File size: 7,592 Bytes
331b7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622dc9
331b7fb
 
 
 
 
73f7ce9
 
 
 
 
 
 
 
331b7fb
b12c5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331b7fb
846934d
331b7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
846934d
331b7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6238617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""MTEB Results"""

import json

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """@article{muennighoff2022mteb,
  doi = {10.48550/ARXIV.2210.07316},
  url = {https://arxiv.org/abs/2210.07316},
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},  
  year = {2022}
}
"""

_DESCRIPTION = """Results on MTEB Portuguese"""

URL = "https://huggingface.co/datasets/projetomemoreba/results/resolve/main/paths.json"
VERSION = datasets.Version("1.0.1")
EVAL_LANGS = ['pt']

SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold"]

# Use "train" split instead
TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"]
# Use "validation" split instead
VALIDATION_SPLIT = ["AFQMC", "Cmnli", "IFlyTek", "TNews", "MSMARCO", "MSMARCO-PL", "MultilingualSentiment", "Ocnli"]
# Use "dev" split instead
DEV_SPLIT = ["CmedqaRetrieval", "CovidRetrieval", "DuRetrieval", "EcomRetrieval", "MedicalRetrieval", "MMarcoReranking", "MMarcoRetrieval", "MSMARCO", "MSMARCO-PL", "T2Reranking", "T2Retrieval", "VideoRetrieval"]



MODELS = [
  "instructor-base",
  "xlm-roberta-large",
  "gtr-t5-large",
  "sentence-t5-xxl",
  "GIST-Embedding-v0",
  "e5-base",
  "mxbai-embed-2d-large-v1",
  "SGPT-5.8B-weightedmean-nli-bitfit",
  "jina-embeddings-v2-base-de",
  "gte-base",
  "jina-embedding-b-en-v1",
  "LaBSE",
  "sgpt-bloom-7b1-msmarco",
  "bi-cse",
  "distilbert-base-uncased",
  "bert-base-10lang-cased",
  "sentence-t5-large",
  "jina-embeddings-v2-small-en",
  "e5-mistral-7b-instruct",
  "bge-base-en-v1.5",
  "ember-v1",
  "e5-large-v2",
  "lodestone-base-4096-v1",
  "all-mpnet-base-v2",
  "sentence-t5-xl",
  "distilbert-base-en-fr-cased",
  "gte-tiny",
  "text2vec-base-multilingual",
  "GIST-all-MiniLM-L6-v2",
  "jina-embeddings-v2-base-es",
  "bert-base-multilingual-uncased",
  "distiluse-base-multilingual-cased-v2",
  "sup-simcse-bert-base-uncased",
  "e5-small-v2",
  "GritLM-7B",
  "sentence-t5-base",
  "SFR-Embedding-Mistral",
  "mxbai-embed-large-v1",
  "stella-base-en-v2",
  "udever-bloom-3b",
  "bert-base-multilingual-cased",
  "all-MiniLM-L12-v2",
  "sf_model_e5",
  "bert-base-portuguese-cased",
  "bge-small-en-v1.5",
  "SGPT-125M-weightedmean-msmarco-specb-bitfit",
  "udever-bloom-560m",
  "gtr-t5-base",
  "fin-mpnet-base",
  "SGPT-2.7B-weightedmean-msmarco-specb-bitfit",
  "xlm-roberta-base",
  "GIST-small-Embedding-v0",
  "gte-large",
  "ALL_862873",
  "e5-large",
  "distilbert-base-en-fr-es-pt-it-cased",
  "dfm-sentence-encoder-large-v1",
  "bge-micro",
  "instructor-large",
  "average_word_embeddings_glove.6B.300d",
  "multilingual-e5-large-instruct",
  "msmarco-bert-co-condensor",
  "multilingual-e5-small",
  "UAE-Large-V1",
  "udever-bloom-1b1",
  "distilbert-base-fr-cased",
  "instructor-xl",
  "bert-base-uncased",
  "all-MiniLM-L6-v2",
  "e5-base-v2",
  "jina-embedding-l-en-v1",
  "gtr-t5-xl",
  "gte-small",
  "bge-small-4096",
  "average_word_embeddings_komninos",
  "unsup-simcse-bert-base-uncased",
  "bert-base-15lang-cased",
  "paraphrase-multilingual-MiniLM-L12-v2",
  "distilbert-base-25lang-cased",
  "contriever-base-msmarco",
  "multilingual-e5-large",
  "luotuo-bert-medium",
  "GIST-large-Embedding-v0",
  "bge-large-en-v1.5",
  "cai-lunaris-text-embeddings",
  "gtr-t5-xxl",
  "multilingual-e5-base",
  "paraphrase-multilingual-mpnet-base-v2",
  "SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
  "e5-dansk-test-0.1",
  "allenai-specter"
]
from pathlib import Path

# Needs to be run whenever new files are added
def get_paths():
    import collections, json, os
    files = collections.defaultdict(list)
    for model_dir in os.listdir("results"):
        results_model_dir = os.path.join("results", model_dir)
        if not os.path.isdir(results_model_dir):
            print(f"Skipping {results_model_dir}")
            continue
        for res_file in os.listdir(results_model_dir):
            if res_file.endswith(".json"):
                results_model_file = os.path.join(results_model_dir, res_file)
                files[model_dir].append(results_model_file)
            
    with open("paths.json", "w") as f:
        json.dump(files, f)
    return files

class MTEBResults(datasets.GeneratorBasedBuilder):
    """MTEBResults"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=model,
            description=f"{model} MTEB results",
            version=VERSION,
        )
        for model in MODELS
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "mteb_dataset_name": datasets.Value("string"),
                    "eval_language": datasets.Value("string"),
                    "metric": datasets.Value("string"),
                    "score": datasets.Value("float"),
                }
            ),
            supervised_keys=None,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        path_file = dl_manager.download_and_extract(URL)
        with open(path_file) as f:
            files = json.load(f)

        downloaded_files = dl_manager.download_and_extract(files[self.config.name])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={'filepath': downloaded_files}
            )
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info(f"Generating examples from {filepath}")

        out = []

        for path in filepath:
            with open(path, encoding="utf-8") as f:
                res_dict = json.load(f)
                ds_name = res_dict["mteb_dataset_name"]
                split = "test"
                if (ds_name in TRAIN_SPLIT) and ("train" in res_dict):
                    split = "train"
                elif (ds_name in VALIDATION_SPLIT) and ("validation" in res_dict):
                    split = "validation"
                elif (ds_name in DEV_SPLIT) and ("dev" in res_dict):
                    split = "dev"
                elif "test" not in res_dict:
                    print(f"Skipping {ds_name} as split {split} not present.")
                    continue
                res_dict = res_dict.get(split)
                is_multilingual = any(x in res_dict for x in EVAL_LANGS)
                langs = res_dict.keys() if is_multilingual else ["en"]
                for lang in langs:
                    if lang in SKIP_KEYS: continue
                    test_result_lang = res_dict.get(lang) if is_multilingual else res_dict
                    for metric, score in test_result_lang.items():
                        if not isinstance(score, dict):
                            score = {metric: score}
                        for sub_metric, sub_score in score.items():
                            if any(x in sub_metric for x in SKIP_KEYS): continue
                            out.append({
                                "mteb_dataset_name": ds_name,
                                "eval_language": lang if is_multilingual else "",
                                "metric": f"{metric}_{sub_metric}" if metric != sub_metric else metric,
                                "score": sub_score * 100,
                            })
        for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])):
            yield idx, row