prithivMLmods commited on
Commit
2716108
·
verified ·
1 Parent(s): 7cd512c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -15,4 +15,60 @@ tags:
15
  - climate
16
  size_categories:
17
  - 10K<n<100K
18
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - climate
16
  size_categories:
17
  - 10K<n<100K
18
+ ---
19
+
20
+ # OpenScene-Classification Dataset
21
+
22
+ A high-quality image classification dataset curated for **scene detection tasks**, particularly useful in training and evaluating models for recognizing various natural and man-made environments.
23
+
24
+ ## Dataset Summary
25
+
26
+ The **OpenScene-Classification** dataset contains labeled images categorized into six distinct scene types:
27
+
28
+ - `buildings`
29
+ - `forest`
30
+ - `glacier`
31
+ - `mountain`
32
+ - `sea`
33
+ - `street`
34
+
35
+ This dataset is structured for supervised image classification, suitable for deep learning models aiming to identify and classify real-world scenes.
36
+
37
+ ## Dataset Structure
38
+
39
+ - **Split:** `train` (currently only one split)
40
+ - **Format:** `parquet`
41
+ - **Modality:** `Image`
42
+ - **Labels Type:** Integer class indices with corresponding string names
43
+ - **License:** Apache-2.0
44
+
45
+ Each entry in the dataset includes:
46
+ - `image`: the image of the scene
47
+ - `label`: the class index (e.g., 0 for buildings)
48
+ - `label_name`: the class name (e.g., "buildings")
49
+
50
+ > Note: The dataset viewer on Hugging Face may take a moment to load all samples.
51
+
52
+ ## Label Mapping
53
+
54
+ | Class Index | Label |
55
+ |-------------|------------|
56
+ | 0 | buildings |
57
+ | 1 | forest |
58
+ | 2 | glacier |
59
+ | 3 | mountain |
60
+ | 4 | sea |
61
+ | 5 | street |
62
+
63
+ ## Dataset Stats
64
+
65
+ - **Size**: 10K - 100K images
66
+ - **Language**: English (tags, metadata)
67
+ - **Tags**: `Scene-Detection`, `buildings`, `forest`, `glacier`, `mountain`, `sea`, `street`
68
+
69
+ ## Intended Use
70
+
71
+ This dataset is ideal for:
72
+ - Scene classification model training
73
+ - Benchmarking computer vision algorithms
74
+ - Educational purposes in machine learning and AI