|
|
|
|
|
r""" |
|
Two-dimensional variable-coefficient acoustics |
|
============================================== |
|
|
|
Solve the variable-coefficient acoustics equations in 2D: |
|
|
|
.. math:: |
|
p_t + K(x,y) (u_x + v_y) & = 0 \\ |
|
u_t + p_x / \rho(x,y) & = 0 \\ |
|
v_t + p_y / \rho(x,y) & = 0. |
|
|
|
Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus, |
|
and :math:`\rho(x,y)` is the density. |
|
|
|
This example shows how to solve a problem with variable coefficients. |
|
The left and right halves of the domain consist of different materials. |
|
""" |
|
|
|
from functools import partial |
|
|
|
import numpy as np |
|
from scipy.ndimage import gaussian_filter |
|
|
|
|
|
def setup( |
|
kernel_language="Fortran", |
|
use_petsc=False, |
|
outdir="./_output", |
|
solver_type="classic", |
|
time_integrator="SSP104", |
|
lim_type=2, |
|
disable_output=False, |
|
num_cells=(256, 256), |
|
seed=None, |
|
include_splits=True, |
|
include_inclusions=True, |
|
T_max=2.0, |
|
num_steps=101, |
|
): |
|
""" |
|
Example python script for solving the 2d acoustics equations. |
|
""" |
|
from clawpack import riemann |
|
|
|
if seed is None: |
|
seed = np.random.default_rng() |
|
if use_petsc: |
|
import clawpack.petclaw as pyclaw |
|
else: |
|
from clawpack import pyclaw |
|
|
|
if solver_type == "classic": |
|
solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D) |
|
solver.dimensional_split = False |
|
solver.limiters = pyclaw.limiters.tvd.MC |
|
elif solver_type == "sharpclaw": |
|
solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D) |
|
solver.time_integrator = time_integrator |
|
if time_integrator == "SSPLMMk2": |
|
solver.lmm_steps = 3 |
|
solver.cfl_max = 0.25 |
|
solver.cfl_desired = 0.24 |
|
|
|
solver.bc_lower[0] = pyclaw.BC.wall |
|
solver.bc_upper[0] = pyclaw.BC.extrap |
|
solver.bc_lower[1] = pyclaw.BC.wall |
|
solver.bc_upper[1] = pyclaw.BC.extrap |
|
solver.aux_bc_lower[0] = pyclaw.BC.wall |
|
solver.aux_bc_upper[0] = pyclaw.BC.extrap |
|
solver.aux_bc_lower[1] = pyclaw.BC.wall |
|
solver.aux_bc_upper[1] = pyclaw.BC.extrap |
|
|
|
x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x") |
|
y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y") |
|
domain = pyclaw.Domain([x, y]) |
|
|
|
num_eqn = 3 |
|
num_aux = 2 |
|
state = pyclaw.State(domain, num_eqn, num_aux) |
|
|
|
grid = state.grid |
|
X, Y = grid.p_centers |
|
is_vert = seed.integers(0, 2) |
|
midpoint = seed.uniform(-0.8, 0.8) |
|
rho_left = seed.uniform(0.2, 7) |
|
rho_right = seed.uniform(0.2, 7) |
|
bulk_left = 4.0 |
|
bulk_right = 4.0 |
|
|
|
def gaussian_bump( |
|
aux, mask, seed, rho_low=1, rho_high=7.0, sigma_low=0.1, sigma_high=5 |
|
): |
|
rho_bump = seed.uniform(rho_low, rho_high) |
|
rho_base = seed.uniform(rho_low, rho_high) |
|
|
|
Xmask = X[mask] |
|
xmax = Xmask.max() |
|
xmin = Xmask.min() |
|
Ymask = Y[mask] |
|
ymax = Ymask.max() |
|
ymin = Ymask.min() |
|
|
|
xc = seed.uniform(xmin, xmax) |
|
yc = seed.uniform(ymin, ymax) |
|
sigma = seed.uniform(sigma_low, sigma_high) |
|
rho = rho_base + (rho_bump - rho_base) * np.exp( |
|
-((Xmask - xc) ** 2 + (Ymask - yc) ** 2) / (sigma) |
|
) |
|
c = np.sqrt(bulk_left / rho) |
|
aux[0][mask] = rho |
|
aux[1][mask] = c |
|
|
|
def linear_gradient(aux, mask, seed, rho_low=1, rho_high=7.0): |
|
rho_x0 = seed.uniform(rho_low, rho_high) |
|
rho_x1 = seed.uniform(rho_low, rho_high) |
|
rho_y0 = seed.uniform(rho_low, rho_high) |
|
rho_y1 = seed.uniform(rho_low, rho_high) |
|
|
|
|
|
Xmask = (X[mask] + 1) / 2 |
|
xmax = Xmask.max() |
|
xmin = Xmask.min() |
|
Ymask = (Y[mask] + 1) / 2 |
|
ymax = Ymask.max() |
|
ymin = Ymask.min() |
|
|
|
Xrel = (Xmask - xmin) / (xmax - xmin) |
|
Yrel = (Ymask - ymin) / (ymax - ymin) |
|
|
|
rho = ( |
|
(1 - Xrel) * (1 - Yrel) * rho_x0 |
|
+ Xrel * (1 - Yrel) * rho_x1 |
|
+ (1 - Xrel) * Yrel * rho_y0 |
|
+ Xrel * Yrel * rho_y1 |
|
) |
|
c = np.sqrt(bulk_left / rho) |
|
aux[0][mask] = rho |
|
aux[1][mask] = c |
|
|
|
def constant(aux, mask, seed, rho_low=1, rho_high=7.0): |
|
rho = seed.uniform(rho_low, rho_high) |
|
c = np.sqrt(bulk_left / rho) |
|
aux[0][mask] = rho |
|
aux[1][mask] = c |
|
|
|
def smoothed_gaussian_noise( |
|
aux, mask, seed, rho_low=1, rho_high=7.0, std=2, sigma_low=5, sigma_high=10 |
|
): |
|
rho = seed.uniform(rho_low, rho_high) |
|
background = seed.standard_normal(mask.shape) |
|
sigma = seed.uniform(sigma_low, sigma_high) |
|
|
|
background = gaussian_filter(background, sigma) |
|
rho = rho + background[mask] |
|
c = np.sqrt(bulk_left / rho) |
|
aux[0][mask] = rho |
|
aux[1][mask] = c |
|
|
|
gen_funcs = [gaussian_bump, linear_gradient, constant, smoothed_gaussian_noise] |
|
|
|
c_left = np.sqrt(bulk_left / rho_left) |
|
if include_splits: |
|
if is_vert: |
|
mask = Y < midpoint |
|
else: |
|
mask = X < midpoint |
|
seed.choice(gen_funcs)(state.aux, (~mask), seed) |
|
else: |
|
mask = np.ones_like(X, dtype=bool) |
|
seed.choice(gen_funcs)(state.aux, mask, seed) |
|
|
|
state.q[0, :, :] = 0.0 |
|
state.q[1, :, :] = 0.0 |
|
state.q[2, :, :] = 0.0 |
|
|
|
n_waves = seed.integers(1, 4) |
|
for i in range(n_waves): |
|
center = seed.uniform(-0.95, 0.95, 2) |
|
x0 = center[0] |
|
y0 = center[1] |
|
width = seed.uniform(0.05, 0.15) |
|
rad = seed.uniform(width + 0.01, 0.3) |
|
intensity = seed.uniform(0.5, 2.0) |
|
|
|
r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2) |
|
|
|
state.q[0, :, :] += (np.abs(r - rad) <= width) * ( |
|
intensity + np.cos(np.pi * (r - rad) / width) |
|
) |
|
|
|
if include_inclusions: |
|
n_inclusions = seed.integers(0, 15) |
|
for i in range(n_inclusions): |
|
|
|
g_ell_center = seed.uniform(-0.95, 0.95, 2) |
|
rads = seed.uniform(0.05, 0.6, 2) |
|
g_ell_width = rads[0] |
|
g_ell_height = rads[1] |
|
angle = seed.uniform(-45, 45) |
|
|
|
cos_angle = np.cos(np.radians(180.0 - angle)) |
|
sin_angle = np.sin(np.radians(180.0 - angle)) |
|
|
|
xc = X - g_ell_center[0] |
|
yc = Y - g_ell_center[1] |
|
|
|
xct = xc * cos_angle - yc * sin_angle |
|
yct = xc * sin_angle + yc * cos_angle |
|
|
|
rad_cc = (xct**2 / (g_ell_width / 2.0) ** 2) + ( |
|
yct**2 / (g_ell_height / 2.0) ** 2 |
|
) |
|
|
|
inclusion_rho = np.exp(seed.uniform(-1, 10)) |
|
|
|
c_left = np.sqrt(bulk_left / inclusion_rho) |
|
state.aux[0][rad_cc <= 1] = inclusion_rho |
|
state.aux[1][rad_cc <= 1] = c_left |
|
state.q[0][rad_cc <= 1] = 0.0 |
|
|
|
claw = pyclaw.Controller() |
|
claw.keep_copy = True |
|
if disable_output: |
|
claw.output_format = None |
|
claw.solution = pyclaw.Solution(state, domain) |
|
claw.solver = solver |
|
claw.outdir = outdir |
|
claw.tfinal = T_max |
|
claw.num_output_times = num_steps |
|
claw.write_aux_init = True |
|
claw.setplot = setplot |
|
claw.output_options = {"format": "binary"} |
|
if use_petsc: |
|
claw.output_options = {"format": "binary"} |
|
|
|
return claw |
|
|
|
|
|
def setplot(plotdata): |
|
""" |
|
Plot solution using VisClaw. |
|
|
|
This example shows how to mark an internal boundary on a 2D plot. |
|
""" |
|
|
|
from clawpack.visclaw import colormaps |
|
|
|
plotdata.clearfigures() |
|
|
|
|
|
plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0) |
|
|
|
|
|
plotaxes = plotfigure.new_plotaxes() |
|
plotaxes.title = "Pressure" |
|
plotaxes.scaled = True |
|
plotaxes.afteraxes = mark_interface |
|
|
|
|
|
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") |
|
plotitem.plot_var = 0 |
|
plotitem.pcolor_cmap = colormaps.yellow_red_blue |
|
plotitem.add_colorbar = True |
|
plotitem.pcolor_cmin = 0.0 |
|
plotitem.pcolor_cmax = 1.0 |
|
|
|
|
|
plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1) |
|
|
|
|
|
plotaxes = plotfigure.new_plotaxes() |
|
plotaxes.title = "u" |
|
plotaxes.afteraxes = mark_interface |
|
|
|
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") |
|
plotitem.plot_var = 1 |
|
plotitem.pcolor_cmap = colormaps.yellow_red_blue |
|
plotitem.add_colorbar = True |
|
plotitem.pcolor_cmin = -0.3 |
|
plotitem.pcolor_cmax = 0.3 |
|
|
|
return plotdata |
|
|
|
|
|
def mark_interface(current_data): |
|
import matplotlib.pyplot as plt |
|
|
|
plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2) |
|
|
|
|
|
if __name__ == "__main__": |
|
from clawpack.pyclaw.util import run_app_from_main |
|
|
|
setup_wrapped = partial(setup, seed=np.random.default_rng(42)) |
|
output = run_app_from_main(setup_wrapped, setplot) |
|
|