Setting up data loading script
Browse filesData loading script first attempt that simply returns the evaluation json for each checkpoint. Data splits correspond to the different model sizes.
- pythia-training-evals.py +74 -0
pythia-training-evals.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Dataset for storing training evaluations of pythia models, e.g. loss, perplexity
|
3 |
+
"""
|
4 |
+
|
5 |
+
class PythiaTrainingEvals(datasets.GeneratorBasedBuilder):
|
6 |
+
|
7 |
+
MODEL_SIZES = [
|
8 |
+
"70m",
|
9 |
+
"160m",
|
10 |
+
"410m",
|
11 |
+
"1.4b",
|
12 |
+
"2.8b",
|
13 |
+
]
|
14 |
+
|
15 |
+
BUILDER_CONFIGS = []
|
16 |
+
for model_size in MODEL_SIZES:
|
17 |
+
BUILDER_CONFIGS.extend([
|
18 |
+
datasets.BuilderConfig(
|
19 |
+
name=f"{model_size}",
|
20 |
+
description=f"Dataset of pythia training evaluation metrics for pythia model size: {model_size}",
|
21 |
+
version="1.0.0",
|
22 |
+
),
|
23 |
+
])
|
24 |
+
|
25 |
+
def _info(self):
|
26 |
+
return datasets.DatasetInfo(
|
27 |
+
description=_DESCRIPTION,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
32 |
+
"""
|
33 |
+
Returns data for different splits - we define a split as a model size.
|
34 |
+
"""
|
35 |
+
|
36 |
+
to_download_files = []
|
37 |
+
model_size = self.config.name.split("__")[0]
|
38 |
+
|
39 |
+
for checkpoint_step in checkpoint_steps:
|
40 |
+
to_download_files.append(f"./models/{model_size}/checkpoint_{checkpoint_step}/evals.json")
|
41 |
+
|
42 |
+
downloaded_files = dl_manager.download_and_extract(to_download_files)
|
43 |
+
|
44 |
+
return [
|
45 |
+
datasets.SplitGenerator(
|
46 |
+
name='default',
|
47 |
+
gen_kwargs={
|
48 |
+
"filepaths": downloaded_files,
|
49 |
+
}
|
50 |
+
)
|
51 |
+
]
|
52 |
+
|
53 |
+
def _generate_examples(self, filepaths):
|
54 |
+
"""
|
55 |
+
Yields examples from each file in filepaths that are stored as jsons
|
56 |
+
with the evaluation metrics for a given checkpoint step.
|
57 |
+
"""
|
58 |
+
|
59 |
+
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
|
60 |
+
checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])
|
61 |
+
|
62 |
+
# the filepaths should be a list of filepaths
|
63 |
+
if isinstance(filepaths, str):
|
64 |
+
filepaths = [filepaths]
|
65 |
+
|
66 |
+
for idx, filepath in enumerate(filepaths):
|
67 |
+
with open(filepath, 'rb') as f:
|
68 |
+
data = json.load(f)
|
69 |
+
|
70 |
+
record = {
|
71 |
+
"checkpoint_step": checkpoint_steps[idx],
|
72 |
+
**data
|
73 |
+
}
|
74 |
+
yield idx, record
|