File size: 2,139 Bytes
2ec92eb
e2c6244
29da68d
 
 
 
 
30dbd93
 
 
 
 
e2c6244
 
b7718ce
 
 
 
2c7a6c8
 
 
02ea898
 
2c7a6c8
427c16b
f38a785
427c16b
 
 
 
 
 
 
 
02ea898
 
427c16b
2c7a6c8
 
427c16b
2c7a6c8
02ea898
2c7a6c8
4a1a4ac
 
 
 
 
 
 
 
 
2c7a6c8
427c16b
2c7a6c8
e6c0765
2c7a6c8
e6c0765
2c7a6c8
e6c0765
2c7a6c8
 
 
 
 
 
 
 
 
 
 
e6c0765
2c7a6c8
e6c0765
2c7a6c8
e6c0765
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: cc-by-4.0
configs:
- config_name: default
  data_files:
  - split: data
    path: "data.csv"
task_categories:
- text-classification
- tabular-classification
size_categories:
- n<1K
annotations_creators:
- found
tags:
- phishing
- url
- security
---



# Dataset Description

The provided dataset includes **11430** URLs with **87** extracted features.  
The dataset are designed to be used as a benchmark for machine learning based **phishing detection** systems.  
The datatset is balanced, it containes exactly 50% phishing and 50% legitimate URLs.  

Features are from three different classes:
- **56** extracted from the structure and syntax of URLs
- **24** extracted from the content of their correspondent pages
- **7** are extracetd by querying external services.


## Details

- **Funded by:** Abdelhakim Hannousse, Salima Yahiouche
- **Shared by:** [pirocheto](https://github.com/pirocheto)
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Paper:** [https://arxiv.org/abs/2010.12847](https://arxiv.org/abs/2010.12847)

## Source Data

<div align="center">
  <img src="images/source-data.png" alt="Diagram source data">
</div>

<p align="center">
  <em>Source: Extract form the <a href="https://arxiv.org/abs/2010.12847">paper</a></em>
</p>



## Citation

To give credit to the creators of this dataset, please use the following citation in your work:

- BibTeX format

```
@article{Hannousse_2021,
   title={Towards benchmark datasets for machine learning based website phishing detection: An experimental study},
   volume={104},
   ISSN={0952-1976},
   url={http://dx.doi.org/10.1016/j.engappai.2021.104347},
   DOI={10.1016/j.engappai.2021.104347},
   journal={Engineering Applications of Artificial Intelligence},
   publisher={Elsevier BV},
   author={Hannousse, Abdelhakim and Yahiouche, Salima},
   year={2021},
   month=sep, pages={104347} }
```

- APA format

```
Hannousse, A., & Yahiouche, S. (2021).
Towards benchmark datasets for machine learning based website phishing detection: An experimental study.
Engineering Applications of Artificial Intelligence, 104, 104347.
```