Create AGBD
Browse files
AGBD
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import numpy as np
|
21 |
+
import datasets
|
22 |
+
from datasets import Value
|
23 |
+
# TODO: Add BibTeX citation
|
24 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
+
_CITATION = """\
|
26 |
+
@InProceedings{huggingface:dataset,
|
27 |
+
title = {A great new dataset},
|
28 |
+
author={huggingface, Inc.
|
29 |
+
},
|
30 |
+
year={2020}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
# TODO: Add description of the dataset here
|
35 |
+
# You can copy an official description
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
38 |
+
"""
|
39 |
+
|
40 |
+
# TODO: Add a link to an official homepage for the dataset here
|
41 |
+
_HOMEPAGE = ""
|
42 |
+
|
43 |
+
# TODO: Add the licence for the dataset here if you can find it
|
44 |
+
_LICENSE = ""
|
45 |
+
|
46 |
+
norm_values = {
|
47 |
+
'B01': {'mean': 0.12478869, 'std': 0.024433358, 'min': 1e-04, 'max': 1.8808, 'p1': 0.0787, 'p99': 0.1946},
|
48 |
+
'B02': {'mean': 0.13480005, 'std': 0.02822557, 'min': 1e-04, 'max': 2.1776, 'p1': 0.0925, 'p99': 0.2216},
|
49 |
+
'B03': {'mean': 0.16031432, 'std': 0.032037303, 'min': 1e-04, 'max': 2.12, 'p1': 0.1035, 'p99': 0.2556},
|
50 |
+
'B04': {'mean': 0.1532097, 'std': 0.038628064, 'min': 1e-04, 'max': 2.0032, 'p1': 0.1023, 'p99': 0.2816},
|
51 |
+
'B05': {'mean': 0.20312776, 'std': 0.04205057, 'min': 0.0422, 'max': 1.7502, 'p1': 0.1178, 'p99': 0.319},
|
52 |
+
'B06': {'mean': 0.32636437, 'std': 0.07139242, 'min': 0.0502, 'max': 1.7245, 'p1': 0.1633, 'p99': 0.519},
|
53 |
+
'B07': {'mean': 0.36605212, 'std': 0.08555025, 'min': 0.0616, 'max': 1.7149, 'p1': 0.1776, 'p99': 0.6076},
|
54 |
+
'B08': {'mean': 0.3811653, 'std': 0.092815965, 'min': 1e-04, 'max': 1.7488, 'p1': 0.1691, 'p99': 0.646},
|
55 |
+
'B8A': {'mean': 0.3910436, 'std': 0.0896364, 'min': 0.055, 'max': 1.688, 'p1': 0.1871, 'p99': 0.6386},
|
56 |
+
'B09': {'mean': 0.3910644, 'std': 0.0836445, 'min': 0.0012, 'max': 1.7915, 'p1': 0.2124, 'p99': 0.6241},
|
57 |
+
'B11': {'mean': 0.2917373, 'std': 0.07472579, 'min': 0.0953, 'max': 1.648, 'p1': 0.1334, 'p99': 0.4827},
|
58 |
+
'B12': {'mean': 0.21169408, 'std': 0.05880649, 'min': 0.0975, 'max': 1.6775, 'p1': 0.115, 'p99': 0.3872}}
|
59 |
+
|
60 |
+
feature_dtype = {'s2_num_days': Value('int16'),
|
61 |
+
'gedi_num_days': Value('uint16'),
|
62 |
+
'lat': Value('float32'),
|
63 |
+
'lon': Value('float32'),
|
64 |
+
"agbd_se": Value('float32'),
|
65 |
+
"elev_lowes": Value('float32'),
|
66 |
+
"leaf_off_f": Value('uint8'),
|
67 |
+
"pft_class": Value('uint8'),
|
68 |
+
"region_cla": Value('uint8'),
|
69 |
+
"rh98": Value('float32'),
|
70 |
+
"sensitivity": Value('float32'),
|
71 |
+
"solar_elev": Value('float32'),
|
72 |
+
"urban_prop":Value('uint8')}
|
73 |
+
|
74 |
+
class NewDataset(datasets.GeneratorBasedBuilder):
|
75 |
+
def __init__(self, *args, additional_features=[], normalize_data=True, patch_size=15, **kwargs):
|
76 |
+
self.inner_dataset_kwargs = kwargs
|
77 |
+
self._is_streaming = False
|
78 |
+
self.patch_size = patch_size
|
79 |
+
self.normalize_data = normalize_data
|
80 |
+
self.additional_features = additional_features
|
81 |
+
super().__init__(*args, **kwargs)
|
82 |
+
|
83 |
+
VERSION = datasets.Version("1.1.0")
|
84 |
+
|
85 |
+
BUILDER_CONFIGS = [
|
86 |
+
datasets.BuilderConfig(name="default", version=VERSION, description="Normalized data"),
|
87 |
+
datasets.BuilderConfig(name="unnormalized", version=VERSION, description="Unnormalized data"),
|
88 |
+
]
|
89 |
+
|
90 |
+
DEFAULT_CONFIG_NAME = "default"
|
91 |
+
|
92 |
+
def as_streaming_dataset(self, split=None, base_path=None):
|
93 |
+
self._is_streaming = True
|
94 |
+
return super().as_streaming_dataset(split=split, base_path=base_path)
|
95 |
+
|
96 |
+
def _info(self):
|
97 |
+
all_features = {
|
98 |
+
'input': datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value('float32')))),
|
99 |
+
'label': Value('float32')
|
100 |
+
}
|
101 |
+
for feat in self.additional_features:
|
102 |
+
all_features[feat] = feature_dtype[feat]
|
103 |
+
features = datasets.Features(all_features)
|
104 |
+
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
features=features,
|
108 |
+
homepage=_HOMEPAGE,
|
109 |
+
license=_LICENSE,
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def denormalize_s2(self, patch):
|
114 |
+
res = []
|
115 |
+
for band, band_value in zip(['B04', 'B03', 'B02'], [patch[3], patch[2], patch[1]]):
|
116 |
+
p1, p99 = norm_values[band]['p1'], norm_values[band]['p99']
|
117 |
+
band_value = (p99 - p1) * band_value + p1
|
118 |
+
res.append(band_value)
|
119 |
+
patch[3], patch[2], patch[1] = res
|
120 |
+
return patch
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager):
|
123 |
+
self.original_dataset = datasets.load_dataset("prs-eth/AGBD_raw", streaming=self._is_streaming)
|
124 |
+
return [
|
125 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}),
|
126 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split": "val"}),
|
127 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test"}),
|
128 |
+
]
|
129 |
+
|
130 |
+
def _generate_examples(self, split):
|
131 |
+
for i, d in enumerate(self.original_dataset[split]):
|
132 |
+
if self.config.name == "default":
|
133 |
+
data = {'input': np.asarray(d["input"]), 'label': d["label"]}
|
134 |
+
elif self.config.name == "unnormalized":
|
135 |
+
data = {'input': np.asarray(self.denormalize_s2(np.array(d["input"]))), 'label': d["label"]}
|
136 |
+
|
137 |
+
start_x = (data["input"].shape[1] - self.patch_size) // 2
|
138 |
+
start_y = (data["input"].shape[2] - self.patch_size) // 2
|
139 |
+
data["input"] = data["input"][:, start_x:start_x + self.patch_size, start_y:start_y + self.patch_size]
|
140 |
+
|
141 |
+
for feat in self.additional_features:
|
142 |
+
data[feat] = d["metadata"][feat]
|
143 |
+
|
144 |
+
yield i, data
|
145 |
+
|
146 |
+
|