Datasets:
File size: 2,139 Bytes
2ec92eb e2c6244 29da68d 30dbd93 e2c6244 b7718ce 2c7a6c8 02ea898 2c7a6c8 427c16b f38a785 427c16b 02ea898 427c16b 2c7a6c8 427c16b 2c7a6c8 02ea898 2c7a6c8 4a1a4ac 2c7a6c8 427c16b 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: cc-by-4.0
configs:
- config_name: default
data_files:
- split: data
path: "data.csv"
task_categories:
- text-classification
- tabular-classification
size_categories:
- n<1K
annotations_creators:
- found
tags:
- phishing
- url
- security
---
# Dataset Description
The provided dataset includes **11430** URLs with **87** extracted features.
The dataset are designed to be used as a benchmark for machine learning based **phishing detection** systems.
The datatset is balanced, it containes exactly 50% phishing and 50% legitimate URLs.
Features are from three different classes:
- **56** extracted from the structure and syntax of URLs
- **24** extracted from the content of their correspondent pages
- **7** are extracetd by querying external services.
## Details
- **Funded by:** Abdelhakim Hannousse, Salima Yahiouche
- **Shared by:** [pirocheto](https://github.com/pirocheto)
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Paper:** [https://arxiv.org/abs/2010.12847](https://arxiv.org/abs/2010.12847)
## Source Data
<div align="center">
<img src="images/source-data.png" alt="Diagram source data">
</div>
<p align="center">
<em>Source: Extract form the <a href="https://arxiv.org/abs/2010.12847">paper</a></em>
</p>
## Citation
To give credit to the creators of this dataset, please use the following citation in your work:
- BibTeX format
```
@article{Hannousse_2021,
title={Towards benchmark datasets for machine learning based website phishing detection: An experimental study},
volume={104},
ISSN={0952-1976},
url={http://dx.doi.org/10.1016/j.engappai.2021.104347},
DOI={10.1016/j.engappai.2021.104347},
journal={Engineering Applications of Artificial Intelligence},
publisher={Elsevier BV},
author={Hannousse, Abdelhakim and Yahiouche, Salima},
year={2021},
month=sep, pages={104347} }
```
- APA format
```
Hannousse, A., & Yahiouche, S. (2021).
Towards benchmark datasets for machine learning based website phishing detection: An experimental study.
Engineering Applications of Artificial Intelligence, 104, 104347.
```
|