Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
Catalan
Size:
10K - 100K
License:
File size: 2,967 Bytes
f8290a3 7cde224 39c437c f8290a3 622c5e6 f8290a3 a86ba83 f8290a3 622c5e6 f8290a3 622c5e6 f8290a3 622c5e6 f8290a3 622c5e6 f8290a3 39c437c f8290a3 39c437c f8290a3 a86ba83 39c437c f8290a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# Loading script for the TeCla dataset.
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
"""
_DESCRIPTION = """
WikiCAT: Text Classification Catalan dataset from the Viquipedia
"""
_HOMEPAGE = """ """
# TODO: upload datasets to github
_URL = "https://huggingface.co/datasets/projecte-aina/WikiCAT_ca/raw/main/"
_TRAINING_FILE = "train_ca.json"
_DEV_FILE = "dev_ca.json"
#_TEST_FILE = "test.json"
class wikiCAT_caConfig(datasets.BuilderConfig):
""" Builder config for the Topicat dataset """
def __init__(self, **kwargs):
"""BuilderConfig for WikiCAT_ca.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(wikiCAT_caConfig, self).__init__(**kwargs)
class wikiCAT_ca(datasets.GeneratorBasedBuilder):
""" WikiCAT_ca Dataset """
BUILDER_CONFIGS = [
wikiCAT_caConfig(
name="wikiCAT_ca",
version=datasets.Version("1.1.0"),
description="wikiCAT_ca",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel
(names= ['Ciència_i_Tecnologia', 'Dret', 'Economia', 'Enginyeria', 'Entreteniment', 'Esport', 'Filosofia', 'Història', 'Humanitats', 'Matemàtiques', 'Música', 'Política', 'Religió']
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
# "test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
print("filepath:",filepath)
with open(filepath, encoding="utf-8") as f:
wikicat_ca = json.load(f)
for id_, article in enumerate(wikicat_ca["data"]):
text = article["text"]
label = article["target"]
yield id_, {
"text": text,
"label": label,
}
|