Datasets:

Languages:
English
ArXiv:
License:
File size: 7,003 Bytes
0ea62c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Adapted from Dedalus SWE example:

https://dedalus-project.readthedocs.io/en/latest/pages/examples/ivp_sphere_shallow_water.html
"""

import argparse
import logging
import multiprocessing as mp
import os
from glob import glob

import dedalus.public as d3
import numpy as np

os.environ["OMP_NUM_THREADS"] = "1"
os.environ["NUMEXPR_MAX_THREADS"] = "1"

logger = logging.getLogger(__name__)


# Simulation units
meter = 1 / 6.37122e6
hour = 1
second = hour / 3600
day = hour * 24
year = (
    hour * 1008
)  # 42 day years - Chosen based on the fact that the sim gets boring ~ 4000 hours


def run_ic_file(ic_file, output_dir):
    output_dir = output_dir + ic_file.split("/")[-1].split(".")[0]
    # Parse IC file for PM xfer
    print(output_dir)
    # Parameters
    Nphi = 512
    Ntheta = 256
    dealias = 3 / 2
    R = 6.37122e6 * meter
    Omega = 7.292e-5 / second
    nu = 1e5 * meter**2 / second / (160) ** 2  # Hyperdiffusion matched at ell=96
    g = 9.80616 * meter / second**2
    timestep = 60 * second
    burn_in = 0.25 * year
    stop_sim_time = burn_in + 3 * year  # 1*year
    dtype = np.float64

    # Bases
    coords = d3.S2Coordinates("phi", "theta")
    dist = d3.Distributor(coords, dtype=dtype)
    basis = d3.SphereBasis(
        coords, (Nphi, Ntheta), radius=R, dealias=dealias, dtype=dtype
    )
    # Fields
    u = dist.VectorField(coords, name="u", bases=basis)
    h = dist.Field(name="h", bases=basis)
    # Substitutions
    zcross = lambda A: d3.MulCosine(d3.skew(A))  # noqa: E731

    # Copy ICs from hpa 500 fields
    ICs = np.load(ic_file)
    ICs = np.swapaxes(ICs, 1, 2)
    ICs = np.flip(ICs, 2)
    u0 = ICs[:2] * meter / second  # * .3
    h0 = ICs[2] * meter / g  # Conversion from geopotential to gp height
    H = h0.mean()  # Should be about 5500 meters
    h0 = h0 - H
    hs0 = ICs[3] * meter - H
    hs = dist.Field(name="hs", bases=basis)
    hs.load_from_global_grid_data(hs0)
    hs.low_pass_filter((128, 256))
    u.load_from_global_grid_data(u0)
    h.load_from_global_grid_data(h0)

    # # Initial conditions: balanced height
    c = dist.Field(name="c")
    problem = d3.LBVP([h, c], namespace=locals())
    problem.add_equation("g*lap(h) + c = - div(u@grad(u) + 2*Omega*zcross(u))")
    problem.add_equation("ave(h) = 0")

    solver_init = problem.build_solver()
    # solver_init.solve()

    # Momentum forcing - seasonal
    def find_center(t):
        time_of_day = t / day
        time_of_year = t / year
        max_declination = 0.4  # Truncated from estimate of earth's solar decline
        lon_center = time_of_day * 2 * np.pi  # Rescale sin to 0-1 then scale to np.pi
        lat_center = np.sin(time_of_year * 2 * np.pi) * max_declination
        lon_anti = np.pi + lon_center
        return lon_center, lat_center, lon_anti, lat_center

    def season_day_forcing(phi, theta, t, h_f0):
        phi_c, theta_c, phi_a, theta_a = find_center(t)
        sigma = 2 * np.pi / 3
        # Coefficients aren't super well-designed - idea is one side of the planet increases
        # the other side decreases and the effect is centered around a seasonally-shifting Gaussian.
        # The original thought was to have this act on momentum, but this was harder to implement in a stable way
        # since increasing/decreasing by same factor is net energy loss.
        coefficients = np.cos(phi - phi_c) * np.exp(
            -((theta - theta_c) ** 2) / sigma**2
        )
        # coefficients = np.exp(-(phi - phi_c)**2 / sigma) * np.exp(-(theta-theta_c)**2 / sigma**2)

        forcing = h_f0 * coefficients
        return forcing

    phi, theta = dist.local_grids(basis)
    t = dist.Field(name="t")
    lat = np.pi / 2 - theta + 0 * phi
    phi_var = dist.Field(name="phi_var", bases=basis)
    phi_var["g"] += phi
    theta_var = dist.Field(name="theta_var", bases=basis)
    theta_var["g"] += lat
    h_f0 = (
        2 * meter
    )  # Increasing this starts leading to fast waves (or maybe it just looks that way at 60 FPS/ 2.x day per sec)
    h_f = season_day_forcing(phi_var, theta_var, t, h_f0)

    # Problem
    problem = d3.IVP([u, h], namespace=locals(), time=t)
    problem.add_equation(
        "dt(u) + nu*lap(lap(u)) + g*grad(h)  + 2*Omega*zcross(u) = - u@grad(u)"
    )
    problem.add_equation("dt(h) + nu*lap(lap(h)) + (H)*div(u) = - div(u*(h-hs)) + h_f")
    # Init to remove fast waves in sim - should probably just filter in time here, but this works.
    solver = problem.build_solver(d3.RK222)
    solver.stop_sim_time = burn_in
    CFL = d3.CFL(
        solver,
        initial_dt=10 * second,
        cadence=1,
        safety=0.1,
        threshold=0.05,
        max_dt=1 * hour,
    )
    CFL.add_velocity(u)
    logger.info("Trying init loop to get rid of fast waves")
    for i in range(10):
        logger.info("Starting init cycle %s" % i)
        solver_init.solve()
        for j in range(10 + i * 30):
            timestep = CFL.compute_timestep()
            solver.step(timestep)
    solver_init.solve()
    # Now do burn-in
    try:
        logger.info("Starting burn-in loop")
        while solver.proceed:
            timestep = CFL.compute_timestep()
            solver.step(timestep)
            # print(uf.evaluate()['g'])
            if (solver.iteration - 1) % 10 == 0:
                logger.info(
                    "Burn-in Iteration=%i, Time=%e, dt=%e"
                    % (solver.iteration, solver.sim_time, timestep)
                )
    except:
        logger.error("Exception raised, triggering end of burn loop.")
        raise
    # Now define real problem
    solver = problem.build_solver(d3.RK222)
    solver.stop_sim_time = stop_sim_time

    # Analysis
    snapshots = solver.evaluator.add_file_handler(
        output_dir, sim_dt=1 * hour, max_writes=1 * year
    )
    snapshots.add_tasks(solver.state, layout="g")
    # CFL
    CFL = d3.CFL(
        solver,
        initial_dt=10 * second,
        cadence=1,
        safety=0.1,
        threshold=0.05,
        max_dt=1 * hour,
    )
    CFL.add_velocity(u)
    # Main loo
    logger.info("Starting main loop")
    while solver.proceed:
        timestep = CFL.compute_timestep()
        solver.step(timestep)
        if (solver.iteration - 1) % 10 == 0:
            logger.info(
                "Iteration=%i, Time=%e, dt=%e"
                % (solver.iteration, solver.sim_time, timestep)
            )

    solver.log_stats()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    n_cores = mp.cpu_count()
    parser.add_argument("--index", type=int, default=0)
    parser.add_argument("--ic_dir", default="../data_stubs/")
    parser.add_argument(
        "--output_dir",
        default="/mnt/home/polymathic/ceph/the_well/testing_before_adding/earthswe/",
    )
    args = parser.parse_args()

    ind = int(args.index)
    all_files = sorted(glob(f"{args.ic_dir}IC_*.npy"))
    output_dir = args.output_dir
    print("Processing IC", ind)
    run_ic_file(all_files[ind], output_dir)