Datasets:

License:
File size: 4,269 Bytes
3b49aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Changelog

All notable changes to the dataset will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

### `v1.1.0` - 04.12.2024

Overall, the structure of the input data now looks like:
```

from datasets import load_dataset



dataset = load_dataset('AGBD.py',trust_remote_code=True,streaming=True)

for sample in dataset['train']:

  _in = sample['input']

  break



np.array(_in).shape # (24, 15, 15)

```
Where the shape follows the convention below: 
```

- 12 x Sentinel-2 bands

- 3 x Sentinel-2 dates (s2_num_days, s2_doy_cos, s2_doy_sin)

- 4 x Latitude/longitude (lat_cos, lat_sin, lon_cos, lon_sin)

- 3 x GEDI dates (gedi_num_days, gedi_doy_cos, gedi_doy_sin)

- 2 x ALOS bands (HH, HV)

- 2 x CH bands (ch, std)

- (N + 1) x LC (lc_encoded, lc_prob), where N = 14 for onehot, N = 5 for cat2vec, and N = 2 for sin/cos

- 3 x Topographic bands (slope, aspect_cos, aspect_sin)

- 1 x DEM (dem)

```

#### Added
* New features:
  * `slope` : the percentage of the slope where each pixel is located; it is a `float` between $0$ and $1$
  * `aspect_cos`,` aspect_sin` : the sine and cosine encoded aspect, or orientation of the slope, which is measured clockwise in degrees from $0$ to $360$; it is a `float` between $0$ and $1$
  * `s2_num_days` : the date of acquisition of the Sentinel-2 product, calculated as the number of days since the start of the GEDI mission (April 17th, 2019); it is an `int`
  * `s2_doy_cos`, `s2_doy_sin` : the sine and cosine encoded corresponding day of the year (DOY); it is a `float` between $0$ and $1$
  * `gedi_num_days` : the date of acquisition of the GEDI footprint, calculated as the number of days since the start of the GEDI mission (April 17th, 2019); it is a `uint`
  * `gedi_doy_cos`, `gedi_doy_sin` : the sine and cosine encoded corresponding day of the year (DOY); it is a `float` between $0$ and $1$
* The `load_dataset()` function now provides the following configuration options:
  * `norm_strat` (default = `'pct'`) : the strategy to apply to process the input features. Valid options are: `'pct'`, which applies min-max scaling with the $1$-st and $99$-th percentile of the data; and `'mean_std'` which applies mean/variance standardization`.
  * `encode_strat` (default = `'onehot'`) : the encoding strategy to apply to the land classification (LC) data. Valid options are: `'onehot'`, one-hot encoding; `'sin_cos'`, sine-cosine encoding; `'cat2vec'`, cat2vec transformation based on embeddings pre-computed on the train set.
  * `input_features` (dict) : the input features to be included in the data, the default values being:
      ```

      {'S2_bands': ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09','B11', 'B12'], 

       'S2_dates' : False, 'lat_lon': True, 'GEDI_dates': False, 'ALOS': True, 'CH': True, 'LC': True, 

       'DEM': True, 'topo': False}

      ```

  * `additional_features` (list, default = `[]`) : the metadata to include in the data. Possible values are:

      ```

      ['s2_num_days', 'gedi_num_days', 'lat', 'lon', 'agbd_se', 'elev_lowes', 'leaf_off_f', 'pft_class', 'region_cla', 'rh98', 'sensitivity', 'solar_elev', 'urban_prop']

      ```

      This metadata can later be accessed as such:

      ```

      from datasets import load_dataset

      

      dataset = load_dataset('AGBD.py',trust_remote_code=True,streaming=True)

      for sample in dataset['train']:

        lat = sample['lat']

        break

      ```


#### Fixed
* Statistics: there was in bug in the computation of the percentiles, and the statistics were fixed accordingly.
* Latitude and longitude: while the latitude and longitude in the raw `.h5` files are absolutely correct, there was a bug in the generation of the `.parquet` files for HuggingFace, resulting in offsetted `lat` and `lon` in the additional features. We've now corrected this. 

#### Removed
* The `load_dataset()` function does not provide the `normalize_data` configuration anymore, as it was replaced by the `norm_strat` configuration, giving users more flexibility regarding the processing of the input feature.