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we have used a value of the cut-off frequency between 10
and 20 MeV, which gives realistic dissipation and fluc-
tuation for the fusion or fission mechanism[14, 15, 18].
Our study clearly points out that a proper treatment of
memory requires to include higher order effects. (iv) Fi-
nally, in all cases, TCL4 could not be distinguished from
the exact result. As we will see, the efficiency of TCL4
is similar for the inverted parabola.
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FIG. 3: (Color online) Evolution of ΣPP for different approx-
imations: NZ2 (open triangles), NZ4 (filled triangles), TCL2
(open squares) and TCL4 (filled squares). The exact evo-
lution is displayed with solid line. In all cases, ~ω0 = 14
MeV, and kBT = ~ω0 are used. The left side, corre-
sponds to different cut-off frequencies: ~Ω = 20~ω0 (top) and
~Ω = 5~ω0 (bottom). In both cases, η = 0, 5~ω0. In the right
side, ~Ω = 10~ω0 and different coupling strengths are used:
η = ~ω0 (top) and η = 0.1~ω0 (bottom).

Since NZ method is not competitive, only the quan-
tum Monte-Carlo and TCL methods are considered in
the following application.

C. Quantum Monte-Carlo method applied to

inverted oscillators

Several approaches have been recently developed to de-
scribe fusion and fission reactions [6, 14, 15, 17, 18, 53].
In these mechanisms, few collective degrees of freedom
couple to a sea of internal excitations while passing an
inverted barrier. At very low energy, both quantum and
non-Markovian effects are expected to play a significant
role. Most of the theory currently used start from quan-
tum master equations deduced from TCL2. The quan-
tum Monte-Carlo method offers a practical alternative
which has similarities with path integrals theory. Path
integrals are known to provide a possible framework to
include dissipation while passing barriers (see for instance
[54]). However, due to their complexity, only few appli-
cations have been made so far [2, 55]. We compare here
the different approaches for inverted potential (ε = −1).

1. Initial conditions, trajectories and mean evolution

Initially, we consider a Gaussian density with quantum
width σQQ(0) = 0.16 fm2 and σPQ(0) = 0 MeV.fm/c
and positioned on one side of the potential (here taken
arbitrarily at 〈Q(0)〉 = Q0 > 0 while the barrier height is
is located at 0 fm and is by convention taken as VB = 0
MeV). The initial kinetic energy, denoted EK(0) is set by
boosting the density with an initial momentum 〈P (0)〉 =
P0 < 0.
Contrary to the classical theory of Brownian motion,

the notion of trajectories is not so easy to tackle in the
present Monte-Carlo framework. First, observables are
complex. As mentioned in section III A, this difficulty
can be overcomed by grouping trajectories by pairs which
is equivalent to replace expectation of observables by
their real parts. Second, it should be kept in mind that
the present theory is a purely quantum theory where den-
sities associated to wave-packets are evolved. Therefore,
each trajectory should be interpreted in the statistical
sense of quantum mechanics and contains many classical
paths. Nevertheless, to visualize the trajectory we define
the following energies:

E(t) =
P (t)2

2m
−

1

2
mω2

0Q(t)2 (26)

where Q(t) and P (t) denote the real part of 〈Q(t)〉 and
〈P (t)〉 along the trajectory. An illustration of two trajec-
tories, one passing the barrier and one reflected is shown
in figure 4. As illustrated in the following, it is conve-
nient to group trajectories according to the quantity ∆E
defined by

∆E = E(0)− VB (27)

which is nothing but the difference between total initial
energy and barrier high. Both trajectories shown in fig-
ure 4 correspond to ∆E = 0 MeV.
It is tempting to group trajectories into those passing

the barrier and those reflected by the potential to get
information on the passing probability or passing time,
however, it should be kept in mind that the present the-
ory is fully quantal. Since each trajectories are associ-
ated with densities with quantum widths, both trajecto-
ries presented in Fig. 4 contribute to the transmission
probability.
The accuracy of different methods is illustrated in fig-

ure 5 where evolutions of 〈Q〉, 〈P 〉, ΣQQ and ΣPP are
shown as a function of time. Values of parameters re-
tained for this figure are typical values generally taken in
the nuclear context[16]. In all cases, including TCL2, sec-
ond moments are well reproduced. However, only TCL4
and the stochastic simulation provides a correct descrip-
tion of first moments. Calculations are shown here for
∆E = 0 MeV. TCL2 provides a better and better ap-
proximation when ∆E increases while the disagreement
increases below the barrier. This will be further illus-
trated below.


