prithivMLmods commited on
Commit
c4d2cb5
·
verified ·
1 Parent(s): 4d4b2ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -3
README.md CHANGED
@@ -1,3 +1,66 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - image-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - image
9
+ - video
10
+ - brain
11
+ - tumor
12
+ - brain_glioma
13
+ - brain_menin
14
+ - brain_tumor
15
+ size_categories:
16
+ - 1K<n<10K
17
+ ---
18
+
19
+ # Brain3-Anomaly-Classification
20
+
21
+ The Brain3-Anomaly-Classification dataset is a curated collection of brain MRI scans categorized into three types of brain anomalies. It is designed for use in machine learning applications related to medical imaging, especially in the detection and classification of brain tumors.
22
+
23
+ ## Dataset Summary
24
+
25
+ - Total Samples: 6,000
26
+ - Image Size: 512 x 512 pixels (grayscale)
27
+ - Number of Classes: 3
28
+ - Data Split: Only `train` split is provided
29
+
30
+ Each image in the dataset represents an MRI scan and is annotated with a label indicating the type of brain anomaly.
31
+
32
+ ## Label Mapping
33
+
34
+ | Label | Class Name |
35
+ |-------|---------------|
36
+ | 0 | brain_glioma |
37
+ | 1 | brain_menin |
38
+ | 2 | brain_tumor |
39
+
40
+ ## Use Cases
41
+
42
+ This dataset can be used for:
43
+
44
+ - Classification of brain anomalies using deep learning
45
+ - Training and evaluation of CNNs on medical image data
46
+ - Benchmarking models for medical diagnosis
47
+ - Research on MRI-based brain disease detection
48
+
49
+ ## Dataset Structure
50
+
51
+ Each row in the dataset includes:
52
+
53
+ - `image`: A brain MRI image of size 512x512 pixels
54
+ - `label`: An integer representing the class (0, 1, or 2)
55
+
56
+ The dataset is available in Hugging Face's Parquet format for easy loading and use with the `datasets` library.
57
+
58
+ ## How to Use
59
+
60
+ ```python
61
+ from datasets import load_dataset
62
+
63
+ dataset = load_dataset("prithivMLmods/Brain3-Anomaly-Classification")
64
+ ````
65
+
66
+ This will load the dataset with images and corresponding labels, which can be directly used for training models in PyTorch, TensorFlow, or other ML frameworks.