Datasets:
File size: 4,954 Bytes
bc01a3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import argparse
import multiprocessing as mp
from functools import partial
import numpy as np
from acoustics_2d_interface_maze import setup as maze_setup
from acoustics_2d_interface_random_medium import setup as random_setup
# Time/steps/samples
steps_map = {
"continuous": (2.0, 101, 2000),
"discontinuous": (2.0, 101, 2000),
"inclusions": (2.0, 101, 4000),
"maze": (4.0, 201, 2000),
}
def mp_wrapper(
seed,
discontinuous,
inclusions,
maze,
output_dir="/mnt/home/polymathic/ceph/the_well/testing_before_adding/clawpack_data/acoustics_2d_variable/",
):
if discontinuous:
run_func = partial(
inner_gen_sample,
discontinuous=True,
inclusions=False,
maze=False,
output_dir=output_dir,
)
num_samples = 2000
elif inclusions:
run_func = partial(
inner_gen_sample,
discontinuous=False,
inclusions=True,
maze=False,
output_dir=output_dir,
)
num_samples = 4000
elif maze:
run_func = partial(
inner_gen_sample,
discontinuous=False,
inclusions=False,
maze=True,
output_dir=output_dir,
)
num_samples = 2000
else:
run_func = partial(
inner_gen_sample,
discontinuous=False,
inclusions=False,
maze=False,
output_dir=output_dir,
)
num_samples = 2000
cores = mp.cpu_count()
seeds = seed.spawn(num_samples)
with mp.Pool(cores // 2) as pool:
pool.map(run_func, seeds)
# run_func(seeds[0])
def inner_gen_sample(
seed=0, discontinuous=False, inclusions=False, maze=False, output_dir=""
):
"""
Iterate num samples times and enerate sample file. Use
it to overwrite qinit, then run .make output to generate trajectory.
Make sure overwrite is False in the make file before running.
"""
# Check conditions and set up names
file_suffix = f"{str(seed.bit_generator.seed_seq.entropy)}_{str(seed.bit_generator.seed_seq.spawn_key)}"
if discontinuous:
file_suffix = "discontinuous_" + file_suffix
run_func = partial(
random_setup,
seed=seed,
include_splits=True,
include_inclusions=False,
outdir=output_dir + file_suffix,
T_max=2.0,
num_steps=101,
)
elif inclusions:
file_suffix = "inclusions_" + file_suffix
run_func = partial(
random_setup,
seed=seed,
include_splits=True,
include_inclusions=True,
outdir=output_dir + file_suffix,
T_max=2.0,
num_steps=101,
)
elif maze:
file_suffix = "maze_" + file_suffix
run_func = partial(
maze_setup,
seed=seed,
outdir=output_dir + file_suffix,
T_max=4.0,
num_steps=201,
)
else:
file_suffix = "continuous_" + file_suffix
run_func = partial(
random_setup,
seed=seed,
include_splits=False,
include_inclusions=False,
outdir=output_dir + file_suffix,
T_max=2.0,
num_steps=101,
)
claw = run_func(output_dir + file_suffix)
claw.run()
if __name__ == "__main__":
# print(len(gases))
parser = argparse.ArgumentParser(
description="Generate initial conditions for 2D Euler quadrants"
)
# parser.add_argument('--num_samples', type=int, default=1000, help='Number of samples to generate')
parser.add_argument(
"--discontinuity",
action="store_true",
help="Whether to generate random samples",
)
parser.add_argument(
"--inclusions", action="store_true", help="Whether to generate random samples"
)
parser.add_argument(
"--switch_to_maze",
action="store_true",
help="Whether to generate random samples",
)
# parser.add_argument('--bc', type=str, default='extrap', help='Boundary conditions')
# parser.add_argument('--gas_index', type=int, default=0, help='Index of gas to use (0-9 inclusive)')
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for random samples - use different one per gas/bc if par",
)
parser.add_argument(
"--raw_output_dir",
type=str,
default=" /mnt/home/polymathic/ceph/the_well/testing_before_adding/clawpack_data/",
help="Directory to store raw output",
)
args = parser.parse_args()
seed = np.random.default_rng(
args.seed
+ 100 * int(args.discontinuity)
+ 1000 * int(args.inclusions)
+ 10000 * int(args.switch_to_maze)
)
mp_wrapper(seed, args.discontinuity, args.inclusions, args.switch_to_maze)
|