
},
{
"data": {
"text/plain": [
"<org.terrier.querying.IndexRef at 0x7fa3d024d5b0 jclass=org/terrier/querying/IndexRef jself=<LocalRef obj=0xc526808 at 0x7fa274037470>>"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"index_dir = \"./nq_index_new\"\n",
"ref = pt.IterDictIndexer(\n",
" index_dir, \n",
" text_attrs=['title', 'text'], \n",
" meta={'docno' : 20, 'text' : 1750, 'title' : 125}\n",
" ).index(pt.get_dataset('rag:nq_wiki').get_corpus_iter())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We then upload the index to Huggingface..."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"adding data.direct.bf [1.9 GB]\n",
"adding data.document.fsarrayfile [340.7 MB]\n",
"adding data.inverted.bf [1.5 GB]\n",
"adding data.lexicon.fsomapfile [330.0 MB]\n",
"adding data.lexicon.fsomaphash [1017 B]\n",
"adding data.lexicon.fsomapid [15.3 MB]\n",
"adding data.meta-0.fsomapfile [1.3 GB]\n",
"adding data.meta.idx [160.3 MB]\n",
"adding data.meta.zdata [8.2 GB]\n",
"adding data.properties [4.1 KB]\n",
"adding pt_meta.json [79 B]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d807844944c94c4cb5b76e1472d062f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"artifact.tar.lz4.json: 0%| | 0.00/913 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8477f74a10114db0ab4c62be17d21385",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"artifact.tar.lz4: 0%| | 0.00/12.9G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b7082bc99c9a439dbb6ed8ab9fc484a1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload 2 LFS files: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Artifact uploaded to https://huggingface.co/datasets/pyterrier/ragwiki-terrier/tree/main/\n",
"Consider editing the README.md to help explain this artifact to others.\n"
]
}
],
"source": [
"index = pt.terrier.TerrierIndex(ref)\n",
"index.to_hf('pyterrier/ragwiki-terrier')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:rag]",
"language": "python",
"name": "conda-env-rag-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|