File size: 2,385 Bytes
20234da
 
 
 
 
 
 
 
 
 
 
 
 
c6529bf
 
65d355c
 
 
 
 
d7cb18c
325870b
c7614b1
690acbc
 
98c5112
325870b
c7614b1
325870b
 
b4775de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- sentiment-analysis
- text-classification
- multiclass-classification
pretty_name: Sentiment Analysis Preprocessed Dataset including training and testing split
size_categories:
- 10K<n<100K
---

**Brief idea about dataset**:
<br>
This dataset is designed for a Text Classification to be specific Multi Class Classification, inorder to train a model (Supervised Learning) for Sentiment Analysis.
<br>
Also to be able retrain the model on the given feedback over a wrong predicted sentiment this dataset will help to manage those things using **Other Features**.


**Main Features**
| text                                                                 | labels                                                                                                                                                  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| This feature variable has all sort of texts, sentences, tweets, etc. | This target variable contains 3 types of numeric values as sentiments such as 0, 1 and 2. Where 0 means Negative, 1 means Neutral and 2 means Positive. |

**Other Features**
| preds                                                    | feedback                                                                                               | retrain_labels                                                                                 | retrained_preds                                                              |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| In this variable all predictions are going to be stored. | In this variable user can enter either yes or no to indicate whether the prediction is right or wrong. | In this variable user will enter the correct label as a feedback inorder to retrain the model. | In this variable all predictions after feedback loop are going to be stored. |