Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
Catalan
DOI:
Libraries:
Datasets
Dask
License:
AlexK-PL commited on
Commit
5837b12
·
verified ·
1 Parent(s): 7f7c54f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -65
README.md CHANGED
@@ -11,11 +11,11 @@ multilinguality:
11
  - monolingual
12
  size_categories:
13
  - 10K<n<100K
14
- source_datasets: openslr
15
  task_categories:
16
  - text-to-speech
17
  task_ids: []
18
- pretty_name: openslr-slr69-ca-reviewed
19
  configs:
20
  - config_name: default
21
  data_files:
@@ -38,41 +38,28 @@ dataset_info:
38
  download_size: 539654839
39
  dataset_size: 586302366.93
40
  ---
41
- # Dataset Card for festcat_trimmed_denoised
42
 
43
- This is a post-processed version of the Catalan Festcat speech dataset.
44
-
45
- The original data can be found [here](http://festcat.talp.cat/ca/download-legacy.php).
46
-
47
- Same license is maintained: [Creative Commons Attribution-ShareAlike 3.0 Spain License](http://creativecommons.org/licenses/by-sa/3.0/es/).
48
 
49
  ## Dataset Details
50
 
51
  ### Dataset Description
52
 
53
- We processed the data of the Catalan Festcat with the following recipe:
54
-
55
- - **Trimming:** Long silences from the start and the end of clips have been removed.
56
- - [py-webrtcvad](https://pypi.org/project/webrtcvad/) -> Python interface to the Voice Activity Detector (VAD) developed by Google for the WebRTC.
57
- - **Resampling:** From 48000 Hz to 22050 Hz, which is the most common sampling rate for training TTS models
58
- - Resampler from [CoquiTTS](https://github.com/coqui-ai/TTS/tree/dev) framework
59
- - **Denoising:** Although base quality of the audios is high, we could remove some background noise and small artifcats thanks to the CleanUNet denoiser developed by NVIDIA.
60
- - [CleanUNet](https://github.com/NVIDIA/CleanUNet) - [arXiv](https://arxiv.org/abs/2202.07790)
61
-
62
- We kept the same number of samples, filenames, also the original anonymized speaker IDs and transcriptions.
63
- Our dataset version, after trimming, accumulates a total of 22.91h (divided by speaker IDs) as follows:
64
 
65
- - bet (female): 0.97h
66
- - mar (female): 0.96h
67
- - pol (male): 0.97h
68
- - eli (female): 0.99
69
- - ona (female): 6.86h
70
- - teo (male): 0.80h
71
- - eva (female): 1.11h
72
- - pau (male): 7.32h
73
- - uri (male): 1.04h
74
- - jan (male): 0.98h
75
- - pep (male): 0.91h
 
76
 
77
 
78
  ## Uses
@@ -125,47 +112,12 @@ Each data point is structured as:
125
 
126
  ### Source Data
127
 
128
- *FestCat: Speech Synthesis in Catalan using Festival*
129
-
130
- The goal of this dataset is to provide a Catalan Speech Corpora. This corpora
131
- is needed to produce quality synthetic voices in Catalan language. The main propouse of this
132
- voices will be to be used in future voice synthesis applications.
133
- This project has been developed by the Universitat Politècnica de Catalunya (UPC) within
134
- the Speech Technology Department (TSC), in the TALP Research Center. This project is included
135
- in the TALP’s FestCat project, which principal objective is to produce an open and high quality
136
- voice synthesizer for Catalan.
137
-
138
- The data set has been manually quality checked, but there might still be errors.
139
-
140
- Please report any issues in the following issue tracker on GitHub. https://github.com/FestCat/festival-ca/issues
141
-
142
- The original dataset is distributed under Creative Commons Attribution-ShareAlike 4.0 International Public License.
143
- See [LICENSE](https://github.com/FestCat/festival-ca/blob/upstream/LICENSE-gpl-2.0.txt) and [LICENSE](https://github.com/FestCat/festival-ca/blob/upstream/LICENSE-lgpl-2.1.txt) files as well as
144
- [https://github.com/google/language-resources#license](https://github.com/FestCat/festival-ca) for license information under License.
145
 
146
  #### Data Collection and Processing
147
 
148
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
149
- This is a post-processed version of the Catalan [FestCat](http://festcat.talp.cat/download.php) dataset.
150
- For more inormation about the original data collection and processing refer to [this website](http://festcat.talp.cat/).
151
-
152
 
153
  #### Who are the source data producers?
154
 
155
- Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
156
-
157
- Upstream-Name: FestCat
158
-
159
- Upstream-Contact: Sergio Oller <[email protected]>, Antonio Bonafonte <[email protected]>
160
-
161
- Source: http://festcat.talp.cat
162
-
163
- Copyright: 2007-2012, Antonio Bonafonte
164
- 2007-2012, Universitat Politècnica de Catalunya
165
- 2007-2012, Sergio Oller <[email protected]>
166
- 2023, Language Technologies Unit (LangTech) at Barcelona Supercomputing Center
167
-
168
- License: LGPL-2.1
169
 
170
  ### Annotations [optional]
171
 
 
11
  - monolingual
12
  size_categories:
13
  - 10K<n<100K
14
+ source_datasets: festcat
15
  task_categories:
16
  - text-to-speech
17
  task_ids: []
18
+ pretty_name: LaFresCat
19
  configs:
20
  - config_name: default
21
  data_files:
 
38
  download_size: 539654839
39
  dataset_size: 586302366.93
40
  ---
41
+ # LaFresCat Multiaccent
42
 
43
+ We present LaFresCat, the first Catalan multiaccented and multispeaker dataset.
 
 
 
 
44
 
45
  ## Dataset Details
46
 
47
  ### Dataset Description
48
 
49
+ In total 4 different accents. 2 speakers per accent (female and male):
 
 
 
 
 
 
 
 
 
 
50
 
51
+ * Balear
52
+ * olga
53
+ * quim
54
+ * Central
55
+ * elia
56
+ * grau
57
+ * Occidental (North-Western)
58
+ * emma
59
+ * pere
60
+ * Valencia
61
+ * gina
62
+ * lluc
63
 
64
 
65
  ## Uses
 
112
 
113
  ### Source Data
114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  #### Data Collection and Processing
117
 
 
 
 
 
118
 
119
  #### Who are the source data producers?
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
  ### Annotations [optional]
123