Datasets:
File size: 2,385 Bytes
20234da c6529bf 65d355c d7cb18c 325870b c7614b1 690acbc 98c5112 325870b c7614b1 325870b b4775de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- sentiment-analysis
- text-classification
- multiclass-classification
pretty_name: Sentiment Analysis Preprocessed Dataset including training and testing split
size_categories:
- 10K<n<100K
---
**Brief idea about dataset**:
<br>
This dataset is designed for a Text Classification to be specific Multi Class Classification, inorder to train a model (Supervised Learning) for Sentiment Analysis.
<br>
Also to be able retrain the model on the given feedback over a wrong predicted sentiment this dataset will help to manage those things using **Other Features**.
**Main Features**
| text | labels |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| This feature variable has all sort of texts, sentences, tweets, etc. | This target variable contains 3 types of numeric values as sentiments such as 0, 1 and 2. Where 0 means Negative, 1 means Neutral and 2 means Positive. |
**Other Features**
| preds | feedback | retrain_labels | retrained_preds |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| In this variable all predictions are going to be stored. | In this variable user can enter either yes or no to indicate whether the prediction is right or wrong. | In this variable user will enter the correct label as a feedback inorder to retrain the model. | In this variable all predictions after feedback loop are going to be stored. | |